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ABSTRACT

AN ADAPTIVE ASYNCHRONOUS CDMA RECEIVER
AND ITS CONVERGENCE ANALYSIS

by
Lizhi Zhong

An adaptive CDMA receiver scheme assuming perfect synchronization has

been generalized in this thesis to the asynchronous channel, a much more practical

assumption of the real system. Similar formulas are derived and as its synchronous

version, it is still near-far resistant and requires no knowldge of received signal

amplitudes and training sequences. Thus, sophisticated high-precision power control

and user power estimation are not necessary and the receiver is particularly useful

in mobile communications since it can adjust itself adaptively to changes in the

power of the users. The convergence and transient behavior of the receiver are also

investigated and found to have similar results to its synchronous counterpart.

A new way to analyze the error performance of the decorrelator is also proposed

and the error probability of the one-shot decorrelator is formulated for the general

case in an alternative way using the new idea, which is much simpler. Furthermore,

the singularity problem associated with the one-shot decorrelator is addressed and

its effect on the performance of the receiver is discussed.



AN ADAPTIVE ASYNCHRONOUS CDMA RECEIVER
AND ITS CONVERGENCE ANALYSIS

by
Lizhi Zhong

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

January 1995



APPROVAL PAGE

AN ADAPTIVE ASYNCHRONOUS CDMA RECEIVER
AND ITS CONVERGENCE ANALYSIS

Lizhi Thong

Dr. Zoran Siveski, Thesis Advisor 	 Date
Assistant Professor of Electrical and Computer Engineering
New Jersey Institute of Technology

Dr. Nirwan Ansari, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering
New Jersey Institute of Technology

Dr. Yeheskel Bar-Ness, Committee Member 	 Date
Distinguished Profe or of Electrical and Computer Engineering

----'''N s

New Jersey Institute of Technology



BIOGRAPHICAL SKETCH

Author: 	 Lizhi Zhong

Degree: 	 Master of Science in Electrical Engineering

Date: 	 January 1995

Undergraduate and Graduate Education:

is Master of Science in Electrical Engineering,
New Jersey Institute of Technology,
Newark, New Jersey, 1995

o Bachelor of Science in Electrical Engineering,
Tsinghua University,
Beijing, P.R.China, 1993

Major: 	 Electrical Engineering

Presentations and Publications:

Z. Siveski, L. Zhong and Y. Bar-Ness, "Adaptive Multiuser CDMA Detector for
Asynchronous AWGN Channels," Presented in the 5th IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications, The
Hague, The Netherlands, Sept. 1994.

iv



This thesis is dedicated to Mom, Dad
and my dear sister, Dena.



ACKNOWLEDGMENT

I would like to acknowledge the help of several individuals in the preparation

of this thesis. First and foremost, I must thank Dr. Zoran Siveski for his useful

suggetions and kind assistance throughout the writing of the thesis. I would also

like to thank Dr. Nirwan Ansari, who gave me valuable advice, and Prof. Yeheskel

Bar-Ness, who took a special interest and provided timely support.

I have benefited greatly from David. Chen, who supplied me with the programs

for the synchronous case of the detector and who gave me indispensable help in the

programming details. I would particularly like to express my appreciation to Frank

Viehofer, whose partnership I cherish.

I feel extremely fortunate to have worked with Lisa Fitton, Susan Wu, Xinyu

Huang, Sandra Liu, Sarah Zhu, Gangsheng Wang, Murali Arulambalam, Amit Shah

and all the friends in the Center for Communications and Signal Processing.

Most of all, I would like to thank my parents and my sister, for all their love

and support.

vi



TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	  1

2 SYSTEM MODEL 	  4

3 DECORRELATOR  	 6

3.1 Error Probability at the Output of the Decorrelator  	 6

3.2 Optimum Weights 	  10

	

3.3 Singularity Problem     12

4 ADAPTIVE WEIGHTS 	  18

4.1 The Updating Rule 	  18

4.2 Convergence and Stability Analysis 	  19

4.3 Steady State Values of the Weights 	  20

4.4 Simulation Results 	  21

5 ERROR PERFORMANCE AT THE OUTPUT 	  26

5.1 Evaluation of the Output Error Probability 	  26

5.2 Numerical Results 	  27

6 CONCLUSION 	  32

APPENDIX A Decorrelator (two-user case) 	  33

APPENDIX B Weights (two-user case) 	  37

APPENDIX C Error Probability at the Output (two-user case) 	  41

APPENDIX D Expectations 	  43

	

APPENDIX E System Structure    44

REFERENCES 	  46

vii



LIST OF FIGURES

Figure 	 Page

2.1 System structure 	 4

3.1 The situations in the i-th symbol interval of user 1 	 6

3.2 Distribution of the error probability of the decorrelator over 72 and 7.3 . . 15

3.3 "Continuous" singular points for T3 = 2/7T 	 16

3.4 "Discontinuous" singular points for 73 = 3/7T 	 16

3.5 The behavior of the "continuous" singular points for T 3 = 5/7T 	 17

4.1 The effect of kt on the updating process of the weight w2 1 with SNR1 =
8dB, SNR2  = 12dB, p12 = 0.2, p21 = 0.6, ei = 0.4, K = 2 	 22

4.2 The ensemble behavior of the weight w 21 in convergence with t = 0.2 . . 22

4.3 The convergence of Pe i with SNR2 = 12dB, ,a = 0.2 and K = 2 	 23

4.4 The effect of p on the updating process of the weight w13 with SNR1 =
SNR 2 --= SNR3 = 8dB, r2 = T/7, 7-3 = 5T/7 and K = 3 	 23

4.5 The ensemble behavior of the weight w 13 in convergence with il = 0.2 . . 24

4.6 The convergence of Pe i with ,u = 0.2 and K = 3 	 24

4.7 Simulation flow chart 	 25

5.1 Error probability of user 1 for K = 2, P12 = 0.2, P21 = 0.6, e 1 = 0.4
(1) a 2 /a i = 0.6	 (2) a m /a2 = 0.6 	 28

5.2 Error probability of user 1 for K = 2, SNR1 = 8 dB, p12 = 0.2, /921 = 0.6,
ei = 0.4 	 28

5.3 Error probability of user 1 for K = 2    30

5.4 Error probability of user 1 for K=3, SNRi = 12 dB, i = 1, 2, 3 	 30

5.5 Error probability of user 1 for K=3, SNR 1 = 8 dB 	 31

5.6 Gold sequences 	 31

E.1 System structure 	 44

vu'



CHAPTER 1

INTRODUCTION

Code division multiple access (CDMA) is the future of digital communications. With

increased capacity, improved quality and greater coverage, it is the long-term answer

to the cellular industry's most pressing issues. Actually, the Interim Standard 95 (IS-

95) of CDMA was adopted by the Telecommunications Industry Association (TIA)

in 1993.

While it becomes more and more interesting to the industry, the research on

CDMA in academia has been ongoing for more than ten years. The conventional

single-user detector was found to be unfit for multiuser detection since it ignores the

presence of multiaccess interference and therefore suffers severe performance degra-

dation in the presence of strong interference, which is called the "near-far" problem.

To cope with that, sophisticated high-precision power control is needed.

Therefore, developing near-far resistant detectors by exploiting the structure

of multi-access interference became the main issue in multiuser detection. The

optimum receiver proposed by Verdu [1] has the best possible performance achievable

in Gaussian noise channels. However, the performance comes at the expense of the

exponential complexity in the number of users, and the knowledge of the received

amplitudes, signature waveforms and timing of all users, which are usually not fixed

and known in advance.

To greatly reduce the complexity of the optimum receiver with little trade off

on performance, several suboptimum receivers have been proposed. These establish

the basic structures for receivers proposed later. Notable among them are the decor-

relating detector of Lupas and Verdu [2] [3]; the multistage detector of Varanasi and

1
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Aazhang [4] [5]; the decision-feedback multiuser detectors of Duel-Hallen [6]; and the

suboptimum detectors of Xie, Rushforth and Short [7] [8].

However, all these receivers still need the knowledge of the received amplitudes,

signature waveforms and timing of all users. On the other hand, the adaptive

detectors eliminate the need for the knowledge of some of the parameters. Spurred

by their applications in mobile communications, where some of the parameters are

usually not fixed, adaptive multiuser detection has roused a lot of interest in the

multiuser detection area. A comprehensive introduction to various adaptive detectors

can be found in [9]. All of them belong to one of two groups: the adaptive detection

with training and without training.

The first group requires training sequences as the reference in the adaptation.

This includes all the linear minimum mean-square error (MMSE) detectors, such as

the suboptimum detector proposed by Xie, Short and Rushforth. [8] and the adaptive

receiver proposed by Rapajic and Vucetic [10]. The drawback of the detectors in this

group is that in the asynchronous channel, where the interferers arrive and leave

asynchronously, the sudden coming or going of an interference may result in the

need for a new training sequence and the data transmission of the desired user has

to be interrupted frequently to transmit the new training sequence.

The adaptive detectors that do not require training sequences are more practical

in implementation. Among them are the blind multiuser detector by Honig [11] and

the blind self-tuning maximum likelihood sequence estimator of Paris [12].

The receiver scheme investigated in this thesis has linear (in the number of

users) complexity and is near-far resistant. But its most important features are that

it is adaptive and it requires neither the knowledge of the received amplitude of any

user nor training sequences. Thus, high precision power control and power estimation

are not necessary and the receiver can also adjust itself quickly to changes in the
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power of the users. This is essential to mobile communications, where the power of

users keeps changing.

The synchronous version of the detector was proposed by Z. Siveski, Y. Bar-

Ness and D.W. Chen [13] and the convergence and stability analysis was given by

B. Zhu, N. Ansari, Z. Siveski and Y. Bar-Ness [14]. The generalization of it to the

asynchronous case was presented by Z. Siveski, L. Zhong and Y. Bar-Ness [15]. The

comprehensive version of the paper, including the convergence analysis, is enclosed

in. the thesis.

The structure of the system and mathematical model of it are shown in Chapter

2. Chapter 3 formulates the error probability of the decorrelator used at the first

stage of the system with a new idea. The singularity problem associated with it is

also discussed. The updating rule of the weights at the second stage, which optimize

the output signal-to-noise-plus-interference ratio (SNIR), is investigated in Chapter

4. The convergence of the weights has been proved and their steady state values

are given. Simulation results showing the transient behavior of the weights are

also included. In Chaper 5, the error performance at the output of the detector is

evaluated and shown to have superior performance to the conventional receiver and

decorrelator in a scenario of practical interest.



CHAPTER 2

SYSTEM MODEL

The structure of the system is shown below.

Figure 2.1 System structure

In a multiuser environment, K users share the same channel with the unit

energy signature waveform s k (t), k = 1,... K of duration T, assigned to each of

them. The information bits bk (i) E {+1} for the symbol interval i have the same

duration T. The waveform r(t) at the input of the receiver, which has a bank of

matched filters as its front end, is expressed as:

where ri(t) is a zero-mean, white Gaussian noise with the two-sided power spectral

density No /2, and a k and τk are the received energy and relative delay for user k,

respectively. While it is assumed that precise relative delay estimates are available

for all users, their amplitudes are considered to be unknown to the receiver.

Without loss of generality, the attention will be on detection of bit i of user 1,

which is taken as the reference in time. It will be assumed that 0 	 < T2 <	 <

4
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τK < T. The sampled output of the matched filter for user 1 is then:

The normalized partial cross-correlations for k 2, ... , K are:

Also, n1  (i)  = ∫T0 n(t)s1(t)dt is a zero-mean Gaussian random variable with variance

N0 /2. Using the vector notations where

The multistage detector forms an estimate of the multiuser interference as the

weighted vector of tentative decisions on symbols that interfere with b 1(i) directly,

and subtracts it from the matched filter output. The final decision statistics y 1(i)

and the corresponding final decision for bit i of user 1 are:

where wi(i) = [w21, • • • , tom, w12, • • • , w1K]T are the corresponding weights, and

b 1 (i) = [b2(i — 1), 	 ,bK(i — 1), b 2 (i), • • • ,bK(i)]T is the vector of tentative decisions

affecting bit i of user 1.

In this thesis, one-shot decorrelated tentative decision statistics are considered.

The vector of the decorrelator outputs and the corresponding tentative decisions

affecting bit i of user 1 are:

where 1 (i) = [62 (i — 1), 	 ξK(i — 1), ξ2(i), 	 . . . , ξK(i)]T is a zero-mean Gaussian

vector having the covariance matrix S i ..



CHAPTER 3

DECORRELATOR

3.1 Error Probability at the Output of the Decorrelator

Let us consider each symbol interval separately and take bit i of user 1 as the

reference in time. Assuming without loss of generality that 0 = 7.1 < τ2 < 	 . . . <

τK < T, bit i of user 1, which occupies the interval [0, T], overlaps with bit i — 1

of user k, k = 2, 3, 	 ,K over the block [0, T .2], with bit i of user 2, bit i — 1

of user k, k = 3,4, ... ,K over the block [τ2 ,1-3 ], 	 , and with bit i of user k,

k 	 2,3, ... ,K over the block [τK,T]. We can view the situation in each block

as a Kuser synchronous channel with unit-energy signature waveform!

is the partial energy of the signals over the block [Ti , 	 The situations are illus-

trated in Figure 3.1 below.

Figure 3.1 The situations in the i-th symbol interval of user 1

6
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Therefore, results derived for the synchronous case [13] can be used here.

Without loss of generality, we focus our attention on the first block [0,72]. The

received signal r(t) in this block can be expressed as:

To simplify the notations, the index i will be omitted where no confusion will

be caused.

The sampled outputs of the bank of matched filters (sampled at t	 ) will

be:

Obviously, Pb1 is a symmetric matrix with diagonal elements equal to 1. nb1

, nKb1]T is the filtered Guassian noise random vector with covariance

E{nb1nt b1} = 	 No/2 Pbi.

The outputs of the decorrelator for the block [0, r2 ] are given as:
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and
No

Var(ξ1b1)= No/2 γb111,
2

where yb111 is the first diagonal element of the matrix Ґb1.

Similarly, for the kth block [τk, τk+1 ] of user 1, we will have

where γbk11 is the first diagonal element of the matrix Ґbk, while rbk 	 and the

(m, l)th element of the matrix Pbk is defined as:

The decorrelator outputs for the i-th symbol interval can be constructed as

the weighted sum of those of the K non-overlapping blocks [0, τ2], [τ2 , τ3 ], . . . , [TK,T].

Without loss of generality, attention is focused on user 1 only.

The decorrelator outputs for the i-th symbol interval of user 1 are:

where z1b = [z1b1, zZ1b2, . . . , z1bK]T, and the weights c1=C1b2, • • • c1bK]T•The

weights are selected in such a way that the error probability at the output of the

decorrelator for user 1 will be minimized. The derivation of such optimum weights

will be shown in the next section. The results are:
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which can be regarded as the parallel connections of the γbk11 of each block weighted

by the partial energy of that block. Γ11, is an important parameter of the decorrelator.

As will be shown later, it is related to the variance of the noise at the output of the

decorrelator and the asymptotic efficiency of the decorrelator.

Substituting the optimum values of the weights into Eq.(3.3), and using the

conclusion in Eq.(3.1), we will have:

where ξ1 = ΣKk=1 √єbk/ 	 γbk11 Ґ11ξ1bk and since 	 k	 1, 2, . . . , K belong to K non-

overlappin.g blocks, they are uncorrelated with each other, thus we have:

The tentative decision at the output of decorrelator for user 1 is 6 1 (i) =

sgn (z1 (i)).

The corresponding error probability is evaluated as:

Since the channel is a Binary Symmetric Channel (BSC),
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From the above equation, it is obvious that the asymptotic efficiency of the

decorrelator is:

To illustrate the above derivations, the two-user case will be described in detail

in Appendix A.

We can specify the system structure in more detail using the idea mentioned

above. This diagram is shown in Appendix E. One can see from the diagram that

altogether K 2 of matched filters are used in the receiver of K users, so only K

matched filters are needed for each user. The complexity of the receiver, which is

mainly measured by the number of matched filters used, is linear with the number

of users.

3.2 Optimum Weights

From Eq.(3.1) and Eq.(3.3), we have:
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The error probability at the output of the decorrelator for user 1 is evaluated

as follows:

Define

It is obvious that by maximizing L, the error probability at the output of the decor-

relator for user 1 will be minimized.

The optimum weights are evaluated as follows:

so the optimum weights will be the ones that satisfy the equations aL/ac1bj = 	 0,

1, 2, ... , K, which are true if and only if
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winch can be rewritten as:

and which will be satisfied if

If we set

where a is an arbitrary non-zero constant, the above equation will be satisfied.

The value of a has no effect on that of L and therefore the error probability,

and for sake of convenience, a = Γ11 is used in the thesis to make the Σ Kk=1, c1bk ebk

in Eq.(3.9) equal to 1 and simplify the equation.

So the optimum weights will be:

3.3 Singularity Problem

Let us look at the synchronous case first. In this case, the outputs of the decorrelator

[2] are given as:

where z and x are the outputs of the decorrelator and matched filters corre-

spondingly, and P is the cross-correlation matrix of the system. It is obvious that

when P is singular, the decorrelator doesn't work at all.

Therefore the asynchronous case, which can be regarded as K synchronous

channels, has the same problem. For each block where the cross-correlation matrix
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is singular, the corresponding weight can be set to zero so that only those blocks

where the decorrelator works normally will contribute to the overall performance in

the entire symbol interval. So if only some blocks of the symbol interval have the

singularities, we can still make a decorrelating tentative estimate for that symbol

interval.

If all the blocks in one symbol interval have the singularities at the same time,

it is obvious that we can't get any decorrelating tentative estimate for all users. In

this case, all weights will be set to zero, and zk = 0, k = 1,2, ... , K, i.e. there

would be neither data nor noise. From the view of our two-stage detector, it is like

disconnecting the decorrelating estimates for all users. So the final output at the

second stage of our detector will be conventional.

We define T = [τi τ2 . τK]T when all the blocks in one symbol interval have

the singularities at the same time as the singular point. One can claim that the

probability for such singular points are near zero since τ is uniformly distributed

over [0, T]K and those singular points are only a finite number of points in such a

continuous space. But there are two types of singular points. One is "continuous",

the other is not. For a "continuous" singular point, when 7- is very close to the

singular point, the corresponding performance will also be very close to that of the

singular point. If this is the case, the probability for the system to have near-

conventional performance will not be small and since the error probabilities in these

regions are generally high, their impact on the average error probability of the system

can not be neglected.

To solve the problem, we can either use signature sequences with larger lengths

(one can use signature sequences with more chips for one symbol interval, or for more

than one symbol intervals while keeping the number of chips per symbol interval the

same as before), or use the L-shot decorrelator (L > 1) to reduce the probability of

singularity. To eliminate the singularity problem completely, one should replace the
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inverse operation of the cross-correlation matrix in the decorrelating detector with

singular decomposition. And from the viewpoint of the control system, the cause of

singularity is that the data of some users is unobservable. Therefore, adding more

estimates at the first stage (such as more matched filters) will help to recover those

data vanishing clue to singularity.

Before we conclude the chapter, we will illustrate the aforementioned singularity

problem with some numerical results derived from accurate computation of the error

probability. At first, a three-dimensional graph of the error probability distribution

of the decorrelator or over the relative delays 'T2 and τ3 will be shown to give one an

overall picture "about how the relative delays influence the error probability of the

decorrelator. One can see from the picture that there are a lot of singular points,

some of which are "continuous", having an obvious impact on the performance of the

decorrelator (which is usually measured by its worst and averge error probability).

Actually, even though most of the points are below Pe i = 10', the average error

probability is 9.377649 x

To show the behavior of the singular points more clearly, cuts of the above

picture at τ3 = 2/7T and m = 3/7T are taken in Figure 3.3 and Figure 3.4. Two

types of singular points (a "continuous" one and a "discontinuous" one ) are shown.

The impact of decorrelating estimates with singularities on the second stage of

the proposed detector is shown in Figure 3.5 for the cut taken at m = 5/7T. The error

probability curve of the proposed detector is shown for the case of the decorrelator

and the conventional single-user detector. It can be seen that when both interfering

users have singularities, the error probabilty of the proposed detector is equal to that

of the conventinal single-user detector.

All these figures are for the three-user case and under the condition that

S N = 12dB , i 1, 2, 3.
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Figure 3.2 Distribution of the error probability of the decorrelator over T2 and T3

Figure 3.3 "Continuous" singular points for 7 -3 = 2/7T



Figure 3.4 "Discontinuous" singular points for 'r3 = 3/7T

16

Figure 3.5 The behavior of the "continuous" singular points for τ3 = 5/7T



CHAPTER 4

ADAPTIVE WEIGHTS

4.1 The Updating Rule

From Eq.(2.1) and Eq.(2.2), the output of The multistage detector for user 1 can be

expressed as:

The output noise-plus-interference power can be obtained by subtracting the

output signal power a l from the output power E{y21}. Thus, the SNIR, defined as

the ratio between the output signal power and the sum of the output noise and

interference power, can be calculated from:

It is obvious that the output signal-to-noise-plus-interference ratio SNIR, which

is a good measurement of the performance of the spread spectrum system, will be

maximized when the weights are selected in such a way that the ouput power E{y21}

is minimized.

In this thesis, the steepest descent algorithm is used to minimize the ouput

power Ely n. So the updating rule of the weights will be:

17
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where H i. = I — ,µE{b1(i)bT1 (i)} is a symmetric matrix with diagonal elements equal

to 1 — µ, (the two-user case is described in Appendix B).

4.2 Convergence and Stability Analysis

Let 6,(i) 	 — w1(i), where w01 is the steady state of w 1 (i). It follows from

Eq.(4.4) that:

The weights converge if and only if

which is therefore equivalent to

Since H i is a symmetric matrix, there exists a real diagonal matrix D i

diag[λ1 , λ 2 ,	 λ 2(K-1)], such that H, = QD1Q-1. So lim i-> ∞ H1 = 0 is further

equivalent to lim i -> ∞ D1 = 0, which is guaranteed by:

To relate Ai to ,a, we apply the Gershgorin theorem' to H 1 . For Vλj,  =

1, 2, ... , 2(K — 1), there exists at least an m E (1,2, 	 2K — 2) such that:

'If M is a complex square matrix of order n with its element denoted as m ij, every
characteristic root of the complex matrix M lies in at least one of the n disks with centers

mii , radii ri E7=1 17%1. [16]
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where c7, is the maximum value of the absolute values of the off-diagonal elements

of matrix E{b1(i) bT1(i)}, and E{bk(i)bk(i —1)} 0, k = 1,2, , K are taken into

account in the above derivation.

it follows that

It is obvious that when 0 < < 1 and 2(K 2)emax < 1,

which guarantees the convergence of w 1 .

4.3 Steady State Values of the Weights

From Eq.(4.3), the steady state values of the weights are evaluated as follows:

thus

From the properties of the decorrelator, it is easy to show that E{n1(i)ξk(i)} =

0, and E{n1(i)ξk(i — 1)}	 0, for k 1, so the first of the two expectations above is:

Therefore, the steady state values of the weights affecting the first output are:

The evaluation for the expectations in Eq.(4.9) are shown in Appendix D.
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4.4 Simulation Results

In all the simulations, the signal-to-noise ratio for user k is defined as SNRk =

ak/No, k = 1,2, ... , K. The expectations E{x1(i)b1(i)} and E{b1(i)b1(i)T} in

the updating rule of the weights are approximated by moving average with sliding

window. The flow chart of the simulation program is shown in Figure 4.7.

Figures 1.1 to 4.3 show results for the two-user case, with 1012 = 0.2, p 21 =

0.6, e l = 0.4 and SNR1 = 8dB. The results for the three-user case are shown

in Figures 4.1 to 4.6, where all three users' SNR's are fixed to 8dB, a condition

unfavorable to the proposed two-stage detector. The signature waveforms and timing

of all users are the same as those of Figure 5.5 for comparison.

Figure 4.1 shows the effect of the learning rate µ  on the updating process of

the weight w 21 for two-user case. It is clear that the larger the u is, the faster the

convergence will be, when the other parameters are the same. But larger undulation

is expected for a larger p. These are also true for an arbitrary number of users,

which are obvious from Eq.(4.2) and Eq.(4.6). The results for the three-user case are

shown in Figure 4.4.

The ensemble behavior of the weight w 2i from 100 independent simulations

is shown in Figure 4.2. Here, ,a is chosen as 0.2. Results which account for three

typical situations: strong interference, perfect power control and weak interference

are included, where SNR2 = 12dB, 8dB, 2dB respectively. Note that the number

of iterations required for the weight 1021 to reach steady state in all three cases is less

than 50, demonstrating a very fast convergence. Figure 4.5 shows that this is also

true for the three-user case and implicitly for an arbitrary number of users.

Finally, the transient behaviors of the system at the output for user 1 are shown

for the two-user case in Figure 4.3 and for the three-user case in Figure 4.6. The

results for each iteration are statistics from 50,000 independent simulations.
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Figure 4.1: The effect of u on the updating process of the weight w21 with SN.R1 =
8dB,SNR2 = 1 2dB, p12 0.2, P21 = 0.6, e 1 = 0.4,K = 2

Figure 4.2 The ensemble behavior of the weight w 21 in convergence with pc 0.2
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Figure 4.3 The convergence of Pei with SNR2 = 12dB, ,u = 0.2 and K = 2

Figure 4.4: The effect of p, on the updating process of the weight w13 with SNR1

SNR2 SNR3 = 8dB, T2 = T/7, τ3 = 5T/7 and K = 3
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Figure 4.5 The ensemble behavior of the weight w 13 in convergence with ti = 0.2
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Figure 4.6 The convergence of Pe i with ,u 0.2 and K 3



Figure 4.7 Simulation. flow chart
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CHAPTER 5

ERROR PERFORMANCE AT THE OUTPUT

5.1 Evaluation of the Output Error Probability

The output error probability is evaluated as follows:

Since

and

Since

Finally,
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where

and Pr {b i 	is the integral of the (2K — 2)-variate Gaussian density function:

while the elements of CI are determined by

The evaluation of Eq. (5.1) for the two-user case will be shown in Appendix C.

5.2 Numerical Results

In all the numerical examples below, the signal-to-noise ratio for user k is defined as

SNRk = a k /No . AD the numerical results are derived by evaluating Eq.(5.1).

Figure 5.1 shows, the probability of error of user 1 versus SNR1 for two

asynchronous users. The relative energy e i is defined as e 1 = ∫T τ2s21(t) dt.The case

labeled (1) in the figure corresponds to a relatively weak level of interference. It

describes a rather unfavorable scenario for this multistage detector due to tentative

decisions which are not too reliable. This results in the performance of the detector

at higher values of SNR1 to be somewhat inferior to the decorrelator, whose

performance is insensitive to the level of interference. However, the multistage

detector outperforms the conventional detector. When the interference is stronger

(case (2)), due to the reliable tentative decisions, the multistage detector by far

outperforms the other two.

Figure 5.2 shows the probability of error versus the relative interference energy

for the fixed SNR 1 . The multistage detector clearly outperforms the decorrelator,

and achieves the single-user bound for the relative interference level above 5 dB.
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Figure 5.1: Error probability of user 1 for K = 2, p1 2 = 0.2, p21 = 0.6, e 1 = 0.4
(1) a 2 /a 1 = 0.6 (2) a1/a2 = 0.6

Figure 5.2: Error probability of user 1 for K 2, SNR1 = 8 dB, p12 = 0.2, P21
0.6, e 1 = 0.4
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The two signature sequences used in Figure 5.3 are gold sequences of length 7,

8 1 (0 and 8 2 (t) of Figure 5.6. Figure 5.3 shows the probability of error for user 1 when

the energy of user 1 and the energy of the interferer are the same. The worst case

and the average error performance over the values of the relative delay τ2 are shown.

In this scenario the multistage detector outperforms both the conventional and the

decorrelating detector, and its average performance, due to the good crosscorrelation

properties of the two signature sequences used, is very close to the single user-bound.

Note that the energy of user 1 and the energy of the interferer are the same means

perfect power control, a condition that is the best for the conventional detector

and very unfavorable to the multistage detector. Even so, the multistage detector

outperforms the conventional detector by far.

Gold sequences of length 7, 3 1 (0, 8 2 (t) and s3 (t) of Figure 5.6, are used as the

signature sequences in the next two examples. Figure 5.4 shows the distribution of

the error probability of user 1 over the relative delays 7-2 and τ3 , with the SNR's of all

three users equal to 12 dB. It is obvious that the error probability is very sensitive to

the timing of all users. Nevertheless, it still has overall performance much better than

those of the decorrelating detector and the conventional detector. The probability

of error of the multistage detector, averaged over all delay pairs is 7 x 10'. (The

corresponding values for the decorrelator and the conventional receiver are 9.4 x 10'

and 1.2 x 10 -2 , respectively.)

Figure 5.5 shows the probability of error versus the relative interference energies

for SNR 1 fixed to 8 dB, and τ2 = T/7, τ3 = 5T/7. Again, the multistage detector

performs better than the decorrelator and approaches the single user bound as the

interferers' energies increase.

The gold sequences used as the signature sequences in all the above numerical

examples are included in Figure 5.6 for convenience.



Figure 5.3 Error probability of user 1 for K = 2
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Figure 5.4 Error probability of user 1 for K.3, SNRi = 12 dB, i = 1,2, 3



Figure 5.5 Error probability of user 1 for K=3, SNR1 = 8 dB
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Figure 5.6 Gold sequences



CHAPTER 6

CONCLUSION

An adaptive COMA receiver scheme in an asynchronous channel has been proposed in

this thesis. It has linear complexity with the number of users and is near-far resistant.

But its most important feature is that it is adaptive and requires no knowledge of the

received amplitude of any user. This is essential to mobile communications, since

it can dynamically adapt to changes in users' power and eliminates the need for

high-precision power control and user power estimation.

The drawback of the scheme is that its performance is sensitive to the relative

delays of the users and it suffers degradation when its first stage has an singularity

problem.
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APPENDIX A

Decorrelator (two-user case)

To illustrate the general case in Chapter 3, the derivations of the fomula for the

two-user case are presented here in detail. Let us consider each symbol interval

separately, the bit i of user 1, which occupies the interval [0, T] (assuming, without

loss of generality, τ2 > 7-1 = 0), overlaps with bit i — 1 of user 2 over the interval

[0, τ2 ] and with bit i of user 2 over the interval [τ 2 ,1]. We can view the situation

in the interval [0, 7-2 ] as a two-user synchronous channel with unit-energy signature

waveforms

where

and

is the partial energy of the signals over the left overlapping interval. We now follow

the steps taken in the synchronous case.

The two-user white Guassian asynchronous multiple-access channel for the

interval [0,7-2 ] is:

Tire sampled outputs of the bank of matched filters that matched to s1L (t) and

s2L(t) correspondingly can be expressed as:
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and p12L = foT s1L(t)s2L(t)dt and nL(i) is the filtered Gussian noise random vector

with covariance E{nLnTL} = N0/2 PL.

The outputs of the decorrelator for the interval [0,72] are given as:

therefore, Var(ξ1L) = 	 while ΓL11 is the first diagonal element of the matrix

ΓL and ΓL11 = 1 / 2
- P212L/e2L .

We can also view the situation in the interval [72 , T] as a two-user synchronous

channel with unit-energy signature waveforms

Following the same steps above, we can get the outputs of the decorrelator for

the interval [τ2 , 71:
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while ΓR11 is the first diagonal element of the matrix FR and ΓR11 = 1 / 1 - p212R/e2R.

The decorrelator outputs for the i-th symbol interval are constructed as the

weighted sum of those of the interval [0, 72 ] and [72 , T] . Without loss of generality,

attention is focused on user 1 only.

The decorrelator output for the i-th symbol interval of user 1 is:

The weights are selected in such a way that the error probability at the outputs

of the decorrelator are minimized. The optimum weights selected are:

where

Substituting the optimum weights into Eq.(A.6), we have

where

and

The tentative decision at the output of the decorrelator for user 1 is k (i)

sgn(z1 (i)).
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The corresponding error probability is evaluated as:

Since the channel is a BSC channel,

and



APPENDIX B

Weights (two-user case)

The sampled output of the matched filter for user 1 is:

The normalized partial cross-correlations are:

Also, n 1 (i) =∫T0n(t)s1(t)dtis a zero-mean Gaussian random variable with variance

No /2.

The multistage detector subtracts the weighted sum of the tentative estimates

of the interference afflicted with user 1 from the matched filter output. The final

decision is:

where w1 (i ) = [w21, w12] T are the corresponding weights, and 1) 1 (i) = [1)2 (i-1), b2(i)]T

is the tentative decision vector affecting user 1.

B.1 Weight Updating

Without loss of generality, we focus our attention on the weight w21.

The output can be expressed as

36



37

The output noise-plus-interference power can be obtained by subtracting the output

signal power a 1 from the output power E{y21(i)}. Thus, the output SNIR, defined

as the ratio between the output signal power and the sum of the output noise and

interference power, can be calculated from

It is obvious that by selecting weights such that the ouput power E{y21(i)} is

minimized, we can achieve maximum output SNIR, which is a good measurement of

the performance of the spread spectrum system.

So the steepest descent algorithm which minimizes the ouput power

E{y21(i)}, and which therefore maxinizes the output SNIR, is used to train the weights:

Since b2(i — 1) and b2(i) are decisions made on two non-overlapping intervals,

they are uncorrelated, i.e. E{b2(i)b2(i —1)} = 0. And it is obvious that 14(i-1) 	 1,

thus E{b(i — 1)} 	 1. So we get:

B.2 Steady State Values of the Weight

As has been proved in Chapter 4, the above iterative search will converge if 0 < < 1

and the weight w 21 will reach the steady state value 4 , which satisfies
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From it, we can easily get the steady state value of the weight w 21 , which is:

We can also verify that the above 4 1 satisfies the equation a/aw021E{y21(i)} = 0,3,

which means when the weights reach the steady values, the output power will be

minimized, and the system in the steady state will have the optimum SNIR.

The above expectation can be further evaluated by substituting x 1 (i) =

(i) 	 √ a2 [P21 b2 (i — 1)+ 	 p12 1)2 (i)]+ 	 n1(i) into it, and we have

Since we are using the one-shot, decorrelated, tentative decision in the first

stage, which is interference-free, it is obvious that E{b 1 (i)b2 (i — 1)} = 0; and from

the good properties of the decorrelator proved before E{n1(i)ξ2(i — 1)} = 0, we will

have E{n1(i)b2(i — 1)} = 0, since b2 ( i — 1) is interference-free and only related to

b2 (i — 1) and — 1), and the former is obviously independent of n 1 (i). Finally, we

will also have E{ b 2 (i)b2 ( i — 1)} = 0, which is simply because the intervals they are

related to are not overlapping.

Now the above expression will be greatly simplified, and we have

With the knowledge of the error probability at the decorrelator output, we can

easily compute the 02' 1 in terms of error functions.



So the final result is:

where
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In the two-user case,



APPENDIX C

Error Probability at the Output (two-user case)

From Eq.(5.1), note that 1) 2 (i — 1) and b2 (i) are independent, we evaluate the error

probability at the output of user 1 for the two-user case as follows:

Since the system is stationary, the same is true for hit i — 1.

With this knowledge, we can evaluate the error probability at the output of

user 1 as

40



41



APPENDIX D

Expectations

Without loss of generality, we assume i = 0, although the conclusions below will be

true for any symbol interval of user 1.

The elements on the main diagonal of E {b1(0)bT1 (0)} are equal to unity, while

the off-diagonal ones are:

Each probability term in the above summation defines four integrals. Therefore:

where fξkξl denotes the bivariate Gaussian density function of random variables ek(i)

and ξ / (j), and Dm is an appropriate rectangular region of integration.

The diagonal elements of E {b 1 (0)62: (0)  are:

with
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APPENDIX E

System Structure

Figure E.1 System structure

Note that the waveforms of the matched filters are dependent on the relative

delays. So analog filters can not be used here since the relative delays are not known

in advance. DST) processors that can be programmable should be used to implement

the matched filters.

In the above diagram, x b = [xb1, Xb2, . . . , xbk], 	 e = 	 .11;2 . . . √ebk]T and

x = x be. The decorrelator output are z k = cTk zkb, where Z kb = [zkb1, Zkb2, 	 ZkbK],

k = 1, 2, 	 , K. To construct the matched filter and the decorrelator output for a

user other than user 1, the outputs of some blocks should be shifted to make the

outputs of all blocks correspond to the same symbol interval of that user.
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The number of matched filters used is K per user. In this sense, the complexity

of the receiver is linear with the number of users. The order of the cross-correlation

matrices is K. It is obvious that the inverse operations of K matrices of order K need

much less computation power than the inverse operation of a single matrix of order

2K — 2. And one of the impressive advantages of the receiver is that the parallel

processing can be used.
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