
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Fall 1996

Real-time implementation of an adaptive control
system for a 3-zone rapid thermal processing
station
David Hur
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Electrical and Electronics Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Hur, David, "Real-time implementation of an adaptive control system for a 3-zone rapid thermal processing station" (1996). Theses.
1055.
https://digitalcommons.njit.edu/theses/1055

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F1055&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1055&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F1055&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1055&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1055&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1055?utm_source=digitalcommons.njit.edu%2Ftheses%2F1055&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

REAL-TIME IMPLEMENTATION OF AN ADAPTIVE CONTROL SYSTEM
FOR A 3-ZONE RAPID THERMAL PROCESSING STATION

by
David Hur

In this thesis, the implementation details of a real time adaptive control system for

a TI 3-zone RTP station, as well as the simulation and the experimental results are

presented, Extensive simulation of the system is performed in order to ensure proper

operation of the system, The experimental results are used to verify proper operation of

the closed loop control system. Initial experiments were conducted using two thermo-

couples, Further experiments were conducted using one thermocouple for the purpose of

testing the performance of the system using Extended Kalman Filter as the state

estimator.

The implementation of the control system is carried out on an IBM compatible PC

hosting a Transputer parallel-processing system, The motivation for utilizing the parallel

processing system is to ensure future extensibility of the system, The eventual

incorporation of a remote temperature sensing method such as Multi-Wavelength Imaging

Pyrometer (M-WIP) will require great deal of computing power from the system. The

implementation of the software for the system is also carried out with goal of providing

ease of maintenance and extensibility, The implementation of graphical user environment

also provides to the user point and click operation of the system as well as real time

plotting capability,

REAL-TIME IMPLEMENTATION OF AN ADAPTIVE CONTROL SYSTEM
FOR A 3-ZONE RAPID THERMAL PROCESSING STATION

by
David Hur

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

October 1996

APPROVAL PAGE

REAL TIME IMPLEMENTATION OF AN ADAPTIVE CONTROL SYSTEM
FOR A 3-ZONE RAND THERMAL PROCESSING STATION

David Hur

Dr. Bernard Friedland, Thesis Advisor 	 Date
Distinguished Professor of Electrical and Computer Engineering, NJIT

Dr. Timot N. Chang	 Date
Associate rofessor of electrical and Computer Engineering, NJIT

Dr. N. M. Ravindra	 Date
Associate Professor of Physics, NJIT

BIOGRAPHICAL SKETCH

Author:	 David Hur

Degree:	 Master of Science

Date:	 October 1996

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology,
Newark, NJ, 1996

• Bachelor of Science in Computer Engineering,
New Jersey Institute of Technology,
Newark, NJ, 1994

Major: Electrical Engineering

ACKNOWLEDGMENT

I express my sincere gratitude to Dr. Bernard Friedland for his support and guidance,

I also express my deep gratitude to Sergey Belikov for his expert guidance in

experimenting with the RTP system, and on whose theoretical work much of this thesis is

based on, Without their support and guidance, this thesis would not be possible.

I also like to thank National Science Foundation for their support. The entirity of this

experiment was supported by the National Science Foundation under Grant ECS-

9312451,

I would also like to express my appreciation to Dr, Timothy Chang and Dr, N. M,

Ravindra for serving as committee members. Also a thanks is in order to M, Kaplinsky

for teaching us the operations procedure of the RTP station.

vi

This thesis is dedicated to my family

v

TABLE OF CONTENTS

Chapter	 Pages

1 INTRODUCTION 	 1

1,1 Rapid Thermal Processing 	 1

1,2 Performance Criteria 	 2

1.3 Description of Experimental RTP Station 	 3

1,4 Experiment Objective 	 5

2 MODEL BASED ADAPTIVE CONTROL ALGORITHM 	 6

2,1 Introduction 	 6

2.2 Dynamic Model of Heat Transfer in the Experimental RTP system 	 6

2.2 Adaptive Control Algorithm for the Experimental RTP Station 	 10

3 IMPLEMENTATION OF ADAPTIVE CONTROLLER 	 13

3,1 Transputer System 	 13

3,2 Programming for Transputer System 	 15

3,3 Hardware Architecture of the Adaptive Controller 18

3,4 Software Architecture of the Adaptive Controller 20

3.5 Simulation System 	 24

3,6 Experimental System 	 25

4 SIMULATION AND EXPERIMENTAL RESULTS 	 27

4,1 Preliminary Simulation Results 	 27

vi i

TABLE OF CONTENTS

(Continued)

Chapter	 Pages

4,2 Preliminary Experimental Results 	 31

5 STATE ESTIMATION USING EXTENDED KALMAN FILTER 	 37

5,1 Motivation 	 37

5.2 Extended Kalman Filter 	 38

5.3 Simulation Results 	 41

5,4 Experimental Results 	 46

6 ESTIMATION OF EMISSIVITY 	 56

6.1 Background 	 56

6,2 Theory 	 56

	

6.3 Results of the Experiment 59

	

7 CONCLUSION 62

	

APPENDIX A Adaptive Controller Host Program 64

APPENDIX B Adaptive Controller Transputer Program 	 82

APPENDIX C Operational Procedure for RTP System 	 106

BIBLIOGRAPHY 	 109

v i i i

LIST OF TABLES

Table	 Page

2,1 Temperature dependent specific heat and thermal conductivity for silicon 	 9

2.2 Temperature dependent emissivity for silicon 	 9

ix

LIST OF FIGURES

Figure	 Page

1,1 Schematic of a TI 3zone RTP station 	 3

1,2 Photo of Lamp Rings 	 4

1,3 Photo of RTP Chamber 	 4

3,1 Block Diagram of a Transputer Module [14] 	 13

3,2 Default Transputer Module Configuration on the Motherboard [12] 	 14

3,3 Block Diagram of the Transputer Based Implementation of the Adaptive
Controller 19

3,4 Graphical User Interface for the Adaptive Controller 	 22

3.5 Block Diagram of the Simulation System 	 25

3,6 Block Diagram of the Experimental RTP System 	 26

4,1 Single Computer Simulation Result 	 28

4,2 Simulation with Estimator Gain of 2,33e6 	 29

4,3 Simulation Result with Filtered Temperature Measurements 	 30

4,4 Experimental Results, Ramp Rate is 20K/s, Parameter Estimator Gains are Set
Identically to 1.33e3 	 33

4,5 Comparison of Measured Temperatures vs, Reference Trajectory, The Ramp
Rate is 20K/s, Parameter Estimator Gains are Set to 1.33e3 	 34

4,6 Experimental Result. Ramp Rate is 10K/s, Parameter Estimator Gains Set
Identically to 1.33e3 	 35

4,7 Comparison of Measured Temperature Against Reference Trajectory. Ramp
Rate is 10K/s, Parameter Estimator Gains are Set to 1,33e3 	 36

LIST OF FIGURES

(Continued)
FIGURE 	 PAGE

5,1 Simulation Result Using Extended Kalman Filter as the State Estimator, Ramp
Rate is Set at 10K/s, the Parameter Estimator Gains are Set to 1,33e3 	 43

5,2 Simulation Result. Difference Between the Measured and Estimated Temperat-
ures, The Ramp Rate is 10K/s, the Parameter Estimator Gains are 1.33e3 	 44

5,3 Simulation Result. Difference Between the Measured Temperatures, The Ramp

	

Rate is 10K/s, the Parameter Estimator Gains are 1,33e3 45

5,4 Preliminary Experimental Result of Using EKF as the State Estimator.
The Ramp Rate is 10K/s, the Parameter Estimator Gains are 1.33e2 	 48

5,5 Plot of Reference Tracking Error and Uniformity, The Ramp Rate is 10K/s, the
Parameter Estimator Gains are 1.33e2 	 49

5,6 Experimental Results with Parameter Estimator Gains Set at 2,33e4 	 50

5,7 Plot of Reference Tracking Error and Uniformity with Parameter Estimator

	

Gains of 2,33e4 51

5,8 Experimental Results with Parameter Estimator Gains Set at 1.33e4 	 52

5,9 Plot of Reference Tracking Error and Uniformity with Parameter Estimator

	

Gains at 1.33e4 53

5,10 Experimental Results with Parameter Estimator Gains Set at 1,0e4, 2,5e4,

	

1.33e4 54

5,11 Plot of Reference Tracking Error and Uniformity with Parameter Estimator
Gains Set at 1.0e4, 2,5e4, 1,33e4 	 55

6,1 Temperature Trajectory Due to Impulse Control Function Generated From
Experimental Data 	 59

6,2 Estimation of Parameters in Simulation 	 60

6,3 Emissivity Function of Estimated Parameters 	 60

xi

LIST OF FIGURES

(Continued)

FIGURE	 PAGE

6.4 Estimated Parameters Using Experimental Data 	 61

6.5 Emissivity Function of Estimated Parameters 61

x i i

CHAPTER 1

INTRODUCTION

1.1 Rapid Thermal Processing

Rapid Thermal Processing (RTP) is an advanced semi-conductor wafer processing

method promising many improvements over the conventional batch processing methods.

The conventional method is to process a batch of wafers simultaneously in a temperature

controlled furnace, The thermal processing of the wafers by this procedure is slow,

usually taking of minutes or even hours, Also, due to large thermal mass of the furnace,

the thermal cost of processing is high, The processing steps such as oxidation occurs only

at high temperature, at which the problem of diffusion and thermal shock becomes a

factor. Therefore, the length of the time under which the wafers are subjected to high

temperature presents a problem as the circuit feature size continues to shrink as is the

current trend in the semiconductor industry [l],

By comparison, in the RTP method, each wafer is processed individually. The

RTP station performs multiple thermal processing steps in a single chamber by specifying

a process temperature trajectory. The rapid thermal processing of the wafer reduces the

processing time to in terms of seconds, and also reduces the overall thermal cost of

processing a wafer due to smaller thermal mass of the reaction chamber [1], Another

advantage of rapid thermal processing is the inherent flexibility associated with the

method, By being able to specify temperature trajectory, many different types of

processing operations can be accomplished at a single RTP station, This flexibility makes

the RTP method all the more suitable for the programmable factory environment [2],

2

1.2 Performance Criteria

The two main performance criteria of the RTP station is (1) its ability to closely follow a

given process temperature trajectory, and (2) maintaining uniformity of the temperature

across the surface of the wafer while following the process temperature trajectory, The

close proximity of the wafer being processed to the heat source, usually a set of high

power quartz lamps, and the inherent lack of thermal stability inside the processing

chamber makes the uniformity issue a difficult one to solve [1],

The measurement of the wafer temperature also presents a challenge to the

development of a practical RTP system, For a control strategy to be implemented using

feedback, accurate measurement of the temperature at a multitude of points across the

surface of the wafer becomes an important issue. Two of the most popular method of

measuring the temperature is to use thermocouples and pyrometers. Using thermocouples

is unrealistic for manufacturing environment, since the thermocouples must maintain

contact with the wafer being processed. Using pyrometers also presents problems: Since

pyrometers are a device which measure radiative power rather than direct temperature, the

physical property of the wafer under process, namely the emissivity of the wafer, becomes

an important parameter, However, the emissivity of a silicon wafer changes as the

processing temperature changes. The emissivity will also differ from one wafer to

another, Without proper strategy to account for emissivity, the pyrometer measurement

can not provide accurate temperature readings to be useful in the temperature control

strategy,

3

1.3 Description of Experimental RTP Station

The issue of temperature uniformity, as mentioned previously, is a critical issue in the

design of a RTP station, An approach to solve the problem, presented in [1], is to

implement the heating lamp configuration such that each cluster of lamps are

independently controlled. A feedback control strategy is then implemented to control the

heat flux of each ring such that the overall heat flux profile follows a certain optimal

shape desired [2].

Figure 1.1. Schematic of a TI-3 zone RTP station

The TI-3zone RTP station, shown schematically in Figure 1,1, consists of three

rings of tungsten-halogen lamps, each ring controlled by an independent power supply,

and surrounded by a reflector, The central ring consist of a single 2kW lamp. The second

ring consist of twelve 1kW lamps, The third ring consists of twenty four 1kW lamps, A

4

quartz window, 0,5" thick, separates the lamp rings from the wafer to be processed, The

distance between the top surface of the quartz window to the central lamp ring is 0,56",

and to the second lamp ring is 2,13", and to the third lamp ring is 1,25", The wafer is

positioned 0,085" below the bottom surface of the quartz window and is held in position

at three points by a graphite susceptor. The edges of the quartz window are water cooled

to the room temperature, and the surface of the window are cooled by room temperature

air blown across the surface. The reaction chamber of the TI 3-zone RTP station is 7,375"

in diameter, The walls of the chamber are made of stainless steel and are water cooled to

room temperature, The ambient of the chamber may be either a vacuum or a process gas

depending on the processing need, The chamber have provisions for a remote infrared

temperature sensor, The sapphire window at the bottom of the chamber allows for

measurement of radiative energy of the wafer, A remote sensor, such as M-WIP [3] which

is under investigation by a team of researchers at NJIT, may be used in the future to

provide a solution to the sensor problem mentioned previously.

1.4 Experiment Objective

The research efforts at NJIT during past several years have resulted in, among others, a

dynamic heat transfer model of the TI 3 zone RTP station, Using TI 3-zone RTP station,

extensive experiments have identified various physical parameters associated with the

RTP station, Based on the parameters, the direct model-based adaptive control algorithm

for the temperature control strategy is developed.

5

The objective of the experiment is to implement the control algorithm in an real-

time system and to evaluate the performance of the system with respect to the

performance criteria as stated previously. A typical goal may be to control the

temperature tracking error to be within 1K and to maintain the temperature uniformity

across the surface of the wafer within 1K, In the present implementation thermocouples,

located along a diameter of the wafer at three points, are used to measure the

temperatures, A digital computer hosting a parallel processing system is used to

implement the control algorithm and to close the control loop,

CHAPTER 2

MODEL BASED ADAPTIVE CONTROL ALGORITHM

2.1 Introduction

In this chapter a brief summary of theories underlying the dynamic model of the RTP

station and the adaptive control algorithm is presented. The theoretical work is described

in full detail in [4], [5], and [6], and is presented here for reference only,

2.2 Dynamic Model of Heat Transfer in the Experimental RTP system

The heat transfer mechanism in RTP depends on both the thermal conductivity of the

wafer material and the heat radiation mechanism inside the chamber, The radiation

mechanism depends on the parameters due to lamp radiation as well as environmental

and disturbance heat flux [7]. The heat transfer parameters due to thermal conductivity

can be calculated from the known physical properties of the wafer material, However the

parameters due to the radiation must be either experimentally determined or estimated on

line during the processing steps [5],

The model of heat transfer for a thin silicon wafer in an axi-symmetric RTP

system with three rings of heating lamps is represented by the following partial

differential equation [4].

T(r,t)	 1 d 	 d T(r,t)
pc(T(r,t)) 	

t 	
— k(T(r,t))

r a r (r	
r)

3

2/1 -1 [E(T(r, t)) +IG 1 (r,U 1 (t))+S(r,t)]	 (2,1)
(.1

6

7

(2.2)
T(r,0)=To (r), 0 5.r 5.R

T(r,t)

d r
= 0	 (2,3)

r=R

where R is the radius of the wafer, h is the wafer thickness, r is the radial position along

the wafer, p is the density of the wafer material, and T(r,t) is the temperature of the

wafer at point r at time t, c(T(r,t)) is the specific heat of the wafer material per unit

volume, k(T(r,t)) is the thermal conductivity of the wafer material per unit volume, The

function E(T(r,t)) in (2,1) is the emission power per unit area of the surface of the wafer

[5][8], The emission function E(T(r,t)) for a non-black body is shown to be [6][9]

E(T) = Ece l p i (T)T4-1 	 (2,4)
I=r„„„

where p, (T) are the coefficient of the following spectral emissivity model [4][3]

imaz

E (A.,T)= 	 p, (T).1'	 (2,5)

/min = 0,— 1, — 2, / ma, = 0,1, 2

a 0= 5,67,10-8 rw I (m 2 K4

a 1 = 3,02 • 10 -1° [W / (mK 3)]

a 2= 2,97 .10' 2 [WI K 2]

a _ 1 = 1.51 • 10 -5 [W 1(m 3 K 5)]

a _ 2 = 5.15 ' 10 -3 [W (-71 4 e)]

The function U, (t) in (2.1) is the control voltage to the	 ring of the heating lamp at

time t in the range from 0 to 5 volts. The function G i (r,U) of (2,1) is the / th ring

radiation function relating the voltage supplied to the lamp ring to the heat power

8

reaching the surface of wafer [4]. The function S(r, t) denotes unmodeled disturbances

such as heat flux to and from the edge of wafer, convection, and other disturbance flux.

The investigation of [8] have shown that the temperature distribution in a

semiconductor wafer T(r,t) and heat fluxes G 1 (r,U), S(r,t) can be expressed by a 3-

coefficient Bessel function expansion, The RTP system with 3 rings of heating lamps

therefore have the following representation for the temperature distribution [6]

T(r,t)= x0 (t)+x2 (t) J0 (p i r/ R)+ x 3 (t) Jo (,u2 r I R) (2.6)

where x0 (t) is the average temperature along the wafer, x,, (t), n =2,3 are the (n —1) ``i

coefficients of the Bessel function expansion of the difference between the temperature of

the wafer and the reference temperature f(t), and , p2 are solutions of the equation

clf „(p) 1 dp = 0 (2.7)

The state variables x (t), n = 1,2,3 are the coefficients in Bessel expansion of (2.6) and

satisfy the following ordinary differential equations [4],

p c(x 0) xa = —2/7 -1 E(x0)+ P, 	 (2,8)

p c(x 0) 2 = —[(p1 /R) 2 k(x0)+2F 1 E(x0)] x 2 + P2 	(2,9)

p c(x0) i 3 = —[(p2 / R) 2 k(x 0) +2h -1 E(x0)] x 3 + P3 	(2.10)

where

3
P,, = 21/ -1 [/, Gin (U /)+ Sn (t)] ,n = 1, 2, 3	 (2.11)

1=1

It was shown in [5] that the function G l (r,U) can be adequately approximated by

the products of "shape" functions G 1 (r) which depend only on the radial position r and

the "amplitude" function k- 1 (r,U) that depend only on the voltage U;

T[K] 300 550 700 740 1000
0,2 0,2 0,5 0,7 0,7

9

(r, U) G 1 (r) k 1 (U), 1=1,2,3 	 (2.12)

The control signals must be nonnegative and bounded, For control signal to be admissible

it must satisfy the following condition [6];

0 u(t) Urnax	 u max ,	u max T 	 (2.13)

For the experiment, the silicon wafer used has radius of R=76,2 mm and thickness

h=0.635 mm with three thermocouples imbedded at the center of the wafer, and at points

of radii 23 mm, and 46 mm, The density of the silicon is p = 2330 Kg I m 3 [4]. The

temperature dependent specific heat c(T) and thermal conductivity k(T) are given in

table 1, with emissivity given in table 2,

Table 1.1. Temperature dependent specific heat c and
thermal conductivity k for silicon [12]

T[K] 200 400 600 800 1000 1200
c [J I (Kg.K)] 549 780 856 900 93.4 955
k [W I (m.K)] 264 98,9 61.2 42,2 31.2 25.7

Table 1.2. Temperature dependent emissivity for silicon [13]

2.2 Adaptive Control Algorithm for the Experimental RTP Station

In order to generate control voltages to the lamp ring power supplies, the control

algorithm needs the knowledge of the state variables as well as the un-modeled

10

disturbance parameters of the system, The state variables xn (t), n = 1,2,3 are calculated

from the equation (2,6) using the three temperature measurements from the

thermocouples, The disturbance parameter vector S is then estimated on line using the

parameter-estimation algorithm of [10],

According to the separation principle [11], the controller design can be achieved

in two separate steps. First, the controller is designed with the assumption that all the

state variables and the parameters are either measurable or known a priori, The second

step involves the estimation of the unmeasured state variables and the estimation of the

unknown parameters by whatever means available, In the design of the adaptive control

algorithm for the experimental RTP system, the controller is initially designed with an

assumption that all the state variables are measurable and that the parameter vector S is

known, The parameter estimation algorithm is then used to estimate the disturbance

parameter vector S.

Assuming that the disturbance parameter vector S = S(t) is known, the control

function u(t) =	 (t),/i2 (t),T4-3 (01 T can be calculated from (2,11), This control function

makes the system described by (2,1) to follow a given uniform reference trajectory f(t).

In vector matrix notation the control function is [6];

c (77(t))[df(t)/ dt] + E (7 (t)) — S i (t)

11(0 = G -l [v(t) — scoi= G -1	-- S 2 (t)	 (2,14)

5,(t)

The admissibility of the control function is defined by (2,13).

For the feedback control law, let;

Pa = a n + zn

Zn =a n A, n (t,x)x n ,n= 1, 2, 3
(2,20)

1 1

(t) = u(t)—U(t)	 (2.15)

and

AP(t) GAu(t)	 (2,16)

In order to obtain the control law, the "feedback linearization" technique is applied to

(2,8), (2,9), and (2,10), This reduces to choosing 0 P (t) such that after it is substituted

into the equations (2,8), (2.9), and (2,10), we get „xn ,n = 1, 2, 3 . The

corresponding Au (t) is calculated by (2.16). Thus we have;

u(t,x) =ii(t)+Au(t) G -1 (15 + AP —S)	 (2,17)

In order to account for the constraint (2,13), (2.17) is written in the form;

u(t,x) a, (x) A. 	 a 2 (x)A, 2 a 3 (x) A, 3 + b (x)	 (2,18)

The feedback control u (t,x) is admissible if and only if

0 u(t,x) U m"	 (2,19)

For stability, the eigenvalues	 must be positive, Also the physical constraint limits the

maximum possible value of the eigenvalues, A set of eigenvalues can be obtained by

linear programming,

In order to estimate the disturbance parameter vector S, a simple form of

parameter estimation algorithm is applied. The estimator is described by the following

equations [4];

12

The parameter estimator is a dynamic process with state vector as the input and the

estimated vector P as the output, The dynamics of the estimator is described by the

following equations;

i'(t)= an xn (t) + z„(t), n= 0,1,2	 (2,21)

where

p c(x0 (0).„(t)=—a0 [—E(x„(t))4(t)+ 11;0 (t)]	 (2,22)

p c(x„(t))±,(t). —an [—[(pa I R) 2 k(x (1
(t))+4E(x„(t))4,1x,(t)+ P, (t) ,n = 1,2

The disturbance vector S can then be calculated from the estimated P using (2.11),

Link 1

ss Reset
ssAnalyse

ssNotError

Reset

Analyse

NotError

Link 0

4 Mb DRAM

T805

Link 3

Subsystem
PALLink 2 •

CHAPTER 3

IMPLEMENTATION OF ADAPTIVE CONTROLLER

3.1 Transputer System

For the purpose of implementing the control algorithm, an IBM compatible PC hosting a

transputer motherboard is used, Transputers are general purpose microprocessors with

added provisions for connectivity to other transputer microprocessors. Typically, the

transputers are packaged as a module, called a TRAM, each containing one or more

transputers with additional memory and electronics necessary for interfacing to other

transputer modules, A TRAM need not contain a transputer microprocessor; it must

however conform to the electronic standard set forth by INMOS ® with respect to

connectivity to other TRAMs on the motherboard [14],

Figure 3.1. Block diagram of a transputer module [14]

13

L1
LiL2 	 L2 	 L2

11 41 	 4 	 4-

L1 L1
L2

14

As shown in Figure 3.1, the transputer modules used for the experiment consists of a

T805 32-bit microprocessor with a 4 MB static external memory, system signals

interface, and 4 serial link interfaces. The system signals, (Reset, Analysis, NotError), are

generated from the motherboard and propagate (ssReset, ssAnalysis, ssNotError) through

the TRAM network. The main use of the system signals are to initialize the transputer at

boot-up time, and to check for error status while the transputer is in operation [16],

The TRAM motherboard used for the experiment conforms to a standard PC AT

bus architecture. The board can house up to 10 standard (size 1) transputer modules. The

interface between the board and the PC is controlled by a 16 bit transputer

microprocessor (IMS T222) with serial link interface adapter (IMS C012), The serial link

interface adapter is by default connected to link 0 of TRAM on slot 0 on the transputer

side, and interfaces to the host PC via set of registers conforming to the AT bus standard,

Slot 0 	 Slot 1 Slot n-1 	 Slot n

Figure 3.2. Default transputer module configuration on the motherboard [16]

Each TRAM has 4 link interfaces. Links 1 and 2 are hardwired to links 1 and 2 of the

adjacent TRAMs on the motherboard resulting in a pipelined connection between the

transputers when all the available slots are populated with a size 1 TRAM (see Figure

3,2). The remaining links 0 and 3 are connected to a programmable cross-bar switches

15

(IMS C004) controlled by the T222 microprocessor. Thus Links 0 and 3 can be softwired

to links 0 and 3 of any other TRAMs (except the root TRAM) on board enabling the user

to configure overall transputer network, All communication between the TRAMs are

serial in nature. The speed of the communication can be set at either 10Mb/s or 20Mb/s

by using jumpers on the motherboard [16],

The interface between the RTP system and the controller requires an analog to

digital converter module (ADT) for the purpose of reading the temperature measurements

and a digital to analog converter module (DAT) to output control signals to the lamp ring

power supplies. The ADT used is a size 4 TRAM consisting of a 12 bit analog to digital

converter and other electronics necessary in order to ensure proper communication with

other transputer based TRAM.[17] The DAT is an eight channel, 12 bit, size 2 TRAM

[18].

3.2 Programming for Transputer System

Programming for the transputer system is a two step procedure. First the network

configuration file must be defined, The configuration file has an extension of .cfs and

must be included in the make file or explicitly named during the command line

compilation of the program modules. It must be noted that, prior to this step the hardware

configuration utility (NCS) must be run in order to program the IMS-0004 cross bar

switches with the desired configuration of the link connections [17]. The configuration

file is used to map software network configuration to the hardware TRAM network

configuration, The software network consists of processes which uses channels to

communicate with other processes. The processes may be located within the same

16

TRAM, or in an adjacent TRAM, Given that each physical link may be used to define

multiple logical channels, the configuration file defines on which physical processor

(TRAM) the process is to be located, and what the channel interface of the process is with

respect to its inputs and outputs,

The second step in programming for the transputer system involves writing of the

program modules to be run on the transputer system, Because the program will be

distributed over a transputer network consisting of multiple transputers, modularity of the

program becomes an important issue in the software design, The idea of declaring global

variables and allowing access to the variables among the program modules must be

discarded, Also, since each transputer module has a separate memory space, the passing

of pointer variables among program modules is not possible, The program modules

instead must communicate with each other by passing copies of parameters in the form of

messages, An example of a basic transputer program is shown below.

/* master process */
#include <stdio.h>
#include <misc,h>
#include <channel.h>

int main(int argc, char* argv[))

/* declare channels */
Channel *from Wl;
Channel *to_WT;
/* local variables */
int i, val;

/* initialize channels */
from W1 = (Channel*) get_param(3);
to_WI = (Channel*) get_param(4);

val = 0;
for (i = 0; i < 10; ++i)

/*output integer parameter to worker process */
ChanOutlnt (to_141, i);
/* read integer parameter from worker process */
val = Chanlnlnt (from_W1);

/* send terminate sign to worker process */
ChanOutlnt (to W1, -1);

/* terminate program */
exit terminate (EXIT_ SUCCESS);

}/* end T)f program master,c */

17

/* workerl,c */
#include <stdio,h>
#include <misc,h>
#include <channel,h>

int main(int argc, char* argv())

/* declare channels */
Channel* from_master;
Channel* to_master;
int val;

/* initialize channels */
from_master = (Channel*) get_param(1);
to_master = (Channel*) get_param(2);

/* receive input from master */
val = Chanlnlnt (from master);

/* while input is not terminate sign 	 */
while (val >= 0)

/* do something complicated ,., */
if (val == 0) val = 1;
val 	 val*val;
/* output to master */
ChanOutInt(to_master, val);
/* receive new input from master */
val = Chanlnlnt(from master);

/* terminate program -/
exit_terminate (EXIT_ SUCCESS);

}/* end of program workerl.c -/

The program modules master and worker] could be running on a same transputer or two

separate transputers, In the latter case, the physical link connections over which the

channels are declared must be specified in the network configuration file, The program

declares channel variables and assigns to it the interface specification as defined in the

network configuration file, Assuming that the configuration file had declared the

following process interfaces;

process (interface(input in, output out,

input frompl, output to_p1)) master;

process (interface(input from master, output to_master,

input from_p2, output to_p2)) wl;

process (interface(input from p1, output to_p1,

input from p3, output to_p3)) w2;

process (interface(input from_p2, output to_p2)) w3;

18

the get_param() command assigns to the channel variables the input and output channels

to and from the worker process wi. The ChanOutint and ChanInint functions are used to

pass and receive integer parameters between the master and the worker process, The

exit_terminate command tells the transputer system that the program has terminated. The

most important thing to notice from this simple example is that the program is basically

similar to any regular C program except for the ways in which the variables are

exchanged between the program modules. As can be seen, the communication between

the program modules are carried out with a set of communication primitives. The

communication primitives are blocking calls, that is a call to Chanin will wait forever

until the corresponding Chan Out is called in the called process and vice versa, The

blocking nature of the communication protocol makes the process synchronization a

simple task,

3.3 Hardware Architecture of the Adaptive Controller

The block diagram of a transputer based implementation of the controller is shown in

figure 3,3, As mentioned previously, the links 1 and 2 of the TRAMs are automatically

connected to the links 1 and 2 of the adjacent TRAMs by the motherboard to form a

pipelined configuration, Given that we have four size 1 TRAMs as well as a size 4 ADT

and a size 2 DAT, one of the ways the configuration of figure 3.3 can be achieved is by

inserting size 1 TRAMs at TRAM locations 0, 1, 3, and 4, The TRAM at location 0

would be the root transputer. The link 0 of the root transputer is hardwired to the serial

bus interface adapter and thus to the host PC, In this configuration the link 2 of the

TRAM 0 will be connected to the link 1 of the TRAM 1, and link 2 of the TRAM 3 will

19

be connected to the link 1 of the TRAM 4. The ADT is inserted into slot 6, Since the

ADT is of size 4, it will also occupy slots 8, 7, and 9, The DAT is of size 2, Insertion of

Figure 3.3. Block diagram of the transputer based implementation
of the adaptive controller

The size of ADT and DAT effectively breaks the pipelined configuration, In order to

obtain the configuration shown in figure 3,3, the link 0 of the T2 is connected to link 3 of

ADT, Also link3 of T2 is connected to the link 0 of T3, and so on as shown in the figure,

The `iserver' utility supplied with the transputer motherboard allows interaction

between the transputer and the operating system of the host PC. However, in order to

enable communication between the program running on the root transputer and the

program running on the host PC, a custom device driver is needed, The transputer

motherboard used for the implementation of the controller conforms to the PC AT bus

20

interface standard, Therefore, the transputer can be thought of as a set of registers in the

1/0 space of the host accessible to the host program using standard DOS device driver

commands ioctl,

The controller is timer interrupt driven, In each interrupt cycle, the system must

read in the temperature readings from the thermocouples, generate control outputs, output

control signals to the lamp ring power supplies, and update graphics on the user interface.

The source of the timer interrupt is the host PC through the use of an IBM DACA board.

The host PC itself is an IBM compatible with Intel 486 CPU and 8 Mb of memory,

3.4 Software Architecture of the Adaptive Controller

The software for the controller system consists of program modules running on the

transputer and program modules running on the host PC, An interface program between

the transputer and the host PC allows the exchange of the data between the two program

modules, The transputer program consists of four modules each running on a separate

transputer, The master program, running on the root transputer Ti, is responsible for

communicating with the host and also for initiating the sequence of actions to be

performed by the worker processes. The worker process 1, running on transputer T2,

interfaces with the ADT module and performs scaling of temperature readings as well as

filtering of the temperature readings, The worker process 2, running on T3, is responsible

for generating the reference temperature trajectory and interfacing with the control

algorithm, The control algorithm is run as a sub-function entirely in transputer T3. The

worker process 3, running on T4, is responsible for output of control signals to the DAT

21

module and for communicating with the root transputer, Scaling and bound checking of

the control signals are also performed,

The sequence of actions performed during an interrupt cycle is as follows. The

generation of interrupt timer signal causes the host PC to send a message packet to the

master transputer, The message packet contains information regarding the status of the

user input, Upon receiving the message packet, the master transputer forms another

message packet and sends it to T2, The transputer message packet consists of pertinent

control system data as well as the status of the user interface, Transputer T2 initiates ADT

to read the temperature measurements from the thermocouples. The measurement

readings are copied to the message packet and sent to T3, T3 strips off the temperature

measurement data and calls the control algorithm sub-function. The control algorithm

generates the control output which is then copied to the message packet. The message

packet is subsequently sent to T3, T3 strips off the control output information and sends it

to the lamp ring power supplies via DAT, The message packet is then sent back to the

master transputer T1 where the format of the message is transferred to the host message

data structure, The message then is sent to the host, completing a single control loop

sequence, From this moment on until the generation of next timer interrupt, the host

displays the information on the screen as a strip chart, and scans for any changes in the

user input status,

The host program running on the PC consists of 3 modules and is implemented

using C++, The modules defined in the host program are defined by the Class abstract

data type which encapsulates variables and functions associated with the modules. Two

main modules are the LabWindow user interface object and the transputer interface

22

object, The LabWindow is a DOS-based graphical user interface generator providing

graphics capability as well as mouse driven user environment. Figure 3.4 shows a sample

screen shot of the user interface while the experiment is in progress,

Figure 3.4. Graphical user interface for the adaptive controller

The LabWindow object receives as an input the message data structure from the

transputer through the transputer interface object. The message structure contains an

updated information of the control system such as temperature measurements and control

23

outputs, The main task of the LabWindow object, other than interfacing with the user, is

to display these data on screen. The data is therefore updated at every interrupt cycle.

The communication between the LabWindow object and the Transputer object is

by way of message passing, The intermediary between the LabWindow object and the

transputer interface object is the main module. The main module acts as a main entry

point of the program, and invokes interrupt service routine in response to the hardware

timer interrupt,

The transputer interface object consists of functions which act on the transputer

through a standard DOS device driver calls, In programming sense, the transputer

motherboard can be seen as two 16 bit registers in the 110 space of the host PC [16].

These registers are mapped into the memory space of the T222 transputer on the

transputer motherboard, This memory space is used as a buffer during the read and write

operations between the transputer motherboard and the host PC, On the transputer side,

the host interface software resides in a flash ROM and access to the host is accomplished

via standard ChanIn and ChanOut commands. On the host side, the interface software

utilizes standard DOS device driver through ioctl function calls [17]. The communication

between the host and the transputer is by way of message passing, The message is defined

by a data structure, thereby enabling communication of mixed data types. The size of the

data structure is limited to 512 bytes in length. This is due to the limitation of the DOS

device driver. For messages larger than 512 bytes, multiple read calls can be made,

The transputer interface object on the host is defined by the C++ abstract data type

Class. The class defines a set of public and private methods thereby clearly defining its

interface to other program modules, The private methods defines functions used in

24

initializing the transputer and to boot the transputer with the desired executable program,

The public functions provide to the application modules the functions to read and write

transputer as well as check for the error conditions (NotError signal on the TRAM).

Upon boot up, the transputer goes through self analysis mode in order to reset and

check for errors on the transputer network. During this process, the transputer sends a

series of bytes to the host PC, For successful boot up of the transputer, these series of

bytes must be read correctly by the host PC. The message data structure defined for the

transputer interface modules read operation defines as the first element an integer number

in order to facilitate the reading of these bytes, The rest of data elements are identical to

the message data structure defined in the transputer programs, For transputer write

operation, the first byte of the message structure also must be the byte count of the

message structure, The complete listing of the program is included in the appendix for

reference.

3.5 Simulation System

The purpose of the simulation system is two fold, First, the simulation system is used to

verify correct operation of the adaptive control algorithm and the controller system.

Second, we wanted the simulation system to be as close to the actual experimental system

in terms of the hardware and software interfaces necessary so that the transition from the

simulation system to the experimental system would be accomplished with least amount

of complication. The implementation method of the simulation system provided added

benefit in that the system automatically took into account the sampling and quantization

25

noises into the simulation, A block diagram of the simulation system is shown in Figure

3,5,

Figure 3.5. Block diagram of the simulation system

For the implementation of the simulation system two PCs, each hosting a

transputer motherboard, are utilized, On one of the PCs, the controller is implemented as

has been described in the previous sections. The dynamics of the RTP model is

implemented on the second PC to simulate the RTP station. The two PCs are connected

by a 26 pin ribbon cable via ADT and DAT pair of each system. A simple communication

protocol is established to synchronize the activity in both systems.

3.6 Experimental System

The adaptive controller from the simulation system, with minor changes, used for the

experimental system, The controller is interfaced with the RTP station through the ADT

and DAT modules on the transputer motherboard. The input to the controller is the

26

thermocouple readings, The thermocouples used for the experiments are a K-type

thermocouples for which the operating temperature range is defined to be within 0 and

1000K, An Analogic ® DCP5B47 thermocouple signal conditioner is used to acquire

linear readings in the range of 0 and 5 volts, The signal conditioner is connected to an

ADT module via a 26 pin ribbon cable, The controller output from the DAT is connected

to the switch box which is connected to the lamp ring power supplies. The switch box is

necessary in order to cutoff the output of the DAT during the boot time since the DAT

output at this time is undefined, The switch box also serve as a kill switch in case of an

emergency situation, The schematic of an experimental system is shown in Figure 3,6,

CHAPTER 4

SIMULATION AND EXPERIMENTAL RESULTS

4.1 Preliminary Simulation Results

The general control strategy in controlling the temperature tracking as well as uniformity

of the temperature along the surface of the wafer is to independently control the amount

of heat radiation by three lamp rings based on the measurement of the temperature at

three points along the diameter of the wafer. The control algorithm assumes a model of

the system, Any unknown, or unmodeled parameters of the system are estimated using the

parameter estimation algorithm.

The purpose of first simulation run was to evaluate the performance of the

parameter estimator as well as to evaluate the correct operation of the control system. The

limiting of output voltages to within 0 and 5 volts, reliable operation of the user interface,

the data logging capability, the reliable communication between the transputer

motherboard and the host, possibility of any deadlock situations in communication among

the processes, correct operation of ADT and DAT modules are all carefully monitored

and evaluated to ensure proper operation of the control system.

For evaluating the performance of the parameter estimator, the three estimator

gain factors are set identically to 2.33e6, In previous single computer simulations, these

value of gains have resulted in fast convergence of the estimates to the true values as

shown in Figure 4,1. The simulation results indicate sensitivity of the parameter estimator

to the presence of sampling noise in the temperature measurement as shown in Figure 4,2,

27

28

Figure 4.1. Single computer simulation result,

29

Figure 4.2. Simulation with parameter estimator gains set identically to 2,33e6,

Figure 4.3. Simulation result with filtered temperature measurements.

30

31

Given that the temperature measurements range from around 300K to 1000K, and

that the measurements are sampled using a 12 bit analog to digital converter, the

maximum accuracy achievable in temperature measurement, in the absence of any other

noise, is 0.17K, Numerous simulation results have shown the maximum tolerable

sampling error at near 0,1K, One way to alleviate the effect of the sampling noise is to

reduce the gain of the estimator at a cost of slower convergence rate, However, filtering

of the measured temperature using some averaging technique in conjunction with

moderate lowering of the estimator gain results in acceptable parameter estimation as

shown in Figure 4,3, The result indicates convergence of estimated parameters to a

constant values, however with steady state errors,

4.2 Preliminary Experimental Results

After verifying that the control system was running properly, the controller was attached

to the actual RTP station, One of the problems encountered in implementing the

experimental system was that of the three necessary thermocouple measurements, only

two were deemed reliable, Since the nonlinear state observer requires three temperature

readings, the third reading was "manufactured" as an average of the two reliable readings.

Initially, several runs of open-loop control experiments were run in order to evaluate

correct input and output operation of the experimental system.

Having verified the correct operation of the control system, the control loop was

closed and the apparatus was operated, Initially the control system was run with

temperature trajectory ramp rate of 20K/s and three estimator gains identically set to

32

1,33e3, The results indicate, as shown in figure 4.4, lagging effect, unaccounted for

during the simulation runs, The primary source of the lag is seen to be associated with the

lamp rings. The simulations assumed, rather unrealistically, that the lamp rings could be

turned on and off instantaneously, There is a lag however, between the control signal and

the lamp power output, The result of the lag manifests itself as the lagging of the

controlled temperature with respect to the reference trajectory as well as significant

amount of overshoot,

Figure 4.5 shows plots comparing the measured temperatures against the reference

trajectory (TO-Tref, Tl-Tref) as well as comparison of two measured temperatures against

one another (TO-T1). The plots show that during the ramp-up period and during the

transient period the measured temperatures deviate from the reference trajectory by up to

100K, But as the transients begin to diminish, the measured temperature converges to the

reference trajectory, The uniformity of the measured temperature is also quite poor during

the period when there is an overshoot, The difference in the measured temperature, thus

the uniformity of the temperature, however is also seen to converge to near zero as the

transient dies out,

Reducing the trajectory ramp rate to 10K/s, while keeping estimator gains at

1,33e3, results in better tracking performance as shown in Figures 4,6 and 4.7, The plots

indicate significantly less overshoot and better transient response than in Figures 4.4 and

4,5, The tracking of the reference trajectory, shown in Figure 4.7, during the ramp up

period appears to be also quite improved. The uniformity of the measured temperatures

also appears to be quite reasonable, In all cases, the estimated parameters also converge to

some steady state values,

Figure 4.4. Experimental results. Ramp rate is 20K/s, parameter estimator gains are set
identically to 1,33e3,

33

34

3 	 111 	 13 	 21) 	 2) 	 31/ 	 JD 	 itl/ 	 4+) 	 au 	 N

Time (sec)

Figure 4.5. Comparison of measured temperatures vs. Reference trajectory.
The ramp rate is 20K/s, parameter estimator gains are set to 1,33e3,

Figure 4.6. Experimental result. Ramp rate is 10K/s, parameter estimator gains set
identically to 1,33e3,

35

36

CHAPTER 5

STATE ESTIMATION USING EXTENDED KALMAN FILTER

5.1 Motivation

The state estimator for the adaptive control algorithm solves the temperature distribution

equation (2.6) in terms of the state variables given three temperature measurements,

During the experiment, with only two of the measurements available, the third reading of

the temperature was fabricated as the average of the two reliable temperature

measurements, Under this circumstance, other means of estimating the state variables

using fewer than three temperature measurements are desirable, Also, the results of the

previous experiments have shown significant amount of noise present in the control

signal, This noise is most likely due to the noisy measurement of the temperatures, The

noise contributes to the limit cycle like oscillation during the steady state, which is very

much undesirable, Filtering of the temperature measurement by the state estimator should

reduce the noise content of the temperature measurements, In this chapter, the method of

estimating the state variables using a full-order Extended Kalman Filter as the state

estimator is explored. The simulation results and experimental results of implementing

the Extended Kalman Filter as the state estimator for the adaptive control algorithm is

presented,

37

5.2 Extended Kalman Filter

Given a nonlinear process described by;

a(x,u,t)+ G(t)w

h(x,t)+ v

where w and v are the white noise process, and initial conditions x(0) --- (.7yo ,P0) ,

w (0,Q) , and v (0,R) , assuming that E{w = 0, the equations for the continuous

time Extended Kalman Filter is described by [20];

= a(i,u,t)+ K[z — h(1=,t)]	 (5.2)

P = AP + PA T + GQG T — PH T 1? - 1 HP	 (5,3)

where;

as
A a x

38

(5,1)

(5,4)
x=3

H = ax (5.5)
x= 3

and K is the Kalman gain;

K = PH T	(5,6)

In this study the assumption is made that

G=I

Q =25
R =25

(5.7)

39

The system dynamics are given by the equations (2.8), (2.9), (2,10), and (2.11), These

equations can be expressed for convenience as follows;

	X o = —a (a ok(x0)+bc,E(x0)4,)x0 + Po 	(5,8)

	=—a(a l lc(x0)+1),E(x0)4)x l + P1 	(5,9)

	

= —a (a 2 k(x0)+b2 E(x0)4)x 2 + P2 	(5,10)

where

1
a —

Pc(x0)
a 0 0

	a l = (111/1?)2 	5.11)

,112/a2 = 	 R)
2

b0 =1
=b2 = 4

and

P„ = 212 -1	G (U 1) + S (t)} ,n = 1, 2, 3	 (5,12)
/.1

where S,, represents the unmodeled parameters of the heat transfer dynamics inside the

RTP reaction chamber, The Pi of (5.8) through (5.12) is not related to the P of the

variance equation (5,3),

From (2,6) the temperature at the center of the wafer T(0,t) is;

T(0, t) x i + x2 + x 3 	(5,13)

where x i = T — xo is the deviation of the measured temperature from the reference

temperature, and x2 ,x3 are the coefficients of the Bessel function expansion, Also the

40

anu ;

-
a 1 0 0

A --=... a 2 a 3 0 (5,15)

_a 4 0 a s

where,

a, = --cx(4.Ex (3))
a 2 = —12a(4Ex02)x,

a 3 = —a(A,Tc +4E4,)
. a 4 —12oc(4Ex02)x 2

a 5 = —a(A2 F+ 4E4)

inererore, solving D,..3) in terms or its elements:

Pi
, 	 ,

P,

P= P2 P4 P5 	 (5,17)

_ P3 P5 P6

where,

Thus, the equation for the state estimator is:

	

—	 — 3 ••	—a(Ao k +bc,E2i)x, +	 K,(T(0,t)— (2, +x2 + 2 3))

	= —a(A 1 1(+ b l E2 13)22 + 	 K2 (T(0,t)— (2 1 + 2 2 + 23)) 	 (5.19)
	A 77 	 47; 	 v Tn= —a(r -1 2 n. T L/2.L./.4i).43 T

p
..1 11.3 G G.17 l

t) (21 + 	 + 23))

5.3 Simulation Results

The simulation results of the adaptive control system using Extended Kalman Filter as the

state estimator is shown in Figures 5.1, 5.2 and 5.3, For simulation purpose, the ramp

speed is set to 10K/s and the parameter estimator gains are set identically at 1.33e3,

Figure 5,1 shows that, in the simulated environment, the convergence of the estimated

temperature, based on the estimated states, to the measured temperatures are quite good,

Figure 5,2 verifies this by showing the temperature difference between the measured

temperatures and the estimated temperatures, In order to check the uniformity of the

42

measured temperatures, the Figure 5,3 shows the difference between the three measured

temperatures. The simulation results indicate that, using Extended Kalman Filter as the

state estimator, in conjunction with the parameter estimator, and given that the system

model is well known, a single sensor at the center of the wafer would be enough to

generate good estimates of the state, and therefore good control of the temperatures along

the surface of the wafer,

Figure 5.1. Simulation result using Extended Kalman Filter as the state estimator,
Ramp rate is set at 10K/s, the parameter estimator gains are set
identically to 1.33e3.

43

Figure 5.2. Simulation Result. Difference between the measured and estimated
temperatures, The ramp rate is 10K/s, the parameter estimator gains are
1.33e3,

44

45

Figure 5.3. Simulation Result. Difference between the measured temperatures. The ramp
rate is 10K/s, the parameter estimator gains are 1,33e3.

46

5.4 Experimental Results

Preliminary experimental results using Extended Kalman Filter as the state estimator is

shown in Figure 5,4, Figure 5.5 shows the plot of the differences between the measured

temperatures and the reference temperature, as well as the plot of uniformity between the

measured temperatures, The ramp rate of the reference trajectory is 10K/s and the gain of

the parameter estimator is set uniformly at 1.33e2, The performance of the system, in

comparison with the previous results, indicate poorer steady state tracking of the

reference trajectory, However, there is less overshoot and, more importantly, the transient

behavior of the system using EKF as the state estimator is much more improved over that

of the previous experiments, As can be seen from the Figure 5.4, the control signals

generated reach a steady state as the temperature trajectories reach their steady state,

Absent is the significant amount of noise present in the control signals that were present

in the previous experiments, Also, the effect of the lamp hysteresis appears to be less

severe than in the previous experiments,

Given that the system does indeed reach steady state, with constant tracking error,

further experiments were performed by changing the gains of the parameter estimator, In

Figure 5.6, the experimental result obtained with gains set uniformly at 2.33e4 is shown,

Figure 5,7 shows the plot of reference tracking error and the plot of uniformity between

the measured temperatures. The tracking error of T2 appears to be acceptable, however

the tracking error of Ti is in the order of 15K. The temperature uniformity plot reflects

this discrepancy between the Ti and T2. Also both Ti and T2 are greater than the

reference temperature, Given the results, the experiment is performed with parameter

47

estimator gain set uniformly at 1,33e4. The results of the experiment are shown in Figures

5.8 and 5,9, Now the T2 is below the reference temperature, which is more preferable,

Next, the gains of the parameter estimator are set to 1,0e4, 2.5e4, and 1,33e4. The

experimental results using these values of gains are shown in Figures 5.10 and 5,11, The

reference tracking error is seen to have reduced, and the uniformity appears also to have

improved,

The experimental results so far obtained show improvements over the previous

results without Kalman Filtering, The steady state and transient response of the system is

much improved, Further optimization of the gain parameters and improvements in the

accuracy of the system model should produce even better results, However, the results of

this experiment must be tempered by the fact that the results cannot be verified yet,

Without being able to physically measure the temperatures at various locations along the

surface of the wafer, it is difficult to tell if the temperatures at locations far from the

center of the wafer is indeed behaving in the manner similar to as would be expected

from the system model being used. The availability of a wafer, with thermocouples

imbedded at multiple locations, should allow us to verify the results, Also unclear at this

point is the overall stability of the system incorporating both the state and the parameter

estimator, Currently there are no theoretical results available from which the stability

criteria can be derived,

Figure 5.4. Preliminary experimental result of using EKF as the state estimator. The
ramp rate is 10K/s, parameter estimator gains are 1.33e2,

48

Figure 5.5. Plot of reference tracking error and uniformity. The ramp rate is 10K/s,
parameter estimator gains are 1,33e2,

49

50

ZU 	 4U	 5U	 6U 	 70
Time (sec)

Figure 5.6. Experimental results with parameter estimator gains set at 2.33e4

T1 measured - TI estimated

51

50 1

0

I 	 I

10 	 20 	 30 	 40	 50 	 60 	 70
Time (sec)

T2 measured - 72 estimated

20 	 30 	 40
	

50
	

60
	

70
Time (sec)

T1 measured - 12 measured
50

-50
0 	 10 	 20 	 30 	 40

	
50
	

60
	

70
Time (sec)

Figure 5.7. Plot of reference tracking error and uniformity with parameter estimator gains
of 2.33e4.

-50
0

Figure 5.8. Experimental results with parameter estimator gains set at 1.33e4,

52

53

Figure 5.9. Plot of reference tracking error and uniformity with parameter estimator gains
at 1.33e4,

54

0 	 10 	 20 	 30 	 40 	 50 	 60 	 70
Time (sec)

Figure 5.10. Experimental results with parameter estimator gains set at 1.0e4, 2,5e4,
1,33e4,

Figure 5.11. Plot of reference tracking error and uniformity with parameter estimator
gains set at 1,0e4, 2,5e4, 1,33e4.

55

CHAPTER 6

ESTIMATION OF EMISSIVITY

6.1 Background

Emissivity is a quantity which relates the amount of power radiated by a heated body to

the amount of power per unit area radiated by a black body at the same temperature [1].

As stated previously, in order to implement a practical RTP system, some method of

remotely measuring the surface temperature of the wafer is needed, The most popular

approach is to use pyrometry, The pyrometer measures the amount of radiative power

generated at a point on the wafer over a narrow wave length [1]. In order to calculate the

point temperature from the measured radiation, the emissivity parameter is needed. In this

chapter the results of the experiments conducted with the experimental RTP system in

estimating the emissivity [19] is presented. The theoretical work, presented in [19], is

briefly summarized here for reference purpose,

6.2 Theory [19]

The equation for the emission function E(T(r,t)) for a non-gray body (2,4) and spectral

emissivity model of (2.5) were used in developing the heat transfer model of the RTP

system and are repeated below for convenience;

imax

E(T) = Ia i p i (T)T4-1 (2.4)

56

10-2
(6,1)

57

E 	 = Z, p i (TA 	 (2,5)
i=11111r1

By estimating the temperature dependent parameters p 1 (T), the emissivity at the given

temperature T, can be estimated, In order to estimate the parameters, a uniform and

persistently-excited temperature trajectory near To is generated, The reference trajectory

so generated can be described by the following equations;

T(t) = Te x(t)

x(t) =1+ Ax(0,1.6,x(t)

The equation for x(t) can then be expressed as follows;

= 0„ — 04 x4 — 65 x 5 — 06 x 6 + g(U) 	 (6.2)

By using approximation

n(n+ 1)
(1+ AX) n = 1 + nAx +

2
 Ax 2. + 0

the equation for Ax(t) can be represented as follows;

Ak = —a 0 a 1 &* — a 2 Ax 2 + g(U)

where parameters a n are related to 0 s by the following equations;

04 = 15a 0 —5a, + a 2 +1500

05 = —24a 0 + 9a, — 2a 2 2400

04 = 10a 0 — 4a, + a 2 +1000

Thus the problem of estimating emissivity has been reduced to identification of

parameters an of (6.4) and 80. The dynamic observer used for estimating parameters

a n is ;

(6.3)

(6,4)

(6.5)

58

(6,6)

Ax n+1
= —K„

 n+1
+ zn , n = 0,1,2

:z„ = Kn dx" (-61/40 — a 1 Ax—a2,64x2 + $(U)

where an are the estimated parameters, K,, > 0 are the gains, and z„ are the internal states

of the observer.

The inclusion of control function g(U) in the observer equation (6.6) is

undesirable due to lack of accuracy in the dynamics of the lamp radiation. Therefore, in

order to remove dependency on control function g(U) from the observer equation,

pseudo-impulse function is generated as the control function, The pseudo-impulse

function is generated by allowing the wafer temperature to increase to, say, To + 100K ,

and then allow the wafers to cool, When the temperature becomes lower than To — 10K

the impulse control function should change the temperature to To + 10K . In order to

obtain such temperature measurements, the experiment is conducted using a square wave

reference trajectory. During the cooling down period, the control function is zero given

that the uniformity of temperatures is maintained. By recording the temperature

measurements during the cooling down period near 600K, the artificial temperature

trajectory of Figure 6,1 is produced, This trajectory is equivalent to the temperature

measurements that would be measured when the control input is a series of impulses,

Using impulse control function as g(U), the state equation for the observer can be

represented as follows;

zo (t +0) = zo (t 0)+K0 A

(t + 0) = z 1 (t — 0) + K1 (Ax(t — 0)A +	 / 2)	 (6,7)

z2 (t + 0) = z 2 (t — 0) + K2 ((Ax(t —0)) 2 A+ dx(t — 0)A 2 + A 3 / 3)

59

where A = (T(t + 0) + T(t— 0)) / To is the amplitude of the impulse function, t is the time

at which the impulse function is applied, T(t — 0) is the temperature reading just before

the impulse function is applied, and T(t + 0) is the temperature reading just after the

impulse function is applied,

Figure 6.1. Temperature trajectory due to impulse control function generated from
experimental data,

6.3 Results of the Experiment [19]

Using formula e (2k) = 0,72 — 0.96[p m]2, -1 + 0.72[um]A-2 at temperature To = 600K the

parameters of (6,4) and (6.5) are a o 2.62 -10-3 ,a, 8.93.10-3 ,a 2 = l.13,10 -2 . The

simulation run showing convergence of estimated parameters to the above values are

shown in Figure 6,2, Figure 6,3 shows the emissivity function calculated from the

estimated parameters. Figure 6,4 shows the result of parameter estimation using the

experimentally measured temperatures showing convergence of parameters. Figure 6,5

shows a plot of emissivity function using the estimated parameters,

Figure 6.3. Emissivity function of estimated parameters,

60

x 10 -3

-.)
0

0.1
70.
u'
rt
E.v

0.04
(,1
e7

71)

1 0.0L
.7;
L37

5000
Time (sec)

10000 15000

15000

15000

0 	 5000
Time (sec)

10000

i 1

- -

0 	 5000 10000
Time (sec)

Figure 6.4. Estimated parameters using experimental data.

6]

Figure 6.5. Emissivity function of estimated parameters,

CHAPTER 7

CONCLUSION

The initial performance goal of the adaptive control system was to achieve temperature

tracking error to within 1K, and to achieve uniformity of the measured temperatures to

within 1K, These are the types of performance necessary in order to produce a practical

RTP system, The experimental results presented in this thesis fall below these goals,

However, results obtained from the simulation and the experimental studies point ways to

further improving the performance of the control system so that the initial performance

goals can be achieved, The compensation of the lamp ring hysteresis in the system model

as well as obtaining suitable wafer with at least three thermocouples, preferably more,

should have high priority, As presented in the experimental results, the use of Extended

Kalman Filter as the state estimator reduces the temperature measurement noise, thus

improving certain aspect of the system performance, But this improvement comes at a

cost of increase in steady state error, Also, lacking any theoretical background in the

robustness or stability of the system using combined state and parameter estimation, it

appears unlikely that EKF will replace the state estimator of the adaptive control

algorithm. But using EKF for the filtering purpose, in conjunction with the original state

estimator may indeed provide overall improvement in the performance of the control

system,

The control system, as implemented, provides flexible and convenient means by

which further tuning of the system can be achieved, The attention to modularity in the

software design makes it possible to adapt the system to varying experimental needs with

relative ease. The availability of real time simulation system also provides means by

62

63

which new algorithms and experiments can be tested before they are implemented in the

real system, The graphical user interface provides to the experimenter the ease of

operation and the real-time plotting capability allows the experimenter to analyze the

system as the experiment is being performed, The experimental data are also recorded in

binary data format thus allowing the experimenter to analyze the data on another platform

using various analysis software packages, The implementation of the system using

powerful parallel processing system means that more complex tasks can be performed

without having to overhaul the entire system, The system as implemented therefore

provides a powerful platform which will afford flexibility and usefulness as well as

portability,

APPENDIX A

Adaptive Controller Host Program Listing

64

//
// prt,h
//

%define SkipSize 0
#define DataSize 9
#define DataLength 500

static int skip=0;
static int perm=0;
double pData[DataLength][DataSize];
static int pCnt=0;

// end prt,h

65

66

/ * -
/* LabWindows User Interface Resource (UIR) Include File
/* Copyright (c) National Instruments 1993, All Rights Reserved,
/*
/* WARNING: Do not add to, delete from, or otherwise modify the contents */
/* 	 of this include file.
/* */
/*
** rtpl.h
*/

#define mPanel 0
#define mPanel_plotU 0
#define mPanel_plotT 1
#define mPanel_plotS 2
#define mPanel_plotL 3
#define mPanel_S1 4
*define mPanel_S2 5
#define mPanel_S3 6
#define mPanel_Ul 7
#define mPanel_U2 8
#define mPanel U3 9
#define mPanel_T1 10
#define mPanelT2 11
#define mPanel_T3 12
%define mPanel_text 13
#define mPanel_text2 14
#define mPanel_text3 15
#define mPanel_text4 16
#define mPanel_templ 17
#define mPanel_temp2 18
#define mPanel_temp3 19

#define sPanel 1
#define sPanel_text1 0
#define sPanel_numl 1
#define sPanel_text2 2
#define sPanel_num2 3
#define sPanel_text3 4
#define sPanel_num3 5
#define sPanel_text4 6
#define sPanelnum4 7
#define sPanel_file 8
#define sPanel_print 9
#define sPanel_start 10
#define sPanel_reset 11
#define sPanel_pause 12
#define sPanel exit 13

// end rtpl.h

//
// COMMON.HPP
// 	 Written : Feb. 15 1994
// 	 Revised : Jun. 20 1995
1/

if !defined(COMMON_HPP)
#define 	 COMMONHPP

#include <io.h>
#include <fcntl,h>
#include <sys/stat,h>
#include <ctype.h>
#include <conio,h>
#include <stdio,h>
#include <stdlib.h>
#include <dos.h>

#define nameLength 80 	 // ".btl" file name length
#define TRUE 1
#define NONE 0
#define FALSE 0
#define RESET 0
#define ZERO 2048
#define CHAN_l 0
*define CHAN 2 1
#define CHAN3 2
#define numProc 3
#define numChan 3

// definition of error codes ...
#define bootError 1
#define linkOpenError 2
#define driverModeError 3
#define mallocErrorRead 4
#define readNotReady 5
#define invalidSize 6
#define bigSize 7
#define readCount 8
#define mallocErrorWrite 9
#define writeError 10
#define writeNotReady 11
#define tmbErrorSet 12

typedef struct
{
public:

// LW event control
int done; // loop done flag
int go; // loop start flag
int reset;// loop reset flag
int ID; // not used

// Data exchange protocol
int error; // tmb error code
int count; // tmb.read data count

// Process information
int adtIn [numChan];
int datOut[numChan];
int status[numProc];
int SolExist;
long loopCount;
double lambda;
double dt;
double t ;
double T [numChan];
double U [numChan];
double S [numChan];

}EVENT;

void initialize (EVENT &);
void errorHandler(EVENT &);
#endif

67

// end common.h

//
// rtpmain,hpp
//

#include "xputer.hpp"
#include "common.hpp"
#include "lw,hpp"

68

#define TIMER 0

extern "C"{
int SetlntLevel
int AnalogRead
void AnalogWrite
int BinaryRead
void BinaryWrite
void EnableISR
void DisableISR

// end rtpmain.h

(int);
(int);
(int, int);
(void);
(int);
(void (*)(yoid), int, double);
(void);

//
// 	 LW,hpp 	 Version 1,0
// 	 Written : Feb. 15 1994
// 	 Revised : Jun. 20 1995
//

#if !defined(LW_HPP)
#define 	 LWHPP

#include "d:\lw\include\userint.h "
#include "d:\lw\include\lwsystem,h "
#include "d:\lw\include\ui attr,h"
#include "rtp,h" // LabWindow generated include file
#include "common.hpp"

#define doubleType 4
#define traceNumber 3

class LabWindow
{

public:
LabWindow (char *);
-LabWindow(void);

void Event(EVENT &);
void Plot (EVENT &);

private :
void fStart (EVENT &);
void fPause (EVENT &);
void fFile (EVENT &);
void fExit (EVENT &);
void fPrint (void);
void fReset (EVENT &);

int panelHandle [2];
int eventPanellD[1];
int eventControl[1];

);

#endif
// end lw.hpp

69

//
// Xputer.hpp
//

#include "common,hpp"

%define LINK int
#define BOOLEAN int
#define readSizeLimit 512

class Transputer

public:
Transputer(EVENT &, char *);
-Transputer();
void Read(EVENT &);
void Write(EVENT &);
void Error(EVENT &);

private:
LINK devHandle;
BOOLEAN testError(LINK);
LINK linkOpen(char*);
int readLink (LINK, long*);
int writeLink(LINK, long*);
int setDriverMode(LINK, unsigned*);
int bootTMB(char*);

1;

typedef struct

int dataCount;
int loopDoneFlag;
int resetFlag;

)ToTMB;

typedef struct

int lead;
int adtIn [numChan];
int datOut[numChan];
int status[numProc];
int SolExist;
long loopCount;
double lambda;
double t ;
double T [numChan];
double U [numChan];
double S [numChan];

)FromTMB;

// end xputer,hpp

70

//
// rtpmain.cpp: Description of main function
//
#include "rtpmain.hpp"
#include <fcntl,h>
#include <sys\stat.h>
#include "prt.h"

double tt=0,2;
double dtt=0.2;

EVENT event;
LabWindow LW ("rtp,uir");
Transputer TMB(event, "bootFile,btl");

// timer interrupt service routine
void isr()

if (event.go)

tt += dtt;
TMB.Read (event);
TME.Write(event);
TMB,Error(event);

// save data
if (!perm)

if (pCnt<DataLength)

pData[pCnt][0] =event,T[0];
pData[pCnt][1] =event,T[1];
pData[pCnt][2] =event.T[2];
pData[pCnt][3] =event,U[0];
pData[pCnt][4] =event,U[1];
pData[pCnt][5] =event.U[2];
pData[pCnt][6] =event,S[0];
pData[pCnt][7] =event.S[1];
pData[pCnt][8] =event.S[2];

1
else

perm=1;
1
pCnt++;

event.SolExist=pCnt;
event.dt = dtt;

1

void main(void)

int i,chan,fp;

// Begin initialization ..,
initialize (event);
if (event.error != NONE)

errorHandler(event);

SetIntLevel(7);
EnablelSR(isr, TIMER, dtt);

// End of initialization ,,.

while (!event,done)

// get next event ,,,
LW.Event(event);

// event handler .,.
if (event,go)

if (event,error != NONE)

event.done = TRUE;
break;

71

LW,Plot (event);

// Save plot data to file ...
_fmode=0_BINARY;
fp=creat("matfile,dat",SIREADIS_IWRITE);
write (fp, pData, sizeof(pData));
close(fp);

// Disable interrupt ...
DisableISR();

// Transputer terminating sequence ...
TMB,Read (event);
TMB.Write(event);

// is termination due to error?
if (event,error != NONE)

errorHandler(event);

// for normal termination .,.
MessagePopup("Transputer link terminated ...");
exit (0);

// end rtpmain,cpp

72

//
// 	 LWFUNC,CPP: LabWindow class member function descriptions
// 	 Written : Mar, 08 1994
//

#include "lw,hpp"

static double prev[3);
static double max[3];
static double min(3);

void LabWindow 	 fStart(EVENT &event)
1

event,go 	 = TRUE;
event,reset = FALSE;
event,done = FALSE;

void LabWindow 	 fPause(EVENT &event)

event,go 	 = FALSE;
event.reset = FALSE;
event.done = FALSE;

void LabWindow 	 fReset(EVENT &event)

int 1;

for (i=0; i<numChan; i++)

DefaultCtrl (panelHandle[mPanel), mPanel_Tl+i);
DefaultCtrl (panelHandle[mPanel], mPanel_Ul+i);
DefaultCtrl (panelHandle[mPanel], mPanel_Sl+i);
DefaultCtrl (panelHandle[mPanel), mPanel_templ+i);

DefaultCtrl (panelHandle[sPanel], sPanelnum1);
DefaultCtrl (panelHandle[sPanel], sPanel_num2);
DefaultCtrl (panelHandle[sPanel], sPanel_num3);
DefaultCtrl (panelHandle[sPanel], sPanel_num4);
ClearStripChart (panelHandle(mPanel], mPanel_plotL);
ClearStripChart (panelHandle[mPanel], mPanel_plotU);
ClearStripChart (panelHandle[mPanel], mPanel_plotT);
ClearStripChart (panelHandle[mPanel], mPanel_plotS);

1

void LabWindow 	 fExit(EVENT &event)

if (ConfirmPopup ("Are you sure you want to quit?"))

event,done = TRUE;
event.go 	 = FALSE;

void LabWindow 	 fPrint(void)

int stat=0;

stat = OutputScreen (-1,"screen.eps");
if (stat < 0)

MessagePopup("Error in Printing screen to default device");
SetCtrlVal (panelHandle[sPanel], sPanel_num4, (double)stat);

stat = OutputGraph (-1,"plotT.eps",0,panelHandle[mPanel],mPanel_plotT);
if (stat < 0)

MessagePopup("Error in Printing plot T to default device");
SetCtrlVal (panelHandle[sPanel], sPanel_num4, (double)stat);

stat = OutputGraph (-1,"plotU.eps",°,panelHandle[mPanel],mPanel_plotU);
if (stat < 0)

MessagePopup("Error in Printing plot U to default device");
SetCtrlVal (panelHandle[sPanel], sPanel_num4, (double)stat);

73

stat = OutputGraph (-1,"plotS.eps",0,panelHandle(mPanel],mPanel_plotS);
if (stat < 0)

MessagePopup("Error in Printing plot S to default device");
SetCtrlVal (panelHandle[sPanel), sPanel_num4, (double)stat);

stat = OutputGraph (-1,"plotL.eps",0,panelHandle[mPanel],mPanel_plotL);
if (stat < 0)

MessagePopup("Error in Printing plot L to default device");
SetCtrlVal (panelHandle[sPanel], sPanel_num4, (double)stat);

void LabWindow 	 fFile(EVENT &event)
{

// not implemented yet

void LabWindow 	 Plot(EVENT &event)

int chan;
double temp[3];

for (chan=0; chan<numChan; chan++)
{

temp[chan] = event,T[chan)-event,S[chan];
1
temp[0]=event,lambda;
// plot strip chart .,.
PlotStripChart (panelHandle[mPanel), mPanel_plotT, event.T ,3, 0, 0, doubleType);
PlotStripChart (panelHandle[mPanel), mPanel_plotU, event.0 ,3, 0, 0, doubleType);
PlotStripChart (panelHandle[mPanel], mPanel_plotS, event,S ,3, 0, 0, doubleType);
PlotStripChart (panelHandle[mPanel], mPanel_plotL, temp ,3, 0, 0, doubleType);

for (chan=0; chan<numChan; chan++)

SetCtrlVal (panelHandle[mPanel], mPanelTl+chan, event,T[chan]);
SetCtrlVal (panelHandle[mPanel], mPanel_Ul+chan, event.U[chan]);
SetCtrlVal (panelHandle[mPanel], mPanel_Sl+chan, event.S[chan));
if (event,loopCount > 25)

if (temp[chan] > max[chan])
max[chan] = temp[chan];

if (temp[chan] < min[chan])
min[chan) = temp[chan];

1
SetCtrlVal (panelHandle[sPanel], sPanel_num1+(chan*2), min[chan]);
SetCtrlVal (panelHandle[mPanel], mPanel_templ+chan 	 , max[chan]);

}

//SetCtrlVal (panelHandle[mPanel], mPanel_lambda, event.lambda);
//SetCtrlVal (panelHandle[sPanel], sPanel_numl, (double)event.loopCount);
//SetCtrlVal (panelHandle[sPanel], sPanel_num2, event,t);
//SetCtrlVal (panelHandle[sPanel], sPanel_num3, event.dt);
SetCtrlVal (panelHandle[sPanel], sPanel_num4, (double)event.SolExist);
for (chan=0; chan<numChan; chan++)
1

prev[chan] = temp[chan];
1

void LabWindow 	 Event(EVENT &event)
{

GetUserEvent (0, &eventPanelID[0], &eventControl[0]);
if (eventPanellD[0] == panelHandle[sPanel])
{

switch (eventControl[0])

case sPanel_start:
fStart(event);
break;

case sPanel_pause:

74

fPause(event);
break;

case sPanel_reset:
fReset(event);
break;

case sPanel_exit:
fExit(event);
break;

case sPanel_print:
fPrint();
break;

default:
MessagePopup("Function called is not yet implemented");
break;

LabWindow 	 LabWindow (char *uirFile)

int i;

1/ load and display panel(s)
panelHandle[mPanel] = LoadPanel (uirFile, mPanel);
panelHandle[sPanel] = LoadPanel (uirFile, sPanel);
DisplayPanel (panelHandle[mPanel]);
DisplayPanel (panelHandle[sPanel]);

// set text box labels
SetCtrlVal (panelHandle[mPanel], mPanel_text, "Temperature");
SetCtrlVal (panelHandle[mPanel], mPanel_text2,"Kalman Gains");
SetCtrlVal (panelHandle[mPanel], mPanel_text3,"Estimates");
SetCtrlVal (panelHandle[mPanel], mPanel_text4,"T - Test");
SetCtrlVal (panelHandle[sPanel], sPanel_textl,"Loop Counter");
SetCtrlVal (panelHandle[sPanel], sPanel_text2,"Total Time");
SetCtrlVal (panelHandle[sPanel], sPanel_text3,"Interrupt");
SetCtrlVal (panelHandle[sPanel], sPanel_text4,"Sol Exist");
for (i=0; i<3; i++)
{

max[i] = 0,;
min[i] = 0,;

LabWindow 	 -LabWindow(void)

// null function

// end lwfunc.cpp

75

//
// Xputer,cpp: Transputer interface object member function description
//

#include "xputer,hpp"

LINK Transputer::linkOpen(char* name)

int tmp;

tmp = open(name,O_BINARYIO_RDWR);
if(ioctl(tmp,0,0,0)&0x80)

return(tmp);
else

close (tmp);
return(-1);

BOOLEAN Transputer::testError(LINK handle)

unsigned long flag[1];

ioctl(handle,2,flag,4);
if (flag(0)&0x01)

return TRUE;
else

return FALSE;

void Transputer::Error (EVENT &event)

int err;

if (testError(devHandle))
event,error = tmbErrorSet;

else
event.error = NONE;

int Transputer::bootTMB(char* command)

int stat;

stat = system("iserver /sr /sc prog4.btl");
if (stat < 0)

return -1;
else

return 1;

int Transputer::setDriverMode(LINK handle, unsigned* stat)

ioctl (handle, 1, stat, 0);
if (testError(handle))
{

close(handle);
return -1;

return 1;

void Transputer :: Read (EVENT &event)

int i,j,cnt;
char size[2];
int *ptr;
char *in;
unsigned long stat(1);
FromTMB *message;
FromTMB msg;

in = (char *)malloc(sizeof(msg));
if (in < 0)

76

event.error = mallocErrorRead;
return;

size[0] = 0;
size[1] = 0;

ioctl (devHandle, 2, stat, 4);
if (stat[0]&0x08)

read (devHandle,&size[0],1);
1
else

event,error = readNotReady;
free(in);
return;

if (size[0] < 0)
{

event.error = invalidSize;
free(in);
return;

ioctl (devHandle, 2, stat, 4);
if (stat[0]&0x08)

read (devHandle,&size[1],1);

else

event,error = readNotReady;
free(in);
return;

cnt = (int)(size[0]+size[1]*256);
if (cnt > readSizeLimit)
1

event.error = bigSize;
free(in);
return;

ioctl (devHandle, 2, stat, 4);
if (stat[0]&0x08)

j = read (devHandle, in, cnt);

else

event,error = readNotReady;
free(in);
return;

}
if (j != cnt)
{

event.error = readCount;
event,count = j;
free(in);
return;

}
event,error = NONE;
event.count = (int)(j);

message = (FromTMB *)in;
for (i=0; i<numChan; i++)

event,adtin [i] = message->adtin [i];
event,datOut[i] = message->datOut[i];
event.T[i] 	 = message->T[i];
event,U[i] 	 = message->U[i];
event.S[i] 	 = message->S[i];

1
for (i=0; i<numProc; i++)

event.status[i] = message->status[i];

77

event.t = message->t;
event,loopCount= message->loopCount;
event.SolExist = message->SolExist;
event.lambda = message->lambda;

free(in);
1

void Transputer :: Write (EVENT &event)
{

int i, cnt;
int dataSize, messageSize;
int *message;
unsigned char out[22);
unsigned char *ptr;
unsigned long stat[1];

dataSize = 4;
messageSize = dataSize + 2;

message = (int *)malloc(sizeof(i)*3);
if (message < 0)

event.error = mallocErrorWrite;
return;

message[0) = dataSize;
message[1] = event.done;
message[2) = event,reset;
ioctl (devHandle, 2, stat, 4);
if (stat[0)&0x04)
{

ptr = (char *)message;
cnt = write(devHandle, message, messageSize);
if (cnt != messageSize)

event.error = writeError;

else

event.error = NONE;
1
free(message);
return;

else

event.error = writeNotReady;
free(message);
return;

1

Transputer 	 Transputer(EVENT &event, char *fileName)

unsigned long infol[1];
unsigned info[1];
char* command;

// Boot transputer
if (!bootTMB(command))

event.error = bootError;

// Open handle to the device driver .,.
if ((devHandle = linkOpen("LINK1")) < 0)

event.error = linkOpenError;

// Set device driver mode to binary/raw mode ...

78

info[0] = 0x20;
if (setDriverMode(devHandle, &info[0]) < 01
{

event,error = driverModeError;
}

}

Transputer 	 -Transputer()
{

close(devHandle);

79

// end xputer.cpp

//
// common,cpp: Common public function
//
#include "common,hpp"

void initialize(EVENT &event)

int i;
char tmp;

event,go = FALSE;
event,reset = FALSE;
event,done = FALSE;
event,error = NONE;
event,count = RESET;

// end common.cpp

80

//
// error.cpp: Public error handler
//

#include "lw.hpp"
#include "common.hpp"

void errorHandler(EVENT &event)

switch (event,error)
1

case 1:
messagePopup ("tmb initialize: boot failure ,,. ");
break;

case 2:
MessagePopup ("tmb initialize: unable to open link.., ");
break;

case 3:
MessagePopup ("tmb initialize: unable to set driver mode ,,, ");
break;

case 4:
MessagePopup ("tmb read: unable to allocate buffer space ,.,");
break;

case 5:
MessagePopup ("tmb read: Transputer is not ready to send ,.. ");
break;

case 6:
MessagePopup ("tmb read: data packet size is invalid,,. ");
break;

case 7:
MessagePopup ("tmb read: data packet size is too big 	 ");
break;

case 8:
MessagePopup ("tmb read: received packet size incorrect ,.,");
break;

case 9:
MessagePopup ("tmb write: unable to allocate buffer space .,.");
break;

case 10:
MessagePopup ("tmb write: unable to write ...");
break;

case 11:
MessagePopup ("tmb write: Transputer is not ready to receive ,..");
break;

case 12:
MessagePopup ("tmb write: Transputer has raised error flag ...");
break;

default:
MessagePopup ("General protection failure... aka. unknown error?");
break;

exit(-1);

// end error.cpp

81

APPENDIX B

Adaptive Controller Transputer Program Listing

82

/*
** prog.cfs : Transputer hardware and software configuration description
*/

/* hardware config. */
T805 (memory = 4M) p0;
T805 (memory = 4M) p1;
T805 (memory = 4M) p2;
T805 (memory = 4M) p3;
edge 	 dat208;
edge 	 adt108;

connect p0,1ink[0] to host;
connect p0,1ink[2] to pl,link[1];
connect p0,1ink[3] to p3,1ink[3];
connect pl.link[0] to adt108;
connect pl.link[3] to p2.1ink[0];
connect p2.link[2] to p3,1ink[1];
connect p2,link[3] to p3,1ink[0];
connect p3,link[2] to dat208;

/* software config */
process (stacksize = 8k, heapsize = 50k);

process (interface(input in, output out,
input from_p1, output to_pl,
input from_p3, output to_p3)) master;

process (interface(input from_master, output to_master,
input from_p2, output to_p2,
input fromADT, output toADT)) wl;

process (interface(input from_p1, output to_p1,
input from_p3a, output to_p3a,
input from_p3b, output to_p3b)) w2;

process (interface(input from_p2a, output to_p2a,
input from_p2b, output to_p2b,
input fromDAT, output toDAT,
input from master, output to_master)) w3;

input from_host;
output to_host;
input fromDAT208;
output toDAT208;
input fromADT108;
output toADT108;

connect master.in to from_host;
connect master.out to to_host;
connect master,from_pl to wl.to master;
connect master.to_pl to wl.from_master;
connect master.from_p3 to w3.to_master;
connect master.to_p3 to w3.from_master;

connect fromADT108 to wl,fromADT;
connect toADT108 to wl,toADT;
connect wl.from_p2 to w2.to_pl;
connect wl,to_p2 to w2.from_p1;

connect w2.from_p3a to w3,to_p2a;
connect w2.to_p3a to w3.from_p2a;
connect w2,from_p3b to w3,to_p2b;
connect w2.to_p3b to w3,fromp2b;

connect fromDAT208 to w3.fromDAT;
connect toDAT208 to w3,toDAT;

/* network mapping */
use "master.lku" for master;
use "procl,lku" for wl;
use "proc2.lku" for w2;
use "proc3.lku" for w3;
place from_host on host;
place to host on host;
place fromDAT208 on dat208;

83

place toDAT208 on dat208;
place fromADT108 on adt108;
place toADT108 on adt108;
place master on p0;
place wl on pi;
place w2 on p2;
place w3 on p3;

/* end prog.cfs */

84

85

** 	 global,h
*/

#include <stdlib,h>
#include <misc,h>
#include <math,h>
#include <channel.h>
#include <process,h>

#define TRUE 1
*define FALSE 0

/* zero output on DAT */
#define ZERO 2048

/* define upper, lower limit for adt,dat */
#define maxLimit 4095
#define minLimit 0
*define scale 2048,

/* number of channels */
#define numChan 3

/* number of processors */
#define numProc 3

/* message from host elements count */
#define msgFromHostCount 3

/* definition of message from host array index */
#define loopDoneFlag 1
#define resetFlag 2

/* message to host data count offset */
#define dataOffset 2

/* type definition for interprocessor messages */
typedef struct

short temp; /* not used 	 */

short reset; /* reset command to processors */
short loop; /* loop done flag */
short adtIn (numChan); /* ditto here
short datOut[numChan];
short status[numProc]; /* process status
int SolExist;
double t;
double lambda;
double T[numChan);
double U[numChan];
double S[numChan];
double V[numChan];
double Th[numChan];

}MESSAGE;

typedef struct

short dataCount;
short lead;
short adtIn [numChan];
short datOut[numChan);
short status [numProc];
short SolExist;
int loopCount;
double lambda;
double t;
double T [numChan];
double U [numChan];
/*
double S [numChan];
*/

double Th[numChan];
}toHOSTmsg;
/* end global.h */

/*
** control.h
*/

/* constants */
const double BSC_Sigma=3,67e-8; 	 /* Stefan-Boltzman, W/(mA2 K A 4) */
const double BSC_h=6.35e-4; 	 /* m 	 *1

const double BSC_R0=2330,; 	 /* kg/m^3 	 */

const double BSC_JBess[M+1][M+1]=(/* Bessel Matrix 	 */

{111,, 111,, 	 111., 	 111,},
{111., 	 1,, 1, 	 , 	 1. 	 },
{111,, 	 1., 0.692536 , 0.156641),
{111,, 	 1,, 0,0484812,-0,37l476)

);
const double BSC_JBessml[M+1][M+1]={ 	 /* JBessA-1

{111,, 111., 111., 111,),
fill., 0,695535,-1.10285, 1.40731 },
{111,,-1.38689 , 3.60163,-2.21475 },
{111,, 1.69135 ,-2.49878, 0.807431)

);
const double BSC_A[M+1]= 	 /* Bessel roots

[111,, 0., 2529., 8478,);
const double BSC_G[M+1][M+1]=1 	 /* lamp ring rad, func. */

{111,, 111. 	 , 111. 	 , 111.),
{111,, 1.3710938, 8.3217773, 10,1225586),
{111.,-0.0005957, 1.2109375, -0.3002930),
{111., 1.9082031,-1.5888672, -1.08984381

};
const double BSC Gml[M+1][M+1]={ /* GA-1 */

111., 	 111.),
, 0,2290 7 70 , 0.4819576 1,
, 0.6796630 ,-0.0132502 },
,-0.5897808 ,-0.0543878

);

const double BSC ga[M+1)= 	 /* exponents for lamp rings 	 */

1.,1.,1.}; /*(111.,1,, 0.38, 1.4);*/
const double BSC_lammax=2048.; 	 /* constants for feedback control*/
const double BSC_al[M+1]= 	 /* constants for observer 	 *1

{111.,1,e4,2.5e4,1,33e4};/* {111,,2,33e6,2,33e6,2,33e6}; */
const double BSC_Umax[M+1]= 	 /* max current of the lamps 	 */

{111.,2048.,2048.,2048.);
const double BSCdt=0,2; 	 /* time interval ,was 0.001 	 */

/* variables */
double BSC_t;
double BSC_lambda=1,;
double BSC_T[M+1]=/*{111,,290.,310,,280.);*/ {111,,373. 1 373.,373.};
double BSC_Th[M+1];
double BSC_Tbar[3]= 	 /* Tbar[1]+Tbar[2]*t 	 *1

{111,, 375., 10.};/*{111., 1000., 0,};*/
double BSC_u[M+1]=/*{111.,0.27,0.,0.23);*/ (111,,0.,0.,0.);
double BSC_Y[M+11; 	 /* bessel coefficients 	 */
double BSC_Yml[m+1]= 	 /* previous bessel coefficients */

{111,,0,, 0., 0,};

86

*/

*/

{111., 111.,
{111., 0.0586856
{111., 0.0187361
{111., 0.0754373

double BSC P[M+1]=
{111.,0,, 0., 0.);

double BSC Pml[M+1]=
{111.,0,, 0., 0.);

double BSCS[M+1]=
{111.,0,, 0,, 0.);

int 	 BSC_SolExist=1;
int cnt;
double tem[M+1];
double ufc[M+1];

/* estimating parameters

/* estimating parameters

/* estimating parameters of
/* the environment

/* function prototypes */
double c(double);
double k(double);
double E(double);
void 	 equforz(double t, double *z, double *dzdt);
void 	 rk4m(double *z0, int n, double t, double dt,

double *z, void (*derivs) (double, double *, double *));

/* end control.h */

/*
** ekf,h
*1

extern double w[3];
extern double ak[3];
extern double ph[7];
extern double phm[7];
extern double xh[4];
extern double xhm[4];
extern double a[5];
extern double kg[3];
extern double Eo;
extern double al;

void TimeUpdate(double, double *, double *);
void MeasUpdate(double, double *, double *);
void estimateT(void);
void estimateP(void);
void ekf(void);

/* end ekf.h */

87

88

** 	 param.h
*/

#define M 3 /* number of thermo couples */

extern double ESC_t;
extern double ESC_T[M+1];
extern double BSC_Th[M+1];
extern double BSCu[M+1];
extern double BSC_lambda; /* adaptive variable for FE control */

extern double ESC_Sigma; 	 /* Stefan-Boltzman */
extern double BSC_h; 	 /* m */
extern double BSC_RO; 	 /*kg/m^3 */

extern double BSC_JEess[M+1][M+11; 	 /*Besse' Matrix */
extern double BSC_JBessml[M+11[M+1]; /*JBess^-1*/
extern double BSCA[M+1]; 	 /* Bessel roots */

extern double BSC_G[M+1][M+1]; 	 /* lamp ring rad. func. */
extern double BSC_Gml[M+1][M+1]; /* G"-1 */
extern double BSC_ga[M+1]; 	 /*exponents for lamp rings */

extern double BSCTbar[3];

extern double BSC_lammax;
extern double BSCal[M+1);
extern double BSC_Umax[M+1];

extern double BSC dt;

extern double BSC_Y[M+1];
extern double BSC Yml[M+1];

/*Tbar[1]+Tbar[2]*t 	 */

/*constants for feedback control */
/*constants for observer */

/* max current for the lamps */

/* time interval */

/*bessel coefficients */
/*previous bessel coefficients */

extern double BSC_P[M+1];
extern double BSC_Pml[m+i];
extern double ESC_S[M+1];
extern int 	 BSCSolExist;

extern double tem[M+1];
extern double ufc[M+1];
extern int cnt;

/*estemating parameters */
/*estemating parameters */

/*estimating parameters of the env, */
/*control exist,=l;

ubar>=0, but direct FB failed,=0
ubar>=0, but corrected FB failed,=-I
ubar<0, =-2*/

double volt1(double);
double volt2(double);
double volt3(double);
double c(double);
double k(double);
double E(double);
void 	 equforz(double t, double *z, double *dzdt);
double *rk4m(double *z0, int n, double t, double dt,

double *z, void (*derivs)(double, double *, double *));
double *rk6m(double *z0, int n, double t, double dt,

double *z, void (*derivs)(double, double *, double *));

/* end param,h */

89

**	 EQUFORZ,H
*/

extern const double BSCA[];
extern const double BSC_al[];
extern const double BSC_dt;
extern const double BSC_RD;
extern const double BSC_h;
extern const double BSC_Sigma;
extern const double BSC_G[M+1][M+1];
extern const double BSC_ga[M+1];

extern double BSC_u[];
extern double BSC_Yml[];
extern double BSCY[];

/* end equforz.h */

90

*le 	 MISC.H
*/

#include <math.h>

#define M 3

/* function prototypes */
double c(double);
double k(double);
double E(double);
void 	 equforz(double t, double *z, double *dzdt);
void 	 rk4m(double *z0, int n, double t, double dt,

double *z, void (*derivs) (double, double *, double *));

/* end misc.h */

91

** 	 master.c : Root transputer program
** 	 6/19/95
*/

#include "global,h"

int main()

MESSAGE message;
MESSAGE reply;
toHOSTmsg msgToHost;

Channel *fromHOST;
Channel *toHOST;
Channel *fromPl;
Channel *toPl;
Channel *fromP3;
Channel *toP3;

int chan;
int counter;
int msgFromHostSize;
int msgToHostSize;
int messageSize;
int replySize;

short msgFromBost[msgFromHostCount];

/* assign channels */
fromHOST = (Channel*) get_param(1);
toHOST = (Channel*) get_param(2);
fromPl = (Channel*) get_param(3);
toP1 = (Channel*) get_param(4);
fromP3 = (Channel*) get_param(5);
toP3 = (Channel*) get_param(6);

/* initialize ,.. */
message.loop = TRUE;
counter = 0;

/* define message sizes */
msgFromHostSize = sizeof(msgFromNost[0])*msgFromHostCount;

msgToHostSize 	 = sizeof(msgToHost);
messageSize = sizeof(message);
replySize 	 = sizeof(reply);

/* main loop */
while (TRUE)

/* read from host ... 	 */
Chanln (fromHOST, msgFromHost, msgFromHostSize);
if (msgFromEost[loopDoneFlag]) break;

/* send message to processes ,.. 	 */
ChanOut(toPl , &message, messageSize);
Chanln (fromP3, &reply , replySize);

/* send reply to host .,. 	 */
for (chan=0; chan<numChan; chan++)

msgToHost.Th[chan)= reply.Th[chan];
msgToHost.U[chan] = reply,U[chan];
msgToHost.T[chan] = reply.T[chan];
/*
msgToHost.S[chan] = reply,S[chan];
*/
msgToHost,adtIn [chan] = reply,adtln [chan];
msgToHost,datOut[chan] = reply,datOut(chan];
msgToHost.status[chan] = reply.status[chan];

msgToHost,dataCount = (short) (msgToHostSize - dataOffset);
msgToHost,loopCount = counter;
msgToHost,lambda = reply.lambda;
msgToHost.SolExist = (shortlreply.SolExist;

ChanOut (toHOST, &msgToHost, msgToHostSize);

/* update loop counter 	 */

counter++;

Chanln (fromP3 	 &reply , sizeof(reply));
msgToHost.dataCount = (short)(msgToHostSize - 2);
msgToHost,loopCount = counter;
ChanOut (toHOST, &msgToHost, msgToHostSize);

exit_terminate(0);
1

/* end master.h */

92

/* process 1: */

#include "param.h"
#include "adt108.h"
#include "global.h"
#define prociD 0

extern void init_adt108(Channel *, Channel *};
extern int convert(BYTE, BYTE);
extern void rtpinit(void);
extern void rtpsim(void);

int main()
1

Channel *fromP2;
Channel *toP2;
Channel *fromM;
Channel *toM;
Channel *fromADC;
Channel *toADC;

MESSAGE message;
MESSAGE reply;
int messageSize;
int replySize;
int loop;
int chan;
int i,j;
int sample[numChan];
int firstTime;
double temp;

fromM = (Channel*)get_param(1);
toM = (Channel*)get_param(2);
fromP2= (Channel*)getparam(3);
toP2 = (Channel*)get_param(4);
fromADC=(Channel*)get_param(5);
toADC =(Channel*)get_param(6);

messageSize = sizeof(message);
replySize 	 = sizeof(reply);

init_adt108(fromADC, toADC);
/* rtpinit();*/

loop = TRUE;
firstTime = TRUE;

while (loop)
{

Chanln (fromM, &message, messageSize);
loop = 	 message,loop;
for (chan=0; chan<numChan; chan++)

sample[chan]=0;
for (i=0; i<10; i++)

sample[chan]+=convert(chan,GAIN_1);
for (j=0; j<100; j++);

}
message,adtIn[chan] = (short)(sample[chan]/10);
for (j=0; j<100; j++);

for (chan=0; chan<numChan; chan++)

temp=0,;
temp = 200.*((double)(message.adtIn[chan) -2048)/ 409 . 4);
message.T[chan] = 273,15 + temp;

}
message.T[2]=message,T[1];
ChanOut (toP2, &message, messageSize);

}/* end while */

exit_terminate(0);
} /* end processl,c */

93

/* process 2 : */

#include "global.h"
#include "param,h"
#include "ekf.h"

#define procID 1
#define T_ref 800,

extern void controlInit(void);
extern void control(void);
extern void ekf(void);

int main()

Channel *fromP3a;
Channel *toP3a;
Channel *fromP3b;
Channel *toP3b;
Channel *fromPl;
Channel *toPl;

MESSAGE message;
MESSAGE reply;
int messageSize;
int replySize;
int chan,loop,firstTime,x;
double counter, time;
double t_ref;
double Vo[M+1];
int i,m=M;

fromPl = (Channel*)getparam(1);
toPl = (Channel*)get_param(2);
fromP3a = (Channel*)get_param(3);
toP3a = (Channel*)get_param(4);
fromP3b = (Channel*)get_param(5);
toP3b = (Channel*)get_param(6);

messageSize = sizeof(message);
replySize = sizeof(reply);
loop = TRUE;
x=2;
firstTime=TRUE;
counter = BSC_t;
tref=100,;
cnt=2;

/* initial sequence */
controlInit();
while (loop)
{

/* temperature trajectory */
if(BSC_t>=t_ref)

BSC_Tbar[1]=T_ref;
BSC_Tbar[2]=0,;

Chanln (fromPl, &message, messageSize);
loop = 	 message.loop;

if (firstTime)

BSC_Tbar[1]=message.T[1];
tref=(Tref-BSCTbar[1])/BSCTbar[2];

/* for ekf 	 */
xhm[I]=message,T[0];
BSCYm1[1]=xhm[1];_
/* 	 */

firstTime=FALSE;

message,T[2]=(douhle)(rand()/RAND_MAX)+(message.T[0]+message.T[1])/ 2 .;

94

for (chan=0; chan<numChan; chan++)

BSC_T[chan+1]= message.T[chan];

BSCSolExist = 1;

ekf();

control();
Vo[1] = voltl(BSC_u[1]/2048,);
vo[2] = volt2(BSC_u[2]/2048.);
vo[3] = volt3(BSCu[3]/2048.);

for (chan=0; chan<numChan; chan++)

message.U[chan] = kg[chan];
/*
message,U[chan] = BSC_u[chan+1];
*/
message.S[chan] = BSC_S[chan+l];
message.V[chan] = Vo[chan+1];
message.Th[chan]= BSC_Th[chan+1];

1
message.T[2]=BSC_Tbar[1]+BSC_Tbar[2]*BSC_t;
message,lambda 	 = BSC_lambda;
message.SolExist = BSC_SolExist;
ChanOut (toP3a , &message , messageSize);

BSC_t += BSC_dt;
counter++;
for(i=1;i<=m;i++)

BSCYml[i]=BSCY[i];

exit_terminate(0);
1

/* end process2.c */

95

/* process 3 : */
#include "dat208,h"
#include "global.h"
#define prociD 2
extern void init_dat208(Channel *, Channel *);
extern void update_dat208(void);
extern void write_dat208(int, int);
extern char dat2081d(void);

int main()

Channel *fromP2a;
Channel *toP2a;
Channel *fromP2b;
Channel *toP2b;
Channel *fromDAT;
Channel *toDAT;
Channel *fromM;
Channel *toM;

MESSAGE message;
MESSAGE reply;
int messageSize;
int replySize;
int chan, loop, dat_id, dat_out;

fromP2a = (Channel*)get_param(1);
toP2a = (Channel*)get_param(2);
fromP2b = (Channel*)get_param(3);
toP2b = (Channel*)get_param(4);
fromDAT = (Channel*)get_param(5);
toDAT 	 = (Channel*)get_param(6);
fromM 	 = (Channel*)get_param("1);
toM 	 = (Channel*)getparam(8);

messageSize = sizeof(message);
replySize 	 = sizeof(reply);

/* initialize 	 */
initdat208 (fromDAT, toDAT);
dat_id = dat208_id ();
loop = TRUE;

for (chan=0; chan<numChan; chan++)

dat_out = 2048;
writedat208 (chan, dat_out);

updatedat208();

while (loop)

Chanln (fromP2a, &message , messageSize);
loop = message,loop;
/* write to dat208
for (chan=0; chan<numChan; chan++)

dat_out = (int)(2048. + 2048,*message,V[chanl/5,);
if (dat_out > maxLimit)

dat_out = maxLimit;
if (dat_out < minLimit)

dat_out = minLimit;
write_dat208 (chan, dat_out);
message.datOut[chan] = (short)dat_out;

updatedat208();
ChanOut (toM, &message, messageSize);

}/* end while */

/* ,,. reset ADT 	 */

for (chan=0; chan<numChan; chan++)
write_dat208 (chan, ZERO);

update_dat208();
exit_terminate(0);

) /* end process3.c */

96

97

** 	 CONTROL.0
** 	 written by: Sergey Belikov
** 	 revised by: David Hur
*/

#include "misc,h"
#include "control.h"
#include "global,h"

void controlInit(void)

int i,j;
int m=M;

for (1=1; i<=m; i++)

BSCYm1[1]=0,;

for (j=1; j<=m; j++)
BSC_Yml[i]+=(BSC_JBessml[i](j)*BSC_T[j]);

BSCt=BSCdt;
]

void control(void)
i

int m=M; /* number of thermocouples */
int 	 i,j; /* for cycles */
double 	 z[M+1], 	 zO[M+1]; /* for observer */
double ubarsq[M+1]; /* control voltage in corr.power */
double abar[M+1]; /* for adaptive 	 */

double bbar[M+1]; /* choise of lambda */
double Umaxga[M+1]; /* Umax^ga */
double temp,temp4;
double lamupp;
double lamlow;
double temvec[M+1];

/*

/*

temporal var. 	 */

temporal vector */

/************* Y->Pm1 **********(11,13)**/
for (i=1; i<=m; i++)

BSCPml[i]=BSC_S[i]*(2./BSC_h);
z0[1]=BSC_Pml[i]-BSC_al[i]*BSCYml[i];

rk4m (z0, m, 0., BSCdt, z, equforz);

for (1=1; 1<=m; i++)
{

BSC_Pm1[1]=BSC_al[1]*BSC_Y[ii+z[i];

/************ 	 ************(11,12)*****/
for (1=1; i<=m; i++)

BSC_S[1]=(BSC_h/2.)*BSC_Pm1[1];
1

/********** Open Loop: S,Tbar->ubar *******(11.16)******/
temp=BSC_Tbar[1]+BSC_Tbar[2]*BSC_t;
temp4=temp*temp*temp*temp;
BSC_P[1]=BSC_RO*c(temp)*BSC_Tbar[2]+E(temp)*temp4;
BSC_P[2]=0.;
BSCP[3]=0.;

temvec[1]=-BSC_S[1]+0,5*BSC_h*BSC_P[1];
temvec[2]=-BSC_S[2];
temvec[3]=-BSC_S[3];
for (1=1; i<=m; i++)

ubarsq[i]=0.;
for (j=1; j<=m; j++)

ubarsq[1]+=(BSC_Gml[i][j]*temvec[j]);
if (ubarsq[i]<0.)

BSC_SolExist=-2;
)

1

/******* abar and bbar for u=-1ambda*abar +bbar***********/
/* abar */
for (1=1; i<=m; i++)

temvec[i]=BSCY[1];
)
temvec[1]-=temp;
for (i=1; i<=m; i++)

abar[i]=0.;
for (j=1; j<=m; j++)

abar[i]+=(BSC_Gml[i][j]*temvec[j]);

abarfil*=(0.5*BSC_h*BSC_RO*c(BSC_Y[1]));
1
/* bbar */
temvec[1]=BSC Tbar[2]*BSC RO*c(BSC Y[1])

+E(SC_Y[1])*BS-d_Y[1]*BS -E_Y[1]*BSC_Y[1]*BSC_Y[1]-BSC_P[1];
for (i=2; i<=m; i++)

temvec[i]=(BSC A[1]*k(BSC Y[1])
+4.*E(BSCy[1]) 7BSC_y[1]*BSC_Y[1)*BSC_Y[1])*BSCY[i]
-BSC_P[1];

for (i=1; i<=m; i++)

bbar[i]=0,;
for (j=1; j<=m; j++)

bbar[1]+=(BSCGml[1][j]*temvec[j]);

bbar[1]=0.5*BSC_h*bbar[i]+ubarsq[i];

/****************Calculation of lambda****************************/
lamlow=0,;
1amupp=BSClammax;
for (1=1; 1<=m; 1++)

Umaxga[1]=pow(BSC_Umax[i],BSC_qa[1.1);
)

for (i=1; i<=m; i++)
{

if (abar[1]-0,&&(bbar[1]<0.11bbar[1]>Umaxga[1])
&&BSC SolExist>-1)

BSC_SolExist=-1;
temp=bbar[i]/abar[1];
temp4=(bbar[1]-Umaxga[i])/abar[i];
if (abar[1]>0.)
1

if (lamlow<temp4) lamlow=temp4;
if (lamupp>temp) lamupp=temp;

)
if (abar[1]<0.)

if(lamlow<temp) lamlow=temp;
if(lamupp>temp4) lamupp=temp4;

)
)
if (lamlow>lamupp && BSC_SolExist>-1)

BSC SolExist=-1;
BSC_lamEda=lamupp;

if (BSC_lambda>1,) BSC_lambda=1.;
if (BSC lambda<0.) BSC lambda=0.;

98

/********************* u **************************************/
for (i=1; i<=m; i++)

BSCIi[i]=-BSClambda*abar[i]+bbar[i];

if (BSC_SolExist<O)

for (j=1; j<=m; j++)
BSCu[j]=0.;

for (j=1; j<=m; j++)

BSC_u[j]=pow(BSC_u[j],1./BSC_ga[j));

1
/* end of control */

99

/*
** Extended Kalman Filter
*/

#include <math,h>
#include "global,h"
#include "param,h"
#include "ekf.h"

double w[3]={25,,25,,25.};
double ak[3]={0.,226775.43,760222,26};
double ph[7]={0,,.25,0.,0,,.25,0.,,25};
double phm[7]={0,,.25,0,,0,,.25,0.,.25);
double xh[4]={0,,0,,0.,0,);
double xhm[4]={0,,0,,0,,0,};
double a[5]={0,,0,,0,,0,,0,};
double kg[3]={0.,0.,0.};
double Eo=.46;
double al=.19e-7;
double dts=0.05;
int m=M;

void TimeUpdate(double t, double *x, double *dxdt)

double p;
double pl,p2,p3;

/* Error Covariance Matrix */
pl=x[1]+x[2]+x[3];
p2=x[2]+x[4]+x[5];
p3=x13]+x[5]+x[6];
p=p1+p2+p3;

dxdt[1]=2.*a[0]*x[1]+w[0]-p*x[1]/25.;
dxdt[2]=a[1]*x[1]+(a[0]+a[2])*x[2]-p*x[2]/25,;
dxdt[3]=a[3]*x[1]+(a[0]+a[4])*x[3]-p*x[31/25.;
dxdt[4]=2.*a[1]*x[2]+2.*a[2]*x[4]+w[1]-p*x[4]/25,;
dxdt[5]=a[3]*x[2]+a[1]*x[3]+(a[2]+a[4])*x[5]-p*x[5]/25.;
dxdt[6]=2.*a[3]*x[3]+2,*a[4]*x[6]+w[2]-p*x[6]/25,;

void MeasUpdate(double t, double *x, double *dxdt)

/* Estimate Update:X=X+K(Y-h) */
dxdt[1]=(1./(BSC RO*c(x[1])))*

(-E(x[1])-*x[1]*x[1]*x[1]*x[1]+(2./BSC h)
*(BSC G[1][1]*BSC u[1]+BSC G[1][2]*B§C_u[2]+BSC_G[1][3]*BSC_u[3]+BSC_S[1])
)+kg[O]*(BSCT[1]-7x[1]+x[2T+x[31));

dxdt[2]=(1./(BSC RO*c(x[1])))*
(-(BSC Ar2]*k(x[1])+4*E(x[1])*x[1]*x[1]*x[1])*x[2]+(2,/BSC h)
*(BSC-G[2][1]*BSC u[1]+BSC G[2][2]*BSC_u[2]+BSC_G[2][3]*B-s-c_uf31+BSC_S[2])
)+kg[1T*(BSCT[1]-Tx[1]+x[2T+x[3]));

dxdt[3]=(1./(BSC RO*c(x[1])))*
(-(BSC Af-3]*k(x[1])+4*E(x[1])*x[1]*x[1]*x[1])*x[3]+(2,/BSC
*(BSCG[3][1]*BSC u[1]+BSC G[3][21*BSC_u[2]+BSC_G[3][3]*Bk_u[31+BSC_S[31)
)+kg[21*(BSC T[1]-Tx[1]+x[2T+x[31));

void estimateT()

int i,j;
int m=M;

for (i=1;i<=m;i++)
{

BSC Y[1]=xh[i];
BSCITh[1]=0.;
for (j=1;j<=m; j++)

BSC_Th[i]+=BSC_JBess[i][j]*BSC_Y[j];

100

void ekf (void)
{

int i,j;
double tt;

1* Jacobian Components */
a[0]=-al*4.*Eo*xhm[1]*xhm[1]*xhm[1];
a[1]=-12.*al*Eo*xhm[1]*xhm[1]*xhm[2];
a[2]=-a1*(ak[1]+4.*Eo*xhm[1]*xhm[1]*xhm[1));
a[3]=-12,*al*Eo*xhm[1]*xhm[1]*xhm[3];
a[4]=-a1*(ak[2]+4.*Eo*xhm[1]*xhm[1]*xhm[1]);

/* time update */
tt=BSC_t;
for(i=0; i<4; i++)

rk6m(phm,6,tt,dts,ph,TimeUpdate;

for (j=1; j<=6; j++)
Phm[i] ---Ph[j];

tt+=dts;

/* kalman Gain: K=PH'inv(HP1V+R) */
kg[0]=(ph[1]+ph[2]+ph[3])/25,;
kg[1]=(ph[2]+ph[4]+ph[5])/25,;
kg[2]=(ph[3]+ph[5]+ph[6])/25.;

/* measurement update */
tt=BSC_t;
for(i=0; i<4; i++)

rk4m(xhm,m,tt,dts,xh,MeasUpdate);

for (j=1; j<=3; j++)
xhm[j]=xh[j];

tt+=dts;

for (j=1; j<=3; j++)
xhm[j]=xh[j];

estimateT();
for (j=1; j<=6; j++)

phm[j]=ph[j];

101

/* end ekf.c */

102

** 	 rk4m.c- lightly modified Runge-Kutta from NRC
** 	 written by: Sergey Belikov
** 	 revised by: David Hur
*1

#include "misc,h"
#include "global.h"

void rk4m(double y[], int n, double x, double h, double gout[],
void (*derivs)(double, double [], double []))

int i;
double xh,hh,h6;
double dydx[M+1],dym[M+1],dyt[M+1],yt[M+1];

(*derivs)(x,y,dydx);

hh=h*0.5;
h6=h/6.0;
xh=x+hh;

for (i=1; i<=n; i++)
yt[i] = y[i]+hh*dydx[i];

(*derivs)(xh,yt,dyt);
for (i=1; i<=n; i++)

yt[i] = y[i]+hh*dyt[i];

(*derivs)(xh,yt,dym);
for (i=1; i<=n; i++) {

yt[i] = y[i]+h*dym[i.];
dym[i] += dyt[i];

1

(*derivs)(x+h,yt,dyt);
for (i=1; i<=n; i++)

yout[i] = y[i]+h6*(dydx[i]+dyt[i]+2,0*dym[i]);

void rk6m(double y[], int n, double x, double h, double gout[],
void (*derivs)(double, double [], double []))

{
int i;
double xh,hh,h6;
double dydx[6+1),dym[6+1],dyt[6+1],yt[6+1];

(*derivs)(x,y,dydx);

hh=h*0.5;
h6=h/6,0;
xh=x+hh;

for (i=1; i<=n; i++)
yt[i] = y[i]+hh*dydx[i];

(*derivs)(xh,yt,dyt);
for (i=1; i<=n; i++)

yt[i] = y[i]+hh*dyt[i];

(*derivs)(xh,yt,dym);
for (i=1; i<=n; i++) {

yt[i] = y[i]+h*dym[i);
dym[i] += dyt[i];

(*derivs)(x+h,yt,dyt);
for (1=1; i<=n; i++)

yout[i] = y[i]+h6*(dydx[i)+dyt[i]+2.0*dym[i]);

/* (C) Copr. 1986-92 Numerical Recipes Software n2'%9A,)+16, *

103

** 	 volt.c -- voltages for the lamp rings
** 	 written by: Sergey Belikov
*/

#include "param.h"

double voltl(double u) {
double utab[6]={
0.,0.19,0,31,0.39,0.73,1,
};
double vtab[6)={
0,,1,,2,,3,,4,,5.
);
int i;
double ret;

for (i=1;u>utab[1];1++);
ret-vtab[i-1]+(vtab[i]-vtab[i-11)

*(u-utab[i-1])/(utab[i]-utab[i-1]);
return(ret);

double volt2(double u) {
double utab[2]=A
0.,1.
);
double vtab[2]={
0.,1.
};
int i;
double ret;

for (1=1;u>utab[2];i++);
ret=vtab[i-1]+(vtabfi]-vtab[i-13)

*(u -utab[i-11)/(utab[i)-utab[i-13);
return(ret);

double volt3(double u) {
double utab[6]={
0.,0.046,0.29,0.53,0.80,1.
);
double vtab[6]={
0.,1.,2.,3.,4.,5.
};
int i;
double ret;

for (i=1;u>utab[i];i++);
ret=vtab[1-1)+(vtab[1]-vtabli-11)

*(u-utab[1-1])/(utab[i]-utab[1-1]);
return(ret);

/* end volt.c */

104

** 	 equforz,c -right part of ODE for Runge-Kutta
**	 written by: Sergey Belikov

#include "misc,h"
#include "equforz.h"
*include "global.h"

void equforz(double t, double *z, double *dzdt)

double y[M+l];
double Gu[M+1];
int i,j;
int m=M;

for(i=1; i<=m; i++){
Y[i] = BSC_Yml[i]+(BSC_Y[i]-BSC_Yml[i])*t/BSC_dt;
Gu[i]=0,;
for (j=1; j<=m; j++)

Gu[i]+=(BSC_G[i][j]*pow(BSC_u[j],BSC_ga[j]));

Gu[i]*=(2./BSCh);

dzdt[1] = -(BSC_a1[1]/(BSC_RO*c(y[1])))
*(-E(y[1])*y[1]*y[1]*y[1]*y[1]
+BSC_al[1]*y[1]+z[1]-1-Gu[1]);

dzdt[2] = -(BSC_al[2]/(BSC_RO*c(y[1])))
*(-(BSC_A[2]*k(y[1])+4.*E(y[1])*y[1]*y[1]*y[1])*y[2]
+BSCal[2]*y[2]+z[2)+Gu[2]);

dzdt[3] = -(BSC_al[3]/(BSC_RO*c(y[1))))
*(-(BSC_A[3]*k(y[1])+4.*E(y[1])*y[1]*y[1]*y[1])*y[3]
+BsC_al[3]*y[3]+z[3]+Gu[3]);

double c(double T)
1

double Ttab[9]=(
0,,100.,200.,400,,600,,800.,1000,,1200.,3000.
);

double ctab[9]={
256.,256,,549.,780,,856,,900.,934.,955.,955.

int i;
double ret;

for (i=1; T>Ttab[i]; i++);
ret = ctab[i-1]+(ctab[i]-ctab[i-1])

* (T-Ttab[i-1])/(Ttab[i]-Ttab[i-1]);
return(ret);

double k(double T)

double Ttab[9]={
0,,100.,200.,400.,600,,800,,1000.,12 0 0., 3000 .

};
double ktab[9]={

884.,884.,264.,98.9,61.3,42.2,31.2,25, 7 , 25 , 7

};
int i;
double ret;

for (i=1; T>Ttab[i]; i++);
ret = ktab[1-1]+(ktab[i] - ktab[i - 1])

* (T-Ttab[i-1])/(Ttab[i] -Ttab[i - 1));
return(ret);

double E(double T)

1
double Ttab[5]={

0,,550,,700.,740.,3000.
1;

double etab[5]={
0.2,0.2,0.5,0.7,0,7
1;

int i;
double e;

for (i=1; T>Ttab[i]; i++);
e = etab[i-1]+(etab[1]-etab[i-1])
* (T-Ttab[i-1])/(Ttab[i]-Ttab(i-1));

return(2.*e*BSC_Sigma/BSC_h);

/* end equforz.c */

105

APPENDIX C

Operational Procedure for RTP System

106

107

Initial Operation:
1.Turn on power for RTP system,
2. Make sure RTP (gas) controller switches are in OFF position,
3, Turn on Nitrogen:

a. Turn on main tank valve,
b. Turn on main valve to RTP,
c, Adjust control valve to about 40-60 psi reading on the tank,

To Access Wafer:
Need: Cotton swab, Acetone, and Rubber glove

1.Make sure the side wafer access door is in UNLOCKED position.
2. On the RTP gas controller panel, turn on purge switch,
3, When the side access door pops open, chamber can be opened,

To change or shift the wafer, lower inside chamber using the crank at side of the RTP.
Before Closing the chamber:

a. Clean wafer and susceptor with acetone to prevent oxidation,
b. Apply vacuum grease around the rubber ring of chamber and side access

door,
c. Close the chamber door and raise the chamber,
d. Make sure the thermo-couples are located within the notch of the 0-ring

of the chamber,

To Turn On RTP System:
1, Enable computer read-out of the RTP chamber temperature.

a. Change to directory notebook,
b. Run program by typing nb,
c. Choose setup from menu,
d. Select save/recall then select recall.
e. Load either tong or johnz/.
f. Press esc, then iconview, the run,

2, Make sure power connector for each lamp zone is plugged in,
3. Turn on water.
4. Turn Compressor on:

a. Turn main switch on the compressor power panel,
b. Turn on secondary switch,
c. Let compressor run for few seconds,
d. Open all the way the valve to RTP.

5. On vacuum controller panel position vacuum control switch to on (upper)
position, (Max, pumping)

6. On gas controller panel, turn on roughing valve.
7. When the read-out is about 20, switch vacuum control switch to middle positon

and set the dial to auto,
* During the experiment, keep read-out to about 70 psi.
8. Set set point to about 70,

108

9. On gas controller panel, turn on N2 switch, Adjust set point to keep the read-
out near 70,

10. On gas controller panel, channel 1 corresponds to Nitrogen gas, Use this dial
to set the gas control read-out to around 1,2.

11, When steady state of gas and vacuum is reached, RTP lamps are ready to turn
on,

To Turn On the Adaptive Controller System:
1. Make sure the voltage supply for the switch box is plugged in.
2. Make sure the ribbon cable from the controller computer is plugged into the

thermocouple signal conditioner terminal. Black is pin 1.
3. Make sure all switches on the switch box is in OFF position.
4. Turn on controller computer,
5. Change to appropriate directory where the control program resides.

d:\david\cloop4 - original adaptive control,
d:\david\cloop6 - emissivity experiment
d:\david\cloop7 - adaptive control EKF

6. Run the control program, (type test)
7. When all LEDs on the switch box is OFF, turn all switches on the switch box to

ON position,
8. Start control loop by clicking on the START button.

To Turn Off Adaptive Controller System:
1.Turn all switches on the switch box to OFF position
2. Clock EXIT button on user interface,

To Shutdown RTP System:
1. Turn off N2 and roughing valve switches on the gas controller panel.
2. Close the valve on the compressor.
3. Turn off secondary switch, then main switch on the compressor power panel.
4. Close the main valve to RTP for nitrogen, then close main tank valve.
5. When thermocouple temperature reading reaches below 100C, turn off water,
6. Remove switch box power supply from the wall socket,
7. Turn off computer,
8. Turn off power to RTP,

BIBLIOGRAPHY

[1] Stephen A, Norman, "Wafer Temperature Control in Rapid Thermal Processing,"
Ph,D. Thesis, Stanford Univ,, 1992,

[2] Y, M, Cho, A, Paulraj, T. Kailath, G, Xu, "A Contribution to Optimal Lamp
Design in Rapid Thermal Processing," IEEE Trans, Semicond. Manufact., Vol 7,
No 1, pp 34-41, Feb, 1994,

[3] S, Belikov, M, Kaplinsky, N, Ravindra, F, Tong, W, Kosonocky, "Wafer
Temperature Measurement Correction for Multi-Wavelength Imaging Pyrometer
Using Kalman Filtering," Proceedings, The 3 rd International Rapid Thermal
Processing Conference, Amsterdam, Netherlands, August 30-September 1 1995,

[4] S, Belikov, D, Hur, B, Friedland, "Real Time Estimation and Adaptive Control
for RTP System", Proceedings, 3 1.d International Rapid Thermal Processing
Conference, Amsterdam, Netherlands, August 30-September 1 1995.

[5] S. Belikov, M, Kaplinsky, B, Friedland, "Parameter Estimation for Evaluating
Ability of a RTP System to Maintain Uniform Temperature", Proceedings, 4 th

IEEE Conference on Control Applications, Albany, NY, September 28-29 1995.

[6] S, Belikov, B, Friedland, "Closed-loop adaptive control for Rapid Thermal
Processing", Proceedings, 34 th IEEE Conference on Decision and Control, New
Orleans, LA, December 1995.

[7] S, Belikov, "M-WIP Based RTP Controller," 1994, N,P, n.p,

[8] S. Belikov, H, Martynov, M. Kaplinsky, C. Manikopoulos, N, Ravindra, W,
Kosonocky, "A Design Methodology for Configuration of Lamps in an RTP
System", Proceedings, The 2nd International Rapis Thermal Processing
Conference, Monterey, CA, August 31- September 2 1994.

[9] S, Belikov, H, Martynov, M, Kaplinsky, C, Manikopoulos, "On Using
Wavelength Dependent Emissivity of Semiconductor to Model Heat Transfer in
Rapid Thermal Processing Station", Proceedings, IEEE Transactions on
Semiconductor Manufacturing, 1995.

[10] B. Friedland, "A Simple Non-Linear Observer for Estimating Parameters in
Dynamic Systems", Proceedings, The 12 th IFAC Congress, Sydney, Australia,
July 18-23 1993.

109

110

[11] B, Friedland, Control Systems Design, An Introduction to State Space Methods
McGraw Hill, New York, 1986

[12] L. C. Thomas, Heat transfer-Professional Version, PTR Prentice Hall, Englewood
Cliffs, NJ, 1993,

[13] A, Ting, "Influence of Wafer-Dependent Radiation in Simulation of Lamp Heated
RTP System", Proceedings, The 2 nd International Rapid Thermal Processing
Conference, Monterey, CA, August 31-September 2 1994,

[14] Transputer Development and iq System Handbook, Inmos, 1991

[15] Transputer ANSI C toolset Manual, User manual, Inmos, 1991

[16] TMB16 Hardware Manual, User Manual, Transtech , 1991

[17] ADT108 AID TRAM User's Manual, Sunnyside, 1991

[18] DAT208 D/A TRAM User's Manual, Sunnyside, 1991

[19] S, Belikov, D, Hur, B, Friedland, N.M, Ravindra, "Estimation of emissivity of a
wafer in an RTP chamber by a dynamic observer", Proceedings, in Rapid Thermal
and Integrated Processing V (Mater, Res. Soc, Proc, 342, San Francisco, CA
1996)

[20] Frank L, Lewis, Optimal Estimation with an Introduction to Stochastic Control
Theory, Wiley-Interscience, New York, 1986

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Fall 1996

	Real-time implementation of an adaptive control system for a 3-zone rapid thermal processing station
	David Hur
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Dedication
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Model Based Adaptive Control Algorithm
	Chapter 3: Implementation of Adaptive Controller
	Chapter 4: Simulation and Experimental Results
	Chapter 5: State Estimation Using Extended Kalman Filter
	Chapter 6: Estimation of Emissivity
	Chapter 7: Conclusion
	Appendix A: Adaptive Controller Host Program Listing
	Appendix B: Adaptive Controller Transputer Program Listing
	Appendix C: Operational Procedure For RTP System
	Bibliography

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

