
New Jersey Institute of Technology New Jersey Institute of Technology 

Digital Commons @ NJIT Digital Commons @ NJIT 

Theses Electronic Theses and Dissertations 

Fall 1-31-1996 

Analysis of calibration, robustness, detection of space-time Analysis of calibration, robustness, detection of space-time 

adaptive rada using experimental data adaptive rada using experimental data 

Murat O. Berin 
New Jersey Institute of Technology 

Follow this and additional works at: https://digitalcommons.njit.edu/theses 

 Part of the Electrical and Electronics Commons 

Recommended Citation Recommended Citation 
Berin, Murat O., "Analysis of calibration, robustness, detection of space-time adaptive rada using 
experimental data" (1996). Theses. 1081. 
https://digitalcommons.njit.edu/theses/1081 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital 
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons 
@ NJIT. For more information, please contact digitalcommons@njit.edu. 

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1081?utm_source=digitalcommons.njit.edu%2Ftheses%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

ANALYSIS OF CALIBRATION, ROBUSTNESS, DETECTION OF 
SPACE-TIME ADAPTIVE RADAR USING EXPERIMENTAL DATA 

by 
Murat 0. Berin 

Signal cancellation effects in adaptive array radar are studied under non 

ideal conditions when there is a mismatch between the true desired signal and the 

presumed theoretical desired signal. This mismatch results in decreased performance 

when the estimated correlation matrix has a large desired signal component. The 

performance of the sample matrix inversion (SMI) method is compared to the 

eigenanalysis-based eigencanceler method. Both analytical results and the processing 

on the experimental data from the Mountaintop Program, show that eigenanalysis-

based adaptive beamformers have greater robustness to signal cancellation effects 

than the SMI method. Also, the calibration of the recorded data, and the pulse 

compression method utilized to achieve high resolution are discussed. 
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CHAPTER 1 
• 

INTRODUCTION 

Adaptive antennas have been under development in various forms for about three 

decades. Examples of adaptive arrays and their applications are the 

Howeels Applebaum sidelobe canceler [1], Widrow's [2], Griffith's [3] Frost's [4], Zahm's [5] 

Compton's beamformer [6]. Frost has shown that under ideal conditions, linearly 

constrained array beamforming provides an improvement in array output signal-

to-interference-plus-noise ratio (SNIR) in comparison to conventional beamforming. 

Conventional beamformers cancel the interference without considering a desired 

signal. A linearly constrained adaptive array, however, tries to preserve signals at 

a given angle and/or Doppler frequency. To preserve a presumed desired signal, a 

steering vector is formed using theoretical output of the antenna array under ideal 

conditions. This steering vector is used to calculate the weights for a given adaptive 

criteria, such that there is some gain in the direction of the desired signal . However, 

due to practical limitations the presumed steering vector and the true desired signal 

do not necessarily match. This mismatch, also known as the perturbation problem, 

causes signal cancellation when the optimum array processor is used. 

The perturbation problem, which has many sources, has been an active research 

topic. The perturbation due to pointing errors, mismatch between the presumed and 

true angle of arrival, was studied by Er [7]. Using hybrid techniques were suggested to 

overcome pointing errors by Habu [8]. Another source of mismatch is the calibration 

errors that results in random gain and phase errors at every element. The gain 

and phase mismatches are caused by unmatched antennas and receiver electronics, 

producing a different response at every channel. Previous work on calibration effects 

includes the problem of small phase errors at each element [9], and the more general 

case of amplitude and phase errors [10, 11, 12]. Certain array processing criteria 
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also requires a. prior knowledge of the interference correlation matrix, i.e. the Weiner 

solution. In general, the true correlation matrix of the interference and noise is not 

available and it needs to be estimated from a finite record of the data. The estimation 

error, due to training set size limitation, affects the performance of the array. Using 

a larger training set for a better estimate, may also result in problems if the data is 

not completely stationary. If the training data set includes the desired signal, the 

estimated correlation matrix has a desired signal component. If the desired signal 

component is large, the processor interprets the desired signal portion mismatched 

to the steering vector as interference, and signal suppression is observed even with a 

small steering vector perturbation [13, 14]. 

The sample matrix inversion (SMI) method was pioneered by Brennan and 

Reed [15, 16]. They proposed to use a signal free secondary data set to estimate 

the interference correlation matrix, and to utilize the Winer solution to optimize 

the weights. If the data is not homogeneous, training in a different region causes 

a large estimation error resulting decreased performance. The other alternative, 

retraining the processor anew for each range cell under test such that the cell is 

excluded from the training set, adds considerable computational complexity. The 

performance of the SMI is also degraded if the estimation is performed around the 

target region due to the residual power of the target signal resulting in a corre-

lation matrix with a large desired signal component. Recently, eigenanalysis based 

beamformers have been considered for adaptive array space time radar. Haimovich 

suggests an eigenanalysis interference canceler and shows the superior performance of 

the eigenanalysis techniques when data length used for training is relatively short [17]. 

The principal component inverse (PCI) method was suggested by Kirsteins [18] One 

approach to eigenanalysis based beamforming is the two step adaptive interference 

nulling algorithm by Marshall [19]. In two step nulling, the data is transformed to 

a lower dimension using the signal-plus-interference eigenvectors, and the optimum 
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processing is carried in the transform domain. This approach overcomes the low 

rank problem of the correlation matrix, observed when the training set is small. 

Transform method can be also implemented by using the projection of the steering 

vector onto the signal-plus-interference subspace [20]. A sub optimum approach 

is the eigencanceler, formulated as a modified minimum variance beamformer [21]. 

The eigencanceler constrains the weight vector in the noise subspace and nulls the 

interference subspace. The desired signal power in the interference subspace is lost 

due to the subspace nulling, but the performance of the eigencanceler, which is less 

complex, is very close to the transform method. Eigenanalysis based processing also 

can be carried out by using the projection of the optimal weight vector on the signal-

plus-interference subspace [22]. All eigenanalysis based beamformers have better 

convergence rate than the SMI in terms of the training support required to achieve 

specified performance. Eigenanalysis based beamformers are also robust against 

steering vector perturbation. In this work, the SMI method and the eigencanceler 

are compared analytically, and the analytical results are verified on the Mountaintop 

data package. 

Others who have made important contributions to analysis of the mismatch 

problem include Widrow [23], Bar-Ness [24], Jablon [25]. 

In the remaining part; of this chapter, the signal model, and the adaptive space 

time processors are discussed, and the array improvement factor is defined. In chapter 

2, the Mountaintop program is described, and the calibration filter design and the 

pulse compression are discussed. In chapter 3, the performance of two adaptive 

algorithms, SMI and the eigencanceler, are studied analytically. And in chapter 4, 

the analytical results are verified using the experimental data from the Mountaintop 

data package. 
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1.1 Signal Model 

Consider a narrow-band antenna array consisting of N omnidirectional sensors in 

a linear spatial configuration. A coherent pulse is transmitted and the returns from 

the range cells are recorded from tstar t to t end  seconds after the transmission. The 

time interval from the start of one transmitted pulse to the start of the next pulse 

is called the pulse repetition interval (PRI). K coherent PRI's form a coherent pulse 

interval (CPI). To analyze a specific range cell at distance rd , snapshot row vectors 

at. t d  seconds from the start of each PRI are stacked to form the data matrix X. The 

relationship between rd  and t d  is given by 

where c is the speed of light and the data matrix X is given by 

where Xk,n  is the complex envelope of the echo signal at the Oh  PRI and the nth  

antenna. If a target is present at a given range cell, X has the form 

where Xd is the target signal (desired signal), Xi  is the interference, and Xn is the 

noise matrix. If a target is not present in a given range cell then 

The columns of Xd are samples in time that give information about the velocity 

of the target. The rows of this matrix are samples in space that give information 

about the angle of the received signal. To study how these quantities relate to the 

measurements, consider a plane wave, as shown in Figure 1.1. In the ideal case, when 





lie spatial channels are co-linear, identical, omni-directional and equally spaced with 

pacing d, the entries of matrix Xd are given by 

where σ2d is the desired signal power, ψs is the normalized spatial frequency and ψt 

s the normalized Doppler frequency. The normalized spatial frequency is given by 

where A is the wavelength of the transmitted signal and Od is angle of the target. 

The normalized Doppler frequency is given by 

where v is the radial velocity of the target. The desired signal component of the 

matrix X, under ideal conditions, can also be written as 

where St , the K x 1 normalized temporal steering vector, and s3, the N x 1 normalized 

spatial steering vector, are given by 

The KN x 1 normalized joint-domain steering vector is formed by stacking the 

transpose of the rows of Xd and it is given by 

where 0 is the Kronecker product. Assuming P RI , d, and A have been properly 

chosen to meet the Nyquist sampling criterion, ψs  and ψt  are confined within 

[-0.5,0.5]. 



1.2 Joint-Domain and Cascade Processors 

For space-time radar, joint-domain and cascade processing are two possible config-

urations. With the joint-domain linear processor (see Figure 1.2(a)), the data is 

processed as follows, 

where w3  is the /CA/ x 1 joint domain weight vector and xj is the KN x 1 joint-

domain data vector formed by stacking the transpose of the rows of the data matrix 

There are two cascade configurations: time-space (T-S) and space-time (S-T). The 

T-S configuration consists of K-dimensional temporal processing followed by N-

dimensional spatial processing. S-T configuration processes the data in the opposite 

order. Block diagrams of cascade configurations are shown in Figure 1.2 (h) and (c). 

In the T-S configuration the input to the temporal processing stage is data matrix 

X. The output of this stage is the N x 1 spatial data vector: 

where wt  is the K x 1 temporal weight vector and (*) means complex conjugate. The 

output of the temporal processor is used by the spatial processor, which produces 





where ws  is an N x 1 spatial weight vector. Similarly, for the S-T configuration the 

output of the spatial beamformer is 

where xt  is the K x 1 temporal data vector and the output of the temporal 

beaniformer is 

Both of these cascade configurations may use different adaptive criteria for 

processing in both domains. The performance of the cascade should approach that 

of the optimum processor with the same configuration. Cascade processing, especially 

the S-T configuration, has been very popular in recent years, but it has been shown 

that joint-domain processing performs better than both cascade configurations [26]. 

In chapter 4, the joint-domain and the post-Doppler processors are applied to 

the Mountaintop data. The post-Doppler processor has a cascade configuration with 

a non-adaptive temporal processor followed by an adaptive spatial processor. Next, 

the figure of merit used in this work to compare the performance of the adaptive 

algorithms is discussed 

1.3 Array Improvement Factor 

Under the assumption of uncorrelated signal, interference and noise, the correlation 

matrix of the data vector x, which may have the form of xj, xt  or xs, is given by 



Under the ideal conditions, the desired signal vector xd  has the form of equation (1.9) 

or equation (1.10), depending on the configuration of the beamformer. Ri  is the 

autocorrelation of the interference, u2 is the interference power, and an is the power 

of the white Gaussian noise. Rd  and Ri are normalized to have a trace of one. 

The output power of the beamformer as a function of w is given by 

The first term of PBF  is the signal power and the remaining is the interference-plus-

noise power. Signal-to-interference-plus-noise ratio at the output of the beamformer 

is given by 

The array improvement factor (AIF) is defined as the ratio of SNI RBF•  to 

SNR. at the input of the beamformer as a function of the weight vector: 

where Ri.+„ is the interference-plus-noise correlation matrix defined as 

Assuming xd  and 	are know, SNI RBF  is maximized by the Weiner solution 

given by 

where k is a gain constant and does not have an effect on the AIF. To study the 

behavior of the AIF, first consider a noise only correlation matrix (o 	0), For this 



However, in many cases of practical importance the available information. about 

the desired signal vector is imprecise. Also, the correlation matrix of 

interference pl us-noise is estimated using a finite set of data. These two practical problems cause 

a decrease in performance of the Weiner solution. In chapter 3, the AIF will be used 

as the figure of merit to compare the performance of the SMI and the eigencanceler 

methods under these conditions. 



CHAPTER 2 

THE MOUNTAINTOP DATA PACKAGE 

The Mountaintop Program was initiated to study advanced processing techniques 

and technologies required to support the mission requirements of the next generation 

airborne early warning platform. In this chapter, the radar and the data processing 

aspects such as calibration and pulse compression are discussed. 

2.1 Description of the Assets 

Two major assets of the Mountaintop Program are Radar Surveillance Technology 

Experimental Radar (RSTER) and Inverse Display Phase Central Array (IDPCA). 

RSTER is a 5 meter by 10 meter vertically polarized array made up of 14 row elements 

with an independent phase shifter, transmitter and receiver. This original configu-

ration, with adaptivity in elevation, is referred to as the RSTER configuration. The 

antenna was designed to be mounted vertically to achieve azimuth adaptivity. This 

configuration is referred to as RSTER-90. The basic set up of the data collection is 

given in Figure 2.1. IDPCA was developed to overcome the challenge of providing 

a meaningful emulation of the airborne surveillance environment. For a fixed radar, 

IDPCA produces clutter returns with the same spatial and temporal character-

istics as observed from an airborne surveillance platform. Since clutter profile in 

azimuth-Doppler space is due to the motion of the aperture's phase center, to 

effect; the emulation one can move an antenna or deploy several antennas and move 

between them. Apparent motion occurs along the length of the array. The IDPCA 

is a transmit-only device and the clutter returns are received through the larger 

RSTER-90 antenna. The effectiveness of the IDPCA's motion was demonstrated by 

comparing the clutters returns of IDPCA to clutter returns using a Lear jet [27]. 
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2.2 Calibration 

Theory of array processing is developed assuming ideal elements (channels) with 

omni-directional, identical and equally spaced antennas and perfectly matched 

channel receiver electronics. However, to satisfy these ideal conditions is an 

impossible challenge. The hardware calibration is limited by the current available 

technology, but. the calibration can be enhanced by using digital filters to compensate 

for the differences in the receiver electronics, and the antenna mismatches. In this 

section, the design of the digital calibration filters are discussed. 

Calibration is done in two stages: Receiver Calibration (RCAL) and Antenna 

Calibration (ACAL). RCAL covers differences in amplitude and phase ripple between 

channels at intermediate frequency (IF). ACAL compensates for amplitude and phase 

match differences between channels at radio frequency (RF). RCAL and ACAL files 

are recorded while two different, known test signals are injected into antenna/receiver 

hardware. For RCAL, a 1 MHz LFM is injected into all channels of RSTER in the IF 

portion of the receiver, after the RF channel equalizer filters. During the injection of 

this test signal, data is recorded after A/D conversion and direct baseband quadrature 

sampling (DBQS) at; a 1 MHz rate. For ACAL a 500 KHz LFM signal is injected 

at the antenna immediately after the duplexer assembly. Data is recorded after the 

A/D, using DBQS at 1 MHz sampling. Complex weights are determined from this 

data set in order to equalize the channels. 

2.2.1 Design of Receiver Calibration Filters 

The band limited receiver is modeled with a transfer function. RCAL files are used 

to design a. transversal filter, which estimates the receiver transfer functions and 

equalizes to match each channel to the reference channel. The output of a transversal 

filter, as shown in Figure 2.2 is given by the finite convolution sum 







RCAL weights. This equalization step is only needed if the injected test signal is 

LIN, and not needed if it is a single frequency. To calculate the single weight needed 

for the itch element of the array, equation (2.3) is used with M = 1. Again, the output 

of the first antenna, u1(n), is used as the reference signal. 

Figure 2.3 illustrates the effects of the calibration process. Shown is CPI 1 

of ACAL file acal585vl.mat before and after calibration. In Figure 2.3(a), the 

magnitude of channel outputs are plotted on top of each other. Every channel's 

output has a different shape and amplitude for the same injected test signal. In 

Figure 2.3(b), the same data is plotted after receiver equalization using RCAL 

weights designed with the RCAL file rcal585v1.mat and M = 31. Compared with 

Figure 2.3(a) the equalized channel outputs have the same shape but different 

amplitude. The amplitude differences are calibrated using ACAL weights, which are 

designed using the ACAL file after receiver calibration. In Figure 2.3(c) the output 

of the channels are plotted after the antenna calibration, where all the outputs have 

the same shape and amplitude. 

2.3 Pulse Compression 

In order to receive measurable target returns, the transmitted pulse must have enough 

energy. A signal with a larger amplitude may be transmitted to increase the energy 

of the signal but the amplitude of the signal is limited by the transmitter power. An 

other approach is to use a longer pulse, but this causes problems with the resolution 

of the radar. For example, if a 100 µs pulse is transmitted, using equation (1.1), 

this would result in a 15 km resolution which is not practical. The Mountaintop 

radar uses pulse compression to achieve high range resolution. The radar transmits 

a wideband Chirp pulse. The chirp radar concept is described in detail by Klauder 

[30] and Wehner [14]. Samples of the complex envelope of a chirp signal is given by 
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the relation 

where N is the number of samples taken during the pulse and assuming Nyquist 

sampling rate, w = 1/(N — 1). A plot of the transmitted pulse envelope, pulse 

frequency, and RF wave form as a function of time, is given in Figure 2.4 (a), (b), 

and (c), respectively. The matched filter to this pulse is given by 

The output of the matched filter is plotted in Figure 2.5. To generate these plots, 

a. 100 µts pulse is used with a 1 /µs sampling period which results in 100 samples, 

N = 100. Using this method the 100 µs pulse is compressed to give a resolution 

of 1. its which corresponds to 150 m. The largest sidelobe is 13 dB below the main 

lobe. Windowing can be used to get lower sidelobes, but this will cause a wider 

mainlobe. In chapter 4, none of the plots generated using the experimental data 

used windowing on pulse compression. 
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(b) Output of the Matched Filter 

Figure 2.5 Chirp Signal Matched Filter Output 



CHAPTER 3 

ROBUSTNESS OF BEAMFORMING ALGORITHMS 

Linearly constrained array processing outperforms the conventional non-adaptive 

bea.mformer in terms of improving the signal-to-interference-plus-noise ratio at the 

output of the array. However, the performance is degraded by two major effects, the 

mismatch of the desired signal with the presumed steering vector and the presence 

of the desired signal in the data used for the estimation of the correlation matrix. 

The mismatch effect, also known as the perturbation problem, has two sources. 

The first is the calibration error, which is due to the antenna mismatch that causes 

different gain and phase at every element,. The second is the pointing error, which 

is due to the mismatch between the true angle of arrival and the presumed angle of 

arrival. 

Performance degradation due to the desired signal component in the correlation 

matrix was studied in [13] and [20]. The the Weiner solution, given in equation (1.23), 

assumes a known correlation matrix of the interference-plus-noise, but there are two 

practical issues degrade the performance. These are the finite number of data samples 

used in the estimate and the presence of the desired signal in the training data set. 

In this chapter the performance of the SMI and the eigencanceler methods are 

compared analytically with respect to the steering vector mismatch problem. Both of 

these methods use the estimated correlation matrix for optimization of the weights, 

therefore, first the properties of the correlation matrix is discussed. After a small 

discussion on the two adaptive method, the array improvement factors for the spatial 

processor are studied. For analytical simplicity, a single desired signal and a single 

interferer are assumed. Non-adaptive beamformer, which will be used in chapter 4 

on the experimental data as the clutter reference, is also discussed briefly. 
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3.1 Eigenstructure of the Correlation Matrix 

The correlation matrix has a very important role in the performance of adaptive 

algorithms, therefore, in this section the eigen-decomposition and some important 

properties of the correlation matrix are presented. In practice, the correlation matrix 

is generally not known and needs to be estimated from the data. Maximum likelihood 

estimate of the correlation matrix is given by 

where xm  is an L x 1 data vector and. M is the number of data vectors used to 

estimate the correlation matrix. The larger the data support the better the estimate 

(training). However if the data is not stationary, this approach may do more harm 

than good. The adaptive methods utilize the correlation matrix to cancel the inter-

ference, therefore a desired signal free correlation matrix is desired in order to prevent 

signal cancellation. To achieve a desired signal free correlation matrix a secondary 

data set may be used as shown in Figure 3.1(a). But this approach results in a 

large estimation error if the data is not stationary. An other method to get a signal 

free correlation matrix is to utilize a data set around the data vectors of interest 

with the data vector under test omitted from the training, as seen in Figure 3.1(b). 

This approach causes additional complexity because for every test data vector a new 

estimate is calculated. If the training is done as seen in Figure 3.1(c) with the test 

data vector in the training set, this causes a large desired signal component in the 

correlation matrix when the target is present, and signal cancellation is observed. 

The correlation matrix R„ can be decomposed into eigenvalues and eigenvectors 

using the spectral theorem, 





correlation matrix can be expresses in terms of the eigen-decomposition, 

The eigenvectors are orthonormal, 

and form a complete set that spans an L-dimensional space: 

The signal free covariance matrix is comprised of the interference and the noise 

contributions. If the covaria.nce matrix is characterized by r < L large eigenvalues 

then the r associated eigenvectors span the interference subspace. The matrix repre-

sentation of the interference subspace is obtained by using the first r eigenvectors 

corresponding to the largest eigenvalues. The matrix representation of the noise 

subspace is formed using the remaining L — r eigenvector. The two matrices are 

formed as follows: 

The interference eigenvalues are used to form an r x r matrix, Λi, and the noise 

eigenvalues are used to form an (L r) x (L — r) matrix, Λn, as follows: 

Using Qi, Qn, A, and An, desired signal free Rx  can he expressed as 



3.2 Non Adaptive Beamformer 

The non-adaptive beamformer uses the weight vector 

where sm  is the presumed steering vector for the target. For a given angle, velocity, 

and type of processor, s,r, has the form of equation (1.9) or equation (1.10). 

Windowing functions (amplitude taper) maybe used on the steering vector to lower 

the sidelobes at the cost of increasing the width of the mainlobe. The non-adaptive 

beamformer maximizes the beamformer's output signal-to-noise ratio in the absence 

of the interferences. 

3.3 Sample Matrix Inversion 

Sample matrix inversion (SMI) uses the weight vector 

where Rx  is the estimated correlation matrix of the interference and k is a gain 

constant. The theory of SMI was established in a series of publications by Brennan, 

Mallett, and Reed [15][16]. wsmi has the same form as wo  in equation (1.23) except 

the estimated correlation matrix is used. It was shown that wo  is the optimal 

solution for the likelihood ratio detector if components of the array vectors are 

distributed jointly Gaussian and the interference is a stationary process. Under these 

assumptions wo  can be viewed as the classical Wiener filter, which is a whitening 

filter for the interference cascaded with a match filter for the modified desired 

signal. However, SMI uses the correlation matrix estimated using a finite window 

of secondary data resulting in a non-optimal solution. If the data is heterogeneous 

with non-stationary statistics, training on a secondary data set results in a large 

estimation error. It has been shown that a data length of at least 2L, where L is the 



length of the data vectors [31], is needed for the SMI to converge. This convergence 

rate is very slow and it might get even larger if the data is not homogeneous. 

3.4 Eigencanceler 

The eigencanceler uses the weight vector 

where k is a gain constant, sm  is the presumed steering vector, and Qn  is the noise 

subspace. The eigencanceler is a suboptimal beamformer that focuses on the noise 

subspace. Unlike the optimal solution that equalizes the subspaces with the inverse 

of the eigenvalues, the eigencanceler nulls out the interference subspace and works on 

the noise subspace only. This results in superior cancellation and a fast convergence 

rate. 

3.5 Array Improvement Factor Calculations 

In this section the effects of calibration errors in terms of the AIF dependency on 

the desired signal component of the correlation matrix are studied. For analytical 

tractability, the special case of a single interference and the spatial processor is 

considered. The results are provided in terms of the SNR, INR, and the projections 

between the desired, presumed and interference steering vectors. 

Consider the estimated correlation matrix given by 

where σ2d, σ2i, σ2n, are desired signal, interference and noise power, and sd  and si  are 

desired signal and interference vectors, respectively. For the spatial processor the 



presumed steering vector has the form of equation (1.9), 

where L is the number of antenna elements. ψm  is the normalized spatial frequency 

of the presumed look direction, and it is related to the presumed target angle, Om, 

by equation (1.6). The desired signal vector has the form 

where c is a complex random variable with Gaussian-distributed magnitude and 

phase. The vector c is used to model the amplitude and phase errors. Assuming 

good calibration, both the magnitude and the phase of ci  have small variance. The 

mean of the magnitude is √1/L  and the mean of the phase error is zero. In case 

of the ideal calibration, c1  = √1/L.  The difference between the true target angle 

and presumed target angle, Om  — °d, is the pointing error. Under ideal conditions 

(no errors), the desired signal vector equals the presumed steering vector. Since 

the interference signal goes through the same channels as the desired signal, the 

interference steering vector has the form 

where ψi  is the normalized spatial frequency of the interference. The projection: 

between the steering vectors are defined as 

Without loss of generality, assume σ2n  = L. Then, Rx  can be written as 



n terms of its eigen.vectors, Rx  is given by 

Acre q, is the Ph eigenvector and λl  is the lth  eigenvalue for / E [1, 2]. For 

E [3, L], the eigenvalues are equal to 1. The signal-plus-interference subspace is 

2-dimensional and the noise subspace is (L — 2)-dimensional. Using σ2i , σ2d, and ρid ,  

(see Appendix A), first two eigenvalues of Rx  are given by 

The eigenvectors corresponding to these eigenvalues are given by 

where a is 

The inverse of the estimated correlation matrix is given by 

where 

The AIF for SMI is calculated using equations (1.21) and (3.10) as follows: 

where 

The numerator of Gsmi  is given by 



and the denominator is given by 

In the same manner, the array gain for the eigencanceler is calculated using 

equations (1.21), (3.11) and (3.6), with r = 1 (single interference), as follows: 

The numerator of Geig  is given by 

and the denominator is given by 

To study the effects of the SNR, INR, calibration and pointing errors, the Gsmi 

and Geig  are plotted. For all of the plots a.,i2  = L, where L = 14, and the Gsmi  and 

Geig  are normalized by L. 

In Figure 3.2, Gsmi  and G eig  are plotted as a function of the presumed target 

angle, O d , for the case of ideal phase and gain calibration, ci  = \/1/L. In Figure 3.2(a), 

the correlation matrix has no signal component, 0-,1 = 0. Under these conditions, SMI 

is the optimal solution, since R„ is the true correlation matrix of the interference 

and Gaussian noise. The Gsmi  and Geig  overlap for cr? = 1400 (INR = 20 dB). 

In Figure 3.2(b) the desired signal component is present in the correlation matrix, 

= 140 (SNR = 10 dB). For this case, SMI works only if On, = Od . A slight 

pointing error causes a large decrease in the AIR The eigencanceler, however, is 

much less affected by the increase of the SNI1 
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In Figure 3.3, effects of the phase errors, and pointing error are studied. There 

are no amplitude errors, |cl| = √1/L, and the phase errors are modeled as a zero-

mean Gaussian random variable. Phase errors are averaged over 50 iterations. As the 

standard deviation (STD) of the phase errors increases, Gsmi  starts to decrease, due 

to the mismatch between the desired and presumed steering vectors. The mainlobe 

is again very narrow due to the presence of the desired signal. The eigencanceler is 

very robust against the phase errors as seen in Figure 3.3(b), where the mainlobe is 

hardly changed even for high phase errors. 

In Figure 3.4, effects of the amplitude errors and pointing error are investigated. 

There are no phase errors, Lcl  = 0. The STD of the amplitude errors are normalized 

by the mean of the amplitude, which is 1/√L. Again the SMI method performs if 

there are no pointing errors and the STD of the amplitude errors are very small. 

Performance is degraded, however, if the STD of amplitude errors are increased or 

a small pointing error is introduced. The eigencanceler is again robust with respect 

to amplitude errors and maintains the ideal shape for the mainlobe shape even with 

amplitude errors of 10% STD from the mean. To generate these plots, 50 iterations 

are used for every point. 

In Figure 3.5, effects of the desired signal power, σ2d, on the pointing error is 

studied. There are no phase and amplitude errors, 

cl  = 

√1/L . When the a-3 = 0, 

both Gsmi  and Geig  have the same mainlobe as Figure 3.2(a), which is the ideal 

solution. As the desired signal power is increased, the SMI's mainlobe becomes 

narrower and the performance is decreased for even a small pointing error. The 

eigencanceler's performance is acceptable up to a SNR of 10 dB, but Gei9  goes down 

rapidly as the SNR. gets closer to the 1NR. This behavior is due to the shift of the 

first eigenvector, which starts to look like the desired signal as the SNR approaches 

the INR. When the SNR is equal to the INR, the eigencanceler fails even when there 
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are no pointing errors, because the first eigenvector has a large projection on the 

desired signal, which causes desired signal cancellation. 

In Figure 3.6, effects of the desired signal angle on the pointing errors is plotted. 

The desired signal angle does not have a very significant effect on the shape of the 

mainlobe. As seen in Figure 3.6(b), the mainlobe gets slightly larger as the desired 

signal angle is increased. This is due to the nonlinear mapping, from the physical to 

the electrical angle, given by equation (l .6). As Od  gets larger, the electrical pointing 

error is smaller for the same physical pointing error. Therefore, the mainlobe related 

to the electrical pointing errors becomes larger. 
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Figure 3.2 Effects of Desired Signal Component and Pointing Error on the AIF 
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Figure 3.3 Effects of Phase Errors and Pointing Error on the AIF 
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Figure 3.4 Effects of Amplitude Errors and Pointing Error on the AIF 
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Figure 3.5 Effects of Signal-to-Noise Ratio and Pointing Error on the AIF 
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Figure 3.6 Effects of Desired Signal Angle and Pointing Error on the AIF 



CHAPTER 4 

MOUNTAIN-TOP DATA ANALYSIS 

Analytical results presented in the previous chapter show that the eigencanceler is 

robust with respect to steering vector perturbations. In this chapter, the performance 

of the eigencanceler and SMI are compared using the Mountaintop dataset. After 

describing the specific data file used, range detection with corresponding antenna 

response and angle detection of the target are studied. Training sets of different 

sizes from different regions are used. The last section considers the signal suppression 

issue when the cell under test is included in the training. 

4.1 Description of the Data Files 

Data analysis was done on IDPCA data recorded on Feb 10, 1994 at North Oscura 

Peak, White Sands Missile Range (WSMR), New Mexico. For this data set, namely 

t38preOlvl.mat, IDPCA was used to emulate clutter at 245° and 156 Hz in Doppler. 

The injected target is at 154 km in range, 275° in angle, and 156 Hz in Doppler. 

The bore side angle is 260°. The transmitted pulse is an LFM signal with 500 KHz 

of bandwidth, a central frequency of 435 MHz, and a 100 µs duration. Distance 

between the elements is half the wavelength, d = λ/2. Recorded data is sampled 

at; the Nyquist rate of 1 MHz. The PRI is 1600 µs, which gives a pulse repetition 

frequency (PRF) of 625 Hz. Data is recorded from 865 ,us to 1298 µs after the pulse 

is transmitted, corresponding to range cells from 130 km to 195 km with a range 

resolution of 150 m. Data is recorded into CPI's with 16 PRI's. Using equation (1.7), 

the normalized Doppler frequency of the target is 0.250. Since 14 antennas are 

employed, there are 14 samples in space. For each range cell a 16 x 14 data matrix, 

as described in equation (1.2), is formed. Using equation (1.6), the normalized 

spatial frequency of the target is 0.129 and the normalized spatial frequency of the 

38 
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interference is —0.129. Notice that both the target and the interference are at the 

same Doppler frequency, and they are only separated spatially. 

Using CPI 6 of the data, the magnitude of the first PRI as a function of range 

is plotted in Figure 4.1. The returns from the ranges are plotted with respect to the 

sky noise level. The clutter is located from 140 km to 165 km. In Figure 4.2, the 

Doppler-azimuth plot of the target range cell at 154 km is plotted. As expected, the 

energy is concentrated at 156 Hz and 245° due to the interference power. To study the 

eigenvalue distribution of joint-domain processing, each range matrix is reshaped to a 

joint-domain data vector of size 224 x 1, as described in equation (1.12). To estimate 

the correlation matrix, 1200 training data vectors from matrix CPI's 6, 7, 8 and 9 

were used. The eigenvalues of this correlation matrix are plotted in Figure 4.3(a), 

where the few interference eigenvalues are well above the sky noise level. For post-

Doppler processing, each range data matrix is first processed temporally with the 

non-adaptive weight vector, which has the form of st  in equation (1.9). Then 

beamforming algorithms are applied to the 14 x 1 spatial data vectors. The corre-

lation matrix of post-Doppler data is estimated using 300 data points from CPI 6. 

The eigenvalues are plotted in Figure 4.3(b), where most of the energy is concentrated 

in the first 4-5 eigenvectors. 

4.2 Target Range Detection 

In this section, the target angle and Doppler frequency are assumed to he known and 

the target range is detected. The data is plotted 'relative to sky noise. Sky noise data, 

namely ncal585v1.mat, is recorded right after the experiment with the transmitter 

turned off. To calculate the sky noise level at the output of the beamformer, the 

weights calculated for a specific experiment are applied to the sky noise data. The 

mean of the sky noise output is taken as the sky noise reference. If the beamformer 

is adaptive, the weight vector changes with the training region and number of points 
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Figure 4.1 Magnitude Plot of Range Returns on IDPCA Data, CPI 6, PRI 1 

Figure 4.2 Doppler-Azimuth Plot for Target Range Cell 
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Figure 4.3 Eigenvalues of the Data 
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used. For every plot, the sky noise level is updated using the corresponding weight 

vector. For these plots CPI 6 is used, which has 300 data vectors. 

First, the joint-domain processor with 14 antenna elements and 4 PRIs is 

studied. The joint-domain data vector for this case is 56 x 1. In Figure 4.4(a), 

training is done over 300 points from 135 km to 175 km, and the target range cells 

are excluded from the training set.The target is located at 154 km and the power of 

the target spills over 5 range cells. Clearly, the non-adaptive beamformer fails due to 

a large sidelobe. Both SMI and the eigencanceler have the same performance. But 

this is not a realistic approach since a-priori knowledge of the target location was 

used when estimating the correlation matrix. A more realistic approach is given in 

Figure 4.4(b), where all the data vectors are used for training, including the target 

region. Presence of the target region in the training set causes an increase in the 

desired signal component of the estimated correlation matrix. The SMI method 

fails to preserve the desired signal, and signal cancellation of 12 dB is observed. 

Performance of the eigencanceler is not affected by high signal power in the estimate. 

Next, the post-Doppler beamformer is studied. After temporal processing, the 

post-Doppler data vectors are 14 x 1. In Figure 4.5(a), training is over 300 data 

points, and the target region is not included in the estimate. The performance 

of the post-Doppler processor is better than the joint-domain processor because 

both the desired signal and the interference have the same Doppler frequency. The 

joint-domain processor, which is adaptive both in time and space, cancels the inter-

ference temporally and spatially. Because the interference and target signal are in the 

same Doppler bin, some signal power is lost. The post-Doppler processor performs 

cancellation in the spatial domain, where the target and interference are separated. 

Therefore, the post-Doppler processor performs better for this specific data set. In 

Figure 4.5(b), the target region is included in the training. The SMI method is 

affected by the high desired signal component and the performance is degraded by 
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7 d13. The eigencanceler, on the other hand, is not affected by the presence of the 

desired signal, •as shown analytically in section 3.5 and plotted in Figure 3.5. In 

Figure 4.6, training with 50 data points is considered. In part (a), the training is 

done from 145 km to 152 km, which is outside the target region. Both adaptive 

methods cancel most of the clutter. The non-adaptive beamformer output does not 

change due to the fixed weights, and it is plotted again as the clutter reference. An 

important observation is that the SMI method performs more cancellation around 

the training region. This is due to the limited number of training samples, which 

causes a correlation matrix to be a good estimate of the training region, but very bad 

estimate globally. In parts (b) and (c), the training is done around the target region 

from 150 km to 158 km. As before, when the target is omitted from the training 

set, a very good performance is observed. Again the training region is nulled by 

the SMI method, where the eigencanceler lowers the output but does not null out. 

In part (c), where the target is included in the training set, the SMI method fails 

by treating the desired signal as interference. Unlike the SMI, the eigencanceler 

does not null out the desired signal, but the interference cancellation of the 

eigen- canceler is degraded. Presence of the desired signal shifts the largest eigenvectors 

towards the desired signal, causing a corrupt estimation of the interference subspace. 

In Figure 4.7, training with 28 points-double the vector size-is considered. This is 

the lower limit for SMI to work. In part (a), a deeper null is placed by the SMI 

method in the training region. The performance of the eigencanceler is better than 

SMI, which shows that the eigencanceler has a faster convergence rate. In part (c), 

both methods fail. The signal cancellation problem of the SMI is magnified. The 

eigencanceler still manages to save some of the signal power, but fails to cancel the 

interference. In fact, interference cancellation is worse than with the non-adaptive 

method from 140 km to 150 km. 
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Figure 4.4 Joint-Domain Range Plots Using 300 Training Points 
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Figure 4.5 Post-Doppler Range Plots Using 300 Training Points 
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Figure 4.6 Post-Doppler Range Plots Using 50 Training Points 



47 

Figure 4.7 Post-Doppler Range Plots Using 28 Training Points 
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4.3 Antenna Pattern 

In this section, the spatial response of the weights calculated for the post-Doppler 

range plots of the previous section is studied. Assuming an ideal desired signal, 

the spatial data vector will have the form of s3  in equation (1.9). The normalized 

spatial frequency, Os, is related to the physical angle by equation (1.6). The antenna 

patterns are generated by applying a given weight vector to steering vectors for 

different angles. A desirable weight vector has a main lobe in the direction of the 

target and a null in the direction of the interference. In this data set the target angle 

is 275° and the interference angle is 245°. 

In Figure 4.8, the response of the weight vectors calculated with 300 training 

points are plotted. The non-adaptive weight vector, plotted for reference, is the 

presumed steering vector for the desired signal. Around the interference angle, both 

adaptive beamformers have a lower sidelobe than the non-adaptive beamforrner. 

In part (b), the target region included in the estimate, the SMI method puts a 

small notch on the main lobe causing the performance degradation observed in the 

range plots of the previous section. The eigencanceler's sidelobes resemble the non-

adaptive weight vector, except in the interference region. Comparing both parts, the 

eigencanceler is not affected by the presence of the desired signal in the estimate. 

In Figure 4.9, the response of the weight vector calculated with 50 training 

points is plotted. In part (a), a decrease in the training set number has affected the 

SMI method with increased sidelobes, but the eigencanceler manages to keep the 

same shape. Even though interference cancellation of the eigencanceler is degraded, 

we also observe from range plot for the same training that the main lobe is still in the 

right direction and the sidelobes are relatively low, keeping the shape of the steering 

vector. Compared to part (b) of the previous figure, the small notch introduced by 

SMI on the desired signal in part (c) is even deeper. 
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Figure 4.8 Post-Doppler Antenna Pattern Plots Using 300 Training Points 
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Figure 4.9 Post-Doppler Antenna Pattern, Plots Using 50 Training Points 
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When the training set is lowered to 28 range cells, see Figure 4.10, the SMI 

method does not give a desirable antenna pattern even for the case of training outside 

of the target. region. The eigencanceler's performance is still preserved in part (a). 

In addition, as mentioned before for the range plots with the target included in 

training in part (c), both adaptive methods fail and performance is worse than the 

lion-adaptive beamformer. 

4.4 Target Angle Detection 

In this section, the target range and the Doppler frequency are assumed to be known, 

and the target angle is detected. The post-Doppler data vector for the target range 

cell at 154 km is used to detect the target angle. First the correlation matrix is 

estimated for a given training region, and then the weight vectors are calculated 

using different presumed desired signal angles. For this data set, the target is at 

245°. In Figure 4.11, the training is done using all 300 range cells. The non-

adaptive beamformer fails, due to a large sidelobe, and points in the direction of 

the interference. Both SMI and the eigencanceler detect the right angle for the 

target. When the training is lowered to 50 cells, see Figure 4.12, the sidelobes of 

the SMI are increased. The performance of the eigencanceler is almost unchanged. 

In Figure 4.13, the training support is lowered to 28 cells. The performance of 

SMI is degraded considerably and the eigencanceler's performance is superior. Even 

with the target included in the training set, the eigencanceler manages to detect the 

target, even though it is only a few dB above the interference. The sidelobes of the 

eigencanceler are much lower than the sidelobes of the SMI. 

4.5 Signal Cancellation 

In this section, signal cancellation due to the high desired signal component of the 

estimated correlation matrix is studied. In Figure 4.14(a), the target range cell 
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Figure 4.10 Post-Doppler Antenna Pattern Plots Using 28 Training Points 
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Figure 4.11 Post-Doppler Target Detection Using 300 Training Points 
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Figure 4.12 Post-Doppler Target Detection Using 50 Training Points 
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Figure 4.13 Post-Doppler Target Detection Using 28 Training Points 
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output rclative to sky noise, as a function of the number of training points, is plotted. 

The target region is included in the training set, therefore, when the training support 

is decreased the desired signal component increases. The eigencanceler performs 4 

dB better than SMI when the training set is large. When the training set is decreased, 

the performance of the SMI is affected more than the eigencanceler's performance is. 

This plot only provides information about how much the desired signal is preserved, 

but it does not give any information about how much the interference is cancelled. 

To study clutter cancellation, the output at the target range is plotted with respect 

to thc background noise at the beamformer's output around the target region. The 

background noise level is calculated by taking the mean of the beamformer's output 

from 142 km to 165 km, over 150 points. The target region is not included in the 

calculations of the mean. Comparing part (a) to part (b), the performance of SMI 

approaches that of the eigencanceler. This shows that SMI cancels the interference 

better than the eigencanceler, but the performance is still inferior because of the 

signal cancellation effect. In Figure 4.14(c), instead of using a fixed region for calcu-

lation of the mean as in part (b), the background noise power is calculated using 

exactly the same region as the training. The performance of the SMI is improved 

even more because SMI cancels interference in the training region more effectively, 

but it performs poorly cancelling the intcrference outside the training region. This 

was also observed in the range dctection plots where a null was placed around the 

training region, as in Figure 4.5(b). In conclusion, SMI cancels the desired signal as 

the number of training points is decreased. 

The eigencanceler's is a better estimator of global interference than SMI, even 

with a localized correlation matrix. The eigencanceler uses the eigenvectors that 

correspond to the largest eigenvalues, which is a better representation of the global 

interference. On the other hand, SMI uses the inverse of the correlation matrix, 
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which involves all the eigenvectors. This is a much better estimate locally, but it is 

not very effective globally. 

4.6 Conclusions 

In this work, the signal cancellation effects are studied when there is a mismatch 

between the true desired signal and the presumed theoretical desired signal. Adaptive 

radar is susceptible to signal cancellation effects when the target signal is included 

in the training data and in the presence of pointing/calibration errors. It was shown, 

by analysis and illustrations from the Mountaintop dataset, that the SMI method 

is very sensitive to the presence of the desired signal component in the estimated 

correlation matrix, and performance is degraded even with small pointing/calibration 

errors. The eigenanalysis-based adaptive radar is proven to be much more robust 

than the SMI method with respect to signal cancellation effects. 

The design of calibration filters to minimize the mismatch is explained and the 

results of the calibration filters are illustrated on the experimental data. Also the 

pulse compression method to achieve high resolution is explained. 
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Figure 4.14 Signal Cancellation 



APPENDIX A 

EIGEN-DECOMPOSITION OF A RANK TWO MATRIX 

First consider a rank two L x L correlation matrix 

R in terms of its eigen-decomposition is given  by 

where q1  is the Ph eigenvector and Xl  is the lth  eigenvalue. An eigenvector of the 

correlation matrix expressed as a linear combination of the desired signal and the 

is given by 

The eigenvectors must satisfy the equation 

where ρid  = sHsdi. To satisfy these equations, 

and 

The eigenvalues are obtained by solving equation (A.6), 
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The normalized eigenvectors are obtained from equation (A.5) and equation (A.3) 

Given the solution above, the fist two eigenvectors of the correlation matrix 

are the same as the R, since they span the same interference-plus-signal subspace. 

The first two eigenvalues are 	+ 1, and )4 + 1, respectively, due to added noise 

component. Remaining eigenvectors span the noise subspace with eigenvalues equal 

to one. This concludes the derivation of equations (3.19) and (3.20). 
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