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ABSTRACT

HEART RATE VARIABILITY STUDIES ON AMBULATORY SUBJECTS
USING EKG DERIVED RESPIRATION

by
Xiaorui Tang

Power spectral analysis of heart rate variability (HRV) provides a powerful

non-invasive tool for exploring the balance between sympathetic and

parasympathetic components of the autonomic nervous system. In the spectrum of

HRV, there are three distinct peaks. The high frequency (HF) band (0.15 to 0.4

Hz) is correlated with parasympathetic activity and this is the band of interest in

the study.

Two groups of subjects were considered in this work, stroke survivors and

subjects performing an oral presentation in front of an audience. Data were

collected with a Holter monitor to allow for ambulatory recording. Respiration was

derived from the EKG and was used to determine the parasympathetic frequency

band in the HRV spectrum.

The power spectral . analysis of HRV from stroke survivors revealed

significantly less parasympathetic activity than in control subjects. Sustained low

variation of heart rate suggested that stroke survivors may suffer from one or more

aspects of autonomic nervous system imbalance.

The power spectral analysis of HRV from normal subjects during a formal

presentation revealed that vagal activity decreased significantly with the

anticipation of making a presentation as well as during the presentation in the

presence of an audience. when compared to vagal activity during a presentation

without an audience.
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CHAPTER 1

INTRODUCTION

1.1 Heart, Electrocardiogram and Heart Rate Variability

The heart, illustrated in Figure 1.1, consists of two separate pumps: a right side

that pumps the blood through the lungs and a left side that pumps the blood

through all tissues in the body except the lungs[1][2]. In turn, each of these two

separate sides of the heart is a pulsatile two-chamber pump composed of an atrium

and a ventricle.

Figure 1.1 The atria and the ventricles of the heart, showing also the sinus node,
the AV node, and the ventricular bundle branches
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Special mechanisms in the heart maintain cardiac rhythmicity and transmit

action potentials throughout the heart muscle to cause periodic heart beats. Each

period is initiated by spontaneous generation of an action potential in the sinoatrial

(SA) node, which is located in the superior lateral wall of the right atrium near the

opening of the superior vena cava. Because the cells of the SA node are

autorhythmic, the SA node is designated as a pacemaker. From the SA node, the

action potential travels rapidly to the atrioventricular (AV) node, which is situated

near the top of the ventricular septum and activates the bundle of His which

divides into two branches serving the right and left ventricles. Through these

branches the action potential finally passes to the ventricles and generates

ventricular contraction.

Figure 1.2 Configuration of a typical electrocardiogram, illustrating the important
deflections and intervals.
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The electrocardiogram (ECG or EKG) is primarily a tool for evaluating the

electrical events within the heart. The sum of the action potentials occurring

simultaneously in many individual cells can be detected by recording electrodes at

the surface of the skin. Figure 1.2 illustrates a typical normal EKG signal. It

consists of P, QRS, and T waves. They represent atrial contraction, ventricular

contraction and ventricular relaxation respectively

Figure 1.3 Standard bipolar leads for recording EKG

In Figure 1.3, the standard bipolar limb leads for recording the EKG is

illustrated. The term "bipolar" means that the EKG is recorded from two specific

electrodes on the body. Thus, a "lead" is not a single wire attached to the body but

a combination of two wires and their electrodes to make a complete circuit with

the EKG monitor. In recording lead I, the negative terminal of the EKG monitor is

connected to the right arm and the positive terminal to the left arm. In recording

lead II, the negative terminal is connected to the right arm and the positive
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terminal to the left leg. In recording lead III, the negative terminal is connected to

the left arm and the positive terminal to the left leg. The reference point (ground) is

connected to the right leg. We are assuming that lead I (RA-LA) and lead III (LA-

LL) form an orthogonal set which is necessary to derive the respiration from the

EKG (See section 1.3)

Figure 1.4 Diagram depicting the nerve supply to the heart from both divisions of
the Autonomic Nervous System
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For the normal individual, how fast the heart beats depends totally on how

fast the SA node is depolarized. In other words, the depolarization rate of the SA

node determines the heart rate. Usually, the SA node is under the influence of the

autonomic nervous system.

The autonomic nervous system is a part of the nervous system which is

concerned with control of involuntary body functions[3]. It helps control arterial

pressure, heart rate, body temperature and many other activities. The autonomic

nervous system is activated mainly by centers located in the spinal cord, brain

stem, and hypothalamus. Also, portions of cerebral cortex, especially of the limbic

cortex, can transmit impulses to the lower centers and in this way influence

autonomic control. The efferent autonomic signals are transmitted to the body

through two major subdivisions called the sympathetic nervous system and the

parasympathetic nervous system. Figure 1.4 depicts the nerve supply to the heart

from both branches of the nervous system. Sympathetic fibers terminate at the SA

node, conduction system, atria, ventricles and coronary vessels, while,

parasympathetic fibers terminate at the SA node, atrioventricular (AV) node, atria,

ventricles and coronary vessels. The sympathetic nervous system increases the

heart rate and the parasympathetic nervous system decreases the heart rate. One of

the most striking characteristics of the autonomic nervous system is the rapidity

and intensity with which it can change visceral functions. Strong sympathetic

stimulation can increase the heart rate in the human to as high as 200 and rarely

even 250 beats per minute in young people. Strong parasympathetic stimulation of
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the heart can actually stop the heartbeat for a few seconds, but then the heart

usually "escapes" and beats at a rate of 20 to 30 beats per minute thereafter.

Changes in heart rate reflect the reciprocal action of the sympathetic and

parasympathetic systems. The spontaneous fluctuations in heart rate are normally

considered a healthy sign. Wide variations in heart rate are commonly seen in

healthy individuals. By contrast, a number of physiologic and disease states

produce alterations in autonomic function which reduce the variability in heart

rate[4]. In one HRV study, Pagani et al. subjected 49 uncomplicated diabetics and

40 age-matched controls to supine and tilt conditions while recording their

HRV[5]. The R-R variance was reduced during both rest and tilt in diabetics. This

observation suggested poor parasympathetic activation in diabetic patients. In

another landmark study, Kleiger et al. observed that in a large sample (N=808) of

post myocardial infarction (MI) patients, a low (<50 msec)standard deviation of

mean R-R interval over 24h duration, 2 weeks after the MI, had the strongest

univariate correlation with mortality[6]. The relative risk of mortality was 5.3

times higher in the group with low HRV (<50 msec) than the group with high

HRV (>100 msec). It is hypothesized that decreased HRV correlates with

increased sympathetic tone and decreased vagal tone and thus predisposes the

patient to ventricular fibrillation[7]. Other recent studies also showed that the heart

rate of patients with severe coronary artery disease, congestive heart failure, aging,

and hypertension often varies less than that of normal people[8]. Therefore, to

some extent, wide variation of heart rate could be considered as one of the healthy

indicators. HRV analysis could also make a positive contribution to identify
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sympathvagal imbalance. Implicit in these studies is the assumption that HRV

study may shed light on the physiological mechanisms underlying the disorder.

1.2 . Power Spectral Analysis of Heart Rate Variability

Power spectral analysis of heart rate variability (HRV) is a potentially powerful

tool for exploring neurocardiac dysfunction, in patients with a variety of cardiac

and autonomic disorders. The power spectral analysis process transforms a signal

from the time domain to the frequency domain. It provides a window through

which neurocardiac and autonomic function can be assessed noninvasively[9].

According to signal processing theory, Fourier series can be used to

represent all periodic functions, that is, all periodic functions can be represented as

a sum of sins and cosines at a fundamental frequency and its harmonics.

The Fourier series of a function f(t) is represented as[26]:

When functions are not periodic, Fourier series are expanded to the Fourier

transform to accommodate non-periodic functions. Using Fourier transform

techniques, the frequency components of a non-periodic function, which may be
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present at all frequencies, can be represented.

If f (t)|dt converges, and f(t) is piecewise continuous on [—co, co], the

Fourier transform of f(t) is defined as:

In the above definition, we assume that f(t) is a piecewise continuous function.

This implies that:

f (t) and	 f (t) are finite.

2. f(x) is continuous at all but possible finite number of points on [—co, 00].

3. At any point in [ —00, 00] where f(t) is discontinuous, the function has finite left

and right limits.

A non-mathematical analogy of the Fourier transform is that of a glass

prism which splits white light up into a rainbow. This represents the different

spectral , or frequency components that make up the white light, and the prism is

acting to separate the white light into its characteristic frequencies.

The following steps are used to perform power spectral analysis of

HRV[12]. First, every R wave position in the ECG signal is detected by setting

appropriate threshold values, and an interbeat interval signal (IBI) is generated by

taking the difference in time between successive R waves and converting the

measured time to an IBI amplitude. Since an IBI only occurs when the R wave is
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measured time to an IBI amplitude. Since an IBI only occurs when the R wave is

detected, the width of the IBI samples is not constant. In order to produce IBI

samples of equal width suitable for analysis, a backward step function

interpolation method is used to interpolate the IBI samples. Then, the frequency

components of the IBI signal are estimated by taking the Fourier transform of the

interpolated IBI signal. The detail is discussed in section 2.2.

Figure 1.5 Power spectrum of heart rate fluctuations, indicating low-frequency,
mid-frequency, and high-frequency peaks.
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Figure 1.5 illustrates the conversion of a sequence of consecutive R-R

intervals into its spectral components in a normal subject. Three peaks are visible:

a very low frequency peak (0.0033 Hz-0.04 Hz), a low frequency peak (0.04 Hz-

0.15 Hz) and a high frequency peak (0.15 Hz- 0.4 Hz). These three peaks have

generally been assumed to represent different systems influencing heart rate. The

very low-frequency band is correlated with vasomotor control and/or temperature

control. The low frequency band is associated with baroreceptor-mediated blood

pressure control and the high-frequency band has been linked with respiration[4].

At this time, in power spectral analysis of heart rate variability, the best-

known and best-defined peak is the peak at the respiration frequency, which is

called the respiration peak. A century ago, the influence of respiratory variation on

heart rate, so-called respiratory sinus arrhythmia (RSA), was recognized well by

Ludwing[11]. RSA is a rhythmical fluctuation in heart periods at the respiratory

frequency that is characterized by a shortening and lengthening of heart periods in

a phase relationship with inspiration and expiration. Over the past decade, an

increasing number of psychological, physiological and clinical studies have

utilized RSA as an index of vagal control of the heart. The potential utility of RSA

as a non invasive index of vagal influence on the heart assumes special importance

in view of the emerging understanding of the complexities of autonomic control.

In the power spectral analysis of heart rate variability, the respiration peak

corresponds approximately to the RSA, and it is purely parasympathetic in

origin[12]. Individual differences of area values under respiration peaks have been

interpreted as differences in basal cardiac vagal tone, and within-subject changes
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of area values under respiration peaks have been suggested to correspond to

alterations in this vagal tone. This interpretation is based partially on the fact that

changes in vagal activity may yield corresponding changes in area values under

respiration peaks. Important considerations arise in the finding of the respiration

peak. The normal respiration rates vary considerably from individual to individual.

The normal respiration rate can be as low as only a few breaths per minute at rest

and as high as up to 40 breathes per minute during intense exercise[1]. Thus, the

frequencies of spontaneous respiration are not limited to the narrow band ranging

from 0.15 Hz to 0.4 Hz, and may cover a wider range. If the respiration peak has

moved out of the narrow band (0.15 Hz-0.4 Hz), and we calculate the power

within the frequency band of 0.15 Hz to 0.4 Hz as the measure of vagal tone

activity, the results would be completely wrong. Therefore, in order to correctly

measure vagal activity, the original respiration signal has to be available. However,

in some cases, we do not have respiration information. For example, when we use

Holter Monitor (which is a small three-channel cassette recorder designed to

record an ambulatory subject's EKG continuously for up. to 24 hours.) to collect

EKG data, respiration information is not available. In this situation, power spectral

analysis of heart rate variability is greatly limited.

In order to avoid the above limitation of power spectral analysis of HRV,

Zhao, Reisman, and Findley recently (1994) proposed a new approach, which is

called ECG derived respiration, to be used when the respiration signal is not

available. By using the EKG derived respiration technique, we can generate a

respiration signal from the raw EKG data.
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1.3 Derivation of Respiration from ECG during
Heart Rate Variability Studies

ECG derived respiration is an indirect method to reconstruct respiration

information from ECG signals. A biological signal is often influenced by many

interacting systems. For instance, an EKG signal, besides being created by the

cardiac system, is also influenced by the respiratory system. This feature makes it

possible to derive a specific biological signal from a signal generated by one of its

interacting systems, and the EKG derived respiration algorithm is based on this

feature. The EKG derived respiration algorithm is based on the observation that

the ECG is influenced by electrode motion relative to the heart and that

fluctuations in the mean cardiac electrical axis accompany respiration[8].

Figure 1.6 Different lead EKG signals influenced by respiration. (a): lead I EKG;
(b): lead III EKG; (c): respiration; t1: deep inhalation and hold; t2: deep exhalation
and hold
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In the ECG derived respiration method, ECG signals from lead I and from

lead III are used. Figure 1.6 illustrates the influences of respiration on lead I and

lead III EKGs.

In time period ti, the subject was asked to perform a deep inhalation and

hold . During this period, the amplitude of lead I is decreased and that of lead III is

increased. In time period t2, the subject was asked to perform a deep exhalation

and hold . During this period, the amplitude of lead I is increased and that of lead

III is decreased significantly. The reason that the amplitudes of lead I and lead III

always move in the opposite direction can be explained by the anatomical changes

of the heart in the chest during respiration. During inhalation and hold, because of

the filling of the lungs, the apex of the heart is turned towards the abdomen. As a

result, the cardiac vector in the longitudinal direction represented by lead III is

increased, and the cardiac vector in the crosswise direction represented by lead I is

decreased. Conversely, during exhalation and hold, because of the emptying of the

lungs, the apex of the heart is turned towards the chest. This makes the cardiac

vector in longitudinal direction (lead III> decreased and the cardiac vector in

crosswise direction (lead I) increased. Figure 1.6 demonstrates the amplitude of

cardiac vectors change in lead I and lead III.

In the ECG derived respiration technique, the area of each normal QRS

complex in each of the two leads is measured over a fixed time window. Since the

window width is fixed, the area is proportional to the amplitude of the ECG signal.
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The QRS area generated from a certain lead can be also considered as a QRS

vector, which has the same direction as that lead direction. The arc tangent of the

ratio of the areas measured in leads I and III yields the angle of the mean axis of

QRS vector with respect to one of the lead axes. The projection of the mean QRS

vector is proportional to the projection of the mean cardiac electrical vector on the

lead axis. The angle values are interpolated to produce a continuous ECG-derived

respiratory signal.

Figure 1.7 Axis of the mean QRS vector influenced by respiration. a: the angle of
the axis respect to the lead III axis. (a): deep inhalation and hold; (b): deep
exhalation and hold

Zhao and Reisman proved a strong association between the major peak of

the original respiration spectrum and that of the derived respiration spectrum. The

detail of their work is discussed in section 4.1.
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1.4. Power Spectral Analysis of 24-Hour Heart Rate Variability

In order to obtain the neurocardiac control information in health and disease,

during normal life, throughout the day, more and more ECG data are taken from

ambulatory subjects. Twenty-four-hour recordings of ECG have become an

established monitoring and diagnostic tool in clinical cardiology.

In 1992, Bigger, et al. performed power spectral analyses on the entire

twenty-four-hour ECG data from 715 myocardial infarction patients in order to test

the hypothesis that short-term power spectral measures of heart rate variability will

predict cardiac mortality or arrhythmic death [14]. Four frequency domain

measures were calculated from spectral analyses of heart period over a twenty-

four-hour interval. They computed the twenty-four-hour power spectral density

and calculated the power within three frequency bands: (1) 0.0033 to < 0.04 Hz,

very low frequency power, (2) 0.04 to < 0.15 Hz, low frequency power, and (3)

0.15 to 0.4 Hz, high frequency power. In addition, they calculated the ratio of low

to high frequency power. These measures were calculated for 15, 10, 5 and 2

minute segments during the day and at night. Their study shows that mean power

spectral values from short periods during the day and night were similar to twenty-

four-hour values, and the correlation between short segment values and twenty-

four hour values were strong (many correlations were 0.75). Therefore, power

spectral measures of HRV calculated from short (2 to 15 minutes) EKG recordings

are remarkably similar to those calculated over 24 hours. The power spectral

measures of HRV are excellent predictors of all-cause mortality and sudden

cardiac death.
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In 1994, Fei, et al, performed spectral analyses on twenty-four-hour EKG

data from 10 patients with aborted sudden cardiac attack not associated with

coronary artery disease, in order to make an assessment of heart rate variability in

survivors of sudden cardiac attack not associated with coronary artery disease[15].

Spectral heart rate variability was analyzed on a Holter analysis system and was

expressed as total (0.01 - 1.00 Hz), low (0.04 - 0.15 Hz) and high (0.15 - 0.4 Hz)

frequency components for each hour. HRV was calculated for the 24 hour periods.

Their findings suggest that there is abnormal autonomic influence on the heart in

patients without coronary artery disease at risk of sudden cardiac attack. Hourly

analyses of HRV throughout the 24 hour period may provide additional

information important in the identification of high risk patients.

1.5 Scope of the Thesis

In this study, we used short term (2 minutes) power spectral analysis to assess

HRV in stroke survivors and HRV in people doing oral presentation under varying

conditions.

In the stroke survivor experiment, we tested the hypothesis that stroke

survivors have lower parasympathetic activity than normal controls. The data from

this experiment were treated as the pilot data for a project set up by a physician at

Kesseler Institute for Rehabilitation. The purpose of the project is to determine

whether parasympathetic function, as measured by heart rate variability, can

predict adverse cardiac events in stroke survivors during the first year post stroke.
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It has been shown that certain cardiac conditions can lead directly to stroke,

and stroke also may lead to cardiac disorders[16]. Heart disease and stroke both

are associated with common risk factors, including hypertension, hyperlipidemia,

cigarette smoking, diabetes, obesity, sedentary lift style, type A personality, older

age, and male gender. Due to deconditioning during the acute recovery period and

difficulty with exercise using paralyzed or spastic extremities, stroke survivors

may experience heart rate increase up to 73% of age-predicated maximum during

exercise, and are likely to experience abnormalities in heart rate [17]. Cardiac

abnormalities have been found in at least 50% of stroke survivors. Due to the

above mentioned factors, it becomes very important to predict adverse cardiac

events in stroke survivors.

In order to find the association between HRV and adverse cardiac events in

stroke survivors, HRV needs to be measured 4, 26, and 52 weeks after the stroke.

Although the data in this study are only a small portion of the data that needed to

be collected for the original project, results of this study have already shown that

stroke survivors have lower parasympathetic activity than normal controls.

In the oral presentation experiment, we tested the hypotheses that the

presence of an audience will affect autonomic behavior. It has been shown that the

complex social facts, such as mere presence or observation, can affect behavior

and health[ 1 8], but little is known about how these social facts affect the human

physiology. The data from this experiment will illustrate for the first time the

social-psychological influence on the autonomic nervous system.



CHAPTER 2

METHODS

2.1 Data Acquisition

In both stroke survivors and oral presentation tests, EKG signals were recorded

using Model 459 Holter recorder (Cardio Corder, Model 459, Del Mar Avionics,

Irvine, California ). The Model 459 Holter is a small three-channel cassette

designed to record an ambulatory subject's EKG continuously for up to 24 hours. It

includes a patient's event button, an automatic calibrator, the patient electrode

cables, the patient cable connector and a carrying case. A 9-volt disposable battery

supplies power.

In our study, EKG signals were obtained from bipolar lead I and lead III

attached to the subject. The leads consisted of two exploring electrodes, two

reference electrodes and one ground electrode. When the Holter recorder power is

turned on, six minutes of 1 my calibration pulses are automatically recorded on

two channels. During this six minute period, the Holter can not record any input

signal. The internal calibration signal can be terminated by pressing the patient

event button on the Holter. Once the calibration signal stops, the Holter recorder

starts to record input signals. In order to distinguish each event when data was

recovered from the Holter tape, the patient event button was pressed at the

beginning of each different event during recording. During playback, the

18
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oscilloscope was used to monitor the resulting EKG signals, and each event

marker appeared as a sequence of square waves on the oscilloscope.

The Holter tape EKG signals were played back using a JVC TD-W10

consumer quality music cassette tape recorder with frequency response range from

30 Hz to 16000 Hz. The analog output of the JVC TD-W10 cassette was converted

into a digital signal by a DAS-16 analog-to-digital converter (Keithley

MetraByte/Asyst, Natick MA). The DAS-16 analog-to-digital converter is a full

length board installed internally in an expansion slot of an IBM PC/XT/AT and

compatibles to turn the computer into a fast, high-precision data acquisition and

signal analysis instrument. The converted digital data were then stored on an IBM

compatible 286 computer with 2Mb RAM and 170 Mb hard drive, using Streamer

V3.25 data acquisition software (Keithley MetraByte/Asyst, Natick MA). 9.62

kHz sampling rate, which corresponds to 200 Hz sampling rate for the original

EKGs, was used for acquiring data since the play back speed of the Holter is 48.1

times the recording speed.

The important issue in ,acquiring correct Holter data is to distinguish each

event when the data is played back. Data on the Holter recorder was collected in

two ways. In some situations, events were marked by the patient event marker and

a time log was kept by the patient. However, in other protocols, a time log was

kept only to mark experimental events on the Holter recorder. For the first case,

since markers already exist on the tape, different events can be easily separated by

counting the number of markers. For the second case where event markers do not

exist, a time conversion must be made, where actual time is 1/48.1 of play back
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time. In this case, in order to separate each event, a stop watch has to be prepared

for counting play back time. Table 2.3.1 demonstrates an example of time

conversion. In the table, The "Actual time" column indicates the start and the end

record time of each phase, The "Time from the start" column indicates when a

particular event begins with respect the total starting time. For example, the "time

from the start" of sitting is 18m, which means that the sitting phase commenced 18

minutes after the total starting time. The "Conversion" column indicates the

procedure of converting recording time to playing back time. The "Data acquiring

time" column indicates the time at which data acquiring should be started. This

time is related to the time at which stop watch is started.

Table 2.1 Conversion between recording time and playing back time

Actual Time Time	 from

the start

Conversion Data

acquiring time

Start	 12:25 0(min) 0(s)

Sitting	 12:43-12:48 18(min) 18 x 60(s)
= 22.45(s)22.45(s)

48.1

Supine 1:181:23 58(min) 53x 60(s)
66.11(s)=

66.11(s)
48.1

Pace	 breathing 108(min) 108 x 60(s)
.134.7(s) 134.7(s)

48.1
2:13-2:28
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After being stored in the acquisition computer, the data was transferred to

an IBM-compatible 485/66 MHz computer and was processed using the S-Plus for

window V3.1 data analysis software package (Statistical Sciences, Seattle WA).

2.2. Subjects and Experimental Procedures

2.2.1 Subjects and Experimental Set-up for Stroke Survivor Test

The study of HRV in stroke survivors addresses the hypothesis that the

parasympathetic (vagal) activity of stroke survivors is lower than that of normal

subjects. This hypothesis is based on the consideration that most stroke survivors

have cardiac risk, and people containing cardiac risk have low parasympathetic

activity. Therefore, it is assumed that stroke survivors have low parasympathetic

activity. In this study, we defined "normal" as a person without cardiac risk.

6 normal subjects and 6 stroke survivors took part in this study. These two

groups were age and gender matched. Subjects covered a large age span, which is

from 25 to 72 years old. Mean age of normal subjects was 47.8 years and was

50.83 years for stroke survivors. Subjects were excluded from the study if they

were on sympatholytic or sympathomimetic medications. Each subject was tested

in a quiet location in order to minimize external stressors. All tests were performed

before lunch time.

Two lead EKG signals (lead I and lead III) were collected on subjects

during 6 4-minutes test conditions: 1) sitting, non-paced breathing. 2) supine, non-

paced breathing. 3) exercising. (subjects were instructed to exercise up to their

normal comfortable level) 4) sitting, paced breathing at 8 bpm. 5) sitting, paced
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breathing at 12 bpm and 6) sitting, paced breathing at 18 bpm. Before initiation of

each phase, the patient button on the Holter recorder was pressed.

In this protocol, the sitting, non-paced breathing protocol corresponds to the

time interval during which short-term measures of HRV are most easily obtained,

because the subject is not asked to do anything unusual. The supine, non-paced

breathing protocol represents a period of increased vagal tone. Exercising

represents a period of very low, or no vagal tone. In the exercising test, both

normal and stroke survivors were asked to exercise at their own comfortable

normal level. If capable, subjects were instructed to exercise on a Kinetron

Exercise and Training System (Cybex, Ronkonkema NY). Otherwise, subjects

performed exercise by propelling a wheelchair.

Paced breathing is a method where subjects were forced to breath at a

certain rate. The rate was controlled by a view box containing a column of lights

that rose and fell at the desired breathing rate. The participant was instructed to

match his/her breathing rate with the rate with which the light proceeded up and

down the column. A light moving up directed subjects to breath in and a light

moving down directed subjects to breath out. The paced breathing protocol was

designed to accurately locate the parasympathetic peak in the power spectrum of

HRV, and thus, to be able to estimate subject's parasympathetic activity

accurately. As discussed in section 1.2, in the power spectrum of HRV, the high

frequency band, from 0.15 Hz to 0.4 Hz, is associated with respiration, and is

purely parasympathetic in origin. This occurs because the SA node's response to

sympathetic activity is too slow to influence RSA when respiration is above 0.15
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Hz[19]. However the natural respiration of individuals is unstable and irregular.

The respiration frequency is not always in the 0.15 Hz to 0.4 Hz band. This makes

it difficult to derive a relationship between natural respiration and heart rate and

therefore makes it difficult to accurately identify the vagal peak in the power

spectrum of HRV. The paced breathing protocol improve the situation by setting

the breathing rate for every subject. In this way, the frequency band in which

respiration occurs is determined, the position of the parasympathetic peak is

determined, and therefore, the parasympathetic activity could be tested accurately.

2.2.2 Subjects and Experimental Procedure for Presentation Test

The presentation test was an experiment to determine how the presence and the

size of audiences affect autonomic behavior. Six graduate students and one

instructor participated in this investigation. None of the subjects were on

sympatholytic or sympathomimetic medications. Each subject was asked to make

one formal presentation of their current research in a research seminar class.

During the 30 minute presentation the presenter was not interrupted. However,

following the presentation pertinent questions and clarification were asked and

suggestions were made by the audience. Later, the same presentations without

audience were scheduled for all subjects. Each subject made the same presentation

without the presence of the audience within one week. Data during anticipatory

resting, presentation with audience and presentation without audience were

recorded using the Holter recorder. Before initiation of each phase, the patient

event button on the Holter recorder was pressed.
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2.3 Data Analysis

In S-Plus, the power spectrum of the HRV was derived from the acquired EKG

data by previously developed signal processing software algorithms[12]. In these

algorithms, every QRS complex in the EKG signal is first detected, and the

interbeat interval (IBI) was represented as the distance between two consecutive

QRS complexes. Since IBI samples only occurred whenever an R wave was

detected, they were not equidistant along the time axis. In order to produce

equidistant IBI samples suitable for analysis, IBI samples were interpolated using a

backward step interpolation function. In the backward step method, all of the

interpolated values between a beat at time T(m-1) and the next beat at time T(m)

are set equal to the time difference between T(m) and T(m-1). The heart rate

variability signal used in this work is this interpolated IBI, which is called IIBI.

Sometimes very low frequency components caused either by the

instruments used to acquire the signal or the subject's movements are contained in

the IIBIs. Those very low frequency components smear the power spectrum of the

signal at low frequencies. In order to remove the low frequency artifact, the IIBIs

were detrended using a locally weighted robust regression algorithm. Finally, the

power spectrum of HRV was formed by computing the FFT on the detrended IIBI.

In S-Plus, the respiration signal was derived by the algorithms developed by

Zhao and Reisman[13]. In their algorithm, the area of each normal QRS complex

in each of two leads was measured over a fixed time window. Figure 2.1 illustrates

the area of the normal QRS complex and the window width fixed to compute the

QRS complex area. Since the window was fixed, the area of each normal QRS was
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proportional to the projection of the mean cardiac electrical vector on the lead axis.

It was assumed that the lead I and the lead III used to derive respiration were

orthogonal, so that the arc tangent of the ratio of the areas measured in the two

leads yielded the angle of the mean axis of the QRS vector with respect to one of

the lead axes. Since the angle samples only appeared whenever QRS complexes

occurred, they were not equidistant along the time axis. In order to produce

equidistant angle samples suitable for analysis, angle samples were interpolated by

a cubic spline approximation. The interpolated angle samples were considered as a

continuous EKG-derived respiratory signal. The spectrum of the derived

respiration was produced by applying the FFT on the interpolated angle samples.

Appendix A demonstrates all steps used to calculate the power spectrum of the

HRV signal and Appendix B demonstrates all steps used to derive respiration from

the EKG.

Figure 2.1 QRS complex area



CHAPTER 3

RESULTS

3.1 Result of Stroke Survivors Test

3.1.1 Vagal Activities

As previously discussed, in the power spectrum of HRV, there are three major

peaks. The high frequency peak is correlated with respiration driven vagal efferent

input to the sinus node. In this test, subject's parasympathetic (vagal) activities

were measured by calculating the area under high frequency peak of the HRV

spectrum. For all the tests, except 8bpm pacing and the exercise test, the high

frequency peak was defined between 0.15 Hz and 0.4 Hz. However, considering

that during 8bpm paced breathing, the subject's respiration frequency goes down to

0.13 Hz which is below 0.15 Hz, we defined the respiration related high frequency

peak between 0.1 Hz and 0.4 Hz. Also, during the exercise test, since some

subject's respiration frequencies could go higher than 0.4 Hz, we defined the high

frequency peak between 0.15 Hz and 0.8 Hz.

Figure 3.1 shows the power spectrum of the HRV and the power spectrum

of the EKG-derived respiration of one normal subject during each protocol stage.

The X-axis reflects the frequency (Hz) and the Y- axis reflects the power density.

The solid curve represents the power spectrum of the HRV, the dotted curve

represents the power spectrum of the EKG-derived respiration, and the shaded

parts represent the area where vagal activity values were estimated.

26
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Figure 3.1 Power spectrum of HRV and power spectrum of EKG-derived
respiration. a) Sitting, non-paced. b) Supine, non-paced.
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Figure 3.1 Power spectrum of HRV and power spectrum of EKG-derived
respiration. c) Exercising. d) 8bpm
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Figure 3.1 Power spectrum of HRV and power spectrum of EKG-derived
respiration. e) 12bpm. f) 18 bpm
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Table3.1 Differences in HRV power between stroke survivors and control subjects
(pilot data)

AGE/SEX HRV:
Sitting

HRV:
Supine

HRV:
Exercise

PACED:
8 bpm

PACED:
12 bpm

PACED:
18 bpm

251M 2.99 3.47 0.28 39.9 7.84 2.49

36/M 9.91 18.2 0.43  25.1 4.2 3.34

44/M 3.69 2.15 0.81 8.31 1.38 0.54

54/M 1.4 2.95 0.99 5.57 1.38 1.3

60/M  0.65 0.92 0.41 18.1 6.07 8.61

681F  3.36 2.04 1.21 8.11 5.94 2.58

MEAN 3.67 4.96 0.69 17.52 4.47 3.14

S.D. 3.28 6.55 0.37 13.23 2.66 2.86

Table a. Normal Subjects.

AGE/SEX HRV:
Sitting

HRV:
Supine

HRV:
Exercise

PACED:
8 bpm

PACED:
12 bpm

PACED:
18 bpm

261M 0.91 7.47 0.81 24.04 3.64 0.84

391M 0.87 0.64 0.53 2.72 0.53 0.54

481M 0.34 0.62
21

2.69 0.34 0.31

581M 0.32 .1.29
**

0.32 S 0.09

62/M 0.1 0.57 0.29 0.36 0.2

72/F 0.43  1.12 1.91 6.39 0.59 0.97

MEAN 0.50 1.95 0.59 6.09 0.90 0.49

S.D. 0.32 2.72 0.72 9.07 1.35 0.36

Table b. Stroke Survivors.
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The vagal activity values for all subjects over all protocol stages are

displayed in Table 3.1. During the exercise stage, the two vagal values marked

with an asterisk were missing, because the EKG was poorly recorded by the Holter

recorder due to sharp body movements during exercise. In both groups, mean and

standard deviation values of all subjects are also displayed.

Multivariate analysis of variance (MANOVA) was performed by

DeMeersman (unpublished) over all testing stages except EXERCISE due to 2

missing data points. Age was entered as a covariate. The overall effect was not

significant (p=0.217), but the effect of stroke appeared to be approaching

significant (p=0.114). The lack of significance may be due to the size of the

sample. Post-hoc testing demonstrated significant group differences during NON-

PACED: sitting (p=0.049) and PACED: 12bpm (p=0.020), but not during PACED:

8bpm (p=0.071), PACED: 18bpm (p=0.053) or NON-PACED: supine (p=0.324).

A large sample size will be required to see significant differences between

populations during individual interventions.

3.1.2 Box Plot of HRV

Box plots were used to demonstrate the difference of HRV between normal and

stroke survivors. We separated our 12 subjects into 6 pairs, each pair containing an

age and gender matched normal subject and a stroke survivor. Box plots of IBIS

calculated from one pair of subjects over all test stages are shown in Figure 3.2.

There are two boxes in each graph, where the boxes on the left side of each graph

represent IBI data from normal subjects and the boxes on the right side represent
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Figure 3.2 Box plots of the IBIS of one pair of subjecs for overall test stages a)
Non-paced: sitting. b) Non-paced: supine.



Figure 3.2 Box plots of the IBIs of one pair of subjecs for overall test stages c)
Exercise. d) Paced: 8bpm.
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Figure 3.2 Box plots of the IBIs of one pair of subjecs for overall test stages e)
Paced 12 bpm. 0 Paced: 18bpm
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IBI data from stroke survivors. The horizontal line in the interior of each box is

located at the median of corresponding IBIs. This estimates the center of the

distribution for the data. The height of the box is equal to the inter quartile

distance, or IQD, which is the difference between the third quartile of the data and

the first quartile. The IQD indicates the spread or width of the distribution for the

data. The whiskers ( the dotted line extending from the top and bottom of the box )

extend to the extreme values of the data or a distance 1.5 x IQD from the center,

which ever is less. Data points which fall outside the whiskers may be outliers, and

so they are indicated by horizontal lines.

Compared with boxes used to represent normal subject's IBIs, the dominant

characteristic of the boxes used to represent stroke survivor's IBIs is that they are

relatively short for all stages except exercise. This observation indicates that ,with

exception of exercise, HRV is larger in normal people than in stroke survivors

during all stages. During exercise, since vagal tone of both normal and stroke

survivors drops to very low level, it is difficult to compare them.

In order to further compare HRV of normal subjects with that of stroke

survivors, IBIs calculated from stage 4 ( breathing at 8 min while sitting ) for 6

pair of subjects are shown in Figure 3.3. As in Figure 3.2, the boxes on the left side

of each graph represent normal subject's IBIs and the boxes on the right side

represent stroke survivor's IBIs.

It is clear that the boxes used to represent stroke survivor's IBIs are relative

short. This indicates that overall heart rate variability is larger in normal people

than in stroke survivors during this stage.
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Figure 3.3 Box plots of IBIS of 6 pairs of subjects for 8bpm paced breathing test
(a) Pair a. (b) Pair b



Figure 3.3 Box plots of IBIs of 6 pairs of subjects for 8bpm paced breathing test.
(c) Pair c. (d) Pair d.
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Figure 3.3 Box plots of IBIs of 6 pairs of subjects for 8bpm paced breathing test
e) Pair 5. f) Pair 6
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3.2 Result of Oral Presentation Test

In the oral presentation test, areas under three major peaks were calculated in the

power spectra of HRV for every subject over all tests. As stated in section 1.2

these three major peaks were: the very low frequency peak (0.0033 Hz to 0.04 Hz),

the low frequency peak (0.04 Hz to 0.15 Hz) and the high frequency peak (0.15 Hz

to 0.4 Hz).

Figure 3.4 shows a typical power spectrum of HRV from a subject, who

presented with audience. The X-axis reflects the frequency (Hz), the Y-axis

reflects the power density and the shaded part represents the area calculated. The

calculated area values from different frequency ranges are presented in Table 3.2,

3.3 and 3.4. The LF:HF ratio values are presented in Table 3.5.

Repeated measures analysis of variance (RANOA) was performed over all

testing conditions. The overall effect was significant (p=0.004). The post-hoc

testing demonstrated significant differences between the high frequency spectral

area of the presentation with audience and that of the presentation without

audience (p<0.02). In addition, significant differences in high frequency power

spectra were noted between the anticipatory resting phase and the presentation

without audience (p<0.03). No significant differences were detected between any

of the conditions for low frequency and LF:HF ratio which has been reported to

provide information about sympatho-vagal balance [121
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Figure 3.4 Aeras to be calculated (a) High frequency area. (b) Low frequency
area.



Figure 3.4 Areas to be calculated. (c) very low frequency.

Table 3.2 High frequency ( 0.15 Hz to 0.4 Hz) area values

Subject Anticipiatory

resting phase

Presentation	 with

audience

Presentation	 without

audience

1  4.428 •	 2.963 13.474

2 33.456 20.512 13.683

3 1.762  2.709	 - - 2.941

4 ** 5.167 4.03

5  6.974 1.772_ 12.218

6 5.432 0.698 5.319

7 4.122 2.87 2.74
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Table 3.3 Low frequency ( 0.04 Hz to 0.15 Hz) area values

Subject Anticipiatory

resting phase

Presentation	 with

audience

Presentation	 without

audience

1 3.695 4.949 21.761

2 63.225 62.194 70.385

3 7.697 16.676 18.239

4 ** 25.27 22.896

5 21.297 7.187 26.933

6 14.851 4.138 6.811

7 8.66 3.224 9.977

Table 3.4 Very low frequency (0.0033 Hz to 0.04 Hz) area values

Subject Anticipiatory

resting phase

Presentation	 with

audience

Presentation	 without

 audience

1 0.089 0.05 0.408

2 2.155 1.152 3.278

3 0.437 2.027 1.02

4 ** 2.028 3.803

5 0.261 0.654 0.755

6 0.538 0.451 0.375

7 0.668 0.348 0.424

42



43

Table 3.5 LF:HF ratio values

Subject Anticipatory	 resting

phase

Presentation	 with

audience

Presentation	 without

audience

1 0.8954 1.67 1.615

2 1.889 3.032 5.144

3 4.368 6.156 6.2

4 ** 4.892 5.681

5 3.054 4.056 2.204

6 2.734 5.928 1.281

7 2.1 1.13 3.639

3.3 Cross Correlation of EKG-derived Respiration With
Directly Measured Respiration

After developing the EKG-derived respiration method, Zhao and Reisman[13]

tested the similarity of the derived respiration spectra to the original respiration

spectra by performing a paired t-test and correlation test on the central frequencies

for all tests from all subjects and on each individual test for all subjects. As

already discussed in section 1.3, the central frequency was formed by first

detecting the spectral peak, then the frequency values at 30% of the spectral peak

were located on both sides. The two located points were labeled as fl and fh

respectively. The central frequency fc was computed so that the area under the

spectral curve between fl and fc was equal to the area between fc and fh.
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Zhao and Reisman collected data from two lead EKG signals (lead I and III)

on 9 healthy subjects during resting, paced breathing (at 8, 12 and 18 breaths per

minute), exercise (at 2, 3, 4 times resting metabolic rate), and recovery. The p

values from their paired t-test indicated that there is no difference between the

mean of the derived central frequency and the mean of the original central

frequency. Furthermore, the overall correlation coefficient they calculated was

0.9977, and the correlation coefficient for each individual test varied from 0.8241

to 0.9983. Both paired t-test and correlation test indicated a strong association

between the derived central frequency fcd and the original central frequency fco.

However, considering that examination of central frequency only took the

main peak of the spectrum into account, it was suggested to further test the total

similarity of the. derived respiration signal and its spectrum to the original

respiration signal and its spectrum using cross correlation methods. In this study,

the cross correlation of the derived respiration signal and the original respiration

signal, as well as the cross correlation of their spectra were performed.

3.3.1 Understanding of the Cross Correlation

In signal processing, the correlation of two continuous functions f (x) and g

(x), denoted as f (x)og (x), is defined by the relation[27]



Figure 3.5 Graphic illustration of correlation. The shaded areas indicate regions
where the product is not zero.
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where * is the complex conjugate. We slide g (x) by f (x) and integrate the product

from —00 to 00 for each value of displacement x. Figure 3.5 illustrates the

procedure to perform the correlation calculation. In Figure 3.5 (a) and (b), two

continuous functions f (x) and g (x) are shown as square and rectangle functions

respectively. Figure 3.5 (d) represents g (x) being slid to the left hand side off (x)

where 0 x 1. (e) represents g(x) being slid to the right hand side of f (x) where

—1 x 0 and (f) represents the correlation of f (x) o g (x). The shaded areas

indicate regions where the product is not zero. It is clear that the cross correlation

of two continuous function is a continuous time series. The cross correlation at

zero lag represents the situation when two signals are superimposed on each other

without any shifting. If the cross correlation function is normalized

by autc(f (x)) * autc(g(x)) ,where autc represents the auto cross correlation, then

the normalized cross correlation at zero lag would be 1.0 when the two signals are

exactly the same, and less than one for less similar signals.

In order to further understand the meaning of cross correlation, the cross

correlation was performed on two sine waves under different conditions: (1) two

identical sine waves, which contain the same frequencies, phases and amplitudes.

f(0= sin co t, g(t)= sin co 2 t , where co, = co, ; (2) two sine waves with different

frequencies. f(t)= sin co, t, g(t)= sin co., t, where co, # co „ and w, , co, are not

multiples of each other. (3) one sine wave contained in the other sine wave. f(t)=

sin co t + sin ω2t, g(0)= sin co, t ; (4) both sine waves with the same frequencies, but

180° out of phase to each other; and (5) both sine waves contain DC values.

f(t)=1+ sin co t, g(t)= 1+ sin co 2 t , where co, = co, . Figures 3.6 to 3.10 demonstrate
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the cross correlation under all different conditions mentioned above, respectively.

In the figures, the x axis represents the index number and the y axis represents the

signal values. In Figure 3.6, since the two sine waves represented in (a) and (b)

contain same frequencies, phases and amplitudes, the cross correlation at zero lag

is equal to 1. This demonstrates the situation that the normalized cross correlation

at zero lag is 1.0, when two signals are exactly the same. In this example, the

reason that the normalized cross correlation is less than 1 at peaks other than at

zero lag is because that g(t) has the same length as f(t). If the length of g(t) were

three or more times the length of f(t), then the normalized cross correlation would

be equal to 1 at peaks other than at zero lag. The situation that the normalized

correlation at zero lag is less than one is demonstrated in Figure 3.7. The two sine

waves represented in 3.7(a) and (b) contain different frequencies. The frequency

of one sine wave is much higher than that of the other, and the frequency of one

sine wave is not a multiple of the frequency of the other sine wave. The cross

correlation of these two signals at zero lag is 0.0438, which is much less than 1.

Figure 3.8 demonstrates the situation in which one signal is contained in the other.

The cross correlation of the signals sin co, t and sin w i t + sin ω2t at zero lag is

0.7054, which is less than 1, but much higher than 0.9438. The three examples

mentioned above imply that the higher the cross correlation at zero lag the more

the two signals are similar to each other. If one signal is a "component" of the

other signal, the cross correlation of these two signals at zero lag is higher than the

cross correlation at zero lag of two totally different signals, but lower than that of

two identical signals. It is easy to deduce that if this frequency "component"
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becomes bigger and bigger, the cross correlation at zero lag will become more and

more close to 1. But what happens when two signals contain the same frequencies

but are 180° out of phase. This question is answered in Figure 3.9. In this

situation, the cross correlation at zero lag becomes -1. This example indicates the

meaning of -1 in the cross correlation. Figure 3.10 demonstrates another situation

when both signals contain DC component. In this case, there is no negative value

existing in the cross correlation series and the shape of cross correlation wave of

the two signals containing a DC component is different from the shape of the cross

correlation wave of the two same signals without DC component. This is shown in

following deduction.

Suppose the length of f(x) and g(x) is 21 , the cross correlation of l+f(t) and

l+g(t) is as follow:

The outcome of the above equation, which shows the cross correlation of

two signals containing DC components, has a different outcome from that of

Eq.(3.1) due to the resulting cross products (2lf (t),g(t + a)da).As shown in
-1
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Figures 3.6 and 3.10, the DC shift changes the outcome of cross correlation. This

implies that it is better to remove the DC component from the signals before

performing the cross correlation.

Figure 3.6 Cross correlation of two same sine waves. (a) sin w, ; (b) sin w, ; (c)
sin co, o sin co, (co, = w2)
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Figure 3.7 Cross correlation of two different sine waves. (a) sin a),, (b) sin co,; (c)
sin co l sin co, (co, # co,)

Figure 3.8 Cross correlation of two sine waves, one sine wave is contained in the
other. (a) sin co, . (b) sin co,. (c) sin w, + sin co,. (d) sin a), o (sin a), + sin ω2).
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Figure 3.9 Cross correlation of two sine waves which are 180° out of the phase. (a)
sin wt . (b) sin(wt + 7r) . (c) sin at o sin(wt + ,r)

Figure 3.10 Cross correlation of two sine waves which contain DC component.
(a) sin cot + 1. (b) sin wt + 1. (c) (sin cot + 1) o (sin wt + 1)
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3.3.2 Cross Correlation of EKG Derived Respiration with Original
Respiration

Based on the understanding of cross correlation shown in section 3.3.1, we

performed cross correlation on the derived respiration and the corresponding

original respiration. For the respiration time domain signals of 8 subjects obtained

by Zhao and Reisman, the maximum cross correlation for each individual test are

displayed in Table 3.6 and for the respiration spectrum (frequency domain) data of

8 subjects obtained by Zhao and Reisman, the maximum cross correlations for

each individual test are displayed in Table 3.7. Figure 3.11 and Figure 3.12

demonstrate an example of the cross correlation of a derived respiration signal

with an original respiration as well as the cross correlation of the spectrum of a

derived respiration with the spectrum of an original respiration, respectively.

Table 3.6 Cross correlations of EKG-derived respiration signals and original
respiration signals (Missing values are marked with asterisk) (Time domain)

Subject rest  8bpm 12bpm 18bpm 2 mets  3 mets 4 mets recovery

1 0.839 0.903 0.916 0.958 0.807 0.856 0.921 0.756

2 0.993 0.954  0.974  0.988 0.974 0.936 0.941 0.969

3 0.988 0.947 0.989 0.958 0.658 0.760 0.325 0.653

4 0.992 ** 0.993 ** 0.949 ** ** 0.972

5 0.985 0.952 0.986 0.992 0.963  0.938 0.864 0.919

6 0.969 0.945 0.965 0.972 0.958 0.936 0.960 0.959
1

7 0.89 0.828 0.954 0.946 0.686 0.619 0.769 0.853

8 0.992 0.926 0.951 0.967 0.976 0.962 0.957 0.996
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Table 3.7 Cross correlation of EKG-derived respiration spectra and original
respiration spectra (Missing values are marked with asterisk)(Frequency domain)

Subject rest 8bpm 12bpm 18bpm  2 mets 3 mets 4 mets recovery

1 0.988 0.990 0.844 0.973 0.914 0.977 0.982 0.967

2 0.983 0.952 0.945 0.996 0.992 0.371 0.903 0.958

3 0.919 0.639 0.916 0.833 0.828 0.749 0.204 0.825

4 0.876 ** 0.781 ** 0.880 ** ** 0.928

5 0.769 0.576 0.844 0.822 0.317 0.941 0.748 0.910

6 0.991 0.998 0.997 0.997 0.758 0.994 0.954 0.979

7 0.914 0.998 0.997 0.971 0.295 0.451 0.875 0.995

8 0.865 0.998 0.993 0.994 0.896 0.778 0.825 ' 0.859

Figure 3.11 Cross correlation of the EKG derived respiration with the original
respiration. (a) Original respiration. (b) EKG derived respiration. (c) The cross
correlation of the original respiration and the EKG derived respiration.
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Figure 3.12 Cross correlation of the spectrum of the EKG derived respiration with
the spectrum of the original respiration. (a) The spectrum of the original
respiration. (b) The spectrum of the EKG derived respiration. (c) The cross
correlation of the spectrum of the original respiration with the spectrum of the
EKG derived respiration.

From table 3.6 and 3.7, it is observed that, in most cases, the derived

respiration strongly correlates with the original respiration both in time and

frequency domain. However, in some cases, cross correlation drops to low values.

One of these situations is demonstrated in Figure 3.13. where the cross correlation

of the original respiration with the EKG derived respiration at zero lag is only

equal to 0.325. The reason causing such a low cross correlation between two

signals is that the original respiration signal has a very low signal to noise ratio.
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Another factor leading to incidence of low cross correlation is as follow: The

EKG-derived respiration technique is based on the phenomenon that respiration

modulates the change in the angle of the cardiac electrical vector axis. This

modulation is subject dependent, some having large modulation, while others

having small modulation. It might be related to the type of respiration (abdominal

versus thoracic) and the difference in the anatomical structure of each individual,

or it might be related to tidal volume. The correct respiration might not be derived

reliably if the EKG signal is poorly recorded or has a very low signal to noise

ratio. The changes in the angle of the cardiac electrical vector are also influenced

by sources besides respiration. For instance, during intense body movement (e.g.

Figure 3.13), the respiration signal might not be correctly obtained from the EKG

signal.

Figure 3.13 Respiration signals which cause low cross correlation. (a) Original
respiration. (b) EKG derived respiration.
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Therefore, besides reducing the intense body movement, methods to

improve EKG derived respiration must be further investigated, and may include

improving the EKG derived respiration technique as well as finding more suitable

electrode positions.

3.4 Fidelity of Holter Recorder Playback System

In order to evaluate the fidelity of the Holter recorder playback system, a

simulated EKG signal was compared with the same EKG signal recorded with a

Holter recorder. A five-minute 60 beats per minute EKG signal generated by the

Quinton Q4000 Stress Test Monitor/Controller (Quinton Instrument, Co., Seattle,

WA) was acquired directly into the IBM compatible 386 data acquisition computer

at a sampling rate of 200 Hz and another five-minute 60 beats per minute

simulated EKG was next recorded with the Holter recorder. The recorded EKG

signal was played back on both a JVC TD W-10 and a Panasonic RX C-38

cassette tape recorder. The output of the two tape recorders were acquired into the

same data acquisition computer at an accelerated sampling rate of 9.62 kHz, which

corresponds to 200 samples per second in real time. Figure 3.14 (a) illustrates the

two consecutive QRS complexes of the original EKG signal. Figure 3.14 (b)

illustrates the same signal output from the Panasonic RX C-38 cassette player and

(c) illustrates the same signal output from the JVC TD W-10 cassette desk.

Comparing Figure (b), (c) with Figure (a), visually we could tell that both output

EKGs were distorted. However, the EKG from the Panasonic RX C-38 was

distorted more seriously. It contained more noise, and the S waves dropped lower
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as compared with the EKG from the JVC TD W-10, The reason for the distortion

in the EKGs output from both playback systems is that both systems do not have a

low enough frequency response. The Panasonic RX C-38 cassette has a frequency

response of 90 Hz to 11000 Hz and the JVC TD W-10 cassette has a frequency

response of 30 Hz to 16000 Hz. If all frequency components of EKGs, which are

from 0.05 Hz to 100 Hz, recorded by the Holier recorder were output from the

tape player, the requirement of the frequency responses of the tape player should

be from 2.5 Hz to 5000 Hz, because the play back speed is about 50 times faster

than the recording speed. Since the frequency responses of both tape playback

systems do not cover the required low frequency range, the low frequency

information of the Holier recorded EKGs is lost, and therefore, the signal is

distorted. Since the JVC TD W-10 cassette desk covers more low frequency range

than the Panasonic RX C-38, the EKGs output from JVC TD W-10 cassette is

more similar to the original signal than that from the Panasonic RX C-38.

The cross correlations were performed on the original simulated EKG

signal and JVC TD W-10 output EKG signal, as well as on their corresponding

spectra. Figure 3.15 shows both simulated and recorded EKG signals and their

corresponding spectra. In Figure 3.15 (a), the top graph is the original simulated

EKG signal and the bottom graph is the EKG signal output from the JVC TD W-

10 cassette player, and both corresponding spectra are shown in Figure 3.15 (b).

The cross correlation of simulated and recorded EKG signals is 0.69, and the cross

correlation of the spectrums is 0.9859. The reasons of low correlation are

discussed fully below
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Figure 3.14 Comparison of different play back systems. (a) Original simulated
EKG, (b) Simulated EKG output from Panasonic RX C-3 8 cassette player. (c)
Simulated EKG output from NC TD W-10 cassette desk

Figure 3.15 Comparison of original and Holter recorded EKG signals and their
spectra
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3.5 Variables Affecting the Quality of the Holter Data Processing

3.5.1 Speed Variation of Holier System.

Our JVC TD W-10 cassette replayed the EKG tape at 48.1 times the recording

speed and the acquisition computer sampled at an accelerated rate of 9.62 kHz,

which corresponds to approximately 200 samples per second in real time. In such a

setup, even minute variations in speed of either the original recording system or

the replaying system may introduce non quantifiable errors in the R-R interval

series. The stability of the tape speed of the Holter recorder-cassette playback

system was tested by Zhao [20]. In his study, a two minutes 60 beat per minute

simulated EKG was next recorded by the Holter recorder, acquired into the data

acquisition computer at a sampling rate of 9.62 kHz, and processed in S-Plus.

Considering the mean of the interbeat intervals and the interbeat interval with the

biggest variation, the relative speed stability of our Holter recorder-cassette

playback system reported in his study is 99.08%. In order to ensure recording valid

EKG data, the following reminders are provided for optimum performance of the

Holter recorder.

1)Before data collection, ensure that the battery is in good working condition.

2) To ensure recording valid EKG data, it is highly recommended that a new tape

is for each recording.

3) Emphasize to the patient the importance of accuracy in the patient diary. The

patient must note the time, symptoms, and activity taking place when any kind of

discomfort ( e.g. shortness of chest pain) is experienced.
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4) Alert the patient to avoid sources of electrical interference and also to avoid

exposing the recorder to water.

3.5.2 Presence of Premature Contractions in the R-R Interval Data

A premature contraction is a contraction of the heart prior to the time that normal

contraction would have been expected[1]. Most premature contractions result from

ectopic foci in the heart, which emit abnormal impulses at odd times during the

cardiac rhythm. Among the possible causes of ectopic foci are (1) local areas of

ischemia; (2) small calcified plaques at different points in the heart, which press

against the adjacent cardiac muscle so that some of the fibers are irritated; and (3)

toxic irritation of the A-V node, Purkinje system, or myocardium caused by drugs,

nicotine, or caffeine. In persons with ischemic heart disease, the ectopic rhythm is,

on occasion, believed to be caused by a re-entrant signal as follows: The normal

heartbeat excites an area of ischemic tissue in which the cardiac impulse travels

extremely slowly. Then, after the contraction of the normal heart muscle is over,

the slowly traveling signal in the ischemic tissue escapes back into the normal

cardiac muscle, in this way causing a second contraction at a later time in the

heartbeat. Premature contractions are generated locally,. they are not controlled by

the autonomic nervous system. The premature contractions not only occur in

people whose hearts are not in a healthy condition, but also occur frequently in

healthy persons and, indeed, are often found in athletes or others whose hearts are

certain to be in healthy condition. Figure 3.16 is an EKG showing a single

premature contraction. The QRS complex of this beat occurs too soon in the heart
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cycle, and the interval between the premature contraction and the next succeeding

contraction is prolonged.

Figure 3.16 Premature contraction

The presence of premature contractions results in an abnormality in the interbeat

intervals, which further affects the spectrum of the HRV. Figure 3.17 demonstrates

the affect of a premature contraction on the heart rate spectrum[21]. Figure 3.17

(a) shows a heart rate signal containing a premature contraction, which is

characterized by a sharp increase followed by a sharp decrease in the rate. (c)

shows the spectrum of the heart rate signal displayed in (a). (b) shows the same

heart rate signal as which displayed in (a), except that the premature contraction

"artifact" is eliminated. (d) shows the spectrum of the heart rate signal displayed in

(c). By comparing the spectra of both signals, it is obvious that the spectrum of the
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signal containing a premature contraction contains a broad poorly defined peak

caused by the spike in the time series.

Figure 3.17 The affect of premature contraction on the FM. spectrum. (a) A signal
premature contraction causes an abrupt increase followed by a decrease in heart
rate. (b) The premature contraction is removed from the heart rate data. (c) Poorly
defined broad spectrum caused by impulse-like spike "artifact". (d) Spectrum of
HR after impulse-like spike is removed.

In a similar way, the presence of a premature contraction could affect the spectrum

of heart rate variability, and thus affect the estimation of vagal activity. In order to

accurately estimate the vagal activity which is most important in this study,

premature contractions in the EKG data have to be detected, removed and

reconstructed. The detection of premature contraction beats is based on the

assumption that the beat-to-beat variation in R-R intervals cannot exceed a critical

percentage of the preceding interval, which is reasonable for the real data. The
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basic algorithm is to compare each interbeat interval to the preceding one. If the

difference in width exceeds a certain (80 percent is chosen in this study)

percentage, a premature contraction beat is detected. In previous studies, the

detected premature contractions were reconstructed manually, which caused many

uncertainties. e.g. different people may reconstruct the beats at different places

because of different individual experience or different judgment, same people also

may reconstruct the beats differently at different time. In order to reduce the

uncertainties and get a scientific and consistent method to reconstruct the

premature beats, the cubic spline interpolation algorithm was examined.

Cubic spline interpolation is kind of nonlinear piecewise polynomial

approximation. It divides a closed interval into a collection of subintervals and

construct a different approximating polynomial on each subinterval[22]. cubic

spline interpolation is the most common piecewise polynomial approximation

using cubic polynomials between successive pairs of nodes. The definition of

cubic spline interpolation is as follows: (see Figure 3.18)

Figure 3.18 Cubic interpolation
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Given a function f defined on [a,b] and a set of numbers, called nodes,

a= xo <x,...<x„=b, a cubic spline interpolant, S, for f is a function that satisfies

the following conditions:

f. one of the following set of boundary conditions is satisfied:

To construct the cubic spline interpolant for a given function f, the

conditions in the definition are applied to the cubic polynomials.

clearly,

and if condition (c) is applied,
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Since the term (xj+1, — xj) will be used repeated in this development, it is

convenient to introduce the simpler notation

for each j=0,1,...,n-1. If we also define an = f (xn) , then the equation

holds for each j=0,1,...,n-1.

In a similar manner, define bn=  s' (xn) and observe that

implies sj  '(xj) = b i for each j=0,1,...,n-1. Applying condition (d)

for each j=0,1,...,n-1.

Another relation between the coefficients of s1 is obtained by defusing

c„ = sn(xn) / 2 and applying condition (e). In this case
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for each j=0, 1, ...,n- 1.

Solving for di in Eq.(4.8) and substituting this value into (4.5) and (4.7)

gives the new equations.

The final relationship involving the coefficients is obtained by solving the

appropriate equation in the form of equation (4.9), first for b f .

and then, with a reduction of the index, for b,_ 1 ,
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Substituting these values into the equation derived from Eq.(4.10), when the

index is reduced by 1, gives the linear system of equations.

for each j=1,2,...,n-1. This system involves, as unknowns, only {cj }n j=0,

since the value of {hj }n-1 j=0 and  are given by the spacing of nodes {a j}n j=0

and the values off at the nodes.

Note that once the values of {c1 }1_o are known, it is a simple matter to find

the remainder of the constants {b j }n-1 j=0 and {dj }n-1 j=0 and to construct the cubic

polynomials {sj}n-1 j=0. .

First, the advantages of cubic spline interpolation are: it is a piecewise

polynomial interpolation. For the non-piecewise polynomial interpolation

algorithms, the approximation of arbitrary functions is made on closed intervals by

the use of polynomials. The oscillatory nature of high-degree polynomials and the

property that a fluctuation over a small portion of the interval can induce large

fluctuations over the entire range restrict their use in many situations.

Second, cubic spline interpolation is a non-linear piecewise polynomial

approximation. Although linear piecewise polynomial approximation is easier to

apply than the non-linear piecewise approximation, the big disadvantage of linear

approximation is that at each of the endpoints of the subintervals these is no

assurance of differentiability, which, in a geometrical context, means that the
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interpolating function is not "smooth" at these points. Often it is clear from

physical conditions that such a smoothness condition is required and that the

approximation function must be continuously differentiable. Since interbeat

interval is a non-linear system, a non-linear interpolation could fit data more

accurately than a linear interpolation. A general cubic polynomial involves four

constants (aj,bj,cj,dj), so there is sufficient flexibility in the cubic spline

procedure to ensure not only that the interpolant is continuously differentiable on

the interval, but also that has a continuous second derivative on the interval. Also,

the linear interpolation may reduce the fluctuation in the data. If the linear

interpolation is used to interpolate the interbeat interval, it may result in less heart

rate variability, and thus may cause the detected vagal activity to be less than it

should be.

In S-Plus, the procedure of reconstructing premature contractions using

cubic spline interpolation is very simple. When a premature contraction occurs, the

interval between the premature beat and the preceding beat is shorted, and the

interval between the premature beat and the next succeeding beat is prolonged.

The shortened and the prolonged intervals are represented as an exceptionally

small followed by an exceptionally large interval value. These two values need to

be removed before cubic polynomial interpolation is performed. The removing

procedure could be done manually. After all the irregular intervals caused by

premature contractions are removed, cubic polynomial interpolation is performed

on the series which contains the remaining normal interbeat intervals by using the

"spline" algorithm existing in S-Plus. Afterwards, the corresponding interpolated
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values are used to replace the abnormal intervals caused by premature beats in the

original interbeat interval series. Since premature contractions may occur

continuously, this may result in more than two abnormal interval values appearing

continuously. All these abnormal interval data have to be removed before

performing the cubic spline interpolation. In this case, the number of points needed

to be interpolated between each pair of interval values is determined by the

number of points that have been continuously removed. Figure 3.19 demonstrates

a group of interbeat intervals of an EKG signal collected from a normal subject.

The x-axis represents index number and the y-axis represents the interbeat interval

values. Figure 3.19 (a) demonstrates the original interbeat intervals which contain

premature contractions, while Figure 3.19 (b) demonstrates the reconstructed

interbeat intervals using the cubic spline interpolation algorithm, and Figure 3.19

(c) demonstrates the reconstructed R peak position represented by the vertical lines

in the original EKG data..

Although the cubic polynomial is a simple, powerful algorithm suggested in

this study to handle R-R interval data that contain occasional premature

contractions, it must be stressed that the characteristics of the data are changed no

matter what kind of algorithms are used; thus, it is preferable to use data segments

that are free from premature contractions.
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Figure 3.19 Premature beat reconstruction. (a) A interbeat intervals series which
contains a premature beat. (b) The same interbeat intervals in which premature
beat has been reconstructed. (c). The reconstructed peak position in the original
EKG data.



CHAPTER 4

DISCUSSION AND CONCLUSIONS

4.1 Low Vagal Activity in Stroke Survivors

As discussed in section 1.2, it is clear that, in the power spectral analysis of heart

rate variability, the respiration peak corresponding to the RSA is purely

parasympathetic in origin. Individual differences of area values under respiration

peaks have been interpreted as differences in basal cardiac vagal tone, and within

subjects changes of area values under respiration peaks have been suggested to

correspond to alterations in vagal tone. Stroke survivor test results shown in Table

3.1 demonstrated that the HRV power values within the respiration peak is much

lower in stroke survivors than that in normal controls. This suggests that the stroke

survivors have significantly less parasympathetic reserve than the control subjects.

The result is consistent with the previous pilot work performed by Seshadri and

Reisman[23]. As a continuation of their study, the contribution of this study is that

Holter recorder is used to collect all the EKG data from the subjects and the

subject's age and gender are matched during the test. Both the using of a Holter

recorder and the age matching bring a more powerful evidence to illustrate that

stroke survivors have less vagal activity than the normal controls. Since it has been

shown that aging results in an attenuation of vagal-cardiac activity[24], therefore,

without age matching, the evidence becomes less powerful. Also, using a Holter

71



72

recorder to collect data could reduce the laboratory effect, and therefore, reduce

subject's mental stress, which also affects vagal activity.

The reasons that stroke survivors have less parasympathetic activity than

normal people are not quite clear. Our hypothesis is that cardiac autonomic

innervation originates in the brain stem (parasympathetic) and spinal (sympathetic)

nuclei. Damage may be caused in one or more of these areas in stroke survivors. If

one or more of the areas believed to be involved with autonomic function are

damaged, this may cause a change in autonomic activity and result in a decrease of

parasympathetic activity. Studies showed that vagal activity in humans was

significantly decreased in patients with brain stem as well as hemispheric

lesions[25] acutely after stroke. The reason for low vagal activity in stroke

survivors has to be further investigated.

In all subjects, HRV power was significantly lower and virtually non-

existent in some cases during EXERCISE. HRV power during NON-PACED

breathing was lower than that of PACED breathing at 8bpm. This suggested that

exercise might not be required to assess cardiac function in stroke survivors, but

paced breathing should be strongly considered when HRV is assessed. This

observation needs to be further investigated.

4.2 Less Heart Rate Variations in Stroke Survivors

The box plot discussed in section 3.1.2 is a simple graphic representation showing

the center and spread of a distribution, along with a display of unusually deviant

data points, called outliers. Box plots provide a very powerful method for
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visualizing the rough distribution shape of two samples of data. The box plots of

the IBIs from both controls and stroke survivors showed significantly larger

distribution of IBIs in the controls than that in the stroke survivors, which

suggested that heart rate fluctuates more in controls than that in stroke survivors.

This result was in agreement with the result shown in section 4.1 that stroke

survivors had lower vagal activity than controls.

It is clear that, although inherent rhythmicity of the heart is due to a natural

pacemaker situated in the sinoatrial node, continuous beat-to-beat control of heart

rate is dependent on the relative balance between sympathetic and parasympathetic

nerve impulses delivered from the brain to the SA node. The parasympathetic

nervous system directly mediates short-term heart rate variations, thus, decreased

vagal tone may contribute to the reduced beat-to-beat variation. Furthermore,

increased sympathetic activation can reduce short-term heart rate variability by

inhibiting vagal activation of the heart. Thus, either sympathetic hyperactivity or

parasympathetic hypoactivity, or some interaction of the two, may underlie the

reduced beat-to-beat heart variation. In stroke survivors, there was a sustained low

variation of heart rate suggesting that stroke survivors may suffer from one or

more aspects of autonomic nervous system imbalance.

4.3 Vagal Activities Change with the Respiration Rate

We have observed that vagal activities related to respiration rate changed for both

control subjects and stroke survivors. With the exception of 58/M in the stroke

survivor group, HRV power during NON-PACED: sitting and supine was lower
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than that of PACED: 8bpm in all subjects. This reflected an increase of HRV

power resulting from ventilating approximately at the frequency of ventilatory

sinus arrhythmia. In addition, with exception of 60/M in the normal group, HRV

power decreased progressively in all subjects during PACED: 8bpm, 12bpm and

18bpm. In 1990, Walker showed that hypoxia increased heart rate due to a

predominance of the cardiac sympathetic over cardiac vagal activation.[12]

Hyperoxia resulted in bradycardia from decreased cardiac sympathetic nerve

discharges. Hypocapnia caused a cardioaccelatory response due to local effect on

heart rate despite significant increased in cardiac vagal discharges. Hypercapnia

excited cardiac sympathetic and inhibited cardiac vagal activity. The progressively

decreased HRV power in all subjects during PACED: 8bpm, 12bpm, and 18bpm

reflected the effect of hypocapnia.

4.4 Vagal Withdrawal with Audience

It is known complex social factors can influence physiological activity, behavior,

and health, but little is known about how essential components of these factors (

e.g. human association, observation ) affect human physiology. The major finding

of the oral presentation test was that high frequency range area values diminished

significantly during the presentation in presence of an audience, when compared to

high frequency areas during a presentation without an audience. It is also found

that, in some cases, the high frequency range area values during the anticipation of

making a presentation were lower than those during the presentation without

audience. The result showed the interference of the presence of an audience on the
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autonomic behavior. Due to the uncertainty created by an audience, the presence

of an audience increased the subject's "arousal" level which results in the decrease

of the subject's parasympathetic activity. The effects of an audience on the power

spectrum of HRV may be interpreted as follows: first, subjects had a fright stage

of appearing in front of an audience. Second, subjects were anxious about

presenting their data in the presence of a critical and evaluative audience. Changes

of parasympathetic activity revealed greater activation during a task under

audience over under no-audience conditions. The social psychological influence

resulted in signficantly vagal tone withdrawal in the presence of an audience.

Within our sample we noticed high and low autonomic reactors. Due to the

smal1 number of participants, we did not attempt to separate these two groups. In

this study, we failed to detect a reciprocal sympathetic activation during a

parasympathetic withdrawal. This is partly due to the unknown contributions of

autonomic and physiological processes modulating the low frequency component.



CHAPTER 5

FUTURE WORK

Power spectral analysis of heart rate variability is a potentially powerful tool for

exploring neurocardiac dysfunction in patients with a variety of cardiac and

autonomic disorders. In this study, pilot data have been obtained from stroke

survivor tests as well as oral presentation tests in which power spectral analysis of

HRV has been applied. In the following, some suggestions have been proposed for

future work:

1)The EKG-derived respiration method needs to be tested further. In the stroke

survivor test, although respiration signals were derived from the Holier EKG

signal of all subjects from al1 tests, the respiration signals were only treated as a

reference, and were not used to determined the high frequency (respiration) peaks

in the spectrum of HRV. This is because the correlation between Holter EKG

derived respiration and original respiration has not been tested accurately. It has

been proved that the regular EKG derived respiration is strongly associated with

the original respiration, However, due to the distortion of Holter EKGs caused by

the play back system, the spectrum of the respiration derived from the Holter

EKGs has been distorted by some degree. Although in Zhao and Reisman's study,

it was shown that the overall correlation coefficient of the central frequencies of

the derived and original respiration spectra for Holter data from 3 normal subjects

was 0.9965[13}, it was not sufficient to prove that the respiration derived from the

Holter EKGs is strongly correlated with the original respiration, because their
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Holter EKGs is strongly correlated with the original respiration, because their

sample is very small (only 3 subjects). The correlation of the respiration derived

from the Holter EKGs with the original respiration could be tested by comparing

spectra of both signals. The experimental protocol for this purpose could follow

the routine experimental protocol . designed in the investigation of heart rate

variability for stroke survivors performed at the Kessler Institute for

Rehabilitation, which includes the collection of two lead EKG signals (leads I and

III)and respiration on healthy subjects during different test conditions. such as 1)

rest, non-paced breathing, 2) rest, paced breathing at different rates, 3) exercising

at different levels, and 4) recovery. The respiration data needs to be collected

simultaneously with the EKG data. The respiration wave could be recorded using

impedance pneumography. The basic working principle of the impedance

pneumography is to apply a constant high frequency current to the chest and the

resulting voltage reflecting the impedance changes due to the filling and emptying

of the lungs during respiration is detected.

After EKGs and respiration data are collected under different test

conditions, respiration signals could be derived from the two lead EKGs using the

EKG derived respiration algorithm, and the spectra of derived respiration as well

as the spectra of original respiration could be derived. Then, the distortion of the

derived respiration could be tested by performing the cross correlation between the

derived respiration and the original respiration.

2) The stroke survivor study should be continued. The stroke survivor project is a

long term study. The major purposes of this study are a) to determine whether
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HRV is related to current functional limitations and is a significant factor in

predicting functional outcome. b) to determine the efficacy of HRV in the

prediction of cardiac complications after stroke. The current pilot data only

demonstrated different vagal activities between norma1 controls and stroke

survivors. In order to reach the major purpose, the protocol will need to be

improved, for example, the information during recovery period after exercise

should be recorded so that the activity of the autonomic nervous system after

exercise could be understood. More stroke survivors wil1 need to be recruited to be

evaluated at particular time intervals after stroke onset.

3) The oral presentation test is also an unfinished study. The pilot data of the oral

presentation test only revealed the fact that vagal activity diminished significantly

with the anticipation of making a presentation as well as during the presentation in

the presence of an audience, when compared to vagal activity during a presentation

without an audience. With increasing sample size, we might be able to decide

whether subjects have high or low "autonomic" reactors, or we might be able to

decide whether the evoked response during an oral presentation test reduces

overall cardiovascular health.



APPENDIX A

PROCEDURE FOR CALCULATING VAGAL ACTIVITY

In the following, we are going to use a sample data file t199.asc to explain the

syntax of the programs used to calculate vagal activity. t199.asc file contains two

columns EKG data: 1) lead I and 2) lead III. The length of each column in the file

t199 in S-Plus is assumed to be 30003

1	 Converts data file from ASCII code into S code.
t199 matrix(scan("_datai\t199.asc",sep=",",skip=1),ncol=2,byrow=T)

2	 Cuts the beginning and the end of the file.
t199.c_t199[3:30000,]

3	 Detects R peaks in the EKG data.
t199.1_11t1ws(t199.c[,2])

4	 If miss detection is present, use mqrs to detect the missed R peaks
manually until all R peaks are detected.
t199.m_mqrs(t199.c[,2]4199.1Spk,pout(diff(t199.1$pk)))

5	 If double detection is present, use dqrs to delete all double detected R
peaks.
a) If changes were made in mqrs.
t199.d_dqrs(t199.c[,2],t199.m)

b)	 If changes were not made in mgrs.
t199.d_dqrs(t199.c[,2],t199.1$pk)

7	 Makes final file
a) If no changes were made in dqrs or mgrs.
t199.fin t199.1
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b) If changes were made in dqrs or dqrs+mqrs.
t199.fin fworkbh(t199.d)

c)	 If no changes were made in dqrs, but changes were made in mqrs.
t199.fin fworkbh(t199.m)

8	 Calculates vagal activity.
t199.area_spect1(t99.fin$isp,low.freq=##, High.freq=##, srate=200)
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APPENDIX B

PROCEDURE FOR DERIVING RESPIRATION FROM EKG

In the following, the commands of programs used to derived respiration from EKG

is going to be explained. Before deriving respiration from EKG, the procedures in

Appendix A must be completed.

1	 Calculates the areas under QRS complexes in the EKG from lead I.
t199.qrl_qrsca(t199.c[,1],t199.fin$pk)

2	 Calclilates the area under QRS complexes in the EKG from lead III.
t199.qr3_qrsca(t199.c[,2],t199.fin$pk)

3	 Calculates the angle of the cardiac electrical vector axis
t199.du_duall(t199.qrl,t199.qr3)

4	 Generates derived respiration signal
t199.dr edr(t199.du)

5	 Generates the spectrum of derived respiration signal.
t199.fn_fsph(t199.dr)
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APPENDIX C

S-PLUS PROGRAMS

1. FRPK

furiction (x, zf 	 15, mindiff = 50, qhg = 0.25, zdelta =
0, tooruff

= 0.8, hash . 30)
{

#x: ecg signal
x.pk <- lwzx(x, f = zf, mindiff = mindiff, qA =

qhg, delta
= zdelta, hash = hash)

pk ‹ - x.pk$pk
ibi <- diff(pk)
mruff <- max(abs(ruff(ibi)))
if(mruff >= tooruff) {

print(paste("IBI'S MAY BE TOO RUFF"))
print(paste("MAX IBI IS", max(ibi), 11 [ It

, (1:length(
ibi)) [ibi >= max(ibi)], "]"))

print (ibi)

}
pk
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)] + bb
abline (v = tx, lty = 2)
cx <- c (cx, tx)

}

}

}

print taA)
for (i in l: length ( cx) ) {

qxu <- qx [qx < cx
qxo <- qx [qx > cx i]
qA <- c (qxu, cx [i] qxo)
print (length (qx) )

}

#qfx <- list (qx = qx, ibi=diff (qx) )
qfx <- cpc
qfx 	 •

}
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3.QRSCA

function(x, pkx, ac = 7, k = 2)

#x:ecg data (col 2), pkx: R peak, hwin:
hwin_ac
if(pkx[1] < hwin) {

pkx <- pkx(2:/ength(pkx)]
}
if(length(x) < (pkx[length(pkx)] + 3 * hwiri)) {

pkx <- pkx(1:(length(pkx) - 1) ]
}

lwf <-.1owess(1:length(x), x, f 	 45/1ength(x) ,
iter 	 2,

delta 	 0.1)$y
x <- x - lwf
minx <- vector("numeric", 0)
for (i in l:length(pkx)) {

minx]. <- ((pkx(i] - hwin):pkx(i])[(x[(p
kx[i] -

hwin):pkx(i]]) <= min(x((pkx(i]
- hwin):

pkx(i]])]
if(length(minx1) > 1) {

minxl <- minxl(length(minx1)]
}
minx <- c (minx, minxl)

}
if(length(pkx) != length (minx)) {

print(paste("Number of Q's is not equal
to that of R's"

))
print(paste("Q's:", length(rninx)))
print(paste( -"R's:", length(pkx)))
stop()

}
shwd <- round(mean(pkx - minx) * k)
qrsca <- vector("numeric", 0)
for(i in l:length(minx)) {

cols <- x((minx(i) + 1):(minx[i] + shwd

)1
cal <- sum(cols)
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dft <- x[minx(i]] * shwd
rca <- cal - dft
qrsca <- c(qrsca, rca)

}
par(mfrow = c(1, 1))
plot (qrsca)
z <- list (qrsca qrsca, pkx = pkx, x = x, minx

minx)

)
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4. RMBQ

function (x)
{

#x:output of qrsca
xl 	 x$qrsca
x2 ‹- x$pkx
plot(xl)
xs 	 1:length(xl)
bqa ‹- identify(xs, xl, plot = T)
j <- 0
for (i in 1:length(bqa)) {

x2 	 x2[ - (pqa(ii 	 j))
j <- j + 1

}

x2
}
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5. DUALL

function(xl, x2)

{

#xl:first lead qrsca;x2:second lead qrsca
qcal <- xl$qrsca
qca2 	 x2$qrsca
qrsca <- atan(qcal/qca2)
z <- list(qrsca = qrsca, pkx = xl$pkx)
z

}
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6. EDR

function (x)

{
# x: output of qrsca

pkx < - x$pkx
qrsca <- x$qrsca
n <- pkx(length(pkx)] - pkx(1] + 1
iedr <- spline(pkx, qrsca, n)
sted <- c(iedr$x(1], iedr$x[length(iedr$x)])
z <- list(iedr 	 iedr$y, sted = sted)
z

}
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7. FSP

function(xl, x2, title = "", f2 = 0.2)
{

#xl: resp signal; x2: edr output
orresp <- x1
edresp <- x2$iedr
stp <- x2$sted(l]
edp <- x2$sted[2]
orresp <- orresp[stp:edp]
d.orp <- orresp[seq(1, length(edresp), 10)]
d.orpl <- lowess(1:length(d.orp), d.orp, f = 0.

3, iter = 2,
delta = ceiling((length(d.orp) * 0.3)18

) ) $y
d.orps <- spect(d.orp 	 d.orpl, nt = 8192, ns =

6)
d.edr <- edresp(seq(1, lerigth(edresp), 10)]
d.edr1 <- lowess(1:length(d.edr), d.edr, f 	 f2

, iter = 2, 	 •
delta = ceiling((length(d.edr) * 0.3) 18

))$Y
d.edrs <- spect(d.edr - d.edrl, nt = 8192, ns =

6)
z <- list(d.orp = d.orp, d.edr = d.edr, d.orps

d.orps(1:
330], d.edrs = d.edrs[1:330])
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8. DGF

function(x, title = "")
{
#x: output if fsp

d.orp <- x$d.orp
d.edr c- A$d.edr
d.orps <- x$d.orps
d.edrs <- x$d.edrs
xf <- ((1:330) - 1)18192 * 20
dev.set(which = 2)
par(mfrow = c(2, 1), mar = c(4, 5, 3, 1))
plot(d.orp, type = "1", main = paste(titie, "-0

riginal"))
plot(d.edr, type = "1", main = paste(title, "-D

erivation")

dev.set(which = 3)
par(mfrow = c (2, 1), mar = c (4, 5, 3, 1))
plot(xf, d.orps[1:330], type = "1", blab = "Fre

quency(Hz)",
ylab = "Power", main = paste(title, "-0

riginal"))
plot(xf, d.edrs[1:330], type = "1", xlab = "Fre

quency(Hz)",
ylab = "Power", main = paste(title, "-D

erivation")
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9.SPCP

functioned, h = 0.3, nt = 8192, sr = 20, fl = 1, f2 = 1
00)
f 	 •
#x:output of fsp

fn <- sr/(nt *
Al <- x$d.orps
A2 <- x$d.edrs
xscal <- l:330
Al <- spline(xscal, xl)$y
x2 <- spline(xscal, x2)$y
fl <- round(length(bl) * (f11100))
f2 <- round(length(xl) * (f2/100))
xl.c <- xl(fl:f2]
x2.c <- bl(fl:f2]
xl.mc <- (1:length(xl.c))((xl.c >= max(xl.c))]
x2.mc <- (1:length(x2.c))((x2.c >= max(x2.c))]
Al.m <- Al.mc + fi - 1
x2.m <- x2.mc + fi - 1
xll.r <- rev(x1[1:xl.m])
x12 <- xl(xl.m:length(x1)]
x21.r <- rev(x2(1:x2.m])
x22 <- x2(x2.m:length(x2)]
f2.lr <- fml(x21.r, xl[xl.m] * h)
fl.l <- xl.m - f2.1r + 1
fl.hm <- fml(x12, xl[xl.m] * h)
fl.h <- xl.m + f2.hm - 1
f2 .1r 	 fml(x21.r, x2(x2.m] * h)
f2.1 <- A2.m - f2.1r + 1
f2.hm <- fm1(x22, x2[x2.m] * h)
f2.h <- x2.m + f2.hm - 1
al <- sum(xl[f1.1:(f2.h - 1)])
a2 <- sum(x2[f2.1:(f2.h 	 1)])
ai.1 <- al/(xl(xl.m] * (fl.h - f1.1))
ai.2 <- a2/(x2(x2.m] * (f2.h - f2.1))
hal.sm <- x1 [fl.1]
for(i in (f2.1 + 1):f2.h) {

hal <- xl[i]
hal.sm <- sum(hal.sm, hal)
if(hal.sm >. (a112)) {

cal <- (1:length(x1))[(xl 	 xl
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(il)]
break

}
}

ha2.srn <- x2 [f2.1]
for(i in (f2.1 + 1):f2.h) f

ha2.srn <- if(ha2.sm, x2(ii)
if(ha2.sm >= a212) {

cf2 <- (1:length(x2))[(x2 	 x2
NJ)]

break
}

}

z <- list (fl 	 c(fl.l, f1.h, cfl) * fn, f2 = c(
f2.1, f2.h,

cf2) * fn, ra 	 c(ai.l, ai.2))
z
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