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ABSTRACT

COMPARISON OF DIFFERENT SIGNAL PROCESSING ALGORITHMS TO
EXTRACT THE RESPIRATION WAVEFORM FROM THE ECG

by
David J. Caggiano

Power spectral analysis of heart rate variability is a powerful tool to

measure the activity of the parasympathetic division of the autonomic nervous system non-

invasively. To determine the parasympathetic activity, the frequency of respiration must

be known. However, during ambulatory studies, the frequency of respiration is not

acquired. To alleviate this problem, methods have been proposed in the past to derive the

respiration from the ECG. Unfortunately, these previous methods are unreliable if the

subject's breathing rate is uncontrolled.

In this study, four methods to derive the respiration waveform from the

electrocardiogram(ECG) were developed. Two leads of ECG and a measure of

respiration were taken from nine healthy subjects during rest, paced breathing, and

exercise. To determine the optimum method, the respiration was then derived using all

four methods and compared to the measured respiration in the time domain and frequency

domain using cross-correlation and coherence, respectively. The results of this study

indicate that three of the four methods developed can accurately and reliably derive the

respiration during every section of the experimental protocol. In addition, the respiration

waveform derived using the variable QRS window, dependent leads method is

quantitatively identified as the most accurate.
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CHAPTER 1

INTRODUCTION

Biomedical engineering is the application of the principles of engineering, science, and

mathematics to medicine and biology. Therefore, in order to conduct biomedical

engineering research, the relevant physiological systems must be understood. The purpose

of this chapter is to provide a general, but concise, introduction to the physiological

systems that are relevant to the work in this thesis.

1.1 The Heart

The cardiovascular system consists of blood vessels and the heart. In 1628, British

physiologist William Harvey discovered that the cardiovascular system forms a circle, or

circuit, so that blood pumped out of the heart through one set of vessels returns to the

heart via a different set of vessels[l]. In actuality, there are really two circuits, both

originating and terminating in the heart. Therefore, the heart, illustrated in Figure 1.1, is

divided into two functional halves, each half containing two chambers: an atrium and a

ventricle. The atrium of each side empties into the ventricle on that side. There is no

direct flow between the two atria or the two ventricles in a healthy individual.

Blood is pumped by the pulmonary circuit from the right ventricle through the

lungs and then into the left atrium. The blood is then pumped by the systemic circuit, from

the left ventricle, through all the tissues of the body except the lungs, and then to the right

atrium. In both circuits, the vessels carrying blood away from the heart are called arteries,



and those carrying blood from either the lung or all other parts of the body back to the

heart are called veins. Figure 1.2 illustrates the heart with the systemic and pulmonary

circulations.

2

Inferior versa cava 	 Aorta

Figure 1.1 The Heart (from A.J. Vander, J.H. Sherman,
and D.S. Luciano, Human Physiology, 1994)

The heart, located in the chest, is a muscular organ which is enclosed in a fibrous

sac called the pericardium[2]. The walls of the heart are primarily composed of cardiac-

muscle cells called the myocardium. Cardiac-muscle cells combine properties of both

skeletal muscle and smooth muscle. However, even more important, approximately one

percent of the cardiac-muscle fibers have specialized features that are essential for normal

heart excitation[1]. They constitute a network known as the conducting system of the



heart and are connected to other cardiac-muscle fibers by gap junctions. The gap

junctions allow action potentials to spread from one cardiac-muscle cell to another. Thus,

the initial excitation of one myocardial cell results in excitation of all cells, and as a result,

the pumping action of the heart. The conducting system of the heart is illustrated in

Figure 1.3.

3

Figure 1.2 The Systemic and Pulmonary Circulations
(from A.J. Vander, J.H. Sherman, and D.S. Luciano, Human Physiology, 1994)



left bundle branch

Figure 1.3 The Conducting System of the Heart
(from A.J. Vander, J.H. Sherman, and D.S. Luciano, Human Physiology, 1994)

The initial depolarization normally arises in a small group of conducting-system

cells called the sinoatrial (SA) node. The SA node is located in the right atrium near the

entrance of the superior vena cava (the vein returning from the body tissues that are above

the heart). The SA node has the fastest inherent discharge rate of any of the myocardial

cells with pacemaker activity. Therefore, the SA node is the normal pacemaker for the

entire heart[1]. The action potential initiated in the SA node spreads throughout the

myocardium, passing from cell to cell by way of gap junctions. The spread throughout the

right atrium and the left atrium does not depend on fibers of the conducting system. The

spread is rapid enough that the two atria are depolarized and contract at essentially the

same time.

The spread of the action potential from the atria to the ventricles involves a portion

of the conducting system called the atrioventricular (AV) node. The AV node is located

at the base of the right atrium. The AV node has an important characteristic that makes

4



the cardiac cycle more efficient. For several reasons related to the electrical properties of

the cells that make up the AV node, the propagation of action potentials through the AV

node results in a delay of approximately 0.1 seconds[1]. This delay allows the atria to

finish contracting and, therefore, completely emptying their contents of blood into their

respective ventricles before ventricular excitation occurs.

Upon leaving the AV node, the action potential then travels to the septum, the area

between the two ventricles, by the conducting-system fibers called the bundle of His[2].

The bundle of His then divides into the left and right bundle branches which eventually

leave the septum and enter the walls of their respective ventricles. These fibers then make

contact with the Purkinje fibers which are large conducting cells that rapidly distribute the

action potential throughout most of the ventricles. The rapid conduction along the

Purkinje fibers and the distribution of these fibers cause the depolarization of the left and

right ventricular cells approximately simultaneously, thus resulting in a single coordinated

contraction. Figure 1.4 illustrates the sequence of cardiac excitation.

5

atrial excitation

begins	 complete

SA node	 AV node

ventricular excitation

begins	 complete

Figure 1.4 The Sequence of Cardiac Excitation
(from A.J. Vander, J.H. Sherman, and D.S. Luciano, Human Physiology, 1994)



1.2 The Electrocardiogram

The electrocardiogram (ECG) is primarily a tool for evaluating the electrical events within

the heart. The action potentials of cardiac muscles can be viewed as batteries that cause

charge to move throughout the body fluids. These moving charges, or currents, represent

the sum of the action potentials occurring simultaneously in many individual cells and can

be detected by recording electrodes at the surface of the skin[1]. Figure 1.5 illustrates a

typical normal ECG recorded between the right and left wrists for one heart beat.

0-7

Figure 1.5 Illustration of a Typical Electrocardiogram.

The first deflection, the P wave, corresponds to the current flow during atrial

depolarization (contraction). The second deflection, the QRS complex, is a result of

ventricular depolarization. The third and final deflection is the T wave. The T wave is a

result of ventricular repolarization (relaxation). It should be noted that atria repolarization

is usually not evident in the ECG because it occurs at the same time as the QRS complex.

As mentioned earlier, the ECG is a measure of the electrical activity of the heart

measured on the skin. In order to measure the ECG, bipolar leads are required. A "lead"

6



is not a single wire attached to the body. The bipolar method of acquiring ECG detects

electrical variations at two different locations on the skin and displays the difference to

obtain one waveform. Figure 1.6 is an illustration of the standard limb lead connections

that form Einthoven's triangle. In addition, the diagram also shows the names of the

respective leads. To record lead I, the negative terminal of the ECG monitor is connected

to the right arm (RA) and the positive terminal is connected to the left arm (LA). To

record lead II, the negative terminal of the ECG monitor is connected to the right arm and

the positive terminal is connected to the left leg. To record lead Ill, the negative terminal

of the ECG monitor is connected to the left arm and the positive terminal is connected to

the left lea T 	 The referenre nnint nr arnund is rnnnerted to the right lea (RT .1

7
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The CIBA Collection of Medical Illustrations Volume 5, The Heart, 1981)

It is important to realize that depending on where the electrodes are attached, a

different waveshape will be obtained for the same electrical events occurring in the heart.

In other words, Leads I, II, and III all have a different waveform shape. In addition to



obtaining different waveforms depending on the location of the electrodes, each individual

has a unique ECG.

Figure 1.7 illustrates two different waveshapes frequently acquired from the leads

which constitute Einthoven's triangle. It is necessary to devise a terminology which

differentiates between these two types of ECG waveforms so they can be referred to

throughout the remainder of the thesis. It should be noted that this terminology is specific

to this thesis and is not standardly used. The tracing in Figure 1.7(a) is termed "dominant"

by the author because when it is compared to the tracing in Figure 1.7(b), the QRS

complex is mainly above the baseline of the ECG and the R wave has a higher peak than in

the other tracing.

(a) 	 (b)

Figure 1.7 Comparison of Different ECG Tracings With Emphasis on the QRS Complex.
(a) Dominant Lead (b) Non-Dominant Lead

It should be noted that certain leads can not be considered dominant when

compared to another lead on a consistent basis. For example, lead I is not always

dominant when compared to lead III. The explanation of this fact is described in section

1.4 and is related to the motion of the heart in the thoracic cavity.

8



1.3 Cardiac Depolarization, Repolarization, and Mean Electrical Vector

1.3.1 Cardiac Action Potentials

The typical resting cardiac cell, like any other cell of excitable tissues (skeletal muscle,

smooth muscle, and nerve) maintains the separation of charged particles (ions) across its

membrane[2]. Negatively charged particles (anions) are distributed along the inside of the

cardiac cell membrane and positively charged particles (cations) are distributed along the

outside of the cardiac cell membrane. Action potentials result when the membrane

permeabilities change, resulting in an inrush of cations and an export of anions from the

cell membrane. Figure 1.8 illustrates a cardiac action potential and the associated changes

in the membrane permeabilities.

As in skeletal-muscle cells and neurons, the resting membrane is much more

permeable to potassium than to sodium[1]. Therefore, the resting membrane potential is

closer to the potassium equilibrium potential (-90 mV) than to the sodium equilibrium

potential (+60 mV). The depolarization phase of the action potential is due to a positive-

feedback increase in sodium permeability, which is caused by the opening of voltage-

sensitive sodium channels. Occurring almost simultaneously, the permeability to

potassium decreases as potassium channels close, adding to the depolarization.

In skeletal muscle cells and neurons, the return of sodium permeability toward its

resting value is accompanied by repolarization (toward the resting membrane potential of

approximately -90 mV). However, with cardiac muscle cells this is not the case. The

cardiac muscle cell membrane remains depolarized at a plateau of about 0 mV. There are

two reasons for the plateau. One reason is that the potassium permeability stays below the

9



resting value. The second, more important, reason for the plateau in the depolarization is

because there is an increase in the permeability to calcium. Repolarization occurs when

the permeabilities of calcium and potassium return to their original resting states.

10

Figure 1.8 A Cardiac Action Potential and the Associated Changes in Membrane
Permeabilities. (a) Ventricular Muscle Cell Membrane Potential. (b) Simultaneously
Measured Permeabilities P to Potassium, Sodium, and Calcium. (from A.J. Vander,

J.H. Sherman, and D.S. Luciano, Human Physiology, 1994)

It should be noted that there is a distinct difference between the action potentials

of the vast majority of the myocardial cells, as just described, and the action potentials of

the SA node[l,2]. Figure 1.9 illustrates both the cardiac action potential and the action

potential occurring in the SA node. Note that the resting potential of the SA-node is not



steady, and has a slow depolarization known as a pacemaker potential. This slow

depolarization brings the membrane potential to a threshold, at which point an action

potential occurs. Following the action potential, the membrane repolarizes, and the

gradual depolarization begins again. The pacemaker potential provides the SA node with

automaticity, the capacity for spontaneous rhythmical self-excitation. The inherent rate of

the SA node, that is, the rate exhibited in the total absence of an neural or hormonal input

to the node, is approximately 100 depolarizations per minute [1].
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Figure 1.9 Comparison of Action Potentials in a (a) 'Ventricular Muscle Cell to
(b) a Sinoatrial (SA) Nodal Cell. (from A.J. Vander, J.H. Sherman, and D.S. Luciano,

Human Physiology, 1994)

1.3.2 Cardiac Electrical Vector

When charges are separated by a distance, such as is the case with the cardiac cell in its

resting state, the result is an electric dipole[3]. When the cardiac cell is depolarizing or

repolarizing, the strength and magnitude of the dipole are changing. Each cardiac cell,

consisting of anions and cations separated by a cell membrane, can be modeled by a dipole

with a positive and negative terminal. During every cardiac cycle, every cardiac cell of the

heart depolarizes and repolarizes in an orderly manner and, therefore, each dipole changes



magnitude and direction every cardiac cycle. At any one instant, by vectorally summing

up every dipole from each cardiac cell, an instantaneous mean cardiac vector can be

calculated that corresponds to the total electrical activity of the heart.

Due to the chemical nature of the tissue fluids, the body is essentially a volume

conductor with the boundary being the body surface[3]. A volume conductor is a medium

that permits the conduction of electricity in three dimensions. Therefore, a dipole

(instantaneous cardiac vector) on the inside of a volume conductor (body) induces an

electric field on the surface of the volume conductor (skin), and potential variations within

this field are easily measured (ECG).

In a volume conductor, the paths taken by the current depend upon the geometry

and structure of the volume conductor[4]. When the volume conductor is homogeneous,

isotropic, and large compared to the dipole and when the dipole is located centrally within

the conductor, then the distribution of currents, and thus potentials, is symmetrical and

obeys the simple law for voltage induced at a distant point by a dipole. Thus, the electrical

potential at any point P in a volume conductor is

cos0 (1.1)
Vp =

47cER'

where is the dipole moment, which is equal to the product of the charge Q and the

length of the dipole d, R is the distance from the center of the dipole to the point P, E is

the dielectric constant or permittivity of the material between the dipole and the point P,

and 0 is the angle between the dipole axis and the line to that distant point P[3,4] (Figure

1.10).
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Figure 1.10 Diagrammatic Explanation of the Voltage Induced
by a Dipole at a Distant Point P

The formula mentioned above is for an isotropic, homogeneous, relatively large

conductor compared to the size of the dipole[4]. In addition, it assumes that the dipole is

located centrally within the conductor. Unfortunately, this is not the case of the human

body. The heart dipole is located eccentrically within the body. Also, the human body is

anisotropic, inhomogeneous, finite sized, and irregular-shaped volume conductor. In

modeling, this inhomogeneity seems to be rather unimportant except perhaps for the low

resistance and consequent short circuiting effect of blood within the heart cavities[3]. The

short circuiting effect of blood within the heart presumably diminishes the effect of all

separate sources and leads to a unification of electrical activity, which lends further

support to the hypothesis that the heart behaves as a single dipole[3].

The origin of the cardiac vector is assumed to be in the center of the heart mass

and remains there throughout the entire cardiac cycle[3]. The magnitude and direction of

the vector changes throughout the cycle depending on the sum of all the individual

cardiac-cell dipole moments. For the entire cardiac cycle there are an infinite number of

13



instantaneous heart vectors. Consequently, the instantaneous vector plotted over time

forms a continuous loop in 3-dimensional space. This loop is called the spatial

vectorcardiogram and is illustrated in Figure 1.11.
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Figure 1.11 The Spatial Vectorcardiogram Formed by the Termini
of an Infinite Number of Instantaneous Heart Vectors

The spatial vectorcardiogram consists of 3 successive loops, namely: the "P loop",

the "QRS loop", and the "T loop"[3]. The P loop represents the time course of each

instantaneous cardiac vector produced during atrial depolarization. The QRS loop

represents the time course of each instantaneous cardiac vector produced during

ventricular depolarization. The T loop represents the time course of each instantaneous

cardiac vector produced during ventricular repolarization. Figure 1.12 illustrates the three

vectorcardiogaphic loops as well as their respective mean vectors. It should be noted that

the mean cardiac vector is different from the resultant vector. The resultant vector is the

vectorial sum of all the instantaneous vectors. It will have the same direction as the mean

vector and the magnitude will be the sum of each component of all the instantaneous



vectors in that direction. On the other hand, the magnitude of the mean cardiac vector is

the magnitude of the resultant vector divided by the number of instantaneous vectors.
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Figure 1.12 The Three Vectorcardiographic Loops and Their Mean Vectors

1.4 The Basis for ECG Derived Respiration

Due to the interaction of the many different biological systems, a specific biological signal,

such as the ECG, is mostly influenced directly by the specific biological system being

measured, as well as by other systems which act indirectly. Because the respiratory

system influences the cardiovascular system, it is possible to derive a respiratory signal

from an ECG signal. For example, it is very common to see an amplitude modulation of

the R-wave peaks of an ECG tracing as illustrated in Figure 1.13. The specific interaction

of the respiratory system on the ECG is described below.

ECG signals recorded from surface electrodes that are mounted on the chest are

influenced by two different factors[5]. One factor affecting the ECG is the change in the

electrical impedance of the thoracic cavity while breathing. The expansion and contraction



of the thoracic cavity, caused by the filling and emptying of the lungs with air while

breathing, results in a change in the electrical impedance between the electrical activity of

the heart and the recording electrodes of the chest. Not only does the distance change

between the electrodes and the heart, but the composition of the thoracic cavity changes

due to the inhalation and exhalation of air. Because air is a good insulator, or conversely,

a bad conductor, it is easy to understand why the inhalation of air increases the electrical

impedance of the thoracic cavity. Therefore, one would suspect that regardless of the

ECG lead being monitored, when the person breathes in, the ECG amplitude would

decrease. Likewise, when the person exhales, one would suspect that the ECG amplitude
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Figure 1.13 Respiration Induced Modulation of the ECG. Upper Trace: ECG;
Lower Trace: Respiration Waveform Measured by Impedance Pneumography Device.

In Figure 1.14, when the person inhales, the amplitude of Lead I decreases while

the amplitude of Lead III increases. Also when the person exhales, the amplitude of Lead

I increases, and the amplitude of Lead III decreases. Using our reasoning that the

impedance of the thoracic cavity increases during inhalation and decreases during



exhalation, it appears that the change in amplitude of lead III should be the opposite of

what is shown. Clearly, there is another factor affecting the amplitude modulation of the

ECG. This other factor is the change in the direction of the mean cardiac vector. The

mean electrical axis of the QRS wave often reflects the anatomic position of the heart in

the chest. Thus, it is important to understand the relationship between the position of the

heart in the chest and the electrocardiogram because the heart's position has a profound

affect on the ECG[6].
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Figure 1.14 ECG Modulated by Respiration. (a): Lead I ECG; (b): Lead HI ECG;
(c) Respiration; tl: Deep Inhalation and Hold; t2: Deep Exhalation and Hold (from S.
Shin, W. Tapp, S. Reisman, and B. Natelson, "Assessment of autonomic regulation of
HRV by the method of complex demodulation," IEEE Trans. on Biomed. Eng., 1989)

During inspiration and expiration, the lungs fill and empty with air, which

consequently changes the position of the heart within the thoracic cavity. The change in



the position of the heart is very complex because the heart can rotate around an

anteroposterior axis, a transverse axis, and an anatomical axis which runs from the base to

the apex of the heart[6]. In addition, the heart can rotate from front to back, side to side,

and around the anatomic axis simultaneously. The rotation around the anatomic axis is

often best described as being either clockwise or counterclockwise. This description of

rotation refers to the observer looking at the base or bottom of the heart along the

anatomic axis which runs from the base of the heart, through the septum (which is

between the ventricles), and finally emerges at the apex.

There are two different axis deviations that are apparent in the leads that constitute

Einthoven's triangle[6]. These deviations are termed the right axis deviation and the left

axis deviation and are illustrated in Figure 1.15. In right axis deviation, the QRS loop is

directed downward. Electrocardiographically, this results in large R waves in leads II and

III. Because of the geometry, if the QRS loop is directed downward, the loop would be

orthogonal to Lead I. Therefore, right axis deviation results in a small amplitude R wave

in Lead I. In left axis deviation, the QRS loop points toward the left shoulder blade. This

results in a large R wave in Lead I, and depending on the specific ECG, relatively small R

wave amplitude in Leads II and III.

1.5 The Nervous System

Human behavior is controlled and regulated by two major communication systems, the

endocrine system and the nervous system. The nervous system can be divided into two

separate, but interconnected, parts. The first part consists of the brain and spinal cord and
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is called the central nervous system. The second part, which consists of nerves which

extend from the brain and the spinal cord out to all points of the body, is called the

peripheral nervous system.
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Figure 1.15 Right and Left Axis Deviation of the Mean QRS Vector (from F. Netter.
The CIBA Collection of Medical Illustrations Volume 5, The Heart, 1981)

The peripheral nervous system consists of both an afferent division and efferent

division. The afferent division conveys information from primary receptors to the central

nervous system. The efferent division carries signals from the central nervous system out

to effector cells such as muscles and organs. The efferent division is subdivided into a



somatic nervous system and an autonomic nervous system. The somatic nervous system

consists of all the nerve fibers going from the central nervous system to skeletal-muscle

cells. The efferent innervation of all tissues other than skeletal muscle is done by the

autonomic nervous system. Table 1.1 illustrates the organization of the human nervous

system.

Table 1.1 The Nervous System
I. Central Nervous System

A. Brain
B. Spinal Cord

II. Peripheral Nervous System
A. Afferent Division
B. Efferent Division

1. Somatic Nervous System
2. Autonomic Nervous System

a. Sympathetic Nervous System
b. Parasympathetic Nervous System

1.5.1 The Autonomic Nervous System

Cardiac muscle cells, smooth muscle cells, and glands are innervated by the autonomic

nervous system. Although it is not entirely true, the autonomic nervous system controls

bodily functions that one often assumes to be automatically controlled. Such functions are

heart rate, blood pressure, and body temperature. For example, when one is placed under

a lot of physical stress such as climbing three flights of stairs, the person's heart rate and

respiration rate automatically increase to supply the body with the energy needed on

demand. Likewise, when a person is resting, the heart rate and respiration rate slows

down due to the decrease in energy expenditure. Therefore, one can assume that the body

automatically controls heart rate and respiration rate. However, it is possible to override
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the autonomic nervous system and consciously control some of its functions. A good

example of this is that under certain meditation techniques, it has been shown that some

people can actually lower their heart rate substantially below their resting rate, or even

stop their heart from beating for a brief period of time. In addition, some people can slow

their breathing rate to only one breath for every few minutes during deep meditation.

As shown in Table 1.1, the autonomic nervous system is divided into two

anatomically and physiologically different systems[1,2]. These two systems are termed the

sympathetic nervous system and the parasympathetic nervous system. Anatomically, the

sympathetic and parasympathetic nervous systems differ for two reasons. One difference

is that the nerve fibers of each system leave the central nervous system at different levels.

The sympathetic nerve fibers leave the central nervous system from the thoracic and

lumbar sections of the spinal cord. The parasympathetic nerve fibers leave the central

nervous system from the brain through cranial nerves III, V, VII, IX, and X and the

second and third sacral spinal nerves. Cranial nerve X is also called the vagus nerve. The

parasympathetic innervation of much of the thorax and abdomen, and especially the heart,

is done by the nerve fibers which leave from the brain through cranial nerve X. Therefore,

parasympathetic activity related to the heart is often called vagal activity. Figure 1.16

illustrates the anatomic difference between the sympathetic nervous system and

parasympathetic nervous system as well as some of their respective effector organs.

The second anatomical difference between the sympathetic and parasympathetic

nervous systems has to do with the location of the ganglia. Each connection of the

autonomic nervous system between the central nervous system and the effector cells
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consists of two-neuron chains connected by a synapse. Most, but not all, of the

sympathetic ganglia are located close to the spinal cord and form two chains of ganglia,

one on each side of the spinal cord, called the sympathetic trunk. Conversely, the

parasympathetic ganglia lie within the organs innervated by the postganglionic neurons.
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Physiologically, the sympathetic and parasympathetic nervous systems are also

different[2]. One common physiological characteristic is that the major neurotransmitter

released between the pre- and post-ganglionic fibers is acetylcholine. However, in the

sympathetic division, the major neurotransmitter between the postganglionic fiber and the

target cell is usually norepinephrine, a neurotransmitter that activates excitatory receptors,

but in some cases can inhibit certain organs. In the parasympathetic division, the major

neurotransmitter between the postganglionic fiber and the target cell is the same as the

pre- and post- ganglionic neurotransmitter, acetylcholine. Although acetylcholine

generally has an excitatory effect, it is also known to have inhibitory effects as well, such

as the slowing of the heart by the vagus nerve. In Figure 1.16, it is important to realize

that some organs, such as the heart, eyes, and stomach, receive autonomic activity from

both the sympathetic and parasympathetic nervous systems. This is often called "dual

innervation". Usually, but not always, whatever effect the sympathetic nervous system has

on the effector cells, the parasympathetic nervous system has the opposite effect[2]. In

general, the sympathetic nervous system increases its response under conditions of stress.

It is responsible for what is known as the fight-or-flight response. On the other hand,

activity of the parasympathetic nervous system is associated with relaxing and the storing

of energy. For example, heart rate increases with sympathetic activity and decreases with

parasympathetic activity. Table 1.2 summarizes the effects of the autonomic nervous

system on selected organs.

Dual innervation by nerve fibers that cause opposite responses provides a very fine

degree of control over the effector organ- it is like equipping a car with both an
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accelerator and a brake[1]. One can slow the car simply by decreasing the pressure on the

accelerator; however, the combined effects of releasing the accelerator and applying the

brake provides faster and more accurate control. Analogously, the sympathetic and

parasympathetic divisions are usually activated reciprocally; that is, as the activity of one

division is increased, the activity of the other is decreased.

Table L2 Autonomic Effects on Selected Organs of the Body.
(from A.J. Vander, J.H. Sherman, and D.S. Luciano, Human Physiology, 1994)

Effector Organ	 Effect of Sympathetic	 Effect of Parasympathetic
Stimulation	 Stimulation
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Eyes
Iris muscles
Ciliary muscle

Heart
SA node
Atria
AV node
Ventricles

Arterioles
Coronary
Skin
Skeletal muscle
Abdominal viscera
Salivary glands

Lungs
Bronchial Muscle

Stomach
Motility, tone
Sphincters
Secretion

contracts (dilates pupil)
Relaxes (flattens lens)

Increases heart rate
Increases contractility
Increases conduction velocity
Increases contractility

Dilates (132); constricts (a)
Constricts
Dilates (132); constricts (a)
Dilates ((3 2); constricts (a)
Constricts

Relaxes

Decreases
Contracts
Inhibits (?)

relaxes (constricts pupil)
Contracts

Decreases heart rate
Decreases contractility
Decreases conduction velocity
Decreases contractility slightly

Dilates
None
None
None
Dilates

Contracts

Increases
Relaxes
Stimulates

In addition to dual innervation, another important physiological characteristic is

that the sympathetic and parasympathetic nervous system are continually active. These

basal rates of sympathetic and parasympathetic activity are often referred to as



sympathetic and parasympathetic tone. Without tone, each nervous system would only be

able to produce one desired output, such as increasing heart rate. For instance, when

sympathetic tone increases, heart rate increases. Conversely, when sympathetic tone

decreases below its basal rate, the heart rate will decrease because of less sympathetic

influence.

1.6 Heart Rate Variability

1.6.1 Physiology of Changes in Heart Rate

Change in heart rate is sensitive to changes in body temperature, plasma electrolyte

concentrations, and hormones[1]. However, the most important influence of beat-to-beat

variations of heart rate comes from the autonomic nervous system. More specifically,

sympathetic activity increases heart rate, whereas activity in the parasympathetic (vagus)

nerves causes the heart rate to decrease. Due to considerably more parasympathetic

activity to the heart than sympathetic activity in the resting state, the normal resting heart

rate is below the inherent rate of 100 beats/minute.

The autonomic nervous system innervates the heart in a number of places. The

sympathetic nervous system terminates at the SA node, the conduction system, atrial and

ventricular myocardium, and coronary vessels. The parasympathetic fibers terminate in

the SA and AV nodes, atrial and ventricular musculature, and coronary vessels. Interplay

between the two systems will cause the heart to speed up or slow down, depending on

which system is more active[7]. Figure 1.17 illustrates the autonomic innervation of the

heart.

25



Figure 1.17 Autonomic Innervation of the Heart (from M.D. Kamath and E.L. Fallen,
"Power spectral analysis of heart rate variability," Crit. Rev. in Biomed. Eng., 1993)

Perhaps the most important site of innervation of the autonomic nervous system on

the heart occurs at the SA node. As was mentioned in section 1.3.1, the SA node

possesses an inherent discharge rate, often referred to as the pacemaker potential. The

pacemaker potential is a slow depolarization of the cells of the SA node as was illustrated

in Figure 1.9. The innervation of the sympathetic and parasympathetic nervous system on

the SA node changes the characteristics of depolarization within the SA node cells, thus

changing heart rate. Figure 1.18 illustrates these changes due to autonomic innervation.

For comparative purposes, the pacemaker potential labeled 'a' is the control.

From the figure, one can observe that sympathetic stimulation increases the slope of the

pacemaker potential. As a result, the SA node cells reach the threshold more rapidly, thus
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increasing the heart rate. Conversely, parasympathetic stimulation decreases the slope of

the pacemaker potential. Consequently, the SA node cells reach the threshold more

slowly, and heart rate decreases. In addition to decreasing the slope of the pacemaker

potential, parasympathetic stimulation also hyperpolarizes the plasma membrane of the SA

node cells so that the pacemaker potential starts from a more negative membrane

potential. As a result, the time it takes the SA node cells to reach the threshold increases,

which decreases heart rate.
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Figure 1.18 Effect of Autonomic Stimulation on the Slope of the Pacemaker Potential
(from A.J. Vander, J.H. Sherman, and D.S. Luciano, Human Physiology, 1994)

1.6.2 Heart Rate Variability as a Measure of Autonomic Function

Changes in heart rate usually involves the reciprocal action of the two divisions of the

autonomic nervous system. An increased heart rate is the result of reduced

parasympathetic tone and a concomitant increase in sympathetic activity. A decrease in

heart rate is usually the result of increased parasympathetic tone and a simultaneous

decrease in sympathetic tone. Therefore, changes in heart rate reflect the action of the

sympathetic and parasympathetic nervous systems on the heart. However, under certain



conditions, it is possible for heart rate to change by activity of only one division of the

autonomic nervous system, independent of the other division, rather than reciprocal

changes in both.

Initially, the effect of the autonomic nervous system on the heart was estimated by

utilizing the traditional technique of average heart rate[7]. As a reference, the average

heart rate was measured under normal resting conditions. Then the average heart rate was

measured under the administration of drugs. The drugs used were atropine, which blocks

the effects of the parasympathetic nervous system, and propranolol, which masks the

effects of the sympathetic nervous system. A qualitative assessment can then be made of

the autonomic nervous system by comparing the reference heart rate to the heart rate

while under the administration of the drugs. This method looks at the average over time

of heart rate. However, when the ECG is looked at on a beat-to-beat basis, rather than

over a period of time, fluctuations in the heart rate are observed[7]. Recent research

indicates that fluctuations in heart rate are a healthy sign. In fact, one hypothesis is that

the larger variations in the heart rate correlate to a healthier autonomic nervous system.

By contrast, a number of physiologic and disease states produce alterations in autonomic

function which reduce the variability in heart rate[8] (see section 1.7 for a literature

review).

1.6.3 Power Spectral Analysis of Heart Rate Variability

Power spectral analysis of heart rate variability is a potentially powerful tool for evaluating

the activity of the autonomic nervous system noninvasively. Power spectral analysis is a
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technique which transforms a signal from the time domain to the frequency domain. It is

based on the theory proposed by Fourier which states that all periodic functions can be

represented as a sum of sines and cosines at a fundamental frequency and its harmonics.

This sum is referred to as a Fourier series. Since heart rate variability is not periodic, a

similar technique called the Fourier transform is applied.

The time domain signal used for computing the heart rate variability power

spectrum is known as the interbeat interval (IBI). The following is a brief description of

how to obtain the IBI signal. A detailed description of the process is discussed in Section

2.5.2. To obtain the IBI signal, every R wave in the ECG is detected with software after

the ECG has been acquired. The proper analog to digital techniques for data acquisition

are discussed in Section 2.2. The difference in time between successive R waves is then

converted to an IBI amplitude. Because the Fourier transform requires that the samples

be evenly spaced[9], the IBI samples, which occur at different lengths of time, are

interpolated with a backward step technique. This interpolated signal is often referred to

as the interpolated interbeat interval (IIBI). The Fourier transform is then taken to

convert the 11131 from the time domain to the frequency domain. Figure 1.19 illustrates a

typical power spectrum of the IIBI signal.

In Figure 1.19, three distinct peaks are visible. These peaks are defined as: a very

low frequency peak (0.0033 Hz to 0.04 Hz), a low frequency peak (0.04 Hz to 0.15 Hz),

and a high frequency peak (0.15 Hz to 0.4 Hz). Sometimes, a fourth peak is identified as

the ultra low frequency peak which consists of frequencies less than 0.0033 Hz.
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Past research in power spectral analysis of heart rate variability correlates the three

distinct peaks with certain physiological parameters[7]. The very low frequency band is

associated with vasomotor control and temperature control. The low frequency band is

associated with baroreceptor-mediated blood pressure control. The high frequency band

has been linked with respiration.
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Figure 1.19 Typical Power Spectrum of HRV. (from M. Kamath and E. Fallen,
"Power spectral analysis of heart rate variability," Crit. Rev. in Biomed. Eng., 1993)

To date, the best known and best defined peak in power spectral analysis of heart

rate variability is the high frequency peak. The high frequency peak reflects changes in the

interbeat interval that cycles up and down at the same frequency as respiration. This

influence of respiration on heart rate has been known for more than one century and is

called respiratory sinus arrhythmia (RSA). Properly defined, RSA is a rhythmical

fluctuation in heart periods at the respiratory frequency that is characterized by a



shortening and lengthening of heart periods in a phase relationship with inspiration and

expiration, respectively[10]. RSA is being used increasingly as a measure of vagal control

of the heart. As a result, the high frequency peak, which often occurs at the same

frequency as the respiration peak, corresponds approximately to the RSA and it is purely

parasympathetic in origin[11].

From experience, one might contest that the frequency of respiration is not limited

to within the narrow band of 0.15 Hz to 0.4 Hz. The normal respiration rate can be as

low as only a few breaths per minute at rest and as high as up to 40 breaths per minute

during intense exercise[2]. This stresses the fact that, when doing research on heart rate

variability to determine parasympathetic activity, the frequency of respiration must be

known. More specifically, the power spectrum of the respiration waveform should be

computed. Once the power spectrum of the respiration is obtained, the coherence

between the respiration spectrum and the heart rate variability spectrum could be

computed. Frequencies with a high coherence (i.e. >0.9) could then be considered of

parasympathetic origin. Although this is the theoretical approach, in the field, the area

under the frequencies of 0.15 to 0.4 Hz is considered parasympathetic in origin.

Unlike parasympathetic activity, the sympathetic activity is not easily separated

from the power spectrum of heart rate variability[7]. It has been hypothesized that the

low frequency peak (0.04 to 0.15 Hz) is a mixture of both parasympathetic activity and

sympathetic activity. A better concept that is used to isolate the sympathetic activity is

that of "sympatho-vagal balance" which recognizes both reciprocal and non-reciprocal

parasympathetic and sympathetic influences on heart rate by computing the low frequency
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to high frequency ratio[12]. An increase in the low frequency to high frequency ratio

indicates either an increase of sympathetic activity, a decrease in parasympathetic activity,

or a reciprocal change in both.

1.7 Literature Review

Research on heart rate variability is a relatively new area of study. Therefore, the results

of many studies are still a major topic for discussion. For example, some groups of

researchers feel the low frequency peak is purely sympathetic in nature, whereas most of

the results appear to state that the low frequency region is a mixture of both the

sympathetic and parasympathetic nervous systems. Despite this conflict, all researchers

agree that the high frequency peak is an indicator of parasympathetic activity, and is

directly related to the respiratory sinus arrhythmia. The following is a review of a small

sampling of the research in the area of heart rate variability, the autonomic nervous

system, and ECG derived respiration. The main point behind this short literature review is

that increased parasympathetic activity is an indication of increased health and that certain

disease conditions are accompanied by decreased vagal activity.

1.7.1 Previous Research on Power Spectral Analysis of Heart Rate Variability

In one of the earlier studies, O'Brien et al. conducted an experiment to see how age

affects autonomic function [13]. The study was designed to investigate the effect of age

on heart rate variability during four different situations: at rest, in response to a single

deep breath, the Valsalva maneuver, and standing. Although O'Brien did not calculate the
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power spectrum of HRV, his group investigated the variance of the R to R interval. In

each procedure, heart rate variation showed a skewed distribution and a statistically

significant negative correlation with age[13]. In other words, heart rate variation

decreases with increasing age.

In another pioneering study involving diabetics, Pagani et al. subjected 49

uncomplicated diabetics and 40 age-matched controls to supine and tilt conditions while

recording their heart rate variability (HRV)[14]. Pagani investigated R-R variance of the

ECG and found that the R-R variance in diabetics was less than the control's R-R variance

during both rest and tilt conditions. This study indicated that HRV could someday be

used as an indicator of disease conditions such as diabetes.

In another pioneering study, Kleiger et al. observed that in a large sample (N=808)

of post myocardial infarction (MI) patients, a low (<50 msec) standard deviation of mean

R-R interval over 24 hour duration, 2 weeks after the MI, had the strongest univariate

correlation with mortality[15]. The relative risk of mortality was 5.3 times higher in the

group with low HRV (<50 msec) than the group with high HRV (>100 msec). It is

hypothesized that decreased HRV correlates with increased sympathetic tone and

decreased vagal tone and thus predisposes the patient to ventricular fibrillation[16].

In a study conducted in Japan, the short-term and long-term effects of cigarette

smoking on autonomic cardiac regulation were investigated by power spectral analysis of

heart rate variability under controlled respiration (15 breaths per minute)[17]. The short-

term effects were examined in 9 smokers without evidence of cardiopulmonary disorders

after an overnight abstinence from smoking. The heart rate spectral component which
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reflects vagal cardiac control (0.25 Hz - the frequency of respiration equivalent to 15

breaths per minute) decreased 3 minutes after smoking 1 cigarette and the low frequency

spectral component (0.04 to 0.15 HZ), indicative of sympathetic activity, increased after

10 to 17 minutes. The long-term effects were examined in 81 normal subjects comprising

25 nonsmokers, 31 moderate (1 to 24 cigarettes/day) smokers, and 25 heavy (>25

cigarettes/day) smokers after an overnight abstinence. Although the magnitude of the low

frequency component was unaffected by the smoking status, the respiratory component in

the supine position was smaller in the young (<30 yrs old) heavy smokers than in the

young nonsmokers or moderate smokers. Also, postural changes in the components, a

decrease in the respiratory component and an increase in the low frequency component

with standing, were observed in the nonsmokers but not in the heavy smokers. These

results suggest that smoking causes an acute and transient decrease in vagal cardiac

control, and that heavy smoking causes long-term reduction in vagal cardiac control in

young people and blunted responses in autonomic cardiac regulation[17].

In 1992, Bigger et al. conducted a study that compared the 24 hour

parasympathetic activity in aerobically trained and untrained healthy young men[18]. In

this study, parasympathetic activity was assessed from 24 hour ECG recordings by

calculating the high frequency (0.15 to 0.4 Hz) beat to beat heart period variability in eight

endurance-trained men and eight age-matched untrained men. The data were analyzed

separately for sleeping hours when parasympathetic activity is dominant and also for

waking hours. The results concluded that the parasympathetic activity is substantially

greater in trained men than in untrained men, and that this effect is present during both
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waking and sleeping hours. These data suggest that exercise training may increase

parasympathetic activity over the entire day.

1.7.2 Previous Research on ECG Derived Respiration

The problem of extracting a quality representation of the respiration waveform from ECG

tracings is an open problem for which the published literature gives no consistent and

reliable solution. Even more striking, the application of ECG derived respiration to assess

autonomic function is another scarcely written about topic. The following is a review of

the few attempts that have been made to extract the respiratory waveform from the ECG.

In 1985, Pinciroli et al. published two papers, one about obtaining "virtual ECG

Leads" and the other about the extraction of electrical axis variation for the derivation of

the respiratory waveform[19,20]. Pinciroli tried to create "virtual ECG leads" which

would represent what would be obtained from electrodes fixed in position relative to the

heart. The virtual leads were mathematically derived from the original leads. The

conclusions of his study on virtual leads was that they do not exist on a consistent basis.

Although only two orthogonal leads were taken into consideration, Pinciroli suggests that

using a third orthogonal lead might yield better results. The insight of deriving the

respiration with the virtual leads stems from the fact that the virtual leads could yield a

somewhat strong variation of the heart's position in the chest. In his group's second

paper about the extraction of the electrical axis variation of the heart, he applies his

techniques of virtual leads to three orthogonal leads to derive the respiratory waveform.

As a comparison, a respiratory wave was recorded with a band impedance meter.
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Although he did have some success on deriving a respiration waveform similar to the one

recorded directly, his results were inconsistent. In his conclusion, Pinciroli agrees that the

aim of deriving the respiratory waveform from the ECG is attainable and should be

researched further.

In 1985, Moody et al. published a paper that describes a method to derive the

respiratory waveform from two-leads of ECG[5]. In 1986 he followed his original work

up with a paper that validates the clinical significance of his work[21]. The method

presented in these papers involved estimating the mean cardiac vector during each QRS

loop to derive the respiration. Although the specifics of the method will be presented in

section 2.6.1, the results obtained with this method appeared to work on a consistent basis

when trying to diagnose sleep apnea. In addition, it should be mentioned that Moody did

not describe in detail why he chose to do the method the way he did. In other words,

there was no explanation for doing the specifics of his method as opposed to other

possible slight modifications to his method.

In 1994, Lingeng Zhao presented a thesis to the biomedical engineering committee

at NJIT that utilized the method presented by Moody[22]. In addition, Zhao et al.

published two papers describing his work[23,24]. In this study, data were taken from 9

healthy subjects during rest, paced breathing, and exercise. The respiration was derived

from the recorded ECG signals and was compared with the original respiration recorded

through an impedance pneumography device. Zhao reported an excellent correlation

between the derived respiration and the original respiration for rest and paced breathing.

However, during exercise, the results indicate that there is room for improvement.
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1.8 Scope of Thesis

The ultimate goal of power spectral analysis of heart rate variability is to utilize the results

of the past, present, and future research to be able to characterize certain disease states by

measuring the function of the autonomic nervous system non-invasively. At the present

time, there are many variables, some of which are known and some that are not known,

which adversely affect the signal processing, as well as the autonomic nervous system

itself. One known variable that affects the autonomic nervous system is that when

subjects are surrounded by technological equipment such as an ECG cart or impedance

pneumograph, they tend to get nervous, which is a sympathetic response. Perhaps even

the surroundings, such as a hospital or rehabilitation facility, make people nervous.

Therefore, it is difficult to get an accurate measure of the subject's usual autonomic

activity. The solution to this problem is to measure the autonomic activity of an individual

in their natural, every day environment over a course of 24 hours using a Holter monitor.

As previously mentioned, in order to compute the parasympathetic activity, the frequency

of respiration must be known.

The purpose of this thesis is to determine the optimum signal processing algorithm

to extract the respiration waveform from the ECG for a variety of activities. Once the

respiration waveform is known, the ECG can be processed and the autonomic activity can

be calculated. Therefore, this would enable accurate ambulatory measurement of the

autonomic nervous system.

Although previous research has been conducted to estimate the mean cardiac

vector, and thus, derive the respiration from the change in angle of the mean cardiac
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vector in the frontal plane, nobody has investigated the specifics to determine the optimum

method. Therefore, in this research, four software algorithms were developed and tested

to determine the best possible technique. The software was used to derive the respiration

waveform from 9 subjects who were exposed to a specific experimental protocol

consisting of resting, controlled breathing, and exercise. During the experiment, two leads

of ECG were collected using a Holter monitor and the subject's actual respiration was

measured as a reference for the derived waveforms. The derived respiration methods

were then compared to the measured respiration in both the time domain and frequency

domain using cross correlation and coherence, respectively.

In addition, the traditional method of computing parasympathetic activity by

calculating the area under the power spectrum of the 11131 between 0.15 and 0.4 Hz was

compared to a more theoretical method. Theoretically, the parasympathetic activity

should be calculated by determining the specific frequency band of respiration and

calculating the power in the heart rate variability spectrum within those frequencies.
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CHAPTER 2

METHODS

The purpose of this chapter is to thoroughly explain the methods used to acquire the

biological signals of interest, namely the electrocardiogram and respiration rate, and to

explain the equipment used to acquire these signals. To begin the chapter, a basic

description is given of the theory behind the signal processing techniques used to analyze

and acquire the signals. Because of the complexity of the signal processing, references are

provided for more specific explanations. Also in this chapter is an explanation of the

experimental protocol, as well as the different signal processing algorithms developed to

derive the respiration from the ECG.

2.1 Theory of Power Spectral Analysis

In the early 1800's, a French mathematician named Jean Baptiste Joseph Fourier (1768-

1830) discovered that a periodic function can be represented by an infinite sum of sine and

cosine functions that are harmonically related[9]. That is, the period of any trigonometric

term in the infinite series is an integral multiple, or harmonic, of the fundamental period T

of the periodic function. This series of trigonometric terms is called the Fourier series.

Stated another way, the Fourier series says that all periodic functions can be represented

as a sum of sines and cosines at a fundamental frequency and its harmonics.

Mathematically, the Fourier series of a function f(t) is represented as [25]:

f (t) = a, +1(a cos[mo o t] + b„ sin[nto o t]) 	 (2.1)

39



where av , an,, and bn are the Fourier coefficients and are defined as:

40

to +T

= 1 
f (t)dt

to

2 to+T

a n = —
T J 

j(t)cos[raooldt
to

2°
= 	 f (t) sin[nw 0 t]dt

to

(2.2)

' (2.3)

(2.4)

Once an and b n are known, the amplitude and phase angle of each harmonic is

known. The description of a periodic function in terms of the amplitude and phase angle

of each term in the Fourier series of f(t) can be represented graphically. The plot of the

amplitude of each term versus the frequency is called the amplitude spectrum of f(t), and

the plot of the phase angle versus the frequency is called the phase spectrum of f(t).

Because the amplitude and phase angle data occur at discrete values of the frequency,

these plots are also referred to as line spectra[25]. The distance between components in

the frequency domain is an integer multiple of the fundamental frequency.

In general, the Fourier series can be thought of as a tool which helps convert a

signal from the time domain to the frequency domain. In the time domain, the amplitude

of the signal is known over all times; however, the frequency content is unknown. In the

graphical representation of the amplitude of each frequency term in the Fourier series, the

frequency content of the wave is known. The relative contribution of each frequency is

proportional to the amplitude of each frequency term.



Using some basic trigonometric rules, the Fourier series can be expressed in an

exponential form. To derive this form, the sine and cosine functions must be replaced with

their exponential equivalents:

e jtMot + e -intO o t

cos[no) 0 t] = 	
2 	

(2.5)

e jmoot 
— e —ittC0 o t

sin[no) o t] = 	 (2.6)
2 j

After substituting equations (2.5)and (2.6) into equation (2.1) and simplifying, the

exponential form of the Fourier series is obtained:

f (t) = 4 C„einw°'

where

1
=— ff (t)e -. dtCn

to

The Fourier series is a good technique to transform nonsinusoidal, periodic

functions from the time domain to the frequency domain. However, if the function f(t) is

non-periodic, the Fourier series can not be used. Instead, a technique is used called the

Fourier transform. Unlike the Fourier series, frequency components of a non-periodic

function may be present at all frequencies in the Fourier transform.

The derivation of the Fourier transform is a limiting case of a Fourier series [9].

The transition from a periodic function to an aperiodic function is accomplished by

allowing the fundamental period T to increase without limit. In other words, if T becomes

infinite, the function never repeats itself and, therefore, the function is aperiodic. Also as
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T increases, the separation between adjacent harmonic frequencies becomes smaller

because the fundamental frequency is directly equal to the inverse of the period T.

Therefore, in the frequency domain, the frequency in a Fourier series is a discrete variable,

whereas in the Fourier transform, the frequency is a continuous variable.

Mathematically, the Fourier transform is obtained by:

F(o) = ff (t)e - dt (2.9)

In the above equation used to calculate the Fourier transforms, the time signal f(t)

is continuous. However, when working on a computer, the signals are converted from

analog to digital form and are discrete. Therefore, to compute the power spectrum of a

discrete, non-periodic signal a method called the discrete Fourier transform(DFT) is used.

In addition, computationally efficient algorithms for computing the DFT have been

developed and are known as fast Fourier transform (FFT) algorithms.

Although the complete theory behind FFTs is beyond the scope of this thesis, there

are a few subtle points of importance. One important point is that when performing FFTs

on a computer, the time signal is a discrete signal, sampled at a particular sampling

frequency. In order to compute the FFT, the discrete points in the sampled signal must be

evenly spaced. The theory of converting an analog signal to a discrete signal is presented

in Section 2.2. In addition, because the calculation is performed by a digital computer on

a discrete signal, the resulting spectrum is not continuous, but discrete[9]. The frequency

resolution is proportional to the sampling frequency divided by the number of FFT points.

Therefore, in order to increase the frequency resolution, one has to increase the number of
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FFT points. If the desired number of 14F1' points is longer than the number of points in the

signal, zero padding should be used to increase the length of the signal to equal the

number of FFT points.

2.2 Analog-to-Digital Conversion

A discrete time signal is defined by specifying the value of an analog signal only at discreet

times, called sampling instants[26]. Once the sampled values are quantized and encoded,

a digital signal results. A digital signal is formed from a continuous-time, analog signal by

a process called analog-to-digital(A/D) conversion. A block diagram of an analog-to-

digital converter is shown in Figure 2.1.
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Figure 2.1 Block Diagram of an Analog-to-Digital Converter (from R. Ziemer, W.
Tranter, and R. Fannin, Signals and Systems: Continuous and Discrete, 1989)

The first component is a sampler that extracts sample values from a continuous

time, continuous amplitude (analog) input signal at specified sampling instants. The

output of the sampler is a discrete time signal with a continuous amplitude because the

sampled values assume the same continuous range of values assumed by the input signal.



The second component in an A/D converter is a quantizer, which quantizes the continuous

amplitude range of samples into a finite number of amplitude values. The last component

of an A/D converter is an encoder which maps each quantized sample value onto a digital

word. For a binary representation, the number of quantizing levels q and the digital

wordlength n are related by

q = 2' (2.10)

In order to be able to reconstruct the original signal from the sampled signal, there

are three important points that must be followed. The first point involves the sampling

rate, and is covered by the sampling theorem which states that a bandlimited signal, having

no frequency components above t hertz, is completely specified by samples that are taken

at a uniform rate with a frequency greater than 2fh hertz. In other words, the time

between samples is no greater than 1/2fh seconds. The frequency 2C is known as the

Nyquist frequency. To understand why the sampling frequency must be greater than

twice the highest frequency in the signal, the spectrum of the input signal and the spectrum

of the sampled signal are displayed in Figure 2.2. The spectrum of the input signal is

double sided, consisting of power at both positive and negative frequencies. The spectrum

of the sampled signal contains the spectrum of the original signal repeating at integer

multiples of the sampling frequency. Figure 2.2(c) shows the effect of sampling at too low

of a sampling rate. This effect is known as aliasing, and makes it impossible to recover the

original signal.
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Figure 2.2 Spectrum of (a) the Original Signal (b) Sampled Signal and (c) Improperly
Sampled Signal (from R. Ziemer, W. Tranter, and R. Fannin, Signals and Systems:

Continuous and Discrete, 1989)

The second important point to be made about the reconstructing of the original

wave from the sampled wave, is that a low pass filter must be used to pass only those

frequencies involved in the original spectrum. The final point concerns the number of

quantization levels. Since the quantizing level is the only value retained after sample

values are quantized, errors are induced by the quantizing process that can not be removed

by additional processing[26]. To reduce the quantization error, it is important to have

enough quantization levels and to make sure the amplitude range of the signal uses all the

quantization levels.



2.3 Subjects and Experimental Protocol

Because our purpose was to derive the respiratory waveform from the ECG signal and

apply it to power spectral analysis of heart rate variability, the experimental protocol was

designed to include sections that stimulate both the parasympathetic and sympathetic

nervous systems. In addition, the form of exercise used included a lot of upper and lower

body movement to determine if the derived respiration methods were consistently reliable.

A total of nine subjects, three females and six males, participated in the study. The

age of the subjects ranged from 20 to 37 years. All subjects were considered normal. In

other words, they suffered from no known illnesses such as diabetes, heart disorders, etc.

The only restriction on subjects were: (1) the subjects were between 18 and 40 years old,

(2) subjects did not suffer from any breathing disorders, and (3) pregnant women were not

allowed. Some general information on the subjects is shown in table 2.1. The subjects

were considered smokers if they had at least one cigarette per day and were considered

regular exercisers if they exercised at least 3 times a week, for a minimum of 45 minutes.

Two leads of EKG (lead I and lead III) and an original respiration waveform were

collected on the subjects during six 4-minute test conditions: 1) sitting, non-paced

breathing, 2) sitting, paced breathing at 8 breaths per minute(bpm), 3) sitting, paced

breathing at 12 bpm, 4) sitting, paced breathing at 16 bpm, 5) walking on a treadmill at 3.5

mph, and 6) walking on a treadmill at 3.5 mph with a 5% incline. At the initiation of each

phase of the protocol, the ECG signals were synchronized with the respiration signals by

pressing the event marker button on the ECG monitor.
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Table 2.1 General Information of Each Subject

Subject # Sex Age Height Weight Smoker Regular Exerciser
1 M _ 24 6' 1" 180 no no
2 M 21 6' 2" 190 no yes
3 M 20 5' 7" 135 no yes
4 M 37 5' 8" 150 no no
5 F 24 5' 5" 130 no yes
6 M 24 5' 10" 150 yes  yes
7 M 23 6' 200 no yes
8 F 21 5' 9" 130 yes no
9 F 21 5' 10" 125 yes no

For test conditions 1 through 4, the subjects were sitting in a comfortable chair and

were facing a wall. For test conditions five and six, when walking on the treadmill, the

subjects were allowed to either hold on to the treadmill or walk swinging their hands at

their side. The difference between test conditions five and six was to increase the subjects

breathing rate, breathing volUme, or both, depending on the individual.

In this protocol, the sitting non-paced breathing represents a period of time when

the subject can breath at his own comfortable breathing rate. Usually when a person is

sitting and relaxing, their breathing rate might fluctuate around their nominal breathing

rate. In addition, it is not unusual for people to stop breathing for periods up to 10

seconds when resting. During this time, the subject's parasympathetic activity is at a

nominal level, perhaps slightly decreased because the subject might be nervous.

The three sections of the protocol when the subject is sitting and paced breathing

represent periods of time when the subject's respiration rate was voluntarily controlled. It

should be noted that the subjects were free to breathe at whatever volume was

comfortable in each of the three tests involving paced breathing. The subject's breathing
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rate was paced using a box that contains a column of 16 light emitting diodes that emitted

either green or red light. The subjects were asked to match their inhalation and exhalation

to the rate at which the lights proceeded up the column. For example, when the lights

were green and traveling up, the person was asked to pace himself so that one 'inhalation

took the same amount of time as the lights to reach from the bottom of the column to the

top of the column. Then, the lights would turn red, and would proceed from the bottom

of the column to the top of the column which represented the time for the subject to

exhale. Generally, during paced breathing, parasympathetic activity increases above a

person's nominal parasympathetic activity.

The final two sections of the experimental protocol involved walking on a

treadmill. The purpose of this section was to increase the person's breathing rate and heart

rate, with upper and lower body movement. Exercise represents a period of decreased

parasympathetic activity because there is physical stress on the body.

The experiments were conducted in the autonomic research lab at the Kessler

Institute for Rehabilitation under experimental protocol #P-205-95. The Institutional

Review Board(IRB) application to conduct an exploratory study involving human subjects

is provided in Appendix B.

2.4 Data Acquisition

2.4.1 Acquisition of the Original Respiration Waveform

In order to compare the results of the derived respiration methods developed in this study,

the original respiration waveform was recorded using a method called impedance
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pneumography. A RESP I impedance pneumograph (UFI, Morrow Bay, CA) was used to

measure trans-thoracic impedance changes which result from respiration. To produce a

signal proportional to the trans-thoracic impedance, the RESP I causes a safe, high-

frequency (30 Khz) alternating current to flow between two electrodes. As a result of the

current, a voltage is produced which reflects the changes in impedance in the segment

between the two electrodes. The RESP I senses this voltage and makes it available as its

output in analog form.

For this study, two diagnostic ECG adhesive silver/silver chloride surface

electrodes (Medtronic, Haverhill, MA) were placed trans-thoracically on the patients , as

shown in Figure 2.3. Note that the electrodes were placed on the sides of the subject. In

addition, the electrode on the side of the heart was placed on the lowest rib and the

electrode on the opposite side was placed on the highest rib that was approximately two

inches below the armpit. This is an important point because if the electrode on the side of

the heart is placed approximately two inches below the armpit, there will be some ECG

content in the respiration waveform. It was important that the electrodes were placed

directly over the nearest rib bone to reduce the effects of EMG which can be recorded

from muscles.

To obtain a clean respiration signal, each skin site was prepared before the

electrode application. The skin site was thoroughly scrubbed with an alcohol prep to

remove the outermost layer of dead skin (stratnum corneum). This helps reduce the dc

offset and motion artifact from the skin-electrode interface. Next, a dry piece of gauze

pad was used to remove any alcohol and dead skin. Finally, application of the electrode to
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the prepared site was performed by placing the electrode on the skin, making sure that the

gel makes contact with the skin first, and then smoothing the electrode from the center

out.
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Figure 2.3 Placement of the Electrodes to Record Respiration Using the RESPI

The analog voltage output of the RESP I was input to a DAS-16 analog-to-digital

converter (Keithley MetraByte/Asyst, Natick, MA) which was installed in an IBM

compatible 286, 25 MHz computer with 1 Mb of RAM and 107 Mb hard drive. However,

before the output of the RESPI entered the DAS-16, it was isolated from the acquisition

computer by an isolation amplifier which protects the subject from the 120V source

required to power the acquisition computer. The connection between the RESPI and the

isolation amplifier and the isolation amplifier and the A/D board were made with shielded

cables.



The DAS-16 was configured to accept 8 different channels of data, each having an

amplitude in the range of - 5 Volts to + 5 volts. Each sample of data requires 2 bytes of

hard disk space. Twelve of the sixteen bits are used for encoding the amplitude of the

input signal, providing 2048 different quantization levels. One of the twelve bits is used to

indicate if the signal has a positive or negative voltage. The remaining four bits are used

to identify the different channels. Therefore, each quantization level is equivalent to 2.44

mV (5 Volts/ 2048).

The respiration is sampled at 200 samples per second and is stored in binary

format. Because there is no filtering between the RESPI and the data acquisition board,

the respiration was sampled at 200 samples per second to avoid aliasing due to 60 Hz

noise. To make sure there were no harmonics above 60 Hz, the respiration was sampled

at 400 Hz, and the power spectrum was computed for frequencies up to 200 Hz. The

highest frequency that contained any indication of power was at 60 Hz; therefore, it is safe

to sample the RESPI signal at 200 Hz. Before the signal was acquired, the connection

between the RESPI and the A/D board was checked with a program that plots the input to

the A/D board on the screen. Once confirmed that the connection was okay, the signal

was acquired using Streamer v3.25 data acquisition software (Keithley MetraByte/Asyst,

Natick, MA).

Figure 2.4 shows a typical RESP I recording. Note that the resistance increased

during inhalation and decreased during exhalation. The resistance increases during

inhalation because the chest volume increases and the lungs fill up with air which is a very

poor conductor due to a high resistivity. It should be noted that the respiration was
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monitored on an oscilloscope during the experiment to determine the amplitude range of

the voltage from the RESPI. The RESPI includes an internal amplifier that was set to

maximum amplification during all the experiments. Before each section of the

experimental protocol, the amplitude of the subject's respiration waveform for that section

was monitored. If there appeared to be a possibility for the amplitude to exceed five volts,

the amplitude of the respiration was decreased using the amplifier provided on the

isolation amplifier. If the voltage exceeds five volts, information is lost because the signal

is quantized to the highest quantization level regardless of the excess over five volts.

Inhale 	 F,xhale

Figure 2.4 Example of Three Cycles of a RESPI Respiration Waveform Showing the
Waveshape and Typical Recording Quality

It should be mentioned that the RESPI is really an indirect measure of respiration.

However, it is referred to as the direct measure of respiration throughout the thesis

because it is an indication of the actual respiration waveform. A direct measure of
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respiration would measure the air flow in and out of the lungs through the nose and mouth

which would indicate both respiration rate and volume. The only way to do this is to

place a mask over the subject's nose and mouth and connect the subject through a flexible

tube to a spirometer or metabolic cart. Although this was an option, the RESPI was

chosen for its simplicity to implement and comfort. Another method considered to

measure the respiration waveform was that of nasal thermistors. However, during

exercise, people tend to breathe from both their nose and mouth. Unfortunately, the nasal

thermistor would not measure the flow of air through the mouth. One possible solution to

this problem is to put the nasal thermistor in the opening of a mask which covers the nose

and mouth. Although this is a viable solution, it was never experimented with to

determine the accuracy of such a setup. An advantage of the methods to measure

respiration other than by impedance pneumography, is that they provide a very clean

respiration tracing during all test conditions. Conversely, the RESPI tends to get noisy

during exercise because of muscle electromyography, skin movement, and movement of

the skin-electrode interface.

2.4.2 Acquisition of ECG

The ECG was recorded using a Holter recorder (Del Mar Avionics, Irvine, CA). The

Model 423 Dynacord Cassette Holter Recorder is a small cassette, three-channel recorder,

designed to record an ambulatory patient's ECG continuously for up to 24 hours. The

Model 423 includes a patient event button, an automatic calibrator, and a carrying case. A

9-volt disposable battery supplies power.
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In this study, two leads of ECG were collected, namely, lead I and lead III. It

should be noted that the standard limb lead connections that form Einthoven's triangle

were not used. The electrodes were not hooked up in the standard limb lead connections

for two reasons. One reason was to minimize electromyographic noise produced by the

limb muscles. The second reason was because the method to derive the respiration by

estimating the mean cardiac electrical vector assumes that the two leads of ECG are

orthogonal. Therefore, lead I and lead III were connected to the patient as shown in

Figure 2.5. The same electrodes and preparation techniques used to apply the electrodes

for the acquisition of the respiration waveform were used for the application of the ECG

electrodes. An important detail about the lead connections is that for lead I, the positive

terminal is on the left clavicle bone and the negative terminal for lead III is also on the left

clavicle. It was discovered that of the two electrodes on the subject's left clavicle, if the

positive terminal of lead I was connected to the electrode that is closest to the subjects

side, a larger R-wave will result in lead I.

When the 9 Volt battery is inserted, the Holter recorder turns on and six minutes

of 1 mV calibration pulses are automatically recorded on two channels. During the

calibration period, the Holter recorder does not record any input signals. However, the

internal calibration signal can be terminated by pressing the patient event button. Once the

calibration signal stops, the Holler recorder begins to record input signals. In order to

distinguish different segments of the experimental protocol when the data is recovered

from the Holier tape, the patient event button was pressed at the beginning of each

segment of the experimental protocol.
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Figure 2.5 ECG Electrode Locations

During the experiment, the two leads of ECG were recorded in analog form onto

an audio cassette. For this study, the tape cassette was a Radio Shack Type I Normal Bias

XR60. To recover the two leads of ECG, the cassette was played back after the

experiment using a JVC TD-W10 consumer quality cassette player. The frequency range

of the cassette player was from 20 Hz to 16000Hz. The two channel analog output of the

JVC TD-W10 cassette player was then input into a two channel amplifier. In order to be

able to identify what channel was lead I and what channel was lead III, the same setup was

used each time for playback. The left output of the cassette player was always inserted

into channel 1 on the amplifier and the right output of the cassette player was always

inserted into channel 2 on the amplifier. With this setup, it was determined that the



outputs of channel 1 and 2 were leads I and III respectively. The amplifier had a variable

gain between 1 and 100 and a constant frequency response for frequencies above 7 Hz and

up to at least 5 KHz. The amplifier was necessary to reduce the quantization error in the

analog to digital conversion. The gain was adjusted during playback for each section of

the protocol to yield a signal with maximum absolute amplitude no greater than 4 volts.

The outputs of the amplifier were then converted into a digital signal by a DAS-16

analog-to-digital converter. An important point to be made is that the Holter monitor

records 48.35 times slower than a standard cassette player. This slower recording speed

enables the Holter monitor to record for up to 24 hrs continuously. However, because the

playback is 48.35 times faster, this changes the frequency of the waves being played back.

The frequency content of an ECG signal is between 0.01 and 60 Hz. Therefore, during

playback the frequency band is 0.4835 and 2901 Hz. Thus the DC offset and very low

frequencies might not be passed-by the JVC TD-W10 cassette player and amplifier.

However, this will have no significant affect on the acquired signal because all the

important waves of the ECG are higher in frequency.

In this study, the sampling frequency used to sample the ECG was 500 Hz.

However, because of the faster playback, the adjusted sampling frequency used to sample

the playback of the ECG from the JVC-W10 was 24.175 KHz. The sampled data were

stored in binary format on the same acquisition computer used to acquire the respiration

waveform. The two ECG leads were also acquired using Streamer v3.25 data acquisition

software. The procedure to perform the above steps on the data acquisition computer are

detailed in Appendix C.
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2.4.2.1 Determination of Sampling Frequency

Normally, 200 Hz is the standard sampling frequency used when performing A/D

conversion of an ECG signal. Because the highest frequency in the ECG is approximately

60 Hz, a sampling frequency of 200 Hz is 80 Hz more than the Nyquist frequency.

However, when the ECG is sampled at 200 Hz, the exact peak of the R-wave is not

always sampled on a consistent basis because the width of the peak occurs in a very small

period of time. Therefore, the maximum time error that can be made, is half the time

between samples, or 2.5 ms. Although this might seem like a short period of time, the

amplitude of the R-wave can change significantly during that time. In this study, the peak

of the R-wave is rather important. Therefore, two experiments were performed to

determine the optimum sampling frequency to accurately sample the peak of the R-wave.

In the first experiment, one minute of an actual ECG recorded with a Holter

monitor was played back and sampled at 1000, 900, 800, 700, and 600 Hz. To simulate

sampling frequencies below 600 Hz, the signal sampled above at each of the different

sampling frequencies was downsampled by a factor of two using software (every other

point was taken). This provided the same signal sampled at 500, 450, 400, 350, 300, 250,

225, and 200 Hz. Next, the highest point in the R-wave was detected using software, and

the mean of the highest points in the R-wave was calculated. The results are shown in

Table 2.2 below. Because the ECG was played back from a Holter cassette for each of

the 5 different sampling frequencies, care was taken to include the same portion of ECG

during each analog-to-digital conversion.
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From table 2.2, it can be seen that when the sampling frequency is below 500 Hz,

the average height of the R-waves became inconsistent. For example, the real mean of the

highest point in the R-wave appears to be approximately 1365. At 500 Hz, the mean is

1365.475. At 450 Hz, the mean is 1321.246 which is a significant difference. However,

at 400 Hz, the mean is 1360.656 which is a relatively small error. As it turns out, the

mean of the highest point in the R-waves for an actual ECG depends a lot on whether or

not the few peaks that are accurately detected are high in amplitude or low in amplitude

(remember there is a modulation of the ECG from breathing). Therefore, to obtain more

accurate results, an ECG that is not modulated by the frequency of breathing is needed.

For the second experiment, one minute of simulated ECG was recorded from a

Quinton Q4000 Stress Test Monitor (manufactured by Quinton Instrument Co. of Seattle,

WA). It was assumed that the Quinton ECG cart output was a stable simulated ECG. In

this case, the meaning of stable is consistent R-wave amplitude. Similar to the previous
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experiment, the simulated ECG was sampled at 1000, 900, 800, 700, and 600 Hz. Then,

to simulate sampling frequencies below 600 Hz, the simulated ECG signal sampled above

at each of the different sampling frequencies was downsampled by a factor of two using

software (every other point was taken). This provided the same signal sampled at 500,

450, 400, 350, 300, 250, 225, and 200 Hz. Next the highest point in the R-waves was

detected, and the mean of the these points was computed. Table 2.3 contains the results.

In addition, the mean of the highest point in the R-waves was plotted against sampling

frequency in Figure 2.6.
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500 Hz, the accuracy of sampling the maximum peak of the R-wave decreases. Based on

these two experiments, the optimum sampling frequency to detect the R-wave peaks has

been chosen to be 500 Hz. This means that the time between samples is 2 msec, or the

maximum time error of not detecting the peak in the R-wave is 1 msec.
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Figure 2.6 Plot of the Average Amplitude of the R-Wave Peaks vs. Sampling Frequency

2.5 Data Analysis

2.5.1 Converting Data from Binary Format to ASCII Format

Both the respiration signal and the ECG leads were collected using Streamer data

acquisition software and a DAS16 data acquisition board. The signals were quantized to

12 bit words, and were stored on the root directory in a binary format that utilizes 2 bytes

per sample. The software programs used for analysis, S-Plus v3.1 (Statisitical Sciences,

Inc., Seattle, WA) and MATLAB v4.2b (Math Works Inc., Natick, MA), can not convert



the data from binary format into ASCII format. Therefore, a program called unpack was

utilized to convert the data from binary to ASCII format for S-Plus and a program called

kunpackl was utilized to convert the data from binary to ASCII format for MATLAB.

The difference between unpack and kunpackl is that unpack converts the binary file to

ASCII format separated by commas, whereas the kunpackl program converts the binary

file to an ASCII file where each channel of data is represented as a column in a matrix and

the columns are separated by spaces. Because the unpack program separates the samples

by only a comma, it is necessary to tell it how many channels were collected, to be able to

separate the channels. The unpack program is a utility that Keithley MetraByte/ Asyst

provided with the Das16 analog-to-digital conversion board. The kunpackl program is a

modified version of the unpack program.

2.5.2 Analysis of ECG to Obtain Power Spectrum of Heart Rate Variability

As mentioned in section 2.4.2, the ECG is converted from analog to digital form and

stored in binary format on the data acquisition computer. The data is then transferred

over the network to a signal processing computer. In this study, the computer used to do

the signal processing was an IBM compatible with a 90 Mhz Pentium processor with 65

Mb of RAM and a 2 GB hard drive. The initial step in the data analysis is to unpack the

data from binary format to ASCII format using the unpack program. Once in ASCII

format, S-Plus is used to scan in the data into a matrix form and then previously developed

software algorithms in S-Plus were used to obtain the HRV power spectrum. The

following is a description of the necessary steps to obtain the power spectrum of HRV.
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To begin the analysis, one of the two leads of ECG must be chosen. Although

both leads contain the same heart rate information, one lead usually works better than the

other with the existing software. The lead which works best is the dominant lead (see

section 1.2), because the first step to obtain the power spectrum of HRV is to detect every

R-wave in the ECG. Because the R-wave complex is more pronounced in the dominant

lead, the analysis proceeds more smoothly.
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Figure 2.7 Figure Depicting the Construction of the IBI Signal (from S.J. Shin,
W.N. Tapp, S.S. Reisman, and B.H. Natelson, "Assessment of autonomic regulation of

heart rate variability by the method of complex demodulation," 1989)

Before trying to detect the R-waves, the ECG signals were detrended using a

locally weighted robust regression algorithm. To help detect each R-wave, a vertical

threshold (which the R-wave must exceed) and a horizontal threshold (to prevent

detecting an R-wave for a period of time after one was detected) can be varied. If an



error occurs during the R-wave detection, the analyst can use existing software to

manually detect or undetect the mis-detected R-waves. Appendix D contains the syntax

of the commands involved in the analysis procedure.

Once the R-waves are properly detected, an interbeat interval (IBI) signal can be

constructed. To obtain the MI signal, the distance in time between a specific beat(T m) and

the beat previous in time(Tm_i) is calculated. This value of time difference then becomes

the amplitude of the IBI signal at that specific beat. Mathematically, the MI signal is

computed by the formula IBIm = Tm See Figure 2.7 for a graphical representation.

Although the MI represents the heart period at discrete points, the 1131 signal is not

suitable for FFT analysis because the discrete points, located at each R-wave, are not

evenly spaced. In order to produce equidistant 1131 samples suitable for analysis, the IBI

signal must be interpolated. The interpolation method used was that of a backward step

function. This method assumes no new information about the direction of the time series

is available until the next heart beat occurs. Therefore, the amplitude of all of the

interpolated values between a beat at time Tm_i and the beat at T m were set equal to the

time difference between Tm and The interpolated interbeat interval(IIBI) is then

sampled to produce an IMI with evenly spaced samples. For example, in Figure 2.7(c) if a

beat occurs at a time equal to 2 seconds and the next beat occurs at a time equal to 2.9

seconds, then the interpolated values between time 2 seconds and 2.9 seconds are all 0.9

seconds as shown in Figure 2.4(d). After the IIBI signal is obtained, it is detrended using

a locally weighted robust regression algorithm. Essentially, this removes low frequency

components below 0.05 Hz. If these low frequency components are not removed, they
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can dominate the power spectrum and decrease the detail of the components in the

frequencies above 0.05 Hz. Another example of an MI signal and an IIBI signal is shown

in Figure 2.8.
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Figure 2.8 IBI Signal and IIBI Signal

The final step to obtain the power spectrum of HRV is to take the FFT of the

detrended 11131 signal. In the existing software, this is done by decimating the IIBI signal

by a factor of twenty five(the ECG is sampled at 500 Hz) and taking an 8192 point FFT of

the decimated IIBI signal. When the signal is decimated by a factor of twenty five, every

twenty fifth point of the original signal is kept, and the twenty four points in between

every twenty fifth point are not used. In a time series of samples, every twenty fifth point

occurs at the same time as in the undecimated signal, except that there are no samples in

between. In effect, decimating is similar to down-sampling. In other words, because the
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length of the IIBI signal is approximately the same length of the sampled ECG, which is

acquired using a sampling frequency of 500 Hz, decimating the IIBI by a factor of 25, is

similar to sampling the IIBI at 20 Hz. This can be done because the IIBI signal contains

no frequency components above 6 Hz.

The IIBI signal is detrended to improve the frequency resolution in the power

spectrum of the FFT. The software is programmed to take an 8192 point FFT by default

regardless of the input signal length. In the experiments, 120 seconds of ECG were

collected. At a sampling frequency of 500 Hz, this corresponds to 60,000 samples. Recall

that the IIBI is approximately the same length as the ECG. If an 8192 point FFT is taken,

only the first one-eighth of the IIBI would be represented in the spectrum. In addition, the

frequency resolution would be 500/8192= 0.061 Hz and the spectrum would be between 0

Hz and 250 Hz. However, the spectrum of the IIBI, the heart rate variability spectrum,

consists of low frequencies less than 6 Hz; therefore, a better frequency resolution would

be desired and the spectrum does not need to be calculated up to 250 Hz. As a result, the

IIBI is decimated by a factor of twenty five. In this case, the IIBI signal would then be

2,400 samples long for a 120 sec long ECG signal. Note in Figure 2.8 that the length of

the IIBI signal is 2400 points long. The length of the DM signal depends on the number of

heart beats. Now, in order to take an 8192 point FFT of a signal that has only 2,400

samples, a technique called zero padding must be used. Essentially all samples from 2,401

to 8192 are given the value of zero. The only effect this has on the spectrum is that it

increases the frequency resolution. When the FFT is calculated, we limited our spectrum

from 0 Hz up to 10 Hz. The frequency resolution is now 20/8192=0.00244 Hz. Once the
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power spectrum is obtained, it is smoothed twice by applying a modified Daniell

(Rectangular) smoothing algorithm. Figure 2.9 illustrates the power spectrum of the IIBI

signal in Figure 2.8. Figure 2.10 illustrates the smoothed version of the power spectrum

illustrated in Figure 2.9.
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It should also be noted that when performing the FFT, the IBM signal is windowed

by applying a split cosine bell taper. The taper begins at 20 percent from each end of the

time signal. The application of the split cosine bell taper is done before the zero padding

takes place so as to provide a smooth transition to zero rather than a sharp discontinuity.

It should be noted that if the window is a simple rectangular function, then discontinuities

would result due to the discontinuity of the window, which would add additional spectral

components in the spectrum. The purpose of the split cosine bell taper window is to

reduce any additional spectral components that result from the shape of the window. The



windowing is done by multiplying the time signal by the window function. The split

cosine bell taper for a 2400 point long signal is shown in Figure 2.11.
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2.5.3 Analysis of Original Respiration Waveform

The power spectrum of the original respiration waveform was needed for two reasons in

this study. The power spectrum of the respiration waveform is needed to properly locate

the parasympathetic activity in the heart rate variability power spectrum. However, more

important, for this study the power spectrum of the original respiration was compared to

the power spectrum of the respiration derived from the ECG. Therefore, a program was

written to compute the power spectrum of the original respiration waveform. The

program, which executes in S-Plus, and the analysis steps to obtain the power spectrum of

the original respiration waveform are shown in Appendix E.

To begin the analysis of the original respiration waveform, the data file is unpacked

in DOS using the kunpackl program. The ASCII file is then loaded into MATLAB and

decimated by a factor of ten. This decimation is done in MATLAB because the MATLAB

decimation program contains an eighth order Chebyshev type I lowpass filter with cutoff

frequency equal to .8*(Fs/2). At Fs, the filter response is approximately 30 dB down.

Recall that the RESPI signal was acquired with no filtering and a sampling frequency of

200 Hz. There is a frequency component due to noise at 60 Hz. Therefore, the Nyquist

frequency of the respiration waveform is 120 Hz. If the signal is downsampled to 20Hz

without filtering first, aliasing will occur. Therefore, the program first applies the lowpass

filter with cutoff frequency equal to 8 Hz (the Nyquist frequency is 10 Hz), and then

decimates the signal by a factor of ten which effectively downsamples the signal to a

sampling frequency of 20 Hz. The signal is then written to an ASCII file, which then can

be loaded into S-Plus and the power spectrum of the RESPI signal can then be taken.
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The basics of taking the FFT of the respiration waveform are the same as those

described in sections 2.1 and 2.5.2. The respiration waveform is 120 seconds long and is

acquired at a sampling frequency of 200Hz. Therefore, the respiration signal is 24000

points long before the decimation, and 2400 points long after the decimation. An 8192

point FFT is taken by first windowing the 2400 points, then zero padding the remainder of

the points between 2401 and 8192. The frequency resolution of the respiration spectrum

is 0.00244 Hz (20/8192). The spectrum of the respiration waveform is also smoothed

twice by performing a modified Daniell (Rectangular) smoothing algorithm.

2.6 Methods for Deriving the Respiration from the ECG

As mentioned in section 1.4, the heart's position changes during respiration due to the

filling and emptying of air in the lungs. Thus, the mean cardiac vector changes from beat

to beat. All the following methods derive the respiration waveform from the change in

angle of the mean cardiac vector in the frontal plane.

2.6.1 The Method Presented by Mark and Moody

In a paper presented in 1985 by Moody et al.[S], a method to estimate the mean cardiac

vector during each QRS loop was presented to attempt to derive the respiration

waveform. The basis for this method is that the mean cardiac vector changes during

inhalation and exhalation due to the rotation of the heart in the chest. As a result of the

rotation, the amplitude of each ECG lead changes. By using two orthogonal leads of

ECG, the mean cardiac vector can be approximated in the plane defined by the two leads.
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To measure this change in amplitude, the area under each normal QRS complex in

the two orthogonal leads is calculated over a fixed window. The baseline area for each

QRS is subtracted from the area calculation. Since the window width is fixed, the area is

proportional to the mean amplitude of the signal over the course of the window, and

hence, to the projection of the mean cardiac electrical vector on the lead axis. By

assuming that the two leads are orthogonal, the arctangent of the ratio of the areas

measured in the two leads gives the angle of the mean axis with respect to one of the lead

axes. Even if the two leads are not truly orthogonal, a systematic but harmless error in the

axis direction estimation results. See Figure 2.12 for a graphical interpretation.

From a signal processing viewpoint, the axis direction measurement during each

QRS complex provides one sample of the ECG derived respiratory signal per cardiac

cycle. Assuming that the heart rate is always greater than twice the frequency of

respiration, the respiration waveform can be measured well in both the time domain and

frequency domain from this limited set of samples. To produce a continuous respiration

waveform, cubic spline interpolation is used.

2.6.1.1 Zhao's Software to Implement Mark and Moody's Method

In order to perform the analysis of the ECG, Zhao[22] created some programs that

executed in S-Plus to perform the steps necessary to derive the respiration from the

method presented by Moody. The programs written by Zhao require that the HRV

analysis to be done prior to their execution, because Zhao's programs rely on the HRV

analysis program which detects the R waves in one of the two ECG leads.
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Figure 2.12 Estimation of the Mean Cardiac Vector by Taking the Arctangent
of the Areas Under the QRS Complex of Leads I and M.

Once the location of each R wave is known, the first step is to calculate the

average fixed window width of each QRS complex. To do this, Zhao locates what he

calls the "PQ junction". In actuality, the "PQ junction" is the Q-wave. The algorithm to

detect the Q-wave is explained in Figure 2.13. Based on the position of each R-wave

peak, a time period ac was set backward from the R peak. Within this time period ac, the

minimum value b was detected as the point of the Q-wave.

To obtain the width of each QRS, the S-wave is not detected. Instead, the interval

from the Q-wave to the R-wave is assumed to be the same as the interval from the R-wave

to the S-wave. Therefore, after all the Q-waves are detected, the average length from the

Q-wave to the R-wave is calculated. The window width is determined by doubling the

average length between the Q-wave and the R-wave as in the following equation

W = 	 q r [i]I n 	 (2.11)
i=i

where W is the time window width of each QRS complex, Lqr is the time interval between

the Q-wave and the R-wave, and n is the number of QRS complexes.
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Figure 2.13 Figure Showing the Algorithm to Detect the Q-Wave.

Once the window width is calculated, the area for each QRS complex can be

computed. Because the ECG is a discrete signal, the area is a sum of the samples that are

within the window. To calculate the baseline area, Zhao uses the Q-wave as the minimum

point. Thus, once all the QRS complex samples are summed, the product of the amplitude

of the Q-wave and the window width is then subtracted. See Figure 2.14 for an

illustration of the QRS complex area calculation.

Once the areas of each QRS is computed, the values represent samples of the

respiration waveform which occur at the time of the R-wave. Figure 2.15 illustrates the

procedure. Figures 2.15 (c) and (d) are the areas under the QRS complexes for their

respective leads. Figure 2.15 (e) illustrates the arctangent of the two leads. In Figure

2.15 (f), the arctangent values are interpolated, and (g) represents the spectrum.
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Figure 2.14 Figure Showing the Calculation of the QRS Complex Area

2.6.1.2 Problems With Zhao's Software

The process of deriving the respiration by the method described above was implemented

by Zhao using a multi-step process. The areas under the QRS complexes for each lead

were computed by the same program, but required a command for each lead.

Additionally, the arctangent and interpolation were done in another program, and the

spectrum in a third command. Ideally, the programs are not time efficient, and would be

more user friendly if all the steps existed in one program.

Besides that subtle detail, there were a few other problems with Zhao's algorithms

that could yield an incorrect respiration waveform. To begin, it was discovered that the

software used to do the heart rate variability analysis did not properly detect the R-waves

consistently. Often, the R-waves were misdetected by a few points. If some of the R-

waves are misdetected by even a few points, the average window width for the QRS



complex will then be calculated incorrectly. To alleviate this problem, a program called

"correcth" was written that properly detects the R-waves. The program is an additional

step in the heart rate variability analysis (see Appendix D). The program is listed in

Appendix F. Figure 2.16 is an example of an improperly detected R-wave.
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Figure 2.16 Close-Up of an R-Wave Showing an Incorrect Detection.

Another problem with Zhao' s algorithms concerns the phase shift that exists

between the R-waves of two different leads. It is important to remember that when doing

the heart rate variability analysis, only one lead is used to detect the R-waves, and thus, to

construct the interpolated interbeat interval. However, the ECG derived respiration

method implemented by Zhao uses two leads of ECG. One detail about the ECG that was

ignored by Zhao when designing his software, is that the R-waves occur at different times

in different leads. Because the leads involved in the method, leads I and III, are

orthogonal, there exists a phase shift between the R-waves in the two leads. In addition,

because the magnitude of the mean cardiac vector is also changing, the amplitude of the

R-waves is also different in the two leads.

To better understand this point, imagine the instantaneous cardiac vector to be of

constant magnitude and rotating 360 degrees in a circular pattern in the frontal plane as in

Figure 2.17. The resulting waveform in a particular lead is the projection of the



instantaneous cardiac vector on that lead over time. Therefore, for the case shown in

Figure 2.17, the waveform of lead I will lead the waveform of lead III by 90 degrees as

shown. If one extends this case to the instantaneous cardiac vector during the QRS loop,

which changes in amplitude during the cycle, it is clear why the R-wave appears at

different times and in different forms in leads I and III. Figure 2.18 illustrates an example

of the phase shift between the R-waves in lead I and lead HI.

The problem that exists in Zhao's software is that it assumes that the R-waves

occur at the same time in the different leads. By doing so, Zhao' s software creates an

error in the QRS complex window width for the lead that was not used in the heart rate

variability analysis. To alleviate the problem, the R-waves should also be detected for the

lead that was not used in the heart rate variability analysis. In addition, because the areas

will be placed at different periods of time, which are representative of each R-wave, the

arctangent can not be taken between the points. Instead, each area waveform must be

interpolated first, and then the arctangent of the interpolated signals can be taken.

A third problem that exists in Zhao' s software occurs when the area under the

QRS is calculated. The ECG is a discrete signal at the time of data processing. To

approximate the area under a discrete signal that contains evenly spaced samples, one can

simply sum the amplitude of each point in the part of the signal of interest. However, the

signal should be completely above zero, or area will be subtracted when it is below zero.

To begin the software analysis, Zhao's program detrends the ECG using a locally

weighted robust algorithm. As a result, the baseline of the ECG is close to zero with

some points being positive and some points negative. Unfortunately, Zhao' s programs do
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Figure 2.17 Illustration of the Origin of the Phase Shift Between the R-Waves of Leads I
and ER for a Simplified Case in Which the QRS Loop Has a Constant Magnitude and

Constant Change in Direction

The fourth and final problem with Zhao's software has to do with subtracting the

baseline area. To find the baseline area of each QRS complex, the minimum of each QRS

complex is multiplied by the window width. To find the minimum, Zhao' s software takes

the minimum point between the Q-wave and the R-wave and assumes that this point is the

minimum for the QRS complex. However, this is not always the case as shown in Figure

2.19. If the S-wave is less than the Q-wave, Zhao's software incorrectly computes the

baseline area, and therefore, computes the area of the QRS complex incorrectly.
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Figure 2.18 One QRS Complex of Lead I and Lead III Showing Different Time of R-
Waves. The Solid Line Indicates the R-Wave in Each Lead.

2.6.2 Fixed QRS Window, Independent Leads Method

This method is an improvement on the software written by Zhao. It is called a fixed QRS

window, independent leads method for two reasons. One reason is because the width of

each QRS complex is fixed for each lead. In other words, the same average window

width is used for each QRS complex within each lead. The second reason is because the

width of the QRS complexes in lead I is independent of the width of the QRS complexes

in lead III.

The improvements made are the corrections to the problems mentioned in Section

2.6.1.2. The first correction involves the dc offset of the ECG. At the beginning of each

program, both leads of ECG are detrended. Once they are detrended, the minimum point

of each ECG is found and each ECG is shifted vertically by 1.1 times the absolute value of



Figure 2.19 An Example of the S-Wave as the Minimum of the QRS Complex

The second correction made is that the program detects the R-waves

independently for the two leads because a slight shift in time might be present between the

R-waves. This will provide for a more accurate estimate of the average width of the QRS

complexes for each lead. The width of the QRS complex for each lead is calculated by

equation 2.11. The average width of the QRS complexes in each lead is equal to twice the

average of the Q-wave to R-wave width in each lead. Note that this assumes that the

QRS complex is symmetrical around the R-wave.

To detect the R-waves, the program relies on the HRV analysis to be done so the

location of the R-waves in one lead will already be detected. Because the R-waves occur

at different points in time in different leads, it is incorrect to take the arctangent of the

areas under the QRS complexes of the two leads. Therefore, the areas are first

interpolated for each lead, and the arctangent of the interpolated signals is taken.



Another improvement included in this method is that for each QRS complex, the

minimum value is found for the samples within the average window width. This minimum

value is used in the baseline area calculation. Zhao' s software used the minimum between

the R-wave and the Q-wave for the calculation of the baseline area which could be

erroneous.

2.6.2.1 Software Implementation of the Fixed QRS Window, Independent Leads
Method

The fixed QRS window, independent leads method was implemented in a software

program called "impqrsca" which executes in S-Plus. The title of the program stands for

an improved version of qrsca, which was the program written by Zhao. The software was

written to be user friendly, requiring only one command to obtain the output. The

impqrsca program is listed in Appendix G. The command lines preceded by the # sign are

not performed by the program and are considered comment lines. During execution, the

program gives a few general checks that are a good indication of the integrity of the

analysis. The following is a brief description of how the critical steps involved to perform

the fixed QRS window, independent leads method were performed with the software, as

well as the general information of the inputs to and the outputs of the program

In order to execute the program properly, the dominant lead, which was used to

detect the R-waves in the preliminary heart rate variability analysis, must precede the non-

dominant lead in the program command line. Other inputs to the program include the final

file from the HRV analysis, five variables named w, rq, nfft, sr, decim, and the title for the

output plots. The variables w and rq will be described later. The variable nfft is the size
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of FFT to take when computing the power spectra of the derived respiration signals. The

default for nfft is 8192. The variable sr refers to the sampling frequency of the ECG

signals and the default is 500 Hz. The variable decim is an integer that indicates the

decimation factor for the interpolated respiration waveform. The respiration waveforms

are interpolated to be equal to the number of points in the ECG signals and are then

decimated to improve the frequency resolution in the power spectra. The default for the

variable decim is 25.

To detect the R-waves for the two leads, the R-waves of the dominant lead are

first checked to make sure that the peak is detected properly. This process is done by

looking for a local minimum whose width is proportional to the input variable w. To

detect the R-waves of the other lead, another local minimum is performed based on the

location of the R-wave in the dominant lead.

Once all the R-waves are properly detected, the Q-waves for each QRS complex

for each lead must be detected. To do this, a time period equal to rq (whose value is in

points) is set back from each R-wave. To identify the Q-wave, the program looks for the

minimum between the R-wave and the time period rq before the R-wave. This algorithm

is analogous to that used by Zhao's software and the idea is illustrated in Figure 2.13 (the

variables shown are those used in Zhao's program).

The outputs of the program, saved to a file given at the time of execution, are the

original, uninterpolated areas under each QRS complex for each lead. These outputs are

called "qrscal" and "qrsca2". These are output in case there was a problem with the ECG

which would cause outliers to be present. If this is the case, the outliers are removed
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manually. The program also outputs the detrended, decimated, interpolated areas for each

lead. These signals are also representative of the respiration waveform and are called

"d.iqrscal" and "d.iqrsca2". The respiration signal computed from the arctangent

operation is saved as "d.iqrsca". The power spectrum of these three respiration signals is

also saved and are called "d.iqrscas", "d.iqrscals", and "d.iqrsca2s", respectively.

2.6.3 Method Based on the Amplitude Modulation of the R-Waves

In clinical practice, the existence of an amplitude modulation in an ECG is often observed.

An example of this modulation was shown in Figure 1.13. This method was developed to

determine if the respiratory waveform can be constructed on a consistent basis from the

amplitude modulation of the R-waves. In addition, because the other three methods in this

study rely on the area under the QRS complex, which is dependent on the amplitude of the

R-waves, this method can be used for comparative purposes.

Whereas the fixed QRS window, independent leads program derives time path of

the mean cardiac vector from samples of the QRS loop, this method derives the time path

of the mean cardiac vector from one sample of the QRS loop, namely, the peak of the R-

wave. It should be reminded that the peak of the R-waves can occur at different periods

of time in different leads. Therefore, this results in one sample of the QRS loop for each

lead, although the samples might occur at slightly different periods in time. The

arctangent of the interpolated waveforms is taken to predict the time path of the mean

cardiac vector.
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2.6.3.1 Software Implementation of the Method Based on the Amplitude
Modulation of the R-Waves

The method based on the amplitude modulation of the R-waves was implemented in a

software program called "adresp" which executes in S-Plus. The title of the program

stands for "amplitude derived respiration". The adresp program is listed in Appendix H.

The command lines preceded by the # sign are not performed by the program and are

considered comment lines. Some of the code has been commented out but left in the

listing because this part of the code can be easily used to get a real specific graphical check

for the detection of each R-wave in each lead. The following is a brief description of how

the software works, as well as the general information of the inputs to and the outputs

from the program.

In order to execute the program properly, the dominant lead, which was used to

detect the R-waves in the preliminary heart rate variability analysis, must precede the non-

dominant lead in the program command line. Other inputs to the program include the final

file from the HRV analysis, four variables named w, nfft, sr, decim, and the title for the

output plots. The description of these inputs, what they do, and their default values are

the same as in the fixed QRS window, independent leads program. Therefore, for an

explanation of these inputs and an explanation on how the program finds the peak in the

R-waves, see Section 2.6.2.1.

During execution the program outputs several checks on the ECG processing to

detect the R-waves. The first output is a series of close-ups showing the detection of each

of the R-waves. The program shows five detections as a check. Another check on the

integrity of the R-wave peak detection is an output of the entire two minutes, broken up in
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one minute halves and plotted one above the other, that shows the outline of the amplitude

modulation of the detected R-waves. An example of this output is shown in Figure 2.20.

The outputs of the program are saved to a file which is named at the time of

execution The outputs are the modulation waveform and its spectrum for each lead as

well as the arctangent of the modulating waveforms and its spectrum. The time signal

outputs are called "ampmodl", "ampmod2", and "ampmod". Their respective outputted

spectrums are called "ampmodl.spec", "ampmod2.spec", and "ampmod.spec".
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Figure 2.20 Example of "adresp" Output of Amplitude Modulation of the R-waves.

2.6.4 Variable QRS Window, Independent Leads Method

This method is very similar to the fixed QRS window, independent leads method, except

for one subtle detail. The fixed QRS window, independent leads method assumes the

QRS complex is symmetrical and does not detect the S-wave, whereas, this method



detects the S-wave. It is called a variable QRS window, independent leads method

because the width of each QRS complex is dependent on the waveshape of each QRS

complex. In other words, it is possible to have different window widths for different QRS

complexes in the same lead. In addition, the widths of the QRS complexes in lead I are

independent of the widths of the QRS complexes in lead III.

The reason for investigating this method is because sometimes the width of the

QRS complexes in a particular lead changes by a slight amount. One possible reason for

this change can be attributed to the position of the heart slightly changing in the chest. To
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Figure 2.21 Different ECG Waveshapes for Closely Spaced Lead Connections

In Figure 2.21, the leads V 1 through V6 are shown in a top view of a horizontal

slice through a human's abdomen. The representative waveshapes are for the same QRS-

wave and T-Wave. Note that as the position of the lead changes on the body, the

waveshape changes in a systematic way. In other words, when comparing the waveshapes



from V1 to V6, the R-wave deflection gets bigger, the S-wave deflection gets smaller, and

the Q-wave deflection becomes slightly bigger and more defined. Although this logic

applies to the same QRS-wave and different places on the body, it can be used to reason

why a slightly different waveshape would be recorded for the same position on the body

and a change in position of the heart. Although the change in waveshape might be small,

it is additional information on the movement of the heart in the thoracic cavity, and

therefore, on the direction of the mean cardiac vector.

In this method, the program detects the R-waves independently for the two leads

because once the areas are calculated for each QRS complex, the value representing that

area is placed at the R-waves. In the fixed window, independent leads method the exact

detection of the R-waves was important to increase the accuracy of the window width.

Any error in the Q-wave to R-wave length caused a twofold error in the QRS window

width assuming a symmetric QRS complex. In this method, the location of the R-wave in

the QRS complex does not affect the detected width of the QRS complex.

2.6.4.1 Software Implementation of the Variable QRS Window, Independent Leads
Method

The variable QRS window, independent leads method was implemented in a software

program called "vqrsind" which executes in S-Plus. The software was written to be user

friendly, requiring only one command to obtain the output. The vqrsind program is listed

in Appendix I. As in the previous program, the command lines preceded by the # sign are

not performed by the program and are considered comment lines. They were left in the

listing because this part of the code can be easily used to get a real specific graphical check
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for the proper operation of the program. However, during execution, the program gives a

few general checks that are a good indication of the integrity of the analysis. The

following is a brief description of how the critical steps involved to perform the variable

QRS window, independent leads method were performed with the software, as well as the

general information of the inputs to and the outputs of the program.

In order to execute the program properly, the dominant lead, which was used to

detect the R-waves in the preliminary heart rate variability analysis, must precede the non-

dominant lead in the program command line. Other inputs to the program include the final

file from the HRV analysis, six variables named w, rq, rs, nfft, sr, decim, and the title for

the output plots. The description of w, rq, nfft, sr, and decim, what they do, and their

default values are the same as in the fixed QRS window, independent leads program.

Therefore, for an explanation of these inputs and an explanation on how the program

detects the peak in the R-waves, see Section 2.6.2.1.

To detect the R-waves, the program relies on the HRV analysis to be done so the

location of the R-waves in one lead will already be detected. Because the R-waves occur

at different points in time in different leads, it is incorrect to take the arctangent of the

areas under the QRS complexes of the two leads. Therefore, the areas are first

interpolated for each lead, and the arctangent of the interpolated signals is taken.

The Q-wave detection is the same for the fixed QRS window, independent leads

method. Once all the R-waves and Q-waves are properly detected, the S-waves for each

QRS complex for each lead needs to be detected. To do this, a time period equal to rs

(whose value is in points) is set ahead from each R-wave. To identify the S-wave, the

87



program looks for the minimum between the R-wave and the time period rs after the R-

wave. An example of this algorithm is shown in Figure 2.22.

The outputs of the program, saved to a file given at the time of execution, are the

original, uninterpolated areas under each QRS complex for each lead. These outputs are

called "qrscal" and "qrsca2". These are output in case there was a problem with the ECG

which would cause outliers to be present in them. If this is the case, the outliers are

removed manually. The program also outputs the detrended, decimated, interpolated

areas for each lead. These signals are also representative of the respiration waveform and

are called "d.iqrscal" and "d.iqrsca2". The respiration signal computed from the

arctangent operation is saved as "d.iqrsca". The power spectrum of these three respiration

signals is also saved. When either of these variables are followed with an s, this indicates

that it is a power spectrum.

Figure 2.22 Illustration of the Algorithm to Detect the S-Wave
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2.6.5 Variable QRS Window, Dependent Leads Method

This method is called a variable QRS window, dependent leads method because the width

of each QRS complex is dependent on the waveshape of each QRS complex. In addition,

the width of the QRS complexes in one lead are dependent of the width of the QRS

complexes in the other lead. In other words, the width of the QRS complexes can vary

from cardiac cycle to cardiac cycle, but are the same width in each lead.

If the widths of the variable QRS complexes are the same in each lead, and the

QRS waves occur at the same time, then the samples of the QRS are the same for each

lead. Consequently, the reason this method was developed was to sample the QRS loop

at the same time, rather than at two separate times. The reason a variable window was

used is explained in section 2.6.4.

At first, the above paragraph might be confusing because it has been shown that

the Q-wave, R-wave, and S-wave occur at different times in different leads. To solve this

problem, the detected times of the Q, R, and S-waves from the dominant lead were used

to correspond to the time of the Q, R, and S-waves in the non-dominant lead. Therefore,

in reality, the times corresponding to the Q, R, and S-waves in the non-dominant lead are

not really correct. Figure 2.23 illustrates an example.

2.6.5.1 Software Implementation of the Variable QRS Window, Dependent Leads
Method

The variable QRS window, dependent leads method was implemented in a software

program called "vqrsdep" which executes in S-Plus. The software was written to be user

friendly, requiring only one command to obtain the output. The vqrsdep program is listed
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in Appendix J. As in the previous programs, the command lines preceded by the # sign are

not performed by the program and are considered comment lines. They were left in the

listing because this part of the code can be easily used to get a real specific graphical check

for the proper operation of the program. During execution, the program gives a few

general checks that are a good indication of the integrity of the analysis. The following is

a brief description of the program and its inputs and outputs.
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Index

Figure 2.23 An Example of How the Times of the Q, R, and S-Waves from the Dominant
Lead Were Used to Correspond to the Times of the Q, R, and S-Waves in the Non-

Dominant Lead.

The main steps of the program are similar to the variable window, independent

leads method except for two differences. One difference is that the Q, R, and S-waves

from one lead are used as the Q, R, and S-waves in the other (as shown in Figure 2.23).

To obtain these points, the program analyzes the dominant lead, which should be input

first on the command line of the program. Once the areas for each QRS complex are
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calculated, the values of the QRS complex areas are placed at the R-waves, which in this

case, correspond to the same time. Therefore, the second difference is that the arctangent

of the QRS complex areas are taken, and the arctangent values are then interpolated. In

the other methods, the areas for each lead are first interpolated and then the arctangent is

taken between the interpolated areas because the R-waves might not occur at the same

time in each lead.

To detect the R-waves, the program relies on the HRV analysis to be done so the

location of the R-waves in the dominant lead will already be detected. The values of the

areas are then placed at the R-waves, which in this case, correspond to the same time.

Therefore, the arctangent of the values is taken, and the arctangent values are then

interpolated. The Q-wave and S-wave detection is the same for the variable QRS

window, independent leads method. In addition, the inputs to the program and the name

of the outputs are also the same as the variable QRS window, independent leads method.

2.7 Developed Methods That Were Unsuccessful

In addition to the four methods explained above, four other methods were developed to

derive the respiration from the ECG. These methods are slight modifications of the

methods explained above. They all try to estimate the change in angle of the mean cardiac

vector during respiration from two orthogonal leads. They were not used to derive the

respiration because all of them yielded poor results.

The first method is a slight modification that can be made to all three of the above

methods which calculate the area under the QRS complex. This modification involves the
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calculation of the baseline area. It was proposed that instead of taking the local minimum

of each QRS complex, the minimum of all the QRS complexes is taken to compute one

overall baseline area. When this was done, the accuracy of the derived respiration

methods decreased dramatically. Therefore, the proper way to calculate the baseline area,

is to calculate the baseline area of each individual QRS complex.

The second method developed but not used because it provided poor results is a

modification of the method based on the amplitude modulation of the R-waves. In this

method, no detrending was done at all, so as not to disturb the natural modulating

waveform. As a result, the frequency of respiration was not as easily identifiable in the

power spectrum compared to when detrending was done. Therefore, it is necessary to

detrend the ECG before deriving the method based on the amplitude modulation of the R-

waves. In addition, once the modulating waveform was obtained, it was detrended again

to remove any low frequencies below 0.05 Hz which might dominate the power spectrum.

The last two methods developed but not used in this thesis, were developed to

reduce the influence of the noise in the ECG. In the initial method, the area under the

ECG was calculated from 0.2 seconds before each R-wave to 0.2 seconds before the

following R wave. The time preceding each R-wave was necessary to include the

appropriate P-wave for that cardiac cycle in the area calculation. In the development of

this method it was realized that the respiration will be contained in this method in two

ways, in both the amplitude and in the time between R-waves. The initial hope for this

method relied on the fact that the ECG is being amplified, and that the amplitude of the P,

Q, R, S, and T-waves of the ECG would provide more area than the difference in length
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of time of the baseline of the ECG. After some investigation, the resulting respiration

waveform had a very high correlation with the interpolated interbeat interval. Therefore,

it was concluded that the main contributor to the derived respiration in this method was

the change in time between beats, or the interbeat interval, which depends on the

autonomic activity of the heart.

To remove the contribution of the interbeat interval in the previous method, the

minimum interbeat interval was found, and the area under the ECG was then calculated

from 0.2 seconds before each R-wave to a point which occurred at a time equal to the

minimum interbeat interval away. Unfortunately, this method provided nothing that

resembled a respiration waveform. This gives merit to the methods in Section 2.6, which

try to estimate the mean cardiac vector for just a brief period in time of the QRS complex.

93



CHAPTER 3

RESULTS

The purpose of this chapter is to quantitatively display the results of the different methods

developed to derive the respiration waveform from the ECG. To begin the chapter, a

basic description of the two signal processing techniques used to analyze and compare the

outputs of the derived respiration methods is given. These two techniques, cross-

correlation and coherence, were used to compare the derived respiration signals to the

measured respiration in both the time domain and frequency domain, respectively.

3.1 Theory of Cross-Correlation

The technique of cross-correlation was used in order to compare the derived respiration

signals to the measured respiration signal in the time domain. The cross-correlation

between two time signals measures the way the signals change with respect to one

another. In other words, if f(x) always increases and decreases as g(x) increases and

decreases, then f(x) and g(x) are positively correlated. If they tend to change in opposite

directions then they are negatively correlated. The correlation of two continuous

functions f(x) and g(x), denoted as f(x) o g(x), is defined by the following equation[27]

f (x) 0 g(x) = f (x)* g(x +k)d,x 	 (3.1)

where * is the complex conjugate. For this study, the signals were not complex.

Therefore, to calculate the cross-correlation, the function g(x) is shifted, by different
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values of A, over the length of f(x), the signals are multiplied, and the area under the

product of the two signals is computed. Figure 3.1 illustrates the process to perform the

calculation. In Figure 3.1 (a) and (b), the two continuous signals f(x) and g(x) are shown

as a square and rectangle function, respectively. Figure 3.1 (c) illustrates the meaning of

the shift A, in g(x + A). Figure 3.1 (d) represents g(x + A) being shifted for values of A

between -1 and 0, while (e) illustrates g(x + A) for values of fit, between 0 and 1. The

shaded areas of (d) and (e) indicates regions where the product of f(x) and g(x + A) are

not zero. The result is the cross-correlation function shown in (f). From this example,

one can see that the cross-correlation of two continuous signals is also continuous. If the

cross-correlation function is normalized by the product of the square root of the auto

cross-correlation of each function, then the normalized cross correlation will have a range

from 0 to 1. For two signals that are the same, the cross-correlation at zero lag(when

A=0) is equal to 1. The closer the cross-correlation value is to 1, the more similar the

waveforms are to one another.

It should be pointed out that the signals in this study are not continuous, but

discrete. Therefore, to compute the discrete cross-correlation, the following equation was

used[28]

1 vIN
	 L( f (n) —T)(g(n + —TO-

N —1 =C fg (X) =  n 1
N 

- 	  N

11 f (n) f)
2 1

 I(g(n) — g) 2

N — 1 n=1 N —1 n=1

where N is the number of points in the signal. To compute the cross-correlations for this

thesis, a program was written in S-Plus and is listed in Appendix. K.
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Figure 3.1 Illustration of the Cross-Correlation Calculation.



3.1.1 Understanding the Cross-Correlation Function

In order to get a firm understanding on the meaning of cross-correlation, the cross-

correlation was calculated for six different examples. The examples were chosen to

understand how the amplitude, frequency, phase, dc offset, and waveshape affect the

cross-correlation results. In all the following plots, (a) and (b) are the signals of interest

and (c) is the cross-correlation. Note that the cross correlation signal is twice as long as

the original signals. Thus, the cross-correlation point indicating when the signals have no

shift between them (zero lag) is the center of the cross-correlation wave.

The two signals of interest in the first example are two sine waves of the same

frequency and in phase. However, the amplitude of one wave is three times the amplitude

of the other. The signals and the cross-correlation of them are shown in Figure 3.2. This

example demonstrates that cross-correlation at zero lag is 1.0 when the two signals are

have the same frequency and are in phase. Note that the relative amplitude of the waves

did not affect the results. The reason the cross-correlation is not equal to 1.0 at peaks

other than at zero lag is because these signals are finite in length.

For the second example, the effect of the phase was examined by calculating the

cross-correlation for two sine waves of the same amplitude and frequency, but 180

degrees out of phase. The result is that at zero lag, the cross-correlation is -1.0. This

result indicates that cross-correlation at zero lag is sensitive to changes in phase. The

negative sign indicates that the signals are negatively related. For example, when one

wave is increasing, the other wave is decreasing.
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The next example investigates whether or not the DC value of the signals affects

the cross-correlation. The signals used to test this situation were two sine waves with the

same frequency, amplitude, and in phase. However, one sine wave had a DC offset equal

to 1. The results are shown in Figure 33. If the DC offset has no effect on the outcome,

then the cross-correlation at zero-lag should be equal to 1. However, with a DC offset,

the cross-correlation at zero lag is equal to 0.6. Therefore, the DC components do affect

the cross-correlation. To understand why this is, the cross correlation involving a signal

with a DC offset is computed as follows:

f (x) 0[1+ g (x)] = f f (x)[l +8, (x + X)]clx

f [f (x) + f (x)g(x + A,)]dx
-00

= f f (x)g(x + X)dx + f f (x)dx 	 (3.3)

When equation (3.3) is compared to equation (3.1), it is apparent that there is an

CO

extra term in equation (3.3). The extra term ( f f (x)dx ) results from the mathematics and

does indeed change the results. Therefore, it is necessary to remove the DC component of

the signals before performing the cross-correlation.

98



99

O

O

q

O

cD.

0 500
(a)

1000 1500

0 500 1000 1500
(b)

0 	 500 	 1000 	 1500 	 2000 	 2500 	 3000
(c)

Figure 3.2 Cross Correlation of Two Sine Waves with the Same Frequency, in Phase,
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Figure 3.3 Cross Correlation Between Two Sine Waves, One Which Contains a DC
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For the fourth example, the cross-correlation between two signals with different

frequencies is shown in Figure 3.4. At zero lag. the cross-correlation is 0.0047. Note that

with either a slightly positive or negative phase shift, the cross-correlation increases to

0.023. Thus, there is more correlation at these shifts; however, the value is still

significantly below the normalized value of 1, and therefore, it is safe to say there is no

similarity between these signals.
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Figure 3.4 Cross Correlation of Two Sine Waves with Different Frequencies.
(a) sin[03 1t]; (b) sin[o32t1; (c) sin[co lt] o sin[ (02t1 (0)1# (02)

In the next example, the cross-correlation is computed for two signals that have a

common frequency component. In other words, the frequency of one signal is included in



the waveform of the other. This is illustrated in Figure 3.5. From this example, it is clear

that there is some correlation between the two signals; however at zero lag the cross-

correlation is not equal to 1, but is 0.71. After further investigation, it was found that if

the amplitude of the higher frequency component of the signal in (b) was decreased, then

the cross-correlation approached unity. This case would be an example of a signal which

contains a high frequency noise. Also, if the frequency of the noise is increased, the cross

correlation also approaches unity.
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Figure 3.5 Cross Correlation Between Two Sine Waves, One Which Contains a
Frequency Component of the Other. (a) sin[co it]; (b) (sin[w2t] + sin[co it]);

(c) sin[w it] o (sin[c02t] + sin[w it]); ((0, # (02)
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In the final example, the shape of the waveforms is investigated to see if they have

any effect on the cross-correlation. The signal in Figure 3.6 (a) is a triangle waveform and

the signal in (b) has an exponential characteristic. The frequency of the waveforms are

exactly the same, and the DC component of each has been removed. Figure 3.6 (c) shows

the cross-correlation function. The cross-correlation at zero shift is 0.69. Therefore, the

waveshape does have a profound effect on the cross-correlation.
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Figure 3.6 Cross-Correlation of Two Signals with the Same Frequency, but Different
Waveshapes.

3.2 Theory of Coherence

The coherence function is a technique to measure the similarity between two signals in the

frequency domain. Coherence can be referred to as a correlation coefficient in the
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Using complex mathematics, one might notice that if the spectra Pxy(o)), Pxx(co), and

Pyy(o)) are estimated with complex functions, which they are, and substituted in equation

(3.5), that the result is MSC=l, for any two signals x(t) and y(t).

Therefore, there is obviously an important step involved when computing the

coherence that is left unsaid in equation (3.5). The important step is to compute the

coherence by means of averaged estimates based on segments of the original signals. In

other words, the signals x(t) and y(t) are broken up into N segments of equal length and

the power spectra(Pxx and Pyy) and cross spectrum(Pxy) are estimated on the basis of

averages taken from the individual spectra of the segments. To increase the number of

individual spectra, which increases the accuracy, the segments may overlap. In addition,

care must be taken to assure that the segments are long enough to obtain an accurate

spectrum. Therefore, there is a compromise required in the choice of the segment length;



it must be long enough to obtain accurate frequency resolution, but short enough to allow

a sufficient number of segments in the average. In addition, each segment must be

extracted using a time-domain window to control the sidelobes in the frequency domain.

To make things more complicated, if too many segments are taken then the accuracy

declines due to a greater correlation between segments.

To perform coherence calculations for this study, a program was written, called

"cohere", which executes in S-Plus and is listed in Appendix L. The signals of interest in

this study were 120 seconds long. To determine the optimum window length and overlap,

several trials were done with signals from different sections of the experimental protocol.

Based on the outputs from these trials, it was determined that a 700 point window with a

350 point overlap was the best choice. This means that the windows are 35 seconds long

and the overlap is 17.5 seconds. For a 120 second long signal, this provides 12 segments

to be averaged.

3.3 Visual Comparison

Figure A.1 in Appendix A is a graphical comparison between the measured respiration and

the ECG derived respiration for each of the four methods described in Chapter 2 and for

each section of the experimental protocol performed by subject #7. In the figure, the time

domain signal of the measured respiration and the four derived respirations are shown, as

well as their respective spectra. Each page represents one section of the experimental

protocol. On each page, the left column contains the time domain signal and the right

column contains the spectrum of the corresponding time signal. Each row represents a
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different measure of respiration: the top row is the original respiration measured with the

RESPI, the second row is the respiration derived from the amplitude modulation of the R-

waves, the third row is the respiration derived using the fixed window, independent leads

method, the fourth row is the respiration from the variable QRS window, independent

leads method, and the last row is the respiration derived by the variable QRS window,

dependent leads method.

When the measured respiration is visually compared to the derived respirations in

the time domain, it is observed that the fundamental frequency of the measured respiration

is the fundamental frequency in the derived respiration signals. However, for some of the

derived respiration methods, the fundamental frequency is not as obvious as in the RESPI.

For example, in Figure A.1 (b), it can be observed that the subject was pace breathing at 8

bpm from any of the derived respiration waveforms, but the waveforms possess some high

frequency content that is not in the RESPI recording. In addition, in the frequency

domain, the frequency of respiration peak that is dominant in the spectrum of the RESPI

recording is also dominant in the power spectrum of all the derived respiration methods.

Because an important aspect of this study is to be able to derive the respiration

from the ECG when there is a lot of upper and lower body motion, the signals and spectra

in Figure A.1 (e) and (f) should be examined closely. Figure A.1 (e) and (f) represent

sections of the experimental protocol when the subject was exercising on the treadmill at

3.5 mph with no incline and 3.5 mph at 5% incline. Notice that the method based on the

amplitude modulation of the R-waves does not produce a respiration signal in the time

domain that resembles the measured respiration. In addition, note that in the power
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spectra, the frequency of respiration is present; however, significant power exists at other

frequencies other than the frequency of respiration. If the power spectrum of the

measured respiration was not available, the frequency of respiration in the derived

spectrum would not be identified easily for this method. However, when the time signal of

the measured signal is compared to the respiration signals derived from the other three

methods, the fundamental frequency is noticeable, and consequently, is the dominant peak

in the power spectra. Therefore, one can conclude that the area operation does indeed

contain more information about the mean cardiac vector than just the amplitude.

Another important point to be noticed is that the respiration signal derived with the

variable QRS window, dependent leads method in the time domain is the most similar to

the measured respiration in all cases except in Figure A.1(d). In this particular case, the

method based on the amplitude modulation of the R-waves produced superior results

compared to the other three methods. This leads to the conclusion that the method based

on the amplitude modulation of the R-waves is inconsistent.

When the fundamental frequency is present in the measured and derived spectra, it

is interesting to note that sometimes the peak of the frequency of respiration of the derived

signals has a wider bandwidth than the respiration measured with the RESPI. In addition,

some spectral components that are not present in the spectrum of the RESPI are present in

the spectra of the derived respiration. Therefore, to determine the best method

quantitatively,' the cross-correlation and coherence between the measured respiration and

of each of the derived respiration signals for each section of the protocol was computed.
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3.4 Cross-Correlation of the ECG Derived Respiration with the Measured
Respiration

Based on the cross-correlation method presented in Section 3.1, the cross-correlation

coefficient between the ECG derived respiration and the measured respiration was

calculated for each subject, during each section of the experimental protocol, and for each

of the four methods developed for this study. Table 3.1 tabulates the cross-correlation

coefficients of the measured respiration and the fixed QRS window, independent leads

method. Tables 3.2, 3.3, and 3.4 display the cross-correlation coefficients between the

measured respiration and the method based on the amplitude modulation of the R-waves,

the variable window, independent leads method, and the variable window, dependent leads

method, respectively. It should be noted that the tables display the maximum absolute

value of the cross-correlation function. In addition, although each program produces

three signals representing the respiration, the signal that estimates the change in the mean

cardiac vector(the arctangent of the other two signals) is the derived respiration waveform

of interest. In all the following results, the ECG of subject #3 during the last section of

the experimental protocol was corrupted by a large DC offset. Therefore, no analysis was

done for that subject for that section.

An example of the cross-correlation between an ECG derived respiration signal

and the measured respiration is shown in Figure 3.7. For this particular example, the

maximum of the cross-correlation function is 0.725. This indicates that a cross-correlation

coefficient of 0.7 is still acceptable because the derived respiration shown in Figure 3.7 is a

good estimate of the actual respiration by visual observation. In fact, from experience, a

cross-correlation coefficient higher than 0.6 indicates a high degree of similarity between
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the respiration signals. The cross-correlation is lower than 1 because the signals have

different waveshapes, a different change in relative amplitude from peak-to-peak, and
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When one looks at these tables and compares them to determine which method

produces the best respiration method in the time domain, there appears to be no

consistency. As expected, the derived respiration methods have a higher correlation

coefficient for the sections of the protocol when the subject was pace breathing. It is also

interesting to point out that the cross-correlation coefficients decrease as the frequency of

respiration increases. In order to determine which method is more accurate, the average

of the correlation coefficients for each method and the standard deviation from the

average were computed for each section of the experimental protocol. The results are

shown in Table 3.5.

In table 3.5, the variable QRS window, dependent leads method has a slightly

higher average cross-correlation than the other three methods. In addition, the overall

average of the standard deviation for every section of the protocol for the variable QRS

Window, dependent leads method is the same or smaller than the overall average standard

deviation of the other three methods as shown in Table 3.6. To get a better understanding

of the distribution of the means from subject to subject within each section of the

experimental protocol, box plots were generated and are displayed in Figure A.2(a) in

Appendix A.

A box plot displays the distribution of data about the median. In a box plot, the

upper and lower quartiles of the data are portrayed by the top and bottom of a rectangle,

and the median is portrayed by a horizontal line segment within the rectangle. The

median, which is not the same as the mean, shows the center of the distribution. The

spread of the central 50% of the data is located within the rectangle. The lengths of the
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dashed lines relative to the box show how stretched the distribution is. The values that are

located outside the box, can be investigated to see if they are outliers. The box plot also is

capable of assessing the symmetry of a distribution. If the distribution is symmetric, then

the box plot is symmetric about the median.

In the box plots shown in Figure A.2(a), there appears to be no consistency of the

distribution of the cross-correlations for each method within each section of the

experimental protocol. For example, in Figure A.2(a), the box plot of the cross-

correlations for the section of the experimental protocol where the subject is resting, the

variable QRS window, dependent leads method has the smallest range of the central 50%

of the distribution when compared to the other three leads. However, in the other box

plots corresponding to the other sections of the experimental protocol, the central 50% of

the distribution of the cross-correlation coefficients for the variable QRS window,

dependent leads method does not have the smallest range. In addition, there is no

consistency of the medians within each section of the experimental protocol, for each

method.
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Assuming that the methods are not subject dependent, then it is safe to assume that

the derived respiration waveforms produced by the variable QRS window, dependent

leads method correlate slightly better in time with the measured respiration. This is

because the overall mean of the cross-correlation between the derived respiration and the

measured respiration for every patient, throughout the entire experiment is higher for this

method than the other three as shown in Table 3.6. To verify this qualitatively, one can



see that in Figure A.1 (a), (b), (c), (e), and (f), the variable QRS, dependent leads method

does resemble the measured respiration more closely than the other methods, as

mentioned in the previous section. In Figure A.1 (d), the respiration signal derived with

the method based on the amplitude modulation of the R-waves corresponds better with

the RESPI recording. Table 3.6 shows the average cross-correlation coefficient for each

method, regardless of the different sections of the experimental protocol. Notice that

there is no significant difference among the correlation coefficients of the other three

methods.
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3.5 Coherence Between the ECG Derived Respiration and the Measured
Respiration

To get another quantitative measure on how well the four derived respiration waveforms

compare to the measured respiration, the coherence between the four different derived

respiration waveforms and the measured respiration was computed. Because coherence is

a function of frequency, the coherence was recorded only at the peak of the main

frequency of respiration. Table 3.7 tabulates the coherence between the measured

respiration and the respiration derived by the fixed QRS window, independent leads

method at the frequency of respiration. Tables 3.8, 3.9, and 3.10 display the coherence at

the main frequency of respiration between the measured respiration and the respiration

derived by the method based on the amplitude modulation of the R-waves, the variable

window, independent leads method, and the variable window, dependent leads method,

respectively.

An example of the coherence between two signals is shown in Figure 3.8. The

signals used to create Figure 3.8 were a derived respiration waveform and the directly

measured respiration for the protocol when the subject is pace breathing at 12 breaths per

minute. Twelve breaths per minute corresponds to a frequency of 0.2 Hz. Therefore, the

signals, if they are similar, will have a high coherence at 0.2 Hz. For this example the

coherence at 0.2 Hz was 0.990, indicating that the signals both contained the frequency

component of 0.2 Hz.
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Figure 3.8 Example of Coherence Between the Measured Respiration and the ECG
Derived Respiration



Table 3.8 Coherence Between the Derived Respiration and the Measured Respiration for
the Method Based on the Amplitude Modulation of the R-waves

Subject
# Rest

Paced at
8 bpm

Paced at
12 bpm

Paced at
16 bpm 3.5 mph

3.5 mph,
5% incline

1 0.639 0.952 0.936 0.963 0.418 0.444
2 0.544 0.853 0.978 0.885 0.744 0.756
3 0.822 0.932 0.863 0.753 0.623 *
4 0.664 0.989 0.987 0.801 0.504 0.493
5 0.663 0.864 0.883 0.878 0.453 0.571
6 0.553 0.915 0.896 0.945 0.243 0.727
7 0.369 0.958 0.932 0.814 0.880 0.909
8 0.351 0.906 0.898 0.938 0.636 0.506
9 0.462 0.952 0.978 0.550 0.649 0.589

Table 3.9 Coherence Between the Derived Respiration and the Measured Respiration for
the Variable QRS Window, Independent Leads Method

Subject
# Rest

Paced at
 8 bpm

Paced at
12 bpm

Paced at
16 bpm 3.5 mph

3.5 mph,
5% incline

1 0.771 0.930 0.946 0.944 0.342 0.504
2 0.342 0.873 0.928 0.880 0.622 0.847
3 0.785 0.914 0.954 0.850 0.662 *
4 0.698 0.991 0.982 0.818 0.711 0.505
5 0.595 0.957 0.873 0.904 0.546 0.514
6 0.527 0.988 0.927 0.884 0.282 0.626
7 0.678 0.928 0.901 0.667 0.659 0.908
8 0.382 0.904 0.860 0.955 0.362 0.401
9 0.546 0.919 0.938 0.820 0.387 0.483

Table 3.10 Coherence Between the Derived Respiration and the Measured Respiration
for the Variable QRS Window, Dependent Leads Method

Subject
# Rest

Paced at
8 bpm

Paced at
12 bpm

Paced at
16 bpm 3.5 mph

3.5 mph,
5% incline

1 0.798 0.932 0.952 0.950 0.372 0.516
2 0.658 0.879 0.909 0.879 0.546 0.819
3 0.836 0.962 0.930 0.741 0.649 *
4 0.640 0.990 0.934 0.794 0.542 0.511
5 0.629 0.935 0.881 0.909 0.405 0.488
6 0.509 0.986 0.953 0.918 0.362 0.751
7 0.313 0.943 0.946 0.701 0.553 0.863
8 0.383 0.897 0.870 0.947 0.386 0.453
9 0.571 0.910 0.946 0.654 0.410 0.392
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When one examines these tables and compares the coherence values between them

to determine which method produces the best respiration signal in the frequency domain, it

is noticed that, in general, all the coherence values are relatively high. However, there

appears to be no consistency as far as one method being better than another. As expected,

the derived respiration methods have a higher coherence for the sections of the protocol

when the subject was pace breathing. In fact, values of coherence greater than 0.9 are

very common. In order to determine which method is more accurate, the average of the

coherence and standard deviation for each method were computed for each section of the

experimental protocol. The results are shown in Table 3.11. In addition, box plots of the

distribution of the means from subject to subject within each section of the experimental

protocol, are displayed in Figure A.2 (b) in Appendix A.

From Table 3.11, it is clear that there is no one method that is consistently better

than the others. In addition, the range of the coherence within the sections of the protocol

is very small. For example, for the part of the protocol when the subject is pace breathing

at 12 bpm, the difference between the maximum average coherence and minimum average

coherence is 0.008. This can also be seen in the box plot in Figure A.2(b). In the entire

table, for each section of the experimental protocol, the range of the average coherence

varies from 0.008 to 0.103. In fact, the second highest range is 0.039. As expected, the

coherence for the paced breathing sections of the experimental protocol are much higher

than at rest or during exercise.
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3.6 Cross-Correlation of the Spectra

Ideally, if the derived respiration is the same as the measured respiration, unity values for

the cross-correlation and coherence functions will be obtained. Although the ideal

measures to satisfy the goal of deriving the respiration consistently for all experimental

conditions have not been obtained, the values obtained for cross-correlation and coherence

are still excellent. To stress this point, it should be mentioned that the resultant spectra

from all the derived respiration methods contain the main frequency of respiration which is

present in the spectrum of the measured respiration. In addition, the signal processing

techniques of cross-correlation and coherence are extremely sensitive and, in reality,

values of unity would be almost impossible to obtain. For example, Figure 3.7 shows a

case where the ECG derived respiration and the measured respiration look very similar;

however, the cross-correlation is only 0.725. Therefore, in order to indicate the

similarities of the spectra between the different ECG derived respiration waveforms and



the measured waveforms, the cross-correlation of the spectra has been calculated. This

will indicate how similar the shape of the spectra are to one another. The results are listed

in Tables 3.12 through 3.15. Figure 3.9 illustrates an example of the cross-correlation

between two spectra.
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more similar to the spectrum of the RESPI, it is very hard to decipher. Therefore, Table

3.16 displays the averages and standard deviations for each section of the experimental

protocol for each method. Again, it appears that the variable QRS window, dependent

leads method has a slightly better correlation of the spectra than the other three methods.

It should also be pointed out that the relative values of cross-correlation between the

spectra are very high. This indicates that the spectrum have a very similar shape. When

this point is considered, it is important to remember that the waveshape of the two signals

in the cross-correlation has a profound affect on the output. Therefore, one can conclude

the spectra for the derived respiration methods closely resembles the spectrum from the

measured respiration. The last point of interest noticeable in Table 3.15, is that the

method based on the amplitude modulation of the R-waves has the worst coherence at the

frequency of respiration in 5 of the six cases.
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Table 3.13 Cross-Correlation Between the Spectra of the Derived Respiration and the
Measured Respiration for the Method Based on the Amplitude Modulation of the R-waves

Subject
# Rest

Paced at
8 bpm

Paced at
12 bpm

Paced at
16 bpm 3.5 mph

3.5 mph,
5% incline

1 0.949 0.997 0.999 0.988 0.831 0.870
2 0.839 0.754 0.964 0.984 0.871 0.614
3 0.961 0.909 0.974 0.986 0.673 *
4 0.963 0.999 0.999 0.957 0.885 0.775
5 0.640 0.990 0.942 0.981 0.900 0.802
6 0.771 0.983 0.978 0.978 0.911 0.782
7 0.865 0.987 0.988 0.998 0.596 0.525
8 0.513 0.979 0.997 0.986 0.547 0.694
9 0.914 0.994 0.971 0.962 0.526 0.719

Table 3.14 Cross-Correlation Between the Spectra of the Derived Respiration and the
Measured Respiration for the Variable QRS Window, Independent Leads Method

Subject
# Rest

Paced at
8 bpm

Paced at
12 bpm

Paced at
16 bpm 3.5 mph

3.5 mph,
5% incline

1 0.955 0.997 0.998 0.990 0.857 0.892
2 0.803 0.956 0.984 0.981 0.907 0.910
3 0.973 0.889 0.985 0.982 0.750 *
4 0.973 0.999 0.990 0.927 0.852 0.749
5 0.920 0.994 0.968 0.993 0.847 0.756
6 0.856 0.997 0.997 0.994 0.745 0.799
7 0.917 0.996 0.987 0.890 0.925 0.978
8 0.529 0.983 0.996 0.987 0.557 0.536
9 0.936 0.988 0.954 0.949 0.634 0.653

Table 3.15 Cross-Correlation Between the Spectra of the Derived Respiration and the
Measured Respiration for the Variable QRS Window, Dependent Leads Method

Subject
# Rest

Paced at
8 bpm

Paced at
12 bpm

Paced at
16 bpm 3.5 mph

3.5 mph,
5% incline

1 0.952 0.997 0.997 0.986 0.846 0.877
2 0.787 0.982 0.974 0.985 0.926 0.939
3 0.973 0.896 0.974 0.988 0.699 *
4 0.973 0.999 0.999 0.898 0.859 0.744
5 0.898 0.995 0.969 0.993 0.849 0.816
6 0.857 0.997 0.997 0.991 0.641 0.760
7 0.914 0.986 0.979 0.933 0.899 0.982
8 0.491 0.979 0.997 0.988 0.552 0.602
9 0.957 0.994 0.972 0.900 0.739 0.488
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3.7 Comparison of the Standard Method to Compute Parasympathetic Activity to a
More Theoretical Method

As mentioned in Section 1.6.3, the best defined peak in the power spectrum of heart rate

variability is the high frequency peak which normally occurs between 0.15 and 0.4 Hz.

The high frequency peak reflects changes in the interbeat interval, which cycles up and

down at the same frequency as respiration[10]. This rhythmical fluctuation in heart

periods is defined as the respiratory sinus arrhythmia and is considered purely

parasympathetic in origin[l 1]. Therefore, to calculate parasympathetic activity, the

frequency of respiration must be known.

Despite this fact, the standard way to calculate the parasympathetic activity that is

universally accepted is to find the area in the HRV power spectrum under the high

frequency band from 0.15 to 0.4 Hz. If this does not change, then there is really no need

to be able to derive the respiration from the ECG, because the frequency of respiration is

not used in the analysis. The frequencies 0.15 and 0.4 Hz correspond to 9 and 24 breaths

per minute, respectively.



There are times when the frequency of respiration falls outside this range of 9 to

24 breaths per minute. For instance, at rest it is possible for people to breathe slower than

9 breaths per minute. In fact, in this experiment, the subjects were asked to breathe at 8

breaths per minute in the second portion of the protocol. In addition, two of the nine

subjects breathed faster than 24 breaths per minute during exercise. Therefore, to solve

this problem one might just assume to extend the range of frequencies for different parts

of the protocol, and therefore, the respiration need not be recorded. However, this does

not always work either because the range would have to be very large, and the direction of

increased range must be known. For instance, in this study, one subject's breathing rate

became very regular during exercise at approximately 0.15 Hz, which is the opposite of

what is expected to happen. Normally, a person breathes faster during exercise than at

rest; however, this subject was a well trained athlete and practices proper breathing

techniques during exercise on a regular basis.. Despite the fact that the subject was

exercising, the subject's breathing rate during exercise was slower than at rest. Therefore,

the investigator can not make any assumptions on the frequency of respiration because it is

unique for each subject.

Theoretically, if the respiration was recorded, the best way to calculate the

parasympathetic activity would be to compute the coherence between the respiration

signal and the interpolated interbeat interval. Then the area under the HRV power

spectrum would be calculated for the range of frequencies whose coherence is greater than

a pre-determined threshold.
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* frequency range of 0.15 to 0.6 Hz

For this study, the standard method of computing the parasympathetic activity was

compared to the more theoretical approach. To do this, the coherence between the

interpolated interbeat interval and the respiration recorded using the RESPI was computed

using segments that were 700 points long, with 350 points of overlap. The frequencies

corresponding to parasympathetic activity were found from the coherence plot above a

threshold level of 0.35. The threshold of 0.35 was chosen because during rest and

exercise, the coherence between the respiration signal and the interpolated interbeat

interval becomes smaller. With a threshold of 0.35, the coherence between the respiration

and the interpolated interbeat interval results in a frequency band which appears to contain



the frequency of respiration consistently. Obviously for paced breathing a much higher

threshold could have been used; however, the threshold was kept consistent for all

sections of the experimental protocol. Table 3.17 lists the power of the HRV spectrum

representing the parasympathetic activity calculated by the traditional method and the

theoretical method. For the section of the experimental protocol where the subject was

pace breathing at 8 bpm, the high frequency area was calculated between 0.1 and 0.4 Hz.

During exercise, two subjects breathed faster than 24 breaths per minute; they are noted

with an asterisk indicating the frequency range for which the high frequency area was

calculated.

Upon examining Table 3.17, there appears to be no significant difference between

calculating the parasympathetic activity by either method. In some cases for the

theoretical method, the bandwidth of the high frequency peak was extremely small;

however, the difference in parasympathetic activity was negligible. For example, the high

frequency peak in the HRV power spectrum and the spectrum of respiration had a

coherence above 0.35 for the frequencies between 0.112 to 0.169 Hz (as opposed to 0.15

to 0.4 Hz) for subject #6 pace breathing at 8 bpm. The difference in the parasympathetic

activity calculated by the two methods changed from 235.40 to 227.52.

However, upon further examination of the table, one point of interest becomes

apparent. This point involves the values that are in bold italics. Note that in all these

cases, the coherent method of computing the parasympathetic activity gives a greater

value than the traditional method. In other words, when the breathing rate is paced, there

is only one case out of 27 that the vagal tone is higher for the coherent method. In
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conclusion, the parasympathetic activity does not necessarily need a frequency of

respiration to be computed properly when the subject is paced breathing because of two

reasons. One reason is because the frequency of respiration is known and the other reason

is because the band of respiration is relatively small and contains the majority of the power

representing vagal tone. However, during the rest and exercise sections of the

experimental protocol, there were more cases in which the coherent method indicated

more parasympathetic activity than the traditional method. Because these sections of the

protocol might not have high parasympathetic activity to begin with, it makes no sense to

disregard any of it. Therefore, the application of the coherent method is more critical to

the rest and the exercise sections of the protocol than it is to the paced breathing sections.
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CHAPTER 4

DISCUSSION AND CONCLUSIONS

The purpose of this chapter is to explain the progress of research in extracting the

respiration waveform from the electrocardiogram. The actual results were presented in

Chapter 3. The following is the summary of the meaning of these results. In addition,

suggestions are given for the next steps that should be done in order to advance the

research.

4.1 General Summary of the Work in This Thesis

As mentioned in Section 1.7.2, there has been previous research done to derive the

respiration waveform from the ECG. In the previous methods, a quality respiration

waveform could not be derived on a consistent basis. Therefore, the goal of this thesis

was to attempt to extract the respiration from the ECG on a consistent basis. This would

require determining the optimum signal processing algorithm for such a task. Therefore,

in this study, four different algorithms were developed and compared to determine if there

was an advantage of one over the others.

More specifically, this thesis is a continuation of research previously done by

Zhao[22]. The initial program written by Zhao is the basis for the programs written in this

thesis. However, as explained in Section 2.6.1.2, four errors in the signal processing in his

program were found. These errors were corrected, resulting in the fixed QRS window,

independent leads method. Although Zhao's program was not used as a basis for

126



comparison in this thesis, the author maintains that the fixed QRS window, independent

leads program provides superior results when compared to the original program written by

Zhao. To emphasize the point, all four methods developed in this thesis derive the

respiration from two leads by estimating the angle of the mean cardiac vector. When

using the program written by Zhao, it is usually only possible to derive the respiration

from one lead of ECG, rather than two. In addition, the power spectra of respiration

during exercise for three of the four methods developed for this study contain a more

dominant frequency peak than the spectra derived by Zhao' program. An example is

shown in Figure 4.1
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Figure 4.1 Comparison of the Spectra for the Respiration Derived from the (a) Fixed
QRS Window, Independent Leads Method to the (b) Respiration Derived Using Zhao' s

Program.

In addition to the software development, the data acquisition procedure was also

improved. To reduce the quantization error during playback of the Holier cassette, a two

channel amplifier was designed and utilized during this study. Also, the optimum sampling



frequency to accurately locate the time of occurrence of the peak of the R-waves was

determined to be 500 Hz, as explained in Section 2.4.2.1.

Finally, it should be mentioned that the derived respiration waveforms were

compared to the measured respiration in a more scientific manner in this thesis than in

Zhao's. To compare the derived respirations to the measured respirations, Zhao used the

concept of central frequency. Figure 4.2 shows how Zhao calculated the central

frequency. The amplitude of the spectral peak indicating respiration was first detected.

Then the frequency values corresponding to 30% of the amplitude of the spectral peak

were located on each side of the peak. These frequencies are referred to as t and fh. The

central frequency was calculated in such a way that the area A l under the spectral peak

between the frequencies f and 1 was equal to the area Ah under the spectral peak between

the frequencies 1 and t. To compare the derived respiration to the measured respiration,

Zhao simply compared the central frequency of each. However, this method of central

frequency is a poor measure of the similarities between two signals in both the time

domain and the frequency domain. Therefore, in this study, software was developed to

compare the respiration waveforms in both the time domain and the frequency domain

using the techniques of cross-correlation and coherence, respectively.

4.2 Comparison of the Different Methods Developed to Derive the Respiration

As mentioned previously, the goal of this thesis was to extract the respiration from the

ECG accurately and consistently. This goal was attempted by developing four different

software algorithms which derived the respiration by estimating the change in the angle of
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the mean cardiac electrical vector during the QRS complex. At the conclusion of this

study, three of the four methods can consistently and reliably derive the respiration from

the ECG.
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Figure 4.2 Illustration of the Central Frequency Calculation

From a qualitative standpoint, the goal was accomplished because the frequency of

respiration is the dominant frequency of the derived respiration spectrum. Not only is it

the dominant frequency, the majority of the time it is the only significant frequency present

in the spectrum. This was true for all sections of the experimental protocol, regardless of

whether the patient was resting, pace breathing, or exercising.

The quantitative basis to measure whether or not the goal was obtained relied on

the cross-correlation and coherence calculations explained in Sections 3.1 and 3.2

respectively. The average values of cross-correlation for each method ranges from 0.551



to 0.584. As shown in Chapter 3, a value close to unity for cross-correlation is extremely

hard to obtain and a cross-correlation above approximately 0.6 is an acceptable cross-

correlation coefficient. Therefore, the author wishes to stress a few important points

about the quantitative analysis of these methods. First, heavy emphasis is to be placed on

the fact that in most, if not all, of the spectra of the derived respiration, the main frequency

of respiration is clearly evident. In addition, not only is it evident, but it is mostly the

dominant peak, if not the only peak in the power spectrum. This is because the power in

the frequency band of respiration is so much greater than the power at other frequencies,

that the power of the other frequencies can not be seen in the spectrum. Although this

power at the other frequencies is not seen in the power spectrum, it is still present in the

time signal, which therefore can cause a lower cross-correlation. In addition, one possible

reason the cross-correlations were low, even during the paced breathing, is because the

RESPI output usually has a waveform that contains an exponential characteristic. Most of

the derived respiration waveforms do not have an exponential characteristic. Thus, the

cross-correlation of two different waveshapes with the same frequency does not

necessarily yield a high cross-correlation coefficient, as was shown in Section 3.1 and the

example in Figure 3.6. The reason the cross-correlations are low for the exercise sections

of the experimental protocol is because the RESPI recording always contains some

amount of noise from the subject's body movement. Figure 4.3 shows an example of a

good RESPI recording during exercise and a bad RESPI recording for exercise obtained

in this thesis.
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Figure 4.3 Examples of the RESPI Recording During Exercise. (a) A Good RESPI
Recording for Exercise Containing Minimal Noise. (b) A RESPI Recording Containing

Noise.

In addition, when the cross-correlation was calculated between the spectra for the

four different methods, the smallest overall average of the correlations for the different

sections of the protocol was 0.868. To the author, this is considered to be an extremely

high result which expresses the merit of this thesis. This method of analyzing the analysis

predicts better results because if the power spectra are dominated by the main peak of the

frequency of respiration, the smaller frequencies are not apparent. From this, one can

conclude that the derived respiration spectrum can predict the frequency of respiration as

well as the spectrum of a RESPI recording. As an example, see Figure A.1 in Appendix

A. Except for the spectra during the exercise section of the protocol representing the

method based on the amplitude modulation of the R-waves, the frequency of respiration is

the dominant frequency of respiration in all the spectra.



It should be noted that the best cross-correlation coefficients and coherence were

measured for the sections of the experimental protocol when the subjects were pace

breathing. This is because paced breathing is a controlled breathing pattern where the

respiration frequency consists essentially of one frequency component. In addition, during

the experiment when the subject is pace breathing, there is virtually no body movement. It

is interesting to point out that the cross-correlation coefficients and coherence for the

paced breathing sections of the experimental protocol decrease with increasing breathing

frequency. A logical explanation of this fact might be because as the frequency of

respiration increases, tidal volume decreases, thus decreasing the movement of the heart in

the thoracic cavity.

It should also be pointed out that the variable QRS window, dependent leads

method had a slightly higher average cross-correlation coefficient than the other methods.

However, in the frequency domain, there is no distinct difference among the coherence

between the methods. In addition, the variable QRS window, dependent leads method had

a higher cross-correlation of its spectra with the spectra obtained with the RESPI when

compared to the other methods. Therefore, based on these quantitative measures, the best

method to a derive the respiration from the ECG is the variable QRS window, dependent

leads method.

One last point to be stressed is that the method based on the amplitude modulation

of the R-waves is inconsistent and appears to be subject dependent. In some cases, this

method provides better results when compared to the other methods, and in some cases
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the results are worse. Therefore, it is recommended that this method should not be used

to derive the respiration.

4.3 Factors Affecting the ECG Derived Respiration Results

As mentioned in Section 2.4.1, the measure of respiration by impedance pneumography is

an indirect method. Similarly, estimating the change in the angle of the mean cardiac

vector in the frontal plane is also an indirect measure of respiration. A direct measure of

respiration would detect the rate and volume of air flow in and out of the lungs. Perhaps

one reason why the cross-correlation and the coherence weren't as high as expected is

because the comparison is between two indirect methods.

Despite that fact, it is also important to point out that the change in angle of the

mean cardiac vector is subject dependent. In other words, the change in the angle of the

mean cardiac vector might depend on the anatomic structure of the individual, the tidal

volume of breathing, and the type of breathing (abdominal vs. thoracic). For instance,

when the subject breathes, if most of the expansion in his lungs is towards his abdominal

cavity, then perhaps the heart will not move during inspiration and expiration as much as

when the subject breathes thoracically.

Another major factor affecting the outcome of this thesis, is the quality of the ECG

during different sections of the experimental protocol. As mentioned before, during paced

breathing there is relatively no movement of the subject, producing a clean ECG signal.

However, during exercise, the ECG contains noise due to the body movement. One

source of the noise is from the electrical activity of the surrounding muscles called EMG.
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Also, during exercise, the skin-electrode interface produces noise from movement of the

skin on the body and from the leads hanging from the electrodes.

4.4 Comparison of the Parasympathetic Activity When Calculated by the
Traditional Method and With a More Theoretical Method

The results of Section 3.7, which compares the traditional method of computing the

parasympathetic activity to a more theoretical approach, may at first appear to provide no

difference between the two methods. This is because the results appear to indicate that if

the frequency of respiration is taken into account when computing the vagal tone, that the

results are very similar to the vagal tone computed for the standard frequency range of

0.15 to 0.4 Hz. However, this is only true for sections of the experimental protocol when

the subject was pace breathing. During the resting sections and exercise sections of the

experimental protocol when the level of parasympathetic activity might be low, the vagal

tone was often more when computed by the theoretical method over the traditional

method. This supports the fact that the frequency of respiration is needed during

ambulatory studies to accurately determine the parasympathetic activity.

4.5 Future Work

In the future, if more methods and techniques are developed to derive the respiration from

the electrocardiogram, better measures of the actual respiration waveform are needed for

comparison purposes. As mentioned previously, a direct measure of respiration will

measure the flow rate and volume of air entering and exiting the lungs. Such a device is
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unknown to the author. In existence is an instrument called a spirometer that measures

the air flow only on expiration. Therefore, other methods must be developed which

produce a noise free respiration waveform under all experimental conditions.

In the future, a device consisting of a thick elastic band and a strain gauge should

be developed. This device is called a band impedance meter in the literature. The theory

behind its operation is that when a subject breathes, the thoracic cavity expands and

contracts during inspiration and expiration respectively. The strain gauge measures the

change in the circumference of the band, and outputs a voltage proportional to this

change. One important point to be investigated with this method is the placement of the

band. The placement of the band might be affected by whether or not the subject breathes

with his abdomen, thoracic cavity, or both. Another factor which might affect the output

is the affect of muscle contractions during exercise.

Another possible method to measure the actual respiration utilizes a nasal

thermistor mounted in the opening in a mask that is placed over the nose and mouth. This

method works by measuring the change in temperature of the air entering and leaving the

mask. Typically, the air entering from outside the body during inspiration is

cooler than the air exiting the body during expiration. Thus, a waveform proportional to

the temperature is obtained.

In the literature, two recent articles were published which were written by the

same authors discussing the topic of improving the signal-to-motion artifact ratio in an

impedance pneumograph recording[30,31]. In these papers, the authors discuss using two

different frequencies that are not harmonically related to obtain a noise free respiration
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waveform during excessive body motion. In addition, they investigate the difference in

frequencies used to obtain the respiration waveform. In one of the papers, they conclude

that it is better to use higher frequencies than the ones commonly used. An additional

technique they developed to improve the signal-to-motion artifact ratio was accomplished

utilizing an adaptive filtering technique to the raw output of the impedance pneumograph.

Once an accurate representation of the actual respiration is obtained, several other

techniques to derive the respiration from the electrocardiograph should be researched.

One such technique is to examine how the mean cardiac vector moves in three-

dimensional space. The methods developed in this study are based on measuring the

change in angle of the mean cardiac vector in the frontal plane defined by the two

orthogonal leads. However, if one more lead is acquired which is perpendicular to the

two leads which define the frontal plane, it might be possible to obtain a more detailed

indication of the movement of the heart within the chest. At the present time, the Holter

monitor is only capable of recording two channels of ECG. If the ability of being able to

acquire a third channel of ECG is developed, this method seems like the next logical step.

To better perform the analysis of the ECG, a software package that contains built

in libraries of different signal processing algorithms should be utilized. It has been rather

difficult to perform the signal processing techniques in S-Plus because it is a statistical

analysis based software. A good program which performs signal processing is MATLAB.

An example of why better software is necessary is explained by the example of how the

ECG is detrended in S-Plus. The LIBI is detrended in the analysis of HRV to reduce any

extremely low frequency component which might dominate the power spectrum. In S-
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Plus, this is done with a locally weighted robust algorithm which has no engineering

analogy. For example, what is the frequency response of this function? How does this

algorithm affect the frequencies of interest in the HRV power spectrum? Instead, with a

good signal processing software, the [CBI can be high pass filtered with a filter which has a

known frequency response, reassuring the user that the output is properly computed.

Some times, there are some extremely low frequencies present in the HRV power

spectrum that technically should not exist after the detrending.

Once an adequate software package is obtained and utilized, the noise that exists in

the ECG during body movement can be ascertained. If possible, filtering might be

performed which could improve the results of the ECG derived respiration methods. In

addition, the methods in this thesis should be reprogrammed using the proper engineering

techniques. It is not at all impossible that the detrending algorithm used is the only factor

separating the goal of this thesis with the ideal outcome.

To better understand the comparison of the derived respiration methods with the

measured respiration, more specific experiments should be conducted than those

conducted in this experiment. For example, a section of a protocol might call for a person

to inhale for as long as possible, hold his breath for as long as possible, and then exhale.

Another experiment might determine the affect of tidal volume on the derived respiration

method. One interesting result of this study that should be investigated is how the

frequency of respiration affects the derived respiration. It is proposed that the decrease in

the cross-correlation and in the coherence which was accompanied by an increase in the

frequency of respiration is related to the tidal volume of respiration. Therefore, specific
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experiments which control and measure the subjects tidal volume should be done.

Finally, the last suggestion for future work involves the application of the

frequency of respiration to the HRV power spectrum. In this study, the coherence

between the interpolated interbeat interval and the respiration signal was calculated to

determine the parasympathetic activity from a different viewpoint. For this part of the

study, the minimum coherence value indicating similar frequency content between the

signals was chosen to be 0.35. In order to obtain more accurate results, the coherence

threshold should be increased. A higher coherence value was not used in this study partly

due to the inexperience of the author with coherence. The coherence function is sensitive

to changes in the number of point FFT, segment length, overlap, and type of window

used. Therefore, these parameters can be optimized to provide a more detailed coherence

function, and therefore, a more accurate investigation of coherence can be done than was

done for this study.
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APPENDIX A

SOME FIGURES FOR CHAPTER 3
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(a) Rest, Non-Paced Breathing

Figure A.1 Comparison of the Measured Respiration with the ECG Derived Respiration
from All Four Methods For Each Section of the Experimental Protocol

(continued on the next page)
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(b) Paced Breathing at 8 bpm

Figure A.1 (continued on next page)
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(c) Paced Breathing at 12 bpm

Figure A.1 (continued on next page)



(d) Paced Breathing at 16 bgm

Figure A.1 (continued on next page)
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(e) Treadmill at 3.5 mph, No Incline

Figure Al (continued on next page)



(f) Treadmill at 3.5 mph, 5% Incline

Figure A.1 (continued from previous page)



(a) Box Plots for Cross-Correlation Between Time Domain Signals

Figure A.2 Boxplots for Data in Chapter 3. In Each Plot, the Boxes, from Left to Right,
Represent the Fixed QRS Window, Independent Leads Method, the Method Based on the
Amplitude Modulation of the R-Waves, the Variable QRS Window, Independent Leads
Method, and the Variable QRS Window, Dependent Leads Method. (continued on the

next page)



(b) Box Plots for Coherence

Figure A.2 Boxplots of Data in Chapter 3. (continued)



(c) Box Plots for Cross-Correlation Between Spectra

Figure A.2 Boxplots of Data in Chapter 3.
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KESSLER
INSTITUTE FOR REHABILITATION, INC.
Dedicated to the care of the physically disabled, Kessler is an accredited nonprofit hospital affiliated with the University of Medicine and Dentistry of New
Jersey.

APPLICATION TO CONDUCT AN EXPLORATORY STUDY
INVOLVING HUMAN SUBJECTS

TITLE OF PROPOSED RESEARCH: ECG Derived Respiration

INVESTIGATORS AND DEPARTMENTS:
Principal Investigator:  David J. Caggiano 
Mailing Address: 	 (not relevent to thesis) 
Telephone No: 	 (not relevent to thesis) 

Co-Investigators: 	 Dr. Stanley Reisman 	Dept.: 	
Dept.: 	
Dept.: 	

THIS PROTOCOL IS TO BE CONSIDERED FOR (Check only one box):

EXPEDITED REVIEW (Indicate paragraph of Federal Guidelines to
certify expedited review [see appendix B] ).
Section 46.110, paragraph 	3,7 

1:1 FULL IRB REVIEW

PURPOSE OF DEFINITIVE STUDY:
When doing HRV studies, it is necessary to acquire a respiratory waveform to accurately
determine the parasympathetic activity. During ambulatory (Holier) recording, respiration
information is not acquired. Therefore, the purpose of this study is to develop a method
which derives the respiration waveform from the ECG. As a result, the parasympathetic
activity can be obtained for ambulatory studies.
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BRIEF BACKGROUND:
In 1985 Mark and Moody proposed a method that derives the respiration from multileads
of ECG. In 1994, Lingeng Zhao presented a thesis to the committee of biomedical
engineering at MIT that utilized the methods presented by Mark and Moody. The results
of Lingeng's thesis showed that the method was not reliable under numerous
circumstances. In addition, nobody has tried any other methods or techniques other than
that proposed by Mark and Moody to extract the respiratory information from the ECG.

ROLE OF EXPLORATORY STUDY:
The role of this study is to determine the best technique to extract the respiratory
waveform from the ECG. Many software methods have been developed which derive the
respiration from the ECG. An experiment needs to be conducted to acquire two ECG
leads and a directly measured repiratory signal. Upon analysis, each technique will be
compared to determine which technique is the most accurate and consistent. In addition,
it may shed some new light as to why certain methods do not work, and what can be done
in the future' to improve the methods in this area of research.

DESCRIPTION OF PROTOCOL:
The patients will be connected to two instruments, one which records ECG (hotter
monitor) and one which records the patient' s respiration waveform (RESPI impedance
pneumography). The ECG will be used to derive the patient's respiration waveform and
then will be compared to the respiration waveform recorded with the RESPI. During the
experiment, the patient will be asked to rest for 4 min, pace breath at 8,12, and 16 breaths
per minute for 4 minutes each, walk on the treadmill at 3.5 mph for 4 minutes, and the last
4 min the patient will be asked to walk on the treadmill at 3.5 mph with a 5% incline. This
is a one time only experiment and no follow up experiment is required by the patient.
Also, there will be no medications delivered during the experiment, and no specimens will
be taken.

SAFETY
There are some physical risks when walking on a treadmill that are related to the stress
caused by the exercise.

Start date of exploratory study: October 27th, 1995

Estimated end date of exploratory study: November 27th, 1995

Please attach an appropriate consent form that indicates that the proposed research
will be exploratory in nature and designed to assist the researcher in determining if
further investigation is feasible

Approved: 	
John DeLuca, Ph.D. 	 Date

Chair, IRB
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CODE OF FEDERAL REGULATIONS
TITLE 35: PUBLIC WELFARE

PART 46: PROTECTION OF HUMAN SUBJECTS
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APPENDIX B: EXPEDITED ACTIVITIES 

§ 46.110
Research activities involving no more than
minimal risk and in which the only involvement
of human subjects will be in one or more of the
following categories (carried out through
standard methods) may be reviewed by the
Institutional Review Board through the
expedited review procedure.

(1) Collection of: hair and nail clippings in a
nondisfiguring manner; deciduous teeth; and
permanent teeth if patient care indicates a need
for extraction.

(2) Collection or excreta and external secretions
including sweat, uncannulated saliva, placenta
removed at delivery, and amniotic fluid at the
time of rupture of membrane prior to or during
labor.

(3) Recording of data from subjects 18 years of
age or older using noninvasive procedures
routinely employed in clinical practice. This
includes the use of physical sensors that are
applied either to the surface of the body or at a
distance and do not involve input of matter or
significant amounts of energy into the subject or
an invasion of the subject's privacy. It also
includes such procedures as weighing, testing
sensory acuity, electrocardiography,
electroencephalography, thermography,
detection of naturally occurring radioactivity,
diagnostic echography, and electroretinography.
It does not include exposure to electromagnetic

radiation outside the visible range (for example,
x-rays, microwaves).

(4) Collection of blood samples by venipuncture,
in amounts not exceeding 450 milliliters in an
eight-week period and no more often than two
times per week, from subjects 18 years of age or
older and who are in good health and not
pregnant.

(5) Collection of both supra- and subgingival
dental plaque and calculus provided the
procedure is not more invasive than routine
prophylactic scaling of the teeth and the process
is accomplished in accordance with accepted
prophylactic techniques.
(6) Voice recordings made for research purposes
such as investigations of speech defects.
(7) Moderate exercise by healthy volunteers.

(8) The study of existing data, documents,
records, pathological specimens, or diagnostic
specimens.

(9) Research on individual or group behavior or
characteristics of individuals, such as studies of
perception, cognition, game theory, or test
development, where the investigator does not
manipulate subjects' behavior and the research
will not involve stress to the subjects.

(10) Research on drugs or devices for which an
investigational new drug exemption or an
investigational device exemption is not required.



KESSLER
INSTITUTE FOR REHABILITATION, INC
Dedicated to the care of the physically disabled, Kessler is an accredited nonprofit hospital affiliated with the University of Medicine and Dentistry of New Jersey

APPLICATION TO UNDERTAKE A RESEARCH PROJECT INVOLVING HUMAN SUBJECTS

Part B (Informed Consent)

The informed consent form is the document that will be presented to each subject of a research
activity for review and signature. It must be written in prose style and content so that it can be
understood by the proposed subjects of the study. It must be attached to Part A for detailed
review and approval by the IRB. If the investigator wishes to raise any issues concerning the
informed consent form with the IRB (e.g., preference for obtaining oral rather than written
informed consent, omission of a particular portion of the form or deviation from the usual
format), this must be done in a separate communication accompanying the protocol.

A model informed consent format is attached. This should be used in preparing your informed
consent form as appropriate. Each of the following points must be covered in the informed
consent form:

1. It must be stated that the study involves research.

2. The purpose of the study must be clearly stated.

3. The procedure(s) that will be employed must be clearly described.

4. For each procedure to be used, particularly if it would not be used as part of the medical
care of the subject, anticipated risks and the degree of likelihood of their occurrence must
be stated.

5. If a drug is to be administered, particularly if it would not be administered as part of the
medical care of the subject, this must be clearly stated and the nature and timing of the
drug must be explained. Anticipated risks and side effects of the drug and the degree of
likelihood of their occurrence must be described.

6. If a test is to be performed, particularly if it would not be performed as part of the medical
care of the subject, this must be clearly stated and the nature of the test must be
described. Anticipated risks of the test and the degree of likelihood of their occurrence
must be described.

7. If the subject may be used as a control, this must be clearly stated and the specific
benefits and risks, including the degree of likelihood of their occurrence must be
described.

8. A statement must be included as to whether participation of the subject in the research
activity may or may not provide specific benefits to that subject; if benefits are anticipated,
their nature and degree of likelihood of occurrence must be stated.
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9. A statement must be included that a subject may choose not to participate in the proposed
study or may withdraw from the study at any time upon notification to the investigator,
without any penalty, change in available medical care, or other loss of benefits to which
the subject is otherwise entitled.

10. A statement must be included describing measures which will be taken to protect the
confidentiality of the results of the study and the subjects' right to privacy.

11. 	 A statement must be included listing any special signs or symptoms during the
course of the study to which the subject has been or is to be alerted.

§ 46.116
General Requirements for Informed Consent

Except as provided elsewhere in
this or other subparts, no
investigator may involve a
human being as a subject in
research covered by these
regulations unless the
investigator has obtained the
legally effective informed
consent of the subject or the
subject's legally authorized
representative. An investigator
shall seek such consent only
under circumstances that
provide the prospective subject
or the representative sufficient
opportunity to consider whether
or not to participate and that
minimize the possibility of
coercion or undue influence.
The information that is given to
the subject or the representative
shall be in language
understandable to the subject or
the representative. No informed
consent, whether oral or written,
may include any exculpatory
language through which the
subject or the representative is
made to waive or appear to
waive any of the subject's legal
rights, or releases or appears to
release the investigator, the
sponsor, the institution or its
agents from liability for
negligence.

(a) Basic elements of informed
consent. Except as provided in
paragraph (c) or (d) of this
section, in seeking informed
consent the following information
shall be provided to each
subject:
(1) A statement that the study
involves research, an

explanation of the purposes of
the research and the expected
duration of the subject's
participation, a description of the
procedures to be followed, and
identification of any procedures
which are experimental;
(2)A description of any
reasonably foreseeable risks or
discomforts to the subject;
(3)A description of any benefits
to the subject or to others which
may reasonably be expected
from the research;
(4)A disclosure of appropriate
alternative procedures or
courses of treatment, if any, that
might be advantageous to the
subject;
(5)A statement describing the
extent, if any, to which
confidentiality of records
identifying the subject will be
maintained;
(6)For research involving more
than minimal risk, an explanation
as to whether any compensation
and an explanation as to whether
any medical treatments are
available if injury occurs and, if
so, what they consist of, or
where further information may be
obtained;
(7)An explanation of whom to
contact for answers to pertinent
questions about the research
and research subject's rights,
and whom to contact in the event
of a research-related injury to the
subject; and
( 8 ) A statement that

participation is voluntary, refusal
to participate will involve no
penalty or loss of benefits to
which the subject is otherwise

entitled; and the subject may
discontinue participation at any
time without penalty or loss of
benefits to which the subject is
otherwise entitled.

(b) Additional elements of 
informed consent. When
appropriate, one or more of the
following elements of information
shall also be provided to each
subject:
(1)A statement that the
particular treatment or procedure
may involve risks to the subject
(or to the embryo or fetus, if the
subject is or may become
pregnant) which are currently
unforeseeable;
(2)Anticipated circumstances
under which the subject's
participation may be terminated
by the investigator without
regard to the subject's consent;
(3)Any additional costs to the
subject that may result from
participation in the research;
(4)The consequences of a
subject's decision to withdraw
from the research and
procedures for orderly
termination of participation by
the subject;
(5)A statement that significant
new findings developed during
the course of the research which
may relate to the subject's
willingness to continue
participation will be provided to
the subject; and
(6)The approximate number of
subjects involved in the study.

(c) An 1RB may approve a
consent procedure which does



not include, or which alters,
some or all of the elements of
informed consent set forth
above, or waive the requirement
to obtain informed consent
provided the IRB finds and
documents that:
(1) the research or
demonstration project is to be
conducted by or subject to the
approval of state or local
government officials and is
designed to study, evaluate, or
otherwise examine: (i) public
benefit or service programs; (ii)
procedures for obtaining benefits
or services under those
programs; (iii) possible changes
in or alternatives to those
programs or procedures; or (iv)
possible changes in methods or
levels of payment for benefits or
services under those programs;
and

(2) the research could not
practicably be carried out without
the waiver or alteration.

(d) An IRB may approve a
consent procedure which does
not include, or which alters,
some or all of the elements of
informed consent set forth in this
section, or waive the
requirements to obtain informed
consent provided the IRB finds
and documents that:
(1) the research involves no
more than minimal risk to the
subjects;
(2) the waiver or alteration will
not adversely affect the rights
and welfare of the subjects;
(3) the research could not
practicably be carried out without
the waiver or alteration; and
(4) whenever appropriate, the
subjects will be provided with

additional pertinent information
after participation.

(e) The informed consent
requirements in this policy are
not intended to preempt any
applicable Federal, State, or
local laws which require
additional information to be
disclosed in order for informed
consent to be legally effective
(f) Nothing in this policy is
intended to limit the authority of
a physician to provide
emergency medical care, to the
extent the physician is permitted
to do so under applicable
Federal, State, or local law.
(Approved by the Office of
Management and Budget under
Control Number 9999-0020.)
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§ 46.117
Documentation of Informed Consent

(a) Except as provided in paragraph (c) of this section, informed consent shall be documented by the use
of a written consent form approved by the IRB and signed by the subject or the subject's legally authorized
representative. A copy shall be given to the person signing the form.

(b) Except as provided in paragraph (c) of this section, the consent form may be either of the following:
(1) A written consent document that embodies the elements of informed consent required by Paragraph
46.116. This form may be read to the subject or the subject's legally authorized representative, but in any
event, the investigator shall give either the subject or the representative adequate opportunity to read it
before it is signed; or
(2) A short form written consent document stating that the elements of informed consent required by
Paragraph 46.116 have been presented orally to the subject or the subject's legally authorized
representative. When this method is used, there shall be a witness to the oral presentation. Also, the IRB
shall approve a written summary of what is to be said to the subject or the representative. Only the short
form itself is to be signed by the subject or the representative. However, the witness shall sign both the
short form and a copy of the summary. A copy of the summary shall be given to the subject or the
representative, in addition to a copy of the short form.

(c) The IRB may waive the requirement for the investigator to obtain a signed consent form for some or all
subjects if it finds either:
(1) That the only record linking the subject and the research would be the consent document and the
principal risk would be potential harm resulting from a breach of confidentiality. Each subject will be asked
whether the subject wants documentation linking the subject with the research, and the subject's wishes
will govern; or
(2) That the research presents no more than minimal risk of harm to subjects and involves no procedures
for which written consent is normally required outside of the research context.

In cases in which the documentation requirement is waived, the IRB may require the investigator to
provide subjects with a written statement regarding the research.
(Approved by the Office of Management and Budget under Control Number 9999-0020.)
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EXCLUSIONS:

I will inform the researcher if any of the following apply to me:

(a) If I am pregnant
(b) If I suffer from any breathing disorders.
(c) If I am younger than 18 yrs old or older than 40 yrs old.

RISKS/DISCOMFORTS:

I have been told that the study described above may involve the following risks and/or
discomforts:

I may become faint or dizzy when exercising on the treadmill. In the unlikely event that this
should happen, the treadmill will be stopped immediately and I will be allowed to rest and be
closely monitored until I am feeling better.

There also may be risks and discomforts that are not yet known.

BENEFITS:

I have been told that I will receive no direct benefit from my participation in this study, but it
may help the researchers to better understand how to determine a person's breathing pattern from
an ECG. As a result, future studies can be done that will accurately measure the activity of a
patient's nervous system as it controls heart rate and breathing.

ALTERNATIVES:

The following alternative procedures or treatments are available if I choose not to participate in
this study:

There are no alternatives.

NEW FINDINGS:

During the course of the study, I will be told about any new information that may affect my
willingness to remain in the study.

CONFIDENTIALITY:

Every effor 	 . be made 	 confidentiality.:. „ ::::::„„.
 of the ;Kessler Institute : for Rehabilttat on w ill

110diO41.E440,i0$aitb ,tet61-4 .t0I4tdct,t0 If 
confidentiat. , Ottlo$.4.;:lttisolpstgo:i0:% - •

FINANCIAL COSTS TO THE SUBJECTS:

I understand that my participation in this study may incur the following (increased/decreased)
costs to me. Some of these costs may be covered by my health insurance provider.

I understand there will be no additional cost to me for my participation in this study.
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,•••••••••

otRd

ts as a researc	 : ect
the	 :4tc.13.00*:48-4322.n::eiterlm.Review ;

y:41.1..redelve:.a copy of th:15:::po$ep.tforn4-1,agree	 :ai:resear

u

PAYMENT FOR PARTICIPATION:
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APPENDIX C

PROCEDURE FOR A/D CONVERSION OF A HOLTER CASSETTE

1: Two stereo systems are needed to perform the analog to digital conversion. One
stereo system is the JVC TD-W10 consumer cassette player, which does not have
speakers. The type of the other system `does not matter, but it must have speakers.
Also needed is a two channel amplifier.

2: Connect the left channel output of the JVC TD-W10 to channel one of the
amplifier and the right channel output of the JVC TD-W10 to channel two of the
amplifier. Then connect the outputs of channel 1 and 2 of the amplifier to the
cable adapter's channel 1 and 2 for the A/D acquisition board. Make sure the
power to the amplifier is on.

3: Connect a two channel oscilloscope to each of the channels to monitor the ECGs
during playback.

4: Playback the holter cassette on the stereo with speakers to verify the correct
number of event markers for the experimental protocol.

5: 	 For each section of the experimental protocol, a data file needs to be created. To
do this, type the following command at the DOS prompt on the acquisition
computer:
c:\mkfile 1120795a.dat 240 [enter]
where:

1 - represents the first letter of the patient's last name
120795 - represents the date of the experiment (e.g. December 7th, 1995)
a - represents the letter corresponding to each section of the protocol
240 - represents the file size in Kilobytes

to calculate the file size, use the following formula:
file size = 2*T*C*1

where:
2 - necessary because the DAS 16 uses two bytes per sample
T - the time of the experiment in seconds
C - the number of channels being collected
fs - the sampling frequency (samples/second/channel)

Remember that the holter playback is 48.35 times faster than which it was
recorded. Therefore, either multiply the original sampling frequency by 48.35 or
divide T by 48.35 to get the correct playback time in seconds.
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	6.	 To check the connections between the JVC TD-W10 and the data acquisition
board do the following to check the signal on the screen:
c:\plot [enter] [enter]
set "channel to monitor:" equal to 1
[f4] to centralize the data
play holter tape on JVC TD-W10, check for signal, stop tape
[f5] to change channels
set "channel to monitor" equal to 2
[f4] to centralize the data
play holier tape on JVC TD-W10, check for signal, stop tape
note: sometimes when performing this step, the primplot signal on the screen does
not move. If this is the case, the ECG signal might have a small amplitude.
Therefore, increase the amplification with the amplifier.

	

7.	 Setup the acquisition software using the following command:
c:\streamer das 16

set the following parameters:
Drive c:
Data File\ 1120795a.dat (change this line each time before step 8)
Log file
Sample rate = sampling frequency per channel * # of channels*48.35
set first channel equal to 1
set last channel equal to 2
put cursor on Drive c:

	

8.	 Position the holter cassette at the proper event marker by listening to the holter
cassette using the stereo with speakers. As soon as you hear the proper event
marker, stop the tape! Using your finger, rewind the tape by about one half of a
turn. Now, put the tape in the JVC TD-W10's B cassette deck. Press play.
Adjust the gain on the amplifier so as to get a signal that is as close to 5 volts for
the entire test section, but be sure that it never exceeds five volts. Stop the tape
and find the proper marker again using the procedure mentioned above and the
stereo with speakers. Using your finger, rewind the tape by about one half of a
turn. Now, put the tape in the JVC TD-W10's B cassette deck. Press play. As
soon as the signal appears on the oscilloscope, press [fl] to acquire the data.
Repeat steps 7 and 8 for each section of the experiment, giving the data file a
different name for each section.
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9: 	 To transfer the data over the network from the data acquisition computer to the
data analysis computers, type the following at the DOS prompt:
c:\transfer
s:
cd users\davidc
c:
cd..
copy all data files to s:



APPENDIX D

ANALYSIS PROCEDURES TO OBTAIN POWER SPECTRUM OF HRV

In the following example, we are going to use a sample data file "filename.dat" to explain

the syntax of the programs used to calculate the HRV power spectrum. Let's assume the

file contains two channels of ECG data, two minutes long, and sampled at 500 Hz.

1 	 Begin the analysis by unpacking the data file in DOS. This converts each sample
of data from binary format to ASCII format separated by commas.
unpack filename.dat,filename.asc,0-119999/b/das16

2 	 Attach to the user directory where the filename.asc file is stored. The rest of the
commands from here on are performed in S-Plus.
attach("c:AusersAdavidcA_data",pos=1)

3 	 Create a matrix of data in S-Plus consisting of the values of the samples taken.
Each column of the matrix corresponds to a single channel of data.
filename_matrix(scan("cA\usersAdavid&dataAfilename.asc",sep=",",skip=1
),ncol=2,byrow=T)

Now check to make sure the matrix is the proper size.
dim(filename)

4 	 Create a graphics window.
win.graph( )

5 	 Plot a section of the file to check the integrity of the data
plot(ffiename[1:15000,1],type="I")

6	 If needed, a file may be cut into smaller subfiles of data.
filename.c_filename[1:###]

7 	 Generate the interbeat interval signal.
filenamel_htlws(filename[,1]) or [,2] - depending on which lead is dominant (for
the remainder of this example, lets assume channel 1 was dominant [,1].

To increase the threshold level for R-wave detection, you can increase the
parameter called qhg. The default is qhg=0.25.
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filename.l_htlws(filename[,l],qhg=0.1)

Examine the output plot that is automatically generated with this command. It is a
plot of the interbeat interval. If there are improper detections, you can delete a
QRS complex using the command dqrs and you can identify a QRS complex by
using the command mqrs.

8 	 If there is a low outlier in the plot, this may mean that an extra erroneous
detection(s) occurred. In this case, delete the erroneous detection(s). To identify
the outliers, position the cross hairs on the outlier and click the left mouse button.
Once all the low outliers are identified, click the right mouse button to zoom in on
each individual outlier. If it is confirmed to be an extra erroneous detection, click
the erroneous detection where it crosses the ECG signal several times with the left
mouse button, then press the right mouse button to move on to the next low
outlier previously identified.
filename.d_dqrs(filename[,1],filename.Spk)

Then examine the interbeat interval to make sure it was deleted. If not, do the
above command again.
plot(diff(filename.d))

9 	 If there is a high outlier in the interbeat interval plot, it may mean that an R-wave
was not detected. In this case, manually detect the R-wave. To identify the
outliers, position the cross hairs on the high outliers and click the left mouse
button. Once all the high outliers are identified, click the right mouse button to
zoom in on each individual section of ECG. If it is confirmed to be a mis-
detection, click on both sides of the R-wave to with the left mouse button and then
click the right mouse button to identify it.
(a) If changes were made with dqrs
filename.m_mqrs(filename[,l],filename.d,pout(diff(filename.d)))
(b) If no changes were made in dqrs

filename.m_mqrs(filename[,1],filename.1$pk,pout(diff(filename.1$pk)))

Then examine the interbeat interval, it should be properly detected now.
plot(diff(filename.m))

10 	 Make sure the R-waves are properly detected by using correcth. This program
will detect the R-waves exactly to the point if the initial detection is within w
points of the R-wave peak. The default number of points w is 7.
(a) If no changes were made with dqrs or mqrs
filename.h_correcth(filename,filename.1$pk,w)
(b) If changes were made with dqrs and mqrs, or just mqrs
filename.h_correcth(filename,filename.m,w)
(c) If changes were made in dqrs only
filename.h_correcth(filename,filename.d,w)
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1 I 	 Calculate the power spectrum and make the final file.
filename.finfworkb(filename,filename.h$pk)
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APPENDIX E

ANALYSIS PROCEDURES AND PROGRAM TO ANALYZE THE ORIGINAL
RESPIRATION WAVEFORM

In the following example, we are going to use a sample data file "filename.dat" to explain
the syntax of the programs used to analyze the original respiration.

1	 Begin the analysis by unpacking the data file in DOS using kunpackl. This
converts each sample of data from binary format to ASCII format.
kunpackl filename.dat,filename.asc,0-23999/b/das16

2	 Perform the following few commands in Matlab. These commands filter and
decimate the respiration waveform and then wirte it to an ASCII format. To
begin, load the ASCII file into Matlab.
load filename.asc

3	 Then change the background for the plotting area from black to white.
whitebg

•
4	 Plot the signal. You will notice that the first point is equal to one (representing the

channel #).
plot (filename)

5	 Cut this point off.
filename = filename(2:24001);

6	 Now filter and decimate the file with the decimate command from the signal
processing toolbox.
decfile=decimate(filename,10);

7	 Check the decimated signal.
plot(dec.file)

8	 Write the decimated signal to an ASCII format which can be analyzed in S-Plus.
save newfile.asc duffle -ascii

9	 Perform the following commands in S-Plus. First, attach to the user directory
where the filename.asc file is stored.
attach("c:\\usersMavidc\\_data",pos=1)
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10	 Create a matrix of data in S-Plus consisting of the values of the samples taken.
newfile_matrix(scan("c:\\users\\davidc\\_datAnewftle.asc ",sep=",",skip=1),n
col=1,byrow=T)

11	 Use the program "respspct" to calculate the detrended respiration and the
spectrum of the respiration. These are saved to the filename given at the time of
execution.
respfile_respspect(newfile)

function(r, title = "", nt = 8192, ns = 6, sr = 20, taper = 0.2)
{

r.1 <- lowess(1:length(r), r, f = 0.3, iter = 2, delta = ceiling((Iength(r) * 0.3)/8))$y
r.d <- r - r.1
if(any(is.na(r.d)))

stop("NA's not allowed")
if(taper < 0 I taper > 1)

stop("taper must be between 0 & 1")
r.dumb <- r.d
if(nt < length(r.dumb))

r.dumb <- r.dumb[1:nt]
r.dumb <- r.dumb - mean(r.dumb)
r.dumb <- spec.taper(r.dumb, taper)
print(paste("Windowing length per side is ", nt * taper, sep = ""))
if(nt > length(r.dumb))

r.dumb <- c(r.dumb, rep(0, nt - length(r.dumb)))
r.spect <- (Mod(fft(r.dumb))^2/(2 * pi * nt))[1:(nt %/% 2 + 1)]
if(ns > 0) {

r.spect <- spec.smo(r.spect, span = 7)
r.spect <- rev(r.spect)
r.spect <- spec.smo(r.spect, span = 7)
r.spect <- rev(r.spect)

1
xf <- ((1:330) - 1)/nt * sr
par(mfrow = c(1, 1), mar = c(6.1, 6.1, 4.1, 4.5))
plot(xf, r.spect[1:330], type = "1", xlab = "Frequency", ylab = "Resp

Power (Respl)", main = title)
z <- list(rsp = r.d, spect r.spect)
return(z)

}



APPENDIX F

PROGRAM "CORRECTH" TO CORRECT R-WAVE DETECTION

function(ecg, pkx, w = 7, wait = T)
{

pkxnew <- vector("numeric", 0)
for(i in 1:length(pkx)) {

xofrmax <- ((pkx[i] - w):(pkx[i] + w)llecg[(pkx[i] - w):(pkx[i] + w)]
> ecg[pkx[i]]]

if(length(xofrmax) > 0) {
print(paste("improper detection , 	 - being corrected"))
print(paste("pkx=", pkx[i]))
plot((pkx[i] - w):(pkx[i] + w), ecg[(pkx[i] - w):(pkx[i] + w)])
abline(v = pkx[i])
xofmax <- ((pkx[i] - w):(pkx[i] + w))[ecg[(pkx[i] - w):

(pkx[i] + w)] == max(ecg[(pkx[i] - w):(pkx[i] + w)])]
if(length(xofmax) > 1) {

xofmax <- xofmax[1]
}
print(paste("xofmax=", xofmax))
abline(v = xofmax, col = 2)
if(wait)

scan( )
1
else {

print(paste("xofmax = pkx"))
xofmax <- pkx[i]

1
pkxnew <- c(pkxnew, xofmax)

z <- list(pk = pkxnew)
z

}
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APPENDIX G

"IMPQRSCA" PROGRAM LISTING

function(ecgl, ecg2, fin, w = 18, rq = 17, nfft = 8192, sr = 500, decim=25,
wait = T, title = "")

{

par(mfrow = c(1, 1), mar = c(6.1, 6.1, 4.1, 4.5))
print(paste("creating necessary vectors"))
xofrl <- vector("numeric", 0)
xofr2 <- vector("numeric", 0)
xofql <- vector("numeric", 0)
xofq2 <- vector("numeric", 0)
qrscal <- vector("numeric", 0)
minqrsl <- vector(" numeric " , 0)
qrsca2 <- vector("numeric", 0)
minqrs2 <- vector("numeric", 0)
pkx <- fin$pk
if(pkx[1] < (2 * w))

pia <- plo42:length(plcx)]
}

if(length(ecgl) < (pkx[length(pkx)] + 2 * w)) {
pkx <- pkx[1:(length(pkx) - 1)]

print(paste("sampling rate of ecgs = ",sr))
print(paste("decim = ",decim))
sr2 <- sr/decim
print(paste("sr2 = ",sr2))
print(paste("detrending ecgs"))
lwf 1 <- lowess(1:length(ecg1), ecgl, f = 45/length(

ecgl), iter = 2, delta = 0.1)$y
ecgl <- ecgl - lwfl
lwf2 <- lowess(1:length(ecg2), ecg2, f 45/length(

ecg2), iter = 2, delta = 0.1)$y
ecg2 <- ecg2 - lwf2
print(paste("shifting ecgs"))
minecgl <- min(ecgl)
minecg2 <- min(ecg2)
if(minecg 1 < 0) {

ecgl <- ecgl + 1.1 * abs(minecgl)
}
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if(minecg2 < 0) {
ecg2 <- ecg2 + 1.1 * abs(minecg2)

}
print(paste("detecting R-waves and Q-waves; PLEASE be patient"))

# the following performs R-wave and Q-wave detection for ecgl and ecg2
for(i in 1:length(pkx)) {

# R-wave detection for ecgl
xofrmax 1 <- ((pkx[i] - w):(pkx[i] + w))[ecgl [(pkx[i] - w):(pkx[i] + w)] >

ecg 1 [pkx[i]]]
if(length(xofrmaxl) > 0) {

xofmaxl <- ((pkx[i] - w):(pkx[i] + w))[ecgl[(pkx[i] - w):(pkx[
i] + w)] == max(ecg 1 [(pkx[i] - w):(pkx[i] + w)])]

if(length(xofmax 1) > 1) {
xofmax <- xofmax[1]

}
1
else {

xofmaxl <- pkx[i]
}
xofr 1 <- c(xofr 1, xofmaxl)

# R-wave detection for ecg2
xofrmax2 <- ((pkx[i] - (2 * w)):(pkx[i] + w)llecg2[(pkx[i] - (2 *

w)):(pkx[i] + w)] > ecg2[pkx[i]]]
if(length(xofrmax2) > 0) {

xofmax2 <- ((pkx[i] - (2 * w)):(pkx[i] + w))[ecg2[(pkx[i] - (
2 * w)):(pkx[i] + w)] == max(ecg2[(pkx[i] - (2 * w
)):(Pkx[i] + w)])]

if(length(xofmax2) > 1) {
xofmax2 <- xofmax2[1]

}
1
else {

xofmax2 <- pkx[i]
}
xofr2 <- c(xofr2, xofmax2)

# q wave detection for lead I and lead HI
minq 1 <- ((xofr 1 [i] - rq) : (xofr 1 [i])) Recg 1 [(xofr 1 [i] rq): (xofr IUD]) <=

min(ecg 1 [(xofr 1 [i] - rq): (xofr 1 W)])]
iglength(minql) > 1) {

minq 1 <- minq 1 [length(minq 1)]
1
xofql <- c(xofql, minql)
minq2 <- ((xofr2[i] rq):(xofr2[i]))[( ecg2{(xofr2[i] - rq):(xofr2[i])]) <=

min(ecg2[(xofr2[i] - rq):(xofr2[i])])]
if(length(minq2) > 1) {
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minq2 <- minq2[1ength(minq2)]
1
xofq2 <- c(xofq2, minq2)

1
windowl <- round(mean(xofrl - xofql) * 2)
window2 <- round(mean(xofr2 - xofq2) * 2)
if(length(pkx) != length(xofql)) {

print(paste("Number of Q's is not equal to that of R's (lead 1)"))
print(paste("Q's:", length(xofq 1)))
print(paste(""R' s:", length(xofrl)))
stop( )

1
if(length(pkx) != length(xofq2)) {

print(paste("Number of Q's is not equal to that of R's (lead 3)"))
print(paste("Q's:", length(xofq2)))
print(paste("R' s:", length(xofr2)))
stop( )

1
par(mfrow = c(2, 1), mar = c(6.1, 6.1, 4.1, 3.1))
for(i in 10:14) {

plot((xofr 1 [i] - 100): (xofr 1 [i] + 100), ecg 1 [(xofrl [i] - 100):(xofrl [i] +
100)], ylim = c(min(ecg1), max(ecg1)))

abline(v = xofrl [i])
abline(v = xofql[i])
abline(v = (xofql [i] + windowl), col = 2)
plot((xofr 1 [i] - 100):(xofr 1 [1] + 100), ecg2[(xofr 1 [i] - 100):(xofrl [i] +

100)], ylim c(min(ecg2), max(ecg2)))
abline(v = xofr2[i])
abline(v = xofq2[i])
abline(v = (xofq2[1] + window2), col = 2)
if(wait)

scan( )
1
print(paste("calculating areas"))
for(i in 1:length(pkx)) {

cols 1 <- ecgl[xofql[i]:(xofql[i] + window 1)]
cols2 <- ecg2[xofq2[i]:(xofq2[i] + window2)]
areal <- sum(colsl)
area2 <- sum(cols2)
basel <- min(ecgl[xofql[i]:(xofql[i] + windowl)]) * windowl
base2 <- min(ecg2[xofq2[i]:(xofq2[i] + window2)]) * window2
al <- areal - basel
a2 <- area2 - base2
qrscal <- c(qrscal, al)
qrsca2 <- c(qrsca2, a2)
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n <- length(ecgl) + 100
fl <- 0.3
f2 <- 0.2
d <- 1
xf <- ((1:330) - 1)/nfft * sr2
iqrscal <- spline(xofrl, qrscal, n)
iqrscal <- iqrscal$y
d.iqrscal <- iqrscal[seq(1, length(iqrscal), decim)]
par(mfrow = c(1, 1), mar = c(6.1, 6.1, 4.1, 4.5))
d.iqrscall <- lowess(1:length(d.iqrscal), d.iqrscal, f = f2, iter = 2, delta =

ceiling((length(d.iqrscal) * 0.3)/8))$y
par(mfrow = c(1, 1), mar = c(6.1, 6.1, 4.1, 4.5))
plot((d.iqrscal - d.iqrscall), type = "1", xlab = "Time", ylab =

"ecgl Deriv Resp (impQRSCA)", main = title)
if(wait)

scan( )
d.iqrscals <- spect(d.iqrscal - d.iqrscall, nt = nfft, ns = 6)
plot(xf, fin$isp[1:330], type = "1", xlab = "Frequency Number", ylab =

"Power (ecgl)", main = title)
par(new = T)
plot(xf, cLiqrscals[l :330], type = "1", lty = 3, axes = F, xlab = "", ylab = "")
axis(4)
mtext("ecgl Deriv Resp (impQRSCA) Power - ", side = 4, line = 2)
if(wait)

scan( )
iqrsca2 <- spline(xofr2, qrsca2, n)
iqrsca2 <- iqrsca2$y
d.iqrsca2 <- iqrsca2[seq(1, length(iqrsca2), decim)]
d.iqrsca2l <- lowess(1:length(d.iqrsca2), d.iqrsca2, f = f2, iter = 2, delta =

ceiling((length(d.iqrsca2) * 0.3)/8))$y
plot((d.iqrsca2 - d.iqrsca2l), type = "1", xlab = "Time", ylab =

"ecg2 Deriv Resp (impQRSCA)", main = title)
if(wait)

scan( )
d.iqrsca2s <- spect(d.iqrsca2 - d.iqrsca2l, nt = nfft, ns 6)
plot(xf, fin$isp[1:330], type = "1", xlab = "Frequency Number", ylab =

"Power", main = title)
par(new = T)
plot(xf, diqrsca2s[l :330], type = "1", lty = 3, axes = F, xlab = "", ylab = "")
axis(4)
mtext("ecg2 Deriv Resp (impQRSCA) Power - - ", side = 4, line = 2)
if(wait)

scan( )
d.iqrsca <- (atan(d.iqrsca2/d.iqrscal) * 180)/pi
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d.iqrscal <- lowess(1:length(d.iqrsca), d.iqrsca, f = f2, iter = 2, delta =
ceiling((length(d.iqrsca) * 0.3)/8))$y

plot((d.iqrsca - d.iqrscal), type = "1", xlab = "Time", ylab =
"Arctan (ecg2/ecg 1) Deriv Resp (impQRSCA)", main = title)

if(wait)
scan( )

d.iqrscas <- spect(d.iqrsca - d.iqrscal, nt = nfft,ns = 6)
par(mfrow = c(1, 1), mar = c(6.1, 6.1, 4.1, 4.5))
plot(xf, fin$isp[1:330], type = "1", xlab = "Frequency Number", ylab =

"Power", main = title)
par(new = T)
plot(xf, diqrscas[1:330], type = "1", lty = 3, axes = F, xlab = "", ylab = "")
axis(4)
mtext("Arctan (ecg2/ecgl) Deriv Resp (impQRSCA) Power - - ",

side = 4, line = 2)
if(wait)

scan( )
plot(xf, cliqrscas[l :330], type = "1", xlab = "frequency", ylab = "Power")
par(new = T)
plot(xf, cliqrscals[1:330], type = "I", lty = 2, col = 2, axes = F)
par(new = T)
plot(xf, diqrsca2s[1:330], type = "1", lty = 3, col = 3, axes = F)
if(wait)

scan( )
par(mfrow = c(3, 1), mar = c(6.1, 6.1, 4.1, 3.1))
plot((d.iqrsca2 - d.iqrsca2l), type = "1", xlab = "Time", ylab = "ecg2",

main = title)
plot((d.iqrscal - d.iqrscall), type = "1", xlab = "Time", ylab = "ecgl")
plot((d.iqrsca - d.iqrscal), type = "1", xlab = "Time", ylab = "Arctan (ecg2/ecgl)",

sub = "Derived with impQRSCA")
if(wait)

scan( )
par(mfrow = c(2, 1), mar = c(6.1, 6.1, 4.1, 4.5))
plot(d.iqrscal [1:(length(d.iqrscal)/2)], type = "1", main = title, xlab = "Time",

ylab = "ecgl (solid), ecg2 (dashed)", sub = "First Minute : Derived
with impQRSCA")
par(new = T)
plot(d.iqrsca2[1:(length(d.iqrsca2)/2)], type = "1", xlab = "", axes = F, ylab = "",

col = 2, lty = 2)
plot(((length(cliqrscal)/2):length(d.iqrscal)), d.iqrscal[(length(d.iqrscal) I 2 )

:length(d.iqrscal)], type = "1", main = title, xlab = "Time", ylab =
"ecgl (solid), ecg2 (dashed)", sub = "Second Minute : Derived with
impQRSCA")

par(new = T)
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plot(((length(d.iqrsca2)/2):length(d.iqrsca2)), d.iqrsca2[(length(d.iqrsca2)/2)
:length(d.iqrsca2)], type = "1", xlab = "", axes = F, ylab = "",
col = 2, lty = 2)

z <- list(d.iqrsca (d.iqrsca - d.iqrscal), d.iqrscas = d.iqrscas,
d.iqrscal (d.iqrscal - d.iqrscall), d.iqrscals = d.iqrscals,
d.iqrsca2 = (d.iqrsca2 - d.iqrsca2l), d.iqrsca2s = d.iqrsca2s,
qrscal = qrscal, qrsca2 = qrsca2)

z
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APPENDIX H

"ADRESP" PROGRAM LISTING

function(ecgl, ecg2, fin, w = 17, sr = 500, decim = 25, nfft = 8192, wait = T, title = "")
{

print(paste("creating necessary vectors"))
pkx <- fin$pk
rxl <- vector("numeric", 0)
rx2 <- vector("numeric", 0)
ampmodxl <- vector("numeric", 0)
ampmodyl <- vector("numeric", 0)
ampmodx2 <- vector("numeric", 0)
ampmody2 <- vector("numeric", 0)
print(paste("checking ecgs"))
if(pkx[1] < 2 * w)

pkx <- pkx[2:length(pkx)]
}
if(length(ecg 1) < (pla[length(plcx)] + 2 * w)) {

pkx <- pkx [1 : (length(pkx) 1)]
1
print(paste("sampling rate of ecgs = ", sr))
print(paste("decim = ", decim))
sr2 <- sr/decim
print(paste("sr2 = ", sr2))
print(paste("detrending ecgs"))
lwf 1 <- lowess(1:length(ecg1), ecgl, f = 110/1ength(ecg1), iter = 2, delta = 0.1)$y
ecgl <- ecgl - lwfl
lwf2 <- lowess(l :length(ecg2), ecg2, f = 110/1ength(ecg2), iter = 2, delta = 0.1)$y
ecg2 <- ecg2 - lwf2
print(paste("Detecting R-waves for ecgl"))

# the following is for ecgl
for (i in 1:length(plcx)) {

xofrmax <- ((pkx[i] - w): (plcx [1] + w))[ecgl[(plcx[i] - w):(pkx[i] + w)]
> ecgl[pkx[i]]]

if (length(xofrmax) > 0) {
xofmax <- ((pkx[i] - w):(pkx[i] + w))[ecgl [(pkx[i] - w):(pkx[i] +

w)] == max(ecgl [(pkx[i] - w):(pkx[i] + w)])]
if (length(xofmax) > 1) {

xofmax <- xofmax[1]
}
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print(paste("pkx=", pkx[i]))
if	 print(paste("xofrmax=", xofmax))

plot((pkx[i] - w):(pkx[i] + w), ecgl [(pkx[i] - w):(pkx[i] + w)])
abline(v = pkx[i])
abline(v = xofmax)
if(wait)

scan( )

else {
print(paste("xofmax= pia"))
xofmax <- pkx[i]

rxl <- c(rxl, xofmax)

print(paste("done detecting R-waves for ecg1"))
n <- length(ecgl) + 100
ampmod 1 <- spline(rx 1, ecg1[rx1], n)
par(mfrow = c(1, 1), mar = c(6.1, 6.1, 4.1, 4.5))
win <- 100

#	 for(i in 10:15) {
plot((rxl[i] - win): (rxl [i] + win), ecgl[(rx1[i] - win): (rx1[i] + win)], ylim =

c(min(ecgl), max(ecg1)))
abline(v = rxl[i])
abline(v = pkx[i])
par(new = T)
plot(ampmodl$x[(rxl[i] - win): (rx 1 + win)], ampmodl$y[(rxl[i] -

win):(rxl[i] + win)], type = "1", col = 2, axes = F, ylim =
c(min(ecg1), max(ecg1)))

if(wait)
scan( )

#
ecg 1 <- ecgl[rxl:rxl[length(rx1)]]
ampmodxl <- ampmodl$x
ampmodyl <- ampmod1$y
par(mfrow = c(2, 1), mar = c(6.1, 6.1, 4.1, 3.1))
plot(ecg1[1:(length(ecg1)/2)1, type = "1", ylim = c(min(ecg1), max(ecg1)), ylab =

"ecg 1", main = title, sub = "First Minute")
par(new = T)
plot(ampmodx1[1:(length(ampmodx1)/2)], ampmody1[1:(length(ampmodx1

)12)], type = "1", col = 2, axes = F, ylim = c(min(ecgl),
max(ecg1)), ylab = "", xlab = "")

plot(((length(ecg 1)/2)) :length(ecg 1), ecgl[((length(ecgt)/2)):
length(ecg1)], type = "1", ylim = c(min(ecg1), max(ecg
ylab = "ecgl", sub = "Second Minute")

par(new = T)
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plot(ampmodx1[((length(ampmodx1)/2)):length(ampmodx1)], ampmodyl[((
length(ampmody1)/2)):length(ampmody1)], type = "1", col =
2, axes = F, ylim = c(min(ecg1), max(ecg1)), minx = c(((
length(ampmodx1)/2)):length(ampmodx1)), ylab = "", xlab =
"")

if(wait)
scan( )

ampmodyll <- lowess(1:length(ampmody1), ampmodyl, f = 0.2, iter = 2,
delta = ceiling((length(ampmody 1) * 0.3)/8))$y

ampmodyl <- ampmodyl ampmodyll
ampmodyl <- ampmodyl + 1.5 * (abs(min(ampmody1)))
par(mfrow = c(1, 1), mar = c(6.1, 6.1, 4.1, 4.5))
plot(ampmodyl, type = "1", ylab = "Amp Der. Resp (Lead I)", xlab = "time",

main = title)
if(wait)

scan( )
print(paste("starting spectrum calculation for ecgl"))
d.ampmodl <- ampmodyl[seq(1, length(ampmodyl), decim)]
ampmodl.spec <- spect(d.ampmodl, nt = nfft, ns = 6)
print(paste("done with spectrum calculation for ecgl"))
xf <- ((1:330) - 1)/nfft * sr2
plot(xf, ampmodl.spec[1:330], type = "1", xlab = "frequency", ylab =

"power (Amp Der Resp ecgl)", main = title)
if(wait)

scan( )
# the following is for ecg2

print(paste("Detecting R-waves for ecg2"))
for(i in 1:length(pkx)) {

xofrmax <- ((pkx[i] - (2 * w)):(pkx[i] + w))[ecg2[(pkx[i] - (
2 * w)):(pkx[i] + w)] > ecg2[pkx[i]]]

if(length(xofrmax) > 0) {
xofmax <- ((pkx[i] - (2 * w)):(pkx[i] + w))[ecg2[(

pkx[i] - (2 * w)):(pkx[i] + w)] == max(
ecg2[(pkx[i] - (2 * w)):(pkx[i] + w)])]

if(length(xofmax) > 1) {
xofmax <- xofmax[1]

•}
print(paste("pkx=", pkx[i], "xofrmax=",xofmax))
plot((pkx[i] - (2 * w)):(pkx[i] + w),ecg2[(pkx[i] - (2 * w)):(pkx[i] + w)])
abline(v = pkx[i], col = 2)
print(paste("xofmax=", xofmax))
abline(v = xofmax)
if(wait)

scan( )
1
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else {
print(paste("xofmax= pica"))
xofmax <- pkx[i]

rx2 <- c(rx2, xofmax)
}

print(paste("done detecting R-waves for ecg2"))
ampmod2 <- spline(rx2, ecg2[rx2], n)
par(mfrow = c(1, 1), mar = c(6.1, 6.1, 4.1, 4.5))

#	 for(i in 10:15) {
plot((rx2[i] - win):(rx2[i] + win), ecg2[(rx2[i] - win):(rx2[i] + win)], ylim =

c(min(ecg2), max(ecg2)))
abline(v = rx2[i])
abline(v = pkx[i])
par(new = T)
plot(ampmod2$x[(rx2[i] - win):(rx2[i] + win)], ampmod2$y[(rx2[i] -

win):(rx2[i] + win)], type = "1", col = 2, axes = F, ylim =
c(min(ecg2), max(ecg2)))

if(wait)
scan( )

ecg2 <- ecg2[rx2:rx2[1ength(rx2)]]
ampmodx2 <- ampmod2$x
ampmody2 <- ampmod2$y
par(mfrow = c(2, 1), mar = c(6.1, 6.1, 4.1, 3.1))
plot(ecg2[1:(length(ecg2)/2)], type = "1", ylim = c(min(ecg2), max(

ecg2)), main = title, ylab = "ecg2", sub = "First Minute")
par(new = T)
plot(ampmodx2[1:(length(ampmodx2)/2)], ampmody2[1:(length(ampmodx2

)/2)], type = "1", col = 2, axes = F, ylim = c(min(ecg2),
max(ecg2)), ylab = "", xlab = "")

plot(((length(ecg2)/2)):length(ecg2), ecg2[((length(ecg2)/2)):
length(ecg2)], type = "1", ylim = c(min(ecg2), max(ecg2)),
ylab = "ecg2", sub = "Second Minute")

par(new = T)
plot(ampmodx2[((length(ampmodx2)/2)):length(ampmodx2)], ampmody2[((

length(ampmody2)/2)):length(ampmody2)], type = "1", col =
2, axes = F, ylim = c(min(ecg2), max(ecg2)), minx = c(((
length(ampmodx2)/2)):length(ampmodx2)), ylab = "", xlab = "")

if(wait)
scan( )

ampmody2l <- lowess(1:length(ampmody2), ampmody2, f = 0.2, iter = 2,
delta = ceiling((length(ampmody2) * 0.3)/8))$y

ampmody2 <- ampmody2 ampmody2l
ampmody2 <- ampmody2 + 1.5 * (abs(min(ampmody2)))
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par(mfrow = c(1, 1), mar = c(6.1, 6.1, 4.1, 4.5))
plot(ampmody2, type = "1", ylab = "Amp Der. Resp (Lead M)", xlab =

"time", main = title)
if(wait)

scan( )
print(paste("starting spectrum calculation for ecg2"))
d.ampmod2 <- ampmody2[seq(1, length(ampmody2), decim)]
ampmod2.spec <- spect(d.ampmod2, nt = nfft, ns = 6)
print(paste("done with spectrum calculation for ecg2"))
plot(xf, ampmod2.spec[l :330], type = "1", xlab = "frequency", ylab

= "power (Amp Der Resp ecg2)", main = title)
if(wait)

scan( )
par(mfrow = c(2, 1), mar = c(6.1, 6.1, 4.1, 4.5))
plot(ampmodx1[1:(length(ampmodx1)/2)], ampmody1[1:(length(ampmodyl

)/2)], type = "1", ylim = c(min(ampmodyl), max(ampmodyl)), sub =
"ecgl: solid ecg2: dashed", ylab = "", xlab = "", main = title)

par(new = T)
plot(ampmodx2[1:(length(ampmodx2)/2)], ampmody2[1:(length(ampmody2

)12)], type = "1", ylim = c(min(ampmody2), max(ampmody2)),
col = 2, ylab = "", xlab = "", axes = F, lty = 2)

plot(ampmodx1[(length(ampmodx1)/2):length(ampmodx1)], ampmody1R
length(ampmody1)/2) :length(ampmody1)] , type = "1", ylim =
c(min(ampmodyl), max(ampmodyl)), sub = "ecgl: solid ecg2: dashed",
ylab = "", xlab = "")

par(new = T)
plot(ampmodx2[(length(ampmodx2)/2):length(ampmodx2)], ampmody2[(

length(ampmody2)/2):length(ampmody2)], type = "I", ylim =
c(min(ampmody2), max(ampmody2)), col = 2, ylab = "", xlab = "",
axes = F, lty = 2)

if(wait)
scan( )

ampmod <- vector("numeric", 0)
ampmod <- (atan(ampmody2/ampmodyl) * 180)/pi
par(mfrow = c(3, 1), mar = c(6.1, 6.1, 4.1, 3.1))
plot(ampmody2[seq(1, length(ampmody2), 2)1, type = "1",ylab =

"Amp Der Resp (ecg2)", xlab = "time", main = title)
plot(ampmodyl[seq(1, length(ampmody1), 2)], type = "I", ylab =

"Amp Der Resp (ecgl)", xlab = "time")
plot(ampmod[seq(l, length(ampmod), 2)], type = "1", ylab =

"Amp Der Resp (arctan(ecg2/ecg1)", xlab = "time")
if(wait)

scan( )
ampmodl <- lowess(1:length(ampmod), ampmod, f = 0.2, iter = 2,

delta = ceiling((length(ampmod) * 0.3)/8))$y
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ampmod <- ampmod - ampmodl
par(mfrow = c(1, 1), mar = c(6.1, 6.1, 4.1, 4.5))
plot(ampmod[seq(1, length(ampmod), 2)1, type = "1", ylab =

"Amp Der. Resp (arctan(ecg2/ecg1)", xlab = "time", main = title)
if(wait)

scan( )
print(paste("starting spectrum calculation for atan signal"))
d.ampmod <- ampmod[seq(1, length(ampmod), decim)]
ampmod.spec <- spect(d.ampmod, nt = nfft, ns = 6)
print(paste("done with spectrum calculation for atan signal"))
plot(xf, ampmod.spec[1:330], type = "1", xlab = "frequency", ylab =

"power (Amp Der Resp (arctan ecg2/ecg1))", main = title)
print(paste("length of ampmodl=", length(d.ampmodl)))
print(paste("length of ampmod2=", length(d.ampmod2)))
print(paste("length of ampmod=", length(d.ampmod)))
z <- list(ampmodl = d.ampmodl, ampmodl.spec = ampmodl.spec,

ampmod2 = d.ampmod2, ampmod2.spec = ampmod2.spec,
ampmod = d.ampmod, ampmod.spec = ampmod.spec)

z
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APPENDIX I

"VQRSIND" PROGRAM LISTING

function(ecgl, ecg2, fin, w = 20, rq = 15, rs = 15, nfft = 8192, sr = 500,
decim = 25, wait = T, title = "")

{

print(paste("creating necessary vectors"))
xofrl <- vector("numeric", 0)
xofr2 <- vector("numeric", 0)
xofql <- vector("numeric", 0)
xofq2 <- vector("numeric", 0)
xofsl <- vector("numeric", 0)
xofs2 <- vector("numeric", 0)
qrscal <- vector("numeric", 0)
minqrsl <- vector("numeric", 0)
qrsca2 <- vector("numeric", 0)
minqrs2 <- vector("numeric", 0)
pkx <- fin$pk
print(paste(""checking ecgs"))
if(ph[1] < 2 * w) {

ph <- pkx[2:length(pkx)]
}

if(length(ecgl) < (ph[length(plcx)] + 2 * rs)) {
ph <- pkx[1:(length(pkx) - 1)1

print(paste("sampling rate of ecgs = ", sr))
print(paste("decim = ", decim))
sr2 <- sr/decim
print(paste("sr2 = ", sr2))
print(paste("detrending ecgs"))
lwfl <- lowess(1:length(ecgl), ecgl, f = 110/1ength(ecg1), iter = 2, delta = 0.1)$y
ecgl <- ecgl - lwf 1
lwf2 <- lowess(1:length(ecg2), ecg2, f = 110/1ength(ecg2), iter = 2, delta = 0.1)$y
ecg2 <- ecg2 - lwf2
print(paste("shifting ecgs"))
minecgl <- min(ecgl)
minecg2 <- min(ecg2)
if(minecg 1 < 0) {

ecgl <- ecgl + 1.1 * abs(minecg 1)

if(minecg2 < 0) {
ecg2 <- ecg2 + 1.1 * abs(minecg2)
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1
print(paste("checking R-waves for ecgl"))
for(i in 1:length(pkx)) {

# R wave detection for ecgl
xofrmax 1 <- ((pkx[i] - w):(pkx[i] + w))[ecg 1 [(pkx[i] - w):(pkx[i] + w)]

> ecg 1 [pkx[i]]]
if(length(xofrmaxl) > 0) {

xofmax 1 <- ((pkx[i] - w):(pkx[i] + w)) [ecg 1 [(pkx[i] - w):
(pkx[i] + w)] == max(ecg 1 [(plcx[i] - w):(pkx[i] + w)])]

if(xofmaxl > 1)
xofmax 1 <- xofmax 1 [1]

1
else {

xofmax 1 <- pkx[i]
1
xofr 1 <- c(xofr 1, xofmax1)

# R wave detection for ecg2
xofrmax2 <- ((pkx[i] - (2 * w)):(pkx[i] + w))[ecg2[(pkx[i] - (2 * w)):

(pkx[i] + w)] > ecg2[pkx[i]]]
if(length(xofrmax2) > 0) {

xofmax2 <- ((pkx[i] - (2 * w)):(pkx[i] + w))[ecg2 [(pkx[i] -
(2 * w)):(pkx[i] + w)]	 max(ecg2[(pkx[i] - (2 * w)):
(pkx[i] + w)])]

if(xofmax2 > 1)
xofmax2 <- xofmax2[1]

1
else {

xofmax2 <- pkx[i]
}
xofr2 <- c(xofr2, xofmax2)

# Q wave detection for ecg1 and ecg2
ming 1 <- ((xofr 1 [i] - rq): (xofr1 [i] )) [(ecg 1 [(xofr 1 [i] - rq):(xofri[i])])

<= min(ecg 1 [(xofr 1 [i] - rq): (xofrl [i])])]
if(length(minq 1) > 1) {

minq 1 <- minql[length(minql)]
1
xofql <- c(xofql, minql)
minq2 <- ((xofr2[i] - rq):(xofr2[i]))[(ecg2[(xofr2[i] - rq):(xofr2[i])])

<= min(ecg2[(xofr2[i] - rq):(xofr2[i])])]
if(length(minq2) > 1) {

minq2 <- minq2[length(minq2)]
1
xofq2 <- c(xofq2, minq2)

# S wave detection for ecg 1 and ecg2
mins 1 <- (xofr 1 [i] : (xofr 1 [i] + rs)) [(ecg 1 [xofr 1 [i]: (xofr 1 [i] + rs)])
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<= rnin(ecgl[xofrl[i]:(xofrl[i] + rs)])]
if(length(mins 1) > 1) {

mins 1 <- niinsl[length(mins1)]
1
xofsl <- c(xot 1, mins 1)
mins2 <- (xofr2[i]:(xofr2[i] + rs))[(ecg2[xofr2[i]:(xofr2[i] + rs)])

<= min(ecg2[xofr2[i]:(xofr2[i] + rs)])]
if(length(mins2) > 1) {

mins2 <- mins2[length(mins2)]
1
xofs2 <- c(xofs2, mins2)

1
if(length(pkx) != length(xofq1)) {

print(paste("Number of Q's is not equal to that of R's (ecgl)"))
print(paste("Q's:", length(xofq1)))
print(paste("R' s: ", length(xofr1)))
stop()

1
if(length(pkx) != length(xofs1)) {

print(paste("Number of S's is not equal to that of R's (ecg1)"))
print(paste("S's:", length(xofs 1)))
print(paste("R' s: ", length(xofrl)))
stop()

1
if(length(pkx) != length(xofq2)) {

print(paste("Number of Q's is not equal to that of R's (ecg2)"))
print(paste("Q's:", length(xofq2)))
print(paste("R' s: ", length(xofr2)))
stop()

if(length(pkx) != length(xofs1)) {

print(paste("Number of S's is not equal to that of R's (ecg2)"))
print(paste("S's:", length(xofs2)))
print(paste("R' s: ", length(xofr2)))
stop()

}
par(mfrow = c(2, 1), mar = c(6.1, 6.1, 4.1, 3.1))
for(i in 10:14) {

plot((xofr 1 [i] - 25): (xofr 1 [i] + 25), ecgl [(xofrl [i] - 25):(xofrl [i] + 25)],
ylim = c(min(ecgl), max(ecgl)))

abline(v = xofr 1 [i])
abline(v xofql [i])
abline(v = xofs 1 [i])
plot((xofr 1 [i] - 25): (xofr 1 [i] + 25), ecg2[(xofri [i] - 25):(xofr 1 [i] + 25)1,

ylim = c(min(ecg2), max(ecg2)))
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abline(v = xofr2[i])
abline(v xofq2[i])
abline(v = xofs2[i])
if(wait)

scan()
}

for(i in 1:length(pkx)) {
colsl <- ecgl[xofql[i]:xofsl[i]]
cols2 <- ecg2[xofq2[i]:xofs2[i]]
areal <- sum(cols1)
area2 <- sum(cols2)
if(ecgl[xofql[i]] < ecgl[xofsl[i]]) {

minqrsl[i] <- xofq 1 [i]
1
if(ecgl[xofsl[i]] < ecgl[xofql[i]]) {

minqrsl[i] <- xofs 1 [i]

if(ecg2[xofq2[i]] < ecg2[xofs2[i]]) {
minqrs2[i] <- xofq2[i]

1
if(ecg2[xofs2[i]] < ecg2[xofq2[ij]) {

minqrs2[i] <- xofs2[i]
1
window 1 <- (xofsl[i] - xofql[i])
window2 <- (xofs2[i] - xofq2[i])
basel <- ecgl[minqrsl[i]] * window 1
base2 <- ecg2[minqrs2[i]] * window2
al <- areal - basel
a2 <- area2 - base2
qrscal <- c(qrscal, al)
qrsca2 <- c(qrsca2, a2)

1
n <- length(ecg 1) + 100
fl <- 0.3
f2 <- 0.2
d <- 1
xf <- ((1:330) 1)/nfft * sr2
iqrscal <- spline(xofrl, qrscal, n)
iqrscal <- iqrscal$y
d.iqrscal <- iqrscal[seq(1, length(iqrscal), decim)]
par(mfrow = c(1, 1), mar = c(6.1, 6.1, 4.1, 4.5))
plot(d.iqrscal, type = "1", xlab = "Time", ylab = "ecgl I Deriv Resp (vQRSind)",

main = title)
if(wait)

scan()
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d.iqrscall <- lowess(1:length(d.iqrscal), d.iqrscal, f = f2, iter = 2, delta =
ceiling((length(d.iqrscal) * 0.3)/8))$y

d.iqrscals <- spect(d.iqrscal - d.iqrscall, nt = nfft, ns = 6)
plot(xf, fin$isp[1:330], type = "1", xlab = "Frequency Number", ylab = "Power",

main = title)
par(new = T)
plot(xf, diqrscals[1:330], type = "1", lty = 3, axes = F, xlab = "", ylab = "")
axis(4)
mtext("ecgl Deriv Resp (vQRSind) Power - - ", side = 4, line

= 3)
if(wait)

scan()
iqrsca2 <- spline(xofr2, qrsca2, n)
iqrsca2 <- iqrsca2$y
d.iqrsca2 <- iqrsca2[seq(l, length(iqrsca2), decim)]
plot(d.iqrsca2, type = "1", xlab = "Time", ylab = "ecg2 Deriv Resp (vQRSind)",

main = title)
if(wait)

scan()
d.iqrsca2l <- lowess(1:length(d.iqrsca2), d.iqrsca2, f = f2, iter = 2, delta =

ceiling((length(d.iqrsca2) * 0.3)/8))$y
d.iqrsca2s <- spect(d.iqrsca2 - d.iqrsca2l, nt = nfft, ns = 6)
plot(xf, finSisp[l :330], type = "1", xlab = "Frequency Number", ylab = "Power",

main = title)
par(new = T)
plot(xf, d.iqrsca2s[1:330], type = "1", lty = 3, axes = F, xlab = "", ylab = "")
axis(4)
mtext("ecg2 Deriv Resp (vQRSind) Power — ", side = 4, line = 3)
if(wait)

scan()
plot(d.iqrsca2/d.iqrscal, type = "1", ylab = "interpolated ecg2/ interpolated ecgl",

xlab = "Time", main = title)
if(wait)

scan()
d.iqrsca <- atan(d.iqrsca2/d.iqrscal)
plot(d.iqrsca, type = "1", xlab = "Time", ylab =

"Arctan (ecg2/ecgl) Deriv Resp (vQRSind)", main = title)
if(wait)

scan()
d.iqrscal <- lowess(1:length(d.iqrsca), d.iqrsca, f = f2, iter = 2, delta =

ceiling((length(d.iqrsca) * 0.3)/8))$y
d.iqrscas <- spect(d.iqrsca - d.iqrscal, nt = nfft, ns = 6)
par(mfrow = c(1, 1), mar = c(6.1, 6.1, 4.1, 4.5))
plot(xf, fin$isp[l :330], type = "1", xlab = "Frequency Number", ylab = "Power",

main = title)
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par(new = T)
plot(xf, d.iqrscas[1:330], type = "1", lty = 3, axes = F, xlab = "", ylab = "")
axis(4)
mtext("Arctan (ecg2/ecgl) Deriv Resp (vQRSind) Power - - ", side = 4, line = 3)
if(wait)

scan()
plot(xf, diqrscas[1:330], type = "1", xlab = "frequency", ylab = "Power")
par(new = T)
plot(xf, d.iqrscal s[1:330], type = "1", lty = 2, col = 2, axes = F)
par(new = T)
plot(xf, diqrsca2s[1:330], type = "1", lty = 3, col = 3, axes = F)
if(wait)

scan()
par(mfrow = c(3, 1), mar = c(6.1, 6.1, 4.1, 3.1))
plot(d.iqrsca2, type = "1", xlab = "Time", ylab = "ecg2", main = title)
plot(d.iqrscal, type = "1", xlab = "Time", ylab = "ecgl")
plot(d.iqrsca, type = "1", xlab = "Time", ylab =

"Arctan (ecg2/ecgl)", sub = "Derived with vQRSind")
if(wait)

scan()
par(mfrow = c(2, 1), mar = c(6.1, 6.1, 4.1, 4.5))
plot(d.iqrscal[1:(length(d.iqrscal)/2)], type = "1", main = title, xlab = "Time",

ylab = "ecgl (solid), ecg2 (dashed)", sub = "First Minute : Derived with
vQRSind")

par(new = T)
plot(d.iqrsca2[1:(length(d.iqrsca2)/2)], type = "1", xlab = "", axes = F, ylab = "",

col = 2, lty = 2)
plot(((length(d.iqrscal)/2):length(d.iqrscal)), d.iqrscal [(length(d.iqrscal)/2):

length(d.iqrscal)], type = "1", main = title, xlab = "Time", ylab =
"ecgl (solid), ecg2 (dashed)", sub = "Second Minute : Derived with
vQRSind")

par(new = T)
plot(((length(d.iqrsca2)/2):length(d.iqrsca2)), d.iqrsca2[(length(d.iqrsca2)/2):

length(d.iqrsca2)], type = "1", xlab = "", axes = F, ylab = "", col = 2,
lty = 2)

z <- list(d.iqrsca = (d.iqrsca - d.iqrscal), d.iqrscas = d.iqrscas, d.iqrscal =
(d.iqrscal - d.iqrscall), d.iqrscals = d.iqrscals, d.iqrsca2 = (d.iqrsca2 -
diqrsca21), d.iqrsca2s = d.iqrsca2s, qrscal = qrscal, qrsca2 = qrsca2)

z
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APPENDIX J

"VQRSDEP" PROGRAM LISTING

function(ecgl, ecg2, fin, rq = 15, rs = 15, nfft = 8192, sr = 500, decim = 25,
wait = T, title = "")

{

print(paste("creating vectors"))
minq <- vector("numeric", 0)
mins <- vector("numeric", 0)
qrscal <- vector("numeric", 0)
minxl <- vector("numeric", 0)
qrsca2 <- vector("numeric", 0)
minx2 <- vector("numeric", 0)
pkx <- fin$pk
print(paste("checking ecgs"))
if(pkx[1] < rq) {

pkx <- pkx[2:length(pkx)]
}
if(length(ecgl) < (pkx[length(pkx)] + rs)) {

pkx <- pkx[1:(length(pla) - 1)]
1
print(paste("sampling rate of ecgs = ", sr))
print(paste("decim = ", decim))
sr2 <- sr/decim
print(paste("sr2 = ", sr2))
print(paste("detrending ecgs"))
lwfl <- lowess(1:length(ecg1), ecgl, f = 110/1ength(ecg1), iter = 2, delta = 0.1)$y
ecgl <- ecgl - lwf l
lwf2 <- lowess(1:length(ecg2), ecg2, f = 110/1ength(ecg2), iter = 2, delta = 0.1)$y
ecg2 <- ecg2 - lwf2
print(paste("shifting ecgs"))
minecgl <- min(ecgl)
minecg2 <- min(ecg2)
if(minecg 1 < 0) {

ecgl <- ecgl + 1.1 * abs(nainecgl)
}
if(minecg2 < 0) {

ecg2 <- ecg2 + 1.1 * abs(minecg2)
}
print(paste("Detecting Q-waves"))
for(i in 1:length(pkx)) {

minql <- ((pkx[i] - rq): (pla[i] - 2)) [(ecgl[(pkx[i] rq):(pkx[i] - 2)1)
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<= min(ecgl[(pkx[i] - rq):(pkx[i] 2)])]
if(length(minql) > 1) {

minql <- minql[length(minql)]
1
minq <- c(minq, minql)

if(length(pkx) != length(minq)) {
print(paste("Number of Q's is not equal to that of R's"))
print(paste("Q's:", length(minq)))
print(paste("R's:", length(pkx)))
stop( )

1
print(paste("Detecting S-waves"))
par(mfrow = c(2, 1), mar = c(6.1, 6.1, 4.1, 4.5))
for(i in 1:length(pkx)) {

minsl <- (pkx[i]: (pkx[i] + rs))[(ecgl[pkx[i]:(pkx[i] + rs)])
<= min(ecgl[pkx[i]:(pkx[i] + rs)])]

if(length(mins 1) > 1) {
minsl <- minsl[length(mins1)]

1
mins <- c(mins, mins 1)

1
if(length(pkx) != length(mins)) {

print(paste("Number of S's is not equal to that of R's"))
print(paste("S's:", length(mins)))
print(paste("R's:", length(pkx)))
stop( )

1
for(i in 10:14) {

plot((minq[i] - 10):(mins[i] + 10), ecgl[(minq[i] - 10):(mins[i] + 10)])
abline(v = pkx[i])
abline(v = minq[i])
abline(v = mins[i])
plot((minq[i] - 10):(mins[i] + 10), ecg2[(minq[i] - 10):(mins[i] + 10)])
abline(v pkx[i])
abline(v = minq[i])
abline(v = mins[i])
if(wait)

scan( )
1
print(paste("Calculating areas"))
for(i in 1:length(pkx)) {

colsl <- ecgl[minq[i]:mins[i]]
cols2 <- ecg2[minq[i]:mins[i]]
cal <- sum(cols1)
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ca2 <- sum(cols2)
minxl[i] <- min (ecgl [minq[i] : mins [i]])
minx2[i] <- min(ecg2[minq[i]:mins[i]])
window <- round(mins[i] - minq[i])
base 1 <- minx 1 [1] * window
base2 <- minx2[i] * window
rcal <- cal - basel
rca2 ca2 - base2
qrscal <- c(qrscal, rcal)
qrsca2 <- c(qrsca2, rca2)
par(mfrow=c(2,1))
plot((minq[i] - 10):(mins[i] + 10), ecgl[(minq[i] - 10):(mins[i] + 10)])
abline(v = pkx[i])
abline(v = minq[i])
abline(v = mins[i])
plot((minq[i] - 10):(mins[i] + 10), ecg2[(minq[i] - 10):(mins[i] + 10)])
abline(v = pkx[i])
abline(v = minq[i])
abline(v = mins[i])
if(wait)

scan( )
1
n <- length(ecgl) + 100
fl <- 0.3
f2 <- 0.2
d <- 1
xf <- ((1:330) - 1)/nfft * sr2
iqrscal <- spline(pkx, qrscal, n)
iqrscal <- iqrscal$y
d.iqrscal <- iqrscal[seq(1, length(iqrscal), decim)]
par(mfrow = c(1, 1))
plot(qrscal, ylab = "ecgl areas uninterpolated", main = title)
if(wait)

scan( )
plot(d.iqrscal, type = "1", xlab = "Time", ylab = "ecgl Deriv Resp (vQRSdep)",

main = title)
if(wait)

scan( )
d.iqrscall <- lowess(1:length(d.iqrscal), d.iqrscal, f = f2, iter = 2,

delta = ceiling((length(d.iqrsca1) * 0.3)/8))$y
d.iqrscals <- spect(d.iqrscal - d.iqrscall, nt = nfft, ns = 6)
par(mfrow = c(1, 1), mar = c(6.1, 6.1, 4.1, 4.5))
plot(xf, fin$isp[l :330], type = "r, xlab = "Frequency Number", ylab = "Power",

main = title)
par(new = T)
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plot(xf, diqrscals[l :330], type = "I", lty = 3, axes = F, xlab = "", ylab = "")
axis(4)
mtext("ecgl Deriv Resp(vQRSdep) Power - - ", side = 4, line = 3)
if(wait)

scan( )
iqrsca2 <- spline(pkx, qrsca2, n)
iqrsca2 <- iqrsca2$y
d.iqrsca2 <- iqrsca2[seq(1, length(iqrsca2), decim)]
par(mfrow = c(1, 1))
plot(qrsca2, ylab = "ecg2 areas uninterpolated", main = title)
if(wait)

scan( )
plot(d.iqrsca2, type = "1", xlab = "Time", ylab = "ecg2 Deriv Resp (vQRSdep)",

main = title)
if(wait)

scan( )
d.iqrsca2l <- lowess(1:length(d.iqrsca2), d.iqrsca2, f = f2, iter = 2, delta =

ceiling((length(d.iqrsca2) * 0.3)/8))$y
d.iqrsca2s <- spect(d.iqrsca2 - d.iqrsca2l, nt = nfft, ns = 6)
par(mfrow = c(1, 1), mar = c(6.1, 6.1, 4.1, 4.5))
plot(xf, fin$isp[l :330], type = "1", xlab = "Frequency Number", ylab =

"Power",main = title)
par(new = T)
plot(xf, d.iqrsca2s[ 1:330], type = "1", lty = 3, axes = F, xlab = "", ylab = "")
axis(4)
mtext("ecg2 Deriv Resp(vQRSdep) Power - ", side = 4, line = 3)
if(wait)

scan( )
qrsca <- (atan(qrsca2/qrsca .1) * 180)/pi
plot(qrsca, ylab = "Arctan (ecg2/ecgl) uninterpolated", main = title)
if(wait)

scan( )
iqrsca <- spline(pkx, qrsca, n)
iqrsca <- iqrsca$y
d.iqrsca <- iqrsca[seq(1, length(iqrsca), decim)]
plot(d.iqrsca, type = "1", xlab = "Time", ylab = "Arctan (ecg2/ecgl) Deriv Resp

(vQRSdep)", main = title)
if(wait)

scan( )
d.iqrscal <- lowess(1:length(d.iqrsca), d.iqrsca, f = f2, iter = 2, delta =

ceiling((length(d.iqrsca) * 0.3)/8))$y
d.iqrscas <- spect(d.iqrsca d.iqrscal, nt = nfft, ns = 6)
par(mfrow = c(1, 1), mar = c(6.1, 6.1, 4.1, 4.5))
plot(xf, fin$isp[1:330], type = "1", xlab = "Frequency Number", ylab =

"Power", main = title)
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par(new = T)
plot(xf, d.iqrscas[ 1:330], type = "1", lty = 3, axes = F, xlab = "", ylab = "")
axis(4)
mtext("Arctan (ecg2/ecgl) Deriv Resp (vQRSdep) Power - - ", side = 4, line = 3)
if(wait)

scan( )
plot(xf, d.iqrscas[ 1:330], type = "1", xlab = "frequency", ylab = "Power")
par(new = T)
plot(xf, diqrscal s[l :330], type = "1", lty = 2, col = 2, axes = F)
par(new = T)
plot(xf, d.iqrsca2s[1:330], type = "1", lty = 3, col = 3, axes = F)
if(wait)

scan( )
par(mfrow = c(3, 1), mar = c(6.1, 6.1, 4.1, 3.1))
plot((d.iqrsca2 - d.iqrsca2l), type = "1", xlab = "Time", ylab = "ecg2", main = title)
plot((d.iqrscal - d.iqrscall), type = "1", xlab ="Time"", ylab = "ecgl")
plot((d.iqrsca - d.iqrscal), type = "1", xlab = "Time", ylab = "Arctan (ecg2/ecgl)"",

sub = "Derived with vQRSdep")
if(wait)

scan()
par(mfrow = c(2, 1), mar = c(6.1, 6.1, 4.1, 4.5))
plot(d.iqrscal [1:(length(d.iqrscal )/2)1, type = "1", main = title, xlab = "Time",

ylab = "ecgl (solid), ecg2 (dashed)", sub = "First Minute : Derived
with vQRSdep")

par(new = T)
plot(d.iqrsca2[1:(length(d.iqrsca2)/2)J, type = "1", xlab = "", axes = F,

ylab = "", col = 2, lty = 2)
plot(((length(d.iqrscal )/2):length(d.iqrscal)), d.iqrscal [(length(d.iqrscal)/2):

length(d.iqrscal)], type = "1", main = title, xlab = "Time", ylab = "ecgl
(solid), ecg2 (dashed)", sub = "Second Minute : Derived with vQRSdep")

par(new = T)
plot(((length(d.iqrsca2)/2):length(d.iqrsca2)), d.iqrsca2[(length(d.iqrsca2)/2):

length(d.iqrsca2)], type = "1", xlab = "", axes = F, ylab = "", col = 2,
lty = 2)

print(paste("length of d.iqrscal=", length(d.iqrscal)))
print(paste("length of d.iqrsca2=", length(d.iqrsca2)))
print(paste("length of d.iqrsca=", length(d.iqrsca)))
z <- list(qrscal qrscal, qrsca2 = qrsca2, d.iqrsca = (d.iqrsca - d.iqrscal),

d.iqrscas = d.iqrscas, d.iqrscal = (d.iqrscal - d.iqrscall), d.iqrscals =
d.iqrscals, d.iqrsca2 = (d.iqrsca2 - d.iqrsca2l), diqrsca2s d.iqrsca2s)

}



APPENDIX K

S-PLUS PROGRAM DEVELOPED TO CALCULATE CROSS CORRELATION

function(x, y)
{

# The length of x, y data must be the same
if(length(x) %% 2 > 0) {

x <- x[1:(length(x) - 1)]
}
if(length(y) %% 2 > 0) {

y <- y[1:(length(y) - 1)]

if(length(x) > length(y)) {
x <- x[l:length(y)]

}
if(length(y) > length(x))

y <- y[ 1 :length(x)]
}
x <- x - mean(x)
y <- y - mean(y)
n <- length(x)
autox <- sqrt(sum(x * x))
autoy <- sqrt(sum(y * y))
autoxy <- autox * autoy
r <- c(l:n)
cross <- c(1:2 * n)
print(paste("calculating cross-correlation"))
for(i in l:n) {

xshift <- x[(length(x) - i + 1):length(x)]
ywindow <- y[1:i]
p <- xshift * ywindow
r[i] <- sum(p)
cross[i] <- r[i]/autoxy

}
for(i in l:n) {

xshift <- x[ 1 :(length(x) - i + 1)]
ywindow <- y[i:length(x)]
p <- xshift * ywindow
r[i] <- sum(p)
cross <- c(cross, (r[i]/autoxy))
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print(paste("maximum cross-correlation=", max(cross)))
print(paste("minimum cross-correlation=", min(cross)))
par(mfrow = c(3, 1), mar = c(6.1, 6.1, 4.1, 3.1))
par(cex = 1)
plot(x, type = "1", ylab = "", xlab = "")
plot(y, type = "1", ylab = "", xlab = "")
plot(cross, type = "1", ylab = "", xlab = "")
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APPENDIX L

S-PLUS PROGRAM DEVELOPED TO CALCULATE COHERENCE

function(x, y, nfft = 8192, Fs = 20, nwind = 700, noverlap = 350, taper = 0.2, title = "")
{

if (any(is.na(x)))
stop("NA's not allowed - some found in x")

if (any(is.na(y)))
stop("NA's not allowed - some found in y")

if (taper < 0 I taper > 1)
stop("taper must be between 0 & 1")

if (length(x) != length(y)) {
print(paste("lengths of x and y must be the same!!!!!))
print(paste("automatically adjusting to the size of the smallest signal"))
if(length(x) %% 2 > 0) {

x <- x[1:(length(x) - 1)]
}

if(length(y) %% 2 > 0) {
y <- y[1:(length(y) 1)]

1
if(length(x) > length(y))

x <- x[l:length(y)]

if(length(y) > length(x))
y <- y[ 1 :length(x)]

x <- x - mean(x)
y <- y - mean(y)
n <- length(x)
k <- trunc((n - noverlap)/(nwind - noverlap))
index <- 1:nwind
Pxx <- rep(0, nfft)
Pyy <- rep(0, nfft)
Pxy <- rep(0, nfft)
Pxx2 <- rep(0, nfft)
Pyy2 <- rep(0, nfft)
Pxy2 <- rep(0, nfft)
print(paste("Windowing is done with a Harming window"))
window <- 0.5 * (1 - cos((2 * pi * (1:nwind))/(nwind + 1)))
for(i in 1:k) {

xw <- window * x[index]
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