
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1-31-1996

Configuring the radial basis function neural network Configuring the radial basis function neural network

Insoo Sohn
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Sohn, Insoo, "Configuring the radial basis function neural network" (1996). Theses. 1121.
https://digitalcommons.njit.edu/theses/1121

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ New Jersey Institute of Technology (NJIT)

https://core.ac.uk/display/232276227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1121?utm_source=digitalcommons.njit.edu%2Ftheses%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

CONFIGURING THE RADIAL BASIS FUNCTION NEURAL
NETWORK

by
Insoo Sohn

The most important factor in configuring an optimum radial basis function

(RBF) network is the training of neural units in the hidden layer. Many algorithms

have been proposed, e.g., competitive learning (CL), to train the hidden units. CL

suffers from producing "dead-units." The other major factor Which was ignored in the

past is the appropriate selection of the number of neural units in the hidden layer.

The frequency sensitive competitive learning (FSCL) algorithm was proposed to

alleviate the problem of dead-units, but it does not alleviate the latter problem. The

rival penalized competitive learning (RPCL) algorithm is an improved version of the

FSCL algorithm, which does solve the latter problem provided that a larger number

of initial neural units are assigned. It is, however, very sensitive to the learning

rate. This thesis proposes a new algorithm called the scattering-based clustering

(SBC) algorithm, in which the FSCL algorithm is first applied to let the neural

units converge. Then scatter matrices of the clustered data are used to compute the

sphericity for each k, where k is the number of clusters. The optimum number of

neural units to be used in the hidden layer is then obtained. The properties of the

scatter matrices and sphericity are analytically discussed. A comparative study is

done among different learning algorithms on training the RBF network. The result

shows that the SBC algorithm outperforms the others.

CONFIGURING THE RADIAL BASIS FUNCTION NEURAL
NETWORK

by
Insoo Sohn

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

January 1996

APPROVAL PAGE

CONFIGURING THE RADIAL BASIS FUNCTION NEURAL
NETWORK

Insoo Sohn

Dr. Nirwan Ansari, Thesis Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Yun-Qing Shi , Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, MIT

BIOGRAPHICAL SKETCH

Author: 	Insoo Sohn

Degree: 	Master of Science in Electrical Engineering

Date: 	 January 1996

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1996

• Bachelor of Science in Electrical Engineering,
Rensselaer Polytechnic Institute, Troy, NY, 1994

Major: 	 Electrical Engineering

This work is dedicated to
my parents

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his advisor, Dr. Nirwan

Ansari, for his guidance and friendship throughout this research.

The author also extends his gratitude to Dr. Yun-Qing Shi and Dr. Edwin

Hou for serving as members of the thesis committee.

Special thanks to Amit for help in starting the research, Chen with the help in

the analysis of the research, and Murali for the moral support.

Also, the author is grateful to Lisa for her great help in editing of this thesis.

Additionally, the author expresses deep appreciation for his parents, brother,

and sister for all their constant support.

Finally, the author wishes to acknowledge his colleagues at the Center

of Communications and Signal Processing Research at New Jersey Institute of

Technology for their friendship and support throughout this research.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 .1

2 THE RADIAL BASIS FUNCTION NETWORK 	 3

3 COMPETITIVE LEARNING 	 5

4 FREQUENCY SENSITIVE COMPETITIVE LEARNING 	 11

5 RIVAL PENALIZED COMPETITIVE LEARNING 	 18

6 SCATTERING-BASED CLUSTERING ALGORITHM 	 29

6.1 Analysis on Scatter Matrices and Sphericity 	 29

6.2 The algorithm 	 33

6.3 Simulation Results 	 34

7 SUPERVISED CLASSIFICATION THROUGH RBF NETWORKS 	43

8 CONCLUSION 	 46

REFERENCES 	 47

vii

LIST OF TABLES

Table 	 Page

6.1 	Angles for the sphericity obtained for four clusters of data by using SBC
algorithm 	 36

6.2 Angles for the sphericity obtained for five clusters of data by using SBC
algorithm 	 36

6.3 Angles for the sphericity obtained for six clusters of data by using SBC
algorithm 	 36

7.1 Classification by using RPCL when r=0.005 and k = 5 	 45

7.2 Classification by using RPCL when 7=0.002 and k = 5 	 45

7.3 Classification by using RPCL when r=0.002 and k = 3 	 45

7.4 Classification by using SBC 	 45

viii

LIST OF FIGURES

Figure 	 Page

2.1 	Radial basis function network 	4

3.1 Two clusters of data that were used in this simulation centered at
(-1.0,0.0) and (1.0,0.0) each with 100 patterns Gaussian distributed
with deviation of 0.2 	7

3.2 The learning trace obtained by using CL with initial centers at (2.0,2.0)
and (2.5,2.5) 	7

3.3 	Trace of the x-coordinate of the cluster centers for the first 1000 iterations. 8

3.4 	Trace of the y-coordinate of the cluster centers for the first 1000 iterations. 8

3.5 Three clusters of data that were used in this simulation centered at
(-1.0,1.0), (1.0,1.0), and (0.0,0.0) each with 100 patterns Gaussian
distributed with deviation of 0.2. 	9

3.6 The learning trace obtained by using CL with initial centers at (2.0,2.0),
(2.5,2.5), and (2.0,2.5) 	 9

3.7 	Trace of the x-coordinate of the cluster centers for the first 1000 iterations. 10

3.8 Trace of the y-coordinate of the cluster centers for the first 1000 iterations. 10

4.1 Five clusters of data that were used in this simulation centered at
(-1.0,-1.0), (1.0,-1.0), (-1.0,1.0), (1.0,1.0), and (0.0,0.0) each with 100
patterns Gaussian distributed with deviation of 0 2 	13

4.2 The learning trace obtained by using FSCL with initial centers at
(3.1,3.5), (3.3,3.5), (3.5,3.5), and (3.1,3.1) 	13

4.3 	Trace of the x-coordinate of the cluster centers for the first 1000 iterations. 14

4.4 	Trace of the y-coordinate of the cluster centers for the first 1000 iterations. 14

4.5 The learning trace obtained by using FSCL with initial centers at
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), and (3.3,3.1). 	15

4.6 	Trace of the x-coordinate of the cluster centers for the first 1000 iterations. 15

4.7 	Trace of the y-coordinate of the cluster centers for the first 1000 iterations. 16

4.8 The learning trace obtained by using FSCL with initial centers at
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), (3.3,3.1), and (3.5,3.1). 	16

4.9 	Trace of the x-coordinate of the cluster centers for the first 1000 iterations. 17

ix

Figure 	 Page

4.10 Trace of the y-coordinate of the cluster centers for the first 1000 iterations. 17

5.1 The learning trace obtained by using RPCL with initial centers at
(3.1,3.5), (3.3,3.5), (3.5,3.5), and (3.1,3 1) 	21

5.2 	Trace of the x-coordinate of the cluster centers for the first 1000 iterations. 21

5.3 	Trace of the y-coordinate of the cluster centers for the first 1000 iterations. 22

5.4 The learning trace obtained by using RPCL with initial centers at
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), and (3.3,3.1). 	 22

5.5 	Trace of the x-coordinate of the cluster centers for the first 1000 iterations. 23

5.6 	Trace of the y-coordinate of the cluster centers for the first 1000 iterations. 23

5.7 The learning trace obtained by using RPCL with initial centers at
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), (3.3,3.1), and (3.5,3.1) and
r=0.0001. 	 24

5.8 	Trace of the x-coordinate of the cluster centers for the first 1000 iterations. 24

5.9 	Trace of the y-coordinate of the cluster centers for the first 1000 iterations. 25

5.10 The learning trace obtained by using RPCL with initial centers at
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), (3.3,3.1), and (3.5,3.1) and
r=0.005. 	 25

5.11 Trace of the x-coordinate of the cluster centers for the first 1000 iterations. 26

5.12 Trace of the y-coordinate of the cluster centers for the first 1000 iterations. 26

5.13 The learning trace obtained by using RPCL with initial centers at
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), (3.3,3.1), and (3.5,3.1) and
r=0.001. 	 27

5.14 Trace of the x-coordinate of the cluster centers for the first 1000
iterations. 	 27

5.15 Trace of the y-coordinate of the cluster centers for the first 1000 iterations. 28

6.1 Four clusters of data that were used in this simulation centered at
(-1.0,0.0), (1.0,0.0), (0.0,1.0), and (0.0,-1.0) each with 100 patterns
Gaussian distributed with deviation of 0.2. 37

6.2 The learning trace for k = 4 with initial centers at (3.1,3.5), (3.3,3.5),
(3.5,3.5), and (3.1,3.1). 	37

6.3 Tr(S), Tr(Sw), and Tr(SB) obtained for four clusters by using SBC for
k = 1 . 10. 	 38

Figure 	 Page

6.4 	Sphericity obtained for four clusters by using SBC for k =1,... 10. . 	38

6.5 Five clusters of data that were used in this simulation centered at
(-1.0,-1.0), (1.0,-1.0), (-1.0,1.0),, (1.0,1.0), and (0.0,0.0) each with 100
patterns Gaussian distributed with deviation of 0.2. 	 39

6.6 The learning trace for k = 5 with initial centers at (3.6,3.2), (3.2,3.9),
(3.4,3.1), (3.5,3.8), and (3.4,3.7) 	39

6.7 Tr(S), Tr(Sw), and Tr(SB) obtained for five clusters by using SBC for
k = 1 ...10. 	40

6.8 	Sphericity obtained for five clusters by using SBC for k = 1 	10 	 40

6.9 Six clusters of data that were used in this simulation centered at
(-1.0,-1.0), (1.0,-1.0), (-1.0,1.0), (1.0,1.0), (0.0,1.0), and (0.0,-1.0)
each with 100 patterns Gaussian distributed with deviation of 0 2 	41

6.10 The learning trace for k = 6 with initial centers at (3.2,3.8), (3.3,3.9),
(3.5,3.9), (3.5,3.1), (3.9,3.7), and (3.9,3.7) 	41

6.11 Tr(S), Tr(Sw), and Tr(S) obtained for six clusters by using SBC for
k = 1 ... 10. 	42

6.12 Sphericity obtained for six clusters by using SBC for k = 1 . . . 10. 	 42

xi

CHAPTER 1

INTRODUCTION

Radial basis function (RBF) networks have drawn attention as an alternative to

the multilayered perceptron, such as the back-propagation network for functional

approximation. An RBF network consists of three basic layers: the input layer, the

bidden layer, and the output layer. The input layer is made up of source nodes. The

hidden layer has a high enough dimension, which serves a different purpose from that

in a multilayer perceptron. The output layer supplies the response of the network

to the activation patterns applied to the input layer. The transformation from the

input space to the hidden-unit space is nonlinear, whereas the transformation from

the hidden-unit space to the output space is linear. RBF networks have been applied

in different areas such as channel equalization in digital communications [14] and

signal detection [4].

The most important consideration in configuring an RBF network is the deter-

mination of the number and centers of the hidden units. An obvious trivial choice is

to have each of the data correspond to a center, but this is not practical for a large

amount of data. Much research has been done on the training of RBFs. Broomhead

and Lowe [5] were among the first, using the k - means algorithm to minimize the

number of centers. Other learning methods include the genetic algorithm [2], [21],

the orthogonal least squares algorithm [15], and the competitive learning (CL) [3),

[17], [16], [6], [7], [8], [19], [20] which is an adaptive version of k - means algorithm,

have been proposed.

CL suffers from producing "dead-units," and the frequency sensitive competitive

learning (FSCL) [13] was proposed to alleviate this problem. The key idea in FSCL

is to keep count of the frequency of each neural unit winning and use this infor-

mation to give all the neural units the same opportunity to be modified. With this

2

improvement on CL, FSCL does alleviate the problem, but FSCL is inadequate

when the number of initial neural units are either larger or smaller din the number

of clusters.

An improvement over the FSCL method is rival penalized competitive learning

(RPCL) [9]. All the procedures are the same, except that another key idea is added.

The key idea is that in addition to the center unit, which is the winner modified to

adapt to the input, the center unit of its rival (the second winner) is also modified.

Utilizing this additional component, RPCL is able to address the problem of having

initial neural units that are larger than the number of clusters. Therefore, when the

number of neural units are smaller than the number of data clusters, RPCL fails

because the neural units do not stablize at the center of the clusters, and even if

they do, the representation of the data is lost since the center units would draw data

samples from different clusters. To determine the optimum number of neural units,

a new algorithm, scattering-based clustering (SBC), is proposed in this thesis. FSCL

is adopted to address the problem of under-utilized units and the characteristics of

scatter matrices are derived to adaptively determine the optimal number of neural

units. A brief review of RBF networks is covered in chapter 2; an overview and

simulation results on CL is covered in chapter 3; an overview and simulation results

on FSCL is covered in chapter 4; an overview and simulation results on RPCL is

covered in chapter 5; an analysis and a description of SBC with simulation results

are reported in chapter 6; the application of SBC and RPCL to RBF networks for

supervised classification is shown in chapter 7, and the conclusion appears in chapter

8.

CHAPTER 2

THE RADIAL BASIS FUNCTION NETWORK

Fig. 2.1 shows a general RBF network with a mapping F : 	R according to

where K is the total number of RBFs, wi are the weights of the output layer, φ(•) is

the basis function, and ci are the centers of RBFs.

The weights of the output layer can be easily obtained by using either the

pseudo-inverse method or the least mean square (LMS) algorithm if the training set

of input x and the corresponding desired output d are provided. Different basis

functions φ(•) can be adopted [18]. The most frequently used basis is the Gaussian

function

Other basis include the thin-plate-spline function:

the multiquadric function:

and the inverse multiquadric function:

Theoretical investigations and practical results, however, seem to show that

the type of co(•) is not crucial for the performance of RBF networks [10].

3

4

Figure 2.1 Radial basis function network.

CHAPTER 3

COMPETITIVE LEARNING

The essential idea of the CL is to let all the center vectors of the hidden neural units

compete with each other. When the input vector x is presented to all the center

vectors c, the difference between x and c is computed. The center vector c that has

the minimum variance is considered as the winner and is shifted toward the input

vector x by the amount of the difference. Therefore, the center vector, which is the

frequent winner, becomes more sensitive in each iteration of CL. The CL algorithm

can be summarized as follows:

Step 1: Randomly choose a sample input vector x among input data points, and for

i=1,...,k, where k is the number of clusters. Determine the winner:

Step 2: The center vector ci (n) of the winner is updated according to:

where 0 < e < 1 is the learning rate, which can also be dynamically reduced to zero.

The k-means algorithm works similar to the CL algorithm. Instead of choosing

an input vector randomly in every iteration, all the input vectors are compared

to each center vector. Input vectors are assigned to center vectors that have the

minimum variance, thus essentially clustering data points like step (1) of CL. The

mean of data points in each of the k clusters becomes the new center vector. Thus

CL can be considered the adaptive version of the k-means algorithm.

The desired result of using the CL algorithm on the input data points is to

have the neural units converge toward the center of each data cluster. The actual

result, however, highly depends on the initial value of center vectors. Thus, even for

5

6

data with only two clusters, the center vectors frequently do not converge toward the

center of two data clusters. Fig. 3.2, Fig. 3.3, and Fig. 3.4 show simulation results

applying the CL algorithm on two clusters of data, with e=0.05. It is illustrated in

Fig. 3.2 that the center units do not converge even for two clusters. Observe from

Fig. 3.2, Fig. 3.3, and Fig. 3.4 that the initial center vector initialized at (2.5, 2.5)

is the dead-unit that stays in the same position throughout the learning steps. The

other initial center vector initialized at (2.0, 2.0) does move toward the clusters, but

oscillates between the two clusters, as shown in Fig. 3.2. Fig. 3.6, Fig. 3.7, and

Fig. 3.8 show another simulation of the CL algorithm with three clusters; similar

results are observed. The initial center unit initialized at (2.5, 2.5) is again the

dead unit. The center unit initialized at (2.0, 2.0) is the disturbing unit oscillating

between two clusters once again. The center unit initialized at (2.0, 2.5), however,

does converge toward the center (1.0, 1.0). These simulation results suggest that the

CL algorithm is not the optimum method to train the hidden neural nets of the RBF

network. To alleviate the problem of dead-units, FSCL [13] was proposed.

Figure 3.1 Two clusters of data that were used in this simulation centered at
(-1.0,0.0) and (1.0,0.0) each with 100 patterns Gaussian distributed with deviation
of 0.2.

Figure 3.2 The learning trace obtained by using CL with initial centers at (2.0,2.0)
and (2.5,2.5).

8

Figure 3.3 Trace of the x-coordinate of the cluster centers for the first. 1000
iterations.

Figure 3.4 Trace of the y-coordinate of the cluster centers for the first 1000
iterations.

9

Figure 3.5 Three clusters of data that were used in this simulation centered at
(-1.0,1.0), (1.0,1.0), and (0.0,0.0) each with 100 patterns Gaussian distributed with
deviation of 0.2.

Figure 3.6 The learning trace obtained by using CL with initial centers at (2.0,2.0),
(2.5,2.5), and (2.0,2.5).

Figure 3.7 Trace of the x-coordinate of the cluster centers for the first 1000
iterations.

Figure 3.8 Trace of the y-coordinate of the cluster centers for the first 1000
iterations.

CHAPTER 4

FREQUENCY SENSITIVE COMPETITIVE LEARNING

Improvement over CL is realized by FSCL through equalization of the average rates

of winning for each region. This improvement is achieved by incorporating a count

of winnings of each center unit. The FSCL algorithm can be summarized as follows:

Step 1: Randomly choose a sample input vector x among input data points, and for

i=1,... ,k, where k is the number of clusters. Determine the winner:

where αi is the total number of times ci(n) has been the first winner.

Step 2: The center vector ci (n) of the winner is updated according to

where 0 < ε < 1 is the learning rate which can also be dynamically reduced to zero.

To investigate the performance of FSCL, it, is applied to five clusters of data

in these simulations. The same number of clusters will be used for the simulation

using RPCL, with e=0.05 and the deviation of the data patterns equal to 0.2 shown

in Fig. 4.1. In order to simulate the incapability of obtaining exact k in reality, three

cases have been evaluated: the case where the initial number of neural units are the

same as the actual number of clusters, the case where the initial number of neural

units are larger than the actual number of clusters, and the case where initial number

of neural units are smaller than the actual number of clusters. Fig. 4.2, Fig. 4.3, and

Fig. 4.4 illustrate case 1, where all five center units converge toward the center of

clusters (-1, -1), (-1, 1), (0, 0), (1, -1), and (1, 1). These simulation results confirm

that the FSCL algorithm is capable of alleviating the problem of dead-units when

the number of initial center units are equal to the actual number of data clusters.

11

12

Fig. 4.8, Fig. 4.9, and Fig. 4.10 illustrate case 2 where the number of initial

neural units are larger than the actual number of clusters with initial k = 6. In

order to tack ic 	e 2, it is desirable to have extra center units pushed away from

the cluster centers so that they may be eliminated or be used as extra center units.

Fig. 4.8, Fig. 4.9, and Fig. 4.10 show the inadequacy of FSCL to function in this

manner. The center units initialized at (3.1, 3.5), (3.3, 3.5), (3.5, 3.5), (3.1, 3.1),

and (3.5,3.1) do converge to the center of the clusters, but the center unit which

started from (3.3,3.1) becomes a disturbing unit converging around (1.3, 1.3). This

disturbing unit will not only increase the difficulty of learning for neural units in the

output layer, but it will also reduce the recognition rate considerably since the linear

output units may be unable to separate the samples distracted by the disturbing unit.

Fig. 4.2, Fig. 4.3, and Fig. 4.4 illustrate case 3, that of having a smaller number of

initial neural units than the actual number of clusters, where initial k = 4. Fig. 4.2,

Fig. 4.3, and Fig. 4.4 show that the center units initialized at (3.1, 3.5), (3.3, 3.5),

and (3.5, 3.5) do converge to the cluster centers, but the center that was initialized

at (3.1, 3.1) becomes the disturbing unit oscillating between the two clusters because

there are not enough center units to represent all five data clusters. Apparently, the

FSCL algorithm is capable of solving the problem of dead-units, but it is ineffective

when the number of initial centers are larger or smaller than the actual number of

data clusters. To alleviate these problems, RPCL was introduced with improvement

over FSCL {9].

13

Figure 4.1 Five clusters of data that were used in this simulation centered at
(-1.0,-1.0), (1.0,-1.0), (-1.0,1.0), (1.0,1.0), arid (0.0,0.0) each with 100 patterns
Gaussian distributed with deviation of 0.2.

Figure 4.2 The learning trace obtained by using FSCL with initial centers at
(3.1,3.5), (3.3,3.5), (3.5,3.5), and (3.1,3.1).

14

Figure 4.3 Trace of the x-coordinate of the cluster centers for the first 1000
iterations.

Figure 4.4 Trace of the y-coordinate of the cluster centers for the first 1000
iterations.

15

Figure 4.5 The learning trace obtained by using FSCL with initial centers at
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), and (3.3,3.1).

Figure 4.6 Trace of the x-coordinate of the cluster centers for the first 1000
iterations.

16

Figure 4.7 Trace of the y-coordinate of the cluster centers for the first 1000
iterations.

Figure 4.8 The learning trace obtained by using FSCL with initial centers at
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), (3.3,3.1), and (3.5,3.1).

17

Figure 4.9 Trace of the x-coordinate of the cluster centers for the first 1000
iterations.

Figure 4.10 Trace of the y-coordinate of the cluster centers for the first 1000
iterations.

CHAPTER 5

RIVAL PENALIZED COMPETITIVE LEARNING

The essential idea behind the RPCL algorithm is to equalize the average rate of

winning for each region, and it is implemented by letting the second winner of the

competition respond to the input vectors in addition to the first winner. The second

winner is unlearned by a smaller learning rate, creating a rival penalizing force. The

RPCL algorithm can be summarized as follows:

Step 1: Randomly choose a sample input vector x among input data points, and for

i=1,... 	where k is the number of clusters. Determine the winner:

where α is the total number of times that the current first winner ci(n) has been

the first winner, and αi is the total number of times the current second winner ci(n)

has been the first winner.

Step 2: The first winner center vector ci(n) and the second winner center vector

c1 (n) is updated according to

where 0 < < 1 is the learning rate, which can also be dynamically reduced to zero.

By unlearning the second winner using equation (12), a rival penalizing force is

created, which pushes away the second winner, thus guaranteeing the first winner's

convergence. To investigate the performance of RPCL, the same data patterns of five

clusters and the same three cases as in FSCL's simulation are applied, with e=0.05,

r=0.0001 and the deviation of the data patterns equal 0.2. Fig. 5.4, Fig. 5.5, and

18

19

Fig. 5.6 are illustrations of case 1, where all five center units converge toward the

center of data clusters (-1, -1), (-1, 1), (0, 0), (1, -1), and (1, 1). Therefore, it is

seen that RPCL is capable of alleviating the problem of dead-units when the number

of initial center units are equal to the actual number of clusters. Fig. 5.7 through

5.15 illustrate case 2, that of having a larger number of initial neural units than the

actual number of clusters, where initial k = 6. There is more than one simulation

with six initial center units, because the RPCL algorithm has an extra learning rate

r. According to the original paper (9) that introduced RPCL, r << e is suggested.

Thus, initially, r is set to 0.0001 and ε=0.05. The simulation result shown in Fig. 5.7

shows a similar result compared to Fig. 4.8, with the disturbing unit at (1.3, 1.3).

This similar behavior is due to r=0.0001 being too small, thus creating almost no

rival penalizing force, which causes the RPCL algorithm to act as if it were an FSCL

algorithm. In order to increase the rival penalizing force, r is increased to 0.005

and e is the same. Fig. 5.10, Fig. 5.11, and Fig. 5.12 show two center units that

are pushed away by the rival penalizing force. Although extra units being pushed

away is desired, the desired number of extra units pushed is one, since the number of

clusters is five. This simulation result reveals that r is too big, creating too much of

a rival penalizing force, as opposed to too little in the previous case. This conjecture

can not be realized in reality, since one does not know the actual number of clusters.

By solely observing results obtained in Fig. 5.10, Fig. 5.11, and Fig. 5.12, one would

probably think that the optimal number of hidden units is four, since theoretically

the rival penalizing force only pushes away the extra center units. Thus, using

this invalid result would produce sub-optimum RBF network. After numerous trials

and errors, a viable learning rate of r=0.001 is obtained. Fig. 5.13, Fig. 5.14, and

Fig. 5.15 show that the extra center unit initialized at (3.1, 3.3) is pushed away from

data patterns converging around (2.0, 2.1). All other initial center units converge

toward the center of data clusters near (-1.0, -1.0), (1.0, -1.0), (-1.0, 1.0),(1.0, 1.0),

20

and (0.0, 0.0). Thus RPCL does work with a number of initial centers larger than

the actual number of clusters, but it is too sensitive to the value of the learning rate

r and results with the wrong optimum number of hidden units for the RBF network,

as illustrated in the simulation. Fig. 5.1, Fig. 5.2, and Fig. 5.3 illustrate case 3, that

of having a smaller number of initial neural units than the actual number of clusters,

where initial k = 4. Fig. 5.1 shows a result similar to Fig. 4.2. The only difference is

that the center unit initialized at (3.1, 3.1) oscillates between two different clusters

of data. Thus RPCL acts similar to FSCL with the number of center units smaller

than the actual number of data clusters, because there are not enough center units

to represent all five clusters of data.

As illustrated in the simulations, the RPCL algorithm does work with initial

center units larger than the actual number of data clusters by pushing away extra

center units with a rival penalizing force, but it is very sensitive to the value of r,

thus failing to be robust. Moreover, RPCL does not work for a number of center

units smaller than the actual number of data clusters. Thus RPCL is superior to

FSCL, but it is also not the optimum algorithm for the RBF network training. To

solve the problem of obtaining an optimum number of center units for the training

of more robust RBF networks, the SBC algorithm is introduced in the next chapter.

21

Figure 5.1 The learning trace obtained by using RPCL with initial centers at
(3.1,3.5), (3.3,3.5), (3.5,3.5), and (3.1,3.1).

Figure 5.2 Trace of the x-coordinate of the cluster centers for the first 1000
iterations.

22

Figure 5.3 Trace of the y-coordinate of the cluster centers for the first 1000
iterations.

Figure 5.4 The learning trace obtained by using RPCL with initial centers at
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), and (3.3,3.1).

23

Figure 5.5 Trace of the x-coordinate of the cluster centers for the first 1000
iterations.

Figure 5.6 Trace of the y-coordinate of the cluster centers for the first 1000
iterations.

24

Figure 5.7 The learning trace obtained by using RPCL with initial centers at
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), (3.3,3.1), and (3.5,3.1) and r=0.0001.

Figure 5.8 Trace of the x-coordinate of the cluster centers for the first 1000
iterations.

25

Figure 5.9 Trace of the y-coordinate of the cluster centers for the first 1000
iterations.

Figure 5.10 The learning trace obtained by using RPCL with initial centers at
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), (3.3,3.1), and (3.5,3.1) and r=0.005.

26

Figure 5.11 Trace of the x-coordinate of the cluster centers for the first 1000
iterations.

Figure 5.12 Trace of the y-coordinate of the cluster centers for the first 1000
iterations

Figure 5.13 The learning trace obtained by using RPCL with initial centers at
(3.1,3.5), (3.3,3.5), (3.5,3.5), (3.1,3.1), (3.3,3.1), and (3.5,3.1) and r=0.001.

Figure 5.14 Trace of the x-coordinate of the cluster centers for the first 1000
iterations.

Figure 5.15 Trace of the y-coordinate of the cluster centers for the first 1000
iterations.

28

CHAPTER 6

SCATTERING-BASED CLUSTERING ALGORITHM

In the following sections, an analysis and a description of the scatter matrices and

sphericity will be done, followed by simulation results for a different number of

clusters of data patterns.

6.1 Analysis on Scatter Matrices and Sphericity

In the partitional clustering method, different clustering criteria functions are used,

such as a. squared error criterion, a related minimum variance criterion, and a

scattering criterion [1],[12]. The scattering criterion uses scatter matrices used in

multiple discriminant analysis. The following equations are the definitions for the

scatter matrices:

Definition 1 - jth d-dimensional pattern vector in K th cluster:

Definition 2 - d-dimensional mean vector in Kth cluster:

nK = the number of patterns in the K th cluster.

Definition S - Total mean vector:

Definition .4 - Total scatter matrix:

Definition 5 - Total scatter matrix:

Definition 6 - Total within scatter matrix:

Definition 7 - Total between scatter matrix

Therefore, the trace of the scatter matrices would produce a scalar measure

of the scatter matrix. This trace of the scatter matrices measures the square of the

scattering radius, since it is proportional to the sum of the variances in the coordinate

directions. The following equations are the trace of the scatter matrices:

Definition 8 - Trace of total scatter matrix:

For the 2-D case:

Definition 9 - Trace of total scatter matrix:

Definition 10 - Trace of total within scatter matrix:

31

where e't is the mean square error at each k.

For the 2-D case:

Definition 11 - Trace of total between scatter matrix:

For the 2-D case:

Using these scatter matrix equations, a new criterion called sphericity is

introduced [14 The definition of sphericity is as follows:

Definition 12 - Sphericity:

The analysis on scatter matrices and sphericity is done using Proposition 1,

Proposition 2, and Proposition 3.

Proposition 1. Tr(Sw) monotonically decreases with k.

Proof. Without loss of generality, assume that a given set of ri distinct patterns

in d dimensions has been partitioned into k clusters. When one uses the k-means

algorithm, the following equation is derived:

where L is the set of integers corresponding to the subscripts of patterns assigned to

the k +1 th cluster. This is justified since new data patterns assigned to the k +1 th

cluster are closer to mk+i than mi; however, g for other clusters remain the same.

Therefore,

32

where El is the mean square error at a predefined threshold. Reassignment of data

patterns take place from one iteration to another if and only if

and ends if and only if

Therefore,

Thus Proposition 1 is proved.

Proposition 2. Tr(SB) monotonically increases with k.

Proof. By definition Tr(S) is constant for all k. Additionally, by definition

Tr(S) = Tr(Sw)+ Tr(SB). Therefore, Tr(SB) has to be monotonically increasing

to have a constant Tr(S). Thus Proposition 2 is proved.

Proposition 3. -y[Sw, SB] monotonically decreases for k > 2 when Trrr((ssB)) > 1.

Proof. rtisina clefinitinn (29)

We know that Tr(S) is always positive from the definition, aT r(sw) is negative from ak

Proposition 1, and since

33

therefore,

Thus Proposition 3 is proved.

The reason k > 2 is because Tr(SB) = 0 for k = 1. The reason for the

n condition Tr(sB) > 1, is because -y[Sw,SB] has the "knee" at the optimum k for Tr(Sw)

only well clustered data from simulation results. The larger Tr(sB) the better the Tr(Sw)'

patterns are clustered, since Tr(SB) shows the variance of patterns between the

clusters, and Tr(Sw) shows the variance of patterns within the cluster. Tr(sB) < 1 Tr(Sw)

suggests Tr(Sw) > Tr(SB), which signifies that the patterns are very close to being

one cluster. Thus Tr(SB) has to be greater than one to have well clustered patterns Tr(Sw)

of k > 2.

6.2 The algorithm

Using the characteristics of scatter matrices, the SBC algorithm could be summarized

as follows:

Step 1: Compute ci (n) using the FSCL algorithm, where i=1... k.

Step 2: Input patterns xd, where d.1... total number of data patterns are assigned

to center vectors:

Step 3: The data patterns are clustered according to:

34

di (n + 1) = d1(n) xdwi, 	 (6.27)

where di (n) is the i th data cluster.

Step 4: Compute Z7[Sw, SBI.

Step 5: Check if the L-y[Sw, SB] is the minimum.

Step 6: If [y[Sw,SB] is the minimum, stop. If not, increment k and go back to step

1.

These steps indicate that for the SBC algorithm, one does not have to guess

the initial number of center units. Each k is tested incrementally and the optimum

number of center units is obtained from the minimum angle of sphericity.

6.3 Simulation Results

To investigate the performance of SBC, it is applied to four, five, and six clusters of

data patterns, with e=0.05, and the deviation of the data patterns equal 0.2. Fig. 6.2,

Fig. 6.3, and Fig. 6.4 show the application of SBC on four data clusters. Fig. 6.2

shows the convergence of the center units toward the center of data clusters at (-1, 0),

(0, -1), (0, 1), and (1, 0) from utilizing FSCL. Fig. 6.3 shows the Tr(S), Tr(Sw), and

Tr(SB) for k = 1 ... 10. As Proposition 1 and 2 arc proved, Tr(SB) is monotonically

increasing, TI(SW) is monotonically decreasing for k > 2, and Tr(S)/2 > Tr(Sw) for

k > 2. Therefore, these clusters are valid clusters where sphericity could be employed

to obtain an optimum number of neural units for the hidden layer of RBF networks.

Fig. 6.4 shows the sphericity, and as Proposition 3 proposed, -y[Sw,SB] is maximum

at k=2. In seeking the optimum number, one could see that -Ow, SB] stablizes at

k = 4, and the simplest method for the computer to evaluate y[Sw, SB] is by letting

it compute the minimum angle of y[Sw, SB]. The angles for y[Sw, SB] is shown in

Table 6.1, illustrating the minimum angle to be at k = 4. Fig. 6.6, Fig. 6.7, and

Fig. 6.8 illustrate the utilization of SBC on five clusters of data. Fig. 6.8 shows that

35

-y[Stv,SE] stablizes at k = 5, and Table 6.2 illustrates that the angle is minimum

at k = 5. Fig. 6.10, Fig. 6.11, and Fig. 6.12 illustrate the utilization of SBC on

six data clusters. Fig. 6.12 shows that -y[Sw,SB] stablizes at k = 6 and Table 6.3

shows that the angle is minimum at k = 6. These simulation results show that the

SBC algorithm is more robust compared to RPCL, always producing the optimum

number whereas RPCL heavily depends on the learning rate r and fails when the

number of initial center units are smaller than the actual number of clusters. Thus,

using the optimum number produced by the SBC algorithm and the value of center

units corresponding to that optimum number, an optimum RBF network would be

produced for that data pattern.

36

of cluster angle

2 318.14°
3 206.37°
4 96.22°
5 174.55°
6 176.30°
7

171.84°

8 166.26°
9 168.84°

Table 6.1 Angles for the sphericity obtained for four clusters of data by using SBC
algorithm

# of cluster angle 	I

2 276.14°
3 244.11°
4 179.21°
5 109.12°
6 178.21°
7 176.62°
8 179.00°
9 177.29°

Table 6.2 Angles for the sphericity obtained for five clusters of data by using SBC
algorithm

i# of cluster angle

2 321.86°
3 197.00°
4 159.29°
5 177.52°
6 129.96°
7 174.41°
8 179.82°
9 177.82°

Table 6.3 Angles for the sphericity obtained for six clusters of data by using SBC
algorithm

37

Figure 6.1 Four clusters of data that were used in this simulation centered
at (-1.0,0.0), (1.0,0.0), (0.0,1.0), and (0.0,-1.0) each with 100 patterns Gaussian
distributed with deviation of 0.2.

Figure 6.2 The learning trace for k = 4 with initial centers at (3.1,3.5), (3.3,3.5),
(3.5,3.5), and (3.1,3.1).

38

Figure 6.3 Tr(S), Tr(Sw), and Tr(SB) obtained for four clusters by using SBC for
k 	1 .. .10.

Figure 6.4 Sphericity obtained for four clusters by using SBC for k = 1 . . 10.

39

Figure 6.5 Five clusters of data that were used in this simulation centered at
(-1.0,-1.0), (1.0,4.0), (4.0,1.0), (1.0,1.0), and (0.0,0.0) each with 100 patterns
Gaussian distributed with deviation of 0.2.

Figure 6.6 The learning trace for k = 5 with initial centers at (3.6,3.2), (3.2,3.9),
(3.4,3.1), (3.5,3.8), and (3.4,3.7).

40

Figure 6.7 Tr(S), Tr(Sw), and Tr(SB) obtained for five clusters by using SBC for
k 	...10.

Figure 6.8 Sphericity obtained for five clusters by using SBC for k = 1...10.

Figure 6.9 Six clusters of data that were used in this simulation centered at
(-1.0,-1.0), (1.0,-1.0), (-1.0,1.0), (1.0,1.0), (0.0,1.0), and (0.0,-1.0) each with 100
patterns Gaussian distributed with deviation of 0.2.

Figure 6.10 The learning trace for k = 6 with initial centers at (3.2,3.8), (3.3,3.9),
(3.5,3.9), (3.5,3.1), (3.9,3.7), and (3.9,3.7).

42

Figure 6.11 Tr(S), Tr(Sw), and Tr(SB) obtained for six clusters by using SBC for
k = 1 ...10.

Figure 6.12 Sphericity obtained for six clusters by using SBC for k = 1 . . . 10.

CHAPTER 7

SUPERVISED CLASSIFICATION THROUGH RBF NETWORKS

To illustrate the functionality of the RBF network trained by the RPCL and SBC,

the RBF network is utilized to classify the patterns in a. "noisy" XOR problem. The

data patterns used for this XOR classification are the same as the data patterns in

Fig. 6.1, where the patterns are centered at (-1.0, 0.0), (1.0, 0.0), (0.0, 1.0), and

(0.0, -1.0). The deviation is the same as before, which is 0.2 with 100 patterns in

each cluster. The two clusters centered at (0.0, 1.0) and (0.0, -1.0) form the first

class and the other two clusters centered at (-1.0, 0.0) and (1.0, 0.0) form the second

class. The basis function used for the response function of the RBF network was the

Gaussian function shown previously, in equation (2), with a = 0.2.

The first step in this experiment is to create random patterns for training

purposes, centered at (-1.0, 0.0), (1.0, 0.0), (0.0, 1.0), and (0.0, -1.0), and the desired

output for these patterns. If the patterns are close to (0.0,1.0) and (0.0, -1.0), the

desired output of the RBF network is 1, and if the patterns are close to (-1.0, 0.0)

and (1.0, 0.0), the desired output of the RBF network is 0. Next, the hidden layer is

trained either using the RPCL algorithm or the SBC algorithm. From this training,

center units for RBFs are obtained. Using the data pattern, the desired output

for this data pattern, and the center units for RBFs, the weights for the output

layer are obtained using the pseudo-inverse method. After the training, the RBF

network is obtained that classifies the patterns centered at (-1.0, 0.0), (1.0, 0.0),

(0.0, 1.0), and (0.0,-1.0) of the XOR problem. To test this RBF network, new test

data patterns are created that are centered at the same place, but with different

random sampling. These test data patterns are the input for the RBF network to

produce output, which should classify the patterns into two classes. The accuracy of

the RBF network could be computed by comparing the output of the RBF network

with the desired output of the test data. By comparing these computations, one

43

44

could compare the functionality of the SBC algorithm with the RPCL algorithm.

The results are shown in Table 7.1 through 7.4.

From the tables, correct and incorrect classifications by the RBF network are

easily computed. The values under "marginally classified as" indicate how many data

patterns are marginally classified as class 1 or class 2. To examine the use of the

RPCL algorithm on training the hidden layer of the RBF network in reality, where

one does not know the actual number of data clusters, the number of initial center

units are set as five, ε =0.05, and r = 0.005, which is a reasonable value between 0 and

1. The result of the RBF network with these parameters is shown in Table 7.1, which

shows that the recognition rate is only around 52%. Therefore, the RBF network

classifies the patterns correctly only half of the time. The reason for such a low rate

of recognition is because the rival penalizing force is too strong, which is similar to

the simulation results shown in Fig. 5.10, Fig. 5.11, and Fig. 5.12 where too much of

the rival penalizing force pushed away more center units than needed. Thus, after

decreasing r several times, the optimum value of r = 0.002 is obtained. The results

are shown in Table 7.2, where the recognition rate is around 98%. The sensitivity of

r is a major hindrance toward obtaining the optimal RBF network. Table 7.3 shows

the result of initial center units less than the actual number of clusters simulated

with k = 3 and r = 0.002. The recognition rate is around 73%. The obvious reason

for the low recognition rate is that there are not enough RBF's to represent the four

data clusters. Table 7.4 shows the result of using the SBC algorithm. The optimum

number of neural units for the hidden layer was found by searching k that has the

minimum angle of sphericity as shown in the previous simulation results, and the

value of center units corresponding to that optimal k were used. The recognition

rate is around 98%.

classified as marginally
classified as class 1 class 2

class 1 176 0 24
class 2 1 16 31 153

Table 7.1 Classification by using RPCL when r=0.005 and k

classified as marginally
classified as class 1 class 2

class 1 194 6 0
class 2 0 196 4

Table 7.2 Classification by using RPCL when r=0.002 and k = 5

classified as marginally
classified as class 1 class 2

class 1 96 102 9

class 2 0 197 3

Table 7.3 Classification by using RPCL when r=0.002 and k = 3

classified as marginally
classified as class 1 class 2

class 1 197 0 3
class 2 0 194 6

Table 7.4 Classification by using SBC

45

CHAPTER 8

CONCLUSION

Although it has been shown and proved that the RBF network is faster and more

flexible compared to classical multi-layered neural networks, the major problem of

using the RBF network is the appropriate selection of radial basis function centers.

To address and solve this problem, a new learning method based on scatter matrices

and sphericity is developed for the construction of the optimal RBF network.

From the simulation results and the application of supervised classification

through the RBF network, it has been shown that the CL algorithm, the FSCL

algorithm, and the RPCL algorithm are inadequate in training the hidden layer of

the RBF network. Among different competitive learning methods, RPCL was the

most promising, but it is too sensitive to the learning rate r, and it failed to work

when the number of center units chosen was smaller than the actual one. As for the

SBC algorithm, it was able to choose the optimal number of center units by selecting

k with the minimum angle of sphericity and the optimal value for the center units.

By using the characteristics of scatter matrices, the SBC algorithm was far superior

in robustness.

46

REFERENCES

1. A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice Hall
Englewood Cliffs, NJ, 1988.

2. B. A. Whitehead and T. D. Choate, "Evolving space-filling curves to distribute
radial basis functions over an input space," IEEE Trans. Neural Networks,
vol. 5, no. 1, pp. 15-23, 1994.

3. D. E. Rumelhart and D. Zipser, "Feature discovery by competitive learning,"
Cognitive Science, vol. 9, pp. 75-112, 1985.

4. D. M. Hummels, W. Ahmed, and M. T. Musavi, "Adaptive detection of small
sinusoidal signals in non-gaussian noise using an RBF neural network,"
IEEE Trans. Neural Networks, vol. 6, no. 1, pp. 214-219, 1995.

5. D. S. Broomhead and D. Lowe, "Multivariable functional interpolation and
adaptive networks," Complex Syst., vol. 2, pp. 321-355, 1988.

6. G. A. Carpenter and S. Grossberg, "A massively parallel architecture for a
self-organizing neural pattern recognition machine," Computer Vision,
Graphics, and Image Processing, vol. 37, pp. 54-115, 1987.

7. G. A. Carpenter and S. Grossberg, "ART 2: Self organization of stable category
recognition codes for analog output patterns," App!. Opt., vol. 26,
pp. 4919-4930, 1987.

8. G. A. Carpenter and S. Grossberg, "ART 3: 	Hierarchical searching
using chemical transmitters in self-organizing pattern recognition archi-
tectures," Neural Networks, vol. 3, pp. 129-152, 1990.

9. L. Xu, A. Krzyzak, and E. Oja, "Rival penalized competitive learning for
clustering analysis, RBF net, and curve detection," IEEE Trans. Neural
Networks, vol. 4, no. 4, pp. 636-649, 1993,

10. M. J. D. Powell, "Radial basis function approximations to polynomials," Proc.
12th Biennial Numerical Analysis Conf.(Dundee), pp. 223-241, 1987.

11. N. Ansari and E. J. Delp, "On the distribution of a deforming triangle," Pattern
Recognition, vol. 23, no. 12, pp. 1333-1341, 1990.

12. R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis, John
Wiley & Sons, New York, 1973.

13. S. C. Ahalt, A. K. Krishnamurty, P. Chen, and D. E. Melton, "Competitive
learning algorithms for vector quantization," Neural Networks, vol. 3,
pp. 277-291, 1990.

47

48

14. S. Chen, B. Mu'grew, and P. M. Grant, "A Clustering technique for
digital communications channel equalization using radial basis function
networks," IEEE Trans. Neural Networks, vol. 4, no. 4, pp. 570-579, 1993.

15. S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares
learning algorithm for radial basis function networks," IEEE Trans.
Neural Networks, vol. 2, no. 2, pp. 302-309, 1991.

16. S. Grossberg, "Adaptive pattern classification and universal recording: I.
parallel development and coding of neural feature detectors," Biol.
Cybern, vol. 23, pp. 121-134, 1976.

17. S. Grossberg, "Competitive learning: from iterative activation to adaptive
resonance," Cognitive Science, vol. 11, pp. 23-63, 1987.

18. S. Haykin, Neural Networks, A Comprehensive Foundation, Macmillan, New
Jersey, 1994.

19. T. Kohonen, Self-Organization and Associative Memory, Springer-Verlag,
Berlin, 1988.

20. T. Kohonen, "The self-organizing map," Proc. IEEE, vol. 78, pp. 1464-1480,
1990.

21. X. Yao, "A review of evolutionary artificial neural networks," International
Journal of Intelligent Systems, vol. 8, no. 4, pp. 539-567, 1993.

	Configuring the radial basis function neural network
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: The Radial Basis Function Network
	Chapter 3: Competitive Learning
	Chapter 4: Frequencey Sensitive Competitive Learning
	Chapter 5: Rival Penalized Competitive Learning
	Chapter 6: Scattering-based Clustering Algorithm
	Chapter 7: Supervised Classification Through RBF Networks
	Chapter 8: Conclusion
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

