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ABSTRACT 

A COMPARATIVE STUDY OF IMAGE COMPRESSION SCHEMES 

by 
Kui Wang 

Image compression is an important and active area of signal processing. All 

popular image compression techniques consist of three stages: Image transformation, 

quantization (lossy compression only), and lossless coding (of quantized transform 

coefficients). 

This thesis deals with a comparative study of several lossy image compression 

techniques. First, it reviews the well-known techniques of each stage. Starting with the 

first stage, the techniques of orthogonal block transformation and subband transform are 

described in detail. Then the quantization stage is described, followed by a brief review 

of the techniques for the third stage, lossless coding. 

Then these different image compression techniques are simulated and their rate-

distortion performance are compared with each other. The results show that two-band 

multiplierless PR-QMF bank based subband image codec outperforms other filter banks 

considered in this thesis. It is also shown that uniform quantizers with a "dead-zone" 

perform best. Also, the multiplierless PR-QMF bank outperforms the DCT based on 

uniform quantization, but underperforms the DCT based on uniform quantization with a 

"dead-zone". 
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CHAPTER 1 

INTRODUCTION 

Since the late 1980's, we have witnessed two trends: A rapid technology advancement in 

telecommunication and computer hardware, and an explosion of multimedia applications 

in every aspect of our daily life. The second trend is translated into the huge demand for 

better and faster image transmission and storage techniques. The basic concepts involved 

in an image compression scheme are presented below. 

1.1 Image Compression 

In image compression, original images are compressed to less number of representation 

bits in order to save transmission bandwidth or storage costs. The objective of image 

compression is to represent an image with less number of bits while maintaining an 

acceptable quality of the image depending on the application under consideration. 

Many competitive techniques have been developed in image compression area. 

Technically speaking, those techniques can be broadly grouped into two types (Wong, 

Zaremba, Gooden, and Huang 195). The first group is lossless image compression, also 

referred to as reversible compression. A lossless scheme provides roughly a 2-to-1 

compression factor for most of still frame images, but still allows an exact recovery of 

the original image from its compressed version. A lossy or irreversible image 

compression technique does not perfectly represent original images but strives only to 

1 



2 

maintain a particular level of subjective image quality. It can provide compression 

factors from 10-to-1 to 100-to-1 and above (Saxes 28-29). 

A lossless compression technique is used when an image information must be 

exactly preserved. Such images often include ones from medical and other scientific 

sources. A lossy compression technique is used when the quality of the reconstructed 

image is maintained at some acceptable level, but need not be identical to that of the 

original image. Images appropriate for lossy compression include those in video game 

programming, videoconferencing, and some printing applications. 

Any image compression technique consists of three stages: Image transformation, 

quantization (lossy compression only), and lossless coding of quantized transform 

coefficients. This is displayed in figure 1.1. The relative importance of each stage varies 

from one compression technique to another, and all of these stages are not necessarily 

included in a particular scheme. The lossless compression techniques naturally do not 

include quantization. Next, each stage will be discussed in detail. 

1.1.1 Image Transformation 

Image transformation, consisting of conversion and inverse conversion, is the first stage 

of an image compression technique. It maps the image signal from its original form to 

the transform domain in which data is better represented for the quantization stage. An 

orthogonal image transformation reserves the signal and does not introduce any 

information loss. Its purpose is to decompose the original image into another domain. 

The transform domain representation of an ordinary image tends to be uncorrelated. 

Therefore, the transform coefficients can be treated independently in the quantization 
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stage. Several image transformation methods have been developed for mapping, such as 

linear prediction, orthogonal block transformation, and subband transform. 

1.1.1.1 Linear Prediction The philosophy underlying the linear prediction is to reduce 

correlation between successive pixels. In general, linear prediction techniques use 

previous pixels to generate a predicted value of the current pixel. Then take the 

difference between the current pixel and its predicted value (Gersho and Gray 185-202). 

Since the pixel difference has less correlation than the pixel itself, quantization or lossless 

coding of the difference is more efficient than those of the pixel itself. One of the most 

widely used prediction methods is differential pulse code modulation (DPCM). 

1.1.1.2 Orthogonal Block Transformation Orthogonal block transformation is 

currently the most widely used approach for image transformation. In this technique, an 

orthogonal transform is applied to a block of image pixels so that the transform domain 

coefficients tend to become less correlated with their energy concentrated in as few 

coefficients as possible. This energy compaction property leads to the prioritization of 

transform coefficients based on their relative significance. There are many orthogonal 

block transformation techniques based on different orthogonal transforms (Akansu and 

Haddad 9-90). Among the proposed transforms, the discrete cosine transform (DCT) is 

the most popular because of its superior decorrelation properties. The DCT is used in the 

baseline JPEG (Joint Photographic Experts Group) standard of still frame image 

compression (Pennebaker and Mitchell 65-79). 
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1.1.1.3 Subband Transform Subband transform, recently shown as a generalization of 

orthogonal block transformation, has also been proposed to provide an improved signal 

decorrelation and has been frequently used for image compression (Akansu and Haddad 

4). In subband transform, a filter bank is utilized in order for an image to be decomposed 

into its nearly uncorrelated subbands. This allows independent treatment of subband 

signals in the quantization stage. There are a number of well-known subband transform 

techniques by applying different filter banks in the literature (Akansu and Haddad 241- 

351). 	Among them the one-dimensional (1-D) two-band paraunitary perfect 

reconstruction quadrature mirror filer banks (PR-QMF banks) are the most fundamental 

and popular. The subband filtering based on PR-QMF bank families have been widely 

used in the literature as an alternative to the DCT for image transformation purposes 

(Woods and O'Neil 1278-1288). 

1.1.2 Quantization 

Quantization is the process of many-to-one mapping of transform coefficients. Therefore, 

quantization is by definition lossy and pertaining to lossy compression only. In 

quantization, while maintaining a desired image quality, representation of transform 

coefficients is minimized. Thus, image compression is achieved. 

The quantization is the most critical stage of a lossy image compression technique 

for low bit rates. It can be further categorized into scalar quantization (SQ) and vector 

quantization (VQ). The SQ is an operation on a single sample value. The quantizer 

replaces the single sample by the closest one of a finite set of reproduction values. In the 

VQ, a set of k single samples is mapped into one of a finite set of reproduction vectors. 
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In the JPEG baseline standard scalar quantization is used. In such an operation, a DCT 

coefficient is mapped to an integer by rounding off the ratio of the coefficient over a 

quantization interval (Pennebaker and Mitchell 65-79). 

1.1.3 Lossless Coding 

The third stage of an image compression scheme is lossless coding of the quantized 

transform coefficients in order to achieve some compression. Lossless coding may be as 

simple as using fixed-length digital codewords to represent the outputs from the previous 

stage, or it may use variable-length codes such as Huffman coding, arithmetic coding, 

and run length coding, in order to achieve higher compression ratio (Gersho and Gray 

225-260). For example, Huffman coding and arithmetic coding are used separately in 

JPEG (Pennebaker and Mitchell 65-79). 

1.2 Summary of the Thesis Work 

In this thesis, we focus on the first two stages of lossy image compression techniques, 

which are image transformation and quantization. 	Comparative studies of the 

compression techniques are presented based on the methods of image transformation and 

quantization. 

Simulation programs were developed, consisting of image transformation and 

quantization stages for different codec scenarios. Lossless coding stage is not included in 

this thesis. But it seems that it is included in the simulation programs because one of the 

performance measures which are used for comparison purpose, the bit rate of the 

compressed image, is approximated by the entropies of the quantizer outputs. 
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During the comparative performance studies, subband transform methods are the 

main focus for image transformation. 	The rate-distortion performance of these 

techniques are compared. In addition, the coding performance of scalar and vector 

quantization methods are compared under the same test conditions. For the completeness 

of the study the industry standard, 2-D 8 x 8 DCT, based image codec is also included in 

this thesis. 

This thesis is organized as follows. Chapter 2 describes the first stage, image 

transformation techniques. Chapter 3 presents the second stage techniques considered. 

Scalar and vector quantization schemes are described. Chapter 4 briefly describes the 

lossless coding techniques. Chapter 5 deals with the rate-distortion performance 

comparison of the different lossy image compression techniques studied in this thesis. 

The simulation programs and the results are displayed and discussed in detail. 



CHAPTER 2 

IMAGE TRANSFORMATION 

Image transformation can be viewed as the "preprocessor" of an image compression 

scheme. In image transformation, image samples are mapped from their original form to 

the transform domain in which they are better represented for the quantization stage. 

Then, the resulting quantized data are mapped back to the original domain by the 

corresponding inverse transformation. The block diagram of an image transformation is 

displayed in figure 2.1. The purpose of image transformation is to analyze the original 

image in the transform domain. An image signal tends to be less correlated in transform 

domain. Therefore, each transform coefficient can be treated independently in the 

quantization step. It improves the compression efficiency. There are many image 

transformation techniques such as linear prediction, orthogonal block transformation, and 

subband transform. 	In this chapter, we will briefly present orthogonal block 

transformation, and then focus on subband transform. 

2.1 Orthogonal Block Transformation 

2.1.1 Definitions 

In 1-D orthogonal block transformation, a square unitary matrix A which is also called a 

1-D orthogonal transform is applied to a 1-D data sequence {x(n); n  = 0, 1,..., N-1} in 

order to obtain a set of almost uncorrelated transform coefficients {y(n); n = 0, 1,..., N-1}. 

8 
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These coefficients in turn can be transformed back to the original signal domain as x(n) 

by applying the corresponding inverse transform. This is summarized as 

Figure 2.1 	A Block Diagram of Image Transformation Stage. 

The above 1-D orthogonal block transformation can be extended to 2-D image 

arrays. For the 2-D separable case, a 1-D orthogonal transform is applied first to each 

column of the image array, and then to each row of the resulting intermediate image 

array. For an N x N input image array X, the forward and inverse transform operations 

are summarized as (Jain 134-140) 
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In practice, a given image array is usually first divided into its nonoverlapping 

square blocks of pixels. Then each of these blocks is transformed independently to the 

transform domain. 

Among many proposed orthogonal transforms, the DCT has superior 

decorrelation properties and it has been used in the current image compression standards 

such as JPEG. In next section, we will explain DCT in detail. 

2.1.2 The Discrete Cosine Transform 

Based on equation (2.1), the 2-D DCT of a K x K image block is given by (Jain 150-151) 
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In this transformation, the given N x N image is first divided into 

N

	( N)  
— x 	 blocks, each of size K x K. Then each image block is transformed 

independently by using equation (2.2). Finally the reconstructed image blocks can be 

obtained by inverse transformation, equation (2.3). 

2.2 Subband Transform 

2.2.1 Introduction 

Subband transform, also providing signal decorrelation, is another widely used technique 

for image transformation. In subband coding, a given N x N image is decomposed into its 

several subbands by the analysis filters in the filter bank. Then each band is decimated 

following the Nyquist Criterion. Finally in the inverse transformation process, the 

resulting quantized subbands are interpolated and filtered by the synthesis filters of the 

filter bank, and then summed together to obtain the reconstructed image. 

This approach, in general, demands the design of a sophisticated 2-D m-band 

filter bank, which consists of the analysis and synthesis filters, in order to achieve perfect 

reconstruction in the absence of quantization, lossless coding, and transmission errors. 

The 2-D separable case is considered here due to its simplicity. In this case, a 1-D 

filter bank is extended to 2-D input image arrays where first the columns of an image 

array are filtered, and decimated by the 1-D analysis filters, and then the same operations 

are applied to the rows of the resulting image array. This is an alternative method to the 

design of a 2-D filter bank. 
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Two-band filter banks are considered in this study. In subband transform with 

two-band filter banks, first a low-pass filter and a high-pass filter are applied to the 

columns of an image array. Two overlapping subbands are obtained. They are then 

decimated to fit their Nyquist rates. Then the similar splitting and decimating are 

performed on the rows of each of the two resulting bands. The above process is repeated 

until the desired split is achieved. Figure 2.2 shows the block diagram of this splitting 

process, also known as subband tree structure. 

Now we have simplified the design of sophisticated 2-D m-band filter banks to 

the design of simple 1-D two-band filter banks. For more discussions on filter bank 

design in general, please see Reference (Akansu and Haddad). 

2.2.2 1-D Two-Band Filter Bank Design 

The fundamental goal of two-band filter bank design is to define analysis and synthesis 

filters which can provide perfect reconstruction (PR) of the original input signal in the 

absence of quantization, lossless coding, and transmission errors. 	This perfect 

reconstruction requirement is illustrated as the following. 

Perfect Reconstruction Requirements: 

Figure 2.3 displays a two-band filter bank. Here both the z-domain and the time-domain 

expressions are used. The input signal x(n) is divided into its two subbands by the 

analysis filters HL(z) and HHz). Then, according to the Nyquist theorem, xL1(n) and 

xH1(n) are each down sampled by 2 to provide xL2(n) and xH2(n). In the absence of 

quantization, lossless coding, and transmission errors, we assume that xL2(n) and xH2(n) 

are inputs to the synthesis stage. Both of them are up sampled by 2 and processed by the 
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Figure 2.3 	A Two-Band Filter Bank. 
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synthesis filters GL(z) and GH(z), and finally summed up to yield the reconstructed signal 

y(n), which can be expressed in z-domain as: 

In order to achieve perfect reconstruction, we select: 

where HL(z), HH(z), GL(z), and GH(z) are N-tap finite impulse response (FIR) with N even. 

Now equation (2.4) is simplified to (Akansu and Haddad 101-239) 

The perfect reconstruction requirement reduces to finding HL(z) such that 

The above perfect reconstruction requirements are summarized in the time-domain as 

(Akansu and Haddad 101-239): 

The two-band filter bank who satisfies equation (2.5) is also called 1-D two-band 

paraunitary perfect reconstruction quadrature mirror filter bank (PR-QMF bank). 

In addition to the PR requirements, some other design criteria are proposed for the 
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design of two-band filter banks, such as uncorrelated subband signals, zero mean high-

pass filter, energy compaction, computational efficiency, etc. (Akansu and Haddad 260-

272). Based on these different design criteria, and the PR conditions of equation (2.5), a 

set of PR-QMF banks can be generated. 

2.2.3 PR-QMF Bank Families 

2.2.3.1 Uncorrelated PR-QMF Bank The uncorrelated PR-QMF bank is obtained from 

both the PR conditions of equation (2.5) and the following requirements (Akansu and 

Haddad 264): 

Equation (2.6) requires that the cross-correlation of the two subband signals xL2(n) and  

xH2(n), which are at the output of the analysis stage as shown in figure 2.3, is forced to be 

zero. This can approximately achieve uncorrelated subbands, which is a desired property 

for any subband transform technique. Rxx 	(m-l) = E {x(m)x(l)} is the autocorrelation 

function of the input signal. However, this expression is hard to evaluate, in practice 

Rxx(n) can be approximated by 

provided that input signal is first-order autoregressive (AR(1)), and with mean = 0, p = 

0.95. This is a crude approximation to the real-world images. 
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Equation (2.7) requires that the high-pass filter hH(n) has a zero mean. In equation 

(2.8), Rxx is the correlation or covariance matrix of the assumed AR(1) input, and o is 

the variance or power of subband xL1(n). hi, is the vector form representation of n). 

The purpose of these two equations is to try to achieve maximum energy compaction 

among the subbands. This will provide desired conditions for the quantization stage 

operations in order to achieve a reasonable degree of compression. 

2.2.3.2 Multiplierless PR-QMF Bank Multiplierless PR-QMF bank is of great practical 

interest because of its computational efficiency. In this filter bank, hL(n) has only the 

allowed coefficient values as 

where kn  is an integer. This equation states that any low-pass filter coefficient is 

expressed as a binary shift or shift and add operations (Akansu 723-725). The 

multiplierless PR-QMF bank is obtained from equations (2.5), (2.8), and (2.10). 

2.2.3.3 Binomial PR-QMF Bank The binomial PR-QMF bank is obtained from both the 

PR conditions of equation (2.5) and the following "binomial" requirement (Akansu and 

Haddad 241-246): 
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Notice that for simplicity of the expression, the tap of the filter in equation (2.11) is 

designated as N + 1, with N odd. 

2.2.3.4 Smith-Barnwell Filter Bank The Smith-Barnwell filter bank is essentially the 

same as the two-band PR-QMF bank, except for a possible difference at the phase 

responses of the filters. It is summarized in the time-domain as (Smith and Barnwell 436) 

2.2.4 Subband Tree Structure 

We have designed the desired 1-D two-band PR-QMF banks in the previous sections. 

The separable m-band decomposition of the input image can be generated by extending 

the two-band structure in a hierarchical subband tree, as shown in figure 2.4. 
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CHAPTER 3 

QUANTIZATION 

The subsequent step to image transformation in lossy image compression techniques is 

quantization. It achieves image data compression by represent transform coefficients 

with no greater precision than is necessary to achieve desired image quality. 

Quantization, represented by Q, is a mapping of k-dimensional Euclidean space Rk  

into a finite subset Y of Rk. Thus, 

where Y = {y,,y2,..., yN} and yi  is in Rk  for each i. When k = 1, it is referred to as scalar 

quantization, and k> 1, as vector quantization. 

In practice quantization, whether it is scalar quantization or vector quantization, 

does not exist as a single entity. It is actually the composite of two separate functions: the 

encoder and the decoder. The encoder maps the input k-dimensional Euclidean space le 

into the partition regions and generates the index i (i = 1, 2,..., IV) for each region. The 

decoder replaces i with the corresponding yi  from a finite set Y. Figure 3.1 shows a block 

diagram of quantization stage. 

3.1 Scalar Quantization 

3.1.1 Definition 

Scalar quantization is defined as the process of transforming a continuous variable x into 

a discrete variable y, which takes values from a finite set of possible numbers. Here we 
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assume that the quantization process is memoryless and instantaneous, which means that 

the quantizer operates on one input symbol at a time, and the output value depends only 

on that input. Note that the quantizer mapping is irreversible; that is, for a given 

quantizer output, the input value cannot be determined uniquely. Hence, a quantizer 

introduces distortion, which any reasonable design method must attempt to minimize. 

Figure 3.1 	A Block Diagram of Quantization Stage. 

3.1.2 Scalar Quantizer Design 

The principal goal of scalar quantizer design is to select the reproduction levels and the 

transition levels or the partition regions so as to provide the minimum possible average 

distortion for a fixed number of levels N. Here the average distortion is focused mainly 

on average squared error distortion between a given input random variable x and the 

reproduced discrete variable y. In general, it can be written as 

It is also commonly called mean square error. 
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There are several optimal quantizer design methods available that minimize the 

average distortion (Gersho and Gray 159-184). Among them the Lloyd II algorithm is 

particular important. 

3.1.2.1 The Lloyd II Algorithm Let x be a real scalar input random variable with a 

continuous probability density function (pdf) px(x). Define {tk  ; k = 1,..., N l} as a set of 

increasing transition levels with t, and tN+1 as the minimum and maximum values, 

respectively of x. If x lies in interval [tk  ,tk+1, then it is mapped to rk , the kth 

reproduction level, from a finite set {r,, r„ 	rN,} of numbers. 

In the Lloyd II algorithm it is desired to find the transition levels tk  and the 

reproduction levels rk for an N-level quantizer such that the mean square error 

is minimized. Rewriting this as 

The necessary conditions for minimization of e are obtained by differentiating it with 

respect to tk  and rk  and equating the results to zero. This gives 
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Using the fact that tk-1 tk  , simplification of the preceding equations gives 

The optimum values tk  and rk  can be calculated iteratively from equation (3.4) and 

(3.5) given the boundary values t1  and tN+1: 

1. Choose a value for r1. Set k = 2. 

2. Solve equation (3.5) for tk, and then solve equation (3.4) for rk. 

3. If k = N, continue. Otherwise set k + 1 → k and go to step 2. 

4. Check if r1  is close enough to the right hand term of equation (3.5). If not, perturb r1  

in an appropriate direction, set k= 2, and go to step 2. 

5. Stop. {tk; k = 1, 2,..., N+1 } and {rk; k= 1, 2,..., N} are the final optimum solutions. 

Figure 3.2 shows a block diagram of a scalar quantizer designed based on the 

Lloyd II algorithm. This algorithm has been widely used for designing scalar quantizers 

with average squared error distortion criteria and known pdfs that are sufficiently well 

behaved to ensure the existence of the derivatives in question. This technique was also 

independently developed by Max (Max 7-12). So the resulting quantizer is commonly 

known as the Lloyd-Max quantizer. 

3.1.2.2 The Lloyd-Max Quantizer for Laplacian Density For Laplacian pdf, which is 

defined as follows: 
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where At and σ2  denote the mean and variance, respectively, of x. Following equation 

(3.4), (3.5), and the iterative algorithm introduced above, optimal transition levels and 

reproduction levels can be obtained. Table 3.1 lists the design values for several Lloyd-

Max quantizers for the Laplacian density. 

Table 3.1 Lloyd-Max Quantizers for the Laplacian Density with Zero Mean and Unity 
Variance. 

Levels 3 5 7 
k tk rk  tk rk tk rk 
1 - ∞ -1.1414 - ∞ -2.2538 - ∞  -2.8533 
2 -0.7071 0.0 -1.5467 -0.8395 -2.1462 -1.4391 
3 0.7071 1.1414 -0.4198 0.0 -1.0194 -0.5996 
4 09 0.4198 0.8395 -0.2998 0.0 
5 1.5467 2.2538 0.2998 0.5996 
6 ∞  1.0194 1.4391 
7 2.1462 2.8533 
8 cc  

Source: Jain, Anil K. Fundamentals of Digital Image Processing. (Englewood Cliffs: 
Prentice Hall, 1989) 108. 

Figure 3.2 A Block Diagram of a Scalar Quantizer Designed Based on 
the Lloyd II Algorithm. 
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3.1.2.3 The Lloyd-Max Quantizer for Uniform Distribution In the case of a uniform 

input, the Lloyd-Max quantizer equations become linear, giving equally spaced transition 

levels and reproduction levels. Also the reproduction levels are the midpoints of the 

transition levels (Jayant and Noll 124-129): 

The Lloyd-Max quantizer for uniform distribution is also called the linear or uniform 

quantizer. 

3.2 Vector Quantization 

3.2.1 Definition 

Vector quantization is an extension of scalar quantization to a higher dimensional space 

(k> 1). Formally, vector quantization of dimension k and size N is a mapping, Q, that 

assigns to each input vector, x = (x1, x2),..., xk), a reproduction vector, y = Q(x), drawn 

from a finite set C containing N reproduction vectors, C = {yi; i = 1, 2,..., N}. These 

reproduction vectors are also called codewords. The set C is called codebook. Vector 

quantizers are completely described by the codebook C together with the partition of the 

input vector space into the sets Si  = {x: Q(x) = yi} of input vectors mapping into the ith 

codeword. 

3.2.2 Vector Quantizer Design 

Similar to the design of scalar quantizers, the principal goal in design of vector quantizers 

is to find a codebook and a partition or encoding rule that will maximize an overall 
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measure of performance considering the entire sequence of vectors to be encoded over the 

lifetime of the quantizer. 

Statistical average of a suitable distortion or worst-case value of a distortion is 

commonly used as an overall performance measure of a vector quantizer (Gersho and 

Gray 299). We focus here on statistical criteria. The performance of a vector quantizer is 

good if the statistical average distortion is small. 

The statistical average distortion of a vector quantizer can be expressed as: 

d(x, y) is a nonnegative distortion measure caused by reproducing an input vector x by a 

reproduction vector y. 

Many distortion measures, d(x, y), have been proposed in Gersho and Gray's book 

(277-279). We focus here on the squared error distortion because it is the most 

mathematically convenient and widely used, 

If the input sequence of vectors is stationary and ergodic, the time-averaged distortion, 

converges with probability one to the statistical average distortion D as n → 00 . So D 

can be expressed as: 
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This is also called the average squared error distortion. Until now we have defined the 

overall measure of performance for a vector quantizer. We proceed to design an 

encoding rule and a codebook that will minimize the average squared error. 

3.2.2.1 Encoding Rule Design: Nearest Neighbor Method Nearest neighbor (NN) 

encoding rule means that each input vector x is mapped into yi, which minimizing the 

distortion d(x, yi). NN encoding rule is commonly used by almost every vector quantizers 

(Gersho 157-166). This method can be summarized by the following simple algorithm: 

1. x is a k-dimensional input vector, and y1  E C = {yi, i = 1, 2, ..., NI. Calculate d(x, y1) 

from equation (3.8). Set do  = d(x, y1) and i= 2. 

5. Stop. 

The resulting value of k;  gives the output of the encoder, which is the index or address of 

the reproduction vector yi. The final value do  is the distortion between x and yi, which 

satisfies 

From above we can see that in an NN encoder the partition of the input vector 

space is completely determined by the codebook and the distortion measure. Also, for a 

given codebook such an encoder is in fact optimal in the sense of minimizing average 

squared error. 
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Codebook Design Codebook design is the most important and most crucial step 

for the effective design of a vector quantizer. There are no known closed form solutions 

to the design of an optimal codebook. Generally, two groups of codebook design 

methods have been invented. The first group based its design on the known joint pdf of 

the input vector. However, in reality, it is not common to obtain the pdfs for input 

vectors. Thus the second group based its design on empirical observations of the input 

vector to generate a codebook. These observations are also called the training sequence. 

This second approach has become a standard technique for vector quantizer design in 

recent years (Linde, Buzo, and Gray 86). 

In this method, the training sequence, {tj ; j = 1, 2, ..., n}, is used to design a 

codebook that minimizes the statistical average distortion for the training sequence 

iteratively. The iteration begins with a vector quantizer consisting of its initial codebook. 

Then the steps of finding the corresponding NN partition for the codebook and then 

optimizing the codebook for the partition are proceeded until the optimality or smallest 

average distortion is achieved. Thus the final optimal codebook is obtained. The most 

important algorithm of this approach, the Linde-Buzo-Gray (LBG) algorithm, also called 

generalized Lloyd I algorithm, will be given in the following for iterative codebook 

improvement. 

If we find a vector quantizer that is optimal for the training sequence and the 

training sequence is sufficiently long, based on the ergodic theorem, this quantizer should 

also be optimal for future data produced by the same source. We begin with the 

codebook design problem of how to obtain the initial codebook Co. 

Codebook Initialization: 
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There are a variety of techniques to initialize a codebook (Gersho and Gray 308-311). 

We survey only two of the most widely used. 

The first method is called k-means method. It is simply to select the first N 

training vectors as codewords, which form the initial codebook. 

The second one is called pruning method. A training sequence is used to populate 

an initial codebook recursively as follows: Put the first training vector in the codebook. 

Then compute the distortion between the next training vector and the first codeword by 

equation (3.8). If it is less than some predefined threshold value, then discard the second 

training vector, or the vector is "pruned". If it is greater than the threshold, add the new 

vector to the codebook as a codeword. With each new training vector, find the nearest 

neighbor in the codebook. Then by using the same pruning process just described the 

codewords will be obtained until the initial codebook has enough words. 

We now come to the iterative codebook improvement algorithm. 

The LBG Algorithm: 

The algorithm for an unknown distribution training sequence is given as below: 

1. 	Initialization: Fix k = block length, n = length of training-vector sequence, N = size of 

codebook C, distortion threshold s 0. Given an initial codebook Co, and a training 

sequence {tj; j = 1, 2,..., n} . Set the number of iterations m = 0, and the statistical 

average distortion D_1  = ∞. 
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a suitable tie-breaking rule when it is necessary. Compute the average distortion by 

Figure 33 A Flow Diagram of the Obtained Optimal Vector Quantizer. 

Note that while designing the codebook for vector quantizers, only partitions of 

the training sequence are considered. Once the final codebook C is obtained, this is the 

end of vector quantizer design. The final codebook together with the NN encoding rule 

are used on new input data outside the training sequence for the purpose of vector 

quantization. Figure 3.3 shows the flow diagram of the designed optimal vector 

quantizer. The encoder views the k-dimensional input vector x and searches through the 
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codebook C to find the index ki  of a reproduction vector yi, which is the nearest neighbor 

of the input vector. The decoder looks up through the codebook and replaces ki  with yi  as 

the approximation of x. 

By applying the described scalar quantization and vector quantization to the 

transform coefficients, produced from the first stage, we can achieve some considerable 

degree of compression and obtain a smaller set of discrete-valued symbols, which are 

most closely matching those coefficients. 



CHAPTER 4 

LOSSLESS CODING 

Lossless coding is the third, and final, stage in image compression procedure. It 

translates the discrete-valued symbols, which are from the encoder outputs of the 

quantization stage, to a more appropriate form of symbols best suited to transmission or 

storage. We focus mainly on binary form of symbols here. The purpose of lossless 

coding is to provide a binary codeword for each of the encoder outputs. The codeword is 

not only efficient in terms of the average number of bits per symbol but also exact in the 

sense that the encoder outputs can be reconstructed with no loss of information. 

The lossless coding may be as simple as using fixed-length binary codewords to 

describe the outputs from the previous stage, or it may use variable-length codewords to 

achieve higher compression ratio. The latter coding technique is also referred to as 

entropy coding. Figure 4.1 shows the flow diagram of lossless coding stage. 

This chapter concentrates on entropy coding techniques. It begins with a quick 

introduction to some fundamental concepts that is very important to entropy coding. 

4.1 Information and Entropy 

Information gives an idea of the degree of surprise, the degree to which things are 

unpredictable and unexpected. If a symbol occurs that is very improbable, we are 

surprised, and we would therefore expect that the information transferred in coding this 

symbol would be large. Conversely, if the symbol is very probable, we are not at all 
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surprised and have learned very little: We already expected that symbol. This qualitative 

concept, the degree of surprise, is formally expressed by the following relationship. The 

amount of information I gained after observing the symbol which occurs with probability 

p is given by: 

The base of the logarithm in equation (4.1) is quite arbitrary. Nevertheless, it is the 

standard practice today to use a logarithm base 2. The resulting unit of information is 

called the bits. 

Figure 4.1 	A Flow Diagram of Lossless Coding Stage. 

Entropy H is a measure of information. It is defined as the average information 

content per symbol for a set of statistically independent symbols : 
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The concepts of both information and entropy are extremely important in entropy 

coding. The number of bits of information for a symbol is equal to the ideal codeword 

length, the number of bits in the optimum codeword for that symbol. The importance of 

H stems from the source coding theorem (Haykin 622), which states that the entropy of a 

set of discrete-valued symbols gives the lower bound on the average codeword 

length R for any lossless coding, 

R can be made arbitrarily close to H by means of sophisticated coding procedures. 

There are at least three techniques that can realize this ideal, Huffman coding, 

arithmetic coding, and run length coding. 

4.2 Entropy Coding Schemes 

4.2.1 Huffman Coding 

The basic idea behind Huffman coding is to assign each symbol of an alphabet a sequence 

of bits roughly equal in length to the amount of information conveyed by the symbol in 

question. That is the highly probable symbol is represented by small length codeword, 

and vice versa. The end result is a set of codewords whose average code length 

approaches the lower bound in equation (4.3). In fact, if the input probabilities are 

integer powers of 2, the bound is achieved. Huffman codeword design algorithm can be 

summarized in a concise form as follows: 

1. Arrange the set of discrete-valued symbol probabilities {pi; i = 1, 2,..., N} in a 

decreasing order. 

2. While there is more than one symbol, merge the two symbols of the smallest 
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probabilities to form a new symbol whose probability is the sum of the two merged 

probabilities. Arbitrarily assign 1 and 0 to this pair of merged symbols. 

3. The procedure is repeated until we are left with a final list of symbols of only two for 

which a 0 and a 1 are assigned. 

4. The binary codeword for each symbol is found by reading backward and tracing the 

sequence of Os and is to where that symbol is located. 

The preceding algorithm gives the Huffman codebook for any given set of 

probabilities. This also means that the probabilities of all the symbols in an alphabet 

must be known before a Huffman codebook can be constructed. This is done, in image 

compression case, by counting symbol occurrences, usually for a large group of images 

that are considered to be typical for the application. Encoder and decoder operations as 

shown in figure 4.1 are then done simply by looking up values in the codebook. 

As we mentioned before, unless the input probabilities are integer powers of 2, the 

average code length will not equal to the lower bound. So if we want to improve the 

coding efficiency relative to that bound, we should code successive pairs or larger blocks 

of input symbols, that is, consider the input alphabet to be vectors of symbols instead of 

only single symbols. Then Huffman coding can be applied to this alphabet. For detailed 

discussion in this topic see Reference (Gersho and Gray 225-260). 

4.2.2 Arithmetic Coding 

Arithmetic coding is another method of coding that approaches the entropy limit. In 

arithmetic coding the symbols are ordered on the number line in the probability interval 

from 0 to 1 in a sequence that is known to both the encoder and the decoder. Each 
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symbol is assigned a subinterval equal to its probability. Note that since the symbol 

probabilities sum to one, the subintervals precisely fill the interval from 0 to 1. Figure 

4.2 illustrates a possible ordering for the symbols y1, y2, y3, y4  with probabilities p1, P2, P3, 

p4  respectively. 

The objective in arithmetic coding is to create a binary codeword pointing to the 

interval of the symbol being coded (Gersho and Gray 242-248). Thus, if the symbol is y2, 

the codeword is greater than or equal to q2, but less that q. If the symbol is y4, the code is 

greater than or equal to q + q(1 - q), but less than 1. If the codewords follow these rules, 

a decoder can see which subinterval is pointed to by the codeword and decode the 

appropriate symbol. 

Coding additional symbols is a matter of subdividing the probability interval into 

smaller and smaller subintervals, always in proportion to the probability of the particular 

symbol. As long as we follow the rules and never allow the codewords to point outside 

the subinterval assigned to the symbol, the decoder will decode that symbol. Note that 

the boundary between two intervals is always assigned to one of the intervals. 

In cases where extra compression is desired, arithmetic coding is normally used. 

But the negative about this scheme is added complexity. 

4.2.3 Run Length Coding 

Run length coding is a simple entropy coding technique originally designed for data 

compression and later modified for facsimile. It essentially encodes runs of different 

symbol lengths. Consider a simplest example: After an appropriate two-level 

quantization, the encoder outputs from the quantization stage, y1s and yes, can be coded 



37 

as the number of y1s between two successive yes, that is, the length of the runs of y1 is 

coded. Run length coding is very useful when large rims of symbols are expected. It 

works well in the black-and-white facsimile world. 

Figure 4.2 	A Possible Ordering for the Symbols y1, y2, y3, y4  with 

Probabilities p1, p2, p3, pd  Respectively. 



CHAPTER 5 

COMPARATIVE STUDIES OF RATE-DISTORTION PERFORMANCE 

In the previous chapters, the lossy image compression techniques were presented. Now 

we are going to simulate some of these image compression techniques. Then we will 

compare their performances on three test images. 

5.1 Simulation of bossy Image Compression Techniques 

Simulation programs which utilize a few popular compression techniques, shown in 

figure 5.1, were developed. The programs consist of only image transformation and 

quantization stages. Lossless coding stage is excluded, due to the scope of this thesis. In 

image transformation, we only focused on DCT and subband transform techniques. In 

the quantization stage, both scalar quantization and vector quantization were considered. 

A flow chart of the simulation programs can be found in figure 5.1. First we input 

the test image, and the two-band filter bank coefficients, which will be used repetitively 

for subband transform. The test image is the input to the analysis stage of subband filter 

bank. Then after the optimal bit allocation, which distributes the number of bits among 

the subbands from the analysis stage based on the signal energy in each band, each 

subband is quantized separately according to the quantization bits allocated. It is 

assumed that an ideal lossless coding with error-free transmission used. Therefore, the 

input of the dequantization stage equal to the output of the quantization stage. The 

synthesis stage of subband transform comes right after the dequantization. And finally 
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Figure 5.1 	Flow Chart of the Simulation Programs. 
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we obtain the reconstructed test image. The codec simulation programs are further 

elaborated as the following. 

Analysis and Synthesis: 

The analysis and the synthesis stages as in figure 5.1 form the subband transform 

technique for image transformation. The 10-band 2-D subband tree structure, as shown in 

figure 2.4, is used for the implementation of subband transform. The two-band 8-tap 

uncorrelated PR-QMF bank (Akansu and Haddad 263-264), multiplierless PR-QMF bank 

(Akansu 723-734), binomial PR-QMF bank (Akansu and Haddad 241-246), and Smith-

Barnwell filter bank (Smith and Barnwell 434-440) are employed separately in this tree 

structure for the purpose of performance comparison. 

Optimal Bit Allocation: 

Optimal bit allocation means that the total available bits are efficiently distributed among 

the subbands, which are from the analysis stage of subband transform, based on their 

relative subband energies. The optimal bit allocation equation is found as (Jayant and 

Noll 493) 

where ri  = optimal number of bits per ith subband sample 

r = the given average number of bits per sample σi2

= the variance of the ith subband 

Equation (5.1) holds only for regular tree structures of subband transform as 

shown in figure 2.2. For an irregular tree structure, as is the case in these simulation 
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programs of using figure 2.4, we first properly modified this 10-band structure to a 

regular one based on the Parseval theorem, and then used equation (5.1) to obtain the 

optimal bit allocation. Finally the resulting ri  is adjusted in order to fit to one of the 

existing quantizers: In these simulation programs 2r1 needs to be an integer which equals 

to one of the following number of quantization levels: 3, 5, 	33, 35, 64, and 128. 

Moreover, subbands with negative r, are truncated to zero and dropped from the future 

calculation. 

Quantization and Dequantization: 

Quantization and dequantization operations in figure 5.1 form the quantization stage of a 

lossy image compression procedure. In quantization, whether it is SQ or VQ, each 

subband is quantized using the corresponding number of levels found by the optimal bit 

allocation. Both SQ and VQ are examined in this study. 

In SQ, both the uniform quantizers and the normalized Lloyd-Max quantizers for 

Laplacian pdf, which are also called the Laplacian quantizers, are used. Since the 

histograms of the 10 bands after the analysis operation match either the uniform or the 

Laplacian pdf quite well. The histograms of subband signals are displayed in figure 5.2. 

In uniform quantizers, equation (3.7) is used for the quantization. In Laplacian 

quantizers, the bands are quantized according to the design values in table 3.1 and the 

values in the more extensive tables, which can be found in References (Jain 108-111). 

In VQ, first two sets of codebooks which are called codebook I and II are obtained 

using the LBG algorithm based on the two different initialization methods of codebook. 

One is the pruning method, the other is the k-means method. The images "mite" and 

"photog", which will be introduced in the next section, are used as training images with 4 
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x 4 vector size. Then the nearest neighbor method is used to quantize each band based on 

codebook I and II separately. 

5.2 Test Images 

The test images used in this study are three randomly picked black and white 256 x 256 

images, all with 8 bits per pixel (bpp). They are called "lena", "mite", and "photog", and 

are shown in figure 5.3. 

Now we have the simulation programs which utilize a few lossy image 

compression techniques, and the test images, so the comparison of these compression 

techniques can be proceeded. 

5.3 Rate-Distortion Performance Comparison of Image Compression Techniques 

5.3.1 Performance Measures 

Two criteria are used in this study as the performance measures for different compression 

techniques: The peak signal-to-noise ratio (SNR) at the output of the synthesis stage and 

the bit rate of the compressed image, R. 

The SNR is defined as 

where ruse is the mean square reconstruction error (Akansu 727). 

The entropies of the 10 quantizer outputs, calculated by equation (4.2), are used to 

approximate the bit rates of the 10 quantized bands for SQ. For VQ, the bit rate of each 

quantized band is found as 
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where R, = bit rate of the ith band 

N, = codebook size for the ith band 

K= vector size (fixed to 4 x 4 = 16) 

Then by appropriate combination of these bit rates, the bit rate R of the compressed image 

can be obtained. 

5.3.2 Comparative Methods and the Results 

Comparison among the various lossy image compression techniques can be made as 

follows: First the subband transform techniques are compared with each other based on 

the same quantization procedure. Then the quantization schemes are compared with each 

other based on the same subband transform. Finally a representative from the subband 

transform techniques considered in this thesis is selected and compared with the industry 

standard DCT. 

Comparison of the Subband Transform Techniques: 

The quantization operation is fixed for subband transform comparison. We arbitrarily 

chose uniform quantization. This would be the case of comparing different subband 

transform techniques. We used four different two-band filter bank designs: Uncorrelated 

PR-QMF bank, multiplierless PR-QMF bank, binomial PR-QMF bank, and Smith-

Barnwell filter bank in this thesis. The SNR performance as a function of the bit rate R is 

compared for these four different filter banks. The rate-distortion curves are displayed in 
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figure 5.4 for three test images: "lena", "mitp", and "photog". From the graphs, we can 

draw the following conclusions: 

1. The multiplierless PR-QMF bank gives marginally better performance. 

2. At bit rates 	0.5, multiplierless PR-QMF bank, binomial PR-QMF bank, and 

uncorrelated PR-QMF bank perform almost equally well. 

Comparison of the Quantization Schemes: 

Here the subband transform is fixed. The 10-band subband tree structure with two-band 

binomial PR-QMF bank is used for subband decomposition. 

1. The two scalar quantization schemes are first compared with each other. Figure 5.5 

displays the SNR curves as a function of the bit rate R for uniform quantization and 

the mixture quantization, in which band 1 is uniform quantized and the other 9 bands 

are Laplacian quantized in order to match the band histograms at the input of the 

quantization stage. It is observed that uniform quantization performs better at lower 

bit rates, S 0.75 bpp; while the mixture quantization performs better at higher bit 

rates, 1-2 bpp. 

2. Figure 5.6 shows the performance curves of uniform quantization containing a "dead-

zone" for quantizing bands 2-10. Band 1 is uniform quantized. A "dead-zone" 

represents an interval within which all quantized values are forced to be zero. The 

length of the "dead-zone", z, ranges from 0-4 in figure 5.6. The results demonstrate 

that uniform quantization with z = 2 gives the best performance. 

3. This quantization scheme is also compared with the mixture quantization method. 

The result is shown in figure 5.7. 
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So among the considered scalar quantization schemes, the best performance can 

be obtained if band 1 is uniform quantized and bands 2-10 are quantized by uniform 

quantizers containing a "dead-zone" of length 2. 

For vector quantization, the performance curves by using two different sets of 

codebooks I and II are displayed in figure 5.8. Vector quantization with codebook II 

which is obtained by k-means method gives better performance. 

Finally the best performer of VQ is compared with the best performer of SQ. The 

results are shown in figure 5.9. The compressed images are shown in figure 5.10. It is 

observed that uniform quantization with a "dead-zone" of length 2 performs better. 

Comparison with the DCT: 

For the completeness of comparisons, the industry standard, 2-D DCT of size 8 x 8 is also 

included in this study. First the best performer from the subband transform techniques 

considered here, multiplierless PR-QMF bank, is compared with the 2-D 8 x 8 DCT 

based on uniform quantization. Then these two image transformation methods are 

compared again based on the uniform quantization with a "dead-zone" of length 2. All 

these comparisons are displayed in figure 5.11. Some of the compressed images are 

shown in figure 5.12. The conclusions can be drawn as the following: 

1. The 10-band subband tree structure employing the two-band multiplierless PR-QMF 

bank provides a superior performance to the 2-D 8 x 8 DCT at bit rates 1.3 bpp 

based on uniform quantization. 

2. The 2-D 8 x 8 DCT provides marginally better performance than the 10-band subband 

tree structure employing the two-band multiplierless PR-QMF bank when using 

uniform quantization with a "dead-zone" of length 2. 
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5.4 Conclusions 

From the above simulation results, the following conclusions are drawn: 

1. In a 10-band subband tree structure, two-band multiplierless PR-QMF bank gives the 

best performance over the other three filter banks: Uncorrelated PR-QMF bank, 

binomial PR-QMF bank, and Smith-Barnwell filter bank. Also, at bit rates .5_ 0.5, 

multiplierless PR-QMF bank, binomial PR-QMF bank, and uncorrelated PR-QMF 

bank perform almost equally well. 

2. Among the quantization schemes considered in this thesis, uniform quantization with 

a "dead-zone" of length 2 performs best. 

3. With uniform quantization, the 10-band subband tree structure employing two-band 

multiplierless PR-QMF bank outperforms the industry standard 8 x 8 2-D DCT at bit 

rates :5_ 1.3 bpp. However, with uniform quantization of a "dead-zone" of length 2, 

DCT performs better than the multiplierless PR-QMF bank. 
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Figure 5.2 (a) 	The Histograms of Band 1, 2, 3, 4 in the 10-Band Subband Tree 
Structure Employing Binomial PR-QMF Bank Based on Image A. 
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Figure 5.2 (b) 	The Histograms of Band 5, 6, 7, 8 in the 10-Band Subband Tree 
Structure Employing Binomial PR-QMF Bank Based on Image A. 
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Figure 5.2 (c) 	The Histograms of Band 9, 10 in the 10-Band 
Subband Tree Structure Employing Binomial PR-QMF Bank 
Based on Image A. 
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Figure 5.3 (a) 	Image "lena" (256 x 256, 8 bpp). 
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Figure 5.3 (b) 	Image "mitp" (256 x 256, 8 bpp). 



Figure 5.3 (c) 	Image "photog" (256 x 256, 8 bpp). 
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Figure 5.4 (a) 	SNR and the Bit Rate of Four Different Filter Banks 
for "lena" Image (Uniform Quantization). 
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Figure 5.4 (b) 	SNR and the Bit Rate of Four Different Filter Banks 
for "mitp" Image (Uniform Quantization). 
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Figure 5.4 (c) 	SNK and the Bit Rate of Four Different Filter Banks 
for "photog" Image (Uniform Quantization). 
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Figure 5.5 SNR and the Bit Rate for Uniform Quantization and the Mixture 
Quantization Based on "lena" Image (Binomial PR-QMF Bank). 
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Figure 5.6 SNR and the Bit Rate for Uniform Quantization Containing a 
"dead-zone" of Different Length for "lena" image (Binomial PR-QMF Bank). 
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Figure 5.7 SNR and the Bit Rate for Uniform Quantization with z = 2 and the 
Mixture Quantization for "lena" Image (Binomial PR-QMF Bank). 
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Figure 5.8 	SNR and the Bit Rate for Vector Quantization with Codebook I 
and II Separately for "lena" Image (Binomial PR-QMF Bank). 
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Figure 5.9 	SNR and the Bit Rate for Uniform Quantization with z = 2 
and Vector Quantization with Codebook II Based on "lena" Image 
(Binomial PR-QMF Bank). 
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Figure 5.10 (a) Compressed "lena" Image by Uniform Quantization with z = 2 
at R = 0.40 bpp, SNR = 29.04 dB (Binomial PR-QMF Bank). 
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Figure 5.10 (b) 	Compressed "lena" Image by Vector Quantization with Codebook H 
at R = 0.40 bpp, SNR = 27.48 dB (Binomial PR-QMF Bank). 



Figure 5.11 (a) 	SNR and the Bit Rate for 2-D 8 x 8 DCT and the Multiplierless 
PR-QMF Bank Based on the Different Quantization Schemes for "lena" Image. 
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Figure 5.11 (b) 	SNR and the Bit Rate for 2-D 8 x 8 DCT and the Multiplierless 
PR-QMF Bank Based on the Different Quantization Schemes for "mitp" Image. 
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Figure 5.12 (a) Compressed "lena" Image by Multiplierless PR-QMF Bank with 
Uniform Quantization of z = 2 at R = 0.87 bpp, SNR = 34 dB. 
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Figure 5.12 (b) Compressed "lena" Image by 2-D 8 x 8 DCT with 
Uniform Q uantization of z = 2 at R = 0.87 bpp, SNR = 34.78 dB. 
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