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ABSTRACT

REMEDIATION AND REUSE OF CHROMVIIUM CONTAMINATED SOILS
THROUGH

COLD TOP EX-SITU VITRIFICATION

by
Wiwat Kamolpornwijit

More than 150 sites in Hudson County, New Jersey are identified as chromium

contaminated sites. Hexavalent chromium, highly soluble in water, is considered as an

environmental and health hazard, classified as a group A human carcinogen. In this

research, the feasibility was performed to study the possibility of remediation of chromium

contaminated soil by ex-situ vitrification and to evaluate reuse potential of vitrified

products as highway construction aggregate. A series of physical and chemical analysis

was conducted on nine soil samples collected from different chromium contaminated sites.

Results were analyzed for their compatibility for vitrification. Sand and carbon were

added to enhance vitrification process. Vitrification was performed and the vitrified

products were subjected to further chemical and physical tests. TCLP chromium

concentration results verified a successful remediation. The vitrified product properties

complied with the New Jersey Department of Transportation standards, designating high

reuse potential.



REMEDIATION AND REUSE OF CHROMIUM CONTAMINATED SOILS
THROUGH

COLD TOP EX-SITU VITRIFICATION

by
Wiwat Kamolpornwijit

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Environmental Engineering

Department of Civil and Environmental Engineering

January 1996



 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL PAGE

REMEDIATION AND REUSE OF CHROMIUM CONTAMINATED SOILS
THROUGH

COLD TOP EX-SITU VITRIFICATION

by
Wiwat Kamolpornwijit

Dr. Namunu Jay Megoda, Thesis Advisor 	 Date
Associate Professor of Civil and Environmental Engineering
New Jersey Institute of Technology

Dr. Methi Wecharatana, Committee Member 	 Date
Professor of Civil and Environmental Engineering
New Jersey Institute of Technology

Dr. Lisa Axe, Committee Member	 Dáte
Assistant Professor of Civil and Environment& Engineering
New Jersey Institute of Technology



BIOGRAPHICAL SKETCH

Author:	 Wiwat Kamolpomwijit

Degree:	 Master of Science in Environmental Engineering

Place of Birth: Bangkok, Thailand

Undergraduate and Graduate Education:

• Master of Science in Environmental Engineering,
New Jersey Institute of Technology, Newark, NJ, 1996

• Bachelor in Environmental Engineering,
Chulalongkorn University, Bangkok, Thailand, 1990

Major:	 Environmental Engineering

Publication:

Meegoda, N. J., W. Librizzi, G. F. Mckenna, W. Kamolpomwijit, D. Cohen, D. A.
Vaccari, S. Ezeldin, L. Walden, B. A. Noval, R. T. Mueller, and S. Santora.
"Remediation and Reuse of Chromium Contaminated Soils Through Cold Top
Ex-situ Vitrification." Proc. of the 27th Mid-Atlantic Industrial Waste
Conference. Bethlehem, PA, July 9-12, (1995): 470-479

iv



The author dedicates this thesis to his beloved parents.



ACKNOWLEDGMENT

The author wishes to express his great appreciation to his thesis advisor, Professor

Namunu Jay Meegoda, for his guidance and support throughout this research. The author

thanks Professor Methi Wecharatana and Professor Lisa Axe for constructive suggestions.

Special thanks to the New Jersey Department of Environmental Protection and Energy for

funding this research. Further, the author thanks Steven Institute of Technology for the

chemical analysis data. The author thanks Mr. David Cohen for his contribution to the

research during the beginning of this project.

vi



TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

2 .LI1`ERATURE SURVEY 	 4

• 2.1 Chromium. 	 4

2.1.1 Natural Chromium 	 4

2.1.2 Anthropogenic Chromium. 	 4

2.1.3 Production and Health Hazards of Chromate 	 5

2.1.4 Oxidation and Reduction Reaction of Chromium. 	 7

2.1.4.1 pH 	 9

2.1.4.2 Organic Matter 	 10

2.1.4.3 Redox Potential 	 11

2.1.4.4 Reducing Agent 	 12

2.1.4.5 Oxidizing Agent 	 13

2.2 Vitrification  	 14

2.2.1 Cost of Operation 	 17

2.2.2 Chemical Composition of Soils 	 17

2.2.3 Vitrified Products 	 18

2.3 Vitrification of Chromium Contaminated Soils 	 18

vii



TABLE OF CONTENTS
(Continued)

Chapter 	 Page

3 EXPERIMENTAL PROGRAM 	 22

3.1 Experimental Program. 	 22

3.2 Soil Samples Collection 	 22

3.3 Chemical Characteristic Tests for Soil Samples 	 23

3.4 Physical Characteristic Tests for Soil Samples 	 24

3.5 Soil Sample preparation for Vitrification 	 24

3.6 Vitrification Process 	 25

3.7 Chemical Characteristic Tests for Vitrified Samples 	 25

3.8 Physical Characteristic Tests for Vitrified Samples 	 26

3.9 Quality Control 	 27

4 RESULTS AND DISCUSSIONS 	 29

4.1 Test Results and Dicussions of Soil Samples 	 29

4.2 Physical Identification of Vitrified Samples 	 33

4.3 Test Results and Discussions of Vitrified Samples 	 35

4.3.1 Chemical Test Results and Discussions 	 35

4.3.2 Physical Test Results and Discussions 	 38

4.3.2.1 Specific Gravity and Adsorption 	 38

4.3.2.2 Unit Weight 	 39

4.3.2.3 Moisture Content and Colorimetric Test 	 39

viii



TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4.3.2.4 Friable Material 	 39

4.3.2.5 Sodium Sulfate Soundness 	 40

4.3.2.6 LA Abrasion Test 	 40

4.4 Volume Reduction 	 42

5 SUMMARY AND CONCLUSIONS 	 44

APPENDIX A GRAIN SIZE DISTRIBUTION CURVES OF SOIL SAMPLES 	 46

APPENDIX B GRAIN SIZE DISTRIBUTION CURVES OF VITRIFIED
SAMPLES 	 51

APPENDIX C QUALITY CONTROL CHECKS FOR VITRIFIED SAMPLE
TESTS 	 56

APPENDIX D EXPERIMENTAL PROCEDURE, 	 60

REFERENCES 	 65

ix



LIST OF TABLES

Table	 Page

3.1 Site Name, NJDEP Site Number, and Responsible Party 	 23

3.2 Control Limits for Physical Property Tests 	 28

4.1 Chromium Concentration in Soil Samples 	 30

4.2 Chemical Composition of Soil Samples 	 31

4.3 Physical Characteristics of Soil Samples 	 31

4.4 Chromium Concentration of Vitrified Samples 	 36

4.5 Physical Characteristics of Vitrified Samples 	 37

4.6 Physical Property Requirements 	 38

4.7 Adjusted Percent Weight Loss in IA Abrasion Tests 	 40

4.8 Potential Volume Reduction from Vitrification 	 43

C 1 Control Limits for Quality Control Checks 	 56

C 2 QC Checks for Specific Gravity (Dry), Fine Aggregates 	 56

C 3 QC Checks for Specific Gravity (Dry), Coarse Aggregates 	 57

C 4 QC Checks for Specific Gravity (SSD), Fine Aggregates 	 57

C 5 QC Checks for Specific Gravity (SSD), Coarse Aggregates 	 57

C 6 QC Checks for Adsorption, Fine Aggregates 	 58

C 7 QC Checks for Adsorption, Coarse Aggregates 	 58

C 8 QC Checks for Sodium Sulfate Soundness, Fine Aggregates 	 58

.0 9 QC Checks for Unit Weight 	 59



LIST OF FIGURES

Figure 	 Page

2.1 The Eh-pH Diagram for the Various Chromium Species 	 facing 9

2.2 Critical Soil Redox Potential for Chromate, Iron, and Nitrate 	 facing 11

2.3 Critical Soil Redox Potential for Manganese 	 facing 11

2.4 The pE-pH Diagram for HCr0 41Cr(OH)3 and Reducing Agents 	 facing 12

4.1 Multiplying Factors for LA Abrasion Test 	 facing 40

A 1 Grain Size Distribution Curve of RDI 	 46

A 2 Grain Size Distribution Curve of CD 	 47

A 3 Grain Size Distribution Curve of GAR. 	 47

A 4 Grain Size Distribution Curve of LSP 	 48

A 5 Grain Size Distribution Curve of RR 	 48

A 6 Grain Size Distribution Curve of DS 	 49

A 7 Grain Size Distribution Curve of TPR. 	 49

A 8 Grain Size Distribution Curve of CPR. 	 50

A 9 Grain Size Distribution Curve of RM 	 50

B 1 Grain Size Distribution Curve of RDI 1 	 51

B.2 Grain Size Distribution Curve of RDI 2 	 52

B 3 Grain Size Distribution Curve of CD 	 52

B 4 Grain Size Distribution Curve of GAR. 	 53

B 5 Grain Size Distribution Curve of LSP 	 53

xi



LIST OF FIGURES
(Continued)

Figure	 Page

B 6 Grain Size Distribution Curve of RR. 	 54

B 7 Grain Size Distribution Curve of DS 	 54

B 8 Grain Size Distribution Curve of TPR. 	 55

B 9 Grain Size Distribution Curve of CPR. 	 55

xii



CHAPTER 1

INTRODUCTION

Chromium is a metallic element and naturally occurs as mineral chromite. Chromium in a

trace amount is essential for nutrition of humans and other forms of life. There are many

forms of chromium existing naturally and anthropologically, but the stable and most

prevalent fauns are trivalent and hexavalent chromium. Chromium is utilized in multiple

industries, mostly in metallurgical, refractory, and chemical manufacturing. Hexavalent

chromium is well known as group A human carcinogen with sufficient human evidence,

classified by US Environmental Protection Agency. Both hexavalent and trivalent

chromium are associated with allergic contact dermatitis. Hexavalent chromium is water

soluble in the full pH range, while trivalent chromium tends to be adsorbed on soil surface

or precipitates as chromium hydroxide in slightly acidic and alkaline media. The high

mobility of hexavalent chromium causes the potential hazard contamination to surrounding

media, i.e., groundwater and surface water.

Chromium ore was imported and chromium was extracted in New Jersey during

the early part of the century. From 1905 to 1971, chromate production from chromite ore

was operated by three facilities in Hudson County, New Jersey. It was estimated that over

two million tons of chromite ore processing residue was leftover and used as a fill material

in construction sites and wetland, grading materials in roadway and other construction in

residential, commercial, industrial, and recreational areas. New Jersey Department of
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Environmental Protection (NJDEP) has identified more than 150 sites in Hudson County,

New Jersey as the chromium contaminated areas. The chromium concentration at these

contaminated sites ranges from a few ppm to 5 percent by weight. In some sites almost

100 percent of hexavalent chromium salt precipitation was detected.

Several treatment technologies for chromium contaminated soil were purposed,

and assessed for effectiveness, volume reduction, end-product durability, and economics.

Vitrification was selected as a potential innovative treatment technology for the feasibility

study. In the vitrification process, hexavalent chromium will be reduced to trivalent

chromium and incorporated into the glass matrix of the vitrified products, which are

physically and chemically similar to obsidian. If the vitrified products are no longer

hazard, then it should be delisted into non-hazard material. The durability and strength

properties of vitrified products are compatible to granite and pyrex. Hence vitrified

product can be reused as an aggregate in concrete and asphalt cement. Other contaminant

imparted in soil will be also remediated by means of thermal treatment such as the

pyrolysis or decomposition of toxic organic materials and encapsulation of other toxic

heavy metals.

In this research the feasibility of remediation and reuse of chromium contaminated

soils by cold top ex-situ vitrification were studied. The effectiveness of the remediation

was verified by the chemical analysis of TCLP leachate chromium concentration from the

vitrified products. The potential reuse value was evaluated based on the compatible

properties of vitrified products to the standard properties of aggregates established by

New Jersey Department of Transportation (NJDOT). This research is a part of the
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remediation program, funded by NJDEP, and performed by New Jersey Institute of

Technology and Stevens Institute of Technology. New Jersey Institute of technology was

responsible for the physical characteristic tests and verification of reusable value of the

samples, while Steven Institute of Technology was responsible for the chemical analysis.

In the remediation program, the feasibility study was conducted on two phases, the

engineering-scale and pilot-scale. The research described in this thesis belonged to the

engineering-scale part. In the engineering-scale test, chemical and physical characteristics

of both original soils and vitrified products were performed. The results were analyzed,

and the feasibility of remediation and potential reusing was determined. Vitrification was

performed by Coming, Inc. In the pilot-scale test, the economical concern and end-

products reuse will be evaluated which will not be included in this thesis.



CHAPTER 2

LITERATURE SURVEY

2.1 Chromium

2.1.1 Natural Chromium

Natural chromium in soil originated from the chromite mineral in magma which upon

exposure to the atmosphere, solidifies to form the igneous rock. Many kinds of chromium

minerals are formed, e.g., chromite (FeO.Cr203 or MgO.Cr203 ), and incorporated in the

rock. After the weathering process the chromium minerals are transformed and

transported to other parts and form sediment rock or after the long weathering process

become soil.

Chromium is the seventh most abundant element in the earth crust with the

average concentration of 100 mg/kg [I]. There are many kinds of chromium-containing

minerals but chromite is the most 'economical one. Chromite ore contains mostly

chromium oxides (Cr203), iron oxides (FeO) and lesser amounts of magnesium oxide

(MgO), aluminum oxide (Al203), and silicondioxide (Si02) [23].

2.1.2 Anthropogenic Chromium

Anthropogenic sources of chromium are generated from many kinds of industries. The

major industries processing chromium are the metallurgical, refractory, and chemical

manufacturing, which account for roughly 60%, 20%, and 20% of chromite ore

4
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consumption, respectively [2]. It is estimated that half of the airborne contaminated

chromium is generated from the coal and oil combustion [1]. Chromium contamination in

water typically originates from the chemical manufacturing, while chromite ore processing

residue is the major source of chromium contaminated soils. The chromite ore residue

was used as fill material in construction site, grading for roads or filling of wetland.

The speciation of chromium in the wastes depends upon the manufacturing

processes. Hexavalent chromium is found in the waste stream of chemical manufacturing,

primary metal production, chrome plating industry, and textile manufacturing. Trivalent

chromium is found in steel production, ferrochromium production, refractory production,

cement production, MSW incineration, and chrome ore refining.

2.1.3 Production and Health Hazards of Chromate

Mineral chromite, FeO.Cr203 , is inert and insoluble in water and acid. In the chromate

manufacturing process, chromite ore is pulverized and mixed with soda ash, Na2CO 3 , and

lime, CaO, and heated to 1100°C to 1500°C to produce sodium chromate, Na 2CrO4,

which is highly water soluble. Solubility of Na 2CrO4 at 20°C to 30°C is 5.2 mole/kg of

water [1]. Most soluble chromate compounds are leached with the remaining slowly

dissolving [25], such as calcium chromate (CaCrO 4), with a solubility of 0.00071 mole/kg

of water at 20°C to 30° C[1]. The concentrations of slowly dissolving chromate found in

chromite ore processing residue range from 0.7 to 5 percent by weight [25]. The leaching

of chromate from slowly dissolving compounds can last for decades which is potentially

environment and human health hazards.
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The concentration of chromium is critically high at the soil surface because of the

capillary rise of chromate from the slowly soluble compounds. The rising rate depends

upon the meteorological condition. The surface concentration is important since it is used

to determined the exposure hazard. Chromium has been found under buildings

constructed over the waste sites, as distinguished by its bright yellow color with

concentrations as high as 37,000 mg/kg [25].

Chromium ingestion causes acute toxicity with gastrointestinal symptoms and

bleeding, and may result in kidney or liver failure. Hexavalent chromium is considered a

group A human carcinogen with sufficient evidence, essentially to respiratory systems.

The Threshold Limit Value (TLV) for chromium established in EPA 40 CFR is 0.05

mg/m3
. Hexavalent chromium is found to be adsorbed by the human body faster than

trivalent chromium [26]. The mutagenic potentials of hexavalent chromium are positive

while inactive in trivalent chromium, except the direct contact with DNA. Hexavalent

chromium can be reduced to trivalent chromium when exposed to human organs, primarily

by bodily fluids, i.e., gastric juices, lining fluid in respiratory track, and secondarily inside

the individual cell by mitochondria, cytosol, and so on. The reduction of hexavalent

chromium by lactic acid in human sweat was also reported [3]. Excess hexavalent

chromium then gets into nucleus and is subjected to reduction reaction. The reduction

occurs can effect DNA molecules and causes the cancer induction [26].

From literature [5], air borne hexavalent chromium concentration was determined

from 21 sites representative of contaminated unpaved and partially paved

commercial/industrial sites. Results revealed levels threefold lower than current threshold
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limit value. Therefore, it can be concluded that no significant health hazard for on-site or

nearby workers [5].

Hexavalent chromium has inhalation risk per unit dose of 1.2*10 -2(g/m3 )" 1 , with an

inhalation slope factor of 42 (mg/kg-day)" l [27]. Unit risk values should be taken into

account instead of TLV when considering the health hazard of residents living near a

contaminated site.

2.1.4 Oxidation and Reduction Reaction of Chromium

It has been estimated that about two or three millions tons of chromite ore residue were

leftover in Hudson County, New Jersey. The chromite ore residue, after passing chromate

production process contains 2-7 % of chromium by weight. The concentration of total

chromium in contaminated soil from 42 sites in New Jersey was found in the range of 5-

19,000 mg/kg. Hexavalent chromium accounted for 1-5 % of total chromium or 0.5-780

mg/kg [24]. There are many existing forms of both trivalent and hexavalent chromium in

soil. The fractionation of chromium depends upon the oxidation-reduction reaction, which

mostly occurs in the aqueous media in the environment. The common trivalent chromium

ions are hexaaquochromium [Cr(H20)6] 3+, cation, and dichromate [Cr207] 2-, chromate

[Cr04] 2-, anion, for hexavalent chromium.

In contaminated soil, consisting of clay, the cationic trivalent chromium is

potentially attracted and adsorbed by the negatively charged potential on clay surface,

while hexavalent chromium is present as an anion chromate, and is soluble in water and

may precipitate as salt when the soil becomes dried. The precipitation of Cr0 42- salt
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causes the occurring and reoccurring of the blush, colorful salt precipitating on the soil

surface, essentially when the Cr042- concentration is high enough. James [3] found that

the occurring of blush might be possible at the minimum concentration of hexavalent

chromium between 200-650 mg/l.

The hazards of chromium residue come from its hexavalent form, considered a

carcinogen [7]. Hexavalent chromium is soluble in the full pH range, while trivalent

chromium tends to precipitate as Cr(OH)3 when pH is raised above 5.5, or be adsorbed on

the soil surface. The pH of Chromite ore residue usually ranges from 10 to 11 [6], this

condition promotes the precipitation of trivalent chromium as Cr(OH)3. However,

trivalent chromium could complex with organic ligands and form organic complexes

increasing Cr(III) solubility [15]. From a literature [15], it was found that when dissolved

organic carbon concentration in floodwater of wetland increased, the amount of dissolved

Cr(III) also increased. The adsorption of Cr(01) by suspended solid was also detected to

be lower at higher DOC concentration.

Trivalent chromium is considered to be more stable than hexavalent chromium It

dissociates in the hot acidic condition, while hexavalent chromium dissolves well in water

and better in alkaline or hot water [6].

The dominant species of chromium, which also indicates the potential hazard in

soil, is controlled by the oxidation-reduction reaction of chromium in soils. The reduction

or oxidation potential of chromium in soil depends on many factors such as pH, redox

potential, organic matters, reducing agents, and oxidizing agents. Reduction is found to
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Figure 2.1 The Eh-pH Diagram for the Various Chromium Species
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be mainly caused by ferrous iron (Fe(II)), organic matter, and reduced sulfide. Oxidation

is caused by manganese ion (Mn(II1) and Mn(IV)).

2.1.4.1 pH. The reduction rate of Cr(VI) to Cr(III) was found to be rapid in the acidic

condition [8, 11]. The reduction equilibrium in equation 2.1 to 2.3 [1] also indicate the

preference of reduction in the acidic media; hydrogen ions and hydroxyl ions are

incorporated with the reaction in the manner that lowering pH will increase the reduction

rate. However, Cr(111) will precipitate as chromium hydroxide Cr(OH) 3 in the alkaline or

slightly acidic, Pnyirnnment nr when nf-T is 'higher than S S The 	 cliatrram fnr

clay surface by dissolving the hydroxyl group in clay surface structure [4], as shown in

equation 2.4. When pH increases, the reaction is prone to shift to the right, increasing the

negative charges on the surface. Despite of increasing the Cr(OH) 3 precipitation, Cr(III)

which is present in. the cation forms, will be increasingly adsorbed at higher pH. The

lesser available Cr(III), after adsorption and precipitation, leads to the lower oxidation

rate. James [3] found that after spiking soluble Cr(111) and Cr(VI) into the soils, within

pH range of 8-10, about 100 % of Cr(VI) added was recovered without reduction or

sorption, while the concentration of Cr(VI) in soils was slightly decreased instead of
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lesser available Call), after adsorption and precipitation, leads to the lower oxidation

rate. James [3] found that after spiking soluble Cr(111) and Cr(VI) into the soils, within

pH range of 8-10, about 100 % of Cr(VI) added was recovered without reduction or

sorption, while the concentration of Cr(VI) in soils was slightly decreased instead of

increased when soluble COB) was added, which indicated that no oxidation occurred.

He concluded that very slight oxidation occurred in the alkaline condition.

3SiOH ----> 3Si0 - + H+ (2.4)

Soil is also known as a good buffer. Soil pH will remain quite constant, even

through natural acid addition such as acid precipitation [3]. Therefore the alkaline

condition of contaminated soil, caused by the chromite ore residue, may remain

potentially unchanged suggesting that there is no oxidation-reduction reaction in alkaline

soil.

2.1.4.2 Organic Matter. Organic matter serves as the electron donor in the reduction

reaction; it may complex with Cr(111) increasing its solubility. The organically

complexed ligands are less adsorbed by soils and less prone to oxidation [15]. The

reduction of Cr(VI) by organic matter is catalyzed by biological activity. Losi, et al., [11]

found that the mixture of soil and organic matter after passing through sterilization and

then reinnoculation possessed reduction rate of one third higher than the sterilized

mixture. Though we can not use this number to justify the biological activity, but it

indicates the potential effect of microorganism activities.
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Figure 2.2 Critical Soil Redox Potential for Chromate, Iron , and Nitrate

Figure 2.3 Critical Soil Redox Potential for Manganese
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competed with chromate to react with organic matter. Therefore, the anaerobic condition

might prefer the reduction of Cr(VI).

Organic matter might have the potential to cause indirect reduction of Cr(VI). It

could promote the reduction of Fe(III) in the mineral phase into dissolved Fe(II). Then,

the dissolved Fe (II) reduced Cr(VI) to COI). From the literature [14], it was found that

the excess reduction of Cr(VI) by dissolved Fe(II) occurred. The amount of dissolved

Fe(II) accounted for only 20-40% of the Cr(VI) reduction. The activity of

microorganisms was taken into account first, but it was objected because of the

unmatched time scale. The organic reduction was also impractical since there was no

reduction of the Cr(VI) that occurred when using the organic exclusively. Therefore, the

hypothesis that Fe(II) dissolved from the soil mineral was taken into account [14].

2.1.4.3 Redox Potential. Redox potential of soil is also effected by microbial activity,

organic matter, and reactivity of electron donor, and acceptor [15]. Maascheleyn, et al.,

[15] studied the ability of wetland soil to assimilate and retain chromium and found that

redox status of soil could be used to determine the activity of chromium in soil. In

wetland soil redox chemistry study [15] it was found that soil lacked in ability to oxidize

Cr(Ill) to Cr(VI) even in the oxidizing condition (+500 mv), while Cr(VI) reduction

occurred both in reduced and oxidized soil suspension with the different pathways. In the

oxidizing to slightly reducing environment, +200 to +500 my, aerobic condition, the

dominant reaction was Cr(VI) reduction and sorption. When the redox level decreased to

+300 my it was found that Cr(VI) reduction was complete and none of sorbed Cr(VI) was



facing 12

Figure 2.4 The pE-pH Diagram for HCrO4 iCr(OH)3 and Reducing Agents
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detected. In the reducing environment, Eh <+200 my, anaerobic condition, Mn(IV) and

Fe(III) were reduced to soluble Fe(H) and Mn(II). As a result of both diffusion and

advection the soluble ions leached into the aqueous medium. The dominant reaction was

reduction of Cr(VI) by Fe(II) and Mn(II), catalyzed by microorganism activity. The

relationship between redox potential and the dissolved ion concentration of Fe, Cr, Mn,

and NO3- in the soil suspension is shown in Figure 2.2 and 2.3. We might be able to

conclude that the reaction governing the chromium speciation in soil is Cr(VI) reduction,

except when an oxidizing agent is present.

2.1.4.4 Reducing Agent. Reduction can occur by reducing agents, such as Ferrous ion

(Fe[II]), reduced sulfur, and organic compounds as represented in equation 2.5 and 2.6.

Chromium reduction by Ferrous ion is the effective pathway for reducing Cr(VI) to

Cr(III) [3]. From equation 2.5 [8, 16], three moles of Fe(II) is equivalent to one mole of

Cr(VI), but in general the amount of Fe(II) required is higher because of its potential

oxidation by atmospheric oxygen [8].

3Fe2+ + HCral +7H + —33Fe3+ +Cr' + 4H20 (2.5)

2HCrO4+4HS03 +6H + --›.2Cr 3+ +2SO4' +S206 2  +6H20 (2.6)

Surprisingly, Mn(II) was found to be able to reduce more than 50 percent of

soluble Cr(VI) at pH 8 and tended to be better at higher pH. Mn(l1) induces the reduction

at pH higher than 7.2, while Mn(M) induces oxidation at pH lower than 7.2 [3]. The

oxidizing reducing potential of chromium with manganese could also be predicted from

the pE-pH diagram as shown in Figure 2.4.
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Barlett and James [10] suggested that once Cr(VI) was reduced it would not

significantly oxidize except under certain limited conditions, essentially when large

quantities of Mn(III) or Mn(IV) are present.

2.1.4.5 Oxidizing Agent. The most common oxidizing agents for oxidation of Cr(M) to

Cr(VI) are Mn(ILL) and Mn(IV). In the atmospheric aerosols and droplet at pH less than

7, it was found that the oxidation of trivalent chromium was slow, while the reduction of

hexavalent chromium was faster. Therefore, the trivalent chromium should be the

dominant species in the acidic condition [16]. One oxidation reaction equilibrium is

represented in equation 2.7.

2Cr' + 6Mn' +71120 ---> Cr207 2- +6Mn 2+ +14H+ (2.7)

The oxidation of trivalent chromium to hexavalent chromium is also found to be

slow in the high pH range since 1) the adsorption of trivalent chromium increases when

pH decreases, 2) higher pH will promote the precipitation of trivalent chromium as

chromium hydroxide, 3) the available soluble trivalent chromium in the organically

complexed ligands are less prone to be oxidized than their original forms.

Oxygen is the ubiquitous oxidizing agent. The oxidation of Cr(III) to Cr(VI) by

oxygen is found to be very slow and negligible at earth surface condition [17]. James [3]

ran the tests on the reoccurring of blush by putting the surface soil in the oxygen and

nitrogen atmosphere. The blush reoccurred regardless of the presence of oxygen.

However, oxygen does effect the reduction of Cr(VI) to ion Cr(III) since it will compete

with Cr(VI) for the ion [3, 8].
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We might be able to conclude that in the alkaline pH range of cbromite ore residue

the reaction is inert and the oxidation of Cr(Ill) to Cr(VI) generally does not occur, but

the chromate salt leftovers in the residue continually dissolves and threaten the adjacent

environment. The slow dissolution of calcium chromate salt could last for decades.

Therefore an effective treatment technology is required to permanently remediate these

contaminated sites.

2.2 Vitrification

Vitrification is an innovative technology that converts the hazardous contaminated waste

into a chemical durable glass-like product. Vitrification was first used to treat radioactive

waste and was successfully demonstrated in bench and pilot scale studies by Pacific

Northwest Laboratory [18]. The advantages of vitrification could be recognized by its

long-term durability of waste, applicability to many kinds of waste and soil, volume

reduction, and cost effectiveness. The process consists mainly of vitrification and off-gas

treatment.

The theory of vitrification is based on the natural occurring obsidian (silicate

glass), originated from the rapidly solidified magma. Because of the rapid cooling rate and

high liquid viscosity of oxide and silicate, the molecule cannot move sufficiently to form

crystalline structure. The glass-like structure is formed. The atomic of glass-like product

is random, thus there is no preferential planes of weakness as in the crystalline structure.

Durability tests of vitrified products were performed on the In 	 Vitrification

(ISV) by Pacific Northwest Laboratory (PNL) and the result from the 24-soxhlet tests in
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99 deionized water indicated that leach rate of vitrified products were comparable to

pyrex and granite [18]. The durability of vitrified product might be indicated by a mean

life time of 18 million years of obsidian [19], which has the similar chemical and physical

properties.

The temperature required for vitrification depends upon the fusion temperature of

soils, mostly consisting of silicondioxide and aluminumoxide, which ranges from 1100°C

to 1400°C, about 200°C increment might be necessary to get the complete fusion. The

high temperature used in the process is advantageous as [18];

1. Organic matter will be decomposed through pyrolysis into combustible gas and

moves upward through the melting mass, reducing environment. When exposed to the

oxygen-containing environment the combustible gas will be oxidized.

2. The extensive convective mixing patterns will evenly distribute the contaminant

in soil into the uniform concentration throughout the vitrified mass.

3. The inorganic and toxic heavy metals will be encapsulated or incorporated into

the glass during solidification.

4. Volume reduction, which depend upon the difference of initial soil density and

vitrified product density. From the ISV, performed by PNL, the vitrified mass density

remained quite constant, at about 2.2-2.5 gicu.cm [18], regardless of the original soil

density. Volume reduction of the vitrification of sludge was found equal to two third of

the initial volume [18].

5. The inclusion metals will be liquefied when the heating temperature reaches their

melting point. Higher density than soils, liquefied metal will move downward and solidify
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separately. In the electric arc furnace, the liquefied metal can be recycled by draining the

bottom part of the molten mass.

6. The hazardous organic and its secondary products will be efficiently destroyed

within the vitrified temperature range. From the engineering-scale ISV, performed by

PNL, the destruction efficiency of PCBs was found to be 99.9%, and 99.9999 % inclusion

off-gas treatment. The concentration level of PCBs in vitrified mass was nondetectable

and the mass released to off-gas treatment was 0.05 % by weight, with the initial

concentration of 500 ppm [18]. Furan and dioxin, secondary products of fired PCBs,

were also found to be very small in quantities and represented no hazardous operation

control. It might indicate that the diffusion rate of hazardous organic in soil was slower

than the destruction rate [18].

Vitrification is also known as the high efficiency pathway for nitrate destruction.

Within the vitrified temperature range, nitrate will be decomposed into mostly nitrogen

and carbon dioxide, which represent the dominant species of the gas bubble occurring

during the vitrification [18]. Fluoride is found to be retained in the vitrified sample while

sulfur dioxide will escape and be treated in the off-gas treatment. The element retention is

found to be related to the melting depth and cold cap residence. Deeper in depth and

occurring of cold cap will enhance the element retention [18].

Ex-situ vitrification will be performed on the cold-top design electric furnace. The

operating feature of cold top electric furnace is the same as cold cap in ISV, and can be

accomplished by feeding the materials or soils from the top of the furnace. The thickness

of unmelted layer of feeded materials will be maintained at about 6 to 12 inches [20]. The
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advantages of cold-top design include insulation for the molten zone and therefore a

saving of energy, increasing the element retention in the same pattern as cold cap ISV

[18], filtering the fume and gas produced during the vitrification, lowering the exhaust gas

temperature and heating the feeding materials.

2.2.1 Cost of Operation

The major costs of operation are electrical power, labor, and consumable materials. Cost

from ISV performed by PNL was 227-259 $/cu.m for transarunic contaminated soils, 183-

247 $/cu.m for hazardous chemical, and 70 $/cu.m for 70 % moisture content industrial

sludge, the unit volume represented the volume of initial soils [18]. The decreasing cost

resulted from the less constrained of off-gas treatment and the qualifies labors when

dealing with less hazardous substances. The operation cost for ex-situ vitrification for

combustion residue MSW in the electric arc furnace was 116 $/clry ton of residue for

production rate of 300-350 tons per day, 130 $/ton for 150-175 tons per day production

rate, and 206 $/ton for 50-60 tons per day production rate.

2.2.2 Chemical Composition of Soils

The chemical composition of soils in ISV, by PNL, was mainly Si0 2 and Al203,

accounting for 70-80%. The higher level of these oxides tended to increase the durability

of vitrified product while increasing viscosity and decreasing electric conductivity [18].

The vitrification was also performed on the combustion residue MSW, which contained Si

from 10 to 21 %, and Fe from 5 to 17 %. The crystalline structure was detected when the
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Si concentration was reduced to 10 %, P 205 increased to 8 %, and when the sample

contained greater iron concentration since that reduces the melting temperature and

viscosity [20]. It was found that at 6.2 % of carbon concentration in the MSW residue the

erratic furnace operation was detected due to the accumulation of carbon on the surface of

molten mass, which initiated arcing , provided a short circuit path. Carbon also reacted

with metal oxides to form CO and further reacted with moisture to form H2, which caused

a bridging problem with cold top design of the furnace [20].

2.2.3 Vitrified Products

The vitrified products from the ISV were found to have compressive and tensile strengths

one order of magnitude higher than that of unreinforced concrete [18]. The vitrified

products from the combustion MSW residue also satisfied the ASTM test requirements

for aggregates in asphalt, concrete and portland cement; and potential usage as grit for

sandblasting [20]. The leachate was measured for eight TCLP metals and was below the

EPA regulatory limits [18, 20].

2.3 Vitrification of Chromium Contaminated Soils

The molten temperature of pure chromium and chromite ores are higher than the vitrified

temperature, but before reaching their melting point chromium can be affected by the

oxidation and reduction reaction. Impurities in the chromium mixture could lower the

melting temperature to a range of 1513°C to 1920°C [23]. Based on the reducing

environment of melting soils, the reduction of hexavalent chromium to trivalent chromium
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and/or elemental chromium should occur. The potential chromium reduction in the

presence of aluminum, silica, and carbon could. be represented in equation 2.8 to 2.10 [23]

and is similar to chromium reduction in Ferrochromium process.

Cr203+ 2 AI --> 2Cr + Al203 (2.8)

2Cr203 + 2Si ---> 4Cr + 3S102 (2.9)

Cr203+2C --> 2Cr +3C0 (2.10)

Combustible gases produced by the pyrolysis of organic, CO and CH 4, also

promote the reducing environment. Methane is the most active gaseous reducing agent on

chromite [23]. It was found that about 70 percent of FeO was reduced in less than a

second in the presence of 75 percent CH 4 [23]. Carbon is an effective reducing agent at

high temperature for chromite (FeO. Cr 203). At 1200°C FeO and Cr203 were rapidly

reduced to iron and chromium carbide, at 1400°C iron was rapidly decarburized while

most chromium was still in the carbide form [23].

From the microwave treatment test of hexavalent-chromium-impregnated soil, the

x-ray diffraction results showed that before treatment iron and chromium in soil were

segregated but after treatment the chromate phase disappeared, iron and chromium were

no longer segregated, and the chromite (FeCr 2O4 or FeO.Cr203) and chromic oxide

(Cr203) were formed [21]. The chromite formed is the same form as mineral chromite

ore, with its octahedral crystalline structure. The maximum temperature in this experiment

was 1175°C. The leachate EP toxicity test found that chromium concentration in the

leachate was less than 5 ppm, the regulatory limit [28]. The total chromium concentration
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in the vitrified products and milled soils were found to be in the impregnated concentration

range, proving the effective element retention.

Clark [22] also found that CaCrO 4, the hexavalent dominant species in Jersey City

contaminated soils, began to loose its oxygen when heated above 800°C, which is still

lower than the vitrified temperature.

After the reduction reaction, trivalent chromium which has a similar ionic radius

(0.64 A) to aluminum (0.54 A) and titanium (0.68 A) is believed to be able to form the

tetrahedral coordination bonding in silicate glass, the same manner as the other two

elements do, at the concentration less than 7 % by weight. Aluminum ion in silicate glass

serves to raise the melting temperature and viscosity, stabilize and strengthen the glass,

and lower solubility for alkali metal compound. Similar results are expected from the

substitution of Al by Cr.

From the x-ray diffraction study on the treated sample, chromium was found in the

chromite or chromic oxide forms [21], which are crystalline structures. This result might

indicate that chromium did not substitute aluminum or silica in the silicate glass, but it

solidified into the crystalline structure, and was encapsulated or bonded to the glass

matrix. In the electric arc vitrification of combustion residue MSW the crystalline

structure also occurred in some samples. The leach rate from the crystalline products

from ISV were found to be less than from the vitrified products [18].

The TCLP chromium concentration results from both crystalline and glass-like

products were far below the regulatory limit. Element retention was proved by the higher

concentration of chromium in vitrified mass and milled soils [20, 21]. From literature, the
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fume accounted for only 0.8 to 4.4 % by weight of the feed material and its chromium

concentration was 20 to 52 % less than the feed chromium concentration [20].

From the above discussion it proves that vitrification is a viable technique for

effective remediation of chromium contaminated soils. In this research nine chromium

contaminated soils were vitrified and the properties of vitrified products were tested for

use as construction material.



CHAPTER 3

EXPERIMENTAL METHODS

3.1 Experimental Program

The experimental procedure consisted of two steps. In the first step, physical and

chemical analyses of soil samples were conducted, and in the second step, the vitrified

products were analyzed. Soil samples were analyzed for the TCLP chromium

concentration to evaluate the potential hazard, the chemical composition and physical

characteristic to determine the suitability for vitrification process. Total and hexavalent

chromium concentrations were determined to evaluate the element retention.

In the second step, original soils adjusted with additives were vitrified by Corning

Incorporated, and were subjected to physical and chemical analyses. The physical

characteristics were determined to assess the reuse value. The feasibility of the

remediation was supported by the chemical characteristics; i.e., TCLP chromium

concentration.

3.2 Soil Sample Collection

Nine contaminated sites in Hudson County were selected to perform the feasibility study

of ex-situ vitrification, engineering and pilot scale. Soil samples were taken from nine

different sites by personnel from New Jersey Department of Environmental Protection

(MDEP) accompanied by students and faculty from New Jersey Institute Technology and

22
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Stevens Institute of Technology. The soil samples were collected within six inches from

the surface. Five gallons containers with waterproof lids were used to store the samples.

The external chains of custody were generated to keep track of the hazardous soil

samples. Sites name, and NJDEP site number selected were shown in table 3.1.

chromate production facility from 1905 to 1954. During that period the chromate

manufacturing process was high-lime process (55 % of lime) [1]. From 1942 to 1964,

PPG Inc., the responsible party of CAR and GAR operated chromate extraction facility by

low-lime process (15 % of lime) [1].

3.3 Chemical Characteristic Tests for Soil Samples

Approximately one hundred gram samples from each site were sent to a certified

laboratory within 48 hr. to analyze for the hexavalent chromium concentration, using EPA

method 3060A (alkaline digestion followed by colorimetric method) for identification.
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Approximately one pound sample from each site was sent to Stevens Institute of

Technology to perform the following chemical analyses; TCLP chromium leachate by

inductively coupled plasma (ICP) spectrometer, total chromium concentration by soft and

hydrofluoric digestion, and soil pH.

3.4 Physical Characteristic Tests for Soil Samples

Physical characteristic tests were performed on soil from each site to determine the

following properties;

1. Moisture Content (standard method in ASTM D2216)

2. Liquid and Plastic Limit (standard method in ASTM D4318)

3. Grain Size Analysis (standard method in ASTM D421 and D422)

4. Specific Gravity (standard method in ASTM D854)

All wasted soil was collected in a waterproof container and will be vitrified.

3.5 Soil Sample Preparation for the Vitrification

The samples for vitrification were prepared using the following recipe; 75 % by weight of

soil with 5 % moisture content, 25 % by weight of sand (Si02), 2 gms of carbon per 5 lbs

of sample. Si02 was added to compensate for the low concentration of Si in most of soil

samples. Carbon was added to ensure that the reduction of hexavalent to trivalent

chromium was complete. Samples from all nine sites were vitrified, except for RM, since

its hexavalent concentration was below the detectable limit.
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Soil samples weighing approximately 5 pounds, except for CD, LSP, and GAR,

which were 10 lb, were sent to Coming Inc. for vitrification, accompanied with the

external chain of custody. Soil samples from RDI was duplicated, one with 10 percent

moisture content and 4 gms of carbon, the other was 5 percent moisture content and 2

gms of carbon, both were sent to Coming Inc. for vitrification.

3.6 Vitrification Process

The prepared soil samples, 5 lbs each, were put into double silica crucibles, 600 cc inside

and 1800 cc outside, to prevent possible melt-through of one crucible inside the furnace.

The 10 lbs size samples were also placed into double crucibles, 1800 cc inside and 3500 cc

outside. The samples were subjected to 1590°C for 3 hours and then were poured into the

other crucibles to make an observation of glass viscosity. These crucibles were then held

at 1350°C for 1 hour. The crucibles were then transferred to another furnace set at

1250°C, held for 1 hour and then the temperature was set at 1000°C. It took 1 hour and

20 minutes to cool from 1250° C to 1000°C. Finally, the crucibles were transferred to a

furnace set at 1000°C, held for 1 hour and then shut off to slowly cool to room

temperature. All samples experienced heavy fo .  ming and weight loss, which might due to

volatilization.

3.7 Chemical Characteristic Tests for Vitrified Samples

After receiving the vitrified samples, the samples were then cleaned to remove the

crucibles chips. Each sample was crushed by the electric grinder, two dust and very small
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particles weighing 50 gms were sent to Stevens Institute of Technology and to an

Independent Laboratory. The vitrified samples were analyses for hexavalent chromium

concentration. Stevend Institute of Technology was responsible for the TCLP chromium

concentration and total chromium. The TCLP chromium concentration were determined

by using inductively coupled plasma (ICP) spectrometer. The amount of chromium was

determined by hydrofluoric digestion followed by ICP spectrometer analysis.

3.8 Physical Characteristic Tests for Vitrified Samples

All the remaining crushed samples were tested to determine their physical properties.

These tests are required by NJDOT to evaluate the suitability of using the aggregates as

highway construction material. The brief experimental procedures are shown in appendix

D. The required tests include;

1. Specific Gravity and Adsorption of Aggregates (ASTM C-127, ASTM C-128)

2. Moisture Content (ASTM C-2216)

3. Unit Weight and Void Ratio in Aggregates (ASTM C-29)

4. LA Abrasion (ASTM C-131)

5. Soundness of Aggregates by Use of Sodium Sulfate (ASTM C-88)

6. Organic Impurities in Aggregates-Colorimetric (ASTM C-40)

7. Sieve Analysis (ASTM C-136 and ASTM C-117)

8. Clay Lumps and Friable Particles (ASTM C-142)



27

Since the melting temperature was as high as 1590°C, the organic compound and

water should be totally pyrolyzed and/or evaporated, thus the organic content and

moisture content could be negligible.

All the available sample sizes were too small and less than that required to follow

the ASTM standard, therefore the same aggregates were subjected to series of different

test methods. The test methods were performed in the following order: moisture content,

grain size distribution, unit weight, specific gravity, friable material, sodium sulfate

soundness and then LA abrasion.

The maximum size of crushed aggregate was restricted by the sample size and the

electric grinder. The maximum size of crushed aggregates for RDI was 3/8", 3/4" for CD,

GAR and LSP, and 1/2" for RR, TPR, DS and CPR. The inadequate sample size made it

impossible to perform the all required experiments for coarse aggregates. Therefore only

CD GAR and LSP have their coarse aggregates test results. Due to the limitation of

amount of aggregates a broadened range of sizes were used for testing, deviating from the

ASTM standard procedure, which may introduced small error for coarse aggregate tests.

3.9 Quality Control

Quality control checks were conducted during the tests by specifying the control limits

between the duplicated tests, and following the control limits indicated in ASTM standard

methods for each physical property test. Any pairs of results that were not within the

control limits were redone. The ASTM specified limits were shown in table 3.2.
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All the tests performed were duplicated for each samples, except for LA abrasion

tests that could not be duplicated as once the sample was tested, the sample was

destroyed. The quality control checks for friable material and sieve analysis tests were

ignored as the reuse of the same samples made the duplicated result less reliable than the

first result. For friable materials, since all friable parts were removed after the first test,

second test results had no meaning. The sodium sulfate soundness test should also belong

to this category where the duplicated test is less reliable than the first test, but if the

sample structure was uniformly distributed and the degradation continued in the same

manner, it will provide reasonable results when expose the same sample twice.



CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Test Results and Discussions of Soil Samples

Chromium concentration, chemical composition, and physical characteristic of soils are

determined and are shown in table 4.1, 4.2, and 4.3, respectively. Grain size analysis

results for each soil sample is represented in appendix A.

From the physical characteristic test results for soils, it can be concluded that all

soil samples consisted mostly of silt since they all had no plastic and liquid limits. The

specific gravity of the contaminated soils are higher than regular specific gravity of regular

soils, which lie between 2.65 to 2.72; these results imply the impregnation of heavy metal

in soil, which should be mostly iron and chromium according to the chemical composition.

Moisture content varied depending on the location of the original soil and weather

condition on the day sampling was performed. The vitrification process is not affected by

moisture content [18], only higher energy is required for higher moisture. In this research,

moisture content was controlled at 5 percent to accommodate the furnace cold top design.

If the moisture content is high it will generate large quantities of air bubbles which can

form bridging between molten and unmelted zone, it might also carry the feed material

over into the off-gas treatment, resulting in less treatment efficiency. The behavior of

heavy foaming also occurs in the presence of high carbon concentration.

29
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Grain size distribution results of the soil samples are considered acceptable for the

vitrification, the maximum cumulative weight percent finer at 0.15 mm opening sieve is

less than 30 percent. From the literature, cumulative weight percent of 34.9 percent finer

than 0.15 mm size was successfully vitrified [20]. Low percentage of fines results in low

fume production and enhances the life of off-gas treatment system.

concentrations of Cr(VI), as high as 4800 ppm in Colony Diner with 68.6 ppm TCLP

leachate concentration. Concentration of chromium ranged from 0.2 to 2.5 % , with 0 to

22 % of total chromium was in the hexavalent form. Soil pH range lied within the

alkaline range, 8.9 to 12.2. The concentration of chromium also indicated some

relationship with pH, higher pH associated with higher chromium concentration. The

relationship might be based on the fact that chromite ore residue was alkaline, while the



Table 4.2 Chemical Compositions of Soil Samples

Site Si02 Al203 Fe2O3 Mg0 Ca0 Na20 K20 Total
Roosevelt Drive-in 3.74 5.4 30.76 3.96 21.51 28.95 3.14 100.46
Colony Diner 3.88 4.88 22.60 3.55 13.06 23.53 2.84 74.33
Garfield Avenue 1.66 5.55 23.64 7.23 6.84 13.42 1.63 59.97
Liberty State Park 26.89 5.44 39.85 8.59 13.16 11.33 5.91 111.18
Hackensack River Road 0.48 4.59 41.6 1.97 4.89 10.95 1.85 66.32
Diamond Shamrock 0.47 5.13 100 2.58 3.98 17.11 2.06 131.32
NJ Turnpike Bayview 0.82 5.5 32.46 7.8 6.73 36.36 4.06 93.72
Green Acres 0.14 5.43 40.68 9.16 6.44 12.16 6.31 80.31
Reed Mineral 0.06 4.27 7.31 1.75 1.60 7.23 1.17 23.38

Table 4.3 Physical Characteristics of Soil Samples

Site Specific
Gravity

Water
content
%

Liquid
Limit

Plastic
Limit

D10 D30 D60 Cu Cc

Roosevelt Drive-in 2.76 22.00 None None 0.11 0.29 0.73 6.63 1.05
Colony Diner 2.72 29.60 None None 0.056 0.19 0.55 9.8 1,17
Garfield Avenue 2.98 24.60 None None 0.056 0.178 1.3 23.2 0.44
Liberty State Park 3.21 14.70 None None 0.049 0.17 1 20.4 0.59
Hackensack River Road 3.02 14.70 None None 0.15 0.65 3.2 21.3 0.088
Diamond Shamrock 2.78 16.65 None None 0.042 0.18 0.54 12.9 1.43
NJ Turnpike Bayview 2.76 32.46 None None 0.01 0.075 0.4 40 0.01
Green Acres 3.12 25.40 None None 0.038 0.16 0.8 21 0.84
Reed Mineral 2.9 6.09 None None 0.077 0.48 1.9 24.7 1.57
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regular pH of soil is near neutral. Therefore the higher concentration of the chromite ore

residue, the higher soil pH, and also higher concentration of chromium. From the

literature [3], in the soils pH range, chromate is stable, therefore the concentration of

Cr(VI) should be close to the amount of Cr(VI) imparted in the dumped chromite ore

residue, which remained in its slowly soluble chromate compound.

Chemical composition of contaminated soils was rather different from the regular

soil. Silica and aluminum are the major components of soil but the results showed that

only LSP had 26.99 percent of silica while the other contained less than 4 percent silica.

The iron fraction was also high as were Na and Ca. Chromite ores consists of two major

parts; spinel fraction and gangue. The spinel fraction contains isomorphous mixture of

mineral that constitute a group crystallizing in the isometric system. The common

chemical formular of mineral in spinel is RO.R 203 ; i.e. FeO.Cr203 (chromite), MgO.Cr203

(picrochromite), and FeO.Al203 (hercynite). Gangue is a minor portion consisting mostly

of magnesium silicates. Natural chrotnite (FeO.Cr203) ore consists of 30 to 50 percent

Cr203 ; 10 to 25 percent of FeO, Al203 , and MgO; 2 to 10 percent of Si0 2, and less than 2

percent of CaO. From chromite ore composition, contaminated sites are mostly chromite

ore processing residue, not regular soils. The high concentration of Na and Ca is possible

since Na2CO3 and Ca0 were the essential mixture in chromate production.

The calculation of Ca in soils from LSP, CD and RDI were higher than the others

which is due to the high-lime chromate manufacturing process. Hexavalent chromium and

TCLP leachate concentration from LSP, RDI, and CD were distinguished from the other.

Hexavalent chromium concentrations ranged from 7.7 to 22 % of total chromium and
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TCLP leachate concentrations were 32.41-46.74 mg/1, while the other were less than 2%

and 8.67 mg/1, respectively. CaCrO 4 was a slow dissolving chromate and it should prevail

in chromite ore residues leftover from the high-lime process. We may conclude that the

high different hexavalent in LSP, CD and RDI might relate with the manufacturing

process.

4.2 Physical Identification of Vitrified Samples

Roosevelt Drive-in; The sample size after vitrification was 0.670 kgs for RDI-1 and 0.602

kgs for RDI-2. The surface of the sample is slightly shiny. There were some small air

bubbles at the top and bottom and a small hole in the middle. The color of the sample was

dark brown with some yellowish stains beneath the surface. The surface of crushed

aggregate looked smooth.

Colony Diner; The sample size after vitrification was 1.75 kgs. The surface of the

sample was very shiny like the surface of a metal. There are some air bubbles beneath the

surface and at the very bottom, with a hole in the middle. The color of the sample was

dark gray, except beneath the surface and around the air bubble the color seem to be

yellowish. The surface of crushed aggregates were rather rough.

Garfield Avenue; The sample size after vitrification was 1.67 kgs. The surface of

the sample was slightly shiny. There are some air bubbles beneath the surface and at the

very bottom, with a very small hole in the middle. The color of the sample was dark gray.

The surface of crushed aggregates were smooth and there were shiny metalike stains. At



34

the bottom of the sample there were some small metal particles, spherical in shape, that

could be separated from the sample.

Liberty State Park; The sample size after vitrification was 1.75 kgs. The surface of

the sample was slightly shiny and some areas were shiny as Colony Diner. The sample was

already broken into quite a few pieces in the crucible. There are more air bubbles beneath

the surface and at the very bottom than the other samples. This sample sticked strongly to

the silica crucible parts and was very hard to clean up. The color of the sample was dark

gray. The surface of crushed aggregates was smooth but some areas look porous.

Hackensack River Road; The sample size after vitrification was 0.46 kgs. The

surface of the sample was shiny. The sample was already broken into quite a few pieces in

the crucible. There were air bubbles beneath the surface and at the bottom with a hole in

the middle. Within 1 cm from the surface there were white spot distributed all over the

area, the color of the sample was dark gray. The surface of crushed aggregates was

smooth.

NJ Turnpike Bayview; The sample size after vitrification was 0.6 kgs. The surface

of the sample was shiny. There were air bubbles beneath the surface and at the bottom

with a big hole in the middle. The surface of crushed aggregates were quite smooth, and

gray in color. The sample was magnetic.

Diamond Shamrock; The sample size after vitrification was 0.58 kgs. The

distinguishing feature of this sample was the white spots distributed all over the sample,

denser in the upward direction, while the sample color was dark gray. Crushed surface
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was smooth and shiny. Also, there were air bubbles in the top and bottom with a hole in

the middle. The metalike particle were found at the bottom, separated from the sample.

Green Acres; The sample size after vitrification was 0.72 kgs. This sample had the

hardest, strongest and heaviest properties. Only few air bubbles were found instead there

was a lot of porous areas, which was rough, hard, shiny and rust-like in color, that

occupied almost 30 percent of the specimen. The surface was shiny and the color was

gray. The sample was magnetic.

Most of the vitrified products were identified by their shiny surface, like hematite,

which may be due to the presence of Fe203 . FeO in the chromite ore will oxidize from

FeO to Fe203 when exposed high temperature [23].

Vitrified samples were found to contain air bubbles at the top, bottom parts, and a

hole in the middle. Gas bubbles in vitrified sample may have originated from pyrolized gas

of organic matters, nitrate destruction, moisture, and also oxidation of carbon.

4.3 Test Results and Discussions of Vitrified Samples

The vitrified samples were subjected to the series of tests for chemical and physical

characteristics. The chemical and physical characteristics are shown in tables 4.4 and 4.5,

respectively.

4.3.1 Chemical Test Results and Discussions

From the results, it might be concluded that all hexavalent chromium were reduced and

the vitrified samples were not further hazardous as confirmed by TCLP leachate results,
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which revealed less than 5 ppm of chromium, the regulatory limit [28]. There were no

further analysis of chemical composition of vitrified samples, the speciation of reduced

chromium, and the concentration profile of chromium. The hexavalent concentration in

the vitrified samples were below the detectable limit, confirming the complete reduction.

The hydrofluoric digestion tests were conducted to analyze for total chromium

concentration and the results indicated the significantly lower chromium concentration,

which is opposed to other literature. From the literature, the hydrofluoric digestion was

found not to be an effective way to analyze the chromium in vitrified products. The

Bergdorf pressure digestion cell incorporated with multiple reagents can be used instead

[21]. The x-ray diffraction is also an effective way for analysis [20]. The literature review

showed element retention, chromium concentration in vitrified products was higher than

the feed concentration [20, 21].

Table 4 .4 Chromium Concentration of Vitrified Samples



Table 4.5 Physical Characteristics of Vitrified Samples

Site
Bulk SG
(Dry Basic)

Bulk SG
(SSD Basic)

Adsorption
Unit Weight
(kg/cu.m)

% Void % Porous
Fine Agg. Coarse Agg Fine Agg. Coarse Agg Fine Agg. Coarse Agg

Roosevelt Drive-in 1 3.16 2.99 3.20 3.01 1.29 0.77 1759.61 41.04 5.32
Roosevelt Drive-in 2 3.20 3.02 3.24 3.04 1.29 0.77 1757.82 41.71 5.46
Colony Diner 3.21 2.91 3.25 2.94 1.39 1.20 1721.79 40.72 9.29
Garfield Avenue 3.12 3.00 3.16 3.03 1.34 0.94 1820.58 39.25 3.66
Liberty State Park 3.33 3.15 3.39 3.17 1.66 0.67 1784.58 43.16 5.53
Hackensack River Road 2.89 2.87 2.89 2.88 0.29 0.28 1743.91 39.11 0.52
Diamond Shamrock 2.63 2.55 2.64 2.56 0.40 0.74 1567.17 38.42 3.06
NJ Turnpike Bayview 3.13 2.94 3.15 2.97 0.59 0.79 1702.93 42.04 5.94
Green Acres 3.40 3.26 3.43 3.28 0.87 0.71 1868.50 42.52 4.28

Table 4.5 Physical Characteristics of Vitrified Samples (continued)

Site Colorimeric Friable 	 Material Na2S 04 	 Soundness LA abrasion
Fine Agg. Coarse Agg Fine Agg. Coarse Agg % Loss Uniformity Adj.% Loss

Roosevelt Drive-in 1 lighter 0.25 - 2.02 - 47.29 0.25 21.7
Roosevelt Drive-in 2 lighter 0.13 - 1.82 - 47.29 0.25 21.7
Colony Diner lighter 0.85 0.08 1.64 2.36 53.82 0.25 30.1
Garfield Avenue lighter 0.39 0.18 1.39 3.79 32.01 0.23 17.9
Liberty State Park lighter 0.80 0.06 1.64 2.61 30.04 0.23 18.0
Hackensack River Road lighter 0.80 0.23 1.67 - 78.51 0.26 24.3
Diamond Shamrock lighter 1.20 0.29 2.05 - 78.51 0.19 20.4
NJ Turnpike Bayview lighter 0.40 0.24 1.68 - 99.46 0.41 44.2
Green Acres lighter 0.00 0.07 1.48 - 53.64 0.22 18.8
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4.3.2 Physical Test Results and Discussions

All the test results are presented as the average of two tests (shown in table 4.5) except

for the results from sieve analysis, friable material and LA abrasion tests (because the less

reliable duplicated results were ignored), and 2) sodium sulfate soundness for coarse

aggregates and unit weight for RDI, CD, GAR., and LSP (since the specified sample size

was not available after Abrasion test). Table 4.6 shows the physical property requirements

comparing with the test results.

Table 4.6 Physical Property Requirements
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of vitrified product was mostly higher than the original soil which may be due to by

volatilization of organic matter, volume reduction due to the rearrangement of their

structures. The percent adsorption could also identify the potential susceptibility of the

vitrified products to hydration when they presented in the unsaturated environment. All

the adsorption test values were less than that specified by New Jersey Department of

Transportation (NJDOT) as shown in the table 4.6. The porosity of the samples which

can be estimated by comparing the specific gravity of both fine and coarse aggregates of

each samples ranged from 0.52 to 9.29 %.

4.3.2.2 Unit Weight. These test results are subjected to change when the maximum

aggregates size and sample size are different. Unit weight ranged from 1567.7 to 1868.5

kg/m3 .

4.3.2.3 Moisture Content and Colorimetric Test. All samples had no moisture content

and were free of injurious organic impurities, determined by the lighter color compared to

the standard solution in colorimetric test.

4.3.2.4 Friable Material. All samples possessed low percentage of friable material,

which indicated the high durability and also the uniformity of vitrified products. The test

results for the fine aggregate tests were quite sensitive to the weight measurement, and

even the discrepancy of 0.01gm, the accuracy of the scale, could make the result
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Figure 4.1 Multiplying Factors for LA Abrasion Test
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significantly different. The results were not the average but the first test results since all

the friable material were already removed after the first test.

4.3.2.5 Sodium Sulfate Soundness. Sodium sulfate soundness test was used to

determine the resistance of aggregate to the weathering, which build up the stress in

aggregates. The results showed the values that are much less than that specified by

NJDOT (10 percent).

4.3.2.6 LA Abrasion Test. Due to the insufficient sample size, this was a difficult test to

conduct. However the abrasion tests are performed on all samples. The number of

revolutions and charges were remained the same as that was specified in the standard

method in ASTM. This condition should be the worst case.

Table 4.7 Adjusted Percent Weizht Loss in LA Abrasion Tests
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From the results, DS, 0.32 kgs in tested weight, possessed the most severe

degradation, it should be higher than 100% since the percent weight loss after 500

revolution was 99.46 % and the uniformity was 0.4, while the average uniformity was

0.24. If we kept the uniformity at 0.24, the percent weight loss increased to 170 percent,

which would be the reasonable number.

From table 4.7 we can notice that the results also depend on the sample size.

Therefore, we developed a model to show the effect of sample size on the degradation

rate. The control samples were aggregates used in mixing asphalt concrete. A series of

control samples different in size were subjected to the test. The percent weight loss of

each samples were recorded. Multiplying factor are determined from the fraction of

percent weight loss at each sample sizes to the percent weight loss of the standard sample

size (5 kg). Multiplying factors and sample sizes were plotted in Fig. 4.1. The linear

relationship was assumed. Adjusted percent weight loss were obtained from multiplying

the observed percent weight loss with the multiplying factor as shown in table 4.7. From

the adjusted results we can conclude that all sample was satisfied the 40 percent weight

loss limitation established by NJDOT, except for DS which had 53.64 percent weight loss.

However, the different samples had different structures and degree of degradation,

therefore we must bare in mind that this adjusted values represent the potential values and

are subjected to change when actual samples were tested. The correct results will be

further determined in the full-scale test.
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4.4 Volume Reduction

The potential volume reduction was also determined. In fact, volume reduction should be

calculated from the different density between the in-situ soil and vitrified products, but we

had not collected the data on in-situ soils density, therefore the difference between soil and

vitrified products specific gravity were used to determine the potential volume reduction,

which is shown in table 4.8.

Table 4.8 The Potential Volume Reduction from Vitrification
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downward and solidified separately, which caused the lower specific gravity. On the other

hand, specific gravity of CPR with 40.68 % iron concentration turned out to be higher

than the original soil. The significant property of CPR is its magnetic property throughout

the sample which might imply the incorporation of iron throughout the sample mass,

resulting in higher specific gravity. Other noticeable difference between CPR, and RR and

DS is that CPR was the higher concentration of MgO. Volume reduction is another

advantage for in-situ vitrification, but is not significantly important in ex-situ vitrification.



CHAPTER 5

SUMMARY AND CONCLUSIONS

Vitrification process is an innovative remediation technology purposed to stabilize

hazardous waste besides the solidification/stabilization by chemical reagents. It also has

the other advantages such as volume reduction, reusable products, durable and long-life

products, and cost effective.

The feasibility study of remediation and reuse of chromium contaminated soils was

conducted. The effectiveness of remediation was determined by the hexavalent chromium

reduction and the trivalent chromium retention, which was verified by the TCLP leachate

test results and hexavalent chromium concentration analysis. If the physical properties of

the vitrified products are comparable to the aggregates properties set forth by NJDOT and

ASTM, then the vitrified products can be used as aggregates in construction. From the

physical test results, all the samples were acceptable as aggregates in construction. The

LA abrasion tests results show high values because of the smaller sample size used in the

experiments. The results were corrected to account for the sample size. The adjusted

values were satisfied the requirement except for sample from DS.

The heterogeneity of soil might have some effect on the vitrified sample properties,

however vitrification has been performed on many types of waste and has been found to

be an effective remediation technology.

44
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Therefore we can conclude that the chromium contaminated soil can be remediated

and reused by vitrification. However, further investigation is needed to develop the cost

of treatment, and to determine the effect of the aggregates incorporated into concrete and

asphalt cement. The above will be evaluated during the second phase (the pilot-scale test)

of the project in 1996.



APPENDIX A

GRAIN SIZE DISTRIBUTION CURVES OF SOIL SAMPLES

Figure Al Grain Size Distribution Curve of RDI
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Figure A2 Grain Size Distribution Curve of CD
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Figure A3 Grain Size Distribution Curve of GAR



Figure A4 Grain Size Distribution Curve of LSP

Figure AS Grain Size Distribution Curve of RR



Figure A6 Grain Size Distribution Curve of DS

Figure A7 Grain Size Distribution Curve of TPR



Figure A8 Grain Size Distribution Curve of CPR

Figure A9 Grain Size Distribution Curve of RM



APPENDIX B

GRAIN SIZE DISTRIBUTION OF VITRIFIED SAMPLES

Figure B1 Grain Size Distribution Curve of RDI-1



Figure B2 Grain Size Distribution Curve of RDI-2
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Figure B3 Grain Size Distribution Curve of CD



Figure B4 Grain Size Distribution Curve of GAR

Figure B5 Grain Size Distribution Curve of LSP



Figure B6 Grain Size Distribution Curve of RR

Figure B7 Grain Size Distribution Curve of DS



Figure B8 Grain Size Distribution Curve of TPR
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Figure B9 Grain Size Distribution Curve of CPR



APPENDIX C

QUALITY CONTROL CHECKS FOR VITRIFIED SAMPLE TESTS
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APPENDIX II

EXPERIMENTAL PROCEDURE

The experimental procedures described herein are intended to give the brief information

on the experimental method. The detailed procedure are fully described in ASTM

standard.

D.1 LA Abrasion (ASTM C131 -81)

This test method is used to determine the resistant to degradation by abrasion and impact

of coarse aggregate. Los Angeles Machine is a rotating steel drum. Charges, metal

spheres, and samples are put into the machine. Number of changes are determined from

sample grading. The standard sample size is 5 kg for small size coarse aggregate. While

the machine is rotating the charges are dropped to the sample, creating and impact

crushing effect.

The machine are rotated 500 revolution at a speed of 30-33 rpm. After the test,

processed sample is separated by the 1.7 mm (No.12 sieve). The material coarser than 1.7

mm. is washed and oven-dry at 105° C. Then, oven-dry at 105° C. Then, oven-dry the

samples are weighed and the final weight as a percentage of the original weight is reported

as percent weight loss. Uniformity is calculated from the ratio of weight loss at 100

revolution divided by percent weight loss at 500 revolution.

60
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D.2 Specific Gravity and Adsorption of Aggregate (ASTM C127, ASTM C-128)

Specific gravity is defined as the ratio of solid density to water density. Specific gravity

can be calculated from the weight ratio of solid divided by the water of the same volume.

Volume of solid can be determined by the displacement of solid in water. The volume of

water displacement is equal to volume of solid and the weight of water can be determined

regarding with its density.

Specific Gravity (dry basic) is determined after the sample was oven-dried at 105

°C until the weight is constant.

Specific Gravity (saturated surface dry) is determined after the immersion of

sample in water and air dry the sample. The saturated surface dry is reached when there is

no film of water present on the aggregate surface. At saturated surface dry the permeable

pores are filled with water.

Adsorption represents the weight percent of water that could be adsorbed on the

permeable pore of aggregate to the sample weight. It can be calculated from the

difference of specific gravity dry basic and saturated surface dry basic.

Porosity is defined as fraction of void volume to solid volume. It can be estimated

from the difference of fine and coarse aggregate. In coarse aggregate the volume of water

obtained includes the void volume and solid volume, while the volume of replaced water

from fine aggregate represents only the volume of solid. The porosity can be determined

from (volume of coarse aggregate-volume of fine aggregate)/ volume of fine aggregate at

the same unit mass.
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D.3 Soundness of Aggregates by Use of Sodium Sulfate (ASTM C 88-83)

This method is used to determine the soundness of aggregates when subjected to

weathering action. This is accomplished by repeating immersion of aggregate in the

saturated solution of sodium sulfate followed by oven drying to partially or completely

dehydrated the salt precipitated in permeable pore spaces. The expansive force derived by

the rehydration of the salt upon re-immersion is analogous to the expansion of water on

freezing. The required sample size and sample grading for both fine and coarse aggregate

is available in detail in ASTM standard. After five cycles of immersion and oven dry,

weight loss is reported as a percentage of original weight.

D.4 Unit Weight and Void Ratio in Aggregates (ASTM C-29)

The unit weight are calculated from the compacted weight of sample in the measure

divided by the measure volume. Measure is the cylindrical metal with the specified size

depended upon the maximum size of aggregate available. Void ratio is calculated from the

following formula;

% Void = [(S x W) - M)/ (S x W)] x 100

where: M = Unit weight (kg/cu.m)

S = Bulk specific gravity (dry basic)

W = Density of water (kg/ cu.m)
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D.5 Sieve Analysis (ASTM C-136 and ASTM C-117)

This method is used to determine the particle size distribution of fine and coarse aggregate

by sieving. The sample is dried at 105°C and then sieved by mechanical apparatus for a

sufficient period of time. Suitable sieve size shall be selected to furnish the information

required by the specifications covering the material to be tested. The percent finer at each

specified sieve number is determined from the percentage by weight of sample that passes

through that sieve.

D.6 Clay Lumps and Friable Particles in Aggregates (ASTM C -142)

This method is used to approximate the clay lumps and friable particles in aggregate. Clay

lumps and friable particles are defined as the particles that can be broken by rubbing with

finger into fine and removed by wet sieving. The percentage of clay lumps and friable

particles is calculated as follows;

P =[(W- R)/ W] x 100

where P Percent of clay lumps and friable particles

W = Weight of test sample

R = Weight of particle retained on sieve

D.7 Organic Impurities in Aggregates-Colorimetric (ASTM C-40)

This test is used to determine the presence of injurious organic compound in fine

aggregates. The method is performed by adding 3% NaOH to the bottle filled with

sample. After shaking the bottle vigorously and let it stands for 24 hr the color of sample
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is observed and compared with that of the reference standard color solution. If the color

of sample is darker than that of the standard solution, the fine aggregate may contain

injurious organic compound. Full procedure and preparation of standard solution can be

obtained from ASTM C-40.

D.8 Moisture Content (ASTM C 2216)

This test is used to determine the percentage by weight of water in the sample. The

weight of sample before and after drying at 105° C are measured. The difference between

these two value is the weight of water. The moisture content is the weight of water as the

percentage of sample weight.
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