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ABSTRACT 

DIATION DAMAGE STUDIES IN GATE OXIDES 

Detailed investigation of the effects of Gamma-ray irradiation on the electrical 

properties such as current-voltage arid capacitance-voltage characteristics in thermally 

grown SiO2 films in the thickness range of 15 to 120 nm on silicon substrates is presented 

in this thesis. The structures used in this study are Al/Poly/SiO2/Si/A1 and Al/SiO2/Si/Al 

MOS capacitors. Based on the electrical characterization studies, we observe that 

irradiation causes generation of positive charges in the oxide leading to a shift of the high 

frequency Capacitance-Voltage (C-V) curves. An increase in surface state density at the 

SiO2-Si interface with increase in radiation dose is also observed. Static current-voltage 

(I-V) characteristics lead to a further insight in the formation of radiation induced oxide 

traps. Fowler-Nordheim tunneling in irradiated MOS structures is investigated. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Scientific research on radiation effects in semiconductors has been conducted for a number 

of years. The term radiation here is not restricted to photons, but is quite general and 

includes incident electrons, protons, neutrons and almost any particle that may interact 

with the material of interest. Our interest is not so much in radiation detection, but 

changes in material properties due to radiation. In the case of strong radiation, these 

changes are sometimes deleterious, significantly affecting the electrical conductivity and 

other electrical characteristics. 

The main interest in radiation effects in semiconductors stems from the use of 

semiconductor devices in industrial, space and military applications in a radiation 

environment. The effects of radiation are also of considerable importance in device 

fabrication processes such as electron beam deposition, sputtering, ion etching and ion 

implantation that expose the device to radiation. 

The principle cause of radiation damage varies with the utilization of the device in 

a particular environment. In general, the irradiating particles involved are classified into 

three main categories: photons (X-rays and y-rays), neutrons and charged particles 

(electrons, protons, cc-particles, heavy ions..). In our study, we confine ourselves to the 

effect of y-rays on Al/Si02/p-Si/A1 and Al/Poly/Si02/p-Si/A1 structures for oxide 

thicknesses in the range of 125A - 4500A.. 

We shall briefly digress into the history of research performed on radiation induced 

damage in semiconductor devices and we will present our work in the rest of this thesis. 

The radiation damage in bulk silicon [1] and in Si02 [2] has been studied in order to 

improve the radiation hardness of microelectronic components. The effects of radiation 
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include electrical parameter drift such as threshold voltage shift, mobility degradation, 

increased leakage current and latch up. In both bipolar and MOS transistors, radiation 

damage in either silicon or the SiO2 will affect the device characteristics. Szedon and 

Sandor [3] were among the first to recognize that the change in MOSFET characteristics 

was caused by the formation of positive charge in the oxide. This led to an intensive study 

of radiation effects in SiO2. In most cases, radiation damage in SiO2 was the most 

dominant effect. In this thesis, we confine our study to the radiation induced damage at the 

Si02-Si interfaces and the oxide in the Metal Oxide Semiconductor (MOS) system. 

The MOS capacitor is widely used in the study of radiation effects in SiO2. The 

MOS capacitor is most powerful for investigating the electrical properties of the MOS 

system. The superiority of MOS capacitor rests on its simple structure, simple fabrication 

and simplicity of analysis. The simplicity of analysis results because thermal equilibrium 

conditions are easy to obtain and a one dimensional treatment is accurate. Using the MOS 

capacitor, nearly all properties of interest in the SiO2 at the SiO2-Si interface and in Si can 

be measured. The effects of ionizing radiation on metal/oxide/Si structures have been 

intensively investigated [4-10] and it has been established that irradiation results in 

trapping of holes (generated by the radiation) in the SiO2 and creation of interface states 

at the SiO2-Si boundary. 

Radiation induced effects have been reported on both p- and n- type substrates 

with varying oxide thicknesses, orientations, doping concentrations etc. It is difficult to 

generalize the results of various past experiments. Table 1.1 is an attempt to present a 

comprehensive summary of the research performed in the past three decades. 

The frequency dependent Capacitance-Voltage (C-V) techniques are commonly 

used to characterize and study the irradiated and control samples. When ionizing radiation 

passes through a gate insulator, it creates free electrons and holes in the valence and 

conduction bands of the insulator. The highly mobile electrons are swept out of the 



Table 1.1 Overview of some of the radiation damage studies performed in the past thirty years. 

Device Structure Method of 
Radiation 

Technique Tox 
(thiclaiess of the 

oxide) 

Radiation Damage Studied 

AUSiO2/n-Si 

n - 50Ωcm 
n - 5 Ωcm 

Electron Energies of 10 to 16 
KeV. 
Total electronic charge received 
by samples was 2-5 x 10-6  
coul/cm. 

HF CV 
measurement. 
Comparison with 
theoretical curve. 

50Ωcm 
wafers had 
1500 A. 

Electron bombardment under study conditions 
introduced added +ve charge which were detected by 
CV measurements.[3] 

MOS capacitor 
104  - 109  rads 
with gate bias of +2 volts applied 
during irradiation. 

HF CV 
measurement. 
Comparison with 
control sample. 

2000 A Shift of CV characteristics along voltage axis for 
various dose rates. AV saturates above 108 rads.[11] 

MOFSET Co-60 y ray  doses. 
(0-4) x 10 	rads for +ve gate bias 
(0-0.6) x 106  rads for -ye gate 
bias. 

HF CV 
measurement. 
Comparison with 
control sample. 

1600 A Shill of CV characteristics corroborates with [11] for 
positive gate bias and AV saturates for high doses. 
The same characteristic is exhibited for 	-ye gate 
bias too. Saturation voltage shift due to +ve oxide 
charge build up is much greater for positive bias than 
for negative gate bias applied during radiation. 
[12] 

MOS capacitor 
p-type 6 x 104 rads 

2 x 106 rads 
with +2.5 volts on gate. 

HF CV 
measurement. 

Shift of CV characteristics along the voltage axis in 
MOS capacitor as a result of irradiation at two 
different dose levels under the same positive gate 
bias.[13] 

MOS capacitor 
p-type 

Radiation with photon energies 
from well below to well above the 
bandgap energy. 
+ve gate bias of 20 volts applied 



Table 1.1 (Continued) 

Device Structure Method of 
Radiation 

Technique Tox 
(thickness of 

the oxide) 

Radiation Damage Studied 

during radiation at 
6.7 x 1014  photons/cm2  
i.e. 2.4 x 108  rads at 
10.2 eV. 

HF CV and 
LF CV. 

CV(curves) HF are shifted to more negative bias 
corresponding to creation of positive oxide charge. The effect 
of positive oxide charging in SiO2  was investigated for high 
and low photon energies for positive and negative gate bias 
during irradiation. 
[141 

p-type MOS 
Na  = 1 x 1014, 9 x  1014 

and 5 x 1015  / cm 3  
n-type MOS 

Nd= 4 x 1014, 3 x 1015  
/cm3  
<100> orientation. 

25 KeV electron beam. 
Irradiation dose was 1 x 
10'5, 1.6 x -5  and 6.6 x 
10-5  C/sq. cm. 

HF CV and 
quasi-static 
CV. 

500 A Interface state generation in MOS capacitors for both p-type, 
n- type silicon substrates having different doping 
concentrations were studied. 
[15] 

MOS 
capacitors. 

5 KeV electron beam 
with +4V gate bias. 

HF CV and 
LF CV both at 
low temperature 
and room 
temperature. 

2000 A 
About 100 
variations in 
fabrication 
parameters 
were made. 

Interface state generation and oxide charges generation by 
ionizing radiation were investigated. An attempt to construct 
atomic models of oxide charges and interface states was 
made. Randomly located trivalent silicon atoms are shown to 
account for thermally generated interface states at SiO2-Si 
interface. 
[161 

MOS capacitors, 
n-channel and p-channel 
MOSI-LTs. 

Co-60 gamma ray 
irradiation of 1 x 106  
rads. +ve bias was 
applied for MOSFETs 
during irradiation. 

Temperature 
bias stress CV 
curves. HF CV 
and IV analysis. 

900 A, 5600 
A and a 
number of 
process 
variables. 

Reported radiation induced increase of mobile Na+  ions in 
MOS capacitors and a bias temperature stress induced 
relaxation or "annealing" of radiation displaced ion current 
peak accompanied by small increase in mobile Na in MOS 
capacitors.[17] 



Table 1.1 (Continued) 

Device structure  Method of Radiation Technique Tox 
(thickness of 

the oxide) 

Radiation Damage Studied 

W - SiO2 - p-Si 
W - SiO2  - n-Si 

1MeV electron beam 
of 
dose rate 140 rad/sec 
with +10V 
bias. 

HF CV plots 500 A, 
670 A. 

Feasibility of using new materials like tungsten instead of poly 
as gate bias and interconnection material for VLSI radiation 
hardened applications were studied. 
[18]  

MOS capacitors 
<100> 
orientation n-type 
Si, SOS n-channel 
phosphorous 

doped poly gate 
transistors. 

Co-60 source. 
1 x 106 rads with 
+10 volts bias. 

HF CV plots 
quasi-static CV. 

500 A 
650 A 
Dry high 
press- 
ure oxides. 

Examination of radiation behavior of high pressure oxides was 
found to be similar to that of dry and wet atmospheric pressure 
oxides. Calculation of interface state densities for various 
samples were done. 
[19]  

MOS capacitor, 
<111> orientation 
n-type Si. 

y rays 
IOM rads. 

ESR 1400 A Effects of bias on radiation induced paramagnetic defects at 
Si/SiO2  interface were studied with ESR measurements. A 
large change in density of radiation induced Pb centers with 
bias was observed. Pb defects were found to account for a large 
portion of radiation induced defects at the interface.[20] 

MOS capacitor 
n type 
100 wafers. 

0 - 20 eV electron 
irradiation. 

XPS 850 A Holes and electrons were found to induce formation of trivalent 
Si centers. Description of bond strain gradient [BSG] model to 
explain interface state build up. 
[21] 



Table 1.1 (Continued) 

Device Structure Method of 

Radiation 

Technique Tox 
(thickness of 

the oxide) 

Radiation Damage Studied 

MOS capacitor. 
<111> orientation 
n-type 
2 x 1016  /cm3  
donor concentration. 

X-ray 
1.1 x 104 rads 
- 106 rads. 

HF CV 
and GV 
characteristics. 

5000 A Investigation of flat band voltage shift and 
generation of surface states for X-ray irradiated 
samples were done. 
[22]. 

MOS capacitor. Soft X-rays with 1 MV/cm, 
+ve gate bias, total dose 
10K rad at low 
temperature. 

Low temperature HF 
CV curves. 

A general relationship between location of trapped 
holes and subsequent generation of interface states 
were reported. 
[23]  

MOS capacitors. X-rays. TSC and CV 
technique. 

3500 A Trapped hole annealing was quantitatively 
estimated by TSC and CV techniques. Models of 
oxide trap charge buildup and annealing are 
discussed. 
[24]  

n-type Si 
<100> orientation 
MOS capacitor. 

y rays , X-rays 
103 to 106 	- rads. 

HF and quasi-static 
CV. 

1000 A - 
2000 A 
thick. 

Change in density of surface states as a result of 
annealing, irradiation and annealing as a function 
of temperatures between 300 and 900 K has been 
studied. 
[25]. 

6 
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oxide by even a small field. However, the holes are trapped usually near the most negative 

electrode and form a semi-permanent positive space charge. When subjected to ionizing 

radiation, the accumulation of trapped positive charge is noted as a shift in flat band 

voltage to more negative values. The amount of this shift will depend on the gate bias 

during irradiation. For positive gate bias, the holes are trapped closer to silicon resulting in 

a large Hatband shift. For negative bias, they are trapped closer to the metal where they 

cause a lesser flat band shift. 

Figure 1.1 shows the shift along the voltage axis in MOS capacitor C-V 

characteristics as a result of irradiation at two different dose levels under the same positive 

gate bias. In p-type silicon used for n-channel transistors, inversion occurs when the Fermi 

level is close to the conduction band so that the interface states are charged neutral or 

negative at threshold conditions. With the same argument, n-type silicon used for p-

channel transistors have interface states which are charged neutral or positive. In most 

cases, the positive charge build up dominates at low radiation levels [26]. Figure 1.2 

shows shift of the C-V characteristics of an MOS capacitor along the voltage axis and the 

corresponding oxide trap charge (QOt) as a function of dose with dose rate as parameter. 

We observe that AV saturates above a dose of 108  rads. Surface state formation is 

sensitive to radiation doses [26]. Many n-channel devices show a negative shift in 

threshold voltage for doses less than 105  rads and then begin to shift to more positive 

values for increased dose levels [22]. But p-channel devices usually show a continuous 

shift to more negative values with increasing radiation dose. Figure 1.3 shows shifts of C-

V curves measured between the gate and the substrate of a MOSFET along the voltage 

axis for positive and negative aging gate bias. 

The other notable contributions to this study is Repace's [17] report on mobile Na 

ions in irradiated MOS capacitors and effect of bias on radiation induced paramagnetic 

defects at the Si/SiO2 interface [20]. Models where trapped holes are converted directly to 

interface traps have been proposed by many authors [21,23,27]. Co-60 irradiation studies 



Figure 1.1 Shift of MOS capacitor C-V curves for two different doses of radiation under 
the same positive gate bias.[13] 

Figure 1.2 Shift of C-V characteristics of a MOS capacitor and the corresponding oxide 
trapped charge for different doses of radiation.[11] 

8 
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on Aluminum/Tantalum oxide/silicon oxide/silicon capacitors have also been studied [28]. 

The effect of heat treatment on interface parameters in SiO2-Si structures after irradiation 

opens a whole new field for investigation. With this as the background, we shall discuss at 

length the findings of our research. 

Figure 1.3 Shift of C-V curves for a MOSFET along the voltage axis as a function of 
gamma-ray dose (Co-60) (a) positive aging gate bias; (b) negative aging gate bias.[12] 
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1.2 Outline of Remaining Chapters 

Chapter Two covers oxidation kinetics and various aspects of oxide growth. Chapter 

Three deals with the ideal MOS capacitor in terms of its energy band diagrams and also 

describes the MOS capacitor model under non-ideal conditions. Chapter Four discusses in 

depth the electrical characterization techniques. Chapter Five describes the experimental 

procedures used in the fabrication of MOS capacitors and the characterization set up is 

also outlined. Chapter Six is devoted to the results of the various experiments performed 

on irradiated MOS capacitors and the effects of radiation on these structures are discussed 

in detail. Chapter Seven concludes our study of the radiation damage in MOS structures. 



CHAP I ER 2 

OXIDATION KINETICS 

2.1 Introduction 

Oxidation of Silicon is a very important step during the process of fabricating VLSI 

circuits. A high quality oxide is an absolute necessity in order to ensure the reliability of 

the devices. Silicon dioxide has several uses: to serve as a mask against implant or 

diffusion of dopant into silicon, to provide surface passivation, to provide electrical 

isolation of multi-level metallization schemes, for device isolation and to serve as a 

dielectric insulator in MOS structures. Several methods of oxidation are currently in use 

such as vapor phase reaction, plasma anodization, wet anodization and thermal oxidation 

in both dry and wet environments. In this chapter, we shall discuss the classical theory of 

oxidation proposed by Deal and Grove [29] and its limitations, the role of non-bridging 

oxygen at Si02-Si interface and the effects of orientation, temperature and other factors 

on oxide growth. We will consider the relative differences of dry and wet oxides , thin and 

thick oxides. 

2.2 Classical Theory of Oxidation of Silicon 

The macroscopic oxidation of single crystal was first suggested by Deal and Grove. The 

model is schematically illustrated in Figure 2.1. They proposed that oxidation proceeds by 

the diffusion of an oxidant (molecular H2O or 02) through the existing oxide to the 

Si02/Si interface. The reactions describing the thermal oxidation of Silicon are given as: 

Si (solid) + 02  (vapor) 	> Si02  (solid) 

Si (solid) + 2H20 (vapor)  	> Si02 (solid) + 2H2 

This model proposed by Deal and Grove is valid for oxide thicknesses above 200 A, 

oxidation in dry oxygen, oxidant partial pressure of I atm or less and temperatures 
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Figure 2.1 Cross section of silicon with a growing SiO2 layer illustrating the model for 
thermal oxidation of silicon. The three fluxes, F1 into the silica, F2 through the silica, and 

F3 at the SiO2-Si interface, are shown. [29] 
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between 700 and 1300° C. The overall oxidation process based on Figure 2.1 depends on 

fluxes. After considering the initial oxide layer, various fluxes, gas laws [30] etc., the 

following relation has been shown to be applicable: 

x2 + Ax = B (t + t) 	(2.1) 

where, 

t is the time duration for which the oxidation has taken place, 

is the time co-ordinate shift to account for the initial oxide layer, 

x is the oxide thickness, 

B is the parabolic rate constant and 

B/A is the linear rate constant. 

Experimentally measured results agree with the predictions of this model over a 

wide range of oxidation conditions. For wet oxidation, the initial oxide thickness is very 

small. However for dry oxidation, the extrapolated value of initial oxide thickness is about 

200 A. Therefore Deal and Grove found that there was an initial accelerated growth 

during oxidation in dry oxygen. A number of different forms and mechanisms have been 

suggested for the initial thin oxide growth kinetics. The proposals in the literature have 

included schemes based on enhanced oxidant diffusion, reduced oxidant diffusivity in the 

oxide, fixed charge effect on the interface reaction rate and micropore diffusion. 

2.3 Chemical Structure of Si02 

Si02 basically has two states: (a) amorphous state termed as glass of fused silica which is 

extensively used in furnace hardware and (b) crystalline state termed as quartz. The 

amorphous state of Si02 is thermodynamically unstable below 1710° C. Fused silica does 

not have a long range structure because of its amorphous state but a short range order 

does exist. The short range order is centered around the structural formula for the material 

which is Si044-. The structure can be described as follows: 
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The valency of Silicon is four and this Si atom is located at the center of a regular 

tetrahedron as shown in Figure 2.2a and the oxygen ions are at each of the corners of the 

tetrahedron. The tetrahedral distance between Si and oxygen ions is 1.60 A, and the inter-

ionic oxygen-oxygen distance is 2.27 A. 

The tetrahedral structures are then joined to each other by an oxygen ion called a 

bridging oxygen, which is shared between the two touching tetrahedra. This gives rise to a 

crystalline structure as shown in Figure 2.2b. But for the amorphous state of SiO2  shown 

in Figure 2.2c, some of the vertices of the tetrahedra are not shared and this results in the 

structure having non bridging oxygen ions. 

Figure 2.2 (a) Basic structural unit of SiO2; (b) Two dimensional representation of a 
quartz crystal lattice; (c) Two dimensional representation of the amorphous structure of 

SiO2. [31] 
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The cohesiveness of the glass depends on the ratio of bridging to non bridging 

oxygen ions. Greater the ratio, the better will be the cohesiveness of the glass. The atomic 

movement in silica is more likely to occur by the movement of oxygen atoms rather than 

the silicon atom. The reason for this is the bonding mechanism of the atoms, Si has four 

bonds to oxygen, as a result four bonds have to be ruptured for the silicon atom to be free 

whereas the rupture of only two Si-O bonds are required to free a bridging oxygen atom. 

If the rupture occurs, an oxygen ion vacancy is formed. This vacancy has a net positive 

charge in the network. Both bridging and non bridging oxygen vacancies may be formed, 

but the non bridging vacancy is more likely to occur based on binding energy 

considerations. 

Si02 films grown by the oxidation of silicon, have an amorphous structure with a 

random network of polyhedra. The density of thermally grown fused silica (2.25 g/cc) is 

less than that of the crystalline quartz (2.65 g/cc). The lower density implies a more open 

structure. This open structure is conducive to the interstitial diffusion of impurities 

through the network. Impurities in silica alter its properties appreciably. There are two 

kinds of impurities, substitutional and interstitial. The substitutional impurities (e.g. B3+  & 

P5+) replace Si in the structure and they are also known as network formers. The missing 

or extra electrons in the tetrahedra, when these materials are added, are accomodated by 

the elimination or formation of bridging oxygen ions respectively. The elimination of 

bridging oxygen tend to weaken the network. 

Interstitial impurities like the oxides of Na, K, Pb and Ba enter the structure 

resulting in the metal ions giving up its oxygen to the network, thereby producing two non 

bridging oxygen ions, which replace the original binding oxygen. The additional non 

bridging oxygen also tends to weaken the structure facilitating the increased diffusion of 

other species within the glass. Impurity oxides of this type are termed network modifiers 

since they do not form glasses themselves. 
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Water vapor is an important impurity in fused silica, and can enter from the 

atmosphere or be grown-in during wet oxidation. The water vapor combines with a 

bridging oxygen to form a pair of stable non bridging hydroxyl groups (OH-). This 

reaction can be represented by: 

H2O + Si--O--Si = Si--OH + OH-Si. 

The increase in non bridging oxygen again tends to weaken the Si network, thereby 

increasing the diffusivities of many materials in the network. The presence of OH can be 

detected by IR spectroscopy, since the Si-OH stretching frequency is different than that of 

Si-O. Figure 2.3 shows the structure of fused silica glass. 

Figure 2.3 The structure of fused silica glass. 
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2.4 Other Aspects of Thermal Oxidation and CVD Deposition 

Oxides grown in pure dry oxygen have the very best electrical properties, but considerably 

more time is required for growing the same thickness of the oxide at a given temperature 

in dry oxygen than in water vapor. For relatively thin oxides, such as the gate oxide in a 

MOSFET, typically lesser than 100 nm thick, dry 02 oxidation is commonly used. Such a 

film can be grown very quickly. In many other applications, such as for bipolar transistors 

and for thick field or isolation oxide (greater than 500 nm) in MOS integrated circuits, 

oxidation in water vapor or steam is used and provides adequate passivation. 

Thin oxides (2.5 nm - 10 nm) are very important in a class of memory devices that 

use potential wells at the interface between Si02 and another insulator to store charge. 

The potential wells at the insulator-insulator interface are filled and emptied with electrons 

by tunneling between the wells and the silicon through the thin Si02 layer. Another 

possible application of thin oxides is in semiconductor photovoltaic solar cells, where a 

thin oxide layer (in the order of 3 nm) between a metal electrode and the semiconductor 

has been found to increase the output voltage and efficiency of the cell. 

The oxidation mechanism is found to depend on the crystallographic orientation of 

the silicon surface. In particular, the linear oxidation rate is observed to depend on the 

crystallographic orientation of the silicon surface. The parabolic rate constant (Equation 

2.1) is independent of silicon surface orientation, as the parabolic oxidation rate is 

diffusion limited. 

Oxides can also be formed not by oxidation of Si but by CVD deposition at 

different temperatures. The oxide properties change depending on the temperature at 

which they were grown. Intermediate temperature (500 - 800° C) oxides may be deposited 

using pyrolysis of tetraethylorthosilicate, (C2H2O)4Si, in a hot wall tube furnace reactor 

[32,33]. Advantages of the intermediate temperature method are a short time cycle, and 

large numbers of silicon wafers can be handled on a furnace paddle or rack. Intel 	mediate 

temperature CVD oxides have been used most often as a masking layer for the etching of 
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silicon nitride films and for diffusion masking of germanium substrates. High temperature 

deposition of SiO2 is usually done at temperatures of 850-1100° C using silane diluted to 

1% in nitrogen, CO2, and hydrogen carrier gas. The high temperature deposition method 

is most useful for the top masking oxide for etching holes in silicon nitride films. There are 

a number of advantages to depositing SiO2 by the pyrolysis of tetraethylorthosilicate at 

low pressures: less particulates that can deposit on the wafers are generated, up to 200 

wafers can be processed at a time, better thickness uniformity across each wafer is 

obtained, a more specular surface results, less material is used, and this method is less 

hazardous and lower in cost. 

There are still a number of factors that affect the oxidation like nature of the 

diffusing species, state of water in silica and influence of impurities on oxidation rates. All 

these factors are discussed by Sze [30] and Ghandhi [34]. 



CHAPTER 3 

FUNDAMENTALS OF MOS STRUCTURE 

3.1 Introduction 

The MOS capacitor is the simplest, most reliable device structure for investigation of 

radiation damage in the oxide and its interface with the semiconductor. Hence it is 

mandatory to have a thorough knowledge of the physical characteristics of MOS structure 

under equilibrium and non-equilibrium conditions. In this chapter, we are concerned 

primarily with the MOS structure shown in Figure 3.1. 

Figure 3.1 Metal-oxide-semiconductor (MOS) structure.[35] 

We first consider the ideal characteristics of MOS structure and then extend our 

discussion to include the effects of metal semiconductor work function differences, 

interface traps, oxide charges etc. 

10 
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3.2 Ideal MOS Structure 

We will consider the energy band diagrams of ideal MOS capacitors for zero applied 

voltage. Figure 3.2 shows the band diagrams for both n-type and p-type semiconductors. 

Figure 3.3 shows the energy band diagram quantitatively representing the energy levels. 

Figure 3.2 Energy-band diagrams of ideal MOS capacitors at V = 0. (a) n-type 
semiconductor. (b) p-type semiconductor.[35] 

The position of the Fermi level in the gate and in the silicon gives us a very clear 

picture of the physical device aspect. The forbidden gap in SiO2 is very large whereas that 

of silicon is much smaller. At zero applied bias, energy difference between the metal work 

function and the semiconductor work function is zero or the work function difference [35] 

ϕms  is zero. For completeness, we have: 

for n-type 
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where ϕm  is the metal work function, x is the semiconductor electron affinity, xi is the 

insulator electron affinity, Eg  is the bandgap, ϕB is the potential barrier between the metal 

and the insulator and ψB is the potential difference between Fermi level EF and intrinsic 

Fermi level Ei. This condition where the energy band is flat when there is no applied 

voltage is termed as flat band condition (Figure 3.2). The only charges that can exist in the 

structure under any biasing conditions are those in the semiconductor and those with equal 

but opposite sign on the metal surface adjacent to the insulator. There is no carrier 

transport through the insulator under dc biasing conditions or the carrier transport through 

the insulator is infinite. 

Figure 3.3 Energy-band diagram of the MOS capacitor showing the energy barrier 
between metal and SiO2 and between silicon and SiO2.[2] 

When an ideal MOS capacitor is biased with positive or negative voltages, we may 

examine three cases at the semiconductor surface namely, accumulation, depletion and 

inversion. These cases are shown in Figure 3.4 for both p-type as well as n-type 



22 

substrates. The relevance of accumulation, depletion and inversion is also explained with 

respect to capacitance voltage curves (C-V) in the next chapter. If we apply a negative 

voltage between the metal and semiconductor, we are effectively depositing a negative 

charge on the metal. In response, an equal net positive charge accumulates at the surface 

of the semiconductor. In case of p-type substrate, this occurs by hole accumulation at 

semiconductor-oxide interface. A positive voltage from metal to semiconductor deposits 

positive charge on the metal and calls for a corresponding net negative charge at the 

surface of the semiconductor. Such a negative charge in p-type material arises from 

depletion of holes from the region near the surface, leaving behind uncompensated ionized 

acceptors. 

Figure 3.4 Energy-band diagrams for ideal MOS capacitor when V#0, for the following 
cases: (a) accumulation; (b) depletion; (c) inversion [35] 

If we continue to increase the positive voltage, the bands at the semiconductor 

surface bend down more strongly. Since Ei is below EF and EF >> Ei implies a large 

concentration of electrons in the conduction band, this is the inversion phenomena. The 
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above discussion applies to n-type substrate devices simply by reversal of polarities of 

voltages. 

3.3 Effects of Real Surfaces 

The departure of the physical characteristics of MOS capacitor from the ideal model is due 

to work function differences and interface charges. As a result, the MOS capacitor 

happens to be the only semiconductor device that is in equilibrium (considering flat band 

conditions), when a voltage is applied to it. 

The work function of a semiconductor, qϕs, varies with the doping concentration. 

Hence work function difference, qϕms  = qϕm- qϕs, also varies depending on the doping 

concentration. Generally, qϕms  is not zero as opposed to the ideal case. Considering a p-

type semiconductor MOS system, the bands bend down due to the work function 

difference as shown in Figure 3.5 

Figure 3.5 Energy-band diagrams for negative work function difference . (a) Band 
bending at equilibrium. (b) Flat band condition for negative applied voltage.[36] 

Thus the metal is positively charged and the semiconductor surface is negatively 

charged at thermal equilibrium. To obtain the flat band condition pictured in Figure 3.5b, 
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we must apply a negative voltage to the metal VFB  = ϕms, which is called the flat band 

voltage. In addition to the work function difference, the equilibrium MOS capacitor is 

affected by charges in the oxide and at the SiO2-Si interface [37]. Figure 3.6 shows 

charges and their locations for thermally oxidized silicon. There are four general types of 

charges associated with SiO2-Si system. The charges are described as [37]: 

Figure 3.6 Charges and their locations for thermally oxidized silicon.[35] 

(1) Fixed oxide charge (Qf, Nf): These are located in the oxide layer less than 25 A from 

the SiO2-Si interface. The dependency on oxidation ambient temperature, silicon 

orientation and other related parameters has been clearly explained by Deal [37]. 

(2) Mobile oxide charge (Qm, Nm): These are due to ionic impurities such as Na+, Li+, 

K+ that are mobile within the oxide under bias temperature aging condition. 

(3) Oxide trapped charge (Qot,  Not): These may be positive or negative due to holes or 

electrons trapped in the bulk of the oxide. Trapping may result from any form of 

ionizing radiation or hot electron injection. 

(4) Interface trapped charge (Qit, Nit, Dit): These are charges located at the Si-SiO2 

interface with energy states in the silicon forbidden gap. They can possibly be 
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produced by structural defects, impurities or other defects caused by radiation. 

Unlike the other three, these can exchange charges with the underlying silicon. 

These are also referenced as surface states, fast states or interface states in the 

literature. 

Any form of ionizing radiation will affect device structure and characteristics 

mainly in modifying the charge distributions. In chapter 4, we discuss several 

characterization techniques to account for radiation induced damage in semiconductor 

devices. 



CHAPTER 4 

ELECTRICAL CHARACTERIZATION TECHNIQUES 

4.1 Introduction 

Radiation hard microelectronics is a vital part of research in the modern day high speed 

VLSI applications. Therefore the study of radiation induced defects is accomplished by a 

variety of device characterization techniques. We give importance to electrical 

characterization methods as they are the most relevant techniques capable of yielding 

information on device properties. Optical methods are also popular because of their non 

contacting nature and their high sensitivity is an important advantage. Chemical and 

physical characterization methods, with their high spatial resolution and ability to identify 

elements and compounds make them highly indispensable too. A popular technique for 

characterization of electrical properties of MOS structure is the C-V technique [38]. 

4.2 C-V Measurements 

Various charges in the MOS system can be measured by the most popular approach of 

Capacitance-Voltage measurements. Before discussing the measurement methods, we will 

analyze the effect of gate voltage on MOS capacitances [39]. The energy band and charge 

distribution diagrams for a MOS capacitor on a p-type substrate for various bias voltages 

are shown in Figure 4.1. When the gate bias is swept from negative to positive values for a 

p-type MOS capacitor, the capacitance varies as shown in Figure 4.2 [39]. Figure 4.3 

shows the high frequency (HF) curve and the deep depletion regime. We discussed 

previously accumulation, depletion and inversion with respect to energy bands. The 

corresponding cases in the C-V plot is shown in Figure 4.3. The C-V curve (a) to (e) in 

Figure 4.3 is experimentally obtained by sweeping the gate voltage. All the above 
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igure 4.1 Energy-band and charge-distribution diagrams for an MOS capacitor on a p- 
)strate in (a) accumulation; (b) Hatband; (c) depletion; (d) weak inversion and (e) strong 

inversion. [39] 



Figure 4.2 MOS capacitance-voltage curves: (a) Low frequency; (b) High frequency; 
(c) Deep depletion. [35] 

Figure 43 Capacitance-gate voltage curves for MOS capacitor. [39] 
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the above characteristics are related to p-type silicon substrate and we will limit ourselves 

to p-type substrate in the rest of the discussion. 

Let us consider a MOS capacitor with the dc gate voltage swept from negative to 

positive voltages. Superimposed on the dc voltage is a small amplitude ac voltage of 

typically 10-15 mV amplitude which is necessary to measure the capacitance. The dc 

voltage determines the bias condition. The three capacitance voltage curves (Figure 4.2) 

are identical in accumulation and depletion. The energy band diagram of a MOS capacitor 

on p-type substrate is shown in Figure 4.4 [40]. 

Figure 4.4 Cross section and energy band diagram of an MOS capacitor. [40] 
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The capacitance measured [40] between the gate and the substrate is given as: 

where, 

Cox is the capacitance due to the oxide charge, 

CP is the capacitance due to the hole accumulation charge, 

Cs is the capacitance due to the space charge region bulk charge, 

CN is the capacitance due to the electron inversion charge and 

Cit is the capacitance due to the interface trapped charge. 

Now we shall discuss the regions of accumulation, depletion and inversion with 

reference to the C-V plot: 

(a) Accumulation: For sufficiently large negative voltages, majority carriers are attracted 

to the surface of the silicon leading to a p-type surface accumulation layer [41]. Since 

accumulation charge is very high, the four capacitances shown in Figure 4.5a are 

neglected and the equivalent capacitance reduces to Figure 4.5b [40]. The high 

concentration of holes near the Si surface can be thought of as forming the second 

electrode of a parallel plate capacitor with the gate electrode. Since the accumulation 

layer is in direct Ohmic contact with the p-type substrate, the capacitance of the 

structure under accumulation is approximately equal to: 

where, 



Figure 4.5 Capacitances of an MOS capacitor for various bias conditions as discussed in 
section 4.2. [40] 
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A is the area of the gate, 

sox is the permittivity of the oxide and 

tax is the oxide thickness. 

On the C-V plot (Figure 4.3), under negative voltage, the capacitance is the 

maximum recorded and hence is just the insulator capacitance. 

(b) Depletion: When the gate voltage is increased, the surface hole concentration 

reduces and becomes zero and at this point only a surface depletion region consisting 

of immobile ionized acceptors will be present (Figure 4.1). In this case, the space 

charge dominates and the space charge region charge QB  is: 

where, 

q is the electron charge, 

NA is the acceptor concentration and 

W is the width of the surface depletion region. 

As gate voltages become more positive, both QB  and W increase. As the width of 

the surface depletion region increases, the capacitance from gate to substrate 

associated with the MOS capacitor structure will decrease which is shown in the 

equivalent circuit of Figure 4.5c [40]. The total capacitance is the combination of 

Cox  in series with CB, which in turn is in parallel with Cit. CN can be neglected in 

depletion region. 

(c) Inversion: With the gate voltages becoming more positive, the surface depletion 

region will continue to widen until the onset of inversion in which case electrons are 

attracted up to the silicon surface to form n-type inversion layer. Under weak 
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inversion depicted in Figure 4.1, we apply the equivalent circuit of Figure 4.5c and in 

this case CN is not neglected. 

The width of the surface depletion region for a MOS structure in equilibrium will 

remain essentially constant after the formation of the inversion layer even if the gate 

voltage is made more positive. For strong inversion, CN dominates because QN  is 

very high. Now QN  may or may not be able to fallow the high frequency small signal 

ac gate voltage, superimposed on the dc bias and as such the capacitance of the MOS 

capacitor under inversion conditions is really a function of the frequency of the 

applied gate ac voltage. 

If QN  is able to follow the applied ac voltage, the equivalent circuit of Figure 4.5d 

is a good low frequency approximation and therefore the capacitance is nothing but 

the oxide capacitance. This is the LF CV curve (Figure 4.2). If QN  is unable to 

follow the ac voltage, the equivalent circuit of Figure 4.5e is the high frequency 

approximation and therefore capacitance is the series combination of Cox  and CB, 

giving the HF CV curve (Figure 4.2). 

(d) Deep depletion: When the dc bias gate voltage is changed rapidly with insufficient 

time for the generation of inversion charge, then the device is driven into the deep 

depletion and this is point (f) in Figure 4.3 in the deep depletion curve. Under these 

conditions, the capacitance is less than the inversion capacitance for obvious reasons. 

The three C-V curves (Figure 4.2) are identical in accumulation and depletion but 

deviate for positive gate voltages because the inversion charge is unable to follow the 

applied ac voltage for the HF case and does not exist in the deep depletion region. 

We now discuss charges in the oxide system and their measurement methods. 
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4.3 Oxide Charges and their Measurement Methods 

4.3.1 Interface Trapped Charge (Qit) 

The interface trap charge may arise from irradiation or other similar bond breaking 

processes [42]. The characteristics of interface trapped charge are briefly outlined in the 

following paragraphs. 

The interface trapped charge may be either positive or negative. Structural, 

oxidation induced defects such as trivalent silicon centers [43] and metal impurities are 

other causes for the presence of traps. The density increases drastically with small amounts 

of hot electron trapping [44]. The introduction of Qit  into an ideal oxide charge free 

system will usually result in C-V curves which are distorted and stretched out along the 

voltage axis relative to the ideal case. 

This is due to the variation in the total number of empty or filled traps as the Fermi 

level is swept across the band gap by changing the applied voltage. They exhibit trap time 

constant dispersion for laterally non uniform distribution of charges [45]. They can be 

reduced significantly by annealing at 400°C to 500°C in hydrogen containing ambients 

[46] or in nitrogen ambients if aluminum is used for the metal [47]. Characterization 

methods for interface trapped charge can be found in Nicollian and Brews [2], 

Goetzberger et al,, [48] and De Clerck [49]. 

4.3.2 Quasi Static Method: 

This technique [50,51] measures the density of interface trapped charge that contributes to 

low frequency (LF) capacitance but not to high frequency (HF) capacitance. The effect of 

interface traps on both FE and LF C-V curves is discussed by Schroder [40]. This method 

uses standard laboratory equipment and a suitable HF C-V set is also required. The 

procedure consists of recording the displacement current versus bias (low frequency 

curve) at a low sweep rate typically lesser than or equal to 100 mV/sec. The high 
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frequency curve is also plotted, superimposing the capacitance in strong accumulation 

(Cox  on the corresponding quasi static plot. The resulting curves should resemble those 

in Figure 4.6. For long life time material, the quasi static curve capacitance may not 

recover to the Cox  value in inversion [52]. 

The calculation of interface trap density is done at a particular value of surface 

potential by the following equation: [53] 

Figure 4.6 Quasi-static and High-frequency C-V curves used to determine the surface 
state density in the depletion region. 
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where, 

Dit(Φs)) is the interface trap density at a particular value of surface potential, 

Cox, CLF, CI-IF are capacitances as shown in Figure 4.6 measured in farads/cm2  and 

q is the electronic charge. 

It is not always necessary to measure Dit  as a function of surface potential. We can 

use the graphical techniques proposed by several researchers [54, 55]. A brief overview of 

these techniques are given by Schroder [40]. 

4.3.3 Conductance Method 

The frequency dependent conductance technique described in detail by Nicollian and 

Goetzberger [45] is generally considered to be the most sensitive method to determine 

Dit. The resolution of this method is around 109  cm-2eV-1  as compared to the quasi-

static method which has a resolution of 1010 cm-2ev-1  The measurements are very 

elaborate. Hill and Coleman [56] described a less elaborate approximation technique that 

combines q-VG and C-VG data at one frequency to calculate a minimum value of Dit  

between the midgap and Hatband. 

4.3.4 Other Methods to Measure Dit  

Other high frequency methods like the Terman method [57] rely on a HF C-V curve 

measurement at a high enough frequency that interface traps are assumed not to respond. 

The Gray Brown method utilizes H-F capacitance as a function of temperature [58, 59]. 

The charge pumping method [60] uses a MOSFET as the test structure. A sensitive 

method is deep level transient spectroscopy [61-64]. Crystallographic structural 

information on interface traps can be obtained from electron spin resonance measurements 

[65] but it requires densities of Dit  1011  cm-2eV-1  . 
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4.3.5 Oxide Trapped Charge (Qot) 

Radiation can induce electron traps that are neutral until filled by electrons or holes 

injected into the oxide. As discussed earlier, the charge located in the oxide may be 

positive or negative. The magnitude of Qot  is a function of radiation dose and energy and 

the field across the oxide during irradiation [42]. Saturation of induced charge occurs with 

increasing dose [66] and it is also one of the findings of our research. Trapped positive 

charge can be annealed at low temperature in inert ambients [42]. RF plasmas can either 

generate or anneal out electron traps [67]. Low temperature anneals do not remove trap 

sites in oxides, but cause compensation of trapped charge. These trap sites can be refilled 

with holes or electrons [66]. Higher temperatures are required to remove trap sites. 

Radiation generates Qot  as it also causes increase in interface trapped charge and its 

associated C-V curve distortion [43]. 

4.3.6 C-V Method 

This method involves the measurement of the Hatband voltage, which is used to calculate 

the concentration of oxide trapped charge and is given by: 

 

C ox ∆VFB 

q 

 

∆NFB = Not + (∆Nit)FB = (4.5) 

  

where, 

∆NFB is the total change in flatband charge (cm-2), 

(∆Nit)FB is the change in interface trapped charge density at Φs=0 (cm-2), 

Cox is the oxide capacitance per unit area and 

q is the electronic charge. 
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The term ∆NFB is the difference in flat band charge before and after irradiation. The 

flatband voltage shift is generally interpreted by assuming the charge to be located at the 

SiO2-Si interface and is given by [40]: 

4.3.7 Photo I-V Method 

This is a non destructive technique which yields information on neutral trap density. It is 

based on optically induced hot electron injection from the gate or from the semiconductor 

into the oxide. DiMaria et al., [68] have extensively discussed this method. A circuit 

implementation of this method has been explained by Li et al., [69]. Etch-off method is 

another important method for characterization of oxide traps. 

4.3.8 Mobile Charge and Fixed Charge 

Characteristics of mobile ionic charge [42, 70-73] depends upon processing conditions. 

When located near the SiO2-Si interface, they cause parallel shift of CV curves along the 

voltage axis. Device instabilities from mobile ions are minimized by avoiding 

contamination during processing. One of the methods of characterizing mobile ions is the 

bias-temperature drift method [71]. Fixed oxide charge [42, 74] can be characterized using 

information obtained by work function and flat band voltages. Schroder [40] has given a 

complete explanation for this evaluation technique. 

4.4 I-V Measurements 

The current-voltage (I-V) measurements have been the index of a device characteristic for 

a long time. The behavior of two terminal devices like a diode or a three terminal devices 

like BJT, JFET, SCR has always been explained through non destructive I-V 

measurements. I-V technique has been used to measure the barrier height of a metal- 
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semiconductor contact. The breakdown mechanism of thin insulators can be studied by 

this technique. Usually both static and dynamic current-voltage measurements are used to 

study the damage effects and dielectric breakdown of thin SiO2 films grown on etched Si 

surfaces. The effect of plasma on Si and breakdown of the oxide has been measured by 

I-V technique [75, 76]. Study of breakdown in dielectrics is essential to improve the 

reliability of VLSI and ULSI devices. Klein [77] has explained electronic dielectric 

breakdown based on band to band impact ionization. Radiation introduces charges in the 

oxide which might alter the breakdown statistics of insulators. To measure the true 

behavior of an oxide subjected to breakdown, a large number of devices will have to be 

tested which also depends on the quality of the device structure. 

4.4.1 Conduction Process and Breakdown Statistics of Thin Insulators 

In an ideal MIS diode, the conductance of the insulating film is assumed to be zero but in 

the real case there is significant conduction under high fields or temperatures. The basic 

conduction processes in insulators are summarized in Table 4.1 [35]. Under conditions of 

Table 4.1 Basic conduction process in insulators. [35] 
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bias, the electric field [35] in an insulator is given by: 

where, 

Ei and Es are electric fields in the insulator and the semiconductor, respectively and 

Ei and Es are the corresponding permittivities. 

From the experimental statistical data [78,79], several causes of breakdown have 

been discovered and it has been determined that the breakdown is a local phenomenon. 

The electric measurements and SEM images [78] provide direct evidence of the existence 

of breakdown spots. Probabilistic models and distributions have given further insight into 

the breakdown fields and breakdown time [80]. Low field defect related breakdown and 

high field intrinsic breakdown [78] are the two different types of breakdowns that have 

been detected. Dielectric breakdown has been researched for many years and there are 

different methods [79,81] that have been used to evaluate dielectric breakdown. The 

important methods are summarized by Vankayalapati [76]. 

4.4.2 Fowler Nordheim Tunneling (FNT) in Thin Si02 Films 

The dielectric strength of Si02 films, on silicon is an important factor for reliable VLSI 

and ULSI devices. It is well established that FNT contributes to current conduction in thin 

Si02 films. The FNT equation [82] is given by: 



41 

where, 

F is the unifoi 	in electric field, 

q is the electronic charge, 

mo, mox are the free electron mass and the effective electron mass in the oxide 

respectively, 

h is the Planck's constant and 

ob is the barrier height. 

The role of roughness at the Si02-Si interface in determining the FNT current and 

breakdown mechanisms in MOS structures are presented by Ravindra and Zhao [83]. 



CHAPTER 5 

EXPERIMENTAL PROCEDURE 

5.1 Fabrication of the MOS Capacitor 

The MOS capacitors used in our study were fabricated on p-type substrates. Figure 5.1a 

shows the process steps of a MOS capacitor array with an AUPolysilicon gate whereas 

Figure 5.1b shows the process steps of a MOS capacitor array with an Al gate only. Now, 

we shall discuss the processing steps. 

The MOS structures were fabricated on boron doped p-type [100] silicon wafers 

of 1.5 1-cm resistivity. The cleaning procedure was done in a 5:1 H2SO4:H202 solution 

at 110°C for 10 minutes. This was followed by a thorough rinsing with hot and cold 

deionized water for 10 and 5 minutes respectively. They were spin dried and again pre-

cleaned by a dilute HF dip for about one minute. Then these wafers were subjected to a 

thorough rinsing and spin dried. Gate oxides (dry) were thermally grown on one set of 

wafers at 950°C and the thickness of the oxides were in the range of 12.5-40 nm. Another 

set of wafers with oxides (dry) grown at temperature of 1050°C were of thickness 100 

and 450 nm. On one set of wafers, a 325 nm thick polycrystalline silicon (polysilicon) was 

deposited in an LPCVD system at 600°C using SiH4 at a pressure of 400 m Ton for 2.5 

hours. Subsequently, phosphorus diffusion was done at 950°C for one hour. A 500 nm 

thick Al film was deposited by sputtering on the polysilicon. The Al was patterned using a 

wet etch process and after the wet etch process, the reactive ion etching of poly was done. 

All the wafers received a back side aluminum deposition. The fabrication of the MOS 

capacitors with only Al as the metal followed the same steps except for the poly 

deposition and etching steps. Thickness of the oxide was measured at several points of the 

wafer by using an ellipsometer and Nanospec/AFT Model 200. The thickness was also 
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Figure 5.1 Process steps for a MOS capacitor array (a) with Al/poly gate (b) with Al gate 
only. 
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verified by determining the capacitance of the MOS capacitor in the strong accumulation 

region. 

5.2 Oxide Thickness Measurement 

The wafers, after the completion of oxidation process, were taken out from the furnace 

and were placed on Nanospec/AFT Model 200 which is an automatic film thickness 

measurement system. Wafers with different oxidation time were measured for their 

thickness. The thickness was measured at nine fixed points on each wafer so that the 

uniformity of measurement and accuracy could be maintained. Details of Nanospec/AFT 

Model 200 are given in Appendix E. 

5.3 Method of Radiation 

The MOS capacitors which were fabricated , as explained in the previous section, were 

subjected to gamma-radiation. A Co-60 source, at Brookhaven National Labs, was used 

for this purpose. This irradiation setup has been nominally rated at 1.85 MRad/hour but 

since then, the strength has decayed to a current rate of irradiation which is 1.5 

Is/Mad/hour. The duration of radiation was 15, 30, 45, 60, 75 and 90 minutes respectively. 

Assuming a current irradiation rate of the source as 1.5 MRad/hour, a package irradiated 

for 60 minutes will have received a radiation dose of 1.5 MRad. In this thesis, we analyze 

the effects of Gamma-ray irradiation on Al/Poly/Si02/p-Si/A1 (Type I) and AUSi02/p-

Si/A1 (Type II) device structures. The devices were irradiated for varying duration under 

no external bias. The MOS capacitors that were characterized by CV and IV methods had 

an area of 1.9634 x 10-3  cm2. 
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5.4 Electrical Measurement Techniques 

The following electrical measurements have been employed to investigate the effects of 

radiation: (a) high frequency (HF) 1 MHz and quasi-static capacitance-voltage (CV) 

measurements, (b) static current-voltage (IV) measurements. HF CV and quasi-static CV 

measurements were performed at room temperature (295 K) using an Allessi AER-01 

probe station, Keithley 595 quasi-static meter and Keithley CMS version (2.0) software. 

The delay time involved in the measurements was 0.2 seconds and the step size was 10 

mV. Most of the measurements were done with a sweep from +5 volts to -5 volts. The 

static I-V measurements were performed using a Keithley 236/237 source measure unit. 

The technique consists of a ramp voltage applied to a capacitor until the set current limit is 

reached. The contact to the counter electrodes is made by means of a probe placed 

directly on top of the capacitor. 

From the HF and quasi-static CV measurements, we calculated the interface state 

density for the control samples as well as the irradiated wafers using the graphical 

technique proposed by Berglund [54]. The interface state density was calculated both at 

Hatband and midgap conditions. The numerical values, thus obtained, were compared with 

those computed by the Keithley software and they were found to agree very well. In the 

next chapter, we will analyze and discuss the results from our characterization 

experiments. 



CHAPTER 6 

RESULTS AND DISCUSSION 

6.1 Introduction 

In this chapter, the experimental results of high frequency (HF) and quasi-static (QS) 

capacitance-voltage (CV) measurements, static current-voltage (IV) measurements have 

been summarized and discussed. This chapter has been divided into three sections. The 

first section deals with the oxidation kinetics obtained during the process described in 

chapter 5. The second section deals with the HF and QS CV analysis of control as well as 

irradiated samples. The third section discusses the IV measurements and their analysis. 

6.2 Kinetics of Oxidation 

The oxidation was performed on our wafers at two different temperatures of 950°C and 

1050°C. The plot of dry oxide thickness versus time for our wafers is shown in Figure F.1 

(Appendix F). This plot is compared with Figure F.2 (Appendix F) available in the 

literature [84]. When we compare the two plots, we observe that the oxidation kinetics for 

the temperature of 1050°C is almost similar in both cases. The wafers that we used in our 

study were also p-type and the orientation was <100>. The thickest oxide that we have 

grown is 450 nm and the oxidation time was 18 hours. Figure F.2 has a plot for <100> 

orientation p-type wafers and the plot shows an oxidation time of approximately 18 hours 

for a similar thickness in oxide. Hence, our oxide growth has been consistent with 

previous (oxide thickness versus time) results at a temperature of 1050°C. 

The temperature of 950°C is conducive to grow oxides in the thin oxide regime. 

The plot of dry oxide thickness versus time for this temperature is also shown in Figure 

F.1. From the plots, we get a clear indication of the effect of temperature on the thickness 

of oxide and also the variation in duration to grow a certain thickness. The growth is also 
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dependent on the orientation of the wafer. We observe from Figure F.2 that <111> wafers 

will have a thicker oxide growth for the same duration under same temperature, when 

compared to the <100> wafers. Thin oxides are grown at a lower temperature than the 

thick oxides. 

6.3 Capacitance-Voltage Analysis 

The CV measurements have been used to detect the change in the characteristics of a 

MOS capacitor subjected to radiation. As we know, past studies have indicated a change 

in flatband voltage and an increase in surface state density, among other important 

changes. Figure 6.1 shows the HF CV curves for p- and n-type samples. This difference in 

the shape of the characteristic curve follows from the physical aspect of the devices. The 

accumulation, depletion and inversion regions differ with respect to the voltages applied 

and as such, the HF curves for n- and p-type are transverse images of each other. Tables 

6.1 and 6.2 summarize the HF and quasi-static CV measurements for the type I device 

structure (Al/Poly/Si02/p-Si/A1) and type II device structure (Al/Si02/p-Si/A]) 

respectively. As can be seen from Table 6.1, the capacitors which were characterized have 

been classified into four groups based on oxide thickness. Table 6.2 provides data for 

samples with two ranges of oxide thicknesses, one set of capacitors has less than 20 nm as 

the thickness and the other set has 20 nm oxide thickness. 

First, we will discuss the results of each table and then we shall compare the two 

tables. For the type I device structure, we observe that there is an increase in flatband 

voltage (V f) with increase in radiation duration for all oxide thicknesses. The important 

factor is that the intrinsic flatband voltage for the control sample for different thicknesses 

is different. This change is appreciable in oxides >100 nm and the reason for this is due to 



Figure 6.1 A representative experimental 1 MHz C-V curve of a MOS capacitor (a) p-
type Si substrate; (b) n-type Si substrate. 



Table 6.1 Summary of the HF and quasi-static CV characterization on type I device structures. 
Thickness of 
the oxide (tox) 
A 

Dit  (midgap) 
cm' eV' 

Di t  (Flatband) 
cm-2eV-1  

Radiation 	
1

duration (1.5 
Mrad/hour 
source) 

1 Maximum 
Capacitance 
(high 
frequency) pF 

Maximum 
Capacitance 
(low 
frequency) pF 

Minimum 
Capacitance 
(high 
frequency) pF 

Minimum 
Capacitance 

, (low 
frequency) pF 

Flatband 
voltage (V/b) 
volts 

192 8 x 109  3.125 x 101°  Control 347 347 42 48 -0.89 

173 5.2 x 1010  1.73 x 1012  15 minutes 390 390 42 125 -1.02 

170 7 x 1011  2.77 x 1012  30 minutes 396 396 44.5 160 -1.12 

163 3 x 1012  6.2 x 1013  60 minutes 413 413 48.2 200 

4 

-1.21 

221 7 x 109  1.58 x 1010  Control 301 306 38 46 ' -0.89 

230 2 x 1012  8.1 x 1012  30 minutes 293 293 40.5 160 -1.29 

222 4 x 1012  1.2 x 1013  60 minutes 304 304 43.5 170 -1.32 

438 1 x 1010  1.36x 1011  Control 152.3 152.3 38 45 -0.93 

429 3 x 1012  5.7 x 1013  30 minutes 150 150 30 125 -2.05 

453 6 x 1012  1 x 1014  60 minutes 150 150 33 130 -2.1 

1118 1 x 1010  2.2 x 1011  Control 59.7 59.7 26.4 30.4 -1.0 

1123 5.1 x 1012  4 x 1013  30 minutes 60.2 60.2 25.9 58.1 

_ 

-5.34 

. 



Table 6.2 Summary of the I-IF and quasi-static C-V on type II device structures. 

Thickness of 
the oxide 

(t  Ox) A 

Dit 	rnid&ap) 
cm-Lev-1' 

Dit  (Hatband) 
cirizeV-1  

Radiation 
duration (1.5 
MradJhour 

=•ce)  

Maximum 
Capacitance 
(high 

 frequency)j   pF 

Maximum 
Capacitance 
(low 
frequency)pF 

Minimum 
Capacitance 
(high 
frequency) pF 

Minimum 
Capacitance 
(low 
frequency) pF 

Flatband 
1 voltage (Vfb) 

volts 

151 5 x 1010  4.13 x 1011  Control 441 441 40 66 -0.77 

193 8 x 1011  1.58x 1012  30 minutes 349 349 43.5 148 -0.91 

136 1 x 1012 3.5 x 1013  60 minutes 497 497 40 210 -0.94 

200 5 x 1010  3.9 x 1011  Control 332 332 42.8 60 -0.77 

200 7 x  1012 1.4 x 1013  60 minutes 340 340 41 190 -L I 
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the variation in oxidation temperature. From chapter 5 , we notice that the thicker oxides 

(100 nm - 450 nm) were grown at 1050°C and the thinner oxides (12.5 nm - 40 nm) were 

grown at 950°C. We observe that the flatband voltage (control samples) for very thin 

oxides (16 nm - 23 run) is the same, but it increases with the oxide thickness in the range 

of 100 - 500 nm. Derbenwick and Gregory [85] have found that the flatband voltage shift 

varies as the cube of the oxide thickness for dry oxides for high energy radiation. The 

radiation induced flatband voltage shift in oxides grown in dry oxygen varies linearly with 

oxide thickness [86]. Because radiation induced positive oxide charge is located at the 

SiO2/Si interface, the charge centroid is equal to the oxide thickness. If the radiation 

induced oxide charge density is independent of oxide thickness, the flatband voltage shift 

will vary linearly with the oxide thickness [2]. For the type I device structures, for oxide 

thicknesses less than 20 nm, the variation of Vfb with radiation dose (RD) is as follows: an 

increase in Vfb with RD for the first thirty minutes (0.75 Mrad) is followed by a saturation 

of Vfb with RD for doses greater than 1.5 Mrad. Flatband voltage shift (∆Vfb) for oxide 

thicknesses in the range of 110 nm is higher than ∆Vfb for thinner oxides for the same RD. 

Type II device structures show the same kind of behavior as type I with respect to 

changes in flatband voltage for thin oxides. But Vfb in the control sample of type I device 

is more than that for type II because of the differences in work function for the two gate 

materials. ∆Vfb for type I device for an irradiation of 60 minutes is more than that for type 

II device for oxide thicknesses in the range of 15 nm to 23 nm. Therefore, we note that ∆ 

Vfb is thickness dependent as evidenced from CV measurements and reported by previous 

workers. [85,86]. ∆Vfb is more in thick oxides (100 nm) than in thin oxides (15 nm) for 

the same irradiation duration. The same kind of behavior is reported by Naruke et al., [87] 

but their devices were biased positively or negatively during irradiation. In our case, the 

MOS capacitors were not biased during irradiation. It is also observed that the saturation 

in Vfb is more prominent in thick oxide (45 nm) than thin oxide (20 nm) for an irradiation 

time of 60 minutes for the type I device structure. 
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For small doses of radiation in the range of 104  rads, it is reported [22] that an 

increase in Vfb due to low irradiation dose is evident but with increasing irradiation dose, 

the increase of flatband voltage shift stops and reverses direction. However, we have not 

observed this kind of behavior because our irradiation dose was much higher in the region 

of 105  rads. The dose dependence of Vth can be explained as follows: Under very heavy 

doses, the increase of trapped holes become dominant compared with the increase of 

interface states, resulting in the Vfb shifts in the negative direction. The dependence of 

Vfb on oxide thickness varies with the oxide quality. A distribution of hole traps into the 

oxide from SiO2-Si interface , the possible dependence of hole trap density on oxide 

thickness, and interface traps generated at high doses could alter the square law 

dependence [86]. The square law dependence was predicted assuming uniform generation 

of interface states due to the radiation. Under conditions of uniform generation in the 

oxide and trapping of a constant fraction of the generated holes, the oxide trapped charge 

will vary linearly with the thickness and therefore the radiation induced flatband voltage 

shift varies as the square of the oxide thickness. It is not known why the oxide thickness 

dependence of the flatband voltage shift is so varied. 

Figures 6.2 - 6.4 illustrate HF and quasi-static curves on control as well as 

irradiated MOS capacitors for the thinnest oxide group ( 17 nm - 20 nm ) belonging to the 

type I device structure. From these figures, we can clearly see the change in shape of the 

quasi-static curve with increase in radiation dose. Figures in appendix A show similar plots 

for different oxide thicknesses for type I as well as type II device structures. From these 

plots, we have summarized the salient features of radiation damage on MOS capacitors in 

Tables 6.1 and 6.2 and these plots provide us with a better understanding of the role of 

radiation dose on device capacitance. Figures 6.5 - 6.7 illustrate the effect of irradiation on 

interface trap density (Dit) for the type I device structures for the thinnest oxide group ( 

17 nm - 20 nm ). We can clearly see the increase in interface state density at midband for 

the irradiated MOS capacitors. When compared with reference to the control sample, the 
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MOS capacitor irradiated for thirty minutes has almost two orders of magnitude higher 

interface state density at midband and the capacitor irradiated for sixty minutes has three 

orders of magnitude higher interface state density at midband. Similar plots for type I and 

type II devices are included in appendix B for different oxide thicknesses to help us have a 

clear understanding of the variation of interface state density as a function of oxide 

thickness (Control samples). We find from Tables 6.1 and 6.2, that the minimum 

capacitance as obtained from the quasi-static measurement increases with increase in 

radiation duration. Magnitude of surface state density has been calculated by the 

Berglund's technique [54] (Equation 4.4). From the Figures 6.5 - 6.7 , we observe that the 

interface state density for the irradiated samples increase when compared to the control 

Figure 6.2 HF CV and quasi-static CV curves for type I device structure with tox  = 19.2 

nm (Control sample).  



Figure 6.3 HF CV and quasi-static CV curves for type I device structure with t0  = 17 
nm (sample irradiated for 30 minutes). 

Figure 6.4 HF CV and quasi-static CV curves for type I device structure with t0  = 20 

nm (sample irradiated for 60 minutes). 



Figure 6.3 HF CV and quasi-static CV curves for type I device structure with t0  = 17 
nm (sample irradiated for 30 minutes). 

Figure 6.4 HF CV and quasi-static CV curves for type I device structure with t0  = 20 

nm (sample irradiated for 60 minutes). 
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Figure 6.7 Dit  plot for type I device structure with tox  = 20 nm (sample irradiated for 60  
minutes) 

samples for varying oxide thicknesses. From Tables 6.1 and 6.2, we observe that Dit  at 

Hatband is always greater than the interface state density at midgap for both device types 

and for control as well as irradiated wafers. We see that the radiation dose of 1.5 x 106  

rads is insufficient to saturate the generation of interface state density. Radiation damage 

studies by Gupta et al., [19] performed on MOS devices fabricated on n-type Si yield 

results similar to those being reported here for p-type substrates. Another remarkable 

observation between the two device structures is the difference in the interface trap 

density in the control and irradiated capacitors. There is an order of magnitude difference 

between type I and type II device structures in the trap density for control samples for thin 

oxides (15 nm - 19 nm). But the trap density has almost the same quantitative saturation 

levels for high doses in both the device structures. Zvanut et al., [88] have discussed the 

defect density and net oxide charge produced in wet and dry thermal oxides subjected to a 
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treatment in H2  and irradiation with no applied bias. Their quasi-static analysis for 

irradiated MOS structures comprising of wet oxide, show a uniform distribution of 

interface states for the film without H2 treatment and a distribution with two peaks in the 

Si bandgap for the H2 treated film. We have observed such dual peaks in our quasi-static 

analysis (Figures A.4, A.5) for much thinner oxides (~ 45 nm) irradiated for a duration of 

thirty minutes and our samples were not H2 treated. From our results, it appears that 

irradiation of dry oxides also generates states at discrete energies. 

The mechanism of radiation induced interface state creation are primarily due to 

three processes [89]: (a) electron-hole recombination near the interface, (b) A multi step 

process wherein holes in the SiO2 bulk interact with hydrogen to form H± ions which then 

transport to the interface [6, 90] and (c) the neutral hydrogen diffusion model proposed by 

Griscom [91]. There still remains a controversy on which process dominates. Of the 

several mechanisms that have been proposed for the generation of interface states, it is 

more likely that interface trap creation is when electron-hole pairs are produced in the 

oxide by radiation. The clustering of the low mobility radiation induced holes near the 

interface is due to the field present in the oxide. The main consideration is that the 

radiation induced charge density increases with increasing oxide thickness for high energy 

radiation and later saturates. 

6.4 Current-Voltage Analysis 

The static IV analysis was performed to observe the changes in currents in irradiated 

capacitors, when compared to the control samples. Our analysis was confined only to 

observe the magnitude of current and we have performed only non destructive breakdown 

studies of the dielectric. The results of the static IV analysis are summarized in Table 6.3 

for type I devices. Figures 6.8 - 6.14 show the static IV plots for control as well as 

irradiated MOS capacitors for type I device structures for two oxide thicknesses ( 17 nm 

& 23 nm ). Similar IV plots for type I and type II device structures for different oxide 



Table 6.3 Summary of the static I-V characterization on type I device structures. 

Radiation duration (1.5 
Mrad/hour source) 

Thickness of the oxide 

NO A 

Current at maximum 
voltage sweep 
(amperes) 

Voltage at maximum 
voltage sweep (volts) 

Control 170 -6.5 x 10-10  -14 

15 minutes 170 -5.3 x 10-9  -13 

45 minutes 170 -6.8 x 10-9  -14 

Control 230 -5.75 x 10-10  -19 

15 minutes 230 -5.5 x 10-9  -19 

45 minutes 230 -6.5 x 10-8  -19 

Control 430 -6.5 x 10-1° -33 

15 minutes 430 -2.3 x 10-9  -33 

45 minutes 430 -2.4 x 10-9  -30 

90 minutes 430 -8.4 x 10-9  -28 
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thicknesses are included in appendix C. We observe that the radiation induced charges are 

responsible for the increase in current through the device for the same voltage applied 

across the device. In Figures 6.8 - 6.14, we observe that the magnitude of current in a 

control sample, for a given oxide thickness, is recorded for an irradiated wafer at a much 

lesser value of applied voltage.  Results reported by previous workers [17] using IV 

technique have found current peaks in the IV characteristics due to mobile Na ions. This 

study [17] also reported that there is an increase in mobile sodium after radiation. The 

reason is that: a great deal of sodium is present in MOS oxides than is electrically active, 

indicating that some sodium is bound up in deep traps in an electrically neutral state. 

Under the influence of ionizing radiation, Si-O-Na or Si-Al-Na bonds are broken and some 

of this sodium is promoted to shallow traps. Under the influence of post-radiation electric 

Figure 6.8 Static IV plot for type I device structure with tox  = 17 nm (Control sample) 



Figure 6.9 Static IV plot for type I device structure with tox  = 17 nm (sample irradiated 
for 15 minutes). 

Figure 6.10 Static IV plot for type I device structure with t0  = 17 nm (sample irradiated 
for 45 minutes). 



Figure 6.11 Static IV plot for type I device structure with tox  = 23 nm (Control sample) 

Figure 6.12 Static IV plot for type I device structure with tax  = 23 nm (sample irradiated 

for 15 minutes). 



Figure 6.13 Static IV plot for type I device structure with t0  = 23 nm (sample irradiated 
for 45 minutes). 

Figure 6.14 Static IV plot for type I device structure with t0  = 23 nm (sample irradiated 

for 90 minutes). 



63 

fields associated with the IV measurement, this sodium would become mobile. 

We observe that the devices irradiated for a longer time showed increase in 

currents by almost an order of magnitude for the same applied voltage across the control 

sample. Table 6.3 and Figures 6.8 - 6.14 show results for different oxide thicknesses and 

the breakdown is hastened by the increased dose received by some of the samples. Figure 

6.15 shows the Fowler-Nordheim tunneling plot for control and sample irradiated for 45 

minutes. There is a marked increase in current density for the irradiated MOS capacitor 

and is due to the FNT component as well as the radiation induced current. It is believed 

that the radiation induced current is thickness dependent [921 The radiation induced 

conductivity of MOS structures in the field region at the Si02-Si contact is dependent on 

the bulk properties of silicon dioxide. 

Figure 6.15 Fowler-Nordheim tunneling plot for type I device structure with tox  = 17 nm 

for control sample and sample irradiated for 45 minutes 
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Irradiation of MOS structures forms a positive space charge near the Si02-Si boundary 

and, starting at fields greater than 6.5 MV/cm, causes tunnel injection of electrons from 

silicon to silicon dioxide. Radiation induced current consists of both electron and hole 

constituents and its dependence on the oxide thickness is due to the absorbed radiation 

dose in the Si02 film. 



CHAPTER 7 

CONCLUSIONS 

In the previous chapter, the experimental results of the electrical characterization of 

control and irradiated MOS structures formed on p-type Si substrates have been 

discussed. The characterization techniques employed in the research work are high 

frequency (HF) and quasi-static (QS) capacitance voltage (CV) analysis and static current 

voltage (IV) analysis. 

Based on experimental results obtained from HF and QS CV analysis, it was 

observed that the flatband voltage increases with increase in radiation dose for both types 

of device structures - Al gate capacitors and Al/Poly gate capacitors. There seems to be 

no change in behavior of flatband voltage with respect to the above gate materials. 

However, a change has been observed in the past with other gate materials like silicides of 

tungsten. We have modeled the CV characteristics of the MOS system to be dependent on 

interface state densities and have not considered the contributions of the other charges in 

the bulk of the oxide in the present study. With this model in mind, we have found that the 

interface state generation increases with increase in radiation dose and this behavior is 

consistent with oxides of varying thicknesses. At very high doses, the shift in flat band 

voltage saturates more quickly, with respect to radiation dose, for thin oxides than thick 

oxides. This study had not been performed previously. A critical examination of 

experimental results presented in this thesis indicate that the radiation behavior of MOS 

capacitors with Al gates has been similar to the MOS capacitors with Al/Poly gates. 

The static IV measurements show a significant role played by radiation induced 

traps. The currents for a particular thickness of a MOS capacitor at a particular voltage is 

found to increase with increase in radiation dose. From IV plots, it has been observed that 

the devices without irradiation have higher breakdown fields than the irradiated devices. 
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By comparing FNT plots, radiation induced charge is found to contribute to the tunneling 

component of current. This study has not been reported previously in the literature. 

The past research indicates that there is no difference in radiation induced behavior 

of capacitors with bias when compared to the capacitors without bias for bias voltages 

that are in the range where most electronic devices operate today. However, from past 

research, it is not clear about the radiation induced behavior for high bias and further 

studies are required to explain the behavior of MOS capacitors with high bias applied 

during irradiation. The radiation hardness of capacitors can be tested for various 

dielectrics like Si3N4 and SiC with different gate materials involved in the modern VLSI 

processing. A modest approach was made in our study to compare the existing data in the 

literature and to compile them and compare with our results. 



APPENDIX A 

H IGH FREQUENCY & QUASI-STATIC CV PLOTS 

Here, high frequency (HF) and quasi-static (QS) capacitance voltage (CV) curves for type 

I and type II device structures are presented. Plots for both control as well as irradiated 

MOS capacitors are included. The plots are for different oxide thicknesses. 

Figure A.1 HF CV and QS CV curves for type I device structure with tox  = 22.1 nm 

(Control sample). 
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Figure A.2 HF CV and QS CV curves for type I device structure with tox  = 23 nm 
(sample irradiated for 30 minutes). 

Figure A.3 HF CV and QS CV curves for type I device structure with t0  = 43.8 run 

(Control sample). 



Figure A.4 HF CV and QS CV curves for type I device structure with tox  = 42.9 rim 
(sample irradiated for 30 minutes). 

Figure A.5 HF CV and QS CV curves for type I device structure with tox  = 45.3 nm 
(sample irradiated for 60 minutes). 
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Figure A.6 HF CV and QS CV curves for type I device structure with tox  = 111.8 nm 
(Control sample). 

Figure A.7 HF CV and QS CV curves for type I device structure with t0  = 112.3 nm 
(sample irradiated for 30 minutes). 
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Figure A.8 HF CV and QS CV curves for type II device structure with tox  = 15.1 nm 
(Control sample). 

Figure A.9 HF CV and QS CV curves for type II device structure with tox  = 14.5 nm 

(sample irradiated for 60 minutes). 



Figure A.10 HF CV and QS CV curves for type II device structure with tox  = 20 nm 
(Control sample). 

Figure A.11 HF CV and QS CV curves for type II device structure with tox  = 19.3 nm 

(sample irradiated for 30 minutes). 



Figure A.12 HT CV and QS CV curves for type II device structure with t0  = 110 nm 
(Control sample). 



APPENDIX B 

INTERFACE TRAP DENSITY (Dit) PLOTS 

Here, Interface state density (Dit) plots for type I and type II device structures are 

included. The plots are for control samples for varying oxide thicknesses. 

Figure B.1 Dit  plot for type I device structure with tox  = 22.1 nm (Control sample). 
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Figure B.2 Dit  plot for type I device structure with t0  = 43.8 nm (Control sample). 

Figure B.3 Dit  plot for type I device structure with t0  = 1118 nm (Control sample). 



Figure B.4 Dit  plot for type II device structure with tax  = 17 nm (Control sample). 

Figure B.5 Dit  plot for type II device structure with tax  = 21 nm (Control sample).  



Figure B.6 Dit  plot for type II device structure with tox  = 110 nm (Control sample). 



APPENDIX C 

STATIC IV PLOTS 

Here, static current voltage (IV) plots for type I and type II device structures for control 

and irradiated wafers are included. The plots also illustrate IV characteristics for varying 

oxide thicknesses. 

Figure C.1 Static IV plot for type I device structure with tox  = 43 nm (Control sample). 
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Figure C.2 Static IV plot for type I device structure with tax  = 43 nm (sample irradiated 
for 15 minutes). 

Figure C.3 Static IV plot for type I device structure with tax  = 43 nm (sample irradiated 

for 45 minutes). 



Figure CA Static IV plot for type I device structure with tox  = 43 nm (sample irradiated 
for 90 minutes). 

Figure C.5 Static IV plot for type II device structure with tox  = 17 run (sample irradiated 

for 15 minutes). 



Figure C.6 Static IV plot for type II device structure with tox  = 23 nm (sample irradiated 
for 45 minutes). 

Figure C.7 Static IV plot for type II device structure with tox  = 23 nm (sample irradiated 

for 75 minutes). 



Figure C.8 Static IV plot for type II device structure with t0  = 23 nm (sample irradiated 
for 90 minutes). 

Figure C.9 Static IV plot for type II device structure with tox  = 118 nm (Control 

sample). 



Figure C.10 Static IV plot for type II device structure with t0  = 118 nm (sample 
irradiated for 45 minutes). 



APPENDIX D 

PROCESS SUMMARY 

The MOS capacitors investigated in this study have been fabricated in the class 10 clean 

room at New Jersey Institute of Technology. The process details are summarized in the 

form of tables. 

Table D.1 Gatel/LPCVD Polysilicon 

SCRIBE ALL WAFERS 
1. 	P-clean 

5:1 H2SO4:H2O2  
110°C 
10 min 

2. 	Rinse HOT DI 
10 minutes 

3. Rinse COLD DI 
5 minutes 

4. 	Spin dry 
5. 	Furnace pre-clean 

100:1 1-12O:1-IF 
1 min 

6. Rinse COLD DI 
10 min 

7. 	Spin dry 
8. 	Dry Oxidation 

O2 : 7.5 SLM 
Bubbler: 530 sccm 
Temp: 950°C 
Time: 00 min 

9. 	Measure thickness of the oxide 
10. Deposit LPCVD Poly 

SiH4: 300 sccm 	Temp: 600°C 
Press: 400 mTorr 	Time: 2.5 hours 

11. Measure (3250 A. target) 
Mean: 3188 A 	Std. Dev: 11 A 

Table D.1 is a representative table for type I device structure for the thinnest (12 nm) 

oxide. The above process was followed for type I device structures and for type H device 
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structures, steps 10 and 11 of the above table were not performed, essentially because they 

had only an Al gate. Step 8 was performed at two temperatures: 950°C and 1050°C. 

Oxides of thicknesses 12 nm 45 nm were grown at 950°C and oxide thicknesses in the 

range of 110 nm 450 nm were grown at 1050°C. The time of dry oxidation for 12 nm, 

20 nm and 45 nm has been 0 min, 10 min and 48 minutes respectively. 

Table D.2 Poly doping for type I device structure 

1. 	Strip backside oxide 
7:1 BOE (no suds) 
1 minute (backside hydrophobic) 

2. 	Rinse COLD DI 	10 minutes 
3. 	Spin dry 
4. 	P-clean 5:1 H2SO4:H2O2  

110°C 	10 minutes 
5. Rinse HOT DI 

10 minutes 
6. Rinse COLD DI 

5 minutes 
7. 	Spin dry 
8. 	Furnace pre-clean 

100:1 H2O:HF 
1 minute 

9. Rinse COLD DI 
10 minutes 

10. Spin dry 
11. Phosphorus Diffusion / Drive-in 

Phosphorus Tube 
950°C 	1 hour 

12. Strip oxide 	10:1 H2O:HF 
2 minutes. (hydrophobic) 

13. Rinse COLD DI 
10 minutes 

14. Spin dry 
15. Measure sheet resistivity (25-30 ohms/square) 

5 points/wafer 

Table D.2 summarizes the process details for type I device structures for Poly doping. 
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Table D.3 Aluminum deposition 

1. Furnace Pre-clean 
100:1 H2O : IfF 
30 seconds 

2. Rinse COLD DI 
5 minutes 

Spin dry 
4. Aluminum deposition: 

Base pressure: 8.0 x 10 "7  torn 
Temperature: 300° C 
Dep. Rate 10 Aisec 
Thickness: 5,000 A. 

Table D.3 summarizes the process details for Al deposition for type I and II device 

structures. 

Table D.4 Photolithography - Metal 

1.  Apply Photoresist 
Program # 9 
Shipley 3813 

2.  Align and expose 
Mask: DOT 
Time: 20 seconds 

3.  Develop 
Program #2 

4.  Inspect 

Table D.4 summarizes the Photolithography process carried out on both type I and II 

device structures. 

Table D.5 shown in the next page summarizes the wet etching of aluminum on both type I 

and II device structures. 
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Table D.5 Wet etch aluminum process 

1. Hard bake PR 
115°C 
60 seconds 
Program #11 

2. Wet etch Aluminum 
40°C 
to completion plus 15 sec 

3. Inspect 
Etched to completion ? 

4. Strip PR 
M-pyrol 
95°C 
10 minutes PRIMARY 
10 minutes SECONDARY 

5. Rinse COLD DI 
10 minutes 

6. Spin dry 
7. Inspect. 

Table D.6 RIE -  Polysilicon 

1.  Reactive Ion Etch Poly 
DRIE-100, Process #3 
50 sccm SF6 	50 sccm Freon 115 
150 m Torr 	400 Watts 
25°C 
Time: 3 minutes 

2.  Inspect 
Etched to completion? 

3.  Strip PR 
M-pyrol 
95°C 
10 minutes SECONDARY 

4.  Rinse COLD DI 
5 minutes 

5.  Spin dry 

Table D.6 summarizes the reactive ion etching of Polysilicon carried out on both type I 

and II device structures. 
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Table D.7 Aluminum (front side protect) 

1.  Apply PR 
Program #9 
S3813 	1KA 

2.  Strip backside oxide 
7:1 BOE (no suds) 
5 min (backside hydrophobic) 

3.  Rinse COLD DI 
10 minutes 

4.  Spin dry 
5.  Strip PR 

M-pyrol 
95°C 
10 minutes PRIMARY 
10 minutes SECONDARY 

6.  Rinse COLD DI 
10 minutes 

7.  Spin dry 

Table D.7 summarizes the process of depositing aluminum front side protect on both type 

I and II device structures. 

Table D.8 Aluminum deposition (back side only) 

I. M-Pyrol 
95°C 
10 minutes SECONDARY 

2.  Rinse COLD DI 
10 minutes 

3.  Spin dry 
4.  Aluminum deposition: 

Base Pressure: 8.0 x 10 -7  
Temperature: 	300°C 
Deposition Rate: 10 Alsec 
Thickness: 5000 A. 

Table D.8 summarizes the aluminum deposition steps for backside contact for both type I 

and II device structures. After the above steps have been carried out , all the wafers are 

annealed at 400°C for thirty minutes. 



APPENDIX E 

NANOSPEC / AFT AUTOMATIC FILM THICKNESS MEASUREMENT 
SYS I 	EM 

The NANOSPEC / AFT is a computerized film thickness measurement system. It includes 

a spectrophotometer head, which can measure in the wavelength range of 370 to 800 nm, 

using a computer controlled grating monochromator, photo multiplier tube detector and 

amplifier. The amplifier output is converted to a digital signal by the computer, which then 

calculates film thickness with one of several algorithms based on interference patterns. 

When the MEAS key is pressed, the spectrophotometer head scans from 480 to 800 nm, 

generating a corrected spectrum by computing a ratio to a bare silicon reference 

previously stored. The resulting spectral data are analyzed by the computer, which 

determines the exact film thickness corresponding to the interference pattern. The result is 

printed out in angstroms or microns. 

Steps for measuring Silicon dioxide thickness on Si substrate: 

I. Start at the Available Programs screen. 

2. Enter program number I. 

3. Choose the objective lens. 

4. Perform or bypass a new reference scan. 

5. Make certain the objective lens is correct. 

6. Enter the sample identification. 

7. Enter the refractive index, if the refractive index option is enabled. 

8. Locate, focus and take a measurement. 
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9. Accept or reject the measurement. 

Repeat 8 and 9 for more measurements on the same sample or 

10. Take a measurement with the same program on a new sample or 

11. Select a new program. 
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APPENDIX F 

OXIDE THICKNESS VERSUS TIME PLOTS 

We include two plots here to give a comparative study of our wafers with the plots of 

standard process conditions found in the literature. 

Figure F.1 Oxide thickness versus time (our study). 
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Figure F.2 Oxide thickness versus time found in literature [84]. 
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