
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1995

Algorithms for the NJIT turbonet parallel computer Algorithms for the NJIT turbonet parallel computer

Nitin J. Lad
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Lad, Nitin J., "Algorithms for the NJIT turbonet parallel computer" (1995). Theses. 1172.
https://digitalcommons.njit.edu/theses/1172

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1172&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1172?utm_source=digitalcommons.njit.edu%2Ftheses%2F1172&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type o f computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back o f the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

UMI N um ber: 1 3 7 8 3 5 7

Copyright 1995 by
Lad, Nitin J.

All rights reserved.

UMI Microform 1378357
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zecb Road
Ann Arbor, MI 48103

ALGORITHMS FOR THE NJIT TURBONET PARALLEL COMPUTER

by
Nitin J. Lad

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

M aster of Science in Electrical Engineering

Department of Electrical and Computer Engineering

October 1995

Copyright © 1995 by Nitin J. Lad

ALL RIGHTS RESERVED.

APPROVAL PAGE

PARALLEL ALGORITHMS FOR THE NJIT TURBONET
PARALLEL COMPUTER

Nitin J. Lad

Dr. Sotirios Ziavras, Thesis Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. John Carpinelli, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering and
Director of Computer Engineering, NJIT

Dr. MengChu Zhou, Committtee Member 	Date
Associate Professor of Electrical and Computer Engineering, NJIT

ABSTRACT

ALGORITHMS FOR THE NJIT TURBONET PARALLEL COMPUTER

by
Nitin J. Lad

Element selection for arrays, array merging, and sorting are very frequent

operations in many of today’s important applications. These operations are of interest to

scientific, as well as other applications where high-speed database search, merge, and sort

operations are necessary and frequent. Therefore, their efficient implementation on

parallel computers should be a worthwhile objective. Parallel algorithms are presented in

this thesis for the implementation of these operations on the NJIT TurboNet system, an in-

house built experimental parallel computer with TMS320C40 Digital Signal Processors

interconnected in a 3-D hypercube structure. The first algorithm considered is selection.

It involves finding the £-th smallest element in an unsorted sequence of n elements, where

1 <k<n. The second algorithm involves the merging of two sequences sorted in

nondecreasing order to form a third sequence, also sorted in nondecreasing order. The

third parallel algorithm is sorting. For a given unsorted sequence S of size «, we want to

sort the sequence such that st < s'i+1, for all n elements. Performance results show that

the robust structure of TurboNet results in significant speedups.

BIOGRAPHICAL SKETCH

Author: 	Nitin J. Lad

Degree: 	Master of Science in Electrical Engineering

Date: 	October 1995

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology,
Newark, NJ, October 1995

• Bachelor of Science in Electrical Engineering,
New Jersey Institute of Technology,
Newark, NJ, May 1991

Major: 	Electrical Engineering

Presentations and Publications:

R. Hross, S. Ziavras, C. Manikopoulos, N. J. Lad, and X. Li, "A Defect Identification
Algorithm for Sequential and Parallel Computers." IEEE International Symposium
on Industrial Electronics. Athens, Greece, July 10-14, 1995.

This thesis is dedicated to my family andfriends.

vi

ACKNOWLEDGMENT

I would like to thank all the professors I had taken classes with and graduate

students I worked with during my study period at NJIT. Special thanks to Dr. Ziavras,

Dr. Xi Li, and Ralf Hross for their guidance and advice.

I also want to thank Dr. Carpinelli and Dr. Zhou for serving in my thesis defense

committee.

The work presented in this research was supported in part by the National Science

Foundation under grants CDA-9121475 and DMI-9500260.

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION...1

1.1 Parallel Processing..1

1.1.1 Shared-Memory Multiprocessors..2

1.1.2 Message-Passing Multiprocessors..3

1.2 Motivation, Objectives, and Contributions..5

1.3 Outline...7

2 THE NJIT TURBONET SYSTEM... 8

2.1 System Description... 8

2.2 The Host System...10

2.3 Parallel Digital Signal Processor: TI-TMS320C40..11

3 PARALLEL SELECTION... 13

3.1 Parallel Selection Algorithm...13

3.2 TurboNet Implementation and Timing Results..19

3.2.1 TurboNet Implementation of Parallel Select..20

4 PARALLEL MERGE... 23

4.1 Parallel Merging..23

4.1.1 Sequential Merging...24

4.1.2 Finding the Median of Two Sorted Sequences... 26

4.1.3 Parallel Merging on an EREW Computer...28

TABLE OF CONTENTS
(Continued)

Chapter Page

4.2 TurboNet Parallel Merge...33

5 PARALLEL SORT.. 38

5.1 Parallel Sorting... 38

5.1.1 Sequential Sorting.. 38

5.1.2 Parallel Sort Algorithm...40

5.2 TurboNet Parallel Sort... 44

6 CONCLUSIONS...51

APPENDIX A PARALLEL SELECTION PROGRAMS.. 53

APPENDIX B PARALLEL MERGING PROGRAMS..65

APPENDIX C PARALLEL SORTING PROGRAMS..75

REFERENCES.. 91

LIST OF TABLES

Table Page

3.1 Averaged Execution Time(//sec) for Parallel Selection... 21

4.1 Execution Time(//sec) for Parallel Merge...37

5.1 Summary of x and k value computations.. 45

5.2 Execution Time (//sec) for Parallel Sort.. 50

x

LIST OF FIGURES

Figure Page

1.1 The UMA multiprocessor model...2

1.2 The NUMA multiprocessor model..3

1.3 A multicomputer...4

1.4 Examples of common network topologies..5

2.1 The NJIT TurboNet System.. 9

2.2 The Hydra Board..12

3.1 Finding 79th element using PARALLELSELECT...16

3.2 Finding 79th element using PARALLELSELECT recursively.............................. 18

3.3 Second recursive call to PARALLEL_SELECT...18

3.4 Call to SEQUENTIAL SELECT in step 1... 19

3.5 Plot of average execution time (in //sec) versus the number of
elements..22

4.1 Two sorted sequences SI and S2 to be merged...30

4.2 SI and S2 are divided during the first pass of step 1.2..31

4.3 SI and S2 are divided among all four processors for merging.................................32

4.4 Plot of execution time (in //sec) versus the number of elements............................... 36

5.1 Initial unsorted sequece S of size «=40 elements..42

5.2 Dividing the S into four subsequences for sorting by selection................................ 42

5.3 Recursive call to parallel sort for sorting SI and S2 simultaneously....................... 43

5.4 Recursive call to parallel sort for sorting S3 and S4 simultaneously....................... 43

LIST OF FIGURES
(Continued)

Figure Page

5.5 Final sorted sequence S of size n=40 elements (after step 6).................................. 43

5.6 Initial unsorted sequence of size «=40 elements...47

5.7 Dividing the S into four subsequence for sorting by selection................................ 48

5.8 Recursive call to parallel sort by each processor..48

5.9 Final sorted sequence S of size n=40 elements (after step 6).................................. 49

5.10 Plot of execution time (in microseconds) versus the number of elements................50

xii

CHAPTER 1

INTRODUCTION

Parallel processing has become the most prominent technology in achieving high

performance computational power. One of the key problems to be solved with this

technology is to determine how individual processes cooperate with each other efficiently

when carrying out a task together. In general, shared-memory and message-passing are

two techniques parallel computer systems use for coordination and communication. The

shared-memory technique in parallel computing will be the focus o f this thesis. This

chapter provides introductory background in this fast growing research area. The most

important issues in this chapter are the motivation and objectives of our research. An

outline of the thesis is also presented at the end.

1.1 Parallel Processing Systems

A parallel processing system consists of multiple processors (or nodes), memory modules,

peripherals, and a switching or interconnection network. There are two major categories

in classifying parallel processing systems: shared-memory multiprocessors and message-

passing multicomputers [7], The difference between them lies in how communication

among nodes is carried out. The following two subsections give more details about these

two categories.

1

2

1.1.1. Shared-Memory Multiprocessors

In a shared-memory multiprocessor the processors share a common memory and some

peripherals, and communication is performed through the shared-memory. These

multiprocessor models are primarily used: the uniform-memory-access (UMA) model

and the nonuniform-memory-access (NUMA) model [2], They differ in the way the

memory and other resources are distributed. In the UMA model, as shown in Figure 1.1,

all the processors have equal access time to all the memory locations in all the shared-

memory modules (marked as SM) under the condition of no network congestion, and that

is why it is called uniform-memory-access model. In the NUMA model of Figure 1.2,

however, accessing the local shared-memory (marked as LM) is faster than accessing a

remote one, because there is no need for a processor to go through the switching network

when accessing the former.

The most popular switching networks are the single bus , crossbar, and multistage

[6], The single bus can only handle one transaction at a time, employing a single source.

The crossbar and multistage networks, built with extra hardware, can have more than one

ongoing transaction. Hence, the single bus has low cost and low performance while the

other two provide high bandwidth with higher cost.

Switching Network

Figure 1.1 The UMA multiprocessor model

3

Pp-i

—[LMo

__LM, Switching

Network

Figure 1.2 The NUMA multiprocessor model

1.1.2 Message-Passing Multicomputers

A message-passing multicomputer [6] consists of multiple computers (or nodes)

interconnected by a point-to-point network, and each node is an autonomous computer

including a processor, a private local memory, and possibly disks or I/O peripherals, as

modeled in Figure 1.3. Intemode communication is carried out by passing messages

through the network while observing certain communication protocols. Such actions may

involve multiple links (i.e. physical connections between nodes) and nodes if the source is

not directly connected to the destination.

Some common network topologies in constructing interconnection networks for

multicomputers are, as shown in Figure 1.4, the binary tree, star, ring, mesh, hypercube,

etc. They are also called static connection networks because all the links between nodes

are fixed after a network is built. Among these topologies, the hypercube is one of the

most complicated but yet very popular. A (/-dimensional hypercube consists of 2d nodes,

each of which is connected to one other node in each dimension. For example, a 0-

dimensional hypercube, a 0-node for short, has a single node with no communication

channel, i.e., a standard sequential computer. A 1-cube is constructed from two 0-cubes

by connecting them with a single communication channel, and a 2-cube is formed with two

1-cubes by connecting their corresponding nodes via an additional channel. Figure 1.4(e)

shows a 3-cube, containing two 2-cubes, and each node in each 2-cube has connection to

the corresponding node in the other 2-cube. Hence, in general, a */-cube is constructed by

connecting the corresponding nodes of two (d- 1)-cubes with an additional channel. The

number o f nodes is P = 2d. The number of connections per node and the maximum

distance between two nodes are d = log2 P. The node number (i.e., its identification) is

chosen to be a d-bit binary code where the i'h bit of it represents the coordinate of the

node in the /"’ dimension of the hypercube. For a pair of directly connected nodes, their

node numbers are different in only one bit. The number of bits that differ between the

node numbers of two nodes gives the distance between them.

1 M I M

I M

I M

I M Message-Passing
Interconnection Network

Figure 1.3 A multicomputer

In a general sense, the message-passing architecture is efficient for communicating

small amounts of data in small distance. On the other hand, the shared-memory is

primarily used for I/O with the host, and distant communications with large amounts of

5

data. Additionally, the shared-memory paradigm simplifies the development of

algorithms.

(a) Binary tree (b) Star (c) Ring

(d) Mesh

47 Vv
(e) Hypercube

Figure 1.4 Examples of common network topologies

1.2 Motivation, Objectives, and Contributions

Array processing operations, such as finding the A:-th smallest element (i.e., the selection

problem) or merging two arrays to form a single sorted array, are very frequent in today’s

applications. For example, in the stock market, the medical and weather prediction fields,

and other real-time applications, database operations are frequent. And, the operations

need to be completed very quickly. Parallel processing is much better suited to such

compute intensive applications. The tasks can be completed in significantly less time

because the workload is distributed among all available processors and processors work in

parallel, whereas in traditional one-processor systems the processing is done serially, thus

6

taking much longer, and therefore their implementation on parallel computers should be

investigated.

The target system in this thesis is an asynchronous, three-dimensional hypercube

system composed of eight powerful Texas Instruments TMS320C40(C40) Digital Signal

Processor(DSP) chips. We have built this system with two VME Hydra boards of Ariel

Corporation, where each board contains four C40 DSPs and shared-memory, in addition

to local memory attached to each C40 DSP. The shared-memory of each board is also

global so that it can be accessed by any of the eight processors via the shared VME bus.

TurboNet has a more general architecture that implements directly in hardware both the

message-passing and shared-memory communication paradigms, in contrast to other

proposed systems such as FLASH and HARP. Details about TurboNet follow in the next

chapter.

The objectives of this thesis are: (1) to employ the shared-memory paradigm in

the implementation of parallel algorithms for the selection, array merging, and sorting

problems; (2) to compare the performance of our parallel algorithms that employ the

shared-memory communication paradigm with the performance of sequential algorithms,

in order to illustrate the superiority of the former.

Our results prove that several algorithms can take advantage of the shared-memory

capability of the hybrid architecture of our target system, TurboNet, in order to achieve

significant speedup. Therefore, the main conclusion of this thesis is that the

implementation of such operations on a relatively small shared-memory parallel computer

is very practical and cost effective if the applications process large amounts of data.

7

1.3 Outline

This thesis is organized as follows. Following this introduction, Chapter 2 provides a

brief review of our target TurboNet system, including a review of the C40, Hydra and

TurboNet architectures. In chapters 3, 4, and 5, algorithms for selection, merging, and

sorting are discussed, and their implementations on TurboNet are presented along with

relevant performance analysis results. Chapter 6 presents the conclusions and further

research objectives.

CHAPTER 2

THE NJIT TURBONET SYSTEM

The NJIT TurboNet system is presented in this chapter. The main aspects o f the system

are discussed here as follows: the entire system, the host system, and the Texas

Instrument’s TMS320C40 Digital Signal Processor. From the architecture point of view,

the TurboNet system implements in hardware both the shared-memory and message-

passing paradigms, and this is what distinguishes it from other parallel systems.

2.1 System Description

The TurboNet computer system comprises a SPARC CPU-2CE host system board, a

VME backplane, two Ariel-VC40 Hydra Digital Signal Processor(DSP) boards, two hard

disk drives, a floppy drive, a CD-ROM, a VME Bus Logic Analyzer, and a set o f PC-AT

computers as depicted in Figure 2.1. There are four communication links between the

two DSP system boards, each link connecting corresponding C40 processors on the two

different Hydra boards. Each Texas Instruments TMS320C40 (C40 for brevity) Digital

Signal Processor has six bi-directional communication ports. Three of the six

communication ports of each processor are being used to interconnect the DSPs within the

board to implement a fully-connected four-processor system. A fourth communication

port is used for an interboard connection, that is to link with a C40 processor in the

second Hydra board so that a 3-D hypercube system with eight processors is formed.

8

9

The NJIT TurboNet System

m Ethemet-

D ECserver
100□ Disk Array

1 IB

VME Bus Monitor

n
"I 1 IB

-----&

/ V S J \

□
0

□

TurboNet Parallel Computer

PC C om puter #2
Hydra Monitor

TM S320C40 Em ulator

m □sg o

Sun
Term inal

Printer
HP L aserJe t 4

Disk
Array r Serial RS-23

Host:Comp.
SPARC

Sun
Terminal

TM S320C40 P rocesso r

VME Bus Logic
Analyzer 1

 1------
-VME BUS-

VME Bus Logic
Analyzer 2 — Serial— J

m
Si

PC #1

Parallel_
Link

DSP a1 DSP a2

D SP a4 DSP a3

Hydra #1

Parallel
Link

DSP b1 DSP b2

DSP b4 D SP b3

— Serial RS-232-

Hydra #2

-Serial RS-232—1

Hydra.M

Figure 2.1 The NJIT TurboNet System

4994426^

10

Each Hydra board (see Figure 2.2) is a single-slot VME-based multi-digital signal

processor system, containing four C40 DSP chips. An Internal Shared Bus (ISB) is

included, to which the VME bus and the global bus of each DSP are connected. The ISB

provides access to DRAM memory and other shared resources to all four processors

within the Hydra board. Because of the Shared-DRAM memory and the hypercube

architecture, the TurboNet system implements both the shared-memory and message-

passing communication paradigms. This is one of the features that make this system

unique.

The TurboNet system is monitored by two PC-AT computers. These units are

linked to the VME boards and the Hydra boards. Their purpose is to display, using

customized software, the VME status of the system and the Hydra board activity. Any

error within the system will alert the programmer for troubleshooting and maintenance

purposes.

2.2 The Host System

The host system, a 40 MHz SPARC CPU-2CE board, is a complete VME-based SPARC

2 architecture with Sbus expansion. The SPARC CPU-2CE runs the SunOS/Solaris

operating system version 4.1.3. The main processor unit is based on a SPARC 32-bit

RISC architecture. It comprises an integrated Integer Unit/Floating Point Unit, a Sun

standard SRAM-based memory management unit, a cache controller, and two Cache

RAM chips. Operating at 40 MHz, the Integer Unit/Floating Point Unit provides 28.5

MIPS integer performance and 4.2 MFLOPS floating point performance. The purpose of

11

the host system is to compile and download the C40 programs to the Hydra boards using

the VME bus.

All DSPs have the capability of becoming the VME Bus Master as well as the

VME System Controller. The Hydra VME interface has a built-in DMA controller that

can be set to move data to/from the shared internal DRAM from/to another VME card

autonomously. This helps to relieve the DSPs from the task of data movement. The

VMEbus analyzers are logic analyzers that are designed specifically to interface and

troubleshoot the VME bus. The VME bus testing can be done at the software and

hardware levels. Hardware handshaking and timing problems can be traced, analyzed and

displayed on an independent terminal without interference to the VME bus.

2.3 Parallel Digital Signal Processor: TMS320C40

The TMS320C40 is a 32-bit processor designed specifically for parallel-processing and

other real time embedded applications. It has six communications ports for high-speed

interprocessor communications with a 20-Mbyte/sec maximum asynchronous transfer rate

and a six-channel DMA coprocessor for concurrent I/O and CPU operation, thereby

maximizing sustained CPU performance by alleviating the CPU of burdensome I/O. The

high-performance DSP CPU is capable of 275 MOPS and 320 Mbytes/sec. Two identical

external data and address buses supporting shared memory systems and high data rate,

single-cycle transfer are also designed into the chip. The six communication ports, under

DMA coprocessor supervision, allow the CPU to perform other tasks in parallel, utilizing

12

its computational power to the maximum,

data transfer throughput.

This benefits the computational timing and

Com
Port
(2,4,
5)

S J e .

Internal Shared Bus
(ISB)

SRAM
EE

PROM

SRAM
16K or 64K 16K, 64K or 256K
(x32 bits) (x32 bits)

------------- ar*K-------------

TMS320C40
DSP # a4
Processor

SRAM
16K or64K
(x32 bits)

SRAM
16K or 64K
(x32 bits)

Com
Port
(0 , 1,

2)

TMS320C40
DSP # a3
Processor

TMS320C40
DSP # a1
Processor

zirf:

V -
SRAM

16K, 64 K, o r256K
(x32 bits)

SRAM
16K, 6 4 K, or 256k

(x32 bits)
------------ 9 > r-------------

3LJZ

TMS320C40
DSP # a2
Processor

TV

Com
Port
(3,4,
5)

Boot
E-

PRO
M

AD
bus
Port

Com
Port
(1 ,2 ,

5)

_________s u e _________
SRAM

...
SRAM

16K or 64K 16K, 64K, or 256K
(x32 bits) (x32 bits)

R S-232

(VIC &

JTAG

Figure 2.2 The TurboNet’s Hydra Board

CHAPTER 3

PARALLEL SELECTION

3.1 Parallel Selection

The selection problem involves finding the £-th smallest element in a given sequence of

unsorted elements. That is, given an unsorted sequence S of n elements and an integer

k, where 1 <k<n, we want to find the A>th smallest element in S . This problem arises in

many commercial applications, especially financial applications where statistical methods

are used. The simplest way of finding the k-th element is by first sorting the sequence and

then selecting the £-th smallest element. For a sequence of size «, it requires 0 (n 2)

comparisons. The divide-and-conquer approach can solve the problem in 0(n) time [1],

An algorithm for the EREW (Exclusive-Read, Exclusive-Write) shared-memory SIMD

computer has running time t(n) = 0 (n x), where x is computed from N = n'~x, and N is

the number of processors [1]. The parallel algorithm uses a sequential algorithm for the

selection problem in individual processors. This SEQUENTIALSELECT algorithm

finds the A-th element in 0(n) time. Let the constant integer Q have any value greater

than or equal to 5, as determined in [1] for the best possible asymptotic performance.

The algorithm works as follows [1]:

SEQUENTIALSELECT (S,k)

(1) if |£| < Q then sort S and find the A-th element

13

14

else divide S into (51 / Q subsequences of size Q each

end if.

(2) For each subsequence find its median mit after its sorting.

(3) Find the median m of these |5| / Q medians by calling

SEQUENTIALSELECT.

(4) Generate the following sequences that contain elements of

S chosen as follows:

SG: Elements greater than m

SE: Elements equal to m

SL: Elements less than m

(5) if |St |a * then call SEQUENTIAL_SELECT(5l ,k)

else if |SL| + l^ l > k then return m as the Ar-th element

else call SEQUENTIAL SELECT (Sa,k - |S j - \SE\)

end if.

end if.

The running time of the SEQUENTIAL SELECT algorithm was shown in [1] to be t(n)

= O(n), which is optimal. A parallel algorithm is cost optimal if the product of the

number of processors and the running time has asymptotic complexity equal to the

asymptotic running time of the best known sequential algorithm for the problem.

Using parallel processing techniques, the selection task can be done more

efficiently. A parallel algorithm for selection on a EREW shared-memory SIMD

15

computer is introduced as procedure PARALLEL_SELECT [1], The following

assumptions are made. There are N processors in the computer, where N > 1. M is an

array of size N in the shared memory. Each processor knows the size n of the sequence

S and computes x from N = w1"', where 0 < x < 1. Each of the n l~x processors can store

a sequence of size nx in its local memory. Two other procedures are used. Procedure

BROADCAST broadcasts information to all processors in 0(logn'~x) time. The

procedure ALLSUMS finds all prefix sums in the same amount of time [1].

The algorithm is as follows [1]:

procedure PARALLEL_SELECT (S,k)

(1) if |S| < 4 then P} uses at most five comparisons to return the £-th element

else (i) S is subdivided into |S|' x subsequences S , of length

\S\X each, where 1 < i < |*Sfand

(ii) subsequence S, is assigned to processor Pj.

end if.

(2) for /' = 1 to |5|' * do in parallel

(2.1) {Pi obtains the median m„ i.e. the ["|5,| / 2~|th element,

of its associated subsequence}

SEQUENTIAL SELECT (5,,|'|6'11/2])

(2.2) Pt stores mi in M(i)

end for.

16

(3) (The procedure is called recursively to obtain the median m of M)

PARALLELSELECT {M , \ \M \ l l \) .

(4) The sequence S is subdivided into the three subsequences:

SL = {st eS : si < m }, SE = (5, &S: st = m), and SG = (s, & S : s, > m }.

(5) if |SL| > k then PARALLEL_SELECT (SL,k)

else if + |5e | > k then return m

else PARALLEL_SELECT (^G,A :- |5 j - |5 ff|)

end if

end if.

The running time of the algorithm is t(n) = 0 {nx) for n > 4. An example that follows

illustrates the workings of the PARALLELSELECT algorithm.

S |7 140129117 |12l22l95l-1 l80l4 >71136(38 117 I89 I-4 I 3 |-9 11215716116618 H0lS~l50l

(a)
P1 P2

17 140129117112122^51 1-1 I8014 l71l36~M Tm

P3 P4
189I-4I3 I-9 I12I5/T6T1

(b)

Figure 3.1 Finding the 79th element using PARALLEL SELECT

17

M 122136112110 I Median =12

(c)
L I.7I-1 I 4 1-4 I 31-918 | id 6~l

E b z e z i

G kQ l29 h7 I22I95 I8QI71136l38117189157161 l66T50l

(d)

Figure 3.1 Finding the 70th element using PARALLEL_SELECT (continued)

We want to find the 70th element of an unsorted sequence S (in Figure 3.1(a)) of size 26

using a FOUR processor EREW SM parallel computer. Initially, we have £ = 19,

\S\ = n = 26, and N = 4. Therefore, the value of x is computed as

x = 1 - (log N / log n) = 0.5745 and 1 - x = 0.4255. The size of the sequence S, received

by each of the nx~x processors is ["iSf"! = 7. After step 1, the first three processors have

seven elements each, and the fourth has five, as in Figure 3.1(b). Next, each processor

calls SEQUENTIAL SELECT to find the median of the subsequence it has and places

the median mt in the array M (Figure 3.1(c)). In step 3, PARALLEL_SELECT is called

recursively to find the median of medians, which is 12. In step 4, S is divided into three

subsequences (namely SL, SE, and Sc), as in Figure 3.1(d). Since \SL\ = 9 and = 2,

we have |5L| + |5E| < k and PARALLEL_SELECT is called recursively in step 5. At this

point, the input to PARALLEL_SELECT is a new sequence S (Figure 3.2(a)) and k = 8.

Since |j.S'|l~xJ, the sequence is subdivided into jl 5|,_ 5745 J = 3 subsequences S, o f length

18

ISl'l = [|15| 5745] = 5. Each of the three processors receives five elements as in Figure

3.2(b).

(a)

S1 I40 I29 1171221951 S2
(b)

S 3 lflflJ57J.6lB6J.5Ql

M b g hB Ir i M edian = 38

(c)

L bs 117122 t36 li~7~l E [38]
(d)

G Uq I95 Ian 171 I89 I57 IS1 IS6 EfTl

Figure 3.2 Finding the 19th element using PARALLEL SELECT recursively

In step 2, all three processors find medians and place them in the shared-memory array M.

In step 3, PARALLEL_SELECT is called and processor 1 finds the median of medians as

in Figure 3.2(c). In step 4, S is divided into three subsequences (namely SL, SE, and

Sa), as in Figure 3.2(d). Since |<SL| = 5 and |SE| = 1, we have |'St| + |<S'ff|<£ and

PARALLEL SELECT is again called recursively in step 5.

S 140 195 ISO 171 |B9 IB7 lB1 |B6 bol
(a)

S1 l4Q I95.180|71| S2

(b)

M >71 I57 I M edian = 57

(c)
L I4Q l5Ql E [57] G

(d)

Figure 3.3 Second recursive call to PARALLEL SELECT

19

At this point, the input to PARALLEL_SELECT is a new sequence S, as shown in Figure

3.3(a), and k = 2. Since the sequence is subdivided into |j9|1-5745 J = 2

subsequences S', of length |"|S|X "J = [j9|i745] = 4. The first processor receives four elements

and the second receives five elements, as in Figure 3.3(b). The median value (M=57) is

found and the sequence is again divided into three subsequences, as shown in Figure

3.3(c-d). Since |SL| = 2 and k= 2, \SL\>k and PARALLEL SELECT is called

recursively in step 5. For the new sequence (Figure 3.4) the £-th (second) value, which

is 50, is found in step 1 since the size of the sequence is less than Q, which is 4.

s koJsQ.I

Figure 3.4 Call to SEQUENTIAL_SELECT in step 1

3.2 TurboNet Implementation and Timing Results

The parallel select algorithm discussed in the previous subsection has been implemented

on the NJIT TurboNet parallel computer. The TurboNet implementation of the algorithm

and its performance results are presented in this section. The original theoretical

algorithms have been enhanced to give a robust performance on the TurboNet parallel

computer. This is done without changing the basic workings of the original parallel

algorithms. Various practical problems were considered in the implementations; these

include bottlenecks due to the TurboNet’s single bus architecture, limited size of the local

SRAM and of the global DRAM memories, and communications and synchronization

among the processors. For the implemented parallel algorithm, performance

20

measurements are shown for mainly three cases: single processor, 2 processors, and 4

processors. For each of the three cases, the algorithm’s execution times (in

microseconds) are shown for various sizes of input arrays, from 400 to 4000 elements.

3.2.1 TurboNet Implementation of Parallel Select

The implementation of the parallel select algorithm on TurboNet and its relevant

performance results are presented in this subsection. One, two, or four processors use

the DRAM shared-memory for inter-communication.

Contrary to the original parallel algorithm in Section 3.1, in Step 1 instead of

keeping the value of Q constant(Q=5), in the implementation of parallel select it is varied

from Q=5, for small input sequences, to Q=7, for very large sequences. The Q value

variation is mainly done so that the program counter stack does not overflow when

frequent and continuous recursive calls to the algorithm are made. In Step 4, only

processor 1 is assigned the task of dividing the original sequence into three subsequences

SL, SE, and SG. In the original parallel selection algorithm (see Section 3.1) all

processors are used to complete this task. The modification is made to reduce the

communications overheads (DRAM usage) among the processors, thus boosting the

overall performance. This is especially very apparent for very large size input arrays (see

Tables 3.1-3.3). Also, we should note that there are some hidden or implied tasks that

are required in the implementation. For instance, in Step 4, when the sequence S is

divided into subsequences, the new resulting subsequences SL, SE, and SG, are first

copied into temporary memory locations. When the subdividing task is completed the

subsequences are copied back into their original memory locations in the order of SL, SB,

and SG. Even with these extra hidden tasks, the overall performance of the parallel

algorithm on TurboNet is very impressive compared to its sequential counterpart. The

parallel select algorithm implementation was tested and execution time data were taken for

the following case: the size of input unsorted arrays varies from w=400 to w=4000

elements.

The Table 3.1 contains the average execution time (in jusec) where all cases were

considered. The plots of the execution time (in /isec) versus the input array size (n

elements) is shown in Figures 3.5.

Table 3.1: Averaged Execution Time for Parallel Selection

Array size (elements) Execution Time (/usec)

1 processor 2 processors 4 processors
400 28055 26983 23620
800 71120 57419 47849
1200 130614 92781 73908
1600 205767 139364 102164
2000 296603 182056 134959
2400 401020 236330 167830
2800 520787 297421 205397
3200 654855 353659 247622
3600 804961 431191 288228
4000 879412 515278 337798

Ti
me

(u

se
e)

22

TurboNet Parallel Selection

1 0 0 0 0 0 0 j
800000 --
600000 --
400000 --
200000 - -

1 2 3 4 5 6 7 8 9 10

Input Array Size /(400 elements)

Figure 3.5 Plot of average execution time (in yusec) versus the number of elements

The results obtained do show the significant reduction of the execution time that is

achieved by applying parallel processing. The dramatic performance improvement is

very apparent for sequences of very large size.

CHAPTER 4

PARALLEL MERGE

4.1 Parallel Merging

The merging problem arises in many areas, especially in database applications and file

management [1], Although many applications involve the merging of non-numeric data

(for example: merging of two alphabetically sorted mailing lists), this task can be handled

easily once the basics of the problem have been resolved. Merging involves taking two

sequences of numbers sorted in non-decreasing order and merging them to form a third

resulting sequence, also sorted in nondecreasing order. For two given sorted sequences

A = {or,,a2,...,ar} of length r and B = {b{,b2,...,bs} of length s, the resulting merged the

sequence is C - {c,,c2,...,cr+J} also sorted in nondecreasing order, such that each c, in the

sequence C belongs to either the sequence A or B, and each ai and each bt appears exactly

once in the sequence C.

For very large size arrays, this task is very time consuming when done on a single

processor system. However, it can be done very efficiently on a parallel computer by

distributing the workload among all available processors and having each processor utilize

an efficient sequential algorithm. In the subsection that follows, sequential and parallel

merge algorithms are discussed. First, two sequential algorithms are discussed, an

algorithm to do sequential merge (SEQUENTIAL_MERGE) and an algorithm to find the

median of two sequences (TWO SEQUENCE MEDIAN). Then, a fast EREW parallel

merge algorithm is introduced which utilizes the sequential algorithms.

23

24

4.1.1 Sequential Merging

For two given sequences of numbers A = {a,,a2 ,...,ar} and B = {b],b2,...,bs) sorted in

nondecreasing order, we want to merge them to form a third sequence C, also sorted in

nondecreasing order. The merging process is to be performed by a single processor.

This can be done as follows: Define two pointers, one pointer for each sequence. At

the start of the merge, the pointers are initialized so that they are positioned at elements <ar,

and Z>,, respectively. Next, the smaller of a, and b, is found and is assigned to ct, and the

pointer to the sequence from which c, came is advanced by one position. Again, the two

pointed elements are compared to find the smaller of the two. The smaller element is

assigned to c2 and, again, the corresponding pointer is advanced by one. This process is

repeated until one of the two input sequences is exhausted. The leftover elements in the

other sequence are now appended to C. The algorithm is given in what follows as

procedure SEQUENTIALMERGE. Its description is simplified by assuming that a r+l

and bJ+l exist [1],

procedure SEQUENTIAL_MERGE (A,B,C)

(1) (1 .1) /< -!

(1.2) j <-1

(2) for k = 1 to r + s do

if ai < bj then (i) ck <- a,

(ii) /< -/ ' + !

25

else (i) ck <- b}

0 0 j < - j + 1

end if

end for.

The following numerical example shows how the algorithm works. We want to merge

two sorted sequences, A = {au a2,...,as} = {-3,0,2,5,8} and B = {bx,b2,...,b6} =

{-2,1,5,7,11} to form a third sequence C, also in sorted order. Here, r - s = 5.

Therefore, the resulting sequence C will be of size r + .? = 5 + 5 = 10.

Step 1: /' = 1 and j = 1

Step 2: For A - 1, a, < is true, so c, = -3 and i = 2

k = 2 , a 2 < Z», is false, so c2 = - 2 and j = 2

£ = 3, a2 <b2 is true, so c3 = 0 and i - 3

k = 4, a3 <b2 is false, so c4 = 1 and 7 = 3

k = 5, a3 < £ 3 is true, so cs = 2 and i - 4

k = 6 , aA<b2 is false, so c6 = 5 and j = 4

A = 7, a4 <b4 is true, so c7 = 5 and / = 5

A = 8 , a5 <b4 is false, so c8 = 7 and 7 = 5

A = 9, as <b5 is true, so c9 = 8 and / = 6

Therefore, at A = 10, c10 = 11.

In the worst case(r = s = n), this algorithm requires n comparisons to generate the

sequence C. Therefore, the algorithm runs in O(n) time.

26

4.1.2 Finding the Median of Two Sorted Sequences

We want to find the median of two given sequences (sorted in nondecreasing order)

without actually sorting the sequences. An algorithm is introduced in [1] as procedure

TWO-SEQUENCE_MEDIAN(/4,5,x, j) . For two given sorted sequences

A = {a],a2,...,ar) and B = {bl,b2,...,bs), where r , s > l , we let m = r + s represent the

length of the resulting sequence C which is formed after merging the two sequences. We

want to find the median, the \mll\xh. element, of the sequence C without actually

forming C. This algorithm returns an index pair (ax,by). One of the two indices is a

median of C, depending on the one that satisfies following properties:

(1) ax is the median of A.B if ax is larger than \ m t 2] -1 elements and smaller than

|_/w/2j elements. by is the median of A.B if by is larger than \ m ! 2~J — I

elements and smaller than [m / 2 J elements.

(2) If ax is the median, then by is either (i) the largest element in B smaller than or

equal to ax , or (ii) the smallest element in B larger than or equal to ax .

Similarly, if by is the median, then ax is either (i) the larger element in A smaller

than or equal to by , or (ii) the smallest element in A larager than or equal to by .

(3) If more than one pair satisfies 1 and 2, then the algorithm returns the pair for

which x + y is the smallest.

The algorithm is as follows [1]:

27

TWO-SEQUENCE_MEDIAN(A, B, x, y)

(1) (1.1) low A <-1

(1.2) lowB <— 1

(1.3) high a <r- r

(1.4) hgihB <- 5

(1.5) nA r

(1.6) nB <~s

(2) while nA > 1 and nB > 1 do

(2.1) u <- lowA + 1"{highA - lowA -

(2.2) v lowB + [(highB - lowB -

(2.3) w A l2 \ , [n B 12\)

(2.4) " a < -”a ~ w

(2.5) nB nB - u-

(2.6) if au * K

then (i) highA <- highA - w

(ii) lowA <- lowB + w

else (i) lowA <- lowA + w

(ii) highB <- highB - w

end if

end while.

(3) Return as x and y the indices of the pair from {au_}, a u,a u+l} x {bv_t,bv,bKl}

28

satisfying properties 1-3 of a median pair.

In the worst case (r=s=n), the algorithm requires ca + cb log(min {r, s}) time units which is

<3(log«). The algorithm is being utilized in the next section to form a fast parallel

merging algorithm.

4.1.3 Parallel Merging on an EREW Computer

By applying parallel processing techniques and utilizing the efficient sequential algorithms

discussed in previous subsections, namely SEQUENTIAL_MERGE and TWO-

SEQUENCEMEDIAN, the merging task can be done very efficiently. An algorithm is

presented as procedure EREW_PARALLEL_MERGE which uses this approach [1], It

has small running time and optimal cost. It requires a sublinear number of processors

and adapts to the actual number of processors available. The algorithm assumes N

processors, where N is a power of 2. The merging is done in two stages. The sorted

sequences.4 and B are partitioned into N subsequences AUA2,...,AN and Bl,B2,...,BN such

that |^,| + |51| = (r + 5)/7Vf. Also, all Ai.Bl subsequences’ elements are smaller than or

equal to those of Ai+rBl+] for \ < i < N - \ . Next, all At and Bt are merged

simultaneously.

The algorithm is as follows [1],

procedure EREW_PARALLEL_MERGE (A,B,C)

(1) (1.1) Processor obtains the quadruple (1, r,l, 5)

29

(1 .2) fo r/ = 1 to logN do

for / = 1 to 2 h do in parallel

Processor Pt has received the quadruple (e, f g, h)

(1.2.1) { Finds the median pair of two sequences, Ai and B: }

TWO-SEQUENCEMEDIAN {A[eJ], B\g,h], x, y)

(1.2.2) (Computes four pointers p u p 2,qu and q2 as follows}

if ax is the median

then (i) /?, <— x

(ii) q}<^x + \

(iii) if by < ax then { p 2 <- y , q2 < -y + 1 }

else { p 2 < - y - l , q2 < - y }

end if

else (i) p 2 <- y

00 q2< - y +]

(iii) if ax < by then {/?,<- x, q] <- x + 1 }

else { p x <- x - 1 , qx <- x }

end if

end if

(1.2.3) Communicates the quadruple (e ,pl, g ,p 2) to P2M

(1.2.4) Communicates the quadruple (,, , 2,) to

end for

end for.

(2) for i = 1 to N do in parallel

Processor Pt having received the quadruple (a,b ,c ,d)

(2.1) w <-1 + ((/ - l)(r + s))/ N

(2 .2) z <-rmn{i(r + s) /N , (r + -s)}

(2.3) SEQUENTIAL MERGE {A[a,b\ B[c,d\, C[w,z])

end for.

Working of the parallel merge algorithm is described by an example that follows. For

two given sorted sequences SI of size r=16 and S2 of size s = 14 as shown in Figure

3.3.1, we want to merge the sequences using a four processor parallel computer and

produce a third resulting sorted sequence C of size r + s . In step 1.1, processor PI

receives the two sequences, (ej,g,h) = (1,16,1,14). During the first interation of Step

1.2, PI calls the procedure TWO-SEQUENCE MEDIAN and finds the median indices

(ax,by) = (9,6) as shown in Figure 4.1. It keeps part of S1 and S2 (S1 [1,9] and S2[1,6])

and communicates S I[10,16] and S2[7,14] to P2 using the shared memory.

51 11 |6 I71 HO 112114116 H7 I25I26P 2 B7 l38 |50 BO I90~l

52 12 14 IS H l|13ng|29 |34B 6l80 |90 |95l96H O q P1

Two_Sequence_Median = (Ax, By) = (9,6) -------------

Figure 4.1 Two sorted sequences S1 and S2 to be merged

31

P1

P2

S1 [1,9] 11 16 17 HO |12114Ii6 H7 I25l

S2[1,6] 12 |4 |S I H H J P I

Two_Sequence_Median=(Ax, By)=(4,3)

(a)

S1 [10,16] I26&2 B7 B6 [50 BO {901

S2[7,14] |2 9 |34|36 |80 |90|95Jj6 |1_0q

Two_Sequence_Median=(Ax, By)=(14,9)

(b)

Figure 4.2 SI and S2 are subdivided during the first pass of step 1.2

During the second iteration PI again calls the TWO-SEQUENCE_MEDIAN and finds the

indices of the median pair SI [1,9] and S2[l,6], namely (ax,by)= (4,3), as shown in Figure

4.2 (a). Simultaneously, P2 calls the TWO-SEQUENCE_MEDIAN and finds the indices

of the median pair S I[10,16] and S2[7,14], namely (ax,by) = (14, 9), also shown in

Figure 4.2(b). Processor PI keeps Sl[l,4] and S2[l,3] and communicates (5,9,4,6),

namely S I[5,9] and S2[4,6], to P2. At the same time, P2 communicates (10,14,7,9) to

P3 and (15,16,10,14) to P4. At this point, all processors have a part o f SI and S2 as

shown in Figure 4.3 (a)-(d). In Step 2, each processor calls the SEQUENTIAL MERGE

to merge the parts of SI and S2, producing the resulting sequence C ,, as shown in Figure

4.3 (a)-(d).

32

S1 [1,3] |
P1 S2[1,3] |

C1=C[1,6] |

(a)

S1[4,9] |

P2 S2[4,6] I

C2=C[7,15] |

(b)

S1[10,14] [
P3

S2[7,9] [

C3=C[16,23] I

S1115,16] I
P4 S2[10,14] f

r
C4=C[25,30] [

me T7~ ho i
12 14 15 1

11 I 2 14 15 16 17 Util

112114 Il6 H7 I25I

mii3H5i

(C)

iHlkmPaSIiliW*

(d)

Figure 4.3 SI and S2 are divided among all four processors for merging

The algorithm is analyzed as follows: PI reads from memory in constant time c, in Step

1.1. TWO-SEQUENCE_MEDIAN is called in Step 1.2 which takes Iog(r + s) time

units. Steps 1.2.2, 1.23, and 1.2.4 take constant time c2. Therefore, Step 1 is completed

in log TV x(c, + c2 +log(r + s)) time units since there are logTV iterations. In step 2,

each processor calls the Sequential Merge procedure to merge at most (r + s) / N

elements in (r + s) / TV + c3 time units. In the worst case (r=s=n), step 1 and step 2 take

logTV x (c, + c2 + log2«) + 2w time units which can be expressed as follows [1]:

t(2n) = 0 (n / TV + log2 n)

33

This EREW Parallel Merge algorithm adapts to the number of available processors

in the parallel computer. In addition to being adaptive, the algorithm is also cost optimal.

Later, in section 4.2, an implementation of the parallel merge on TurboNet is introduced

and performance results are summarized.

4.2 TurboNet Parallel Merge

In this section, an implementation of the parallel merge algorithm on TurboNet is

discussed in detail. Relevant performance results are summarized later in a table and

figure which show dramatic speedups. The parallel merge TurboNet implementation is

done for one, two, and four processors. The shared memory is used to communicate data

and program control information (various flags status) among processors. Enhancements

are made to the original algorithm to simplify its implementation on TurboNet. This is

done without affecting the basic workings of the original parallel merge algorithm (as in

section 4.1).

Since we already know that a maximum of four processors will be used on

TurboNet, the for-do loop limit is set to 2 passes in step 1.2. Further modifications are

made (in step 2.1 and step 2.2) on how the size of the resulting merged sequence

(w =) and its offset value (z) are computed just before invoking the sequential merge

algorithm in step 2.3. In the original merge algorithm in section 4.1, each of the two

subsequences, A and B, is partitioned into N subsequences of equal size based on their

original sequence size (r and s) and regardless of the quadruple they receive in step 1.

Hence, the size of the resulting merged subsequence () computed by each processor is

34

also of equal value. However, after rigorously testing the workings of the algorithm, it is

found that this is not the case in many instances. The merged subsequences C, produced

by the processor have different sizes when its ||/4(| - |5 (||> 0 , thus the incorrect offset (z)

value is computed. In many cases where | | ^ | - 15(|| = Dt > 0 and D, is different for each

processor, the resulting subsequence formed by each processor is written into the merged

sequence C starting at an incorrect index position (or offset). To correct this problem

and expand the algorithm so that it can merge any order of sorted elements as well as

subsequences of different size, the following enhancements are introduced: (1) In step

2.1, instead of having each processor compute the offset value from the equation

w = l + ((/ - \) (r+ s)) /N , now the quadruple (a, b, c, d) indices received by each

processor are also examined and the offset (w) is computed from w = a + c. (2) Similarly,

the corresponding size of the resulting subsequence is computed from z - b - a + d - c in

step 2.2. (3) Sequential merge is enhanced so that it can now merge two sorted

sequences by just making a single comparison for the case when the last element of one

subsequence is less than the first element of the other subsequence, for example where

A,(r)<B,(1).

The TurboNet (4 processor) version of the parallel merge algorithm is as follows:

procedure TURBONET _ PARALLELMERGE (A, B, Q

Stage 1: (1.1) Processor Px obtains the quadruple (1, r, 1, 5)

(1.2) for j = 1 to 2 do

for / = 1 to 2 '~' do in parallel

Processor Pt has received the quadruple (e, f g, h)

(1.2.1) { Finds the median pair of two sequences, Aj and B, }

TWO-SEQUENCE_MEDIAN (A[eJ], B \g ,h \ x, y)

(1.2.2) { Compute four pointers p x,p2,q^, and q2

as follows }

if ax is the median

then (i) p) < r - x

(ii) p] <- x +1

(iii) if by <ax then { p 2 <- y , q2 <r-y + l }

else { p 2 < -y - \ , q2 < - y }

end if

else (i) p 2 *r-y

(ii) q2 <^y + \

(iii) if ax < by then (/ ? ,<- x, qt <- x +1 }

else { /?, x - 1, <7, <— x }

end if

end if

(1.2.3) Communicates the quadruple (e,px,g ,p 2) to P2j_, using

the shared memory.

(1.2.4) Communicates the quadruple (q \ , f ,q2,h) to P2j using

the shared memory.

end for

36

end for.

Stage 2: for / = 1 to N do in parallel

Processor P< having received the quadruple (a,b ,c ,d)

(2.1) -w<-a + c

(2.2) z <- b - a + d - c

(2.3) SEQUENTIAL MERGE (A[a,b\, B[c,d\, C[w,z])

end for.

The algorithm was tested and performance results were collected for all the following

cases: (1) the size of the input sequences, A and B, ranged from 200 to 2600 elements,

(2) one, two, and four processors were used, and (3) the input sequences were of

different sizes.

TurboNet Parallel Merge

16000
14000
12000
10000
8000
6000
4000
2000

P=1
P=2

1 2 3 4 5 6 7 8 9 10 11 12 13

Input Array Size/(200 elements)

Figure 4.4 Plot of the execution time (in ju sec) versus the number of elements

37

Table 4.1 Execution Time(//sec) for Parallel Merge

Array size (elements) Execution Time (//sec)

1 processor 2 processors 4 processors
200 1097 1057 1668
400 2187 1701 2050
600 3277 2098 2212
800 4367 2646 2549
1000 5457 3139 2989
1200 6942 3725 3023
1400 7637 4292 3283
1600 8727 4829 3564
1800 9817 5407 4039
2000 10907 5955 4544
2200 12152 6497 4590
2400 12635 7018 4772
2600 13495 7589 5023

The performance results are summarized in Table 4.1 and Figure 4.4. For small

size arrays (200 to 600 elements) the execution time is large for two and four processors

cases because of the overhead due to shared-memory communications among processors.

However, the data show significant reduction in the execution time achieved for the two

and four processors cases, when the input sequences are of very large size, especially with

1400 to 2600 element sequences.

CHAPTER 5

PARALLEL SORT

5.1 Parallel Sorting

Among all computational tasks in today’s applications sorting appears to be one of the

most important. The sorting problem arises in many areas, from database applications to

file management. In fact, sorting is so basic that many other computational tasks, such as

selection, require sorting. Although many applications involve sorting of non-numeric

data (for example: sorting of records, lists, etc.), this task can be handled easily once the

basics of the problem have been resolved. Sorting is defined as follows. For a given

sequence S = {51,^2,...,s(I} of size n elements in random order, we want to sort the

sequence such that si < s m for all n elements, where 1 < / < n -1 .

In the next section, a sequential sort algorithm is discussed. The objective is to

adapt the sequential algorithm to run on a parallel computer. Later, the algorithm will be

utilized by a parallel version of the sort algorithm.

5.1.1 Sequential Sorting

There are many algorithms for sorting on a sequential computer. One of the well known

and easy techniques of sorting is bubble sort. It requires one pass through the sequence

or n comparisons to sort each element. Hence, for the sequence of size n, the running

time for bubble sort is 0 (« 2), which is very high. The sorting task can be done more

38

efficiently on a single-processor computer by using an algorithm called QUICKSORT

which is discussed here. It is recursive and has a running time of 0 (« lo g «) [1],

procedure QUICKSORT (5)

if |£| = 2 and s2 < 5,

then st s2

else if |<S| > 2 then

Step 1: {Determine m, the median element of S }

SEQUENTIALSELECT (5 ,[|5 |/2])

Step 2: { Divide S into two subsequences, S] and S2)

S, <- { s ' , < m} and |5, | = ["̂ 1 / 2]

S2 <- {sr. S' > m} and |52| = [|5| / 2j

Step 3: QUICKSORT (5,)

QUICKSORT (S2)

end if

end if

It works as follows: QUICKSORT first finds the median of S and then divides S into SI

and S2. SI is a sequence of elements smaller than or equal to the median. S2 is a

sequence of elements larger than or equal to the median. Next, QUICKSORT is called

40

recursively for SI and then S2. This continues until each sequence has one or two

elements.

5.1.2 Parallel Sort Algorithm

Because sorting is an important task, several algorithms have been developed for sorting

on parallel computers. In this section, a parallel sort algorithm is introduced. It adapts to

the number of available processors on the parallel computer at hand. Each processor in

the system uses efficient sequential algorithms to complete the sorting tasks. In addition

to being adaptive, it is also cost optimal. The basic idea behind the workings of the

algorithm is as follows. For a given unsorted sequence of n elements, first k-1 medians

are found using Parallel Select (described in section 3.1), where k = 2 ^ and x is

computed from N = w1"1. The sequence is then divided into k subsequences of size

« / 2 ^ elements each. This is done so that every element of the subsequence S, is

smaller than or equal to every element of the subsequence Sj+], for / = l,...,Jt - 1 . The

algorithm is applied in parallel to each of the k subsequences using N I (k - \) processors

per subsequence. This is continued recursively for each of the subsequences until the

entire original sequence S is sorted in nondecreasing order. When the size of the

sequence and subsequence is less than or equal to k, the sequence is sorted using the

sequential sort algorithm QUICKSORT.

The parallel sort algorithm [1] is as follows:

procedure EREW SORT (S)

41

if |iS| < k then

QUICKSORT (S)

else (1) for /' = 1 to k - 1 do

PARALLEL_SELECT (5,,|’/|^|/A"|) { Obtain mt }

end for

(2) iS1, <— {j’ e S:s< n\}

(3) for i = 2 to £-1 do

St <- {s g S: m < 5 < m,}

end for

(4) 5 , < -{ is5 :5 > m w }

(5) for / = 1 to k/2 do in parallel

EREW SORT (S ,)

end for

(6) for / = (k/2) + 1 to k do in parallel

EREW SORT (St)

end for

end if

A simple numerical example that follows shows the workings of the Parallel Sort

algorithm. For a given unsorted sequence S of n=40 elements (see Figure 5.1), we want

to sort the sequence in non-decreasing order using a AM processor parallel computer.

First, x=0,624 and k= 4 are computed from N = n' x and k = 2 '̂/JC\ In step 1, parallel

42

select is invoked to find k-1 = 3 medians (/w, = 10, w2 = 20, and m3 =3 0) as shown in

Figure 5.2(a).

S SO 150139 B8 no BO 137 B 6 15 N6 BB 128 B5 [34 H8 16 127 11717 133126W B 5 H5~im

r r e n n a i r a - p i B sra 'iii'h i b fT 2 11 w i n

Figure 5.1 Initial unsorted sequence S of size n=40 elements

Next, in steps 2 to 4, the original sequence S is divided into four subsequences SI to S4 as

shown in Figure 5.2(b). Note that every element of SI is smaller than or equal to the

median m2 = 10. Every element of S2 is smaller than or equal to m2 = 20 , and greater

than m2 = 10 . Similarly, the subsequences S3 and S4 are formed as shown in Figure

5.2(b). In step 5, the algorithm is called recursively to sort SI and S2 simultaneously.

Processors PI and P2 are used to sort SI in parallel (see Figure 5.3(a)). And,

simultaneously, processors P3 and P4 are used to sort S2 as shown in Figure 5.3(b).

M edians

(a)

51 h 0 |9 18 I 7 16 15 I4 13 l2 1T~1

52 gO H9 | l 8 H7 h 6 H5 | 1 4 H 2 h 3 1111

5 3 |30 |29 [2 8 127126 (25 £ 4 (23 {22 t21 I

5 4 |40 t*9 B8 |37136135 134 |33 521511

(b)

Figure 5.2 Dividing S into four subsequences for sorting by selection

43

51 h 0 l 9 IB "I 7 l6 lS " r4" l3~ r?" in

(a)

52 BO Ii9|18|17I16"H5 h4 H BhTTm

(b)

P1 P2

P3 P4

Figure 5.3 Recursive call to parallel sort for sorting SI and S2 simultaneously

In step 6, parallel sort is again called recursively to sort S3 and S4 in parallel. The

algorithm uses processors PI and P2 simultaneously to sort S3. At the same time,

processors P3 and P4 sort S4 simultaneously using the algorithm. This is shown in Figure

5.4(a) and Figure 5.4(b), respectively. The final sorted sequence is formed when Step 6 is

completed (see Figure 5.5).

53 I30 fiB g8 I27 B6 B5 E4 g3 B2~BT1

(a)

54 140139 B8 137136 B5 134 P3 6215T1

(b)

Figure 5.4 Recursive call to parallel sort for sorting S3 and S4 simultaneously

P1 P2

P3 P4

S 11 12 13 |4 15 16 17 18 |9 HO H1 H2 03 H4 H5 116 H7 118 119120121 I22123 124 (25 I

126B7 B8 29 I30 B1 I32133 P4 I36136137B8 I391401

Figure 5.5 Final sorted sequence S of size n=40 elements (after step 6)

44

The call to QUICKSORT takes constant time, ca, for k elements. In step 1, Ar-1 calls to

parallel select take cbnx time. Steps 2 to 4 also take constant time, cc. The parallel sort

is called recursively twice in steps 5 and 6. This part takes 2t (n! k) time. The total

running time for the parallel EREW sort is t(n) = ca + cbnx +cc + 2t (n I k) . Therefore,

the final running time for the algorithm is t(n) = t f log n when the equation is solved for

/ (») .

5.2 TurboNet Parallel Sort

Since sorting is a very important operation that has received a lot of attention, its

implementation on parallel computers is a worthwhile objective and an interesting

challenge. This section deals with the implementation of the Parallel Sort algorithm

(previously discussed in Section 5.1) on the NJIT TurboNet System. The TurboNet

version of the parallel sort algorithm is discussed in detail and relevant performance results

are presented.

Several practical factors have been taken into consideration in enhancing the

original algorithm to give good performance on TurboNet and simplify its implementation.

Because of limited availability of local and shared memory, the maximum input array size

is limited to 5000 elements, and the memory allocation is made to satisfy this requirement.

Also, it is computed that for a very large input array size of 5000 to 8000 elements, the

value of k is to remain constant, equal to 4. The computation is summarized in Table 5.1

below for 100 to 8000 elements, for two cases with N = 4 and N = 2.

A second enhancement is made to determine how the procedure QUICKSORT is

used. Instead of calling QUICKSORT when the sequence size (w) is a constant k, as

done in the original algorithm in Section 5.1, in the TurboNet implementation

QUICKSORT is invoked when the input sequence size is C or smaller, where C is varied

from 4, for n = 10, to 250, for n = 4000 elements. This modification is made mainly to

minimize the program stack overflow that can occur during frequent recursive calls of the

algorithm. The third enhancement is done to determine how the parallel select is invoked

in step 1 of the parallel sort. In the TurboNet implementation of parallel sort, the parallel

select is invoked by the sort algorithm only during its first pass, rather than in every pass,

as done in the original sort algorithm.

Table 5.1 Summary of x and k value computations

N = n l ~ x and A: = 2 ^ 7 * ^ = 4
CPU (A) Array Size (n) X 1/jc

4 100 0.69 1.43
4 1000 0.79 1.25
4 4000 0.83 1.20
4 8000 0.85 1.18
2 100 0.84 1.17
2 1000 0.89 1.11
2 4000 0.91 1.09
2 8000 0.92 1.08

During the next pass or a recursive call, the sequential select is called simultaneously by

each processor in step 1. This is mainly done to reduce the SBUS usage by all

processors, thus significantly reducing the shared-memory communication needed among

46

processors. This is further clarified in a numerical example discussed later. The

enhancement has significantly reduced the overall communication overhead, thus giving a

very impressive performance boost.

The TurboNet version of the parallel sort is presented as follows: NOTE: When

the procedure is called the first time, the size of the sequence is the longest, |,S| =

ORIGINAL. The sequence size changes (becomes smaller) when the procedure is called

the second time (recursively), and so on. Therefore, initially the variable size is equal to

ORIGINAL.

procedure TURBONET_PARALLEL_SORT (S, size)

if |5| < C then

QUICKSORT (S)

else

(1) if size = ORIGINAL then

for / = 1 to k - 1 do

PARALLEL_SELECT (S , ^ ^ / * |) { Obtain mi }

end for

else if size < ORIGINAL then

for / = 1 to k - 1 do

SEQUENTIAL SELECT (S ,|'/]S |//t'|) { Obtain nr }

end for

end if

47

(2) Sx < - (j eS:s < / w ,}

for / = 2 to k - \ do

Si <— e S .m ^ < s < mi}

end for

S k <-{s e S : s Z m k_y}

(3) for /' = 1 to k do in parallel

Processor Px calls TURBONET_PARALLEL_SORT (S,,size)

end for

end if

An example that follows shows the actual workings of the TurboNet Parallel Sort. For a

given unsorted sequence S (see Figure 5.6) we want to sort the sequence using the

TurboNet Parallel Sort algorithm. When the algorithm is first called, the sequence size n

is 40 elements and the parallel select is called in step 1 to find three medians,

m] = 10, m2 = 2 0 , and m3 = 3 0 , as shown in Figure 5.7(a).

s m m a B S 'iK T B re y g f l i f -h w e s b s b* H r ra 'T t iry 17 bgggrieB sw s m

r6'Wl~5~BTH3 14 122 13 112 hl~b~2 f2 I f B i m

Figure 5.6 Initial Unsorted Sequence of size n=40 elements

48

M edians

(a)

51 11019 18 17 16 15 |4 |3 \2 11 I

5 2 gb na H7H6 us H4 H2H3 m i

53 130 ea |28 127126 125 B4 E3 b2 BT1

54 140 BO b8 137136135 b4 133 BS1311

(b)

Figure 5.7 Dividing the S into four subsequences for sorting by selection

S1 no j9 I8 I 7 |6 |5 |4 13 12 11
(a)

P1

S 3 ___________________

(b)

S 2 I30 g9 E 8 I27 B6 B5 E4 g3 B2~5T~

(c)

P 2

P 3

S1 |40 B9 B8 I37136 B 5 B 4 B3 B2 1311

(d)

P 4

Figure 5.8 Recursive call to Parallel Sort by each processor

The original sequence is divided into four subsequences by processor one as shown in

Figure 5.7(b). Note that this is done in just one pass (one step) through the original

sequence S, rather than four passes through S to form four subsequences as done by the

original algorithm in section 3.3(steps 2-4). In step 3, each processor reads its

subsequence S , and invokes the TurboNet parallel sort recursively to sort the

49

subsequence S i in parallel. Now, during this recursive call the sort algorithm becomes

sequential, but all processors are working in parallel on sorting their subsequences, as

shown in Figure 5.8(a)-(d). Finally, at the end of step 3, the sequence is completely

sorted, as shown in Figure 5.9.

Performance measurements were obtained for the following combinations of cases:

(1) The input array size (») ranged from 400 to 4000 elements, (2) 1, 2, and 4

processors were used, (3) the sequences were unsorted and of decreasing order.

S 11 12 13 14 15 16 17 18 19 H0H1 H2 113 114 H5 116 t!7 h 8 119 |20121 I2 2 I2 3 I2 4 B 5 I

[26l27~E8 £5130bl l32133B4 [55|36I57b8WKol

Figure 5.9 Final sorted sequence S of size n=40 elements (after step 6)

Table 5.2 summarizes the execution times (in microseconds) for unsorted input sequences

of 400 to 4000 elements for a single processor, dual processors, and four processors. A

plot of the data is also shown in Figure 5.9. As shown in Tables 5.2 and Figure 5.10

below, the results indicate very impressive performance improvement when 2 and 4

processors are used. This is very apparent for very large size of the input sequences,

namely n=2000 to 4000 elements.

50

Table 5.2 Execution Time (//sec) for Parallel Sort

Array size (elements) Execution Time (//sec)

1 processor 2 processors 4 processors
400 144593 142307 106419
800 350680 316603 211676
1200 649954 554155 341676
1600 1044320 843713 504710
2000 1503596 1166348 678995
2400 2017688 1534807 877654
2800 2552638 1962075 1093700
3200 3162698 2440201 1341916
3600 3856251 2965354 1609624
4000 4626148 3540366 1893207

TurboNet Parallel Sort

5000000

4000000 ■

3000000

2000000

1000000

2 3 4 5 76 8 9 10

Input Array Size/(400 elements)

Figure 5.10 Plot of the execution time (in //sec) versus the number o f elements

CHAPTER 6

CONCLUSIONS

In this thesis, parallel algorithms were implemented on a new experimental parallel

computer, namely TurboNet, for selection, merge, and sort applications. The main

objective of this thesis was to show that several algorithms can take advantage of the

shared-memory capability of the hybrid architecture to achieve significant speedup. Three

versions of each algorithm were developed and implemented employing shared-memory

communications, namely for four processors, two processors, and a single processor

(sequential). Experimental comparisons of these algorithms were also included. The

performance results obtained from the implementation of the algorithms on TurboNet

show considerable performance benefits that are possible in turns of execution time

reduction. The implementations are very cost effective if the applications process very

large amounts of data. Further study should involve implementation of the algorithms

using the message-passing or hybrid communication paradigms available on TurboNet.

The current TurboNet system has eight processors. However, its architecture

supports straightforward system scalability for up to sixty-four processors. In general, as

the system size increases, the communication overhead for the system also increases.

This is because the bandwidths of communication channels and shared memories are

limited. However, this effect of system size is more preeminent in the implementation of

the shared-memory paradigm. Further research is needed to find the maximum system

51

52

size for which the hybrid architecture is still superior. To achieve this objective, both

theoretical and experimental results must be produced.

APPENDIX A

PARALLEL SELECTION PROGRAMS

/ * --
FILE: dspO.c
DESCRIPTION: DSPO parallem selection program
PROCESSORS: 4
DATE: November 10, 1994
PROGRAMMER: Nitin Lad
 */

#include "newdef.h"

int _SELECT_LOCAL_DSPO(s_inaddr, s_size, s_k, CPU_USE, del_x)
signed long *s_inaddr;
int s_size, s_k, *CPU_USE;
float *del_x;
(

int i, j, k, tot_seq_cpu, seq_size, m_index, n, N = 0;
int first, last, itemp;
float x, temp;
signed long njit, median = 0;

if (s_size <= MIN)
(

/* copy the sequence/sub-sequence to local memory */
for (i=0; i< s_size; i++) t_addr[i] = s_inaddr[i];

/* ONLY DSPO execute seq. select to find kth sm. */
median = seq_sort(&t__addr[0], s_size);
/* median found */
select_median[dsp_id] = median;

/* copying kth element to select_median arr 1-4 */
if (s_k <= s_size)

for (i = 1; i < 4; i++)
select_median[i] = t_addr[s_k-l];

gen_flag = t_addr[s_k-l];
gen_flag2 = gen_flag3 = gen_flag4 = t_addr[s_k-1];

if (s_k <= s_size)
select_val_k[MAIN] = t_addr[s_k -1];

else
select_val_k[MAIN] = 1000;

return EXIT;

)
else
(

/* --- compute N from seq size and 1 - x factor */
if (loop_count == ZERO)
(

tot_seq_cpu = SEL_CPU;
loop_count++;

)
else
{

53

54

tot_seq_cpu = floor(pow(s_size, *del_x));
loop_count++;

)

if (tot_seq_cpu >= SEL_CPU) tot_seq_cpu = SEL_CPU;
*CPU_USE = N = tot_seq_cpu;

/* have DSP 1 to N-l start selection */
for (i=0; i < N; i++) select_local_flag[i] = START;

/ * ------- compute sequence size for D S P O ------ */
seq_size = ceil(pow(s_size, 1 - *del_x));
m_index = ceil(ceil(pow(s_size, 1- *del_x))/2);

/* copy the sequence to local memory */
for (i=0; i< seq_size; i++) t_addr[i] = s_inaddr[i];

/* sort and find median */
select_median[dsp_id] = seq__select(t_addr, seq_size, m_index);

select_local_flag[dsp_id]= DONE;
return DONE;

) /* end of if */
) /* end of routine */

/* re-declare the routine */
int _SELECT_LOCA1_DSPO(
signed long *s_inaddr,
int s_size, int s_k, int *CPU_USE,
float *del_x);

int _SELECT_LOCA1_CONTROL_DSPO(s_inaddr, s_outaddr, s_size, s_k, del_x)
signed long *s_inaddr, *s_outaddr; —
int s_size, s_k;
float *del_x;
{

int i, j, k, tot_seq, seq_size, med, n, N = 4;
int first, last, itemp;
float x, temp;
signed long *new_addr, median = 0;
int *CPU_USE = (int *)(EXT_LRAM1+40002);
int *Lsize = (int *) (EXT_LRAMl+40004) ;
int *Esize = (int *) (EXT_LRAMl+40006) ;
int *Bsize = (int *) (EXT_LRAMl+40008) ;

*CPU_USE = 0;

/* copy address & size to local shared locations */
select_local_size[MAIN] = s_size;

/* set select_local_flag to start for DSPO */
select_local_flag[dsp_id] = START;

/* initialize all medians value to zero */
for (i=0; i < SEL_CPU; i++) select_median[i] = 0;

/* following if is for debugging purpose */
if (s_size == 0) (

gen_flag = s_inaddr[0];
gen_flag2 = s_inaddr[l];
gen_flag3 = s_inaddr[2];
gen_flag4 = s_inaddr[3];
return DONE;

)
/* call select_local_dspO to find kth element */

55

if (_SELECT_LOCA1_DSPO(s_inaddr, s_size, s_k, CPU_USE, del_x) == EXIT)
(

return DONE;
)

/* ELSE, wait until all DSPs have found medians */
for (i=l; i < *CPU_USE; i++)

while (select_local_flag[i] != DONE);

/ * find the Median of medians */
if (*CPU_USE >= 3)

median = seq_select(s,select_median[0] , *CPU_USE, 2);
else

median = seq_select(&select_median[0], *CPU_USE, 1) ;

select_med = median;

/* divide the sequence into THREE sub-sequences */
if(sub_seq(s_inaddr, median, s_size, Lsize, Esize, Bsize) == DONE)
{

/* determine if the k-th element is in 1st, 2nd, or 3rd seq. */
if (*Lsize >= s_k)
{

/* k-th element is in 1st sub-sequence */
*select_offset = 0;
s_size = *Lsize;
/* call parallel select recursively */
if (_SELECT_LOCAL_CONTROL_DSPO(s_inaddr,

s_outaddr,s_size, s_k, del_x)==DONE)
return DONE;

)
else if ((*Lsize + *Esize) >= s_k)
(

/* k-th element is median */
*select_offset = 0;
gen_flag = gen_flag2 = gen_flag3 = gen_flag4 = median;
select_med = median;
return DONE;

)
else
(

/ * k-th element is in the 3rd subsequence */
s_size = *Bsize;
s_k = s_k - *Lsize - *Esize; /* re-compute k value */
*select_offset = *Lsize + *Esize;
*select_base = *select_base + *select_offset;
/* call parallel select recursively */
if (_SELECT_LOCAL_CONTROL_DSPO(s_inaddr+*select_offset,

s_outaddr,s_size, s_k, del_x)==DONE);
)

)
else
{

/* sub-dividing of sequence has failed, so return error */
return FAIL;

) /* end if */

) /* end of routine */

int _SELECT_DSP0(s_inaddr, s_outaddr, s_size, s_k)
signed long *s_inaddr, *s_outaddr;
int s_size, s_k;
{

int i, j, k, tot_seq, seq_size, med, n, N = 4;
int first, last, itemp, flag = FAIL;

56

)

main{)
(

signed long njit, median = 0;

float *del_x = (float *)(EXT_LRAMl+40000);

s_inaddr++;
s_outaddr++;

for (i=0; i < s_size; i++) 3_outaddr[i] = s_inaddr[i];

select_local_size[MAIN] = s_size;
gen_flag = gen_flag2 = gen_flag3 = gen_flag4 = 0;
*select_offset = 0;
for (i=0; i < SEL_CPU; i++) select_main_flag[i] = CONTINUE;
for (i=0; i < SEL_CPU; i++) select_local_flag[i] = HOLD;
select_wait_flag[0] = s_k;

/* wait until signal received from host program */
while (!inter_flag);

if (s_size <= MIN)
(

/* size of sequence is less than or equal to Q */

/* copy the sequence into DSP's local memory */
for (i=0; i< s_size; i++) t_addr[i] = s_inaddr[i];

/* ONLY DSPO execute seq. select to find kth sm. */
median = seq_sort(&t_addr[0], s_size);
select_med = select_median[dsp_id] = median;

/* copying kth element to select_median arr 1-4 */
if (s_k <= s_size)

for (i = 1; i < 4; i++)
select_median[i] = t_addr[s_k-l];

/* set all output flags to the k-th value */
gen_flag = t_addr[s k—1];
gen_flag = gen_flag2 = gen_flag3 = gen_flag4 = t_addr[s_k-l];

if (s_k <= s_size)
select_val_k[MAIN] = t_addr[s_k-l];

else
select_val_k[MAIN] = 1000;

return DONE;
)
else
{

/* the sequence size is greater than Q */

/* compute original 1 - x value */
*del_x = log(SEL_CPU) / log(s_size);
*select_base = 0;

if (_SELECT_LOCAL_CONTROL_DSPO(s_inaddr, s_outaddr,s_size,
s_k,del_x) == DONE)
return DONE;

) /* end if */
/* end of routine */

/* _main: dspO.c parallel_sort */

int i, j =0, local_broad = 0, k_value, tempa;
signed long tempb;
unsigned long timerStart, timerEnd, temp;
float elapsed_time = 0.0, temp_float;
signed long last_index, k_small, k_large, k_mid;

57

signed long savetime, savetime2, savetime3, xx, save_size;
int choose = 0;

/* enable the DSP's interrupt facility */
GIE_ON();
SET_PERIOD(Oxffffffff); /* set timer periof */

while (1)
{

/* wait until signal is received from the host */
while ((main_flag != GO));

if ((main_flag == GO) && (select_flag == GO))
(

/* intialize all output flags */
select_wait_flag[0] = JUNK;
select_wait_flag[l] = JUNK;
select_wait_flag[2] = JUNK;
select_wait_flag[3] = JUNK;
sort_main_flag[0] = HOLD;
sort_main_flag[l] = HOLD;
sort_main_flag[2] = HOLD;
sort_main_flag[3] = HOLD;
temp_float = select_size;
k_small = k_large = k_mid = 0;
for (i = 0; i <8; i++) meds[i] = 444 44;
for (i=0; i <= select_size; i++)

sort_input[i] = select_input[i];

/ * --------- find smallest k-th element----------- */
k_value = select_size/10;
RESET_TIMER; /* reset timer */
timerStart = GET_TIMER; /* get initial timer value */
/* call parallel select */
select_flag = _SELECT_DSP0(select_input, select_output,

select_size, k_value);
/* get timer value */
timerEnd = GET_TIMER;
/* compute the elapsed time * /
savetime = ELAPSED_TIME(timerStart, timerEnd) * 1000000;
k_small = gen_flag;

/ * --------- find median element--------- */
k_value = select_size/2;
RESET_TIMER; /* reset the timer */
timerStart = GET_TIMER; /* get initial timer value */
/* call parallel select */
select_flag = _SELECT_DSP0(select_input, select_output,

select_size, k_value);
timerEnd = GET_TIMER; /* get elapsed time valued /
/* compute the elapsed time */
savetime2 = ELAPSED_TIME(timerStart, timerEnd) * 1000000;
k_mid = gen_flag;

/ * --------- find smallest k-th element----------- */
k_value = select_size - select_size/10;
RESET_TIMER; /* reset timer */
timerStart = GET_TIMER; /* get initial timer value */
/* call parallel select */
select_flag = _SELECT_DSP0(select_input, select_output,

select_size, k_value);
timerEnd = GET_TIMER; /* get elapsed time value */
/* compute the elapsed time */
savetime3 = ELAPSED_TIME(timerStart, timerEnd) * 1000000;
k_large = gen_flag;

/* signal other DSPs to exit selection */

if (select_flag == DONE) main_flag = DONE;
for (i=l; i < SEL_CPU; i++) select_local_flag[i] = DONE
for (i=l; i < SEL_CPU; i++) 3elect_main_flag[i] = EXIT;

gen_flag = k_small;
select_wait_flag[0] = savetime;

gen_flag2 = k_mid;
select_wait_flag[l] = savetime2;

gen_flag3 = k_large;
select_wait_flag[2] = savetime3;
select_wait_flag[3] = 111111;

/ * ------- signal all DSPs to e x i t ------------ */
select_main_flag[MAIN] = EXIT;
/* end if */
/* end while */
/* end of main */

59

/ * --
FILE: dspl.c
DESCRIPTION: DSP1 parallel selection program
PROCESSORS: 4
DATE: November 10, 1994
PROGRAMMER: Nitin Lad
 */

#include "newdef.h"

int _SELECT_L0CAL_DSP1(s_inaddr, s_outaddr, s_size, del_x)
signed long *s_inaddr, *s_outaddr;
int s_size;
float del_x;
{

int i, j, k, tot_seq_cpu, seq_size, m_index, n, N = 4;
float x, temp;
signed long median = 0;
int first, last, itemp;

/* wait until signal received from DSPO */
while ((select_local_flag[dsp_id] != START));

if (s_size < 9)
for (i =0; i < s_size; i++) select_wait_flag[i] = s_inaddr[i];

/ * --- compute x from N = n **(x-l) where 0 < x < 1 ------ */
if (loop_count == ZERO)
{

tot_seq_cpu = SEL_CPU;
loop_count++;

}
else
(

tot_seq_cpu = floor(pow(s_size, del_x));
)
if (tot_seq_cpu >= SEL_CPU) tot_seq_cpu = SEL_CPU;
N = tot_seq_cpu;

/* if the number of CPU to be utilized is less than 2 (=1)
then do nothing -- return */

if (N < 2) return DONE;

/* Otherwiese: */
/ * ------- compute sequence size = n** (x) = S i ------ */
seq_size = ceil(pow(s_size, 1- del_x));
m_index = ceil(ceil(pow(s_size, 1- del_x))/2);

first = dsp_id * seq_size;
if (N == 2) seq_size = s_size - first + 1;

/* sort and find median */
for (i=0; i< seq_size; i++)

t_addr[i] = s_inaddr[first+i] ;

/* call sequential select */
select_median[dsp_id] = seq_select(&t_addr[0], seq_size, m_index);
select_local_flag[dsp_id] = DONE;

return DONE;

) /* end of select_local routine */

int _SELECT_DSP1(s_inaddr, s_outaddr, s_size)
signed long *s_inaddr, *s_outaddr;
int s_size;
{

float del_x;
unsigned long *l_addr = 0;

/* sequence size is less then Q then do nothing and return
if (s_size <= MIN) return DONE;
l_addr = malloc(sizeof(unsigned long));

/* compute original 1 - x value */
del_x = log(SEL_CPU) / log(s_size);
loop_count = ZERO;
s_inaddr++;
s_outaddr++;
median_count = 0;

/* wait until signal received from host */
while (!inter_flag);

while ((select_main_flag[dsp_id] != EXIT))
{

if (select_local_flag[dsp_id] == START)
{

s_size = select_local_size[MAIN];
_SELECT_L0CAL_DSP1(s_inaddr + *select_base,

s_outaddr, s_size, del_x);
} /* end if */

) /* end while */

if (select_main_flag[dsp_id] == EXIT)
return DONE;

) /* enf of routine */

main() /* _main: dspl.c parallel_sort */
(

int i, j=0(local_broad = 0;
signed long first_index, last_index;
signed long first_element(last_element;
signed long local_size = 0;
signed long xx, save_size = 0;
int choose = 0;

/* enable the DSP's interrupt facility */
GIE_ON();

while (1)
(

/* wait until signal is received from host */
while ((main_flag != GO));

/* call parallel selection routine */
if ((main_flag == GO) && (select_flag == GO))

select_flag = _SELECT_DSP1(select_input,
select_output, select_size);

) /* end while */
) /* end main */

61

/*--
FILE: dsp2.c
DESCRIPTION: DSP2 parallem selection program
PROCESSORS: 4
DATE: November 10, 1994
PROGRAMMER: Nitin Lad v

#include "newdef.h”

int _SELECT_LOCAL_DSP2(s_inaddr, s_outaddr, s_size, del_x)
signed long *s_inaddr, *s_outaddr;
int s_size;
float del_x;
{

int i, j, k, tot_seq_cpu, seq_size, m_index, n, N = 4;
float x, temp;
signed long *x_addr, njit, median = 0;
int first, last, itemp;

/* wait until signal is received from DSPO */
while ((select_local_flag[dsp_id] != START));

/ * compute x from N = n * *(x—1) where 0 < x < 1 ------ */
if (loop_count == ZERO)
{

tot_seq_cpu = SEL_CPU;
loop_count++;

)
else

tot_seq_cpu = floor) pow(s_size, del_x));

if (tot_seq_cpu >= SEL_CPU) tot_seq_cpu = SEL_CPU;
N = tot_seq_cpu;

/* if the number of CPU to be utilized is less than 3 (=2)
then do nothing — return */

if (N < 3) return DONE;

/ * ------- compute sequence size n**(x) = S i */
seq_size = ceil(pow(s_size, 1- del_x));
m_index = ceil) ceil) pow(s_size, 1- del_x))/2);

first = dsp_id * seq_size;
if (N == 3) seq_size = s_size - first + 1;

/* sort and find median */
for (i=0; i< seq_size; i++)

t_addr[i] = s_inaddr[first+i] ;

/* call sequential select */
select_median[dsp_id] = seq_select(&t_addr[0], seq_size, m_index);
select_local_f lag[dsp_id] = DONE;

return DONE;
) /* end of routine */

int _SELECT_DSP2(s_inaddr, s_outaddr, s_size)
signed long *s_inaddr, *s_outaddr;
int s_size;
(

62

main()
{

float del_x;
/* if the sequence size is <= Q,

do nothing and return */
if (s_size <= MIN) return DONE;

/* compute original 1 -x value */
del_x = log(SEL_CPU) / log(s_size);
loop_count = ZERO;

s_inaddr++;
s outaddr++;

/* wait until signal is received from host program */
while (!inter_flag);

while ((select_main_flag[dsp_id] != EXIT))
{

if (select_local_flag[dsp_id] == START)
{

/* get the sequence size value */
s_size = select_local_size[MAIN];
/* call parallel selection local routine */
_SELECT_L0CAL_DSP2(s_inaddr+ *select_offset,

s_outaddr, s_size, del_x);
) /* end if */

) /* end while */

if (select_main_flag[dsp_id] == EXIT) return DONE;
/* end of routine */

/* _main: dsp2.c parallel_sort */

int i, j=0, local_broad = 0, choose=0;
signed long first_index, last_index;
signed long local_size = 0;
signed long xx, save_size = 0;

/* enable the DSP's interrupt facility */
GIE_ON();

while (1)
{

/* wait until a signal is received from host */
while ((main_flag != GO));

/* call parallel selection routine */
if ((main_flag == GO) && (select_flag == GO))

select_flag = _SELECT_DSP2(select_input,
select_output, select_size);

] /* end while */
/* end main */

63

/ * ---
FILE: dsp3.c
DESCRIPTION: DSP3 parallel selection program
PROCESSORS: 4
DATE: November 10, 1994
PROGRAMMER: Nitin Lad */

#include "newdef.h"

int _SELECT_LOCAL_DSP3(s_inaddr, s_outaddr, s_size, del_x)
signed long *s_inaddr, *s_outaddr;
int s_size;
float del_x;
{

int i, j, k, tot_seq_cpu, seq_size, m_index, n, N = 4;
float x, temp;
signed long *x_addr, njit, median = 0;
int first, last, itemp;

/* wait until signal is received from the host */
while ((select_local_flag[dsp_id] != START));

/* --- compute x from N = n **(x-l) where 0 < x < 1 ------ */
if (loop_count == ZERO)
{

tot_seq_cpu = SEL_CPU;
loop_count++;

)
else

tot_seq_cpu = floor) pow(s_size, del_x));

if (tot_seq_cpu >= SEL_CPU) tot_seq_cpu = SEL_CPU;
N = tot_seq_cpu;

/ * if the number of CPU to be utilized is less than 4 (=3)
then do nothing -- return * /

if (N < 4) return DONE;

/ * ------- compute sequence size n**(x) = S i */
seq_size = ceil(pow(s_size, 1- del_x));
m_index = ceil(ceil(pow(s_size, 1- del_x))/2);

first = dsp_id * seq_size;
seq_size = s_size - first + 1;

m_index = ceil) seq_size/2);

/* sort and find median */
for (i=0; i< seq_size; i++)

t_addr[i] = s_inaddr[first+i];

/* call sequential select */
select_median[dsp_id] = seq_select(&t_addr[0], seq_size, m_index);
select_local_flag[dsp_id] = DONE;
return DONE;

)

int _SELECT_DSP3(s_inaddr, s_outaddr, s_size)
signed long *s_inaddr, *s_outaddr;
int s_size;
(

64

float del_x;

/* if the sequence size is <= Q,
do nothing and return */

if (s_size <= MIN) return DONE;

/* compute original 1 -x value */
del_x = log(SEL_CPU) / log(s_size);
loop_count = ZERO;
s_inaddr++;
s outaddr++;

/* wait until a signal is received from the host */
while (!inter_flag);

while ((select_main_flag[dsp_id] != EXIT))
{

if (select_local_flag[dsp_id] == START)
(

/* get the sequence size */
s_size = select_local_size[MAIN];
/* call parallel selection local routine */
_SELECT_L0CAL_DSP3(s_inaddr+ *select_offset,

s_outaddr, s_size, del_x);
) /* end if */

) /* end while */

if (select_main_flag[dsp_id] == EXIT) return DONE;
) /* end of routine */

main() /* _main: dsp3.c parallel_sort */
(

int i, j=0, local_broad = 0;
signed long first_index, last_index, xx;
int choose, save_size;

/* enable the DSP's interrupt facility */
GIE_ON();

while (1)
{

/* wait until a signal is received from the host */
while (main_flag != GO) ;

/* call parallel select routine */
if ((main_flag == GO) && (select_flag == GO))
{

select_flag = _SELECT_DSP3(select_input,
select_output, select_size);

) /* end if */
/* end while */
/* end main */

APPENDIX B

PARALALEL MERGE DSP PROGRRMS

/ *

FILE: dspO.c
DESCRIPTION: DSP1 parallem merge program
PROCESSORS:
DATE:
PROGRAMMER:

4
June 4, 1995
Nitin Lad

* /

/* Using data array in local memory */

#include "newdef.h" /* Including header file */

int _MERGE_DSPO(dataA, dataB, dataC, sizeA, sizeB)
signed long *dataA, *dataB, *dataC;
int sizeA, sizeB;
{

int i, j, k, tot_seq, seq_size, n, N = 4;
int first, last, itemp, flag = FAIL;
signed long njit, median = 0;
int quad[5], e, f, g, h, dela, delb;
int w, z, dsp, check = 0, lsizea, lsizeb;
double temp, temp2;
unsigned long timerStart=0, timerEnd=0;
float elapsed_time = 0.0;

*x = *y = 0;

GIE_ON();
SET_PERIOD(Oxffffffff) ; /* set timer periof */

while (!inter_flag);

dataA++; dataB++; dataC++;

for (i=0; i < sizeA; i++) mdataA[i] = dataA[i];
for (i=0; i < sizeB; i++) mdataB[i] = dataB[i];

/*
Reset DSP timer

* /
RESET_TIMER;
timerStart = GET TIMER; /* Read currect time */

e = g = 1;
f = sizeA; h =sizeB;
dela = delb = 0;

for (j = 1; j <= (log(N)/log(2)); j++)

1;
two_seq_med(&mdataA[e+dela-l] , SmdataB[g+delb-1],

f-dela, h-delb, x, y, med);

65

66

*x = *x + dela;
*y = *y + delb;

/* Used for debugging purpose */
check = 0;
if (check == 1)
{

gen_flag = *x;
gen_flag2 = *y;

)

/* step 1.2.2: Compute four pointers pi, p2, ql, q2 */
*pl = *p2 = *ql = *q2 = 1122;

find_merge_ptrs(mdataA, mdataB, sizeA, sizeB,
x, y, med, pi, p2, ql, q2);

/* Used for debugging purpose */
check = 0;
if (check == 1)
{

gen_flag = *x;
gen_flag2 = *y;

}

/* If this is SECOND iteration than
wait until DSP2 is ready */

if (j == 1)
while (merge_local_flag[1] != READY);

else if (j >= 2)
while (merge_local_flag[l] != NEXT);

/ * communicate quadruple to D S P 2 ----------*/
/* P2 = P(2i) <---------- (ql, f, q2, h) */
dsp = 2*4;
merge_quad[dsp+l] = *ql;
merge_quad[dsp+2] = f;
merge_quad[dsp+3] = *q2;
merge_quad[dsp+4] = h;
merge_local_flag[l] = GO;

/* compute the new quadruple for next iteration */
/* PI = P (2i — 1) <---------- (e, pi, g, p2) */
f = *pl;
h = *p2;

) /* end of for loop */

lsizea = f - e + 1;
if (lsizea <= 0)

lsizea = 0;

lsizeb = h - g + 1;

if (lsizeb <= 0)
lsizeb = 0;

seq_merge(&mdataA[e-l] , SmdataB[g—1] ,
mdataC, lsizea, lsizeb);

/* wait until all FOUR DSPs are done */
i = 1;
flag = WAIT;

67

while (flag != DONE)
(

if (merge_local_flag[i] == DONE)
i++;

if (i >= 4)
flag = DONE;

) /* end of while loop */
/*--

Read current time and compute elapsed time. */
timerEnd = GET_TIMER; /* Read current time */
elapsed_time = ELAPSED_TIME(timerStart, timerEnd);

for (i=0; i < (lsizea+lsizeb); I++)
dataC[i] = mdataC[i);

/* Increment Error Count if there is error in DSPO
merge outputs ---- */

j = 0;
for (i =0; i < (sizeA+sizeB); i++)

if (dataC[i] != i)
j++;

/ * --
Recompute elapsed time.

 */
gen_flag = j ;
gen_flag2 = ELAPSED_TIME(timerStart, timerEnd) * 1000000;
gen_flag3= elapsed_time * 1000000;
gen_flag4 = ELAPSED_TIME(timerStart, timerEnd) * 1000000;

return DONE;

) /* end of routine */

main()
(

int i, local_broad = 0;

GIE_ON(); /* Enable DSP Interrupt facility */

while (1)
(

/* wait until host program has completed the
downloading of the data into all DSPs */

while ((main_flag != GO));

if ((main_flag == GO) && (merge_flag == GO))
(

merge_flag = _MERGE_DSP0(dataA, dataB,
dataC, sizeA, sizeB);

if (merge_flag == DONE)
main_flag = DONE;

) /* end if */
) /* end while loop */

) /* end of main */

68

/ * ---
FILE: dspl.c
DESCRIPTION: DSP1 parallel merge program
PROCESSORS: 4
DATE: June 4, 1995
PROGRAMMER: Nitin Lad

#include "newdef.h"

int _MERGE_DSP1(dataA, dataB, dataC, sizeA, sizeB)
signed long *dataA, *dataB, *dataC;
signed long sizeA, sizeB;
{

int i, j, k, n, N = 4, iteration;
int first, last, itemp, flag = FAIL;
int lsizea, lsizeb, lsizec;
int w, z, e, f, g, h, dsp, dela, delb, check, offa, offb, offc;
double temp, temp2;
float temp3;
signed long njit, median = 0;

dela = delb = 0;
*x = *y = *pl = *p2 = *ql = *q2 = 0;
gen_flag = gen_flag2 = gen_flag3 = gen_flag4 = JUNK;
merge_local__flag[dsp_id] = WAIT;

while (!inter_flag);

dataA++;
dataB++;
dataC++;

/* copy data from SHARED memory to LOCAL DSP memory */
for (i =0; i < sizeA; I++)

mdataA[i] = dataA[i];
for (i =0; i < sizeB; I++)

mdataB[i] = dataB[i];

merge_local_flag[dsp_id] = READY;

/* wait until DSP0 communicates the quadruple */
while(merge_local_flag[dsp_id] != GO);
dsp = 2*4;

/* reads the quadruple received from DSP0 * /
gen_flag = e = merge_quad[dsp+l] ;
gen_flag2 = f = merge_quad[dsp+2];
gen_flag3 = g = merge_quad[dsp+3];
gen_flag4 = h = merge_quad[dsp+4];
merge_local_flag[dsp_id] = NEXT;

offa = e - 1; offb = g - 1;

two_seq_med(&mdataA[e+dela-l], smdataB[g+delb-l],
f-e+1, h-g+1, x, y, med);

*x = *x + dela + offa;
*y = *y + delb + offb;

check = 0;
if (check == 1)
(

gen_flag = *x;
gen_flag2 = *y;

69

}

/* step 1.2.2: Compute four pointers pi, p2, ql, q2 */
*pl = *p2 = *ql = *q2 = 1122;

find_merge_ptrs(mdataA, mdataB, sizeA, sizeB,
x, y, med, pi, p2, ql, q2);

/* Used for debugging purpose */
check = 0;
if (check == 8)
{

gen_flag = *pl;
gen_flag2 = *p2;
gen_flag3 = *ql;
gen_flag4 = *q2;

)

dsp = 4*4;
/* conununicate the quadruple to DSP4 */
/* P4 = P(2i) <----------- (ql, f, q2, h) */

while (merge_local_flag[3] != READY);

merge_quad[dsp+1] = *ql;
merge_quad[dsp+2] = f;
merge_quad[dsp+3] = *q2;
merge_quad[dsp+4] = h;
merge_local_flag[3] = GO;

/* Used for debuggin purpose */
check = 0;
if (check == 4)
{

gen_flag = *ql;
gen_flag2 = f;
gen_flag3 = *q2;
gen_flag4 = h;

)

/* communicate the quadruple to DSP3 */
/* P3 = P (2i — 1) <----------- (e, pi, g, p2) * /
dsp = 3*4;
while (merge_local_flag[2] != READY);

merge_quad[dsp+1] = e;
merge_quad[dsp+2] = *pl;
merge_quad[dsp+3] = g;
merge_quad[dsp+4] = *p2;
merge_local_flag[2] = GO;

/* waite until DSP1 communicates next set of quadruple */
while(merge_local_flag[dsp_id] != GO);
dsp = 2*4;

/* reads the quadruple received from DSP1 */
gen_flag = e = merge_quad[dsp+1];
gen_flag2 = f = merge_quad[dsp+2];
gen_flag3 = g = merge_quad[dsp+3];
gen_flag4 = h = merge_quad[dsp+4];

/* Used for debuggin purpose */
check = 0;
if (check == 3)

70

)

main()
{

{
gen_flag = e;
gen_flag2 = f;
gen_flag3 = g;
gen_flag4 = h;

}

lsizea = f - e + 1;
if (lsizea <= 0)

lsizea = 0;

lsizeb = h - g + 1;
if (lsizeb <= 0)

lsizeb = 0;

offc = e - 1 + g - 1 ;

seq_merge(&mdataA[e-l] , imdataB[g-1] , mdataC, lsizea, lsizeb);

merge_local_flag[dsp_id] = DONE;

for (i=0; i < (lsizea+lsizeb); I++)
dataC[offc+i] = mdataC[i];

return DONE;
/* end of merge routine */

int i, local_broad = 0;

GIE_ON(); /* Enable DSP interrupt facility */

while (1)
{

/* wait until host program has completed the
downloading of the data into all DSPs */

while ((main_flag != GO));

if ((main_flag == GO) && (merge_flag == GO))
{
merge_flag = _MERGE_DSP1(dataA, dataB,

dataC, sizeA, sizeB);
if (merge_flag == DONE) main_flag = DONE;

)
)

) /* end of main */

71

/* --------------
FILE:
DESCRIPTION:
PROCESSORS:
DATE:
PROGRAMMER:

dsp2.c
DSP1 parallel merge program
4
June 4, 1995
Nitin Lad

#include "newdef.h"

int _MERGE_DSP2(dataA, dataB, dataC, sizeA, sizeB)
signed long *dataA, *dataB, *dataC;
signed long sizeA, sizeB;
{

int i, j, k, n, N = 4;
int first, last, itemp, flag = FAIL;
int w, z, e, f, g, h, dsp, check;
int offc, lsizea, lsizeb;
signed long njit, median = 0;
float *del_x;
double temp, temp2;

*x = *y = 0;

merge_local_flag[dsp_id] = WAIT;

while (!inter_flag);

dataA++;
dataB++;
dataC++;

/* copy data from SHARED memory to LOCAL DSP memory */
for (i =0; i < sizeA; I++)

mdataA[i] = dataA[i];

for (i =0; i < sizeB; I++)
mdataB[i) = dataB[i];

merge_local_flag[dsp_id] = READY;

/ * wait until DSP1 communicates the quadruple */
while(merge_local_flag[dsp_id] != GO);
dsp = 3*4;

/ * reads the quadruple received from DSPl */
gen_flag = e = merge_quad[dsp+1] ;
gen_flag2 = f = merge_quad[dsp+2] ;
gen_flag3 = g = merge_quad[dsp+3] ;
gen_flag4 = h = merge_quad[dsp+4] ;

/* Used for debugging purpose */
check = 3;

if (check == 3)
{

gen_flag = e;
gen_flag2 = f;
gen_flag3 = g;
gen_flag4 = h;

72

main()
{

lsizea = f - e + 1;
if (lsizea <= 0)

lsizea = 0;

lsizeb = h - g + 1;
if (lsizeb <= 0)

lsizeb = 0;

offc = e - l + g - 1;
gen_flag = offc;
gen_flag2 = offc+lsizea+lsizeb;

seq_merge(&mdataA[e-l] , SmdataB[g-1], mdataC, lsizea, lsizeb);

merge_local_flag[dsp_id] = DONE;

for (i=0; i < (lsizea+lsizeb); I++)
dataC[offc+i] = mdataC[i];

return DONE;

int i, local_broad = 0;

GIE_ON(); /* Enable the DSP interrup facility */

while (1)
{

/* wait until host program has completed the
downloading of the data into all DSPs */

while ((main_flag != GO));

if ((main_flag == GO) && (merge_flag == GO))
(

merge_flag = _MERGE_DSP2(dataA, dataB,
dataC, sizeA, sizeB);

if (merge_flag == DONE)
main_flag = DONE;

) /* end if */
) /* end while loop */

/* end of main */

73

/ * --

FILE: dsp3.c
DESCRIPTION: DSP1 parallel merge program
PROCESSORS: 4
DATE: June 4, 1995
PROGRAMMER: Nitin Lad */

#include "newdef.h"

int _MERGE_DSP3(dataA, dataB, dataC, sizeA, sizeB)
signed long *dataA, *dataB, *dataC;
signed long sizeA, sizeB;
{

int i, j, k, check, n, N = 4;
int first, last, itemp, flag = FAIL;
signed long njit, median = 0;
int w, z, e, f, g, h, dsp;
int offc, lsizea, lsizeb;
double temp, temp2;

*x = *y = 0;
merge_local_flag[dsp_id] = WAIT;

while (!inter_flag);

dataA++;
dataB++;
dataC++;

/* copy data from SHARED memory to LOCAL DSP memory */
for (i =0; i < sizeA; i++)

mdataA[i] = dataA[i];

for (i =0; i < sizeB; I++)
mdataB[i] = dataB[i];

merge_local_flag[dsp_id] = READY;

/* wait until DSP2 communicates the quadruple */
while(merge_local_flag[dsp_id] != GO);
dsp = 4*4;

/* reads the quadruple received from DSP1 */
gen_flag = e = merge_quad[dsp+1] ;
gen_flag2 = f = merge_quad[dsp+2];
gen_flag3 = g = merge_quad[dsp+3] ;
gen_flag4 = h = merge_quad[dsp+4] ;

check = 3;
if (check == 3)

{
gen_flag = e;

gen_flag2 = f;
gen_flag3 = g;
gen_flag4 = h;

)
lsizea = f - e + 1;
if (lsizea <= 0)

lsizea = 0;

lsizeb = h - g + 1;
if (lsizeb <= 0)

lsizeb = 0;

offc = e - 1 + g - 1 ;

74

main()
{

gen_flag = offc;
gen_flag2 = offc + lsizea + lsizeb;

seq_merge(&mdataA[e-l], smdataB[g-1] , mdataC, lsizea, lsizeb);

merge_local_flag[dsp_id] = DONE;

for (i=0; i < (lsizea+lsizeb); i++)
dataC[offc+i] = mdataC[i];

return DONE;

int i, local_broad = 0;

GIE_ON(); /* Enable the DSP interrupt facility */

whi1e (1)
(

/ * wait until host program has completed the
downloading of the data into all DSPs */

while (main_flag != GO);

if ((main_flag == GO) && (merge_flag == GO))
{

merge_flag = _MERGE_DSP3(dataA, dataB,
dataC, sizeA, sizeB);

if (merge_flag == DONE) main_flag = DONE;

) /* end if */
/* end of while loop * /
/ * end of main */

APPENDIX C

PARALLEL SORTING PROGRAMS

/*--
FILE: dspO.c
DESCRIPTION: DSP1 parallel sort program
PROCESSORS: 4
DATE: June 4, 1995
PROGRAMMER: Nitin Lad */

#include "newdef.h"

/* NOTE: Only the main program included here. All selection routine are
included in Appendix A */

main() /* _main: dspO.c parallel_sort */
(

int i, j=0, local_broad = 0, k_value, tempa;
signed long tempb;
unsigned long timerStart, timerEnd, temp;
float elapsed_time = 0.0, temp_float;
signed long last_index;
signed long xx, save_size;
int choose = 0;

/* enable DSP interrupt facility */
GIE_ON();
SET_PERIOD(Oxffffffff); /* set timer periof */

while (1)
{

/* wait until a signal received from the host */
while ((main_flag != GO));

if ((main_flag == GO) && (select_flag == GO))
{

/* initialize flags */
select_wait_flag[0] = JUNK;
select_wait_flag[1] = JUNK;
select_wait_flag[2] = JUNK;
select_wait_flag[3] = JUNK;
sort_main_flag[0] = HOLD;
sort_main_flag[l] = HOLD;
sort_main_flag[2] = HOLD;
sort_main_flag[3] = HOLD;
temp_float = select_size;

for (i = 0; i <8; i++) meds[i] = 44444;
/* Copy the sequence */
for (i=0; i <= select_size; i++)

sort_input[i] = select_input[i];

RESET_TIMER; /* reset timer * /
timerStart = GET_TIMER; /* Get start timer value */

75

76

/* call parallel select to find 1st median value */
meds[3] = k_value = ceil(temp_float/K_VALUE);
select_flag = _SELECT_DSPO(select_input, select_output,

select_size, k_value);
meds[0] = gen_flag;

/* call parallel select to find 2nd median value */
meds[4] = k_value = ceil(2*temp_float/K_VALUE);
select_flag = _SELECT_DSPO(select_input, select_output,

select_size, k_value);
medstl] = gen_flag;

/* call parallel select to find 3rd median value */
meds[5] = k_yalue = ceil(3*temp_float/K_VALUE);
select_flag = _SELECT_DSPO(select_input, select_output,

select_size, k_value);
meds[2] = gen_flag;

/* indexes */
select_wait_flag[0] = meds[3];
select_wait_flag[l] = meds[4];
select_wait_flag[2] = meds[5];
select_wait_flag[3] = 7777777;

/* medians */
gen_flag = meds[0];
gen_flag2 = meds[l];
gen_flag3 = meds[2];
gen_flag4 = 77777;

/* generate FOUR sequences based on THREE medians */

/ * -------- signal other DSPs to exit selection------- */
if (select_flag == DONE) main_flag = DONE;
for (i=l; i < SEL_CPU; i++) select_local_flag[i] = DONE;
for (i=l; i < SEL_CPU; i++) select_main_flag[i] = EXIT;

sort_main_flag[l] = GO;
sort_main_flag[2] = GO;
sort_main_flag[3] = GO;

last_index = meds[3]+l;
for(j=0; j< last_index; j++)

t_addr[j] = sort_input[j];

/* sort the sequence---------------- * /
xx = 0;
save_size = j;
/* call local fast_sort routine */
fast_sort(xx, save_size);

for(j=0; j< last_index; j++)
sort_input[j]= t_addr[j];

/* wait until all other DSPs are done */
while(sort_main_flag[l] != DONE)
while(sort_main_flag[2] != DONE)
while(sort_main_flag[3] != DONE)

timerEnd = GET_TIMER; /* Get timer value */
select_wait_flag[0] = ELAPSED_TIME(timerStart,
timerEnd) * 1000000; /* compute the elapsed time */

/* Copy the sorted sequence to the output array */
for (i=0; i <= select_size; i++)

select_output[i] = sort_input[i];

/ * ------- signal all DSPs to e x i t ------------ */
select_main_flag[MAIN] = EXIT;
/* end if */
/* end while */
/* end of main */

/* --
FILE: dspl.c
DESCRIPTION: DSP1 parallel sort program
PROCESSORS: 4
DATE: June 4, 1995
PROGRAMMER: Nitin Lad */

#include "newdef.h"

main() /* _main: dspl.c parallel_sort */
{

int i, j=0, local_broad = 0;
signed long first_index, last_index;
signed long first_element, last_element;
signed long local_size = 0;
signed long xx, save_size = 0;
int choose = 0;

GIE_ON(); /* enable the DSP's interrupt facility */

while (1)
{

/* wait until a signal is received from the host */
while ((main_flag != GO));

/* call local parallel select to find medians */
if ((main_flag == GO) && (select_flag == GO))

select_flag = _SELECT_DSP1(select_input,
select_output, select_size);

if ((main_flag == GO) && (sort_main_flag[1] == GO))
{

/* Get the first and last index for the sequence
to be sorted */

first_index = meds[3]+l;
last_index = meds[4]+l;

/* read the unsorted sub-sequence from shared memory
for(i=first_index; i < last_index; i++)
{

t_addr[j] = sort_input[i];
j + + ;

)
/* sort the sequence * /

xx = 0;
save_size = j;
/* call fast sort the sort the subsequence */
fast sort(xx, save size);

78

/* write the sorted sequence to shared memory */
for (i=0; i < j; i++)
{

sort_input[first_index+i] = t_addr[i];
)
sort_main_flag[l] = DONE;

)
)

} /* end if */

if ((sort_main_flag[l] == DONE) && (select_flag ==DONE))
main_flag = DONE;
/* end while */
/* end of main * /

/* --
FILE: dsp2.c
DESCRIPTION: DSP2 parallel sort program
PROCESSORS: 4
DATE: June 4, 1995
PROGRAMMER: Nitin Lad */

#include "newdef.h”

main() /* _main: dsp2.c parallel_sort */
(

int i, j=0, local_broad = 0, choose=0;
signed long first_index, last_index;
signed long local_size = Ch-
signed long xx, save_size = 0;

GIE_ON(); /* enable the DSP interrupt */

while (1)
{

/* wait until a signal is received from the host */
while ((main_flag != GO));

/* call parallel select to find median values */
if ((main_flag == GO) && (select_flag == GO))
select_flag = _SELECT_DSP2(select_input, select_output,

select_size);

if ((main_flag == GO) && (sort_main_flag[2] == GO))
{

/* Get first and last index of the sequence
to be sorted */

first_index = meds[4]+l;
last_index = meds[5]+l;

/* read the unsorted sub-sequence from shared memory */
for(i=first_index; i < last_index; i++)
{

t_addr[j] = sort_input[i];
j++'-

)
/* sort the sequence */
xx = 0;
save_size = j;
fast sort(xx, save_size);

79

/* write the sorted sub-sequence to shared memory */
for (i=0; i < j; i++)
(

sort_input[first_index+i] = t_addr[i];
)
sort_main_flag[2] = DONE;

} /* end if */

if ((sort_main_flag[2] == DONE) && {select_flag ==DONE))
main_flag = DONE;
/* end while */
/* end main */

/* --
FILE: dsp3.c
DESCRIPTION: DSP3 parallel sort program
PROCESSORS: 4
DATE: June 4 , 1 9 9 5
PROGRAMMER: Nitin Lad

#include "newdef.h"

main() /* _main: dsp3.c parallel_sort */
{

int i, j=0, local_broad = 0;
signed long first_index(last_index, xx;
int choose, save_size;

GIE_ON(); /* enable DSP interrupt */

while (1)
(

/* wait until a signal is received from the host */
while (main_flag != GO);

/* call parallel select to find medians */
if ((main_flag == GO) && (select_flag == GO))

select_flag = _SELECT_DSP3(select_input,
select_output, select_size);

if ((main_flag == GO) && (sort_main_flag[3] == GO))
(

/* Get the first and last index value of the
sequence to be sorted from DSPO */

first_index = meds[5]+l;
last_index = select_size+l;

/* read the unsorted sub-sequence from shared memory */
for(i=first_index; i < last_index; i++)
{

t_addr[j] = sort_input[i];
j++;

)
/* sort the sequence */
xx = 0;
save_size = j ;
fast sort(xx, save size);

80

/* write the sorted sequence to shared memory */
for (i=0; i < j; i++)
{

sort_input[first_index+i] = t addr[i];
)

sort_main_flag[3] = DONE;
} /* end if */

if ((sort_main_flag[3] == DONE) && (select_flag ==DONE))
main_flag = DONE;

) /* end while */
) /* end main */

1

INCLUDE FILE

/*--------------
FILE:
DESCRIPTION:
PROCESSORS:
DATE:
PROGRAMMER:

newdef.h
Include file for parallel selection program
4
November 10, 1994
Nitin Lad

#include <math.h>
#include <stdlib.h>
#include ”/usr/local/hydra/include/hydra.h"

/*
CONSTANT declarations

#define HOLD 0
#define MAIN 0
#define ALL 0
#define ZERO 0
#define GO 1
idefine START 1
#define READY 1
#define MAXX 6000

#define CONTINUE 20
#define EXIT 17

#define DONE 9
#define NOT DONE 6
#define FAIL -9
#define C 0
#define CLEAR 0
#define JUNK 77777777

idefine CPU 8
idefine MIN 4
idefine SEL CPU 1 /*
idefine NEXT_CPU 2

idefine GET READY 44
idefine START BROAD 47
idefine STACK SIZE 200
idefine MAX 4000
idefine K VALUE 4
/ +------

/* Totoal CPU use for par_select */

/'* stack size */
/* Max array size limit * /
/ * default k-th value */

MEMORY ADDRESS CONSTANT declarations

/ * Shared Memory for Board 1 - For control information */
#define CRAMO 0x8d000000
#define CRAM0_SIZE Oxfff /* 4K */

/* ---- Shared Memory for Board 1 - General Data storage use ----- */
idefine CRAM1 0x8d000fff /* starting address */
idefine CRAM1 SIZE OxfefcO-Oxfff /* 1020K-4K * /

/ * --------------- Shared Memory for Board 2 -------
#define CRAM0_B OxaOOOOOOO
#define CRAMO B SIZE OxfefcO /* 1020K */

V

/ * Internal LOCAL RAM BLKO & BLK1---
#define INT_RAM 0x2ff800
#define INT RAM SIZE 0x800 /* 2K */

/ * ----------- External LOCAL RAM

#define EXT_LRAM1 0x40001200
#define EXT LRAM1 SIZE 0x2dff /* 59.5K */

Oxffff /* 16K */

OxSdOOOOOO /* starting address */
Oxfefbf /* 1020K */
OxaOOOOOOO /* starting address Board 2 */
Oxfefbf /* 1020K Board 2 */
0x2ff800 /* starting LRAM addres */
0x7f f /* 2Kwords */
1 for text of programs */
0x40001200 /* starting address */
Oxedff /* 59. 5K */

/* ------------- External LOCAL RAM Supplemental
#define EXT_LRAM2 OxcOOOOOOO
#define EXT LRAM2 SIZE

#define SHARED_ADDR
#define SHARED_SIZE

#define SHARED_ADDR2
#define SHARED_SIZE2

#define LOCAL RAM

#define LOCAL_ADDR
#define LOCAL_SIZE
/*----------------------------

TIMER SETUP VARIABLE DECLARATIONS */
#define ELAPSED_TIME(start, end) (((end) - (start))*0.0000001)
#define GET_TIMER (*(unsigned long *)0x00100024)
#define RESET_TIMER (‘ (unsigned long *)0x00100020 |= 960)
#define SET_PERIOD(X) (‘ (unsigned long *)0x00100028 = (unsigned long)

/* --
General local input/output array declarations */

signed long *in_addr = (signed long *)INT_RAM;
signed long *out_addr = (signed long *)(INT_RAM+INT_RAM_SIZE/2);
/* --

Local array declarations */
signed long *_small = (signed long *)EXT_LRAM1;
signed long *_equal = (signed long *)(EXT_LRAMl+5000);
signed long *_big = (signed long *)(EXT_LRAM1+10000);

signed long ‘small = (signed long *)EXT_LRAM1;
signed long ‘equal = (signed long *)(EXT_LRAMl+5000);
signed long ‘big = (signed long *)(EXT_LRAM1+10000);

signed long *seql = (signed long *)EXT_LRAM1;
signed long *seq2 = (signed long *)(EXT_LRAM1+5000);
signed long *seq3 = (signed long *)(EXT_LRAM1+10000);
signed long *seq4 = (signed long *)(EXT_LRAM1+15000);

/* - Local Memory Array: used by seq_select & fast_sort — */
signed long *t_addr = (signed long *)(EXT_LRAMl+20000);
signed long *loc_seq = (signed long *)(INT_RAM+210);

signed long *broad_input = (signed long *)INT_RAM;
signed long *broad_output = (signed long *) (INT_RAM+INT_RAM_SIZE/2);

/*---------- Local median array size 10 used by fast_sort */
signed long ‘rnedM = (signed long *)INT_RAM;

/************** External Local memory for LOCAL VARIABLES

int D_SIZE, /* size of sequence */
dsp_id; /* DSP identification */

83

/ * --
Variables used to communication with other DSP
and host programs

 v
int main_flag = HOLD, select_flag, merge_flag;
int inter_flag = HOLD; /* Signal flag */
int select_size; /* size of selection sequence */
int tot_cpu = 0;
int k_value; /* k-th value */
signed long select_med = 0;

signed long gen_flag = 0;
signed long gen_flag2 = Ch-
signed long gen_flag3 = 0;
signed long gen_flag4 = 0;
signed long median_count = 0;

signed long stackA[STACK_SIZE];
signed long stackA2[STACK_SIZE];
int global_count = 0;
signed long f_index = 0;
signed long ssize = 0;
signed long f_size = 0;

unsigned sig_flag = CONTINUE;
signed long loop_count = 0;
unsigned long timerStart, timerEnd;

#define Q 4 /* Q value */
tdefine K 21 /* Default constant K */

j
/ *________________ GLOBAL_FLAGS /VARIABLES /ARRAY_de cl ar a t i on * /

j

/ * ______NEXT BLOCK of GLOBAL MEMORY== CRAMO_______ */
/*______select_median_size = 8 _____________ */
/* Each processor stored median values here */
/* SIZE: Next Eight long words */
signed long *select_median=(signed long *)(CRAMO);

/* Intermediate local shared mem. flags for selection routine */
signed long *select_local_flag = (signed long *)(CRAMO +

8*sizeof(signed long));/* ---
Shared-Memory flags usage for communications + /

/*______select_wait_flag_size = 8 ____________ */
signed long *select_wait_flag = (signed long *)(CRAMO +

16*sizeof(signed long));

/*______select_broad_flag_size = 8 ____________ */
signed long *select_broad_flag = (signed long *)(CRAMO +

24*sizeof(signed long));

/* select k = 2 */
signed long *select_k = (signed long *)(CRAMO +

32*sizeof(signed long));

/ * ______select_val_k_size = 2 __________________ */
signed long *select_val_k = (signed long *)(CRAMO + 34*sizeof(signed long))

/* select local size size = 2 */

84

signed long *select_local_size = (signed long *)(CRAMO + 36*sizeof(signed
long));

/*______ select_local_median_size = 10___________ */
signed long *select_local_median = (signed long *)(CRAMO + 38*sizeof(signed
long));

/*______ select_main_flag_size = 8_______________ */
unsigned long *select_main_flag = (unsigned long *)(CRAMO + 48*sizeof(unsigned
long));

/*______ select_offset_size = 2__________________ */
unsigned long *select_offset = (unsigned long *)(CRAMO + 56*sizeof(unsigned
long)) ;
/*______ select_base_size = 2_____________________ */
unsigned long *select_base = (unsigned long *)(CRAMO + 58*sizeof(unsigned
long));

/*______ Shared_Median_Array_size = 8_________________ */
unsigned long *meds = (unsigned long *)(CRAMO + 60*sizeof(unsigned long));

/*______Sort_f lag_size = 8__________________________*/
unsigned long *sort_main_flag = (unsigned long *)(CRAMO + 68*sizeof(unsigned
long));

Shared-memory input/output arrays declaration

signed long *in_saddr=(signed long *)CRAM1;
signed long *out_saddr=(signed long *)(CRAM1+ CRAMl_SIZE/2);

/* ---
Shared-memory input/output arrays declaration for Parallel
Selection */

signed long *select_output=(signed long *)(CRAM1); /* Global Addr. space */
signed long *select_input=(signed long *)(CRAM1+MAXX);
signed long *sort_input=(signed long *)(CRAM1+2*MAXX);
signed long *ssmall=(signed long *)(CRAM1+4*MAXX);
signed long *sequal=(signed long *)(CRAM1+6*MAXX);
signed long *sbig=(signed long *)(CRAM1+8*MAXX);

/ * --

glob_push(): This local routine is used to push values onto a
predefined stack in the sort operation */

int glob_pushA(adrA, offsetA)
signed long *adrA, *offsetA;
(

int i, j, k;
if (global_count == STACK_SIZE)
{

return 1;
)
else
{

stackA[global_count] = *adrA;
stackA2[global_count] = *offsetA;
global_count = global_count + 1;
return 0;

) /* end if */
) /* end of push routine*/

85

/ * ---

glob_pop(): This local routine is used to pull values from a
predefined stack in the sort operation */

int glob_popA(adrA, offsetA)
signed long *adrA(*offsetA;
{

int i, j, k;
if (global_count == 0)
(

return 1;
}
else
{

global_count = global_count - 1;
*adrA = stackA[global_count];
*offsetA = stackA2[global_count];
return 0;

) /* end if */
) /* end of pop routine */

/ +--
Sequential Sort(): Local routine to perform sequential

sort operations.
S: Starting of address of an input array
Size: Size of the array(number of elements)

signed long seq_sort(S, size)
signed long *S;
int size;
{

int i, j, lim;
signed long temp;
for (i= 0; i< size; i++)

for (j=i+l; j< size; j++)
if (S[i] > S [j])
(

temp = S [i];
S[i] = S [j];
S (j] = temp;

)
if (size > 1)

lim = size/2;
else

return S[0];

if (size/2 > lim)
return S[lim];

else
return S[lim-1];

) /*end of bubble sort */

/ * --
seq_select () : This routine is used to find a k-th smallest

element using a sequential technique.

signed long seq_select(S, size, k) /*
signed long *S;
int size, k;
(

sequential select

int i, j = 0, a, first, last, t_sm, t_eq, t_big;
signed long median = 0;
signed long seq_select(signed long *S, int size, int k);

for (i = 0; i < size; i++) small[i] = equal[i] = big[i] = 0;

if (size < Q)
{

median = seq_sort(ss[0], size);
return S[k-1];

}
else
{

/ * divide and sort the sequences */
for (a = 0; a < size; a += Q)
{

first = a;
last = a + Q;
if (last > size) last = size;
equal[j] = seq_sort(&S[first], last - first);
j++;

) /* end for */

median = seq_sort(&equal[0], j);
t_big = t_eq = t_sm = 0;

for (i = 0; i < size; i++)
{

if (S[i] > median)

big[t_big] = S[i];
t_big++;

else if (S[i] == median)

equal[t_eq] = S[i];
t_eq++;

else if (S[i] < median)

small[t_sm] = S [i];
t_sm++ ;
/* end if */
/* end for */

if (t sm >= k)

)

for (i=0; i < t_sm; i++) S[i] = small[i];
return seq_select(S, t_sm, k);

else if ((t_sm+t_eq) >= k)
{

return median;

else
I

for (i=0; i < t_big; i++) S[i] = big[i];
return seq_select(S, t_big, k - t_sm - t_eq);
/* end if */
/* end if */

/* end sequential select */

/ * ---
sub_seq(): This routine is used to divided a sequence into

three subsequences during selection operatiotn:]
(1) < median (2) = median (3) > median

 * /

signed long sub_seq(S, med, size, Lsize, Esize, Bsize)
signed long *S, med;
int size, *Lsize, *Esize, ♦Bsize;
{

int i, j = 0;
int 1, e, b;

l=e=b = 0;
♦Lsize = ♦Esize = ♦Bsize = 0;

for (i = 0; i < size; i++) _small[i] = _equal[i] = _big[i] = 0;

for (i = 0; i < size; i++)
if (S[i] > med)
{

_big[b] = S[i];
b++;

)
else if (S[i] == med)
{

_equal[e] = S[i] ;
e++;

)
else if (S[i] < med)
{

_small[1] = S[i];
1++;

)
else
{

return FAIL; /♦ subdivision has failedreturn error

j = 0;
for (i = 0; i < 1; i++)
(

S [j] = _small[i];
j++;

)
for (i = 0; i < e; i++)
{

S [j] = _equal[i];
j++;

)
for (l = 0; i < b; i++)
(

SIj] = _big[i];
j++;

)
♦Lsize = 1;
♦Esize = e;
♦Bsize = b;

return DONE;
) /♦ end of routine ♦/

88

/ * ---
div_seq(): This routine is used to divide a sequence into four

equal size subsequences during parallel sort operation.
Suquences such that each element of SI < S2 < S3 < S4.

 * /
signed long div_seq(S, m, size)
signed long *S, *m;
int size;
{

/* NOTE: Max array size limit of seqX[] is 5000 */
int i, j = 0;
int mone, mtwo, mthree, mfour;
int med, adj=0;
signed long a, b, c, d;

for (i = 0; i < (size/4+adj); i++)
seql[i] = seq2[i] = seq3[i] = seq4[i]=0;

/* m[0] i n d e x -----> median mil] */
/* m[2] i n d e x -----> median m[3] */
/* m[4] i n d e x -----> median m[5] */

mone = mtwo = mthree = mfour = 0;

for i(i = 0 ; i < size; I++)
{

if (S[i] <= m[0])
seql[mone++] = S[i];

else if ((S[i] > m[0]) && (S[i] <= m[l]))
seq2[mtwo++] = S [i]

else if ((S[i] > m[l]) && (S[i] <= m[2]))
seq3[mthree++] = S[i];

else if (S[i] > m[2])
seq4[mfour++] = S[i];

) /* end for */

j = 0;
for (i = 0; i < mone; i++)
{

S[j] = seql[i];
j++;

) /* end for */
for (i = 0; i < mtwo; i++)
{

S[j] = seq2[i];
j++;

) /* end for */
for (i = 0; i < mthree; i++)
{

S[j] = seq3[i];
j++;

) /* end for */
for (i = 0; i < mfour; i++)
{

S [j] = seq4[i];
j++;

) /* end for */

return 0;
) /* end of routine */

/ * --
fast_sort(): This routine sorts a given sequence using fast sort

techniques.

89

 */
signed long fast_sort(l_index, size)
signed long l_index;
int size;
(

signed long temp;
signed long ml, m2, m3;
signed long sizel, size2, size3;
float limf = 0.0, k_val; /* jj */
int x, xsize, i, j, lim = 0, N = 150;

ssize = size;
f_index = l_index;

if (ssize <= N)
(

seq_sort(&t_addr[f_index] , ssize);
medM[8] = 4444;
medM[9] = 5555;
if (glob_popA(&medM[8] , &medM[9]) == 0)
{

/* reference below has to be global */
fast_sort(medM[8] , medM[9]);

)
else

return 0;
)

else if (ssize > N)
{

/* STEP A: find ml, m2, and m3 */
k_val = ssize/4;
i = ssize/4;
if (k_val > i) i++;

/* STEP B: push the sequence index and size for m3, m2, and ml */
medM[0] = i+f_index;
medM[l] = 2*i+f_index;
medM[2) = 3*i+f_index;

ml = i ;
m2 = 2*i;
m3 = 3*i;

size3 = ssize - m3;
size2 = m3 - m2;
sizel = m2 - ml;

medM[6] = m3 + f_index;
medM[7] = size3;
if (glob_pushA(&medM[6], &medM[7]) == 0);

medM[6] = m2 + f_index;
medM[7) = size2;
if (glob_pushA(&medM[6] , &medM[7]) == 0);

medI4[6] = ml + f_index;
medM[7] = sizel;
if (glob_pushA(&medM[6], &medM[7]) == 0);

/* NOTE: loc_seq size Is limited by INT_RAM size */
for (i = 0; i < ssize; i++) loc_seq[i] = t_addr[i+f_index];
medM[0] = seq_select(loc_seq, ssize, ml);

for (i = 0; i < ssize; i++) loc_seq[i] = t_addr[i+f_index];
medM[l] = seq_select(loc_seq, ssize, m2);

for (i = 0; i < ssize; i++) loc_seq[i] = t_addr[i+f_index]
medM[2] = seq_select(loc_seq, ssize, m3) ;

/* STEP C: divide the sequence */
if (div_seq(&t_addr[f_index], medM, ssize) == 0) ;

/* STEP D: call fast_sort recursively */
ssize = sizel;
/* call fast_sort recursively */
fast_sort(f_index, ssize);

) /* end if */
return 0;
/* end of fast sort */

REFERENCES

[11 S. G. Akl, The Design and Analysis o f Parallel Algorithms. Englewood Cliffs,
NJ: Prentice Hall, 1989.

[2] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, and
Programmability. Englewood Cliffs, NJ: McGraw-Hill, 1993.

[3] V-C40 Hydra User’sManual, Ariel Corporation, Version 0.54, Highland Park,
NJ, Aug. 1993.

[4] R. Hross, S. Ziavras, C. Manikopoulos, N. J. Lad, and X. Li, “A Defect Identifi
cation Algorithm for Sequential and Parallel Computers,” in IEEE International
Symposium on Industrial Electronics, Athens, Greece, July 1995.

[5] R. Simar, P. Koeppen, J. Leach, S. Marshall, D. Francis, G. Mekras, J.
Rosenstrauch, S. Anderson, “Floating-Point Processors Join Forces in Parallel
Processing Architectures,” IEEE Micro, pp. 60-69, Aug. 1992.

[6] X. Li, “Investigation of Hybrid Message-Passing and Shared-Memory Architec
tures for Parallel Computers. A case study: TurboNet,” Ph.D. dissertation,
Department of Electrical and Computer Engineering, New Jersey Institute of
Technology, Newark, NJ, May 1995.

[7] T. G. Lewis and H. El-Rewini, Introduction to Parallel Computing. Englewood
Cliffs, NJ: Prentice-Hall, 1992.

[8] X. Li, S. G. Ziavras, and C. N. Manikopoulos, “Parallel DSP Algorithms on
TurboNet: An Experimental Hybrid Message-Passing/Shared-Memory
Architecture,” Concurrency: Practice and Experience, in appearance.

91

	Algorithms for the NJIT turbonet parallel computer
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Copyright Page
	Approval Page
	Abstract
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: The NJIT Turbonet System
	Chapter 3: Parallel Selection
	Chapter 4: Parallel Merge
	Chapter 5: Parallel Sort
	Chapter 6: Conclusions
	Appendix A: Parallel Selection Programs
	Appendix B: Paralalel Merge DSP Progrrms
	Appendix C: Parallel Sorting Programs
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

