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ABSTRACT 

CONFIGURING THE RADIAL BASIS FUNCTION NEURAL 
NETWORK 

by 
Insoo Sohn 

The most important factor in configuring an optimum radial basis function 

(RBF) network is the training of neural units in the hidden layer. Many algorithms 

have been proposed, e.g., competitive learning (CL), to train the hidden units. CL 

suffers from producing "dead-units." The other major factor Which was ignored in the 

past is the appropriate selection of the number of neural units in the hidden layer. 

The frequency sensitive competitive learning (FSCL) algorithm was proposed to 

alleviate the problem of dead-units, but it does not alleviate the latter problem. The 

rival penalized competitive learning (RPCL) algorithm is an improved version of the 

FSCL algorithm, which does solve the latter problem provided that a larger number 

of initial neural units are assigned. It is, however, very sensitive to the learning 

rate. This thesis proposes a new algorithm called the scattering-based clustering 

(SBC) algorithm, in which the FSCL algorithm is first applied to let the neural 

units converge. Then scatter matrices of the clustered data are used to compute the 

sphericity for each k, where k is the number of clusters. The optimum number of 

neural units to be used in the hidden layer is then obtained. The properties of the 

scatter matrices and sphericity are analytically discussed. A comparative study is 

done among different learning algorithms on training the RBF network. The result 

shows that the SBC algorithm outperforms the others. 
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CHAPTER 1 

INTRODUCTION 

Radial basis function (RBF) networks have drawn attention as an alternative to 

the multilayered perceptron, such as the back-propagation network for functional 

approximation. An RBF network consists of three basic layers: the input layer, the 

bidden layer, and the output layer. The input layer is made up of source nodes. The 

hidden layer has a high enough dimension, which serves a different purpose from that 

in a multilayer perceptron. The output layer supplies the response of the network 

to the activation patterns applied to the input layer. The transformation from the 

input space to the hidden-unit space is nonlinear, whereas the transformation from 

the hidden-unit space to the output space is linear. RBF networks have been applied 

in different areas such as channel equalization in digital communications [14] and 

signal detection [4]. 

The most important consideration in configuring an RBF network is the deter-

mination of the number and centers of the hidden units. An obvious trivial choice is 

to have each of the data correspond to a center, but this is not practical for a large 

amount of data. Much research has been done on the training of RBFs. Broomhead 

and Lowe [5] were among the first, using the k - means algorithm to minimize the 

number of centers. Other learning methods include the genetic algorithm [2], [21], 

the orthogonal least squares algorithm [15], and the competitive learning (CL) [3), 

[17], [16], [6], [7], [8], [19], [20] which is an adaptive version of k - means algorithm, 

have been proposed. 

CL suffers from producing "dead-units," and the frequency sensitive competitive 

learning (FSCL) [13] was proposed to alleviate this problem. The key idea in FSCL 

is to keep count of the frequency of each neural unit winning and use this infor-

mation to give all the neural units the same opportunity to be modified. With this 
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improvement on CL, FSCL does alleviate the problem, but FSCL is inadequate 

when the number of initial neural units are either larger or smaller din the number 

of clusters. 

An improvement over the FSCL method is rival penalized competitive learning 

(RPCL) [9]. All the procedures are the same, except that another key idea is added. 

The key idea is that in addition to the center unit, which is the winner modified to 

adapt to the input, the center unit of its rival (the second winner) is also modified. 

Utilizing this additional component, RPCL is able to address the problem of having 

initial neural units that are larger than the number of clusters. Therefore, when the 

number of neural units are smaller than the number of data clusters, RPCL fails 

because the neural units do not stablize at the center of the clusters, and even if 

they do, the representation of the data is lost since the center units would draw data 

samples from different clusters. To determine the optimum number of neural units, 

a new algorithm, scattering-based clustering (SBC), is proposed in this thesis. FSCL 

is adopted to address the problem of under-utilized units and the characteristics of 

scatter matrices are derived to adaptively determine the optimal number of neural 

units. A brief review of RBF networks is covered in chapter 2; an overview and 

simulation results on CL is covered in chapter 3; an overview and simulation results 

on FSCL is covered in chapter 4; an overview and simulation results on RPCL is 

covered in chapter 5; an analysis and a description of SBC with simulation results 

are reported in chapter 6; the application of SBC and RPCL to RBF networks for 

supervised classification is shown in chapter 7, and the conclusion appears in chapter 

8. 



CHAPTER 2 

THE RADIAL BASIS FUNCTION NETWORK 

Fig. 2.1 shows a general RBF network with a mapping F : 	R according to 

where K is the total number of RBFs, wi  are the weights of the output layer, φ(•) is 

the basis function, and ci  are the centers of RBFs. 

The weights of the output layer can be easily obtained by using either the 

pseudo-inverse method or the least mean square (LMS) algorithm if the training set 

of input x and the corresponding desired output d are provided. Different basis 

functions φ(•) can be adopted [18]. The most frequently used basis is the Gaussian 

function 

Other basis include the thin-plate-spline function: 

the multiquadric function: 

and the inverse multiquadric function: 

Theoretical investigations and practical results, however, seem to show that 

the type of co(•) is not crucial for the performance of RBF networks [10]. 

3 
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Figure 2.1 Radial basis function network. 



CHAPTER 3 

COMPETITIVE LEARNING 

The essential idea of the CL is to let all the center vectors of the hidden neural units 

compete with each other. When the input vector x is presented to all the center 

vectors c, the difference between x and c is computed. The center vector c that has 

the minimum variance is considered as the winner and is shifted toward the input 

vector x by the amount of the difference. Therefore, the center vector, which is the 

frequent winner, becomes more sensitive in each iteration of CL. The CL algorithm 

can be summarized as follows: 

Step 1: Randomly choose a sample input vector x among input data points, and for 

i=1,...,k, where k is the number of clusters. Determine the winner: 

Step 2: The center vector ci (n) of the winner is updated according to: 

where 0 < e < 1 is the learning rate, which can also be dynamically reduced to zero. 

The k-means algorithm works similar to the CL algorithm. Instead of choosing 

an input vector randomly in every iteration, all the input vectors are compared 

to each center vector. Input vectors are assigned to center vectors that have the 

minimum variance, thus essentially clustering data points like step (1) of CL. The 

mean of data points in each of the k clusters becomes the new center vector. Thus 

CL can be considered the adaptive version of the k-means algorithm. 

The desired result of using the CL algorithm on the input data points is to 

have the neural units converge toward the center of each data cluster. The actual 

result, however, highly depends on the initial value of center vectors. Thus, even for 

5 
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data with only two clusters, the center vectors frequently do not converge toward the 

center of two data clusters. Fig. 3.2, Fig. 3.3, and Fig. 3.4 show simulation results 

applying the CL algorithm on two clusters of data, with e=0.05. It is illustrated in 

Fig. 3.2 that the center units do not converge even for two clusters. Observe from 

Fig. 3.2, Fig. 3.3, and Fig. 3.4 that the initial center vector initialized at (2.5, 2.5) 

is the dead-unit that stays in the same position throughout the learning steps. The 

other initial center vector initialized at (2.0, 2.0) does move toward the clusters, but 

oscillates between the two clusters, as shown in Fig. 3.2. Fig. 3.6, Fig. 3.7, and 

Fig. 3.8 show another simulation of the CL algorithm with three clusters; similar 

results are observed. The initial center unit initialized at (2.5, 2.5) is again the 

dead unit. The center unit initialized at (2.0, 2.0) is the disturbing unit oscillating 

between two clusters once again. The center unit initialized at (2.0, 2.5), however, 

does converge toward the center (1.0, 1.0). These simulation results suggest that the 

CL algorithm is not the optimum method to train the hidden neural nets of the RBF 

network. To alleviate the problem of dead-units, FSCL [13] was proposed. 



Figure 3.1 Two clusters of data that were used in this simulation centered at 
(-1.0,0.0) and (1.0,0.0) each with 100 patterns Gaussian distributed with deviation 
of 0.2. 

Figure 3.2 The learning trace obtained by using CL with initial centers at (2.0,2.0) 
and (2.5,2.5). 
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Figure 3.3 Trace of the x-coordinate of the cluster centers for the first. 1000 
iterations. 

Figure 3.4 Trace of the y-coordinate of the cluster centers for the first 1000 
iterations. 
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Figure 3.5 Three clusters of data that were used in this simulation centered at 
(-1.0,1.0), (1.0,1.0), and (0.0,0.0) each with 100 patterns Gaussian distributed with 
deviation of 0.2. 

Figure 3.6 The learning trace obtained by using CL with initial centers at (2.0,2.0), 
(2.5,2.5), and (2.0,2.5). 



Figure 3.7 Trace of the x-coordinate of the cluster centers for the first 1000 
iterations. 

Figure 3.8 Trace of the y-coordinate of the cluster centers for the first 1000 
iterations. 



CHAPTER 4 

FREQUENCY SENSITIVE COMPETITIVE LEARNING 

Improvement over CL is realized by FSCL through equalization of the average rates 

of winning for each region. This improvement is achieved by incorporating a count 

of winnings of each center unit. The FSCL algorithm can be summarized as follows: 

Step 1: Randomly choose a sample input vector x among input data points, and for 

i=1,... ,k, where k is the number of clusters. Determine the winner: 

where αi is the total number of times ci(n) has been the first winner. 

Step 2: The center vector ci (n) of the winner is updated according to 

where 0 < ε  < 1 is the learning rate which can also be dynamically reduced to zero. 

To investigate the performance of FSCL, it, is applied to five clusters of data 

in these simulations. The same number of clusters will be used for the simulation 

using RPCL, with e=0.05 and the deviation of the data patterns equal to 0.2 shown 

in Fig. 4.1. In order to simulate the incapability of obtaining exact k in reality, three 

cases have been evaluated: the case where the initial number of neural units are the 

same as the actual number of clusters, the case where the initial number of neural 

units are larger than the actual number of clusters, and the case where initial number 

of neural units are smaller than the actual number of clusters. Fig. 4.2, Fig. 4.3, and 

Fig. 4.4 illustrate case 1, where all five center units converge toward the center of 

clusters (-1, -1), (-1, 1), (0, 0), (1, -1), and (1, 1). These simulation results confirm 

that the FSCL algorithm is capable of alleviating the problem of dead-units when 

the number of initial center units are equal to the actual number of data clusters. 

11 
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Fig. 4.8, Fig. 4.9, and Fig. 4.10 illustrate case 2 where the number of initial 

neural units are larger than the actual number of clusters with initial k = 6. In 

order to tack ic 	e 2, it is desirable to have extra center units pushed away from 

the cluster centers so that they may be eliminated or be used as extra center units. 

Fig. 4.8, Fig. 4.9, and Fig. 4.10 show the inadequacy of FSCL to function in this 

manner. The center units initialized at (3.1, 3.5), (3.3, 3.5), (3.5, 3.5), (3.1, 3.1), 

and (3.5,3.1) do converge to the center of the clusters, but the center unit which 

started from (3.3,3.1) becomes a disturbing unit converging around (1.3, 1.3). This 

disturbing unit will not only increase the difficulty of learning for neural units in the 

output layer, but it will also reduce the recognition rate considerably since the linear 

output units may be unable to separate the samples distracted by the disturbing unit. 

Fig. 4.2, Fig. 4.3, and Fig. 4.4 illustrate case 3, that of having a smaller number of 

initial neural units than the actual number of clusters, where initial k = 4. Fig. 4.2, 

Fig. 4.3, and Fig. 4.4 show that the center units initialized at (3.1, 3.5), (3.3, 3.5), 

and (3.5, 3.5) do converge to the cluster centers, but the center that was initialized 

at (3.1, 3.1) becomes the disturbing unit oscillating between the two clusters because 

there are not enough center units to represent all five data clusters. Apparently, the 

FSCL algorithm is capable of solving the problem of dead-units, but it is ineffective 

when the number of initial centers are larger or smaller than the actual number of 

data clusters. To alleviate these problems, RPCL was introduced with improvement 

over FSCL {9]. 
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Figure 4.1 Five clusters of data that were used in this simulation centered at 
(-1.0,-1.0), (1.0,-1.0), (-1.0,1.0), (1.0,1.0), arid (0.0,0.0) each with 100 patterns 
Gaussian distributed with deviation of 0.2. 

Figure 4.2 The learning trace obtained by using FSCL with initial centers at 
(3.1,3.5), (3.3,3.5), (3.5,3.5), and (3.1,3.1). 
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Figure 4.3 Trace of the x-coordinate of the cluster centers for the first 1000 
iterations. 

Figure 4.4 Trace of the y-coordinate of the cluster centers for the first 1000 
iterations. 
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Figure 4.5 The learning trace obtained by using FSCL with initial centers at 
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), and (3.3,3.1). 

Figure 4.6 Trace of the x-coordinate of the cluster centers for the first 1000 
iterations. 
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Figure 4.7 Trace of the y-coordinate of the cluster centers for the first 1000 
iterations. 

Figure 4.8 The learning trace obtained by using FSCL with initial centers at 
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), (3.3,3.1), and (3.5,3.1). 
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Figure 4.9 Trace of the x-coordinate of the cluster centers for the first 1000 
iterations. 

Figure 4.10 Trace of the y-coordinate of the cluster centers for the first 1000 
iterations. 



CHAPTER 5 

RIVAL PENALIZED COMPETITIVE LEARNING 

The essential idea behind the RPCL algorithm is to equalize the average rate of 

winning for each region, and it is implemented by letting the second winner of the 

competition respond to the input vectors in addition to the first winner. The second 

winner is unlearned by a smaller learning rate, creating a rival penalizing force. The 

RPCL algorithm can be summarized as follows: 

Step 1: Randomly choose a sample input vector x among input data points, and for 

i=1,... 	where k is the number of clusters. Determine the winner: 

where α  is the total number of times that the current first winner ci(n) has been 

the first winner, and αi is the total number of times the current second winner ci(n) 

has been the first winner. 

Step 2: The first winner center vector ci(n) and the second winner center vector 

c1 (n) is updated according to 

where 0 < < 1 is the learning rate, which can also be dynamically reduced to zero. 

By unlearning the second winner using equation (12), a rival penalizing force is 

created, which pushes away the second winner, thus guaranteeing the first winner's 

convergence. To investigate the performance of RPCL, the same data patterns of five 

clusters and the same three cases as in FSCL's simulation are applied, with e=0.05, 

r=0.0001 and the deviation of the data patterns equal 0.2. Fig. 5.4, Fig. 5.5, and 
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Fig. 5.6 are illustrations of case 1, where all five center units converge toward the 

center of data clusters (-1, -1), (-1, 1), (0, 0), (1, -1), and (1, 1). Therefore, it is 

seen that RPCL is capable of alleviating the problem of dead-units when the number 

of initial center units are equal to the actual number of clusters. Fig. 5.7 through 

5.15 illustrate case 2, that of having a larger number of initial neural units than the 

actual number of clusters, where initial k = 6. There is more than one simulation 

with six initial center units, because the RPCL algorithm has an extra learning rate 

r. According to the original paper (9) that introduced RPCL, r << e is suggested. 

Thus, initially, r is set to 0.0001 and ε=0.05. The simulation result shown in Fig. 5.7 

shows a similar result compared to Fig. 4.8, with the disturbing unit at (1.3, 1.3). 

This similar behavior is due to r=0.0001 being too small, thus creating almost no 

rival penalizing force, which causes the RPCL algorithm to act as if it were an FSCL 

algorithm. In order to increase the rival penalizing force, r is increased to 0.005 

and e is the same. Fig. 5.10, Fig. 5.11, and Fig. 5.12 show two center units that 

are pushed away by the rival penalizing force. Although extra units being pushed 

away is desired, the desired number of extra units pushed is one, since the number of 

clusters is five. This simulation result reveals that r is too big, creating too much of 

a rival penalizing force, as opposed to too little in the previous case. This conjecture 

can not be realized in reality, since one does not know the actual number of clusters. 

By solely observing results obtained in Fig. 5.10, Fig. 5.11, and Fig. 5.12, one would 

probably think that the optimal number of hidden units is four, since theoretically 

the rival penalizing force only pushes away the extra center units. Thus, using 

this invalid result would produce sub-optimum RBF network. After numerous trials 

and errors, a viable learning rate of r=0.001 is obtained. Fig. 5.13, Fig. 5.14, and 

Fig. 5.15 show that the extra center unit initialized at (3.1, 3.3) is pushed away from 

data patterns converging around (2.0, 2.1). All other initial center units converge 

toward the center of data clusters near (-1.0, -1.0), (1.0, -1.0), (-1.0, 1.0),(1.0, 1.0), 
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and (0.0, 0.0). Thus RPCL does work with a number of initial centers larger than 

the actual number of clusters, but it is too sensitive to the value of the learning rate 

r and results with the wrong optimum number of hidden units for the RBF network, 

as illustrated in the simulation. Fig. 5.1, Fig. 5.2, and Fig. 5.3 illustrate case 3, that 

of having a smaller number of initial neural units than the actual number of clusters, 

where initial k = 4. Fig. 5.1 shows a result similar to Fig. 4.2. The only difference is 

that the center unit initialized at (3.1, 3.1) oscillates between two different clusters 

of data. Thus RPCL acts similar to FSCL with the number of center units smaller 

than the actual number of data clusters, because there are not enough center units 

to represent all five clusters of data. 

As illustrated in the simulations, the RPCL algorithm does work with initial 

center units larger than the actual number of data clusters by pushing away extra 

center units with a rival penalizing force, but it is very sensitive to the value of r, 

thus failing to be robust. Moreover, RPCL does not work for a number of center 

units smaller than the actual number of data clusters. Thus RPCL is superior to 

FSCL, but it is also not the optimum algorithm for the RBF network training. To 

solve the problem of obtaining an optimum number of center units for the training 

of more robust RBF networks, the SBC algorithm is introduced in the next chapter. 



21 

Figure 5.1 The learning trace obtained by using RPCL with initial centers at 
(3.1,3.5), (3.3,3.5), (3.5,3.5), and (3.1,3.1). 

Figure 5.2 Trace of the x-coordinate of the cluster centers for the first 1000 
iterations. 
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Figure 5.3 Trace of the y-coordinate of the cluster centers for the first 1000 
iterations. 

Figure 5.4 The learning trace obtained by using RPCL with initial centers at 
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), and (3.3,3.1). 
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Figure 5.5 Trace of the x-coordinate of the cluster centers for the first 1000 
iterations. 

Figure 5.6 Trace of the y-coordinate of the cluster centers for the first 1000 
iterations. 
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Figure 5.7 The learning trace obtained by using RPCL with initial centers at 
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), (3.3,3.1), and (3.5,3.1) and r=0.0001. 

Figure 5.8 Trace of the x-coordinate of the cluster centers for the first 1000 
iterations. 
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Figure 5.9 Trace of the y-coordinate of the cluster centers for the first 1000 
iterations. 

Figure 5.10 The learning trace obtained by using RPCL with initial centers at 
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), (3.3,3.1), and (3.5,3.1) and r=0.005. 
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Figure 5.11 Trace of the x-coordinate of the cluster centers for the first 1000 
iterations. 

Figure 5.12 Trace of the y-coordinate of the cluster centers for the first 1000 
iterations 



Figure 5.13 The learning trace obtained by using RPCL with initial centers at 
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), (3.3,3.1), and (3.5,3.1) and r=0.001. 

Figure 5.14 Trace of the x-coordinate of the cluster centers for the first 1000 
iterations. 



Figure 5.15 Trace of the y-coordinate of the cluster centers for the first 1000 
iterations. 
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CHAPTER 6 

SCATTERING-BASED CLUSTERING ALGORITHM 

In the following sections, an analysis and a description of the scatter matrices and 

sphericity will be done, followed by simulation results for a different number of 

clusters of data patterns. 

6.1 Analysis on Scatter Matrices and Sphericity 

In the partitional clustering method, different clustering criteria functions are used, 

such as a. squared error criterion, a related minimum variance criterion, and a 

scattering criterion [1],[12]. The scattering criterion uses scatter matrices used in 

multiple discriminant analysis. The following equations are the definitions for the 

scatter matrices: 

Definition 1 - jth d-dimensional pattern vector in K th cluster: 

Definition 2 - d-dimensional mean vector in Kth cluster: 

nK  = the number of patterns in the K th cluster. 

Definition S - Total mean vector: 



Definition .4 - Total scatter matrix: 

Definition 5 - Total scatter matrix: 

Definition 6 - Total within scatter matrix: 

Definition 7 - Total between scatter matrix 

Therefore, the trace of the scatter matrices would produce a scalar measure 

of the scatter matrix. This trace of the scatter matrices measures the square of the 

scattering radius, since it is proportional to the sum of the variances in the coordinate 

directions. The following equations are the trace of the scatter matrices: 

Definition 8 - Trace of total scatter matrix: 

For the 2-D case: 

Definition 9 - Trace of total scatter matrix: 

Definition 10 - Trace of total within scatter matrix: 
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where e't is the mean square error at each k. 

For the 2-D case: 

Definition 11 - Trace of total between scatter matrix: 

For the 2-D case: 

Using these scatter matrix equations, a new criterion called sphericity is 

introduced [14 The definition of sphericity is as follows: 

Definition 12 - Sphericity: 

The analysis on scatter matrices and sphericity is done using Proposition 1, 

Proposition 2, and Proposition 3. 

Proposition 1. Tr(Sw) monotonically decreases with k. 

Proof. Without loss of generality, assume that a given set of ri distinct patterns 

in d dimensions has been partitioned into k clusters. When one uses the k-means 

algorithm, the following equation is derived: 

where L is the set of integers corresponding to the subscripts of patterns assigned to 

the k +1 th cluster. This is justified since new data patterns assigned to the k +1 th 

cluster are closer to mk+i  than mi; however, g for other clusters remain the same. 

Therefore, 
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where El is the mean square error at a predefined threshold. Reassignment of data 

patterns take place from one iteration to another if and only if 

and ends if and only if 

Therefore, 

Thus Proposition 1 is proved. 

Proposition 2. Tr(SB) monotonically increases with k. 

Proof. By definition Tr(S) is constant for all k. Additionally, by definition 

Tr(S) = Tr(Sw)+ Tr(SB). Therefore, Tr(SB) has to be monotonically increasing 

to have a constant Tr(S). Thus Proposition 2 is proved. 

Proposition 3. -y[Sw, SB] monotonically decreases for k > 2 when Trrr((ssB))  > 1. 

Proof. rtisina clefinitinn (29) 

We know that Tr(S) is always positive from the definition, aT  r(sw)  is negative from ak 

Proposition 1, and since 
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therefore, 

Thus Proposition 3 is proved. 

The reason k > 2 is because Tr(SB) = 0 for k = 1. The reason for the 

n  condition Tr(sB)  > 1, is because -y[Sw,SB] has the "knee" at the optimum k for Tr(Sw) 

only well clustered data from simulation results. The larger Tr(sB)  the better the Tr(Sw)' 

patterns are clustered, since Tr(SB ) shows the variance of patterns between the 

clusters, and Tr(Sw) shows the variance of patterns within the cluster. Tr(sB)  < 1 Tr(Sw) 

suggests Tr(Sw ) > Tr(SB), which signifies that the patterns are very close to being 

one cluster. Thus Tr(SB)  has to be greater than one to have well clustered patterns Tr(Sw) 

of k > 2. 

6.2 The algorithm 

Using the characteristics of scatter matrices, the SBC algorithm could be summarized 

as follows: 

Step 1: Compute ci (n) using the FSCL algorithm, where i=1... k. 

Step 2: Input patterns xd, where d.1... total number of data patterns are assigned 

to center vectors: 

Step 3: The data patterns are clustered according to: 
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di (n + 1) = d1(n) xdwi, 	 (6.27) 

where di  (n) is the i th data cluster. 

Step 4: Compute Z7[Sw, SBI. 

Step 5: Check if the L-y[Sw, SB] is the minimum. 

Step 6: If [y[Sw,SB ] is the minimum, stop. If not, increment k and go back to step 

1. 

These steps indicate that for the SBC algorithm, one does not have to guess 

the initial number of center units. Each k is tested incrementally and the optimum 

number of center units is obtained from the minimum angle of sphericity. 

6.3 Simulation Results 

To investigate the performance of SBC, it is applied to four, five, and six clusters of 

data patterns, with e=0.05, and the deviation of the data patterns equal 0.2. Fig. 6.2, 

Fig. 6.3, and Fig. 6.4 show the application of SBC on four data clusters. Fig. 6.2 

shows the convergence of the center units toward the center of data clusters at (-1, 0), 

(0, -1), (0, 1), and (1, 0) from utilizing FSCL. Fig. 6.3 shows the Tr(S), Tr(Sw ), and 

Tr(SB ) for k = 1 ... 10. As Proposition 1 and 2 arc proved, Tr(SB) is monotonically 

increasing, TI(SW ) is monotonically decreasing for k > 2, and Tr(S)/2 > Tr(Sw) for 

k > 2. Therefore, these clusters are valid clusters where sphericity could be employed 

to obtain an optimum number of neural units for the hidden layer of RBF networks. 

Fig. 6.4 shows the sphericity, and as Proposition 3 proposed, -y[Sw,SB ] is maximum 

at k=2. In seeking the optimum number, one could see that -Ow, SB]  stablizes at 

k = 4, and the simplest method for the computer to evaluate y[Sw, SB] is by letting 

it compute the minimum angle of y[Sw, SB]. The angles for y[Sw, SB] is shown in 

Table 6.1, illustrating the minimum angle to be at k = 4. Fig. 6.6, Fig. 6.7, and 

Fig. 6.8 illustrate the utilization of SBC on five clusters of data. Fig. 6.8 shows that 
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-y[Stv,SE ] stablizes at k = 5, and Table 6.2 illustrates that the angle is minimum 

at k = 5. Fig. 6.10, Fig. 6.11, and Fig. 6.12 illustrate the utilization of SBC on 

six data clusters. Fig. 6.12 shows that -y[Sw,SB] stablizes at k = 6 and Table 6.3 

shows that the angle is minimum at k = 6. These simulation results show that the 

SBC algorithm is more robust compared to RPCL, always producing the optimum 

number whereas RPCL heavily depends on the learning rate r and fails when the 

number of initial center units are smaller than the actual number of clusters. Thus, 

using the optimum number produced by the SBC algorithm and the value of center 

units corresponding to that optimum number, an optimum RBF network would be 

produced for that data pattern. 
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# of cluster angle 

2 318.14° 
3 206.37° 
4 96.22° 
5 174.55° 
6 176.30° 
7 

171.84° 

8 166.26° 
9 168.84° 

Table 6.1 Angles for the sphericity obtained for four clusters of data by using SBC 
algorithm 

# of cluster angle 	I 

2 276.14° 
3 244.11° 
4 179.21° 
5 109.12° 
6 178.21° 
7 176.62° 
8 179.00° 
9 177.29° 

Table 6.2 Angles for the sphericity obtained for five clusters of data by using SBC 
algorithm 

i# of cluster angle 

2 321.86° 
3 197.00° 
4 159.29° 
5 177.52° 
6 129.96° 
7 174.41° 
8 179.82° 
9 177.82° 

Table 6.3 Angles for the sphericity obtained for six clusters of data by using SBC 
algorithm 
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Figure 6.1 Four clusters of data that were used in this simulation centered 
at (-1.0,0.0), (1.0,0.0), (0.0,1.0), and (0.0,-1.0) each with 100 patterns Gaussian 
distributed with deviation of 0.2. 

Figure 6.2 The learning trace for k = 4 with initial centers at (3.1,3.5), (3.3,3.5), 
(3.5,3.5), and (3.1,3.1). 
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Figure 6.3 Tr(S), Tr(Sw), and Tr(SB ) obtained for four clusters by using SBC for 
k 	1 .. .10. 

Figure 6.4 Sphericity obtained for four clusters by using SBC for k = 1 . . 10. 
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Figure 6.5 Five clusters of data that were used in this simulation centered at 
(-1.0,-1.0), (1.0,4.0), (4.0,1.0), (1.0,1.0), and (0.0,0.0) each with 100 patterns 
Gaussian distributed with deviation of 0.2. 

Figure 6.6 The learning trace for k = 5 with initial centers at (3.6,3.2), (3.2,3.9), 
(3.4,3.1), (3.5,3.8), and (3.4,3.7). 



40 

Figure 6.7 Tr(S), Tr(Sw), and Tr(SB) obtained for five clusters by using SBC for 
k 	...10. 

Figure 6.8 Sphericity obtained for five clusters by using SBC for k = 1...10. 



Figure 6.9 Six clusters of data that were used in this simulation centered at 
(-1.0,-1.0), (1.0,-1.0), (-1.0,1.0), (1.0,1.0), (0.0,1.0), and (0.0,-1.0) each with 100 
patterns Gaussian distributed with deviation of 0.2. 

Figure 6.10 The learning trace for k = 6 with initial centers at (3.2,3.8), (3.3,3.9), 
(3.5,3.9), (3.5,3.1), (3.9,3.7), and (3.9,3.7). 
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Figure 6.11 Tr(S), Tr(Sw ), and Tr(SB ) obtained for six clusters by using SBC for 
k = 1 ...10. 

Figure 6.12 Sphericity obtained for six clusters by using SBC for k = 1 . . . 10. 



CHAPTER 7 

SUPERVISED CLASSIFICATION THROUGH RBF NETWORKS 

To illustrate the functionality of the RBF network trained by the RPCL and SBC, 

the RBF network is utilized to classify the patterns in a. "noisy" XOR problem. The 

data patterns used for this XOR classification are the same as the data patterns in 

Fig. 6.1, where the patterns are centered at (-1.0, 0.0), (1.0, 0.0), (0.0, 1.0), and 

(0.0, -1.0). The deviation is the same as before, which is 0.2 with 100 patterns in 

each cluster. The two clusters centered at (0.0, 1.0) and (0.0, -1.0) form the first 

class and the other two clusters centered at (-1.0, 0.0) and (1.0, 0.0) form the second 

class. The basis function used for the response function of the RBF network was the 

Gaussian function shown previously, in equation (2), with a = 0.2. 

The first step in this experiment is to create random patterns for training 

purposes, centered at (-1.0, 0.0), (1.0, 0.0), (0.0, 1.0), and (0.0, -1.0), and the desired 

output for these patterns. If the patterns are close to (0.0,1.0) and (0.0, -1.0), the 

desired output of the RBF network is 1, and if the patterns are close to (-1.0, 0.0) 

and (1.0, 0.0), the desired output of the RBF network is 0. Next, the hidden layer is 

trained either using the RPCL algorithm or the SBC algorithm. From this training, 

center units for RBFs are obtained. Using the data pattern, the desired output 

for this data pattern, and the center units for RBFs, the weights for the output 

layer are obtained using the pseudo-inverse method. After the training, the RBF 

network is obtained that classifies the patterns centered at (-1.0, 0.0), (1.0, 0.0), 

(0.0, 1.0), and (0.0,-1.0) of the XOR problem. To test this RBF network, new test 

data patterns are created that are centered at the same place, but with different 

random sampling. These test data patterns are the input for the RBF network to 

produce output, which should classify the patterns into two classes. The accuracy of 

the RBF network could be computed by comparing the output of the RBF network 

with the desired output of the test data. By comparing these computations, one 
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could compare the functionality of the SBC algorithm with the RPCL algorithm. 

The results are shown in Table 7.1 through 7.4. 

From the tables, correct and incorrect classifications by the RBF network are 

easily computed. The values under "marginally classified as" indicate how many data 

patterns are marginally classified as class 1 or class 2. To examine the use of the 

RPCL algorithm on training the hidden layer of the RBF network in reality, where 

one does not know the actual number of data clusters, the number of initial center 

units are set as five, ε =0.05, and r = 0.005, which is a reasonable value between 0 and 

1. The result of the RBF network with these parameters is shown in Table 7.1, which 

shows that the recognition rate is only around 52%. Therefore, the RBF network 

classifies the patterns correctly only half of the time. The reason for such a low rate 

of recognition is because the rival penalizing force is too strong, which is similar to 

the simulation results shown in Fig. 5.10, Fig. 5.11, and Fig. 5.12 where too much of 

the rival penalizing force pushed away more center units than needed. Thus, after 

decreasing r several times, the optimum value of r = 0.002 is obtained. The results 

are shown in Table 7.2, where the recognition rate is around 98%. The sensitivity of 

r is a major hindrance toward obtaining the optimal RBF network. Table 7.3 shows 

the result of initial center units less than the actual number of clusters simulated 

with k = 3 and r = 0.002. The recognition rate is around 73%. The obvious reason 

for the low recognition rate is that there are not enough RBF's to represent the four 

data clusters. Table 7.4 shows the result of using the SBC algorithm. The optimum 

number of neural units for the hidden layer was found by searching k that has the 

minimum angle of sphericity as shown in the previous simulation results, and the 

value of center units corresponding to that optimal k were used. The recognition 

rate is around 98%. 



classified as marginally 
classified as class 1 class 2 

class 1 176 0 24 
class 2 1 16 31 153 

Table 7.1 Classification by using RPCL when r=0.005 and k 

classified as marginally 
classified as class 1 class 2 

class 1 194 6 0 
class 2 0 196 4 

Table 7.2 Classification by using RPCL when r=0.002 and k = 5 

classified as marginally 
classified as class 1 class 2 

class 1 96 102 9 

class 2 0 197 3 

Table 7.3 Classification by using RPCL when r=0.002 and k = 3 

classified as marginally 
classified as class 1 class 2 

class 1 197 0 3 
class 2 0 194 6 

Table 7.4 Classification by using SBC 
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CHAPTER 8 

CONCLUSION 

Although it has been shown and proved that the RBF network is faster and more 

flexible compared to classical multi-layered neural networks, the major problem of 

using the RBF network is the appropriate selection of radial basis function centers. 

To address and solve this problem, a new learning method based on scatter matrices 

and sphericity is developed for the construction of the optimal RBF network. 

From the simulation results and the application of supervised classification 

through the RBF network, it has been shown that the CL algorithm, the FSCL 

algorithm, and the RPCL algorithm are inadequate in training the hidden layer of 

the RBF network. Among different competitive learning methods, RPCL was the 

most promising, but it is too sensitive to the learning rate r, and it failed to work 

when the number of center units chosen was smaller than the actual one. As for the 

SBC algorithm, it was able to choose the optimal number of center units by selecting 

k with the minimum angle of sphericity and the optimal value for the center units. 

By using the characteristics of scatter matrices, the SBC algorithm was far superior 

in robustness. 

46 



REFERENCES 

1. A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice Hall 
Englewood Cliffs, NJ, 1988. 

2. B. A. Whitehead and T. D. Choate, "Evolving space-filling curves to distribute 
radial basis functions over an input space," IEEE Trans. Neural Networks, 
vol. 5, no. 1, pp. 15-23, 1994. 

3. D. E. Rumelhart and D. Zipser, "Feature discovery by competitive learning," 
Cognitive Science, vol. 9, pp. 75-112, 1985. 

4. D. M. Hummels, W. Ahmed, and M. T. Musavi, "Adaptive detection of small 
sinusoidal signals in non-gaussian noise using an RBF neural network," 
IEEE Trans. Neural Networks, vol. 6, no. 1, pp. 214-219, 1995. 

5. D. S. Broomhead and D. Lowe, "Multivariable functional interpolation and 
adaptive networks," Complex Syst., vol. 2, pp. 321-355, 1988. 

6. G. A. Carpenter and S. Grossberg, "A massively parallel architecture for a 
self-organizing neural pattern recognition machine," Computer Vision, 
Graphics, and Image Processing, vol. 37, pp. 54-115, 1987. 

7. G. A. Carpenter and S. Grossberg, "ART 2: Self organization of stable category 
recognition codes for analog output patterns," App!. Opt., vol. 26, 
pp. 4919-4930, 1987. 

8. G. A. Carpenter and S. Grossberg, "ART 3: 	Hierarchical searching 
using chemical transmitters in self-organizing pattern recognition archi-
tectures," Neural Networks, vol. 3, pp. 129-152, 1990. 

9. L. Xu, A. Krzyzak, and E. Oja, "Rival penalized competitive learning for 
clustering analysis, RBF net, and curve detection," IEEE Trans. Neural 
Networks, vol. 4, no. 4, pp. 636-649, 1993, 

10. M. J. D. Powell, "Radial basis function approximations to polynomials," Proc. 
12th Biennial Numerical Analysis Conf.(Dundee), pp. 223-241, 1987. 

11. N. Ansari and E. J. Delp, "On the distribution of a deforming triangle," Pattern 
Recognition, vol. 23, no. 12, pp. 1333-1341, 1990. 

12. R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis, John 
Wiley & Sons, New York, 1973. 

13. S. C. Ahalt, A. K. Krishnamurty, P. Chen, and D. E. Melton, "Competitive 
learning algorithms for vector quantization," Neural Networks, vol. 3, 
pp. 277-291, 1990. 

47 



48 

14. S. Chen, B. Mu'grew, and P. M. Grant, "A Clustering technique for 
digital communications channel equalization using radial basis function 
networks," IEEE Trans. Neural Networks, vol. 4, no. 4, pp. 570-579, 1993. 

15. S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares 
learning algorithm for radial basis function networks," IEEE Trans. 
Neural Networks, vol. 2, no. 2, pp. 302-309, 1991. 

16. S. Grossberg, "Adaptive pattern classification and universal recording: I. 
parallel development and coding of neural feature detectors," Biol. 
Cybern, vol. 23, pp. 121-134, 1976. 

17. S. Grossberg, "Competitive learning: from iterative activation to adaptive 
resonance," Cognitive Science, vol. 11, pp. 23-63, 1987. 

18. S. Haykin, Neural Networks, A Comprehensive Foundation, Macmillan, New 
Jersey, 1994. 

19. T. Kohonen, Self-Organization and Associative Memory, Springer-Verlag, 
Berlin, 1988. 

20. T. Kohonen, "The self-organizing map," Proc. IEEE, vol. 78, pp. 1464-1480, 
1990. 

21. X. Yao, "A review of evolutionary artificial neural networks," International 
Journal of Intelligent Systems, vol. 8, no. 4, pp. 539-567, 1993. 


	Configuring the radial basis function neural network
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: The Radial Basis Function Network
	Chapter 3: Competitive Learning
	Chapter 4: Frequencey Sensitive Competitive Learning
	Chapter 5: Rival Penalized Competitive Learning
	Chapter 6: Scattering-based Clustering Algorithm
	Chapter 7: Supervised Classification Through RBF Networks
	Chapter 8: Conclusion
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)


