New Jersey Institute of Technology Digital Commons @ NJIT

Theses

Electronic Theses and Dissertations

Fall 10-31-1996

Implementation of Fortran finite element analysis source code with application : particle deposition in a 90 degree duct bend

Pantaleo Loiacono New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Mechanical Engineering Commons

Recommended Citation

Loiacono, Pantaleo, "Implementation of Fortran finite element analysis source code with application : particle deposition in a 90 degree duct bend" (1996). *Theses.* 1102. https://digitalcommons.njit.edu/theses/1102

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

IMPLEMENTATION OF FORTRAN FINITE ELEMENT ANALYSIS SOURCE CODE WITH APPLICATION: PARTICLE DEPOSITION IN A 90 DEGREE DUCT BEND

by Pantaleo Loiacono

Two FORTRAN 77 finite element analysis source codes, by J.N. Reddy, were input into a PC, debugged, executed, and tested successfully. These programs are available to students interested in implementing a good finite element analysis source code on a PC or on a workstation in one or two dimensions. The programs can solve problems relating to heat transfer, stresses, beam analysis, frames, trusses, plane elasticity, plate bending, and laminar viscous incompressible fluids with various node and element combinations.

The two-dimensional program was used to obtain the velocity distributions in a 90 degree duct bend with incoming and exiting fully developed flows so that particle deposition analysis could be studied varying the inertia parameter, S. It was found that at values of S below 1.0, the maximum particle deposition occurred at the point where the 90 degree duct bend met the exit vertical section; for S=1.0, deposition was even throughout the duct; finally, for S greater than 1.0, maximum particle deposited on the upper wall of the duct. Extra anti-corrosive agents should be placed in the area of maximum particle deposition when the particulate matter is harmful to the duct material.

IMPLEMENTATION OF FORTRAN FINITE ELEMENT ANALYSIS SOURCE CODE WITH APPLICATION: PARTICLE DEPOSITION IN A 90 DEGREE DUCT BEND

by Pantaleo Loiacono

A Thesis

Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering

Department of Mechanical Engineering

October 1996

APPROVAL PAGE

IMPLEMENTATION OF FORTRAN FINITE ELEMENT ANALYSIS SOURCE CODE WITH APPLICATION: **PARTICLE DEPOSITION IN A 90 DEGREE DUCT BEND**

Pantaleo Loiacono

Dr. Rong-Yaw Chen, Thesis Advisor Professor of Mechanical Engineering, NJIT

Dr. John V. Droughton Professor of Mechanical Engineering, NJJT

Dr. Ernest S. Geskin Professor of Mechanical Engineering, NJIT Date

Date

Date

BIOGRAPHICAL SKETCH

Author: Pantaleo Loiacono

Degree: Master of Science

Place of Birth: Hoboken, New Jersey

Undergraduate and Graduate Education:

- Master of Science in Mechanical Engineering, New Jersey Institute of Technology, Newark, NJ, 1996
- Bachelor of Science in Mechanical Engineering, Rutgers University, College of Engineering, New Brunswick, NJ, 1994

Major: Mechanical Engineering

To my beloved family

ACKNOWLEDGMENT

I would like to express my sincere gratitude to Dr. Rong-Yaw Chen for advising me throughout this thesis. His suggestions and advice were very helpful during this study. Special thanks to Dr. John V. Droughton and Dr. Ernest S. Geskin for participating in my committee.

I would also like to thank the staff at the University Learning Center for supporting me for three semesters as a graduate assistant. I would especially like to thank Sheridan O. Quarless and Heather M. Rochester who were my supervisors and friends at the ULC.

TABLE OF CONTENTS

Chapter Pa	age
1 INTRODUCTION	1
1.1 Background Information	1
1.2 Objective	3
2 LITERATURE SURVEY	4
2.1 FORTRAN Source Code	4
2.1.1 Alternate Programs	4
2.1.2 Entering Reddy's Source Code	5
2.2 Applications of the Source Code	. 6
2.2.1 Type of Particle Deposition to be Studied	6
2.2.2 Practical Application of Particle Deposition Analysis	7
3 PROGRAMMING DISCUSSION	9
3.1 Introduction to the Finite Element Method	9
3.2 One-Dimensional Analysis	10
3.2.1 Development of the Element Equations in One Dimension	10
3.2.2 Computer Implementation of One-Dimensional Problems	12
3.2.3 Illustrative Example of FEM1DV2: Steady Heat Transfer in a Fin	16
3.3 Two-Dimensional Analysis	17
3.3.1 The Two-Dimensional Finite Element Model 1	18
3.3.2 Viscous Incompressible Fluid Flow	23
3.3.3 Computer Implementation of Two-Dimensional Problems	26

TABLE OF CONTENTS (Continued)

Chapter	Page
3.3.4 Illustrative Example of FEM2DV2: Viscous Fluid Squeezed Between Plates	30
3.3.5 Use of FEM2DV2 to Obtain Velocity Distributions for a 90 Degree Duct Bend	
4 PARTICLE DEPOSITION ANALYSIS	44
4.1 Governing Equations	. 44
4.2 Method of Solution	. 47
4.2.1 Program "particles.f" Used to Analyze Particle Motion	. 51
4.2.2 Program "particlesout.f" Used to Analyze Particle Deposition	. 63
5 RESULTS AND DISCUSSION OF PARTICLE DEPOSITION	. 68
5.1 Results of Particle Deposition	. 68
5.2 Discussion of Particle Deposition	. 74
6 CONCLUSION	. 77
7 RECOMMENDATIONS	. 79
APPENDIX A EXAMPLE INPUT FILE TO FEM1DV2	. 80
APPENDIX B EXAMPLE OUTPUT FILE FROM FEM2DV2	84
APPENDIX C OUTPUT FILE FROM FEM2DV2 FOR FIGURE 3.6 ANALYSIS.	93
APPENDIX D INPUT FILE TO FEM2DV2 FOR MESH OF FIGURE 3.7	102
APPENDIX E PROGRAM "nodgen.f"	113
APPENDIX F PROGRAM "meshgencurve.f"	114
APPENDIX G PROGRAM "particles.f"	117

TABLE OF CONTENTS (Continued)

Chapter	Page
APPENDIX H PROGRAM "particlesout.f" WITH OUTPUT "particles.output"	140
APPENDIX I PARTICLE DEPOSITION PERCENTAGE VALUES FOR FIGURE 5.2	153
APPENDIX J VELOCITY DISTRIBUTION FOR THE 128 ELEMENT MESH OF FIGURE 3.9	154
REFERENCES	165

LIST OF TABLES

Table		Page
5.1	Velocity Distributions at Selected Locations from Figure 5.3	73
5.2	Typical Radius of a Spherical Particle at Varying Inertia Parameter Values	75

LIST OF FIGURES

Fig	ure	'age
3.1	Flow chart of the computer program FEM1DV2 along with subroutines	14
3.2	Finite elements in two dimensions: (a) a three-node element; (b)-(c) four node elements; (d) a five node element; (e) a six-node element	. 20
3.3	Flow chart of the computer program FEM2DV2 along with the subroutines	27
3.4	Boundary conditions and finite element meshes for the problem of an incompressible viscous fluid squeezed between plates; (<i>a</i>) geometry of the flow domain; (<i>b</i>) finite element mesh of a quadrant	31
3.5	The 90 degree duct bend with entrance and exit velocity distributions, dimensions and global origin	
3.6	Straight section of the duct used to determine the distance at which a uniform flow will become fully developed	
3.7	A sample 21 element mesh used for the velocity distribution analysis; nine nodes per quadrilateral element.	38
3.8	The first element of the 21 element mesh showing the node numbers demonstrating the connectivity of an element for the input file of FEM2DV2	40
3.9	128 element mesh used to obtain the velocity distributions from the program FEM2DV2; nine nodes per quadrilateral element for a total of 561 nodes	42
4.1	Flowchart for the program "particles.f"; the program is listed completely in appendix G	52
4.2	Determining the four closest nodes to the particle based upon which nodes lie above and below it at the entrance when the particle is in the 90 degree turn	55
4.3	Interpolating to get the velocity of the particle from the four closest nodes; this particle is in the 90 degree turn of the duct	57

LIST OF FIGURES (Continued)

Fig	Figure	
4.4	Interpolating to get the velocity of the particle from the four closest nodes; computing the velocities at the top and bottom of the section enclosing the particle (the particle is in the 90 degree turn of the duct)	60
4.5	Interpolating to get the velocity of the particle in the exit vertical section of the duct	62
4.6	Flowchart for the program "particlesout.f"; the program is listed completely in appendix H	64
4.7	Particle deposition in the 90 degree turn of the duct; particles are deposited in the current section when their location angle θ is greater than the section angle ϕ .	
5.1	Section numbers used for determining the particle deposition in the duct; these numbers correspond to the <i>x</i> axis of figure 5.2	. 70
5.2	Particle deposition in the 90 degree duct bend as a function of the S parameter	. 71
5.3	Node numbers and locations of the velocity distribution discussion throughout the duct	. 72

CHAPTER 1

INTRODUCTION

1.1 Background Information

There are many complicated problems in the mechanical engineering field which cannot be solved by direct mathematical formulation and analysis. It is often the case that numerical analysis of the mathematical model must be used in order to solve difficult and otherwise very complex problems. In many of these cases, there are no exact solutions: approximations must be made. The finite element method (FEM) is one technique of numerical analysis of physical processes which has become a very popular and powerful tool in engineering analysis. It was first developed in the 1960's and is used today in many computer-aided design softwares such as I-DEAS, ProEngineer, and AutoCad.

The finite element method divides a given domain into a set of simple subdomains, called finite elements. The collection of these finite elements is called the finite element mesh. Over each of these finite elements the physical process is approximated by polynomial or other functions and algebraic equations are developed, which relate physical quantities at selective points, called nodes. The element equations are combined using continuity of the physical quantities.

This numerical technique has many applications in mechanical engineering, including plane elasticity, flows of viscous incompressible fluids, and bending of elastic plates, among others. The accuracy of this computational method can be increased by increasing the number of elements and nodes which the geometric shape is divided into. Increasing the number of elements and nodes requires more computational time and more

Jaccord

powerful computers, but today's advanced workstations and mainframes can handle most. if not all, of the necessary requirements. In the cases where there are exact mathematical solutions to problems, the finite element method provides better accuracy as the meshes get finer and finer.

Users of most of the popular CAD/CAM software packages which are available in the market today have access to finite element analysis. These software packages are often very simple to use, requiring only the geometric shape and boundary/initial conditions. The meshes can be generated by the computer, under the user's command. There are some cases, though, in which the implementation of a comprehensive source code is desired. One such application is the study of a viscous incompressible fluid through a ninety degree turn in a duct. Given the profile of the flow at the inlet and outlet of this system, along with the boundary conditions dictated by the physical processes of fluid mechanics, the velocity distribution can be obtained using a finite element method source code. This analysis was performed in this thesis with a FORTRAN 77 source code by J.N. Reddy (Reddy, 1993).

With the computed velocity distribution throughout the duct bend, a fluid-solid particle suspension flow can be analyzed. For example, in an air induction system with a ninety degree turn, particulate pollutants flowing with the air characterize a two-phase flow. The particulates may be deposited in the duct bend, causing the system to become infiltrated with particulate matter, resulting in problems ranging from decreased air flow to erosion. Other cases in which this may occur are exhaust systems, ventilation systems, dust collectors, and valves in the human body involving the flow of blood with undesirable matter such as cholesterol.

This ninety degree bend in a duct was analyzed in this thesis. The inertia force parameter was varied with the velocity distribution remaining constant so that some analysis could be done based upon a varying size of the particulate matter in a steady viscous incompressible flow.

1.2 Objective

The objective of this thesis is to input and debug a FORTRAN source code for finite element analysis and to implement its use in one and two-dimensional cases. The implementation of the two-dimensional case is used to analyze practical problems in fluid mechanics. The problem studied is the deposition of particles in a steady viscous incompressible flow through a ninety degree duct bend, varying the inertia force parameter.

Chapter 2 will focus on the literature survey which was done describing why this particular program was chosen and the decision to implement its use on a specific type of particle deposition; chapter 3 will be a programming discussion showing the basic finite element method procedures used to develop the programs and their actual implementation; chapter 4 will analyze particle deposition from the governing equations to the method of solution; chapter 5 will show the results and provide some discussion of the particle deposition analysis; chapter 6 will conclude this thesis; and finally, chapter 7 discusses some recommendations for future study on related topics.

CHAPTER 2

LITERATURE SURVEY

2.1 FORTRAN Source Code

After choosing the topic of finite element analysis, a source code was needed. There are some source codes written in BASIC, C, C++, and FORTRAN, but FORTRAN was chosen because of the familiarity of this high-level programming language in the engineering field. Many of the mechanical engineering textbooks today use FORTRAN for their source code listings for all types of programs.

Having taken the graduate level course "Introduction to the Finite Element Method" at the New Jersey Institute of Technology in the fall of 1994, I became very familiar with the book used in the course, <u>An Introduction to the Finite Element Method</u>, second edition, by John N. Reddy (1993). The book has very in-depth and comprehensive FORTRAN programs listed in the appendices for finite element analysis of one-dimensional and two-dimensional cases. This source code, however, was written for a main frame computer. Implementation of these programs on a personal computer (such as an IBM PC) which is used by most students is highly desirable and well worth the effort.

2.1.1 Alternate Programs

Some other programs were examined as possible substitutes for the implementation of computational finite element analysis. Several authors of these programs were Chandrupalla, Akin, and Ross. One major disadvantage of most of the programs which

were examined was that they were often listed in sections throughout the textbook instead of in one appendix, as in Reddy's program. Reddy's program is all together in one appendix so that it can be examined in its entirety without flipping through the entire book to piece sections together. Most of the other programs can do simple one-dimensional problems such as trusses, beams, frame structures, and plane elasticity only, but Reddy's can do more as described below.

Reddy's programs examine many different cases with two separate source codes. The first program (FEM1DV2) is a one-dimensional analysis, and the second program (FEM2DV2) is a two-dimensional analysis. Both programs can be used to examine many different cases from circular disk plane stresses and strains, Timoshenko beams and plates, Euler-Bernoulli beams and circular plates (1-D), to viscous incompressible flows, plane elasticity, and plate bending problems (2-D). The programs can do static or transient analysis, and many different types of nodes and element types can be used.

2.1.2 Entering Reddy's Source Code

After the decision was made to use Reddy's source code, there was a major obstacle: the software was not included with the textbook, as it is with other similar textbooks. In the preface to the second edition, Reddy talks about the second edition of this book being 60% larger than the first edition because of extensive changes. Due to the fact that he wanted to keep the cost of the book within "reasonable limits", the executable programs were not included with the purchase of the text. Instead, he describes how they can be obtained from the author. The cost of the programs was over \$200. It was decided that it would be more economical and educational to enter the program into the computer using

a scanner, after which the programs would have to be checked line-by-line to ensure that every detail was correct. The programs were scanned, checked, executed, and tested. This was the first portion of the thesis. The programs are available on disks and they can be used by anyone who is interested in doing computational finite element analysis with a FORTRAN source code on an IBM PC or compatible, or on a workstation.

2.2 Applications of the Source Code

After inputting Reddy's source code, there was a desire to do some applications with this sophisticated program. It was decided that computational fluid mechanics would be studied using the finite element method. The two-dimensional program had to be used for this analysis (FEM2DV2) because a steady two-dimensional viscous incompressible flow was to be examined.

The inputs to the 2-D program included the geometry of the domain, information about the type of analysis, number of elements/nodes/etc., and the initial/boundary conditions, as well as information about the fluid parameters. The program analysis produced information about the pressure and stresses, as well as the velocities in the x and y directions (denoted as u and v, respectively), throughout the region. It was determined that particle deposition could be studied with the computed velocity distributions.

2.2.1 Type of Particle Deposition to be Studied

While the decision was made to study particle deposition, the specifics were vague. Something which was not very well examined was sought. Therefore, a library search was performed on other theses which were done on the topic of particle deposition. It was discovered that the equations of motion for particle deposition which was being studied had been used in other theses and doctoral dissertations before. Theses were found about particle deposition between a horizontal parallel plate channel (Chu, 1983), in a cylindrical chamber (Shah, 1984), in inclined channels (Chu, 1984), and in convergent channels (Hui, 1986), (Chiou, 1993). It was decided that the focus would be on particle deposition in a ninety degree turn through a duct system, a topic on which there was not much information on in the theses, dissertations, or textbooks which were examined.

The decision was made to concentrate only on one specific parameter in the governing equations (developed and discussed in chapter 4). Several parameters affect particle deposition: inertia, image, and gravity forces. The focus of this study is the inertia force. Only this parameter was varied due to the time constraints and the application of the finite element method to one specific case in particle deposition analysis.

2.2.2 Practical Application of Particle Deposition Analysis

One practical application of the analysis performed on the deposition of particles in a ninety degree turn is the determination of where the particles are mostly deposited. An analysis can be performed determining the most likely target of particle deposition with this type of flow. An air flow with harmful and corrosive particulate pollutants can damage the duct due to settling of the particles, so there is a need to determine where the duct would most likely erode. If there is a large portion of particles deposited in one particular section, then that section should be reinforced in some way to deter the damage incurred by such a deposition.

While in some cases the duct can be entirely reinforced uniformly, it may be more economical to reinforce the duct in the area most likely to undergo damage due to deposition. This is dependent on the particle size, which is directly related to the inertia parameter, as will be shown in chapter 4.

CHAPTER 3

PROGRAMMING DISCUSSION

Chapter 2 presented a literature survey determining which finite element method source code was to be used in this thesis and the type of application which the source code will be used for. In this chapter, the finite element method is discussed in further detail, and the source code is implemented.

3.1 Introduction to the Finite Element Method

As was discussed in the introduction (chapter 1), the finite element method is a numerical simulation of a physical process used to evaluate a mathematical model. The finite element method consists of (Reddy, p.15):

- the domain of the problem represented by a collection of simple subdomains, called finite elements: the collection of these finite elements being called the finite element mesh
- approximation of the physical process by functions of a desired type (e.g. polynomials), and algebraic equations relating physical quantities at certain points, referred to as nodes, of the element are developed

3. the element equations are organized using continuity of physical quantities In the finite element method, in general, an approximate solution u is sought to the differential equation of the form

$$u \approx \sum_{j=1}^{n} u_j \psi_j + \sum_{j=1}^{m} c_j \phi_j$$
(3.1)

where u_j are the values of u at the element nodes, ψ_j are the interpolation functions, c_j are the nodeless coefficients, and ϕ_j are the associated approximation functions.

3.2 One-Dimensional Analysis

A typical model boundary value problem which arises in a one-dimensional analysis considers solving for u(x) in the differential equation

$$-\frac{d}{dx}\left(a\frac{du}{dx}\right) + cu - q = 0 \quad \text{for} \quad 0 < x < L \tag{3.2}$$

and the boundary conditions

$$u(0) = u_0, \qquad \left(a\frac{du}{dx}\right)_{x=L} = Q_0 \tag{3.3}$$

where a=a(x), c=c(x), q=q(x), u_0 , and Q_0 are the data (the known quantities) of the problem. Equation (3.2) arises in many physical processes, including conduction and convection heat transfer in a plane wall or fin (one-dimensional heat transfer), flow through channels and pipes, transverse deflections of cables, axial deformations of bars, and many other physical processes (Reddy, p. 70).

3.2.1 Development of the Element Equations in One Dimension

There are three steps involved in developing the finite element equations:

- 1. Construction of the weak form of the differential equation
- 2. Assumption of the form of the approximate solution over a typical finite element
- Derivation of the finite element equations by substitution of the approximate solution into the weak form

The finite element method seeks an approximate solution to (3.2) over each finite element. The polynomial approximation for a typical finite element Ω^{e} is of the form

$$U^{e} = \sum_{j=1}^{n} u_{j}^{e} \psi_{j}^{e}(x)$$
(3.4)

where u_j^e are the values of the solution at the nodes of the finite element and ψ_j^e are the approximation functions over the element. The coefficients u_j^e are determined such that (3.2) is satisfied in a weighted-integral sense.

The approximation solution U^e must fulfill certain requirements for it to converge to the actual solution u as the number of elements is increased. The first is that the approximate solution should be continuous over the element and differentiable, as required by the weak form. Next, it should be a complete polynomial, including all lower-order terms up to the highest order used. And finally, it should be an interpolant of the primary variables at the nodes of the finite element (Reddy, p.77).

In order to apply the finite element model based on the weak form, it is not necessary to specify in advance the degree of approximation of U^e . The model can be developed for an arbitrary degree of interpolation based on (3.4). The weak form can be written as

$$0 = \int_{x_{A}}^{x_{B}} \left(a \frac{dw}{dx} \frac{du}{dx} + cwu \right) dx - \int_{x_{A}}^{x_{B}} wqdx - \sum_{i=1}^{n} w(x_{i}^{e}) Q_{i}^{e}$$
(3.5)

where x_i^e is the global coordinate of the *i*th node of element Ω^e and *w* is the weight function. If nodes 1 and *n* denote the endpoints of the element then Q_1^e and Q_n^e represent the unknown point sources, and all other Q_i^e are always known (i.e., applied point sources). Substituting (3.4) for u and $\psi_1^e, \psi_2^e, \dots, \psi_n^e$ for w into the weak form (3.5), n algebraic equations are obtained of the form

$$0 = \sum_{j=1}^{n} K_{ij}^{e} u_{j}^{e} - f_{i}^{e} - Q_{i}^{e} \qquad (i=1,2,...,n)$$
(3.6)

where

$$K_{ij}^{e} = \int_{x_{A}}^{x_{B}} \left(a \frac{d\psi_{i}^{e}}{dx} \frac{d\psi_{j}^{e}}{dx} + c\psi_{i}^{e}\psi_{j}^{e} \right) dx = B(\psi_{i}^{e}, \psi_{j}^{e}), \qquad f_{i}^{e} = \int_{x_{A}}^{x_{B}} q\psi_{i}^{e} dx = l(\psi_{i}^{e})$$
(3.7)

In matrix notation, the combination of (3.6) and (3.7) can be written as

$$\left[K^{e}\right]\left\{u^{e}\right\} = \left\{f^{e}\right\} + \left\{Q^{e}\right\}$$
(3.8)

The symmetric matrix $[K^e]$ is called the coefficient matrix (or stiffness matrix in structural mechanics). The column vector $\{f^e\}$ is the source vector (or force vector in structural mechanics). There exist 2n unknowns in (3.8): $(u_1^e, u_2^e, ..., u_n^e)$ and $(Q_1^e, Q_2^e, ..., Q_n^e)$, called primary and secondary element nodal degrees of freedom. There must be given an additional *n* conditions in order to solve (3.8). These conditions come from the boundary conditions and by balancing the secondary variables Q_i^e at nodes common to several elements (Reddy, p.86).

3.2.2 Computer Implementation of One-Dimensional Problems

There are three general parts to a finite element program: the preprocessor, processor, and postprocessor. In the preprocessor section of the program, the input data of the problem is read in or generated. Included here are the geometry information, the data of the problem, finite element mesh information, and indicators for various options. In FEM1DV2, which is J.N. Reddy's one-dimensional finite element analysis program, the input is given to the program through a data file which the program reads when it is executed. The processor part of the program generates the element matrices using numerical integration, assembles the element equations, imposes the boundary conditions, and solves the algebraic equations for the nodal values of the primary variables. Finally, the postprocessor computes the solution by interpolation at points other than nodes, computes the secondary variables that are derivable from the solution, and outputs the data in a desired format for printing and/or plotting.

A flow chart of the program FEM1DV2 is shown in figure 3.1. The preprocessor unit reads the input data and generates the finite element mesh, then prints the data and mesh information. The element type, number of elements used, specified boundary conditions or primary and secondary variables, global coordinates of the nodes, and element properties (like coefficients a_e, b_e, c_e, f_e , etc.) are read during the preprocessing stage. When a uniform mesh is used, the length of the domain is read in and the global coordinates of the nodes can be generated by the program.

The processor unit of the program FEM1DV2 starts by generating the element matrices. Depending on the type of problem being solved, various subroutines are called to generate the element matrices. The Gauss quadratrure is used to evaluate element matrices and vectors, and the arrays are assembled as soon as they are computed. A loop on the number of elements in the mesh is used to compute element matrices and assemble

- ASSMBL: Subroutine for the assembly of element equations: upper-banded form for static and transient problems; full matrix form for eigenvalue problems.
- AXLBX: Subroutine for determining eigenvalues and eigenvectors of the equation $[A]{X}=L[B]{X}$.
- BONDRY: Subroutine for imposing specified boundary conditions of essential, natural, and mixed type.
- **COEFNT:** Subroutine for computing element matrices and vectors for all problems except truss and frame problems.
- ECHO: Subroutine to echo the input file.
- **MESH1D:** Subroutine to generate the mesh (i.e. global coordinates of the global nodes and the connectivity array).
- **PSTPRC:** Subroutine to postprocess the solution for all problems, except truss and frame problems.
- **REACTN:** Subroutine to calculate the reactions for truss and frame problems.
- SHP1D: Subroutine to compute the shape functions and their derivatives.
- SOLVER: Subroutine to solve linear algebraic equations.
- **TRSFRM:** Subroutine to compute element stiffness matrices and force vectors for truss and frame problems.
- Figure 3.1 Flow chart of the computer program FEM1DV2 along with the subroutines.

them. Based on the specifications of the input variables MODEL and NTYPE, the types of problems which can be solved by this program are as follows:

- all field problems described by model equation (3.2), including radially symmetric heattransfer-type problems
- radially symmetric elastic disk problems
- the Timoshenko theory of beams
- the Timoshenko theory for bending of circular plates
- the Euler-Bernoulli theory of beams
- the Euler-Bernoulli theory for bending of circular plates
- the two-node truss element
- the two-node Euler-Bernoulli frame element
- the two-node Timoshenko frame element

Static analysis, first-order time derivative problems (parabolic), and second-order time derivative problems (hyperbolic) can be solved according to the specification of the input variable ITEM.

Once all of the input variables are specified (a detailed description of the input variables is given in Reddy, p.274-278), the equations are solved using Gaussian elimination and back-substitution. Postprocessing involves computation of the solution and its gradient at preselected points of the domain. There is increased accuracy with mesh refinement and higher-order elements.

Both of the programs FEM1DV2 and FEM2DV2 were written so that they could be used on a mainframe. However, both programs were implemented on a PC. To do this, there were virtually no changes to the source code. There were two subroutines in the program FEM2DV2 which had to be copied from FEM1DV2 because the program uses mainframe subroutines to compute eigenvalues and eigenvectors.

3.2.3 Illustrative Example of FEM1DV2: Steady Heat Transfer in a Fin

In order to demonstrate how the program FEM1DV2 works, a problem on steady heat transfer in a fin will be analyzed. The problem is governed by

$$-\frac{d^2\theta}{dx^2} + c\theta = 0 \qquad \text{for } 0 < x < L \tag{3.9}$$

$$\theta(0) = \theta_0, \qquad \left(\frac{d\theta}{dx}\right)_{x=L} = 0$$
(3.10)

where θ is the nondimensional temperature, and L, c, θ_0 are

$$L=0.25 \text{ m}$$
 $c=256 \text{ m}^{-2}$ $\theta_0 = 100^{\circ} \text{C}$ (3.11)

This problem is governed by model equation (3.2). For the input file to the program, the specifications will be MODEL=1, NTYPE=0, and ITEM=0 (for a steady-state solution). Since $a = a_0 = 1.0$ and $c = c_0 = 256$, then ICONT=1, AX0=1.0, and CX0=256.0. All other specifications are zero for this problem. Using a uniform mesh of four linear elements (NEM=4, IELEM=1), the increments DX(I) are

$$\{DX\} = \{0.0, 0.0625, 0.0625, 0.0625, 0.0625\}$$
 (3.12)

There are no mixed (convection) boundary conditions, so NNBC=0. NSPV=1, NSSV=0, denoting the number of specified primary and secondary variables, respectively. At node 1 and degree of freedom 1, there is a specified boundary condition on the primary variable, so that ISPV(1,1)=1 and ISPV(1,2)=1. The specified value is VSPV(1)=100.0.

The complete input file is given in appendix A as is the output from the program FEM1DV2. This same example is done by Reddy (p.279) and the results which are in appendix A match the printed results in the book, showing that the program works as it is supposed to. The program computes the nondimensional temperature at each of the nodes in this example.

Other examples which were tested successfully were radially symmetric heat transfer in a solid cylinder and the deformation of a rotating disk (Reddy, p. 278-282). While the program FEM1DV2 was run successfully for these three examples, there is no guarantee that it will successfully produce the correct output for the other examples. The program compiles but run-time errors could happen. The user may have to debug the program in certain cases.

3.3 Two-Dimensional Analysis

The finite element analysis of two-dimensional problems is similar to that of onedimensional problems, as discussed in section 3.2. In two-dimensional analysis, the problems are described by partial differential equations over geometrically complex regions. The boundary of a two-dimensional domain is in general a curve, so the finite elements are simple two-dimensional geometric shapes such as triangles and rectangles. An approximate solution to a given problem on a domain is sought; however, the domain is approximated by a suitable finite element mesh. In consequence, there exist approximation errors in a 2-D finite element analysis due to the approximation of the solution *and* the discretization errors due to the approximation of the domain (Reddy, p. 295). Since irregular geometries can be represented by a collection of finite elements, the method is a valuable tool for the solution of boundary, initial, and eigenvalue problems arising in the fields of engineering.

3.3.1 The Two-Dimensional Finite Element Model

The model equation for boundary value problems is a second-order partial differential equation. The solution for u must be found in the equation

$$-\frac{\partial}{\partial x}\left(a_{11}\frac{\partial u}{\partial x} + a_{12}\frac{\partial u}{\partial y}\right) - \frac{\partial}{\partial y}\left(a_{21}\frac{\partial u}{\partial x} + a_{22}\frac{\partial u}{\partial y}\right) + a_{00}u - f = 0$$
(3.13)

for given data $a_{ij}(i, j = 1, 2), a_{00}$ and f, and specified boundary conditions. As a special case, the Poisson equation results from (3.13) by setting $a_{11} = a_{22} = a$ and $a_{12} = a_{21} = a_{00} = 0$

$$-\nabla \cdot (a\nabla u) = f \quad \text{in } \Omega \tag{3.14}$$

where ∇ is the gradient operator. In Cartesian coordinates, this equation can be written as

$$-\frac{\partial}{\partial x}\left(a\frac{\partial u}{\partial x}\right) - \frac{\partial}{\partial y}\left(a\frac{\partial u}{\partial y}\right) = f \qquad (3.15)$$

The major steps of developing the finite element model of equation (3.13) are (Reddy, p.297)

- 1. Discretization of the domain into a set of finite elements
- 2. Weak formulation of the governing differential equation
- 3. Derivation of finite element interpolation functions
- 4. Development of the finite element model using the weak form

- 5. Assembly of finite elements to obtain the global system of algebraic equations
- 6. Imposition of the boundary conditions
- 7. Solution of equations
- 8. Post-computation of solution and quantities of interest

More than one simple geometric shape can be selected as a finite element, ranging from triangles and rectangles to quadrilaterals and others. The number of nodes in an element can be varied as well. Typical triangular elements have three, four, or six nodes, while typical quadrilateral elements have four, five, or nine nodes, as shown in figure 3.2. Accuracy considerations and computational requirements are key factors in selecting the type of element and the number of nodes each element will have.

The weak form of (3.13) over the typical element Ω^e is written as

$$0 = \int_{\Omega_{r}} w \left[-\frac{\partial}{\partial x} (F_1) - \frac{\partial}{\partial y} (F_2) + a_{00}u - f \right] dx dy$$
(3.16)

where

$$F_1 = a_{11} \frac{\partial u}{\partial x} + a_{12} \frac{\partial u}{\partial y}, \qquad F_2 = a_{21} \frac{\partial u}{\partial x} + a_{22} \frac{\partial u}{\partial y}$$
 (3.17)

From the gradient theorem,

$$\int_{\Omega^{*}} \frac{\partial}{\partial x} (wF_{1}) dx dy = \oint_{\Gamma^{*}} wF_{1} n_{x} ds \qquad (3.18)$$

$$\int_{\Omega'} \frac{\partial}{\partial y} (wF_2) dx dy = \oint_{\Gamma'} wF_2 n_y ds$$
(3.19)

where n_x and n_y are the components (direction cosines) of the unit normal vector

$$\hat{n} = n_x \hat{i} + n_y \hat{j} = \cos \alpha \hat{i} + \sin \alpha \hat{j}$$
(3.20)

Figure 3.2 Finite elements in two dimensions: (a) a three-node element; (b)-(c) four node elements; (d) a five node element; (e) a six-node element.

on the boundary Γ^e , and ds is the arclength of an infinitesimal line element along the boundary. The secondary variable of the formulation, q_n , is

$$q_{n} \equiv n_{x} \left(a_{11} \frac{\partial u}{\partial x} + a_{12} \frac{\partial u}{\partial y} \right) + n_{y} \left(a_{21} \frac{\partial u}{\partial x} + a_{22} \frac{\partial u}{\partial y} \right)$$
(3.21)

Finally, with substitution, (3.16) becomes

$$0 = \int_{\Omega'} \left[\frac{\partial w}{\partial x} \left(a_{11} \frac{\partial u}{\partial x} + a_{12} \frac{\partial u}{\partial y} \right) + \frac{\partial w}{\partial y} \left(a_{21} \frac{\partial u}{\partial x} + a_{22} \frac{\partial u}{\partial y} \right) + a_{00} w u - w f \right] dx dy - \oint_{\Gamma'} w q_n ds$$
(3.22)

In the development of the finite element model, the weak form in (3.22) requires that the approximation chosen for u should be at least linear in both x and y so that there are no terms that are equal to zero. The primary variable u can be approximated over a typical finite element Ω^e by the expression

$$u(x, y) \approx U^{e}(x, y) = \sum_{j=1}^{n} u_{j}^{e} \Psi_{j}^{e}(x, y)$$
(3.23)

where u_j^e is the value of U^e at the *j*th node (x_j, y_j) of the element, and ψ_j^e are the Lagrange interpolation functions with the property

$$\Psi_i^e(x_j, y_j) = \delta_{ij} \tag{3.24}$$

The substitution of (3.23) in the weak form (3.22) yields

$$0 = \int_{\Omega'} \left[\frac{\partial w}{\partial x} \left(a_{11} \sum_{j=1}^{n} u_j \frac{\partial \psi_j}{\partial x} + a_{12} \sum_{j=1}^{n} u_j \frac{\partial \psi_j}{\partial y} \right) + \frac{\partial w}{\partial y} \left(a_{21} \sum_{j=1}^{n} u_j \frac{\partial \psi_j}{\partial x} + a_{22} \sum_{j=1}^{n} u_j \frac{\partial \psi_j}{\partial y} \right) \right] dx dy - \oint_{\Gamma'} wq_n ds + a_{00} w \sum_{j=1}^{n} u_j \psi_j - wf$$

$$(3.25)$$

This equation must hold for any weight function w. Since there are n independent algebraic equations needed to solve for the n unknowns $u_1, u_2, ..., u_n$, n independent functions are chosen for w as $w = \psi_1, \psi_2, ..., \psi_n$. For each w, an algebraic equation is obtained. The *i*th algebraic equation is arrived at by substituting $w = \psi_i^{T}$ into (3.25) and results in

$$0 = \sum_{j=1}^{n} \left\{ \int_{\Omega^{\epsilon}} \left[\frac{\partial \psi_{i}}{\partial x} \left(a_{11} \frac{\partial \psi_{j}}{\partial x} + a_{12} \frac{\partial \psi_{j}}{\partial y} \right) + a_{12} \frac{\partial \psi_{j}}{\partial y} \right] dx dy \right\} u_{j} \qquad (i=1, 2, ..., n) \quad (3.26)$$
$$-\int_{\Omega^{\epsilon}} f \psi_{i} dx dy - \oint_{\Gamma^{\epsilon}} \psi_{i} q_{n} ds$$

This equation can be rewritten as

$$\sum_{j=1}^{n} K_{ij}^{e} u_{j}^{e} = f_{i}^{e} + Q_{i}^{e}$$
(3.27)

where

$$K_{ij}^{e} = \int_{\Omega^{e}} \left[\frac{\partial \psi_{i}}{\partial x} \left(a_{11} \frac{\partial \psi_{j}}{\partial x} + a_{12} \frac{\partial \psi_{j}}{\partial y} \right) + \frac{\partial \psi_{i}}{\partial y} \left(a_{21} \frac{\partial \psi_{j}}{\partial x} + a_{22} \frac{\partial \psi_{j}}{\partial y} \right) + a_{00} \psi_{i} \psi_{j} \right] dxdy$$

$$f_{i}^{e} = \int_{\Omega^{e}} f \psi_{i}^{e} dxdy, \qquad \qquad Q_{i}^{e} = \oint_{\Gamma^{e}} q_{n} \psi_{i}^{e} ds$$
(3.28)

Finally, this expression can be rewritten in matrix notation as

$$\left[K^{e}\right]\left\{u^{e}\right\} = \left\{f^{e}\right\} + \left\{Q^{e}\right\}$$

$$(3.29)$$

The matrix [K] is symmetric when $a_{12} = a_{21}$. Equation (3.29) represents the finite element model of (3.13) (Reddy, p.302).

3.3.2 Viscous Incompressible Fluid Flow

This section considers the finite element analysis of two-dimensional flows of viscous incompressible fluids. This analysis is relevant because the computer implementation of FEM2DV2 will be based on this type of fluid flow. The governing equations of this analysis is a set of partial differential equations based on the velocity components and pressure. The inertial effects can be neglected when the speed of the flow is low, as in the analysis done in this thesis. This type of flow is known as Stokes flow, with the equations being known as the Stokes equations.

In a closed domain Ω , the slow flow of a viscous incompressible fluid is described by

$$\frac{D}{Dt} \equiv \frac{\partial}{\partial t} + V \cdot \nabla \approx \frac{\partial}{\partial t}$$
(3.30)

Since the flow is viscous, $\mu \neq 0$, where μ is the viscosity of the fluid. The fluid is incompressible, so that

$$\frac{D\rho}{Dt} = 0 \qquad (\rho = \text{constant}) \tag{3.31}$$

where ρ is the density of the fluid. The flow is modeled as two-dimensional because the domain is considered to be very long in one direction, namely the z direction. The governing equations of motion in this case are (Reddy, p.483)

Conservation of linear momentum

$$\rho \frac{\partial u}{\partial t} - \frac{\partial}{\partial x} \left(2\mu \frac{\partial u}{\partial x} \right) - \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right] + \frac{\partial P}{\partial x} - f_x = 0$$

$$\rho \frac{\partial v}{\partial t} - \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right] - \frac{\partial}{\partial y} \left(2\mu \frac{\partial v}{\partial y} \right) + \frac{\partial P}{\partial y} - f_y = 0$$
(3.32)

Conservation of mass

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{3.33}$$

where u and v are the velocity components in the x and y directions, respectively, P is the pressure, and f_x and f_y are the components of the body force. And finally, the boundary and initial conditions are

$$t_{x} = 2\mu \frac{\partial u}{\partial x} n_{x} + \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) n_{y} - Pn_{x} = \hat{t}_{x}$$

$$t_{y} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) n_{x} + 2\mu \frac{\partial v}{\partial y} n_{y} - Pn_{y} = \hat{t}_{y}$$

$$u = \hat{u}, \qquad v = \hat{v}$$

$$u(x, y, 0) = u_{0}(x, y), \qquad v(x, y, 0) = v_{0}(x, y)$$

(3.34)

The weak forms of (3.32) and (3.33) over an element Ω^e can be obtained by multiplying each of the three equations by three different weight functions w_1, w_2, w_3 and integrating over the element (Reddy, p.484):

$$0 = \int_{\Omega'} w_1 \left\{ \rho \frac{\partial u}{\partial t} - \frac{\partial}{\partial x} \left(2\mu \frac{\partial u}{\partial x} \right) - \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right] + \frac{\partial P}{\partial x} - f_x \right\} dxdy$$

$$0 = \int_{\Omega'} w_2 \left\{ \rho \frac{\partial v}{\partial t} - \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right] - \frac{\partial}{\partial y} \left(2\mu \frac{\partial v}{\partial y} \right) + \frac{\partial P}{\partial y} - f_y \right\} dxdy \qquad (3.35)$$

$$0 = \int_{\Omega'} w_3 \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) dxdy$$

A close examination of the weak form reveals that u and v are the primary variables and should be made continuous at interelement boundaries, while P is a nodal variable that is not to be made continuous across the interelement boundaries. The minimum continuity requirements on (u, v, P) are that u and v should be linear in x and y, and that P should be constant. The continuity requirements on the interpolation of the velocity field and pressure are

$$u = \sum_{j=1}^{n} u_{j} \psi_{j}^{e}, \qquad v = \sum_{j=1}^{n} v_{j} \psi_{j}^{e}, \qquad P = \sum_{j=1}^{m} P_{j} \phi_{j}^{e}$$
(3.36)

where ψ_{j}^{e} and ϕ_{j}^{e} are the interpolation functions of different order (*m*<*n*; *m*+1=*n*).

The program FEM2DV2 uses the penalty function method, which is used to reformulate a problem with constraints as one without constraints. Consider a constrained algebraic problem:

minimize the function f(x, y) subject to the constraint G(x, y)=0

The minimum of the modified function F_p must be found as

$$F_{P}(x, y) = f(x, y) + \frac{1}{2}\gamma [G(x, y)]^{2}$$
(3.37)

where γ is a preassigned weight parameter, called the penalty parameter. The solution to this problem is given by the two partial differential equations

$$\frac{\partial F_P}{\partial x} = 0, \qquad \frac{\partial F_P}{\partial y} = 0$$
 (3.38)

The solution (x_{γ}, y_{γ}) will be a function of the penalty parameter. As the value of γ is increased, the constraint is satisfied more accurately and the solution approaches the actual solution (x, y) as $\gamma \to \infty$ (Reddy, p.488).

3.3.3 Computer Implementation of Two-Dimensional Problems

Section 3.2.2 discussed the computer implementation of 1-D problems; in this section, the focus will be on 2-D problems, specifically examining the analysis which was done to obtain the velocity distributions in a 90 degree duct bend. The imposition of the boundary conditions and the solution of the equations remain the same as in 1-D problems. The program FEM2DV2 was written by J.N. Reddy and it is used to analyze 2-D problems. Linear, quadratic triangular, and rectangular elements can be used for the finite element analysis of heat conduction and convection problems, laminar flows of viscous incompressible fluids using the penalty function formulation (one of the focuses of this thesis), plane elasticity problems, and plate bending problems using classical and shear deformation theories. A flow chart of the program FEM2DV2 is presented in figure 3.3 along with a brief explanation of what each of the subroutines does. The program solves eigenvalue problems with the subroutine DGVCSP, an IBM system-supplied subroutine, but this was edited out of the program and replaced with a subroutine to perform the same analysis, obtained from the program FEM1DV2, so that the program is self-sufficient, not depending on system-supplied subroutines for any of the analysis.

Figure 3.3 Flow chart of the computer program FEM2DV2 along with the subroutines.

Figure 3.3 (Continued)

AXLBX:	Subroutine to solve an eigenvalue problem of the type $[K]{U}=L(M){U}$, where $[K]$ and (<i>M</i>) are positive definite matrices.
BOUNRY:	Subroutine to impose specified boundary conditions on the primary and secondary variables when a steady-state or transient analysis is carried out.
ECHO:	Subroutine to echo the input data to the program.
EGNBOU:	Subroutine to impose specified boundary conditions on the primary variables when an eigenvalue problem is analyzed.
ELKMFR:	Subroutine to compute the element $[K]$, (M) , and $\{F\}$ matrices and vectors for the rectangular elements.
ELKMFT:	Subroutine to compute the element $[K]$, (M) , and $\{F\}$ matrices and vectors for the triangular elements.
MSH2DG:	Subroutine to generate mesh for general domains.
MSH2DR:	Subroutine to generate mesh for rectangular domains only.
PSTPRC:	Subroutine to post-complete the solution, gradient of solution, and stresses.
QUADRT:	Subroutine to generate the quadrature points and weights for the triangular elements.
RELEM:	Subroutine called in MSH2DG to generate element data.
SHPRCT:	Subroutine to compute the shape functions for linear and quadratic (eight- and nine-node) rectangular elements.
SHPTRI:	Subroutine to compute the shape functions for linear and quadratic triangular elements.
SOLVE:	Subroutine to solve a banded, symmetric system of algebraic equations.
TIME:	Subroutine to compute the equivalent coefficient matrices and column vectors for parabolic and hyperbolic equations when time-dependent analysis is carried out.

The element calculations in 2-D problems consider the following (Reddy, p.534):

- Various geometric shapes of the elements
- Single and multivariable problems
- Integrations performed along areas as opposed to along lines (as in 1-D analysis)
- Mixed-order integrations used in certain formulations (for shear-deformable plates and penalty function formulations of viscous incompressible fluids)

The preprocessor part of the program generates the triangular and rectangular element meshes, as well as nonrectangular meshes. The global coordinates of the nodes and the connectivity matrix are also generated in this section. If the mesh generators cannot be used, for example in a curved section, then the mesh information is read in from the input data file. A complete listing of the input variables to the program FEM2DV2 can be found on pages 542-547 of the book. The processor part of the program evaluates the interpolation functions and their derivatives with respect to the global coordinates, performs numerical integration of the coefficients of the element matrices using numerical quadrature formulas, and sets up the element matrices required for the class of problems being solved (e.g. static, transient, and eigenvalue problems). The post processor post-completes the solution, gradient of solution, and stresses, and prints out the data in a specified format.

Again, this program was scanned into the computer with a scanner, and then it was examined line-by-line for accuracy. After the adjustments were made, the program was ready to be executed. The program was not modified except for the fact that there were two subroutines added to compute the eigenvalues and eigenvectors because the program refers to system subroutines which the PC did not have. This was all done on a personal computer (PC) with a pentium processor. However, unlike FEM1DV2, the executable file for FEM2DV2 could not be created on a PC. The program was simply too large (consisting of over several thousand lines of code). Therefore, the program was transferred to a Sun System SPARC 20 workstation. The program was executed and tested successfully. It was found that the program ran much much quicker on the workstation than on the PC, facilitating the analysis. The actual compiler used to run the program was a SPARC compiler FORTRAN version 3.00.

3.3.4 Illustrative Example of FEM2DV2: Viscous Fluid Squeezed Between Plates

In order to show how the program FEM2DV2 works, consider the time-dependent analysis of a viscous fluid squeezed between parallel plates, as shown in figure 3.4(a). The flow is induced by the uniform motion of the plates towards each other. The boundary conditions are shown in figure 3.4(b) and the initial boundary conditions are zero. Using a 12 X 8 uniform mesh of linear rectangular elements with nine nodes per element, the analysis can be done by looking at one section of the domain, as shown in figure 3.4(b). The program FEM2DV2 computes the values of the velocities *u* and *v* at each of the nodes, along with the stresses σ_x , σ_y , σ_{xy} and the pressure. This is done until the solution has reached a steady state. The output file of this analysis is shown in appendix B. Note that the first section of the output file reprints the input file, which was read by the program in the analysis of this problem. This analysis is consistent with the

(*a*)

(b)

Figure 3.4 Boundary conditions and finite element meshes for the problem of an incompressible viscous fluid squeezed between plates: (*a*) geometry of the flow domain; (*b*) finite element mesh of a quadrant.

book's analysis of this same problem showing that the program FEM2DV2 works as it should (Reddy, p.560).

Other examples which were tested successfully were heat transfer with convection boundary conditions and a flow about a circular cylinder (Reddy, p. 552-554). Again, as mentioned for FEM1DV2, FEM2DV2 ran successfully for these examples and it compiled; however, there is no guarantee that it will yield the correct output for its other applications. Some minor debugging of the program may have to be done. This program consists of over 2000 lines, and some errors are certainly possible in the source code.

3.3.5 Use of FEM2DV2 to Obtain Velocity Distributions for a 90 Degree Duct Bend

The problem at hand was to obtain the velocity distributions of a 90 degree duct bend (known as an "elbow"; this is a 2-D simulation of a pipe) so that a particle deposition analysis could later be performed. The elbow is shown in figure 3.5 along with the dimensions of the duct and the input and output velocity distributions. The analysis done in this thesis is a dimensionless one. The input velocity was parabolic and the fluid coming into the duct had a fully developed flow. The parabolic velocity distribution at the inlet was completely in the x direction, so that v at the inlet was equal to zero. In the x direction,

$$u = 15(1 - y^2) \tag{3.39}$$

at the inlet. The local value of y is zero at the center of the duct for this velocity distribution, so that the value of u is 1.5 at the center of the duct and zero at the outer walls (where y is equal to 1 and -1, making (3.39) equal to zero). The width of the duct is

Figure 3.5 The 90 degree duct bend with entrance and exit velocity distributions, dimensions, and global origin.

2 throughout. Also, the global coordinates are such that the origin is 2 units below the lower wall of the duct at the inlet section. The exit section of the duct has a fully developed flow as well, with a fully developed velocity distribution completely in the v direction, with u at the exit being equal to zero. The velocity at the exit section is described by

$$v = 1.5(1 - x^2) \tag{3.40}$$

For this velocity distribution, the local value of x is zero at the center of the exit section of the duct, again the width being 2. The value of v is 1.5 at the center in the negative y direction and zero at the inner and outer walls of the exit section. The velocity distributions were chosen such that the average velocities at the inlet and outlet sections were equal to 1.0 in the u and v directions, respectively.

The exit section of the elbow is vertical and equal to 2 units. It was determined that an exit section equal to 2 would allow the flow to become fully developed over that distance. This was done by analyzing a straight section of a duct, as shown in figure 3.6. The straight duct has a diameter of 2 and a length of 6. The flow coming in is uniform, with a value of u=1.0. At the exit, there is fully developed flow and u is described by (3.39), with y being zero at the center of the duct. The flow has a low Reynolds number, where the Reynolds number is defined as (Hesketh, p.16)

$$\operatorname{Re} = \frac{Dv_s \rho_s}{\mu_s} \tag{3.41}$$

where D is the diameter of the duct, v_g is the velocity of the fluid, ρ_g is the density of the fluid, and μ_g is the viscosity of the fluid. The flow is laminar and is moving at a

very low rate. This type of flow is referred to as "creeping flow". Creeping flow is a type of flow where the flow rate is low so that the flow is laminar and the pressure gradient due to convective acceleration in the gap is negligible compared to the gradient due to viscous forces (Fox & McDonald, p.393).

The analysis of figure 3.6 was done using the program FEM2DV2. A 6 X 4 evenly spread element mesh with 9 nodes per element was used to examine this steadystate flow with the initial conditions being u=0, v=0 at the walls of the duct (top and bottom sections of figure 3.6), u=1, v=0 at the inlet section of the duct, and $u = 1.5(1 - y^2)$, v=0 at the exit section of the duct. The viscosity of the fluid was equal to 2.0 and the penalty parameter was set at 1.0×10^8 , a value within the suggested limits established by Reddy (Reddy, p.494). The purpose of analyzing this straight section was to determine how much distance it would take for a uniform flow to become fully developed. With such a low flow rate, a flow through a duct will become fully developed quite rapidly. It turned out that at a distance of about 1.7 units, the flow was fully developed. Therefore, the exit section in figure 3.5 was set at 2.0, a distance in which the flow would become fully developed.

An important note in this type of analysis is that the duct is being modeled as a flow between two parallel plates of infinite distance in the z direction, simulating a twodimensional pipe. There is nothing occurring in the z direction, and the flows in the x and y directions are independent of the z direction, hence yielding a two-dimensional flow.

The analysis of figure 3.6 was simple using FEM2DV2. The input file for the program is shown in appendix C. The program generates all of the mesh coordinates on

its own using rectangular nine node elements. Only one half of the domain has to be analyzed due to symmetry, so the analysis becomes even easier. However, when the analysis was performed on figure 3.5, all of the mesh data had to be input manually. This included describing the connectivity of the nodes in each element and inputting the coordinates of every node in the mesh. A sample input to the program FEM2DV2 using a 21 element mesh is given in appendix D. The mesh is shown in figure 3.7. This is an extremely simple mesh and it requires an input file which is three pages long, specifying the element connectivity of 21 elements and the coordinates of 105 nodes (nine nodes per element). It becomes evident that using a much larger mesh can become a formidable task due to the specification of all of the elements' connectivity information and the coordinates of every node in the mesh; but these types of problems can be dealt with. By examining the input file in appendix D, it becomes clear that the connectivity of the elements is in such a way (as defined by Reddy, see p. 550) that relationships exist among interconnected elements. For instance, the node numbers begin at the lowest left point of the domain, namely the lower wall at the entrance section of the duct. This is node number one. Nodes 2, 3, 4, ... are along the lower wall of the duct, until node number 15 is reached. Next, node number 16 is at the entrance section, just above node number 1 (at a distance of 0.333 units above it, determined by evenly spreading seven nodes at the entrance over a diameter of 2). From here, with the origin as shown in figure 3.5, the nodes along this constant radius are 16, 17, 18, ..., 30. This same procedure is followed until node number 105 is reached.

Figure 3.7 A sample 21 element mesh used for the velocity distribution analysis; nine nodes per quadrilateral element.

Reddy's program is written in such a way that the connectivity of the elements must be described as follows. For a nine-node rectangular element, as in figure 3.7, the first element is the one with node number 1 at the lowest left corner. The connectivity of the elements goes: lowest left, lowest right, highest right, highest left, lowest center, right center, highest center, left center, center, as shown in figure 3.8. While this may sound a bit tricky, it is the same procedure for all 21 elements and a pattern develops along a fixed radius. For instance, at the lower wall, the first three elements have the connectivity (this is read from left to right; the first line is the first element, the second line is the second element, etc.)

1	3	33	31	2	18	32	16	17
3	5	35	33	4	20	34	18	19
5	7	37	35	6	22	36	20	21

This is the first three input lines in appendix D. By looking at the first column, the numbers are increasing by 2. This is true for the 2nd, 3rd, and the rest of the columns. For the seven elements in the lowest section of figure 3.7, only the connectivity of the first element (the left most) must be thought about in this case. The others can be computed by adding 2 to each of the node numbers in this case as shown. This same principle is true throughout these types of meshes, so that only the connectivity of the three elements at the entrance of the duct must be specified, with the others coming from a very simple program which adds 2 to each node. Those results are then put into the input file. This technique becomes very useful in the analysis of the mesh which was actually used to obtain the final velocity distributions, which had 16 elements along each

fixed radius and 8 elements along the entrance; therefore, only 8 node connectivities were described, with the other 120 elements' connectivity being generated by a simple program. This simple program for this case is shown in appendix E.

The next problem becomes specifying the coordinates of every node in the mesh when the mesh is not generated by the program FEM2DV2, as was the case with figure 3.7. In figure 3.7, there are 21 elements and 105 nodes. 105 coordinates have to be specified, beginning with the x and y coordinates of node number 1 and continuing down to node number 105. That means that the user has to input 210 numbers for a simple 21 element mesh. This problem can be overcome by a simple program as well. By closely examining figure 3.7 and taking into account the number of nodes along each fixed radius and the dimensions of the duct, the coordinates of the nodes along each radius are obtained through evenly spreading the nodes over the domain. The next set of coordinates begin by increasing the radius, then going through the same procedure until the coordinates of all the nodes have been computed. The program which was used in this analysis is shown in appendix F.

Similar programs such as those found in appendices E and F in this case can be used when the program FEM2DV2 does not generate the mesh data for the user. An analysis of the domain must be performed by the user and patterns between node connectivities of the elements as well as the coordinates of the elements must be sought for maximum efficiency in creating the input data file.

The actual mesh which was used in this analysis is shown in figure 3.9. A 16 X 8 element mesh (for a total of 128 elements) was used with 561 nodes. There were 9 nodes

Figure 3.9 128 element mesh used to obtain the velocity distributions from the program FEM2DV2; nine nodes per quadrilateral element for a total of 561 nodes.

per quadrilateral element. The input file to the program FEM2DV2 is very similar to the one for the 21 element mesh. The 128 element mesh simply has more specifications for the connectivity of the nodes and the coordinates of all 561 nodes. The output of the program FEM2DV2 which was of interest in this case was the velocity distribution at each of the 561 nodes. The boundary conditions in this analysis were such that $u = 1.5(1 - y^2)$. v=0 at the entrance, u=0, v=0 at the lower and upper walls, and u=0, $v = 1.5(1 - x^2)$ at the exit. The velocity distributions which were obtained were used in the analysis of particle deposition in fluid-particle suspension through a 90 degree turn in a two-dimensional duct.

CHAPTER 4

PARTICLE DEPOSITION ANALYSIS

This section discusses particle deposition in a fluid-particle motion through a 90 degree bend in a parallel-plate channel. The parameter which was varied in the particle motion equations was the inertia parameter. The velocity distributions at each position were obtained through finite element analysis as discussed in section 3.3.5 and through interpolation.

Particle deposition analysis in a duct bend as shown in figure 3.5 is very useful in determining where the particles will impact against the wall with the most concentration. As the inertia parameter is varied, the deposition rates will change. The section in which there is the most deposition is the section which must be protected foremost in such applications where the particles can erode the wall. Uniformly coating a wall with protectants can be costly in some cases. It may be more economically sound to protect the wall with a supplement in the section in which there is the most impact. Extra supplements in the area of maximum particle deposition can reduce the wear on the duct in the section most likely to fail due to maximum erosion.

4.1 Governing Equations

Particle motion in two dimensions is affected by the image charge, inertia force, viscous force, and gravity force. For this analysis, the following assumptions are made:

- incompressible, steady flow
- two-dimensional uniform flow

44

- fluid-particle interaction negligible
- particle to particle interaction negligible
- thickness of the layer of deposit is much smaller than the duct diameter
- negligible lift forces act on the particle
- no chemical reactions
- material density of the fluid is much smaller than the material density of the solid particles

For a solid particle suspension in an incompressible steady, laminar flow, the Lagrangian frame momentum balances are

$$m\frac{du_p}{dt} = k(u - u_p) + f_x$$

$$m\frac{dv_p}{dt} = k(v - v_p) - mg + f_y$$
(4.1)

where u and v are the velocities of the fluid in the x and y direction, respectively, m is the mass of the particle, k is equal to $6\pi\mu a$ (Stoke's drag law), μ is the dynamic viscosity of the fluid, a is the radius of the spherical particle, and f_x , f_y denote the electrostatic force components in the x and y directions, respectively, g is the gravitational acceleration, and the subscript p denotes a particle.

The equations can be non-dimensionalized with the following nondimensionless terms:

$$T = \frac{tu_0}{h_0}$$

$$X = \frac{x}{h_0}$$

$$Y = \frac{y}{h_0}$$

$$U = \frac{u}{u_0}$$

$$V = \frac{v}{v_0}$$
(4.2)

where t is the time unit, h_0 is the characteristic length, and u_0, v_0 are the velocities in the x and y directions at the entrance. With the parameters S, G, and Q, (4.1) becomes

$$S\frac{d^{2}X}{dT^{2}} = U - \frac{dX}{dT} + QF_{x}$$

$$S\frac{d^{2}Y}{dT^{2}} = V - \frac{dY}{dT} - G + QF_{y}$$
(4.3)

where

$$S = \frac{\text{inertia force}}{\text{viscous force}} = \frac{mu_0}{h_0 k}$$

$$Q = \frac{\text{charge force}}{\text{viscous force}} = \frac{q^2}{4\pi\varepsilon_0 h_0^2 k u_0}$$

$$G = \frac{\text{gravity force}}{\text{viscous force}} = \frac{mg}{k u_0}$$
(4.4)

Since the charge forces are not being considered in this case, (4.3) can be rewritten as

$$S \frac{d^{2} X}{dT^{2}} = U - \frac{dX}{dT}$$

$$S \frac{d^{2} Y}{dT^{2}} = V - \frac{dY}{dT} - G$$
(4.5)

Finally, if

$$A = \frac{dX}{dT}$$

$$B = \frac{dY}{dT}$$
(4.6)

then (4.5) becomes

$$S \frac{dA}{dT} = U - A$$

$$S \frac{dB}{dT} = V - B - G$$
(4.7)

These are the equations which are used in the analysis of particle deposition through a 90 degree duct bend. The parameter S is referred to as the inertia force throughout this document.

4.2 Method of Solution

The equations of particle motion are defined in (4.7). These equations were used to compute the values of the nondimensionless terms A and B so that the positions x and y for the particle could be computed. This was done using the fourth order Runge-Kutta method. The equations for this application are as follows:

$$x_{i+1} = x_i + \frac{K_1 + 2K_2 + 2K_3 + K_4}{6}$$

$$A_{i+1} = A_i + \frac{K_1' + 2K_2' + 2K_3' + K_4'}{6}$$
(4.8)

where

$$K_{1}' = \frac{dT}{S} \cdot \left(U_{i} - A_{i}\right)$$

$$K_{2}' = \frac{dT}{S} \cdot \left(U_{i} - \left[A_{i} + \frac{K_{1}'}{2}\right]\right)$$

$$K_{3}' = \frac{dT}{S} \cdot \left(U_{i} - \left[A_{i} + \frac{K_{2}'}{2}\right]\right)$$

$$K_{4}' = \frac{dT}{S} \cdot \left(U_{i} - \left[A_{i} + K_{3}'\right]\right)$$

$$K_{1} = dT \cdot A_{i}$$

$$K_{2} = dT \cdot \left(A_{i} + \frac{K_{1}'}{2}\right)$$

$$K_{3} = dT \cdot \left(A_{i} + \frac{K_{2}'}{2}\right)$$

$$K_{4} = dT \cdot \left(A_{i} + K_{3}'\right)$$
(4.9)

and

$$y_{i+1} = y_i + \frac{K_1'' + 2K_2'' + 2K_3'' + K_4''}{6}$$

$$B_{i+1} = B_i + \frac{K_1''' + 2K_2''' + 2K_3''' + K_4'''}{6}$$
(4.10)

where

$$K_{1}^{'''} = \frac{dT}{S} \cdot \left(V_{i} - B_{i} - G\right)$$

$$K_{2}^{'''} = \frac{dT}{S} \cdot \left(V_{i} - \left[B_{i} + \frac{K_{1}^{'''}}{2}\right] - G\right)$$

$$K_{3}^{'''} = \frac{dT}{S} \cdot \left(V_{i} - \left[B_{i} + \frac{K_{2}^{'''}}{2}\right] - G\right)$$

$$K_{4}^{'''} = dT \cdot B_{i}$$

$$K_{2}^{''} = dT \cdot \left(B_{i} + \frac{K_{1}^{'''}}{2}\right)$$

$$K_{3}^{'''} = dT \cdot \left(B_{i} + \frac{K_{2}^{'''}}{2}\right)$$

$$K_{4}^{'''} = dT \cdot \left(B_{i} + \frac{K_{2}^{'''}}{2}\right)$$

$$K_{4}^{'''} = dT \cdot \left(B_{i} + K_{3}^{'''}\right)$$

Equations (4.8)-(4.11) were used to compute the next position of a particle entering the duct shown in figure 3.5. The velocity terms in these equations (U and V) come from the finite element analysis of this domain using the 128 element mesh from figure 3.9. A particle starting at a set position at the entrance of the duct had specified x and y initial values. This was the starting position. For example, if a particle were to start at the center of the duct, then, from figure 3.5, x=0.0, y=3.0. This is the initial position. The initial velocity is computed using (3.39). The initial velocities in the x and y directions for this particle are U=1.5 and V=0.0. The initial values of A and B are equal to the initial values of U and V, respectively. With this given information, (4.8)-(4.11) are used to compute the next values of x, y, A, and B. The values of U and V are constantly coming from the results of the finite element analysis as explained in chapter 3. This process continues until one of the following conditions are met (refer to figure 3.5):

- 1. The particle hits the top circular wall; this happens when the radius of the particle, Z, where $Z = \sqrt{x^2 + y^2}$, is greater than or equal to 4.0, the outer radius of the duct, and y is greater than 0.0. If this occurs, then the particle has been deposited on the upper wall of the duct.
- 2. The particle hits the lower circular wall; this happens when Z is less than or equal to 2.0, the inner radius of the circular portion of the duct, and y is greater than 0.0. If this occurs, then the particle has been deposited on the lower circular wall of the duct.
- 3. The particle hits the lower right wall of the duct; this is in the exit vertical section. This occurs when y is less than or equal to 0.0 and x is greater than or equal to 4.0.
- 4. The particle hits the lower left wall of the duct; this is in the exit vertical section. This occurs when y is less than or equal to 0.0 and x is less than or equal to 2.0.
- 5. The particle exits the duct through the vertical exit; this occurs when y is less than or equal to -2.0 and x is greater than 2.0 and less than 4.0.

The particle is considered to be deposited if (1)-(4) occurs. The particle exits the duct when (5) occurs. Equations (4.8)-(4.11) are used to compute the next position of the particle until one of these five situations occurs, and then the next particle coming in at the entrance is analyzed.

4.2.1 Program "particles.f" Used to Analyze Particle Motion

Equations (4.8)-(4.11) are used to analyze the particle motion until the particle is either deposited on the wall or until it exits the duct. This is a systematic procedure and it was done using a FORTRAN program written for this thesis, called "particles.f", given in appendix G. The program has comments in it describing exactly what it is doing, step by step. A flow chart of this program is shown in figure 4.1. The program reads in the node positions and the velocities U and V at each node; next it computes the initial position of each particle, based on the number of particles in the analysis. The user specifies the number of particles in the analysis and then the program distributes the particles throughout the entrance region's diameter. In this case, for instance, there were 100 particles coming in at the entrance, which had a diameter of 2.0 (see figure 3.5). Because 2.0/100=0.02, the particles were situated such that there were 0.02 units of distance between them. The particles were assumed to be entering the duct in an evenly distributed fashion. The initial velocity U was computed for each particle using equation (3.39) and the value of the initial velocity V was equal to 0.0 at the entrance. Next, using the fourth order Runge-Kutta equations, (4.8)-(4.11), the next position of the particle was computed (the user specifies S and G). The analysis took place for one particle at a time. The particle was analyzed completely until it either was deposited or until it exited the duct. Having computed the particle's next position, the program checked whether or not the particle had been deposited. If it had not, then the particle's velocities U and V had to be determined using the finite element analysis velocity data and the value of the time

step dT had to be computed. Then the particle's next position was computed and a check was done again to see if the particle had either exited or been deposited.

If the particle had exited the duct, then the number of computations to exit the system was checked. The desired number of computations was set between 2000-3000. If this range of computations was not set, some particles would require 100 steps while others would go through 40,000 steps; this was not desirable, so a criterion was established. If the number of computations to exit the duct or deposit were less than 2000, then the program was run again for the same particle with a smaller time step. dT, so that the number of iterations would be increased. While running through the program, if the particle had not been deposited by 3000 iterations, then the program was terminated and the value of dT was increased to yield a lower number of iterations.

The value of the time step dT was computed using the equation

$$dT = \frac{|x_{i+1} - x_i|}{|U_{i+1}|}$$
(4.12)

If the value of dx was equal to 0.0, then dT would equal 0.0 from (4.12); however, the program checked for this and if dT was equal to 0.0 then

$$dT = \frac{|y_{i+1} - y_i|}{|V_{i+1}|}$$
(4.13)

If the particle exited the duct or was deposited and the number of equations was between 2000-3000, then the final positions of the particle were stored to a file. The next particle was then examined. This process was continued until all of the particles had been analyzed. One of the most difficult things about using equations (4.8)-(4.11) was obtaining the values of U and V. Their values were read in at the nodes in the beginning of the program "particles.f". Their values came from the finite element analysis of figure 3.5. However, the problem was that a particle's position was virtually never at a node point; instead, it was located between nodes. Interpolation had to be done. The interpolation was a little tricky because the particle was in a curved section for a good portion of its journey. Theoretically, it is possible to compute the velocity components in an element using the interpolation functions for nine-node elements; however, for the sake of simplicity, the values of U and V were found as follows.

First the four closest node points to the particle had to be determined. Whether the particle was located in the curved section or the vertical exit section of the duct, it had four nodes next to it which were used to determine the values of the velocity. While in the curved section, the value of the particle's radius $Z = \sqrt{x^2 + y^2}$ was computed. From this radius, the node numbers at the entrance were examined along with their distances from the origin (at the entrance, the nodes have positions x=0.0, $2.0 \le y \le 4.0$). Based on the y value of the nodes, there is a node which is immediately below Z and one which is immediately above Z. The lower node is known as MINNOD and the upper node is MAXNOD (see figure 4.2). With the value of MINNOD, the node numbers are ordered in such a way that the value of MINNOD's distance from the origin is constant as the node numbers are increased by 1. For example, suppose MINNOD were equal to 166, and MAXNOD were equal to 199. These node numbers were specified based on the value of Z. The value of Z falls between the y values of the node numbers 166 and 199,

Figure 4.2 Determining the four closest nodes to the particle based upon which nodes lie above and below it at the entrance when the particle is in the 90 degree turn.

located directly above the origin. Given MINNOD=166, the node number 166 is increased from 166, 167, 168, ... In doing so, the radius of these nodes from the origin is constant because they all lie along a constant radius line along the mesh, as shown in figure 3.9. As the node number is increased, the x and y values of the node's position are changing because this is a different node, but Z is constant, so the particle is just above this constant radius line. As the node numbers along MINNOD are increased, so are the values along MAXNOD, in the same way. So initially, the four closest nodes are considered to be 166, 167, 199, and 200. If the particle's position is between these nodes, then stop; if not, then look at nodes 167, 168, 200, 201; continue until the particle lies between these four nodes, as shown in figure 4.3.

Once the four closest nodes are determined, the next step is to interpolate to get the velocities. Supposing the particle is located such that it is between nodes 167, 168, 200, and 201. Then the lower left node (LL, or #4) is 167, the lower right node (RL, or #3) is 168, the upper left node (LU, or #1) is 200, and the upper right node (RU, or #2) is 201. The particle lies between these four nodes in the circular section of the duct and these four nodes have four different velocity values. Now interpolation must be performed to compute the particle's velocity at this current position. Referring to figure $x_L, y_L, x_R, y_R, x_T, y_T, x_B, y_B$ 4.3, problem becomes finding given the $x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4, x_p, y_p$ where p denotes the particle.

From figure 4.3,

- 1: Upper Left Node
- 2: Upper Right Node
- 3: Lower Right Node
- 4: Lower Left Node
- P: Particle's Actual Position
- L: Left Position of the Element
- R: Right Position of the Element
- T: Top Position of the Element
- B: Bottom Position of the Element
- R: Radius (subscripts indicate top, bottom, and particle)

Figure 4.3: Interpolating to get the velocity of the particle from the four closest nodes; this particle is in the 90 degree turn of the duct.

$$R_{T} = \sqrt{x_{1}^{2} + y_{1}^{2}}$$

$$R_{B} = \sqrt{x_{4}^{2} + y_{4}^{2}}$$

$$R_{p} = \sqrt{x_{p}^{2} + y_{p}^{2}}$$
(4.14)

where R_T, R_B, R_p denote the radius of the top, bottom, and particle, respectively. The radius of the particle lies between the radius of the bottom and the radius of the top. Interpolating between the bottom and the top surfaces of figure 4.3, then

$$I = \frac{R_p - R_B}{R_T - R_B}$$
(4.15)

where I is the radial interpolation between the top and bottom surfaces. Also note that

$$I = \frac{x_L - x_4}{x_1 - x_4} \tag{4.16}$$

and therefore

$$x_{L} = (x_{1} - x_{4})I + x_{4}$$

$$y_{L} = (y_{1} - y_{4})I + y_{4}$$

$$x_{R} = (x_{2} - x_{3})I + x_{3}$$

$$y_{R} = (y_{2} - y_{3})I + y_{3}$$
(4.17)

From here, the values of the velocities on the left and right sides of figure 4.3 can be determined as

$$u_{L} = (u_{1} - u_{4})I + u_{4}$$

$$v_{L} = (v_{1} - v_{4})I + v_{4}$$

$$u_{R} = (u_{2} - u_{3})I + u_{3}$$

$$v_{R} = (v_{2} - v_{3})I + v_{3}$$
(4.18)

The next step is to determine the positions and velocities at the top and bottom of figure 4.3. This is done through interpolation again, as shown in figure 4.4. Referring to figure 4.4,

$$OA = x_{L}$$

$$LA = y_{L}$$

$$\theta_{1} = \tan^{-1} \left(\frac{y_{L}}{x_{L}} \right)$$

$$\theta_{2} = \tan^{-1} \left(\frac{y_{P}}{x_{P}} \right)$$

$$\theta_{3} = \tan^{-1} \left(\frac{y_{R}}{x_{R}} \right)$$
(4.19)

the angles are related such that

$$\phi_1 = \theta_1 - \theta_2 \tag{4.20}$$

$$\phi_2 = \theta_2 - \theta_3$$

the interpolations become

$$I_{T} = \frac{R_{T}\phi_{1}}{R_{T}\phi_{1} + R_{T}\phi_{2}}$$

$$I_{B} = \frac{R_{B}\phi_{1}}{R_{B}\phi_{1} + R_{B}\phi_{2}}$$

$$I_{p} = \frac{R_{p}\phi_{1}}{R_{p}\phi_{1} + R_{p}\phi_{2}}$$
(4.21)

and therefore

$$x_{T} = (x_{2} - x_{1})I_{T} + x_{1}$$

$$y_{T} = (y_{2} - y_{1})I_{T} + y_{1}$$

$$x_{B} = (x_{3} - x_{4})I_{B} + x_{4}$$

$$y_{B} = (y_{3} - y_{4})I_{B} + y_{4}$$
(4.22)

Figure 4.4 Interpolating to get the velocity of the particle from the four closest nodes; computing the velocities at the top and bottom of the section enclosing the particle (the particle is in the 90 degree turn of the duct).

and

$$u_{T} = (u_{2} - u_{1})I_{T} + u_{1}$$

$$v_{T} = (v_{2} - v_{1})I_{T} + v_{1}$$

$$u_{B} = (u_{3} - u_{4})I_{B} + u_{4}$$

$$v_{B} = (v_{3} - v_{4})I_{B} + v_{4}$$
(4.23)

Now that there are 4 values of u and 4 values of v, the horizontal and vertical components of these velocities can be computed as

$$u_{horiz} = (u_R - u_L)I_p + u_L$$

$$v_{horiz} = (v_B - v_L)I_p + v_L$$

$$u_{vert} = (u_T - u_B)I + u_B$$

$$v_{vert} = (v_T - v_B)I + v_B$$
(4.24)

and finally, the values of U and V for the particle's position are calculated as

$$U = \frac{u_{horiz} + u_{vert}}{2}$$

$$V = \frac{v_{horiz} + v_{vert}}{2}$$
(4.25)

When the particle is passed the 90 degree turn and is in the lower exit vertical section of the duct (see figure 3.5), the values of U and V are computed using figure 4.5. In this case,

$$y_{R} = y_{L} = y_{p}$$

$$x_{T} = x_{B} = x_{p}$$

$$x_{L} = x_{1}$$

$$x_{R} = x_{2}$$

$$y_{T} = y_{1}$$

$$y_{B} = y_{4}$$

$$(4.26)$$

The relevant interpolations are

Figure 4.5 Interpolating to get the velocity of the particle in the exit vertical section of the duct.

$$I_{ver} = \frac{y_L - y_2}{y_1 - y_4}$$

$$I_{horis} = \frac{x_T - x_1}{x_2 - x_1}$$
(4.27)

And the velocities are

$$u_{L} = (u_{1} - u_{4})I_{vert} + u_{4}$$

$$u_{R} = (u_{2} - u_{3})I_{vert} + u_{3}$$

$$u_{T} = (u_{2} - u_{1})I_{horiz} + u_{1}$$

$$u_{B} = (u_{3} - u_{4})I_{horiz} + u_{4}$$
(4.28)

and

$$u_{horiz} = (u_R - u_L)I_{horiz} + u_L$$

$$u_{vert} = (u_T - u_B)I_{vert} + u_B$$
(4.29)

The values of v are computed just as in (4.28) and (4.29), but with u replaced by v. The values of U and V are computed using equations (4.25). With the values of U and V computed, the program "particles.f" was run until the particle either exited the duct or was deposited on one of its walls. The program ended when all of the particles were examined.

4.2.2 Program "particlesout.f" Used to Analyze Particle Deposition

After the program "particles.f" was run (see section 4.2.1), the output was written to various data files. These data files were read by the program "particlesout.f" when it was run. This program's purpose is to check the location of the particle deposition throughout the duct (figure 3.5). A flow chart of the program "particlesout.f" is shown in figure 4.6. The program is presented in its entirety in appendix H along with a typical output file from this program, known as "particles.output".

Figure 4.6 Flowchart for the program "particlesout.f"; the program is listed completely in appendix H.

The program "particlesout.f" first reads in all of the relevant data, including the parameters S, G, and the number of particles coming in at the entrance of the duct. It also reads the initial positions and velocities along with the final positions of all of the particles. Next, the program checks if the y value of the particle is greater than 0.0; if it is, then the particle has been deposited somewhere in the curved section of the duct. When this is the case, then a radius of 4.0 or more means that the particle has been deposited on the upper circular wall; a radius of 2.0 or less means that the particle has been deposited on the lower circular wall. When y is less than 0.0 but greater than -2.0, then the particle has been deposited on the value of x. Finally, if y is less than or equal to -2.0, then the particle has successfully exited the duct without hitting its walls.

The next step in the program is to check where the particles which have hit the walls of the duct actually landed. The 90 degree bend was split up into 16 pieces while the exit vertical section was split up into 5 pieces. This was done because most of the particles were deposited on the upper walls of the circular portion of the duct and the right exit vertical section of the duct (see figure 3.5). Since the data was later plotted in 21 sections (as will be shown in chapter 5), the distance each section occupied was made as equal as possible. For the 90 degree bend, the outer section of the duct has a radius of 4.0, making a 1/16 section distance equal to

$$\frac{2\pi \cdot 4.0}{4 \cdot 16} \approx 0.393 \tag{4.30}$$

The exit vertical section has a total length of 2.0 and it was split into 5 sections, so that 2.0/5=0.4. The values 0.4 and 0.393 are very close, differing only by about 2%.

Examining the circular portion of the duct, the 90 degree turn was split up into 16 pieces. The first step was to set an angle at 90-90/16 degrees, or 84.38 degrees (ϕ ; see figure 4.7). Next, the particles which were deposited in the circular portion were examined; if the angle

$$\theta = \tan^{-1} \left(\frac{y_{final}}{x_{final}} \right) \tag{4.31}$$

was greater than or equal to 84.38 degrees, then the particle was deposited in section 1. This is shown graphically in figure 4.7. All of the particles deposited in the 90 degree section were tested. Next, those same particles were tested again, but this time the angle they were checked against was set at 90-90*2/16 degrees, or 78.76 degrees. Particles with an angle greater than or equal to 78.76 degrees were deposited in section 2. This process was continued until the angle became 0 degrees, for section 16.

Section 17 was in the exit vertical section of the duct, between the y values of 0.0 and -0.4. If a particle was deposited in the exit vertical section and its y value was in this range, then it was deposited in section 17. The next step checked -0.4 to -0.8 for section 18, etc.

The output was sent to the data file "particles.output". A sample of this output file is shown in appendix H.

Figure 4.7 Particle deposition in the 90 degree turn of the duct; particles are deposited in the current section when their location angle θ is greater than the section angle ϕ .

CHAPTER 5

RESULTS AND DISCUSSION OF PARTICLE DEPOSITION

After analyzing the fluid flow through the 90 degree duct bend of figure 3.5 using twodimensional finite element analysis with the program FEM2DV2, particle deposition was studied in the duct using the program "particles.f". Particle deposition was examined using the program "particlesout.f" (see chapter 4). This section shows the results of the analysis and discusses its significance.

5.1 Results of Particle Deposition

The program "particles.f" (appendix G) was written in such a way that the particle deposition analysis is dependent upon the specification of the parameters S and G (these are the inertia and gravity parameters, as discussed in chapter 4). The program could also be modified to include the other dimensionless parameters for further analysis, but this study was to be kept simple due to the time constraint of this thesis. Therefore, G was set to zero and S was the only parameter varied.

The inertia parameter S of equation (4.4) took on the values of 0.5, 0.66, 1.0, 5.0, 10.0, and 100.0. The particle deposition in the duct of figure 3.5 was studied. Deposition is defined as

$$Fraction of deposition = \frac{\text{total number of particles deposited on wall}}{\text{total number of particles entering duct}}$$

The total number of particles entering the duct was fixed at 100. The total number of particles deposited on the wall varied with each section number, as defined in chapter 4

and shown in figure 5.1. Sections 1-16 represent curved sections of the duct, while sections 17-21 are the vertical exit sections of the duct. The outer radius of the curved sections have an arc length of 0.393, which is almost equal to the length of each vertical exit section which has a length of 0.4. A graph of particle deposition in each section of the duct is shown in figure 5.2 at varied S. Appendix I shows the exact values of the particle deposition percentages for each value of S at the corresponding section numbers.

Note that the program "particlesout.?" was written in such a way that a particle could be semi-deposited. For example, in section 1, if only 3 particles were deposited, and the next particle was deposited in section 2, then interpolation was done to check the distance between the last particle deposited in section 1 and the first particle deposited in section 2. From this interpolation, instead of 3% of the total incoming particles being deposited in section 1, 3.432% could be deposited in this section. This technique makes for smoother curves, like the ones shown in figure 5.2.

The actual velocity distributions for each node from the 128 element mesh (figure 3.9) generated using the program FEM2DV2 is shown in appendix J. The node number, position, and velocity is shown for each of the 561 nodes of this nine nodes per element mesh. The boundary conditions for this flow were such that a fully developed parabolic flow in the u direction was coming in at the entrance while a fully developed parabolic flow in the v direction was leaving at the exit. As the flow enters the duct, v is zero; however, v increases in the downward direction as the flow moves through the duct. At the same time, u is not equal to zero at the entrance, but it decreases to zero by the time the flow exits the duct. This is illustrated using figure 5.3. In figure 5.3, the velocities at

Figure 5.1 Section numbers used for determining the particle deposition in the duct; these numbers correspond to the *x* axis of figure 5.2.

Figure 5.3 Node numbers and locations of the velocity distribution discussion throughout the duct.

several nodes are examined. These nodes are at the entrance (90 degrees), at 57.3 degrees, 24.6 degrees, 0 degrees, 0.8 units above the exit, and at the exit. The velocity is examined along lines which are at a constant distance from the bottom wall of the duct, namely at 25%, 50%, and 75% away from the bottom wall of the duct, as shown in figure 5.3. The actual velocities at these nodes is shown in table 5.1.

Node #	и	v	Node #	и	ν	Node #	u	v
(25%)	namilia a su Malance di Successo di Successo		(50%)			(75%)		
133	1.125	0.000	265	1.500	0.000	397	1.125	0.000
141	1.043	-0.682	273	1.241	-0.812	405	0.848	-0.551
149	0.520	-1.144	281	0.615	-1.348	413	0.417	-0.912
155	0.089	-1.180	287	0.119	-1.489	419	0.066	-1.065
161	-0.002	-1.121	293	-0.001	-1.498	425	0.001	-1.125
165	0.000	-1.125	297	0.000	-1.500	429	0.000	-1.125

 Table 5.1
 Velocity Distributions at Selected Locations from Figure 5.3

As can be seen in table 5.1, the velocity in the u direction is at its greatest value at the entrance nodes (133, 265, and 397). As the flow moves through the duct, this velocity decreases to zero, since the boundary conditions were set such that u was zero at the exit section of the duct. The values of v, on the other hand, are zero at the entrance (due to the boundary conditions) and they increase steadily in the downward direction until they are at a maximum value at the exit section (nodes 165, 297, and 429). At a distance 75% away from the bottom wall (nodes 397, 405, 413, 419, 425, and 429), the value of u decreases to zero more rapidly than for the distance 25% from the bottom wall (nodes 133, 141, 149, 155, 161, and 165). This is because the actual distance at the 75% position

from node to node is greater than the distance from node to node for the 25% position. The values of v at the 75% position increased in the downward direction a little more slowly than the values of v at the 25% position. The velocity distributions are shown graphically in figure 5.3 at A, B, C, and F. The velocity enters as parabolic, varies, and then exits as parabolic.

5.2 Discussion of Particle Deposition

To get some perspective of what the inertia parameter S physically represents, a magnitude analysis can be done. The inertia parameter was defined as

$$S = \frac{mu_0}{h_0(6\pi\mu a)} \tag{5.1}$$

in equation (4.4). Consider an air flow coming into the entrance of the duct (figure 3.5) which is fully developed; the pressure is 1 atm, the temperature is 80° F, and the position of one particle is at 0.2 ft from the bottom wall of the duct, with a specific gravity of 1.0. The dynamic viscosity at these conditions is equal to $3.85 \times 10^{-7} \frac{\text{lbf} \cdot \text{sec}}{\text{ft}^2}$ and the particle is spherical in shape. Therefore,

$$S = \frac{\left(\frac{4}{3}\pi a^3 \cdot 62.4 \frac{\text{lbm}}{\text{ft}^3}\right) \left(2 \frac{\text{ft}}{\text{sec}}\right)}{(0.2 \text{ ft})(6\pi) \left(3.85 \times 10^{-7} \frac{\text{lbf} \cdot \text{sec}}{\text{ft}^2}\right) (a) \left(32.2 \frac{\text{lbm} \cdot \text{ft}}{\text{lbf} \cdot \text{sec}^2}\right)}$$

The radius a of the spherical particle is in ft. Canceling all of the units and solving for a,

$$a = \sqrt{\frac{S}{11185501.87}}$$

The radius of the spherical particle can be computed using S values of 0.01, 0.1, 1.0, 10.0, and 100.0 ($a \propto \sqrt{S}$). This is shown in table 5.2.

Inertia Parameter, S	Particle Radius, a (ft)	Particle Radius, $a (\mu m)$
0.01	2.99×10^{-5}	9.11
0.1	9.46×10^{-5}	28.83
1.0	2.99×10^{-4}	91.14
10.0	9.46×10^{-4}	288.34
100.0	2.99×10^{-3}	911.35

 Table 5.2 Typical Radius of a Spherical Particle at Varying Inertia Parameter Values

This example shows how a typical particle's radius would affect the inertia parameter at a given set of conditions.

As can be seen in figure 5.2, particle deposition is very low when the inertia parameter is below 0.5. At S=0.5, there were only a total of 9.846% of the particles being deposited. Most of these particles were deposited after section 15, just above the area in which the circular duct meets the vertical exit section. Below S=0.5, almost no particles were deposited. As *S* was increased to 0.66, the curve was similar to 0.5, until section 15. At section 15, there were much more particles being deposited at this inertia parameter. A total of almost 49 particles were deposited at the same critical section, where the curved duct meets the straight vertical exit section. Half of the particles that entered the duct were deposited with S=0.66. For flows with an inertia parameter below 1.0, maximum deposition occurred at section 16, between the curved and straight parts of the duct. This is the part of the duct which would most likely be eroded if the particles were corrosive to the duct's material, as would be the case in a flow which carried contaminants, like in exhaust pipes (this 90 degree duct bend simulates a pipe in two dimensions).

As S was increased to 1.0, there was much more particle deposition between sections 5 and 15 than there was for the lower values of S which were examined. In fact, by section 16, about 76% of the particles had already been deposited for S=1.0. By the time the exit section was reached, 84% had been deposited.

The deposition became even greater when S took on the values of 5.0, 10.0, and 100.0. At these inertia parameters, the deposition was very intense even half way through the curved section of the duct. By the time the particles reached the 45 degree turn in the duct (section 8), more than half of all of the particles entering were deposited for each of these S values. At section 16, the point which was so critical for flows with inertia parameters below 1.0, more than 94% of the particles were deposited. This section had very little increased deposition and was not the critical section at S values greater than 1.0. For a flow through this type of duct with corrosive particulates, an inertia parameter of 5.0 or more would most likely erode the duct from sections 4-10 or so, or in the middle of the 90 degree turn. Anti-corrosive agents would most effectively be used in these sections, since they are the place in which the duct would most likely disintegrate first.

Particles with higher inertia parameters have the tendency to move straight, right into the circular wall of the duct. They are less affected by the changing direction of the fluid flow than the particles with smaller inertia parameters, which follow the flow more closely. The greater the inertia parameter, the more likely the particles will just flow straight through the duct and right into the top wall. Increased particle deposition is a direct result of increased S when the other parameters are not being considered.

CHAPTER 6

CONCLUSION

This thesis focused on the debugging and implementation of one-dimensional and twodimensional finite element analysis FORTRAN programs by J.N. Reddy. The programs were shown to be executable and accurate, as demonstrated by examples in chapter 3. These programs are available for the use of the students studying finite element analysis or for other students who would like to implement the finite element method for their theses. Using the 2-D program FEM2DV2, a fluid flow through a 90 degree two-dimensional duct bend was examined. This was a steady viscous incompressible fluid. The program FEM2DV2 was used to obtain the velocity distributions for this duct (figure 3.5). Given these velocity distributions at each of the 561 nodes used in the mesh, particle deposition analysis was performed. A 128 element mesh was used with 9 nodes per element. The inertia parameter was varied from 0.5 to 100.0. It was found that with an increased inertia parameter, overall particle deposition was increased in the duct. With the inertia parameter S equal to 5.0 or higher, almost 100% of the particles entering the duct were deposited by the time the flow exited the system. When the flow carries corrosive particulates, this type of deposition can corrode the duct and cause it to wear out. Anticorrosive agents should be spread throughout the duct in this type of flow, but extra protection should be applied at the point in which the 90 degree duct bend meets the exit vertical section when S is below 1.0; with S equal to 1.0, the duct should be evenly coated throughout, since particle deposition occurs uniformly throughout most of the duct: and

finally, extra protection should be placed throughout the 90 degree turn (especially in the middle of it) when S is above 1.0.

The particle deposition analysis of this thesis did not consider the other parameters such as the charge force Q and the gravitational force G. This analysis was not performed because this was a two-part thesis; the first part concentrated on the debugging and implementation of finite element FORTRAN programs, while the second part showed a specific example of the finite element implementation. As the inertia parameter is increased, the gravitational parameter G would probably affect the deposition of particles more, since heavier particles would tend to move downward. The variation of the parameter G along with S should be considered in further studies of this type of duct.

CHAPTER 7

RECOMMENDATIONS

The finite element analysis programs FEM1DV2 and FEM2DV2 can be used by other students who are doing theses and need a good finite element method source code. The programs can do more than fluid flow analysis as was done in this thesis: the applications of each program is discussed in chapter 3.

Particle deposition analysis on a 90 degree duct bend (as shown in figure 3.5) can also be further analyzed by considering the dimensionless parameters G and Q, varied separately or along with the parameter S. More trials could be run and further analysis done, since the source code for the finite element method is now readily available. Other types of ducts or walls could be studied as well, like converging planes or straight ducts, etc., using similar techniques developed in this thesis.

APPENDIX A

EXAMPLE INPUT FILE TO FEMIDV2

Example	7.1:	Steady hea conditions		fer in a	fin (Set	l boundary
1	0	0				
1	4					
1	1					
	0.0	0.0625	0.0625	0.0625	0.0625	
	1.0	0.0				
	0.0	0.0				
2	56.0	0.0				
	0.0	0.0	0.0			
	1					
	1	1	100.0			
	0					
	0					

*** ECHO OF THE INPUT DATA STARTS ***

Example 7.1: Steady heat transfer in a fin (Set 1 boundary conditions) 1 0 0 1 4 1 1 0.0 0.0625 0.0625 0.0625 0.0625 1.0 0.0 0.0 0.0 256.0 0.0 0.0 0.0 0.0 1 1 1 100.0 0 0 **** ECHO OF THE INPUT DATA ENDS **** OUTPUT FROM PROGRAM FEM1DV2 BY J.N. REDDY EDITED BY P. LOIACONO (SEPTEMBER 1995) Example 7.1: Steady heat transfer in a fin (Set 1 boundary conditions) *** ANALYSIS OF MODEL 1, AND TYPE 0 PROBLEM *** (see the code below) MODEL=1,NTYPE=0: A problem described by MODEL EQ. 1 MODEL=1,NTYPE=1: A circular DISK (PLANE STRESS) MODEL=1, NTYPE>1: A circular DISK (PLANE STRAIN) MODEL=2,NTYPE=0: A Timoshenko BEAM (RIE) problem MODEL=2,NTYPE=1: A Timoshenko PLATE (RIE) problem MODEL=2, NTYPE=2: A Timoshenko BEAM (CIE) problem MODEL=2, NTYPE>2: A Timoshenko PLATE (CIE) problem MODEL=3,NTYPE=0: A Euler-Bernoulli BEAM problem MODEL=3,NTYPE>0: A Euler-Bernoulli Circular plate MODEL=4,NTYPE=0: A plane TRUSS problem MODEL=4,NTYPE=1: A Euler-Bernoulli FRAME problem MODEL=4, NTYPE=2: A Timoshenko (CIE) FRAME problem Element type (0, Hermite, >0, Lagrange) .. = 1 No. of deg. of freedom per node, NDF..... = 1 No. of elements in the mesh, NEM.....= 4 No. of total DOF in the model, NEQ.....= 5 No. of specified primary DOF, NSPV.....= 1 No. of specified secondary DOF, NSSV.....= 0 No. of specified Newton B. C. : NNBC = 0

Boundary information on primary variables:

1 1 .10000E+03 Global coordinates of the nodes, {GLX}: .00000E+00 .62500E-01 .12500E+00 .18750E+00 .25000E+00 Coefficients of the differential equation: AX0 = .1000E+01 BX0 = .0000E+00 AX1 = .0000E+00 BX1 = .0000E+00 CX1 = .0000E+00 FX1 = .0000E+00 FX2 = .0000E+00 CX0 = .2560E+03FX0 = .0000E+00Element coefficient matrix, [ELK]: .21333E+02 -.13333E+02 -.13333E+02 .21333E+02 Element source vector, {ELF}: .00000E+00 .00000E+00 SOLUTION (values of PVs) at the NODES: .10000E+03 .35158E+02 .12504E+02 .48560E+01 .30350E+01 D Variable S Variable v

Х	P. Variable	S. Variable	
.00000E+00 .78125E-02		10375E+04 10375E+04	
.15625E-01 .23438E-01 .31250E-01 .39063E-01	.75684E+02 .67579E+02	10375E+04 10375E+04 10375E+04 10375E+04	
.46875E-01 .54688E-01 .62500E-01	.51368E+02 .43263E+02	10375E+04 10375E+04 10375E+04 10375E+04	
.62500E-01 .70313E-01	.35158E+02 .32326E+02	36245E+03 36245E+03 36245E+03	
.93750E-01 .10156E+00	.23831E+02 .20999E+02	36245E+03	
.10938E+00 .11719E+00 .12500E+00		36245E+03 36245E+03 36245E+03	
.12500E+00 .13281E+00 .14063E+00	.11548E+02	12237E+03 12237E+03 12237E+03	

.14844E+00	.96362E+01	12237E+03
.15625E+00	.86801E+01	12237E+03
.16406E+00	.77241E+01	12237E+03
.17188E+00	.67681E+01	12237E+03
.17969E+00	.58120E+01	12237E+03
.18750E+00	.48560E+01	12237E+03
.18750E+00	.48560E+01	29136E+02
.19531E+00	.46284E+01	29136E+02
.20313E+00	.44008E+01	29136E+02
.21094E+00	.41731E+01	29136E+02
.21875E+00	.39455E+01	29136E+02
.22656E+00	.37179E+01	29136E+02
.23438E+00	.34903E+01	29136E+02
.24219E+00	.32626E+01	29136E+02
.25000E+00	.30350E+01	29136E+02

APPENDIX B

EXAMPLE OUTPUT FILE FROM FEM2DV2

*** EC	CHO OF TH	E INPUT D	ATA ST.	ARTS *	* *			
Exampl	.e 11.5:	Transien plates	t anal	ysis o	f fluid	d sque	ezed be	etween
1 1	1 9	1 1	0 0					
6 0.0 0.0	4 1.0 0.5			1.0 0.5	1	. 0	1.0	
10 2 92 1 109 2	11 2 1 105 1 10 110 1 11	2 2 3 2 2 2 13 2 5 2 106 1 0 2 111 1 5 2 116 1	14 1 106 2 111 2	27 1 107 1 112 1	40 1 107 2 112 2	53 1 108 1		92 791 1091 1141
-1.0	0.0 0.0 0.0 -1 0.0 -1 0.0 -1	.0 0.0 .0 0.0 .0 0.0	0.0 0.0 -1.0 -1.0 -1.0	0.0	0.0 0.0 -1.0 -1.0 -1.0	0.0	0.0 0.0 -1.0 -1.0	0.0
0								
1.0	1.0E8							
0.0 1.0 20 0.1	0.0 0.0 50 0.5	0.0 0.0 1 0.25	0 1.0D-3	3				
**** <u>F</u>	ECHO OF T	HE INPUT	DATA EI	NDS **;	* *			
Exampl	e 11.5:	Transien plates	t anal	ysis of	f fluid	d squee	ezed be	tween
		M PROGRAM Pantaleo					EDDY r 1995	

A VISCOUS INCOMPRESSIBLE FLOW IS ANALYZED

PARAMETERS OF THE FLUID FLOW PROBLEM: Viscosity of the fluid, AMU.....= 0.1000E+1 Penalty parameter, PENLTY.... = 0.1000E+9

CONTINUOUS SOURCE COEFFICIENTS:

Coefficient,	FO	 0.0000E+0
Coefficient,	FΥ	 0.0000E+0

****** A TRANSIENT PROBLEM is analyzed *******

PARAMETERS OF THE DYNAMIC ANALYSIS:

*** A mesh of QUADRILATERALS is chosen by user ***

FINITE ELEMENT MESH INFORMATION:

Element type: (0 = Triangle; >0 = Quad.) = 1 Number of nodes per element, NPE = 9 No. of primary deg. of freedom/node, NDF= 2 Number of elements in the mesh, NEM = 24 Number of nodes in the mesh, NNM = 117 Number of equations to be solved, NEQ ... = 234 Half bandwidth of the matrix GLK, NHBW .= 58 Mesh subdivisions, NX and NY = 6 4

No. of specified PRIMARY variables, NSPV = 47

Node	x-coord.	y-coord.	var	÷	>0, sp	econdary Decified; Decified) DOF	
1 2 3 4 5 6 7	0.0000E+0 0.5000E+0 0.1000E+1 0.1500E+1 0.2000E+1 0.2500E+1 0.3000E+1	0.0000E+0 0.0000E+0 0.0000E+0 0.0000E+0 0.0000E+0 0.0000E+0 0.0000E+0	1 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0	0 0 0 0 0 0 0	

8 9 112 13 145 178 9012 234 2567 89012 334 567 89012 234 412 222 222 222 233 334 567 8901 234 42	0.3500E+1 0.4000E+1 0.4500E+1 0.5000E+1 0.5500E+1 0.6000E+1 0.6000E+1 0.1000E+1 0.1000E+1 0.2000E+1 0.2500E+1 0.3500E+1 0.3500E+1 0.4000E+1 0.4500E+1 0.5500E+1 0.5500E+1 0.5500E+1 0.5000E+1 0.1000E+1 0.2000E+1 0.2000E+1 0.2000E+1 0.2000E+1 0.2000E+1 0.2000E+1 0.2500E+1 0.2500E+1 0.3500E+1 0.3500E+1 0.3500E+1 0.3500E+1 0.3500E+1 0.3500E+1 0.3500E+1 0.5500E+1	0.0000E+0 0.0000E+0 0.0000E+0 0.0000E+0 0.0000E+0 0.2500E+0 0.2500E+0 0.2500E+0 0.2500E+0 0.2500E+0 0.2500E+0 0.2500E+0 0.2500E+0 0.2500E+0 0.2500E+0 0.2500E+0 0.2500E+0 0.2500E+0 0.2500E+0 0.5000E+0				
	0.5000E+0		0	0	0	0
			-			
32	0.2500E+1	0.5000E+0	-			
			-			
42 43		0.7500E+0 0.7500E+0	0	0	0 0	0 Ø
44	0.2000E+1	0.7500E+0	0	Õ	0	Õ
45	0.2500E+1	0.7500E+0	0	0	0	0
46 47	0.3000E+1 0.3500E+1	0.7500E+0 0.7500E+0	0 0	0 0	0 0	0 0
48	0.4000E+1	0.7500E+0	Õ	Ő	Õ	Õ
49	0.4500E+1	0.7500E+0	0	0	0	0
50 51	0.5000E+1 0.5500E+1	0.7500E+0 0.7500E+0	0 0	0 0	0 0	0 0
52	0.6000E+1	0.7500E+0	0	0	0	0
53 54	0.0000E+0 0.5000E+0	0.1000E+1 0.1000E+1	1 0	0 0	0 0	0 0
54	0.1000E+0	0.1000E+1	0	0 0	Ö	0
56	0.1500E+1	0.1000E+1	0	0	0	0
57 58	0.2000E+1 0.2500E+1	0.1000E+1 0.1000E+1	0 0	0 0	0 0	0 0
58 59	0.3000E+1	0.1000E+1	Ö	o	0	o
60	0.3500E+1	0.1000E+1	0	0	0	0

61 62 64 66 66 66 66 77 77 77 77 77 77 77 77 77	0.4000E+1 0.5000E+1 0.5500E+1 0.6000E+1 0.0000E+0 0.5000E+0 0.1000E+1 0.2500E+1 0.2500E+1 0.3500E+1 0.4000E+1 0.4500E+1 0.5500E+1 0.5500E+1 0.5500E+1 0.5500E+1 0.5500E+1 0.5500E+1 0.5500E+1 0.2500E+1 0.2500E+1 0.2500E+1 0.2500E+1 0.2500E+1 0.2500E+1 0.3500E+1 0.3500E+1 0.3500E+1 0.4000E+1 0.5500E+1 0.2500E+1 0.2500E+1 0.3500E+1 0.5	0.1000E+1 0.1000E+1 0.1000E+1 0.1250E+1 0.1250E+1 0.1250E+1 0.1250E+1 0.1250E+1 0.1250E+1 0.1250E+1 0.1250E+1 0.1250E+1 0.1250E+1 0.1250E+1 0.1250E+1 0.1250E+1 0.1250E+1 0.1250E+1 0.1250E+1 0.1500E+1 0.1750E+1	000010000000000000000000000000000000000	$\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$		
112 113	0.3500E+1 0.4000E+1	0.2000E+1 0.2000E+1	1 1	2 2	0	0

114 (0.4500E+1	0.2000E+1	1	2	0	0
115 (0.5000E+1	0.2000E+1	1	2	0	0
116 (0.5500E+1	0.2000E+1	1	2	0	0
117 (0.6000E+1	0.2000E+1	l	2	0	0

NUMERICAL INTEGRATION DATA:

Full quadrature (IPDF x IPDF) rule, IPDF= 3 Reduced quadrature (IPDR x IPDR), IPDR= 2 Quadrature rule used in postproc., ISTR= 2

TIME = 0.14000E+1 Time Step Number = 14

SOLUTION:

1 0.00000E+0 0.00000E+0 0.00000E+0 0.00000E+0 2 0.50000E+0 0.00000E+0 0.37519E+0 0.00000E+0 3 0.10000E+1 0.00000E+0 0.74860E+0 0.00000E+0 4 0.15000E+1 0.00000E+0 0.11257E+1 0.00000E+0 5 0.20000E+1 0.00000E+0 0.14979E+1 0.00000E+0 6 0.25000E+1 0.00000E+0 0.18774E+1 0.00000E+0 7 0.30000E+1 0.00000E+0 0.26375E+1 0.00000E+0 8 0.35000E+1 0.00000E+0 0.34251E+1 0.00000E+0 9 0.40000E+1 0.00000E+0 0.38103E+1 0.00000E+0 10 0.45000E+1 0.00000E+0 0.38103E+1 0.00000E+0 12 0.55000E+1 0.00000E+0 0.41330E+1 0.00000E+0 13 0.60000E+1 0.25000E+0 0.42203E+1 0.00000E+0 14 0.00000E+0 0.25000E+0 0.42203E+1 0.00000E+0	Node	x-coord.	y-coord.	Value of u	Value of v
2 0.50000E+0 0.00000E+0 0.37519E+0 0.00000E+0 3 0.10000E+1 0.00000E+0 0.74860E+0 0.00000E+0 4 0.15000E+1 0.00000E+0 0.11257E+1 0.00000E+0 5 0.20000E+1 0.00000E+0 0.14979E+1 0.00000E+0 6 0.25000E+1 0.00000E+0 0.18774E+1 0.00000E+0 7 0.30000E+1 0.00000E+0 0.26375E+1 0.00000E+0 8 0.35000E+1 0.00000E+0 0.34251E+1 0.00000E+0 9 0.40000E+1 0.00000E+0 0.34251E+1 0.00000E+0 10 0.45000E+1 0.00000E+0 0.38103E+1 0.00000E+0 11 0.5000E+1 0.00000E+0 0.38103E+1 0.00000E+0 12 0.55000E+1 0.00000E+0 0.41330E+1 0.00000E+0 13 0.60000E+1 0.25000E+0 0.42203E+1 0.00000E+0 14 0.00000E+0 0.25000E+0 0.00000E+0 -0.18605E+0	1	0.00000E+0	0.00000E+0	0.00000E+0	0.00000E+0
3 0.10000E+1 0.00000E+0 0.74860E+0 0.00000E+0 4 0.15000E+1 0.00000E+0 0.11257E+1 0.00000E+0 5 0.20000E+1 0.00000E+0 0.14979E+1 0.00000E+0 6 0.25000E+1 0.00000E+0 0.18774E+1 0.00000E+0 7 0.30000E+1 0.00000E+0 0.22512E+1 0.00000E+0 8 0.35000E+1 0.00000E+0 0.26375E+1 0.00000E+0 9 0.40000E+1 0.00000E+0 0.30221E+1 0.00000E+0 10 0.45000E+1 0.00000E+0 0.34251E+1 0.00000E+0 11 0.50000E+1 0.00000E+0 0.38103E+1 0.00000E+0 12 0.55000E+1 0.00000E+0 0.41330E+1 0.00000E+0 13 0.60000E+1 0.25000E+0 0.42203E+1 0.00000E+0 14 0.00000E+0 0.25000E+0 0.00000E+0 -0.18605E+0		0.50000E+0			
5 0.20000E+1 0.00000E+0 0.14979E+1 0.00000E+0 6 0.25000E+1 0.00000E+0 0.18774E+1 0.00000E+0 7 0.30000E+1 0.00000E+0 0.22512E+1 0.00000E+0 8 0.35000E+1 0.00000E+0 0.26375E+1 0.00000E+0 9 0.40000E+1 0.00000E+0 0.30221E+1 0.00000E+0 10 0.45000E+1 0.00000E+0 0.34251E+1 0.00000E+0 11 0.50000E+1 0.00000E+0 0.38103E+1 0.00000E+0 12 0.55000E+1 0.00000E+0 0.41330E+1 0.00000E+0 13 0.60000E+1 0.25000E+0 0.42203E+1 0.00000E+0 14 0.00000E+0 0.25000E+0 0.18774E+1 0.100000E+0	3	0.10000E+1	0.00000E+0	0.74860E+0	0.00000E+0
60.25000E+10.00000E+00.18774E+10.00000E+070.30000E+10.00000E+00.22512E+10.00000E+080.35000E+10.00000E+00.26375E+10.00000E+090.40000E+10.00000E+00.30221E+10.00000E+0100.45000E+10.00000E+00.34251E+10.00000E+0110.50000E+10.00000E+00.38103E+10.00000E+0120.55000E+10.00000E+00.41330E+10.00000E+0130.60000E+10.00000E+00.42203E+10.00000E+0140.00000E+00.25000E+00.00000E+0-0.18605E+0	4	0.15000E+1	0.00000E+0	0.11257E+1	0.00000E+0
70.30000E+10.00000E+00.22512E+10.00000E+080.35000E+10.00000E+00.26375E+10.00000E+090.40000E+10.00000E+00.30221E+10.00000E+0100.45000E+10.00000E+00.34251E+10.00000E+0110.50000E+10.00000E+00.38103E+10.00000E+0120.55000E+10.00000E+00.41330E+10.00000E+0130.60000E+10.00000E+00.42203E+10.00000E+0140.00000E+00.25000E+00.00000E+0-0.18605E+0	5	0.20000E+1	0.00000E+0	0.14979E+1	0.00000E+0
8 0.35000E+1 0.00000E+0 0.26375E+1 0.00000E+0 9 0.40000E+1 0.00000E+0 0.30221E+1 0.00000E+0 10 0.45000E+1 0.00000E+0 0.34251E+1 0.00000E+0 11 0.50000E+1 0.00000E+0 0.38103E+1 0.00000E+0 12 0.55000E+1 0.00000E+0 0.41330E+1 0.00000E+0 13 0.60000E+1 0.00000E+0 0.42203E+1 0.00000E+0 14 0.00000E+0 0.25000E+0 0.00000E+0 -0.18605E+0	6	0.25000E+1	0.0000E+0	0.18774E+1	0.00000E+0
90.40000E+10.00000E+00.30221E+10.00000E+0100.45000E+10.00000E+00.34251E+10.00000E+0110.50000E+10.00000E+00.38103E+10.00000E+0120.55000E+10.00000E+00.41330E+10.00000E+0130.60000E+10.00000E+00.42203E+10.00000E+0140.00000E+00.25000E+00.00000E+0-0.18605E+0		0.30000E+1	0.0000E+0	0.22512E+1	0.00000E+0
100.45000E+10.00000E+00.34251E+10.00000E+0110.50000E+10.00000E+00.38103E+10.00000E+0120.55000E+10.00000E+00.41330E+10.00000E+0130.60000E+10.00000E+00.42203E+10.00000E+0140.00000E+00.25000E+00.00000E+0-0.18605E+0		0.35000E+1	0.0000E+0	0.26375E+1	0.00000E+0
110.50000E+10.00000E+00.38103E+10.00000E+0120.55000E+10.00000E+00.41330E+10.00000E+0130.60000E+10.00000E+00.42203E+10.00000E+0140.00000E+00.25000E+00.00000E+0-0.18605E+0					
120.55000E+10.00000E+00.41330E+10.00000E+0130.60000E+10.00000E+00.42203E+10.00000E+0140.00000E+00.25000E+00.00000E+0-0.18605E+0					
130.60000E+10.00000E+00.42203E+10.00000E+0140.00000E+00.25000E+00.00000E+0-0.18605E+0					
14 0.00000E+0 0.25000E+0 0.00000E+0 -0.18605E+0					
15 0.50000E+0 0.25000E+0 0.36887E+0 -0.18667E+0					
16 0.10000E+1 0.25000E+0 0.73868E+0 -0.18611E+0		-			
17 0.15000E+1 0.25000E+0 0.11068E+1 -0.18674E+0					
18 0.20000E+1 0.25000E+0 0.14777E+1 -0.18649E+0					
19 0.25000E+1 0.25000E+0 0.18460E+1 -0.18746E+0					
20 0.30000E+1 0.25000E+0 0.22197E+1 -0.18851E+0					
21 0.35000E+1 0.25000E+0 0.25929E+1 -0.19132E+0					
22 0.40000E+1 0.25000E+0 0.29766E+1 -0.19546E+0					
23 0.45000E+1 0.25000E+0 0.33658E+1 -0.19827E+0					
24 0.50000E+1 0.25000E+0 0.37507E+1 -0.18623E+0 25 0.55000E+1 0.25000E+0 0.40709E+1 -0.11874E+0					
26 0.60000E+1 0.25000E+0 0.41706E+1 0.40836E-1 27 0.00000E+0 0.50000E+0 0.00000E+0 -0.36881E+0					
28 0.50000E+0 0.50000E+0 0.35190E+0 -0.36623E+0					
29 0.10000E+1 0.50000E+0 0.35150E+0 -0.36876E+0					
30 0.15000E+1 0.50000E+0 0.10558E+1 -0.36650E+0					

31	0.20000E+1	0.50000E+0	0.14038E+1	-0.36893E+0
32	0.25000E+1	0.50000E+0	0.17603E+1	-0.36813E+0
33	0.30000E+1	0.50000E+0	0.21082E+1	-0.37150E+0
34	0.35000E+1	0.50000E+0	0.24696E+1	-0.37574E+0
35	0.40000E+1	0.50000E+0	0.28236E+1	-0.38251E+0
36	0.45000E+1	0.50000E+0	0.31979E+1	-0.39025E+0
37	0.50000E+1	0.50000E+0	0.35592E+1	-0.36653E+0
38	0.55000E+1	0.50000E+0	0.38904E+1	-0.24484E+0
39	0.60000E+1	0.50000E+0	0.40057E+1	0.77788E-1
40	0.00000E+0	0.75000E+0	0.00000E+0	-0.53464E+0
41	0.50000E+0	0.75000E+0	0.32200E+0	-0.53669E+0
42	0.10000E+1	0.75000E+0	0.64523E+0	-0.53474E+0
43	0.15000E+1	0.75000E+0	0.96600E+0	-0.53684E+0
44	0.20000E+1	0.75000E+0	0.12905E+1	-0.53556E+0
45	0.25000E+1	0.75000E+0	0.16101E+1	-0.53833E+0
46	0.30000E+1	0.75000E+0	0.19361E+1	-0.54004E+0
47	0.35000E+1	0.75000E+0	0.22558E+1	-0.54681E+0
48	0.40000E+1	0.75000E+0	0.25848E+1	-0.55614E+0
49	0.45000E+1	0.75000E+0	0.29101E+1	-0.56561E+0
50	0.50000E+1	0.75000E+0	0.32491E+1	-0.54544E+0
51	0.55000E+1	0.75000E+0	0.35756E+1	-0.37743E+0
52	0.60000E+1	0.75000E+0	0.37397E+1	0.85478E-1
53	0.00000E+0	0.10000E+1	0.00000E+0	-0.69118E+0
54	0.50000E+0	0.10000E+1	0.28189E+0	-0.68550E+0
55	0.10000E+1	0.10000E+1	0.56121E+0	-0.69121E+0
56	0.15000E+1	0.10000E+1	0.84570E+0	-0.68570E+0
57	0.20000E+1	0.10000E+1	0.11219E+1	
58	0.25000E+1	0.10000E+1	0.14093E+1	-0.69155E+0 -0.68747E+0
59	0.30000E+1	0.10000E+1	0.16809E+1	-0.69438E+0
60	0.35000E+1	0.10000E+1	0.19707E+1	-0.69705E+0
61	0.40000E+1	0.10000E+1	0.22361E+1	-0.70709E+0
62	0.45000E+1	0.10000E+1	0.25263E+1	-0.72037E+0
63	0.50000E+1	0.10000E+1	0.27972E+1	-0.69857E+0
64	0.55000E+1	0.10000E+1	0.31387E+1	-0.53162E+0
65	0.60000E+1	0.10000E+1	0.33420E+1	0.80067E-1
66	0.00000E+0	0.12500E+1	0.00000E+0	-0.81275E+0
67	0.50000E+0	0.12500E+1	0.22827E+0	-0.81665E+0
68	0.10000E+1	0.12500E+1	0.45783E+0	-0.81271E+0
69	0.15000E+1	0.12500E+1	0.68465E+0	-0.81685E+0
70	0.20000E+1	0.12500E+1	0.91570E+0	-0.81296E+0
71	0.25000E+1	0.12500E+1	0.11399E+1	-0.81813E+0
72	0.30000E+1	0.12500E+1	0.13722E+1	-0.81594E+0
73	0.35000E+1	0.12500E+1	0.15892E+1	-0.82484E+0
74	0.40000E+1	0.12500E+1	0.18191E+1	-0.83050E+0
75	0.45000E+1	0.12500E+1	0.20212E+1	-0.84115E+0
76	0.50000E+1	0.12500E+1	0.22443E+1	-0.83655E+0
77	0.55000E+1	0.12500E+1	0.25342E+1	-0.69077E+0
78	0.60000E+1	0.12500E+1	0.28490E+1	-0.13515E-1
79	0.00000E+0	0.15000E+1	0.0000E+0	-0.91938E+0
80 81	0.50000E+0	0.15000E+1	0.16466E+0 0.32752E+0	-0.91134E+0
82	0.10000E+1 0.15000E+1	0.15000E+1 0.15000E+1	0.49401E+0	-0.91967E+0 -0.91113E+0

85 0.3 86 0.3 87 0.4 88 0.4 89 0.5 91 0.6 92 0.6 93 0.5 94 0.5 95 0.5 96 0.2 97 0.2 98 0.3 99 0.3 100 0.4 101 0.4 102 0.5 103 0.5 104 0.6 105 0.6 106 0.5 107 0.3 108 0.3 109 0.2 110 0.3 112 0.3 113 0.4 114 0.4 115 0.5 116 0.5	25000E+1 30000E+1 30000E+1 50000E+1 50000E+1 50000E+1 50000E+1 50000E+1 20000E+1 20000E+1 20000E+1 20000E+1 30000E+1 30000E+1 50000E	0.15000E+1 0.15000E+1 0.15000E+1 0.15000E+1 0.15000E+1 0.15000E+1 0.15000E+1 0.17500E+1 0.17500E+1 0.17500E+1 0.17500E+1 0.17500E+1 0.17500E+1 0.17500E+1 0.17500E+1 0.17500E+1 0.17500E+1 0.17500E+1 0.17500E+1 0.17500E+1 0.17500E+1 0.17500E+1 0.17500E+1 0.17500E+1 0.20000E+1 0.20000E+1 0.20000E+1 0.20000E+1 0.20000E+1 0.20000E+1 0.20000E+1 0.20000E+1 0.20000E+1 0.20000E+1 0.20000E+1 0.20000E+1 0.20000E+1 0.20000E+1 0.20000E+1 0.20000E+1 0.20000E+1	0.8229 0.9762 0.1147 0.1278 0.1278 0.1455 0.1529 0.1816 0.2145 0.0000 0.8784 0.1759 0.2634 0.3517 0.4384 0.5265 0.6088 0.6951 0.7570 0.8603 0.8633 0.8633 0.1439 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<pre>0.91112E+0 0.92406E+0 0.91389E+0 0.93227E+0 0.92510E+0 0.92510E+0 0.91125E+0 0.87243E+0 0.97286E+0 0.97286E+0 0.97256E+0 0.97256E+0 0.98022E+0 0.98116E+0 0.98116E+0 0.96320E+0 0.96320E+0 0.96320E+0 0.96320E+0 0.99399E+0 0.99399E+0 0.99399E+0 0.99399E+0 0.92708E+0 0.10056E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1</pre>
x-coord.	y-coord.	sigma-x	sigma-y	sigma-	-xy pressure
0.211E+0 0.211E+0 0.788E+0 0.788E+0 0.121E+1 0.121E+1 0.178E+1 0.178E+1 0.221E+1 0.221E+1 0.221E+1 0.278E+1 0.278E+1	0.105E+0 0.394E+0 0.105E+0 0.394E+0 0.105E+0 0.394E+0 0.105E+0 0.394E+0 0.105E+0 0.394E+0 0.394E+0 0.394E+0 0.105E+0 0.394E+0	0.173E+3 0.173E+3 0.170E+3 0.170E+3 0.165E+3 0.166E+3 0.157E+3 0.157E+3 0.157E+3 0.148E+3 0.149E+3 0.134E+3 0.135E+3	0.170E+3 0.170E+3 0.167E+3 0.167E+3 0.162E+3 0.163E+3 0.154E+3 0.155E+3 0.145E+3 0.145E+3 0.146E+3 0.131E+3 0.132E+3	-0.124 -0.266 -0.273 -0.120 -0.518 -0.518 -0.174 -0.680 -0.268 -0.268 -0.911 -0.324 -0.111 -0.420 -0.420 -0.420 -0.420 -0.420 -0.266 -0.266 -0.273 -0.120 -0.518 -0.518 -0.518 -0.174 -0.518 -0.268	E-1 -0.172E+3 E-1 -0.168E+3 E+0 -0.169E+3 E-1 -0.164E+3 E+0 -0.165E+3 E-1 -0.155E+3 E+0 -0.156E+3 E+0 -0.147E+3 E+0 -0.148E+3 E+0 -0.133E+3

0.321E+1 0.321E+1 0.378E+1 0.378E+1 0.421E+1 0.421E+1 0.478E+1 0.521E+1 0.521E+1 0.578E+1 0.578E+1 0.211E+0 0.211E+0 0.788E+0 0.788E+0 0.788E+0 0.788E+0 0.121E+1 0.178E+1 0.221E+1 0.221E+1 0.221E+1 0.221E+1 0.221E+1 0.221E+1 0.321E+1 0.321E+1 0.321E+1 0.321E+1 0.378E+1 0.321E+1 0.378E+1 0.378E+1 0.421E+1 0.421E+1 0.578E+1 0.57	0.105E+0 0.394E+0 0.105E+0 0.394E+0 0.105E+0 0.394E+0 0.105E+0 0.394E+0 0.105E+0 0.394E+0 0.105E+0 0.394E+0 0.605E+0 0.894E+0 0.100E+1 0.139E+1 0.139E+1 0.139E+1	$\begin{array}{c} 0.122E+3\\ 0.122E+3\\ 0.102E+3\\ 0.102E+3\\ 0.856E+2\\ 0.862E+2\\ 0.605E+2\\ 0.610E+2\\ 0.404E+2\\ 0.404E+2\\ 0.404E+2\\ 0.408E+2\\ 0.111E+2\\ 0.112E+2\\ 0.174E+3\\ 0.176E+3\\ 0.176E+3\\ 0.177E+3\\ 0.167E+3\\ 0.167E+3\\ 0.167E+3\\ 0.169E+3\\ 0.169E+3\\ 0.160E+3\\ 0.159E+3\\ 0.160E+3\\ 0.159E+3\\ 0.160E+3\\ 0.159E+3\\ 0.160E+3\\ 0.159E+3\\ 0.160E+3\\ 0.152E+3\\ 0.160E+3\\ 0.152E+3\\ 0.123E+3\\ 0.123E+3\\ 0.123E+3\\ 0.123E+3\\ 0.125E+3\\ 0.123E+3\\ 0.125E+3\\ 0.103E+3\\ 0.160E+2\\ 0.889E+2\\ 0.617E+2\\ 0.889E+2\\ 0.617E+2\\ 0.630E+2\\ 0.413E+3\\ 0.105E+3\\ 0.105E+3\\$	0.119E+3 0.991E+2 0.998E+2 0.824E+2 0.824E+2 0.574E+2 0.574E+2 0.574E+2 0.377E+2 0.381E+2 0.105E+2 0.105E+2 0.105E+2 0.105E+3 0.164E+3 0.167E+3 0.164E+3 0.167E+3 0.167E+3 0.167E+3 0.150E+3 0.150E+3 0.133E+3 0.120E+3 0.123E+3 0.123E+3 0.123E+3 0.123E+3 0.101E+3 0.101E+3 0.103E+2 0.841E+2 0.864E+2 0.864E+2 0.589E+2 0.605E+2 0.398E+2 0.398E+2 0.104E+2 0.103E+3 0.104E+3 0.104E+2 0.103E+3 0.104E+2 0.104E+2 0.103E+3 0.173E+3 0.173E+3 0.173E+3	-0.133E+0 -0.488E+0 -0.161E+0 -0.593E+0 -0.680E+0 -0.196E+0 -0.717E+0 -0.515E-1 -0.531E-1 -0.649E-1 -0.531E-1 -0.649E-1 -0.268E+0 -0.281E+0 -0.281E+0 -0.397E+0 -0.403E+0 -0.511E+0 -0.511E+0 -0.642E+0 -0.511E+0 -0.511E+0 -0.642E+0 -0.511E+0 -0.512E+0 -0.108E+1 -0.104E+1 -0.104E+1 -0.104E+1 -0.104E+1 -0.166E+1 -0.336E+0 -0.553E+0 -0.552E+0 -0.	$\begin{array}{c} -0.121E+3\\ -0.100E+3\\ -0.840E+2\\ -0.847E+2\\ -0.590E+2\\ -0.590E+2\\ -0.391E+2\\ -0.395E+2\\ -0.395E+2\\ -0.108E+2\\ -0.108E+2\\ -0.173E+3\\ -0.175E+3\\ -0.177E+3\\ -0.177E+3\\ -0.166E+3\\ -0.166E+3\\ -0.168E+3\\ -0.168E+3\\ -0.168E+3\\ -0.157E+3\\ -0.159E+3\\ -0.159E+3\\ -0.159E+3\\ -0.159E+3\\ -0.159E+3\\ -0.159E+3\\ -0.159E+3\\ -0.122E+3\\ -0.1$
0.211E+0 0.788E+0	0.139E+1 0.110E+1	0.181E+3 0.175E+3 0.178E+3	0.180E+3 0.173E+3 0.177E+3	-0.106E+0 -0.323E+0 -0.413E+0	-0.181E+3 -0.174E+3 -0.178E+3
0.121E+1	0.110E+1	0.171E+3	0.169E+3 0.173E+3 0.160E+3 0.164E+3 0.152E+3	-0.512E+0 -0.624E+0 -0.739E+0 -0.936E+0 -0.935E+0 -0.114E+1 -0.116E+1 -0.146E+1 -0.137E+1 -0.165E+1 -0.161E+1	-0.170E+3 -0.174E+3 -0.161E+3 -0.165E+3 -0.153E+3 -0.157E+3 -0.139E+3 -0.142E+3

*** THE SOLUTION HAS REACHED A STEADY STATE ***

APPENDIX C

OUTPUT FILE FROM FEM2DV2 FOR FIGURE 3.6 ANALYSIS

*** ECHO OF THE INPUT DATA STARTS ***

STEADY-STATE ANALYSIS OF A FLUID PASSING THROUGH A PIPE (24 ELEMENTS)

1 1	1 9	0 1	0 0				
6 0.0 0.0	4 1.0 0.25	1.0 0.25		1.0 1 0.25	0 1	. 0	
92 2 108 2	11 2 1 39 1 3 66 1 6 104 1 10 109 1 10	9 2 110 1	13 2 1 40 2 5 78 2 7 105 2 10	1 1 111 2	26 1 2 53 1 5 91 1 5 107 1 10 112 1 1	12 2 113 1	
	0.0 0. 0.0 0. 1.406 0. 1.0 0. 0.352 0. 0.0 0. 0.0 0.	0 1.5 0 1.0 0 0.914 0 1.0 0 0.0	0.0 1.0 0.0 1.1 0.0 1.0 0.0 0.0	0.0	1.477 0 1.0 0	.0 1.0 .0 1.125 .0 1.0 .0 0.0 .0 0.0	
0							
2.0 1.0E8							
0.0 0.0 0.0							
**** ECHO OF THE INPUT DATA ENDS ****							
STEADY-STATE ANALYSIS OF A FLUID PASSING THROUGH A PIPE (24 ELEMENTS)							
OUTPUT FROM PROGRAM *FEM2DV2* BY J. N. REDDY Edited by Pantaleo Loiacono14 September 1995							

A VISCOUS INCOMPRESSIBLE FLOW IS ANALYZED

PARAMETERS OF THE FLUID FLOW PROBLEM:

Viscosit	y of	the	fluid,	AMU.	 	=	0.2000E+1
Penalty	parar	netei	C, PENL	ΤΥ	 	=	0.1000E+9

CONTINUOUS SOURCE COEFFICIENTS:

Coefficient,	FO	 0.0000E+0
Coefficient,	FX	 0.0000E+0
Coefficient,	FY	 0.0000E+0

***** A STEADY-STATE PROBLEM is analyzed ****** *** A mesh of QUADRILATERALS is chosen by user *** FINITE ELEMENT MESH INFORMATION:

Element type: (0 = Triangle; >0 = Quad.) = 1 Number of nodes per element, NPE = 9 No. of primary deg. of freedom/node, NDF= 2 Number of elements in the mesh, NEM = 24 Number of nodes in the mesh, NNM = 117 Number of equations to be solved, NEQ ... = 234 Half bandwidth of the matrix GLK, NHBW .= 58

No. of specified PRIMARY variables, NSPV = 69

Mesh subdivisions, NX and NY= 6

Node	x-coord.	y-coord.	Speci. Primary	-	(0, u	ables nspecifie specifie	
		0.000000.0	-4	~~~~~~		<u> </u>	
Ţ	0.0000E+0	0.0000E+0	1 .	2	0	0	
2	0.5000E+0	0.0000E+0	0	2	0	0	
3	0.1000E+1	0.0000E+0	0	2	0	0	
4	0.1500E+1	0.0000E+0	0	2	0	0	
5	0.2000E+1	0.0000E+0	0	2	0	0	
6	0.2500E+1	0.0000E+0	0	2	0	0	
7	0.3000E+1	0.0000E+0	0	2	0	0	
8	0.3500E+1	0.0000E+0	0	2	0	0	
9	0.4000E+1	0.0000E+0	Õ	2	0	0	
10	0.4500E+1	0.0000E+0	õ	2	Õ	0	
11		0.0000E+0	Ő	2	0	0	
			_			÷	
12	0.5500E+1	0.0000E+0	0	2	0	0	
13	0.6000E+1	0.0000E+0	1	2	0	0	

4

117 0.6000E+1 0.1000E+1 1 2 0 0

NUMERICAL INTEGRATION DATA:

Full quadrature (IPDF x IPDF) rule, IPDF= 3 Reduced quadrature (IPDR x IPDR), IPDR= 2 Quadrature rule used in postproc., ISTR= 2

S	\cap	Τ.	TT	Т	Т	\cap	N	•	
9	\sim	- L. L	\circ	-	- <u>L</u> -	\sim	7.4	•	

Node	x-coord.	y-coord.	Value of u	Value of v
1	0.00000E+0	0.00000E+0	0.10000E+1	0.00000E+0
2	0.50000E+0	0.0000E+0	0.12004E+1	0.00000E+0
3	0.10000E+1	0.0000E+0	0.15414E+1	0.0000E+0
4	0.15000E+1	0.0000E+0	0.14732E+1	0.0000E+0
5 6	0.20000E+1 0.25000E+1	0.00000E+0 0.00000E+0	0.15642E+1	0.0000E+0
6 7	0.30000E+1	0.00000E+0	0.14658E+1	0.00000E+0
8	0.35000E+1	0.00000E+0	0.15679E+1	0.00000E+0
8 9	0.40000E+1	0.00000E+0	0.14661E+1	0.00000E+0
10	0.45000E+1	0.00000E+0	0.15667E+1 0.14674E+1	0.00000E+0
11	0.50000E+1	0.00000E+0	0.15577E+1	0.00000E+0 0.00000E+0
12	0.55000E+1	0.00000E+0	0.14750E+1	0.00000E+0
13	0.60000E+1	0.00000E+0	0.15000E+1	0.00000E+0
14	0.00000E+0	0.12500E+0	0.10000E+1	0.00000E+0
15	0.50000E+0	0.12500E+0	0.12341E+1	-0.86002E-1
16	0.10000E+1	0.12500E+0	0.14379E+1	-0.14560E-1
17	0.15000E+1	0.12500E+0	0.14984E+1	0.15727E-2
18	0.20000E+1	0.12500E+0	0.14410E+1	-0.47990E-3
19	0.25000E+1	0.12500E+0	0.14934E+1	-0.47030E-3
20	0.30000E+1	0.12500E+0	0.14428E+1	0.43855E-3
21	0.35000E+1	0.12500E+0	0.14934E+1	-0.15736E-3
22	0.40000E+1	0.12500E+0	0.14435E+1	0.19217E-3
23	0.45000E+1	0.12500E+0	0.14930E+1	-0.63317E-4
24	0.50000E+1	0.12500E+0	0.14480E+1	0.61027E-4
25	0.55000E+1	0.12500E+0	0.14893E+1	-0.33713E-4
26	0.60000E+1	0.12500E+0	0.14770E+1	0.0000E+0
27	0.0000E+0	0.25000E+0	0.10000E+1	0.0000E+0
28	0.50000E+0	0.25000E+0 0.25000E+0	0.11813E+1	-0.16747E+0
29 30	0.10000E+1 0.15000E+1	0.25000E+0	0.14727E+1 0.13767E+1	-0.21500E-1
31	0.2000E+1	0.25000E+0	0.14718E+1	0.35494E-2 -0.13147E-2
32	0.25000E+1	0.25000E+0	0.13725E+1	-0.59937E-3
33	0.30000E+1	0.25000E+0	0.14740E+1	0.46204E-3
34	0.35000E+1	0.25000E+0	0.13724E+1	-0.14802E-3
35	0.40000E+1	0.25000E+0	0.14727E+1	0.11147E-3
36	0.45000E+1	0.25000E+0	0.13737E+1	-0.20179E-4
37	0.50000E+1	0.25000E+0	0.14638E+1	-0.98815E-5
38	0.55000E+1	0.25000E+0	0.13813E+1	-0.31728E-4
39	0.60000E+1	0.25000E+0	0.14060E+1	0.00000E+0

670.50000E+00.62500E+00.10578E+1-0.32211E+0680.10000E+10.62500E+00.93428E+00.70441E-1690.15000E+10.62500E+00.91591E+0-0.32743E-2700.20000E+10.62500E+00.89323E+00.11633E-1710.25000E+10.62500E+00.92942E+0-0.31529E-2720.30000E+10.62500E+00.93035E+0-0.28988E-2740.40000E+10.62500E+00.88299E+00.45535E-2750.45000E+10.62500E+00.92912E+0-0.16223E-2760.50000E+10.62500E+00.92541E+00.17996E-4780.60000E+10.62500E+00.91400E+00.00000E+0790.00000E+00.75000E+00.10000E+10.00000E+0800.50000E+00.75000E+00.85692E+0-0.30418E+0	40 423 44567 890 123 4567 890 123 456 6666666666666666666666666666666666	0.00000E+0 0.50000E+0 0.10000E+1 0.15000E+1 0.20000E+1 0.25000E+1 0.35000E+1 0.40000E+1 0.45000E+1 0.45000E+1 0.55000E+1 0.55000E+1 0.55000E+1 0.15000E+1 0.25000E+1 0.25000E+1 0.35000E+1 0.35000E+1 0.35000E+1 0.45000E+1 0.45000E+1 0.45000E+1 0.55000E+1 0.55000E+1 0.55000E+1 0.55000E+1 0.55000E+1 0.55000E+1 0.55000E+1 0.55000E+1 0.55000E+1 0.55000E+1 0.60000E+0	0.37500E+0 0.37500E+0 0.37500E+0 0.37500E+0 0.37500E+0 0.37500E+0 0.37500E+0 0.37500E+0 0.37500E+0 0.37500E+0 0.37500E+0 0.37500E+0 0.37500E+0 0.37500E+0 0.375000E+0 0.50000E+0	0.10000E+1 0.11917E+1 0.12920E+1 0.13046E+1 0.12568E+1 0.12551E+1 0.12551E+1 0.12553E+1 0.12563E+1 0.12609E+1 0.12609E+1 0.12609E+1 0.12890E+1 0.12890E+1 0.12890E+1 0.12375E+1 0.12375E+1 0.10908E+1 0.11996E+1 0.11996E+1 0.11997E+1 0.119936E+1 0.11893E+1 0.11803E+1 0.11803E+1 0.11010E+1 0.11250E+1 0.10000E+1	0.00000E+0 -0.23941E+0 -0.12581E-1 0.50589E-2 -0.76586E-3 -0.11065E-2 0.17087E-2 -0.79862E-3 0.10787E-2 -0.34939E-3 0.27192E-3 0.27192E-3 0.34855E-4 0.00000E+0 -0.29411E+0 0.15528E-1 0.54450E-2 -0.99998E-3 0.23720E-3 -0.30013E-3 0.23720E-3 -0.43616E-3 0.22447E-3 -0.40217E-3 0.11055E-3 0.00000E+0 0.0000E+0 0.0000E+0 0.0000E+0 0.00000E+0
	70 71 72 73 74 75 76 77 78 79	0.20000E+1 0.25000E+1 0.30000E+1 0.35000E+1 0.40000E+1 0.45000E+1 0.55000E+1 0.55000E+1 0.60000E+1 0.00000E+0	0.62500E+0 0.62500E+0 0.62500E+0 0.62500E+0 0.62500E+0 0.62500E+0 0.62500E+0 0.62500E+0 0.62500E+0 0.62500E+0 0.75000E+0	0.89323E+0 0.92942E+0 0.88247E+0 0.93035E+0 0.88299E+0 0.92912E+0 0.88802E+0 0.92541E+0 0.91400E+0 0.10000E+1	0.11633E-1 -0.31529E-2 0.65700E-2 -0.28988E-2 0.45535E-2 -0.16223E-2 0.16360E-2 0.17996E-4 0.00000E+0 0.00000E+0

94 0. 95 0. 96 0. 97 0. 98 0. 99 0. 100 0. 101 0. 102 0. 103 0. 104 0. 105 0. 106 0. 107 0. 108 0. 109 0. 110 0. 111 0. 112 0. 113 0. 114 0. 115 0.	50000E+0 10000E+1 20000E+1 20000E+1 25000E+1 30000E+1 35000E+1 40000E+1 55000E+1 55000E+1 55000E+1 15000E+1 15000E+1 25000E+1 25000E+1 30000E+1 35000E+1 40000E+1 55000E+1 55000E+1 55000E+1 60000E+1	0.87500E+0 0.87500E+0 0.87500E+0 0.87500E+0 0.87500E+0 0.87500E+0 0.87500E+0 0.87500E+0 0.87500E+0 0.87500E+0 0.87500E+0 0.87500E+0 0.87500E+0 0.87500E+0 0.87500E+0 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1 0.10000E+1	0.6461 0.2213 0.3842 0.3060 0.3651 0.3309 0.3590 0.3590 0.3567 0.3429 0.3550 0.3520 0.3520 0.1000 0.0000	7E+0 9E+0 - 7E+0 6E+0 - 0E+0 4E+0 - 0E+0 7E+0 - 8E+0 2E+0 - 0E+0 0E	0.183 0.578 0.901 0.311 0.486 0.170 0.248 0.757 0.823 0.275 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	734E+0 326E+0 33E-1 138E-1 192E-1 518E-1 518E-1 779E-2 378E-2 563E-3 000E+0
x-coord.	y-coord.	sigma-x	sigma-y	sigma	-xy	pressure
0.211E+0 0.211E+0 0.788E+0 0.788E+0 0.121E+1 0.121E+1 0.178E+1 0.221E+1 0.221E+1 0.278E+1 0.278E+1 0.321E+1 0.321E+1 0.378E+1 0.378E+1 0.421E+1 0.421E+1 0.478E+1 0.521E+1	0.197E+0 0.528E-1 0.197E+0 0.528E-1 0.197E+0 0.528E-1 0.197E+0 0.528E-1 0.197E+0	0.137E+4 0.137E+4 0.137E+4 0.138E+4 0.138E+4 0.138E+4 0.138E+4 0.138E+4 0.138E+4 0.138E+4 0.138E+4 0.138E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.140E+4	0.137E+4 0.136E+4 0.137E+4 0.137E+4 0.137E+4 0.137E+4 0.138E+4 0.138E+4 0.138E+4 0.138E+4 0.138E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.139E+4 0.140E+4	0.229) -0.145) -0.107) -0.377) -0.121) -0.121) -0.300) -0.118) -0.317) -0.323) -0.117) -0.323) -0.118) -0.300] -0.118) -0.358] -0.1140 -0.2141 -0.128]	E+1 E+0 E+0 E+0 E+10	-0.137E+4 -0.137E+4 -0.137E+4 -0.138E+4 -0.138E+4 -0.138E+4 -0.138E+4 -0.138E+4 -0.138E+4 -0.138E+4 -0.138E+4 -0.138E+4 -0.139E+4 -0.139E+4 -0.139E+4 -0.139E+4 -0.139E+4 -0.139E+4 -0.139E+4 -0.139E+4 -0.139E+4 -0.139E+4 -0.139E+4 -0.139E+4 -0.139E+4 -0.139E+4 -0.140E+4

0.521E+1	0.197E+0	0.139E+4	0.139E+4	-0.921E+0	-0.139E+4
0.578E+1	0.528E-1	0.140E+4	0.140E+4	0.346E+0	-0.140E+4
0.578E+1	0.197E+0	0.141E+4	0.141E+4		-0.141E+4
0.211E+0	0.302E+0	0.138E+4	0.138E+4	-0.352E+0	-0.138E+4
0.211E+0	0.447E+0	0.136E+4	0.136E+4	-0.221E+1	-0.136E+4
0.788E+0	0.302E+0	0.137E+4	0.136E+4	-0.356E+0	-0.136E+4
0.788E+0 0.121E+1	0.447E+0	0.138E+4	0.138E+4	-0.974E-1	-0.138E+4
0.121E+1 0.121E+1	0.302E+0 0.447E+0	0.138E+4 0.136E+4	0.138E+4	-0.148E+1	-0.138E+4
0.178E+1	0.447E+0 0.302E+0	0.137E+4	0.136E+4 0.137E+4	-0.270E+1 -0.196E+1	-0.136E+4 -0.137E+4
0.178E+1	0.447E+0	0.139E+4	0.137E+4 0.139E+4	-0.275E+1	-0.139E+4
0.221E+1	0.302E+0	0.139E+4	0.139E+4	-0.178E+1	-0.139E+4
0.221E+1	0.447E+0	0.137E+4	0.137E+4	-0.265E+1	-0.137E+4
0.278E+1	0.302E+0	0.138E+4	0.138E+4	-0.180E+1	-0.138E+4
0.278E+1	0.447E+0	0.139E+4	0.139E+4	-0.269E+1	-0.139E+4
0.321E+1	0.302E+0	0.139E+4	0.139E+4	-0.183E+1	-0.139E+4
0.321E+1	0.447E+0	0.138E+4	0.138E+4	-0.267E+1	-0.138E+4
0.378E+1	0.302E+0	0.138E+4	0.138E+4	-0.179E+1	-0.138E+4
0.378E+1	0.447E+0	0.140E+4	0.140E+4	-0.270E+1	-0.140E+4
0.421E+1	0.302E+0	0.140E+4	0.140E+4		-0.140E+4
0.421E+1	0.447E+0	0.138E+4	0.138E+4	-0.264E+1	-0.138E+4
0.478E+1	0.302E+0	0.139E+4	0.139E+4	-0.171E+1	-0.139E+4
0.478E+1 0.521E+1	0.447E+0 0.302E+0	0.141E+4 0.141E+4	0.141E+4	-0.278E+1 -0.207E+1	-0.141E+4 -0.141E+4
0.521E+1 0.521E+1	0.302E+0 0.447E+0	0.139E+4	0.141E+4 0.139E+4	-0.242E+1	-0.139E+4
0.578E+1	0.302E+0	0.139E+4	0.139E+4 0.139E+4	-0.116E+1	-0.139E+4
0.578E+1	0.447E+0	0.141E+4	0.141E+4	-0.332E+1	-0.141E+4
0.211E+0	0.552E+0	0.138E+4	0.138E+4	-0.118E+1	-0.138E+4
0.211E+0	0.697E+0	0.135E+4	0.135E+4	-0.342E+1	-0.135E+4
0.788E+0	0.552E+0	0.136E+4	0.136E+4	-0.101E+1	-0.136E+4
0.788E+0	0.697E+0	0.139E+4	0.139E+4	-0.165E+1	-0.139E+4
0.121E+1	0.552E+0	0.139E+4	0.139E+4	-0.347E+1	-0.139E+4
0.121E+1	0.697E+0	0.136E+4	0.136E+4		-0.136E+4
0.178E+1	0.552E+0	0.136E+4	0.136E+4		-0.136E+4
0.178E+1	0.697E+0	0.139E+4		-0.397E+1	-0.139E+4
0.221E+1	0.552E+0	0.139E+4		-0.332E+1	-0.139E+4
0.221E+1 0.278E+1	0.697E+0 0.552E+0	0.136E+4 0.137E+4		-0.420E+1 -0.328E+1	-0.136E+4 -0.137E+4
0.278E+1 0.278E+1	0.552E+0 0.697E+0	0.140E+4		-0.425E+1	-0.140E+4
0.321E+1	0.552E+0	0.140E+4		-0.336E+1	-0.140E+4
0.321E+1	0.697E+0	0.137E+4		-0.410E+1	-0.137E+4
0.378E+1	0.552E+0	0.138E+4		-0.325E+1	-0.138E+4
0.378E+1	0.697E+0	0.141E+4		-0.426E+1	-0.141E+4
0.421E+1	0.552E+0	0.140E+4	0.140E+4	-0.339E+1	-0.140E+4
0.421E+1	0.697E+0	0.138E+4		-0.410E+1	-0.138E+4
0.478E+1	0.552E+0	0.138E+4		-0.320E+1	-0.138E+4
0.478E+1	0.697E+0	0.141E+4		-0.429E+1	-0.141E+4
0.521E+1	0.552E+0	0.141E+4		-0.356E+1	-0.141E+4
0.521E+1 0.578E+1	0.697E+0 0.552E+0	0.138E+4 0.139E+4		-0.396E+1 -0.270E+1	-0.138E+4 -0.139E+4
0.578E+1 0.578E+1	0.552E+0 0.697E+0	0.139E+4 0.142E+4		-0.270E+1 -0.470E+1	-0.139E+4 -0.142E+4
0.211E+0	0.802E+0	0.138E+4		-0.217E+1	-0.138E+4
0.211E+0	0.947E+0	0.132E+4		-0.739E+1	-0.132E+4

$\begin{array}{c} 0.788E+0\\ 0.788E+0\\ 0.121E+1\\ 0.121E+1\\ 0.178E+1\\ 0.221E+1\\ 0.221E+1\\ 0.221E+1\\ 0.221E+1\\ 0.278E+1\\ 0.321E+1\\ 0.321E+1\\ 0.378E+1\\ 0.378E+1\\ 0.421E+1\\ 0.421E+1\\ 0.421E+1\\ 0.421E+1\\ 0.478E+1\\ 0.521E+1\\ 0.521E+1\\ 0.578E+1\\ 0.578E+1\\$	0.802E+0 0.947E+0 0.802E+0 0.947E+0	$\begin{array}{c} 0.135E+4\\ 0.140E+4\\ 0.135E+4\\ 0.135E+4\\ 0.136E+4\\ 0.140E+4\\ 0.140E+4\\ 0.136E+4\\ 0.136E+4\\ 0.136E+4\\ 0.136E+4\\ 0.140E+4\\ 0.140E+4\\ 0.137E+4\\ 0.137E+4\\ 0.137E+4\\ 0.141E+4\\ 0.141E+4\\ 0.138E+4\\ 0.142E+4\\ 0.138E+4\\ 0.138E+4\\ 0.138E+4\\ 0.138E+4\\ 0.142E+4\\ 0.138E+4\\ 0.142E+4\\ 0.142E+4\\$	0.135E+4 0.140E+4 0.135E+4 0.135E+4 0.136E+4 0.140E+4 0.140E+4 0.136E+4 0.136E+4 0.136E+4 0.140E+4 0.140E+4 0.137E+4 0.137E+4 0.137E+4 0.141E+4 0.137E+4 0.137E+4 0.138E+4 0.142E+4 0.138E+4 0.138E+4 0.138E+4 0.138E+4 0.142E+4	-0.381E+1 -0.773E+1 -0.625E+1 -0.575E+1 -0.555E+1 -0.555E+1 -0.550E+1 -0.550E+1 -0.553E+1 -0.514E+1 -0.514E+1 -0.558E+1 -0.460E+1 -0.558E+1 -0.467E+1 -0.565E+1 -0.499E+1 -0.567E+1 -0.576E+1 -0.576E+1	-0.135E+4 -0.140E+4 -0.140E+4 -0.135E+4 -0.136E+4 -0.140E+4 -0.140E+4 -0.136E+4 -0.136E+4 -0.140E+4 -0.140E+4 -0.140E+4 -0.137E+4 -0.137E+4 -0.141E+4 -0.137E+4 -0.138E+4 -0.142E+4 -0.138E+4 -0.138E+4 -0.138E+4 -0.138E+4 -0.142E+4
--	--	--	--	--	---

APPENDIX D

INPUT FILE TO FEM2DV2 FOR MESH OF FIGURE 3.7

***]	ЕСНО О	F THE	INPUT 1	data s	TARTS	* * *		
90 de	egree		21 el 12 curv					
1 1	1 9		0 0	0 0				
21	10	5						
1 3 7 9 11 33 35 37 41 43 63 67 69 71 73	3 57 91 13 53 57 91 13 53 57 91 35 39 13 53 57 91 35 79 13 53 57 91 35 79 13 53 57 91 35 79 13 53 57 91 35 79 13 53 57 91 35 79 13 53 57 91 35 79 13 53 57 91 35 79 13 53 57 91 35 79 13 53 57 91 35 79 13 53 57 91 35 79 13 53 57 91 35 79 13 53 57 91 35 79 13 53 57 91 35 79 13 53 57 91 35 79 13 57 91 35 79 13 57 77 77 77 77 77 77 77 77 77 77 77 77	33 35 37 39 41 43 45 63 65 67 69 71 73 75 93 95 97 99 101 103 105	31 33 35 37 39 41 43 61 63 65 67 71 73 91 93 95 97 99 101 103	$\begin{array}{c} 2\\ 4\\ 6\\ 8\\ 10\\ 12\\ 14\\ 32\\ 34\\ 36\\ 38\\ 40\\ 42\\ 44\\ 62\\ 64\\ 66\\ 8\\ 70\\ 72\\ 74\end{array}$	18 20 22 24 26 28 30 48 50 52 54 56 58 60 78 80 82 84 86 88 90	32 34 36 38 40 42 44 62 64 66 68 70 72 74 92 94 96 98 100 102 104	16 18 20 22 24 26 26 26 26 26 26 26 26 26 26 26 26 26	17 19 21 23 25 27 29 47 49 51 53 57 59 77 81 83 85 89
0.39 0.76 0.11 0.14 0.16 0.18 0.19 0.20 0.20 0.20 0.20 0.20 0.20 0.20	00E+0 02E+0 54E+0 11E+1 14E+1 63E+1 48E+1 62E+1 00E+1 00E+1 00E+1 00E+1 00E+1 00E+1	0 0	2000E+1 1962E+1 1848E+1 1663E+1 1414E+1 1111E+1 7654E+0 3902E+0 3000E+0 3333E+0 6667E+0 1000E+1 1333E+1 1667E+1 2000E+1					

0.1940E+1 0.2156E+1 0.2288E+1 0.2333E+1 0.2333E+1 0.2333E+1 0.2333E+1 0.2333E+1 0.2333E+1 0.2333E+1 0.2333E+1 0.2333E+1 0.2333E+1 0.2000E+0 0.5202E+0 0.1020E+1 0.1482E+1 0.2217E+1 0.2464E+1 0.2667E+1 0.2942E+1 0.2772E+1 0.3000E+1 0.3	0.2156E+1 0.1940E+1 0.1296E+1 0.8929E+0 0.4552E+0 0.0000E+0 -0.3333E+0 -0.6667E+0 -0.1000E+1 -0.1667E+1 -0.2000E+1 0.2667E+1 0.2667E+1 0.2667E+1 0.2615E+1 0.2464E+1 0.1482E+1 0.1482E+1 0.1020E+1 0.5202E+0 0.0000E+0 -0.3333E+0 -0.6667E+0 -0.1000E+1 0.2942E+

0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.25 0.36 0.40	33333333333333333333333333333333333333	++++++++++++++++++++++++++++++++++++		-0.3 -0.6 -0.1 -0.1 -0.1 -0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3		00E+0 30E+0 30E+1 30													
1 6 11 16 60 91 96 101	1 1 1 1 1	60 91 96	2 2 2 2 2 2 2 2	7 12 30 61 92 97	1 1 1 1 1	7 12 30 61 92 97	2 2 2 2 2 2 2	31 75 93 98	1 1 1 1 1	8 13 31 75 93 98	2 2 2 2 2 2	45 76 94 99	1 1 1 1 1	14 45 76 94 99	2 2 2 2 2 2 2 2	10 15 46 90 95 100	1 1 1 1 1	10 15 46 90 95 100	2 2 2 2 2 2
		.0		0.0 0.0 0.0 0.0		0.0 0.0 0.0		0.0		0.0 0.0		0.0 0.0		0.0 0.0 0.0 -1.3		0.0		0.0 0.0 0.0 0.0	

OUTPUT FROM PROGRAM *FEM2DV2* BY J. N. REDDY Edited by Pantaleo Loiacono....14 September 1995

A VISCOUS INCOMPRESSIBLE FLOW IS ANALYZED

PARAMETERS OF THE FLUID FLOW PROBLEM:

Viscosity of the fluid, AMU..... = 0.2000E+1
Penalty parameter, PENLTY.... = 0.1000E+09

CONTINUOUS SOURCE COEFFICIENTS:

Coefficient,	FO	 0.0000E+0
Coefficient,	FX	 0.0000E+0
Coefficient,	FY	 0.0000E+0

****** A STEADY-STATE PROBLEM is analyzed ******

*** A mesh of QUADRILATERALS is chosen by user ***

FINITE ELEMENT MESH INFORMATION:

Element type: (0 = Triangle; >0 = Quad.) = 1 Number of nodes per element, NPE 9 No. of primary deg. of freedom/node, NDF= 2 Number of elements in the mesh, NEM = 21 Number of nodes in the mesh, NNM = 105 Number of equations to be solved, NEQ ... = 210 Half bandwidth of the matrix GLK, NHBW .= 66 No. of specified PRIMARY variables, NSPV = 80

N	ode	x-coord.	y-coord.	Speci. prima	_	variables 0, unspeci	
				Primary	DOF	>0, speci Secondar	
	l	0.0000E+0	0.2000E+1	1	2	0	0
	2	0.3902E+0	0.1962E+1	1	2	0	0
	3	0.7654E+0	0.1848E+1	1	2	0	0
	4	0.1111E+1	0.1663E+1	1	2	0	0
	5	0.1414E+1	0.1414E+1	1	2	0	0
	6	0.1663E+1	0.1111E+1	1	2	0	0
	7	0.1848E+1	0.7654E+0	1	2	0	0
	8	0.1962E+1	0.3902E+0	1	2	0	0
	9	0.2000E+1	0.0000E+0	1	2	0	0
	10	0.2000E+1	-0.3333E+0	1	2	0	0
	11	0.2000E+1	-0.6667E+0	1	2	0	0
	12	0.2000E+1	-0.1000E+1	1	2	0	0
	13	0.2000E+1	-0.1333E+1	1	2	0	0
	14 15	0.2000E+1 0.2000E+1	-0.1667E+1	1	2	0	0
	15	0.2000E+1 0.0000E+0	-0.2000E+1 0.2333E+1	1	2 2	0	0
	10	0.4552E+0	0.2288E+1 0.2288E+1	1 0	2	0 0	0 0
	18	0.8929E+0	0.2156E+1	0	0	0	0
	$10 \\ 19$	0.1296E+1	0.1940E+1	0	0	0	0
	20	0.1650E+1	0.1650E+1	0	0	0	0
	21	0.1940E+1	0.1296E+1	0	0	Ő	0
	22	0.2156E+1	0.8929E+0	0	0	Õ	0
	23	0.2288E+1	0.4552E+0	Ő	0	Õ	Õ
	24	0.2333E+1	0.0000E+0	Õ	Õ	0	0
	25	0.2333E+1	-0.3333E+0	0	0	0	0
	26	0.2333E+1	-0.6667E+0	0	0	0	0
	27	0.2333E+1	-0.1000E+1	0	0	0	0
	28	0.2333E+1	-0.1333E+1	0	0	0	0
	29	0.2333E+1	-0.1667E+1	0	0	0	0
	30	0.2333E+1	-0.2000E+1	1	2	0	0
	31	0.0000E+0	0.2667E+1	1	2	0	0
	32	0.5202E+0	0.2615E+1	. 0	0	0	0
	33	0.1020E+1	0.2464E+1	0	0	0	0
	34	0.1482E+1	0.2217E+1	0	0	0	0
	35	0.1886E+1	0.1886E+1	0	0	0	0
	36	0.2217E+1	0.1482E+1	0	0	0	0
	37	0.2464E+1	0.1020E+1	0	0	0	0
	38	0.2615E+1	0.5202E+0	0	0	0	0 0
	39	0.2667E+1	0.0000E+0	0 0	0 0	0 0	0
	40	0.2667E+1 0.2667E+1	-0.3333E+0 -0.6667E+0	0	0	0	0
	41 42	0.2667E+1 0.2667E+1	-0.1000E+1	0	0	0	0
	42 43	0.2667E+1 0.2667E+1	-0.1333E+1	0	0	Ö	0
	43 44	0.2667E+1	-0.1667E+1	Ő	0	Ő	0
	T	0.200.21	J. 2007	0	-	-	-

NUMERICAL INTEGRATION DATA:

Full quadrature (IPDF x IPDF) rule, IPDF= 3 Reduced quadrature (IPDR x IPDR), IPDR= 2 Quadrature rule used in postproc., ISTR= 2

SOLUTION:

and the second sec				
Node	x-coord.	y-coord.	Value of u	Value of v
1	0.00000E+0	0.20000E+1	0.00000E+0	0.00000E+0
2	0.39020E+0	0.19620E+1	0.00000E+0	0.00000E+0
3	0.76540E+0	0.18480E+1	0.00000E+0	0.00000E+0
4	0.11110E+1	0.16630E+1	0.00000E+0	0.00000E+0
5	0.14140E+1	0.14140E+1	0.00000E+0	0.00000E+0
6	0.16630E+1	0.11110E+1	0.00000E+0	0.00000E+0
7	0.18480E+1	0.76540E+0	0.00000E+0	0.00000E+0
8	0.19620E+1	0.39020E+0	0.0000E+0	0.00000E+0
9	0.20000E+1	0.0000E+0	0.00000E+0	0.00000E+0
10	0.20000E+1	-0.33330E+0	0.00000E+0	0.00000E+0
11	0.20000E+1	-0.66670E+0	0.00000E+0	0.00000E+0
12	0.20000E+1	-0.10000E+1	0.00000E+0	0.00000E+0
13	0.20000E+1	-0.13330E+1	0.00000E+0	0.0000E+0
14	0.20000E+1	-0.16670E+1	0.00000E+0	0.0000E+0
15	0.20000E+1	-0.20000E+1	0.00000E+0	
16		0.23330E+1	-	0.0000E+0
17	0.45520E+0	0.22880E+1	0.85891E+0	-0.20638E+0
18	0.89290E+0	0.21560E+1	0.87158E+0	
19	0.12960E+1	0.19400E+1	0.80140E+0	
20	0.16500E+1	0.16500E+1	0.68539E+0	
21	0.19400E+1	0.12960E+1	0.54025E+0	
22	0.21560E+1		0.37374E+0	
23	0.22880E+1			-0.94433E+0
24	0.23330E+1	0.0000E+0	0.47271E-1	
25	0.23330E+1	-0.33330E+0	0.16777E-1	
26		-0.66670E+0		-0.83536E+0
27	0.23330E+1			-0.83078E+0
28	0.23330E+1	-0.13330E+1	-0.58853E-3	-0.83091E+0

.

29 31 32 33 35 37 39 41 23 44 44 44 49 51 23 45 57 59 59 59 59	0.23330E+1 0.23330E+1 0.00000E+0 0.52020E+0 0.10200E+1 0.14820E+1 0.22170E+1 0.22170E+1 0.26670E+1 0.26670E+1 0.26670E+1 0.26670E+1 0.26670E+1 0.26670E+1 0.26670E+1 0.26670E+1 0.26670E+1 0.26670E+1 0.26670E+1 0.26670E+1 0.26670E+1 0.26670E+1 0.26670E+1 0.26670E+1 0.26670E+1 0.26670E+1 0.21210E+1 0.21210E+1 0.21210E+1 0.229420E+1 0.29420E+1 0.30000E+1 0.30000E+1 0.30000E+1 0.30000E+1	-0.16670E+1 -0.20000E+1 0.26670E+1 0.26150E+1 0.24640E+1 0.22170E+1 0.14820E+1 0.14820E+1 0.14820E+1 0.10200E+1 0.52020E+0 0.00000E+0 -0.33330E+0 -0.66670E+0 -0.16670E+1 0.29420E+1 0.29420E+1 0.29420E+1 0.29420E+1 0.29420E+1 0.29420E+1 0.21210E+1 0.21210E+1 0.16670E+1 0.11480E+1 0.58530E+0 0.00000E+0 -0.33330E+0 -0.66670E+0 -0.3330E+1 -0.10000E+1 -0.13330E+1 -0.16670E+1	$\begin{array}{c} -0.87572E-3\\ 0.00000E+0\\ 0.13330E+1\\ 0.13239E+1\\ 0.12883E+1\\ 0.12883E+1\\ 0.11748E+1\\ 0.10051E+1\\ 0.79001E+0\\ 0.54812E+0\\ 0.29957E+0\\ 0.11223E+0\\ 0.43066E-1\\ 0.14990E-1\\ 0.24276E-2\\ -0.12198E-2\\ -0.12198E-2\\ -0.12198E-2\\ -0.12198E-2\\ -0.12198E-2\\ -0.125000E+1\\ 0.14520E+1\\ 0.14520E+1\\ 0.14520E+1\\ 0.12266E+1\\ 0.12266E+1\\ 0.10465E+1\\ 0.31465E+0\\ 0.56678E+0\\ 0.31465E+0\\ 0.31465E+0\\ 0.11517E+0\\ 0.52972E-1\\ 0.17796E-1\\ 0.36049E-2\\ -0.14806E-2\\ -0.21883E-2 \end{array}$	-0.83218E+0 -0.83300E+0 0.00000E+0 -0.34243E+0 -0.56550E+0 -0.79621E+0 -0.10079E+1 -0.13164E+1 -0.13164E+1 -0.13787E+1 -0.13787E+1 -0.13328E+1 -0.13328E+1 -0.13328E+1 -0.13328E+1 -0.13328E+1 -0.13328E+1 -0.13328E+1 -0.13328E+1 -0.13328E+1 -0.13328E+1 -0.13328E+1 -0.13328E+1 -0.13328E+1 -0.13328E+1 -0.13328E+1 -0.13524E+1 -0.13328E+1 -0.13328E+1 -0.12312E+1 -0.12312E+1 -0.14995E+1 -0.14995E+1 -0.14997E+1 -0.14997E+1 -0.14999E+1 -0.14995E+1 -0.14999E+1 -0.14995E+1 -0.149
60	0.30000E+1	-0.20000E+1	0.00000E+0	-0.15000E+1
61	0.00000E+0	0.33330E+1	0.13330E+1	0.00000E+0
62	0.65030E+0	0.32690E+1	0.12626E+1	-0.30866E+0
63	0.12760E+1	0.30800E+1	0.11467E+1	-0.49242E+0
64	0.18520E+1	0.27720E+1	0.10209E+1	-0.68942E+0
65	0.23570E+1	0.23570E+1	0.86920E+0	-0.86996E+0
66	0.27720E+1	0.18520E+1	0.68140E+0	-0.10206E+1
67	0.30800E+1	0.12760E+1	0.46874E+0	-0.11324E+1
68	0.32690E+1	0.65030E+0	0.25550E+0	-0.12102E+1
69	0.33330E+1	0.00000E+0	0.86573E-1	-0.12835E+1
70	0.33330E+1	-0.33330E+0	0.39833E-1	-0.13130E+1
71	0.33330E+1	-0.66670E+0	0.13114E-1	-0.13306E+1
72	0.33330E+1	-0.10000E+1	0.26730E-2	-0.13342E+1
73	0.33330E+1	-0.13330E+1	-0.12414E-2	-0.13352E+1
74	0.33330E+1	-0.16670E+1	-0.16565E-2	-0.13339E+1
75	0.33330E+1	-0.20000E+1	0.00000E+0	-0.13330E+1
76	0.00000E+0	0.36670E+1	0.83300E+0	0.00000E+0
77	0.71530E+0	0.35960E+1	0.76923E+0	-0.17267E+0
78	0.14030E+1	0.33880E+1	0.67859E+0	-0.28456E+0
79	0.20370E+1	0.30490E+1	0.60126E+0	-0.40480E+0
80	0.25930E+1	0.25930E+1	0.51026E+0	-0.50933E+0
81	0.30490E+1	0.20370E+1	0.39997E+0	-0.59891E+0

82	0.33880E+1 0.14030E	+1 0.27598E	+0 -0.66494	E + 0
83	0.35960E+1 0.71530E			
84	0.36670E+1 0.00000E			
85	0.36670E+1 -0.33330E			
86	0.36670E+1 -0.66670E			
87	0.36670E+1 -0.10000E			
88	0.36670E+1 -0.13330E			
89	0.36670E+1 -0.16670E			
90	0.36670E+1 -0.20000E			
91	0.00000E+0 0.40000E			
92	0.78040E+0 0.39230E			
93	0.15310E+1 0.36960E			
94	0.22220E+1 0.33260E			
95	0.28280E+1 0.28280E			
96	0.33260E+1 0.22220E			
97	0.36960E+1 0.15310E			
98	0.39230E+1 0.78040E			
99	0.40000E+1 0.00000E	+0 0.00000E		
100	0.40000E+1 -0.33330E			
101	0.40000E+1 -0.66670E	+0 0.00000E	+0 0.00000)E+0
102	0.40000E+1 -0.10000E	+1 0.00000E		
103	0.40000E+1 -0.13330E	L+1 0.00000E	+0 0.00000)E+0
104	0.40000E+1 -0.16670E	L+1 0.00000E	+0.00000)E+0
105	0.40000E+1 -0.20000E	C+1 0.00000E	+0 0.00000)E+0
x-coc	ord. y-coord. sigma-	x sigma-y	sigma-xy	pressure
0.178	BE+0 0.213E+1 -0.170E			0.180E+2

	-				-
0.178E+0	0.213E+1	-0.170E+2	-0.190E+2	0.472E+1	0.180E+2
0.210E+0	0.251E+1	-0.168E+2	-0.180E+2	0.149E+1	0.174E+2
0.651E+0	0.203E+1	-0.108E+2	-0.176E+2	0.417E+1	0.142E+2
0.768E+0	0.240E+1	-0.136E+2	-0.164E+2	0.122E+1	0.150E+2
0.981E+0	0.190E+1	-0.767E+1	-0.168E+2	0.314E+1	0.122E+2
0.115E+1	0.224E+1	-0.993E+1	-0.126E+2	0.792E+0	0.112E+2
0.138E+1	0.163E+1	-0.151E+1	-0.126E+2	0.919E+0	0.706E+1
0.163E+1	0.192E+1	-0.653E+1	-0.941E+1	0.220E+0	0.797E+1
0.163E+1	0.138E+1	0.508E+0	-0.106E+2	-0.948E+0	0.504E+1
0.192E+1	0.163E+1	-0.269E+1	-0.553E+1	-0.251E+0	0.411E+1
0.190E+1	0.981E+0	0.477E+1	-0.443E+1	-0.326E+1	-0.172E+0
0.224E+1	0.115E+1	0.426E+0	-0.193E+1	-0.849E+0	0.755E+0
0.203E+1	0.651E+0	0.555E+1	-0.103E+1	-0.462E+1	-0.225E+1
0.240E+1	0.768E+0	0.398E+1	0.224E+1	-0.117E+1	-0.311E+1
0.213E+1	0.178E+0	0.893E+1	0.639E+1	-0.535E+1	-0.766E+1
0.251E+1	0.210E+0	0.722E+1	0.573E+1	-0.174E+1	-0.648E+1
0.214E+1	-0.140E+0	0.949E+1	0.874E+1	-0.536E+1	-0.911E+1
0.252E+1	-0.140E+0	0.101E+2	0.901E+1	-0.243E+1	-0.957E+1
0.214E+1	-0.525E+0	0.121E+2	0.119E+2	-0.516E+1	-0.120E+2
0.252E+1	-0.525E+0	0.113E+2	0.110E+2	-0.275E+1	-0.111E+2
0.214E+1	-0.807E+0	0.129E+2	0.128E+2	-0.515E+1	-0.129E+2
0.252E+1	-0.807E+0	0.136E+2	0.135E+2	-0.280E+1	-0.135E+2

0.214E+1	-0.119E+1	0.158E+2	0.158E+2	-0.513E+1	-0.158E+2
0.252E+1	-0.119E+1	0.151E+2	0.151E+2	-0.283E+1	-0.151E+2
0.214E+1	-0.147E+1	0.168E+2	0.168E+2	-0.514E+1	-0.168E+2
0.252E+1	-0.147E+1	0.175E+2	0.175E+2	-0.284E+1	-0.175E+2
0.214E+1	-0.185E+1	0.198E+2	0.198E+2	-0.515E+1	-0.198E+2
0.252E+1	-0.185E+1	0.191E+2	0.191E+2	-0.285E+1	-0.191E+2
0.234E+0	0.279E+1	-0.188E+2	-0.188E+2	-0.299E+0	0.188E+2
0.266E+0	0.318E+1	-0.198E+2	-0.186E+2	-0.230E+1	0.192E+2
0.854E+0	0.267E+1	-0.144E+2	-0.144E+2	-0.616E-1	0.144E+2
0.971E+0	0.304E+1	-0.165E+2	-0.135E+2	-0.160E+1	0.150E+2
0.128E+1	0.249E+1	-0.122E+2	-0.116E+2	-0.231E+0	0.119E+2
0.146E+1	0.283E+1	-0.135E+2	-0.941E+1	-0.132E+1	0.114E+2
0.181E+1	0.214E+1	-0.781E+1	-0.675E+1	-0.988E-1	0.728E+1
0.206E+1	0.243E+1	-0.102E+2	-0.531E+1	-0.402E+0	0.777E+1
0.214E+1	0.181E+1	-0.534E+1	-0.423E+1	0.101E+0	0.479E+1
0.243E+1	0.206E+1	-0.676E+1	-0.181E+1	0.428E+0	0.428E+1
0.249E+1	0.128E+1	-0.586E+0	0.359E+0	0.318E+0	0.113E+0
0.283E+1	0.146E+1	-0.267E+1	0.144E+1	0.146E+1	0.612E+0
0.267E+1	0.854E+0	0.214E+1	0.270E+1	0.416E+0	-0.242E+1
0.304E+1	0.971E+0	0.136E+1	0.431E+1	0.200E+1	-0.284E+1
0.279E+1	0.234E+0	0.704E+1	0.696E+1	0.267E-1	-0.700E+1
0.318E+1	0.266E+0	0.588E+1	0.714E+1	0.204E+1	-0.651E+1
0.280E+1	-0.140E+0	0.885E+1	0.861E+1		-0.873E+1
0.319E+1	-0.140E+0 -0.525E+0	0.916E+1 0.119E+2	0.972E+1	0.167E+1	-0.944E+1
0.280E+1 0.319E+1	-0.525E+0	0.119E+2 0.109E+2	0.117E+2 0.111E+2	-0.920E+0 0.139E+1	-0.118E+2 -0.110E+2
0.319E+1 0.280E+1	-0.807E+0	0.128E+2	0.127E+2		-0.128E+2
0.319E+1	-0.807E+0	0.134E+2	0.127E+2 0.134E+2	0.124E+1	-0.134E+2
0.280E+1	-0.119E+1	0.158E+2	0.154E+2	-0.114E+1	-0.158E+2
0.319E+1	-0.119E+1	0.150E+2	0.150E+2	0.117E+1	-0.150E+2
0.280E+1	-0.147E+1	0.168E+2	0.168E+2	-0.115E+1	-0.168E+2
0.319E+1	-0.147E+1	0.174E+2	0.174E+2	0.115E+1	-0.174E+2
0.280E+1	-0.185E+1	0.198E+2	0.198E+2	-0.117E+1	-0.198E+2
0.319E+1	-0.185E+1	0.190E+2	0.190E+2	0.114E+1	-0.190E+2
0.289E+0	0.346E+1	-008E+2	-0.191E+2	-0.355E+1	0.199E+2
0.321E+0	0.384E+1	-0.208E+2	-0.188E+2	-0.514E+1	0.198E+2
0.105E+1	0.330E+1	-0.170E+2	-0.123E+2	-0.263E+1	0.147E+2
0.117E+1	0.367E+1	-0.177E+2	-0.119E+2	-0.385E+1	0.148E+2
0.159E+1	0.308E+1		-0.886E+1	-0.197E+1	0.118E+2
0.176E+1	0.343E+1		-0.777E+1	-0.267E+1	0.115E+2
0.224E+1	0.265E+1	-0.109E+2	-0.394E+1	-0.566E+0	0.743E+1
0.249E+1	0.294E+1	-0.121E+2	-0.310E+1	-0.751E+0 0.597E+0	0.764E+1 0.462E+1
0.265E+1	0.224E+1 0.249E+1	-0.812E+1 -0.892E+1	-0.112E+1 0.153E+0	0.762E+0	0.438E+1
0.294E+1 0.308E+1	0.159E+1	-0.314E+1	0.260E+1	0.205E+1	0.269E+0
0.308E+1 0.343E+1	0.176E+1	-0.424E+1	0.323E+1	0.265E+1	0.508E+0
0.343E+1 0.330E+1	0.105E+1	0.383E+0	0.452E+1	0.287E+1	-0.245E+1
0.367E+1	0.117E+1	0.420E-1	0.530E+1	0.371E+1	-0.267E+1
0.346E+1	0.289E+0	0.585E+1	0.776E+1	0.328E+1	-0.680E+1
0.384E+1	0.321E+0	0.541E+1	0.734E+1	0.465E+1	-0.637E+1
0.347E+1	-0.140E+0	0.828E+1	0.926E+1	0.309E+1	-0.877E+1
0.385E+1	-0.140E+0	0.885E+1	0.941E+1	0.498E+1	-0.913E+1
0.347E+1	-0.525E+0	0.114E+2	0.118E+2	0.292E+1	-0.116E+2

0.385E+1	-0.525E+0	0.108E+2	0.110E+2	0.512E+1 -0.109E+2
0.347E+1	-0.807E+0	0.126E+2	0.127E+2	0.288E+1 -0.127E+2
0.385E+1	-0.807E+0	0.133E+2	0.133E+2	0.516E+1 -0.133E+2
0.347E+1	-0.119E+1	0.157E+2	0.157E+2	0.285E+1 -0.157E+2
0.385E+1	-0.119E+1	0.150E+2	0.150E+2	0.517E+1 -0.150E+2
0.347E+1	-0.147E+1	0.167E+2	0.167E+2	0.284E+1 -0.167E+2
0.385E+1	-0.147E+1	0.174E+2	0.174E+2	0.516E+1 -0.174E+2
0.347E+1	-0.185E+1	0.197E+2	0.197E+2	0.283E+1 -0.197E+2
0.385E+1	-0.185E+1	0.190E+2	0.190E+2	0.515E+1 -0.190E+2

APPENDIX E

PROGRAM "nodgen.f"

program "nodgen.f" by Pantaleo Loiacono This program computes the values of "NOD(N,I)", data card 6, from page 543 (Reddy) 7 November 1995 INTEGER a, b, c, d, e, f, g, h, r, dx, K C C K is the number of values to be computed (including original) K = 16a=463 b=465 c=531 d=529 e = 464f=498 g=530 h=496 r=497 dx=0 DO 20 I=1,K a=a+dx b=b+dx c=c+dx d=d+dx e=e+dx f = f + dxq=q+dx h=h+dx r=r+dx WRITE (*,10) a,b,c,d,e,f,g,h,r 20 dx=2FORMAT (9(I3, 5X)) 10 END

APPENDIX F

PROGRAM "meshgencurve.f"

С С С program "meshgencurve.f" С С This program generates the coordinates of the nodal С values for a 90 degree turn which will be used for С the input data for the program "FEM2DV2" С Ĉ written by Pantaleo Loiacono С 6 November 1995 REAL dtheta, theta, phi, RI, x, y, Pi, R, xx, w, dy INTEGER M, N, I, J OPEN (UNIT=11, FILE='altmesh.dat', STATUS='NEW') С M is the number of angular divisions over the 90 С degree turn С RI is the value of the inner radius N is the number of elements in the mesh along the С С radial axis C C C C C L is the number of elements in the rectangular part of the mesh (yaxis) R is the value of the radius at each increment (varying) C C xx is the value of the length of the rectangular part (yaxis) C w is the value of the width of the rectangular part С (xaxis) С RO is the value of the outer radius....NOTE: w=RO-RI M=11 L=5 RI = 2.0RO = 4.0N=8xx=2.0w=RO-RI this program has the value of w & xx fixed at С NOTE : 2, along with the value of RO which is fixed С at 2; modifications need to be made if the С С dimensions of the 90 degree turn are changed Pi=3.14159265359 theta=0.0

С For each value of R, compute all the values of x and С y at the different values of phi (big loop, "10", С varies R) DO 10 I=0, (2*N)R=RI+I*1.0/NС This loop values the angle of phi and computes x, y at С fixed R DO 21 J=1, (2*M+1)dtheta=Pi/(4.0*M)phi = (Pi/2.0) - thetaIF (phi.LT.0.0001) THEN phi=0.0 ENDIF x=R*cos(phi) y=R*sin(phi) IF (x.LT.0.0001) THEN x=0.0 ENDIF IF (y.LT.0.0001) THEN y=0.0 ENDIF WRITE (11,22) x,y theta=theta+dtheta 21 CONTINUE Here the values of the coordinates of the rectangular С portion of the loop are computed at the value of R С computed in the big "10" loop above; these values are С computed at each value of R С y=0.0 DO 37 II=1, (2*L) y=0.0 x=Rdy=II*1.0/L y=y-dy IF (x.LT.0.0001) THEN x=0.0 ENDIF

IF (y.GT.-0.0001) y=0.0

- 37 CONTINUE
- C Reset the value of theta for the next loop theta=0.0
- 10 CONTINUE
- 89 FORMAT (/)
- 22 FORMAT (3X,E12.4,3X,E12.4) 34 FORMAT (3X,E12.4,3X,E12.4)

END

APPENDIX G

PROGRAM "particles.f"

PROGRAM "particles.f" written by Pantaleo Loiacono January 1996 This program examines the motion of particles, one at a time, through a 90 degree turn. The velocity distribution is obtained through finite element analysis, using the program "FEM2DV2". The program computes the next position of the particle and determines whether or not the particle has hit the wall of the duct. When the particle hits the wall, it is assumed that it has been deposited on A Runge-Kutta 4th order method is that wall. used to determine the next position of the particle according to the governing equations The output of this program is of motion. later analyzed by the program "particlesout.f" NOTE: LU....left upper node LL....left lower node RU....right upper node RL....right lower node MIN.....Number of Particles coming in at the Entrance MAX.....Number of Equations to be solved MINA....Number of Nodes in the Mesh DIMENSION OF LU, LL, RU, RL, Z, ETC. MAY HAVE TO BE ADJUSTED WITH FINER MESHES PARAMETER (MAX=3100, MIN=100, MINA=1000) DIMENSION NOD (MINA), POS (MINA, 2), VEL (MINA, 2) DIMENSION y (MIN, MAX), U (MIN, MAX), V (MIN, MAX) DIMENSION A (MIN, MAX), B (MIN, MAX), LU (MAX), LL (MAX) DIMENSION RL(MAX), x(MIN, MAX), Z(MIN, MAX), RU(MAX) REAL K1, K2, K3, K4, K11, K21, K31, K41, K12, K22, K32, K42

С

REAL K112, K212, K312, K412, S, G, SPLIT, dTavg, dT

INTEGER LU, LL, RU, RL, RIGHTN, LEFTN, NPART, DIVIDE, ST INTEGER MU, SECTION, FILEA

Read the values from "velocities.dat" and save them into the appropriate arrays

С

С

OPEN (UNIT=7, FILE='velocities.dat', STATUS='OLD') OPEN (UNIT=457, FILE='particles1.out', STATUS='OLD') OPEN (UNIT=458, FILE='particles2.out', STATUS='OLD') OPEN (UNIT=459, FILE='particles3.out', STATUS='OLD') OPEN (UNIT=460, FILE='particles4.out', STATUS='OLD') OPEN (UNIT=461, FILE='particles5.out', STATUS='OLD') OPEN (UNIT=462, FILE='particles6.out', STATUS='OLD') OPEN (UNIT=463, FILE='particles7.out', STATUS='OLD') OPEN (UNIT=464, FILE='particles8.out', STATUS='OLD') OPEN (UNIT=465, FILE='particles9.out', STATUS='OLD') OPEN (UNIT=466, FILE='particles10.out', STATUS='OLD') OPEN (UNIT=467, FILE='particles11.out', STATUS='OLD') OPEN (UNIT=468, FILE='particles12.out', STATUS='OLD') OPEN (UNIT=469, FILE='particles13.out', STATUS='OLD') OPEN (UNIT=470, FILE='particles14.out', STATUS='OLD') OPEN (UNIT=471, FILE='particles15.out', STATUS='OLD') OPEN (UNIT=472, FILE='particles16.out', STATUS='OLD') OPEN (UNIT=473, FILE='particles17.out', STATUS='OLD') OPEN (UNIT=474, FILE='particles18.out', STATUS='OLD') OPEN (UNIT=475, FILE='particles19.out', STATUS='OLD') OPEN (UNIT=476, FILE='particles20.out', STATUS='OLD') OPEN (UNIT=477, FILE='particles21.out', STATUS='OLD') OPEN (UNIT=478, FILE='particles22.out', STATUS='OLD') OPEN (UNIT=479, FILE='particles23.out', STATUS='OLD') OPEN (UNIT=480, FILE='particles24.out', STATUS='OLD') OPEN (UNIT=481, FILE='particles25.out', STATUS='OLD') OPEN (UNIT=45, FILE='particles.info', STATUS='OLD')

C These are the INPUT VALUES which need to be changed when the program interprets a different mesh, starts at a different point, etc. C dT.....time step C N.....the left entrance number to add to the first node in the mesh to get to the node above it, dependent upon the mesh size C NNM.....the number of nodes in the mesh

00000000000000	ELEMENTSthe total number of elements in the mesh
	LOOPNDSthe number of nodes around the circular loop only (include the last horizontal one)
	NPARTthe number of entrance particles which will be analyzed as they move through the duct system. Specify an odd number if a particle starting at the center of the duct is desired (x=0.0, y=3.0, U=1.5, V=0.0)
C C C	ENTRSZthe diameter of the entrance section of the duct
	DIVIDEthe number of divisions that the entrance flow is split up into due to the fact that the computer can't handle so many equations simultaneously
	SECTIONthe section which is being examined; there are "DIVIDE" number of sections in the program. The lowest section number is the section at the lowest point of the entrance.
	REVISE N, LOOPNDS, ELEMENTS AS NECESSARY DEPENDENT ON MESH SIZE
	NOTE: adjust the value of JJJ if the number of elements before the 45 degree turn is different than the number of elements after the 45 degree turn (but before 0 degrees)
	PI=3.14159265359
C C	These are the values of the parameters:
C C C C C C	S=inertia force/viscous force G=gravity force/viscous force
	NOTE: NPART/DIVIDE SHOULD BE A WHOLE NUMBER FOR BEST RESULTS
C	ISECTST is the section at which the analysis is

С being started at С IPRINT=1 means print all output to screen; if 0, С then don't С Ĉ xFINAL and yFINAL are the final positions of the С previous particle; these values are to be specified C C only when the analysis is being started at any section other than section 1 (ISECTST=1) С С С CHANGE INPUT DATA FROM HERE С С S=0.1 G=0.0 ENTRSZ=2.0N=33 ELEMENTS=128 LOOPNDS=23 NPART=100 DIVIDE=25 ISECTST=1 ISECEND=DIVIDE IPRINT=0 С С END CHANGES HERE С PRINT *, 'Number of particles analyzed=', NPART WRITE (45,*) S,G,NPART,DIVIDE,dT IF (NPART.GT.MIN) THEN PRINT *, 'INCREASE MIN'
PRINT *, 'NPART=', NPART, ' MIN=', MIN GOTO 237 ENDIF Read in the positions and velocities from the mesh С C data READ (7, *) NNM IF (NNM.GE.(MINA-1)) THEN PRINT *, 'INCREASE MINA SIZE' PRINT *, 'NNM=', NNM PRINT *, 'MINA=', MINA GOTO 237 ENDIF

DO 10 IG=1, NNM READ(7, *) NOD(IG)READ(7, *) (POS(IG, J), J=1, 2) READ(7, *) (VEL(IG, J), J=1, 2) 10 CONTINUE PRINT *, ' ' PRINT *, ' ' PRINT *, '# of files to compile (DIVIDE) = ', DIVIDE PRINT *, 'MIN=', MIN, ' MAX=', MAX, ' MINA=', MINA PRINT *,' S=',S,' G=',GLoop 283 controls which section is currently being С examined DO 283 ISECT=ISECTST, ISECEND SECTION=ISECT IF (SECTION.GT.DIVIDE) THEN PRINT *, 'ERROR, SECTION>DIVIDE' GOTO 237 ENDIF PRINT *, ' ' PRINT *, ' ' PRINT *, 'Currently looking at section ', SECTION PRINT *, ' ' FILEA is the UNIT number in which the data will be stored in... These SECTIONS only work if the mesh is being divided into 25 sections; Adjust if it will be divided it into more sections by increasing the С number of SECTIONS or decreased accordingly. IF (SECTION.EQ.1) THEN ST=1MU=1FILEA=457 ELSEIF (SECTION.EO.2) THEN ST=NPART/DIVIDE+1 MU=2FILEA=458 ELSEIF (SECTION.EQ.3) THEN ST=2*NPART/DIVIDE+1 MU=3FILEA=459 ELSEIF (SECTION.EQ.4) THEN

С

ST=3*NPART/DIVIDE+1 MU = 4FILEA=460 ELSEIF (SECTION.EQ.5) THEN ST=4*NPART/DIVIDE+1 MU = 5FILEA=461 ELSEIF (SECTION.EQ.6) THEN ST=5*NPART/DIVIDE+1 MU=6FILEA=462 ELSEIF (SECTION.EQ.7) THEN ST=6*NPART/DIVIDE+1 MU = 7FILEA=463 ELSEIF (SECTION.EQ.8) THEN ST=7*NPART/DIVIDE+1 MU = 8FILEA=464 ELSEIF (SECTION.EQ.9) THEN ST=8*NPART/DIVIDE+1 MU=9FILEA=465 ELSEIF (SECTION.EQ.10) THEN ST=9*NPART/DIVIDE+1 MU=10FILEA=466 ELSEIF (SECTION.EQ.11) THEN ST=10*NPART/DIVIDE+1 MU=11 FILEA=467 ELSEIF (SECTION.EQ.12) THEN ST=11*NPART/DIVIDE+1 MU=12FILEA=468 ELSEIF (SECTION.EQ.13) THEN ST=12*NPART/DIVIDE+1 MU=13FILEA=469 ELSEIF (SECTION.EO.14) THEN ST=13*NPART/DIVIDE+1 MU=14FILEA=470 ELSEIF (SECTION.EQ.15) THEN ST=14*NPART/DIVIDE+1 MU=15FILEA=471 ELSEIF (SECTION.EQ.16) THEN ST=15*NPART/DIVIDE+1 MU=16FILEA=472 ELSEIF (SECTION.EQ.17) THEN ST=16*NPART/DIVIDE+1

MU=17FILEA=473 ELSEIF (SECTION.EQ.18) THEN ST=17*NPART/DIVIDE+1 MII = 1.8FILEA=474 ELSEIF (SECTION.EQ.19) THEN ST=18*NPART/DIVIDE+1 MU = 1.9FILEA=475 ELSEIF (SECTION.EQ.20) THEN ST=19*NPART/DIVIDE+1 MU=20FILEA=476 ELSEIF (SECTION.EQ.21) THEN ST=20*NPART/DIVIDE+1 MU=21FILEA=477 ELSEIF (SECTION.EQ.22) THEN ST=21*NPART/DIVIDE+1 MU=22FILEA=478 ELSEIF (SECTION.EQ.23) THEN ST=22*NPART/DIVIDE+1 MU=23FILEA=479 ELSEIF (SECTION.EQ.24) THEN ST=23*NPART/DIVIDE+1 MU=24FILEA=480 ELSEIF (SECTION.EQ.25) THEN ST=24*NPART/DIVIDE+1 MU=25FILEA=481 ELSE PRINT *, 'ERROR, NO SECTION NUMBER SPECIFIED' GOTO 237

```
ENDIF
```

C SPLIT is defined as the diameter of the entrance
 C section of the duct divided by the total number of
 C particles entering the duct (+1). This number is
 C used to determine at which position the particles
 C are at when they enter the duct, assuming a uniform
 C distribution of particles at the entrance.

SPLIT=ENTRSZ/(100+1)

C Define the initial conditions for all of the C particles in this loop 113...there are NPART initial C conditions, representing one set of initial

С conditions per particle (for NPART total particles). С The entrance flow is taken as parabolic, fully С developed. However, this can be changed be changing С the equation for U(III,0). The dimensions of the С region are such that the lowest portion of the С entrance is at the coordinates x=0.0, y=2.0YO=-1.0+SPLIT DO 113 III=1, NPART x(III, 0) = 0.0y(III, 0) = YO + 3.0Z(III,0)=SQRT(x(III,0)**2+y(III,0)**2) U(III,0)=1.5*(1-((y(III,0)-3.0)**2)) V(III, 0) = 0.0A(III, 0) = U(III, 0)B(III, 0) = 0.0YO=YO+SPLIT IF (y(III,0).EQ.4.0) U(III,0)=0.0 IF (y(III,0).EQ.2.0) U(III,0)=0.0 113 CONTINUE С Now that ALL of the initial conditions have been С defined and are located in the arrays of loop 113, С one particle at a time is examined until it either С exits the duct or is deposited on the duct. С Loop 114 controls which particle number is being C examined DO 114 IVI=ST, MU*NPART/DIVIDE DIVIDER=1.0 JJJJ=0PRINT *, ' ' PRINT *, 'Now Analyzing Particle Number', IVI IF (IPRINT.EQ.1) PRINT *, 'DIVIDER=', DIVIDER WRITE (FILEA, *) IVI С The Runge-Kutta 4th order equations are as follows, С for x,y,A,B С С dx/dT = AС S*dA/DT=U-A С Ċ dy/dT=BС S*dB/dT=V-B-G Ċ С С The values of the constants for the Runge-С Kutta equations are given the names K1, K2, С K3, K4, K11, K21, K31, K41, K12, K22, K32,

С

С

С

С

С

С

С

С

С

С

C C

С

С

С

С

position; when the radius is less than 2.0 or greater than 4.0, the particle is outside of the region of the duct. ZZ=SQRT(x(IVI,0)**2+y(IVI,0)**2) IF (ZZ.LE.2.0.OR.ZZ.GE.4.0) THEN PRINT *, 'Particle ', IVI,' was deposited' PRINT *, 'before ever entering the duct' x(IVI,I+1) = x(IVI,I)y(IVI,I+1) = y(IVI,I)I = -1GOTO 23 ENDIF Loop 12 examines the particle IVI...only that particle is looked at. This loop analyzes one particle at a time. Loop 12 determines when the particle has been deposited/exits. dT is a variable; it is defined by the equation dT=dx/Up, where Up is the velocity of the particle in the u-direction and dx is the change in the x-position; take an initial value of dT=0.01. If dx/Up=0.0, then dT=dy/VpThis analysis is based upon an entrance velocity

K42, K112, K212, K312, K412

dT (a variable) is the time step after which

the particle will move to a new computed

ZZ is the initial radius of the particle's

location, using the R-K equations

distribution with the velocity in the y-direction initially equal to 0.0 (V). When this is not the case, the program is stopped.

67 dT=0.01 dTtotal=0.0 IF (IPRINT.EQ.1) PRINT *, 'DIVIDER=', DIVIDER DO 12 I=0,4000 IF (V(IVI,0).GT.0.000001) THEN

PRINT *,'ERROR...INITIAL V VALUE WAS NOT'
PRINT *,'EQUAL TO ZERO'
PRINT *,'FOR PARTICLE NUMBER ',IVI
PRINT *,'V(',IVI,',0)=',V(IVI,0)
GOTO 237
ENDIF

C These next four IF-THEN statements determine C whether or not the program will crash due to

C parameter specifications not being large enough.
C The program is terminated when the parameters are
C too small for the analysis.

IF (NPART.GT.MIN) THEN PRINT *, 'INCREASE MIN' PRINT *, 'NPART=', NPART, ' MIN=', MIN GOTO 237 ENDIF IF (NNM.GE. (MINA-1)) THEN PRINT *, 'INCREASE MINA SIZE' PRINT *, 'NNM=', NNM PRINT *, 'MINA=', MINA GOTO 237 ENDIF IF (I.GE.(MAX-1)) THEN PRINT *, 'INCREASE MAX SIZE' PRINT *, 'I=', I PRINT *, 'MAX=', MAX PRINT *, 'Current Posistions: x=', x(IVI, I) PRINT *, ' y=', y(IVI, I)PRINT *, ' Z = ', z(IVI, I)GOTO 237 ENDIF IF (IVI.GE.(MIN-1)) THEN PRINT *, 'INCREASE MIN SIZE' PRINT *, 'IVI=', IVI PRINT *, 'MIN=', MIN GOTO 237 ENDIF These are the variables which are used to compute the next A(IVI, I), as defined above K11=dT*(U(IVI,I)-A(IVI,I))/SK21=dT*(U(IVI, I) - (A(IVI, I) + K11/2))/SK31=dT*(U(IVI,I)-(A(IVI,I)+K21/2))/S K41=dT*(U(IVI,I)-(A(IVI,I)+K31))/SThese are the variables which are used to compute the next x(IVI, I) as defined above K1=dT*A(IVI,I)K2=dT*(A(IVI, I)+K11/2)K3 = dT * (A(IVI, I) + K21/2)K4=dT*(A(IVI,I)+K31)

С

С

С

С

С the next x(IVI,I) and the next A(IVI,I) x(IVI, I+1) = x(IVI, I) + (K1+2*K2+2*K3+K4)/6A(IVI, I+1) = A(IVI, I) + (K11+2*K21+2*K31+K41)/6С These are the variables which are used to compute С the next B(IVI, I), as defined above K112=dT*(V(IVI,I)-B(IVI,I)-G)/SK212=dT*(V(IVI,I)-(B(IVI,I)+K112/2)-G)/S K312=dT*(V(IVI,I)-(B(IVI,I)+K212/2)-G)/S K412=dT*(V(IVI,I)-(B(IVI,I)+K312)-G)/S С These are the variables which are used to compute С the next y(IVI, I) as defined above K12=dT*B(IVI,I)K22=dT*(B(IVI, I)+K112/2)K32 = dT * (B(IVI, I) + K212/2)K42 = dT * (B(IVI, I) + K312)С These are the equations to compute the values of С the next y(IVI, I) and the next B(IVI, I) y(IVI,I+1)=y(IVI,I)+(K12+2*K22+2*K32+K42)/6 B(IVI, I+1) = B(IVI, I) + (K112+2*K212+2*K312+K412)/6С The program stops when one of the following С conditions are met: (Z is the radius of the С particle's position) Z(IVI, I+1) = SQRT(x(IVI, I+1) * 2+y(IVI, I+1) * 2)С The particle incorrectly exits through the inlet IF (x(IVI, I+1).LT.0.0) THEN PRINT *, ' ' PRINT *, 'Error....x is less than zero' PRINT *, 'x=', x(IVI, I+1) PRINT *, 'y=', y(IVI, I+1) PRINT *, 'z=', z(IVI, I+1) PRINT *, 'dT=', dT PRINT *, ' ' GOTO 237 С The particle hits the lower circular wall ELSEIF (x(IVI, I+1).GT.0.0.AND.x(IVI, I+1).LE.2.0.AND * .Z(IVI, I+1).LE.2.01.AND.y(IVI, I+1).GT.0.0) THEN GOTO 23 С The particle hits the upper circular wall

ELSEIF (x(IVI,I+1).GT.0.0.AND.x(IVI,I+1).LE.4.0.AND * .Z(IVI, I+1).GE.3.99.AND.y(IVI, I+1).GT.0.0) * THEN GOTO 23 ELSEIF (x(IVI,I+1).GT.0.0.AND.x(IVI,I+1).GT.4.0.AND * .Z(IVI,I+1).GE.3.99.AND.y(IVI,I+1).GT.0.0) * THEN GOTO 23 С The particle successfully exits the duct through С the lower section ELSEIF (y(IVI,I+1).LE.-2.0.AND.x(IVI,I+1).GT.2.0. AND.x(IVI,I+1).LT.4.0) THEN GOTO 23 С The particle hits the left vertical section at the С exit region ELSEIF (x(IVI,I+1).LE.2.0.AND.y(IVI,I+1).GE.-2.0. * AND.y(IVI,I+1).LE.0.0) THEN GOTO 23 С The particle hits the right vertical section at the С exit region ELSEIF (x(IVI,I+1).GE.4.0.AND.y(IVI,I+1).GE.-2.0. * AND.y(IVI,I+1).LE.0.0) THEN GOTO 23 ENDIF С If the program gets to this point, then the particle С is still in the duct. Velocity computations will be С performed as follows... С Ĉ From here, the four closest nodes to the element С must be identified. С Ĉ First determine, based upon the radius of the С particle's current position, which nodes are above С and below the particle at the entrance region when С the particle is in the 90 degree turn of the domain. С С NUMBER is the number of nodes at the entrance NUMBER=NOD (NNM) /N KUPN=1 DO 319 KUP=1, NUMBER

IF (POS(KUPN, 2).LE.Z(IVI, I+1)) THEN MINNOD=NOD(KUPN) ELSE MAXNOD=NOD(KUPN) GOTO 321 ENDIF KUPN=KUPN+N IF (KUPN.GE.MINA-1) THEN PRINT *, 'INCREASE MINA SIZE' PRINT *, 'KUPN(LOOP 319) =', KUPN GOTO 237 ENDIF IF (MINNOD.GT.1000) THEN PRINT *, ' ' PRINT *, ' ' PRINT *, 'MINNOD IS TOO HIGH' PRINT *, ' ' PRINT *, 'CHANGE THE VALUE OF THE PARAM. MIN' PRINT *, ' ' PRINT *, 'MINNOD>NNM' PRINT *, 'MINNOD=', MINNOD PRINT *, 'KUPN=', KUPN PRINT *, 'NOD(KUPN) = ', NOD(KUPN) PRINT *, 'POS(KUPN, 2) = ', POS(KUPN, 2) PRINT *, 'Z(', IVI, ', ', I+1, ') = ', Z(IVI, I+1) GOTO 237 ENDIF 319 CONTINUE 321 MINNOD3=MINNOD MAXNOD3=MAXNOD If the particle is in the 90 degree turn of the domain, loop 385 will determine which nodes are the four closest nodes to the particle DO 385 KJ=1, (LOOPNDS-1) IF (POS(MINNOD3,1).LE.x(IVI,I+1).AND.POS * (MAXNOD3, 2).GE.y(IVI, I+1).AND.POS (MINNOD3+1,2).LE.y(IVI,I+1).AND.POS * * (MAXNOD3+1,1).GE.x(IVI,I+1)) THEN LU(I+1) = MAXNOD3RU(I+1) = MAXNOD3+1LL(I+1) = MINNOD3RL(I+1) = MINNOD3 + 1GOTO 326 ELSE

С

С

С

MINNOD3=MINNOD3+1

MAXNOD3=MAXNOD3+1

ENDIF

385 CONTINUE

PHI=PI/4 MINNOD2=MINNOD

C When the point is passed the 90 degree turn, then C it must be located in the exit vertical section of C the duct...Here, first define which nodes the point C lies between on the x-axis (where y=0 in loop 325).

```
LOOPNDS2=LOOPNDS
```

DO 325 KWP=1,N IF (POS(LOOPNDS2,1).GT.x(IVI,I+1)) THEN MAXNOD4=LOOPNDS2 MINNOD4=LOOPNDS2-N LEFTN=MINNOD4 RIGHTN=MAXNOD4 GOTO 361

ELSE

LOOPNDS2 = LOOPNDS2 + N

ENDIF

IF (LOOPNDS2.GT.NNM) THEN WRITE (FILEA,*) 'ERROR' WRITE (FILEA,*) 'SEE LOOP 325' PRINT *,' ' PRINT *,' '
PRINT *, ' '
PRINT *, 'LOOP 325 ERROR'
PRINT *, 'Program Says the Point'
PRINT *, 'is passed the'
PRINT *, '90 degree turn '
PRINT *, 'LOOPNDS2=', LOOPNDS2
PRINT *, 'LOOPNDS2>NNM'
PRINT *, 'x(', IVI, ', ', 'I+1) = ', x(IVI, I+1)
PRINT *, 'y(', IVI, ', ', 'I+1) =', y(IVI, I+1)
PRINT *, 'Z(', IVI, ', ', 'I+1) = ', Z(IVI, I+1)
PRINT *, 'I+1=', (I+1)
PRINT *, 'POS(LOOPNDS2-N, 1) = '
PRINT *, ' ', POS (LOOPNDS2-N, 1)
PRINT *, 'PROGRAM TERMINATED'
PRINT *,' '
PRINT *,' '
PRINT *, ' '
PRINT *,'ADJUST PARAMETER MIN ' PRINT *,'dT=',dT
PRINT *, ' ' PRINT *, ' '
PRINT *, ' '
GOTO 237
ENDIF

C At this point, move through the nodes beginning C with MINNOD4...increase the value of MINNOD4 up to C N; the four closest nodes are found when y(I+1) is greater than the value of MINNOD4's y value (exit C vertical section of the duct only).

361 DO 562 III=1,N

IF (POS(MINNOD4,2).LE.y(IVI,I+1)) THEN
 LL(I+1)=MINNOD4
 LU(I+1)=MINNOD4-1
 RU(I+1)=LU(I+1)+N
 RL(I+1)=RU(I+1)+1

IF ((LU(I+1)+N).GT.NNM) THEN
LU(I+1)=LU(I+1)-N
LL(I+1)=LU(I+1)+1
RU(I+1)=LU(I+1)+N
RL(I+1)=RU(I+1)+1

ENDIF

GOTO 326

ELSE

MINNOD4=MINNOD4+1

ENDIF 562 CONTINUE

C From here, the velocity of the particle must be c computed based upon the four closest nodes and how close the particle is to each of those four nodes. C Interpolation is performed based upon elements with two circular portions and two straight line portions. C

C RTOP is the radius of the top of the element
C RBOT is the radius of the bottom of the element
C RPAR is the radius of the particle's position
C

326 RTOP=SQRT((POS(LU(I+1),1)**2+POS(LU(I+1),2)**2)) RBOT=SQRT((POS(LL(I+1),1)**2+POS(LL(I+1),2)**2)) RPAR=SQRT((x(IVI,I+1)**2+y(IVI,I+1)**2))

C This is the case where the element is located in C the 90 degree turn of the mesh...Note the special C "if-then" statements for the cases where the mesh has a horizontal or vertical line in it.

IF (y(IVI, I+1).GT.0.0) THEN

CI=(RPAR-RBOT)/(RTOP-RBOT) XL=(POS(LU(I+1),1)-POS(LL(I+1),1))*CI+POS(LL(I+1),1)

```
YL = (POS(LU(I+1), 2) - POS(LL(I+1), 2)) * CI + POS(LL(I+1), 2)
XR = (POS(RU(I+1), 1) - POS(RL(I+1), 1)) * CI + POS(RL(I+1), 1)
YR = (POS(RU(I+1), 2) - POS(RL(I+1), 2)) * CI + POS(RL(I+1), 2)
UL=(VEL(LU(I+1),1)-VEL(LL(I+1),1))*CI+VEL(LL(I+1),1)
UR=(VEL(RU(I+1),1)-VEL(RL(I+1),1))*CI+VEL(RL(I+1),1)
VL=(VEL(LU(I+1),2)-VEL(LL(I+1),2))*CI+VEL(LL(I+1),2)
VR=(VEL(RU(I+1),2)-VEL(RL(I+1),2))*CI+VEL(RL(I+1),2)
       IF (XL.EO.0.0) THEN
             THETA1=1.571
       ELSE
             THETA1=ATAN(YL/XL)
       ENDIF
       IF (YR.EO.0.0) THEN
             THETA3 = 0.0
       ELSE
             THETA3 = ATAN (YR/XR)
       ENDIF
THETA2=ATAN(y(IVI, I+1)/x(IVI, I+1))
PHI1=THETA1-THETA2
PHI2=THETA2-THETA3
ARCLP=RPAR*PHI1
ARCPR=RPAR*PHI2
ARCLR=ARCLP+ARCPR
ARC4B=RBOT*PHI1
ARCB3=RBOT*PHI2
ARC1T=RTOP*PHI1
ARCT2=RTOP*PHI2
CIT=ARC1T/(ARC1T+ARCT2)
 CIB=ARC4B/(ARC4B+ARCB3)
 CIP=ARCLP/(ARCLP+ARCPR)
XT = (POS(RU(I+1), 1) - POS(LU(I+1), 1)) *
*
      CIT+POS(LU(I+1), 1)
YT = (POS(RU(I+1), 2) - POS(LU(I+1), 2)) *
*
      CIT+POS(LU(I+1), 2)
XB = (POS(RL(I+1), 1) - POS(LL(I+1), 1)) *
      CIB+POS(LL(I+1), 1)
 YB = (POS(RL(I+1), 2) - POS(LL(I+1), 2)) *
      CIB+POS(LL(I+1), 2)
UT = (VEL(RU(I+1), 1) - VEL(LU(I+1), 1)) *
      CIT+VEL(LU(I+1), 1)
 UB = (VEL(RL(I+1), 1) - VEL(LL(I+1), 1)) *
      CIB+VEL(LL(I+1), 1)
 VT = (VEL(RU(I+1), 2) - VEL(LU(I+1), 2)) *
      CIT+VEL(LU(I+1), 2)
```

```
VB=(VEL(RL(I+1),2)-VEL(LL(I+1),2))*
*
      CIB+VEL(LL(I+1), 2)
 UHORIZ=(UR-UL)*CIP+UL
 UVERT = (UT - UB) * CI + UB
 U(IVI, I+1) = (UHORIZ+UVERT)/2
 VHORIZ=(VR-VL) *CIP+VL
 VVERT = (VT - VB) * CI + VB
 V(IVI, I+1) = (VHORIZ+VVERT)/2
 ENDIF
 This is the case when the mesh is in the exit
 vertical section of the duct
 IF (y(IVI, I+1).LT.0.0) THEN
   YR=y(IVI,I+1)
   YL=Y(IVI,I+1)
   XT = x(IVI, I+1)
   XB = x(IVI, I+1)
   XL = POS(LU(I+1), 1)
   XR = POS(RU(I+1), 1)
   YT = POS(LU(I+1), 2)
   YB = POS(LL(I+1), 2)
   CIV = (YL - POS(LL(I+1), 2)) / (POS(LU(I+1), 2))
*
         -POS(LL(I+1), 2))
   CIH = (XT - POS(LU(I+1), 1)) / (POS(RU(I+1), 1))
*
         -POS(LU(I+1),1))
   UL=(VEL(LU(I+1),1)-VEL(LL(I+1),1))*CIV+
*
        VEL(LL(I+1), 1)
   UR=(VEL(RU(I+1),1)-VEL(RL(I+1),1))*CIV+
*
        VEL(RL(I+1),1)
   VL=(VEL(LU(I+1),2)-VEL(LL(I+1),2))*CIV+
        VEL(LL(I+1), 2)
*
   VR=(VEL(RU(I+1),2)-VEL(RL(I+1),2))*CIV+
*
        VEL(RL(I+1), 2)
   UT=(VEL(RU(I+1),1)-VEL(LU(I+1),1))*CIH+
        VEL(LU(I+1),1)
*
   UB = (VEL(RL(I+1), 1) - VEL(LL(I+1), 1)) * CIH+
*
        VEL(LL(I+1), 1)
   VT = (VEL(RU(I+1), 2) - VEL(LU(I+1), 2)) * CIH+
*
        VEL(LU(I+1), 2)
   VB = (VEL(RL(I+1), 2) - VEL(LL(I+1), 2)) * CIH +
*
        VEL(LL(I+1),2)
   UHORIZ=(UR-UL) *CIH+UL
   UVERT = (UT - UB) * CIV + UB
```

С

С

```
U(IVI, I+1) = (UHORIZ+UVERT)/2
          VHORIZ=(VR-VL)*CIH+VL
          VVERT = (VT - VB) * CIV + VB
          V(IVI, I+1) = (VHORIZ+VVERT)/2
        ENDIF
        IF (y(IVI, I+1).EQ.0.0) THEN
               CIH = (x(IVI, I+1) - POS(LEFTN, 1)) / (POS(RIGHTN, 1))
                    -POS(LEFTN, 1))
               U(IVI, I+1) = (VEL(RIGHTN, 1) - VEL(LEFTN, 1)) * CIH+
                           VEL(LEFTN, 1)
               V(IVI, I+1) = (VEL(RIGHTN, 2) - VEL(LEFTN, 2)) * CIH+
                           VEL(LEFTN, 2)
        ENDIF
С
        dT is a variable; it is defined by the equation
С
        dT=dx/Up, where Up is the velocity of the particle
С
        in the u-direction and dx is the change in the
С
        x-position. If dT is equal to zero, then dT=dy/Vp
С
        is used.
С
С
        DIVIDER is a number used to adjust the value of dT
С
        so that the number of iterations will converge to
С
        a certain value (in this analysis, 2000-3000
С
        iterations were desired).
        dT = ABS((x(IVI, I+1) - x(IVI, I))/(U(IVI, I+1)))
        IF (dT.EO.0.0) THEN
               dT=ABS((y(IVI,I+1)-y(IVI,I))/(V(IVI,I+1)))
        ENDIF
        dT=dT/DIVIDER
С
        Adjust these statements if number of iterations are
С
        too small or too large
С
С
        Smaller dTmax gives more iterations
C
        Smaller dTmin gives more iterations
        dTmax=0.1
                                 dT=dTmax
        IF (dT.GT.
                     dTmax)
        dTmin=0.005
                                 dT=dTmin
        IF (dT.LT.
                    dTmin)
        Since the particles which initially have a greater
С
С
        y-value than their previous counterparts should not
С
        land at a location further downstream than the
        previous particle, the program will stop when this
С
С
        occurs; usually at the top portion of particles,
C
        section 25....the particle is assumed to be
```

135

```
deposited if the radius is greater than 3.98 (less
than 4.0 due to round-off errors)
dTtotal=dTtotal+dT
IF (IVI.GT.1) THEN
IF (xFINAL.EQ.0.0.AND.yFINAL.EQ.0.0) THEN
    PRINT *, 'xFINAL=yFINAL=0.0'
    PRINT *, 'Enter the values of the previous '
    PRINT *, 'particles final positions, particle #'
    PRINT *, '
                                  ', IVI-1
    PRINT *, 'xFINAL for particle ', IVI-1, ' ='
    READ *, xFINAL
    PRINT *, 'yFINAL for particle ', IVI-1, ' ='
    READ *, yFINAL
ENDIF
ENDIF
zFINAL=SQRT(xFINAL**2+yFINAL**2)
IF (IVI.NE.1) THEN
IF(IVI.GT.50.AND.yFINAL.GT.0.0.AND.zFINAL.GT.
     3.98) THEN
IF(x(IVI,I+1).GT.xFINAL.OR.y(IVI,I+1).LT.yFINAL)
*
    THEN
IF(Z(IVI, I+1).GT.3.98.AND.y(IVI, I+1).GT.0.0.AND.I.
* GT.0) THEN
IF (IPRINT.EO.1) THEN
  PRINT *, ' -----'
  PRINT *, 'Particle # ', IVI, ' has been deposited'
   PRINT *, 'by default'
   PRINT *, 'xFINAL=', xFINAL, ' yFINAL=', yFINAL
ENDIF
 IF(xFINAL.EQ.0.0.AND.yFINAL.EQ.0.0) THEN
   PRINT *, 'START AT A DIFFERENT SECTION'
   PRINT *, 'BECAUSE xFINAL=yFINAL=0.0'
  GOTO 237
 ENDIF
x(IVI, I+1) = x(IVI, I)
 y(IVI, I+1) = y(IVI, I)
 z(IVI, I+1) = z(IVI, I)
 IF (IPRINT.EQ.1) THEN
  PRINT *, ' -----'
 ENDIF
 GOTO 23
 ENDIF
 ENDIF
 ENDIF
 ENDIF
```

C C Here the program checks if the number of iterations (I) are more than a preset maximum limit (currently at 3000). If this occurs during the first run, the program decreases the value of DIVIDER, thereby decreasing the number of iterations, since dT is proportional to 1/DIVIDER, and larger dT gives less iterations.

```
IF (I.GT.3000) THEN
IF (IPRINT.EQ.1) THEN
   PRINT *, 'Iterations>3000...Go for another round!'
   PRINT *, 'Reanalyzing Particle Number ', IVI
   PRINT *, 'Iterations (I) were ', I
   PRINT *, 'Current positions are:x=',x(IVI,I+1)
   PRINT *, '
                                  y=', y(IVI, I+1)
                                   z = ', z (IVI, I+1)
   PRINT *, '
   PRINT *, 'dT=', dT
   PRINT *, ' '
ENDIF
IF (JJJJ.EO.1) THEN
   PRINT *, ' '
   PRINT *, ' '
   PRINT *, 'TOO MANY ITERATIONS!!!!'
   PRINT *, 'DIVIDER=', DIVIDER
   PRINT *, 'Decrease DINCRE; DINCRE=', DINCRE
   PRINT *, 'I=', I
   PRINT *, 'dTavg=', dTtotal/I
   GOTO 237
ELSE
   DIVIDER=DIVIDER-0.05
   IF (DIVIDER.LT.0.49) THEN
      PRINT *, 'DIVIDER TOO LOW!'
      GOTO 237
   ENDIF
   PRINT *, 'DIVIDER=', DIVIDER, ' >3000...REDO!!
             dTavg=',dTtotal/I
+
   GOTO 67
ENDIF
IF(IPRINT.EQ.1)THEN
  PRINT *,' '
ENDIF
This statement checks that x is always greater than
0.0, since at the entrance x=0.0 and the particle
must move forward to make sense physically
 IF (x(IVI,I+1).LT.0.0) THEN
   PRINT *,'ERROR!!! x is less than zero'
```

C C C

GOTO 237

ENDIF

ENDIF

12 CONTINUE

C C

С

С

С

С

CCCCCC

C C C

С

С

С

С

С

After the particle has been deposited or exits the duct, this loop checks if the number of iterations are less than a preset amount (currently set at 2000). If this is the case, then the value of the variable DIVIDER must be increased so that dT (proportional to 1/DIVIDER) will be decreased and the number of iterations will therefore be increased. DIVIDER is increased by an amount DINCRE, which has a smaller and smaller value as the number of iterations become closer and closer to the preset minimum (2000 in this case).

dTavg is the average value of dT throughout the analysis

23	IF	(I.LT.2000) THEN
		dTavg=dTtotal/I
986		<pre>PRINT *, 'I=',I,' DIVIDER=', DIVIDER, ' PART#', IVI</pre>
	*	' dTavg=',dTavg
51		IF (IPRINT.EQ.1) THEN
		<pre>PRINT *,'Iterations<2000Trying Again!'</pre>
		PRINT *,'Iterations (I) were ',I
		PRINT *,'Reanalyzing Particle Number ',IVI
		ENDIF

JJJJ=1

Since dT=dT/DIVIDER, to increase the number of iterations, DINCRE should be increased; to decrease the number of iterations, DINCRE should be decreased (DIVIDER=DIVIDER+DINCRE)

IF	(I.GE.O)	DINCRE=0.01
IF	(I.GE.50)	DINCRE=0.005
IF	(I.GE.90)	DINCRE=0.003
IF	(I.GE.500)	DINCRE=0.001
IF	(I.GE.800)	DINCRE=0.00005
IF	(I.GE.1200)	DINCRE=0.00002
IF	(I.GE.1800)	DINCRE=0.00001

DIVIDER=DIVIDER+DINCRE

```
PRINT *,'
PRINT *,'
                for particle # ',IVI
                              dTavq=',dTavq
  PRINT *, 'NEW DIVIDER=', DIVIDER, ' I=', I
  _ _ _ _ /
  PRINT *,' '
ENDIF
GOTO 67
ENDIF
This loop checks to see if the particle has landed
further downstream than its predecessor. This may
occur when the values of dTavg for two consecutive
particles differ by a very large amount.
                                        The
program is terminated at this point when this
occurs, and the values of dT must be checked.
IF (IVI.GT.1) THEN
IF(x(IVI, I+1).GT.xFINAL.OR.y(IVI, I+1).LT.yFINAL)THEN
IF (x(IVI, I+1).LT.4.0) THEN
IF(y(IVI,I+1).GT.-2.0)THEN
  PRINT *,' '
  PRINT *,'***Must reanalyze because the particle'
  PRINT *, '***landed further downstream than its*'
   PRINT *, ' '
   zFINAL=SQRT((xFINAL**2)+(yFINAL**2))
   PRINT *, 'PREDECESSORS LOCATION (FINAL): '
  PRINT *, '
                      xpred=', xFINAL
  PRINT *, '
                      ypred=',yFINAL
  PRINT *, '
                     zpred=', zFINAL
  PRINT *, 'Current particles location:'
            xcurrent=',x(IVI,I+1)
   PRINT *,'
  PRINT *,'
                     ycurrent=',y(IVI,I+1)
  PRINT *,'
                     zcurrent=', z(IVI, I+1)
   PRINT *,'
                              I = ', I
   PRINT *,' '
   PRINT *, 'TERMINATING PROGRAM!!!!'
   PRINT *, ' '
   PRINT *, 'Particle was further downstream'
   PRINT *, 'than its predecessor....END!!'
  GOTO 237
ENDIF
ENDIF
ENDIF
ENDIF
dTavg=dTtotal/I
Here the output is written to the data files which
will be later analyzed by the program
```

C "particlesout.f".

С

С

```
WRITE (FILEA, *) x(IVI,0)
WRITE (FILEA, *) y(IVI,0)
WRITE (FILEA, *) U(IVI,0)
WRITE (FILEA, *) V(IVI, 0)
WRITE (FILEA, *) x(IVI,I+1)
WRITE (FILEA, *) y(IVI, I+1)
zFINAL=SQRT((xFINAL**2)+(yFINAL**2))
PRINT *, I+1, ' Equations Solved for particle ', IVI
PRINT *, 'The final positions are:
                                        x=', x(IVI, I+1)
PRINT *,
                                         y=', y(IVI, I+1)
PRINT *, '
                                         z=', z(IVI, I+1)
PRINT *, '
                                  DIVIDER=', DIVIDER
PRINT *, '
                                    dTavg=',dTavg
WRITE (FILEA, *) (I+1)
IF (y(IVI, I+1).GE.-2.0) THEN
    PRINT *, ' '
    PRINT *, '*******D E P O S I T E D*********
    PRINT *, ' '
ENDIF
xFINAL=x(IVI,I+1)
yFINAL=y(IVI,I+1)
IF (x(IVI, I+1).LT.0.0) THEN
    PRINT *, 'ERROR!!! x is less than zero'
    GOTO 237
ENDIF
CONTINUE
CONTINUE
FORMAT (E12.4, 5X, E12.4, 5X, E12.4, 5X, E12.4)
FORMAT (//, 'x(I)', 15X, 'A(I)', 15X, 'y(I)', 15X, 'B(I)')
 FORMAT (80(' '))
FORMAT (4(E12.4,5X))
FORMAT (/)
FORMAT (80(' '))
 FORMAT (//, 'ULU', 15X, 'ULL', 15X, 'URU', 15X, 'URL')
 FORMAT (//, 'VLU', 15X, 'VLL', 15X, 'VRU', 15X, 'VRL')
 FORMAT (//, 'UFINAL
                                      VFINAL')
FORMAT (E12.4,4X,E12.4,5X,E12.4,5X,I5)
FORMAT (/, 3X, 'PARTICLE #', X, 'XINIT', 11X, 'YINIT',
*
         17X, 'UINIT', 12X, 'VINIT', 10X, 'XFINAL', 5X,
          'YFINAL')
FORMAT (/, 3X, 'I', 5X, 'LEFT UPPER', 4X, 'RIGHT UPPER',
          4X, 'LEFT LOWER', 4X, 'RIGHT LOWER')
*
FORMAT (14, 3X, E12.4, 3X, E12.4, 3X, E12.4, 3X, E12.4,
*
          3X, E12.4)
 FORMAT (5(/))
FORMAT (I4, 3X, E6.4, 3X, E6.4, 3X, E6.4, 3X, E6.4, 3X,
*
         E6.4,3X,E6.4)
```

237 END

114

283

100

101

102

103 104

105

106

107

108

110

111

112

199

285

APPENDIX H

PROGRAM "particlesout.f" WITH OUTPUT "particles.output"

С С Program "particlesout.f" С С written by Pantaleo Loiacono С February 1996 С С This program analyzes the output from the program С "particles.f"; it determines the particle C deposition percentage in a 90 degree duct bend. DIMENSION NP(1000), PI(1000,2), VI(1000,2), PF(1000,2) DIMENSION ITN(2000), Z(1000), DEPOSIT(100), DEP(100) DIMENSION PHIP(150), PDEP(100), REALDEP(100) REAL PIE OPEN (UNIT=8, FILE='particles.output', STATUS='OLD') OPEN (UNIT=457, FILE='particles1.out', STATUS='OLD') OPEN (UNIT=458, FILE='particles2.out', STATUS='OLD') OPEN (UNIT=459, FILE='particles3.out', STATUS='OLD') OPEN (UNIT=460, FILE='particles4.out', STATUS='OLD') OPEN (UNIT=461, FILE='particles5.out', STATUS='OLD') OPEN (UNIT=462, FILE='particles6.out', STATUS='OLD') OPEN (UNIT=463, FILE='particles7.out', STATUS='OLD') OPEN (UNIT=464, FILE='particles8.out', STATUS='OLD') OPEN (UNIT=465, FILE='particles9.out', STATUS='OLD') OPEN (UNIT=466, FILE='particles10.out', STATUS='OLD') OPEN (UNIT=467, FILE='particles11.out', STATUS='OLD') OPEN (UNIT=468, FILE='particles12.out', STATUS='OLD') OPEN (UNIT=469, FILE='particles13.out', STATUS='OLD') OPEN (UNIT=470, FILE='particles14.out', STATUS='OLD') OPEN (UNIT=471, FILE='particles15.out', STATUS='OLD') OPEN (UNIT=472, FILE='particles16.out', STATUS='OLD') OPEN (UNIT=473, FILE='particles17.out', STATUS='OLD') OPEN (UNIT=474, FILE='particles18.out', STATUS='OLD') OPEN (UNIT=475, FILE='particles19.out', STATUS='OLD') OPEN (UNIT=476, FILE='particles20.out', STATUS='OLD') OPEN (UNIT=477, FILE='particles21.out', STATUS='OLD') OPEN (UNIT=478, FILE='particles22.out', STATUS='OLD') OPEN (UNIT=479, FILE='particles23.out', STATUS='OLD') OPEN (UNIT=480, FILE='particles24.out', STATUS='OLD') OPEN (UNIT=481, FILE='particles25.out', STATUS='OLD') OPEN (UNIT=45, FILE='particles.info', STATUS='OLD')

PIE=3.14159265359

C * * * * DATA ANALYSIS * * * * * C Here the Values of the initial conditions and the С final positions are put into arrays...Dependent on С Divisions READ (45,*) S,G,NPART,DIVIDE,dT DO 509 ISECTN=1, DIVIDE SECTION=ISECTN IF (SECTION.EO.1) THEN ST=1MU=1FILEA=457 ELSEIF (SECTION.EQ.2) THEN ST=NPART/DIVIDE+1 MU=2FILEA=458 ELSEIF (SECTION.EQ.3) THEN ST=2*NPART/DIVIDE+1 MU=3FILEA=459 ELSEIF (SECTION.EQ.4) THEN ST=3*NPART/DIVIDE+1 MU=4FILEA=460 ELSEIF (SECTION.EO.5) THEN ST=4*NPART/DIVIDE+1 MU=5FILEA=461 ELSEIF (SECTION.EQ.6) THEN ST=5*NPART/DIVIDE+1 MU=6FILEA=462 ELSEIF (SECTION.EQ.7) THEN ST=6*NPART/DIVIDE+1 MU = 7FILEA=463 ELSEIF (SECTION.EQ.8) THEN ST=7*NPART/DIVIDE+1 MU = 8FILEA=464 ELSEIF (SECTION.EQ.9) THEN ST=8*NPART/DIVIDE+1 MU=9FILEA=465 ELSEIF (SECTION.EQ.10) THEN ST=9*NPART/DIVIDE+1 MU=10FILEA=466 ELSEIF (SECTION.EQ.11) THEN ST=10*NPART/DIVIDE+1 MU=11FILEA=467 ELSEIF (SECTION.EQ.12) THEN ST=11*NPART/DIVIDE+1

```
MU=12
    FILEA=468
ELSEIF (SECTION.EQ.13) THEN
    ST=12*NPART/DIVIDE+1
    MU=13
    FILEA=469
ELSEIF (SECTION.EQ.14) THEN
    ST=13*NPART/DIVIDE+1
    MU=14
    FILEA=470
ELSEIF (SECTION.EO.15) THEN
    ST=14*NPART/DIVIDE+1
    MU=15
    FILEA=471
ELSEIF (SECTION.EQ.16) THEN
    ST=15*NPART/DIVIDE+1
    MU=16
    FILEA=472
ELSEIF (SECTION.EQ.17) THEN
    ST=16*NPART/DIVIDE+1
    MU=17
    FILEA=473
ELSEIF (SECTION.EO.18) THEN
    ST=17*NPART/DIVIDE+1
    MU=18
    FILEA=474
ELSEIF (SECTION.EQ.19) THEN
    ST=18*NPART/DIVIDE+1
    MU=19
    FILEA = 475
ELSEIF (SECTION.EQ.20) THEN
    ST=19*NPART/DIVIDE+1
    MU=20
    FILEA=476
ELSEIF (SECTION.EQ.21) THEN
    ST=20*NPART/DIVIDE+1
    MU=21
    FILEA=477
ELSEIF (SECTION.EO.22) THEN
    ST=21*NPART/DIVIDE+1
    MU=22
    FILEA=478
ELSEIF (SECTION.EQ.23) THEN
    ST=22*NPART/DIVIDE+1
    MU=23
    FILEA=479
ELSEIF (SECTION.EO.24) THEN
    ST=23*NPART/DIVIDE+1
    MU=24
    FILEA=480
ELSEIF (SECTION.EQ.25) THEN
    ST=24*NPART/DIVIDE+1
    MU=25
```

FILEA=481 ELSE PRINT *, 'ERROR, NO SECTION # SPECIFIED' GOTO 237 ENDIF С Read in all of the data; node point, initial С positions, initial velocities, final positions, С and number of iterations required to perform the С particle's analysis. DO 510 IREAD=ST, MU*NPART/DIVIDE READ (FILEA, *) NP(IREAD) READ (FILEA, *) (PI(IREAD, J), J=1, 2) READ (FILEA, *) (VI(IREAD, J), J=1,2) READ (FILEA, \star) (PF(IREAD, J), J=1, 2) READ (FILEA, *) ITN(IREAD) 510 CONTINUE 509 CONTINUE WRITE (8,*) 'S=',S,' G=',G,' NPART=', NPART WRITE (8,*) 'DIVIDE=',DIVIDE, WRITE (8,190) WRITE (8,105) DO 511 IJ=1, NPART WRITE (8,200) NP(IJ), PI(IJ,1), PI(IJ,2), VI(IJ,1),VI(IJ,2) CONTINUE 511 WRITE (8,104) WRITE (8,195) WRITE (8,105) С Determine the final radius of the particles; С particles which have exited the duct will have a С final radius of zero DO 581 IK=1,NPART IF (PF(IK, 2).GE. - 2.0) THEN Z(IK) = SQRT(PF(IK, 1) * *2 + PF(IK, 2) * *2)ELSE Z(IK) = 0.0ENDIF WRITE (8,210) NP(IK), ITN(IK), PF(IK,1), PF(IK, 2), Z(IK)581 CONTINUE

C NOMB is the number of sections in which theC circular 90 degree portion of the domain is broken

С

С

С

С

С

С

C

С

С

С

С

С

С

IPARDEP=0 IL=1 NOMB=16 NN=0

This section of the program examines the curve of the duct...it consists of 16 pieces. The curved portion of the duct is split into 16 regions such that there are 90 degrees/16 or 5.63 degrees (0.982 rad) in each section of this analysis. Loop 300 computes the value of PHI based on the value of JANG; PHI starts out at 90-5.63 degrees. If PHIP (the value of the particle's angle) is greater than or equal to PHI, and the particle is deposited in the 90 degree region, then the particle is considered to be deposited in that section. The analysis is continued, decreasing the value of PHI until it gets to 0.0 degrees.

> DO 300 JANG=1,NOMB IPARDEP=0 LAST=101

> > DO 582 IK=1,NPART
> > PHIP(IK)=ATAN(PF(IK,2)/PF(IK,1))
> > PHI=PIE/2.0-(PIE/2.0)*(JANG/16.0)

IF (Z(IK).GT.0.0.AND.PHIP(IK).GE.PHI.AND. PF(IK,2).GE.0.0) THEN IPARDEP=IPARDEP+1 IF (IK.LT.LAST) LAST=IK-1 ENDIF

582 CONTINUE

*

C IPARDEP is the total number of particles deposited C in a particular section of the duct. The deposition is equal to the total number of particles deposited divided by the total number of C particles at the entrance region times 100.

DEPOSIT(IL) = (IPARDEP*100.0/NPART)
DEP(IL) = DEPOSIT(IL)

C REALDEP is the deposit amount at that particular C section number... C DEPOSIT is the total deposit amount to this point C (this section and previous sections)

> IF (LAST.EQ.101) THEN LAST=0

GOTO 57 ENDIF

00000000000	A particle can be semi-depositedthat is, if particle 26 is deposited in this section, then particle 25 is semi-deposited in this section, although it's not completely in this secition as well. This is found through interpolation and becomes very useful in predicting deposition when the number of particles is increased significantly (e.g. NPART=1000+). EXTRA is the extra portion of deposition in a particular section. It is based upon the last particle's position deposited, (LAST).
57	EXTRA=(PHIP(LAST+1)-PHI)/(PHIP(LAST+1)-PHIP(LAST)) IF(JANG.EQ.NOMB)THEN AMS=PHIP(LAST+1)-PHI EXTRA=AMS/(AMS+ABS(PF(LAST,2))) IF (PF(LAST,2).LT2.0) EXTRA=0.0 ENDIF
	<pre>IF (DEP(IL).EQ.100.0) EXTRA=0.0 IF (DEPOSIT(IL-1).GT.99.0) EXTRA=0.0 IF (IPARDEP.EQ.0) EXTRA=0.0 IF (PF(LAST,2).LT2.0) EXTRA=0.0 IF (LAST.EQ.0) EXTRA=0.0 IF (DEP(IL).EQ.0.0) EXTRA=0.0</pre>
	REALDEP(IL)=DEPOSIT(IL)-DEP(IL-1)+EXTRA DEPOSIT(IL)=DEPOSIT(IL)+EXTRA PRINT *,'DEPOSIT(',IL,')=',DEPOSIT(IL),'%' PDEP(IL)=DEPOSIT(IL) IL=IL+1
300	CONTINUE
C C	This part of the program examines the straight section of the duct, consisting of 5 pieces.
	DO 310 JSTR=1,5 LAST=101 IPARDEP=0 STRSECT=-(0.4)*JSTR
C C C	A particle is considered deposited when its radius is greater than 0.0, and its final y-value is between 0.0 and the value of STRSECT
	DO 583 KI=1,NPART IF (Z(KI).GT.0.0.AND.PF(KI,2).LT.0.0.AND * .PF(KI,2).GT.STRSECT) THEN IPARDEP=IPARDEP+1

*

*

ENDIF

IF (IL-1.EQ.NOMB) THEN DEPOSIT(IL-1) = DEPOSIT(IL-1) - EXTRA ENDIF EXTRA=ABS((STRSECT-PF(LAST+1,2)) /ABS(PF(LAST,2) - PF(LAST+1,2))) DEPOSIT(IL) = (IPARDEP*100.0/NPART) + DEPOSIT(NOMB) DEP(IL) = DEPOSIT(IL)

IF (DEP(IL).EQ.100.0) EXTRA=0.0
IF (IPARDEP.EQ.0) EXTRA=0.0
IF (JSTR.EQ.5) EXTRA=0.0
IF (PF(LAST,2).LT.-2.0) EXTRA=0.0

C REALDEP is the deposit amount at that particular C section number...DEPOSIT is the total deposit C amount to this point (this section and previous C sections)

> REALDEP(IL) =DEPOSIT(IL) -DEP(IL-1) +EXTRA DEPOSIT(IL) =DEPOSIT(IL) +EXTRA PRINT *, 'DEPOSIT(',IL,') =',DEPOSIT(IL),'%' PDEP(IL) =DEPOSIT(IL) IL=IL+1

```
310 CONTINUE
```

```
DEPOSIT(16) = PDEP(16)
       WRITE (8,104)
       TOTAL=0.0
       WRITE (8,544)
       WRITE (8,105)
       WRITE (8,*) ' '
       DO 400 IPR=1, IL-1
             WRITE (8,543) IPR, REALDEP(IPR), DEPOSIT(IPR)
400
       CONTINUE
       III=NPART/100*(DEPOSIT(16)-EXTRA)
       WRITE (8,104)
       WRITE (8,*) 'Total particles deposited'
       WRITE (8,*) 'were ', III,' particles'
       WRITE (8,*) ' or ', DEPOSIT(21), ' %'
      FORMAT (3(/))
104
      FORMAT (70('_'))
105
```

190	FORMAT	(/,'PARTICLE #',3X,'XINIT',12X,'YINIT',12X,
	*	'UINIT', 12X, 'VINIT')
195	FORMAT	(/, 'PARTICLE #', 5X, 'ITERATIONS', 5X, 'XFINAL',
	*	10X, 'YFINAL', 12X, 'Z (IF APPLICABLE)')
200	FORMAT	(I5,5X,E12.4,5X,E12.4,5X,E12.4,5X,E12.4)
210	FORMAT	(I5, 10X, I5, 5X, E12.4, 5X, E12.4, 5X, 5X, E12.4)
543	FORMAT	(I3,10X,E12.5,10X,E12.5)
544	FORMAT	(/, 'LOCATION', 5X, 'DEP % HERE ONLY', 9X,
	*	TOTAL DEPOSIT %()

237 END

S= 5.00000 G= 0.0 NPART= 100 DIVIDE= 25.0000

PART#	XINIT	YINIT	UINIT	VINIT
1	0.0000E+00	0.2020E+01	0.5882E-01	0.0000E+00
2	0.0000E+00	0.2040E+01	0.1165E+00	0.0000E+00
3	0.0000E+00	0.2059E+01	0.1729E+00	0.0000E+00
4	0.0000E+00	0.2079E+01	0.2282E+00	0.0000E+00
5	0.0000E+00	0.2099E+01	0.2823E+00	0.0000E+00
6	0.0000E+00	0.2119E+01	0.3353E+00	0.0000E+00
7	0.0000E+00	0.2139E+01	0.3870E+00	0.0000E+00
8	0.0000E+00	0.2158E+01	0.4376E+00	0.0000E+00
9	0.0000E+00	0.2178E+01	0.4870E+00	0.0000E+00
10	0.0000E+00	0.2198E+01	0.5352E+00	0.0000E+00
11	0.0000E+00	0.2218E+01	0.5823E+00	0.0000E+00
12	0.0000E+00	0.2238E+01	0.6282E+00	0.0000E+00
13	0.0000E+00	0.2257E+01	0.6729E+00	0.0000E+00
14	0.0000E+00	0.2277E+01	0.7164E+00	0.0000E+00
15	0.0000E+00	0.2297E+01	0.7587E+00	0.0000E+00
16	0.0000E+00	0.2317E+01	0.7999E+00	0.0000E+00
17	0.0000E+00	0.2337E+01	0.8399E+00	0.0000E+00
18	0.0000E+00	0.2356E+01	0.8787E+00	0.0000E+00
19	0.0000E+00	0.2376E+01	0.9164E+00	0.0000E+00
20	0.0000E+00	0.2396E+01	0.9528E+00	0.0000E+00
21	0.0000E+00	0.2416E+01	0.9881E+00	0.0000E+00
22	0.0000E+00	0.2436E+01	0.1022E+01	0.0000E+00
23	0.0000E+00	0.2455E+01	0.1055E+01	0.0000E+00
24 25	0.0000E+00 0.0000E+00	0.2475E+01	0.1087E+01	0.0000E+00
26	0.0000E+00 0.0000E+00	0.2495E+01	0.1118E+01	0.0000E+00
20	0.0000E+00	0.2515E+01 0.2535E+01	0.1147E+01 0.1175E+01	0.0000E+00 0.0000E+00
28	0.0000E+00	0.2554E+01	0.1202E+01	0.0000E+00
29	0.0000E+00	0.2574E+01	0.1228E+01	0.0000E+00
30	0.0000E+00	0.2594E+01	0.1253E+01	0.0000E+00
31	0.0000E+00	0.2614E+01	0.1276E+01	0.0000E+00
32	0.0000E+00	0.2634E+01	0.1299E+01	0.0000E+00
33	0.0000E+00	0.2653E+01	0.1320E+01	0.0000E+00
34	0.0000E+00	0.2673E+01	0.1340E+01	0.0000E+00
35	0.0000E+00	0.2693E+01	0.1359E+01	0.0000E+00
36	0.0000E+00	0.2713E+01	0.1376E+01	0.0000E+00
37	0.0000E+00	0.2733E+01	0.1393E+01	0.0000E+00
38	0.0000E+00	0.2752E+01	0.1408E+01	0.0000E+00
39	0.0000E+00	0.2772E+01	0.1422E+01	0.0000E+00
40	0.0000E+00	0.2792E+01	0.1435E+01	0.0000E+00
41	0.0000E+00	0.2812E+01	0.1447E+01	0.0000E+00
42	0.0000E+00	0.2832E+01	0.1457E+01	0.0000E+00
43	0.0000E+00	0.2851E+01	0.1467E+01	0.0000E+00
44	0.0000E+00	0.2871E+01	0.1475E+01	0.0000E+00

45	0.0000E+00	0.2891E+01	0.1482E+01	0.0000E+00
46	0.0000E+00	0.2911E+01	0.1488E+01	0.0000E+00
47	0.0000E+00	0.2931E+01	0.1493E+01	0.0000E+00
48	0.0000E+00	0.2950E+01	0.1496E+01	0.0000E+00
49 50	0.0000E+00	0.2970E+01	0.1499E+01	0.0000E+00
51	0.0000E+00 0.0000E+00	0.2990E+01	0.1500E+01	0.0000E+00 0.0000E+00
52	0.0000E+00	0.3010E+01 0.3030E+01	0.1500E+01 0.1499E+01	0.0000E+00
53	0.0000E+00	0.3049E+01	0.1499E+01	0.0000E+00
54	0.0000E+00	0.3069E+01	0.1493E+01	0.0000E+00
55	0.0000E+00	0.3089E+01	0.1488E+01	0.0000E+00
56	0.0000E+00	0.3109E+01	0.1482E+01	0.0000E+00
57	0.0000E+00	0.3129E+01	0.1475E+01	0.0000E+00
58 59	0.0000E+00 0.0000E+00	0.3149E+01	0.1467E+01	0.0000E+00
60	0.0000E+00	0.3168E+01 0.3188E+01	0.1457E+01 0.1447E+01	0.0000E+00 0.0000E+00
61	0.0000E+00	0.3208E+01	0.1435E+01	0.0000E+00
62	0.0000E+00	0.3228E+01	0.1422E+01	0.0000E+00
63	0.0000E+00	0.3248E+01	0.1408E+01	0.0000E+00
64	0.0000E+00	0.3267E+01	0.1393E+01	0.0000E+00
65	0.0000E+00	0.3287E+01	0.1376E+01	0.0000E+00
66 67	0.0000E+00 0.0000E+00	0.3307E+01 0.3327E+01	0.1359E+01	0.0000E+00 0.0000E+00
68	0.0000E+00	0.3347E+01	0.1340E+01 0.1320E+01	0.0000E+00
69	0.0000E+00	0.3366E+01	0.1299E+01	0.0000E+00
70	0.0000E+00	0.3386E+01	0.1276E+01	0.0000E+00
71	0.0000E+00	0.3406E+01	0.1253E+01	0.0000E+00
72	0.0000E+00	0.3426E+01	0.1228E+01	0.0000E+00
73 74	0.0000E+00 0.0000E+00	0.3446E+01	0.1202E+01	0.0000E+00
75	0.0000E+00	0.3465E+01 0.3485E+01	0.1175E+01 0.1147E+01	0.0000E+00 0.0000E+00
76	0.0000E+00	0.3505E+01	0.1118E+01	0.0000E+00
77	0.0000E+00	0.3525E+01	0.1087E+01	0.0000E+00
78	0.0000E+00	0.3545E+01	0.1055E+01	0.0000E+00
79	0.0000E+00	0.3564E+01	0.1022E+01	0.0000E+00
80	0.0000E+00	0.3584E+01	0.9881E+00	0.0000E+00
81 82	0.0000E+00 0.0000E+00	0.3604E+01 0.3624E+01	0.9528E+00 0.9164E+00	0.0000E+00 0.0000E+00
83	0.0000E+00	0.3644E+01	0.8787E+00	0.0000E+00
84	0.0000E+00	0.3663E+01	0.8399E+00	0.0000E+00
85	0.0000E+00	0.3683E+01	0.7999E+00	0.0000E+00
86	0.0000E+00	0.3703E+01	0.7588E+00	0.0000E+00
87	0.0000E+00	0.3723E+01	0.7164E+00	0.0000E+00
88	0.0000E+00	0.3743E+01	0.6729E+00	0.0000E+00
89 90	0.0000E+00 0.0000E+00	0.3762E+01 0.3782E+01	0.6282E+00 0.5823E+00	0.0000E+00 0.0000E+00
91	0.0000E+00	0.3802E+01	0.5352E+00	0.0000E+00
92	0.0000E+00	0.3822E+01	0.4870E+00	0.0000E+00
93	0.0000E+00	0.3842E+01	0.4376E+00	0.0000E+00
94	0.0000E+00	0.3861E+01	0.3870E+00	0.0000E+00
95	0.0000E+00	0.3881E+01	0.3353E+00	0.0000E+00
96 97	0.0000E+00 0.0000E+00	0.3901E+01 0.3921E+01	0.2823E+00 0.2282E+00	0.0000E+00 0.0000E+00
1	0.00001700		0.22022100	0.0000000000000000000000000000000000000

98	0.0000E+00	0.3941E+01	0.1729E+00	0.0000E+00
99	0.0000E+00	0.3960E+01	0.1165E+00	0.0000E+00
100	0.0000E+00	0.3980E+01	0.5882E-01	0.0000E+00

PART #	ITRTNS	XFINAL	YFINAL	Z(RADIUS)
1	2449	0.3669E+01	-0.2006E+01	0.0000E+00
2	2654	0.4026E+01	-0.1942E+01	0.4470E+01
3	2673	0.4017E+01	-0.1191E+01	0.4190E+01
4	2017	0.4012E+01	-0.6926E+00	0.4071E+01
5	2772	0.4017E+01	-0.3521E+00	0.4032E+01
6	2078	0.4027E+01	-0.1113E+00	0.4029E+01
7	2017	0.3991E+01	0.1646E+00	0.3995E+01
8	2065	0.3985E+01	0.3686E+00	0.4002E+01
9	2003	0.3981E+01	0.5529E+00	0.4019E+01
10	2001	0.3968E+01	0.7178E+00	0.4033E+01
11	2001	0.3923E+01	0.8899E+00	0.4022E+01
12	2004	0.3910E+01	0.1020E+01	0.4041E+01
13	2210	0.3839E+01	0.1174E+01	0.4015E+01
14	2004	0.3831E+01	0.1275E+01	0.4038E+01
15	2812	0.3782E+01	0.1389E+01	0.4029E+01
16	2003	0.3753E+01	0.1483E+01	0.4036E+01
17	2004	0.3675E+01	0.1591E+01	0.4005E+01
18	2089	0.3622E+01	0.1678E+01	0.3991E+01
19	2136	0.3619E+01	0.1737E+01	0.4014E+01
20	2742	0.3612E+01	0.1794E+01	0.4033E+01
21	2005	0.3556E+01	0.1865E+01	0.4016E+01
22	2002	0.3535E+01	0.1920E+01	0.4023E+01
23	2005	0.3510E+01	0.1973E+01	0.4027E+01
24	2004	0.3454E+01	0.2032E+01	0.4007E+01
25	2001	0.3425E+01	0.2080E+01	0.4007E+01
26	2007	0.3400E+01	0.2124E+01	0.4009E+01 0.3998E+01
27	2041	0.3358E+01	0.2170E+01	0.4006E+01
28	2028	0.3342E+01	0.2209E+01 0.2245E+01	0.4017E+01
29 30	2005 2003	0.3331E+01 0.3312E+01	0.2245E+01 0.2281E+01	0.4021E+01
30	2003	0.3263E+01	0.2322E+01 0.2322E+01	0.4005E+01
32	2007	0.3218E+01	0.2322E+01 0.2360E+01	0.3991E+01
33	2005	0.3217E+01	0.2390E+01	0.4007E+01
34	2003	0.3201E+01	0.2421E+01	0.4013E+01
35	2012	0.3201E+01 0.3200E+01	0.2449E+01	0.4030E+01
36	2001	0.3187E+01	0.2479E+01	0.4037E+01
37	2001	0.3171E+01	0.2508E+01	0.4043E+01
38	2001	0.3085E+01	0.2547E+01	0.4000E+01
39	2003	0.3053E+01	0.2577E+01	0.3995E+01
40	2030	0.3026E+01	0.2605E+01	0.3993E+01
41	2055	0.3008E+01	0.2630E+01	0.3996E+01
42	2024	0.3000E+01	0.2656E+01	0.4006E+01
43	2026	0.2960E+01	0.2684E+01	0.3996E+01
44	2091	0.2950E+01	0.2709E+01	0.4006E+01
45	2049	0.2936E+01	0.2734E+01	0.4012E+01

_				
46	2056	0.2934E+01	0.2757E+01	0.4027E+01
47	2031	0.2871E+01	0.2787E+01	0.4001E+01
48	2014			
		0.2866E+01	0.2811E+01	0.4014E+01
49	1950	0.2835E+01	0.2838E+01	0.4011E+01
50	2607	0.2835E+01	0.2860E+01	0.4027E+01
51	2324	0.2799E+01	0.2886E+01	0.4020E+01
52	2022	0.2772E+01		0.4019E+01
53	1953		0.2910E+01	
		0.2721E+01	0.2936E+01	0.4003E+01
54	1951	0.2718E+01	0.2958E+01	0.4017E+01
55	1952	0.2715E+01	0.2980E+01	0.4031E+01
56	1950	0.2661E+01	0.3006E+01	0.4014E+01
57	1961	0.2594E+01	0.3032E+01	0.3990E+01
58	2216	0.2575E+01		
59			0.3055E+01	0.3995E+01
	2052	0.2569E+01	0.3076E+01	0.4008E+01
60	2006	0.2521E+01	0.3100E+01	0.3996E+01
61	1988	0.2512E+01	0.3122E+01	0.4007E+01
62	1952	0.2476E+01	0.3145E+01	0.4002E+01
63	1950	0.2431E+01	0.3169E+01	0.3994E+01
64	1951			
		0.2400E+01	0.3191E+01	0.3993E+01
65	1956	0.2386E+01	0.3212E+01	0.4002E+01
66	1950	0.2341E+01	0.3236E+01	0.3994E+01
67	1951	0.2305E+01	0.3258E+01	0.3991E+01
68	1952	0.2276E+01	0.3280E+01	0.3992E+01
69	2005	0.2245E+01	0.3300E+01	0.3991E+01
70	2003			
		0.2226E+01	0.3321E+01	0.3998E+01
71	2010	0.2221E+01	0.3342E+01	0.4012E+01
72	2002	0.2154E+01	0.3365E+01	0.3996E+01
73	2008	0.2150E+01	0.3385E+01	0.4010E+01
74	2008	0.2116E+01	0.3407E+01	0.4010E+01
75	2004	0.2076E+01	0.3429E+01	0.4009E+01
76	2002	0.2039E+01	0.3451E+01	0.4008E+01
77				
	2005	0.1965E+01	0.3475E+01	0.3992E+01
78	2006	0.1954E+01	0.3495E+01	0.4004E+01
79	2006	0.1936E+01	0.3515E+01	0.4013E+01
80	2007	0.1899E+01	0.3536E+01	0.4014E+01
81	2012	0.1870E+01	0.3557E+01	0.4019E+01
82	2006	0.1825E+01	0.3579E+01	0.4017E+01
83	2005	0.1765E+01	0.3601E+01	
				0.4010E+01
84	2694	0.1674E+01	0.3625E+01	0.3993E+01
85	2686	0.1634E+01	0.3646E+01	0.3995E+01
86	2852	0.1614E+01	0.3666E+01	0.4005E+01
87	2008	0.1580E+01	0.3686E+01	0.4011E+01
88	2433	0.1523E+01	0.3708E+01	0.4008E+01
89	2004	0.1437E+01	0.3730E+01	0.3998E+01
90	2013	0.1366E+01	0.3752E+01	0.3993E+01
91	2010	0.1312E+01	0.3773E+01	0.3995E+01
92	2026	0.1261E+01	0.3794E+01	0.3998E+01
93	2007	0.1171E+01	0.3816E+01	0.3992E+01
94	2055	0.1101E+01	0.3838E+01	0.3992E+01
95	2200	0.1033E+01	0.3858E+01	0.3994E+01
96	2284	0.9313E+00	0.3880E+01	0.3990E+01
20	2201	0.00100+00	0.00000000	0.33306+01

97	2126	0.8440E+00	0.3901E+01	0.3991E+01
98	2005	0.7442E+00	0.3922E+01	0.3992E+01
99	2014	0.6147E+00	0.3943E+01	0.3990E+01
100	2263	0.4764E+00	0.3962E+01	0.3990E+01

LOCATION	DEP % HERE ONLY	TOTAL DEPOSIT %		
1	0.00000E+00	0.00000E+00		
1 2 3	0.33455E+01	0.33455E+01		
2	0.48248E+01	0.78248E+01		
4	0.48248E+01 0.61952E+01	0.13195E+02		
5	0.77768E+01	0.20777E+02		
5 6	0.10632E+01			
7		0.30632E+02		
8	0.11342E+02	0.41342E+02		
9	0.11052E+02	0.52052E+02		
	0.11140E+02	0.63140E+02		
10	0.94445E+01	0.72444E+02		
11	0.74601E+01	0.79460E+02		
12	0.54920E+01	0.84492E+02		
13	0.40542E+01	0.88054E+02		
14	0.26058E+01	0.90606E+02		
15	0.28702E+01	0.92870E+02		
16	0.22703E+01	0.94270E+02		
17	0.21407E+01	0.96141E+02		
18	0.12155E+01	0.97215E+02		
19	0.10120E+01	0.98012E+02		
20	0.54461E+00	0.98545E+02		
21	0.10000E+01	0.99000E+02		
The total amount of particles deposited				

- was 99 particles or 99.0000 %

APPENDIX I

PARTICLE DEPOSITION PERCENTAGE VALUES FOR FIGURE 5.2

Section #	S=0.5	S=0.66	S=1.0	S=5.0	S=10.0	S=100.0	
1	0	0	0	0		1.5307	
1.5	0.001	0.016	0.128	1.627	2.627	2.682	
2	0.002	0.021	0.364			4.352	
2.5	0.024	0.084	0.431		and a second second second	6.842	
3	0.049	0.098					
3.5	0.053	0.107					
4	0.057	0.134					
4.5	0.124	0.217	3.428	16.596	19.52	19.042	
5	0.187	0.287	6.265	20.777	23.207	24.19	
5.5	0.192	0.308	11.021				
6	0.198	0.314	16.749	30.632	32.524	34.19	
6.5	0.219	0.348	20.551	35.221	and the second sec	39.542	
7	0.248					45.931	
7.5	0.305	0.587					
8	0.324				[land the second s	
8.5	0.458	0.959					
9	0.647	1.207					
9.5	0.692	1.456					
10	0.849	and the second s	47.146			87.247	
10.5	0.924	1.87	49.561	75.658			
11	1.268	and the second s	52.971	t		95.089	
11.5			55.648				
12	1.958	2.72	59.157		89.615	97.399	
12.5	2.068	3.045	61.248	86.214			
13	2.483			88.054	92.457	98.496	
13.5	2.592	3.658	66.315	89.009	93.289	99.038	
14	2.997	4.184	68.212	90.606	94.473	99.222	
14.5	3.024	4.267	70.814	91.783	95.224	99.348	
15	3.812	6.927	72.355	92.87	95.938	99.569	
15.5	5.248	18.624	73.891	93.987	97.087	99.896	
16	9.012	48.156	75.797	94.87	97.928	100	
16.5	9.197	48.245	76.917	95.549			
17	1	48.386	78.794				
17.5	9.506	48.394	80.099	96.849	99.007	100	
18	9.548	48.522	81.023	97.215	99.068	100	
18.5			81.829	97.732	99.251	100	
19	9.784	48.799	82.489	98.012	99.556	100	
19.5			83.027	98.343	99.862	100	
20		48.817	83.712	98.545		100	
20.5			83.893	98.861	100	100	- ·
21	9.846	48.967	84	99	100	100	
	· _	<u> </u>					
L	<u> </u>	<u> </u>		<u> </u>			

APPENDIX J

VELOCITY DISTRIBUTION FOR THE 128 ELEMENT MESH OF FIGURE 3.9

Node	x-coord.	y-coord.	Value of u	Value of v
1	0.00000E+00	0.20000E+01	0.00000E+00	0.00000E+00
2	0.14270E+00	0.19950E+01	0.00000E+00	0.00000E+00
3	0.28460E+00	0.19800E+01	0.00000E+00	0.00000E+00
4	0.42510E+00	0.19540E+01	0.00000E+00	0.00000E+00
5	0.56350E+00	0.19190E+01	0.00000E+00	0.00000E+00
6	0.69890E+00	0.18740E+01	0.00000E+00	0.00000E+00
7 8	0.83080E+00	0.18190E+01	0.00000E+00	0.00000E+00
° 9	0.95850E+00 0.10810E+01	0.17550E+01	0.00000E+00	0.00000E+00
9 10	0.11990E+01	0.16830E+01	0.00000E+00	0.00000E+00 0.00000E+00
11	0.13100E+01	0.16010E+01 0.15110E+01	0.00000E+00 0.00000E+00	0.00000E+00
12	0.14140E+01	0.14140E+01	0.00000E+00	0:00000E+00
13	0.15110E+01	0.13100E+01	0.00000E+00	0.00000E+00
14	0.16010E+01	0.11990E+01	0.00000E+00	0.00000E+00
15	0.16830E+01	0.10810E+01	0.00000E+00	0.00000E+00
16	0.17550E+01	0.95850E+00	0.00000E+00	0.00000E+00
17	0.18190E+01	0.83080E+00	0.00000E+00	0.00000E+00
18	0.18740E+01	0.69890E+00	0.00000E+00	0.00000E+00
19	0.19190E+01	0.56350E+00	0.00000E+00	0.00000E+00
20	0.19540E+01	0.42510E+00	0.00000E+00	0.00000E+00
21	0.19800E+01	0.28460E+00	0.00000E+00	0.00000E+00
22	0.19950E+01	0.14270E+00	0.00000E+00	0.00000E+00
23	0.20000E+01	0.00000E+00	0.00000E+00	0.00000E+00
24	0.20000E+01	-0.20000E+00	0.00000E+00	0.00000E+00
25	0.20000E+01	-0.40000E+00	0.00000E+00	0.00000E+00
26	0.20000E+01	-0.60000E+00	0.0000E+00	0.00000E+00
27	0.20000E+01	-0.80000E+00	0.0000E+00	0.00000E+00
28	0.20000E+01	-0.10000E+01	0.0000E+00	0.00000E+00
29	0.20000E+01	-0.12000E+01	0.00000E+00	0.00000E+00
30	0.20000E+01	-0.14000E+01	0.00000E+00	0.00000E+00
31 32	0.20000E+01 0.20000E+01	-0.16000E+01 -0.18000E+01	0.00000E+00 0.00000E+00	0.00000E+00 0.00000E+00
33	0.20000E+01 0.20000E+01	-0.20000E+01	0.00000E+00	0.00000E+00
34	0.00000E+01	0.21250E+01	0.35200E+00	0.00000E+00
35	0.15160E+00	0.21200E+01	0.35911E+00	-0.31514E-01
36	0.30240E+00	0.21030E+01	0.36984E+00	-0.61398E-01
37	0.45170E+00	0.20760E+01	0.38020E+00	-0.90083E-01
38	0.59870E+00	0.20390E+01	0.38896E+00	-0.11927E+00
39	0.74260E+00	0.19910E+01	0.38955E+00	-0.14998E+00
40	0.88280E+00	0.19330E+01	0.38538E+00	-0.17919E+00
41	0.10180E+01	0.18650E+01	0.37556E+00	-0.20637E+00
42	0.11490E+01	0.17880E+01	0.36482E+00	-0.23501E+00
43	0.12730E+01	0.17010E+01	0.34640E+00	-0.26095E+00
44	0.13920E+01	0.16060E+01	0.33029E+00	-0.28608E+00

45 46 47 48 49 50 51	0.15030E+01 0.16060E+01 0.17010E+01 0.17880E+01 0.18650E+01 0.19330E+01 0.19910E+01	0.15030E+01 0.13920E+01 0.12730E+01 0.11490E+01 0.10180E+01 0.88280E+00	0.30954E+00 0.28737E+00 0.26128E+00 0.23771E+00 0.20802E+00 0.18374E+00	-0.31029E+00 -0.33056E+00 -0.34924E+00 -0.36879E+00 -0.38416E+00 -0.39842E+00
52 53 54 55 56 57 58	0.20390E+01 0.20760E+01 0.21030E+01 0.21200E+01 0.21250E+01 0.21250E+01 0.21250E+01	0.74260E+00 0.59870E+00 0.45170E+00 0.30240E+00 0.15160E+00 0.00000E+00 -0.20000E+00 -0.40000E+00	0.15296E+00 0.12517E+00 0.92970E-01 0.67831E-01 0.35584E-01 0.18083E-01 0.36428E-02 0.49288E-02	-0.41137E+00 -0.42006E+00 -0.42388E+00 -0.42323E+00 -0.41757E+00 -0.39379E+00 -0.36678E+00 -0.35696E+00
59	0.21250E+01	-0.60000E+00	-0.52317E-04	-0.35173E+00
60	0.21250E+01	-0.80000E+00	0.17891E-02	-0.35028E+00
61	0.21250E+01	-0.10000E+01	-0.58605E-03	-0.34965E+00
62	0.21250E+01	-0.12000E+01	0.67717E-03	-0.35009E+00
63	0.21250E+01	-0.14000E+01	-0.47154E-03	-0.35045E+00
64	0.21250E+01	-0.16000E+01	0.16685E-03	-0.35113E+00
65	0.21250E+01	-0.18000E+01	-0.26216E-03	-0.35160E+00
66	0.21250E+01	-0.20000E+01	0.00000E+00	-0.35200E+00
67	0.00000E+00	0.22500E+01	0.65600E+00	0.00000E+00
68	0.16050E+00	0.22440E+01	0.66328E+00	-0.66277E-01
69	0.32020E+00	0.22270E+01	0.67918E+00	-0.12232E+00
70	0.47830E+00	0.21990E+01	0.69479E+00	-0.17418E+00
71	0.63390E+00	0.21590E+01	0.70162E+00	-0.22507E+00
72	0.78630E+00	0.21080E+01	0.70082E+00	-0.27534E+00
73	0.93470E+00	0.20470E+01	0.69246E+00	-0.32643E+00
74	0.10780E+01	0.19750E+01	0.67654E+00	-0.37508E+00
75	0.12160E+01	0.18930E+01	0.65243E+00	-0.42438E+00
76	0.13480E+01	0.18010E+01	0.62403E+00	-0.46970E+00
77	0.14730E+01	0.17000E+01	0.58946E+00	-0.51323E+00
78	0.15910E+01	0.15910E+01	0.55409E+00	-0.55443E+00
79	0.17000E+01	0.14730E+01	0.51163E+00	-0.59336E+00
80	0.18010E+01	0.13480E+01	0.47098E+00	-0.62841E+00
81	0.18930E+01	0.12160E+01	0.42350E+00	-0.66276E+00
82	0.19750E+01	0.10780E+01	0.37701E+00	-0.69109E+00
83	0.20470E+01	0.93470E+00	0.22513E+00	-0.71787E+00
84	0.21080E+01	0.78630E+00	0.227642E+00	-0.73641E+00
85	0.21590E+01	0.63390E+00	0.22122E+00	-0.75409E+00
86	0.21990E+01	0.47830E+00	0.17322E+00	-0.76157E+00
87	0.22270E+01	0.32020E+00	0.11877E+00	-0.76118E+00
88 89 90 91 92 93 94 95	0.22440E+01 0.22500E+01 0.22500E+01 0.22500E+01 0.22500E+01 0.22500E+01 0.22500E+01 0.22500E+01 0.22500E+01	0.16050E+00 0.00000E+00 -0.20000E+00 -0.40000E+00 -0.60000E+00 -0.80000E+01 -0.10000E+01 -0.12000E+01	0.78837E-01 0.39226E-01 0.20191E-01 0.58400E-02 0.47072E-02 -0.56658E-03 0.75466E-03 -0.14804E-02	-0.74552E+00 -0.71964E+00 -0.68696E+00 -0.66560E+00 -0.65959E+00 -0.65377E+00 -0.65443E+00 -0.65300E+00
96	0.22500E+01	-0.14000E+01	-0.29662E-03	-0.65505E+00
97	0.22500E+01	-0.16000E+01	-0.98045E-03	-0.65467E+00

98 99 100 101 102 103 104 105	0.22500E+01 0.22500E+01 0.00000E+00 0.16940E+00 0.33800E+00 0.50480E+00 0.66910E+00	-0.18000E+01 -0.20000E+01 0.23750E+01 0.23690E+01 0.23510E+01 0.23210E+01 0.22790E+01	-0.50842E-03 0.00000E+00 0.91400E+00 0.92089E+00 0.93508E+00 0.94622E+00 0.95063E+00	-0.65638E+00 -0.65600E+00 0.00000E+00 -0.98693E-01 -0.17729E+00 -0.24636E+00 -0.31227E+00
106 107 108 109 110 111	0.83000E+00 0.98660E+00 0.11380E+01 0.12840E+01 0.14230E+01 0.15550E+01 0.16790E+01	0.22250E+01 0.21600E+01 0.20840E+01 0.19980E+01 0.19010E+01 0.17950E+01 0.16790E+01	0.94487E+00 0.93047E+00 0.90696E+00 0.87659E+00 0.83712E+00 0.79388E+00 0.74290E+00	-0.37775E+00 -0.44269E+00 -0.50719E+00 -0.57119E+00 -0.63202E+00 -0.68989E+00 -0.74525E+00
112	0.17950E+01	0.15550E+01	0.68951E+00	-0.79709E+00
113	0.19010E+01	0.14230E+01	0.63079E+00	-0.84449E+00
114	0.19980E+01	0.12840E+01	0.57063E+00	-0.88797E+00
115	0.20840E+01	0.11380E+01	0.50424E+00	-0.92675E+00
116	0.21600E+01	0.98660E+00	0.43893E+00	-0.95952E+00
117	0.22250E+01	0.83000E+00	0.36953E+00	-0.98848E+00
118	0.22790E+01	0.66910E+00	0.30237E+00	-0.10088E+01
119	0.23210E+01	0.50480E+00	0.23328E+00	-0.10219E+01
120	0.23510E+01	0.33800E+00	0.17152E+00	-0.10213E+01
121	0.23690E+01	0.16940E+00	0.11279E+00	-0.10102E+01
122	0.23750E+01	0.00000E+00	0.69948E-01	-0.98365E+00
123	0.23750E+01	-0.20000E+00	0.34490E-01	-0.94981E+00
124	0.23750E+01	-0.40000E+00	0.18179E-01	-0.93121E+00
125 126 127 128 129 130 131	0.23750E+01 0.23750E+01 0.23750E+01 0.23750E+01 0.23750E+01 0.23750E+01 0.23750E+01 0.23750E+01	-0.60000E+00 -0.80000E+00 -0.10000E+01 -0.12000E+01 -0.14000E+01 -0.16000E+01 -0.18000E+01	0.72759E-02 0.38067E-02 0.14626E-03 -0.16833E-03 -0.12709E-02 -0.96018E-03 -0.75936E-03	-0.91853E+00 -0.91498E+00 -0.91156E+00 -0.91254E+00 -0.91192E+00 -0.91372E+00 -0.91342E+00
132	0.23750E+01	-0.20000E+01	0.00000E+00	-0.91400E+00
133	0.00000E+00	0.25000E+01	0.11250E+01	0.00000E+00
134	0.17830E+00	0.24940E+01	0.11300E+01	-0.12599E+00
135	0.35580E+00	0.24750E+01	0.11383E+01	-0.22267E+00
136	0.53140E+00	0.24430E+01	0.11436E+01	-0.30477E+00
137	0.70430E+00	0.23990E+01	0.11425E+01	-0.38190E+00
138	0.87370E+00	0.23420E+01	0.11313E+01	-0.45717E+00
139	0.10390E+01	0.22740E+01	0.11114E+01	-0.53296E+00
140	0.11980E+01	0.21940E+01	0.10815E+01	-0.60772E+00
141	0.13520E+01	0.21030E+01	0.10431E+01	-0.68220E+00
142	0.14980E+01	0.20010E+01	0.99655E+00	-0.75325E+00
143	0.16370E+01	0.18890E+01	0.94320E+00	-0.82205E+00
144	0.17680E+01	0.17680E+01	0.88493E+00	-0.88731E+00
145	0.18890E+01	0.16370E+01	0.81860E+00	-0.94917E+00
146	0.20010E+01	0.14980E+01	0.75109E+00	-0.10041E+01
147	0.21030E+01	0.13520E+01	0.67665E+00	-0.10577E+01
148	0.21940E+01	0.11980E+01	0.60116E+00	-0.11016E+01
149	0.22740E+01	0.10390E+01	0.52016E+00	-0.11437E+01
150	0.23420E+01	0.87370E+00	0.44112E+00	-0.11739E+01

151	0.23990E+01	0.70430E+00	0.35836E+00	-0.12017E+01
152	0.24430E+01	0.53140E+00	0.28212E+00	-0.12137E+01
153	0.24750E+01	0.35580E+00	0.20616E+00	-0.12207E+01
154	0.24940E+01	0.17830E+00	0.14422E+00	-0.12095E+01
155	0.25000E+01	0.00000E+00	0.88836E-01	-0.11879E+01
156 157 158	0.25000E+01 0.25000E+01 0.25000E+01	-0.20000E+00 -0.40000E+00	0.51847E-01 0.24539E-01	-0.11629E+01 -0.11398E+01
159 160	0.25000E+01 0.25000E+01 0.25000E+01	-0.60000E+00 -0.80000E+00 -0.10000E+01	0.13453E-01 0.38778E-02	-0.11329E+01 -0.11236E+01
161 162	0.25000E+01 0.25000E+01 0.25000E+01	-0.12000E+01 -0.12000E+01 -0.14000E+01	0.16907E-02 -0.15181E-02	-0.11247E+01 -0.11210E+01 -0.11243E+01
163 164	0.25000E+01 0.25000E+01 0.25000E+01	-0.16000E+01 -0.18000E+01	-0.12673E-02 -0.18747E-02 -0.10782E-02	-0.11224E+01 -0.11255E+01
165 166	0.25000E+01 0.25000E+01 0.00000E+00	-0.20000E+01 0.26250E+01	0.00000E+00 0.12890E+01	-0.11250E+01 0.00000E+00
167 168	0.18730E+00 0.37360E+00	0.26180E+01 0.25980E+01	0.12900E+01 0.12920E+01 0.12920E+01	-0.14676E+00 -0.25635E+00
169	0.55800E+00	0.25650E+01	0.12897E+01	-0.34815E+00
170	0.73950E+00	0.25190E+01	0.12813E+01	-0.43209E+00
171	0.91730E+00	0.24590E+01	0.12633E+01	-0.51401E+00
172	0.10900E+01	0.23880E+01	0.12379E+01	-0.59539E+00
173	0.12580E+01	0.23040E+01	0.12024E+01	-0.67785E+00
174	0.14190E+01	0.22080E+01	0.11582E+01	-0.75759E+00
175	0.15730E+01	0.21010E+01	0.11055E+01	-0.83688E+00
176	0.17190E+01	0.19840E+01	0.10472E+01	-0.91196E+00
177 178 179	0.18560E+01 0.19840E+01	0.18560E+01 0.17190E+01	0.98057E+00 0.90894E+00	-0.98447E+00 -0.10518E+01
179	0.21010E+01	0.15730E+01	0.83197E+00	-0.11140E+01
180	0.22080E+01	0.14190E+01	0.75065E+00	-0.11705E+01
181	0.23040E+01	0.12580E+01	0.66576E+00	-0.12222E+01
182	0.23880E+01	0.10900E+01	0.57782E+00	-0.12652E+01
183	0.24590E+01	0.91730E+00	0.48838E+00	-0.13019E+01
184	0.25190E+01	0.73950E+00	0.40055E+00	-0.13292E+01
185	0.25650E+01	0.55800E+00	0.31416E+00	-0.13488E+01
186	0.25980E+01	0.37360E+00	0.23518E+00	-0.13553E+01
187	0.26180E+01	0.18730E+00	0.16418E+00	-0.13538E+01
188	0.26250E+01	0.00000E+00	0.10841E+00	-0.13395E+01
189	0.26250E+01	-0.20000E+00	0.63035E-01	-0.13187E+01
190	0.26250E+01	-0.40000E+00	0.35285E-01	-0.13066E+01
191	0.26250E+01	-0.60000E+00	0.17098E-01	-0.12950E+01
192	0.26250E+01	-0.80000E+00	0.79168E-02	-0.12921E+01
193	0.26250E+01	-0.10000E+01	0.18243E-02	-0.12877E+01
194	0.26250E+01	-0.12000E+01	-0.39254E-03	-0.12888E+01
194 195 196	0.26250E+01 0.26250E+01 0.26250E+01	-0.14000E+01 -0.16000E+01	-0.19371E-02 -0.18253E-02	-0.12872E+01 -0.12872E+01 -0.12893E+01
197	0.26250E+01	-0.18000E+01	-0.14110E-02	-0.12883E+01
198	0.26250E+01	-0.20000E+01	0.00000E+00	-0.12890E+01
199	0.00000E+00	0.27500E+01	0.14060E+01	0.00000E+00
200	0.19620E+00	0.27430E+01	0.14044E+01	-0.16070E+00
201	0.39140E+00	0.27220E+01	0.13988E+01	-0.27882E+00
202	0.58460E+00	0.26870E+01	0.13882E+01	-0.37620E+00
203	0.77480E+00	0.26390E+01	0.13721E+01	-0.46439E+00

$\begin{array}{c} 204\\ 205\\ 206\\ 207\\ 208\\ 209\\ 210\\ 211\\ 212\\ 213\\ 214\\ 215\\ 216\\ 217\\ 218\\ 220\\ 221\\ 222\\ 223\\ 224\\ 225\\ 226\\ 227\\ 228\\ 230\\ 231\\ 235\\ 236\\ 237\\ 238\\ 239\\ 240\\ 241\\ 242\\ 243\\ 244\end{array}$	0.96100E+00 0.11420E+01 0.13180E+01 0.14870E+01 0.16480E+01 0.19450E+01 0.20780E+01 0.22010E+01 0.22010E+01 0.23130E+01 0.24140E+01 0.25770E+01 0.26870E+01 0.2720E+01 0.27500E+01 0.20510E+00 0.10050E+01 0.1050E+01 0.13780E+01 0.15540E+01 0.15540E+01 0.20330E+01 0.20330E+01 0.21730E+01	0.25770E+01 0.25010E+01 0.24140E+01 0.23130E+01 0.22010E+01 0.220780E+01 0.19450E+01 0.19450E+01 0.16480E+01 0.16480E+01 0.11420E+01 0.13180E+01 0.13180E+01 0.196100E+00 0.58460E+00 0.58460E+00 0.39140E+00 0.39140E+00 0.39140E+00 0.39140E+00 0.0000E+00 0.20000E+00 0.40000E+00 0.40000E+01 0.12000E+01 0.12000E+01 0.12000E+01 0.14000E+01 0.16000E+01 0.28750E+01 0.28460E+01 0.28460E+01 0.28460E+01 0.28460E+01 0.28460E+01 0.28460E+01 0.28460E+01 0.28460E+01 0.28460E+01 0.28460E+01 0.28460E+01 0.28460E+01 0.28400E+01 0.2	0.13478E+01 0.13148E+01 0.12752E+01 0.12268E+01 0.11705E+01 0.11074E+01 0.96092E+00 0.88028E+00 0.79334E+00 0.70390E+00 0.61041E+00 0.51701E+00 0.51701E+00 0.25002E+00 0.33443E+00 0.25002E+00 0.11687E+00 0.12536E-01 0.39972E-01 0.21541E-01 0.87384E-02 0.30692E-02 -0.97855E-03 -0.18826E-02 0.30692E-02 -0.24494E-02 -0.15165E-02 0.00000E+00 0.14770E+01 0.14585E+01 0.14394E+01 0.14394E+01 0.14394E+01 0.14394E+01 0.13855E+01 0.13486E+01 0.13045E+01 0.12537E+01 0.11300E+01 0.10578E+01 0.10578E+01 0.97977E+00	$\begin{array}{c} -0.54930E+00\\ -0.63445E+00\\ -0.71948E+00\\ -0.80395E+00\\ -0.88634E+00\\ -0.96600E+00\\ -0.10414E+01\\ -0.11775E+01\\ -0.11775E+01\\ -0.12391E+01\\ -0.12391E+01\\ -0.13761E+01\\ -0.13761E+01\\ -0.14278E+01\\ -0.14434E+01\\ -0.14434E+01\\ -0.14431E+01\\ -0.14431E+01\\ -0.14431E+01\\ -0.14432E+01\\ -0.14432E+01\\ -0.14133E+01\\ -0.14072E+01\\ -0.14074E+01\\ -0.14074E+01\\ -0.14074E+01\\ -0.14036E+01\\ -0.14067E+01\\ -0.14067E+01\\ -0.14060E+01\\ -0.14060E$
240	0.15540E+01	0.24190E+01	0.12537E+01	-0.82049E+00
243	0.20330E+01	0.20330E+01	0.10578E+01	-0.10621E+01
245	0.23020E+01	0.17230E+01	0.89715E+00	-0.12013E+01
246	0.24190E+01	0.15540E+01	0.80862E+00	-0.12617E+01
247	0.25230E+01	0.13780E+01	0.71756E+00	-0.13165E+01
248	0.26150E+01	0.11940E+01	0.62286E+00	-0.13630E+01
249	0.26940E+01	0.10050E+01	0.52685E+00	-0.14040E+01
250	0.27590E+01	0.81000E+00	0.43225E+00	-0.14344E+01
251	0.28090E+01	0.61110E+00	0.34106E+00	-0.14600E+01
252	0.28460E+01	0.40920E+00	0.25646E+00	-0.14751E+01
253	0.28680E+01	0.20510E+00	0.18221E+00	-0.14859E+01
254	0.28750E+01	0.00000E+00	0.12162E+00	-0.14880E+01
255	0.28750E+01	-0.20000E+00	0.76105E-01	-0.14846E+01
256	0.28750E+01	-0.40000E+00	0.44454E-01	-0.14840E+01

257 258	0.28750E+01 0.28750E+01	-0.60000E+00 -0.80000E+00	0.23354E-01	-0.14786E+01 -0.14792E+01
259	0.28750E+01	-0.10000E+00	0.10795E-01 0.32999E-02	-0.14759E+01
260	0.28750E+01	-0.12000E+01	-0.35391E-03	-0.14777E+01
261	0.28750E+01	-0.14000E+01	-0.21670E-02	-0.14756E+01
262 263	0.28750E+01 0.28750E+01	-0.16000E+01	-0.24028E-02	-0.14776E+01
263	0.28750E+01 0.28750E+01	-0.18000E+01 -0.20000E+01	-0.17197E-02 0.00000E+00	-0.14761E+01 -0.14770E+01
265	0.00000E+00	0.30000E+01	0.15000E+00	0.00000E+00
266	0.21400E+00	0.29920E+01	0.14918E+01	-0.16742E+00
267	0.42690E+00	0.29690E+01	0.14721E+01	-0.28880E+00
268 269	0.63770E+00 0.84520E+00	0.29310E+01	0.14459E+01	-0.38740E+00
270	0.10480E+01	0.28780E+01 0.28110E+01	0.14149E+01 0.13796E+01	-0.47556E+00 -0.55955E+00
271	0.12460E+01	0.27290E+01	0.13393E+01	-0.64431E+00
272	0.14380E+01	0.26330E+01	0.12929E+01	-0.72837E+00
273	0.16220E+01	0.25240E+01	0.12408E+01	-0.81210E+00
274 275	0.17980E+01 0.19650E+01	0.24020E+01	0.11815E+01	-0.89389E+00
275	0.21210E+01	0.22670E+01 0.21210E+01	0.11168E+01 0.10453E+01	-0.97349E+00 -0.10490E+01
277	0.22670E+01	0.19650E+01	0.96818E+00	-0.11209E+01
278	0.24020E+01	0.17980E+01	0.88580E+00	-0.11855E+01
279	0.25240E+01	0.16220E+01	0.79925E+00	-0.12470E+01
280	0.26330E+01	0.14380E+01	0.70821E+00	-0.12990E+01
281 282	0.27290E+01 0.28110E+01	0.12460E+01 0.10480E+01	0.61529E+00	-0.13477E+01 -0.13853E+01
283	0.28110E+01 0.28780E+01	0.84520E+01	0.51956E+00 0.42718E+00	-0.14205E+01
284	0.29310E+01	0.63770E+00	0.33617E+00	-0.14437E+01
285	0.29690E+01	0.42690E+00	0.25297E+00	-0.14670E+01
286	0.29920E+01	0.21400E+00	0.17921E+00	-0.14783E+01
287 288	0.30000E+01 0.30000E+01	0.00000E+00	0.11908E+00 0.75926E-01	-0.14899E+01
289 289	0.30000E+01 0.30000E+01	-0.20000E+00 -0.40000E+00	0.44758E-01	-0.14983E+01 -0.14955E+01
290	0.30000E+01	-0.60000E+00	0.24010E-01	-0.15017E+01
291	0.30000E+01	-0.80000E+00	0.11051E-01	-0.14971E+01
292	0.30000E+01	-0.10000E+01	0.35773E-02	-0.15018E+01
293	0.30000E+01	-0.12000E+01	-0.38589E-03	-0.14975E+01
294 295	0.30000E+01 0.30000E+01	-0.14000E+01 -0.16000E+01	-0.21519E-02 -0.25117E-02	-0.15015E+01 -0.14979E+01
296	0.30000E+01	-0.18000E+01	-0.18303E-02	-0.15014E+01
297	0.30000E+01	-0.20000E+01	0.00000E+00	-0.15000E+01
298	0.00000E+00	0.31250E+01	0.14770E+01	0.0000E+00
299	0.22290E+00 0.44470E+00	0.31170E+01 0.30930E+01	0.14656E+01 0.14401E+01	-0.16097E+00 -0.27753E+00
300 301	0.44470E+00 0.66430E+00	0.30930E+01 0.30540E+01	0.14076E+01	-0.37207E+00
302	0.88040E+00	0.29980E+01	0.13718E+01	-0.45647E+00
303	0.10920E+01	0.29280E+01	0.13327E+01	-0.53750E+00
304	0.12980E+01	0.28430E+01	0.12900E+01	-0.61771E+00
305 306	0.14980E+01 0.16900E+01	0.27430E+01 0.26290E+01	0.12427E+01 0.11909E+01	-0.69857E+00
306	0.18730E+01	0.25020E+01 0.25020E+01	0.11337E+01	-0.77858E+00 -0.85711E+00
308	0.20460E+01	0.23620E+01	0.10711E+01	-0.93223E+00
309	0.22100E+01	0.22100E+01	0.10018E+01	-0.10052E+01

310	0.23620E+01	0.20460E+01	0.92721E+00	-0.10736E+01
311	0.25020E+01	0.18730E+01	0.84914E+00	-0.11364E+01
312	0.26290E+01	0.16900E+01	0.76544E+00	-0.11930E+01
313	0.27430E+01	0.14980E+01	0.67865E+00	-0.12446E+01
314	0.28430E+01	0.12980E+01	0.58818E+00	-0.12890E+01
315	0.29280E+01	0.10920E+01	0.49806E+00	-0.13286E+01
316	0.29980E+01	0.88040E+00	0.40750E+00	-0.13596E+01
317	0.30540E+01	0.66430E+00	0.32109E+00	-0.13874E+01
318	0.30930E+01	0.44470E+00	0.23969E+00	-0.14085E+01
319	0.31170E+01	0.22290E+00	0.16951E+00	-0.14300E+01
320	0.31250E+01	0.00000E+00	0.11083E+00	-0.14481E+01
321	0.31250E+01	-0.20000E+00	0.71568E-01	-0.14602E+01
322	0.31250E+01	-0.40000E+00	0.42087E-01	-0.14709E+01
323 324 325 326 327	0.31250E+01 0.31250E+01 0.31250E+01 0.31250E+01 0.31250E+01 0.31250E+01	-0.60000E+00 -0.80000E+00 -0.10000E+01 -0.12000E+01 -0.14000E+01	0.22908E-01 0.10358E-01 0.34652E-02 -0.50200E-03 -0.20580E-02	-0.14728E+01 -0.14776E+01 -0.14763E+01 -0.14787E+01 -0.14766E+01
328 329 330 331	0.31250E+01 0.31250E+01 0.31250E+01 0.31250E+01 0.00000E+00	-0.16000E+01 -0.18000E+01 -0.20000E+01 0.32500E+01	-0.24903E-02 -0.18323E-02 0.00000E+00 0.14060E+01	-0.14782E+01 -0.14763E+01 -0.14770E+01 0.00000E+00
332	0.23190E+00	0.32420E+01	0.13927E+01	-0.14868E+00
333	0.46250E+00	0.32170E+01	0.13627E+01	-0.25648E+00
334	0.69080E+00	0.31760E+01	0.13255E+01	-0.34433E+00
335	0.91560E+00	0.31180E+01	0.12870E+01	-0.42281E+00
336	0.11360E+01	0.30450E+01	0.12459E+01	-0.49877E+00
337	0.13500E+01	0.29560E+01	0.12039E+01	-0.57330E+00
338	0.15580E+01	0.28520E+01	0.11571E+01	-0.64869E+00
339	0.17570E+01	0.27340E+01	0.11079E+01	-0.72294E+00
340	0.19480E+01	0.26020E+01	0.10528E+01	-0.79504E+00
341	0.21280E+01	0.24560E+01	0.99523E+00	-0.86578E+00
342	0.22980E+01	0.22980E+01	0.93008E+00	-0.93284E+00
343	0.24560E+01	0.21280E+01	0.86168E+00	-0.99693E+00
344	0.26020E+01	0.19480E+01	0.78736E+00	-0.10536E+01
345	0.27340E+01	0.17570E+01	0.71153E+00	-0.11081E+01
346	0.28520E+01	0.15580E+01	0.62952E+00	-0.11543E+01
347	0.29560E+01	0.13500E+01	0.54696E+00	-0.11983E+01
348	0.30450E+01	0.11360E+01	0.46112E+00	-0.12315E+01
349	0.31180E+01	0.91560E+00	0.37839E+00	-0.12648E+01
350	0.31760E+01	0.69080E+00	0.29511E+00	-0.12875E+01
351	0.32170E+01	0.46250E+00	0.22110E+00	-0.13151E+01
352	0.32420E+01	0.23190E+00	0.15258E+00	-0.13350E+01
353	0.32500E+01	0.00000E+00	0.99829E-01	-0.13618E+01
354 355 356 357	0.32500E+01 0.32500E+01 0.32500E+01 0.32500E+01 0.32500E+01	-0.20000E+00 -0.40000E+00 -0.60000E+00 -0.80000E+00	0.62793E-01 0.38239E-01 0.19689E-01 0.98243E-02	-0.13829E+01 -0.13905E+01 -0.14028E+01 -0.14021E+01
358	0.32500E+01	-0.10000E+01	0.26219E-02	-0.14083E+01
359	0.32500E+01	-0.12000E+01	-0.60171E-04	-0.14049E+01
360	0.32500E+01	-0.14000E+01	-0.21000E-02	-0.14086E+01
361	0.32500E+01	-0.16000E+01	-0.20516E-02	-0.14048E+01
362	0.32500E+01	-0.18000E+01	-0.17195E-02	-0.14075E+01

363 364 365 367 368 372 3773 3774 3775 3778 3778 3823 3884 3889 3912 3973 3976 3973 3976 3990 402 40	0.32500E+01 0.0000E+00 0.24080E+00 0.48030E+00 0.71740E+00 0.95080E+00 0.11790E+01 0.14020E+01 0.16170E+01 0.20230E+01 0.22100E+01 0.225510E+01 0.27020E+01 0.28390E+01 0.29620E+01 0.32980E+01 0.32980E+01 0.32980E+01 0.32980E+01 0.33750E+01 0.33	$\begin{array}{c} -0.20000E+01\\ 0.33750E+01\\ 0.33600E+01\\ 0.32980E+01\\ 0.32980E+01\\ 0.32980E+01\\ 0.32380E+01\\ 0.31620E+01\\ 0.30700E+01\\ 0.29620E+01\\ 0.29620E+01\\ 0.29620E+01\\ 0.29620E+01\\ 0.25510E+01\\ 0.25510E+01\\ 0.22100E+01\\ 0.2230E+01\\ 0.2230E+01\\ 0.18250E+01\\ 0.18250E+01\\ 0.16170E+01\\ 0.16170E+01\\ 0.16170E+01\\ 0.95080E+00\\ 0.71740E+00\\ 0.48030E+00\\ 0.71740E+00\\ 0.48030E+00\\ 0.24080E+00\\ 0.24080E+00\\ 0.24080E+00\\ 0.20000E+00\\ -0.20000E+00\\ -0.20000E+00\\ -0.80000E+00\\ -0.10000E+01\\ -0.12000E+01\\ -0.12000E+01\\ -0.18000E+01\\ -0.18000E+01\\ -0.18000E+01\\ -0.18000E+01\\ -0.35000E+01\\ 0.34910E+01\\ 0.34910E+01\\ 0.32790E+01\\ 0.30720E+01\\ 0$	0.00000E+00 0.12890E+01 0.12744E+01 0.12405E+01 0.12020E+01 0.11626E+01 0.11222E+01 0.10808E+01 0.99179E+00 0.99179E+00 0.94268E+00 0.88957E+00 0.83299E+00 0.76960E+00 0.76960E+00 0.76960E+00 0.63531E+00 0.56338E+00 0.48711E+00 0.41248E+00 0.33536E+00 0.26278E+00 0.19197E+00 0.13250E+00 0.19197E+00 0.16424E-01 0.52568E-01 0.29809E-01 0.16424E-01 0.67724E-02 0.23298E-02 -0.84978E-03 -0.16134E-02 -0.20429E-02 -0.13189E-02 0.00000E+00 0.11250E+01 0.10375E+01 0.10375E+01 0.99971E+00 0.92450E+00 0.92450E+00 0.92450E+00 0.92450E+00 0.92450E+00 0.92450E+00 0.92450E+00 0.92450E+00 0.92450E+00 0.92450E+00 0.92450E+00 0.92450E+00 0.92450E+00 0.92450E+00 0.92450E+00 0.92450E+00 0.92450E+00 0.92450E+00 0.9456E+00 0.94756E+00 0.94756E+00 0.94756E+00 0.94756E+00 0.94756E+00 0.94756E+00 0.94756E+00 0.94756E+00 0.980E+00 0.94756E+00 0.980E+00 0.94756E+00 0.980	$\begin{array}{c} -0.14060E+01\\ 0.0000E+00\\ -0.13126E+00\\ -0.22661E+00\\ -0.30573E+00\\ -0.37634E+00\\ -0.44469E+00\\ -0.51164E+00\\ -0.57949E+00\\ -0.57949E+00\\ -0.57949E+00\\ -0.77354E+00\\ -0.77354E+00\\ -0.89042E+00\\ -0.89042E+00\\ -0.98935E+00\\ -0.98935E+00\\ -0.10690E+01\\ -0.11023E+01\\ -0.11289E+01\\ -0.11289E+01\\ -0.11289E+01\\ -0.112568E+01\\ -0.12568E+01\\ -0.12568E+01\\ -0.12892E+01\\ -0.12892E+01\\ -0.12892E+01\\ -0.12895E+01\\ -0.12919E+01\\ -0.12919E+01\\ -0.12919E+01\\ -0.12910E+01\\ -0.12910E+01\\ -0.12890E+01\\ -0.12890E+01\\ -0.12910E+01\\ -0.12910E+01\\ -0.12890E+01\\ -0.12910E+01\\ -0.12900E+01\\ -0.12900E+01\\ -0.12900E+01\\ -0.12910E+01\\ -0.12910E+01\\ -0.12910E+01\\ -0.12910E+01\\ -0.12890E+01\\ -0.12890E+01\\ -0.12890E+01\\ -0.12890E+01\\ -0.12890E+01\\ -0.12890E+00\\ -0.31821E+00\\ -0.37723E+00\\ -0.43466E+00\\ -0.49300E+00\\ -0.49400E+00\\ -0.49400E+$
400	0.74400E+00	0.34200E+01	0.10375E+01	-0.25753E+00
401	0.98610E+00	0.33580E+01	0.99971E+00	-0.31821E+00
403	0.14540E+01	0.31840E+01	0.92450E+00	-0.43466E+00
406	0.20970E+01	0.28020E+01	0.80433E+00	-0.60564E+00
407	0.22920E+01	0.26450E+01	0.75947E+00	-0.65967E+00
408	0.24750E+01	0.24750E+01	0.70911E+00	-0.71064E+00
409	0.26450E+01	0.22920E+01	0.65756E+00	-0.75929E+00
410	0.28020E+01	0.20970E+01	0.60015E+00	-0.80313E+00
411	0.29440E+01	0.18920E+01	0.54320E+00	-0.84421E+00
412	0.30720E+01	0.16770E+01	0.47914E+00	-0.87931E+00
413	0.31840E+01	0.14540E+01	0.41684E+00	-0.91153E+00
414	0.32790E+01	0.12230E+01	0.34987E+00	-0.93851E+00
415	0.33580E+01	0.98610E+00	0.28727E+00	-0.96411E+00

416	0 242000.01	0 744005 00		
417	0.34200E+01 0.34640E+01	0.74400E+00	0.22045E+00	-0.98249E+00
418	0.34910E+01	0.49810E+00 0.24970E+00	0.16288E+00 0.10596E+00	-0.10080E+01 -0.10299E+01
419	0.35000E+01	0.00000E+00	0.65830E-01	-0.10650E+01
420	0.35000E+01	-0.20000E+00	0.38290E-01	-0.10929E+01
421	0.35000E+01	-0.40000E+00	0.24127E-01	-0.11059E+01
422	0.35000E+01	-0.60000E+00	0.10828E-01	-0.11203E+01
423	0.35000E+01	-0.80000E+00	0.63333E-02	-0.11218E+01
424	0.35000E+01	-0.10000E+01	0.80832E-03	-0.11276E+01
425	0.35000E+01	-0.12000E+01	0.19214E-03	-0.11251E+01
426	0.35000E+01	-0.14000E+01	-0.16539E-02	-0.11277E+01
427	0.35000E+01	-0.16000E+01	-0.11597E-02	-0.11244E+01
428	0.35000E+01	-0.18000E+01	-0.10037E-02	-0.11261E+01
429	0.35000E+01	-0.20000E+01	0.00000E+00	-0.11250E+01
430	0.00000E+00	0.36250E+01	0.91400E+00	0.00000E+00
431	0.25860E+00	0.36160E+01	0.89874E+00	-0.83609E-01
432	0.51590E+00	0.35880E+01	0.86818E+00	-0.14696E+00
433	0.77050E+00	0.35420E+01	0.83367E+00	-0.20108E+00
434	0.10210E+01	0.34780E+01	0.80019E+00	-0.25036E+00
435	0.12670E+01	0.33960E+01	0.76857E+00	-0.29752E+00
436	0.15060E+01	0.32970E+01	0.73720E+00	-0.34448E+00
437	0.17370E+01	0.31820E+01	0.70536E+00	-0.39032E+00
438	0.19600E+01	0.30500E+01	0.67227E+00	-0.43577E+00
439	0.21720E+01	0.29020E+01	0.63936E+00	-0.48069E+00
440	0.23740E+01	0.27400E+01	0.60179E+00	-0.52295E+00
441	0.25630E+01	0.25630E+01	0.56414E+00	-0.56471E+00
442 443	0.27400E+01 0.29020E+01	0.23740E+01	0.52063E+00	-0.60174E+00
$443 \\ 444$	0.29020E+01 0.30500E+01	0.21720E+01	0.47735E+00	-0.63768E+00
445	0.31820E+01	0.19600E+01 0.17370E+01	0.42907E+00 0.38106E+00	-0.66852E+00 -0.69787E+00
446	0.32970E+01	0.15060E+01	0.32947E+00	-0.72333E+00
447	0.33960E+01	0.12670E+01	0.27851E+00	-0.74579E+00
448	0.34780E+01	0.10210E+01	0.22495E+00	-0.76342E+00
449	0.35420E+01	0.77060E+00	0.17466E+00	-0.78154E+00
450	0.35880E+01	0.51590E+00	0.12299E+00	-0.79822E+00
451	0.36160E+01	0.25860E+00	0.80199E-01	-0.82222E+00
452	0.36250E+01	0.00000E+00	0.42265E-01	-0.85615E+00
453	0.36250E+01	-0.20000E+00	0.26347E-01	-0.88225E+00
454	0.36250E+01	-0.40000E+00	0.12995E-01	-0.90099E+00
455	0.36250E+01	-0.60000E+00	0.75850E-02	-0.90877E+00
456	0.36250E+01	-0.80000E+00	0.21180E-02	-0.91514E+00
457	0.36250E+01	-0.10000E+01	0.95485E-03	-0.91565E+00
458	0.36250E+01	-0.12000E+01	-0.10094E-02	-0.91717E+00
459	0.36250E+01	-0.14000E+01	-0.82962E-03	-0.91555E+00
460	0.36250E+01	-0.16000E+01	-0.11152E-02	-0.91578E+00
461 462	0.36250E+01 0.36250E+01	-0.18000E+01	-0.60038E-03	-0.91406E+00
462 463	0.36250E+01 0.00000E+00	-0.20000E+01 0.37500E+01	0.00000E+00 0.65600E+00	-0.91400E+00 0.00000E+00
464	0.26750E+00	0.37400E+01	0.64506E+00	-0.56138E-01
465	0.53370E+00	0.37120E+01	0.61779E+00	-0.99638E-01
466	0.79710E+00	0.36640E+01	0.59209E+00	-0.13841E+00
467	0.10560E+01	0.35980E+01	0.56573E+00	-0.17344E+00
468	0.13100E+01	0.35140E+01	0.54136E+00	-0.20684E+00
			-	

469	0.15580E+01	0.34110E+01	0.51921E+00	-0.24043E+00
470	0.17970E+01	0.32910E+01	0.49682E+00	-0.27409E+00
471	0.20270E+01	0.31550E+01	0.47356E+00	-0.30571E+00
472	0.22470E+01	0.30020E+01	0.44910E+00	-0.33750E+00
473	0.24560E+01	0.28340E+01	0.42339E+00	-0.36728E+00
474	0.26520E+01	0.26520E+01	0.39476E+00	-0.39537E+00
475 476	0.28340E+01 0.30020E+01	0.24560E+01	0.36694E+00	-0.42249E+00
477	0.31550E+01	0.22470E+01 0.20270E+01	0.33489E+00 0.30306E+00	-0.44782E+00 -0.47013E+00
478	0.32910E+01	0.17970E+01	0.26745E+00	-0.49060E+00
479	0.34110E+01	0.15580E+01	0.23318E+00	-0.50815E+00
480	0.35140E+01	0.13100E+01	0.19362E+00	-0.52232E+00
481	0.35980E+01	0.10560E+01	0.16040E+00	-0.53693E+00
482	0.36640E+01	0.79710E+00	0.11971E+00	-0.54814E+00
483	0.37120E+01	0.53370E+00	0.87592E-01	-0.56212E+00
484	0.37400E+01	0.26750E+00	0.49973E-01	-0.57826E+00
485 486	0.37500E+01 0.37500E+01	0.00000E+00 -0.20000E+00	0.27009E-01	-0.60876E+00 -0.63361E+00
487	0.37500E+01 0.37500E+01	-0.40000E+00	0.11625E-01 0.96430E-02	-0.64441E+00
488	0.37500E+01	-0.60000E+00	0.21185E-02	-0.65450E+00
489	0.37500E+01	-0.80000E+00	0.31483E-02	-0.65589E+00
490	0.37500E+01	-0.10000E+01	-0.54757E-03	-0.65900E+00
491	0.37500E+01	-0.12000E+01	0.70401E-03	-0.65749E+00
492	0.37500E+01	-0.14000E+01	-0.89821E-03	-0.65834E+00
493	0.37500E+01	-0.16000E+01	-0.13996E-03	-0.65647E+00
494 495	0.37500E+01 0.37500E+01	-0.18000E+01	-0.17064E-03	-0.65692E+00
495	0.00000E+00	-0.20000E+01 0.38750E+01	0.00000E+00 0.35200E+00	-0.65600E+00 0.00000E+00
497	0.27640E+00	0.38650E+01	0.34400E+00	-0.27449E-01
498	0.55150E+00	0.38360E+01	0.32771E+00	-0.50263E-01
499	0.82370E+00	0.37860E+01	0.31382E+00	-0.70596E-01
500	0.10920E+01	0.37180E+01	0.29811E+00	-0.90184E-01
501	0.13540E+01	0.36310E+01	0.28490E+00	-0.10714E+00
502	0.16100E+01	0.35250E+01	0.27229E+00	-0.12567E+00
503 504	0.18570E+01 0.20950E+01	0.34010E+01 0.32600E+01	0.26103E+00	-0.14318E+00 -0.16015E+00
504	0.23220E+01	0.31020E+01	0.24776E+00 0.23578E+00	-0.17673E+00
506	0.25380E+01	0.29290E+01	0.22016E+00	-0.19158E+00
507	0.27400E+01	0.27400E+01	0.20737E+00	-0.20720E+00
508	0.29290E+01	0.25380E+01	0.19060E+00	-0.22032E+00
509	0.31020E+01	0.23220E+01	0.17611E+00	-0.23468E+00
510	0.32600E+01	0.20950E+01	0.15777E+00	-0.24629E+00
511	0.34010E+01	0.18570E+01	0.14093E+00	-0.25716E+00
512 513	0.35250E+01 0.36310E+01	0.16100E+01 0.13540E+01	0.12065E+00 0.10227E+00	-0.26616E+00 -0.27368E+00
514	0.37180E+01	0.10920E+01	0.81595E-01	-0.28099E+00
515	0.37860E+01	0.82370E+00	0.63770E-01	-0.28785E+00
516	0.38360E+01	0.55150E+00	0.40538E-01	-0.29279E+00
517	0.38650E+01	0.27640E+00	0.26098E-01	-0.30333E+00
518	0.38750E+01	0.00000E+00	0.36740E-02	-0.32292E+00
519 520	0.38750E+01	-0.20000E+00 -0.40000E+00	0.54526E-02	-0.33855E+00 -0.34727E+00
520 521	0.38750E+01 0.38750E+01	-0.60000E+00	-0.61894E-03 0.17542E-02	-0.34727E+00 -0.35095E+00
JZI	0.50/506701	0.0000000000000000000000000000000000000	0.1/0426-02	0.000000+00

522 523 524	0.38750E+01 0.38750E+01	-0.80000E+00 -0.10000E+01	-0.11490E-02 0.54016E-03	-0.35290E+00 -0.35319E+00
525	0.38750E+01 0.38750E+01	-0.12000E+01 -0.14000E+01	-0.92796E-03	-0.35317E+00
526	0.38750E+01	-0.16000E+01	0.96913E-04 -0.49748E-03	-0.35260E+00 -0.35221E+00
527	0.38750E+01	-0.18000E+01	-0.49748E-03 0.76556E-04	-0.35189E+00
528	0.38750E+01	-0.20000E+01	0.00000E+00	-0.35200E+00
529	0.00000E+00	0.40000E+01	0.00000E+00	0.00000E+00
530	0.28540E+00	0.39900E+01	0.00000E+00	0.00000E+00
531	0.56930E+00	0.39590E+01	0.00000E+00	0.00000E+00
532	0.85030E+00	0.39090E+01	0.00000E+00	0.00000E+00
533	0.11270E+01	0.38380E+01	0.00000E+00	0.00000E+00
534	0.13980E+01	0.37480E+01	0.00000E+00	0.00000E+00
535	0.16620E+01	0.36390E+01	0.00000E+00	0.00000E+00
536	0.19170E+01	0.35110E+01	0.00000E+00	0.00000E+00
537	0.21630E+01	0.33650E+01	0.00000E+00	0.00000E+00
538	0.23970E+01	0.32020E+01	0.00000E+00	0.00000E+00
539	0.26190E+01	0.30230E+01	0.00000E+00	0.00000E+00
540	0.28280E+01	0.28280E+01	0.00000E+00	0.00000E+00
541	0.30230E+01	0.26190E+01	0.00000E+00	0.00000E+00
542	0.32020E+01	0.23970E+01	0.00000E+00	0.00000E+00
543	0.33650E+01	0.21630E+01	0.00000E+00	0.00000E+00
544	0.35110E+01	0.19170E+01	0.00000E+00	0.00000E+00
545	0.36390E+01	0.16620E+01	0.00000E+00	0.00000E+00
546	0.37480E+01	0.13980E+01	0.00000E+00	0.00000E+00
547	0.38380E+01	0.11270E+01	0.00000E+00	0.00000E+00
548	0.39090E+01	0.85030E+00	0.00000E+00	0.00000E+00
549	0.39590E+01	0.56930E+00	0.00000E+00	0.00000E+00
550	0.39900E+01	0.28540E+00	0.00000E+00	0.00000E+00
551	0.40000E+01	0.0000E+00	0.0000E+00	0.00000E+00
552	0.40000E+01	-0.2000E+00	0.0000E+00	0.00000E+00
553	0.40000E+01	-0.40000E+00	0.0000E+00	0.00000E+00
554	0.40000E+01	-0.60000E+00	0.00000E+00	0.0000E+00
555 556	0.40000E+01 0.40000E+01	-0.80000E+00	0.00000E+00	0.0000E+00
556 557	0.40000E+01 0.40000E+01	-0.10000E+01 -0.12000E+01	0.00000E+00	0.00000E+00
558	0.40000E+01 0.40000E+01	-0.14000E+01	0.00000E+00 0.00000E+00	0.00000E+00 0.00000E+00
559	0.40000E+01	-0.16000E+01	0.00000E+00	0.00000E+00 0.00000E+00
560	0.40000E+01	-0.18000E+01	0.00000E+00	0.00000E+00 0.00000E+00
561	0.40000E+01	-0.20000E+01	0.00000E+00	0.00000E+00
	0.100000101	0.200000.01	0.000001400	0.000000400

REFERENCES

- Akin, J.E.: Finite Elements for Analysis and Design, Academic Press, California, 1994.
- Chandrupatla, T.R., and A.D. Belegundu: *Introduction to Finite Elements in Engineering*, Prentice Hall, New Jersey, 1991.
- Chen, R.Y., H.C. Chiou, and D. Sun: "Deposition of Particles in a Convergent Channel," *Powder Technology*, vol. PTE087/1, pp.83-86, 1996.
- Emanuel, G.: Analytical Fluid Dynamics, CRC Press, Florida, 1994
- Fox, R.W., and A.T. McDonald: *Introduction to Fluid Mechanics*, 4th ed., John Wiley & Sons, New York, 1992.
- Gutfinger, C., and D. Pnueli: *Fluid Mechanics*, Cambridge University Press, New York, 1992.
- Hesketh, H.E.: Fine Particles in Gaseous Media, 2nd ed., Lewis Publishers, 1986.
- Reddy, J.N.: An Introduction to the Finite Element Method, 2nd ed., McGraw-Hill, New York, 1993.
- Ross, C.T.F.: Finite Element Programs for Axisymmetric Problems in Engineering, John Wiley & Sons, New York, 1984.
- Warsi, Z.U.A., *Fluid Dynamics: Theoretical and Computational Approaches*, CRC Press, Florida, 1993.