New Jersey Institute of Technology Digital Commons @ NJIT

Theses

Electronic Theses and Dissertations

Fall 1-31-1997

A student training manual for running the HYSIM computer simulation program

Roberta Rosty New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Chemical Engineering Commons

Recommended Citation

Rosty, Roberta, "A student training manual for running the HYSIM computer simulation program" (1997). *Theses.* 1047. https://digitalcommons.njit.edu/theses/1047

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

A STUDENT TRAINING MANUAL FOR RUNNING THE HYSIM COMPUTER SIMULATION PROGRAM

by Roberta Rosty

Hyprotech's HYSIM computer simulation program is used in the chemical processing industry (CPI) to simulate unit operations, which aid in the design of various different kinds of processing plants. It is important then that chemical engineering students should gain early exposure to a simulation program such as HYSIM, in order to facilitate their comprehension of process engineering design work using this type of program, and to bridge the gap between the textbook knowledge they gain of unit operations in the classroom with some of the actual process engineering work-a-day methods available for solving problems.

The objective of this work was to provide detailed examples of HYSIM computer runs for various unit operations, plus other areas covered by HYSIM, such as pressure drop calculations and pipe sizing. Each example contains a description of the process, a process flow diagram and the steps needed to be taken by the HYSIM user to run that particular example. The results obtained from the run are shown at the end of each example.

These examples are being supplied as a guide or training method so that the user can gain the proficiency in running the HYSIM program, that will then translate to the solving of other similar problems, given either in the classroom or in the field.

A STUDENT TRAINING MANUAL FOR RUNNING THE HYSIM COMPUTER SIMULATION PROGRAM

by Roberta Rosty

A Professional Project Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Engineer

> Department of Chemical Engineering, Chemistry, and Environmental Science

> > January 1997

 \bigcirc \langle

APPROVAL PAGE

A STUDENT TRAINING MANUAL FOR **RUNNING THE HYSIM COMPUTER SIMULATION PROGRAM**

Roberta Rosty

Dr. Edward C. Roche, Jr., Professional Project Advisor Date Professor of Chemical Engineering Department of Chemical Engineering, Chemistry, and Environmental Science New Jersey Institute of Technology, Newark, NJ

Date

Dr. Deran Hanesian Professor of Chemical Engineering Department of Chemical Engineering, Chemistry, and Environmental Science New Jersey Institute of Technology, Newark, NJ

Dr. Christopher Williamson Lecturer Chemical and Process Engineering Department University of Canterbury, Christchurch, New Zealand Date

BIOGRAPHICAL SKETCH

Author: Roberta Rosty

Degree: Degree of Engineer

Date: January 1997

Undergraduate and Graduate Education:

Degree of Engineer in Chemical Engineering, New Jersey Institute of Technology, Newark, NJ, 1997

Master of Science in Chemical Engineering, New Jersey Institute of Technology, Newark, NJ, 1981

Bachelor of Science in Chemical Engineering, New Jersey Institute of Technology, Newark, NJ, 1977

Major: Chemical Engineering

Presentations and Publications:

- R. Rosty, D. Martinelli, A. Devine, M.J. Bodnar, J. Beetle,
 "Surface preparation of polyolefins prior to adhesive bonding," The 32nd International SAMPE Symposium and Exhibition, California, April 6-9, 1987. The SAMPE Journal, pp. 34-37, July/August issue, 1987.
- R. Rosty, D. Martinelli, W.J. Russell and M.J. Bodnar,
 "An optimization procedure for the cyclization and chlorination of vulcanized rubber prior to adhesive bonding," The 35th Sagamore Army Materials Research Conference, June 1988.
- M. J. Bodnar, J. Osterndorf, and R. Rosty,
 "Adhesive bond strength and durability studies using three different engineering plastics and various surface preparations,"
 The 34th SAMPE Symposium and Exhibition, Reno, Nevada, May, 1989.
 The SAMPE Journal, pp. 15-19, July/August issue, 1989.

This professional project is dedicated to my family and

in the memory of

Dr. H. T. Chen and Dr. J. E. McCormick.

ACKNOWLEDGMENT

The author would like to express her appreciation to Dr. Edward C. Roche, Jr., Dr. Deran Hanesian, and Dr. Christopher Williamson for their technical assistance and guidance in the preparation of this professional project, and to Mrs. Annette Damiano of the NJIT Graduate Studies Office for reviewing the document.

The author would also like to thank Hyprotech for furnishing the HYSIM computer simulation program on which this project is based.

Finally, thanks are in order to my family, who helped me in the preparation of this manuscript.

TABLE OF CONTENTS

С	hapter Pa	ige
1	INTRODUCTION.	1
2	HYSIM FEATURES.	3
	2.1 Starting , Leaving and Saving HYSIM.	3
	2.1.1 Starting HYSIM.	3
	2.1.2 Leaving and Saving HYSIM.	4
	2.1.3 Termination of HYSIM Computations	4
	2.2 Hysim Form And Special Function Keys	5
	2.3 Property Packages	7
	2.4 Component Selection.	10
	2.4.1 The Component Selection Menu	10
	2.4.2 Description of the Component Selection Screen	10
	2.4.3 Directly Typing the Name of a Component	11
	2.4.4 The Component Selection Menu Function Keys	11
	2.5 Start-Up Menu.	12
	2.6 Main Menu	16
	2.7 Printing	24
	2.8 Changing Units.	29

TABLE OF CONTENTS (Continued)

C	hapter	Page
3	UNIT OPERATION EXAMPLES	30
	3.1 Columns.	31
	3.1.1 Absorber Column	31
	3.1.2 Reboiled Absorber Column.	50
	3.1.3 Refluxed Absorber Column	63
	3.1.4 Distillation Column	78
	3.1.5 Liquid/Liquid Extraction Column	93
	3.1.6 Component Fractionator Column.	113
	3.2 Compressors/ Expanders.	123
	3.3 Heat Exchangers.	131
	3.3.1 Shell and Tube Type Heat Exchanger - Simple.	132
	3.3.2 Shell and Tube Type Heat Exchanger - Rate.	142
	3.3.3 Single Sided Heat Exchanger - Heater	155
	3.3.4 Single Sided Heat Exchanger - Cooler	163
	3.3.5 LNG (Multi-Pass) Heat Exchanger.	171
	3.4 Mixers (Adiabatic)	187
	3.5 Pumps (Liquid)	194

TABLE OF CONTENTS (Continued)

Chapter	Page
3.6 Reactors (General)	203
3.6.1 Stoichiometric Reactor.	204
3.6.2 Equilibrium Reactor	215
3.6.3 Gibbs Reactor	225
3.6.4 Continuously Stirred Tank Reactor (CSTR)	234
3.6.5 Plug Flow Reactor (PFR)	248
3.7 Separators.	262
3.7.1 Two-Phase Separator.	263
3.7.2 Three-Phase Separator.	270
3.7.3 Cyclone Solids Separator	283
3.7.4 Bag-House Filter Solids Separator	297
3.7.5 Rotary-Vacuum Filter Solids Separator	308
3.7.6 Hydrocyclone Solids Separator	317
3.7.7 Simple Solids Separator	. 331
4 OTHER OPERATIONS IN HYSIM	341
4.1 Piping and Fittings.	342
4.1.1 Pipeline Segments (Single/Two/Three Phase)	342
4.1.2 Tees (Adiabatic)	351

TABLE OF CONTENTS (Continued)

Chapter	Page
4.1 Piping and Fittings (continued)	
4.1.3 Valves (Adiabatic)	359
4.1.4 Pipe Sizing and Pressure Drop Calculations.	366
4.2 Mass and Mole Balances	. 374
4.2.1 Mass Balance	. 375
4.2.2 Mole Balance	. 384
4.3 Set/Controllers.	. 393
4.4 Adjust/Controllers	400
4.5 Recycle	. 412
4.6 Data Recorders	. 432
5 COMBINING UNIT OPERATIONS INTO ONE PROCESS AND PFD	. 454
REFERENCES	479

CHAPTER 1

INTRODUCTION

This Student Training Manual for the HYSIM process simulation program contains examples of the various unit operations offered in the HYSIM program with extensive commentary. Other areas are covered as well, such as fittings, piping, and pressure drop calculations. The last section covers an example of how to connect various unit operations into one process.

The reference for the HYSIM information in this training manual and for some of the technical examples is the HYSIM User's Guide (Ref. 1) and the HYSIM Special Features, References and Applications Guide (Ref. 2). The HYSIM (Hyprotech Simulation Program) used was version 2.53, released on September 14, 1994. The address of Hyprotech is as follows:

Hyprotech 300 Hyprotech Centre 1110 Centre Street North Calgary, Alberta, Canada T2E 2R2 (403) 520-6000

Hyprotech 11490 Westheimer, Suite 750 Houston, TX 77077-6841 (713) 870-1900 (713) 870-1039 (FAX) (800) 475-0011 The introduction of each section will contain the reference for all or a portion of the particular technical example used. If no reference is stated, then the technical example was made-up by the author.

Some examples in this manual contain metric units and some are done in field or English units. Examples for both systems were used to illustrate the method for accessing different units in HYSIM (metric is the default system of units), and to show that the system of units in which the data for a problem is obtained doesn't need to be converted to use HYSIM. Other units, besides metric or Field, may also be used as defined by the HYSIM user.

CHAPTER 2

HYSIM FEATURES

2.1 Starting, Leaving and Saving HYSIM

2.1.1 Starting HYSIM

<u>Instructions</u>: The HYSIM computer simulation program can be started by following the actions below. These instructions are for the use of a version of HYSIM that exists on the users' personal computer (PC). Network versions will require a command to load from the network storage device.

The words to be highlighted or typed are indicated in **bold** typeface in the <u>Action</u> section below. The function keys to be used are indicated inside the bracket <> symbols (e.g. the <**Enter**> key). Comments are indicated in *italicized* print.

Step	Action		
1	Is the computer and terminal turned on at your workstation?		
	• If <u>Yes</u> , proceed with Step 2.		
	• If <u>No</u> , turn on the computer and terminal now.		
2	Are you in the DOS operating system (i.e. at a C:> prompt)?		
	• If <u>Yes</u> , proceed with Step 3.		
• If <u>No</u> , exit your existing software package, until you are in the DOS operating system.			
	then proceed with Step 3.		
	Changing directories to the HYSIM subdirectory.		
3	At the C:\> prompt, type CD\HYSIM and press the <enter> key.</enter>		
	Getting the HYSIM program from the HYSIM subdirectory in DOS.		
4	Type HYSIM at the C:\HYSIM> prompt and press the <enter></enter> key.		
	The HYSIM banner with a start-up menu will then come up on the screen and will appear as		
	follows.		

HYSIM Banner with the Start-up Menu

2.1 Starting, Leaving and Saving HYSIM (continued)

2.1.2 Leaving and Saving HYSIM

Step		Action			
1	Are you at the HYSIM main menu, as shown below?				
	•	If <u>Yes</u> , proceed with Step 2.			
	6	If <u>No</u> , push the <esc></esc> key enough times, until you get back to the main menu.			

HYSIM Main Menu

Work_Sheet	Specify Remove	Operation Store	Print New
Ignore	Restore	Hold	Go
Utility	Size	Report	Toggle
Work_Sheet streams	in a spreadsheet	format	
Prop Pkg PR - SI UI	nits 9879552		

Step	Action
2	Highlight Exit on the main menu and then push the <enter> key. (You may also exit HYSIM by</enter>
	typing "Exit" at the prompt.)
3	Do you want to save the case?
	• If <u>Yes</u> , type the name of the case after the prompt (>) and then press the <enter> key;</enter>
	• If <u>No</u> , type quit and then press the <enter> key.</enter>
	The DOS prompt (C:\HYSIM>) will then appear on the screen.
4	Do you want to use another software package, besides HYSIM?
	• If <u>Yes</u> , enter that package now
	• If No, turn-off the terminal and computer at your workstation.

2.1.3 Termination of HYSIM Computations

A convenient method of terminating HYSIM computations is to use the <Ctrl><Break> key sequence.

2.2 HYSIM Form and Special Function Keys

The following sections provide information on the uses of the form and special function keys in HYSIM. This information was taken from the Reference 1, pages 3-38 and 3-39.

Function A) To move the cursor:	<u>Key*</u> Use the following key(s):
 One character to the right or left on the same entry blank** To the next blank 	$< \rightarrow>$ or $< \leftarrow>$ $< Tab>$ or $< Enter>$ or $< \downarrow>$
 3) To the previous blank 4) To past the last character in the blank the cursor is presently in. 5) To the first character in the blank the cursor is presently in. 	<1> or <shift><tab> <end> <home></home></end></tab></shift>
B) To delete:	
 The character to the left of the cursor. The character at the cursor position The character at the cursor position and all the characters to the right of it. 	<backspace> <delete> <ctrl><end></end></ctrl></delete></backspace>
 4) All the characters in all of the blanks. <u>C) To use the values currently in the blanks</u> to answer the appropriate questions. 	<ctrl><home> <insert></insert></home></ctrl>
 D) To exit the form and abort the activity currently in (if the cursor is at the beginning of a blank). <u>To return the blank to its original value</u> and move the cursor to the beginning of the blank (if the cursor is not at the beginning of the blank). 	<esc></esc>
The <esc> key quits or gets you out of the current activity.</esc>	
E) To terminate print operation and flowsheet calculation sequence, and some HYSIM Utility calculations and several of the lengthy stream specification outputs.	<ctrl><break></break></ctrl>

*The name on a key is indicated in the <> type of brackets. The key name in the brackets is the same name which can be found on a key located on a standard 101-keyboard. If two or more keys are required to be pressed in sequence, each key to be pressed will be indicated inside the <> type of brackets.

**Blanks are each entry block on a HYSIM form, which requires one specific data or name entry per block.

2.2 HYSIM Form and Special Function Keys (continued)

F) Blank Spaces

Blank spaces are not allowed in user supplied names (e.g. the name of an operation). They are interpreted as the end of the entire name or command. When asked to "enter the operation name," either type the name you wish (without blanks) or enter a dash (-), and HYSIM will assign the next available unit operation number.

G) Help with HYSIM

If you require help at any point, the <F1> key or the question mark key <?> can be pressed.

H) Special Function Keys

The following information describes the usage of the F1 through F10 keys, when using HYSIM:

<F1> This is the *help key*, which will give details on the current activity.

<F2> This key <u>will bring up a menu of choices</u>, for certain applications such as when <F2> is pressed in a blank space needed to be filled in on a form.

<F3> This key is an *editing function key*.

<F6> This key allows you to <u>reorder selected components</u>.

<F7> This key invokes the HYSIM calculator.

<F8> This key <u>uses the value on the bottom of the calculator stack as the answer</u> to the current question.

<F9> This key <u>automatically runs the Calculator Routine</u> that has been specified for the Macro. <F10> This key <u>temporarily removes the current window from the screen</u>, and by pressing it again, allows you to get the screen back again.

2.3 Property Packages

The following screen will appear for the selection of a property package for the particular application which you are working on:

Peng_RobinsonSoave_Redlich_Kwon Chao_SeaderGrayson_StreedActivity_ModelsVapour_PressureAminesPR_OptionsSRK_OptionsSteamTabularUser_DefinedPeng_Robinson a Hyprotech enhanced PR - recommended for most HC casesWhich property package do you require

Listed below is a brief description of each property package listed. For more information consult Reference 1, pages 4-1 to 4-69.

1) <u>Peng-Robinson Equation of State (PR)</u> - Recommended for most oil, gas and petrochemical applications. The Peng-Robinson Equation of State will solve single, two-phase or three-phase systems and is applicable at temperatures greater than -456°F (-271°C), and for pressures less than 15,000 psia (100,000 kPa). The PR equation of state performs rigorous three-phase flash calculations for systems containing water, methanol or glycol. It will also do these calculations for systems containing other hydrocarbons than methanol or glycol, or components that are not hydrocarbons in the second liquid phase. The type of systems recommended for this method are: TEG Dehydration, Sour Water, Cryogenic Gas Processing, Air Separation, Atmospheric Crude Towers, Vacuum Towers, High Hydrogen Systems, Reservoir Systems, and Hydrate Inhibition.

2) <u>Soave-Redlich-Kwong Equation (SRK)</u> - The SRK equation is applicable for hydrocarbon mixtures with temperatures greater than -225°F (-143°C) and for pressures less than 5,000 psia (35,000 kPa). This method should not be used for non-ideal systems or if methanol or glycol is a component in the problem. The SRK equation is applicable for rigorous three-phase flash calculations for systems containing water.

3) <u>Chao-Seader (CS)</u> - The CS package can be used for light hydrocarbon mixtures or for three phase flashes resulting from immiscibility, with pure water as the second liquid phase. It is recommended for problems containing mostly water (or steam). It can also be used for three-phase flashes, with water as the second liquid phase. The Chao-Seader methods' useful range is: 0 to 500 °F (-18 to 260 °C) and below 1500 psia (10,000kPa).

4) <u>Grayson-Streed Package (GS)</u> - The GS package is a semi-empirical model that can be used for three phase flashes with pure water as the second liquid phase. The Grayson-Streed Model is an extension of the Chao-Seader Method, with special attention paid to hydrogen as a component. It is recommended for problems containing mostly water (or steam) or for systems having a high concentration of hydrogen, such as hydrotreating units. This correlation is also good for crude vacuum towers (at less than 10 mm Hg), atmospheric crude towers, topping units and heavy ends vacuum applications. It can also be used for three-phase flashes, with water as the second liquid phase. The Grayson-Stread Method is useful over a temperature range of 0 to 800 °F (-18 to 425 °C) and below 3000 psia (20,000kPa). 5) <u>Activity Coefficient Models</u> - Activity Coefficient Models are recommended for chemical systems because of liquid phase non-idealities The following models are available: Margules, vanLaar, Wilson, Non-Random-Two-Liquid (NRTL), Universal Quasi Chemical (UNIQUAC), and Chein-Null.

6) <u>Vapor Pressure Models</u> - Vapor Pressure Models are the modified Antoine model, the Braun (BK10) model, and the Esso-Tabular model. They are designed to handle heavier hydrocarbon systems at lower pressures. (They cannot be used for Vapor-Liquid Equilibrium (VLE) predictions at high pressures or when light hydrocarbons are present in significant quantities). This method is recommended for vacuum towers.

The modified Antoine Pressure Model can be used for ideal low pressure systems. The Braun K10 Model and Esso-Tabular Model are both for use with low pressure hydrocarbon systems, and are not good for applications where there is a large quantity of acid gases or light hydrocarbons.

7) <u>Amines</u> - The Amines Property Package contains the thermodynamic models developed for AMSIM, which is a proprietary amine plant simulator. The Amines property package is an optional property package with the HYSIM program. It can be obtained from Hyprotech, if it is not already a part of your current package.

8) <u>Peng- Robinson Options (PR-Options)</u> - The variations of the Peng-Robinson (PR-Options) menu selection includes: the sour water model using the Peng-Robinson Equation of State (Sour-PR), Peng-Robinson with Lee-Kesler Enthalpies (PR-LK-Enth), Peng-Robinson-Stryjek-Vera (PRSV), Peng-Robinson-Stryjek-Vera with Lee-Kesler Enthalpies (PRSV-LK-Enth) and Peng-Robinson without automatic calculation of Hydrocarbon-Hydrocarbon K_{ij}'s (PR-No-HC-K_{ij})

packages. The PRSV equation of state is more suitable than the Peng-Robinson (PR) for handling non-ideal systems. The PRSV equation of state performs rigorous three phase flash calculations for systems containing water, methanol or glycol, as well as systems containing hydrocarbons besides methanol or glycols or non-hydrocarbons in the second liquid phase. The values for both binary interaction coefficients are assumed to be equal in the PRSV option.

This PR-Options option is recommended for Atmospheric Crude Towers, Vacuum Towers and Reservoir Systems.

9) <u>Soave-Redlich-Kwong Equation Options (SRK Options)</u> - The property packages available under the SRK Options, variations of the SRK Equation of State, are the: Sour water model using the Soave-Redlich-Kwong Equation of State (Sour-SRK), the Soave-Redlich-Kwong with Lee-Kesler Enthalpies (SRK-LK-Enth), the Soave-Redlich-Kwong without automatic calculation of the Hydrocarbon-Hydrocarbon K_{ij} constant calculations (SRK-No-HC- K_{ij}), Kabadi-Danner and the Zudkevitch-Joffe modification of the Redlich-Kwong equation of state (Zudkevitch-Joffe-RK) equations.

The Sour-SRK uses the SRK equation of state with the Wilson model. The SRK-LK-Enth uses Lee-Kesler enthalpies which may have more accuracy for heavy hydrocarbon systems. The SRK-No-HC- K_{ij} Option uses the SRK model with no automatic calculation of any unknown interaction coefficients (K_{ij}) between hydrocarbons. The Kabadi-Danner model is an enhancement

2.3 Property Packages (continued)

9) Soave-Redlich-Kwong Equation Options (SRK-Options) (continued) -

of the SRK equation of state to improve the vapor-liquid-liquid equilibrium results for waterhydrocarbon systems. The Zudkevitch-Joffe model is an enhancement of the Redlich-Kwong equation of state, for better prediction of vapor-liquid equilibria for hydrocarbon systems.

10) <u>Steam</u> - Under the Steam Package, you can select either the American Society of Mechanical Engineers (ASME) Steam or the National Bureau of Standards (NBS) Steam. ASME Steam uses the ASME 1967 steam tables, and NBS Steam uses the NBS 1984 steam tables, which supposedly have better data in the region of the Critical Point.

11) <u>Tabular</u>- Tabular Package calculations are based on polynomial expressions that are a function of temperature, but the Tabular Package must be used with one of the other HYSIM property packages. (An example would be the calculation of the viscosities of chemicals using the Tabular Package, while the Activity Models package calculated the rest of the properties).

12) <u>User Defined-</u> User proprietary packages, coded in C and compiled with Metaware 2.3 - High 386, may be linked with HYSIM. (An interface routine is available with the linkable version of HYSIM and contains documentation of the parameters and the functionality of the routine).

2.4.1 The Component Selection Menu

All of the components to be used in a particular application must be specified to HYSIM at the beginning of the initial case run. (Case retrieval is explained under Section 2.5 - The Start-Up Menu.) The following screen will initially appear when you are to make your component selection:

		COMPONENT SELECTION			
Selected Synonym		Name	Formula	Criteria	
	OIL	OIL		ALL	
	HYPOTHETICAL	HYPOTHETICAL		HC	
	C1	Methane	CH4	SOLID	
	C2	Ethane	C2H6	MISC	
	C3	Propane	СЗН8	AMINE	
	i-C4	i-Butane	C4H10	ALCOHOL	
	n-C4	n-Butane	C4H10	KETONE	
	i-C5	i-Pentane	C5H12	ALDEHYDE	
	n-C5	n-Pentane	C5H12	ESTER	
	C6	n-Hexane	C6H14	CARBACID	
	C7	n-Heptane	C7H16	HALOGEN	
	C8	n-Octane	C8H18	NITRILE	
	C9	n-Nonane	C9H20	PHENOL	
	C10	n-Decane	C10H22	ETHER	
	C11	n-Cll	C11H24	USER	
	C12	n-C12	C12H26		
│ ¥	⊥ ▼ _ ↓S	earch by SYNONYM]]	
Fl - Help, I	F3 - Menu, F4 -	Flip Srch, F5 - Exa	am, F6 - Mo	ve, F8 - Change 🛛	
	PRE	SS INSERT TO SUBMIT			

2.4.2 Description of the Component Selection Screen

2.4.2.1 Middle Column

The chemical list in the middle of the screen contains three columns. The first column lists a specific chemical using its synonym; the second column lists the same chemical using its chemical name, and the third column lists the same chemical again using its chemical formula (containing the actual number of atoms of each element in the molecule or formula). The chemical list itself is very long and you can search for a component by any of the three methods listed above. A typed list of all of the chemical components available in HYSIM are listed in Appendix A of Reference 2.

2.4.2 Description of the Component Selection Screen (continued)2.4.2.1 Middle Column (continued)

The first two component names listed in the second column are: OIL and HYPOTHETICAL. These two general names can be selected and tabulated forms will then appear, so that the user can fill in physical property data to specify a user-defined component. (If it is known that the hypothetical component is an oil, use the oil form; otherwise use the hypothetical form). These forms are available to define components which are not apart of the "Component Selection" List.

2.4.2.2 Criteria Column (Rightmost Column)

The chemical group names in the "Criteria" column can be selected if you know the group of chemicals the particular chemical you wish to specify is in. (Selected means using the arrow keys to place a cursor over the chemical name and then pressing the <Enter> key).

If you select the group of chemicals first, the list of chemicals in the middle of the screen will change, listing only the group of chemicals you have specified. You can now select your chemical from the shortened list. If the next chemical you wish to select is in another chemical group, you can select that chemical group and the list in the middle of the screen will change again.

2.4.2.3 Selected Column (Leftmost Column)

The leftmost column is empty initially because no components have been selected initially by the user. As the HYSIM user selects components, they are listed in the "Selected" column.

2.4.3 Directly Typing the Name of a Component

If the HYSIM name for a component is known it can be typed directly into the "Selected" column. If the component name is not known exactly, one can start to enter the name in the "Selected" column and the middle column will adjust to list the components that match what has been typed so far.

2.4.4 The Component Selection Menu Function Keys

Use the following function keys to perform the following functions while in the Component Selection Menu:

<F1>- Help key.

<F3>- Use this key to access the Secondary Component Selection Menu. (No on-line search feature).

<F4>- Use this key to switch between searching by synonym or searching by formula.

<F5>-Use this key to either examine the makeup of an oil or hypothetical or to display all synonyms for a particular component.

<F6>- Use this key to move the position of items in the selected column.

<F8>- Use this key to replace a selected component with a new one.

The start-up menu in HYSIM is the first menu which will be encountered by the user, and appears as follows:

The Start-Up Menu

Yes No Project Configuration Do Learn Yes continue with a stored case Do you wish to continue with a previous case?(Use the F1 key for help)

The start-up menu has the following selections available to the HYSIM user to answer the following question:

Do you wish to continue with a previous case?*

A new case is one in which you are starting from scratch, and a previous case is a case which was started at an earlier time and has been stored.

- 1) Yes Continue with a stored case.
- 2) No Ask the questions necessary to define the components.
- 3) Project Select a project to work under.
- 4) Configuration Set various program parameters.
- 5) Do Read commands from a script files.

6) Learn - Record input in file as it is entered.

*The above descriptive text reflects what appears on the screen as each of the above answers is highlighted.

The following screens will appear after each of the above is selected: (Selection of a menu item in HYSIM denotes using the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow) located on the keyboard to place the cursor over the menu choice you have selected, which causes the selected item to change color, and then pressing the <Enter> key).

<u>1) Yes</u>

When you select \underline{Yes} the following menu, listing the stored cases, such as the following screen will appear:

```
CASESTDY.SIM TUTORIAL.SIM Parent_dir\ ?
CASESTDY.SIM
What is the name of the case you wish to continue with?
>
```

The following file extensions are used in HYSIM:

sim	-	Simulation case files.	.exe	-	Executable files.
.pm	-	Printed files	.oil	-	Stored oil assays.
.cmd	-	Command files.	.rpt	-	Report templates.
.dat	~	Data files.	.prj	-	Project subdirectories.

<u>2) No</u>

When you select <u>No</u> the following menu will appear:

Peng_RobinsonSoave_Redlich_Kwon Chao_SeaderGrayson_StreedActivity_ModelsVapour_PressureAminesPR_OptionsSRK_OptionsSteamTabularUser_DefinedPeng_Robinson a Hyprotech enhanced PR - recommended for most HC casesWhich property package do you require

The different property package choices are described briefly on the screen when they are highlighted (the cursor is placed over them using the arrow keys). The brief description that appears on the screen is indicated below. If more information is needed on the different property packages and what package is most pertinent for the particular application at hand, refer to pages 4-1 to 4-69 of Reference 1.

The details on the Equations of State listed below can be found on pages 7 to 9. a) *Peng-Robinson* - a Hyprotech enhanced PR (Peng-Robinson) - recommended for most HC (Hydrocarbon) Cases.

b) Soave-Redlich-Kwon - a standard SRK (Soave-Redlich-Kwong).

c) Chao-Seader

d) Grayson-Streed - an improved Chao-Seader correlation.

e) Activity-Models - dual model packages for chemical problems.

f) Vapour-Pressure - vapour pressure models, BK10 (Braun K10 Model), Esso-Tab (Esso Tabular Model), Modified Antoine.

g) Amines - D.B. Robinson's property package for gas sweetening (optional).

h) *PR_Options* - dual model/expanded PR (Peng-Robinson) - sour water, LK (Lee-Kesler) enthalpies, PRSV (Peng-Robinson-Stryjek-Vera) equation of state, etc. The options are: Sour-PR (Wilson's API-Sour Model and the Peng-Robinson equation of state), PR-LK-Enth (Peng-Robinson equation of state with Lee-Kesler enthalpies), PRSV (Peng-Robinson-Stryjek-Vera equation of state), PRSV-LK-Enth (Peng-Robinson-Stryjek-Vera equation of state with Lee-Kesler enthalpies), and PR-No-HC-K_{ij} (Peng-Robinson equation of state, with the zero K_{ij} option, where

unknown hydrocarbon interaction coefficents are not calculated).

i) *SRK_Options* - dual model SRK (Soave-Redlich-Kwong) - sour water, LK (Lee-Kesler) enthalpies, etc. The options are: Sour-SRK (Soave-Redlich-Kwong equation of state with the Wilson API-Sour Model), SRK-LK-Enth (Soave-Redlich-Kwong equation of state using Lee-Kesler enthalpies), SRK-No-HC- K_{ii} (Soave-Redlich-Kwong equation of state, with the zero K_{ii}

option, where unknown hydrocarbon interaction coefficients are not calculated), Kabadi-Danner model and Zudkevitch-Joffe-RK (Zudkevitch-Joffe model of the Redlich-Kwong equation of state). j) *Steam* - ASME (The American Society of Mechanical Engineers) - 1967 or NBS (National Bureau of Standards) 84 steam tables.

k) *Tabular* - use tabular K's (K-factors), Enthalpies, or Physical Props (Properties) for comps (components).

1) User_Defined - No comment appears when this selection is highlighted.

3) **Project** -When a project has been created and named in HYSIM, a new sub-directory is created, using the project name and the directory extension .prj. (For example, a project named Fred will be Fred prj.)

The following screen will appear when *project* is selected.

Select Create Select choose an existing project Do you wish to select an existing project?

The following selections are available to the HYSIM user to answer the question: Do you wish to select an existing project?

a) Select - Chose an existing project.

b) Create - Start a new project.

4) Configuration

The following screen will appear after *configuration* has been selected.

```
Screen Graphics_printer Graphics_dimension Text_printer
Units Miscellaneous Print Save
Screen configure the appearance of HYSIM
What do you want to configure
>
```

The following selections are available under "Configuration":

- a) Screen Configure the appearance of Hysim.
- b) Graphics-Printer Set the configuration for the PFD (Process Flow Diagram) and plots.
- c) Graphics-Dimension Set plot dimensions for the PFD and plots.
- d) Text-Printer Information about text printers.
- e) Units Set the default unit system, add or modify units.
- f) Miscellaneous Configure other sundry items. These sundry items include:

Accounting - Save usage charges in an accounting file.

Beep-Delay - Time calculation will run before beep.

Backup-frequency - Time between timed automatic backups.

Overwrite-backup - Backup cases as filename.BAK whenever one is saved.

Macro - Specify the name of the calculator program to be executed with 'F9'.

g) Print - Display the current configurations.

h) Save - Store the current configuration for future runs.

<u>5) Do</u>

The <u>Do</u> command is used to read commands from script files. The Command File read by HYSIM is in the ASCII format, and is useful when using the If, Else and Endif commands, to automate HYSIM runs. The End Command returns control back to the keyboard.

The following screen will appear after selecting Do:

Parent_dir\ ? ? Select command file>

<u>6) Learn</u>

The <u>Learn</u> command is used to record input in a file as it is entered into HYSIM, and will be used in an ASCII file. (The End command returns control back to the keyboard).

The following screen will appear after selecting Learn:

```
Parent_dir\ ?
Parent_dir\
Enter command file name
>
```

2.6 Main Menu

The following screen is called the Main Menu. This menu is reached after the HYSIM user has specified the property package to be used and the components that are in the current case, or has retrieved an old case. From this point on, it does not matter in which order the HYSIM user enters information. When HYSIM has enough information, it will complete the Worksheet.

The Main Menu

Work_Sheet PFD	Specify Remove	Operation Store	Print New
Ignore	Restore	Hold	Go
Exit	Size ?	Report	Toggle
Work_Sheet streams Prop Pkg PR - SI Ur	in a spreadsheet : hits 9879552	format	
-			

Text in parenthesis is viewed on the screen when each one of the following commands is highlighted:

- 1) Worksheet Streams in a spreadsheet format.
- 2) Specify Input information about process streams.
- 3) Operation Add or change a process unit operation.
- 4) Print Display data and results.
- 5) **PFD** Display the flowsheet process flow diagram.
- 6) Remove Used to delete streams, unit operations, or cases.
- 7) Store Save the current case as a disk file.
- 8) New A new case or new set of components is desired.
- 9) Ignore Temporarily remove a unit operation from the flowsheet.
- 10) Restore Restores an operation which has been ignored.
- 11) Hold Turn off the automatic recalculation of changed flowsheets.
- 12) Go Turn on the recalculation and update flowsheet.
- 13) Utility Gives access to miscellaneous utility features.
- 14) Size Physical sizing of unit operations.
- 15) Report Print detailed input and output reports using a standard format.
- 16) Toggle Switch to another case keeping the current case loaded.
- 17) Exit End the current session and return to DOS.

After you have selected one of the commands 1 through 16, you will always <u>eventually</u> return to this Main Menu, by hitting the **<Esc>** key. In some cases, pressing the **<Insert>** or the **<Enter>** key will also get you back to the Main Menu.

In addition to selecting a menu item with the mouse, one can type the menu item or even the first few letters and then press the **<Enter>** key. This is a convenient method of accomplishing menu selection.

_____ Streams == New Value = - - -**. -** --_ _ ~ Stream - - -- - -- - -Vapour_Frac _ _ _ - - --- - ----_ _ _ Temperature - - -- - -- - -~ - -Pressure ---Flow - - -- - -- - -~ _ _ Mass_Flow - - -- -- -- - -- - -----LigVol_Flow - - -------- - -Energy_Flow ------- - -~ - -~ - -Stream - - -_ _ _ - - -- - -Vapour_Frac ~ _ ~ - - -- - -- - -- - -- - -Temperature

_ _ -

- - -

- - -

- - -

_ _ -

- - -

- - -

- - -

- - -

- - -

1) Work_Sheet - When the <u>Work_Sheet</u> command is highlighted and the <Enter> key is then pressed, the following type of Worksheet will appear on the screen.

The worksheet shown above is how the worksheet will appear before any process stream names and conditions have been specified. As this information is specified, the above worksheet will fill. An example of a completed worksheet is shown below:

- - -

- - -

- - -

- - -

- - -

Pressure

Mass_Flow

LigVol_Flow

Energy_Flow

Flow

The stars or asterisks (*) are shown next to the user-supplied data. The rest of the data which appears in the worksheet without an star or asterisk (*) has been calculated by the HYSIM computer simulation program. Some versions of HYSIM use a color change in text to differentiate between user-supplied data and that data calculated by HYSIM.

Data can be entered either by typing in the stream name in the blank labeled <u>Stream</u> and then typing in the data directly into the Worksheet, or through usage of the <u>Specify</u> command. In the example shown below, the following stream names have been entered: Feed, Vapor, Liquid, and Solids.

		==== Stre	ams —			
	New Value =			kgmole/h		
Stream	Feed	Vapor		Liquia	Sc	lids
Vapour_Frac	0.0000	0.0000		0.0000	Ο.	0000
Temperature	25.0000*	25.0000	2	25.0000	25.	0000
Pressure	101.0000*	91.0000	9	1.0000	91.	0000
Flow	100.0000*	0.0000	7	5.0000*	25.	0000
Mass_Flow	1651.4026	0.0000	135	51.1326	300.	2700
LiqVol_Flow	1.5367	0.0000		1.3539	0.	1829
Energy_Flow	~2.56188E+06	0.0000	-2.588	12E+06	26225.	2350
Stream				-		
Vapour_Frac				-		
Temperature						
Pressure				-		
Flow						
Mass_Flow						
LigVol_Flow						
Energy_Flow						
Attached to	Solids					

- - -

- - -

- - -

- - -

- - -

2) Specify - When the Specify main menu command has been highlighted and then the <Enter> key has been pressed, the following menu will then appear on the screen:

1				
	Temperature	Pressure	Flow	Composition
	Vapour_fraction	Name	T-P	Conditions
	Stream	Energy_Flow	Individual_comp	Mass_flow
	LiqVolume_flow	Number	Note	?Stream_name
	Temperature			
	What would you li	ke to specify?		
1	>			
1				

By highlighting and pressing the <Enter> key for one of the following variables, you can specify or input known information about different streams to the computer program. The default units used in the HYSIM program are SI or metric units: °C, kilograms (kg), kilopascals (kPa), meters (m), etc. To change to any other set of units, see the "Changing Units" Section 2.8 in this manual.

The units classified as Field units include: °F, pounds mass (lb), pounds force per square inch (psia), feet (ft), etc. Field units are also commonly known as British or English units. The standard conversion between the metric and the Field units are as follows:

 $1 \text{ atm} = 14.696 \text{ psia} = 101 \text{ kPa} \qquad 1 \text{ ft} = 0.3048 \text{ m}$ °F = 1.8(°C) + 32 1 lb(mass) = 0.4536 kg

a) Temperature - Specify the Temperature (°C) of any stream in the case.

b) Pressure - Specify the absolute Pressure (kiloPascals, kPa) of any stream in the case.

c) Flow - Specify the molar flow (kg-mols/hr) of any stream.

d) **Composition** - Specify the Composition of any stream in mole, liquid volume or mass flow rates or in mole, liquid volume or mass fractions of the total stream flow rate.

e) Vapour (Vapor) Fraction - Specify the fraction (0.0000-1.0000) of vapor in any stream in the case.

f) Name- Specify any Stream Name (12 characters maximum).

g) T-P - Specify both the Temperature (°C) and Pressure (kPa) conditions of any stream in the case.

h) Conditions - Specify the Temperature (°C), Pressure (kPa), and Molar Flow (kg-mols/hr) conditions of any stream in the case.

i) Stream - Specify the Conditions and Composition (as described above) of any stream in the case.

j) Energy-Flow - Specify the Energy Flow (kiloJoules/hr, kJ/hr) of a pure Energy stream, such as the energy being supplied to a single-sided heater case.

k) Individual-comp - Specify the composition (as described above) of individual components within a stream.

l) Mass-flow - Specify the mass flowrate (kg/hr) of any stream in the case.

m) LiqVolume-flow - Specify the *ideal liquid* volumetric rate (cubic meters/hr, m³/hr) of a stream. An ideal system is considered to be one where the components are of the same "family" of hydrocarbons or chemicals, and which have close boiling points. (Ref. 3, Vol. 2, pp. 1 and 2)

n) Number - Specify the number associated with a stream.

o) Note - Specify a short note that will accompany each stream and operation.

p) ?Stream-name - Specify the conditions and composition (as described above) of a New Stream

3) **Operation** - When the Operation Main Menu Command is highlighted and then the <Enter> key is pressed the following screen, asking for you to give the operation a name (e.g. V-100, Column, etc.), will appear:

?New ?New enter a new name to install a new operation Enter the operation name

A name (we used Robin) for the operation (flow sheet reference symbol or process unit reference name) should be typed in after the prompt (>) as shown below:

?New Enter the operation name >Robin

After pressing the <Enter> key, the following screen will then appear, naming the different operations that are available in HYSIM:

Heat_Exchanger	Column	Comp/Expander	Set
Cooler/Heater	Fractionate	Pump	Adjust
LNG	Separator	Balance	Recycle
Mixer	Separator_3	Mole_Balance	Command_File
Тее	Solid_Separator	Mass_Balance	Calculator
Valve	Reactor	Gbalance	Pipe_Segment
Link_Case	Data_Recorder		
Heat_Exchanger Two sided heat exchanger			
What type of unit	do you want to install		
>			

4) **Print** - This command is used to print various inputted and HYSIM generated information to the screen. Refer to Section 2.7 entitled "Printing" of this manual for a full explanation of how to use the Print command.

5) **PFD** - By highlighting the PFD (Process Flow Diagram) command on the Main Menu and then pressing the <Enter> key, you can see a diagram of the unit operation(s) that is in the case in which you are working. By using the key <F2>, you can access a menu of operations that can be performed on the PFD, such as printing it to the printer. Press the <Esc> key to get back to the Main Menu.

6) **Remove** - The Remove command is used to Delete streams, operations or cases. The following screen will appear when the Remove command is highlighted and the <Enter> key is pressed:

Streams Operations Cases Streams all the specifications for the named stream will be removed Do you want to remove streams operations or cases >

To remove either a stream, operation, or case, highlight the pertinent word, press the <Enter> key, and then highlight the name of the stream, operation or case which you wish removed and then press the <Enter> key again.

7) Store - By highlighting the word Store and pressing the <Enter> key the present case can be stored in a disk file.

A screen listing all of the current files stored will then appear similar to the one shown below, at which time you can store the case into an old file or into a new one. If you are storing the case in a new file, you must name it first by typing that name after the prompt and then hitting the <Enter> key. If you are storing the case in an old file, highlight the name of the old file listed on the menu, and then press the <Enter> key. If you do not wish to store the case into any file, then type the word "Quit" after the prompt and then press the <Enter> key.

CASESTDY.SIMQIOT.SIMROSTY.SIMTUTORIAL.SIMParent_dir\LLE.PRJ\VLE.PRJ\?CASESTDY.SIMEnter the name of the case to save the result in or Quit>

8) New - When the word New is highlighted and the <Enter> key is pressed, the following screen will appear, in which you can specify to HYSIM whether you wish to specify a new case, basis (new components), oil, Property_Package or Project.

Case Basis Oil Property_Package Project Case start a completely new case What do you wish to change?

9) **Ignore** - When you highlight the word Ignore and press the <Enter> key, a screen similar to the following one, will appear in which you can either select or enter the names of the operations you wish ignored (temporarily removed from the flow sheet).

V-100 V-101 -V-100 Enter the names of the operations you wish ignored > 10) **Restore** - When you highlight the word Restore and press the <Enter> key, a screen similar to the following one, will appear in which you can either select or enter the names of the operations you wish restored (bring back an operation that was Ignored or temporarily removed from the flow sheet).

V-100 V-101 -V-100 Which operations do you wish restored

11) Hold - When you highlight the word Hold and then press the <Enter> key, HYSIM will not automatically recalculate worksheets as you make changes to them, as it normally does. (Sometimes HYSIM will impose a Hold on its calculations without the Hold being specified, due to that fact that there is an error or other problems.) To restore the HYSIM program to normal automatic calculations, highlight the word Go on the main menu and then press the <Enter> key.

12) Go - By highlighting the word Go and then pressing the <Enter> key, the HYSIM program will be restored to normal automatic calculations from the Hold mode. The Hold and Go commands can alternatively be typed from the keyboard. This is normally faster then selecting the command.

13) Utility - The Utility command gives the HYSIM user tools in which to specify or present additional information. When the word Utility is highlighted and the <Enter> key is pressed, the following menu will appear on the screen:

Configuration Move_Before Rename_Operation Oper_Description Case_Description Do_Command List Configuration set	Solids Critical Envelope Property_Table STX_ACX HTFS Tray_Calc screen colours,	Heat_Curves Pinch Get_Dist_Results Short_Cut_Dist Depressure DOS DelPFD conversion units	Make End ExitDo If Else Endif User_prop etc.
Configuration set Which utility do	screen colours, you want?	conversion units	etc.
>			

The following text in parenthesis is viewed on the screen when each one of the following commands is highlighted:

- a) Configuration Set screen colours, conversion units, etc.
- b) Solids Check for the freezing of solids in streams.
- c) Heat-Curves Heat exchanger profiles.
- d) Make Create a file of commands.

e) Move-Before - Rearranges stream and operation menus and output.

f) Critical - Stream critical properties.

g) Pinch - Perform multiple heat exchanger analysis.

h) End - Must be last command in a file of commands.

i) Rename-Operation - Renames an operation already installed in the flowsheet.

j) Envelope - Temperature vs pressure phase diagram for any stream.

k) Get-Dist-Results - Specify a stream with results from a column run.

1) ExitDo - Terminate a do command before count is done.

m) Oper-Description - Supply a 60 character description of operations.

n) Property-Table - Create a table of dependent and independent variables.

o) Short-Cut-Dist - Fenske Underwood distillation calculation.

p) If - Controls conditional execution of HYSIM commands.

q) Case-Description - Enter up to 20 lines of text description for the case.

r) STX-ACX - Run the heat exchanger programs from HTC. STX and ACX are third party

optional programs provided by Heat Transfer Consultants.

s) Depressure - Pressure vs time Depressuring Unit.

t) Else - To be used in conjunction with the IF command.

u) Do-Command - Perform a set of commands read from a file.

v) HTFS - Create transfer file for M. TASC heat exchanger program from HTFS. A data file will run the M-Tasc heat exchanger programs, which are third party optional programs.

w) **DOS** - Perform a operating system (DOS) command.

x) Endif - To end an IF command.

y) List - List the contents of a file. Do not use on stored cases.

z) Tray-Calc - Utility to transfer column data to Tray-Calc program.

- aa) DelPFD Delete PFD.
- bb) User-prop Add user properties to the current case.

14) Size - When the word Size is highlighted on the Main Menu and the <Enter> key is then pressed, the following screen will appear. The size command allows you to size pipes, pipe segments, columns, towers, separators, solid separators, heat exchangers and LNG heat exchangers.

Pipe_Segment Column Separator Heat_Exchanger Pipe_Size Tower_Size Solid_Separator LNG Pipe_Segment detailed information for an installed pipe_segment What do you wish to size?

15) **Report** - Highlighting the word Report on the Main Menu and then pressing the <Enter> key will result in the following menu on the screen which allows the user to run a report and to either edit, create or delete the format of the report.

Run Edit_Format Create_Format Delete_Format Run a report What would you like to do? >
16) **Toggle** - Highlighting the word Toggle and then pressing the <Enter> key allows you to switch to another case while keeping the current case loaded. The following screen will appear asking you to either create or load a new case into memory, or to toggle to another case which has already been stored.

NewCase NewCase Create or load a new case Select case

17) Exit - Highlighting the word Exit on the Main Menu and then pressing the <Enter> key will result in the following type of screen, which lists all of the files that have been stored in HYSIM. If you wish to save the case in an old file, highlight that name and then press the <Enter> key. If you wish to save the case in a new file, type the name of the new file, and then press the <Enter> key. If you don't wish to save the file then just type the word "Quit" and then press the <Enter> key.

CASESTDY.SIMPFR.SIMQIOT.SIMQIUIT.SIMQUIY.SIMROSTY.SIMSAMPLE.SIMTUTORIAL.SIMParent_dir\LLE.PRJ\VLE.PRJ\?CASESTDY.SIMEnter the name of the case to save the result in or Quit>

2.7 Printing

<u>Instructions</u>: The "print" command in HYSIM is used to print results of calculations by HYSIM to the <u>screen</u>, such as stream summaries and equipment specifications.

In order to print results to the printer, one must specify that they want to use the printer in HYSIM by using the following sequence of commands: first highlighting the word "print", (highlighting means using the arrow keys to move the cursor over the particular word which is needed, such as print, and then the block with the word changes color so that the word is then highlighted). The <Enter> key is then pressed. The word "printer" is highlighted next, and then the <Enter> key is pressed again.

The "Prt On" will appear on the screen when the above sequence of commands is used. It alerts the HYSIM user to the fact that the printer is now ready to print any results when the Print command is used again. To toggle the printer off, press the **Print** <<u>Enter</u>> **Printer** <<u>Enter</u>> command sequence again. The "Prt On" label will then disappear.) The actions to be used to print HYSIM calculation results are shown below: (Note: the print options available while specifying a column operation or sizing a column are different from the options shown below, and are listed in this manual on pages 42, and page 46-47, respectively.)

Step	Action
1	Are you at the HYSIM main menu?
	• If <u>Yes</u> , go to Step 2.
	• If No, press the <esc> key enough times until you get to the main menu.</esc>
	Printing calculation results to the screen.
2	Highlight the word Print and then press the <enter> key;</enter>
	The following screen will appear:

Operations	Spec_Sheets	Hypotheticals
Cost	File	Printer
Description	Oil_Input	?
stream information	can be printed	
ke to print?		
	Operations Cost Description stream information ke to print?	Operations Spec_Sheets Cost File Description Oil_Input stream information can be printed ke to print?

Step		Actio)n	
3	Do you wish to send y If <u>No</u> , go to step If <u>Yes</u> , highlight to <i>The screen will now of</i> Then press the word in many shown chough	printed results to the pr 4. the word Printer and th appear as shown below Print again and then pr	inter? hen press the <enter></enter> key; ess the <enter></enter> key. (to g	get back to the Print
L	Work_Sheet PFD Ignore Utility	Specify Remove Restore Size	Operation Store Hold Report	Print New Go Toggle

Work_Sheet streams in a spreadsheet format Prop Pkg PR - SI Units - Prt On 9879552

2.7 Printing (continued)		25		
Step		Action		
 4 Do you wish to print the flowsheet stream information? If <u>No</u>, go to step 7. If <u>Yes</u>, highlight the word Streams and then press the <enter> key; The following screen will appear:</enter> 				
Vapou Entha Note Boili Vapou	nr_fraction lpy/Energy .ng_Point_Curv r_fraction mo	Temperature Conditions All Cold_Properties Die fraction vapou	Pressure Properties Phase Attachments Ir in the stream	Flow Composition Summary

Which stream variable do you want to print

Highlight the specification selection which you wish to print from the menu (such as: Pressure) and then press the <Enter> key.
 The following screen will then appear:

A	В	С	-
A Enter th >	e stream(s) to be	printed	

6	Highlight the stream name that you want printed, (or if you want all the streams printed highlight
	the dash (-)), and then press the <enter> key;</enter>
7	Do you wish to print the list of unit operations in the flowsheet?
	• If <u>No</u> , go to step 9.
	• If <u>Yes</u> , highlight the word Operations and then press the <enter></enter> key;
	The following screen will then appear:

Nol No2 -Nol Which operations do you wish printed >

8	Highlight the unit operation name that you want printed, (or if you want all the unit operations
	printed highlight the dash (-)) and then press the <enter> key;</enter>
9	Do you wish to print the Stream, Unit Operation, Flowsheet or Hypothetical specification
	sheets? (Stream specification sheets will include the physical conditions and properties of a
	stream. Unit operation specification sheets will formally print out specifications for a unit
	operation in the flowsheet. Flowsheet specifications details all specifications which were
	supplied to the flowsheet. Hypothetical specification sheets detail the physical properties of a
	user-defined hypothetical component in the case.)
	• If <u>No</u> , go to step 16.
	• If <u>Yes</u> , highlight the word Spec_Sheets and then press the <enter></enter> key;
	The screen will appear as shown on the top of the next page.

Streams Operations Flowsheet Hypotheticals Streams print detailed specification sheets for streams What do you wish specifications for ? >

Step	Action
10	Do you want specifications for Streams?
	• If <u>No</u> , go to Step 12
	• If <u>Yes</u> , highlight Streams and then press the <enter> key; The</enter>
	screen will appear as follows:

A	В	C	E
Energy	F	~	
A Enter the stream(s) to be printed		
>	-		

11	Type the name of the stream you wish a Specification sheet for, or if you want them for all the
	streams, highlight the dash (-), and then press the <enter> key;</enter>
12	Do you want specifications for operations?
	• If <u>No</u> , go to step 14.
	• If <u>Yes</u> , highlight the word Operations and then press the <enter></enter> key; (<i>The screen will</i>
	then appear as follows:)

Nol	No2	-
No1 Select the or	perations to be	printed
>		F

13	Type the operation you want printed after the prompt (>) or if you want all the streams printed
	highlight the dash (-) and then press the <enter> key;</enter>
14	Do you want to print specification sheets for a flowsheet?
	• If <u>No</u> , go to Step 15
	• If <u>Yes</u> , highlight Flowsheet and then press the <enter> key;</enter>
15	Do you want to print specification sheets for Hypothetical Components?
	• If <u>No</u> , go to Step 16
	• If <u>Yes</u> , highlight Hypotheticals and then press the < Enter > key;
16	Do you wish to print a figure or graph which is currently on the screen?
	• If <u>No</u> , go to Step 20.
	• If <u>Yes</u> , go to Step 17.
17	Press the $\langle F2 \rangle$ key;
18	Highlight the word Print and then press the <enter> key;</enter>

2.7 Printing (continued)

Step	Action			
19	Press the <insert> key.</insert>			
20	Do you wish to change the format of the printed results?			
	• If No, press the <esc> key until you are back at the Main Menu.</esc>			
	• If <u>Yes</u> , highlight the word Format and then press the <enter></enter> key and follow the			
	instructions below.			

Formatting Instructions: The Format Menu appears below; to make changes to the format of your printout, highlight the appropriate selection on the Format Menu and then press the **<Enter>** key. The descriptions for each menu selection is given below.

FORMAT MENU

Comp_Fractions Comp_Flows Mole Mass LiqVolume Comp_Fractions prin Enter the format of	Title Form_Feed Width Page Header at compositions control command	Stars No_Stars No_Names Spread_sheet Decimals using fractions	SI Field User Density Mole_Density
Enter the format c	control command	-	
>			

Choose one or more of the following options which refer to different characteristics of the printout.

1) <u>Comp-Fractions</u> - The printout of stream compositions will be on a component fraction basis (e.g. mole fraction), which is the default setting.

2) <u>Title -</u> A title of your choosing will be printed on all printouts. HYSIM will ask you to input the title that you wish.

3) <u>Stars</u> - Stars (asterisks) will be printed beside stream variables which have been specified. All streams calculated by HYSIM will have no stars next to them. This is the default setting.

4) SI - The results will be printed in SI (metric) units which are the default units.

5) <u>Comp-Flows</u> - The composition of the streams will be reported as component flow rates (e.g. molar flow rate, mass flow rate). The default is Comp-Fractions.

6) Form Feed - Each set of stream information will be printed on a separate sheet.

7) <u>No-Stars</u> - Stars (asterisks) will <u>not</u> be printed beside stream variables which have personally been specified by the user. Stars is the default setting.

8) <u>Field</u> - The printout will be in Field units (i.e. lbs, lb-mols, °F, psia, etc.) The default is SI or metric units.

9) <u>Mole</u> - The composition of the streams will be printed on a molar basis. Comp-Fractions is the default setting.

10) <u>Width</u> - Use this command to change the number of streams printed across the page. The maximum number of streams that can be specified across a page is 16. The default value is four streams.

11) <u>No-Names</u> - The stream names given by the user to each of the streams used will not be printed. The default is to have the stream names printed.

12) <u>User</u> - The printout will be in the units selected by the user. SI or metric units are the default setting.

2.7 Printing (continued)

13) <u>Mass</u> - The composition of the streams will be printed on a mass basis. Comp-fractions are the default setting.

14) <u>Page</u> - The printer will advance to the top of a new page, when activated with the Print Printer command, and then the screen will be cleared.

15) <u>Spread sheet</u> - The output will be printed in a tabular speadsheet form, with all of the text output containing quotation marks around them, making them suitable for import to a spreadsheet program such as Lotus 1-2-3.

16) **Density** - The density and specific heat data will be printed on a mass basis.

17) <u>Liq-Volume</u> - The composition information will be reported on a standard ideal liquid volume basis.

18) <u>Header</u> - The printer advances to a new page and the case name banner or header will be printed at the top of the page.

19) **Decimals** - The number of decimal places for the stream component compositions can be specified. The default is four decimal places.

20) Mole-Density - The density of a stream can be printed out as a mole density.

Step	Action	
21	Press the <esc> key enough times to get back to the Main Menu.</esc>	

<u>Instructions</u>: The default system of units used by HYSIM is the International System of Units (SI) or what is commonly known as the metric system, e.g. kilograms (kg),°C or K, kilopascals (kPa), etc. If you would like to use field units (e.g. lbs, °F, psia, etc.) you must instruct HYSIM that you wish to use these units. Then the blanks which appear on the various screens that pop-up will be in field units instead of metric units. The following example is for changing the default metric unit system to field units in HYSIM. If you would rather use different units than either of these, specify user defined units.

The following table will step out the procedure to change units in HYSIM. Each step outlines the actions which you must take. Words or items that a HYSIM user must highlight or keys that the user must press are indicated in **bold** typeface. All keys to be pressed are indicated by placing the letters or symbols on the key inside <> brackets. Highlighting means that the HYSIM user should use the arrow keys (<<->,<1>,<->>, or $<\downarrow>$) to place the cursor over the word or item indicated so that it is highlighted (changes color). The comments are in *italicized* print.

Step	Action
1	Are you at the Start-up Menu?
	• If <u>Yes</u> , proceed with Step 2.
	If <u>No</u> , proceed to Step 6.
2	Highlight the word Configuration and then press the <enter> key;</enter>
3	Highlight the word Units and then press the <enter> key;</enter>
4	Highlight the word Field and then press the <enter> key;</enter>
5	Press the <esc> key and go to Step 12;</esc>
6	Are you at the Main Menu?
	• If <u>Yes</u> , proceed with Step 7.
	 If <u>No</u>, press the <esc> key until you are back to the Main Menu.</esc>
7	Highlight the word Utility and then press the <enter> key;</enter>
8	Highlight the word Configuration and then press the < Enter > key;
9	Highlight the word Units and then press the <enter> key;</enter>
10	Highlight the word Field and then press the <enter> key;</enter>
11	Press the <esc> key;</esc>
12	Return to the next step in your case.

CHAPTER 3

UNIT OPERATION EXAMPLES

Chapter 3 contains examples of the following six different types of columns in Section

3.1, plus sections on: Section 3.2 - Compressors/Expanders, Section 3.3 - Heat

Exchangers (Shell and Tube, Single Sided and LNG/ Multi-Pass), Section 3.4 -

Mixers, Section 3.5 - Pumps, Section 3.6 - Reactors (Stoichiometric, Equilibrium,

Gibbs, Continuously Stirred Tank (CSTR), and Plug Flow), and Section 3.7 -

Separators (Two-Phase, Three-Phase, and Solids).

Secti	on	Page
3.1.1	Absorber Column	31
3.1.2	Reboiled Absorber Column	50
3.1.3	Refluxed Absorber Column	63
3.1.4	Distillation Column	78
3.1.5	Liquid/Liquid Extraction Column	93
3.1.6	Component Fractionator Column	113

3.1 Columns

3.1.1 Absorber Column

<u>Objective</u> - This exercise is an example of an absorber column calculation. The purpose of the absorber column is to selectively recover a component or components in the gas stream using a liquid medium and a specified number of contact stages, with one or more components being absorbed from the gaseous stream into the liquid medium. The absorber unit operation could also be used for stripping or desorption, where the component or components in the liquid stream would be transferred into the gaseous medium. This example can be modified by specifying another property package and/or other components, compositions and feed conditions.

In this example, an absorber column has two feed streams. One liquid feed stream, <u>TEGin</u>, is triethylene glycol (abbreviated as TEGlycol in HYSIM) and the other feed stream, <u>Gasin</u>, is a methane rich gas stream (plus some water and no triethylene glycol). Both feed streams enter the column at 100°F and essentially 1100 psia. The objective is to remove the water from the gas stream, by absorption into the liquid triethylene glycol stream. The bottom stream emitted from the Absorber, named <u>TEGOut</u>, contains almost all of the triethylene glycol and water in the system, showing that the water was absorbed by the triethylene glycol rich feed stream. Almost all of the methane was emitted in the <u>GasOut</u> stream from the Absorber column. <u>Technical Example Reference</u>: Reference 4 - The paper entitled, "Energy and Emission Optimization of the Glycol Dehydrator Process", by D. G. Colley, W.Y. Svrcek, and Hamish Adam, July 1992, which was presented at the 1992 Gas Research Institute Glycol Dehydrator Air Emission Conference, New Orleans, Louisiana, on July 20-22, 1992. <u>Other References</u>: Refs. 1 and 2.

Directions - Pages 32 through 49 outline the execution of an absorber column example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <> brackets (e.g. <Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

A flow diagram of this unit operation, called <u>Absorber</u>, is shown below:

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in SectionV).
	• If <u>Yes</u> , proceed with Step 2.
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>
	The following screen will appear:

		COMPONENT SELECTION			
Selected	Synonym	Name	Formula	Criteria	
	OIL	OIL		ALL	
	HYPOTHETICAL	HYPOTHETICAL		HC	
	Cl	Methane	CH4	SOLID	
	C2	Ethane	C2H6	MISC	
	C3	Propane	C3H8	AMINE	
	i-C4	i-Butane	C4H10	ALCOHOL	
	n-C4	n-Butane	C4H10	KETONE	
	1-C5	i-Pentane	C5H12	ALDEHYDE	
	n-C5	n-Pentane	C5H12	ESTER	
	Ce	n-Hexane	C6H14	CARBACID	
	C7	n-Heptane	C7H16	HALOGEN	
	C8	n-Octane	C8H18	NITRILE	
	C9	n-Nonane	C9H20	PHENOL	
	C10	n-Decane	C10H22	ETHER	
	C11	n-C11	C11H24	USER	
	C12	n-C12	C12H26		
· · · · · · · · · · · · · · · · · ·		Search by SYNONYM			
F1 - Help,	F1 - Help, F3 - Menu, F4 - Flip Srch, F5 - Exam, F6 - Move, F8 - Change				
	PRESS INSERT TO SUBMIT				

3.1.1 Absorber Column (continued)

Step			Action	······································	
	Selecting the components in the feed streams.				
Selecting the components in the feed streams. Highlight each of the following component names under the "Component Selection" Section and press the <enter> key so that the name then appears in the "Selected" column. This "Component Selection" List is very long. Use the <page down=""> and Arrow Keys to find the following 19 components: Highlight the word Methane and then press the <enter> key; Highlight the word Ethane and then press the <enter> key; Highlight the word Propane and then press the <enter> key; Highlight the word i-Butane and then press the <enter> key; Highlight the word n-Butane and then press the <enter> key; Highlight the word n-Butane and then press the <enter> key; Highlight the word n-Pentane and then press the <enter> key; Highlight the word n-Pentane and then press the <enter> key; Highlight the word n-Hexane and then press the <enter> key; Highlight the word n-Pentane and then press the <enter> key; Highlight the word n-Pentane and then press the <enter> key; Highlight the word n-Pentane and then press the <enter> key; Highlight the word n-Hexane and then press the <enter> key;</enter></enter></enter></enter></enter></enter></enter></enter></enter></enter></enter></enter></enter></page></enter>					
	Highlight t	he word o-Xylene and then	press the <enter></enter> ke	, Y,	
	Highlight t	he word E-Benzene and the	n press the <enter></enter> k	xey;	
	Highlight t	he word Hydrogen and ther	n press the <enter></enter> k	ey;	
	Highlight t	he formula H2O and then p	ress the <enter></enter> key;	•	
	Highlight t	he word Helium and then p	ress the <enter> key;</enter>		
	Highlight t	he word Nitrogen and then	press the <enter> ke</enter>	у;	
	Highlight t	the formula $U2S$ and then plate formula $U2S$ and then pr	ress the <enter> key;</enter>		
	Highlight t	the formula H2S and then pr	ess the < Enter > key;		
	The follow	ving screen will then annear	······································		
		COMPONI	ENT SELECTION		
Sele	ected	Synonym	Name	Formula	Criteria
▲	- ↑				
i - Dont	ane	di-M-Sulphide	CS2 diM-Sulphide	CSZ	HC
n-Pent	lane	di-M-Sulfoxide	diMSulfoxide	C2H6OS	SOLID
n-Hexa	ane	di-M-diSulphide	diMdiSulphid	C2H6S2	MISC
Benzer	ne	M-E-Sulfide	M-E-Sulfide	C3H8S	AMINE
Toluer	ne	di-E-Sulphide	diE-Sulphide	C4H10S	ALCOHOL
O-XYIE	ene	di-E-diSulphide	diE-diSulpha	C4HI0S2	KEIONE
E-Bell2	zene	HCN	HCN	HCN	ESTER
H2O	20 NaOH NaOH NaOH CARBACID				
Heliun	Helium Cyanogen Cyanogen C2N2 HALOGEN			HALOGEN	
Nitrogen D-M-Formamide DMF C3H7NO NIT		NITRILE			
CO2	CO2 Methanol Methanol CH40 PHENOL				PHENOL
H2S	201	EG	EGIYCOL	C2H6O2	ETHER
R-11 Refrig-11 CC13R			USER		
¥	_ ↓	└── ▼ - ↓Search 1	by SYNONYM		L
F1 -	Help,	F4 - Flip	Srch, F5 - Exa	am, F6 -	Move,
F3 -	Menu,	PRESS INS	ERT TO SUBMIT	F8 -	Change

3.1 Columns (continued)

Step	Action
5	Press the <insert> key;</insert>
	The following screen will then appear:

Work_Sheet	Specify	Operation	Print
L D L D	Remove	Store	New
Ignore	Restore	Hold	Go
Utility	Size	Report	Toggle
Exit	?		
Work_Sheet streams	in a spreadsheet	format	
Prop Pkg PR - SI Un	nits 9879552		
>			

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Specifying that you want the units which appear on the HYSIM forms which pop-up. changed
	from the default metric system (e.g. C. kg, kPa, m, etc.) to field units (e.g. F. lb. psia. ft. etc.).
6	Highlight the word Utility and then press the <enter> key;</enter>
7	Highlight the word Configuration and then press the <enter> key;</enter>
8	Highlight the word Units and then press the <enter> key;</enter>
9	Highlight the word Field and then press the <enter> key;</enter>
10	Press the < Esc > key.
	Specifying the conditions of the feed stream, Gasin.
11	Highlight the word Specify and then press the <enter> key;</enter>
12	Highlight the word Stream and then press the <enter> key;</enter>
13	Type the word Gasin after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature in F of the Gasin stream.
14	Type the number 100 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Gasin stream in psia.
15	Type the number 1104 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the flow of the Gasin stream in lb-mols/hr.
16	Type the number 2632 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the individual mole fractions of each component in the Gasin stream.
17	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
	The screen will appear as shown on the following page.

	Stream Mole	Fractions	
Methane Propane n-Butane n-Pentane Benzene o-Xylene Hydrogen Helium CO2 TEGlycol		Ethane i-Butane i-Pentane n-Hexane Toluene E-Benzene H2O Nitrogen H2S	

Step	Action			
	Selecting the components in the Gasin stream.			
18	Enter the following mole fractions beside each component in the Gasin stream:			
	After the word, Methane, type the number 0.82774 in the blank and then press the <enter> ke</enter>			
	After the word, Ethane, type the number 0.07559 in the blank and then press the <enter> key;</enter>			
	After the word, Propane, type the number 0.02053 in the blank and then press the <enter> key;</enter>			
	After the word, i-Butane, type the number 0.0033 in the blank and then press the <enter> key;</enter>			
	After the word, n-Butane, type the number 0.00431 in the blank and then press the <enter> key;</enter>			
	After the word, i-Pentane, type the number 0.0012 in the blank and then press the <enter> key,</enter>			
	After the word, n-Pentane, type the number 0.0009 in the blank and then press the <enter> key;</enter>			
	After the word, n-Hexane, type the number 0.0008 in the blank and then press the <enter> key;</enter>			
	After the word, Benzene, type the number 0.0004 in the blank and then press the <enter> key;</enter>			
	After the word, Toluene, type the number 0.0002 in the blank and then press the <enter> key;</enter>			
	After the word, o-Xylene, type the number 0.0001 in the blank and then press the <enter> key</enter>			
	After the word, E-Benzene, type the number 0.00005 in the blank and then press the <enter></enter>			
	key;			
	After the word, Hydrogen, type the number 0.0001 in the blank and then press the <enter> key</enter>			
	After the formula, H2O, type the number 0.0012 in the blank and then press the <enter> key;</enter>			
	After the word, Helium, type the number 0.0001 in the blank and then press the <enter> key;</enter>			
	After the word, Nitrogen, type the number 0.00361 in the blank and then press the <enter> key;</enter>			
	After the formula, CO2, type the number 0.04075 in the blank and then press the <enter> key;</enter>			
	After the formula, H2S, type the number 0.01912 in the blank and then press the <enter> key</enter>			
	After the word, TEGlycol, type the number 0 in the blank;			
	The screen will now appear as shown below:			
[Stream Mole Fractions			
1				

Methane	0.82774
Propane	0.02053
n-Butane	0.00431
n-Pentane	0.0009
Benzene	0.0004
o-Xylene	0.0001
Hydrogen	0.0001
Helium	0.0001
CO2	0.04075
TEGlycol	0

Ethane0.07559_____i-Butane0.0033_____i-Pentane0.0012_____n-Hexane0.0008_____Toluene0.0002_____E-Benzene0.00005______H2O0.0012_____Nitrogen0.00361_____H2S0.01912_____

Step	Action	
	Specifying the conditions of the TEGin stream.	
19	Press the <insert> key;</insert>	
20	Highlight the word Specify and then press the <enter> key;</enter>	
21	Highlight the word Stream and then press the <enter> key;</enter>	
22	Type the word TEGin after the prompt (>) and then press the < Enter > key;	
	Specifying the temperature of the TEGin stream in F.	
23	Type the number 100 after the prompt (>) and then press the <enter> key;</enter>	
	Specifying the pressure of the TEGin stream in psia.	
24	Type the number 1100 after the prompt (>) and then press the <enter> key;</enter>	
	Specifying the flow of the TEGin stream in lb-mols/hr as unknown by typing an "x".	
25	Type the letter x after the prompt (>) and then press the <enter> key;</enter>	
	Specifying the individual mole fractions of each component in the TEGin stream.	
26	Highlight the word Mole_Fractions after the prompt and then press the <enter> key;</enter>	
	The screen will appear as shown below:	

------ Stream Mole Fractions ------

Methane Propane n-Butane n-Pentane Benzene o-Xylene Hydrogen Helium CO2 TEGlycol	Ethane i-Butane i-Pentane n-Hexane Toluene E-Benzene H2O Nitrogen H2S	
1202/002		

Step	Action		
	Selecting the components in the TEGin stream.		
27	Enter the following mole fractions beside each component in the TEGin stream:		
	After the word, Methane, type the number 0 in the blank and then press the \langle Enter \rangle key;		
{	After the word, Ethane, type the number 0 in the blank and then press the <enter> key;</enter>		
	After the word, Propane, type the number 0 in the blank and then press the \langle Enter \rangle key,		
	After the word, i-Butane, type the number 0 in the blank and then press the <enter> key;</enter>		
	After the word, n-Butane, type the number 0 in the blank and then press the <enter> key;</enter>		
	After the word, i-Pentane, type the number 0 in the blank and then press the <enter> key;</enter>		
	After the word, n-Pentane, type the number 0 in the blank and then press the \langle Enter \rangle key;		
	After the word, n-Hexane, type the number 0 in the blank and then press the <enter> key;</enter>		
	After the word, Benzene, type the number 0 in the blank and then press the <enter> key,</enter>		
	After the word, Toluene, type the number 0 in the blank and then press the <enter> key;</enter>		
	After the word, o-Xylene, type the number 0 in the blank and then press the <enter> key;</enter>		
	After the word, E-Benzene, type the number 0 in the blank and then press the <enter> key;</enter>		
	After the word, Hydrogen, type the number 0 in the blank and then press the \langle Enter \rangle key;		
	After the formula, H2O, type the number 0 in the blank and then press the <enter> key;</enter>		
	After the word, Helium, type the number 0 in the blank and then press the <enter> key;</enter>		
	After the word, Nitrogen, type the number 0 in the blank and then press the <enter> key;</enter>		
	After the formula, CO2, type the number 0 in the blank and then press the \langle Enter \rangle key;		
	After the formula, H2S, type the number 0 in the blank and then press the \langle Enter \rangle key;		
	After the word, TEGlycol, type the number 1 in the blank;		
	The screen will now appear as shown below:		

------ Stream Mole Fractions ------

Methane	0
Propane	0
n-Butane	0
n-Pentane	0
Benzene	0
o-Xylene	0
Hydrogen	0
Helium	0
CO2	0
TEGlycol	1

Ethane i-Butane i-Pentane n-Hexane Toluene E-Benzene H2O Nitrogen H2S	0 0 0 0 0 0 0 0 0 0
H2S	0

Step	Action	
28	Press the <insert> key;</insert>	
29	Highlight the word Worksheet and then press the <enter> key;</enter>	
	Specifying the flow rate of stream TEGin in barrels/day.	
30	Move the cursor using the arrow keys until the cursor is over the LiqVol_Flow row and the TEGin column, then:	
	Type the number 22.9 and then press the <enter> key.</enter>	
	The following screen will then appear:	

		=== Streams ====		
	New Value	e =	barr	el/day
Stream	Gasin	TEGin	~	
Vapour_Frac	1.0000	0.0000		~ _ ~
Temperature	100.0000*	100.0000*		
Pressure	1104.0000*	1100.0000*		
Flow	2631.9999*	2.5132		
Mass_Flow	51993.3165	377.3979		~ ~ ~ ~
LiqVol_Flow	10250.1186	22.9000*		
Energy_Flow	1.03624E+07	-38549.2240		
1		•		

Step	Action		
	Specifying the type of operation we want to perform on the Gasin and TEGin streams.		
31	Press the <insert> key;</insert>		
32	Type the word Absorber and then press the <enter> key;</enter>		
33	Highlight the word Column and then press the <enter> key;</enter>		
34	Highlight the word Absorber and then press the <enter> key;</enter>		
	The screen will then appear as shown below:		

Step	Action		
	Specifying the known data for the Absorber Column.		
35	Press the <enter></enter> key.		
	Specifying the Vapor Overhead Rate in lb-mols/hr.		
36	Type the number 2000 and then press the <enter> key,</enter>		
	Specifying the Temperature Estimate of Stage 1 in F.		
37	Type the number 100 and then press the <enter> key;</enter>		
	Specifying the Pressure of Stage 1 in psia.		
38	Type the number 1100 and then press the <enter> key;</enter>		
	Specifying the Number of Stages in the Absorber Column.		
39	Type the number 25 and then press the <enter> key;</enter>		
	Specifying the Temperature Estimate of Stage 25 in F.		
40	Type the number 100 and then press the <enter> key;</enter>		
	Specifying the Pressure of Stage 25 in psia.		
41	Type the number 1104;		
	The screen will then appear as shown below:		

Step	Action		
42	Press the <insert> key.</insert>		
	The screen on the following page for specifying the name of the feed streams and the stage at		
	which they enter the Absorber column will then appear.		
	("Ins" refers to the <insert> key)</insert>		

Step	Action	
	Specifying at what stage the feed stream enters the Absorber Column.	
43	Type the word TEGin and then press the <enter></enter> key.	
44	Type the number 1 and then press the <enter> key.</enter>	
45	Type the word Gasin and then press the <enter> key.</enter>	
46	Type the number 25.	
	The following screen will then appear:	

	Column Abso	orber _=
	Enter Column 1	Feed Streams
ļ	David Charger	Road Chara
	reed Stream	reed Stage
	TEGin	1
	Gasin	25
	Use "Ins" to S	Save and Exit

Step	Action	
47	Press the <insert> key;</insert>	ļ
	The following screen will then appear:	

3.1 Columns (continued)

3.1.1 Absorber Column (continued)

Step	Action	
	Specifying the names of the streams going out of the Absorber Column.	
48	Type the word GasOut and then press the <enter> key.</enter>	
49	Type the word TEGOut .	
	The screen should then appear as shown below.	

Step	Action
50	Press the <insert> key.</insert>
	The following column menu will then appear:

Print	Change	Run	Restart
Size	Hold	Configuration	
Print permits	printing of both input	and output	
COLUMN - Prop	Pkg PR - Field Units	9879552	
>			

NOTE: It is useful to print out all of the inputted process data to check for accuracy. Incorrect data entries can result in nonconvergence of a column calculation which leads to frustration with an input data error.

Step	Action
	Running the Absorber Column program.
51	Highlight the word Run and then press the <enter> key.</enter>
52	Highlight the word Print and then press the < Enter > key.

Print Options:

The various options available for the column, after you have finished step 52 are as follows: (Highlight the option you select below with the arrow keys, and then press the <Enter> key to select that option)

a) Input - Input data is printed.

b) *Feeds* - Feed composition and conditions are printed.

c) <u>Stages</u> - The temperature, pressure, liquid and vapor flow rates, any feed or drawoffs of each stage are reported, along with the duty of the first and last stage.

d) <u>*Products*</u> - The temperature, pressure, composition, and total flow rate of the overhead and bottom product streams are printed.

e) <u>*Physical_Props*</u> - The molecular weight, flow rate, density, reduced temperature and pressure are reported for each stage.

f) <u>*Transport Props*</u> - The vapor and liquid dynamic viscosity and thermal conductivity are printed, along with the liquid surface tension.

g) Exchanger Profiles - The condenser and reboiler heating curve data is printed.

h) <u>Composition</u> - The composition profile of selected components in the liquid and vapor phase are printed.

i) *Efficiencies* - The efficiency of each stage is printed.

j) *Pumparound info* - If a pumparound is used, the information can be printed.

k) <u>All</u> - All of the information from a to j above will be printed.

1) Graph - Temperatures, flowrates, mole fractions or key ratios can be printed in graphical form.

m) <u>SI</u> - The current output will be printed in metric units.

n) *Field* - The current output will be printed in Field (or English units).

o) <u>User</u> - The current output will be printed in user-defined units.

p) <u>Comp Fractions</u> - The output will be printed on a mole, mass, or volume fractional basis.

q) <u>Comp_Flows</u> - The output will be printed as mole, mass or volume flows.

r) <u>Printer</u> - The printer will be toggled on. Selecting "Printer" once more will toggle the printer off.

s) *File* - The printout will be saved in a file.

t) Mole - The output will be printed on a mole basis.

u) <u>Mass</u> - The output will be printed on a mass basis.

v) LigVolume - The output will be printed on a standard ideal liquid volume basis.

w) <u>*Title*</u> - Input a title which will be on all printouts.

x) <u>Boiling Pt Curves</u> - The True Boiling Point (TBP), D86, or Specific Gravity boiling point curves will be printed out.

y) <u>Cold Properties</u> - The Research Octane Number (RON), Pour Point, and Flash Point will be printed.

z) User Props - If properties have been supplied by the user, these values will be printed out.

Step	Action		
53	Highlight the word Feeds and then press the <enter> key.</enter>		
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the menu off of		
	the screen in order to see the data on the screen underneath it.		
54	Press the <f10> key;</f10>		
	The screen will then appear as shown below. Use the <page up=""> and <page down=""> or</page></page>		
	arrow keys to scroll the screen text up and down.		

**** Column Feeds ****

Feed Stream Name Enters on stage	TEGin 1	Gasin 25
Vapour Fraction Temperature - F Pressure - psia Flowrate - lbmole Enthalpy - Btu/hr Methane - Mole F Ethane - Mole F Propane - Mole F i-Butane - Mole F n-Butane - Mole F n-Pentane - Mole F n-Pentane - Mole F n-Pentane - Mole F n-Hexane - Mole F Benzene - Mole F Toluene - Mole F Columna - Mole F Hydrogen - Mole F Helium - Mole F Nitrogen - Mole F CO2 - Mole F H2S - Mole F	0.0000 100.00 1100.00 1100.00 1100.00 1100.00 1100.00 1100.00 2.51 -38549.2 Frac 0.0000 Frac 0.0000	$\begin{array}{c} 1.0000\\ 100.00\\ 100.00\\ 1104.00\\ 2632.00\\ 10362446.4\\ 0.8277\\ 0.0756\\ 0.0205\\ 0.0033\\ 0.0043\\ 0.0012\\ 0.0009\\ 0.0008\\ 0.0004\\ 0.0002\\ 9.999E-05\\ 4.999E-05\\ 4.999E-05\\ 9.999E-05\\ 0.0012\\ 9.999E-05\\ 0.0012\\ 9.999E-05\\ 0.0036\\ 0.0408\\ 0.0191\\ \end{array}$
IEGIACOT - MOTE E	rac 1.0000	0.0000

Step	Action
55	Press the <f10> key;</f10>
56	Highlight the word Print and then press the < Enter > key.

The various print options available are shown on page 42.

3.1 Columns (continued)

3.1.1 Absorber Column (continued)

Step	Action		
57	Highlight the word Products and then press the <enter> key.</enter>		
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the menu off of		
	the screen in order to see the data on the screen underneath it.		
58	Press the <f10> key;</f10>		
	The screen will then appear as shown below. Use the <page up=""> and <page down=""> or</page></page>		
	arrow keys to scroll the screen text up and down.		

**** Products ****

Leaving from stage Product Phase Assigned to Stream Name		l Vapour GasOut	25 Liquid TEGOut
Temperature Pressure Methane Ethane Propane i-Butane n-Butane n-Pentane n-Pentane n-Hexane Benzene Toluene O-Xylene E-Benzene Hydrogen H2O Helium Nitrogen CO2 H2S TEGlycol	 F psia Mole Frac 	101.61 1100.00 0.828787 0.075683 0.020555 0.003304 0.004315 0.001202 0.000901 0.000801 0.000398 0.000199 0.000050 0.000100 6.22E-06 0.000100 6.22E-06 0.000100 0.003614 0.040780 0.019104 4.81E-07	100.71 1104.00 0.011065 0.002029 0.000656 0.000037 0.000055 $8.77E-06$ 0.000026 $3.66E-06$ 0.001135 0.000548 0.000370 0.000125 $5.31E-06$ 0.531092 $4.45E-06$ 0.000353 0.009954 0.017953 0.424581
Total Flow	- lbmole/hr	2628.60	5.92

Step	Action
59	Press the <f10> key;</f10>
60	Highlight the word Size and then press the <enter> key</enter>
61	Highlight the word Auto_Section and then press the <enter> key.</enter>
	The screen will then appear as shown on the following page.
	(NFP is an abbreviation for Number of Flow Paths).

Auto-Section Information		
Tower Interna	ls: valve_tray	
Area Tolerance 0.60	When the ratio between the current calc'd area and either of min/max previous areas for the section exceeds this tol, a new DIAM section is started. Higher, more sections; Lower, fewer sections.	
NFP Diam Factor 0.15	When a new number of flow paths will result in a diameter difference >= Diam Factor * old diameter, a new NFP Section is started.	
	Not required for packed columns. Lower, more sections; Higher, fewer sections.	

Step		Action
62	Press	the <insert></insert> key;
	The s	creen will then appear as follows:
		Valve Tray Input Section: 1
		System Factor: 1.00 //////////////////////////////////
		Orifice: Flat Tray Spacing: 24.000 in Manual: Glitsch Max DC Backup: 50.000 % Max Flooding: 82.000 % DC Clear: 1.500 in Max \Dp/Tray: 4.000 in liq
Weir Load: Vlv De Vlv Th	Ht: ing: ens: hck:	2.000 in Weir: Straight 95.999 USGPM/ft DC Type: Vertical 513.158 lb/ft3 Hole Area: 15.300 % of AA 0.060 in Tray Thick: 0.134 in
Mater:	ial:	Carbon_Steel Tray Diam: ft (specify only if rating)

Step	Action
63	Press the <insert> key;</insert>
	The screen will then appear as shown on the following page.

Step	Action
64	Press the <insert> key;</insert>
	The Sizing calculation will begin. At the calculation step for stage 15, the <enter> key must</enter>
	be pressed to continue calculations for the next section. When calculations have stopped, press
	the <enter> key.</enter>
65	Press the <enter> key;</enter>
	The Sizing calculation will begin again for the next section. At the calculation step for stage
	25, the <enter> key must be pressed to continue calculations for the last stage. When</enter>
	calculations have stopped, press the <enter> key.</enter>
66	Press the <enter></enter> key;
67	Press the <esc> key;</esc>
68	Highlight the word Size and then press the <enter> key.</enter>
69	Highlight the word Print and then press the < Enter > key.

Print Options:

The print options available for the Sizing calculations are as follows: (Highlight the option you select below with the arrow keys, and then press the <Enter> key to select that option).

a) Summary - A summary of the calculations will be printed out.

b) <u>Detailed</u> - a table of detailed information, including Section performance, dimensions, orifice information, downcomer dimensions, downcomer and weir information, shell information and uninstalled cost estimates will be printed out.

c) One Tray - Detailed information for one tray will be printed out.

3.1 Columns (continued)

3.1.1 Absorber Column (continued)

Print Options (continued):

There are also options available to :

1) have the output printed in metric (SI), Field or User-defined units.

2) have the material printed to the screen also printed to the printer.

3) have the printout saved by selecting *File*.

Step	Action
70	Highlight the word Summary and then press the <enter> key.</enter>
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the menu off of
	the screen in order to see the data on the screen underneath it.
71	Press the <f10> key;</f10>
	The screen will then appear as seen on the following page. Use the <page up=""> and <page< th=""></page<></page>
	Down> or arrow keys to scroll the screen text up and down. (DC is the abbreviation for
	downcomer).
	The table shown below will then appear:

Stages1 - 1416 -InternalsValve TrayValveDiameter2.000 ft2X-sect. Area3.142 ft23Section Height28.000 ft18	
Diameter2.000 ft2X-sect. Area3.142 ft23Section Height28.000 ft18	24 Tray
Section DeltaP 2.047 psi 1	.000 ft .142 ft2 .000 ft .314 psi
Max Flooding 75.136 % 74 Max DC Backup 24.043 % 23 Max Weir Load 0.689 USGPM/ft 0 Max DP/Tray 0.147 psi 0	.872 % .964 % .732 USGPM/ft .147 psi
Active Area 2.936 ft2 2 DC Area 0.103 ft2 0 Side DC Width 1.750 in 1 Area 0.103 ft2 0 Cntr DC Width 0.000 in 0 Area 0.000 ft2 0 O.C. DC Width 0.000 in 0 Area 0.000 ft2 0 O.S. DC Width 0.000 in 0	.936 ft2 .103 ft2 .750 in .103 ft2 .000 in .000 ft2 .000 in .000 ft2 .000 in

COLUMN SIZING SECTION SUMMARY Page - 1

47

Step	Action
72	Press the $\langle F10 \rangle$ key;
73	Press the < Esc > key two times;
74	Highlight the word Print and then press the < Enter > key.

The varous print options available are shown on page 42.

Step	Action
75	Highlight the word Graph and then press the <enter> key.</enter>
76	Highlight the word Component and then press the <enter></enter> key.
77	Highlight the word Liquid and then press the <enter> key.</enter>
78	Highlight the formula H2O and then press the <enter> key.</enter>
	The graph shown below will then appear.

Step	Action
79	Press the <esc> key four times until you are back at the Main Menu.</esc>
80	Highlight the letters PFD and then press the <enter></enter> key.
	The following screen will then appear:

Step	Action
	Getting back to the Main Menu.
81	Press the <esc> key until you reach the Main Menu.</esc>
82	Do you want to continue adding other unit operations to this absorber column?
	• If Yes, turn to the pertinent section of this manual now;
	 If No, turn to the "Exiting HYSIM" Section of this manual.

,

3.1.2 Reboiled Absorber Column

Objective - This exercise is an example of a reboiled absorber column. The purpose of the absorber column is to separate different components from feed streams using a specified number of contact stages, with one or more components being absorbed from one stream into another. The reboiled absorber unit operation could also be used for reboiled stripping or desorption. This example can be modified by specifying another property package and/or other components, compositions and feed conditions.

The reboiled absorber in this exercise is a demethanizer. Two feed streams, <u>Meth79</u> and <u>Meth77</u>, enter the reboiled absorber column with approximately the same molar fractional composition of methane (0.79 and 0.77, respectively). The two streams leaving the reboiled absorber contain vastly different amounts of methane, however. The overhead product stream, <u>Methout</u>, has a mole fraction of methane of 0.959, whereas the bottoms product stream, <u>Demethout</u>, contains a mole fraction of methane of only 0.005.

<u>Technical Example Reference</u>: Reference 2 - HYSIM Special Features and Applications Guide, Version C2.50, March 1994, pages GP-1 to GP-6.

Other References: Refs. 1 & 2.

Directions - Pages 51 through 62 outline the execution of a reboiled absorber column example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the Action Step instructions below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <> brackets (e.g.<**Esc**>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

A flow diagram of this unit operation, called <u>RebAbsorber</u>, is shown below:

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in SectionV).
	• If <u>Yes</u> , proceed with Step 2.
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>
	The following screen will appear:

		COMPONENT SELECTION		ىرىلىنى ئىرىنى ئى ئىلىنى ئىلىنى بىرىلىنى ئىلىنى بىرىلىن بىرىلىن بىرىنى بىلىن بىرىنى بىرىنى بىرىنى بىرىنى بىرىن بىرا يىرى ئىلىنى بىرىنى بىلىنى ئىلىنى بىرىنى بىر	
Selected	Synonym	Name	Formula	Criteria	
24 1 - - -	OIL	OIL		ALL	
	HYPOTHETICAL	HYPOTHETICAL		HC	
	C1	Methane	CH4	SOLID	
	C2	Ethane	C2H6	MISC	
	C3	Propane	C3H8	AMINE	
	1-C4	i-Butane	C4H10	ALCOHOL	
	n-C4	n-Butane	C4H10	KETONE	
	i-C5	i-Pentane	C5H12	ALDEHYDE	
	n-C5	n-Pentane	C5H12	ESTER	
	C6	n-Hexane	C6H14	CARBACID	
	C7	n-Heptane	C7H16	HALOGEN	
	C8	n-Octane	C8H18	NITRILE	
	C9	n-Nonane	C9H20	PHENOL	
	C10	n-Decane	C10H22	ETHER	
	C11	n-C11	C11H24	USER	
	C12	n-C12	C12H26		
∥ ¥ ↓					
F1 - Help,	F3 - Menu, F4	- Flip Srch, F5 - Exa	am, F6 - Mov	e, F8 - Change	
{	PR	ESS INSERT TO SUBMIT	_		

Step	Action			
	Selecting the components in the feed streams.			
4	Highlight each of the following component names under the "Component Selection" Section			
	and press the <enter> key so that the name then appears in the "Selected" column. This</enter>			
	"Component Selection" List is very long. Use the <page down=""> and Arrow Keys to find the</page>			
	following components:			
	Highlight the word Methane and then press the <enter> key;</enter>			
	Highlight the word Ethane and then press the <enter> key;</enter>			
	Highlight the word Propane and then press the <enter></enter> key;			
	Highlight the word i-Butane and then press the <enter> key;</enter>			
	Highlight the word n -Butane and then press the <enter> key;</enter>			
	Highlight the word i-Pentane and then press the <enter></enter> key;			
	Highlight the word n-Pentane and then press the <enter> key;</enter>			
	Highlight the word n-Hexane and then press the <enter> key;</enter>			
	Highlight the word Nitrogen and then press the <enter></enter> key;			
	Highlight the formula CO2 and then press the <enter> key;</enter>			
	The following screen will then appear:			

COMPONENT SELECTION					
Selected	Synonym	Name	Formula	Criteria	
 ▲ ↑	↓ ▲ ↑				
Methane	SO3	SO3	S03	ALL	
Ethane	0	CO	CO	HC	
Propane	Sulphur_Rhombic	S_Rhombic	S	SOLID	
i-Butane	Sulphur_Monoclinic	S_Monoclinic	S	MISC	
n-Butane	Sulphur_Amorphous	S_Amorphous	S	AMINE	
i-Pentane	Sulphur_Lig 150	S_Liq_150	S	ALCOHOL	
n-Pentane	Sulphur_Lig_190	S_Lig_190	S	KETONE	
n-Hexane	Sulphur_Lig_280	S_Liq_280	S	ALDEHYDE	
Nitrogen	Sulphur_Vapour	S_Vapour	S	ESTER	
C02	Carbon	Carbon	С	CARBACID	
1	H2S	H2S	H2S	HALOGEN	
	CarbonOxiSulphide	COS	COS	NITRILE	
	CarbondiSulphide	CS2	CS2	PHENOL	
	di-M-Sulphide	diM-Sulphide	C2H6S	ETHER	
	di-M-Sulfoxide	diMSulfoxide	C2H6OS	USER	
	di-M-diSulphide	diMdiSulphid	C2H6S2		
∥ ¥ ↓					
F1 - Help,I	F3 - Menu,F4 - Flip	Srch, F5 - Exa	am,F6 - Morre	, F8 - Change	
	PRESS INSERT TO SUBMIT				

Step	Action				
5 Press the <	Press the <insert> key;</insert>				
The follow	ing screen will then appear:				
Work_Sheet PFD Ignore Utility Exit Work_Sheet s Prop Pkg PR	Specify Remove Restore Size ? treams in a spreadsh - SI Units 9879552	Operation Store Hold Report eet format	Print New Go Toggle		

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action		
	Specifying that you want the units changed from the default metric system units (kg, kPa, \mathcal{C} ,		
	etc.) to <u>field</u> units (lb. psia, F, etc.).		
6	Highlight the word Utility and then press the <enter> key;</enter>		
7	Highlight the word Configuration and then press the <enter> key;</enter>		
8	Highlight the word Units and then press the <enter> key;</enter>		
9	Highlight the word Field and then press the <enter> key;</enter>		
10	Press the <esc> key.</esc>		
	Specifying the conditions of the Meth79 stream.		
11	Highlight the word Specify and then press the <enter> key;</enter>		
12	Highlight the word Stream and then press the <enter> key;</enter>		
13	Type the name Meth79 after the prompt (>) and then press the <enter> key;</enter>		
	Specifying the temperature of the Meth79 stream in F.		
14	Type the symbol and number -142 after the prompt (>) and then press the <enter> key;</enter>		
	Specifying the pressure of the Meth79 stream in psia.		
15	Type the number 330 after the prompt (>) and then press the <enter> key;</enter>		
	Specifying the flow of the Meth79 stream in lb-mols/hr.		
16	Type the number 6.1343 after the prompt (>) and then press the <enter> key,</enter>		
	Specifying that the composition of each component in the Meth79 stream will be given in mole		
	fractions.		
17	Highlight the word Mole_Fractions and then press the <enter> key;</enter>		
	The screen will appear as shown below:		

	Stream Mol	le Fractions	
Methane Propane n-Butane n-Pentane Nitrogen		Ethane i-Butane i-Pentane n-Hexane CO2	

Step	Act	on		
	Selecting the components in the Meth79 stream.			
18	Enter the following mole fractions beside each component in the Meth79 stream:			
	After the word, Methane, type the number 0.7885 in the blank and then press the <enter> key;</enter>			
	After the word, Ethane, type the number 0.1678 in the blank and then press the <enter> key;</enter>			
	After the word, Propane, type the number 0.0310 in the blank and then press the <enter> key;</enter>			
	After the word, i-Butane, type the number	0.0025 in the blank a	nd then press the <enter></enter> key;	
	After the word, n-Butane, type the number	0.0013 in the blank	and then press the <enter></enter> key;	
	After the word, i-Pentane, type the number	0.0003 in the blank	and then press the <enter></enter> key;	
	After the word, n-Pentane, type the number	0.0001 in the blank	and then press the <enter></enter> key;	
	After the word, n-Hexane, type the number 0 in the blank and then press the <enter> key,</enter>			
	After the word, Nitrogen, type the number 0.0034 in the blank and then press the <enter> key;</enter>			
	After the formula, CO2, type the number 0.0051 in the blank;			
	The screen will now appear as shown below:			
Stream Mole Fractions				
Meth	ane 0.7885	Ethane	0.1678	
Prop	die 0.0310	i-Bortane	0.0025	
n-Dei	ntane 0.0013	n-Heyane	0.0003	
Nitro	ogen 0.0034	CO2	0,0051	
Step	Act	ion		
	Specifying the conditions of the Meth77 st	ream.		
19	Press the <insert> key;</insert>			
20	Highlight the word Specify and then press t	he <enter> key;</enter>		

20	Highlight the word Specify and then press the <enter> key;</enter>
21	Highlight the word Stream and then press the <enter> key;</enter>
22	Type the name Meth77 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature of the Meth77 stream in F.
23	Type the symbol and number -136 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Meth77 in psia.
24	Type the number 330 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the flow of the Meth77 stream in lb-mols hr.
25	Type the number 21.2984 after the prompt (>) and then press the <enter> key;</enter>
	Specifying that the composition of each component in the Meth77 stream will be given in mole
	fractions.
26	Highlight the word Mole_Fractions after the prompt (>) and then press the <enter> key;</enter>
	The screen will appear as shown below:

_____ Stream Mole Fractions _____

Methane	Ethane	
Propane	 i-Butane	
n-Butane	i-Pentane	
n-Pentane	 n-Hexane	
Nitrogen	CO2	

Step	Action				
	Selecting the components in the Meth77 stream.				
27	Enter the following mole fractions beside each component in the Meth77 stream:				
	After the word, Methane, type the number 0.7650 in the blank and then press the <enter> key;</enter>				
	After the word, Ethane, type the number 0.1379 in the blank and then press the <enter> key;</enter>				
	After the word, Propane, type the number 0.0594 in the blank and then press the <enter> key:</enter>				
	After the word, i-Butane, type the number 0.0115 in the blank and then press the <enter> key;</enter>				
	After the word, n-Butane, type the number 0.0090 in the blank and then press the <enter> key;</enter>				
	After the word, i-Pentane, type the number 0.0046 in the blank and then press the <enter> key;</enter>				
	After the word, n-Pentane, type the number 0.0028 in the blank and then press the $\langle Enter \rangle$ key;				
	After the word n-Hexane, type the number 0.0014 in the blank and then press the \langle Enter \rangle key.				
	After the word Nitrogen type the number 0.0047 in the blank and then press the <enter> key:</enter>				
	After the formula CO2 type the number 0.0037 in the blank				
	The screen will now appear as shown below:				
	The screen withow upped as shown occur.				
Metha	ne 0.7650 Ethane 0.1379				
Propa	ne 0.0594 i-Butane 0.0115				
n-But	ane 0.0090 i-Pentane 0.0046				
n-Pen	tane 0.0028 n-Hexane 0.0014				
Nitro	gen 0.0047 CO2 0.0037				
Step	Action				
28	Press the <insert> key;</insert>				
29	Highlight the word Worksheet and then press the <enter> key;</enter>				
	The following screen will then appear:				
	Ctropmg				
	New Value =				

		Der cano	
	New Value	9 =	
Stream	Meth79	Meth77	 ~ ~ ~
Vapour_Frac	0.0154	0.2577	
Temperature	-142.0000*	-136.0000*	
Pressure	330.0000*	330.0000*	
Flow	6.1343*	21.2984*	
Mass_Flow	120.4285	451.0878	
LigVol_Flow	25.1851	89.4009	
Energy_Flow	-6150.4075	-12826.1786	

Step	Action
	Specifying the type of operation we want to perform on the Meth77 and Meth79 streams.
30	Press the <insert> key;</insert>
31	Type the word RebAbsorber and then press the <enter></enter> key;
32	Highlight the word Column and then press the <enter> key;</enter>
33	Highlight the word Reboiled absorber and then press the <enter> key;</enter>
	The screen will then appear as shown on the following page.

Step	Action
	Specifying the known data for the reboiled absorber column.
34	Press the <enter> key.</enter>
	Specifying the Vapor Overhead Rate in lb-mols/hr.
35	Type the number 22 and then press the <enter> key;</enter>
	Specifying the Temperature Estimate of Stage 1 in F.
36	Type the number -120 and then press the <enter> key;</enter>
	Specifying the Pressure of Stage 1 in psia.
37	Type the number 330 and then press the <enter> key;</enter>
	Specifying the Number of Stages in the Absorber Column.
38	Type the number 6 and then press the <enter> key;</enter>
	Specifying the Temperature Estimate of Stage 6 in F.
39	Type the number 0 and then press the <enter> key;</enter>
	Specifying the Pressure of Stage 6 in psia.
40	Type the number 332;
	The screen will then appear as on the following page.

Step	Action
41	Press the <insert> key.</insert>
	The following screen for specifying the name of the feed streams and the stage at which they
	enter the Reboiled Absorber column will then appear:

 Ente	olumn r Colu	Reb ımn	Abso Feed	rber Stre	 eams	
Feed	Stre	eam	Fee	ed St	tage	
 Use	"Ins"	to	Save	and	Exit	

Step	Action	
	Specifying at what stage the feed streams enter the Absorber Column.	
42	Type the word Meth79 and then press the <enter> key.</enter>	
43	Type the number 1 and then press the <enter> key.</enter>	
44	Type the word Meth77 and then press the <enter> key.</enter>	
45	Type the number 2	
	The screen shown on the following page will then appear.	

Step	Action
46	Press the <insert> key;</insert>
	The following screen will then appear: (Two feed streams should show).

Step	Action
	Specifying the names of the streams coming out of the reboiled absorber column.
47	Type the word Methout and then press the <enter> key.</enter>
48	Type the word Energy and then press the <enter></enter> key.
49	Type the word Demethout .
	The screen should then appear as shown on the following page. (Two feed streams should
	show).

Step	Action
50	Press the <insert> key</insert>
NOTE	

NOTE: It is useful to print out all of the inputted process data to check for accuracy. Incorrect data entries can result in non-convergence of a column calculation which leads to frustration with an input data error.

Step	Action		
	Running the Reboiled Absorber Column program.		
51	Highlight the word Run and then press the <enter></enter> key.		
52	Highlight the word Print and then press the < Enter > key.		

Print Options:

The various options available for the column, after you have finished step 52 are as follows: (Highlight the option you select below with the arrow keys, and then press the <Enter> key to select that option).

a) Input - Input data is printed.

b) Feeds - Feed composition and conditions are printed.

c) <u>Stages</u> - The temperature, pressure, liquid and vapor flow rates, any feed or drawoffs of each stage are reported, along with the duty of the first and last stage.

d) <u>*Products*</u> - The temperature, pressure, composition, and total flow rate of the overhead and bottom product streams are printed.

e) <u>*Physical Props*</u> - The molecular weight, flow rate, density, reduced temperature and pressure are reported for each stage.

f) <u>*Transport Props*</u> - The vapor and liquid dynamic viscosity and thermal conductivity are printed, along with the liquid surface tension.

g) Exchanger Profiles - The condenser and reboiler heating curve data is printed.

h) <u>Composition</u> - The composition profile of selected components in the liquid and vapor phase are printed.

i) *Efficiencies* - The efficiency of each stage is printed.

Print Options (continued):

j) <u>Pumparound info</u> - If a pumparound is used, the information can be printed.

k) <u>All</u> - All of the information from a to j above will be printed.

1) Graph - Temperatures, flowrates, mole fractions or key ratios can be printed in graphical form.

m) SI - The current output will be printed in metric units.

n) *Field* - The current output will be printed in Field (or English units).

o) <u>User</u> - The current output will be printed in user-defined units.

p) Comp Fractions - The output will be printed on a mole, mass, or volume fractional basis.

q) <u>Comp_Flows</u> - The output will be printed as mole, mass or volume flows.

r) <u>Printer</u> - The printer will be toggled on. Selecting "Printer" once more will toggle the printer off.

s) *File* - The printout will be saved in a file.

t) <u>Mole</u> - The output will be printed on a mole basis.

u) Mass - The output will be printed on a mass basis.

v) LiqVolume - The output will be printed on a standard ideal liquid volume basis.

w) <u>*Title*</u> - Input a title which will be on all printouts.

x) <u>Boiling Pt Curves</u> - The True Boiling Point (TBP), D86, or Specific Gravity boiling point curves will be printed out.

y) <u>Cold Properties</u> - The Research Octane Number (RON), Pour Point, and Flash Point will be printed.

z) User Props - If properties have been supplied by the user, these values will be printed out.

Step	Action
53	Highlight the word Feeds and then press the <enter> key.</enter>
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the menu off of
	the screen in order to see the data on the screen underneath it.
54	Press the <f10></f10> key;
	The screen will then appear as shown below: Use the <page up=""> and <page down=""> or</page></page>
	arrow keys to scroll the screen text up and down.

**** Column Feeds ****

Feed Stream Name	Meth79	Meth77
Enters on stage	1	2
Vapour Fraction Temperature - F Pressure - psia Flowrate - lbmole/hr Enthalpy - Btu/hr Methane - Mole Frac Ethane - Mole Frac Propane - Mole Frac n-Butane - Mole Frac n-Butane - Mole Frac n-Pentane - Mole Frac n-Pentane - Mole Frac n-Hexane - Mole Frac Nitrogen - Mole Frac CO2 - Mole Frac	$\begin{array}{c} 0.0154\\ -142.00\\ 330.00\\ 6.13\\ -6150.4\\ 0.7885\\ 0.1678\\ 0.0310\\ 0.0025\\ 0.0013\\ 0.0003\\ 9.999E-05\\ 0.0000\\ 0.0034\\ 0.0051\\ \end{array}$	$\begin{array}{c} 0.2577 \\ -136.00 \\ 330.00 \\ 21.30 \\ -12826.2 \\ 0.7650 \\ 0.1379 \\ 0.0594 \\ 0.0115 \\ 0.0090 \\ 0.0046 \\ 0.0028 \\ 0.0014 \\ 0.0047 \\ 0.0037 \end{array}$

3.1.2 Reboiled Absorber Column (continued)

Step	Action		
55	Press the $\langle F10 \rangle$ key;		
56	Highlight the word Print and then press the <enter> key.</enter>		

The various print options are shown on pages 59-60.

Step	Action	
57	Highlight the word Products and then press the <enter> key</enter> .	
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the menu off of	
	the screen in order to see the data on the screen underneath it.	
58	Press the $\langle F10 \rangle$ key;	
	The screen will then appear as shown below. Use the <page up=""> and <page down=""> or</page></page>	
	arrow keys to scroll the screen text up and down.	

**** Products ****

Leaving from stage		l	6
Product Phase		Vapour	Liquid
Assigned to Stream Name		Methout	Demethout
Temperature	 F psia Mole Frac 	-128.05	64.00
Pressure		330.00	332.00
Methane		0.959229	0.005022
Ethane		0.030364	0.607117
Propane		0.000637	0.265288
i-Butane		0.000012	0.047856
n-Butane		3.65E-06	0.036736
i-Pentane		2.10E-07	0.018371
n-Pentane		4.18E-08	0.011090
n-Hexane		0.000000	0.005488
Nitrogen		0.005498	9.37E-08
CO2		0.004255	0.003032
Total Flow	- lbmole/hr	22.00	5.43

Step	Action
59	Press the <f10></f10> key;
60	Press the <esc> key until you are back at the Main Menu.</esc>
61	Highlight the letters PFD and then press the <enter></enter> key
	The screen similar to the following one will then appear:

Step	Action	
	Getting back to the Main Menu.	
62	Press the <esc> key until you reach the Main Menu.</esc>	
63	Do you want to continue adding other unit operations to this reboiled absorber column?	
	• If Yes, turn to the pertinent section of this manual now;	
	• If No, turn to the "Exiting HYSIM" Section of this manual.	

3.1.3 Refluxed Absorber Column

Objective - This exercise is an example of an absorber column with a pump back reflux stream. The purpose of the absorber column is to separate different components from feed streams using a specified number of contact stages with one or more components being absorbed from one stream into another. The refluxed absorber unit operation could also be used for refluxed stripping or desorption. This example can be modified by specifying another property package and/or other components, compositions and feed conditions. This exercise for a refluxed absorber has a vapor oil feed stream at 740°F and 0.39 psia. The True Boiling Point (TBP) data for this oil assay is inputted into the HYSIM program. HYSIM then cuts and blends the oil. Each cut is then given a different component name by HYSIM. The refluxed absorber is used to separate the higher boiling point components which are emitted in the bottoms (*Btims*) stream, from the components with a middle or lower boiling point range. The middle range boiling point components come off mainly in the distillate

(*Ovhdliq*) stream. The lower boiling point components are emitted in the overhead (*Ovhdvap*) stream.

<u>Technical Example Reference</u>: Reference 2 - HYSIM Special Features and Applications Guide, Version C2.50, dated March 1994, pages R-8 to R-14.

Other References: Refs. 1 & 2.

Directions - Pages 64 through 77 outline the execution of a refluxed absorber column example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the Action Step instructions below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <> brackets (e.g.<Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

A process flow diagram of this refluxed absorber operation, called <u>ReflAbs</u>, is shown below:

Step	Action		
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).		
	• If <u>Yes</u> , proceed with Step 2.		
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures		
	before proceeding to Step 2.		
	Starting with a new case.		
2	Highlight the word No and then press the <enter> key;</enter>		
	Selecting a Property Package.		
3	Highlight the word Peng-Robinson and then press the <enter></enter> key;		
	The following screen will appear:		

Selected	Synonym	Name	Formula	Criteria
	A			
	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	C1	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	C3	Propane	СЗН8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H20	PHENOL
	C10	n-Decane	C10H22	ETHER
	C11	n-C11	C11H24	USER
	C12	n-C12	C12H26	
v _ + V _ +Search by SYNONYM				
Fl - Help, F3 - Menu, F4 - Flip Srch, F5 - Exam, F6 - Move, F8 - Change				
_	PRI	ESS INSERT TO SUBMIT		

Step	Action
	Selecting the components in the feed stream. Highlight the following component name under
	the "Component Selection" Section and press the <enter> key so that the name then appears \sim</enter>
	in the "Selected" column.
4	Highlight the word Oil and then press the <enter> key;</enter>
	The screen will then appear as shown on the following page.

Step	Action				
	Inputting a new set of oil assay data.				
5	Highlight the word Add_Assay and then press the <enter> key;</enter>				
	Naming the new oil.				
6	Type the word AtmResidue and then press the <enter></enter> key;				
	Specifying that the type of data which will be put into the program for the oil is TBP (True				
	Boiling Point) data.				
7	Highlight the letters TBP and then press the <enter></enter> key;				
	Specifying that no data options are required and that input is on a liquid volume basis.				
8	Highlight the word None and then press the <enter> key;</enter>				
	The following screen will then appear:				

=____ INPUT FOR TBP AtmResidue =____

	Assay Percent		Temperature (C)			
τ	Jse	"Ins"	to S	Save	and	Exit

Step	Action
	Specifying that the TBP data is in \mathbb{F} and not \mathbb{C} .
9	Type the letter F and then press the <enter> key;</enter>
	Inputting the TBP assay for the AtmResidue oil.
10	Type the number 0 and then press the <enter> key;</enter>
11	Type the number 436.0 and then press the <enter> key;</enter>
12	Type the number 5 and then press the <enter> key;</enter>
13	Type the number 646.4 and then press the <enter> key;</enter>
14	Type the number 10 and then press the <enter> key;</enter>
15	Type the number 724.7 and then press the <enter> key;</enter>
16	Type the number 20 and then press the <enter> key;</enter>
17	Type the number 818.7 and then press the <enter> key;</enter>
18	Type the number 30 and then press the <enter> key;</enter>
19	Type the number 885.6 and then press the <enter> key;</enter>
20	Type the number 40 and then press the <enter> key;</enter>
21	Type the number 947.0 and then press the <enter> key;</enter>
22	Type the number 50 and then press the <enter> key;</enter>
23	Type the number 998.0 and then press the <enter> key;</enter>
24	Type the number 60 and then press the <enter> key;</enter>
25	Type the number 1035.6 and then press the <enter> key;</enter>
26	Type the number 70 and then press the <enter> key;</enter>
27	Type the number 1067.4 and then press the <enter> key;</enter>
28	Type the number 80 and then press the <enter> key;</enter>
29	Type the number 1096.4 and then press the <enter> key;</enter>
30	Type the number 90 and then press the <enter> key;</enter>
31	Type the number 1124.5 and then press the <enter> key;</enter>
32	Type the number 100 and then press the <enter> key;</enter>
33	Type the number 1154.2;
	The following screen will then appear:

-	INPUT FO	OR TBP AtmRes	sidue	
	Assay Percent	Temperature (F)		
	0	436.0 646.4		
	10	724.7		
	20	818.7		
	30	885.6		
	40	947.0		
	50	998.0		
	60	1035.6	i İ	
	70	1067.4		
	80	1096.4		
	90	1124.5		
	100	1154.2		
t	Jse "Ins" to S	Save and Exit	:	

.....

3.1.3 Refluxed Absorber Column (continued)

F

Step	Action
34	Press the <insert> key;</insert>
	The following screen will then appear:

	Bulk Oil Properties
Molecul Mass Densit	lar Weight : ty [kg/m3]:
Viscosity Viscosity	1 [CP]: Viscosity Temp. 1: 37.78 2 [CP]: Viscosity Temp. 2: 98.89
** Note **	Bulk properties are required only if a distillation curve is not available, if the first three bulk properties are supplied MW and density will take precedence

Step	Action				
	Specifying that no bulk properties of the oil will be provided.				
35	Press the <insert> key;</insert>				
	Specifying that you want HYSIM to cut and blend the oil.				
36	Highlight the words Cut/Blend and then press the <enter> key;</enter>				
	Specifying that the cut should be done automatically based on recommended cut ranges.				
37	Highlight the word Auto_Cut and then press the <enter> key;</enter>				
	Specifying that the oil AtmResidue should be installed into the current HYSIM case.				
38	Highlight the word Install_Oil and then press the <enter> key;</enter>				
	Naming the stream which represents the AtmResidue oil in the flowsheet as Feed.				
39	Type the word FeedVap and then press the <enter> key;</enter>				
	The following screen will then appear:				

]			
Add_Assay	Cut/Blend	Install_Oil	Print			
Recall_Assay	Monitor	Change_Oil	Plot			
Store_Assay	Settings	Delete_Oil	Configuration			
Edit_Assay	Remove_Assay	Remove_WrkOil	User_Property			
Add_Assay Input	a new set of assay	data into the works	pace			
OIL CHARACTERI	ZATION - Prop Pkg P	R - SI Units 98795	52			
>						
L						
	- Oil Characteriz	ation Worksnace Moni-	tor			
All of your of	is are installed so	it looks like you a	re donel ESC to mit			
INPUT ASSAYS	S AtmResidue	, it iooks like you u	re done: ESC to quit			
CALCULATED OILS AtmResidue						
INSTALLED OILS [1] AtmResidue						
L						

Step	Action
	Getting back to the Main Menu.
40	Press the < Esc > key;
	The following screen will then appear:

Work_Sheet PFD Ignore Utility Exit	Specify Remove Restore Size ?	Opera Store Hold Repor	tion	Print New Go Toggle
Work_Sheet str Prop Pkg PR - >	ceams in a spre SI Units 987	eadsheet form 9552	at	
Your selected NBP[1]_232 NBP[1]_304 NBP[1]_377 NBP[1]_469 NBP[1]_609	components are NBP[1]_246 NBP[1]_318 NBP[1]_391 NBP[1]_498	NBP[1]_261 NBP[1]_334 NBP[1]_406 NBP[1]_526	NBP[1]_275 NBP[1]_347 NBP[1]_420 NBP[1]_554	NBP[1]_290 NBP[1]_362 NBP[1]_441 NBP[1]_582

Step	Action
	Specifying that you want the units changed from the default metric system units (kg, kPa, $ {\cal C}, $
	etc.) to field units (lb, psia, F, etc.).
41	Highlight the word Utility and then press the <enter> key;</enter>
42	Highlight the word Configuration and then press the <enter> key;</enter>
43	Highlight the word Units and then press the <enter> key;</enter>
44	Highlight the word Field and then press the <enter> key;</enter>
	Returning to the Main Menu.
45	Press the <esc> key.</esc>
	Specifying the conditions of the FeedVap stream.
46	Highlight the word Specify and then press the <enter> key;</enter>
47	Highlight the word Stream and then press the <enter> key,</enter>
48	Highlight the word FeedVap and then press the <enter> key;</enter>
	Specifying the temperature of the FeedVap stream in F.
49	Type the number 1500 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the FeedVap stream in psia.
50	Type the number 2 after the prompt (>) and then press the <enter> key;</enter>

Step		Act	ion				
	Specifying the flow of the FeedVap stream in lb-mols/hr.						
51	Type the number 1	391.9788 after the prom	pt (>) and then press the $<$	Enter> key;			
	Specifying that the compositions of each component in the FeedVap stream will be given in						
	mole fractions.						
52	Highlight the word	Mole Fractions and th	en press the <enter> key;</enter>				
	The screen will ap	pear as shown below:					
		Stream Mo	le Fractions ===				
NBP[1]_232	0.0099	NBP[1]_246	0.0104			
NBP[1]_261	0.0108	NBP[1]_275	0.0111			
NBP[:	1]_290	0.0116	NBP[1]_304	0.0123			
NBP[]	1]_318	0.0127	NBP[1]_334	0.0170			
NBP[:	1]_347	0.0196	NBP[1]_362	0.0179			
NBP[]	1]_377	0.0325	NBP[1]_391	0.0327			
NBP[]	1]_406	0.0324	NBP[1]_420	0.0393			
NBP[]	1]_441	0.0840	NBP[1]_469	0.0883			
NBP[]	1]_498	0.0854	NBP[1]_526	0.0941			
NBP[]	1] 554	0.1203	NBP[1] 582	0.1337			
NBP[]	1]_609	0.1240					
[[
L							

Step	Action
53	Press the <insert> key;</insert>
54	Highlight the word Worksheet and then press the <enter> key;</enter>
	The following screen will then appear:

[]		Streams		
	New Value =			
Stream	FeedVap		~ ~ ~	
Vapour_Frac	1.0000			
Temperature	1500.0000*			
Pressure	2.0000*			
Flow	1391.9788*		1400 AND 710	
Mass_Flow	605428.2854			
LiqVol_Flow	44807.7029			
Energy_Flow	6.57489E+08			

Step	Action
	Specifying the type of operation you want to perform on the Feed stream.
55	Press the <insert< b="">> key;</insert<>
56	Type the words ReflAbs and then press the <enter> key;</enter>
57	Highlight the word Column and then press the <enter> key;</enter>
58	Highlight the word Refluxed_absorber and then press the <enter> key;</enter>
	The screen will then appear as shown on the next page.

Step	Action
	Specifying the known data for the refluxed absorber column.
59	Press the <enter></enter> key.
	Specifying the Vapor Overhead Rate in lb-mols/hr.
60	Type the number 20 and then press the <enter> key two times;</enter>
	Specifying the Liquid Overhead Rate in lb-mols/hr.
61	Type the number 950.87 and then press the <enter> key;</enter>
	Specifying the Reflux Ratio in Stage 1.
62	Type the number 5 and then press the <enter> key;</enter>
	Specifying the Temperature Estimate of Stage 1 in °F.
63	Type the number 250 and then press the <enter> key;</enter>
	Specifying the Pressure of Stage 1 in psia.
64	Type the number 0.193 and then press the <enter> key;</enter>
	Specifying the Number of Stages in the Absorber Column.
65	Type the number 10 and then press the <enter> key;</enter>
	Specifying the Temperature Estimate of Stage 10 in F.
66	Type the number 1000 and then press the <enter> key;</enter>
	Specifying the Pressure of Stage10 in psia.
67	Type the number 1.2;
	The screen will then appear as shown on the next page.

Step	Action
68	Press the <insert> key.</insert>
	The following screen for specifying the name of the Feed stream and the stage at which it
	enters the Refluxed Absorber column will then appear:

 Enter C	mn Refl olumn F	Abs Feed Streams	
Feed S	tream	Feed Stage	
Use "Ir	is" to S	Save and Exi	t

Step	Action	
	Specifying at what stage the FeedVap stream enters the Absorber Column.	_
69	Type the word FeedVap and then press the <enter> key</enter>	
70	Type the number 10.	
	The following screen will then appear:	
	Column Reflabs	

	Enter	Colu	imn	Feed	Stre	ams	_
1	Feed	Stre	am	Fee	ed St	age	
	FeedV	ар			10	-	
	Use "	Ins"	to	Save	and	Exit	

71 Press the <insert> key; The following screen will then appear: Refluxed Absorber Column Refl</insert>	
The following screen will then appear: Refluxed Absorber Column Refl	
Refluxed Absorber Column Refl	
Condenser Energy Stream Ovhd Vapour	
\leftarrow COND \rightarrow 1	
Ovhd Liquid	
3	

~ n-1 ≈	the Product
	Stream Names
	Bottom Liquid
	=>

Step	Action
	Specifying the names of the streams going out of the refluxed absorber column.
72	Type the word Energy and then press the <enter> key.</enter>
73	Type the word Ovhdvap and then press the <enter></enter> key.
74	Type the word Ovhdliq and then press the <enter></enter> key.
75	Type the word Bttms .
	The screen should then appear as shown below:

Step	Action
76	Press the <insert> key.</insert>
NOTE: I	It is useful to print out all of the inputted process data to check for accuracy. Incorrect

data entries can result in nonconvergence of a column calculation which leads to frustration with an input data error.

Step	Action
	Running the Refluxed Absorber Column program.
77	Highlight the word Run and then press the <enter> key.</enter>
78	Highlight the word Print and then press the <enter> key.</enter>

Print Options:

The various options available for the column, after you have finished step 78 are as follows: (Highlight the option you select below with the arrow keys, and then press the <Enter> key to select that option).

a) Input - Input data is printed.

b) *Feeds* - Feed composition and conditions are printed.

c) <u>Stages</u> - The temperature, pressure, liquid and vapor flow rates, any feed or drawoffs of each stage are reported, along with the duty of the first and last stage.

d) <u>*Products*</u> - The temperature, pressure, composition, and total flow rate of the overhead and bottom product streams are printed.

e) <u>*Physical_Props*</u> - The molecular weight, flow rate, density, reduced temperature and pressure are reported for each stage.

f) <u>*Transport Props*</u> - The vapor and liquid dynamic viscosity and thermal conductivity are printed, along with the liquid surface tension.

g) Exchanger_Profiles - The condenser and reboiler heating curve data is printed.

h) <u>Composition</u> - The composition profile of selected components in the liquid and vapor phase are printed.

i) *Efficiencies* - The efficiency of each stage is printed.

j) *Pumparound info* - If a pumparound is used, the information can be printed.

k) <u>All</u> - All of the information from a to j above will be printed.

1) Graph - Temperature, flowrates, mole fractions or key ratios can be printed in graphical form.

m) <u>SI</u> - The current output will be printed in metric units.

n) *Field* - The current output will be printed in Field (or English units).

o) <u>User</u> - The current output will be printed in user-defined units.

p) Comp_Fractions - The output will be printed on a mole, mass, or volume fractional basis.

q) <u>Comp_Flows</u> - The output will be printed as mole, mass or volume flows.

r) <u>Printer</u> - The printer will be toggled on. Selecting "Printer" once more will toggle the printer off.

s) *File* - The printout will be saved in a file.

t) Mole - The output will be printed on a mole basis.

u) Mass - The output will be printed on a mass basis.

v) *LiqVolume* - The output will be printed on a standard ideal liquid volume basis.

w) <u>*Title*</u> - Input a title which will be on all printouts.

3.1.3 Refluxed Absorber Column (continued)

Print Options (continued):

x) <u>Boiling Pt Curves</u> - The True Boiling Point (TBP), D86, or Specific Gravity boiling point curves will be printed out.

y) <u>Cold Properties</u> - The Research Octane Number (RON), Pour Point, and Flash Point will be printed.

z) User Props - If properties have been supplied by the user, these values will be printed out.

Step	Action		
79	Highlight the word Feeds and then press the <enter> key.</enter>		
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the menu off of		
	the screen in order to see the data on the screen underneath it.		
80	Press the $\langle F10 \rangle$ key;		
	The screen will then appear as shown below. Use the $\langle Page Up \rangle$ and $\langle Page Down \rangle$ or		
	arrow keys to scroll the screen text up and down.		

Feed Stream Name	FeedVap
Enters on stage	10
<pre>Vapour Fraction Temperature - F Pressure - psia Flowrate - lbmole/hr Enthalpy - Btu/hr NBP[1]_232 - Mole Frac NBP[1]_246 - Mole Frac NBP[1]_261 - Mole Frac NBP[1]_275 - Mole Frac NBP[1]_290 - Mole Frac NBP[1]_304 - Mole Frac NBP[1]_318 - Mole Frac NBP[1]_318 - Mole Frac NBP[1]_347 - Mole Frac NBP[1]_347 - Mole Frac NBP[1]_362 - Mole Frac NBP[1]_391 - Mole Frac NBP[1]_391 - Mole Frac NBP[1]_406 - Mole Frac NBP[1]_406 - Mole Frac NBP[1]_420 - Mole Frac NBP[1]_441 - Mole Frac NBP[1]_441 - Mole Frac NBP[1]_441 - Mole Frac NBP[1]_452 - Mole Frac NBP[1]_554 - Mole Frac NBP[1]_554 - Mole Frac NBP[1]_582 - Mole Frac NBP[1]_609 - Mole Frac</pre>	$\begin{array}{c} 1.0000\\ 1500.00\\ 2.00\\ 1391.98\\ 657489338.0\\ 0.0099\\ 0.0104\\ 0.0108\\ 0.0111\\ 0.0116\\ 0.0123\\ 0.0127\\ 0.0127\\ 0.0170\\ 0.0127\\ 0.0170\\ 0.0196\\ 0.0179\\ 0.0325\\ 0.0325\\ 0.0327\\ 0.0324\\ 0.0393\\ 0.0840\\ 0.0883\\ 0.0854\\ 0.0941\\ 0.1203\\ 0.1337\\ 0.1240\end{array}$

**** Column Feeds ****

Step	Action
81	Press the <f10> key.</f10>
	Printing the Product conditions and compositions.
82	Highlight the word Print and then press the < Enter > key.

The various print options are shown on pages 73 - 74.

Step	Action
83	Highlight the word Products and then press the <enter> key.</enter>
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the menu off of
	the screen in order to see the data on the screen underneath it.
84	Press the $\langle F10 \rangle$ key;
	The screen will then appear as shown below. Use the <page up=""> and <page down=""> or</page></page>
	arrow keys to scroll the screen text up and down.

Leaving from Product Phas Assigned to	stage e Stream Name	l Vapour Ovhdvap	l Liquid Ovhdliq	10 Liquid Bttms
Temperature Pressure NBP[1]_232 NBP[1]_246 NBP[1]_261 NBP[1]_275 NBP[1]_290 NBP[1]_304 NBP[1]_304 NBP[1]_318 NBP[1]_334 NBP[1]_347 NBP[1]_347 NBP[1]_347 NBP[1]_362 NBP[1]_362 NBP[1]_391 NBP[1]_406 NBP[1]_406 NBP[1]_406 NBP[1]_420 NBP[1]_498 NBP[1]_498 NBP[1]_526 NBP[1]_554 NBP[1]_582 NBP[1]_582 NBP[1]_609	 F psia Mole Frac 	374.77 0.19 0.262888 0.209840 0.158318 0.113912 0.079964 0.054869 0.035690 0.028241 0.020236 0.010667 0.010722 0.006351 0.003382 0.002236 0.001911 0.000576 0.000147 0.000041 9.01E-06 2.14E-08 0.000000	374.77 0.19 0.008926 0.010769 0.012420 0.013848 0.015318 0.016873 0.017781 0.024273 0.024273 0.028280 0.026005 0.047254 0.047254 0.047258 0.047276 0.057308 0.122463 0.128283 0.123409 0.123409 0.133672 0.117079 0.001101 2.01E-06	845.27 1.20 8.61E-06 0.000010 0.000013 0.000015 0.000019 0.000024 0.000029 0.000047 0.000047 0.000065 0.000073 0.000164 0.000253 0.000164 0.000253 0.000388 0.001198 0.002123 0.003774 0.009143 0.133152 0.439468 0.409833
Total Flow	- lbmole/hr	19.99	950.88	421.11

3.1.3 Refluxed Absorber Column (continued)

Step	Action
85	Press the <f10> key</f10>
	Printing the Physical Properties of the Liquid and Vapor leaving each stage.
86	Highlight the word Print and then press the < Enter > key.

The various print options are shown on pages 73 - 74.

Step	Action		
87	Highlight the word Physical_Props and then press the <enter> key.</enter>		
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the menu off of		
	the screen in order to see the data on the screen underneath it		
88	Press the <f10></f10> key;		
	The screen will then appear as shown below. Use the <page up=""> and <page down=""> or</page></page>		
	arrow keys to scroll the screen text up and down.		

Vapour Leaving From Each Stage

Stage	Mole Wt	Flow F	ates	Density	Redu	iced
No		lb/hr	ACFM	lb/ft3	Temp	Press
1	191.67370.60467.08490.75500.18506.53513.25521.97533.27546.49	3831.77	15440.411	4.1E-03	0.648	0.001
2		1.752E+06	3.055E+06	9.5E-03	0.706	0.002
3		2.968B+06	3.182E+06	0.016	0.702	0.003
4		3.676E+06	3.021E+06	0.020	0.709	0.005
5		3.899E+06	2.630E+06	0.025	0.716	0.006
6		3.972E+06	2.278E+06	0.029	0.724	0.007
7		3.978E+06	1.983E+06	0.033	0.731	0.008
8		3.953E+06	1.737E+06	0.038	0.738	0.009
9		3.931E+06	1.537E+06	0.043	0.745	0.010
10		3.944E+06	1.382E+06	0.048	0.752	0.012

**** Physical Properties ****

Liquid Leaving From Each Stage

**** Physical Properties ****

Stage	Mole Wt	Flow H	Rates	Density	Redu	iced
No		lb/hr	USGPM	lb/ft3	Temp	Press
1	371.36	1.395E+06	3574.890	48.69	0.533	0.001
2	485.01	2.611E+06	7436.924	43.78	0.653	0.003
3	509.08	3.319E+06	9775.355	42.34	0.685	0.004
4	519.03	3.542E+06	10571.275	41.78	0.697	0.005
5	526.15	3.615E+06	10881.040	41.42	0.706	0.006
6	534.10	3.621E+06	10970.547	41.15	0.712	0.007
7	544.66	3.596E+06	10954.298	40.94	0.718	0.009
8	558.39	3.574E+06	10939.691	40.74	0.724	0.010
9	574.29	3.587E+06	11030.608	40.55	0.730	0.011
10	590.07	248482.94	767.986	40.34	0.735	0.013

Step	Action
89	Press the <f10></f10> key;
90	Press the <esc> key until you are back at the Main Menu.</esc>
91	Highlight the letters PFD and then press the <enter> key.</enter>
	The screen will then appear as shown below:

Step	Action
	Getting back to the Main Menu.
92	Press the <esc> key until you reach the Main Menu.</esc>
93	Do you want to continue adding other unit operations to this refluxed absorber column?
	• If Yes, turn to the pertinent section of this manual now;
	• If <u>No</u> , turn to the "Exiting HYSIM" Section of this manual.

3.1.4 Distillation Column

<u>Objective</u> - This exercise is an example of a distillation column. The purpose of the distillation column is to separate different components from a feed stream using a specified number of contact stages. This example can be modified by specifying another property package and/or other components, compositions and feed conditions.

This exercise is an example of how to separate a feed (*FeedLig*) of 1424 kg-mols/hr of methanol and 337 kg-mols/hr of acetone into a liquid overhead (*Azeodist*) and a bottoms (*Meth99*). The <u>Azeodist</u> stream contained 108 kg-mols/hr of methanol and 319 kg-mols/hr of acetone. The distillate composition is near the azeotrope. The <u>Meth99</u> stream contained 1316 kg-mols/hr of methanol and 18 kg-mols/hr of acetone, or 99% methanol on a molar basis. <u>Technical Example Reference</u>: Reference 5 - Problem # PD 9604 supplied by Dr. Roche of the NJIT Chemical Engineering Dept.

Other References: Refs. 1 and 2.

Directions - Pages 79 through 92 outline the execution of a distillation column example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the Action Step instructions below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <> brackets (e.g.<Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

A flow diagram of this unit operation, called <u>DEC3</u>, is shown below:

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).
	• If <u>Yes</u> , proceed with Step 2.
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
3	Highlight the word Activity_Models and then press the <enter> key;</enter>
4	Highlight the word Margules and then press the <enter> key;</enter>
5	Highlight the word Virial and then press the <enter> key;</enter>
	The following screen will appear:

		COMPONENT SELECTION			
Selected	Synonym	Name	Formula	Criteria	
	OIL	OIL		ALL	
	HYPOTHETICAL	HYPOTHETICAL		HC	
	Cl	Methane	CH4	SOLID	
	C2	Ethane	C2H6	MISC	
	C3	Propane	СЗН8	AMINE	
	i-C4	i-Butane	C4H10	ALCOHOL	
	n-C4	n-Butane	C4H10	KETONE	
	i-C5	i-Pentane	C5H12	ALDEHYDE	
	n-C5	n-Pentane	C5H12	ESTER	
	C6	n-Hexane	C6H14	CARBACID	
	C7	n-Heptane	C7H16	HALOGEN	
	C8	n-Octane	C8H18	NITRILE	
	C9	n-Nonane	C9H20	PHENOL	
	C10	n-Decane	C10H22	ETHER	
	C11	n-C11	C11H24	USER	
	C12	n-C12	C12H26		
· V ↓	⊥ ¥ ↓	Search by SYNONYM			
Fl - Help,	F3 - Menu, F4	- Flip Srch, F5 - Exa	am, F6 - Move	e, F8 - Change	
	PR	ESS INSERT TO SUBMIT			

Step	Action			
	Selecting the components in the feed stream.			
6	Highlight each of the following component names under the "Component Selection" Section			
	and press the <enter> key so that the name then appears in the "Selected" column. This</enter>			
	"Component Selection" List is very long. Use the <page down=""> and Arrow Keys to find the</page>			
	following components:			
	Highlight the word Methanol and then press the <enter></enter> key;			
	Highlight the word Acetone and then press the <enter> key.</enter>			
7	Press the <insert> key;</insert>			
	The screen shown on the following page listing Association and Solvation Parameters will			
	then appear.			

	Association	n and Solvation	Parameters	
Enter a	value or Press	Ins to Exit,		
	Methanol	Acetone		
Methanol	1.6297	1.0000		
Acetone	1.0000	0.8999		

Step	Action
8	Press the <insert> key;</insert>
	The following screen listing Aij Interaction Parameters will then appear:

	Aij Intera	ction Parameters
HOT KEYS	F1_Help F2_Menu H_Henry's Coeff I_j immiscible in i	S_Switch-Matrices A_UnifacVLE L_UnifacLLE C_UnifacLLE_All B all immiscible in j
	Methanol Ac	etone
Methanol		0.6121
Acetone	0.5769 -	

Step	Action			
9	Press the <insert> key;</insert>			
NOTE:	On returning to the main menu after component selection, HYSIM will provide a list of			
the comp	onent selections. This is helpful in assessing component selections.			
Step	Action			
	Specifying the conditions of the feed stream, FeedLig.			
10	Highlight the word Specify and then press the <enter> key;</enter>			
11	Highlight the word Stream and then press the <enter> key;</enter>			
12	Type the word FeedLiq after the prompt (>) and then press the < Enter > key;			
	Specifying the temperature of the FeedLiq stream in ${\mathfrak C}$.			
13	Type the number 40 after the prompt (>) and then press the <enter> key;</enter>			
	Specifying the pressure of the FeedLiq stream in kPa.			
14	Type the number 274.8 after the prompt (>) and then press the <enter> key;</enter>			
	Specifying the flow of the FeedLiq stream as unknown by typing the letter "x".			
15	Type the letter x after the prompt (>) and then press the <enter> key;</enter>			
	Specifying the individual mass fractions of each component in the FeedLig stream.			
16	Highlight the word Mass_Fractions and then press the <enter> key;</enter>			
	The screen will appear as shown below:			

------ Stream Mass Fractions ------

Methanol

_____ Acetone

Step	Action
	Selecting the components in the FeedLiq stream.
17	Enter the following mass fractions beside each component in the FeedLig stream:
	After the word, Methanol, type the number 0.7 in the blank and then press the <enter> key;</enter>
	After the word, Acetone, type the number 0.3 in the blank;
	The screen will now appear as shown below:

Γ	<u></u>		Stream	Mass	Fractions		_
	Methanol	0.7		1	Acetone	0.3	

Step	Action	
18	Press the <insert> key;</insert>	
19	Highlight the word Worksheet and then press the <enter> key;</enter>	
20	Highlight the space under the FeedLiq title for the Mass Flow in kg/h.	
	Type the number 65200 and then press the <enter> key;</enter>	
	The following screen will then appear:	

[Streams		
	New Value =		kg/h	
Stream	FeedLiq			
Vapour_Frac	0.0000			
Temperature	40.0000*		~~_	
Pressure	274.8000*			
Flow	1761.1619			- ~ -
Mass_Flow	65200.0000*			
LigVol_Flow	82.1164			
Energy_Flow	-4.36607E+07	~		
11				

Step	Action
21	Press the <insert> key;</insert>
	Specifying the type of operation we want to perform on the FeedLiq stream.
22	Type the words DEC3 column and then press the <enter></enter> key;
23	Highlight the word Distillation and then press the <enter> key;</enter>
	The screen will then appear as shown on the following page.

Step	Action
	Specifying the known data for the distillation column.
24	Press the <delete> key until the word Molar is deleted; then type the word Mass in its place and</delete>
	then press the <enter> key.</enter>
	Specifying the Vapor Overhead Rate in kilograms per hour, kg/hr.
25	Type the number 0 and then press the <enter> key;</enter>
26	Press the <delete> key until the word Molar is deleted; then type the word Mass in its place and</delete>
	then press the <enter> key.</enter>
	Specifying the Liquid Overhead Rate in kg/hr.
27	Type the number 21995.18 and then press the <enter> key;</enter>
	Specifying the Reflux Ratio.
28	Type the number 5 and then press the <enter> key;</enter>
	Specifying the Temperature Estimate of Stage 1 in °C.
29	Type the number 55 and then press the <enter> key,</enter>
	Specifying the Pressure of Stage 1 in kilopascals, kPa.
30	Type the number 101 and then press the <enter> key;</enter>
	Specifying the Number of Stages in the Distillation Column.
31	Type the number 33 and then press the <enter> key;</enter>
	Specifying the Temperature Estimate of Stage 33 in C.
32	Type the number 64 and then press the <enter> key;</enter>
	Specifying the Pressure of Stage33 in kPa
33	Type the number 133;
	The screen will then appear as shown on the following page.

Step	Action
34	Press the <insert> key</insert>
	The following screen for specifying the name of the FeedLiq stream and the stage at which it
	enters the Distillation column will then appear:

Column DEC3 Enter Column Feed Streams	
Feed Stream Feed Stage	
Use "Ins" to Save and Exit	

Step	Action	
	Specifying at what stage the FeedLiq stream enters the Distillation Column.	
35	Type the word FeedLiq and then press the <enter> key.</enter>	
36	Type the number 19.	
	The following screen will then appear:	
	Column DEC3	······································

Enter	Colui	DEC. mn 1	3 Feed	Stre	_=	
Feed	Stre	am	Fee	ed St	age	
FeedL:	iq			19	-	
 Use "	Ins"	to S	Save	and	Exit	·

Step	Action
37	Press the <insert> key;</insert>
	The following screen will then appear:

Step	Action
	Specifying the names of the streams going into and out of the distillation column.
38	Type the word Energyc and then press the <enter> key.</enter>
39	Type the word Ovhdvap and then press the <enter></enter> key.
40	Type the word Azeodist and then press the <enter> key.</enter>
41	Type the word Energyr and then press the <enter> key.</enter>
42	Type the word Meth99.
	The screen should then appear as shown below:

3.1.4 Distillation Column (continued)

Step	Action
43	Press the <insert> key</insert>

NOTE: It is useful to print out all of the inputted process data to check for accuracy. Incorrect data entries can result in nonconvergence of a column calculation which leads to frustration with an input data error.

Step	Action
	Running the Distillation Column program.
44	Highlight the word Run and then press the <enter></enter> key.
45	Highlight the word Print and then press the <enter> key.</enter>

Print Options:

The various options available for the column, after you have finished step 45 are as follows: (Highlight the option you select below with the arrow keys, and then press the <Enter> key to select that option).

a) Input - Input data is printed.

b) *Feeds* - Feed composition and conditions are printed.

c) <u>Stages</u> - The temperature, pressure, liquid and vapor flow rates, any feed or drawoffs of each stage are reported, along with the duty of the first and last stage.

d) <u>*Products*</u> - The temperature, pressure, composition, and total flow rate of the overhead and bottom product streams are printed.

e) *Physical_Props* - the molecular weight, flow rate, density, reduced temperature and pressure are reported for each stage.

f) <u>*Transport_Props*</u> - The vapor and liquid dynamic viscosity and thermal conductivity are printed, along with the liquid surface tension.

g) Exchanger Profiles - The condenser and reboiler heating curve data is printed.

h) <u>Composition</u> - The composition profile of selected components in the liquid and vapor phase are printed.

i) *Efficiencies* - The efficiency of each stage is printed.

j) <u>Pumparound info</u> - If a pumparound is used, the information can be printed.

k) <u>All</u> - all of the information from a to j above will be printed.

I) Graph - Temperature, flowrates, mole fractions or key ratios can be printed in graphical form.

m) \underline{SI} - The current output will be printed in metric units.

n) *Field* - The current output will be printed in Field (or English units).

o) <u>User</u> - The current output will be printed in user-defined units.

p) Comp Fractions - The output will be printed on a mole, mass, or volume fractional basis.

q) <u>Comp_Flows</u> - The output will be printed as mole, mass or volume flows.

r) <u>Printer</u> - The printer will be toggled on. Selecting "Printer" once more will toggle the printer off.

s) File - The printout will be saved in a file.

t) Mole - The output will be printed on a mole basis.

u) Mass - The output will be printed on a mass basis.

v) LiqVolume - The output will be printed on a standard ideal liquid volume basis.

w) <u>*Title*</u> - Input a title which will be on all printouts.

3.1.4 Distillation Column (continued)

Print Options (continued):

x) <u>Boiling Pt Curves</u> - The True Boiling Point (TBP), D86, or Specific Gravity boiling point curves will be printed out.

y) <u>Cold Properties</u> - The Research Octane Number (RON), Pour Point, and Flash Point sill be printed.

z) User Props - If properties have been supplied by the user, these values will be printed out.

Step	Action
	Specifying the stream compositions in mole flow instead of mole fractions.
46	Highlight the word Comp_Flows and then press the <enter> key.</enter>
47	Press the <esc> key;</esc>
48	Highlight the word Print and then press the <enter> key.</enter>
49	Highlight the word Feeds and then press the <enter> key.</enter>
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the menu off of
	the screen in order to see the data on the screen underneath it.
50	Press the $\langle F10 \rangle$ key;
	The screen will then appear as shown below. Use the <page up=""> and <page down=""> keys to</page></page>
	scroll the screen text up and down.

**** Column Feeds ****

Feed Stream Name	FeedLiq
Enters on stage	19
Vapour Fraction	0.0000
Temperature - C	40.00
Pressure - kPa	274.80
Flowrate - kgmole/h	1761.16
Enthalpy - kJ/h	-43660764.3
Methanol - kgmole/h	1424.3850
Acetone - kgmole/h	336.7769

3.1.4 Distillation Column (continued)

Step	Action
51	Press the <f10> key;</f10>
52	Highlight the word Print and then press the <enter> key.</enter>

The various print options are shown on pages 85 - 86.

Step	Action					
53	Highlight the word Products and then press the <enter> key.</enter>					
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the menu off of					
	the screen in order to see the data on the screen underneath it.					
54	Press the $\langle F10 \rangle$ key;					
	The screen will then appear as shown below. Use the <page up=""> and <page down=""> keys to</page></page>					
	scroll the screen text up and down.					

**** Products ****

Leaving from stage	l	33
Product Phase	Liquid	Liquid
Assigned to Stream Name	Azeodist	Meth99
Temperature - C	55.30	71.11
Pressure - kPa	101.00	133.00
Methanol - kgmole/h	108.232	1316.153
Acetone - kgmole/h	318.989	17.788
Total Flow - kgmole/h	427.22	1333.94

3.1.4 Distillation Column (continued)

Step	Action				
55	Press the <f10> key;</f10>				
56	Highlight the word Size and then press the <enter> key.</enter>				
57	Highlight the word Auto-Section and then press the <enter> key.</enter>				
	The screen will then appear as follows:				

Auto-Section Information						
Tower Internals: valve_tray						
Area ToleranceWhen the ratio between the current calc'd area a either of min/max previous areas for the section exceeds this tol, a new DIAM section is started.0.60Higher, more sections; Lower, fewer sections.						
NFP Diam Factor When a new number of flow paths will result diameter difference >= Diam Factor * old dia 0.15 a new NFP Section is started. Not required for packed columns. Lower, more sections; Higher, fewer sections						

Step	Action
	Specifying a Sieve Tray instead of a Valve Tray.
58	Press the <delete> key until the valve in valve_tray is deleted. Then type in the word sieve to</delete>
	make the word now sieve_tray.
	The screen will then appear as shown below:

Auto-Section Information						
Tower Internals, sieve trav						
IOWEL INCELINA.						
Area Tolerance When the ratio between the current calc'd area a						
0.60 exceeds this tol, a new DIAM section is started.						
Higher, more sections; Lower, fewer sections.						
NFP Diam Factor When a new number of flow paths will result in diameter difference >- Diam Factor * old diame						
0.15 a new NFP Section is started.						
Not required for packed columns. Lower, more sections; Higher, fewer sections.						

Step	Action					
59	Press the <insert> key.</insert>					
	The screen will then appear as follows:					
	Sieve Tray Input					
	Section: 1					
	System Factor: 1.00 Number of Flow Paths: (leave blank for maximum)					
	Tray spacing: 609.600 mm Max DC backup: 50.000 % Max flooding: 85.000 % DC Clear: 38.100 mm Max Δp/tray: 203.200 mm liq					
Wein Load	Weir: Straight DC Type: Vertical r Ht: 50.800 mm Tray Thick: 3.175 mm ding: 71.535 m3/h-m Hole Diam: 4.763 mm Hole Spacing: 12.700 mm					
Mate	rial: Carbon_Steel Tray Diam:m_ (specify only if rating)					

Step	Action
60	Press the <insert> key.</insert>
	The following screen will appear:

Shell Sizing Information
Section Name: 1
Head Type: Ellipsoidal
Shell Material: Carbon_Steel
Corrosion Allow: 6.350 mm
Joint Efficiency: 0.850
Height Factor: 1.000
Design Conditions
Pressure: kPa Temperature: C

3.1.4 Distillation Column (continued)

Step	Action	
61	Press the <insert> key;</insert>	
62	Highlight the word Print and then press the < Enter > key.	

The print options available under the Sizing calculations are as follows: (Highlight the option you select below with the arrow keys, and then press the <Enter> key to select that option).

a) <u>Summary</u> - A summary of the calculations will be printed out.

b) <u>Detailed</u> - A table of detailed information, including Section performance, dimensions, orifice information, downcomer dimensions, downcomer and weir information, shell information and uninstalled cost estimates will be printed out.

c) <u>One Tray</u> - Detailed information for one tray will be printed out.

There are also options available to:

1) have the output printed in metric (SI), Field or User-defined units.

2) have the material printed to the screen also printed to the printer.

3) have the printout saved by selecting *File*.

Step	Action					
63	Highlight the word Detailed and then press the <enter> key.</enter>					
64	Highlight the word Section-1 and then press the <enter> key.</enter>					
	Pressing the $\langle F10 \rangle$ key to get the menu off of the screen in order to see the data on the screen					
	underneath it.					
65	Press the $\langle F10 \rangle$ key;					
	The screen will then appear as seen on the following page. Use the <page up=""> and <page< th=""></page<></page>					
	Down> keys to scroll the screen text up and down.					

SIEVE TRAY S	ECTION NAME:	Sectio	n_1	MODE: Desig	n STAGES	: 2 - 32
System Facto Flooding DC Backup Weir Loading DeltaP/Tray	SIE r % trayspace m3/h-m mm liq kPa	VE TRAY Spec 8 5 7 20	SECT ified 1.000 5.000 0.000 1.535 3.200	ION PERFORMANCE Max Calcula * 72. * 34. * 72. * 69.	ted Occu 602 748 514 333	ers on Tray 2 19 19 2
Total Deitar						
SECTION DIMENSIONSORIFICE INFORMATIONDiameter3.962 mHole Area1.316 m2Area12.331 m2Hole Diam4.763* mmActive Area10.315 m2Hole spacing12.700* mmAvg DC Area1.008 m2Tray Spacing609.600* mmEst #holesTray Spacing609.600* mmEst #holes73851Height Fact1.000*Tray Thick3.175* mm						
D	C DIMENSIONS			DC/WE	IR INFORMAT	ION
Side Width (mm)	Centre O	.C.	0.S.	Flow Paths Flow Length Flow Width	1 2882.900 3577.834	mm non
top 539.8 btm 539.8 Length (m)	0.0	0.0 0.0	0.0	Tot Weir Lng DC Clearance Weir Height	2.718 38.100* 50.800*	m mm mm
top 2.72 btm 2.72 Area (m2)	0.00 0 0.00 0	.00 .00	0.00	DC Type Side Weir Type Side Weir Lng	Vertical* Straight* 2 718	m
top 1.01 btm 1.01	0.00 0 0.00 0	.00 .00	0.00 0.00	Relief Area	0.00	m2
		SHE	T.T. TNI	FORMATION		
Material Head Type Corrosion Al	Carbon_S Ellipso . 6.350	ceel* idal* * mm		Dsgn Pressure Dsgn Temp Joint Eff	159.000 139.963 0.850*	kPa C
Shell Thickne top bottom	ess 12.700 12.700	mm mm		Cylinder Wt. Head Wt.(x2)	23557.590 2477.672	kg kg
head	12.700	mm		Shell Weight	26035.261	kg
Shell Cost P & L Cost Tray Cost	U) 124600.000 31200.000 104300.000	VINSTALI \$ US \$ US \$ US \$ US	LED CO (May (May (May	DST ESTIMATES 91) 91) 91) 91)		
Total Cost	260100.000	\$ US	(Мау	91)		

Step	Action		
66	Press the <f10> key;</f10>		
67	Press the <esc> key until you are back at the Main Menu.</esc>		
68	Highlight the letters PFD and then press the < Enter > key		
	The following screen will then appear:		

Step	Action		
	Getting back to the Main Menu.		
69	Press the <esc> key until you reach the Main Menu.</esc>		
70	Do you want to continue adding other unit operations to this distillation column?		
	• If <u>Yes</u> , turn to the pertinent section of this manual now;		
	• If <u>No</u> , turn to the "Exiting HYSIM" Section of this manual.		

3.1.5 Liquid/Liquid Extraction Column

<u>Objective</u> - This exercise is an example of an Extraction (Liquid-Liquid) Column. The purpose of the extraction column is to separate different components from a feed stream(s) using a specified number of contact stages. One or more of the feed stream(s) components is more soluble in another stream, and therefore that component will be transferred between streams. This case is an example of a liquid-liquid extraction, where all streams are in the liquid state. This example can be modified by specifying another property package and/or other components, compositions and feed conditions.

The three components in the feed streams for this example are: acetic acid, isopropyl ether and water. One feed stream, <u>IPE</u>, is all isopropyl ether, whereas the other feed stream, <u>Feed</u>, contains 31 mole % acetic acid and 69 mole % water. Two product streams emerge from the extraction column. The bottoms product stream, <u>Raffinate</u>, contains 99.4 mole % water, while the overhead product stream, <u>Extract</u>, contains all of the acetic acid, most of the isopropyl ether and some of the water in the system. These results show that the acetic acid was extracted from the water and into the isopropyl ether solvent.

<u>Technical Example Reference</u>: Reference 6 - "Principles of Unit Operations," (Illustration 5.1, page 45), by Alan S. Foust, et.al., John Wiley & Sons, Inc., 1960.

Other References: The specific model parameters in Kelvin for the UNIQUAC model (Aii, Aii,

q_i and r_i) for the three components in this model (Isopropyl Ether, Acetic Acid and Water) were obtained from the following source: Reference 7 - "Liquid-Liquid Equilibrium Data Collection, Ternary Systems", Chemistry Data Series, Vol. V, Part 2, by J.M. Sorensen and W. Arlt, Published by DECHEMA, 6000 Frankfurt/Main, Federal Republic of Germany, p. 284, 1980. Refs. 1 and 2.

Directions - Pages 94 through 112 outline the execution of a Liquid-Liquid Extraction Column example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <>brackets (e.g. <Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called *Extractor*, is shown below:

3.1.5 Liquid/Liquid Extraction Column (continued)

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in SectionV).
	• If <u>Yes</u> , proceed with Step 2.
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
3	Highlight the word Activity-Models and then press the <enter> key;</enter>
4	Highlight the word UNIQUAC and then press the <enter> key;</enter>
5	Highlight the word Ideal_Gas and then press the <enter> key;</enter>
	The following screen will appear:

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	C1	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	C3	Propane	СЗН8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H20	PHENOL
	C10	n-Decane	C10H22	ETHER
	C11	n-Cll	C11H24	USER
	C12	n-C12	C12H26	
· •	L V _ V	Search by SYNONYM		
Fl - Help,	F3 - Menu, F4 · PRI	- Flip Srch, F5 - Exa ESS INSERT TO SUBMIT	am, F6 - Move	, F8 - Change
		2015-10-10-10-10-10-10-10-10-10-10-10-10-10-		Land and the second

Step	Action
	Selecting the components in the feed streams.
6	Highlight the following component name under the "Component Selection" Section and press
	the < Enter key so that the name then appears in the "Selected" column.
	Highlight the word Hypothetical and press the <enter> key.</enter>
	Acetic Acid will be specified as a hypothetical because HYSIM doesn't contain information in
	its data bank for the A_{ij} information needed, and so that the Q and P parameters can be
	specified for the three component system: Acetic Acid. Isopropyl Ether and Water. Isopropyl
	Ether will also be specified as a Hypothetical because it is not apart of the component list.
Step	Action
------	---
7	Highlight the letter HC and then press the <enter> key;</enter>
	The screen shown below will then appear:

Hypothetical component	L Information
Name: Chemical	Formula:
Boiling Point [C_] : LiqDensity (@ 15C)[kg/m3_]: Molecular Weight :	Ideal Enthalpy Coefficients (Mass Basis - Ideal gas @ 0 K) Hideal =kJ/kg
Critical Temperature [C_] : Critical Pressure [kPa]: Critical Volume [m3/kgmol]: Acentric Factor : Acentric Factor Wsrk : Charact. Volume [m3/kgmol]: Dipole Moment [debye] :	+ * T^2 + * T^3 + * T^4 + * T^5 Entropy Coeff: Cavett Param.:
Vapour Pressure [deg K, kPa] ANTA: ANTD: ANTB: ANTE: ANTC: ANTF: TMIN: TMAX: Viscosity Coeff A: Viscosity Coeff B:	Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs =

Step	Action	
	Specifying Hypothetical Component Information.	
8	Type the name AceticAcid and then press the <enter> key;</enter>	
9	Type the chemical formula C2H4O2 and then press the <enter> key;</enter>	
	Specifying the Boiling Point in \mathcal{C} .	
10	Type the number 118.00 and then press the <enter> key;</enter>	
11	Press the <enter></enter> key;	
	Specifying the Molecular Weight.	
12	Type the number 60.00 and then press the <enter> key;</enter>	
13	Press the <insert> key;</insert>	
	The screen shown below will then appear:	

None Dynamic Kinematic None viscosities will be calculated via an equation What type of viscosity curve do you wish to input ? >

Step	Action	
	Specifying that component viscosities should be calculated via an equation.	
14	Highlight the word None and then press the <enter> key;</enter>	
	Changing the q _i and r _i parameters.	
15	Type the number 2.072 and then press the <enter> key;</enter>	
16	Type the number 2.2024.	
	The screen will then appear as shown below:	

Component Name:	Uniquac ModelsAceticAcid	
Uniquac Q Parameter Uniquac R Parameter	: 2.072 : 2.2024	

Step	Action
17	Press the <insert> key;</insert>
	The screen shown below will then appear:

Are The Component Calculations Satisfactory: Yes Name: AceticAcid Chemical Formula: C2H4O2			
Boiling Point [C_] : 118.00	Ideal Enthalpy Coefficients		
LiqDensity (@ 15)[kg/m3_]: 752.46	(Mass Basis - Ideal gas @ 0 K)		
Molecular Weight : 60.00	Hideal = 1.0921140e+02 kJ/kg		
Critical Temperature [C_] : 300.95	+ 0.8330309E-03 * 1		
Critical Pressure [kPa]: 2931.81	+ 2.8484359E-03 * T ²		
Critical Volume [m3/kgmol]: 0.423	+ -6.9381542E-07 * T ³		
Acentric Factor : 0.34126	+ 0.0000000E+00 * T ⁴		
Acentric Factor Wsrk : 0.34126	+ 0.0000000E+00 * T ⁵		
Charact. Volume [m3/kgmol]: 0.23938	Entropy Coeff: 1.0000000		
Dipole Moment [debye] : 0.00	Cavett Param.: 0.26829		
Vapour Pressure [deg K, kPa] ANTA: 5.57998e+01 ANTD: -5.79141e+00 ANTB: -6.51012e+03 ANTE: 8.79802e-18 ANTC: 0.00000e+00 ANTF: 6.00000e+00 TMIN: 118.000 TMAX: 300.948 Viscosity Coeff A: -0.00603 Viscosity Coeff B: -0.24743	<pre>Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs = kJ/kgmol</pre>		

<u>Hypothetical Compounds</u> - HYSIM will calculate the <u>critical properties</u> from either the Bergman Cavett or Lee-Kesler Correlation, depending on the API and Normal Boiling Point supplied. Other component types such as Amines, Alcohols, etc. will have critical properties determined by Joback's modification of Lydersen's group contribution method.

Hypothetical Compounds (continued):

The <u>Enthalpy coefficients</u> are for the following fifth order ideal enthalpy equation: $H = A + BT + CT^{2} + DT^{3} + ET^{4} + FT^{5}$

where: T = Absolute Temperature (K or R)H = Enthalpy = BTU/lb-R or kJ/Kg-K

For solids, the enthalpy data should be entered. If HYSIM generates the coefficients, it will use the Cavett correlations for hydrocarbons, solids or miscellaneous substances; the Joback group contribution method will be used for all other substances.

Reference: Passut, C.A. and Danner, R.P., I.E.C. Proc. Des. & Dev., 11, p. 543 (1972).

The Gibbs Free Energy will be calculated using the following equation:

 $G^{O} = A + BT + CT^{2}$

where: T = Absolute Temperature = K or R

 $G^{0} = kJ/kgmole-K$ or Btu/lbmole-R

If the hypothetical is a Hydrocarbon or if a UNIFAC structure is not specified, no Gibbs coefficients will be calculated.

The modified Antoine <u>vapor pressure</u> model coefficients are calculated for the following equation:

 $\ln(P_{vap}) = ANTA + (ANTB/(T+ANTC)) + ANTD(\ln(T)) + ANTE(T)^{ANTF}$

The <u>viscosity</u> coefficients, Theta A and Theta B, are used in the viscosity prediction models. Three viscosity models are available in HYSIM: the modified Ely and Hanley model, Twu's model and the modified Letsou-Stiel correlation.

Step	Action	
18	Press the <insert> key;</insert>	
	The screen shown on the following page will then appear.	

	COMPON	ENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
AceticAcid	▲ — ↑ OIL HYPOTHETICAL C1 C2 C3 i-C4 n-C4	OIL HYPOTHETICAL Methane Ethane Propane i-Butane n-Butane	CH4 C2H6 C3H8 C4H10 C4H10	ALL HC SOLID MISC AMINE ALCOHOL KETONE
	1-C5 n-C5 C6 C7 C8 C9 C10 C11 C12 ▼ - ↓Search	1-Pentane n-Pentane n-Heptane n-Octane n-Octane n-Decane n-C11 n-C12 by SYNONYM	C5H12 C5H12 C6H14 C7H16 C8H18 C9H20 C10H22 C11H24 C12H26	ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL ETHER USER
F1 - Help, F3 - Menu,	F4 - Flip PRESS INS	Srch, F5 - Exa ERT TO SUBMIT	am, F6 - M F8 - C	love, Thange

Step	Action		
	Selecting the components in the feed streams.		
19	Highlight the following component name under the "Component Selection" Section and press		
	the <i><enter></enter></i> key so that the name then appears in the "Selected" column.		
	Highlight the word Hypothetical and press the <enter> key.</enter>		
	Isopropyl Ether will be specified as a Hypothetical component because it is not apart of the		
	component list.		
20	Highlight the word Ether and then press the <enter> key.</enter>		
	The screen on the following page will then appear.		

Hypothetical Component	Information
Name: Chemical	Formula:
Boiling Point [C_] : LiqDensity (@ 15C)[kg/m3_]: Molecular Weight :	Ideal Enthalpy Coefficients (Mass Basis - Ideal gas @ 0 K) Hideal = kJ/kg + * T
Critical Temperature [C_] : Critical Pressure [kPa]: Critical Volume [m3/kgmol]: Acentric Factor : Acentric Factor Wsrk :	+ * T^2 + * T^3 + * T^4 + * T^5 Entropy Coeff:
Charact. Volume [m3/kgmol]: Dipole Moment [debye] :	Cavett Param.:
Vapour Pressure [deg K, kPa] ANTA: ANTD: ANTB: ANTE: ANTC: ANTF: TMIN: TMAX: Viscosity Coeff A: Viscosity Coeff B:	Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs = kJ/kgmol + * T + * T^2 Heat Form (@ 25 C): Heat Comb (@ 25 C): Radius Gyration [Ang]:

Step	Action	
	Specifying Hypothetical Component Information.	
21	Type the name IPE ther and then press the <enter> key;</enter>	
22	Type the chemical formula C6H14O and then press the <enter> key;</enter>	
	Specifying the Boiling Point in C.	
23	Type the number 69.00 and then press the <enter> key;</enter>	
24	Press the <enter> key;</enter>	
	Specifying the Molecular Weight.	
25	Type the number 102.00 and then press the <enter> key;</enter>	
26	Press the <insert> key;</insert>	
	The screen shown on the following page will then appear.	

CH3 CH2=CH C=C ACCH2 H2O CH0 CH3O CH3 Subgroup No. Enter the subgroup >	CH2 CH=CH ACH ACCH CH3COO CH2O 1 Main Group 1 type you wish t	CH CH2=C AC OH CH3CO CH2COO CH-O (2,2,4-Trimethy to add or remove	C CH=C ACCH3 CH3OH CH2CO HCOO FCH2O FCH2O (lpentane) e q to quit
C6 C7 C8 C9 C10 C11 C12 F1 - Help, F3 -	▼ — ↓ ——Searc Menu, F4 - Fli PRESS I	= IsopropylEth U	nifac Structure

Step	Action	
27	Type the letter q and then press the <enter></enter> key;	
	Specifying that component viscosities should be calculated via an equation.	
28	Highlight the word None and then press the <enter> key;</enter>	
	The following screen will then appear:	
	Decemptors for Uniques Models	

Component Name:	IPEther
Uniquac Q Parameter Uniquac R Parameter	: 4.9360 : 5.8486

Step	Action
	Changing the q_i and r_i parameters.
29	Type the number 4.088 and then press the <enter> key;</enter>
30	Type the number 4.7421;
	The screen will then appear as follows:
	Parameters for Uniquac Models Component Name: IPEther
	Uniquac Q Parameter : 4.088 Uniquac R Parameter : 4.7421

Step	Action	
31	Press the <insert> key;</insert>	
	The screen will then appear as follows:	
Ai Name :	Hypothetical Component re The Component Calculations Satis : IPEther Chemical	Formula: C6H14O
Boili LiqDe Molec Crit: Crit: Acent Acent Chara Dipo	ing Point [C_] : 69.00 ensity (@ 15)[kg/m3_]: 702.28 cular Weight : 102.00 ical Temperature [C_] : 239.77 ical Pressure [kPa]: 3185.54 ical Volume [m3/kgmol]: 0.356 tric Factor : 0.27656 tric Factor Wsrk : 0.27656 act. Volume [m3/kgmol]: 0.41230 le Moment [debye] : 0.00	Ideal Enthalpy Coefficients (Mass Basis - Ideal gas @ 0 K) Hideal = 1.0939278e+02 kJ/kg + 8.5511814e-02 * T + 2.8297170e-03 * T^2 + -6.7709155e-07 * T^3 + 0.0000000e+00 * T^4 + 0.0000000e+00 * T^5 Entropy Coeff: 1.0000000 Cavett Param.: 0.27073
Vap ANTA ANTB ANTC TMIN Visco Visco	Dour Pressure [deg K, kPa] : 4.85694e+01 ANTD: -4.87945e+00 : -5.30459e+03 ANTE: 1.57758e-17 : 0.00000e+00 ANTF: 6.00000e+00 : 69.000 TMAX: 239.772 Dosity Coeff A: 0.40899 Dosity Coeff B: 0.48110	Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs =

Step	Action
32	Press the <insert> key;</insert>
	The screen will then appear as follows:

(<u></u>		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
AceticAcid	OIL	OIL		ALL
IPEther	HYPOTHETICAL	HYPOTHETICAL		HC
	Cl	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	C3	Propane	СЗН8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H2O	PHENOL
	C10	n-Decane	C10H22	ETHER
	C11	n-Cll	C11H24	USER
	C12	n-C12	C12H26	
····· · · · ·····	└─── ♥ ── ↓ ────;	Search by SYNONYM		L
F1 - Help,	F3 - Menu, F4	- Flip Srch, F5 - Exa	am, F6 - Move	, F8 - Change
	PR	ESS INSERT TO SUBMIT		

.

Step	Action
	Selecting the components in the feed streams.
33	Highlight the following component name under the "Component Selection" Section and press the <enter> key so that the name then appears in the "Selected" column. This "Component Selection" List is very long. Use the <page down=""> and Arrow Keys to find the following component: Highlight the formula H2O and then press the <enter> key;</enter></page></enter>
	The screen should then appear as follows:

I	COMPON	ENT SELECTION		
Selected	Synonym	Name		Criteria
AceticAcid IPEther H2O	1-DecaneThiol 1-UndecaneThiol 1-DodecaneThiol 1-TetradecaThiol 1-OctadecaThiol ThioNaphthene NH3 H2 H2O2 D2O He Argon N2 O2 Ozone HC1	1Decanethiol 1Undecathiol 1Dodecathiol 1Ttrdecthiol 1OctadcThiol ThioNaphtene Ammonia Hydrogen H2O2 D2O Helium Argon Nitrogen Oxygen Ozone HCl	C10H22S C11H24S C12H26S C14H30S C18H38S C8H6S NH3 H2 H2O2 D2O He Ar N2 O2 O3 HC1	ALL HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL ETHER USER
F1 - Help, F3 - Menu, F4 - Flip Srch, F5 - Exam, F6 - Move, PRESS INSERT TO SUBMIT F8 - Change				

Step	Action
34	Press the <insert> key;</insert>
	The following screen will then appear:

[= Aij Int	eraction	Parameters
HOT KEYS	F1_Help F2_Men	u S_Swit	tch-Matrices A_UnifacVLE
	H Henry's Coeff	L_Unif	facLLE C_UnifacLLE_All
	I_j immiscible i	.n i	B_all immiscible in i
	AceticAcid	IPEther	H2O
AceticAcid			
IPEther	an ca wa		
H2O			
1			

Step	Action
	Specifying the Aij Interaction Parameters.
35	Place the cursor at blank for the Acetic Acid row and the IPEther column and then:
	Type the number 46.8580 and then press the <enter> key;</enter>
36	Place the cursor at blank for the Acetic Acid row and the H2O column and then:
	Type the number -37.7850 and then press the <enter> key;</enter>
37	Place the cursor at blank for the IPEther row and the Acetic Acid column and then:
	Type the number -161.2300 and then press the <enter> key;</enter>
38	Place the cursor at blank for the IPEther row and the H2O column and then:
	Type the number 154.6200 and then press the <enter> key;</enter>
39	Place the cursor at blank for the H2O row and the Acetic Acid column and then:
	Type the number -203.2900 and then press the <enter> key;</enter>
40	Place the cursor at blank for the H2O row and the IPEther column and then:
	Type the number 571.5000 and then press the <enter> key;</enter>
	The following screen will then appear:

	Aij In	teraction Pa	rameters
HOT KEYS	F1_Help F2_Me	nu S_Switc	h-Matrices A_UnifacVLE
	H_Henry's Coeff	L_Unifa	CLLE C_UnifacLLE_All
	I_j immiscible	in i	B_all immiscible in i
	AceticAcid	IPEther	H2O
AceticAcid		46.8580	-37.7850
IPEther	-161.2300		154.6200
H2O	-203.2900	571.5000	
11			

Step	Action
41	Press the <insert> key;</insert>

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Specifying the conditions of the Feed streams, Feed and IPE.
42	Highlight the word Specify and then press the <enter> key;</enter>
43	Highlight the word Stream and then press the <enter> key;</enter>
44	Type the word Feed after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature of the Feed stream in ${\mathbb C}$.
45	Type the number 22.2 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Feed stream in kPa.
46	Type the number 101 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the flow of the Feed stream as unknown by typing the letter "x".
47	Type the letter x after the prompt (>) and then press the $\langle Enter \rangle$ key;

Step	Action
	Specifying that the composition of each component in the Feed stream will be given as mass
	fractions.
48	Highlight the word Mass Fractions after the prompt (>) and then press the <enter> key;</enter>
	The screen will appear as shown below:

[<u> </u>	Stream	Mass	Fractions		
	AceticAcid	 	:	IPEther		The second
I	Н20	 			1	1

Step	Action
	Selecting the components in the Feed stream.
49	Enter the following mass fractions beside each component in the Feed stream:
	After the word, AceticAcid, type the number 0.6 in the blank and then press the <enter> key;</enter>
	After the word, IPEther, type the number 0 in the blank and then press the <enter> key;</enter>
	After the formula, H2O, type the number 0.4 in the blank;
	The screen will now appear as shown below:

[Stream	Mass	Fractions	
AceticAcid H2O	0.6 0.4		-	[PEther	0

Step	Action
50	Press the <insert> key;</insert>
	Specifying the conditions of the Feed stream, IPE.
51	Highlight the word Specify and then press the <enter> key;</enter>
52	Highlight the word Stream and then press the <enter> key;</enter>
53	Type the word IPE after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature of the IPE stream in $\mathcal C$.
54	Type the number 22.2 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the IPE stream in kPa
55	Type the number 206.1 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the flow of the IPE stream as unknown (x) by typing the letter "x".
56	Type the letter x after the prompt (>) and then press the $\langle Enter \rangle$ key;
	Specifying that the composition of each component in the IPE stream will be given as mass
	fractions.
57	Highlight the word Mass_Fractions after the prompt (>) and then press the <enter> key;</enter>
	The screen will appear as shown on the following page.

			Stream	Mass	Fractions	
A	ceticAcid			-	IPEther	
l L	120		- <u>J</u>			

Step	Action	
	Selecting the components in the IPE stream.	
58	Enter the following mass fractions beside each component in the IPE stream:	
	After the word, AceticAcid, type the number 0 in the blank and then press the <enter> key;</enter>	
	After the word, IPEther, type the number 1 in the blank and then press the <enter> key;</enter>	
	After the formula, H2O, type the number 0 in the blank;	
	The screen will now appear as shown below:	

	= Stream	Mass	Fractions	
AceticAcid 0 H2O 0		3	IPEther	1

Step	Action
59	Press the <insert> key;</insert>
	Specifying the Mass flow rate of streams Feed and IPE in kg/hr.
60	Highlight the word Worksheet and then press the <enter> key;</enter>
61	Highlight the space under the Feed title for the Mass Flow in kg/hr.
	Type the number 909.1 and then press the <enter> key;</enter>
62	Highlight the space under the IPE title for the Mass Flow in kg hr.
	Type the number 1363.6 and then press the <enter> key;</enter>
	The screen shown below will then appear

ſ <u></u>		— Streams —		
	New Value	=	kg/h	
Stream	Feed	IPE		
Vapour_Frac	0.0000	0.0000		
Temperature	22.2000*	22.2000*		
Pressure	101.0000*	206.1000*		
Flow	29.2763	13.3686		
Mass_Flow	909.1000*	1363.6000*		
LigVol_Flow	1.0893	1.9417		
Energy_Flow	-850024.3585	94378.4111		

Step	Action
63	Press the <insert> key;</insert>
64	Type the word Extractor and then press the <enter> key;</enter>
65	Highlight the word Column and then press the <enter> key;</enter>
66	Highlight the word Extraction and then press the <enter> key;</enter>
	The screen will then appear as shown on the following page

Step	Action
	Specifying the known data for the extraction column.
67	Press the <enter> key;</enter>
	Specifying the Temperature Estimate of Stage 1 in °C.
68	Type the number 22.2 and then press the <enter> key;</enter>
	Specifying the Pressure of Stage 1 in kPa.
69	Type the number 101 and then press the <enter> key;</enter>
	Specifying the Number of Stages in the Extraction Column.
70	Type the number 15 and then press the <enter> key;</enter>
	Specifying the Temperature Estimate of Stage 15 in ∞ .
71	Type the number 22.2 and then press the <enter> key;</enter>
	Specifying the Pressure of Stage 15 in kPa.
72	Type the number 169.7;
	The screen will then appear as shown below:

Step	Action
73	Press the <insert> key.</insert>
	The following screen for specifying the names of the feed streams and the stage at which they
	enter the Extraction column will then appear:

 Enter Column Ex	tractor Feed Streams	
Feed Stream	Feed Stage	
Use "Ins" to	Save and Exit	

Step	Action	
	Specifying at what stage the feed streams enter the Extraction Column.	
74	Type the word Feed and then press the <enter> key.</enter>	
75	Type the number 1 and then press the <enter> key.</enter>	
76	Type the word IPE and then press the <enter> key.</enter>	
77	Type the number 15.	
	The following screen will then appear:	

Step	Action
78	Press the <insert> key;</insert>
	The screen will then appear as shown on the following page.

Step	Action
	Specifying the names of the streams going out of the Extraction Column.
79	Type the word Extract and then press the <enter> key.</enter>
80	Type the word Raffinate.
	The screen should then appear as shown below:

Step	Action
81	Press the <insert> key.</insert>
NOTE	The second state of the state o

NOTE: It is useful to print out all of the inputted process data to check for accuracy. Incorrect data entries can result in nonconvergence of a column calculation which leads to frustration with an input data error.

Step	Action
	Running the Extraction Column program.
82	Highlight the word Run and then press the <enter> key.</enter>
83	Highlight the word Print and then press the <enter> key</enter>

Print Options:

The various options available for the column, after you have finished step 83 are as follows: (Highlight the option you select below with the arrow keys, and then press the <Enter> key to select that option).

a) Input - Input data is printed.

b) *Feeds* - Feed composition and conditions are printed.

c) <u>Stages</u> - The temperature, pressure, liquid and vapor flow rates, any feed or drawoffs of each stage are reported, along with the duty of the first and last stage.

d) <u>*Products*</u> - The temperature, pressure, composition, and total flow rate of the overhead and bottom product streams are printed.

e) <u>*Physical_Props*</u> - The molecular weight, flow rate, density, reduced temperature and pressure are reported for each stage.

f) <u>Transport Props</u> - The vapor and liquid dynamic viscosity and thermal conductivity are printed, along with the liquid surface tension.

g) Exchanger Profiles - The condenser and reboiler heating curve data is printed.

h) <u>Composition</u> - The composition profile of selected components in the liquid and vapor phase are printed.

i) *Efficiencies* - The efficiency of each stage is printed.

j) <u>Pumparound_info</u> - If a pumparound is used, the information can be printed.

k) <u>All</u> - All of the information from a to j above will be printed.

1) Graph - Temperatures, flowrates, mole fractions or key ratios can be printed in graphical form.

m) \underline{SI} - The current output will be printed in metric units.

n) *Field* - The current output will be printed in Field (or English units).

o) <u>User</u> - The current output will be printed in user-defined units.

p) <u>Comp_Fractions</u> - The output will be printed on a mole, mass, or volume fractional basis.

q) <u>Comp_Flows</u> - The output will be printed as mole, mass or volume flows.

r) <u>Printer</u> - The printer will be toggled on. Selecting "Printer" once more will toggle the printer off.

s) *File* - The printout will be saved in a file.

t) <u>Mole</u> - The output will be printed on a mole basis.

u) <u>Mass</u> - The output will be printed on a mass basis.

v) *LiqVolume* - The output will be printed on a standard ideal liquid volume basis.

w) *<u>Title</u>* - Input a title which will be on all printouts.

x) <u>Boiling Pt Curves</u> - The True Boiling Point (TBP), D86, or Specific Gravity boiling point curves will be printed out.

y) <u>Cold Properties</u> - The Research Octane Number (RON), Pour Point, and Flash Point will be printed.

z) User_Props - If properties have been supplied by the user, these values will be printed out.

Step	Action
84	Highlight the word Graph and then press the <enter> key.</enter>
85	Highlight the word Key_Ratios and then press the <enter> key.</enter>
86	Highlight the word AceticAcid and then press the <enter> key.</enter>
87	Highlight the formula H2O and then press the <enter> key.</enter>
88	Highlight the word Plot and then press the <enter> key.</enter>
	The screen will then appear as shown below:

Step	Action
89	Press the <esc> key five times until you are back at the Main Menu.</esc>
	Looking at the stream compositions resulting from the run.
90	Highlight the word Print and then press the <enter> key.</enter>

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

- b) Operations The different unit operations will be printed out.
- c) Spec Sheets The specifications sheets will be printed out.
- d) Hypotheticals Hypothetical component information will be printed out.
- e) Format Specifies format of the printout
- f) <u>Cost</u> Lists costs of the run, if a royalty is being charged.
- g) File Saves results in a file.
- h) Printer Toggles on a printer.
- i) Cases Lists the stored files.
- j) Description Prints case description.
- k) Oil Input Lists inputted information on an oil.

Step	Action
91	Highlight the word Streams and then press the <enter> key.</enter>
92	Highlight the word All and then press the <enter> key.</enter>
93	Highlight the dash symbol - and then press the <enter> key.</enter>
	The menu on the screen can be temporarily taken off the screen, so that the underlying data can be viewed by pressing the $\langle F10 \rangle$ key.
94	Press the $\langle F10 \rangle$ key;
	The screen will then appear as shown below:

	Feed	IPE	Extract	Raffinate	
	0.0000	0.0000	0.0000	0.0000	
С	22.2000*	22.2000*	22.1770	22.2466	
kPa	101.0000*	206.1000*	101.0000	169.7000	
kgmole/h	29.2763	13.3686	40.4775	2.1674	
kg/h	909.1000*	1363.6000*	2232.6035	40.0963	
m3/h	1.0893	1.9417	2.9902	0.0407	
kJ/h -850	024.3585	94378.4111	-680704.3377	-75055.8909	
kg/m3	844.3116	696.1990	772.2279	1002.8477	
	31.0524	102.0000	55.1567	18.4993	
kJ/kg-C	3.0760	2.0329	2.4201	4.1201	
W/m-K	0.4327	0.1241	0.2961	0.6031	
сP	0.7764	0.2860	0.4323	0.9308	
	0.0015	0.0123	0.0029	0.0013	
dyne/cm	57.1666	18.1236	43.4661	72.2610	
kg/m3	850.1712	702.7983	778.8751	1008.3014	
mole frac	. 0.3105*	0.0000*	0.2246	0.0000	
mole frac	. 0.0000*	1.0000*	0.3300	0.0058	
mole frac	. 0.6895*	0.0000*	0.4454	0.9942	
	C kPa kgmole/h kg/h m3/h kJ/h -850 kg/m3 kJ/kg-C W/m-K cP dyne/cm kg/m3 mole frac mole frac mole frac	Feed . 0.0000 C 22.2000* kPa 101.0000* kgmole/h 29.2763 kg/h 909.1000* m3/h 1.0893 kJ/h -850024.3585 kg/m3 844.3116 31.0524 kJ/kg-C 3.0760 W/m-K 0.4327 CP 0.7764 0.0015 dyne/cm 57.1666 kg/m3 850.1712 mole frac. 0.3105* mole frac. 0.6895*	FeedIPE0.00000.0000C22.2000*22.2000*kPa101.0000*206.1000*kgmole/h29.276313.3686kg/h909.1000*1363.6000*m3/h1.08931.9417kJ/h-850024.358594378.4111kg/m3844.3116696.199031.0524102.0000kJ/kg-C3.07602.0329W/m-K0.43270.1241cP0.77640.28600.00150.0123dyne/cm57.166618.1236kg/m3850.1712702.7983mole frac.0.3105*0.0000*mole frac.0.0000*1.0000*mole frac.0.6895*0.0000*	FeedIPEExtract0.00000.00000.0000C22.2000*22.2000*22.1770kPa101.0000*206.1000*101.0000kgmole/h29.276313.368640.4775kg/h909.1000*1363.6000*2232.6035m3/h1.08931.94172.9902kJ/h-850024.358594378.4111-680704.3377kg/m3844.3116696.1990772.227931.0524102.000055.1567kJ/kg-C3.07602.03292.4201W/m-K0.43270.12410.2961cP0.77640.28600.43230.00150.01230.0029dyne/cm57.166618.123643.4661kg/m3850.1712702.7983778.8751mole frac.0.3105*0.0000*0.2246mole frac.0.000*1.0000*0.3300mole frac.0.6895*0.0000*0.4454	FeedIPEExtractRaffinate0.00000.00000.00000.0000C22.2000*22.2000*22.177022.2466kPa101.0000*206.1000*101.0000169.7000kgnole/h29.276313.368640.47752.1674kg/h909.1000*1363.6000*2232.603540.0963m3/h1.08931.94172.99020.0407kJ/h-850024.358594378.4111-680704.3377-75055.8909kg/m3844.3116696.1990772.22791002.847731.0524102.000055.156718.4993kJ/kg-C3.07602.03292.42014.1201W/m-K0.43270.12410.29610.6031cP0.77640.28600.43230.93080.00150.01230.00290.0013dyne/cm57.166618.123643.466172.2610kg/m3850.1712702.7983778.87511008.3014mole frac.0.3105*0.0000*0.22460.0000mole frac.0.3105*0.0000*0.33000.058mole frac.0.6895*0.0000*0.44540.9942

Step	Action	
	The menu can be put back on the screen by pressing the $\langle F10 \rangle$ key.	
95	Press the <f10> key;</f10>	
96	Highlight the letters PFD and then press the <enter></enter> key.	
	The screen shown on the following page will then appear.	

Step	Action	
	Getting back to the Main Menu.	
97	Press the <esc> key until you reach the Main Menu.</esc>	
98	Do you want to continue adding other unit operations to this extraction column?	
	 If <u>Yes</u>, turn to the pertinent section of this manual now; 	
	 If <u>No</u>, turn to the "Exiting HYSIM" Section of this manual. 	

3.1.6 Component Fractionator Column

<u>Objective</u> - This exercise is an example of a fractionator column, where the component separation (in terms of the overhead product) has been specified. This example can be modified by specifying another property package and/or other components, compositions and feed conditions.

In this example, the feed stream, named <u>FeedLiq</u>, contains seven different hydrocarbons: ethane, propane, i-butane, n-butane, i-pentane, n-pentane and n-hexane. The fraction of each component in the feed going overhead is specified, along with the composition, flow rate and conditions of the <u>FeedLiq</u> stream. The vapor fraction and the pressure of the overhead stream, named <u>Lights</u>, and the bottoms product stream, named <u>Hvy</u>, were also specified. HYSIM then calculated the rest of the composition and conditions of each stream, as shown on page 118. <u>Technical Example Reference</u>: Reference 1 - Hyprotech's HYSIM User's Guide, Version C2.50, March 1994, pages 7-40 to 7-42.

Other References: Refs. 1 & 2.

The component fractionator column is very useful for speeding the convergence of a recycle loop containing distillation columns. If the recycle loop iteration calculation includes rigorous distillation column calculations, then the convergence is slow and may lead to the nonconvergence of a column as the recycle loop changes its feedrate. The frustration involved with this type of situation can be avoided by replacing rigorous columns with fractionators until approximate recycle rates and column feeds are established. These rates and feeds, which are very close to the actual values, are then used with the recycle calculation containing rigorous column calculations.

<u>Directions</u> - Pages 114 through 122 outline the execution of a component fractionator column. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <> brackets (e.g.<Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called *Fractionator*, is shown below:

3.1.6 Component Fractionator Column (continued)

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).
	• If <u>Yes</u> , proceed with Step 2.
	• If <u>No</u> , turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>
	The following screen will appear:

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	Cl	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	C3	Propane	СЗН8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H2O	PHENOL
	C10	n-Decane	C10H22	ETHER
	C11	n-Cll	C11H24	USER
	C12	n-C12	C12H26	
* - *	↓ ₩ ₩;	Search by SYNONYM	······································	L
Fl - Help,	F3 - Menu, F4	- Flip Srch, F5 - Exa	am, F6 - Move,	, F8 - Change
	PRI	ESS INSERT TO SUBMIT		

Step	Action
	Selecting the components in the feed stream.
4	Highlight each of the following component names under the "Component Selection" Section and press the <enter> key so that the name then appears in the "Selected" column. This "Component Selection" List is your long. Use the <page down=""> and Amoun Keys to find the</page></enter>
	following components:
	Highlight the word Ethane and then press the <enter> key;</enter>
	Highlight the word Propane and then press the < Enter > key;
	Highlight the word i-Butane and then press the <enter></enter> key;
	Highlight the word n-Butane and then press the <enter></enter> key;
	Highlight the word i-Pentane and then press the <enter></enter> key;
	Highlight the word n-Pentane and then press the <enter> key;</enter>
	Highlight the word n-Hexane and then press the <enter> key;</enter>
	The following screen on the following page will then appear.

[C(OMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane	OIL HYPOTHETICAL C1 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19	OIL HYPOTHETICAL Methane n-Heptane n-Octane n-Octane n-Decane n-C11 n-C12 n-C13 n-C14 n-C15 n-C16 n-C17 n-C18 n-C19	CH4 C7H16 C8H18 C9H20 C10H22 C11H24 C12H26 C13H28 C14H30 C15H32 C16H34 C17H36 C18H38 C19H40	ALL HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL ETHER USER
¥ ↓	V - VSea	arch by SYNONYM		
FI - Help, F3 - Menu,	PRESS	SID SICH, F5 - Exa S INSERT TO SUBMIT	.m, F6 - F8 -	Move, Change

Step	Action	
5	Press the <insert> key;</insert>	l
	The following screen will then appear:	

Work_Sheet	Specify	Operation	Print
PFD	Remove	Store	New
Ignore	Restore	Hold	Go
Utility	Size	Report	Toggle
Exit	?		
Work_Sheet streams	in a spreadsheet	format	
Prop Pkg PR - SI U	nits 9879552		
>			

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Specifying that you want the units changed from the default metric system (kg. kPa, \mathcal{C} .etc.) to
	field units (lb. psia, F,etc.).
6	Highlight the word Utility and then press the <enter> key;</enter>
7	Highlight the word Configuration and then press the <enter> key;</enter>
8	Highlight the word Units and then press the <enter> key;</enter>

Step	Action
9	Highlight the word Field and then press the <enter> key;</enter>
10	Press the <esc> key.</esc>
	Specifying the conditions of the FeedLig stream.
11	Highlight the word Specify and then press the <enter> key;</enter>
12	Highlight the word Stream and then press the <enter> key;</enter>
13	Type the word FeedLig after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature of the FeedLiq stream in F.
14	Type the number 200 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the FeedLiq stream in psia.
15	Type the number 500 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the flow of the FeedLig stream in lb-mols/hr.
16	Type the number 1000 after the prompt (>) and then press the <enter> key;</enter>
	Specifying that the composition of each component in the FeedLiq stream will be given in mole
	fractions.
17	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
	The screen will appear as shown below:

_		Stream	Mole	Fractions	
	Ethane i-Butane i-Pentane n-Hexane	 	נ נ	Propane n-Butane n-Pentane	

Step	Action
	Selecting the components in the FeedLiq stream.
18	Enter the following mole fractions beside each component in the FeedLiq stream:
	After the word, Ethane, type the number 0.0148 in the blank and then press the <enter> key;</enter>
	After the word, Propane, type the number 0.7315 in the blank and then press the <enter> key;</enter>
	After the word, i-Butane, type the number 0.0681 in the blank and then press the <enter> key;</enter>
	After the word, n-Butane, type the number 0.1462 in the blank and then press the <enter> key,</enter>
	After the word, i-Pentane, type the number 0.0173 in the blank and then press the <enter> key;</enter>
	After the word, n-Pentane, type the number 0.0150 in the blank and then press the <enter> key;</enter>
	After the word, n-Hexane, type the number 0.0071 in the blank;
	The screen will now appear as shown below:

=	· · · · · · · · · · · · · · · · · · ·		Stream M	ole Fractions	
	Ethane i-Butane i-Pentane n-Hexane	0.0148 0.0681 0.0173 0.0071		Propane n-Butane n-Pentane	0.7315 0.1462 0.0150

Step	Action
19	Press the <insert> key;</insert>
	Specifying the type of operation we want to perform on the FeedLiq stream.
20	Highlight the word Operation and then press the <enter> key</enter> ;
21	Type the word Fractionator and then press the <enter> key;</enter>
22	Highlight the word Fractionate and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Step	Action
	Specifying the stream names for the component fractionator column.
23	Type the word FeedLiq and then place the cursor in the blank to the right of the Overhead label
	and then press the left mouse key;
24	Type the word Lights and then press the <enter> key;</enter>
25	Type the word H vy and then press the <enter></enter> key;
26	Type the word Energy and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Step	Action
27	Press the <insert> key.</insert>
	The following screen for specifying the fraction of each component in the FeedLiq stream going overhead will then appear:
	Fraction of Feed going Overhead

Ethane	Propane	
i-Butane	n-Butane	
i-Pentane	 n-Pentane	
n-Hexane		

Step	Action
	Specifying the fraction of each component in the FeedLiq stream which will be going overhead
	in the Lights stream.
28	Type the number 1.000 and then press the <enter> key.</enter>
29	Type the number 0.980 and then press the <enter> key.</enter>
30	Type the number 0.020 and then press the <enter> key.</enter>
31	Type the number 0.005 and then press the <enter> key.</enter>
32	Type the number 0.001 and then press the <enter> key.</enter>
33	Type the number 0.000 and then press the <enter> key.</enter>
34	Type the number 0.000.
	The following screen will then appear:

	Fraction of Feed	going Overhe	ad
Ethane i-Butane i-Pentane n-Hexane	1.000 0.020 0.001 0.000	Propane n-Butane n-Pentane	0.980 0.005 0.000

Step	Action
35	Press the <insert> key;</insert>
36	Highlight the word Worksheet and then press the <enter> key;</enter>
	The screen will then appear as shown below:

·		= Streams =		
	New Value			
Stream	FeedLig	Energy	Lights	Нуу
Vapour Frac	0.000Ō	2.0000*		
Temperature	200.0000*	0.0000*		
Pressure	500.0000*	0.0000*		
Flow	1000.0000*	0.0000*	733.7803	266.2197
Mass Flow	48100.3030	0.0000*	32179.7539	15920.5501
LiqVol_Flow	6242.8582	0.0000*	4372.4888	1870.3690
Energy Flow	4.01751E+06			I

Step	Action		
	Specifying the pressure (psia) and the Vapor Fraction of the Lights and Hvy streams.		
37	Move the cursor until it is in the column for the Lights stream and in the row for the Vapor		
	Frac.		
	Type the number 1 and then press the <enter> key</enter>		
38	Move the cursor until it is in the column for the Lights stream and in the row for the pressure.		
	Type the number 100 and then press the <enter> key.</enter>		
39	Move the cursor until it is in the column for the \underline{Hvy} stream and in the row for the Vapor Frac.		
	Type the number 0 and then press the $\langle Enter \rangle$ key.		
40	Move the cursor until it is in the column for the Hvy stream and in the row for the pressure.		
	Type the number 103 and then press the <enter> key.</enter>		
	The screen should then appear as shown below:		

		== Streams ===		
	New Value	2 =	psia	
Stream	FeedLiq	Energy	Lights	Hvy
Vapour_Frac	0.0000	2.0000*	1.0000*	0.0000*
Temperature	200.0000*	0.0000*	54.4899	141.6560
Pressure	500.0000*	0.0000*	100.0000*	103.0000*
Flow	1000.0000*	0.0000*	733.7803	266.2197
Mass_Flow	48100.3030	0.0000*	32179.7539	15920.5501
LiqVol_Flow	6242.8582	0.0000*	4372.4888	1870.3690
Energy_Flow	4.01751E+06	636054.5675	4.28622E+06 3	867344.1037

Step	Action
	Getting back to the Main Menu.
41	Press the <esc> key.</esc>
42	Highlight the word Print and then press the <enter></enter> key.

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) <u>Operations</u> - The different unit operations will be printed out.

c) <u>Spec Sheets</u> - The specifications sheets will be printed out.

d) *Hypotheticals* - Hypothetical component information will be printed out.

e) Format - Specifies format of the printout.

f) <u>Cost</u> - Lists costs of the run, if a royalty is being charged.

g) *File* - Saves results in a file.

h) Printer - Toggles on a printer.

- i) Cases Lists the stored files.
- j) *Description* Prints case description.

k) Oil Input - Lists inputted information on an oil.

Step	Action
43	Highlight the word Streams and then press the <enter> key.</enter>
44	Highlight the word All and then press the <enter> key.</enter>
4 5	Highlight the symbol - and then press the <enter> key.</enter>
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the main menu
	off of the screen in order to see the data on the screen underneath it.
46	Press the <f10> key;</f10>
	The screen will then appear as shown below:

Stream		FeedLiq	Energy	Lights	Hvy
Description					
Vapour frac		0.0000	2.0000*	1.0000*	0.0000*
Temperature	F	200.0000*	0.0000*	54.4899	141.6560
Pressure	psia	500.0000*	0.0000*	100.0000*	103.0000*
Molar Flow	lbmole/hr	1000.0000*	0.0000*	733.7803	266.2197
Mass Flow	lb/hr	48100.3030	0.0000*	32179.7539	15920.5501 i
LiqVol Flow	barrel/day	6242.8582	0.0000*	4372.4888	1870.3690 '
Enthalpy	Btu/hr	4.01751E+06	636054.5675	4.28622E+06	367344.1037
Density	lb/ft3	23.8751	0.0000	0.9236	33.0017 `
Mole Wt.		48.1003	0.0000	43.8548	59.8023
Spec. Heat	Btu/lb-F	1.1003		0.4251	0.6458
Therm Cond	Btu/hr-ft-F	0.0327		0.0100	0.0464
Viscosity	сР	0.0579		0.0082	0.1245
Z Factor		0.1423		0.8605	0.0289
Sur Tension	dyne/cm	1.3362			7.7534
Std Density	lb/ft3	33.1813			36.5203
Ethane	mole frac.	0.0148*	0.0000*	0.0202	0.0000
Propane	mole frac.	0.7315*	0.0000*	0.9770	0.0550
i-Butane	mole frac.	0.0681*	0.0000*	0.0019	0.2507
n-Butane	mole frac.	0.1462*	0.0000*	0.0010	0.5464
i-Pentane	mole frac.	0,0173*	0.0000*	0.0000	0.0649
n-Pentane	mole frac.	0.0150*	0.0000*	0.0000	0.0563
n-Hexane	mole frac.	0.0071*	0.0000*	0.0000	0.0267

NOTE: It is useful to print out all of the inputted process data to check for accuracy. Incorrect data entries can result in nonconvergence of a column calculation which leads to frustration with an input data error.

Step	Action
47	Press the $\langle F10 \rangle$ key;
48	Highlight the word Print and then press the <enter></enter> key.

The various print options can be found on page 119.

Step	Action
49	Highlight the word Spec_Sheets and then press the <enter> key.</enter>
50	Highlight the word Operations and then press the <enter></enter> key.

Step		Ac	tion		
51	Highlight the word Fractionator and then press the <enter> key.</enter>				
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the main menu				
	off of the screen in order to see the data on the screen underneath it.				
52	Press the <f10> key;</f10>				
	Use the $<$ Page Up $>$ a	nd <page down=""> a</page>	or arrow keys	to scroll the screen text	up and down.
	The screen will then a	ppear as seen below	V:		
		MICHAME CODO			
	M COMPONENT FRAC	FIONATE SPEC.	FICATION :	Dat	a 96/09/23
Case	Name:			Tim	e 10:41:56
Opera	ition Name: Fract	lonator			
- opera					
Proce	ss Feed Streams	From Opera	ation	Flow Rate	
	FeedLiq			1000.0000	lbmole/hr
				_ ~ _	lbmole/hr
					lbmole/hr
				- ~ ~	lbmole/hr
Energ	y_Streams				
	Energy			636054.5675	Btu/hr
					Btu/nr Btu/hr
					Btu/hr Btu/hr
					Btu/hr
		To Operat:	Lon		
Overh	ead Lights			733.7803	lbmole/hr
B0110	шs нvy			266.2197	IDMOLe/Nr
	Overhead Properties Bottoms Properties			ies	
Vapou	r Frac 1.0000		Vapour f	rac 0.0000	
Tempe	rature 54.4899	F	Temperat	ure 141.6560	F
Press	ure 100.0000	psia	Pressure	103.0000	psia
Densi Stan	$\frac{1}{2}$	LD/IC3	Density	33.0017	1b/ft3
Mol W	eight 43 8548	10/103	Mol Weig	rht 59.8023	10/103
Visco	sity 0.0082	CP	Viscosit	y 0.1245	CP
Therm	Cond 0.0100	Btu/hr-ft-F	Therm Co	ond 0.0464	Btu/hr-ft-F
Comp	onent Mole Fra	ct Ovhd Feed	Moles Ov	verhead Moles Bo	ttoms Moles
Ethan	e 1 0000	14 80	00	14 8000 0	0000
Propa	ne 0.9800	731.50	000 7	16.8700 14	.6300
i-But	ane 0.0200	68.10	000	1.3620 66	.7380
n-But	ane 0.0050	146.20	000	0.7310 145	.4690
1-Pen	tane 0.0010	17.30	000	0.0173 17	.2827
n-Hex	ane 0.0000	15.00 710	000		.0000
	0.0000	1.10		0.0000 /	. TOOO

•

3.1 Columns (continued)

3.1.6 Component Fractionator Column (continued)

Step	Action
53	Press the <f10> key;</f10>
54	Highlight the letters PFD and then press the <enter> key.</enter>
	The following screen will then appear:

Step	Action		
	Getting back to the Main Menu.		
55	Press the <esc> key until you reach the Main Menu.</esc>		
56	Do you want to continue adding other unit operations to this component fractionator column?		
	 If <u>Yes</u>, turn to the pertinent section of this manual now; 		
	If No, turn to the "Exiting HYSIM" Section of this manual.		

<u>**Objective-**</u> This exercise is an example of a compressor/expander calculation. The purpose of the compressor/expander unit operation is to compress or expand a gaseous or vapor stream either adiabatically (Q = 0) or polytropically. A polytropic process is one that is not an adiabatic process and is also not an isothermal process. This example can be modified by specifying another property package and/or other components, compositions and stream conditions.

In this example, the inlet stream, <u>PropaneIn</u>, is compressed from an inlet pressure of 44.1 psia to an outlet stream pressure of 248.5 psia, using a Compressor. HYSIM is used to calculate the related properties of the streams.

<u>Technical Example Reference</u>: Reference 1 - HYSIM Tutorial in the Hyprotech's HYSIM User's Guide, Version C2.50, March 1994, pages 3-98 to 3-128. <u>Other References</u>: Refs. 1 & 2.

Directions: Pages 124 through 130 outline the execution of a compressor/expander example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside the $\langle \rangle$ brackets (e.g. $\langle Esc \rangle$) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called <u>Compressor</u>, is shown below:

3.2 Compressors/Expanders (continued)

Step	Action
1	Are you at the Start-Up Menu of HYSIM? (The Start-Up Menu is described in Section V).
	• If <u>Yes</u> , proceed with Step 2.
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>
	The following screen will appear:

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
Selected	Synonym 	Name OIL HYPOTHETICAL Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Heptane n-Octane n-Nonane n-Decane n-C11	Formula CH4 C2H6 C3H8 C4H10 C5H12 C5H12 C5H12 C6H14 C7H16 C8H18 C9H20 C10H22 C11H24	Criteria ALL HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL ETHER USER
	C12 F3 - Menu, F4 - PRI	n-Cl2 Search by SYNONYM - Flip Srch, F5 - Exa ESS INSERT TO SUBMIT	Cl2H26 mm, F6 - Move,	. F8 - Change

Step	Action
	Selecting the components in the feed stream, named PropaneIn.
4	Highlight the following component name under the "Component Selection" Section and press the <enter> key so that the name then appears in the "selected" column, as follows: Highlight the word Propane and then press the <Enter> key;</enter>
5	Press the <insert> key;</insert>

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action		
	Changing the units from the HYSIM default SI or metric units (e.g. kg. \mathcal{C} , kPa, etc.) to field		
	units (e.g. lb. F. psia, etc.)		
6	Highlight the word Utility and then press the <enter> key;</enter>		
7	Highlight the word Configuration and then press the <enter> key;</enter>		

.

Step	Action
8	Highlight the word Units and then press the <enter> key;</enter>
9	Highlight the word Field and then press the <enter> key;</enter>
	Getting back to the Main Menu.
10	Press the <esc> key;</esc>
	Specifying the conditions of the feed stream, PropaneIn.
11	Highlight the word Specify and then press the <enter> key;</enter>
12	Highlight the word Stream and then press the <enter> key;</enter>
13	Type the word PropaneIn after the prompt (>) and then press the < Enter > key;
	Specifying the temperature of stream PropaneIn in F.
14	Type the number 7.4 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of stream PropaneIn in psia.
15	Type the number 44.1 after the prompt (>) and then press the <enter> key;</enter>
	Specifying that the flow rate of stream PropaneIn is unknown by typing an " x ".
16	Type the letter x after the prompt (>) and then press the <enter> key;</enter>
	Specifying the units of flow to use when specifying compositions.
17	Highlight the words Mole_Flows and then press the <enter> key;</enter>
	The screen will then appear as follows:
Stream Molar Flows	

Propane

Ctore	Á ation	
Step	Action	
	Specifying the individual molar flows of each component.	
18	Enter the following molar flow(lb-mols/hr) beside each component in the PropaneIn stream:	
	After the word, Propane, type the number 5.66 in the blank;	
	The screen should now appear as follows:	

_____ Stream Molar Flows _____

Propane 5.66_____

Step	Action
19	Press the <insert> key;</insert>
	HYSIM will next ask you if the total molar flow it calculated from adding up the
	individual component flows (5.6600 lb-mols/hr) is correct.
20	Highlight the word Yes and then press the <enter> key:</enter>
	Specifying the type of operation.
21	Highlight the word Operation and then press the <enter> key;</enter>
22	Type the word Compressor and then press the <enter> key;</enter>
23	Highlight the word Comp/Expander and then press the <enter> key;</enter>
	The screen shown on the following page will then appear.

Step	Action
	Naming the inlet and outlet streams.
24	Type the letter PropaneIn in the blank and then press the <enter> key;</enter>
25	Type the letter PropaneOut in the blank and then press the <enter> key;</enter>
26	Type the letter Energy in the blank;
	The screen should now appear as follows:

Step	Action		
27	Press the <insert> key;</insert>		
28	Highlight the word Worksheet and then press the <enter> key;</enter>		
29	Use the arrow keys to highlight the space (place the cursor over the blank) for the Pressure of stream, PropaneOut in psia.		
	Type the number 248.5 and then press the <enter> key;</enter>		
30	Press the <esc> key until you are back at the Main Menu;</esc>		

Step	Action	
31	Highlight the word Print and then press the < Enter > key;	

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) <u>Operations</u> - The different unit operations will be printed out.

c) <u>Spec_Sheets</u> - the specifications sheets will be printed out.

d) *Hypotheticals* - Hypothetical component information will be printed out.

e) *Format* - Specifies the format of the printout.

f) <u>Cost</u> - Lists costs of the run, if a royalty is being charged.

g) File - Saves results in a file.

h) Printer - Toggles on a printer.

i) <u>Cases</u> - Lists the stored files.

j) *Description* - Prints case description.

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action	
32	Highlight the word Streams and then press the <enter> key:</enter>	
	Looking at the calculated data for all of the streams.	
33	Highlight the word Summary and then press the <enter> key;</enter>	
34	Highlight the dash symbol - and then press the <enter> key;</enter>	
	Pressing the <f10> key to get the Main Menu off of the screen in order to see the data on the</f10>	
	screen underneath it.	
35	Press the <f10></f10> key;	
	The screen will appear as seen on the following page. Use the $\langle Page Up \rangle$ and $\langle Page \rangle$	
	Down> keys to scroll the screen text up and down.	

Stream_Summary

*** Food ***				
*** Feed *** Stream Name Vapour_Frac Temperature Pressure Flow Mass_Flow LiqVol_Flow Mole_Weight Energy Molar_Enthal	F psia lbmole/hr lb/hr barrel/day Btu/hr Btu/lbmole	PropaneIn 1.0000 7.4000* 44.1000* 5.6600* 249.5890 33.7296 44.0970 29889.4688 5280.7715	PropaneOut 1.0000 155.4053 248.5000* 5.6600 249.5890 33.7296 44.0970 41462.9570 7325.5366	Energy
Entropy	Btu/lb.F	33.0745 N 3798	34.7210	
Mass_Cp Magg_Donsity	BLU/ID-r lh/ft3	0.4201	2 1 7 7 9	
Z_Factor	10/103	0.9235	0.7780	
*** Vapour *	* *			
Flow	lbmole/hr	5.6600	5.6600	
Mass_Flow	1b/hr	249.5890	249.5890	
Std_Gas_Flow	MMSCFD ACEM	9 9011	1 9495	
Mole Weight	ACPH	44.0970	44.0970	
Energy	Btu/hr	29889.4688	41462.9570	11573.4873
Molar Enthal	Btu/lbmole	5280.7715	7325.5366	
Entropy	Btu/lbmole-F	33.8745	34.7210	
Mass_Cp	Btu/lb-F	0.3798	0.5220	
Mass_Density	lb/ft3	0.4201	2.1339	
Air_SG	rel_to_air	1.5225	1.5225	
Z_Factor	$P+u/hr_{-}ft_{-}F$	0.9235	0.7780	
Viscosity	CP	0.0072	0.0103	
*** Light Lic	quid ***			
Flow	lbmole/hr	0.0000	0.0000	
Mass_Flow	lb/hr	0.0000	0.0000	
LiqVol_Flow	barrel/day	0.0000	0.0000	
Volume_Flow	barrel/day	0.0000	0.0000	
Mole_weight	Ptu/hr	0 0000	0 0000	
Molar Fotbal	Btu/lbmole			
Entropy	Btu/lbmole-F			
Mass Cp	Btu/lb-F			
Mass_Density	lb/ft3			
Mass_Density	SG_H2O60api			
UOPK_(dry)				
Z_Factor				
Thermal_Cond Viscosity	Btu/hr-ft-F cP			
*** Heavy Lic	mid ***			
Flow	lbmole/hr	0.0000	0.0000	
Mass_Flow	lb/hr	0.0000	0.0000	
LiqVol_Flow	barrel/day	0.0000	0.0000	

.

Step	Action
	Pressing the <f10> key again, to get back to the Main Menu.</f10>
36	Press the $\langle F10 \rangle$ key;
37	Highlight the letters PFD and then press the <enter> key;</enter>
	The following screen will appear:

Step	Action
	Getting back to the Main Menu.
38	Press the <esc> key until you reach the Main Menu;</esc>
39	Highlight the word Print and then press the < Enter > key;

The various print options can be found on page 127.

Step	Action		
40	Highlight the word Spec-Sheets and then press the <enter> key,</enter>		
41	Highlight the word Operations and then press the < Enter > key;		
42	Highlight the word Compressor and then press the <enter>key;</enter>		
	The screen will appear as shown on the following page. Repeat steps 35 and 36. using the		
	$\frac{1}{2} \leq FIU >$, $\leq Page Up >$ and $\leq Page Down >$ keys in order to see the printout on the screen.		
43	Do you want to continue adding other unit operations to this compressor?		
	 If <u>Yes</u>, turn to the pertinent section of this manual now; 		
	 If No, turn to the "Exiting HYSIM" Section of this manual. 		

HYSIM COMPRESSOR SPECIFICATION SHEET					
HYSIM Version C2.53			Date	Date 96/09/24	
Operation Name:	Compressor		Time	10:23:30	
Operation Note:	-				
Suction Side : PropaneIn					
From Operation					
Suction Properties at Operating Conditions					
Temperature	7.4000 F	Vap Z Factor	0.9235		
Pressure	44.1000 psia	Ideal Cp/Cv	1.1345		
Mass Frac vap Mol Weight	44.0970	Flow Rates	249 5890	1b/br	
hoi weight	11.0070		0.0515	MMSCFD	
Density	0.4201 lb/ft3		9.9011	ACFM	
Discharge Side : PropaneOut					
To Operation					
Discharge Properties at Operating Conditions					
Temperature	155.4053 F 248 5000 psia	Ideal Cp/Cv	0.7780 1 0944		
Mass Frac Vap	1.0000		1.0911		
Mol Weight	44.0970	Diff Press	204.4000	psi	
Density	2.1339 lb/ft3	Comp Ratio Flow Rate	5.6349 1.9495	ACFM	
Driver :					
Energy Stream Energy					
Energy Required 11573.4876 Btu/hr					
4.5485 hp					
Adiabatic Head	27053.38 ft	Adiabatic	Efficiency	75.00 %	
Polytropic Head	28178.89 ft	Polytropic	Efficiency	78.12 💡	
User Supplied Curves					
Volumetric_Flow		Head	Efficiency		
A	CFM -	ft		f	
A	CFM -	ft		8	
A	CFM -	ft		fe e	
A A	CFM -	IC ft		5 S	
A	CFM -	ft		5	
A	CFM -	ft		£	
A A	CFM ~	it fr		¥ 2	
A	CFM -	ft		o oto	

•
3.3 Heat Exchangers

This section contains examples of the following five different types of heat exchangers:

Section		Page
3.3.1	Shell and Tube Type Heat Exchanger - Simple	132
3.3.2	Shell and Tube Type Heat Exchanger - Rate	142
3.3.3	Single Sided Heat Exchanger - Heater	155
3.3.4	Single Sided Heat Exchanger - Cooler	163
3.3.5	LNG (Multi-Pass) Heat Exchanger	171

3.3.1 Shell and Tube Type Heat Exchanger - Simple

<u>Objective</u> - This exercise is an example of a simple, shell and tube type, gas-gas heat exchanger calculation. The purpose of the gas-gas heat exchanger is to heat one gaseous stream, with the heat lost when another stream is cooled. In this case, the stream gaining the heat is on the shell side, and the stream being cooled is on the tube side. This example can be modified by specifying another property package and/or components, compositions and feed conditions.

In this example a gaseous feed stream, <u>ShellIn</u>, gets heated in the shell side of a simple, gas-gas heat exchanger, from 12.8 to 50.0 °F; the other gaseous feed stream, <u>TubeIn</u>, gets cooled in the tubeside from 60.5 °F to 32.7 °F.

<u>Technical Example Reference</u>: Reference 1 - HYSIM Interactive Tutorial, in the Hyprotech's HYSIM User's Guide, Version C2.50, March 1994, pages 3-98 to 3-128. <u>Other References</u>: Refs. 1 & 2.

Directions: Pages 133 through 141 outline the execution of a simple, shell and tube type heat exchanger example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys ($\leftarrow, \rightarrow, \uparrow$, or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <> brackets (e.g. <Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capitals and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called <u>Gas-Gas-Hxer</u>, is shown below:

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).
	• If <u>Yes</u> , proceed with Step 2.
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>
	The following screen will appear:

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	Cl	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	C3	Propane	СЗН8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H1G	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H20	PHENOL
	C10	n-Decane	C10H22	ETHER
	C11	n-C11	C11H24	USER
	C12	n-C12	C12H26	
│ ─── ♥ ── ↓ ────┘	└─── ¥ ─ ¥ ───9	Search by SYNONYM		
Fl - Help, F3 - Menu, F4 - Flip Srch, F5 - Exam, F6 - Move, F8 - Change PRESS INSERT TO SUBMIT				

Step	Action
	Selecting the components in the feed stream.
4	Highlight each of the following component names under the "Component Selection" section
	and press the <enter> key so that the name then appears in the "Selected" column, as</enter>
	follows:
	Highlight the word Methane and then press the <enter></enter> key;
	Highlight the word Ethane and then press the <enter> key;</enter>
	Highlight the word Propane and then press the <enter></enter> key;
	Highlight the word i-Butane and then press the <enter> key;</enter>
	Highlight the word n-Butane and then press the <enter></enter> key;
	Highlight the word i-Pentane and then press the <enter></enter> key;
	Highlight the word n-Pentane and then press the <enter></enter> key;
	Highlight the word n-Hexane and then press the <enter> key;</enter>
	Highlight the word n-Heptane and then press the <enter></enter> key;
	Highlight the word n-Octane ;

Step	Action
5	Press the <insert> key;</insert>

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Changing the units from the HYSIM default SI or metric units (kg. kPa. °C, etc.) to field units
	(lb, psia, IF, etc.).
6	Highlight the word Utility and then press the <enter> key;</enter>
7	Highlight the word Configuration and then press the <enter> key;</enter>
8	Highlight the word Units and then press the <enter> key;</enter>
9	Highlight the word Field and then press the <enter> key;</enter>
	Getting back to the Main Menu.
10	Press the <esc> key;</esc>
	Specifying the type of operation we want to perform.
11	Highlight the word Operation and then press the <enter> key</enter> ;
	Typing a name for the operation. (We will call it "Gas-Gas-Hxer").
12	Type the word Gas-Gas-Hxer and then press the <enter> key;</enter>
13	Highlight the word Heat Exchanger and then press the <enter> key;</enter>
	The following diagram of the heat exchanger process will appear:

Step	Action
	Naming the streams.
14	Type the name TubeIn and then press the <enter> key;</enter>
15	Type the name TubeOut and then press the <enter> key;</enter>
16	Type the name ShellIn and then press the <enter> key;</enter>
17	Type the name ShellOut and then press the <enter> key;</enter>
	Specifying the Tubeside Pressure Drop in psi.
18	Type the number 10 and then press the <enter> key;</enter>
	Specifying the Shellside Pressure Drop in psi.
19	Type the number 10 and then press the <enter> key;</enter>
	Leave the UA unspecified and the exchanger type and # of Shell passes as is currently
	displayed on the heat exchanger diagram.
20	Press the <enter> key two times;</enter>
	The screen should now appear as follows:

Step	Action
	Getting back to the Main Menu.
21	Press the <insert> key;</insert>
	Specifying the conditions of the feed streams.
22	Highlight the word Specify and then press the <enter> key;</enter>
23	Highlight the word Stream and then press the <enter> key;</enter>
24	Highlight the word TubeIn and then press the <enter> key;</enter>
	Specifying the temperature of the TubeIn stream as unknown, by typing an "x".
25	Type the letter x after the prompt (>) and then press the <enter> key;</enter>

Step	Action
	Specifying the pressure of the TubeIn stream in psia.
26	Type the number 600 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the molar flow rate of the TubeIn stream in lb-mols/hr.
27	Type the number 69.64 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the basis you wish to use when specifying the compositions.
28	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
29	Enter the following mole fractions beside each component in the TubeIn stream:
	After the word, Methane, type the number 0.7988 in the blank and then press the <enter> key;</enter>
	After the word, Ethane, type the number 0.1339 in the blank and then press the <enter> key;</enter>
	After the word, Propane, type the number 0.0325 in the blank and then press the <enter> key;</enter>
	After the word, i-Butane, type the number 0.0153 in the blank and then press the <enter> key;</enter>
	After the word, n-Butane, type the number 0.0104 in the blank and then press the <enter> key;</enter>
	After the word, i-Pentane, type the number 0.0044 in the blank and then press the <enter> key;</enter>
	After the word, n-Pentane, type the number 0.0030 in the blank and then press the <enter> key;</enter>
	After the word, n-Hexane, type the number 0.0013 in the blank and then press the <enter> key;</enter>
	After the word, n-Heptane, type the number 0.0003 in the blank and then press the <enter> key;</enter>
	After the word, n-Octane, type the number 0.0001 in the blank;
	The screen should now appear as follows:

	Stream Mo	le Fractions ==	
Methane	0.7988	Ethane	0.1339
Propane	0.0325	i-Butane	0.0153
n-Butane	0.0104	i-Pentane	0.0044
n-Pentane	0.0030	n-Hexane	0.0013
n-Heptane	0.0003	n-Octane	0.0001

Step	Action
30	Press the <insert> key;</insert>
31	Highlight the word Specify and then press the <enter> key;</enter>
32	Highlight the word Stream and then press the <enter> key;</enter>
33	Highlight the word ShellIn and then press the <enter> key;</enter>
	Specifying the conditions of the ShellIn stream. (Specify that the temperature is unknown by
	typing an "x").
34	Type the letter x and then press the <enter> key;</enter>
	Specifying the pressure of the ShellIn stream in psia.
35	Type the number 580 and then press the <enter> key;</enter>
	Specifying the molar flow rate of stream ShellIn in lb-mols hr.
36	Type the number 66.6 and then press the <enter> key;</enter>
	Specifying the basis you wish to use when specifying the compositions.
37	Highlight the word Mole_Fractions and then press the <enter> key;</enter>

Step	Action
38	Enter the following mole fractions beside each component in the ShellIn stream:
	After the word, Methane, type the number 0.8237 in the blank and then press the <enter> key;</enter>
	After the word, Ethane, type the number 0.1304 in the blank and then press the <enter> key;</enter>
	After the word, Propane, type the number 0.0272 in the blank and then press the <enter> key;</enter>
	After the word, i-Butane, type the number 0.0101 in the blank and then press the <enter> key,</enter>
	After the word, n-Butane, type the number 0.0059 in the blank and then press the <enter> key;</enter>
	After the word, i-Pentane, type the number 0.0016 in the blank and then press the <enter> key;</enter>
	After the word, n-Pentane, type the number 0.0009 in the blank and then press the <enter> key,</enter>
	After the word, n-Hexane, type the number 0.0002 in the blank and then press the <enter> key;</enter>
	After the word, n-Heptane, type the number 0.0000 in the blank and then press the <enter> key;</enter>
	After the word, n-Octane, type the number 0.0000 in the blank;
	The screen should now appear as follows:
[r	Stream Mole Fractions

Methane	0.8237	Ethane	0.1304
Propane	0.0272	i-Butane	0.0101
n-Butane	0.0059	i-Pentane	0.0016
n-Pentane	0.0009	n-Hexane	0.0002
n-Heptane	0.0000	n-Octane	0.0000

Step	Action
39	Press the <insert> key;</insert>
40	Highlight the word Worksheet and then press the <enter> key;</enter>
	The screen should now appear as follows:

		= Streams =		
	New Value	=		
Stream	TubeIn	TubeOut	ShellIn	ShellOut
Vapour_Frac				
Temperature				
Pressure	600.0000*	590.0000	580.0000*	570.0000
Flow	69.6400*	69.6400	66.6000*	66.6000
Mass_Flow	1424.5420	1424.5420	1296.2150	1296.2150
LiqVol_Flow	289.2200	289.2200	271.2278	271.2278
Energy_Flow				

Step	Action
41	Highlight the Vapour Frac. blank under the TubeIn stream title and type the number 1.0. Then
	press the <enter></enter> key;
42	Highlight the Vapour Frac. blank under the ShellIn stream title and type the number 1.0. Then
	press the <enter></enter> key;
43	Highlight the <i>Temperature</i> blank under the <i>ShellOut</i> stream title and type the number 50.0.
	Then press the <enter> key;</enter>
	The screen will than appear as shown on the following page.

			==== Streams =		
		New Value	e =	F	
Strea	m	TubeIn	TubeOut	ShellIn	ShellOut
Vapou	ir_Frac	1.0000*	0.9813	1.0000*	1.0000
Tempe	erature	60.4964	32.7162	12.8210	50.0000*
Press	ure	600.0000*	590.0000	580.0000*	570.0000
Flow		69.6400*	69.6400	66.6000*	66.6000
Mass_	Flow	1424.5420	1424.5420	1296.2150	1296.2150
LiqVc	l_Flow	289.2200	289.2200	271.2278	271.2278
Energ	y_Flow 2	273649.1393	244139.1538	223800.6134	253310.5949
Step	Step Action				
	Getting back to the Main Menu.				
44	44 Press the <esc> key until you reach the Main Menu;</esc>				
	Looking at the current Process Flow Diagram (PFD).				
45	Highlight the letters PFD and then press the <enter> key;</enter>				
	The following figure will then appear:				

Step	Action
	Getting back to the Main Menu.
46	Press the <esc> key until you reach the Main Menu;</esc>
	Looking at the Gas-Gas Heat Exchanger Specification Sheets.
47	Highlight the word Print and then press the <enter> key;</enter>

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - the conditions, physical properties, and compositions of the streams will be printed out.

b) Operations - The different unit operations will be printed out.

- c) Spec Sheets The specifications sheets will be printed out.
- d) Hypotheticals Hypothetical component information will be printed out.
- e) Format Specifies format of the printout.

Print Options (continued):

- f) <u>Cost</u> Lists costs of the run, if a royalty is being charged.
- g) File Saves results in a file.
- h) Printer Toggles on a printer.
- i) <u>Cases</u> Lists the stored files.
- i) Description Prints case description.
- k) Oil Input Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action
48	Highlight the word Spec-Sheets and then press the <enter> key;</enter>
49	Highlight the word Operations and then press the <enter> key;</enter>
50	Highlight the word Gas-Gas-Hxer and then press the <enter> key;</enter>
	The Specification Sheets on the following pages will appear on the screen. Pressing the
	$\langle F10 \rangle$ key will get the Main Menu off of the screen in enabling you to see the data on the
	screen underneath it.
51	Press the $\langle F10 \rangle$ key;
	The screen will appear as shown below and on the following page. Use the $\langle Page Up \rangle$ and
	< <i>Page Down</i> > keys to scroll the screen text up and down.

HYSIM HEAT EXCHANGER S	PECIFICATION SHEET	
HYSIM Version C2.53	h	Date 96/09/25
Case Name:		11me 14:51:22
Operation Name: Gas-Gas- Note:	Hxer	i
= Performance ======		
Duty 29509.	9848 Btu/hr LMTD	14.6984 F
weighted LMTD 14.	3427 F UA	2007.7049 Btu/F-hr
weighted UA 2057.	4976 Btu/F-hr FT Factor	1.0000
	Shell Pas	ses 0.
- Duties Btu/hr	Hot Side	Cold Side
Vapour	0.0019	29509.9811
Two Phase	29509.9830	0.0000
Liquid	0.0000	0.0000
Finlet	Hot Side	Cold Side
Stream Name	TubeIn	ShellIn
From Operation		
Mass frac vap	1.0000	1.0000
Temperature F	60.4964	12.8210
Pressure psia	600.0000	580.0000
Mass flow lb/hr	1424.5420	1296.2150
Molar flow lbmole/hr	69.6400	66.6000
- Outlet -	Hot Side	Cold Side
Stream Name	TubeOut	ShellOut
To Operation		
Mass frac vap	0.9577	1.0000
Temperature F	32.7162	50.0000
Pressure psia	590.0000	570.0000

Fluid Prop	perties	Hot :	Side	Cold	Side
Ref Temp 1 F Ref Pres 1 psia Heat Cap Btu/lb-F Viscosity cP Therm Cond Btu/hr-ft-F Density 1b/ft3 Mole Wt Z Factor Ref Temp 2 F		<pre>Liquid == 32.7162 590.0000 0.5870 0.1375 0.0587 33.2787 46.2083</pre>	Vapour 32.7162 590.0000 0.6023 0.0115 0.0184 2.7347 19.9648 0.8152 60.4964	Liquid —	Vapour 12.8210 580.0000 0.6144 0.0111 0.0178 2.7794 19.4627 0.8010 50.0000
Ref Temp 2 F Ref Pres 2 psia Heat Cap Btu/lb-F Viscosity cP Therm Cond Btu/hr-ft-F Density lb/ft3 Mole Wt Z Factor		600.0000 0.5728 0.1598 0.0573 34.9454 54.2800	600.0000 0.5899 0.0120 0.0192 2.6266 20.4558 0.8371		570.0000 0.5862 0.0116 0.0190 2.3855 19.4627 0.8503
Heat Cu Duty Btu/hr	irve Hot Sid Temp Ma F	de ass Fct Vap	Heat C Duty Btu/hr	urve Cold S: Temp N F	ide Mass Fct Vap
29511.6509 22125.2861 14755.0082 7377.5318 0.0521	60.50 52.88 45.82 39.14 32.72	1.0000 0.9927 0.9827 0.9708 0.9577	29509.9811 22132.4854 14754.9906 7377.4953 -0.6258	50.00 40.54 31.17 21.92 12.82	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Step	Action
	Pressing the $\langle F10 \rangle$ key again, to get back to the Main Menu.
52	Press the $\langle F10 \rangle$ key;
	Looking at the compositions of the streams.
53	Highlight the Print key and then press the <enter> key;</enter>

The various print options are given on pages 138-139.

3.3.1	Shell and	Tube Type	Heat Exchang	er - Simple ((continued)

Step	Action
54	Highlight the word Streams and then press the <enter> key;</enter>
55	Highlight the word All and then press the <enter> key;</enter>
56	Highlight the dash symbol - and then press the <enter> key;</enter>
	The following streams will appear on the screen:

Stream		TubeIn	TubeOut	ShellIn	ShellOut
Description					
Vapour frac.		1.0000*	0.9813	1.0000*	1.0000
Temperature	F	60.4964	32.7162	12.8210	50.0000*
Pressure	psia	600.0000*	590.0000	580.0000*	570.0000
Molar Flow	lbmole/hr	69.6400*	69.6400	66.6000*	66.6000
Mass Flow	lb/hr	1424.5420	1424.5420	1296.2150	1296.2150
LiqVol Flow	barrel/day	289.2200	289.2200	271.2278	271.2278
Enthalpy	Btu/hr 27	3649.1393	244139.1538	223800.6134	253310.5949
Density	lb/ft3	2.6266	2.8450	2.7794	2.3855
Mole Wt.		20.4558	20.4558	19.4627	19.4627
Spec. Heat	Btu/lb-F	0.5899	0.6016	0.6144	0.5862
Therm Cond	Btu/hr-ft-F	0.0192		0.0178	0.0190
Viscosity	сP	0.0120		0.0111	0.0116
Z Factor		0.8371		0.8010	0.8503
Sur Tension	dyne/cm				
Std Density	lb/ft3				
Methane	mole frac.	0.7988*	0.7988	0.8237*	0.8237
Ethane	mole frac.	0.1339*	0.1339	0.1304*	0.1304
Propane	mole frac.	0.0325*	0.0325	0.0272*	0.0272
1-Butane	mole frac.	0.0153*	0.0153	0.0101*	0.0101
n-Butane	mole frac.	0.0104*	0.0104	0.0059*	0.0059
1-Pentane	mole frac.	0.0044*	0.0044	0.0016*	0.0016
n-Pentane	mole frac.	0.0030*	0.0030	0.0009*	0.0009
n-Hexane	mole frac.	0.0013*	0.0013	0.0002*	0.0002
п-нертапе	mole frac.	0.0003*	0.0003	0.0000*	0.0000
n-Octane	mole frac.	0.0001*	0.0001	0.0000*	0.0000

Step	Action		
57	Do you want to continue adding other unit operations to this simple, shell and tube heat		
	exchanger?		
	• If Yes, turn to the pertinent section of this manual now;		
	If No, turn to the "Exiting HYSIM" Section of this manual.		

•

3.3.2 Shell and Tube Type Heat Exchanger - Rate

<u>Objective</u> - This exercise is an example of a heat exchanger rating calculation. This example will use a shell and tube type heat exchanger with cooling water on the tubeside and a distillation column bottoms product being cooled on the shellside. This example can be modified by specifying another property package and/or components, compositions and feed conditions.

In this example, the shell and tube type heat exchanger is rated. The distillation column bottoms steam, called <u>BottomsIn</u>, is composed of Hydrocarbons. The following physical data was supplied to HYSIM for this problem: tubeside fouling, number of tubes per shell, tube length, tube outside diameter, tube pitch, shell side fouling, % area of the/baffle cut, baffle spacing, plus stream composition and condition data. After supplying this data, HYSIM calculated the shell area, the tube and shell coefficients, the log mean temperature difference (LMTD), and the duty.

<u>Technical Example Reference</u>: Reference 3 - Ernest E. Ludwig, "Applied Process Design for Chemical and Petrochemical Plants," Volume 3, Example 10-6, Second Edition, Gulf Publishing Co., Houston, Texas, 1984, page 87. <u>Other References</u>: Refs. 1 and 2.

Directions: Pages 143 through 154 outline the execution of a shell and tube type heat exchanger rating example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys ($\leftarrow, \rightarrow, \uparrow$, or \downarrow keys) until the cursor is over required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "escape" key have additionally been placed inside <> brackets (e.g. <Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capitals and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called *hxerrating*, is shown below:

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).
	• If <u>Yes</u> , proceed with Step 2.
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Changing the units from the HYSIM default SI or metric units (kg, kPa, \mathcal{C} , etc.) to field units
	(lb, psia, °F, etc.).
2	Highlight the word Configuration and then press the <enter> key;</enter>
3	Highlight the word Units and then press the <enter> key;</enter>
4	Highlight the word Field and then press the <enter> key;</enter>
5	Press the <esc> key;</esc>
	Starting with a new case.
6	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
7	Highlight the word Peng-Robinson and then press the <enter> key;</enter>
	The following screen will appear:

		COMPONENT SELECTION			
Selected	Synonym	Name	Formula	Criteria	
	OIL	OIL		ALL	
	HYPOTHETICAL	HYPOTHETICAL		HC	
	C1	Methane	CH4	SOLID	
	C2	Ethane	C2H6	MISC	
	C3	Propane	СЗН8	AMINE	
	i-C4	i-Butane	C4H10	ALCOHOL	
	n-C4	n-Butane	C4H10	KETONE	
	i-C5	i-Pentane	C5H12	ALDEHYDE	
	n-C5	n-Pentane	C5H12	ESTER	
	C6	n-Hexane	C6H14	CARBACID	
	C7	n-Heptane	C7H16	HALOGEN	
	C8	n-Octane	C8H18	NITRILE	
	C9	n-Nonane	C9H20	PHENOL	
	C10	n-Decane	C10H22	ETHER	
	C11	n-C11	C11H24	USER	
	C12	n-C12	C12H26		
	└─── ▾ ── ャ ────?	Search by SYNONYM			
Fl - Help,	F3 - Menu, F4 ·	- Flip Srch, F5 - Exa	am, F6 - Move	, F8 - Change	
PRESS INSERT TO SUBMIT					

Step	Action		
	Selecting the components in the feed streams.		
8	Highlight the following component names under the "Component Selection" section and press		
	the <enter> key so that the names then appear in the "Selected" column, as follows:</enter>		
	Highlight the formula H2O and then press the <enter> key;</enter>		
	Highlight the word Hypothetical and then press the <enter> key;</enter>		
	The screen on the following page will then appear.		

НС	Solid	Misc	Amine
Alcohol	Ketone	Aldehyde	Ester
CarbAcid	Halogen	Nitrile	Phenol
Ether			
HC HC-HC interact:	ion parameters will	be calculated and	assigned
What is the compone	ent type?		-
>			

Step	Action
9	Highlight the initials HC and then press the <enter> key;</enter>
	The following screen will then appear:

Hypothetical Component	Information
Name: Chemical	Formula:
Boiling Point [F_] : LiqDensity (@ 60F)[lb/ft3]:_ Molecular Weight :	Ideal Enthalpy Coefficients (Mass Basis - Ideal gas @ 0 K) Hideal = Btu/lb + * T
Critical Temperature [F_] : Critical Pressure [psia_]: Critical Volume [ft3/lbmo]: Acentric Factor : Acentric Factor Wsrk : Charact. Volume [ft3/lbmo]:_ Dipole Moment [debye] :_	+ * T^2 + * T^3 + * T^4 + * T^5 Entropy Coeff: Cavett Param.:
Vapour Pressure [deg K, kPa] ANTA: ANTD: ANTB: ANTE: ANTC: ANTF: TMIN: TMAX: Viscosity Coeff A: Viscosity Coeff B:	Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs = Btu/lbmo + * T + * T^2 Heat Form (@ 25 C): Heat Comb (@ 25 C): Radius Gyration [Ang]:

Step	Action
10	Type the word Bottoms and then press the <enter></enter> key two times;
	Specifying the Boiling Point of the Bottoms in °F.
11	Type the number 280.4 and then press the <enter></enter> key,
	Specifying the density of the Bottoms in pounds per cubic foot (1b fi^3).
12	Type the number 48.4 and then press the <enter> key;</enter>
	Specifying that you do not wish to input viscosity curve data.
13	Press the <insert> key;</insert>
14	Highlight the word None and then press the <enter> key,</enter>
	The screen on the following page will then appear.

Hypothetical Component	: Information
Are The Component Calculations Satis Name: Bottoms Chemical	factory: Yes Formula: Bottoms
Boiling Point [F_] : 280.40 LiqDensity (@ 60)[lb/ft3]: 48.40 Molecular Weight : 126.17	Ideal Enthalpy Coefficients (Mass Basis - Ideal gas @ 0 K) Hideal = 5.0150538e+01 Btu/lb
Critical Temperature [F_] : 615.22 Critical Pressure [psia_]: 405.83 Critical Volume [ft3/lbmo]: 7.321 Acentric Factor : 0.36914 Acentric Factor Wsrk : 0.36914 Charact. Volume [ft3/lbmo]: 7.98218 Dipole Moment [debye] : 0.00	+ 3.7898889e-04 * T ² + -5.1654688e-08 * T ³ + 0.0000000e+00 * T ⁴ + 0.0000000e+00 * T ⁵ Entropy Coeff: 0.2388459 Cavett Param.: 0.26723
Vapour Pressure [deg K, kPa] ANTA: 5.87938e+01 ANTD: -6.16521e+00 ANTB: -7.03156e+03 ANTE: 7.21300e-18 ANTC: 0.00000e+00 ANTF: 6.00000e+00 TMIN: 280.400 TMAX: 615.219 Viscosity Coeff A: 0.04464 Viscosity Coeff B: -0.25202	Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs = Btu/lbmo + * T + * T^2 Heat Form (@ 25 C): Heat Comb (@ 25 C): Radius Gyration [Ang]: 4.5055

<u>Hypothetical Compounds</u> - HYSIM will calculate the <u>critical properties</u> from either the Bergman Cavett or Lee-Kesler Correlation, depending on the API and Normal Boiling Point supplied. Other component types such as Amines, Alcohols, etc. will have critical properties determined by Joback's modification of Lydersen's group contribution method.

The Enthalpy coefficients are for the following fifth order ideal enthalpy equation:

 $H = A + BT + CT^2 + DT^3 + ET^4 + FT^5$

where: T = Absolute Temperature (K or R)

H = Enthalpy = BTU/lb-R or kJ/Kg-K

For solids, the enthalpy data should be entered. If HYSIM generates the coefficients, it will use the Cavett correlations for hydrocarbons, solids or miscellaneous substances; the Joback group contribution method will be used for all other substances.

Reference: Passut, C.A. and Danner, R.P., I.E.C. Proc. Des. & Dev., 11, p. 543 (1972).

The Gibbs Free Energy will be calculated using the following equation:

 $G^{o} = A + BT + CT^{2}$

where: T = Absolute Temperature = K or R

 $G^{o} = kJ/kgmole-K$ or Btu/lbmole-R

If the hypothetical is a Hydrocarbon or if a UNIFAC structure is not specified, no Gibbs coefficients will be calculated.

Hypothetical Compounds (continued):

The modified Antoine vapor pressure model coefficients are calculated for the following equation:

 $\ln(P_{vap}) = ANTA + (ANTB/(T+ANTC)) + ANTD (\ln(T)) + ANTE (T)^{ANTF}$

The <u>viscosity</u> coefficients, Theta A and Theta B, are used in the viscosity prediction models. Three viscosity models are available in HYSIM: the modified Ely and Hanley model, Twu's model and the modified Letsou-Stiel correlation.

Step	Action
15	Press the <insert> key two times;</insert>
NOTE:	On returning to the main menu after component selection, HYSIM will provide a list of the
compone	ent selections. This is helpful in assessing component selections.

Step	Action	
	Specifying the type of operation we want to perform.	
16	Highlight the word Operation and then press the <enter> key;</enter>	
	Typing a name for the operation. (We will call it "hxerrating").	
17	Type the word hxerrating and then press the <enter> key;</enter>	
18	Highlight the words Heat Exchanger and then press the <enter> key;</enter>	
	The diagram of the heat exchanger process shown below will then appear:	

Step	Action			
	Naming the streams.			
19	Type the name WaterIn and then press the <enter> key;</enter>			
20	Type the name WaterOut and then press the <enter> key;</enter>			
21	Type the name BottomsIn and then press the <enter> key;</enter>			
22	Type the name BottomsOut and then press the <enter> key;</enter>			
23	Specifying the Tubeside Pressure Drop in psi.			
24	Type the number 10 in the blank and then press the <enter> key;</enter>			
	Specifying the Shellside Pressure Drop in psi.			
25	Type the number 10 in the blank and then press the <enter> key;</enter>			
	Leave the UA unspecified.			
26	Press the <enter></enter> key;			
	Specifying the Exchanger Type.			
27	Press the <f2> key and then highlight the word Rate and press the <enter> key;</enter></f2>			
	Specifying the number of Shell passes.			
28	Type the number 1;			
	The screen should now appear as shown below:			

Step	Action
29	Press the <insert> key;</insert>
	The screen shown on the following page will then appear.

-	Si	implified	Heat Exchang	er Geometry - H	Rating:	
	E changer (Tema)	Type A_ E	_ U_	-	5	
	TUBE SIDE DATA Tube Passes/Shell Fouling Tubes Per Shell _ Tube Data Length O.D. Thickness Pitch Orientation H Layout Angle 3	20.0000 20.000 0.750 0.090 0.938 Horizontal	F-hr-ft2/Bt ft in in in	SHELL SIDE DATA Shell Series Shell Parallel Fouling 0. Baffle Data Type S Orientation V Cut (% Area) Spacing	1 1 000000 H Single_ /ertica 20.	F-hr-ft2/Bt
	Any of the follow	ving param	eters left B	BLANK will be ca	alculat	ed by HYSIM
	TUBE SIDE Transfer Coeff Press. Drop		Btu/hr-ft2- psi	SHELL SIDE Transfer Coeff Press. Drop Shell Dia. Area		Btu/hr-ft2- psi in ft2

Step	Action				
	Specifying the Heat Exchanger Geometry - Rating				
30	Press the <enter> key four times;</enter>				
	Specifying the Tubeside fouling in F-hr-ft ² /Btu.				
31	Type the number 0.001 and then press the <enter> key;</enter>				
	Specifying the number of tubes per shell.				
32	Type the number 44.0 and then press the <enter> key;</enter>				
	Specifying the Tube Length (ft).				
33	Type the number 8.0 and then press the <enter> key;</enter>				
	Specifying the O.D. (Outside Diameter in inches).				
34	Type the number 1.00 and then press the <enter> key;</enter>				
35	Press the <enter></enter> key one time;				
	Specifying the Tube Pitch in inches.				
36	Type the number 1.25 and then press the <enter> key;</enter>				
37	Press the <enter></enter> key four times;				
	Specifying the Shell Side fouling in F-hr-ft ² /Btu.				
38	Type the number 0.002 and then press the <enter> key;</enter>				
39	Press the <enter> key two times;</enter>				
	Specifying the % Area of the Baffle which is cut. (Usually 20 to near 50 %, Reference: Ludwig,				
	E., Applied Process Design for Chemical and Petrochemical Plants, Vol.3, 1983, p.23).				

Step	Action		
40	Type the number 25 and then press the <enter> key;</enter>		
Specifying the Baffle Spacing (in). (Note: Allowance must be made for baffle thickness. Al			
	number of spaces must be odd so that the inlet is on the top and the outlet is on the bottom.)		
41	Type the number 5.5 and then press the <enter> key;</enter>		
	The screen should then appear as follows:		

	Simplified	Heat Exchang	ger Geometry -	Rating		
Exchanger (Tema) Type A_ 1	E_ U_				
TUBE SIDE DATA Tube Passes/She Fouling Tubes Per Shell Tube Data Length O.D. Thickness Pitch Orientation Layout Angle	ll 2 0.001 44.0 8.0 1.00 0.09 1.25 Horizonta 30_	_ F-hr-ft2/B _ ft _ in 0 in _ in 1	SHELL SIDE DA Shell Series tShell Paralle Fouling 0.00 Baffle Data Type Orientation Cut (% Area) Spacing	TA 1 1 2 Single Vertica 25 5.5 	F-hr-ft2/Bt	
Any of the foll	Any of the following parameters left BLANK will be calculated by HYSIM					
TUBE SIDE Transfer Coeff Press. Drop		Btu/hr-ft2- psi	SHELL SIDE Transfer Coef Press. Drop Shell Dia. Area	f	_Btu/hr-ft2- _psi _in _ft2	

Step	Action				
42	Press the <insert> key;</insert>				
	Specifying the conditions of the feed streams.				
43	Highlight the word Specify and then press the <enter> key;</enter>				
44	Highlight the word Stream and then press the <enter> key;</enter>				
45	Highlight the word WaterIn and then press the <enter> key;</enter>				
	Specifying the temperature of the "WaterIn" stream in F.				
46	Type the number 90 after the prompt (>) and then press the <enter> key;</enter>				
	Specifying the pressure of the "WaterIn" stream in psia.				
47	Type the number 64.7 after the prompt (>) and then press the <enter> key;</enter>				
	Specifying the molar flow rate of stream "WaterIn" in lb-mols/hr as unknown by typing the				
	letter "x".				
48	Type the letter x and then press the <enter> key;</enter>				
	Specifying the basis you wish to use when specifying the compositions.				
49	Highlight the word Mass Fractions and then press the <enter> key;</enter>				

3.3 Heat Exchangers (continued)

3.3.2 Shell and Tube Type Heat Exchanger - Rate (continued)

Step	Action
50	Enter the following mass fractions beside each component in the "WaterIn" stream:
	After the formula, H2O, type the number 1.0 in the blank and then press the <enter> key;</enter>
	After the word, Bottoms, type the number 0.0 in the blank;
	The screen should now appear as follows:

 [Stream	Mass Fractions	
н20	1.0		Bottoms	0.0

Step	Action			
51	Press the <insert> key;</insert>			
52	Highlight the word Specify and then press the <enter> key;</enter>			
53 ·	Highlight the word Stream and then press the <enter> key;</enter>			
54	Highlight the word BottomsIn and then press the <enter> key;</enter>			
	Specifying the conditions of the "BottomsIn" stream.			
	Specifying the temperature of the "BottomsIn" stream in F.			
55	Type the number 176.0 and then press the <enter> key;</enter>			
	Specifying the pressure of the "BottomsIn" stream in psia.			
56	Type the number 29.7 and then press the <enter> key;</enter>			
	Specifying the molar flow rate of stream "BottomsIn" in lb-mols/hr as unknown by typing the			
	letter "x".			
57	Type the letter x and then press the <enter></enter> key;			
	Specifying the basis you wish to use when specifying the compositions.			
58	Highlight the word Mass_Fractions and then press the <enter> key;</enter>			
59	Enter the following mass fractions beside each component in the "BottomsIn" stream:			
	After the formula, H2O, type the number 0.0 in the blank and then press the <enter> key;</enter>			
	After the word, Bottoms, type the number 1.0 in the blank;			
	The screen should now appear as follows:			

 H2O
 0.0_____
 Bottoms
 1.0_____

Step	Action
60	Press the <insert> key;</insert>
61	Highlight the word Worksheet and then press the <enter> key;</enter>
	The screen should now appear as shown on the following page.

r	المیک می این این این این این این این این این ای	Streams ===		
	New Value =			
Stream	WaterIn	WaterOut	BottomsIn	BottomsOut
Vapour_Frac	0.0000		0.0000	
Temperature	90.0000*		176.0000*	*
Pressure	64.7000*		29.7000*	
Flow				
Mass_Flow				
LiqVol_Flow				~
Energy_Flow				

Step	Action
62	Highlight the Mass Flow (lb/hr) blank under the MaterIn stream title and type the number
	144000. Then press the <enter> key;</enter>
63	Highlight the Mass Flow (lb/hr) blank under the BottomsIn stream title and type the number
	37000. Then press the <enter> key;</enter>
	The screen will than appear as shown below:

[==== Streams =		
	New Valu	1e =	lb/hr	
Stream	WaterIn	WaterOut	BottomsIn	BottomsOut
Vapour_Frac	0.0000	0.0000	0.0000	0.0000
Temperature	90.0000*	94.1947	176.0000*	142.2612
Pressure	64.7000*	59.7031	29.7000*	27.7017
Flow	7993.2945	7993.2945	293.2437	293.2437
Mass_Flow	144000.0025*	144000.0025	36999.9999*	36999.9999
LiqVol_Flow	9879.9851	9879.9863	3267.7893	3267.7893
Energy_Flow	-1.16639E+08	-1.16019E+08	1.85868E+06	1.23838E+06

Step	Action	
	Getting back to the Main Menu.	
64	Press the <esc> key until you reach the Main Menu;</esc>	
	Looking at the current Process Flow Diagram (PFD).	
65	Highlight the letters PFD and then press the <enter></enter> key;	
	The figure shown below will then appear as shown on the following page.	

Step	Action
	Getting back to the Main Menu.
66	Press the <esc> key until you reach the Main Menu;</esc>
	Looking at the Heat Exchanger Specification Sheet.
67	Highlight the word Print and then press the <enter> key;</enter>

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) *Operations* - the different unit operations will be printed out.

- c) <u>Spec Sheets</u> The specifications sheets will be printed out.
- d) *Hypotheticals* Hypothetical component information will be printed out.
- e) *Format* Specifies format of the printout.
- f) <u>Cost</u> Lists costs of the run, if a royalty is being charged.
- g) File Saves results in a file.
- h) Printer Toggles on a printer.
- i) <u>Cases</u> Lists the stored files.
- j) *Description* Prints case description.
- k) Oil Input Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action			
68	Highlight the word Spec_Sheets and then press the <enter> key;</enter>			
69	Highlight the word Operations and then press the <enter></enter> key;			
70	Highlight the word hxerrating and then press the <enter> key;</enter>			
	Pressing the <f10> key will get the Main Menu off of the screen in enabling you to see the</f10>			
	data on the screen underneath it.			
71	Press the <f10> key;</f10>			
	The screen will appear as shown on the following page. Use the $\langle Page Up \rangle$ and $\langle Page Up \rangle$			
	Down > keys to scroll the screen text up and down.			

Operation Nam Not	ne: hxerrati :e:	ng HY HYSI Case	SIM HEAT EXCHA M Version Name:	NGER SPECIFI C2.53	CATION SHEET
Input Exchanger (Te TUBE SIDE DAT Tube Passes Fouling Tubes/Shell Tube Data	ema) Type AE TA 2.0 0.00100 44.0	U F-hr-ft2/Btu	SHELL SIDE D Shell Ser Shell Para Fouling Baffle Data	ATA 1.0 1.0 0.00200 1	-hr-ft2/Btu
Length O.D. Thickness Pitch Orient Layout Ang	8.0000 1.0000 0.0900 1.2500 Horizontal 30.0000	ft in in Deg	Type Orient Cut(% Area) Spacing	Single Vertical 25.00 5.5000 in	1
Trans Coeff Press. Drop		Btu/hr-ft2-F psi	Trans Coeff Press. Drop Shell Dia. Area	Bi p: ir	tu/hr-ft2-F si 1 22
Wtd LMTD Wtd UA Tube Coeff Shell Coeff Shell Dia	620298.7110 66.0416 9392.5490 1533.6458 190.3665 10.3560	Btu/hr F Btu/F-hr Btu/hr-ft2-E Btu/hr-ft2-E in	LMTD UA FT Factor F Shell Passes F Shell Area	65.933 9459.916 0.9949 1.0 92.1530	7 F 3 Btu/F-hr 5 6 ft2
<pre>Dutles Btu/f Vapour Two Phase Liquid Inlet</pre>	ır —	Shell 0.0000 0.0000 620298.7110	Side	Tube 0.0000 0.0000 620294.1496	Side
Stream Name From Operation Mass frac var Temperature Pressure Mass Rate Flow Rate	pn F psia lb/hr lbmole/hr	BottomsIn 0.0000 176.0000 29.7000 36999.9995 293.2437		WaterIn 0.0000 90.0000 64.7000 144000.0025 7993.2945	
Stream Name To Operatic Mass frac vap Temperature Pressure	on F psia	BottomsOut 0.0000 142.2612 27.7017) 2 7	WaterOut 0.0000 94.194 59.703) 7 L
Heat Cu Duty Btu/hr	irve Shell Temp M F	Side ass Fct Vap	Heat C Duty Btu/hr	urve Tube S Temp I F	ide Mass Fct Vap
620298.7110 465224.0480 310149.3555 155064.7997 -6.7056	176.00 167.69 159.30 150.83 142.26	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	620314.7054 465220.5826 310146.8971 155073.3153 -0.4136	94.19 93.15 92.10 91.05 90.00	0.0000 0.0000 0.0000 0.0000 0.0000

Step	Action
	Pressing the <f10> key again, to get back to the Main Menu.</f10>
72	Press the $\langle F10 \rangle$ key;
	Looking at the compositions of the streams.
73	Highlight the word Print and then press the <enter> key;</enter>

The various print options can be found in page 152.

Step	Action			
74	Highlight the word Streams and then press the <enter> key;</enter>			
75	Highlight the word All and then press the <enter> key;</enter>			
76	Highlight the dash symbol - and then press the <enter> key;</enter>			
	Pressing the <f10> key will get the Main Menu off of the screen in enabling you to see the</f10>			
	data on the screen underneath it.			
77	Press the <f10></f10> key;			
	The screen will appear as shown below: Use the <page up=""> and <page down=""> keys to</page></page>			
	scroll the screen text up and down.			

Stream		WaterIn	WaterOut	BottomsIn	BottomsOut
Description					
Vapour frac.		0.0000	0.0000	0.0000	0.0000
Temperature	F	90.0000*	94.1947	176.0000*	142.2612
Pressure	psia	64.7000*	59.7031	29.7000*	27.7017
Molar Flow	lbmole/hr	7993.2945	7993.2945	293.2437	293.2437
Mass Flow	lb/hr	144000.0025*	144000.0025	36999.9999*	36999.9999
LiqVol Flow	barrel/day	9879.9851	9879.9863	3267.7893	3267.7893
Enthalpy	Btu/hr	-1.16639E+08 ·	-1.16019E+08	1.85868E+06	1.23838E+06
Density	lb/ft3	62.5541	62.4430	44.9985	46.0166
Mole Wt.		18.0151	18.0151	126.1749	126.1749
Spec. Heat	Btu/lb-F	1.0302	1.0303	0.5070	0.4866
Therm Cond	Btu/hr-ft-	F 0.3590	0.3608	0.0659	0.0684
Viscosity	сP	0.7606	0.7250	0.3629	0.4353
Z Factor		0.0032	0.0029	0.0122	0.0118
Sur Tension	dyne/cm	70.8481	70.4429	18.6817	20.4503
Std Density	lb/ft3	63.3284	63.3284	48.4000	48.4000
H20	mole frac.	1.0000*	1.0000	0.0000*	0.0000
Bottoms	mole frac.	0.0000*	0.0000	1.0000*	1.0000

Step	Action		
78	Press the $\langle F10 \rangle$ key;		
79	Do you want to continue adding other unit operations to this heat exchanger?		
	• If <u>Yes</u> , turn to the pertinent section of this manual now;		
	• If No, turn to the "Exiting HYSIM" Section of this manual.		

•

3.3.3 Single Sided Heat Exchanger - Heater

<u>Objective</u> - This exercise is an example of a single sided heat exchanger (unit name: <u>Heater</u>) calculation. The purpose of the single sided heat exchanger is to heat one process inlet stream using a fired heater (furnace). This example can be modified by specifying another property package and/or components, compositions and feed conditions.

In this example of a Single Sided Heat Exchanger, the feed stream, called <u>PropaneIn</u>, is heated from 90 °F to an outlet temperature of 115 °F in stream <u>PropaneOut</u>. The energy needed, 4625 Btu/hr, must be supplied by an external source.

<u>Technical Example Reference</u>: Reference 1 - HYSIM Interactive Tutorial, in the Hyprotech's HYSIM User Guide, Version C2.50, March 1994, pages 3-98 to 3-128. <u>Other References</u>: Refs. 1 & 2.

Directions: Pages 156 through 162 outline the execution of a heater example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys $(\leftarrow, \rightarrow, \uparrow, \circ, \uparrow, \circ, \downarrow keys)$ until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "escape" key have additionally been placed inside <> brackets (e.g. <Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capitals and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called *Heater*, is shown below:

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).
	• If <u>Yes</u> , proceed with Step 2.
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>
	The following screen will appear:

		COMPONENT SELECTION					
Selected	Synonym	Name	Formula	Criteria			
	OIL	OIL		ALL			
	HYPOTHETICAL	HYPOTHETICAL		HC			
	C1	Methane	CH4	SOLID			
	C2	Ethane	C2H6	MISC			
	C3	Propane	СЗН8	AMINE			
	i-C4	i-Butane	C4H10	ALCOHOL			
	n-C4	n-Butane	C4H10	KETONE			
	i-C5	i-Pentane	C5H12	ALDEHYDE			
	n-C5	n-Pentane	C5H12	ESTER			
	C6	n-Hexane	C6H14	CARBACID			
	C7	n-Heptane	C7H16	HALOGEN			
	C8	n-Octane	C8H18	NITRILE			
	C9	n-Nonane	C9H20	PHENOL			
	C10	n-Decane	C10H22	ETHER			
	C11	n-Cll	C11H24	USER			
	C12	n-C12	C12H26				
¥ ↓	······ · · · · · ·	Search by SYNONYM	······································				
F1 - Help, F3 - Menu, F4 - Flip Srch, F5 - Exam, F6 - Move, F8 - Change							
	PRESS INSERT TO SUBMIT						

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Selecting the components in the feed stream.
4	Highlight the following component name under the "Component Selection" section and press
	the <enter> key so that the name then appears in the "Selected" column, as follows:</enter>
	Highlight the word Propane and then press the < Enter > key;
5	Press the <insert> key;</insert>

Step	Action
	Changing the units from the HYSIM default SI or metric units (kg. kPa. C. etc.) to field units
	(lb, psia, F.etc.).
6	Highlight the word Utility and then press the <enter> key;</enter>
7	Highlight the word Configuration and then press the < Enter > key;
8	Highlight the word Units and then press the <enter> key;</enter>
9	Highlight the word Field and then press the <enter> key;</enter>
	Getting back to the Main Menu.
10	Press the <esc></esc> key;
	Specifying the type of operation we want to perform.
11	Highlight the word Operation and then press the <enter> key;</enter>
	Typing a name for the operation. (We will call it "Heater").
12	Type the word Heater and then press the <enter> key;</enter>
13	Highlight the words Cooler/Heater and then press the <enter> key;</enter>
	The following diagram of the single-sided heat exchanger process will appear:

	Sing Opera	gle Sided Heat Exch ation Name: Heater	anger
Inlet:	Please F	Delta P =	and Delta P
Energy Stream: Function :	Cooler	J	

Step	Action
	Naming the streams.
14	Type the word PropaneIn in the blank and then press the <enter></enter> key;
15	Type the word PropaneOut in the blank and then press the <enter> key;</enter>
16	Type the word Energy in the blank and then press the <enter></enter> key;
	Specifying the function of the heat exchanger as a Heater and not a Cooler (the Default Entry).
17	Press the <delete></delete> key until the word Cooler is deleted. Then type in the word Heater and press the <enter></enter> key;
	Specifying the change in pressure (ΔP) over the heat exchanger in psi.
18	Type 5.0 in the blank.
	The screen should now appear as shown below:

Opera	gle Sided Heat ation Name: H	: Exchanger Heater	
Please Fi	ll in Stream	Names and Delta P	
Inlet: PropaneIn=▶	Delta P =	5.0 Outlet: PropaneOut	
Energy Stream: Ene: Function : Heat	rgy		

Step	Action
	Getting back to the Main Menu.
19	Press the <insert> key;</insert>
	Specifying the conditions of the feed stream, PropaneIn.
20	Highlight the word Specify and then press the <enter> key;</enter>
21	Highlight the word Stream and then press the <enter> key;</enter>
22	Type the word PropaneIn and then press the <enter> key;</enter>
	Specifying the temperature of the PropaneIn stream F.
23	Type the number 90.0 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the PropaneIn stream in psia.
24	Type the number 248.5 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the molar flow rate of PropaneIn stream in lb-mols/hr.
25	Type the number 5.7 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the basis you wish to use when specifying the compositions.
26	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
27	Enter the following molar flows beside each component in the PropaneIn stream:
	After the word, Propane, type the number 1.0 in the blank;
	The screen should now appear as follows:

_____ Stream Mole Fractions _____

Propane 1.0_____

Step	Action
28	Press the <insert> key;</insert>
29	Highlight the word Worksheet and then press the <enter> key;</enter>
30	Place the cursor in the PropaneOut column and the Temperature row, and then type the number
	115 and press the <enter> key;</enter>
	The screen should now appear as shown on the following page.

[== Streams ===		
	New Value	9 =		
Stream	PropaneIn	PropaneOut	Energy	
Vapour_Frac	0.0000	0.0000	2.0000*	
Temperature	90.0000*	115.0000*	0.0000*	~ ~ ~
Pressure	248.5000*	243.5000	0.0000*	
Flow	5.7000*	5.7000	0.0000*	
Mass_Flow	251.3529	251.3529	0.0000*	
LiqVol_Flow	33.9680	33.9680	0.0000*	
Energy_Flow	538.4943	5163.2748	4624.7805	

3.3.3	Single	Sided	Heat	Exchanger -	Heater	(continued))
-------	--------	-------	------	-------------	--------	-------------	---

Step	Action
	Getting back to the Main Menu.
31	Press the <esc> key until you reach the Main Menu;</esc>
	Looking at the current Process Flow Diagram (PFD).
32	Highlight the letters PFD and then press the < Enter > key;
	The following figure will appear:

Step	Action
	Specifying a different type of heat exchanger icon on the PFD.
33	Move the mouse until the cross-hatches on the screen are over the heater and then press the left
	mouse key. (A box will appear around the heater.)
34	Press the <i> key.</i>
35	Place the crosshatch (using the mouse) over the first icon (First column, first row) and press the
	left mouse key
	The PFD will then appear as shown below:

3.3 Heat Exchangers (continued)

3.3.3 Single Sided Heat Exchanger - Heater (continued)

Step	Action
	Getting back to the Main Menu.
36	Press the <esc> key until you reach the Main Menu;</esc>
	Looking at the Heater Heat Exchanger Specification Sheets.
37	Highlight the word Print and then press the <enter> key;</enter>

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - the conditions, physical properties, and compositions of the streams will be printed out.

- b) **Operations** The different unit operations will be printed out.
- c) <u>Spec Sheets</u> The specifications sheets will be printed out.
- d) Hypotheticals Hypothetical component information will be printed out.
- e) *Format* Specifies the format of the printout.
- f) <u>Cost</u> Lists costs of the run, if a royalty is being charged.
- g) File Saves results in a file.
- h) Printer Toggles on a printer.
- i) <u>Cases</u> Lists the stored files.
- j) *Description* Prints case description.
- k) Oil Input Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action		
38	Highlight the word Spec-Sheets and then press the <enter> key;</enter>		
39	Highlight the word Operations and then press the <enter> key;</enter>		
40	Highlight the word Heater and then press the <enter> key;</enter>		
	Pressing the <f10> key will get the Main Menu off of the screen in enabling you to see the</f10>		
	data on the screen underneath it.		
41	Press the <f10> key;</f10>		
	The screen will appear as seen below and on the following page. Use the <page up=""> and</page>		
	<page down=""> keys to scroll the screen text up and down.</page>		

	UFATED COPCIFICATION CUPP	
HVSIM Version	C2 53	Date 96/09/27
UIDTH VEIDION	(2.))	
Case Name:		Time 8:58:29
_		
Operation Name: I	Heater	
Operation Noto:		
operation note.		
Phase Duties =	Process Side	Total Duty =====
Indbe Ducies		
vapour	0.0000 Btu/nr	4624.7805 Btu/hr
Two Phase	0 0000 Btu/br	
LIQUIA	4624.7805 Btu/hr	

= Inlet	Process Side ——	
Stream Name	PropaneIn	
From Operation	-	
Mass Frac Vap	0.0000	
Temperature	90.0000 F	
Pressure	248.5000 psia	
Mass Flow	251.3529 lb/hr	
Flow	57000 lbmole/br	
1100		
Outlet	Process Side	
Stream Name	PropaneOut	
To Operation		
Mass Frac Vap	0.0000	
Temperature	115.0000 F	
Pressure	243.5000 psia	
Fluid Properties	Process	s Side
Reference Temp 1	90 0000 F	Vapour
Reference Press 1	248 5000 peia	
Heat Canadity	0 6992 Btu/1h-F	- Deu/lb E
Viscosity	n 1935 cP	BLU/ID-F
Thermal Conductivity	0.0524 Bty/br-ft-F	Den CP
Dongity	30.1906 Jb/fr	=== BLU/MI = L - F
Mologylar Weight	44 0070	ID/IL3
Molecular Weight	44.0970	
2 Factor		
Reference Temp 2	115 0000 F	
Reference Press 2	243 5000 pria	F F
Heat Capacity	0.7729 Btu (1b-F	Dtu/lb R
Viccopity		BLU/ID-F
Thormal Conductivity	0.0813 CP	
Density	$\begin{array}{c} 0.0477 DCU/MI - LU - F \\ 0.0477 DCU/MI - F \\ 0.0477 DCU/MI - LU - F \\ 0.0477 DCU/MI - L$	BLU/NF-IC-F
Density Malegular Maight	28.3438 1D/1L3	1D/It3
Molecular Weight	44.0970	
4 Factor)	
	Process Heat Curve	
Duty	Temperature	Mass Frac Vap
Btu/hr	F	-
4624 7795	115 0000	0 0000
3468 5852	109 0051	0.0000
2200.0022	102 9340	0.0000
1156 0073		
1 100.0013		0.0000
-0.0018	30.0000	0.0000

.

3.3 Heat Exchangers (continued)

3.3.3 Single Sided Heat Exchanger - Heater (continued)

Step	Action
	Pressing the <f10> key again, to get back to the Main Menu.</f10>
42	Press the <f10> key;</f10>
	Looking at the compositions of the streams.
43	Highlight the word Print and then press the <enter> key;</enter>

The various print options can be found on page 160.

Step	Action		
44	Highlight the word Streams and then press the <enter> key;</enter>		
45	Highlight the word All and then press the <enter> key;</enter>		
46	Highlight the dash symbol - and then press the <enter> key;</enter>		
	The streams will appear as shown below. Repeat Steps 41-42 in order to see the results on		
	the screen.		

Stream		PropaneIn	PropaneOut	Energy
Description Vapour frac		0.0000	0.0000	2.0000*
Temperature	F	90.0000*	115.0000*	0.0000*
Pressure	psia	248.5000*	243.5000	0.0000*
Molar Flow	lbmole/hr	5.7000*	5.7000	0.0000*
Mass Flow	lb/hr	251.3529	251.3529	0.0000*
LigVol Flow	barrel/day	33.9680	33.9680	0.0000*
Enthalpy	Btu/hr	538.4943	5163.2748	4624.7805
Density	lb/ft3	30.1906	28.5438	0.0000
Mole Wt.		44.0970	44.0970	0.0000
Spec. Heat	Btu/lb-F	0.6992	0.7778	
Therm Cond	Btu/hr-ft-F	0.0524	0.0477	
Viscosity	CP	0.0935	0.0813	
Z Factor		0.0615	0.0610	
Sur Tension	dyne/cm	6.0614	4.5073	
Std Density	lb/ft3	31.6435	31.6435	
Propane	mole frac.	1.0000*	1.0000	0.0000*

Step	Action	
47	Do you want to continue adding other unit operations to this heater?	
	• If <u>Yes</u> , turn to the pertinent section of this manual now;	
L	If No, turn to the "Exiting HYSIM" Section of this manual.	

•

3.3.4 Single Sided Heat Exchanger - Cooler

<u>Objective</u> - This exercise is an example of a single sided heat exchanger (unit name: <u>Cooler</u>) calculation using HYSIM. The purpose of the single sided heat exchanger is to cool one inlet feed stream, using an air-fin exchanger. This example can be modified by specifying another property package and/or components, compositions and feed conditions.

In this example, the feed stream to the cooler, called <u>*PropaneIn*</u>, is cooled from an inlet temperature of 155.3 °F to an outlet temperature of 120 °F in stream <u>*PropaneOut*</u>. The energy lost from the inlet stream is 4525 Btu/hr.

<u>Technical Example Reference</u>: Reference 1 - HYSIM Interactive Tutorial, in the Hyprotech's User Guide, Version C2.50, March 1994, pages 3-98 to 3-128. Other References: Refs. 1 & 2.

Directions: Pages 164 through 170 outline the execution of a cooler example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys $(\leftarrow, \rightarrow, \uparrow, \text{ or } \downarrow \text{ keys})$ until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "escape" key have additionally been placed inside $\langle \rangle$ brackets (e.g. $\langle Esc \rangle$) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capitals and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called <u>Cooler</u>, is shown below:

Step	Action		
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).		
	• If <u>Yes</u> , proceed with Step 2.		
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures		
	before proceeding to Step 2.		
	Starting with a new case.		
2	Highlight the word No and then press the <enter> key;</enter>		
	Selecting a Property Package.		
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>		
	The following screen will appear:		

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
A	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	Cl	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	C3	Propane	C3H8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H2O	PHENOL
	C10	n-Decane	C10H22	ETHER
	C11	n-C11	C11H24	USER
	C12	n-C12	C12H26	
∥— v – ↓ —	······ · · · · · · · · · · · · · · · ·	Search by SYNONYM		1
Fl - Help,	F3 - Menu, F4 PR	- Flip Srch, F5 - Exa ESS INSERT TO SUBMIT	am, F6 - Move	, F8 - Change

Step	Action	
	Selecting the components in the feed stream.	
4	Highlight the following component name under the "Component Selection" section and press	
	the <i><enter></enter></i> key so that the name then appears in the "Selected" column, as follows:	
	Highlight the word Propane and then press the < Enter > key;	
5	Press the <insert> key;</insert>	

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action		
	Changing the units from the HYSIM default SI or metric units (kg. kPa, °C, etc.) to field units		
	(lb, psia, F, etc.).		
6	Highlight the word Utility and then press the <enter> key;</enter>		
7	Highlight the word Configuration and then press the <enter> key;</enter>		
8	Highlight the word Units and then press the <enter> key;</enter>		
9	Highlight the word Field and then press the <enter> key;</enter>		
	Getting back to the Main Menu.		
10	Press the <esc> key,</esc>		
	Specifying the type of operation we want to perform.		
11	Highlight the word Operation and then press the <enter> key;</enter>		
	Typing a name for the operation. (We will call it "Cooler").		
12	Type the word Cooler and then press the <enter> key;</enter>		
13	Highlight the words Cooler/Heater and then press the <enter> key;</enter>		
The following diagram of the single-sided heat exchanger process will appear:			
[Single Sided Heat Exchanger		
	Operation Name: Cooler		
	Please Fill in Stream Names and Delta P		
Inle	Inlet: Delta P = Outlet:		
Energ	gy Stream:		
Func	Function : Cooler		
Step	Action		
	Naming the streams		
14	Type the word PropaneIn in the blank and then press the <enter></enter> key:		
15	Type the word PropaneOut in the blank and then press the <enter< b="">> key</enter<>		
16	Type the word Energy in the blank and then press the <enter> key;</enter>		

 17
 Press the <Enter> key;

 Specifying the change in pressure (ΔP) over the heat exchanger in psi.

 18
 Type 5.0 in the blank;

 The screen should now appear as shown below:

Operation Name: Cooler
Please Fill in Stream Names and Delta P
Inlet: PropaneIn Delta P = 5.0 Outlet: PropaneOut
Energy Stream: Energy

Step	Action
	Getting back to the Main Menu.
19	Press the <insert> key;</insert>
	Specifying the conditions of the PropaneIn stream.
20	Highlight the word Specify and then press the <enter> key;</enter>
21	Highlight the word Stream and then press the <enter> key;</enter>
22	Highlight the word PropaneIn and then press the <enter> key;</enter>
	Specifying the temperature of the PropaneIn stream in F.
23	Type the number 155.3 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the PropaneIn stream in psia.
24	Type the number 248.5 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the molar flow rate of PropaneIn stream in lb-mols/hr.
25	Type the number 5.7 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the basis you wish to use when specifying the compositions.
26	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
27	Enter the following molar flows beside the one component in the PropaneIn stream:
	After the word, Propane, type the number 1.0 in the blank;
	The screen should now appear as follows:

_____ Stream Mole Fractions _____

Propane 1.0_____

Step	Action			
28	Press the <insert> key;</insert>			
29	Highlight the word Worksheet and then press the <enter> key;</enter>			
30	Place the cursor in the PropaneOut column and the Temperature row and then type the number			
	120 and press the <enter> key;</enter>			
	The screen should now appear as shown on the following page.			
[````````````````````````````````````		=== Streams ===		
---	------------	-----------------	-----------	--
	New Value) =		
Stream	PropaneIn	PropaneOut	Energy	
Vapour_Frac	1.0000	1.0000	2.0000*	
Temperature	155.3000*	120.0000*	0.0000*	
Pressure	248.5000*	243.5000	0.0000*	
Flow	5.7000*	5.7000	0.0000*	
Mass_Flow	251.3529	251.3529	0.0000*	
LiqVol_Flow	33.9680	33.9680	0.0000*	
Energy_Flow	41742.1678	37217.5937	4524.5743	

Step	Action
	Getting back to the Main Menu.
31	Press the <esc> key until you reach the Main Menu;</esc>
	Looking at the current Process Flow Diagram (PFD).
32	Highlight the letter PFD and then press the <enter></enter> key;
	The following figure will appear:

Step	Action
	Specifying a different type of heat exchanger icon on the PFD.
33	Move the mouse until the cross-hatches on the screen are over the cooler and then press the left
	mouse key. (A box will appear around the cooler.)
34	Press the <i> key.</i>
35	Place the crosshatch (using the mouse) over the first icon (First column, first row) which
	represents an aerial cooler and press the left mouse key.
	The following PFD will then appear on the screen:

Step	Action
	Getting back to the Main Menu.
36	Press the <esc> key until you reach the Main Menu;</esc>
	Looking at the Cooler Heat Exchanger Specification Sheets.
37	Highlight the word Print and then press the < Enter > key;

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

- b) *Operations* The different unit operations will be printed out.
- c) Spec Sheets The specifications sheets will be printed out.
- d) Hypotheticals Hypothetical component information will be printed out.
- e) *Format* Specifies the format of the printout.
- f) <u>Cost</u> Lists costs of the run, if a royalty is being charged.
- g) File Saves results in a file.
- h) Printer Toggles on a printer.
- i) <u>Cases</u> Lists the stored files.
- j) *Description* Prints case description.
- k) Oil Input Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action		
38	Highlight the word Spec-Sheets and then press the <enter> key;</enter>		
39	Highlight the word Operations and then press the <enter> key;</enter>		
40	Highlight the word Cooler and then press the <enter> key;</enter>		
	Pressing the <f10> key will get the main menu off of the screen in enabling you to see the</f10>		
	data on the screen underneath it.		
41	Press the <f10> key;</f10>		
	The screen will appear as shown below and on the following page. Use the <page up=""> and</page>		
	<page down=""> keys to scroll the screen text up and down.</page>		

TATATH GOOT DD /	סדיאסרים מספייני	TONTION	CUPPT		·		
HYSIM COOLER / HYSIM Version Case Name:	C2.53	ICATION	SUPEI	Da Ti	te me	96/09/2 12:28:1	7 3
Operation Name: Operation Note:	Cooler						
 Phase Duties_ Vapour Two Phase Liquid	Process 4524.5743 0.0000 0.0000	Side = Btu/hr Btu/hr Btu/hr		— Total 4524.5743	Dut Bt	y <u></u> u/hr	==

Inlet	Process Side	
Stream Name	PropaneIn	
From Operation		
Magg Frag Van	1 0000	
Mass riac vap	155 3000 P	
Temperature	133.3000 F	
Pressure	248.5000 psia	
Mass Flow	251.3529 1D/nr	
Flow	5.7000 lbmole/hr	
Outlet	Process Side	
Stream Name	PropaneOut	
To Operation		
Mass Frac Vap	1.0000	
Temperature	120.0000 F	н.
Pressure	243.5000 psia	
11000010	_	
Fluid Properties	Process	s Side
	Liquid	Vapour
Reference Temp 1	F	120.0000 F
Reference Press 1	psia	243.5000 psia
Heat Capacity	Btu/lb-F	0.5308 Btu/1b-F
Viscosity	cP	0.0098 cP
Thermal Conductivity	Btu/hr-ft-F	0.0130 Btu/hr-ft-F
Dongity	lb/ft3	2 3727 1 h/fr 3
Molocular Weight		44 0970
Morecurar mergine		0 7275
Z FACCUI		0.7275
Deference Momp 2	T	155 3000 5
Reference Temp 2		155.3000 F
Reference Press 2		240.5000 psia
Heat Capacity	Btu/ID-F	0.5220 Btu/1D-F
Viscosity	CP	0.0103 CP
Thermal Conductivity	Btu/hr-ft-F	0.0141 Btu/hr-ft-F
Density	1b/ft3	2.1346 lb/ft3
Molecular Weight		44.0970
Z Factor		0.7779
	1	
	Process Heat Curve	
Duty	Temperature	Mass Frac Vap
Btu/hr	٦	
		1 0000
4524.5747		1.0000
3393.4309	146.4538	1.0000
2262.4827	137.6121	1.0000
1131.1459	128.7860	1.0000
-0.0000	120.0000	1.0000

Step	Action
	Pressing the <f10> key again, to get back to the Main Menu.</f10>
42	Press the <f10> key;</f10>
	Looking at the compositions of the streams.
43	Highlight the Print key and then press the <enter> key;</enter>

The various print options can be found on page 168.

Step	Action
44	Highlight the word Streams and then press the <enter> key;</enter>
45	Highlight the word All and then press the <enter> key;</enter>
46	Highlight the dash symbol - and then press the <enter> key;</enter>
	The streams will appear as shown below. Repeat Steps 41-42 in order to see the results on
	the screen.

Stream Description		PropaneIn	PropaneOut	Energy
Vapour frac.		1.0000	1.0000	2.0000*
Temperature	F	155.3000*	120.0000*	0.0000*
Pressure	psia	248.5000*	243.5000	0.0000*
Molar Flow	lbmole/hr	5.7000*	5.7000	0.0000*
Mass Flow	lb/hr	251.3529	251.3529	0.0000*
LiqVol Flow	barrel/day	33.9680	33.9680	0.0000*
Enthalpy	Btu/hr	41742.1678	37217.5937	4524.5743
Density	lb/ft3	2.1346	2.3727	0.0000
Mole Wt.		44.0970	44.0970	0.0000
Spec. Heat	Btu/lb-F	0.5220	0.5308	
Therm Cond	Btu/hr-ft-F	0.0141	0.0130	
Viscosity	сP	0.0103	0.0098	
Z Factor		0.7779	0.7275	
Sur Tension	dyne/cm			
Std Density	lb/ft3		~	
Propane	mole frac.	1.0000*	1.0000	0.0000*

Step	Action
47	Do you want to continue adding other unit operations to this cooler?
	• If <u>Yes</u> , turn to the pertinent section of this manual now;
	If No, turn to the "Exiting HYSIM" Section of this manual.

3.3.5 LNG (Multi-Pass) Heat Exchanger

<u>Objective</u> - This exercise is an example of a multi-pass heat exchanger (or an LNG heat exchanger) calculation using HYSIM. The purpose of the LNG heat exchanger (cold box) is to solve heat and material balances for multiple process inlet and outlet streams, specifying sufficient information for the system. This example can be modified by specifying another property package and/or components, compositions and feed/outlet conditions.

This example of a multi-pass heat exchanger, shows a heat exchanger which has four inlet streams, <u>WarmIn1</u>, <u>WarmIn2</u>, <u>ColdIn3</u>, and <u>ColdIn4</u>, and four product streams, <u>ColdOut1</u>, <u>ColdOut2</u>, <u>WarmOut3</u>, and <u>WarmOut4</u>. (The stream representing the energy-in is called <u>Sinkloss</u> and the stream representing the energy-out is <u>Srceloss</u>). The composition, flowrate and other conditions of the inlet streams are given, as well as certain temperature specifications of various streams in relation to one another. The temperature, as well as other conditions of the outlet streams are calculated by HYSIM.

<u>Technical Example Reference</u>: Reference 2 - Hyprotech's "HYSIM Special Features and Applications Guide," Version C2.50, March 1994, pages GP-77 to GP-82. <u>Other References</u>: Refs. 1 & 2.

Directions: Pages 172 through 186 outline the execution of a LNG Multi-Pass heat exchanger example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys ($\leftarrow, \rightarrow, \uparrow$, or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the Action Step instructions below. The menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action Column. Function keys to be pressed by the user, such as the "escape" key have additionally been placed inside <> brackets (e.g. <Esc>) in the Action column. Supplemental comments are indicated in *italicized* print. Typing can be done in capitals and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called <u>LNG</u>, is shown below:

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V)
	• If <u>Yes</u> , proceed with Step 2.
	 If <u>No</u>, turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>
	The following screen will appear:

		COMPONENT SELECTION			
Selected	Synonym	Name	Formula	Criteria	
A	OIL	OIL		ALL	
	HYPOTHETICAL	HYPOTHETICAL		НC	
	C1	Methane	CH4	SOLID	
	C2	Ethane	C2H6	MISC	
	C3	Propane	СЗН8	AMINE	
	i-C4	i-Butane	C4H10	ALCOHOL	
	n-C4	n-Butane	C4H10	KETONE	
	1-C5	i-Pentane	C5H12	ALDEHYDE	
	n-C5	n-Pentane	C5H12	ESTER	
	C6	n-Hexane	C6H14	CARBACID	
	C7	n-Heptane	C7H16	HALOGEN	
	C8	n-Octane	C8H18	NITRILE	
	C9	n-Nonane	C9H20	PHENOL	
	C10	n-Decane	C10H22	ETHER	
	C11	n-C11	C11H24	USER	
	C12	n-C12	C12H26		
• - + • - +Search by SYNONYM					
F1 - Help, F3 - Menu, F4 - Flip Srch, F5 - Exam, F6 - Move, F8 - Change PRESS INSERT TO SUBMIT					

Step	Action			
	Selecting the components in the feed streams.			
4	Highlight each of the following component names under the "Component Selection" section			
	and press the <enter> key so that the name then appears in the "Selected" column, as</enter>			
	follows:			
	Highlight the word Methane and then press the <enter> key;</enter>			
	Highlight the word Ethane and then press the <enter> key;</enter>			
	Highlight the word Propane and then press the <enter></enter> key;			
	Highlight the word i-Butane and then press the <enter> key</enter>			
	Highlight the word n-Butane and then press the <enter> key;</enter>			
	Highlight the word i-Pentane and then press the <enter> key;</enter>			
	Highlight the word n-Pentane and then press the <enter> key;</enter>			
	The screen on the following page will then appear.			

COMPONENT SELECTION						
Selected	Synonym	Name	Formula	Criteria		
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane	<pre></pre>	OIL HYPOTHETICAL n-Hexane n-Heptane n-Octane n-Octane n-Decane n-C11 n-C12 n-C13 n-C13 n-C14 n-C15 n-C16 n-C17 n-C18	C6H14 C7H16 C8H18 C9H20 C10H22 C11H24 C12H26 C13H28 C14H30 C15H32 C16H34 C17H36 C18H38	ALL HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL ETHER USER		
		n-C19	C19H40			
F1 - Help,	F1 - Help, F4 - Flip Srch, F5 - Exam, F6 - Move.					
F3 - Menu,	PRESS INSI	ERT TO SUBMIT	F8 -	Change		

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Getting back to the Main Menu.
5	Press the <insert> key;</insert>
	Specifying the type of operation we want to perform.
6	Highlight the word Operation and then press the <enter> key,</enter>
	Typing a name for the operation. (We will call it "LNG").
7	Type the letters LNG and then press the <enter> key;</enter>
8	Highlight the letters LNG and then press the <enter> key;</enter>
	The following spreadsheet for listing stream names and other information for the LNG heat
	exchanger process will appear:

Operation Name:	LNG Excl LNG	nanger - H -	lxchanger Pa	.sses	
Inlet Stream	Outlet Stream	Energy Stream	Pres. Drop [kPa]	Pass UA [kJ/C-h]	Hot or Cold

Step	Action
	Specifying the Inlet Stream Name.
9	Type the name WarmIn1 and then press the <enter> key;</enter>
	Specifying the Outlet Stream Name.
10	Type the name ColdOut1 and then press the <enter> key two times;</enter>
	Specifying the Pressure Drop in kPa.
11	Type the number 100 and then press the <enter> key two times;</enter>
	Specifying whether WarmIn1 is the Hot or Cold stream, as compared to ColdOut1.
12	Type the word Hot and then press the <enter> key;</enter>
	Specifying the Inlet Stream Name.
13	Type the name WarmIn2 and then press the <enter> key,</enter>
	Specifying the Outlet Stream Name.
14	Type the name ColdOut2 and then press the <enter> key two times;</enter>
	Specifying the Pressure Drop in kPa.
15	Type the number 10 and then press the <enter> key two times;</enter>
	Specifying whether WarmIn2 is the Hot or Cold stream, as compared to ColdOut2.
16	Type the word Hot and then press the <enter> key;</enter>
	Specifying the Inlet Stream Name.
17	Type the name ColdIn3 and then press the <enter> key;</enter>
	Specifying the Outlet Stream Name.
18	Type the name WarmOut3 and then press the <enter> key two times;</enter>
	Specifying the Pressure Drop in kPa
19	Type the number 50 and then press the <enter> key two times</enter>
	Specifying whether WarmIn1 is the Hot or Cold stream, as compared to ColdOut1.
20	Type the word Cold and then press the <enter> key;</enter>
	Specifying the Inlet Stream Name.
21	Type the name ColdIn4 and then press the <enter> key;</enter>
	Specifying the Outlet Stream Name.
22	Type the name WarmOut4 and then press the <enter> key two times;</enter>
	Specifying the Pressure Drop in kPa.
23	Type the number 5 and then press the <enter> key two times;</enter>
	Specifying whether ColdIn4 is the Hot or Cold stream, as compared to WarmOut4.
24	Type the word Cold;
	The following table will then appear:
	LNG Exchanger - Exchanger Passes
Oper	cation Name: LNG

Inlet	Outlet	Energy	Pres. Drop	Pass UA	Hot or
Stream	Stream	Stream	[kPa]	[kJ/C-h]	Cold
WarmIn1 WarmIn2 ColdIn3 ColdIn4	ColdOut1 ColdOut2 WarmOut3 WarmOut4		100 10 50 5		Hot_ Hot_ Cold old_

* 110

Step	Action
25	Press the <insert> key;</insert>
	The following screen will then appear:

Operation Name: LNG	anger - specifications
UA: kJ/C-h	Min temp approach: C
Heat leak stream:	Heat loss stream:
Heat leak fraction: 0.0000	Heat loss fraction: 0.0000
Number of intervals: 1	Locate phase changes: Yes_
Convergence tolerance: 1.0006	e-04 Composite method: Pinch
Temperature specifications Stream Temp = Stream Temp	+ Constant [C]
WarmOut4 = WarmOut3	+ 0.000
ColdOut2 = ColdOut1	+ 0.000
=	+ + + + + + + + + + + + + + + + + +

Step	Action
26	Press the < Enter > key two times;
	Specifying the name of the heat leak stream.
27	Type the name Sinkloss and then press the <enter> key;</enter>
	Specifying the name of the heat loss stream.
28	Type the name Srceloss and then press the <enter> key;</enter>
	Specifying the heat leak fraction.
29	Type the number 0.0001 and then press the <enter> key;</enter>
	Specifying the heat loss fraction.
30	Type the number 0.0005 and then press the <enter> key;</enter>
	Specifying the number of intervals.
31	Type the number 20 and then press the <enter> key;</enter>
32	Press the <enter> key three times;</enter>
33	Type the name ColdOut1 and then press the <enter> key;</enter>
34	Type the name ColdIn3 and then press the <enter> key;</enter>
35	Type the number 15 and then press the <enter> key;</enter>

Step	Action
	Giving Stream Temperature Specifications.
36	Type the name WarmIn2 and then press the <enter> key;</enter>
37	Type the name WarmOut3 and then press the <enter> key;</enter>
38	Type the number 2 and then press the <enter> key;</enter>
39	Type the name WarmIn2 and then press the <enter> key;</enter>
40	Type the name ColdOut2 and then press the <enter> key;</enter>
41	Type the number 5;
	The screen will then appear as follows:

ING Exchange	r - Specifications			
Operation Name: LNG				
UA: kJ/C-h Heat leak stream: Sinkloss Heat leak fraction: 0.0001	Min temp approach: C Heat loss stream: Srceloss Heat loss fraction: 0.0005			
Number of intervals: 20 Locate phase changes: Yes_ Convergence tolerance: 1.000e-04 Composite method: Pinch				
Temperature specifications Stream Temp = Stream Temp + Constant [C]				
ColdOut1 = ColdIn3+ 1 WarmIn2 = WarmOut3+ 2 WarmIn2 = ColdOut2+ 5 = +	5			

Step	Action
	Getting back to the Main Menu.
42	Press the <insert> key;</insert>
	Specifying the conditions of the feed stream, WarmIn1.
43	Highlight the word Specify and then press the <enter> key;</enter>
44	Highlight the word Stream and then press the <enter> key;</enter>
45	Highlight the word WarmIn1 and then press the <enter> key;</enter>
	Specifying the temperature of the WarmIn1 stream in \mathcal{C} .
46	Type the number 20 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the WarmIn1 stream in kPa.
47	Type the number 5000 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the molar flow rate of stream WarmIn1 in kg-mols/hr.
48	Type the number 100 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the basis you wish to use when specifying the compositions.
49	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
	The screen should now appear as shown on the following page.

	Stream Mole Fractions	
Methane Propane n-Butane n-Pentane	Ethane i-Butane i-Pentane	

Step	Action
50	Enter the following molar flows beside each component in the WarmIn1 stream:
	After the word, Methane, type the number 0.5386 in the blank and then
	press the <enter></enter> key;
	After the word, Ethane, type the number 0.1538 in the blank and then
	press the <enter> key;</enter>
	After the word, Propane, type the number 0.0769 in the blank and then
	press the <enter> key;</enter>
	After the word, i-Butane, type the number 0.0692 in the blank and then
	press the <enter> key;</enter>
	After the word, n-Butane, type the number 0.0615 in the blank and then
	press the <enter></enter> key;
	After the word, i-Pentane, type the number 0.0538 in the blank and then
	press the <enter> key;</enter>
	After the word, n-Pentane, type the number 0.0462 in the blank;
	The screen should now appear as follows:

<u></u>	Stream	n Mole Fractions	
Methane 0. Propane 0. n-Butane 0. n-Pentane 0.	5386 0769 0615 0462	Ethane i-Butane i-Pentane	0.1538 0.0692 0.0538

Step	Action
51	Press the <insert> key;</insert>
52	Highlight the word Specify and then press the <enter> key;</enter>
53	Highlight the word Stream and then press the <enter> key;</enter>
54	Highlight the word WarmIn2 and then press the <enter> key;</enter>
	Specifying the Temperature of the WarmIn2 stream in $\mathcal C$.
55	Type the number 30 after the prompt (>) and then press the <enter> key;</enter>
	Specifying that the Pressure in kPa of the WarmIn2 stream
56	Type the number 5000 after the prompt (>) and then press the <enter> key;</enter>

Step	Action	
	Specifying the molar flow rate of WarmIn2 in kg-mols/hr.	
57 ·	Type the number 50 after the prompt (>) and then press the <enter> key;</enter>	
	Specifying the basis you wish to use when specifying the compositions.	
58	Highlight the word Mole_Fractions and then press the <enter> key;</enter>	
	The screen should now appear as follows:	

= Stream Mole Fractions :	
---------------------------	--

	 Stream	Mole	Fractions	
Methane Propane n-Butane n-Pentane	 	E i i	Ithane -Butane -Pentane	

Step	Action	
59	Enter the following molar flows beside each component in the WarmIn2 stream:	
	After the word, Methane, type the number 0.95 in the blank and then	
	press the <enter></enter> key;	
	After the word, Ethane, type the number 0.05 in the blank and then	
	press the <enter></enter> key;	
	After the word, Propane, type the number 0 in the blank and then	
	press the <enter></enter> key;	
	After the word, i-Butane, type the number 0 in the blank and then	
	press the <enter></enter> key;	
	After the word, n-Butane, type the number 0 in the blank and then	
	press the <enter></enter> key;	
	After the word, i-Pentane, type the number 0 in the blank and then	
	press the <enter></enter> key;	
	After the word, n-Pentane, type the number 0 in the blank;	
	The screen should now appear as follows:	

			Stream	Mole	Fractions	
and the second se	Methane Propane n-Butane n-Pentane	0.95 0 0]	Ethane i-Butane i-Pentane	0.05 0 0

Step	Action	
60	Press the <insert> key;</insert>	
61	Highlight the word Specify and then press the <enter> key;</enter>	
62	Highlight the word Stream and then press the <enter> key;</enter>	
63	Highlight the word ColdIn3 and then press the <enter> key;</enter>	

Step	Action
	Specifying that the Temperature of the ColdIn3 stream in $\mathcal C$ is unknown by typing an "x".
64	Type the letter x and then press the <enter> key;</enter>
	Specifying the Pressure of the ColdIn3 stream in kilopascals (kPa).
65	Type the number 2000 and then press the <enter> key;</enter>
	Specifying the molar flow rate of ColdIn3 in kg-mols/hr.
66	Type the number 75 and then press the <enter> key;</enter>
	Specifying the basis you wish to use when specifying the compositions.
67	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
	The screen should now appear as follows:

ſ		 Stream	Mole	Fractions	
	Methane Propane n-Butane n-Pentane	 	E i i	Sthane -Butane -Pentane	

Step	Action			
68	Enter the following molar flows beside each component in the ColdIn3 stream:			
	After the word, Methane, type the number 0.95 in the blank and then press the <enter> key;</enter>			
	After the word, Ethane, type the number 0.05 in the blank and then press the <enter> key,</enter>			
	After the word, Propane, type the number 0 in the blank and then press the <enter> key;</enter>			
	After the word, i-Butane, type the number 0 in the blank and then press the \langle Enter \rangle key,			
	After the word, n-Butane, type the number 0 in the blank and then press the <enter> key;</enter>			
	After the word, i-Pentane, type the number 0 in the blank and then press the <enter> key;</enter>			
	After the word, n-Pentane, type the number 0 in the blank;			
	The screen should now appear as follows:			

	Stream	Mole Fractions	
Methane Propane n-Butane n-Pentane	0.95 0 0	Ethane i-Butane i-Pentane	0.05 0 0

Step	Action
69	Press the <insert> key;</insert>
70	Highlight the word Specify and then press the <enter> key:</enter>
71	Highlight the word Stream and then press the <enter> key;</enter>
72	Highlight the word ColdIn4 and then press the <enter> key;</enter>
	Specifying that the Temperature of the ColdIn4 stream in $\mathcal C$ is unknown by typing an "x".
73	Type the letter x and then press the <enter> key;</enter>

Step	Action
	Specifying the Pressure of the ColdIn4 stream in kilopascals (kPa).
74	Type the number 250 and then press the <enter> key;</enter>
	Specifying the molar flow rate of ColdIn4 in kg-mols/hr is unknown by typing an "x".
75	Type the letter x and then press the <enter> key;</enter>
	Specifying the basis you wish to use when specifying the compositions.
76	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
	The screen should now appear as follows:

	Stream M	Iole Fractions	
Methane Propane n-Butane n-Pentane		Ethane i-Butane i-Pentane	

Step	Action			
77	Enter the following molar flows beside each component in the ColdIn4 stream:			
	After the word, Methane, type the number 0.02 in the blank and then press the <enter> key;</enter>			
	After the word, Ethane, type the number 0.98 in the blank and then press the <enter> key;</enter>			
	After the word, Propane, type the number 0 in the blank and then press the <enter> key;</enter>			
	After the word, i-Butane, type the number 0 in the blank and then press the <enter> key;</enter>			
	After the word, n-Butane, type the number 0 in the blank and then press the <enter> key;</enter>			
	After the word, i-Pentane, type the number 0 in the blank and then press the \langle Enter \rangle key;			
	After the word, n-Pentane, type the number 0 in the blank;			
	The screen should now appear as follows:			

== Stream Mole Fractions =

Methane Propane n-Butane	0.02	Ethane i-Butane i-Pentane	0.98
n-butane	U	1-Pentane	0
n-Pentane	0		

Step	Action		
	Getting back to the Main Menu.		
78	Press the <insert> key;</insert>		
79	Highlight the word Worksheet and then press the <enter> key;</enter>		
	Specifying the known vapor fraction of various streams.		
80	Place the cursor under the column for the ColdIn3 stream and at the Vapour frac. row using		
	the arrow keys.		
	Type the number 1 and then press the <enter> key;</enter>		
81	Place the cursor under the column for the ColdIn4 stream and at the Vapour frac. row using		
	the arrow keys.		
	Type the number 0 and then press the <enter> key;</enter>		

Step	Action	
82	Place the cursor under the column for the WarmOut4 stream and at the Vapour frac. row	
	using the arrow keys.	
	Type the number 1 and then press the <enter> key;</enter>	
	The following screen will then appear as shown below:	

		Screams =		
	New Valu	le =		
Stream	WarmInl	ColdOut1	WarmIn2	ColdOut2
Vapour_Frac	0.5734	0.0000	1.0000	1.0000
Temperature	20.0000*	-72.2132	30.0000*	24.9986
Pressure	5000.0000*	4900.0000	5000.0000*	4990.0000
Flow	100.0000*	100.0000	50.0000*	50.0000
Mass_Flow	3146.8423	3146.8423	837.2125	837.2125
LiqVol_Flow	7.3362	7.3362	2.7566	2.7566
Energy_Flow	525029.5898	-497964.9902	467546.3867	456869.5313
Stream	ColdIn3	WarmOut3	ColdIn4	WarmOut4
Vapour_Frac	1.0000*	1.0000	0.0000*	1.0000*
Temperature	-87.2127	27.9990	-79.1307	-70.9851
Pressure	2000.0000*	1950.0000	250.0000*	245.0000
Flow	75.0000*	75.0000	47.8685	47.8685
Mass_Flow	1255.8187	1255.8187	1425.9722	1425.9722
LiqVol_Flow	4.1349	4.1349	4.0172	4.0172
Energy_Flow	396088.5132	739452.6123	-348854.1076	341039.7848
Attached to	LNG			

Step	Action
83	Press the < Esc > key;
84	Highlight the word Operation and then press the <enter> key;</enter>
85	Highlight the letters LNG and then press the <enter> key;</enter>
86	Highlight the word Change and then press the <enter> key;</enter>
87	Press the <insert> key;</insert>
88	Press the <enter></enter> key;
	Specifying the Minimum Temperature approach in ${\mathcal C}$.
89	Type the number 2 and then press the <enter> key;</enter>
90	Press the $<\downarrow>$ key 11 times;
	Deleting the second row relating streams WarmIn2 and WarmOut3.
91	Press the space bar 5 times until the entire row is deleted;
	Changing the constant in the relationship between WarmIn2 and ColdOut2.
92	Press the <enter></enter> key 3 times;
93	Type the number 3;
	The screen should then appear as shown on the following page.

LNG Exchange	r - Specifications
Operation Name: LNG	
UA: kJ/C-h Heat leak stream: Sinkloss Heat leak fraction: 0.0001	Min temp approach: 2C Heat loss stream: Srceloss Heat loss fraction: 0.0005
Number of intervals: 20 Convergence tolerance: 1.000e-04	Locate phase changes: Yes_ Composite method: Pinch
Temperature specifications Stream Temp = Stream Temp + Co	nstant [C]
ColdOut1 = ColdIn3 +	15.000
= + WarmIn2 = ColdOut2 + 3 = + = + = + = + = + = +	

Step	Action
94	Press the <insert> key;</insert>
	Looking at the current Process Flow Diagram (PFD).
95	Highlight the letters PFD and then press the <enter> key;</enter>
	The figure shown below will then appear:

3.3 Heat Exchangers (continued)

3.3.5 LNG (Multi-Pass) Heat Exchanger (continued)

Step	Action
	Getting back to the Main Menu.
96	Press the <esc> key;</esc>
	Looking at the LNG Heat Exchanger Results.
97	Highlight the word Operation and then press the <enter> key;</enter>
98	Highlight the letters LNG and then press the <enter> key;</enter>
99	Highlight the word Print and then press the <enter> key;</enter>

Print Options:

The various print options available are as follows:

a) Input - The inputted information will be printed out.

- b) <u>Results</u> A summary of results sheet will be printed out.
- c) <u>Curves</u> Heat exchanger duty, temperature or UA profile curves be printed out.

d) <u>DegFree</u> - The degrees of freedom will be printed out.

e) Spread sheet - Toggles between display and spreadsheet.

f) Printer - Toggles the printer on.

g) File - Saves results in a file.

h) SI - Prints results in SI (the International System) or metric units.

i) *Field* - Prints results in Field (or English) units.

j) <u>User</u> - Prints results in User supplied units.

k) <u>Ouit</u> - Leave the menu.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action
100	Highlight the word Results and then press the <enter></enter> key;
	Pressing the $\langle F10 \rangle$ key will get the Main Menu off of the screen, enabling you to see the data
	on the screen underneath it.
101	Press the $\langle F10 \rangle$ key;
	The screen will appear as shown below:

LNG Operation LNG

Results:

Hot Side Duty =	1.02935E+06	kJ/h
Heat Loss =	514.680	kJ/h
Cold Side Duty =	1.02894E+06	kJ/h
Heat Leak =	102.895	kJ/h
UA =	41953.2	kJ/C-h
Effective MTD =	24.5310	С
Min dT =	2.0000	С

Inlet Stream	Inlet Outlet Temp [C]Stream	Outlet Temp [C]	Flow [kgmole/h]	Duty [kJ/h]	Pass UA [kJ/C-h]
WarmInl	20.000 ColdO	ut1 -72.212	2 100.00-2	L.0229E+(J6 41329.
WarmIn2	30.000 Coldo	ut2 27.000	50.000	-6364	.9 624.25
ColdIn3	-87.213 WarmO	ut3 20.003	3 75.000 3	3.1998E+	05 18274.
ColdIn4	-79.131 WarmO	ut4 -70.985	5 49.191 '	7.0895E+0	05 23680.

Step	Action
	Pressing the <f10> key again, to get back to the Main Menu.</f10>
102	Press the <f10> key;</f10>
	Looking at the compositions of the streams.
103	Press the <esc> key;</esc>
104	Highlight the word Plot and then press the <enter> key;</enter>
105	Highlight the word Temperature and then press the <enter> key;</enter>
106	Highlight the word Duty and then press the <enter> key;</enter>
107	Highlight the word Passes and then press the <enter> key;</enter>
	The graph shown below will then appear:

Step	Action
108	Press the <esc></esc> key;
109	Highlight the word Quit and then press the <enter> key;</enter>
110	Highlight the word Quit and then press the <enter> key;</enter>
	Getting back to the Main Menu.
111	Highlight the word Print and then press the <enter> key;</enter>

Print Options:

The various print options available are as follows:

a) <u>Stream</u>s- The conditions, physical properties, and compositions of the streams will be printed out.

b) **Operations** - The different unit operations will be printed out.

Print Options (continued):

- c) Spec Sheets The specifications sheets will be printed out.
- d) Hypotheticals Hypothetical component information will be printed out.
- e) Format Specifies the format of the printout.
- f) Cost Lists costs of the run, if a royalty is being charged.
- g) File Saves results in a file.
- h) Printer Toggles on a printer.
- i) <u>Cases</u> Lists the stored files.
- j) *Description* Prints case description.
- k) Oil Input Lists inputted information on an oil.

Step				A	Letion		
112	Highlight the word Streams and then press the <enter> key:</enter>						
113	Highlight the word All and then press the <enter> key</enter>						
114	Highlig	ht the s	vmbol -	and then press the	e <enter> kev</enter>		
	Procein	$\frac{\alpha}{\alpha} th \rho < 0$	$\frac{1}{F10>k}$	ey will get the Mc	in Meny off of the	screen enabling w	ou to see the data
	on the s	g me < creen i	inderne.	ath it.		. sereen, endoring ye	a to see the unit
115	Press th	e <f10< th=""><th>> kev</th><th></th><th></th><th></th><th></th></f10<>	> kev				
	The fol	lowing	screen F	pelow and on the	following page wi	ll then appear	
				WarmInl	ColdOut1	Warmin?	ColdOut 2
Docori	ntion			Malimitit	COLUCULI	Walminz	COLUCULZ
Vanour	frac			0 5734	0 0000	1 0000	1 0000
Temper	ilac.	C		20.0000*	-72.2132	30 0000*	26.9986
Draceu	ro	k Da		5000.0000*	4900.0000	5000 0000*	4990.0000
Molar	FLOW	komo'	le/h	100.0000*	100.0000	50 0000*	50.0000
Macc H	'low	$k\alpha/h$		3146.8423	3146.8423	837 2125	837.2125
Ligvol	El OW	m3/h		7 3362	7.3362	2 7566	2.7566
Enthal	nv	k.T/h	5	25029.5898 -	497964.9902	467546.3867	461181.4941
Densit	PY V	$k\sigma/m$	- ۲	121.1219	514.7614	37.0933	37.5423
Molew	1 +			31,4684	31,4684	16.7442	16.7442
SDAC	Heat	k.T/ka	7-C	2.6560	2.4373	2.5702	2.5736
Therm	Cond	W/m - F	g ⊆ ∢		0.0841	0.0383	0.0379
Viecos	ity	CP 1			0.1413	0.0125	0.0124
7 Fact	or	C1			0.1793	0.8955	0.8918
Sur Te	nsion	dyne	/ cm		9.1015		
Std De	nsitv	ka/m?	2				
Methan	P	mole	frac.	0.5386*	0.5386	0.9500*	0.9500
Ethane		mole	frac.	0.1538*	0.1538	0.0500*	0.0500
Propan	P	mole	frac.	0.0769*	0.0769	0.0000*	0.0000
i-Buta	ne	mole	frac.	0.0692*	0.0692	0.0000*	0,0000
n-Buta	ne	mole	frac.	0.0615*	0.0615	0.0000*	0.0000
i-Pent	ane	mole	frac.	0.0538*	0.0538	0.0000*	0.0000
n-Pent	ane	mole	frac.	0.0462*	0.0462	0.0000*	0.0000
Strea	am			ColdIn3	WarmOut3	ColdIn4	WarmOut4
Descr	iption						
Vapou	r frac			1.0000*	1.0000	0.0000*	1.0000*
Tempe	rature	С		-87.2127	20.0025	-79.1307	-70.9851
Press	ire	kPa		2000.0000*	1950.0000	250.0000*	245.0000
Molar	Flow	kgmo	le/h	75.0000*	75.0000	49.1913	49.1913
Mass I	Flow	kg/h		1255.8187	1255.8187	1465.3789	1465.3789
LiqVo	l Flow	m3/h		4.1349	4.1349	4.1282	4.1282

Enthalpy Density Mole Wt. Spec. Heat Therm Cond Viscosity Z Factor Sur Tension	kJ/h 396 kg/m3 kJ/kg-C W/m-K cP dvne/cm	5088.5132 27.6522 16.7442 2.6565 0.0212 0.0079 0.7834	716077.1484 14.0812 16.7442 2.3226 0.0339 0.0114 0.9513	-358494.6862 529.9079 29.7894 2.4395 0.1482 0.1447 0.0087 14.1132	350464.4147 4.6134 29.7894 1.4967 0.0125 0.0065 0.9412
Std Density	kg/m3			351 1792	
Methane	mole frac.	0.9500*	0.9500	0 0200*	0.0200
Ethane	mole frac.	0.0500*	0.0500	0.9800*	0.9800
Propane	mole frac.	0.0000*	0.0000	0.0000*	0,0000
i-Butane	mole frac.	0.0000*	0.0000	0.0000*	0,0000
n-Butane	mole frac.	0.0000*	0.0000	0.0000*	0.0000
i-Pentane	mole frac.	0.0000*	0.0000	0.0000*	0.0000
n-Pentane	mole frac.	0.0000*	0.0000	0.0000*	0.0000
Stream		Sinkloss	Srceloss		
Description					
Vapour frac		2.0000*	2.0000*		
Temperature	С	0.0000*	0.0000*		
Pressure	kPa	0.0000*	0.0000*		
Molar Flow	kgmole/h	0.0000*	0.0000*		
Mass Flow	kg/h	0.0000*	0.0000*		
LiqVol Flow	m3/h	0.0000*	0.0000*		
Enthalpy	kJ/h	102.8948	514.6797		
Density	kg/m3	0.0000	0.0000		
Mole Wt.		0.0000	0.0000		
Spec. Heat	kJ/kg-C				
Therm Cond	W/m-K		- ~ -+		
Viscosity	сР				
Z Factor					
Sur Tension	dyne/cm				
Std Density	kg/m3				
Methane	mole frac.	0.0000*	0.0000*	r	
Ethane	mole frac.	0.0000*	0.0000*	r	
Propane	mole frac.	0.0000*	0.0000*	r	
i-Butane	mole frac.	0.0000*	0.0000*		
n-Butane	mole frac.	0.0000*	0.0000*		
i-Pentane	mole frac.	0.0000*	0.0000*		
n-Pentane	mole frac.	0.0000*	0.0000*		

Step	Action
	Pressing the <f10> key again, to get back to the Main Menu.</f10>
116	Press the <f10> key;</f10>
117	Do you want to continue adding other unit operations to this LNG (multi-pass) heat exchanger?
	• If Yes, turn to the pertinent section of this manual now;
	If No, turn to the "Exiting HYSIM" Section of this manual.

Objective- This exercise is an example of a mixer calculation. The purpose of the mixer unit operation is to combine two or more streams, and then to obtain the properties of the combined outlet stream. This example can be modified by specifying another property package and/or other components, compositions and stream conditions.

In this example, two feed streams (<u>MethEthIn</u> and <u>PropButIn</u>) are mixed resulting in one product stream, <u>MixOut</u>. The temperature, pressure, mass flow and composition of streams <u>MethEthIn</u> and <u>PropButIn</u> are specified and HYSIM calculates the conditions of product stream, <u>MixOut</u>. (If the inlet stream pressures are not the same, HYSIM will assign the lowest pressure of the inlet streams to the outlet stream).

References: Refs. 1 and 2.

Directions: Pages 188 through 193 outline the execution of an adiabatic mixer example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to by typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "escape" key have additionally been placed inside the <> brackets (e.g. <Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called *Mixer*, is shown below:

3.4 Mixers (Adiabatic) (continued)

Step	Action					
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).					
	• If <u>Yes</u> , proceed with Step 2.					
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures					
	before proceeding to Step 2.					
	Starting with a new case.					
2	Highlight the word No and then press the <enter> key;</enter>					
	Selecting a Property Package					
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>					
	The following screen will appear:					

COMPONENT SELECTION				
Selected	Synonym	Name	Formula	Criteria
Selected	Synonym OIL HYPOTHETICAL C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10 C11 C12	Name OIL HYPOTHETICAL Methane Ethane Propane i-Butane n-Butane n-Pentane n-Pentane n-Heptane n-Heptane n-Octane n-Nonane n-Decane n-C11 p-C12	CH4 C2H6 C3H8 C4H10 C4H10 C5H12 C5H12 C6H14 C7H16 C8H18 C9H20 C10H22 C11H24 C12H26	Criteria ALL HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL ETHER USER
Fl - Help,	⊥ ▼ _ ↓ F3 - Menu, F4	Search by SYNONYM	am, F6 - Move	/ , F8 - Change

Step	Action
	Selecting the components in the feed streams.
4	Highlight each of the following component names under the "Component Selection" Section
	and press the <enter> key so that the name then appears in the "selected" column, as</enter>
	follows:
	Highlight the word Methane and then press the <enter> key;</enter>
	Highlight the word Ethane and then press the <enter> key;</enter>
	Highlight the word Propane and then press the < Enter > key;
	Highlight the word i-Butane;
5	Press the <insert> key;</insert>

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Changing the units from the HYSIM default SI or metric units (kg, kPa, ${\mathfrak C}$, etc.) to field units
	(lb. psia, F. etc.).
6	Highlight the word Utility and then press the <enter> key;</enter>
7	Highlight the word Configuration and then press the <enter> key;</enter>
8	Highlight the word Units and then press the <enter> key;</enter>
9	Highlight the word Field and then press the <enter> key;</enter>
	Getting back to the Main Menu.
10	Press the <esc> key;</esc>
	Specifying the conditions of the Feed stream "MethEthIn".
11	Highlight the word Specify and then press the <enter> key;</enter>
12	Highlight the word Stream and then press the <enter> key;</enter>
13	Type the letter MethEthIn after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature of stream "MethEthIn" in F.
14	Type the number 60 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of stream "MethEthIn" in psia.
15	Type the number 25 after the prompt (>) and then press the <enter> key;</enter>
	Typing an "x" to leave the flow rate of the stream "MethEthIn" unspecified at this point.
16	Type the letter x after the prompt (>) and then press the <enter> key;</enter>
	Specifying the units of flow to use when specifying the composition of stream "MethEthIn".
17	Highlight the words Mass_Flows and then press the <enter> key;</enter>
	Specifying the individual mass flows of each component.
18	Enter the following mass flow beside each component in the feed stream "MethEthIn" in lb/hr:
	After the word, Methane, type the number 50 in the blank and then press the <enter> key;</enter>
	After the word, Ethane, type the number 50 in the blank and then press the <enter> key;</enter>
	After the word, Propane, type the number 0 in the blank and then press the $\langle Enter \rangle$ key;
	After the word, i-Butane, type the number 0 in the blank;
	The screen should now appear as follows:

<u> </u>		Stream	Mass	Flows		
Methane Propane	50 0		Etř i-E	lane Butane	50 0	a serie and a series of the

Step	Action
19	Press the <insert> key;</insert>
	HYSIM will next ask you if the total mass flow (100.0000 lb hr) it calculated from adding up
	the individual component flows is correct.
20	Highlight the word Yes and then press the <enter> key:</enter>
	Specifying the conditions of the Feed stream "PropButIn".
21	Highlight the word Specify and then press the <enter> key;</enter>
22	Highlight the word Stream and then press the <enter> key;</enter>
23	Type the letter PropButIn after the prompt (>) and then press the <enter> key;</enter>

Step	Action
	Specifying the temperature of stream "PropButIn" in F.
24	Type the number 60 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of stream "PropButIn" in psia.
25	Type the number 25 after the prompt (>) and then press the <enter> key;</enter>
	Typing an "x" to leave the flow rate of the stream "PropButIn" unspecified at this point.
26	Type the letter x after the prompt $(>)$ and then press the $<$ Enter $>$ key;
	Specifying the units of flow to use when specifying compositions.
27	Highlight the words Mass_Flows and then press the <enter> key;</enter>
28	Enter the following mass flow (lb/hr) beside each component in the feed stream, PropButIn:
	After the word, Methane, type the number 0 in the blank and then press the \langle Enter \rangle key,
	After the word, Ethane, type the number 0 in the blank and then press the \langle Enter \rangle key;
	After the word, Propane, type the number 50 in the blank and then press the <enter> key,</enter>
	After the word, i-Butane, type the number 50 in the blank;
	The screen should now appear as follows:

<u> </u>		Stream	Mass	Flows	
Methane	0		Etł	nane	0
Propane	50		i-H	Butane	50

Step	Action
29	Press the <insert> key;</insert>
	HYSIM will next ask you if the total mass flow (100.0000 lb/hr) it calculated from adding up
	the individual component flows is correct.
30	Highlight the word Yes and then press the <enter> key:</enter>
	Specifying the type of operation.
31	Highlight the word Operation and then press the < Enter > key;
32	Type the word Mixer and then press the <enter> key;</enter>
33	Highlight the word Mixer and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Operation Nam	e: Mixer
Do all mixed streams h	ave the same pressure?
Please Fill i	n Stream Names
Inlet:	-> Outlet:

Step	Action	
	Answering the question: "Do all streams have the same pressure?"	
34	Type the word Yes and then press the <enter> key;</enter>	
	Naming the outlet and inlet streams.	
35	Type the letter MixOut in the blank and then press the <enter> key;</enter>	
36	Type the letter MethEthIn in the blank and then press the <enter> key;</enter>	
37	Type the letter PropButIn in the blank;	
	The screen should now appear as follows:	

Operation Na	abatic Mixerame: Mixer
Do all mixed streams	have the same pressure? Yes
Please Fill	in Stream Names
Inlet: MethEthIn => Inlet: PropButIn => Inlet: Inlet: Inlet: Inlet: Inlet:	Outlet: MixOut

Step	Action
38	Press the <insert> key;</insert>
39	Highlight the word Print and then press the < Enter > key;

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - the conditions, physical properties, and compositions of the streams will be printed out.

b) *Operations* - The different unit operations will be printed out.

c) <u>Spec_Sheets</u> - The specifications sheets will be printed out.

- d) *Hypotheticals* Hypothetical component information will be printed out.
- e) *Format* Specifies the format of the printout.
- f) <u>Cost</u> Lists costs of the run, if a royalty is being charged.
- g) File Saves results in a file.
- h) Printer Toggles on a printer.
- i) <u>Cases</u> Lists the stored files.
- j) *Description* Prints case description.
- k) Oil Input Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action	
40	Highlight the word Streams and then press the <enter> key;</enter>	
41	Highlight the word All and then press the <enter> key;</enter>	
	Looking at the calculated data for all of the streams.	
42	Highlight the dash symbol - and then press the <enter> key;</enter>	
	Pressing the <f10> key to get the Main Menu off of the screen in order to see the data on the</f10>	
	screen underneath it.	
43	Press the <f10> key;</f10>	
	The screen will appear as follows:	

Stream		MethEthIn	PropButIn	MixOut
Vapour frac		1.0000	1.0000	1 0000
Temperature	F	60.0000*	60.0000*	59.4689
Pressure	psia	25.0000*	25.0000*	25.0000
Molar Flow	lbmole/hr	4.7794	1.9941	6.7735
Mass Flow	lb/hr	100.0000*	100.0000*	200.0000
LiqVol Flow	barrel/day	21.0608	12.8493	33.9101
Enthalpy	Btu/hr	21076.4835	13263.3572	34339.8414
Density	lb/ft3	0.0945	0.2338	0.1344
Mole Wt.		20.9230	50.1481	29.5267
Spec. Heat	Btu/lb-F	0.4739	0.3988	0.4354
Therm Cond	Btu/hr-ft-F	0.0160	0.0092	0.0135
Viscosity	CP	0.0104	0.0077	0.0098
Z Factor		0.9926	0.9615	0.9860
Sur Tension	dyne/cm			
Std Density	lb/ft3			
Methane	mole frac.	0.6521*	0.0000*	0.4601
Ethane	mole frac.	0.3479*	0.0000*	0.2455
Propane	mole frac.	0.0000*	0.5686*	0.1674
i-Butane	mole frac.	0.0000*	0.4314*	0.1270

Step	Action
	Pressing the $\langle F10 \rangle$ key again, to get back to the Main Menu.
44	Press the <f10> key;</f10>
45	Highlight the word PFD and then press the <enter> key;</enter>
	The following screen will appear:

Step	Action		
	Getting back to the Main Menu.		
46	Press the <esc> key until you reach the Main Menu;</esc>		
47	Do you want to continue adding other unit operations to this Mixer?		
	• If Yes, turn to the pertinent section of this manual now;		
	If <u>No</u> , tum to the "Exiting HYSIM" Section of this manual.		

193

3.5 Pumps (Liquid)

Objective- This exercise is an example of a pump calculation. The pump unit operation changes the pressure of an inlet stream by accomplishing mechanical work. The HYSIM pump operation only deals with liquid streams and performs an overall energy balance to determine the required work. The unit operation will calculate conditions of the inlet and outlet streams if enough variables are specified. This example can be modified by specifying another property package and/or other components, compositions and stream conditions.

In this example, a liquid feed stream, <u>WaterIn</u>, composed of only water at a pressure of 14.7 psia is pumped, with the resultant pump product stream, <u>WaterOut</u>, having a pressure of 100 psia.

<u>Technical Example Reference</u>: Reference 3 - Ernest E. Ludwig, "Applied Process Design for Chemical and Petrochemical Plants", Volume I, Second Edition, Gulf Publishing Co., 1984. <u>Other References</u>: Refs. 1 and 2.

Directions: Pages 195 through 202 outline the execution of a pump for liquids example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to by typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "escape" key have additionally been placed inside the <> brackets (e.g. <Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called <u>Pump</u>, is shown below:

Step	Action			
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).			
	• If <u>Yes</u> , proceed with Step 2.			
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures			
	before proceeding to Step 2.			
	Starting with a new case.			
2	Highlight the word No and then press the <enter> key;</enter>			
	Selecting a Property Package.			
3	Highlight the word Steam and then press the <enter> key;</enter>			
4	Highlight the word ASME-Steam and then press the <enter> key</enter>			
	The following screen will appear:			

		COMPONEN	r selection		
Selected	Synonym	Na	ame	Formula	Criteria
	H2O Dihydrogen_Ox Ice Water	H: ide H: H:	20 20 20 20	H2O H2O H2O H2O	ALL ` HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL ETHER USER
▼↓ F1 - Help, 1	▼ _ ↓ F3 - Menu, F4 PR	Search by - Flip Sro ESS INSER	SYNONYM ch, F5 - Exa I TO SUBMIT	am, F6 - F8 - (Move, Change

Step	Action
	Selecting the components in the feed stream.
5	Highlight the following component synonym under the "Component Selection" Section and press
	the <enter> key so that the synonym then appears in the "selected" column, as follows:</enter>
	Highlight the word Water and then press the <enter> key;</enter>
6	Press the <insert> key;</insert>

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action	
	Changing the units from the HYSIM default SI or metric units (kg. C. kPa, etc.) to field units.	
	(lb, F, psia, etc.)	
7	Highlight the word Utility and then press the <enter> key;</enter>	
8	Highlight the word Configuration and then press the <enter> key;</enter>	
9	Highlight the word Units and then press the <enter> key;</enter>	
10	Highlight the word Field and then press the <enter> key;</enter>	
	Getting back to the Main Menu.	
11	Press the < E sc> key;	
	Specifying the conditions of the Feed stream "WaterIn".	
12	Highlight the word Specify and then press the <enter> key;</enter>	
13	Highlight the word Stream and then press the <enter> key;</enter>	
14	Type the letter WaterIn after the prompt (>) and then press the <enter> key;</enter>	
	Specifying the temperature of stream "WaterIn" in F.	
15	Type the number 85 after the prompt (>) and then press the <enter> key;</enter>	
	Specifying the pressure of stream "WaterIn" in psia units.	
16	Type the number 14.7 after the prompt (>) and then press the <enter> key;</enter>	
	Typing an "x" to leave stream flow of the stream "WaterIn" unspecified at this point.	
17	Type the letter x after the prompt (>) and then press the <enter> key;</enter>	
	Specifying the units of flow to use when specifying compositions.	
18	Highlight the words Mole_Fractions and then press the <enter> key;</enter>	
	The screen will then appear as follows:	

== Stream Mole Fractions =====

H2O

Step	Action
	Specifying the individual molar flows of each component.
19	Enter the following molar flow beside each component in the feed stream. WaterIn:
	After the formula, H2O, type the number 1.00 in the blank;
	The screen should now appear as follows:

_____ Stream Mole Fractions _____ 1.00____

H2O

3.5 Pumps (Liquid) (continued)

Step	Action		
20	Press the <insert></insert> key;		
	Specifying the type of operation.		
21	Highlight the word Operation and then press the < Enter > key;		
22	Type the word Pump and then press the < Enter > key;		
23	Highlight the word Pump and then press the < Enter > key;		
	The following screen will appear:		

Step	Action		
	Naming the inlet and outlet streams.		
24	Type the letter WaterIn in the blank and then press the <enter> key;</enter>		
25	Type the letter WaterOut in the blank and then press the <enter> key;</enter>		
26	Type the letter Energy in the blank;		
	The screen should now appear as follows:		

Operation Name: Pump
Please Fill in Stream Names and Efficiency
Inlet: WaterIn / \=>> Outlet: WaterOut
Energy Energy> / Stream: Efficiency: 75.00 %

Step	Action							
27	Press the <insert> key;</insert>							
28	Highlight the word Worksheet and then press the <enter> key;</enter>							
29	Use the arrow keys to highlight the space for the Pressure of stream "WaterOut" in psia units.							
	Type the number 100.0 and then press the <enter> key;</enter>							
30	Use the arrow keys to highlight the space for the LiqVol-Flow of stream "WaterIn" in gallons minute (GPM) units.							
	Press the <f2> key; Highlight the word GPM and then type the number 300. Finally, press the <enter> key;</enter></f2>							
31	Press the <esc> key until you are back at the Main Menu;</esc>							

Step	Action
32	Highlight the word Print and then press the <enter> key;</enter>

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) Operations - The different unit operations will be printed out.

c) <u>Spec Sheets</u> - The specifications sheets will be printed out.

d) Hypotheticals - Hypothetical component information will be printed out.

e) *Format* - Specifies the format of the printout.

f) Cost - Lists costs of the run, if a royalty is being charged.

g) *File* - Saves results in a file.

h) Printer - Toggles on a printer.

i) <u>Cases</u> - Lists the stored files.

j) *Description* - Prints case description.

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action						
33	Highlight the word Streams and then press the <enter> key:</enter>						
	Looking at the calculated data for all of the streams.						
34	Highlight the word All and then press the <enter> key;</enter>						
35	Highlight the dash symbol - and then press the <enter> key;</enter>						
	Pressing the <f10> key to get the Main Menu off of the screen in order to see the data on the</f10>						
	screen underneath it.						
36	Press the <f10></f10> key;						
	The screen will appear as shown below. Use the <page up=""> and <page down=""> keys to</page></page>						
	scroll the screen text up and down.						

Stream		WaterIn	WaterOut	Energy
Description				
Vapour frac	•	0.0000	0.0000	2.0000*
Temperature	F	85.0000*	85.1080	0.0000*
Pressure	psia	14.7000*	100.0000*	0.0000*
Molar Flow	lbmole/hr	8320.9667	8320.9667	0.0000*
Mass Flow	lb/hr	149903.0515	149903.0515	0.0000*
LigVol Flow	barrel/dav	10285.0000*	10285.0000	0.0000*
Enthalpy	Btu/hr	7.95694E+06	8.00770E+06	50757.9645
Density	1b/ft3	62.1564	62.1716	0.0000
Mole Wt	20) 200	18.0151	18,0151	0.0000
Spec Heat	Btu/lb-F	0.9983	0.9979	
Therm Cond	Btu/br-ft-F	0 3568	0.3568	~ - ~
Viscosity	CP	0.8068	0.8058	
7 Factor	CI	0 0007	0.0050	
Sur Tension	dyme/cm	71 3302	71.3198	
Sul lension	lb/fr3	62 3567	62.3567	
SCG Densicy	mole frac	1 0000*	1.0000	0.0000*
nZU	MULE LLAC.	±.0000	T:0:00	0.0010

3.5 Pumps (Liquid) (continued)

Step	Action
	Pressing the <f10> key again, to get back to the Main Menu.</f10>
37	Press the <f10> key;</f10>
38	Highlight the word PFD and then press the < Enter > key;
	The following screen will appear:

Step	Action	
	Getting back to the Main Menu.	
39	Press the <esc> key until you reach the Main Menu;</esc>	
40	Highlight the word Print and then press the < Enter > key;	

The various print options can be found on page 198.

Step	Action						
41	Highlight the word Spec_Sheets and then press the <enter> key;</enter>						
42	Highlight the word Operations and then press the <enter></enter> key;						
43	Highlight the word Pump and then press the <enter> key;</enter>						
	The screen will appear as shown on the following page. Repeat steps 36 and 37, using the						
	$\langle F10 \rangle$, $\langle Page Up \rangle$ and $\langle Page Down \rangle$ keys in order to see the printout on the screen.						

HYSIM PUMP SPECIFICATION SHEET HYSIM Version C2.53 Date 96/09/30 Time 18:33:06 Case Name: Operation Name: Pump Operation Note: Suction Side : WaterIn From operation --- -- - -Suction Properties at Operating Conditions
 Temperature
 85.0000 F
 Flow Rates
 149903.0515 lb/hr

 Pressure
 14.7000 psia
 300.6830 USGPM

 Mass Frac Vap
 0.0000
 0.0190 m3/s

 Mol Weight
 18.0151
 62.1564 lb/ft3 Density 0.9977 SG_H2O60 Viscosity 0.8068 cP Discharge Side : WaterOut To operation ---- - -Discharge Properties at Operating Conditions
 Temperature
 85.1080 F
 Diff Press
 85.3000 psi

 Pressure
 100.0000 psia
 Diff Head
 197.5585 ft

 Mass Frac Vap
 0.0000
 Comp Ratio
 6.8027
 62.1716 lb/ft3 Vol. Rate 300.6096 USGPM Density 0.9979 SG_H2O60 0.0190 m3/s Driver : Energy Stream Energy Energy Required 50757.9645 Btu/hr 19.9483 hp Therm Efficiency 75.0000 8 NOTES :

Step	Action						
44	Highlight the word Size and then press the <enter> key;</enter>						
45	Highlight the word Pipe_Size and then press the <enter> key;</enter>						
46	Highlight the letter WaterIn and then press the <enter> key;</enter>						
47	Highlight the word Press_Drop and then press the < Enter > key;						
	Specifying the Pipe Diameter, Nominal or actual Inside Diameter (ID) in inches.						
48	Type the number 6.0 and then press the <enter> key;</enter>						
	Entering the Pipe Schedule.						
49	Type the number 40 and then press the <enter> key;</enter>						
	The screen will appear as shown below. Repeat steps 36 and 37, using the <f10>, <page< th=""></page<></f10>						
	Up> and <page down=""> keys in order to see the printout on the screen.</page>						

Pressure	Drop	Calculation	for	stream	WaterIn

Stream Properties								
PhaseViscosityFlowrateVelocityDensityCPlb/hrft/slb/ft3						Density lb/ft3		
Liquid		0.8068	68 149904.4106 3.3392 62.15			62.1563		
Pipe Par	Pipe Parameters							
Reynolds Friction Pipe Dia. Schedule Press Drop Number Factor in Psi/100 ft								
1.93E+05 0.017841 6.065 Std. 0.263					0.263925			

3.5 Pumps (Liquid) (continued)

Step	Action						
50	Highlight the word Size and then press the <enter> key;</enter>						
51	Highlight the word Pipe_Size and then press the < Enter > key;						
52	Highlight the letter WaterOut and then press the <enter> key;</enter>						
53	Highlight the word Press_Drop and then press the <enter> key;</enter>						
	Specifying the Pipe Diameter, Nominal or actual Inside Diameter (ID) in inches.						
54	Type the number 4.0 and then press the <enter> key;</enter>						
	Entering the Pipe Schedule.						
55	Type the number 40 and then press the <enter> key;</enter>						
	The screen will appear as shown below. Repeat steps 36 and 37, using the <f10>, <page< th=""></page<></f10>						
	Up > and < Page Down > keys in order to see the printout on the screen.						

Dreegenre	Dwow	Coloulation	far	~	The base of the base
Pressure	Drob	Calculation	LOL	stream	WaterOut

Stream Properties								
Phase	V	iscosity cP	Flowrate lb/hr		Velocity ft/s		Density 1b/ft3	
Liquid		0.8058	149904.4106			7.5761	62.1715	
Pipe Parameters								
Reynolds Number		Friction Factor		Pipe Dia. in		Schedule	Press Drop Psi/100 ft	
2.91E+05		0.018054		4.026		Std.	2.071683	

Step	Action						
56	Do you want to continue adding other unit operations to this Pump?						
	• If <u>Yes</u> , turn to the pertinent section of this manual now;						
	If <u>No</u> , turn to the "Exiting HYSIM" Section of this manual.						
This section contains examples of the following five different types of reactors:

Section		Page
3.6.1	Stoichiometric Reactor	204
3.6.2	Equilibrium Reactor	215
3.6.3	Gibbs Reactor	225
3.6.4	Continuously Stirred Tank Reactor (CSTR)	234
3.6.5	Plug Flow Reactor (PFR)	248

3.6.1 Stoichiometric Reactor

Objective- This exercise is an example of a stoichiometric reactor calculation. The purpose of the stoichiometric reactor unit operation is to compute the output stream given the input stream, reaction stoichiometry, reaction conditions and conversion information. The chemical equations used in this example are as follows:

Reaction #1	$CH_4 + H_2O \rightarrow CO + 3H_2$
Reaction #2	$CO + H_2O \rightarrow CO_2 + H_2$
Reaction #3	$CH_4 \rightarrow C(s) + 2H_2$

This example can be modified by specifying another property package and/or other reactions, components, compositions and stream conditions.

In this stoichiometric matrix reactor, the stoichiometric equations for the three chemical reactions taking place inside the reactor are given to HYSIM, along with the percentage conversion of each of the base components of each reaction. The flow rate, composition and conditions of the feed stream are also specified. From this information, HYSIM can calculate the composition and condition of the outlet stream.

<u>Technical Example Reference</u>: Reference 1 - Hyprotech HYSIM User's Guide, Version C2.50, pp.7-66 to 7-72. Other References: Refs. 1 & 2.

Directions: Pages 205 through 214 outlined the execution of a stoichiometric reactor example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to by typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the student, such as the "escape" key have additionally been placed inside the <> brackets (e.g. <Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called <u>Reactor</u>, is shown below:

Step	Action				
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).				
	• If <u>Yes</u> , proceed with Step 2.				
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures				
	before proceeding to Step 2.				
	Starting with a new case.				
2	Highlight the word No and then press the <enter> key;</enter>				
	Selecting a Property Package.				
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>				
	The following screen will appear:				

		COMPONENT SELECTION				
Selected Synonym		Name	Formula	Criteria		
_	OIL	OIL		ALL		
	HYPOTHETICAL	HYPOTHETICAL		HC		
	C1	Methane	CH4	SOLID		
	C2	Ethane	C2H6	MISC		
	C3	Propane	СЗН8	AMINE		
	i-C4	i-Butane	C4H10	ALCOHOL		
	n-C4	n-Butane	C4H10	KETONE		
	1-C5	i-Pentane	C5H12	ALDEHYDE		
	n-C5	n-Pentane	C5H12	ESTER		
	C6	n-Hexane	C6H14	CARBACID		
	C7	n-Heptane	C7H16	HALOGEN		
	C8	n-Octane	C8H18	NITRILE		
	C9	n-Nonane	C9H20	PHENOL		
	C10	n-Decane	C10H22	ETHER		
	C11	n-Cll	C11H24	USER		
	C12	n-C12	C12H26			
▼ - ↓ ▼ - ↓Search by SYNONYM			<u>_</u>			
Fl - Help,	F3 - Menu, F4	- Flip Srch, F5 - Exa	am, F6 - Mov	ve, F8 - Change		
	PRI	ESS INSERT TO SUBMIT				

Step	Action			
	Selecting the components in the feed stream.			
4	Highlight each of the following component names under the "Component Selection" Section			
	and press the <enter> key so that the name then appears in the "selected" column, as follows:</enter>			
	Highlight the word Methane and then press the <enter> key;</enter>			
	Highlight the word Hydrogen and then press the <enter> key;</enter>			
	Highlight the formula H2O and then press the \langle Enter \rangle key;			
	Highlight the word Argon and then press the <enter> key;</enter>			
	Highlight the formula CO and then press the <enter> key;</enter>			
	Highlight the formula CO2 and then press the <enter> key;</enter>			
	Highlight the word Carbon and then press the <enter> key.</enter>			
	The screen on the following page will then appear.			

Selected Synonym Name Formulal Criteria					
$-\mathbf{A} = \uparrow$					
Methane	Methane NO2 NO2 ALL				
Hydrogen	N2O	N20	N20	HC	
H2O	N2O4	N204	N204	SOLID	
Argon	SO2	SO2	SO2	MISC	
co	S03	SO3	SO3	AMINE	
CO2	Sulphur_Rhombic	S_Rhombic	S	ALCOHOL	
Carbon	Sulphur_Monoclinic	S_Monoclinic	S	KETONE	
	Sulphur_Amorphous	S_Amorphous	S	ALDEHYDE	
	Sulphur_Liq_150	S_Liq_150	S	ESTER	
	Sulphur_Liq_190	S_Liq_190	S	CARBACID	
	Sulphur_Lig_280	S_Liq_280	S	HALOGEN	
	Sulphur_Vapour	S_Vapour	S	NITRILE	
	H2S	H2S	H2S	PHENOL	
CarbonOxiSulphide COS COS ETHER				ETHER	
CarbondiSulphide CS2 CS2			USER		
di-M-Sulphide diM-Sulphide C2H6S					
Search by SYNONYM					
F1 - Help, F3 - Menu, F4 - Flip Srch, F5 - Exam, F6 - Move,					
PRESS INSERT TO SUBMIT F8 - Change					

3.6.1 Stoichiometric Reactor (continued)

Lumma and a second			
C 1	Antian		
Step	ACHON		
5	Press the singerts key		
5	These the state way,		

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Specifying the type of operation.
6	Highlight the word Operation and then press the <enter> key;</enter>
7	Type the word Reactor after the prompt (>) and then press the <enter></enter> key;
8	Highlight the word Reactor and then press the <enter> key;</enter>
	The following screen will then appear:

Step	Action				
	Specifying that the reactor type should be left as Stoichiometric.				
9	Press the <enter> key;</enter>				
	Specifying the stream names.				
10	Type the word Feed in the blank and then press the <enter> key;</enter>				
11	Type the word Outlet in the blank and then press the <enter> key;</enter>				
12	Type the word Energy in the blank and then press the <enter> key two times;</enter>				
	Specifying the pressure drop in kPa units.				
13	Type the number 75 in the blank.				
	The screen should now appear as follows:				
	General Reactor				
	Please fill in reactor type, stream names, etc.				
	Operation Name: Reactor				
	Reactor Type: Stoichiometric_				
	Pressure Drop:				
Strea	am: Feed ==► Stream: Outlet				
	Energy Stream: Energy Energy Flow : In				

Step	Action
14	Press the <insert> key;</insert>
	The following screen will then appear:

	Operation	Poactor	Staichia	metric Matrix			
Enter A to	Add, D to	Delete a	Reaction,	F2 for Menu,	Ins	to	Exit
	Reaction	1 1					
Base Comp.							
Conversion '	00						
Methane							
Hydrogen							
H2O							
Argon							
CO							
CO2	~						
Carbon							
1.6							and the second se

Step	Action
	Reaction 1 specifications.
	Specifying the base component, as Methane.
15	Press the <f2> and then highlight the word Methane and then press the <enter> key;</enter></f2>

Step	Action
	Specifying the % conversion of Reaction 1.
16	Press the $<\downarrow>$ and then type the number 77 and then press the $<$ Enter> key;
	Specifying the stoichiometric coefficients of Reaction 1.
17	Type the number -1 and then press the <enter> key;</enter>
18	Type the number 3 and then press the <enter> key;</enter>
19	Type the number -1 and then press the <enter></enter> key,
20	Type the number 0 and then press the <enter> key;</enter>
21	Type the number 1 and then press the <enter></enter> key;
22	Type the number 0 and then press the <enter> key;</enter>
23	Type the number 0 and then press the <enter> key;</enter>
24	Press the letter a;
	Reaction 2 specifications.
	Specifying the base component, as CO.
25	Press the $<\uparrow>$ enough times until the pointer is at the blank space for the Base Comp. of
	Reaction 2.
26	Press the <f2> and then highlight the formula CO and then press the <enter> key;</enter></f2>
	Specifying the % conversion of Reaction 2.
27	Press the $<\downarrow>$ and then type the number 55 and then press the $<$ Enter> key;
	Specifying the stoichiometric coefficients of Reaction 2.
28	Type the number 0 and then press the <enter> key;</enter>
29	Type the number 1 and then press the <enter> key;</enter>
30	Type the number -1 and then press the <enter> key;</enter>
31	Type the number 0 and then press the <enter> key;</enter>
32	Type the number -1 and then press the <enter> key;</enter>
33	Type the number 1 and then press the <enter> key;</enter>
34	Type the number 0 and then press the <enter> key;</enter>
35	Press the letter a;
	Reaction 3 specifications.
	Specifying the base component, as Methane.
36	Press the $<1>$ key enough times until the pointer is at the blank space for the Base Comp. of
	Reaction 3.
37	Press the $\langle F2 \rangle$ key and then highlight the word Methane and then press the $\langle Enter \rangle$ key,
	Specifying the % conversion of Reaction 3.
38	Press the <4> key and then type the number 1 and then press the <enter> key,</enter>
	Specifying the stotchiometric coefficients of Keaction 5.
39	Type the number -1 and then press the <enter> key,</enter>
40	Type the number 2 and then press the <enter> key,</enter>
41	Type the number 0 and then press the <enter> key,</enter>
42	Type the number 0 and then press the <enter> key.</enter>
43	Type the number 0 and then press the <enter> key,</enter>
44	i ype ine number u and men press me <r remei=""> key,</r>

Step	Action
45	Type the number 1 and then press the <enter> key;</enter>
	The screen will then appear as shown below:

	Operation React	tor Stoichid	ometric Matrix		
Enter A to	Add, D to Delet	ce a Reaction,	F2 for Menu,	Ins to	Exit
	Reaction 1	Reaction 2	Reaction 3		
Base Comp.	Methane	CO	Methane		
Conversion %	5 77.000	55.000	1.000		
Methane	-1.000		-1.000		
Hydrogen	3.000	1.000	2.000		
H20	-1.000	-1.000			
Argon					
CO_	1.000	-1.000			
CO2		1.000			
Carbon		900 Ann 200	1.000		

Step	Action
46	Press the <insert> key;</insert>
	Specifying the conditions of the Feed stream.
47	Highlight the word Specify and then press the <enter> key;</enter>
48	Highlight the word Stream and then press the <enter> key;</enter>
49	Highlight the word Feed and then press the <enter> key;</enter>
	Specifying the Temperature of the Feed in °C.
50	Type the number 600 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Feed in kilopascals (kPa).
51	Type the number 1500 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the Flow in kg-mols/hr.
52	Type the number 100 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the units of flow to use when specifying compositions.
53	Highlight the words Mole_Fractions and then press the <enter> key;</enter>
	The following screen will then appear:

		Stream	MOLE	Fractions	
Me H2 CC Ca	ethane 20) arbon	 	H P C	Hydrogen Argon CO2	

Step	Action				
54	Enter the following mole fractions beside each component in the Feed stream:				
	After the word, Methane, type the number 0.45 in the blank and then press the <enter> key;</enter>				
	After the word, Hydrogen, type the number 0 in the blank and then press the <enter> key;</enter>				
	After the formula, H2O, type the number 0.54 in the blank and then press the <enter> key;</enter>				
	After the word, Argon, type the number 0.01 in the blank and then press the <enter> key;</enter>				
	After the formula, CO, type the number 0 in the blank and then press the <enter> key;</enter>				
	After the formula, CO2, type the number 0 in the blank and then press the \langle Enter \rangle key;				
	After the word, Carbon, type the number 0 in the blank;				
	The screen should now appear as follows:				

	Stream Mole Fractions	
Methane 0.45 H2O 0.54 CO 0 Carbon 0	Hydrogen Argon C02	0 0.01 0

Step	Action
55	Press the <insert> key;</insert>
	Specifying the temperature (\mathfrak{C}) and pressure (kPa) of the Outlet stream.
56	Highlight the word Worksheet and then press the <enter> key;</enter>
57	Use the arrow keys to move the pointer to the blank space for the Temperature of the Outlet
	stream.
	Type the number 600 and then press the <enter> key;</enter>
	The following screen will appear:

		== Streams ==		
	New Value	e =	С	
Stream	Feed	Outlet	Energy	
Vapour_Frac	1.0000	0.9974	2.0000*	
Temperature	600.0000*	600.0000*	0.0000*	
Pressure	1500.0000*	1425.0000	0.0000*	
Flow	100.0000*	170.2000	0.0000*	
Mass_Flow	1734.6940	1734.7194	0.0000*	
LigVol_Flow	3.4152	5.7065	0.0000*	
Energy_Flow	3.45557E+06	4.53503E+06	7.06083E+06	

Step	Action
58	Press the <esc> key;</esc>
59	Highlight the word Print and then press the <enter> key;</enter>

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - the conditions, physical properties, and compositions of the streams will be printed out.

b) *Operations* - the different unit operations will be printed out.

c) Spec Sheets - The specifications sheets will be printed out.

d) *Hypotheticals* - Hypothetical component information will be printed out.

e) Format - Specifies the format of the printout.

f) <u>Cost</u> - Lists costs of the run, if a royalty is being charged.

g) File - Saves the results in a file.

h) Printer - Toggles on a printer.

i) <u>Cases</u> - Lists the stored files.

j) <u>Description</u> - Prints case description.

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action
60	Highlight the word Streams and then press the <enter> key:</enter>
61	Highlight the word All and then press the <enter> key;</enter>
	Looking at the calculated data for all of the streams.
62	Highlight the dash symbol - and then press the <enter> key;</enter>
	Pressing the <f10> key to get the Main Menu off of the screen in order to see the data on the</f10>
	screen underneath it.
63	Press the <f10> key;</f10>
	The screen will appear as follows. Use the $<$ Page Up $>$ and $<$ Page Down $>$ keys to view the

		PP-10	 	
	antina tant			
	entire text.			
1111111111111111				

Stream		Feed	Outlet	Energy
Description				
Vapour frac.		1.0000	0.9974	2.0000*
Temperature	С	600.0000*	600.0000*	0.0000*
Pressure	kPa	1500.0000*	1425.0000	0.0000*
Molar Flow	kgmole/h	100.0000*	170.2000	0.0000*
Mass Flow	kq/h	1734.6940	1734.7194	0.0000*
LiqVol Flow	m3/h	3.4152	5.7065	0.0000*
Enthalpy	kJ/h	3.45557E+06	4.53503E+06	7.06083E+06
Density	kg/m3	3.5867	1.9997	0.0000
Mole Wt.	-	17.3469	10.1922	0.0000
Spec. Heat	kJ/kg-C	3.0043	3.3907	
Therm Cond	W/m-K	0.1040		
Viscosity	сP	0.0267		
Z Factor		0.9993		
Sur Tension	dyne/cm	and an		
Std Density	kg/m3			~
Methane	mole frac.	0.4500*	0.0582	0.0000*
Hydrogen	mole frac.	0.0000*	0.7280	0.0000*
H2O	mole frac.	0.5400*	0.0017	0.0000*
Argon	mole frac.	0.0100*	0.0059	0.0000*
CO	mole frac.	0.0000*	0.0916	0.0000*
C02	mole frac.	0.0000*	0.1120	0.0000*
Carbon	mole frac.	0.0000*	0.0026	0.0000*

Step	Action
	Pressing the <f10> key again, to get back to the Main Menu.</f10>
64	Press the <f10></f10> key;
65	Highlight the word Print and then press the <enter> key;</enter>

The various print options can be found on page 211.

Step	Action			
66	Highlight the word Spec_Sheets and then press the <enter> key:</enter>			
67	Highlight the word Operations and then press the <enter> key;</enter>			
68	Highlight the word Reactor and then press the <enter> key;</enter>			
	Pressing the $\langle F10 \rangle$ key to get the Main Menu off of the screen in order to see the data on the			
	screen underneath it.			
69 ·	Press the $\langle F10 \rangle$ key;			
	The screen will appear as shown below and on the following page. Use the <page up=""> and</page>			
	<page down=""> keys to view the entire text.</page>			

HYSIM STOICH HYSIM Versior Case Name: Operation Name Operation Note	COMETRIC REACTOR S C2.53 E: Reactor	PECIFI	ICATION	Page 1 Date 9 Time 1	of 2 6/07/12 2:45:06
Strea Inlet: Feed Outlet: Outle Energy: Energ	am from et to ny to	Oper 	ration 100. 1734. 170. 1734. 7.06083	Flowrate 0000 kgmole/h 6940 kg/h 2000 kgmole/h 7194 kg/h 8E+06 kJ/h	
Inlet Properti	es at Operating C	onds	Outlet Propert	ies at Operati	ng Conds
Vapour Frac Temperature Pressure Density Std Density Mol Weight Viscosity Therm Cond	1.0000 600.0000 C 1500.0000 kPa 3.5867 kg/m3 517.5597 kg/m3 17.3469 0.0267 cP 0.1040 W/m-K		Vapour Frac Temperature Pressure Density Std Density Mol Weight Viscosity Therm Cond	0.9974 600.0000 C 1425.0000 kPa 1.9997 kg/ kg/ 10.1922 CP W/m	m3 m3 - K
Component	Hform @ 298 K (kJ/kgmole)		Inlet Flowrate (kgmole/h)	e Outlet Fl (kgmole	owrate /h)
Methane Hydrogen H2O Argon CO CO2 Carbon	-74900.0000 0.0000 -241000.0000 0.0000 -110590.0000 -393790.0000 0.0000		$\begin{array}{c} 45.0000\\ 0.0000\\ 54.0000\\ 1.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	9. 123. 0. 1. 15. 19. 0.	9000 9075 2925 0000 5925 0575 4500

3.6.1 Stoichiometric I	Reactor (continued)			
HYSIM STOICH	HIOMETRIC REACTOR SPECIFICATION	- Page	2 of 2	_
Case Name: Operation Nam	me: Reactor	Date Time	96/07/1 12:45:0	.2
Reaction 1	Base Component & Conversion Methane 77.00			
Reactants -1. Products 3.0	.000 Methane + -1.000 H20 000 Hydrogen + 1.000 CO			
Reaction 2	Base Component & Conversion			
Reactants -1. Products 1.0	.000 H20 + -1.000 CO 000 Hydrogen + 1.000 CO2			
Reaction 3	Base Component % Conversion Methane 1.00			
Reactants -1. Products 2.0	.000 Methane)00 Hydrogen + 1.000 Carbon			
Reaction 4	Base Component % Conversion			
Reactants Products				
Reaction 5	Base Component & Conversion			
Reactants Products				
Reaction 6	Base Component % Conversion			
Reactants Products				
Reaction 7	Base Component & Conversion			
Reactants Products				
Reaction 8	Base Component % Conversion			
Reactants Products				
Reaction 9	Base Component % Conversion			
Reactants Products				
Reaction 10	Base Component & Conversion			
Reactants Products				

Step	Action
	Pressing the <f10> key again, to get back to the Main Menu.</f10>
70	Press the $<$ F10> key;
71	Highlight the word PFD and then press the <enter> key;</enter>
	The following screen will appear:

Step	Action			
	Getting back to the Main Menu.			
72	Press the < Esc> key until you reach the Main Menu;			
73	Do you want to continue adding other unit operations to this reactor?			
	• If Yes, turn to the pertinent section of this manual now;			
	• If No, turn to the "Exiting HYSIM" Section of this manual.			

3.6.2 Equilibrium Reactor

Objective- This exercise is an example of an equilibrium reactor calculation. The purpose of the equilibrium reactor unit operation is to compute the output stream given the input stream, reaction stoichiometry, reaction conditions and equilibrium constants. The equilibrium reactor calculation assumes that the outlet stream is in a state of equilibrium. The chemical equations used in this example are as follows:

Reaction #1	$CH_4 + H_2O \rightarrow CO + 3H_2$
Reaction #2	$CO + H_2O \rightarrow CO_2 + H_2$
Reaction #3	$CH_4 \rightarrow C(s) + 2H_2$

This example can be modified by specifying another property package and/or other reactions, components and conditions.

In this example, the stoichiometric matrix of three chemical reaction equations is specified, along with the equilibrium constants for each equation. The composition, conditions and flow rate of the feed stream, along with the conditions of the outlet stream are also given. From this information HYSIM calculates the composition of the outlet stream.

<u>Technical Example Reference</u>: Reference 1 - Hyprotech HYSIM User's Guide, Version C2.50, pages 7-66 to 7-76.

Other References: Refs. 1 & 2.

Directions: Pages 216 through 224 outline the execution of an equilibrium reactor example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to by typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "escape" key have additionally been placed inside the <> brackets (e.g. <Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called <u>Reactor</u>, is shown below:

Step	Action				
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).				
	• If <u>Yes</u> , proceed with Step 2.				
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures				
	before proceeding to Step 2.				
	Starting with a new case.				
2	Highlight the word No and then press the <enter> key;</enter>				
	Selecting a Property Package.				
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>				
	The following screen will appear:				

		COMPONENT SELECTION				
Selected	Synonym	Name	Formula	Criteria		
	OIL	OIL		ALL		
	HYPOTHETICAL	HYPOTHETICAL		HC		
	Cl	Methane	CH4	SOLID		
	C2	Ethane	C2H6	MISC		
	C3	Propane	СЗН8	AMINE		
	i-C4	i-Butane	C4H10	ALCOHOL		
	n-C4	n-Butane	C4H10	KETONE		
	i-C5	i-Pentane	C5H12	ALDEHYDE		
	n-C5	n-Pentane	C5H12	ESTER		
	C6	n-Hexane	C6H14	CARBACID		
	C7	n-Heptane	C7H16	HALOGEN		
	C8	n-Octane	C8H18	NITRILE		
	C9	n-Nonane	C9H2O	PHENOL		
	C10	n-Decane	Cl0H22	ETHER		
	C11	n-C11	C11H24	USER		
	C12	n-C12	C12H26			
│ <u>──</u> ▼	·····································	Search by SYNONYM	• <u>•</u>	<u> </u>		
F1 - Help, F3 - Menu, F4 - Flip Srch, F5 - Exam, F6 - Move, F8 - Change PRESS INSERT TO SUBMIT						

Step	Action
	Selecting the components in the feed stream.
4	Highlight each of the following component names under the "Component Selection" Section and
	press the <enter> key so that the name then appears in the "selected" column, as follows:</enter>
	Highlight the word Methane and then press the <enter> key;</enter>
	Highlight the word Hydrogen and then press the <enter></enter> key;
	Highlight the formula H2O and then press the <enter> key;</enter>
	Highlight the word Argon and then press the <enter> key;</enter>
	Highlight the formula CO and then press the <enter> key;</enter>
	Highlight the formula CO2 and then press the <enter> key;</enter>
	Highlight the word Carbon and then press the <enter> key;</enter>
	The screen will then appear as shown on the following page.

	COMPON	IENT SELECTION		
Selected	Synonym Name		Formula	Criteria
Selected Methane Hydrogen H2O Argon CO CO2 Carbon	Synonym N20 N204 S02 S03 Sulphur_Rhombic Sulphur_Monoclinic Sulphur_Liq_150 Sulphur_Liq_190 Sulphur_Liq_280 Sulphur_Liq_280 Sulphur_Vapour H2S CarbonOxiSulphide CarbondiSulphide di-M-Sulphide	Name N2O N2O4 SO2 SO3 S_Rhombic S_Monoclinic S_Amorphous S_Liq_150 S_Liq_190 S_Liq_280 S_Vapour H2S COS CS2 diM-Sulphide diMSulfoxide	N2O N2O4 SO2 SO3 S S S S S S S S S S S S S S S S S S	ALL HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL ETHER USER
Fl - Help,	F3 - Menu, F4 - Flip PRESS IN	Srch, F5 - Ex. SERT TO SUBMIT	am, F6 - F8 - C	Move, hange
	Acti	0 n		
Press the <in< th=""><th>sert> key;</th><th></th><th></th><th></th></in<>	sert> key;			

3.6.2 Equilibrium Reactor (continued)

NOTE: On returning t	o the main menu after	component selection,	HYSIM will	provide a list of the
component selections.	This is helpful in ass	essing component sele	ections.	

Step	Action	
	Specifying the type of operation.	
6	Highlight the word Operation and then press the <enter> key;</enter>	
7	Type the word Reactor after the prompt (>) and then press the <enter> key;</enter>	
8	Highlight the word Reactor and then press the <enter> key;</enter>	
	The following screen will then appear:	

Step	Action		
	Specifying that the reactor type should be Equilibrium.		
9	Press the $\langle F2 \rangle$ key and highlight the word Equilibrium and then press the $\langle Enter \rangle$ key;		
	Specifying the stream names.		
10	Type the word Feed in the blank and then press the <enter> key;</enter>		
11	Type the word Outlet in the blank and then press the <enter> key;</enter>		
12	Type the word Energy in the blank and then press the <enter> key two times;</enter>		
	Specifying the pressure drop in kPa units.		
13	Type the number 75 in the blank.		
	The screen should now appear as follows:		
	General Reactor		
Please fill in reactor type, stream names, etc.			
Operation Name: Reactor			

Reactor Type: Equilibrium____ Pressure Drop: Stream: Feed_______ Fired______ Stream: Outlet_ 75______ kPa______ Energy Stream: Energy_ Energy Flow : In___

Step	Action
14	Press the <insert> key;</insert>
	The following screen will then appear:

	Operation Reactor	Stoichiometric Matrix			
Enter A to	Add, D to Delete a	Reaction, F2 for Menu,	Ins	to	Exit
	Reaction 1				
Basis	Activity				
Basis Unit					
Equil.Const					
EquilConst-	A				
EquilConst-I	3				
Approach [C]					
Methane					
Hydrogen					
H2O					
Argon					
CO					
CO2					
Carbon					

Step	Action
	Reaction 1 specifications.
	Specifying the basis for the equilibrium constant for Reaction 1.
15	Press the <f2> key and then highlight the word Activity and then press the <enter> key;</enter></f2>
	Specifying the equilibrium constant for Reaction 1.
16	Press the $<\downarrow>$ key two times and then type the number 4.5e+01 and then press the $<$ Enter $>$ key;
	Specifying the stoichiometric coefficients for Reaction 1.
17	Press the $<\downarrow>$ key three times and then type the number -1 and then press the $<$ Enter> key;
18	Type the number 3 and then press the <enter> key;</enter>
19	Type the number -1 and then press the <enter> key;</enter>
20	Type the number 0 and then press the <enter> key;</enter>
21	Type the number 1 and then press the <enter> key;</enter>
22	Type the number 0 and then press the <enter> key;</enter>
23	Type the number 0 and then press the <enter> key;</enter>
24	Press the letter a;
	Reaction 2 specifications.
	Specifying the basis for the equilibrium constant for Reaction 2.
25	Press the $<\uparrow>$ enough times until the pointer is at the Basis of Reaction 2 block.
26	Press the <f2> and then highlight the word Activity and then press the <enter> key;</enter></f2>
	Specifying the equilibrium constant for Reaction 2.
27	Press the $<\downarrow>$ two times and then type the number 2.4e+00 and then press the $<$ Enter> key;
	Specifying the stoichiometric coefficients for Reaction 2.
28	Press the $<\downarrow>$ key three times and then type the number 0 and then press the $<$ Enter $>$ key;
29	Type the number 1 and then press the <enter> key;</enter>
30	Type the number -1 and then press the <enter> key;</enter>
31	Type the number 0 and then press the <enter> key;</enter>
32	Type the number -1 and then press the <enter> key;</enter>
33	Type the number 1 and then press the <enter> key,</enter>
34	Type the number 0 and then press the <enter> key;</enter>
35	Press the letter a;
	Reaction 3 specifications.
	Specifying the basis for the equilibrium constant for Reaction 3.
36	Press the <t> key enough times until the pointer is at the Basis of Reaction 3 block.</t>
37	Press the $\langle F2 \rangle$ key and then highlight the word Activity and then press the $\langle Enter \rangle$ key;
	Specifying the equilibrium constant for Reaction 3.
38	Press the $\langle \downarrow \rangle$ key two times and then type the number 1.0e-03 and then press the $\langle Enter \rangle$ key;
	Specifying the stoichiometric coefficients for Reaction 3.
39	Press the $<\downarrow>$ key three times and then type the number -1 and then press the $<$ Enter> key,
40	Type the number 2 and then press the <enter> key;</enter>
41	Type the number 0 and then press the <enter> key;</enter>
42	Type the number 0 and then press the <enter> key;</enter>

Step	Action
43	Type the number 0 and then press the <enter> key;</enter>
44	Type the number 0 and then press the <enter> key;</enter>
45	Type the number 1 and then press the <enter></enter> key;
	The screen will then appear as shown below:

	Operation Reac	tor Stoichic	metric Matrix	
Enter A to	Add, D to Dele	te a Reaction,	F2 for Menu,	Ins to Exit
	Reaction 1	Reaction 2	Reaction 3	
Basis	Activity	Activity	Activity	
Basis Unit			~	
Equil.Const.	4.5000e+01	2.4000e+00	1.0000e-03	
EquilConst-A				
EquilConst-E	3			
Approach [C]				
Methane	-1.000		-1.000	
Hydrogen	3.000	1.000	2.000	
H2O	-1.000	-1.000		
Argon				
CO	1.000	-1.000		
C02		1.000		
Carbon			1.000	

Step	Action
46	Press the <insert> key;</insert>
	Specifying the conditions of the Feed stream.
47	Highlight the word Specify and then press the <enter> key;</enter>
48	Highlight the word Stream and then press the <enter> key;</enter>
49	Highlight the word Feed and then press the <enter> key;</enter>
	Specifying the Temperature of the Feed in °C.
50	Type the number 600 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Feed in kilopascals (kPa).
51	Type the number 1500 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the Flow in kg-mols/hr.
52	Type the number 100 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the units of flow to use when specifying compositions.
53	Highlight the words Mole_Fractions and then press the <enter> key;</enter>
	The screen will then appear as shown below:

	Stream Mole	Fractions	
Methane H2O CO Carbon		Hydrogen Argon CO2	

٦

Step		Action	· · · · · · · · · · · · · · · · · · ·	
54	Enter the following mole fractions beside each component in the feed stream:			
	After the word, Methane, ty	pe the number 0.45 in t	he blank and	then press the <enter></enter> key;
	After the word, Hydrogen,	ype the number 0 in the	blank and th	nen press the <enter> key;</enter>
	After the formula, H2O, ty	be the number 0.54 in th	e blank and	then press the <enter></enter> key;
	After the word, Argon, type	the number 0.01 in the	blank and th	en press the <enter></enter> key;
	After the formula, CO, type	the number 0 in the bla	nk and then	press the <enter></enter> key;
	After the formula, CO2, typ	be the number 0 in the b	lank and the	press the <enter></enter> key;
	After the word, Carbon, typ	e the number 0 in the b	ank;	
	The screen should now app	ear as follows:		
		Stream Mole Fr	actions	
Moth		Ŭ	x0000	0
H20 0.54		nyu Dra	n	0
CO	0	CO2	011	0.01
Carbon 0				·
11	Machine and a second			

Step	Action
55	Press the <insert> key;</insert>
	Specifying the temperature ($^{\circ}$ C) and pressure (kPa) of the Outlet stream.
56	Highlight the word Worksheet and then press the <enter> key;</enter>
57	Use the arrow keys to move the pointer to the blank space for the Temperature of the Outlet
	stream
	Type the number 600 and then press the <enter> key;</enter>
	The following screen will appear:

		= Streams ==		
	New Valu	e =	С	
Stream	Feed	Outlet	Energy	
Vapour_Frac	1.0000	1.0000	2.0000*	
Temperature	600.0000*	600.0000*	0.0000*	
Pressure	1500.0000*	1425.0000	0.0000*	
Flow	100.0000*	138.0683	0.0000*	
Mass_Flow	1734.6940	1734.7084	0.0000*	
LiqVol_Flow	3.4152	4.6335	0.0000*	
Energy_Flow	3.45557E+06	4.04095E+06	3.90694E+06	

Step	Action
58	Press the <esc> key;</esc>
59	Highlight the word Print and then press the < Enter > key;

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - the conditions, physical properties, and compositions of the streams will be printed out.

b) *Operations* - the different unit operations will be printed out.

c) <u>Spec Sheets</u> - The specifications sheets will be printed out.

d) Hypotheticals - Hypothetical component information will be printed out.

e) Format - specifies format of the printout.

f) <u>Cost</u> - Lists costs of the run, if a royalty is being charged.

g) File - Saves results in a file.

h) Printer - Toggles on a printer.

i) <u>Cases</u> - Lists the stored files.

j) <u>Description</u> - Prints case description.

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action				
60	Highlight the word Streams and then press the <enter> key:</enter>				
61	Highlight t	he word All and th	en press the <enter></enter> ke	y;	
	Looking at	the calculated dat	ta for all of the streams.		
62	Highlight t	he dash symbol - a	nd then press the <enter< th=""><th>r> key;</th><th></th></enter<>	r> key;	
	Pressing th	he < F10 > kev to get	et the Main Menu off of	the screen in order to	see the data on the
	screen una	lerneath it. Use th	e <page down=""> and <i< th=""><th>Page Up> keys to view</th><th>w the entire text.</th></i<></page>	Page Up> keys to view	w the entire text.
63	Press the <	F10> kev;		~~~	
	The screen	will appear as fol	llows:		
Str	eam		Feed	Outlet	Enerov
Desc	ription		2004		HIICT 97
Vapo	ur frac.		1.0000	1.0000	2,0000*
Temp	erature	C	600.0000*	600.0000*	0.0000*
Pres	sure	kPa	1500.0000*	1425.0000	0.0000*
Mola	r Flow	kgmole/h	100.0000*	138.0683	0.0000*
Mass	Flow	kg/h	1734.6940	1734.7084	0.0000*
LiqV	'ol Flow m3/h 3.4152 4.6335 0.0000*				
Enth	alpy	kJ/h	3.45557E+06	4.04095E+06	3.90694E+06
Dens	ity	kg/m3	3.5867	2.4603	0.0000
Mole	Wt.		17.3469	12.5641	0.0000
Spec	. Heat	kJ/kg-C	3.0043	3.2062	
Ther	m Cond	W/m-K	0.1040	0.1768	
Visc	osity	СР	0.0267	0.0257	
Z Fa	ctor		0.9993	1.0024	
Sur	Tension	dyne/cm			
Std	Density	kg/m3	~		
Meth	ane	mole frac.	0.4500*	0.1881	0.0000*
Hydr	ogen	mole frac.	0.0000*	0.4800	0.0000*
H2O		mole frac.	0.5400*	0.1868	0.0000*
Argo	n	mole frac.	0.0100*	0.0072	0.0000*
CO		mole frac.	0.0000*	0.0714	0.0000*
CO2		mole frac.	0.0000*	0.0665	0.0000*
Carb	on	mole frac.	0.0000*	0.0000	0.0000*

3.6 Reactors (General) (continued)

3.6.2 Equilibrium Reactor (continued)

Step	Action
	Pressing the <f10> key again, to get back to the Main Menu.</f10>
64	Press the $\langle F10 \rangle$ key;
65	Highlight the word Print and then press the <enter> key;</enter>

The various print options can be found on page 222.

Step	Action				
66	Highlight the word Spec_Sheets and then press the <enter> key:</enter>				
67	Highlight the word Operations and then press the <enter></enter> key;				
68	Highlight the v	word Reactor and then press	the <enter></enter> key;		
	Pressing the <	F10> key to get the Main M	lenu off of the screen in	order to see the data on the	
	screen undern	eath it.			
69	Press the <f1< th=""><th>)> key;</th><th></th><th></th></f1<>)> key;			
	The screen wi and <page th="" up<=""><th>ll appear as shown below an >> keys to view the entire tex</th><th>d on the following page</th><th>. Use the <page down=""></page></th></page>	ll appear as shown below an >> keys to view the entire tex	d on the following page	. Use the <page down=""></page>	
HYSI HYSIM Case Opera Opera	M EQUILIBRI Version Name: tion Name: tion Note:	UM REACTOR SPECIFICA C2.53 Reactor	TION	Page 1 of 3 Date 96/07/12 Time 14:36:34	
Inl Outl	Stream Operation Flowrate Inlet: Feed from 100.0000 kgmole/h 1734.6940 kg/h Outlet: Outlet to 138.0683 kgmole/h				
Ener	gy: Energy	to	3.90694E-	+06 kJ/h	
Inlet	Properties	at Operating Conds	Outlet Propertie	es at Operating Conds	
Vapou Tempe Press Densi Std D Mol W Visco Therm	r Frac trature ure 1 ty ensity eight sity Cond	1.0000 600.0000 C 500.0000 kPa 3.5867 kg/m3 517.5597 kg/m3 17.3469 0.0267 cP 0.1040 W/m-K	Vapour Frac Temperature Pressure : Density Std Density Mol Weight Viscosity Therm Cond	1.0000 600.0000 C 1425.0000 kPa 2.4603 kg/m3 kg/m3 12.5641 0.0257 cP 0.1768 W/m-K	
Compo	onent	Hform @ 298 K (kJ/kgmole)	Inlet Flowrate (kgmole/h)	Outlet Flowrate (kgmole/h)	
Metha Hydro H2O Argon CO CO2 Carbo	ne ogen n	-74900.0000 0.0000 -241000.0000 0.0000 -110590.0000 -393790.0000 0.0000	$\begin{array}{c} 45.0000\\ 0.0000\\ 54.0000\\ 1.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	25.9659 66.2785 25.7898 1.0000 9.8581 9.1761 0.0000	

```
= HYSIM EQUILIBRIUM REACTOR SPECIFICATION _____ Page 2 of 3 ___
                                                                   Date 96/07/12
Case Name:
                                                                   Time 14:36:34
Operation Name: Reactor
Reaction 1 Equil. Const. EqConst_A EqConst_B Temp. Appr.
                    4.500e+01
                                                     ____
                                                                        ---
                                          - - -
                    Basis: Activities

        Reactants -1.000 Methane
        + -1.000 H20

        Products
        3.000 Hydrogen
        + 1.000 CO

                    Equil. Const. EqConst_A EqConst_B Temp. Appr.
Reaction 2
                                                    - - -
                    2.400e+00
                                                                         - - -
                                          ---
                    Basis: Activities

        Reactants -1.000 H20
        + -1.000 CO

        Products 1.000 Hydrogen
        + 1.000 CO2

Reaction 3 Equil. Const. EqConst_A EqConst_B Temp. Appr.
                    1.000e-03
                                          ---
                                                   ---
                                                                         ----
                    Basis: Activities
 Reactants -1.000 Methane
Products 2.000 Hydrogen + 1.000 Carbon
```

Step	Action
	Pressing the $\langle F10 \rangle$ key again, to get back to the Main Menu.
70	Press the <f10> key;</f10>
71	Highlight the word PFD and then press the <enter> key;</enter>
	The following screen will appear:

Step	Action		
	Getting hack to the Main Menu.		
72	Press the <esc> key until you reach the Main Menu;</esc>		
73	Do you want to continue adding other unit operations to this reactor?		
	• If Yes, turn to the pertinent section of this manual now;		
	If <u>No</u> , turn to the "Exiting HYSIM" Section of this manual		

3.6.3 Gibbs Reactor

<u>Objective</u>- This exercise is an example of a Gibbs reactor calculation. The purpose of the Gibbs reactor unit operation is to compute the output stream given the input stream, reaction conditions and the assumption that the outlet stream is at equilibrium and the Gibbs free energy is therefore at a minimum at equilibrium. The chemical equations used in this example are as follows:

Reaction #1	$CH_4 + H_2O \rightarrow CO + 3H_2$
Reaction #2	$CO + H_2O \rightarrow CO_2 + H_2$
Reaction #3	$CH_4 \rightarrow C(s) + 2H_2$

This example can be modified by specifying another property package and/or other reactions, components, compositions and stream conditions.

In this example, the components in the feed stream are specified, along with the atomic matrix of each component and the overall flow rate. The conditions of the feed and product streams are also specified. HYSIM then calculates the composition of the outlet stream.

<u>Technical Example Reference</u>: Reference 1- Hyprotech HYSIM User's Guide, Version C2.50, pp.7-66 to 7-78.

Other References: Refs. 1 & 2.

Directions: Pages 226 through 233 outline the execution of a Gibbs type reactor example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions below in the Action column below. The HYSIM menu items to be highlighted and the words to by typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "escape" key have additionally been placed inside the <> brackets (e.g. **Esc**>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called *Reactor*, is shown below:

Step	Action			
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).			
	• If <u>Yes</u> , proceed with Step 2.			
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures			
	before proceeding to Step 2.			
	Starting with a new case.			
2	Highlight the word No and then press the <enter> key;</enter>			
	Selecting a Property Package.			
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>			
	The following screen will appear:			

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	Cl	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	C3	Propane	СЗН8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	С7Н16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H20	PHENOL
	C10	n-Decane	C10H22	ETHER
	Cll	n-C11	Cl1H24	USER
	C12	n-C12	C12H26	
♥ ↓	↓ v _ ↓;	Search by SYNONYM		L
F1 - Help,	F3 - Menu, F4 PRI	- Flip Srch, F5 - Exa ESS INSERT TO SUBMIT	am, F6 - Move	, F8 - Change

Step	Action		
	Selecting the components in the feed stream.		
4	Highlight each of the following component names under the "Component Selection" Section		
	and press the <enter> key so that the name then appears in the "selected" column, as</enter>		
	follows:		
	Highlight the word Methane and then press the <enter> key;</enter>		
	Highlight the word Hydrogen and then press the <enter> key;</enter>		
	Highlight the formula H2O and then press the <enter> key;</enter>		
	Highlight the word Argon and then press the <enter> key;</enter>		
	Highlight the formula CO and then press the \langle Enter \rangle key;		
	Highlight the formula CO2 and then press the <enter> key;</enter>		
	Highlight the word Carbon and then press the <enter> key;</enter>		
	The screen will then appear as shown on the following page.		

3.6.3 Gibbs Reactor (continued)

Selected	Synonym	Name	Formula	Criteria
Methane		HI	HI	ALL
Hydrogen	NitricOxide	NO	NO	нC
H20	NO2	NO2	NO2	SOLID
Argon	N20	N20	N20	MISC
CO	N204	N204	N2O4	AMINE
CO2	S02	SO2	SO2	ALCOHOL
Carbon	S03	SO3	SO3	KETONE
	Sulphur_Rhombic	S_Rhombic	S	ALDEHYDE
	Sulphur_Monoclinic	S_Monoclinic	S	ESTER
	Sulphur_Amorphous	S_Amorphous	S	CARBACID
	Sulphur_Lig_150	S_Liq_150	S	HALOGEN
	Sulphur_Lig_190	S_Liq_190	S	NITRILE
1	Sulphur_Lig_280	S_Liq_280	S	PHENOL
	Sulphur_Vapour	S_Vapour	S	ETHER
	H2S H2S	H2S	H2S	USER
l L	CarbonOxiSulphide	COS	COS	
v - +	▼ - ↓Search	by SYNONYM		
F1 - Help,	F3 - Menu, F4 - Flip	Srch, F5 - Exa	am, F6 -	Move,
	PRESS INS	SERT TO SUBMIT	F8 -	Change

Step	Action
5	Press the <insert> key;</insert>

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Specifying the type of operation.
6	Highlight the word Operation and then press the <enter> key;</enter>
7	Type the word Reactor after the prompt (>) and then press the <enter> key;</enter>
8	Highlight the word Reactor and then press the <enter> key;</enter>
	The following screen will then appear:

Step	Action	
	Specifying the stream names.	
10	Type the word Feed in the blank and then press the <enter> key;</enter>	
11	Type the word Outlet in the blank and then press the <enter> key;</enter>	
12	Type the word Energy in the blank and then press the <enter> key two times;</enter>	
	Specifying the pressure in kilopascals (kPa) units.	
13	Type the number 75 in the blank.	
	The screen should now appear as follows:	

Step	Action
14	Press the <insert> key;</insert>
	The following screen will then appear:

<u>Г</u>	== Operation Reactor	r Gibbs A	Atomic Matrix	
Enter	I to make component	Inert, In	ns to Exit,	
	С	Н	0	Ar -
Methane	1.0000	4.0000		
Hydrogen		2.0000		
H2O	~ ~ _	2.0000	1.0000	
Argon				1.0000
CO	1.0000		1.0000	
CO2	1.0000		2.0000	
Carbon	1.0000			

Step	Action				
	Specifying the Product Flow Rate of Methane in kgmoles hr. (You must move the screen to the				
	right by using the right arrow (\rightarrow) key, to display the Prod. Flow column because the entire				
	spreadsheet could not fit on the screen).				
15	Press the \rightarrow key until the pointer is at the blank space for the Prod. Flow of Methane and then				
	type the number 10 and press the <enter></enter> key;				
	The screen will then appear as shown on the following page.				

Enter	— Operation Reactor I to make component	r Gibbs A Inert, In	Atomic Matrix As to Exit,	
11	Ĥ	0	Ar	Prod Flow
Methane	4.0000			10.0000
Hydrogen	2.0000			
H20	2.0000	1.0000		
Argon			1.0000	
CO	_ ~ _	1.0000		
CO2		2.0000		~
Carbon				

Step	Action			
16	Press the <insert> key;</insert>			
	Specifying the conditions of the Feed stream.			
17	Highlight the word Specify and then press the <enter> key;</enter>			
18	Highlight the word Stream and then press the <enter> key;</enter>			
19	Highlight the word Feed and then press the <enter> key;</enter>			
	Specifying the Temperature of the Feed in °C.			
20	Type the number 600 after the prompt (>) and then press the <enter> key;</enter>			
	Specifying the pressure of the Feed in kilopascals (kPa).			
21	Type the number 1500 after the prompt (>) and then press the <enter> key;</enter>			
	Specifying the Flow in kg-mols/hr.			
22	Type the number 100 after the prompt (>) and then press the <enter> key;</enter>			
	Specifying the units of flow to use when specifying compositions in the Feed stream.			
23	Highlight the words Mole_Fractions and then press the <enter> key;</enter>			
	The following screen will then appear:			

	Stream Mol	le Fractions	
Methane H2O CO Carbon		Hydrogen Argon CO2	

Step	Action			
24	Enter the following mole fractions beside each component in the feed stream:			
	After the word, Methane, type the number 0.45 in the blank and then press the <enter> key;</enter>			
	After the word, Hydrogen, type the number 0 in the blank and then press the <enter> key;</enter>			
	After the formula, H2O, type the number 0.54 in the blank and then press the <enter> key;</enter>			
	After the word, Argon, type the number 0.01 in the blank and then press the <enter> key;</enter>			
	After the formula, CO, type the number 0 in the blank and then press the \langle Enter \rangle key;			
	After the formula, CO2, type the number 0 in the blank and then press the \langle Enter \rangle key,			
	After the word, Carbon, type the number 0 in the blank;			
	The screen should now appear as shown on the following page.			

ſ			Stream	Mole	Fractions	
A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE	Methane H2O CO Carbon	0.45 0.54 0		H A C	lydrogen Irgon 202	0 0.01 0

Step	Action			
25	Press the <insert> key;</insert>			
	Specifying the temperature ($^{\circ}$) and pressure (kPa) of the Outlet stream.			
26	Highlight the word Worksheet and then press the <enter> key;</enter>			
27	Use the arrow keys to move the pointer to the blank space for the Temperature of the Outlet			
	stream.			
	Type the number 600 and then press the <enter> key;</enter>			
	The following screen will appear:			

		==== Streams ===		
	New Valu	e =	С	
Stream	Feed	Outlet	Energy	
Vapour_Frac	1.0000	1.0000	2.0000*	
Temperature	600.0000*	600.0000*	0.0000*	
Pressure	1500.0000*	1425.0000	0.0000*	
Flow	100.0000*	170.0000	0.0000*	
Mass_Flow	1734.6940	1734.7233	0.0000*	
LiqVol_Flow	3.4152	5.3763	0.0000*	
Energy_Flow	3.45557E+06	4.49503E+06	7.53958E+06	

Step	Action
28	Press the <esc></esc> key;
29	Highlight the word Print and then press the <enter></enter> key;

Print Options:

The various print options available are as follows:

- a) <u>Streams</u> The conditions, physical properties, and compositions of the streams will be printed out.
- b) <u>Operations</u> the different unit operations will be printed out.
- c) Spec_Sheets the specifications sheets will be printed out.
- d) Hypotheticals Hypothetical component information will be printed out.
- e) Format Specifies the format of the printout.
- f) <u>Cost</u> Lists costs of the run, if a royalty is being charged.
- g) File Saves results in a file.
- h) Printer Toggles on a printer.
- i) Cases Lists the stored files.
- j) *Description* Prints case description.
- k) Oil Input Lists inputted information on an oil.
- NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step				Acti	on			
30	Highlight	Highlight the word Streams and then press the <enter> key:</enter>						
31	Highlight	Highlight the word All and then press the <enter> key:</enter>						
	Looking a	Looking at the calculated data for all of the streams						
32	Highlight	the dash	symbol - and th	en press t	he <ente< th=""><th>er> key;</th><th></th><th></th></ente<>	er> key;		
	Pressing	the <fi< th=""><th>)> key to get the</th><th>Main M</th><th>enu off o</th><th>f the screet</th><th>n in order</th><th>to see the data on the</th></fi<>)> key to get the	Main M	enu off o	f the screet	n in order	to see the data on the
	screen un	derneath	ı it.		55 5			
33	Press the	<f10> k</f10>	ey;					
	The scree	n will ap	ppear as follows.	Press th	e <page< th=""><th>Up> and ·</th><th><page do<="" th=""><th>wn> keys to view the</th></page></th></page<>	Up> and ·	<page do<="" th=""><th>wn> keys to view the</th></page>	wn> keys to view the
	entire tex	t.	1 5		0	1	8	2
******************	·		**					
Stre	am				Feed	C	ntlet	Enerav
Descr	iption				- 000	Ŭ	ullet t	mici 37
Vapou	ir frac			1.	0000	1	.0000	2.0000*
Tempe	erature	С		600.	*0000	600	.0000*	0.0000*
Press	sure	kPa		1500.	*0000	1425	.0000	0.0000*
Molar	Flow	kgmo]	le/h	100.	0000*	170	.0000	0.0000*
Mass	Flow	kg/h		1734.	6940	1734	.7233	0.0000*
LiqVc	ol Flow	m3/h		3.	4152	5	.3763	0.0000*
Entha	lpy	kJ/h	3	.45557	E+06	4.4950	3E+06	7.53958E+06
Densi	ty	kg/m3	3	3.	5867	1	.9971	0.0000
Mole	Wt.			17.	3469	10	.2043	0.0000
Spec.	Heat	kJ/kg	g-C	3.	0043	3	.3279	
Therm	1 Cond	W/m-H	ζ	0.	1040	0	.2132	
Visco	sity	сР		0.	0267	0	.0267	
Z Fac	tor		,	0.	9993	1	.0030	
Sur 1	ension	dyne	Cm					
Sta L	ensity	кg/m.	5		45004			
Metna	ine	more	frac.	0.	4500*	0	0.0588	0.0000*
нуarc	ogen	mole	frac.	0.		0	.6605	0.0000*
HZU Noraci	,	more	frac.	0.	5400*	0	.0689	0.0000*
Argon	1	more	frac.	0.	0000×	0	.0059	0.0000*
COR		mole	frac.	υ.	0000*	0	.1630	0.0000*
CO2		more	LIdC.	υ.	0000*	0	.0428	0.0000*
Spec. Therm Visco Z Fac Sur T Std L Metha Hydro H2O Argon CO CO2 Carbo	Heat Cond Sity tor Cension Density ane ogen	kJ/kg W/m-H CP dyne/ kg/m3 mole mole mole mole mole mole	g-C (frac. frac. frac. frac. frac. frac. frac. frac. frac.	3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0043 1040 0267 9993 4500* 0000* 5400* 0100* 0000* 0000* 0000*	3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.3279 .2132 .0267 .0030 .0588 .6605 .0689 .0059 .1630 .0428 .0000	 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*

Step	Action
	Pressing the $\langle F10 \rangle$ key again, to get back to the Main Menu.
34	Press the <f10> key;</f10>
35	Highlight the word Print and then press the <enter> key;</enter>

The various print options can be found on page 230.

Step	Action
36	Highlight the word Spec_Sheets and then press the <enter> key:</enter>
37	Highlight the word Operations and then press the < Enter > key;
38	Highlight the word Reactor and then press the <enter> key;</enter>
	Pressing the $\langle F10 \rangle$ key to get the Main Menu off of the screen in order to see the data on the
	screen underneath it.
39	Press the <f10> key;</f10>
	The screen will appear as shown below. Press the <page up=""> and <page down=""> keys to view</page></page>
	the entire text

HVGTM GIRBS	FACTOR SPRCIFICAT	TON =			
HYSIM Version Case Name:	1 C2.53			Date 96/ Time 10	07/15 07:37
Operation Name Operation Note	e: Reactor				
		0			
Inlet: Feed	im from	ope:	100.0	0000 kgmole/h	
Outlet: Outle	et to		1734.0 170.0	6940 kg/h 0000 kgmole/h	
Energy: Energ	fy to		1/34. 7.539581	7233 kg/n E+06 kJ/h	
Inlet Properti	es at Operating Co	onds	Outlet Propert:	ies at Operating	Conds
Vapour Frac Temperature Pressure Density Std Density Mol Weight Viscosity Therm Cond	1.0000 600.0000 C 1500.0000 kPa 3.5867 kg/m3 517.5597 kg/m3 17.3469 0.0267 cP 0.1040 W/m-K		Vapour Frac Temperature Pressure Density Std Density Mol Weight Viscosity Therm Cond	1.0000 600.0000 C 1425.0000 kPa 1.9971 kg/m3 kg/m3 10.2043 0.0267 cP 0.2132 W/m-K	
Component	Hform @ 298 K (kJ/kgmole)		Inlet Flowrate (kgmole/h)	Outlet Flow (kgmole/h	rate)
Methane Hydrogen H2O Argon CO CO2 Carbon	-74900.0000 0.0000 -241000.0000 0.0000 -110590.0000 -393790.0000 0.0000		$\begin{array}{c} 45.0000\\ 0.0000\\ 54.0000\\ 1.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	10.00 112.28 11.71 1.00 27.71 7.28 0.00	00 19 81 00 81 19 00

Step	Action
	Pressing the <f10> key again, to get back to the Main Menu.</f10>
40	Press the <f10> key;</f10>
41	Highlight the word PFD and then press the < Enter > key;
	The following screen will appear:

Step	Action			
	Getting back to the Main Menu.			
42	Press the <esc> key until you reach the Main Menu;</esc>			
43	Do you want to continue adding other unit operations to this reactor?			
	• If <u>Yes</u> , turn to the pertinent section of this manual now;			
	If <u>No</u> , turn to the "Exiting HYSIM" Section of this manual.			

3.6.4 Continuously Stirred Tank Reactor (CSTR)

<u>**Objective-**</u> This exercise is an example of a Continuous Stirred-Tank Reactor (CSTR) calculation. The purpose of the CSTR unit operation is to compute the output stream given the input stream, reaction stoichiometry, reactor volume or space-time, and rate constant (k) or Arrhenius' law parameters: frequency factor (k_0) and activation energy (E) information. The Arrhenius' law is:

 $k = k_0 e^{-E/RT}$, where R = the universal gas constant, and T = the absolute temperature.

The chemical equations used in this example are as follows:

Reaction #1	$CH_4 + H_2O \rightarrow CO + 3H_2$
Reaction #2	$CO + H_2O \rightarrow CO_2 + H_2$
Reaction #3	$CH_4 \rightarrow C(s) + 2H_2$

This example can be modified by specifying another property package and/or other reactions, components, compositions and stream conditions.

In this example, the reactor volume and dead space are specified. The stoichiometric matrix of the three different chemical reaction equations is also given to the HYSIM program, along with either the rate constants or the frequency factor and activation energy data for each chemical reaction. The conditions, molar flow rate, and composition of the feed, as well as the conditions of the outlet stream are also specified. With all of this data, HYSIM will then calculate the composition of the outlet stream.

<u>Technical Example Reference</u>: Reference 1 - HYSIM User's Guide, Version C2.50, pp.7-66 to 7-83.

Other References: Refs. 1 & 2.

Directions: Pages 235 through 247 outline the execution of a Continuously Stirred Tank Reactor (CSTR) example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to by typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "escape" key have additionally been placed inside the < > brackets (e.g. <Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called *<u>Reactor</u>*, is shown below:

3.6.4 Continuously Stirred Tank Reactor (CSTR) (continued)

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).
	• If <u>Yes</u> , proceed with Step 2.
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>
	The following screen will appear:

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	C1	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	C3	Propane	СЗН8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H2O	PHENOL
	C10	n-Decane	C10H22	ETHER
	C11	n-Cll	C11H24	USER
	C12	n-C12	C12H26	
│ ♥ ↓	⊥ ♥ ↓?	Search by SYNONYM		L
Fl - Help,	F3 - Menu, F4 - PRI	- Flip Srch, F5 - Exa ESS INSERT TO SUBMIT	am, F6 - Move,	, F8 - Change

Step	Action
	Selecting the components in the feed stream.
4	Highlight each of the following component names under the "Component Selection" Section
	and press the <enter> key so that the name then appears in the "selected" column, as</enter>
	follows:
	Highlight the word Methane and then press the <enter> key;</enter>
	Highlight the word Hydrogen and then press the <enter> key;</enter>
	Highlight the formula H2O and then press the <enter></enter> key;
	Highlight the word Argon and then press the <enter> key;</enter>
	Highlight the formula CO and then press the $\langle Enter \rangle$ key;
	Highlight the formula CO2 and then press the <enter> key;</enter>
	Highlight the word Carbon and then press the <enter> key;</enter>
	The screen will then appear as shown on the following page.

3.6.4 Continuously Stirred Tank Reactor (CSTR) (continued)

Selected	Synonym	Name	Formula	Criteria
Methane	HI	HI	HI	ALL
Hydrogen	NitricOxide	NO	NO	HC
H20	NO2	NO2	NO2	SOLID
Argon	N20	N20	N20	MISC
'co -	N204	N2O4	N204	AMINE
CO2	S02	S02	SO2	ALCOHOL
Carbon	S03	S03	SO3	KETONE
	Sulphur_Rhombic	S_Rhombic	S	ALDEHYDE
	Sulphur_Monoclinic	S_Monoclinic	S	ESTER
	Sulphur_Amorphous	S_Amorphous	S	CARBACID
	Sulphur_Lig_150	S_Lig_150	S	HALOGEN
	Sulphur_Lig_190	S_Lig_190	S	NITRILE
	Sulphur_Lig_280	S_Liq_280	S	PHENOL
	Sulphur_Vapour	S_Vapour	S	ETHER
	H2S	H2S	H2S	USER
	CarbonOxiSulphide	COS	COS	
v +	Search	by SYNONYM		L
Fl – Help,	F3 - Menu, F4 - Flip	Srch, F5 - Ex	am, F6 -	Move,
	PRESS INS	SERT TO SUBMIT	F8 - C1	nange

Step	Action
5	Press the <insert> key;</insert>

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Changing the units from the HYSIM default metric units (kg. kPa, C, etc.) to field units
	(lb.psia, F.etc.).
6	Highlight the word Utility and then press the <enter> key;</enter>
7	Highlight the word Configuration and then press the <enter> key;</enter>
8	Highlight the word Units and then press the <enter> key;</enter>
9	Highlight the word Field and press the <enter> key and then press the <esc> key;</esc></enter>
	Specifying the type of operation.
10	Highlight the word Operation and then press the <enter></enter> key;
11	Type the word Reactor after the prompt (>) and then press the <enter> key;</enter>
12	Highlight the word Reactor and then press the <enter> key;</enter>
	The following screen will then appear:

3.6.4 Continuously Stirred Tank Reactor (CSTR) (continued)

Step	Action
	Specifying that the reactor type should be a CSTR.
13	Press the <f2> key and highlight the word CSTReactor and then press the <enter> key;</enter></f2>
	Specifying the stream names.
14	Type the word Feed in the blank and then press the <enter> key;</enter>
15	Type the word Outlet in the blank and then press the <enter> key;</enter>
16	Type the word Energy in the blank and then press the <enter> key two times;</enter>
	Specifying the pressure drop across the CSTR in psi.
17	Type the number 10.9
	The screen should now appear as follows:

Step	Action
18	Press the <insert></insert> key;
	The following screen will then appear:
	Continuous Stirred Tank Reactor
	Operation Name: Reactor

3.6.4 Continuously Stirred Tank Reactor (CSTR) (continued)

Step	Action
	Specifying the reactor volume in cubic feet (ft ³).
19	Type the number 17697.6 and then press the <insert> key;</insert>
	The following screen will then appear:

	Operation Reactor	Stoichiometric Matrix	
	Operation Redector	Decordine To Contract	The to Evit
Enter A to	Add, D to Delete a	Reaction, F2 for Menu,	INS LO EXIL
	Reaction 1		
Phase	Overall		
Methane			
Hydrogen	~		
H2O			
Argon	~ = =		
CO			
C02			
Carbon			

Step	Action
	Specifying the stoichiometric coefficients for each of the seven chemical reactants (negative
	integer) and products (positive integer) of each of the three reactions on page 234.
	Reaction 1 stoichiometric coefficients.
20	Press the $<\downarrow>$ key one time and then type the number -1 and then press the $<$ Enter> key;
21	Type the number 3 and then press the <enter> key;</enter>
22	Type the number -1 and then press the <enter> key;</enter>
23	Type the number 0 and then press the <enter> key;</enter>
24	Type the number 1 and then press the <enter> key;</enter>
25	Type the number 0 and then press the <enter> key;</enter>
26	Type the number 0 and then press the <enter> key;</enter>
	Pressing an "a" to add another column to the table.
27	Press the letter a;
	Reaction 2 stoichiometric coefficients.
28	Press the <1> key enough times until the pointer is at the blank space for the component
	Methane of Reaction 2.
29	Type the number 0 and then press the <enter> key;</enter>
30	Type the number 1 and then press the <enter> key;</enter>
31	Type the number -1 and then press the <enter> key;</enter>
32	Type the number 0 and then press the <enter> key;</enter>
33	Type the number -1 and then press the <enter> key;</enter>
34	Type the number 1 and then press the <enter> key,</enter>
35	Type the number 0 and then press the <enter> key;</enter>
36	Press the letter a;
Step	Action
------	---
	Reaction 3 stoichiometric coefficients.
37	Press the $<\uparrow>$ key enough times until the pointer is at the blank space for the component
	Methane of Reaction 3.
38	Type the number -1 and then press the <enter> key;</enter>
39	Type the number 2 and then press the <enter> key;</enter>
40	Type the number 0 and then press the <enter></enter> key;
41	Type the number 0 and then press the <enter> key;</enter>
42	Type the number 0 and then press the <enter> key;</enter>
43	Type the number 0 and then press the <enter> key;</enter>
44	Type the number 1 and then press the <enter> key;</enter>
	The screen will then appear as shown below:

	Operation React	tor Stoichion	netric Matrix			
Enter A to	Add, D to Dele	te a Reaction,	F2 for Menu,	Ins	to	Exit
	Reaction 1	Reaction 2 H	Reaction 3			
Phase	Overall	Overall	Overall			
Methane	-1.000		-1.000			
Hydroqen	3.000	1.000	2.000			
H2O	-1.000	-1.000				
Argon						
CO	1.000	-1.000				
CO2		1.000	~			
Carbon			1.000			

Step	Action
45	Press the <insert> key;</insert>
	Reaction 1 specifications.
	Specifying the rate constant for reaction 1
46	Type the number 7.2e+02 and then press the <enter> key;</enter>
	Specifying the units of the rate constant for reaction 1 as lb-mols/cubic foot-hour.
47	Press the $<\downarrow>$ key two times and then press the $$ key; and then highlight the lbmole/ft3-hr
	unit and then press the <enter> key;</enter>
	Specifying the base component (reaction rate basis) for reaction 1 as Methane.
48	Press the $<\downarrow>$ key one time and then press the $$ key; and highlight the word Methane and
	then press the <enter></enter> key;
	Specifying that the units of the basis (molar concentration is used in calculating the rate) are
	expressed in lb-mols cubic foot.
49	Press the $<\downarrow>$ key two times and then press the $<$ F2> key; and then highlight the lbmole/ft3 unit
	and then press the <enter> key;</enter>

Step	Action
	Specifying the order of the reaction. The two reactants in reaction 1 are Methane and H2O.
	and their coefficients are 1, so they have an order of one. The rest of the components have a
	zero order.
50	Press the $<\downarrow>$ key one time and then type the number 1 and press the $<$ Enter> key;
51	Type the number 0 and then press the <enter> key;</enter>
52	Type the number 1 and then press the <enter> key;</enter>
53	Type the number 0 and then press the <enter> key;</enter>
54	Type the number 0 and then press the <enter> key;</enter>
55	Type the number 0 and then press the <enter> key;</enter>
56	Type the number 0 and then press the <enter> key;</enter>
57	Press the \rightarrow key once until the cursor is in the reaction 2 column;
	Reaction 2 specifications.
	Specifying the frequency factor for reaction 2.
58	Press the $<\uparrow>$ key enough times until the pointer is at the blank space for the Freq. Factor of
	reaction 2.
59	Type the number 4.7e+03 and then press the <enter> key;</enter>
	Specifying the Activation Energy for Reaction 2.
60	Type the number 7.8e+04 and then press the <enter> key;</enter>
	Specifying the rate constant units in lb-mols/cubic foot-hour.
61	Press the <f2> key; and then highlight the lbmole/ft3-hr unit and then press the <enter> key;</enter></f2>
	Specifying the base component (reaction rate basis) for reaction 2 as Carbon Monoxide (CO).
62	Press the $<\downarrow>$ key one time and then press the $<$ F2> key; and highlight the formula CO and
	then press the <enter> key;</enter>
	Specifying that the units of the basis (molar concentration is used in calculating the rate) are
	expressed in lb-mols/cubic foot.
63	Press the $\langle \downarrow \rangle$ two times and then press the $\langle F2 \rangle$ key; and then highlight the lbmole/ft3 unit
	and then press the <enter> key;</enter>
	Specifying the order of the reaction. The two reactants in reaction 2 are H2O and CO, and
	their coefficients are 1, so they have an order of one. The rest of the components have a zero
	order.
04	Press the $<\psi>$ key one time and then type the number 0 and press the $ nter> key;$
65	l ype the number 0 and then press the <enter> key,</enter>
60	I ype the number I and then press the <enter> key;</enter>
67	I ype the number U and then press the <enter> key;</enter>
68	I ype the number 1 and then press the <enter> key;</enter>
69	I ype the number U and then press the <enter> key;</enter>
70	I ype the number 0 and then press the <lnter> key;</lnter>
71	Press the $\langle \rightarrow \rangle$ key one time until the cursor is in the column for Reaction 3;

3.6.4 Continuously Stirred Tank Reactor (CSTR) (continued)

Step	Action
	Reaction 3 specifications.
	Specifying the rate constant for reaction 3.
72	Press the <1> key enough times until the pointer is at the blank space for the rate constant of
	Reaction 3.
73	Type the number 1.6e+00 and then press the <enter> key;</enter>
	Specifying the rate constant units in lb-mols/cubic foot-hour.
74	Press the $\langle \downarrow \rangle$ key two times and press the $\langle F2 \rangle$ key; and then highlight the lbmole/ft3-hr unit
	and press the <enter> key;</enter>
	Specifying the base component (reaction rate basis) for reaction 3 as Methane.
75	Press the $<\downarrow>$ key one time and then press the $<$ F2> key; and highlight the word Methane and
	then press the <enter></enter> key;
	Specifying that the units of the basis (molar concentration is used in calculating the rate) are
	expressed in lb-mols/cubic foot.
76	Press the $<\downarrow>$ key two times and then press the $<$ F2> key; and then highlight the lbmole/ft3
	unit and then press the <enter> key;</enter>
	Specifying the order of the reaction. The only reactant in reaction 3 is Methane, and the
	coefficient is 1, so it has an order of one. The rest of the components have a zero order.
77	Press the $<\downarrow>$ key one time and then type the number 1 and press the $<$ Enter $>$ key;
78	Type the number 0 and then press the <enter> key;</enter>
79	Type the number 0 and then press the <enter> key;</enter>
80	Type the number 0 and then press the <enter> key;</enter>
81	Type the number 0 and then press the <enter> key;</enter>
82	Type the number 0 and then press the <enter> key;</enter>
83	Type the number 0 and then press the <enter> key;</enter>
	The screen will then appear as shown below:

One	aration Reacto	or Rate Cons	stant/Order Mat	riv =		
		to a Depation	E2 for Monu	TNO 4		Ruit
Enter A to A	Add, D LO DEIE	ele a Reaction	I, FZ LOI MEIIU,	Ins	LU	BAIL
	Reaction 1	Reaction 2	Reaction 3			
Rate Const.	7.2000e+02		1.6000e+00			
Freq. Factor		4.7000e+03	~			
Actv. Energy		7.8000e+04				
Rate Unit	lbmole/ft3-h	lbmole/ft3-h	lbmole/ft3-h			
Base Comp.	Methane	CO	Methane			
Basis	MolarConc	MolarConc	MolarConc			
Basis Unit	lbmole/ft3	lbmole/ft3	lbmole/ft3			
Methane	1.000		1.000			
Hydrogen						
H2O	1.000	1.000	~ ~ ~			
Argon						
CO		1.000				
C02						
Carbon						
1						

Step	Action
84	Press the <insert> key;</insert>
	Specifying the conditions of the Feed stream.
85	Highlight the word Specify and then press the <enter> key;</enter>
86	Highlight the word Stream and then press the <enter> key,</enter>
87	Highlight the word Feed and then press the <enter> key;</enter>
	Specifying the Temperature of the Feed in °F.
88	Type the number 1112 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Feed in psia.
89	Type the number 218.3 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the Flow in lb-mols hr.
90	Type the number 220 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the units of flow to use when specifying compositions in the feed stream.
91	Highlight the words Mole_Fractions and then press the <enter> key;</enter>
	The following screen will then appear:

 Stream	Mole	Fractions	=
U C L C U III	11010	t racerono	_

Methane H2O CO	 Hydrogen Argon CO2	
Carbon		

Step	Action
92	Enter the following mole fractions beside each component in the feed stream:
	After the word, Methane, type the number 0.45 in the blank and then press the <enter> key;</enter>
	After the word, Hydrogen, type the number 0 in the blank and then press the \langle Enter \rangle key;
	After the formula, H2O, type the number 0.54 in the blank and then press the <enter> key;</enter>
	After the word, Argon, type the number 0.01 in the blank and then press the <enter> key;</enter>
	After the formula, CO, type the number 0 in the blank and then press the <enter> key;</enter>
	After the formula, CO2, type the number 0 in the blank and then press the <enter> key;</enter>
	After the word, Carbon, type the number 0 in the blank;
	The screen should now appear as follows:

<u> </u>	Stream	Mole Fractions	
Methane H2O CO Carbon	0.45 0.54 0	Hydrogen Argon CO2	0 0.01 0

Step	Action
93	Press the <insert> key,</insert>
	Specifying the temperature (%) of the Outlet stream.
94	Highlight the word Worksheet and then press the <enter> key;</enter>
95	Use the arrow keys to move the pointer to the blank space for the Temperature of the Outlet
	stream.
	Type the number 1112 and then press the <enter> key;</enter>
	The following screen will appear:

		== Streams ==		
	New Value	9 =	F	
Stream	Feed	Outlet	Energy	
Vapour_Frac	1.0000	0.9160	2.0000*	
Temperature	1112.0000*	1112.0000*	0.0000*	
Pressure	218.3000*	207.4000	0.0000*	
Flow	220.0000*	360.4430	0.0000*	
Mass_Flow	3816.3265	3816.3596	0.0000*	
LigVol_Flow	514.4725	674.8822	0.0000*	
Energy_Flow	3.26838E+06	4.01913E+06	4.98404E+06	

Step	Action
96	Press the < Esc > key;
97	Highlight the word Print and then press the <enter></enter> key;

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) *Operations* - The different unit operations will be printed out.

c) Spec Sheets - The specifications sheets will be printed out.

d) *Hypotheticals* - Hypothetical component information will be printed out.

e) Format - Specifies format of the printout.

f) <u>Cost</u> - Lists costs of the run, if a royalty is being charged.

g) File - Saves results in a file.

h) Printer - Toggles on a printer.

i) <u>Cases</u> - Lists the stored files.

i) Description - Prints case description.

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action
98	Highlight the word Streams and then press the <enter> key:</enter>
99	Highlight the word All and then press the <enter> key;</enter>
	Looking at the calculated data for all of the streams.
100	Highlight the dash symbol - and then press the <enter> key;</enter>

3.6.4 Continuously Stirred Tank Reactor (CSTR) (continued)

Step	Action
	Pressing the $\langle F10 \rangle$ key to get the Main Menu off of the screen in order to see the data on the
	screen underneath it.
101	Press the $\langle F10 \rangle$ key;
	The screen will appear as follows. Use the <page up=""> and <page down=""> keys to view the</page></page>
	entire text.

Stream Description		Feed	Outlet	Energy
Vapour frac		1.0000	0.9160	2.0000*
Temperature	F	1112.0000*	1112.0000*	0.0000*
Pressure	psia	218.3000*	207.4000	0.0000*
Molar Flow	lbmole/hr	220.0000*	360.4430	0.0000*
Mass Flow	lb/hr	3816.3265	3816.3596	0.0000*
LiqVol Flow	barrel/day	514.4725	674.8822	0.0000*
Enthalpy	Btu/hr	3.26838E+06	4.01913E+06	4.98404E+06
Density	lb/ft3	0.2247	0.1418	0.0000
Mole Wt.		17.3469	10.5880	0.0000
Spec. Heat	Btu/lb-F	0.7176	0.7755	
Therm Cond	Btu/hr-ft-F	0.0601		
Viscosity	сР	0.0267		
Z Factor		0.9993		
Sur Tension	dyne/cm			
Std Density	lb/ft3			
Methane -	mole frac."	0.4500*	0.0798	0.0000*
Hydrogen	mole frac.	0.0000*	0.5004	0.0000*
H2O	mole frac.	0.5400*	0.2188	0.0000*
Argon	mole frac.	0.0100*	0.0061	0.0000*
CO	mole frac.	0.0000*	0.1108	0.0000*
CO2	mole frac.	_0.0000*	0.0000	0.0000*
Carbon	mole frac.	0.0000*	0.0840	0.0000*

Step	Action
	Pressing the $\langle F10 \rangle$ key again, to get back to the Main Menu.
102	Press the $\langle F10 \rangle$ key;
103	Highlight the word Print and then press the <enter> key;</enter>

The various print options can be found on page 243.

Step	Action
104	Highlight the word Spec_Sheets and then press the <enter> key:</enter>
105	Highlight the word Operations and then press the <enter> key;</enter>
106	Highlight the word Reactor and then press the <enter> key;</enter>
	Pressing the $\langle F10 \rangle$ key to get the Main Menu off of the screen in order to see the data on the
	screen underneath it.
107	Press the <f10></f10> key;
	The screen will appear as shown on the following two pages. Use the <page up=""> and <page< td=""></page<></page>
	Down> keys to view the entire text.

•

HYSIM STIRRED HYSIM Version Case Name: Operation Name Operation Note:	TANK REACTOR SPECIFIC C2.53 Reactor	TATION	Page 1 of 3 Date 96/10/21 Time 9:22:16
Stream Inlet: Feed Outlet: Outlet Energy: Energy	n Ope from t to y to	ration 220.000 3816.326 360.443 3816.359 4.98404E+0	Flowrate 00 lbmole/hr 55 lb/hr 80 lbmole/hr 96 lb/hr 96 Btu/hr
Inlet Propertie	es at Operating Conds	Outlet Properties	at Operating Conds
Vapour Frac Temperature Pressure Density Std Density Mol Weight viscosity therm cond	1.0000 1112.0000 F 218.3000 psia 0.2247 lb/ft3 32.2511 lb/ft3 17.3469 0.0267 cP 0.0601 Btu/hr-ft-F	Vapour Frac Temperature 11 Pressure 2 Density Std Density - Mol Weight viscosity - therm cond -	0.9160 12.0000 F 07.4000 psia 0.1418 lb/ft3 lb/ft3 10.5880 CP Btu/hr-ft-F
Component	Hform @ 298 K (Btu/lbmole)	<pre>Inlet Flowrate (lbmole/hr)</pre>	Outlet Flowrate (lbmole/hr)
Methane Hydrogen H2O Argon CO CO2 Carbon -	-32201.2027 0.0000 -103611.3466 0.0000 -47545.1403 -169299.2207 0.0000 	99.0000 0.0000 118.8000 2.2000 0.0000 0.0000 	28.7785 180.3811 78.8619 2.2000 39.9381 0.0000 30.2834 -

HYSIM STIRRED TANK REACTOR SPECIFICATION Page 2 of 3 Case Name: Date 96/10/21 Operation Name: Reactor Time 9:22:16 Dimensions Volume 17697.5996 ft3 Space-Time --- seconds Dead-Space Frac 0.0000 Rate Const. Pre-Expon. Factor Reaction 1 Activ. Energy 7.200e+02 ----- - -Rxn Phase: Overall Base Comp.: Methane Basis MolarConcs in lbmole/ft3 yield reaction rate in lbmole/ft3-hr Orders Methane 1.000 H20 1.000
 Reactants
 -1.000
 Methane
 + -1.000
 H20

 Products
 3.000
 Hydrogen
 + 1.000
 CO
 Reaction 2 Rate Const. Pre-Expon. Factor Activ. Energy 4.700e+03 1.814e+05 Rxn Phase: Overall Base Comp.: CO BasisMolarConcs in lbmole/ft3yield reaction rate in lbmole/ft3-hrOrdersH201.000 CO1.000Reactants-1.000 H20+ -1.000 COProducts1.000 Hydrogen+ 1.000 CO2 Rate Const. Pre-Expon. Factor Activ. Energy Reaction 3 1.600e+00---Rxn Phase: OverallBase Comp.: Methane 1.600e+00 MolarConcs in lbmole/ft3 yield reaction rate in lbmole/ft3-hr Basis Orders Methane 1.000 Reactants -1.000 Methane Products 2.000 Hydrogen + 1.000 Carbon

Step	Action
	Pressing the <f10> key again, to get back to the Main Menu.</f10>
108	Press the <f10> key;</f10>
109	Highlight the letters PFD and then press the < Enter > key;
	The following screen will appear:

Step	Action
	Specifying a different type of reactor icon on the PFD.
110	Move the mouse until the cross-hatches on the screen are over the reactor and then press the left
	mouse key. (A box will appear around the reactor).
111	Press the <i> key;</i>
112	Place the crosshatch (using the mouse) over the second icon (first row, second column) which
	represents a continuously stirred tank reactor (CSTR) and press the left mouse key.
	The following screen will appear:

Step	Action	
	Getting back to the Main Menu.	
113	Press the <esc> key until you reach the Main Menu;</esc>	
114	Do you want to continue adding other unit operations to this reactor?	
	• If <u>Yes</u> , turn to the pertinent section of this manual now;	
	• If <u>No</u> , turn to the "Exiting HYSIM" Section of this manual.	

3.6.5 Plug Flow Reactor (PFR)

<u>Objective</u>- This exercise is an example of a Plug Flow Reactor (PFR) calculation. The purpose of the PFR unit operation is to compute the output stream given the input stream, reaction stoichiometry, reactor length and diameter (space time may be substituted for one of these two variables). The rate constant (k) or Arrhenius' law parameters, frequency factor (k_0) and

activation energy (E), are also required. The Arrhenius' law is : $k = k_0 e^{-E/RT}$, where R = the universal gas constant and T = the absolute temperature. The chemical equations used in this example are as follows:

Reaction #1	$CH_4 + H_2O \rightarrow CO + 3H_2$
Reaction #2	$CO + H_2O \rightarrow CO_2 + H_2$
Reaction #3	$CH_4 \rightarrow C(s) + 2H_2$

This example can be modified by specifying another property package and/or other reactions, components, compositions and stream conditions.

In this example, the reactor diameter and length are specified, along with the stoichiometric matrix of the three chemical reaction equations taking place inside the reactor. The reaction rate constant or the frequency factor/Activation energy are also specified for each reaction. The composition and molar flow of the feed is also given, along with the conditions of the feed and outlet streams. HYSIM then calculates the composition of the outlet stream.

<u>Techncial Example Reference</u>: Reference 1 - Hyprotech HYSIM User's Guide, Version C2.50, pp.7-66 to 7-89.

Other References: Refs. 1 & 2.

Directions: Pages 249 through 261 outline the execution of a Plug Flow Reactor (PFR) example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to by typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "escape" key have additionally been placed inside the <> brackets (e.g. **Esc>**) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called *Reactor*, is shown below:

Step	Action							
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).							
	• If <u>Yes</u> , proceed with Step 2.							
	 If <u>No</u>, turn to the "Starting HYSIM" Section of this manual and follow the procedures 							
	before proceeding to Step 2.							
	Starting with a new case.							
2	Highlight the word No and then press the <enter> key;</enter>							
	Selecting a Property Package.							
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>							
	The following screen will appear:							

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
A	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	Cl	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	СЗ	Propane	СЗН8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H2O	PHENOL
	C10	n-Decane	ClOH22	ETHER
	C11	n-C11	Cl1H24	USER
	C12	n-C12	C12H26	
♥ ↓	└── ♥ ─ ↓ ──	Search by SYNONYM		
Fl - Help,	F3 - Menu, F4	- Flip Srch, F5 - Exa	am, F6 - Mov	ve, F8 - Change
	PR	ESS INSERT TO SUBMIT		

Step	Action							
	Selecting the components in the feed stream.							
4	Highlight each of the following component names under the "Component Selection" Section (use							
	the arrow or Page Up/Down keys) and press the <enter> key so that the name then appears in</enter>							
	the "selected" column, as follows:							
	Highlight the word Methane and then press the <enter> key;</enter>							
	Highlight the word Hydrogen and then press the <enter> key;</enter>							
	Highlight the formula H2O and then press the <enter> key;</enter>							
	Highlight the word Argon and then press the <enter> key;</enter>							
	Highlight the formula CO and then press the $\langle Enter \rangle$ key;							
	Highlight the formula CO2 and then press the <enter> key;</enter>							
	Highlight the word Carbon and then press the <enter> key;</enter>							
	The screen shown on the following page will then appear.							

COMPONENT SELECTION									
Selected	Synonym	Name	Formula	Criteria					
Methane	HI	HI	HI	ALL					
Hydrogen	NitricOxide	NO	NO	HC					
H2O	NO2	NO2	NO 2	SOLID					
Argon	N20	N20	N20	MISC					
co	N2O4	N204	N204	AMINE					
CO2	SO2	SO2	502	ALCOHOL					
Carbon	SO3	503	SO3	KETONE					
	Sulphur_Rhombic	S_Rhombic	S	ALDEHYDE					
	Sulphur_Monoclinic	S_Monoclinic	S	ESTER					
	Sulphur_Amorphous	S_Amorphous	S	CARBACID					
	Sulphur_Lig_150	S_Liq_150	S	HALOGEN					
	Sulphur_Lig_190	S_Liq_190	S	NITRILE					
	Sulphur_Lig_280	S_Lig_280	S	PHENOL					
	Sulphur_Vapour	S_Vapour	S	ETHER					
	H2S	H2S	H2S	USER					
i	CarbonOxiSulphide	COS	COS						
	Search by SYNONYM								
F1 - Help, I	F3 - Menu, F4 - Flip :	Srch, F5 - Exa	am, F6 -	Move,					
	PRESS INS	ERT TO SUBMIT	F8 - Cha	ange					

Step	Action
5	Press the <insert> key,</insert>

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Changing the units from SI or metric units (kg, kPa, C. etc.) to field units (lb, psia, F. etc.).
6	Highlight the word Utility and then press the <enter> key;</enter>
7	Highlight the word Configuration and then press the <enter> key;</enter>
8	Highlight the word Units and then press the <enter> key;</enter>
9	Highlight the word Field and then press the <enter> key;</enter>
10	Press the <esc> key;</esc>
	Specifying the type of operation.
11	Highlight the word Operation and then press the <enter> key;</enter>
12	Type the word Reactor after the prompt (>) and then press the <enter> key;</enter>
13	Highlight the word Reactor and then press the < Enter > key;
	The following screen will then appear:

Step	Action							
	Specifying that the reactor type should be a PFR.							
14	Press the <f2> key and highlight the word PFReactor and then press the <enter> key;</enter></f2>							
	Specifying the stream names.							
15	Type the word Feed in the blank and then press the <enter> key;</enter>							
16	Type the word Outlet in the blank and then press the <enter> key;</enter>							
17	Type the word Energy in the blank and then press the <enter> key two times;</enter>							
	Specifying the pressure drop across the PFR in psi.							
18	Type the number 11.							
	The screen should now appear as follows:							
Strea	Please fill in reactor type, stream names, etc. Operation Name: Reactor Reactor Type: PFReactor Stream: FeedPressure Drop: 11psiStream: Outlet							
	Energy Stream: Energy Energy Flow : In							
Step	Action							
19	Press the <insert> key;</insert>							
	The following screen will then appear:							
	Plug Flow Reactor							
	Operation Name: Reactor							
	Specify only TWO of Length/Diameter/Space-Time (*)							

Diameter: _____ ft * Length: _____ ft * Space-Time: _____ seconds * Dead Space: 0.0_____ Integ. Steps: 100__

Step	Action
	Specifying the reactor diameter and length in feet (ft).
20	Type the number 1 and then press the <enter> key;</enter>

Step					Action						
22	Press th	e <inse< th=""><th>rt> key;</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></inse<>	rt> key;								
	The foll	owing s	creen wi	ll then appear.							
r	=======================================	Opera	ation	Reactor	Stoichic	met	ric I	Matrix			
Enter	A to	Add,	D to	Delete a	Reaction,	F2	for	Menu,	Ins	to	Exit
		Rea	actior	1 1							
Phase			Over	call							
Methan	е										
Hydrog	en										
H2O											
Argon											
CO											
C02											
Carbon											

Step	Action
	Specifying the stoichiometric coefficients for each of the seven chemical reactants (negative
	integer) and products (positive integer) of each of the three reactions on page 248.
	Reaction 1 stoichiometric coefficients.
23	Press the $<\downarrow>$ key one time and then type the number -1 and press the $<$ Enter $>$ key;
24	Type the number 3 and then press the <enter> key;</enter>
25	Type the number -1 and then press the <enter> key;</enter>
26	Type the number 0 and then press the <enter></enter> key;
27	Type the number 1 and then press the <enter></enter> key;
28	Type the number 0 and then press the <enter></enter> key;
29	Type the number 0 and then press the <enter> key;</enter>

Step	Action
	Pressing an "a" to add another column to the table.
30	Press the letter a;
	Reaction 2 stoichiometric coefficients
31	Press the $<\uparrow>$ key enough times until the pointer is at the blank space for the component
	Methane of Reaction 2.
32	Type the number 0 and then press the <enter> key;</enter>
33	Type the number 1 and then press the <enter> key;</enter>
34	Type the number -1 and then press the <enter> key;</enter>
35	Type the number 0 and then press the <enter> key;</enter>
36	Type the number -1 and then press the <enter> key;</enter>
37	Type the number 1 and then press the <enter></enter> key;
38	Type the number 0 and then press the <enter> key;</enter>
39	Press the letter a;
	Reaction 3 stoichiometric coefficients.
40	Press the <1> key enough times until the pointer is at the blank space for the component
	Methane of Reaction 3.
41	Type the number -1 and then press the <enter> key;</enter>
42	Type the number 2 and then press the <enter> key;</enter>
43	Type the number 0 and then press the <enter> key;</enter>
44	Type the number 0 and then press the <enter> key;</enter>
45	Type the number 0 and then press the <enter> key;</enter>
46	Type the number 0 and then press the <enter> key;</enter>
47	Type the number 1 and then press the <enter> key;</enter>
	The screen shown below will then appear:

	Operation Reactor	Stoichic	ometric Matrix	
Enter A to	Add, D to Delete	a Reaction,	F2 for Menu,	Ins to Exit
	Reaction 1 Re	action 2	Reaction 3	
Phase	Overall	Overall	Overall	
Methane	-1.000		-1.000	
Hydrogen	3.000	1.000	2.000	
H20	-1.000	-1.000		
Argon				
CO	1.000	-1.000		
CO2		1.000		
Carbon			1.000	

Step	Action	
48	Press the <insert> key;</insert>	
	Reaction 1 specifications.	
	Specifying the rate constant for reaction 1.	
49	Type the number 7.2e+02 and then press the <enter> key;</enter>	

Step	Action
	Specifying the base component (reaction rate basis) for reaction 1 as Methane.
50	Press the $<\downarrow>$ key three times and then press the $<\mathbf{F2}>$ key; and highlight the word Methane
	and then press the <enter> key;</enter>
	Specifying the order of the reaction. The two reactants in reaction 1 are Methane and H2O.
	and their coefficients are 1, so they have an order of one. The rest of the components have a
	zero order.
51	Press the $<\downarrow>$ key three times and then type the number 1 and then press the $<$ Enter $>$ key;
52	Type the number 0 and then press the <enter></enter> key;
53	Type the number 1 and then press the <enter> key;</enter>
54	Type the number 0 and then press the <enter> key;</enter>
55	Type the number 0 and then press the <enter> key;</enter>
56	Type the number 0 and then press the <enter> key;</enter>
57	Type the number 0 and then press the <enter> key;</enter>
58	Press the \rightarrow key once until the cursor is in the reaction 2 column;
	Reaction 2 specifications.
	Specifying the frequency factor for reaction 2.
59	Press the $<\uparrow>$ key enough times until the pointer is at the blank space for the Freq. Factor of
	reaction 2.
60	Type the number 4.7e+03 and then press the <enter> key;</enter>
	Specifying the Activation Energy for reaction 2.
61	Type the number 7.8e+04 and then press the <enter> key ;</enter>
	Specifying the base component (reaction rate basis) for reaction 2 as Carbon Monoxide (CO).
62	Press the $<\downarrow>$ key one time and then press the $$ key; and highlight the formula CO and then
	press the <enter></enter> key;
	Specifying the order of the reaction. The two reactants in reaction 2 are H2O and CO, and
	their coefficients are 1, so they have an order of one. The rest of the components have a zero
	order.
63	Press the $\langle \downarrow \rangle$ key three times and then type the number 0 and then press the $\langle IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$
64	Type the number 0 and then press the <enter> key;</enter>
05	Type the number 1 and then press the <enter> key,</enter>
00	Type the number 0 and then press the < Enter> key;
0/	Type the number 1 and then press the <enter> key;</enter>
08	The the number 0 and then press the <enter> key;</enter>
69	Type the number 0 and then press the <enter> key;</enter>
70 	Press the $\langle \rightarrow \rangle$ key one time until the cursor is in the column for reaction 3;
	Reaction 3 specifications.
	Specifying the rate constant for reaction 3.
/1	Press the $<1>$ key enough times until the pointer is at the blank space for the rate constant of Reaction 2
	Keacuon 5.
72	i ype the number 1.6e+00 and then press the <enter> key;</enter>

Step	Action
	Specifying the base component (reaction rate basis) for reaction 3 as Methane.
73	Press the $\langle \downarrow \rangle$ key three times and then press the $\langle F2 \rangle$ key; and highlight the word Methane and then press the $\langle Enter \rangle$ key;
	Specifying the order of the reaction. The only reactant in reaction 3 is Methane, and the coefficient is 1, so it has an order of one. The rest of the components have a zero order.
74	Press the $<\downarrow>$ key three times and then type the number 1 and then press the $<$ Enter $>$ key;
75	Type the number 0 and then press the <enter> key;</enter>
76	Type the number 0 and then press the <enter> key;</enter>
77	Type the number 0 and then press the <enter> key;</enter>
78	Type the number 0 and then press the <enter> key;</enter>
79	Type the number 0 and then press the <enter> key;</enter>
80	Type the number 0 and then press the <enter> key;</enter>
	The screen will then appear as shown below:

_____ Operation Reactor Rate Constant/Order Matrix _____ Enter A to Add, D to Delete a Reaction, F2 for Menu, Ins to Exit Reaction 1 Reaction 2 Reaction 3 Rate Const. 7.2000e+02 ---Freq. Factor --- 4.7000e 1.6000e+00 Freq. Factor---4.7000e+03---Actv. Energy---7.8000e+04---Rate Unit1bmole/ft3-h1bmole/ft3-h1bmole/ft3-h Methane CO Methane Base Comp. Basis MolarConc MolarConc MolarConc Basis Unit lbmole/ft3 lbmole/ft3 lbmole/ft3 1.000 - - -Methane 1.000 - - -Hydrogen ------1.000 H20 1.000 ---Argon - - -- - -- - -1.000 CO - - -- - -CO2 ~ ~ -- - -~ - ~ Carbon _ ~ -- ~ -- - -

Step	Action		
81	Press the <insert> key;</insert>		
	Specifying the conditions of the Feed stream.		
82	Highlight the word Specify and then press the <enter> key;</enter>		
83	Highlight the word Stream and then press the <enter> key;</enter>		
84	Highlight the word Feed and then press the <enter> key;</enter>		
	Specifying the Temperature of the Feed in °F.		
85	Type the number 1112 after the prompt (>) and then press the <enter> key;</enter>		
	Specifying the pressure of the Feed in psia.		
86	Type the number 218 after the prompt (>) and then press the <enter> key;</enter>		

Step	Action
	Specifying the Flow in lb-mols/hr.
87	Type the number 220.46 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the units of flow to use when specifying the compositions of the feed stream.
88	Highlight the words Mole_Fractions and then press the <enter> key;</enter>
	The screen will then appear as shown below:

	Stream Mo	ole Fractions	
Methane H2O CO Carbon		Hydrogen Argon CO2	

Step	Action			
89	Enter the following mole fractions beside each component in the feed stream:			
	After the word, Methane, type the number 0.45 in the blank and then press the <enter> key;</enter>			
	After the word, Hydrogen, type the number 0 in the blank and then press the <enter> key;</enter>			
	After the formula, H2O, type the number 0.54 in the blank and then press the <enter> key;</enter>			
	After the word, Argon, type the number 0.01 in the blank and then press the <enter> key;</enter>			
	After the formula, CO, type the number 0 in the blank and then press the <enter> key;</enter>			
	After the formula, CO2, type the number 0 in the blank and then press the <enter> key;</enter>			
	After the word, Carbon, type the number 0 in the blank;			
	The screen should now appear as follows:			

	Stream Mole Fractions	
Methane 0.45 H2O 0.54 CO 0 Carbon 0	Hydrogen Argon CO2	0 0.01 0

Step	Action
90	Press the <insert> key;</insert>
	Specifying the temperature (F) and pressure (psia) of the Outlet stream.
91	Highlight the word Worksheet and then press the <enter> key;</enter>
92	Use the arrow keys to move the pointer to the blank space for the Temperature of the Outlet
	stream.
	Type the number 1112 and then press the <enter> key;</enter>
	The screen will appear as shown on the following page.

	New Valu	e =	F	
Stream	Feed	Outlet	Energy	
Vapour_Frac	1.0000	0.9997	2.0000*	
Temperature	1112.0000*	1112.0000*	0.0000*	
Pressure	218.0000*	207.0000	0.0000*	
Flow	220.4600*	221.0374	0.0000*	
Mass_Flow	3824.3063	3824.3063	0.0000*	
LiqVol_Flow	515.5482	516.3485	0.0000*	
Energy_Flow	3.27523E+06	3.27899E+06	24041.9421	

Step	Action
93	Press the <esc> key;</esc>
94	Highlight the word Print and then press the <enter> key;</enter>

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) **Operations** - The different unit operations will be printed out.

c) <u>Spec</u> <u>Sheets</u> - The specifications sheets will be printed out.

d) Hypotheticals - Hypothetical component information will be printed out.

e) Format - Specifies the format of the printout.

f) <u>Cost</u> - Lists costs of the run, if a royalty is being charged.

g) File - Saves results in a file.

h) Printer - Toggles on a printer.

i) Cases - Lists the stored files.

j) *Description* - Prints case description.

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action
95	Highlight the word Streams and then press the <enter> key:</enter>
96	Highlight the word All and then press the <enter> key;</enter>
	Looking at the calculated data for all of the streams.
97	Highlight the dash symbol - and then press the <enter> key;</enter>
	Pressing the $\langle F10 \rangle$ key to get the Main Menu off of the screen in order to see the data on the
	screen underneath it. Use the <page up=""> and <page down=""> keys to view the entire text.</page></page>
98	Press the <f10> key;</f10>
	The screen will appear as shown on the following page.

Stream		Feed	Outlet	Energy
Description				
Vapour frac.		1.0000	0.9997	2.0000*
Temperature	F	1112.0000*	1112.0000*	0.0000*
Pressure	psia	218.0000*	207.0000	0.0000*
Molar Flow	lbmole/hr	220.4600*	221.0374	0.0000*
Mass Flow	lb/hr	3824.3063	3824.3063	0.0000*
LiqVol Flow	barrel/day	515.5482	516.3485	0.0000*
Enthalpy	Btu/hr	3.27523E+06	3.27899E+06	24041.9421
Density	lb/ft3	0.2244	0.2125	0.0000
Mole Wt.		17.3469	17.3016	0.0000
Spec. Heat	Btu/lb-F	0.7176	0.7176	
Therm Cond	Btu/hr-ft-F	0.0601		
Viscosity	сP	0.0267		
Z Factor		0.9993		
Sur Tension	dyne/cm			
Std Density	lb/ft3			
Methane	mole frac.	0.4500*	0.4475	0.0000*
Hydrogen	mole frac.	0.0000*	0.0036	0.0000*
H2O	mole frac.	0.5400*	0.5376	0.0000*
Argon	mole frac.	0.0100*	0.0100	0.0000*
CO	mole frac.	0.0000*	0.0010	0.0000*
CO2	mole frac.	0.0000*	0.0000	0.0000*
Carbon	mole frac.	0.0000*	0.0003	0.0000*

Step	Action
	Pressing the $\langle F10 \rangle$ key again, to get back to the Main Menu.
99	Press the <f10></f10> key;
100	Highlight the word Print and then press the < Enter > key;

The various print options can be found on page 257.

Step	Action
101	Highlight the word Spec_Sheets and then press the <enter> key:</enter>
102	Highlight the word Operations and then press the <enter></enter> key;
103	Highlight the word Reactor and then press the <enter> key;</enter>
	Pressing the <f10> key to get the Main Menu off of the screen in order to see the data on the</f10>
	screen underneath it.
104	Press the <f10> key;</f10>
	The screen will appear as shown on the following two pages. Use the $\langle Page Up \rangle$ and $\langle Page Up \rangle$
	Down> keys to view the entire text.

te

HYSIM PLUG FLO HYSIM Version Case Name:	DW REACTOR SPECIFICATIO C2.53	DN	= Page 1 of 3 == Date 96/10/09 Time 10:50:14
Operation Name Operation Note	: Reactor :		
Stream Inlet: Feed	n Ope: from	ration P1 220.4600 1	lowrate lbmole/hr
Outlet: Outlet	t to	221.0374 J 3824.3063 J	lb/hr lbmole/hr lb/hr
Energy: Energy	y to	24041.9421 H	3tu/hr
Inlet Propertie	es at Operating Conds	Outlet Properties at	: Operating Conds
Vapour Frac Temperature Pressure Density Std Density Mol Weight Viscosity Therm Cond	1.0000 1112.0000 F 218.0000 psia 0.2244 lb/ft3 32.2511 lb/ft3 17.3469 0.0267 cP 0.0601 Btu/hr-ft-F	Vapour Frac0Temperature1112Pressure207Density0Std Density32Mol Weight17ViscosityTherm Cond	9997 .0000 F .0000 psia .2125 lb/ft3 .0190 lb/ft3 .3016 cP Btu/hr-ft-F
Component	Hform @ 298 K (Btu/lbmole)	Inlet Flowrate ((lbmole/hr)	Outlet Flowrate (1bmole/hr)
Methane Hydrogen H2O Argon CO CO2 Carbon	-32201.2027 0.0000 -103611.3466 0.0000 -47545.1403 -169299.2207 0.0000	99.2070 0.0000 119.0484 2.2046 0.0000 0.0000 0.0000	98.9183 0.7950 118.8308 2.2046 0.2176 0.0000 0.0711
			• • • •
			~

```
HYSIM PLUG FLOW REACTOR SPECIFICATION - Page 2 of 3 -
Case Name:
                                                                  Date 96/10/09
Operation Name: Reactor
                                                                  Time 10:50:14
Dimensions
                1.0000 ft
  Diameter
                                                               10.0000 ft
                                                 Length
Space-Time --- seconds Dead-Space Frac
                                                              0.0000
Reaction 1 Rate Const. Pre-Expon. Factor Activ. Energy
                 7.200e+02 ---
Rxn Phase: Overall Base Comp.: Methane
                  7.200e+02
           MolarConcs in lbmole/ft3 yield reaction rate in lbmole/ft3-hr
Methane 1.000 H20 1.000
Basis
Orders Methane 1.000 H20

        Reactants -1.000 Methane
        + -1.000 H20

        Products
        3.000 Hydrogen
        + 1.000 C0

Reaction 2 Rate Const. Pre-Expon. Factor
4.700e+03
                                                        Activ. Energy
                                                         1,814e+05
                 Rxn Phase: Overall Base Comp.: CO
          MolarConcs in lbmole/ft3 yield reaction rate in lbmole/ft3-hr
Basis
Orders H2O 1.000 CO
                                             1.000

        Reactants -1.000 H20
        + -1.000 C0

        Products 1.000 Hydrogen
        + 1.000 C02

 Reaction 3 Rate Const. Pre-Expon. Factor Activ. Energy
          1.600e+00
Rxn Phase: Overall
MolarConcs in 1bmole/ft3 yield reaction rate in 1bmole/ft3-hr
 Basis
 Orders Methane 1.000
Reactants -1.000 Methane
Products 2.000 Hydrogen + 1.000 Carbon
```

Step	Action
	Pressing the <f10> key again, to get back to the Main Menu</f10>
105	Press the $\langle F10 \rangle$ key;
106	Highlight the letters PFD and then press the < Enter > key;
	The following screen will appear:

Step	Action
	Specifying a different type of reactor icon on the PFD.
107	Move the mouse until the cross-hatches on the screen are over the reactor and then press the left
	mouse key. (A box will appear around the reactor).
108	Press the <i> key;</i>
109	Place the crosshatch (using the mouse) over the third icon (first row, third column) which
	represents a plug flow reactor (PFR) and then press the left mouse key.
	The following screen will then appear:

Step	Action
	Getting back to the Main Menu.
110	Press the <esc> key until you reach the Main Menu;</esc>
111	Do you want to continue adding other unit operations to this reactor?
	• If Yes, turn to the pertinent section of this manual now;
	If No, turn to the "Exiting HYSIM" Section of this manual.

3.7 Separators

This section contains examples of the following seven different types of separators:

Section	Page
3.7.1 Two-Phase Separator	263
3.7.2 Three-Phase Separator	270
3.7.3 Cyclone Solids Separator	283
3.7.4 Bag-House Filter Solids Separator	297
3.7.5 Rotary-Vacuum Filter Solids Separator	308
3.7.6 Hydrocyclone Solids Separator	317
3.7.7 Simple Solids Separator	331

3.7.1 Two-Phase Separator

<u>Objective</u> - This exercise is an example of a two-phase separator calculation. The purpose of the two-phase separator unit operation is to phase separate a liquid and vapor stream. The HYSIM program will calculate the amount of vapor and liquid in equilibrium at the separator's outlet if the composition, temperature and pressure of the feed stream are supplied. This example can be modified by specifying another property package and/or other components, compositions and feed conditions.

In this example, the feed components, composition and conditions are specified. HYSIM then separates the product stream into separate liquid and vapor streams. <u>Technical Example Reference</u>: Reference 1 - Hyprotech's HYSIM User's Guide, Interactive Tutorial, Version C2.50, March 1994, pages 3-98 to 3-128. <u>Other References</u>: Refs. 1 & 2.

Directions: Pages 264 through 269 outline the execution of a Two-Phase Separator example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys ($\leftarrow, \rightarrow, \uparrow$, or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "escape" key have additionally been placed inside $\langle \rangle$ brackets (e.g. $\langle Esc \rangle$) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called Sep, is shown below:

Step	Action	
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).	
	• If <u>Yes</u> , proceed with Step 2.	
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures	
	before proceeding to Step 2.	
	Starting with a new case.	
2	Highlight the word No and then press the <enter> key;</enter>	
	Selecting a Property Package.	
3	Highlight the word Peng-Robinson and then press the < Enter > key;	
	The following screen will appear	

Selected	Synonym	Name	Formula	Criteria
	OIL HYPOTHETICAL C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10 C11 C12 F3 - Menu, F4	OIL HYPOTHETICAL Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Heptane n-Heptane n-Octane n-Octane n-Octane n-Clane n-Cl1 n-Cl2 Search by SYNONYM- - Flip Srch, F5 - Exa	CH4 C2H6 C3H8 C4H10 C4H16 C5H12 C5H12 C6H14 C7H16 C8H18 C9H20 C10H22 C10H22 C11H24 C12H26 am, F6 - Move	ALL HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL ETHER USER , F8 - Change
[1			

Step	Action
	Selecting the components in the Feed stream.
4	Highlight each of the following component names under the "Component Selection" Section
	and press the <i><enter></enter></i> key so that the name then appears in the "selected" column, as
	follows:
	Highlight the word Methane and then press the <enter> key;</enter>
	Highlight the word Ethane and then press the <enter> key;</enter>
	Highlight the word Propane and then press the <enter></enter> key;
	Highlight the word i-Butane and then press the <enter> key;</enter>
	Highlight the word n-Butane and then press the <enter> key;</enter>
	Highlight the word i-Pentane and then press the <enter> key;</enter>
	Highlight the word n-Pentane and then press the <enter> key</enter>
	Highlight the word n-Hexane and then press the <enter> key;</enter>
1	Highlight the word n-Heptane and then press the <enter></enter> key;
	Highlight the word n-Octane and then press the <enter> key, followed by the <insert> key.</insert></enter>

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Changing the units from the HYSIM default SI or metric units (kg. kPa, \mathfrak{C} ,etc.) to field units
	(lb. psia, <i>F.etc.</i>).
5	Highlight the word Utility and then press the <enter> key;</enter>
6	Highlight the word Configuration and then press the <enter></enter> key;
7	Highlight the word Units and then press the <enter> key;</enter>
8	Highlight the word Field and then press the <enter> key;</enter>
	Getting back to the Main Menu.
9	Press the < Esc > key;
	Specifying the conditions of the Feed stream.
10	Highlight the word Specify and then press the <enter> key;</enter>
11	Highlight the word Stream and then press the <enter> key;</enter>
12	Type the word Feed after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature of the Feed stream in F.
13	Type the number 60 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Feed stream in psia.
14	Type the number 600 after the prompt (>) and then press the <enter> key;</enter>
	Typing an "x" to leave the molar flow of the feed unspecified at this point.
15	Type the letter x after the prompt (>) and then press the <enter></enter> key;
	Specifying the individual molar flows (lb-mols/hr) of each component in the Feed stream.
16	Type the word Mole-Flows after the prompt (>) and then press the <enter> key;</enter>
	The following screen will appear:

= Stream Molar Flows =

Methane Propane n-Butane	Ethane i-Butane i-Pentane	
n-Pentane n-Heptane	 n-Hexane n-Octane	

Step	Action
17	Enter the following molar flows (lb-mols hr) beside each component in the feed stream:
	After the word, Methane, type the number 70 in the blank and then press the <enter> key;</enter>
	After the word, Ethane, type the number 20 in the blank and then press the <enter> key,</enter>
	After the word, Propane, type the number 10 in the blank and then press the <enter> key;</enter>
	After the word, i-Butane, type the number 9 in the blank and then press the <enter> key;</enter>
	After the word, n-Butane, type the number 8 in the blank and then press the <enter> key;</enter>
	After the word, i-Pentane, type the number 7 in the blank and then press the <enter> key;</enter>
	After the word, n-Pentane, type the number 6 in the blank and then press the <enter></enter> key,
	After the word, n-Hexane, type the number 7 in the blank and then press the <enter> key;</enter>
	After the word, n-Heptane, type the number 4 in the blank and then press the <enter> key;</enter>
	After the word, n-Octane, type the number 3 in the blank;
	The screen will then appear as shown below

	Stream	Molar Flows =	
Methane	70	Ethane	20
Propane	10	i-Butane	9
n-Butane	8	i-Pentane	7
n-Pentane	6	n-Hexane	7
n-Heptane	4	n-Octane	3

Step	Action
18	Press the <insert> key;</insert>
	HYSIM will next ask you if the total molar flow it calculated from adding up the individual
	component flows (144.0000 lb-mols hr) is correct
19	Highlight the word Yes and then press the <enter> key;</enter>
	Looking at the conditions in the program for the feed stream.
20	Highlight the word Print and then press the <enter> key;</enter>

Print Options.

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) Operations - The different unit operations will be printed out.

c) Spec_Sheets - The specifications sheets will be printed out.

d) Hypotheticals - Hypothetical component information will be printed out.

e) Format - Specifies the format of the printout.

f) Cost - Lists costs of the run, if a royalty is being charged.

g) File - Saves results in a file.

h) Printer - Toggles on a printer.

i) <u>Cases</u> - Lists the stored files.

j) Description - Prints case description.

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action
21	Highlight the word Streams and then press the <enter> key;</enter>
22	Highlight the word Conditions and then press the <enter> key;</enter>
23	Highlight the word Feed and then press the <enter> key,</enter>
	The following conditions will then appear on the screen for the feed stream

Stream		Feed
Vapour frac	,	0.4836
Temperature	F	60.0000*
Pressure	psia	600.0000*
Molar Flow	lbmole/hr	144.0000*
Mass Flow	lb/hr	5438.2035
LiqVol Flow	barrel/day	788.6378
Enthalpy	Btu/hr	231865.6189

Step	Action
	Specifying the type of operation we want to perform on the feed stream.
24	Highlight the word Operation and then press the <enter> key;</enter>
	Typing a name for the operation (We will call it "Sep").
25	Type the word Sep and then press the <enter> key,</enter>
26	Highlight the word Separator and then press the <enter> key,</enter>
	The following diagram of the separator process will appear

Step	Action
	Naming the streams.
27	Type Feed in the blank and then press the <enter> key;</enter>
28	Type Sepliq in the blank and then press the <enter> key.</enter>
29	Type Sepvap in the blank;
	The screen should now appear as follows:

Step	Action
	Looking at the conditions of all of the streams.
30	Press the <enter> key,</enter>
31	Highlight the word Print and then press the <enter> key,</enter>

The various print options can be found on page 266.

Step	Action
32	Highlight the word Streams and then press the <enter> key,</enter>
33	Highlight the word All and then press the <enter> key,</enter>
34	Highlight the dash symbol - and then press the <enter> key,</enter>
	Pressing the <f10> key to get the Main Menu off of the screen in order to see the data on the</f10>
	screen underneath it.
35	Press the <f10> key;</f10>
	The screen will then appear as shown on the following page. Use the < Page Up > and < Page
	Down> keys to scroll the screen text up and down

	Feed	Sepliq	Sepvap
•	0.4836	0.0000	1.0000
F	60.0000*	60.0000	60.0000
psia	600.0000*	600.0000	600.0000
lbmole/hr	144.0000*	74.3626	69.6374
lb/hr	5438.2035	4013.7623	1424.4413
barrel/day	788.6378	499.4297	289.2080
Btu/hr	231865.6189	-41348.8026	273214.4039
lb/ft3	8.2828	34.8685	2.6308
	37.7653	53.9755	20.4551
Btu/lb-F	0.5779	0.5736	0.5901
Btu/hr-ft-F		0.0572	0.0192
CP		0.1585	0.0119
		0.1665	0.8365
dyne/cm		9.8719	``````````````````````````````````
lb/ft3		34.8684	
mole frac.	0.4861*	0.1933	0.7988
mole frac.	0.1389*	0.1435	0.1339
mole frac.	0.0694*	0.1040	0.0325
mole frac.	0.0625*	0.1067	0.0153
mole frac.	0.0556*	0.0979	0.0104
mole frac.	0.0486*	0.0900	0.0044
mole frac.	0.0417*	0.0779	0.0030
mole frac.	0.0486*	0.0929	0.0013
mole frac.	0.0278*	0.0535	0.0003
mole frac.	0.0208*	0.0403	0.0001
	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/ft3 Btu/lb-F Btu/hr-ft-F cP dyne/cm lb/ft3 mole frac. mole frac.	Feed . 0.4836 F 60.0000* psia 600.0000* lbmole/hr 144.0000* lb/hr 5438.2035 barrel/day 788.6378 Btu/hr 231865.6189 lb/ft3 8.2828 37.7653 Btu/lb-F 0.5779 Btu/hr-ft-F cP dyne/cm lb/ft3 mole frac. 0.4861* mole frac. 0.0694* mole frac. 0.0625* mole frac. 0.0486* mole frac. 0.0486*	FeedSepliq.0.48360.0000F60.0000*60.0000psia600.0000*600.0000lbmole/hr144.0000*74.3626lb/hr5438.20354013.7623barrel/day788.6378499.4297Btu/hr231865.6189-41348.8026lb/ft38.282834.868537.765353.9755Btu/hr0.57790.5736Btu/hr-ft-F0.15850.1665dyne/cm9.8719lb/ft334.8684mole frac.0.1389*0.1435mole frac.0.0694*0.1040mole frac.0.0556*0.0979mole frac.0.0486*0.900mole frac.0.0486*0.920mole frac.0.0486*0.0929mole frac.0.0278*0.0535mole frac.0.0208*0.0403

Step	Action
36	Press the $\langle F10 \rangle$ key;
	Looking at the current process flow diagram (PFD).
37	Highlight the abbreviation PFD and then press the <enter> key;</enter>
	The following figure will appear:

Step	Action	
	Getting back to the Main Menu.	
38	Press the <esc> key until you reach the Main Menu.</esc>	
39	Do you want to continue adding other unit operations to this separator?	
	• If <u>Yes</u> , turn to the pertinent section of this manual now;	
	If No, turn to the "Exiting HYSIM" Section of this manual.	

3.7.2 Three-Phase Separator

<u>Objective</u> - This exercise is an example of a three-phase separator calculation. The purpose of the three-phase separator unit operation is to phase separate a system consisting of a vapor and two immiscible liquid phases into three streams from a single feed stream. An example of such a system would be one consisting of a gas, oil and water mixture. The HYSIM program will calculate the amount of gas, oil and liquid at the separator's outlet if the composition, temperature and pressure of the feed stream are supplied. This example can be modified by specifying another property package and/or other components, compositions and feed conditions

In this example, a <u>Feed</u> stream containing water, oil and gas is separated into three different streams: <u>Vapor</u>, <u>Ltlig</u> and <u>Hvylig</u>. The <u>Vapor</u> stream contains mainly gas; the <u>Ltlig</u> stream contains mainly oil and the <u>Hvylig</u> stream contains mainly water.

<u>Technical Example Reference</u>: Reference 8 - Surface Production Operations, Volume 1, "Design of Oil-Handling Systems and Facilities," by Ken Arnold and Maurice Stewart, 1986, Gulf Publishing Co., Book Division, Houston, Texas, Example 5-1, pages 144-146. <u>Other References</u>: Refs. 1 and 2.

Directions: Pages 271 through 282 outline the execution of a Three-Phase Separator example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys ($\leftarrow, \rightarrow, \uparrow$, or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "escape" key have additionally been placed inside <> brackets (e.g. **<Esc>**) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called <u>3Phsep</u>, is shown below:

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V)
	• If <u>Yes</u> , proceed with Step 2.
	• If <u>No</u> , turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Changing the units from the HYSIM default SI or metric units (kg. kPa, \mathcal{C} , etc.) to field units
	(lb, psia, F, etc.).
2	Highlight the word Configuration and then press the < Enter > key;
3	Highlight the word Units and then press the <enter> key;</enter>
4	Highlight the word Field and then press the <enter> key;</enter>
	Getting back to the Main Menu
5	Press the <esc> key;</esc>
	Starting with a new case.
6	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
7	Highlight the word Peng-Robinson and then press the <enter></enter> key;
	The following screen will appear:

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	Cl	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	C3	Propane	C3H8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	1-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H20	PHENOL
	C10	n-Decane	C10H22	ETHER
	C11	n-C11	C11H24	USER
	C12	n-C12	Cl2H26	
· · · · · ·	└─── ♥ ↓	Search by SYNONYM	_	
Fl - Help,	F3 - Menu, F4 PR	- Flip Srch, F5 - Exa ESS INSERT TO SUBMIT	am, F6 - Mov	ve, F8 - Change

Step	Action
	Selecting the components in the feed stream.
8	Highlight the following component name under the "Component Selection" Section and press
	the <enter> key so that the name then appears in the "selected" column, as follows:</enter>
	Highlight the word Hypothetical and then press the <enter> key;</enter>
	Specifying that the hypothetical component is a Hydrocarbon (HC).
9	Highlight the initials HC and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Hypothetical Component	: Information
Name: Chemical	Formula:
Boiling Point [F_] : LiqDensity (@ 60F)[lb/ft3]: Molecular Weight :	Ideal Enthalpy Coefficients (Mass Basis - Ideal gas @ 0 K) Hideal = Btu/lb
Critical Temperature [F_] : Critical Pressure [psia_]: Critical Volume [ft3/lbmo]: Acentric Factor : Acentric Factor Wsrk : Charact. Volume [ft3/lbmo]: Direle Memort [debug]	+ * T^2 + * T^3 + * T^3 + * T^4 + * T^5 Entropy Coeff: Cavett Param.:
Vapour Pressure [deg K, kPa] ANTA: ANTD: ANTB: ANTE: ANTC: ANTF: TMIN: TMAX: Viscosity Coeff A: Viscosity Coeff B:	Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs = Btu/lbmo + * T + * T^2 Heat Form (@ 25 C): Heat Comb (@ 25 C): Radius Gyration [Ang]:

Step	Action
10	Type the word Oil and then press the <enter></enter> key two times;
	Specifying the Boiling Point of the Oil in F.
11	Type the number 336 and then press the <enter> key;</enter>
	Specifying the Density of the Oil in lb/cubic foot at 60 F.
12	Type the number 54.4 and then press the <enter> key;</enter>
	The screen will then appear as shown on the following page.

Hypothetical Component	Information
Name: Oil Chemical	Formula:
Boiling Point [F_] : 336_ LiqDensity (@ 60F) [lb/ft3]: 54.4 Molecular Weight :	Ideal Enthalpy Coefficients (Mass Basis - Ideal gas @ 0 K) Hideal = Btu/lb
Critical Temperature [F_] : Critical Pressure [psia_]: Critical Volume [ft3/lbmo]: Acentric Factor : Acentric Factor Wsrk : Charact. Volume [ft3/lbmo]: Dipole Moment [debye] :	<pre></pre>
Vapour Pressure [deg K, kPa] ANTA: ANTD: ANTB: ANTE: ANTC: ANTF: TMIN: TMAX: Viscosity Coeff A: Viscosity Coeff B:	Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs = Btu/lbmo + * T + * T^2 Heat Form (@ 25 C): Heat Comb (@ 25 C): Radius Gyration [Ang]:

<u>Hypothetical Compounds</u> - HYSIM will calculate the <u>critical properties</u> from either the Bergman Cavett or Lee-Kesler Correlation, depending on the API and Normal Boiling Point supplied. Other component types such as Amines, Alcohols, etc. will have critical properties determined by Joback's modification of Lydersen's group contribution method.

The Enthalpy coefficients are for the following fifth order ideal enthalpy equation:

 $H = A + BT + CT^2 + DT^3 + ET^4 + FT^5$

where: T = Absolute Temperature (K or R)

H = Enthalpy = BTU/lb-R or kJ/Kg-K

For solids, the enthalpy data should be entered. If HYSIM generates the coefficients, it will use the Cavett correlations for hydrocarbons, solids or miscellaneous substances; the Joback group contribution method will be used for all other substances.

Reference: Passut, C.A. and Danner, R.P., I.E.C. Proc. Des. & Dev., 11, p. 543 (1972).

The <u>Gibbs Free Energy</u> is calculated using the following equation: $G^{o} = A + BT + CT^{2}$ where: T = Absolute Temperature = K or R

 $G^{o} = kJ/kgmole-K$ or Btu/lbmole-R

If the hypothetical is a Hydrocarbon or if a UNIFAC structure is not specified, no Gibbs coefficients will be calculated.

The modified Antoine <u>vapor pressure</u> model coefficients are calculated for the following equation: $\ln (P_{vap}) = ANTA + (ANTB/(T+ANTC)) + ANTD(\ln(T)) + ANTE(T)^{ANTF}$

The <u>viscosity</u> coefficients, Theta A and Theta B, are used in the viscosity prediction models. Three viscosity models are available in HYSIM: the modified Ely and Hanley model, Twu's model and the modified Letsou-Stiel correlation.

Step	Action
	Selecting the components in the feed stream.
13	Press the <insert> key;</insert>
	Specifying that the viscosity will be calculated via an equation.
14	Highlight the word None and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Hypothetical Component	Information
Are The Component Calculations Satis Name: Oil Chemical	factory: Yes Formula: Oil
Boiling Point [F_] : 336.00 LiqDensity (@ 60)[lb/ft3]: 54.40 Molecular Weight : 135.76	Ideal Enthalpy Coefficients (Mass Basis - Ideal gas @ 0 K) Hideal = 9.0459282e+01 Btu/lb
Critical Temperature [F_] : 706.00 Critical Pressure [psia_]: 479.48 Critical Volume [ft3/lbmo]: 6.664 Acentric Factor : 0.39470 Acentric Factor Wsrk : 0.39470 Charact. Volume [ft3/lbmo]: 7.87490 Dipole Moment [debye] : 0.00	+ 3.8270973e-04 * T ² + -5.3501511e-08 * T ³ + 0.0000000e+00 * T ⁴ + 0.0000000e+00 * T ⁵ Entropy Coeff: 0.2388459 Cavett Param.: 0.26623
Vapour Pressure [deg K, kPa] ANTA: 6.22775e+01 ANTD: -6.53562e+00 ANTB: -7.90473e+03 ANTE: 4.59697e-18 ANTC: 0.00000e+00 ANTF: 6.00000e+00 TMIN: 336.000 TMAX: 705.998 Viscosity Coeff A: 0.07769 Viscosity Coeff B: -0.19384	Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs = Btu/lbmo + * T + * T^2 Heat Form (@ 25 C): Heat Comb (@ 25 C): Radius Gyration [Ang]: 4.5580

Step	Action			
15	Press the <insert> key;</insert>			
16	Highlight the following component name under the "Component Selection" Section and press			
	the <enter> key so that the name then appears in the "selected" column, as follows:</enter>			
	Highlight the word Hypothetical and then press the <enter> key;</enter>			
	Specifying that the hypothetical component is a Hydrocarbon (HC).			
17	Highlight the initials HC and then press the <enter> key;</enter>			
	The screen will then appear as shown on the following page.			
3.7.2	Three-	Phase	Separator	(continued)
-------	--------	-------	-----------	-------------
-------	--------	-------	-----------	-------------

Hypothetical Component	Information
Name: Chemical	Formula:
Boiling Point [F_] : LiqDensity (@ 60F) [lb/ft3]: Molecular Weight :	Ideal Enthalpy Coefficients (Mass Basis - Ideal gas @ 0 K) Hideal = Btu/lb + * T
Critical Temperature [F_] : Critical Pressure [psia_]: Critical Volume [ft3/lbmo]: Acentric Factor : Acentric Factor Wsrk : Charact. Volume [ft3/lbmo]: Dipole Moment [debye] :	+ * T^2 + * T^3 + * T^4 + * T^5 Entropy Coeff: Cavett Param.:
Vapour Pressure [deg K, kPa] ANTA: ANTD: ANTB: ANTE: ANTC: ANTF: TMIN: TMAX: Viscosity Coeff A: Viscosity Coeff B:	Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs = Btu/lbmo + * T + * T^2 Heat Form (@ 25 C): Heat Comb (@ 25 C): Radius Gyration [Ang]:

Step	Action
18	Type the word Gas and then press the <enter> key two times;</enter>
	Specifying the Boiling Point of the Gas in F.
19	Type the number -162 and then press the <enter> key two times;</enter>
	Specifying the Molecular Weight of the Gas.
20	Type the number 17.4 and then press the <enter> key;</enter>
21	Press the <insert> key;</insert>
22	Highlight the word None and then press the <enter> key.</enter>
	The screen will then appear as shown on the following page.

		Information
1	Are The Component Calculations Satis Name: Gas Chemical	Factory: Yes Formula: Gas
	Boiling Point [F_] : -162.00 LiqDensity (@ 60) [lb/ft3]: 12.49 Molecular Weight : 17.40 Critical Temperature [F_]: 59.85 Critical Pressure [psia_]: 914.46 Critical Volume [ft3/lbmo]: 1.795 Acentric Factor : -0.01115 Acentric Factor Wolecular Critical Volume [ft3/lbmo]: 3.67030 Dipole Moment [debye] 0.00 Vapour Pressure [deg K, kPa] ANTA: 2.47857e+01 ANTE: 3.16074e-16 ANTC: 0.0000e+00 ANTE: -162.000 TMIN: -162.000 TMAX: 59.852 Viscosity Coeff A: 0.48877 Viscosity Coeff B: 0.58826	Ideal Enthalpy Coefficients (Mass Basis - Ideal gas @ C K) Hideal = 5.9871802e+04 Btu/lb_ + -7.0655866e+00 * T + 2.8194943e-04 * T^2 + -3.4896171e-09 * T^3 . + 0.0000000e+00 * T^4 + 0.0000000e+00 * T^5 Entropy Coeff: 0.2388459 Cavett Param.: 0.28049 Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs = Btu/lbmo + * T + * T^2 Heat Form (@ 25 C): Heat Comb (@ 25 C):

Step	Action
23	Press the <insert> key;</insert>
	Use the <page down=""> and $<\downarrow>$ arrow keys to locate the formula H2O in the Component</page>
	Selection Column. The Component list is very long.
24	Highlight the formula H2O and then press the <enter> key;</enter>
	The screen shown on the following page will then appear.

	COMPONE COMPONE	ENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
Oil	Muriatic_Acid	HCl	HCl	ALL
Gas	Hydrogen_Fluoride	HF	HF	HC
Н2О	Anhydrous_hydrofluor	HF	HF	SOLTD
	Hydrogen_Bromide	HBr	HBr	MISC
	Hydrogen_Iodide	HI	HI	AMINE
	Carbon_Monoxide	CO	CO	ALCOHOL
	Carbonic_Oxide	CO	CO	KETONE
	Exhaust_Gas	CO	CO	ALDEHYDE
	Carbon_Dioxide	CO2	CO2	ESTER
	Carbonic_Acid_Gas	CO2	CO2	CARBACID ·
	Carbonic_Anhydride	CO2	CO2	HALOGEN
	Hydrogen_Sulphide	H2S	H2S	NITRILE
	Hydrogen_Sulfide	H2S	H2S	PHENOL
	Stink_Damp	H2S	H2S	ETHER
	Sulfuretted_Hydrogen	H2S	H2S	USER
	Hydrogen_Cyanide	HCN	HCN	
V ↓	V - V Search h	DY SYNONYM		I
Fl - Help, F	⁷ 3 - Menu, F4 - Flip S	Srch, F5 - Exa	m, F6 - Move	, F8 - Change
	PRESS INSE	ERT TO SUBMIT		
Fl - Help, F	Carbonic_Anhydride Hydrogen_Sulphide Hydrogen_Sulfide Stink_Damp Sulfuretted_Hydrogen Hydrogen_Cyanide V - V Search H F3 - Menu, F4 - Flip S PRESS INSH	CO2 H2S H2S H2S H2S HCN Dy SYNONYM Srch, F5 - Exa SRT TO SUBMIT	CO2 H2S H2S H2S H2S HCN am, F6 - Move	HALOGEN NITRILE PHENOL ETHER USER , F8 - Chang

Step	Action
25	Press the <insert> key;</insert>
NOTE: (On returning to the main menu after component selection, HYSIM will provide a list of the
compone	nt selections. This is helpful in assessing component selections.
Step	Action
	Specifying the conditions of the Feed stream.
26	Highlight the word Specify and then press the <enter> key;</enter>
27	Highlight the word Stream and then press the <enter> key;</enter>
28	Type the word Feed after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature of the Feed stream in F.
29	Type the number 90 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Feed stream in psia.
30	Type the number 100 after the prompt (>) and then press the <enter> key;</enter>
	Specifying that the molar flow of the Feed stream is unspecified at this point by typing an "x".
31	Type the letter x after the prompt (>) and then press the $\langle Enter \rangle$ key;
	Specifying the individual mass flows in lb/hr of each component.
32	Type the word Mass_Flows after the prompt (>) and then press the <enter> key;</enter>
	The screen will then appear as shown on the following page.

	Stream Mass Flows		
Oil H2O	Gas		
Step	Action		
33	Enter the following mass flows in lb hr beside each component in the feed stream:		
	After the word, Oil, type the number 1544973.5 in the blank and then press the <enter> key;</enter>		
	After the word, Gas, type the number 242255.3 in the blank and then press the <enter> key;</enter>		
	After the formula, H2O, type the number 1058201.1 in the blank;		
	The screen will then appear as shown below:		
	· · · · · · · · · · · · · · · · · · ·		
[Stream Mass Flows		

Oil 1544973.5 Gas 242255.3 H2O 1058201.1

Step	Action
34	Press the <insert> key;</insert>
	HYSIM will next ask you if the total mass flow it calculated from adding up the individual
	component flows or 2845429.9000 lb hr is correct.
35	Highlight the word Yes and then press the <enter> key;</enter>
	Looking at the conditions in the program for the feed stream.
36	Highlight the word Print and then press the <enter> key;</enter>

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - the conditions, physical properties, and compositions of the streams will be printed out.

b) *Operations* - The different unit operations will be printed out.

c) <u>Spec_Sheets</u> - The specifications sheets will be printed out.

d) *Hypotheticals* - Hypothetical component information will be printed out.

e) *Format* - Specifies the format of the printout.

f) Cost - Lists costs of the run, if a royalty is being charged.

g) *File* - Saves results in a file.

h) <u>Printer</u> - Toggles on a printer

i) *Cases* - Lists the stored files.

j) *Description* - Prints case description.

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action
37	Highlight the word Streams and then press the <enter> key;</enter>
38	Highlight the word Conditions and then press the <enter> key.</enter>
39	Highlight the word Feed and then press the <enter> key;</enter>
	The following conditions will then appear on the screen for the Feed stream:

Stream Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow	F psia lbmole/hr lb/hr barrel/day	Feed 0.1525 90.0000* 100.0000* 84042.8484 2.84542E+06* 276944.0831
LiqVol Flow	barrel/day	276944.0831
Enthalpy	Btu/hr	1.27230E+10

Step	Action
	Specifying the type of operation we want to perform on the Feed stream.
40	Highlight the word Operation and then press the <enter> key;</enter>
	Typing a name for the operation. (We will call it "3Phsep").
41	Type the word 3Phsep and then press the <enter> key;</enter>
42	Highlight the word Separator 3 and then press the <enter> key;</enter>
	The following diagram of the separator process will appear:

Step	Action
	Naming the streams
43	Type Feed in the blank and then press the <enter> key;</enter>
44	Type Ltliq in the blank and then press the <enter> key;</enter>
45	Type Vapor in the blank and then press the <enter> key,</enter>
46	Type Hvyliq in the blank,
	The screen should now appear as shown on the following page.

Step	Action
	Looking at the conditions of all of the streams.
47	Press the <enter> key;</enter>
48	Highlight the word Print and then press the <enter> key;</enter>

The various print options can be found on page 278.

Step	Action
49	Highlight the word Streams and then press the <enter> key;</enter>
50	Highlight the word All and then press the <enter> key;</enter>
51	Highlight the dash symbol - and then press the <enter> key;</enter>
	Pressing the <f10> key in order to get the current menu off of the screen, to allow viewing of</f10>
	the data underneath the menu.
52	Press the $\langle F10 \rangle$ key;
	The following information will now appear as shown below:

Stream		Feed	Ltliq	Vapor	Hvyliq
Description					
Vapour frac.		0.1525	0.0000	1.0000	0.0000
Temperature	F	90.0000*	90.0000	90.0000	90.0000
Pressure	psia	100.0000*	100.0000	100.0000	100.0000
Molar Flow	lbmole/hr	84042.8484	12581.0903	12820.2614	58641.4945
Mass Flow	lb/hr	2.84542E+06*	1.56473E+06	224259.3525	1.05643E+06
LigVol Flow	barrel/day	276944.0831	128471.9874	75989.1469	72482.9304
Enthalpy	Btu/hr	1.27230E+10	1.16881E+09	1.24098E+10	-8.55598E+08
Density	lb/ft3	3.6645	50.7463	0.3077	62.5588
Mole Wt.		33.8569	124.3722	17.4926	18.0151
Spec. Heat	Btu/lb-F	0.0175	0.2894	-6.6493	1,0301
Therm Cond	Btu/hr-ft-	F	0,0625	0.0005	0.3590
Viscosity	сP		0.5963	0.0096	0.7606
Z Factor			0.0415	0.9637	0.0049
Sur Tension	dvne/cm		27.2962		70.8481
Std Density	1b/ft3		51.6133		63.3284
Oil	mole frac.	0 1354*	0.9038	0.0007	0.0000
Gas	mole frac	0 1657*	0 0956	0.9922	0.0000
H20	mole frac.	0 6989*	0.0006	0.0071	1.0000

Step	Action
53	Press the <f10> key;</f10>
	Looking at the conditions of all of the streams.
54	Highlight the word Print and then press the <enter> key;</enter>

The various print options can be found on page 278.

Step	Action				
55	Highlight the word Spec_Sheets and then press the <enter> key,</enter>				
56	Highlight the word Operations and then press the <enter> key;</enter>				
57	Highlight the name 3Phsep and then press the <enter> key;</enter>				
	Pressing the <f10> key in order to get the current menu off of the screen. to allow viewing of</f10>				
	the specification sheets underneath the menu.				
58	Press the $\langle F10 \rangle$ key;				
	The information as shown below and on the following page will then appear on the screen.				
	Use the $\langle Page Up \rangle$. $\langle Page Down \rangle$ and Arrow keys (\leftarrow , $\uparrow \rightarrow$, or 4) to view the entire sheet.				

- HYSIM VESSEL SPECIFICATION SHEET -HYSIM Version C2.53 Date 96/10/23 Case Name Time 9:19:09 Operation Name: 3Phsep Operation Note: Operation Flowrate Stream 2.84542E+06 lb/hr Inlet: Feed from --- ---Vapour: Vapor to HC Liquid: Ltliq to Hvy Liquid: Hvyliq to --- ---224259.3525 lb/hr 1.56473E+06 lb/hr --- ------ ---1.05643E+06 lb/hr Inlet Properties at Operating Conds Inlet Mixed Liquid Properties Temperature90.0000 FPressure100.0000 psiaMass Frac Vap0.0788 54.9263 lb/ft3 Density 0.8816 SG_H2060 Spec. Grav. 0.0788 Mol. Weight 36.8025 Density 3.6645 lb/ft3 Surface Tens.63.1549 dyne/cm Mol. Weight 33.8569 Viscosity 2.1316 cP Vapour Outlet Properties 0.3077 lb/ft3 Density 17.4926 Mol. Weight Z Factor Viscosity 0.9637 0.0096 cP

Density 50.7463 lb/ft3 Spec. Grav. 0.8145 SG_H2060 Mol. Weight 124.3722 Surface Tens. 27.2962 dyne/cm Viscosity 0.5963 cP Heavy Liquid Outlet Properties Density 62.5588 lb/ft3 Spec. Grav. 1.0041 SG_H2060 Mol. Weight 18.0151 Surface Tens. 70.8481 dyne/cm Viscosity 0.7606 cP NOTES : 1	Hydrocarbon 1	Liquid Outlet Properties
Heavy Liquid Outlet PropertiesDensity62.5588 lb/ft3Spec. Grav.1.0041 SG_H2060Mol. Weight18.0151Surface Tens.70.8481 dyne/cmViscosity0.7606 cPNOTES :	Density Spec. Grav. Mol. Weight Surface Tens. Viscosity	50.7463 lb/ft3 0.8145 SG_H2O60 124.3722 27.2962 dyne/cm 0.5963 cP
Density 62.5588 lb/ft3 Spec. Grav. 1.0041 SG_H2060 Mol. Weight 18.0151 Surface Tens. 70.8481 dyne/cm Viscosity 0.7606 cP NOTES : 1	Heavy Liquid	1 Outlet Properties
NOTES :	Density Spec. Grav. Mol. Weight Surface Tens. Viscosity	62.5588 lb/ft3 1.0041 SG_H2060 18.0151 70.8481 dyne/cm 0.7606 cP
		NOTES :

Step	Action
59	Press the <f10> key;</f10>
	Looking at the current process flow diagram (PFD).
60	Highlight the abbreviation PFD and then press the <enter> key;</enter>
	The figure shown below will then appear:

Step	Action					
	Getting back to the Main Menu.					
61	Press the <esc> key until you reach the Main Menu.</esc>					
62	Do you want to continue adding other unit operations to this three phase separator?					
	• If Yes, turn to the pertinent section of this manual now;					
L	If No, turn to the "Exiting HYSIM" Section of this manual.					

3.7.3 Cyclone Solids Separator

<u>Objective</u> - This exercise is an example of a Cyclone Solid Separation calculation. The purpose of the Cyclone operation is to separate solids (larger than 5 microns) from a gaseous feed stream. This example can be modified by specifying another property package and/or other components, compositions and feed conditions.

In this example, the feed stream contains nitrogen, oxygen and a solid catalyst. The cyclone solid separator in this example is 85% efficient in separating the solid catalyst from the feed stream.

<u>Technical Reference Example</u>: Reference 2 - HYSIM Special Features and Applications Guide, pages 2-20 to 2-25.

Other References: Refs. 1 and 2.

Directions - Pages 284 through 296 outline the execution of a cyclone solids separator example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <> brackets (e.g. **Esc>**) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called *Cyclone*, is shown below

Step	Action					
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).					
	• If <u>Yes</u> , proceed with Step 2.					
	 If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures 					
	before proceeding to Step 2.					
	Starting with a new case.					
2	Highlight the word No and then press the <enter> key;</enter>					
	Selecting a Property Package.					
3	Highlight the word PR_Options and then press the <enter> key;</enter>					
4	Highlight the word PRSV and then press the <enter> key;</enter>					
	The following screen will appear:					

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
· · · · · · · · · · · · · · · · · · ·	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	C1	Methane	CH4	SOLID `
	C2	Ethane	C2H6	MISC
	C3	Propane	СЗН8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H20	PHENOL
	C10	n-Decane	C10H22	ETHER
	C11	n-C11	C11H24	USER
	C12	n-C12	C12H26	
¥ ↓	└─── ♥ ── ↓ ────?	Search by SYNONYM		1
F1 - Help,	F3 - Menu, F4 · PRI	- Flip Srch, F5 - Exa ESS INSERT TO SUBMIT	am, F6 - Move	, F8 - Change

Step	Action
	Selecting the components in the feed stream.
5	Highlight each of the following component names under the "Component Selection" Section and press the <enter> key so that the name then appears in the "Selected" column. This "Component Selection" List is very long. Use the <page down=""> and Arrow Keys to find the following components:</page></enter>
	Highlight the word Nitrogen and then press the <enter> key; Highlight the word Oxygen and then press the <enter> key.</enter></enter>
	The screen will then appear as shown on the following page.

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
Nitrogen	Xenon	Xenon	Хe	ALL
Oxygen	Ozone	Ozone	03	HC
	C12	C12	C12	SOLID
	HC1	HCl	HCl	MISC
	F2	F2	F2	AMINE
	HF	HF	HF	ALCOHOL
	Br2	Bromine	Br2	KETONE
	HBr	HBr	HBr	ALDEHYDE
	12	Iodine	I2	ESTER
	HI	HI	HI	CARBACID
	NitricOxide	e NO	NO	HALOGEN
	NO2	NO2	NO2	NITRILE
	N20	N20	N20	PHENOL
	N204	N204	N2O4	ETHER
	S02	SO2	SO2	USER
	S03	SO3	SO3	
∥ ↓	⊥ v ↓S	earch by SYNONYM		
F1 - Help,	F4 -	Flip Srch, F5 - Exa	am, F6 -	Move,
F3 - Menu,	PRE	SS INSERT TO SUBMIT	F8 -	Change

3.7.3 Cyclone Solids Separator (c	continued)
-----------------------------------	------------

Step	Action	
	Specifying the solid component of the feed stream.	
6	Highlight the word SOLID under the "Criteria" column heading and then press the <enter></enter>	
	key;	
	The following screen will then appear	

	COMPON	ENT SELECTION		l Onit station
	Synonym	Name	Formula	Lriteria
Nitrogen	HYPOTHETICAL	HYPOTHETICAL		ALL
Oxygen	Sulphur_Rhombic	S_Rhombic	S	HC
	Sulphur_Monoclinic	S_Monoclinic	S	SOLID
	Sulphur_Amorphous	S_Amorphous	S	MISC
	Carbon	Carbon	С	AMINE
	Urea	Urea	CH4N2O	ALCOHOL
	Silver	Silver	Ag	KETONE
	Beryllium	Beryllium	Be	ALDEHYDE
	Bismuth	Bismuth	Bi	ESTER
)) }	Calcium	Calcium	Ca	CARBACID
	S_Rhombic	S_Rhombic	S	HALOGEN
	S_Monoclinic	S_Monoclinic	S	NITRILE
	S_Amorphous	S_Amorphous	S	PHENOL
	2-Phenyl-1-Propene	Beryllium	Be	ETHER
	Sulfur	S_Rhombic	S	USER
	Brimstone	S_Rhombic	S	
	• _ •Search	by SYNONYM-		
F1 - Help,	F3 - Menu, F4 - Flip	Srch, F5 - Ex	am, F6 -	Move,
	PRESS INS	SERT TO SUBMIT	F8 -	Change

Step	Action
7	Highlight the word Hypothetical under the "COMPONENT SELECTION" Column and then
	press the <enter> key;</enter>
	The following screen will then appear:

HCSolidMiscAmineAlcoholKetoneAldehydeEsterCarbAcidHalogenNitrilePhenolEtherHCHC-HC interaction parameters will be calculated and assignedWhat is the component type?>

Step	Action
8	Highlight the word Solid and then press the <enter> key;</enter>
	The following screen will then appear.

Solid Hypothetical Compor	ient Information
Name: Chemical	Formula:
Solid Density [kg/m3_]: Molecular Weight : Average Diameter [mm]: Sphericity : Area/Unit Volume [m2/m3_]:	Coal Analysis Carbon: % Hydrogen: % Nitrogen: % Oxygen: % Sulphur: %
Specific Heat Coefficents	Chlorine: %
$Cp = - KJ/kg-K_{+} + T^{+} + T^{-} +$	Heat of Formation and Combustion (Molar Basis - Ideal gas @ 25 C) Heat Formation : Heat Combustion:
Vapour Pressure (deg K, kPa) ANTA: ANTD: ANTB: ANTE: ANTC: ANTF: TMIN: TMAX:	Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs =kJ/kgmol +* T +* T^2

Step	Action
9	Type the word Catalyst and then press the <enter> key two times;</enter>
	Specifying the Solid Density of the Catalyst in kg/m^3 .
10	Type the number 2995.5 and then press the <enter> key;</enter>
	Specifying the Molecular Weight of the Catalyst.
11	Type the number 100 and then press the <enter> key;</enter>
	Specifying the Average Diameter of the Catalyst Particle in millimeters (mm).
12	Type the number 0.006 and then press the <enter> key;</enter>
	Specifying the Sphericity of the Catalyst Particle.
13	Type the number 0.9;
	The following screen will then appear:

Solid Hypothetical Compon	ent Information
Name: Catalyst Chemical	Formula:
Solid Density [kg/m3_]: 2995.5 Molecular Weight : 100	Coal Analysis Carbon: % Hydrogen: % Nitrogen: % Oxygen: % Sulphur: % Chlorine: % Heat of Formation and Combustion (Molar Basis - Ideal gas @ 25 C) Heat Formation : Heat Combustion:
+ * T [*] 4 Vapour Pressure [deg K, kPa] ANTA: ANTD: ANTB: ANTE: ANTC: ANTF: TMIN: TMAX:	Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs =kJ/kgmol + * T + * T^2

Step	Action
14	Press the <insert> key,</insert>
	The screen will then appear as shown on the following page.

```
—— Solid Hypothetical Component Information =
  Are The Component Calculations Satisfactory: Yes_
                             Chemical Formula: Catalyst
Name: Catalyst
               [kg/m3_]: 2995.500
Solid Density
                                            Coal Analysis
                   : 100.000
Molecular Weight
                                          Carbon: 0.0000 %
                        ]:6.0000e-03
                                        Hydrogen: 0.0000 %
Average Diameter (mm_
Sphericity
                         : 0.90000
                                        Nitrogen: 0.0000 %
Area/Unit Volume [m2/m3_]: 1.67e+05
                                          Oxygen: 0.0000 %
                                         Sulphur: 0.0000 %
Specific Heat Coefficents
                                        Chlorine: 0.0000 %
(Mass Basis - solid @ 25 C)
     = -3.0217652e+00 kJ/kg-K_
                                       Heat of Formation and Combustion
Cp
      + 6.0891764e-03 * T
                                       (Molar Basis - Ideal gas @ 25 C)
      + -2.6071865e-06 * T<sup>2</sup>
                                       Heat Formation : _____
      + 0.0000000e+00 * T<sup>3</sup>
                                       Heat Combustion: ____
      + 0.0000000e+00 * T<sup>4</sup>
 Vapour Pressure [deg K, kPa]
                                       Ideal Gas Gibbs Free Energy
ANTA: 1.00000e+00 ANTD: 0.00000e+00
                                       (Molar Basis - Ideal gas @ 25 C)
ANTB: 0.00000e+00 ANTE: 0.00000e+00
                                       Gibbs = ____
                                                            ___ kJ/kgmol
ANTC: 0.00000e+00 ANTF: 0.00000e+00
                                                              _ * T
                                                               * T^2
TMIN: _
           _____ TMAX : __
                                              +___
```

Step		Actio	Dn		
15	Press the -	<insert> key;</insert>			
	The follow	ving screen will then appear:			
		COMPON	ENT SELECTION		
Sele	ected	Synonym	Name	Formula	Criteria
A	- 1	▲ — ↑ —————		<u></u>	
Nitro	gen	HYPOTHETICAL	HYPOTHETICAL		ALL
Oxyger	1	Sulphur_Rhombic	S_Rhombic	S	HC
Cataly	/st	Sulphur_Monoclinic	S_Monoclinic	S	SOLID
		Sulphur_Amorphous	S_Amorphous	S	MISC
		Carbon	Carbon	С	AMINE
		Urea	Urea	CH4N2O	ALCOHOL
		Silver	Silver	Ag	KETONE
		Beryllium	Beryllium	Be	ALDEHYDE
		Bismuth	Bismuth	Bi	ESTER
		Calcium	Calcium	Ca	CARBACID
		S_Rhombic	S_Rhombic	S	HALOGEN
		S_Monoclinic	S_Monoclinic	S	NITRILE
		S_Amorphous	S_Amorphous	S	PHENOL
		2-Phenyl-1-Propene	Beryllium	Ве	ETHER
		Sulfur	S_Rhombic	S	USER
		Brimstone	S_Rhombic	S	
□ - V - V - V - Search by SYNONYM					
F1 - Help, F3 - Menu, F4 - Flip Srch, F5 - Exam, F6 - Move,					
PRESS INSERT TO SUBMIT F8 - Change					

Step	Action				
16	Press the <insert> key;</insert>				
	The following screen will then appear:				
E Nitro Oxyge	nter H f gen n	Inte for all k(j,HC) Nitrogen -0.0120	eraction Parat , Ins to Ex: Oxygen -0.0120	neters it, Catalyst 	

Step	Action	
17	Press the <insert> key.</insert>	

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Specifying the conditions of the Feed stream.
18	Highlight the word Specify and then press the <enter> key;</enter>
19	Highlight the word Stream and then press the <enter> key;</enter>
20	Type the word Feed after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature in ${\mathbb C}$ of the Feed.
21	Type the number 25 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Feed in kilopascals (kPa).
22	Type the number 101 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the flow of the Feed stream in kg-mols/hour.
23	Type the number 100 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the individual mole fractions of each component in the Feed.
24	Highlight the word Mole_Fractions after the prompt (>) and then press the <enter> key;</enter>
	The screen will appear as shown below:

Nitrogen _____ Oxygen _____

Step	Action					
	Entering the	mole-fractions	of the com	ponents in the Feed stre	am.	
25	Enser the fol	lowing mole fro	actions bes	ide each component in th	ne Feed stream:	
	After the wo	rd, Nitrogen, ty	pe the num	ber 0.782 in the blank an	d then press the <enter> key;</enter>	
	After the word, Oxygen, type the number 0.208 in the blank and then press the <enter> key;</enter>					
	After the word, Catalyst, type the number 0.01,					
	The screen will now appear as shown below:					
[Stream	Mole Fractions		
Nitr Cata	ogen (lyst (D.782 D.01		Oxygen	0.208	

Step	Action
26	Press the <insert> key;</insert>
27	Highlight the word Operation and then press the <enter></enter> key;
28	Type the word Cyclone and then press the < Enter > key;
29	Highlight the word Solid_Separator and then press the <enter> key;</enter>
	The screen will then appear as shown below:

	Solids Separation =	
Operation Name:	Cyclone	Vapour:
Inlet :	=> >	Liquid:
Type of		
Separator :	Cyclone	Solids:

Step	Action
	Specifying the names of the streams entering and leaving the Cyclone.
30	Type the word Feed and then press the <enter></enter> key;
31	Type the word VaporOut and then press the <enter> key;</enter>
32	Press the <enter></enter> key;
33	Type the word SolidsOut and then press the <enter> key.</enter>
	The following screen will then appear:

 		Solide	Senaration		
			beparación —		
Operation N	fame:	Cyclone	l [►	Vapour:	VaporOut_
Inlet	:	Feed	=>	Liquid:	
Type of Separator	:	Cyclone	`\´ `\ ≹ /́▶	Solids:	SolidsOut

Step	Action
34	Press the <insert> key;</insert>
	The screen will then appear as shown on the following page.

Step	Action		
	Specifying the Configuration for the Cyclone. The configuration can either be high efficiency		
	or high output. We will leave it in the HYSIM default mode of high efficiency		
35	Press the <enter> key.</enter>		
	Specifying the Efficiency Method of either Lapple (HYSIM default mode) or Leith Licht. The		
	Leith Licht efficiency method is more rigorous than the Lapple method.		
36	Press the <delete></delete> key until the word Lapple is deleted; then press the <f2></f2> key and highlight		
	the word Leith/Licht; then press the <enter> key.</enter>		
	Specifying the cyclone efficiency as a percentage (%)		
37	Type the number 85 and then press the <enter> key;</enter>		
	Specifying the name of the solid that will be separated by the cyclone.		
38	Type the word Catalyst and then press the <enter> key;</enter>		
	The screen will then appear as shown below:		

- Solids Separation - (Cyclone Initial Parameters =
Operation Name	: Cyclone
Configuration	: Efficiency
Efficiency Method	: Leith/Licht_
Objective Efficiency Solid Name -or-	: 85% //
Particle Diameter	: mm ///
Particle Density	: kg/m3 ///
Maximum Diameter	: 5.00 m
Minimum Diameter	: 0.30 m
Maximum Pressure Drop	: 15.00 kPa

Step	Action
39	Press the <insert> key;</insert>
	The following screen defining the dimensional sizing ratios of the separator will then appear:

Step	Action		
40	Press the <insert> key</insert>		
	Printing Results from the Cyclone HYSIM run.		
41	Highlight the word Print and then press the <enter> key.</enter>		

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - the conditions, physical properties, and compositions of the streams will be printed out.

b) Operations - The different unit operations will be printed out.

c) <u>Spec_Sheets</u> - The specifications sheets will be printed out.

d) Hypotheticals - Hypothetical component information will be printed out.

e) Format - Specifies the format of the printout.

f) Cost - Lists costs of the run, if a royalty is being charged.

g) File - Saves results in a file.

h) Printer - Toggles on a printer.

i) <u>Cases</u> - Lists the stored files

j) *Description* - Prints case description.

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action		
42	Highlight the word Streams and then press the <enter> key.</enter>		
43	Highlight the word All and then press the <enter> key.</enter>		
44	Highlight the dash symbol - and then press the <enter> key.</enter>		
	Wait for the printing to the screen to stop. Then, press the $\langle F 0 \rangle$ key to get the Main Menu		
	off of the screen in order to see the data on the screen underneath it.		
45	Press the <f10> key;</f10>		
	The screen will then appear as shown below. Use the <page up=""> and <page down=""> keys to</page></page>		
	scroll the screen text up and down.		

Stream Description		Feed	VaporOut	SolidsOut
Vapour frac		0.9900	0.9985	0.0000
Temperature	С	25.0000*	25,0000	25.0000
Pressure	kPa	101.0000*	99.7838	99.7838
Molar Flow	kgmole/h	100.0000*	99.1500	0.8500
Mass Flow	kg/h	2956.2166	2871.2134	85,0033
LiqVol Flow	m3/h	3.3351	3.3067	0.0284
Enthalpy	kJ/h	701221.3867	833663.4135	-132432.3115
Density	kg/m3	1.2173	1.1681	2995.5000
Mole Wt.	-	29.5622	28.9583	100.0000
Spec. Heat	kJ/kg-C	0.9278	0.9979	0.0100
Therm Cond	W/m-K			~
Viscosity	сP			
Z Factor				0.0013
Sur Tension	dyne/cm			
Std Density	kg/m3			2995.5000
Nitrogen	mole frac.	0.7820*	0.7887	0.0000
Oxygen	mole frac.	0.2080*	0.2098	0.0000
Catalyst	mole frac.	0.0100*	0.0015	1.0000

Step	Action		
46	Press the <f10> key;</f10>		
47	Highlight the word Print and then press the <enter> key.</enter>		
	The various print options can be found on page 292.		
Step	Action		
48	Highlight the word Spec_Sheets and then press the <enter> key.</enter>		
49	Highlight the word Operations and then press the < Enter > key.		
50	Highlight the word Cyclone and then press the <enter> key.</enter>		
	Pressing the <f10> key to get the Main Menu off of the screen in order to see the data on the</f10>		
	screen underneath it.		
51	Press the <f10> key;</f10>		
	The screen will then appear as shown on the following page. Use the $<$ Page Up $>$ and $<$ Page		
	Down> keys to scroll the screen text up and down.		

Case Name: Operation Name: Cyclone Operation Note:	Date 96/10/04 Time 13:20:22
Stream Operati- Inlet: Feed from - Solids: SolidsOut to - Vapour: VaporOut to -	On Flowrate 2956.2166 kg/h 100.0000 kgmole/h 85.0033 kg/h 0.8500 kgmole/h 2871.2134 kg/h
Inlet Properties	99.1500 kgmole/h Objective Sizing Parameters
Temperature 25.0000 C Pressure 101.0000 kPa Mass Frac Vapour 0.9662 Mass Frac Solid 0.0338 Density 1.2173 kg/m3	Efficiency 85.0000 % Diameter 6.000E-06 m Density 2995.5000 kg/m3
Spec. Grav. 0.0012 SG_H2060 Mol. Weight 29.56	Cyclone Sizing Parameters
Vapour Outlet Properties	Efficiency Type LEITH Configuration High Efficiency
Density 1.17 kg/m3 Mol. Weight 28.9583 Z factor	Diameter 0.6110 m Cyclone Height 0.9164 m Total Height 2.4438 m Cyclones in Parallel 1.0
Solids Outlet Properties Density 2995.5000 kg/m3 Spec. Grav. 3.0015 SG_H2060ap	Inlet duct Height 0.3055 m Width 0.1222 m
Mol. Weight 100.0000 Solids Outlet Efficiencies	Overflow Height 0.3055 m Diameter 0.3055 m
Solid1 Catalyst 85.00 % Solid2 % Solid3 % Solid4 % Solid5 % Solid6 %	Underflow Diameter 0.2291 m
Overall Efficiency 85.00 %	

Step	Action		
52	Press the < F10 > key;		
53	Highlight the letters PFD and then press the <enter> key.</enter>		
	The following screen will then appear:		

Step	Action		
	Getting back to the Main Menu.		
54	Press the <esc> key until you reach the Main Menu.</esc>		
	Sizing the Cyclone.		
55	Highlight the word Size and then press the <enter> key;</enter>		
56	Highlight the word Solid_Separator and then press the <enter> key;</enter>		
57	Highlight the word Cyclone and then press the <enter> key;</enter>		
	Pressing the $\langle F10 \rangle$ key to get the Main Menu off of the screen in order to see the data on the		
	screen underneath it		
58	Press the $\langle F10 \rangle$ key,		
	The screen will then appear as seen on the following page. Use the $\langle Page Up\rangle$ and $\langle Page Up\rangle$		
	Down > keys to scroll the screen text up and down.		

Cyclone Sizing	
Operation Name	Cyclone
Configuration Efficiency Type	High Efficiency Leith
Diameter Cyclone Height Total Height Cyclones In Parallel	0.6101 m 0.9152 m 2.4405 m 1.0000
Pressure Drop	1.2228 kPa
Inlets and Outlets	
Inlet Duct: Height Width Overflow : Height Diameter Underflow : Diameter	0.3051 m 0.1220 m 0.3051 m 0.3051 m 0.2288 m
Objective Sizing Parameters	
Efficiency Particle Diameter Particle Density	85.0000 % 6.000E-06 m 2995.5000 kg/m3
Achieved Solids Separation Efficiencies	
Catalyst	85.0381 %
Note: Changes done in this utility will actual operation.	not appear in the

Step	Action		
59	Press the <f10> key;</f10>		
60	Highlight the word Quit and then press the <enter> key;</enter>		
61	Do you want to continue adding other unit operations to this cyclone?		
	• If Yes, turn to the pertinent section of this manual now;		
	If No, turn to the "Exiting HYSIM" Section of this manual.		

3.7.4 Bag-House Filter Solids Separator

<u>Objective</u> - This exercise is an example of a Bag-House Filter Solid Separation calculation. The purpose of the Bag-House Filter operation is to separate solids from a gaseous feed stream. This example can be modified by specifying another property package and/or other components, compositions and feed conditions.

In this example, a feed stream consists of nitrogen, oxygen and solid catalyst. The baghouse filter separator is used to separate the solid catalyst from the nitrogen and oxygen in the feed stream

<u>Techncial Reference Example</u> Reference 1 - HYSIM User's Guide, page 7-118 Reference 2 - HYSIM Special Features and Applications Guide, pages 2-20 to 2-25. <u>Other References</u>: Refs. 1 and 2.

<u>Directions</u> - Pages 298 through 307 outline the execution of a bag-house filter solids separator example This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <> brackets (e.g. <Esc>) in the Action column; supplemental comments are indicated in *indicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called BagHouse, is shown below.

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).
	• If <u>Yes</u> , proceed with Step 2.
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package
3	Highlight the word PR_Options and then press the < Enter > key;
4	Highlight the word PRSV and then press the < Enter > key;
	The following screen will appear:

/		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	Cl	Mechane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	C3	Propane	СЗН8	AMINE
	1-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	CB	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H2O	PHENOL
	C10	n-Decane	C10H22	ETHER
	C11	n-Cll	C11H24	USER
	C12	n-C12	C12H26	
│ <u>─</u> ─ ¥ ─ ↓ ───	└─── ▼ ↓	Search by SYNONYM	······	
F1 - Help,	F3 - Menu, F4	- Flip Srch, F5 - Exa	am, F6 - Mo	ve, F8 - Change
	PR	ESS INSERT TO SUBMIT		

Step	Action			
	Selecting the components in the feed stream			
5	Highlight each of the following component names under the "Component Selection" Section			
	and press the <enter> key so that the name then appears in the "Selected" column. This</enter>			
	"Component Selection" List is very long. Use the <page down=""> and Arrow Keys to find the</page>			
	following components:			
	Highlight the word Nitrogen and then press the <enter> key;</enter>			
	Highlight the word Oxygen and then press the <enter> key.</enter>			
	The screen on the following page will then appear.			

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
Nitrogen Oxygen Fl - Help,	<pre>1-C19# 1-C20# NH3 Deuterium-eq H2 H20 H202 D20 He Neon Argon Krypton Xenon Ozone C12 HC1 F3 - Menu, F4</pre>	1-Nonadecyn 1-Eicosyne Ammonia Deuterium-eq Hydrogen H2O H2O2 D2O Helium Neon Argon Krypton Xenon Ozone Cl2 HCl Search by SYNONYM - Flip Srch, F5 - Exa	C19H36 C10H38 NH3 D2 H2 H20 D20 He Ne Ar Kr Xe O3 C12 HC1	ALL HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL ETHER USER Move,
PRESS INSERT TO SUBMIT F8 - Change				

Step	Action
	Specifying the solid component of the feed stream.
6	Highlight the word SOLID under the "Criteria" column heading and then press the <enter></enter>
	key;
	The following screen will then appear.
	COMPONENT CELECTION

Selected	Synonym	Name	Formula	Criteria
Nitrogen Oxygen	HYPOTHETICAL Sulphur_Rhombic Sulphur_Monoclinic Sulphur_Amorphous Carbon Urea Silver Beryllium Bismuth Calcium S_Rhombic S_Monoclinic S_Amorphous 2-Phenyl-1-Propene Sulfur Brimstone	HYPOTHETICAL S_Rhombic S_Monoclinic S_Amorphous Carbon Urea Silver Beryllium Bismuth Calcium S_Rhombic S_Monoclinic S_Amorphous Beryllium S_Rhombic S_Rhombic	S S C CH4N2O Ag Be Bi Ca S S S Be S S	ALL HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL ETHER USER
F1 - Help, 1	F3 - Menu, F4 - Flip PRESS INS	DY SINONYM Srch, F5 - Exa ERT TO SUBMIT	am, F6 - F8 - C	Move, hange

Step	Action				
7	Highlight the word Hypothetical under the "COMPONENT SELECTION" Column and then press the <enter></enter> key:				
	The following screen will then appear:				
HC Alcoho CarbAo Ether HC Ho What : >	HC Solid Misc Amine Alcohol Ketone Aldehyde Ester CarbAcid Halogen Nitrile Phenol Ether HC HC-HC interaction parameters will be calculated and assigned What is the component type?				
Step	Action				
8	Highlight the word Solid and then press the <enter> key;</enter>				
	The following screen will then appear:				

Solid Hypothetical Compor	nent Information
Name: Chemical	Formula:
Solid Density [kg/m3_]: Molecular Weight : Average Diameter [mm]: Sphericity : Area/Unit Volume [m2/m3_]: Specific Heat Coefficents (Mass Basis - solid @ 25 C)	Coal Analysis Carbon: % Hydrogen: % Nitrogen: % Oxygen: % Sulphur: % Chlorine: %
Cp = kJ/kg-K + * T + * T^2 + * T^3 + * T^4	Heat of Formation and Combustion (Molar Basis - Ideal gas @ 25 C) Heat Formation : Heat Combustion:
Vapour Pressure [deg K, kPa] ANTA: ANTB: ANTE: ANTC: TMIN:	Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs =

Step	Action
9	Type the word Catalyst and then press the <enter></enter> key two times;
	Specifying the Solid Density of the Catalyst in kg/m ³ .
10	Type the number 2995.5 and then press the <enter> key;</enter>

.

Step	Action
	Specifying the Molecular Weight of the Catalyst.
11	Type the number 100 and then press the <enter> key;</enter>
	Specifying the Average Diameter of the Catalyst Particle in millimeters, mm.
12	Type the number 0.006 and then press the <enter> key,</enter>
	Specifying the Sphericity of the Catalyst Particle.
13	Type the number 0.9;
	The following screen will then appear:

Solid Hypothetical Compo	nent Information
Name: Catalyst_ Chemical	Formula:
Solid Density [kg/m3_]: 2995.5 Molecular Weight : 100 Average Diameter [mm]: 0.006 Sphericity : 0.9 Area/Unit Volume [m2/m3_]:	Coal Analysis Carbon: % Hydrogen: % Nitrogen: % Oxygen: % Sulphur: % Chlorine: % Heat of Formation and Combustion (Molar Basis - Ideal gas @ 25 C) Heat Formation : Heat Combustion:
Vapour Pressure [deg K, kPa] ANTA: ANTB: ANTE: ANTC: TMIN:	Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs = kJ/kgmol + * T + * T^2

Step	Action
14	Press the <insert> key;</insert>
	The screen will then appear as shown on the following page

,

Solid Hypothetical Compor Are The Component Calculations Satis Name: Catalyst Chemical	nent Information ====================================
Solid Density [kg/m3_]: 2995.500 Molecular Weight : 100.000 Average Diameter [mm_]: 6.0000e-03 Sphericity : 0.90000 Area/Unit Volume [m2/m3_]: 1.67e+05 Specific Heat Coefficents (Mass Basis - solid @ 25 C) Cp = -3.0217652e+00 kJ/kg-K_ + 6.0891764e-03 * T + -2.6071865e-06 * T ² 2 + 0.0000000e+00 * T ³ 3 + 0.0000000e+00 * T ⁴	Coal Analysis Carbon: 0.0000 % Hydrogen: 0.0000 % Nitrogen: 0.0000 % Oxygen: 0.0000 % Sulphur: 0.0000 % Chlorine: 0.0000 % Heat of Formation and Combustion (Molar Basis - Ideal gas @ 25 C) Heat Formation : Heat Combustion;
Vapour Pressure [deg K, kPa] ANTA: 1.00000e+00 ANTD: 0.00000e+00 ANTB: 0.00000e+00 ANTE: 0.00000e+00 ANTC: 0.00000e+00 ANTF: 0.00000e+00 TMIN: TMAX:	Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas © 25 C) Gibbs =kJ/kgmol +k T +k T^2

Step	Action
15	Press the <insert> key;</insert>
	The following screen will then appear:

		BNI SELELINA		
Selected	Synonym	Name	Formula	Criteria
Nitrogen	HYPOTHETICAL	HYPOTHETICAL		ALL
Oxygen	Sulphur_Rhombic	S_Rhombic	S	HC
Catalyst	Sulphur_Monoclinic	S_Monoclinic	S	SOLID
-	Sulphur_Amorphous	S_Amorphous	S	MISC
	Carbon	Carbon	С	AMINE
	Urea	Urea	CH4N2O	ALCOHOL
	Silver	Silver	Ag	KETONE
	Beryllium	Beryllium	Be	ALDEHYDE
	Bismuth	Bismuth	Bi	ESTER
	Calcium	Calcium	Ca	CARBACID
	S_Rhombic	S_Rhombic	S	HALOGEN
	S_Monoclinic	S_Monoclinic	S	NITRILE
	S_Amorphous	S_Amorphous	S	PHENOL
	2-Phenyl-1-Propene	Beryllium	Ве	ETHER
	Sulfur	S_Rhombic	S	USER
	Brimstone	S_Rhombic	S	
▼ ↓	🖵 🕶 - 🖡Search 🗄	by SYNONYM		L
F1 - Help, 1	F3 - Menu, F4 - Flip :	Srch, F5 - Exa	am, F6 -	Move,
PRESS INSERT TO SUBMIT F8 - Change				

Step				Action		
16	Press the	Press the <insert> key;</insert>				
	The follo	wing s	creen will then appe	ear:		
Er	nter H	for	<pre>Inter all k(j,HC),</pre>	action Para Ins to Ex	meters ====================================	
Nitrog Oxyger Cataly	gen 1 vst		Nitrogen -0.0120	Oxygen -0.0120 	Cataryst 	

Step	Action
17	Press the <insert> key;</insert>

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Specifying the conditions of the Feed stream.
18	Highlight the word Specify and then press the <enter> key;</enter>
19	Highlight the word Stream and then press the <enter> key;</enter>
20	Type the word Feed after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature of the Feed in \mathbb{C} .
21	Type the number 25 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Feed in kilopascals (kPa).
22	Type the number 101 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the flow of the Feed stream in kg-mols/hr.
23	Type the number 100 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the individual mole fractions of each component in the Feed.
24	Highlight the word Mole_Fractions after the prompt (>) and then press the <enter> key,</enter>
	The screen will appear as shown below

	Stream	Mole	Fractions	
Nitrogen	 	(Dxygen	
cacaryst	 			

Step	Action			
	Entering the mole-fractions of the components in the Feed stream.			
25	Enter the following mole fractions beside each component in the Feed stream:			
	After the word, Nitrogen, type the number 0.782 in the blank and then press the <enter> key;</enter>			
	After the word, Oxygen, type the number 0.208 in the blank and then press the <enter> key;</enter>			
	After the word, Catalyst, type the number 0.01;			
	The screen will now appear as shown below:			

= Stream Mole Fractions =

Nitrogen	0.782	Oxygen	0.208
Catalyst	0.01		

C

1:4-

3.7.4 Bag-House Filter Solids Separator (continued)

Step	Action
26	Press the <insert> key;</insert>
27	Highlight the word Operation and then press the <enter> key;</enter>
28	Type the word BagHouse and then press the <enter> key;</enter>
29	Highlight the word Solid_Separator and then press the <enter> key;</enter>
	The screen will then appear as shown below

0

÷

		50110.	s separation -		
Operati	on Name:	BagHouse		Vapour:	
Inlet	:		=•	Liquid:	
Type of Separat	or :	Cyclone		Solids:	

Step	Action
	Specifying the names of the streams entering and leaving the Bag-House Filter.
30	Type the word Feed and then press the <enter> key;</enter>
31	Type the word VaporOut and then press the <enter> key;</enter>
32	Press the <enter> key;</enter>
33	Type the word SolidsOut and then press the <enter> key</enter>
	Specifying that the solids separator will be a Bag-House Filter type.
34	Press the <delete> key until the word Cyclone is deleted; then press the <f2> key. Highlight</f2></delete>
	the word Bag_Filter and then press the <enter> key</enter>
	The following screen will then appear

Solids Sepa	ration	- Fabi	ric Fi	lter ————
Operation Name : BagHous	e			▶
Maximum Gas Velocity : Filter Area/Bag : Diameter/Bag : Number of Bags / Cell: Spacing between Bags :	0.0050 1.48 0.30 78.00 0.02	m/s m2 m		
Pressure Drop/Clean Bag Pressure Drop/(Bag & Dus	: t):	0.24 2.00	kPa kPa	

Step	Action
35	Press the <insert> key</insert>
	Printing Results from the Bag-House Filter HYSIM run
36	Highlight the word Print and then press the <enter> key.</enter>

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) *Operations* - The different unit operations will be printed out.

c) Spec Sheets - The specifications sheets will be printed out.

d) Hypotheticals - Hypothetical component information will be printed out.

e) Format - Specifies the format of the printout.

f) <u>Cost</u> - Lists costs of the run, if a royalty is being charged.

g) *File* - Saves results in a file.

h) Printer - Toggles on a printer.

i) <u>Cases</u> - Lists the stored files.

j) *Description* - Prints case description.

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action			
37	Highlight the word Streams and then press the <enter> key.</enter>			
38	Highlight the word All and then press the <enter> key.</enter>			
39	Highlight the dash symbol - and then press the <enter> key.</enter>			
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the Main Menu			
	off of the screen in order to see the data on the screen underneath it.			
40	Press the <f10> key;</f10>			
	The screen will then appear as shown below. Use the $\langle Page Up \rangle$ and $\langle Page Down \rangle$ keys to			
	scroll the screen text up and down.			

Stream		Feed	VaporOut	SolidsOut
Vapour frac		0 0000		0 0000
Mappour Irac.		0.9900	1.0000	0.0000
remperature	C	25.0000*	25.0000	25.0000
Pressure	kPa	101.0000*	99.0000	99.0000
Molar Flow	kgmole/h	100.0000*	99.0044	0.9956
Mass Flow	kg/h	2956.2166	2856.6567	99.5600
LiqVol Flow	m3/h	3.3351	3.3018	0.0332
Enthalpy	kJ/h	701221.3867	856348.5349	-155111.2420
Density	kg/m3	1.2173	1.1530	2995.5000
Mole Wt.	-	29.5622	28.8538	100.0000
Spec. Heat	kJ/kg-C	0.9278	1.0103	0.0100
Therm Cond	W/m-K			
Viscosity	cP			
Z Factor				0.0013
Sur Tension	dyne/cm			~ ~ ~
Std Density	kg/m3			2995.5000
Nitrogen	mole frac.	0.7820*	0.7899	0.0000
Oxygen	mole frac.	0.2080*	0.2101	0.0000
Catalyst	mole frac.	0.0100*	0.0000	1.0000

Step	Action		
\$1	Press the $\langle F10 \rangle$ key;		
12	Highlight the word Print and then press the <e< th=""><th>Enter> key.</th></e<>	Enter> key.	
• ۲	The various print options can be found on page .	305.	
step	Action		
13	Highlight the word Spec_Sheets and then pres	s the <enter> key.</enter>	
14	Highlight the word Operations and then press	the <enter> key.</enter>	
15	Highlight the word BagHouse and then press t	he < Enter> key.	
	Pressing the <f10> key to get the Main Mem</f10>	u off of the screen in order to see the data on the	
	screen underneath it.		
10 7////////////////////////////////////	Press the <fiu> key;</fiu>		
	The screen will then appear as seen below. Us	se the <page up=""> and <page down=""> keys to</page></page>	
	scroll the screen text up and down.		
= HYS	SIM BAGHOUSE FABRIC FILTER SPECIE	FICATION SHEET	
Case	Name:	Date 96/10/04 Time 14:29:47	
Opera	ation Name: BagHouse		
opera	ation Note:		
	Stream Operation	Flowrate	
Inl	let: Feed from	2956.2166 kg/h	
Soli	de SolideOut to	100.0000 kgmole/h 99.5600 kg/h	
		0.9956 kqmole/h	
Vapc	our: VaporOut to	2856.6567 kg/h	
		99.0044 kgmole/h	
	Inlet Properties	Baghouse Sizing Parameters	
Tempe	erature 25 0000 C	Cells in Use 2 0000	
Press	sure 101.0000 kPa	Bags / Cell 78.0000	
Mass	Frac Vap 0.9662	Spacing 0.0200 m	
Mass Densi	Frac Solid 0.0338	Floor Area 28,3842 m2	
Spec	Grav 0.0012 SG_H2060		
Mol W	Neight 29.5622	Bag Information	
	Napour Outlot Proportion	Diameter 0.3000 m	
		AICA 1.4000 m2	
Densi	ty 1.1530 kg/m3	Pressure Drop	
Molu	Jeight 28 0520	Overall 2.0000 kPa	
Z Fac	tor	Crean bay 0.2400 Kra	
		Gas Velocity 0.0050 m/s	
Solids Outlet Properties			
Densi	ty 2995.5000 kg/m3		
Densi Spec	ty 2995.5000 kg/m3 Grav 3.0015 SG_H2060ap		

NOTES :

Step	Action
47	Press the <f10> key;</f10>
48	Highlight the letters PFD and then press the <enter> key.</enter>
	The following screen will then appear:

Step	Action			
49	Press the <esc></esc> key;			
50	Do you want to continue adding other unit operations to this bag house filter?			
	• If <u>Yes</u> , turn to the pertinent section of this manual now;			
	 If No, turn to the "Exiting HYSIM" Section of this manual. 			

3.7.5 Rotary-Vacuum Filter Solids Separator

<u>Objective</u> - This exercise is an example of a Rotary-Vacuum Filter Solid Separation calculation. The purpose of the Rotary-Vacuum Filter operation is to separate solids from a liquid feed stream. This example can be modified by specifying another property package and/or other components, compositions and feed conditions.

In this example, the feed stream consists of water and solid carbon. The rotary vacuum filter is used to separate the water and the solid carbon, into a liquid and solids stream. <u>Technical Reference Example</u>: Reference 1 - HYSIM User's Guide, pages 7-119 to 7-120. Reference 2 - HYSIM Special Features and Applications Guide, pages 2-20 to 2-25.

Other References: Refs. 1 and 2.

Directions - Pages 309 through 316 outline the execution of a Rotary-Vacuum Filter example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <> brackets (e.g.<Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called *RotaryVac*, is shown below:

3.7.5 Rotary-Vacuum Filter Solids Separator (continued)

Step	Action				
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).				
	• If <u>Yes</u> , proceed with Step 2.				
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures				
	before proceeding to Step 2.				
	Starting with a new case.				
2	Highlight the word No and then press the <enter> key;</enter>				
	Selecting a Property Package				
3	Highlight the word Peng_Robinson and then press the <enter> key;</enter>				
	The following screen will appear:				

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	C1	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	C3	Propane	СЗН8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H2O	PHENOL
	C10	n-Decane	C10H22	ETHER
	C11	n-Cll	C11H24	USER
	C12	n-C12	C12H26	
· · - ·	┷━━+━━	Search by SYNONYM		
F1 - Help,	F3 - Menu, F4	- Flip Srch, F5 - Exa	am, F6 - Mo	ve, F8 - Change
	PR	ESS INSERT TO SUBMIT		

Step	Action		
	Selecting the components in the feed stream.		
4	Highlight the following component name under the "Component Selection" Section and press		
	the <i><enter></enter></i> key so that the name then appears in the "Selected" column. This "Component		
	Selection" List is very long. Use the <page down=""> and Arrow Keys to find the following</page>		
	component.		
	Highlight the formula H2O and then press the <enter> key;</enter>		
	The screen on the following page will then appear.		

	COI	MPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
H20	H2	Hydrogen	H2	ALL
	He	Helium	Не	HC
	Neon	Neon	Ne	SOLID
	Argon	Argon	Ar	MISC
	Krypton	Krypton	Kr	AMINE
	Xenon	Xenon	Хе	ALCOHOL
	N2	Nitrogen	N2	KETONE
	02	Oxygen	02	ALDEHYDE
	Ozone	Ozone	03	ESTER
	C12	C12	C12	CARBACID
	HCl	HCl	HCl	HALOGEN
	F2	F2	F2	NITRILE
	HF	HF	HF	PHENOL
	Br2	Bromine	Br2	ETHER
	HBr	HBr	HBr	USER
	12	Iodine	I2	
¥ ↓	▼ _ ↓Sea	rch by SYNONYM		
F1 - Help, H	73 - Menu, F4 - F1	lip Srch, F5 - Exa	.m, F6 -	Move,
	PRESS	INSERT TO SUBMIT	F8 - C	hange

3.7.5	Rotary-Vacuum	Filter	Solids Separator	(continued)
01110	acuum		Source Schuldton	(commucu)

Step	Action
	Specifying the solid component of the feed stream.
5	Highlight the word SOLID under the "Criteria" column heading and then press the <enter></enter>
	key;
	The following screen will then appear:

r	COMPON	NT SELECTION				
Selected	Synonym	Name	Formula	Criteria		
Н2О	HYPOTHETICAL Sulphur_Rhombic Sulphur_Monoclinic Sulphur_Amorphous Carbon S_Rhombic S_Monoclinic S_Amorphous Sulfur Brimstone Colloidal_Sulfur Flowers_of_Sulfur Precipitated_Sulfur	HYPOTHETICAL S_Rhombic S_Monoclinic S_Amorphous Carbon S_Rhombic S_Amorphous S_Rhombic S_Rhombic S_Rhombic S_Rhombic S_Rhombic S_Rhombic	S S C S S S S S S S	ALL HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL ETHER USER		
→ → → → → Search by SYNONYM→ → → → Search by SYNONYM→ → → → → Search by SYNONYM→ → → → → → → → → → → → → → → → → → →						
Step	Action					
------	---	---	---	---------------------------------------	--	--
6	Highlight the word Carbon under the "COMPONENT SELECTION" Column and then press					
	the <enter> key</enter>	/;				
	The following s	creen will then appear:				
	Selected	COMPON Synonym	ENT SELECTION Name	Formula	Criteria	
		▲ — ↑				
	H2O Carbon	HYPOTHETICAL Sulphur_Rhombic Sulphur_Monoclinic Sulphur_Amorphous S_Rhombic S_Monoclinic S_Amorphous Sulfur Brimstone Colloidal_Sulfur Flowers_of_Sulfur Precipitated_Sulfur	HYPOTHETICAL S_Rhombic S_Monoclinic S_Amorphous S_Rhombic S_Amorphous S_Rhombic S_Rhombic S_Rhombic S_Rhombic S_Rhombic	S S S S S S S S S S S S S S S S S S S	ALL HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL ETHER USER	
	F1 - Help, F3 - Menu, F4 - Flip Srch, F5 - Exam, F6 - Move, PRESS INSERT TO SUBMIT F8 - Change					

Step	Action
7	Press the <insert> key;</insert>

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action				
	Specifying the conditions of the Feed stream.				
8	Highlight the word Specify and then press the <enter> key;</enter>				
9	Highlight the word Stream and then press the <enter> key;</enter>				
10	Type the word Feed after the prompt (>) and then press the <enter> key;</enter>				
	Specifying the Feed temperature in ${\mathfrak C}$.				
11	Type the number 25 after the prompt (>) and then press the <enter> key;</enter>				
	Specifying the pressure of the Feed in kilopascals (kPa).				
12	Type the number 101 after the prompt (>) and then press the <enter> key;</enter>				
	Specifying the flow of the Feed stream in kg-mols hour.				
13	Type the number 100 after the prompt (>) and then press the <enter> key;</enter>				
	Specifying that the composition of each component in the Feed stream will be specified in mole				
	fractions.				
14	Highlight the word Mole_Fractions after the prompt (>) and then press the <enter> key;</enter>				
	The screen will appear as shown below:				
[Stream Mole Fractions				

H2O

Carbon

Step	Action
	Specifying the mole-fractions of the components in the Feed stream.
15	Enter the following mole fractions beside each component in the Feed stream:
	After the formula, H2O, type the number 0.75 in the blank and then press the <enter> key;</enter>
	After the word, Carbon, type the number 0.25 in the blank;
	The screen will now appear as shown below:

		Stream	Mole	Fractions	
Н20	0.75		C	Carbon	0.25

Step	Action
16	Press the <insert> key;</insert>
17	Highlight the word Operation and then press the <enter> key;</enter>
18	Type the word RotaryVac and then press the < Enter > key;
19	Highlight the word Solid_Separator and then press the <enter> key;</enter>
	The screen will then appear as shown below:

	Solids Separation
Operation Name:	RotaryVac Vapour:
Inlet :	=> \
Type of Separator :	Cyclone Solids:

Step	Action
	Specifying the names of the streams entering and leaving the Rotary-Vacuum Filter Solids
	Separator.
20	Type the word Feed and then press the <enter> key;</enter>
21	Press the <enter> key;</enter>
22	Type the word LiquidOut and then press the <enter> key;</enter>
23	Type the word SolidsOut and then press the <enter> key.</enter>
	Specifying that the solids separator will be a Rotary-Vacuum Filter type.
24	Press the <delete> key until the word Cyclone is deleted; then press the <f2> key. Highlight</f2></delete>
	the word Rotary_Filter;
25	Press the <enter></enter> key;
	The screen will then appear as shown on the next page.

Solids Separation - Rotary Vacuum Filter Operation Name: RotaryVac____ Operation ParameterFiPressure Drop:10.00 kPaCycle Time:300 00 secondsWDewatering:45 00 % of CycleSubmergence% of CycleSolid Mass Frac. of final Cake: Filter Size Radius ____ m Width : ____ m Cake Properties Thickness :0.0500 mIrreducible Sat: 0.33Porosity :40.00 %Permeability :_____ m3/s2 Filtration Resistance: 5.0000e+09 m/kg OR ____ S Filtration Resistance $(m/kg) = \alpha + \Delta P$ OP = Pressure Drop Across Cake (kPa_____) a = Cake Resistance Constant : s = Cake Compressibility Factor:

Step	Action
26	Press the <insert> key,</insert>
27	Highlight the word Worksheet and then press the <enter> key,</enter>
28	Highlight the blank space under the "LiquidOut" stream column heading and the "Flow" row heading and type the following flow rate in kg-mols/hr. Type the number 75 and then press the <enter> key</enter>
	The following screen will then appear
	New Value = kgmole/h

	New Valu	1e =	kgmole/h		
Stream	Feed	LiquidOut	SoliðsÖut		
Vapour_Frac	0.0000	0.0000	0.0000		
Temperature	25.0000*	25.0000	25.0000		
Pressure	101.0000*	91.0000	91.0000		
Flow	100.0000*	75.0000*	25.0000		
Mass_Flow	1651,4026	1351.1326	300.2700	~~-	
LigVol_Flow	1.5367	1.3539	0,1829		
Energy_Flow	-2.56188E+06	-2.58812E+06	26225.2350		

Step	Action
29	Piess the <esc> key</esc>
	Printing Results from the Rotary Vacuum Filter HYSIM run
30	Highlight the word Print and then press the <enter> key</enter>

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) *Operations* - The different unit operations will be printed out.

c) <u>Spec_Sheets</u> - the specifications sheets will be printed out.

d) *Hypotheticals* - Hypothetical component information will be printed out.

e) *Format* - Specifies the format of the printout.

f) <u>Cost</u> - Lists costs of the run, if a royalty is being charged.

g) File - Saves results in a file.

h) Printer - Toggles on a printer.

i) <u>Cases</u> - Lists the stored files.

j) *Description* - Prints case description

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action			
31	Highlight the word Streams and then press the <enter> key.</enter>			
32	Highlight the word All and then press the <enter> key.</enter>			
33	Highlight the dash symbol - and then press the <enter> key.</enter>			
	Wait for the printing to the screen to stop. Then, press the <f10> key to get the Main Menu</f10>			
	off of the screen in order to see the data on the screen underneath it.			
34	Press the <f10> key;</f10>			
	The screen will then appear as shown below. Use the <page up=""> and <page down=""> keys to</page></page>			
	scroll the screen text up and down.			

Stream		Feed	LiquidOut	SolidsOut
Vapour frac		0.0000	0.0000	0.000
Temperature	С	25.0000*	25.0000	25.0000
Pressure	kPa	101.0000*	91.0000	91.0000
Molar Flow	kqmole/h	100.0000*	75.0000*	25.0000
Mass Flow	kq/h	1651.4026	1351.1326	300.2700
LiqVol Flow	m3/h	1.5367	1.3539	0.1829
Enthalpy	kJ/h	-2.56188E+06 -2	2.58812E+06	26225.2350
Density	kg/m3	1083.5153	1007.3623	1642.0600
Mole Wt.	2	16.5140	18.0151	12.0108
Spec. Heat	kJ/kg-C	3.6573	4.3135	0.7050
Therm Cond	W/m-K		0.6110	
Viscosity	сP		0.8904	
Z Factor		~ - ~	0.0007	0.0003
Sur Tension	dyne/cm	72.0995	72.0995	
Std Density	kg/m3	1090.5804	1014.8360	1642.0601
H2O	mole frac.	0.7500*	1.0000	0.0000
Carbon	mole frac.	0.2500*	0.0000	1.0000

Step	Action			
35	Press the <f10> key;</f10>			
36	Highlight the word Print and then press the <enter> key.</enter>			
	The various print options can be found on page 314.			
Step	Action			
37	Highlight the word Spec_Sheets and then press the <enter> key.</enter>			
38	Highlight the word Operations and then press the <enter> key</enter>			
39	Highlight the word RotaryVac and then press the <enter> key.</enter>			
	Pressing the <f10> key to get the Main Menu off of the screen in order to see the data on the</f10>			
	screen underneath it.			
40	Press the <f10></f10> key;			
	The screen will then appear as shown below. Use the <page up=""> and <page down=""> keys to</page></page>			
	scroll the screen text up and down.			

3.7.5 Rotary-Vacuum Filter Solids Separator (continued)

HYSIM ROTARY VACUUM FILTER SPECIFICATION SHEET HYSIM Version C2.53 Case Name:

Operation Name: RotaryVac Operation Note:

-				 	
	Stream	Op	eration	Flowrate	
Inlet:	Feed	from	** *** ***	 1651.4026	kg/h
				100.0000	kgmole/h
Solids:	SolidsOut	to		 300.2700	kg/h
				25.0000	kgmole/h
Vapour:	LiquidOut	to		 1351.1326	kg/h
				75.0000	kgmole/h

Inlet Properties at Operating Conds	Filter Cake Properties		
Temperature25.0000 CPressure101.0000 kPaMass Frac Vap0.0000Mass Frac Solid0.1818Density1083.5154 kg/m3	Thickness 0.0500 m Porosity 40.00 % Solids Mass Fraction 1.00		
Spec Grav 1.0857 SG_H2060 Mol Weight 16.5140	Permeability 2.029E-13 m3/s2 Cake Resistance		
Liquid Outlet Properties	Actual 5.000E+09 m/kg Compressibility Factor		
Density 1007.3622 kg/m3 Spec Grav 1.0094 SG_H2O60 Mol Weight 18 0151	Rotary Filter Operating Parameters		
Surface Ten 72.0995 dyne/cm Viscosity 0.8904 cP	Pressure Drop 10.0000 kPa Cycle Time 300.0000 second		
Solids Outlet Properties	Submergence f		
Density 1642.0601 kg/m3 Specific gr 1.6454 SG_H2060ap Mol weight 12.0108	Width m		

NOTES :

Date

Time 15:22:37

Step	Action
41	Press the <f10> key;</f10>
42	Highlight the letters PFD and then press the < Enter > key.
	The following screen will then appear:

Step	Action			
43	Press the <esc> key;</esc>			
44	Do you want to continue adding other unit operations to this rotary-vacuum filter?			
	• If Yes, turn to the pertinent section of this manual now,			
	 If No, turn to the "Exiting HYSIM" Section of this manual. 			

3.7.6 Hydrocyclone Solids Separator

<u>Objective</u> - This exercise is an example of a Hydrocyclone Solid Separation calculation. The purpose of the Hydrocyclone operation is to separate solids from a liquid feed stream. This example can be modified by specifying another property package and/or other components, compositions and feed conditions.

In this example, the feed stream consists of water and solid catalyst, and the hydrocyclone has a 95% efficiency in separating the solid catalyst from the water in the feed stream.

<u>Technical Reference Example</u>: Reference 1 - HYSIM User's Guide, page 7-120. Reference 2 - HYSIM Special Features and Applications Guide, pages 2-20 to 2-25. <u>Other References</u>: Refs 1 and 2.

Directions - Pages 318 through 330 outline the execution of a Hydrocyclone example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <> brackets (e.g. <Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called <u>Hydrocyclone</u>, is shown below:

Step	Action					
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).					
	• If <u>Yes</u> , proceed with Step 2.					
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures					
	before proceeding to Step 2.					
	Starting with a new case.					
2	Highlight the word No and then press the <enter> key;</enter>					
	Selecting a Property Package					
3	Highlight the word Peng_Robinson and then press the <enter> key;</enter>					
	The following screen will appear:					

		COMPONENT SELECTION			
Selected	Synonym	Name	Formula	Criteria	
	OIL	OIL		ALL	
	HYPOTHETICAL	HYPOTHETICAL		HC	
	Cl	Methane	CH4	SOLID	
	C2	Echane	C2H6	MISC	
	C3	Propane	СЗН8	AMINE	
	i-C4	i-Butane	C4H10	ALCOHOL	
	n-C4	n-Butane	C4H10	KETONE	
	i-C5	i-Pentane	C5H12	ALDEHYDE	
	n-C5	n-Pentane	C5H12	ESTER	
	C6	n-Hexane	C6H14	CARBACID	
	C7	n-Heptane	C7H16	HALOGEN	
	C8	n-Octane	C8H18	NITRILE	
	C9	n-Nonane	C9H20	PHENOL	
	C10	n-Decane	C10H22	ETHER	
	C11	n-Cll	C11H24	USER	
	C12	n-C12	C12H26		
▼ - ↓	└─── ♥ ~ ↓ ───	Search by SYNONYM			
Fl - Help,	F3 - Menu, F4	- Flip Srch, F5 - Exa	am, F6 - Mov	ve, F8 - Change	
	PR.	ESS INSERT TO SUBMIT			

Step	Action			
	Selecting the component in the feed stream.			
4	Highlight the following component chemical formula under the "Component Selection"			
	Section and press the <i><enter></enter></i> key so that the formula then appears in the "Selected" column.			
	This "Component Selection" List is very long. Use the <page down=""> and Arrow Keys to find</page>			
	the following component:			
	Highlight the formula H2O and then press the <enter> key;</enter>			
	The screen on the following page will then appear.			

3.7 Separators (continued)

COMPONENT SELECTION					
Selected	Synonym	Name	Formula	Criteria	
H2O	1-C18# 1-C19# 1-C20# NH3 Deuterium-eq H2 He Neon Argon Krypton Xenon N2 O2 Ozone C12 HC1	1-Octadecyne 1-Nonadecyn 1-Eicosyne Ammonia Deuterium-eq Hydrogen Helium Neon Argon Krypton Xenon Nitrogen Ozone Cl2 HC1 rch by SYNONYM	C18H34 C19H36 C10H38 NH3 D2 H2 He Ne Ar Kr Xe N2 O2 O3 C12 HC1	ALL HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL ETHER USER	
F1 - Help,	F3 - Menu, F4 - F1 PRESS	Lip Srch, F5 - Exa INSERT TO SUBMIT	ım, F6 - F8 -	Move, Change	
Step		Action			
Specifvir	ng the solid component of the	feed stream			
s Highigh key;			nd then press	the <enter></enter>	
Ine joint	wing screen will then appear	MONIENT SELECTION			
Selected	Synonym	Name	Formula	Criteria	
H2O	HYPOTHETICAL Sulphur_Rhombic Sulphur_Monoclin Sulphur_Amorphou Carbon S_Rhombic S_Monoclinic S_Monoclinic Sulfur Brimstone Colloidal_Sulfur Flowers_of_Sulfu Precipitated_Sul	HYPOTHETICAL S_Rhombic ic S_Monoclinic s S_Amorphous Carbon S_Rhombic S_Monoclinic S_Amorphous S_Rhombic S_Rhombic r S_Rhombic fur S_Rhombic		ALL HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL ETHER USER	
Fl - Help, F3 - Menu, F4 - Flip Srch, F5 - Exam, F6 - Move, PRESS INSERT TO SUBMIT F8 - Change					

Step	Action		
6	Highlight the word Hypothetical under the "COMPONENT SELECTION" Column and then		
	press the <enter></enter> key;		
	The following screen will then appear:		

HC	Solid	Misc	Amine
Alcohol Ketone .		Aldehyde	Ester
CarbAcid Halogen		Nitrile	Phenol
Ether			
HC HC-HC interacti	ion parameters will	be calculated an	d assigned
What is the compone	ent type?		-
>			

Step	Action
7	Highlight the word Solid and then press the <enter> key;</enter>
	The following screen will then appear:

 Solid Hypothetical Compor	nent Information
Name: Chemical	Formula:
Solid Density [kg/m3_]: Molecular Weight : Average Diameter [mm]: Sphericity : Area/Unit Volume [m2/m3_]:	Coal Analysis Carbon: % Hydrogen: % Nitrogen: % Oxygen: %
<pre>Specific Heat Coefficents (Mass Basis - solid @ 25 C) Cp = kJ/kg-K</pre>	Chlorine: % Heat of Formation and Combustion (Molar Basis - Ideal gas @ 25 C) Heat Formation : Heat Combustion:
Vapour Pressure [deg K, kPa] ANTA: ANTD: ANTB: ANTE: ANTC: ANTF: TMIN: TMAX:	Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs =kJ/kgmol +* T +* T^2

Step	Action
8	Type the word Catalyst and then press the <enter> key two times;</enter>
	Specifying the Solid Density of the Catalyst in kilograms per cubic meter (kg/m ³⁾ .
9	Type the number 2995.5 and then press the <enter> key;</enter>

Step	Action			
	Specifying the Molecular Weight of the Catalyst.			
10	Type the number 100 and then press the <enter> key;</enter>			
	Specifying the Average Diameter of the Catalyst Particle in millimeters (mm).			
11	Type the number 0.06 and then press the <enter> key;</enter>			
	Specifying the Sphericity of the Catalyst Particle.			
12	Type the number 0.9;			
	The following screen will then appear:			

Solid Hypothetical Compor	nent Information ————————————————————————————————————
Name: Catalyst Chemical	Formula:
Solid Density [kg/m3_]: 2995.5 Molecular Weight : 100 Average Diameter [mm]: 0.06_ Sphericity : 0.9_ Area/Unit Volume [m2/m3_]: Specific Heat Coefficents (Mass Basis - solid @ 25 C) Cp = kJ/kg-K_ + * T^2 + * T^3 + * T^4	Coal Analysis Carbon: % Hydrogen: % Nitrogen: % Oxygen: % Sulphur: % Chlorine: % Heat of Formation and Combustion (Molar Basis - Ideal gas @ 25 C) Heat Formation : Heat Combustion:
Vapour Pressure [deg K, kPa] ANTA: ANTD: ANTB: ANTE: ANTC: ANTF: TMIN: TMAX:	Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs =

Step	Action
13	Press the <insert> key;</insert>
	The screen will then appear as shown on the following page.

Are The Component Calculations Satis Name: Catalyst Chemical	ent Information factory: Yes Formula: Catalyst
Solid Density [kg/m3_]: 2995.500 Molecular Weight : 100.000 Average Diameter [mm]:6.0000e-02 Sphericity : 0.90000 Area/Unit Volume [m2/m3_]: 1.67e+04 Specific Heat Coefficents (Mass Basis - solid @ 25 C) Cp = -3.0217652e+00 kJ/kg-K_ + 6.0891764e-03 * T + -2.6071865e-06 * T^2 + 0.0000000e+00 * T^3 + 0.0000000e+00 * T^4	Coal Analysis Carbon: 0.0000 % Hydrogen: 0.0000 % Nitrogen: 0.0000 % Oxygen: 0.0000 % Sulphur: 0.0000 % Chlorine: 0.0000 % Heat of Formation and Combustion (Molar Basis - Ideal gas @ 25 C) Heat Formation : Heat Combustion:
Vapour Pressure [deg K, kPa] ANTA: 1.00000e+00 ANTD: 0.00000e+00 ANTB: 0.00000e+00 ANTE: 0.00000e+00 ANTC: 0.00000e+00 ANTF: 0.00000e+00 ANTC: 0.00000e+00 ANTF: 0.00000e+00 TMIN: TMAX:	Ideal Gas Gibbs Free Energy (Molar Basis - Ideal gas @ 25 C) Gibbs =kJ/kgmol +* T +* T^2

Step	Action
14	Press the <insert> key;</insert>
	The following screen will then appear:

	COMPON	COMPONENT SELECTION				
Selected	Synonym	Name	Formula	Criteria		
H2O Catalyst	HYPOTHETICAL Sulphur_Rhombic Sulphur_Monoclinic Sulphur_Amorphous Carbon S_Rhombic S_Monoclinic S_Morphous Sulfur Brimstone Colloidal_Sulfur Flowers_of_Sulfur Precipitated_Sulfur	HYPOTHETICAL S_Rhombic S_Monoclinic S_Amorphous Carbon S_Rhombic S_Monoclinic S_Amorphous S_Rhombic S_Rhombic S_Rhombic S_Rhombic S_Rhombic S_Rhombic	S S S S S S S S S S S S S S S S S S S	ALL HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL ETHER USER		
Fl - Help,	└── ▼ ─ ↓ ──Search F3 - Menu, F4 - Flip PRESS INS	by SYNONYM	am, F6 - F8 -	Move, Change		

Step	Action			
15	Press the <insert> key;</insert>			
NOTE:	NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the			
compone	component selections. This is helpful in assessing component selections.			
Step	Action			
	Specifying the conditions of the Feed stream.			
16	Highlight the word Specify and then press the <enter> key;</enter>			
17	Highlight the word Stream and then press the <enter> key,</enter>			
18	Type the word Feed after the prompt (>) and then press the <enter> key;</enter>			
	Specifying the Feed temperature in \mathbb{C} .			
19	Type the number 25 after the prompt (>) and then press the <enter> key;</enter>			
	Specifying the pressure of the Feed in kilopascals (kPa).			
20	Type the number 101 after the prompt (>) and then press the <enter> key;</enter>			
	Specifying the flow of the Feed stream in kg-mols/hour.			
21	Type the number 100 after the prompt (>) and then press the <enter> key;</enter>			
	Specifying that the composition of each component in the Feed stream will be specified in mole			
	fractions.			
22	Highlight the word Mole_Fractions after the prompt (>) and then press the <enter> key;</enter>			
	The screen will appear as shown below:			

	Stream	1 Mole	Fractions	
H2O		(Catalyst	

Step	Action		
	Entering the mole-fractions of the components in the Feed stream.		
23	Enter the following mole fractions beside each component in the Feed stream		
	After the formula, H2O, type the number 0.95 in the blank and then press the <enter> key;</enter>		
	After the word, Catalyst, type the number 0.05 in the blank;		
	The screen will now appear as shown below:		

_____ Stream Mole Fractions _____

H2O

0.95_____

Catalyst

0.05____

Step	Action
24	Press the <insert> key;</insert>
25	Highlight the word Operation and then press the <enter> key;</enter>
26	Type the word Hydrocyclone and then press the < Enter > key;
27	Highlight the word Solid Separator and then press the <enter> key;</enter>
	The screen will then appear as shown on the following page

Step	Action	
	Specifying the names of the streams entering and leaving the Hydrocyclone.	
28	Type the word Feed and then press the <enter> key,</enter>	
29	Press the <enter></enter> key;	
30	Type the word LiquidOut and then press the <enter> key;</enter>	
31	Type the word SolidsOut and then press the <enter> key</enter>	
32	Press the $\langle Delete \rangle$ key until the word "Cyclone" is deleted and then press the $\langle F2 \rangle$ key.	
	Highlight the word Hydrocyclone and then press the <enter> key</enter>	
	The following screen will then appear:	

Solide Senara	- + c	ion - Hydrocyclone
Solids Separa	10	ion - nydrocycrone
Operation Name Configuration	:	Hydrocyclone MODE1
Objective Efficiency Solid Name -or-	:	€ / / / / / / / / / / / / / / / /
Particle Diameter Particle Density	:	mm \\// kg/m3 \►
Maximum Diameter Minimum Diameter Maximum Pressure Drop	: : :	1.00 m 0.10 m 60.00 kPa

Step	Action
	Specifying the Configuration for the Hydrocyclone. The configuration can either be Model or
	Mode2. We will leave it in the HYSIM default mode of Mode1.
33	Press the <enter> key</enter>
	Specifying the Hydrocyclone efficiency in percentage (%).
34	Type the number 95 and then press the <enter> key.</enter>
	Specifying the name of the solid that will be separated by the Hydrocyclone.
35	Type the word Catalyst and then press the <enter> key;</enter>
	The screen will then appear as shown on the following page.

Solids Separa	ation - Hydrocyclone	٦
Operation Name Configuration	: Hydrocyclone	
Objective Efficiency Solid Name -or- Particle Diameter Particle Density	: 95% : Catalyst : mm : kg/m3	
Maximum Diameter Minimum Diameter Maximum Pressure Drop	: 1.00 m : 0.10 m : 60.00 kPa	

Step	Action
36	Press the <insert> key;</insert>
	The following screen defining the dimensional sizing ratios of the Hydrocyclone will then
	appear:

Solids Separation - Hydrocycl	one Sizing Ratios		
	one offing matron		
Operation Name : Hydrocyclone	Overflow Length :0.4000		
Configuration : MODE1	Overflow Diameter :0.1250		
Inlet Diameter : 0.1430	Total Height :4.0000		
Included Angle : 9.0000 ° \ 🗮 / Underflow Diameter: 0.1000			
Cyclone Body Diameter (Length): m			
Note: Sizing Ratios are relative to the Cyclone Body Diameter.			

Step	Action
37	Press the <insert> key.</insert>
	Printing Results from the Hydrocyclone HYSIM run.
38	Highlight the word Print and then press the <enter> key</enter>

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) **Operations** - The different unit operations will be printed out.

c) Spec_Sheets - The specifications sheets will be printed out.

d) *Hypotheticals* - Hypothetical component information will be printed out.

e) *Format* - Specifies the format of the printout.

f) Cost - Lists costs of the run, if a royalty is being charged.

g) File - Saves results in a file.

h) Printer - Toggles on a printer.

i) Cases - Lists the stored files.

j) *Description* - Prints case description

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action		
39	Highlight the word Streams and then press the <enter> key.</enter>		
40	Highlight the word All and then press the <enter> key.</enter>		
41	Highlight the dash symbol - and then press the <enter> key</enter>		
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the main menu		
	off of the screen in order to see the data on the screen underneath it.		
42	Press the $\langle F10 \rangle$ key;		
	The screen will then appear as seen below. Use the $\langle Page Up \rangle$ and $\langle Page Down \rangle$ keys to		
	scroll the screen text up and down.		

Stream		Feed	LiquidOut	SolidsOut
Vapour frac		0 0000	0 0000	0 0000
Temperature	С	25 0000*	25 0000	25 0000
Dressure	k Da	101 0000*	98 7904	98 7904
Molar Flow	komole/h	100.0000*	63 6156	36 3844
Magg Flow	kg/h	2211 4346	1166 5296	1044 8450
riass riuw	KY/II	2211.4340	1 1500	1044.0400
PIGAOT LTOM	m3/n	T.8818	1.1522	0.1296
Enthalpy	kJ/h	-4.05726E+06	-2.22566E+06	-1.83160E+06
Density	kq/m3	1185.2228	1021.9364	1442.5752
Mole Wt.	2.	22.1143	18.3381	28.7169
Spec. Heat	kJ/kg-C	3.0131	4.1899	1.6991
Therm Cond	W/m-K			
Viscosity	сР			
Z Factor				
Sur Tension	dyne/cm	72.0995	72.0995	72.0995
Std Density	kg/m3	1193.2210	1029.4599	1450.9188
H2O	mole frac.	0.9500*	0.9961	0.8695
Catalyst	mole frac.	0.0500*	0.0039	0.1305

3.7 Separators (continued)

3.7.6 Hydrocyclone Solids Separator (continued)

Step	Action
43	Press the <f10> key;</f10>
44	Highlight the word Print and then press the <enter> key.</enter>

The various print options can be found on page 326.

Step	Action
45	Highlight the word Spec_Sheets and then press the <enter> key.</enter>
46	Highlight the word Operations and then press the <enter> key.</enter>
47	Highlight the word Hydrocyclone and then press the <enter> key.</enter>
	Pressing the <f10> key to get the Main Menu off of the screen in order to see the data on the</f10>
	screen underneath it.
48	Press the $\langle F10 \rangle$ key;
	The screen will then appear as seen on the following page. Use the $\langle Page Up \rangle$ and $\langle Page$
	Down > keys to scroll the screen text up and down.

HYSIM HYDROCYCLONE SPECIFICATION SHE HYSIM Version C2.53 Case Name: Operation Name: Hydrocyclone Operation Note:	Date 96/10/10 Time 8:47:11
Stream Operati Inlet: Feed from Solids: SolidsOut to Liquid: LiquidOut to	on Flowrate 2211.4346 kg/h 100.0000 kgmole/h 1044.8450 kg/h 36.3844 kgmole/h 1166.5896 kg/h 63.6156 kgmole/h
Inlet Properties at Operating Conds	Objective Sizing Parameters
Temperature 25.0000 C Pressure 101.0000 kPa Mass Frac Vap 0.0000 Mass Frac Solid 0.2261 Density 1185 2228 kg/m3	Efficiency 95.0000 % Diameter 5.999B-05 m Density 2995.5000 kg/m3
Spec Grav 1.1876 SG_H2060	Cyclone Sizing Parameters
Liquid Outlet Properties	Configuration MODE1
Density 1021.9364 kg/m3 Spec Grav 1.0240 SG_H2060 Mol Weight 18.34 Surface Ten dyne/cm Viscosity cP	Diameter 0.2382 m Height 0.9528 m Cyclones in Parallel 1.0 Inlet Duct Diameter 0.0341 m
Solids Outlet Properties	Overflow Height 0.0953 m
Density 1442.5752 kg/m3 Spec Grav 1.4455 SG_H2060 Mol Weight 28.72	Diameter 0.0298 m Underflow
Solids Outlet Efficiencies	Included Angle 9.0000 Degrees
Solid1 Catalyst 94.99 % Solid2 % Solid3 % Solid4 % Solid5 % Solid6 % Overall Efficiency 94.99 % NOTES :	

Step	Action
49	Press the <f10> key;</f10>
50	Highlight the letters PFD and then press the < Enter > key.
	The following screen will then appear:

Step	Action
	Getting back to the Main Menu.
51	Press the <esc> key until you reach the Main Menu.</esc>
	Sizing the Hydrocyclone.
52	Highlight the word Size and then press the <enter> key;</enter>
53	Highlight the word Solid_Separator and then press the <enter> key;</enter>
54	Highlight the word Hydrocyclone and then press the <enter> key;</enter>
	Pressing the <f10> key to get the Main Menu off of the screen in order to see the data on the</f10>
	screen underneath it.
55	Press the $\langle F10 \rangle$ key;
	The screen will then appear as seen on the following page. Use the $<$ Page Up $>$ and $<$ Page
	Down > keys to scroll the screen text up and down.

Hydrocyclone Sizing	
Operation Name	Hydrocyclone
Configuration	MODE 1
Diameter Included Angle Total Height Cyclones In Parallel	0.2390 m 9.0000 Degrees 0.9561 m 1.0000 +
Pressure Drop	2.1822 kPa
Inlets and Outlets	```````````````````````````````````````
Inlet Diameter Overflow : Height Diameter Underflow : Diameter	0.0342 m 0.0956 m 0.0299 m 0.0239 m
Objective Sizing Parameters	
Efficiency Particle Diameter Particle Density	95.0000 % 5.999E-05 m 2995.5000 kg/m3
Achieved Solids Separation Efficiencies	
Catalyst	94.7309 %
Note: Changes done in this utility will actual operation.	not appear in the

Step	Action
56	Press the <f10> key;</f10>
57	Highlight the word Quit and then press the <enter> key;</enter>
58	Do you want to continue adding other unit operations to this Hydrocyclone?
	• If <u>Yes</u> , turn to the pertinent section of this manual now;
	• If No, turn to the "Exiting HYSIM" Section of this manual.

3.7.7 Simple Solids Separator

<u>Objective</u> - This exercise is an example of a simple separator calculation. The purpose of the simple separator unit operation is to separate the liquid and vapor into two streams from a single feed stream, and to divide the solids in the feed stream between the outlet liquid and vapor streams. The fraction of solids in the outlet streams and the fraction of liquids in the solid product must be known by the user, (use only for an existing operation) and must be specified to the HYSIM program. The user must first verify that the solid material balances over the inlet and outlet streams. This example can be modified by specifying another property package and/or other components, compositions and feed conditions.

In this example, the feed stream contains ten different hydrocarbons and one solid, brimstone or rhombic sulfur (S_Rhombic). The solid rhombic sulfur is separated from the hydrocarbons in the simple separator with an efficiency of 92.2%.

<u>Technical Example Reference</u>: Reference 1 - HYSIM Interactive Tutorial, Hyprotech's HYSIM User's Guide, Version C2.50, March 1994, pages 3-98 to 3-128. <u>Other References</u>: Refs. 1 & 2.

Directions: Pages 332 through 340 outline the execution of a Simple Separator example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys ($\leftarrow, \rightarrow, \uparrow$, or \downarrow keys) until the required word on the menu changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "escape" key have additionally been placed inside <> brackets (e.g. <Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called <u>SimpSep</u>, is shown below:

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).
	• If <u>Yes</u> , proceed with Step 2
	• If <u>No</u> , turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
3	Highlight the word Peng-Robinson and then press the <enter></enter> key;
	The following screen will appear:

r 		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	C1	Methane	CH4	SOLID .
	C2	Ethane	С2Н6	MISC
	C3	Propane	СЗН8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H20	PHENOL
	C10	n-Decane	C10H22	ETHER
	C11	n-Cll	CllH24	USER
	C12	n-C12	C12H26	
· ♥ ↓	-∔	Search by SYNONYM		1
F1 - Help,	F1 - Help, F3 - Menu, F4 - Flip Srch, F5 - Exam, F6 - Move, F8 - Change PRESS INSERT TO SUBMIT			

Step	Action
	Selecting the components in the feed stream.
4	Highlight each of the following component names under the "Component Selection" Section
	and press the <enter> key so that the name then appears in the "Selected" column, as</enter>
	follows:
	Highlight the word Methane and then press the <enter> key;</enter>
	Highlight the word Ethane and then press the <enter> key;</enter>
	Highlight the word Propane and then press the <enter> key;</enter>
	Highlight the word i-Butane and then press the <enter> key;</enter>
	Highlight the word n-Butane and then press the < Enter > key;
	Highlight the word i-Pentane and then press the <enter> key;</enter>
	Highlight the word n-Pentane and then press the <enter> key</enter>
	Highlight the word n-Hexane and then press the <enter> key;</enter>
	Highlight the word n-Heptane and then press the <enter> key;</enter>
	Highlight the word n-Octane and then press the <enter> key;</enter>
	Highlight the following component name under the "Criteria" Section and press the <enter></enter>
	key so that the "Component Selection" menu will contain solids, as follows:
5	Highlight the word SOLID and then press the <enter> key;</enter>
	Highlight the following component synonym under the "Component Selection" Section and
	press the $\langle Enter \rangle$ key so that the component name, S_Rhombic, then appears in the
	"selected" column, as follows:
6	Highlight the word Brimstone and then press the <enter> key;</enter>
7	Press the <insert> key;</insert>

3.7.7 Simple Solids Separator (continued)

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Changing the units from the HYSIM default metric units (kg. kPa. C,etc.) to field units (lb,
	psia, F,etc.).
8	Highlight the word Utility and then press the <enter> key;</enter>
9	Highlight the word Configuration and then press the <enter> key;</enter>
10	Highlight the word Units and then press the <enter> key;</enter>
11	Highlight the word Field and then press the <enter> key;</enter>
	Getting back to the Main Menu.
12	Press the <esc> key;</esc>
	Specifying the conditions of the Feed stream.
13	Highlight the word Specify and then press the <enter> key;</enter>
14	Highlight the word Stream and then press the <enter> key;</enter>
15	Type the word Feed after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature of the Feed stream in F.
16	Type the number 60 after the prompt (>) and then press the <enter></enter> key;
	Specifying the pressure of the Feed stream in psia.
17	Type the number 600 after the prompt (>) and then press the <enter> key;</enter>

Step		Action	
	Typing the molar flow of the feed in lb-mols/hr.		
18	Type the number 144.0 after the prompt (>) and then press the <enter> key;</enter>		
	Specifying that the composition of each component in the Feed will be specified in mass		
	fractions.		
19	Highlight the word Mass-Fractions	after the prompt (>) and the	en press the <enter> key</enter> ;
	The following screen will appear:		
li	Strea	m Mass Fractions	
		_	
Meth	ane	Ethane	
Prop	ane	i-Butane	
n-Bu	tane	1-Pentane	
n-Pe:	ntane	n-Hexane	
n-He	ptane	n-Octane	
S_Rh	ombic	-	
Step		Action	
20	Enter the following mass fractions l	beside each component in t	he Feed stream:
	After the word, Methane, type the number 0.09 in the blank and then press the <enter> key,</enter>		
	After the word, Ethane, type the number 0.09 in the blank and then press the <enter> key;</enter>		
	After the word, Propane, type the number 0.09 in the blank and then press the <enter> key.</enter>		
	After the word, i-Butane, type the number 0.09 in the blank and then press the <enter> key:</enter>		
	After the word, n-Butane, type the number 0.09 in the blank and then press the <enter> key:</enter>		
	After the word, i-Pentane, type the number 0.09 in the blank and then press the <enter> key.</enter>		
	After the word n-Pentane type the number 0.09 in the blank and then press the <enter> key</enter>		
	After the word, n-Hexane type the number 0.09 in the blank and then press the <fnter> key.</fnter>		
	After the word, n-Hentane, type the number 0.09 in the blank and then press the <enter> key.</enter>		
	After the word, n-Octane, type the n	umber 0.09 in the blank ar	and then press the $\langle Enter \rangle$ key.
	After the word S Bhombic type the	e number 0.10 in the blank:	a then press the summer may,
	The screen will then appear as show	un helow	
	The screen will then uppeur us show		
[Strea	m Mass Fractions]
Moth	2720 0 0 0	Ethono	0.00
Prop	ane 0.09	_ Ethane	0.09
	tane 0.09		0.09
n-Da	ntano 0.09		0.09
n_uo	ntance 0.09	n-nexalle	0.09
0 DH	ombic 0.09	n-octane	0.09
		-	
11			11

Step	Action
21	Press the <lnsert> key;</lnsert>
	Looking at the conditions in the program for the Feed stream.
22	Highlight the word Print and then press the <enter> key;</enter>

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) **Operations** - The different unit operations will be printed out.

c) <u>Spec Sheets</u> - The specifications sheets will be printed out.

d) Hypotheticals - Hypothetical component information will be printed out.

e) Format - Specifies the format of the printout.

f) <u>Cost</u> - Lists costs of the run, if a royalty is being charged.

g) File - Saves results in a file.

h) Print - Toggles on a printer.

i) *Cases* - Lists the stored files.

j) *Description* - Prints case description.

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action
23	Highlight the word Streams and then press the <enter> key;</enter>
24	Highlight the word Conditions and then press the <enter> key;</enter>
25	Highlight the word Feed and then press the <enter> key;</enter>
	The following conditions will then appear on the screen for the Feed stream:

Stream		Feed
Vapour frac		0.1541
Temperature	F	60.0000*
Pressure	psia	600.0000*
Molar Flow	lbmole/hr	144.0000*
Mass Flow	lb/hr	6520.4151
LiqVol Flow	barrel/day	792.8311
Enthalpy	Btu/hr	77443.4267

Step	Action
	Specifying the type of operation we want to perform on the feed stream.
26	Highlight the word Operation and then press the <enter> key;</enter>
	Typing a name for the operation. (We will call it "SimpSep").
27	Type the word SimpSep and then press the <enter> key;</enter>
28	Highlight the word Solid_Separator and then press the <enter> key;</enter>
	The diagram of the separator process will appear as shown on the following page

Step	Action		
	Naming the streams.		
29	Type the word Feed in the blank and then press the <enter> key;</enter>		
30	Type the name Sepvap in the blank and then press the <enter> key;</enter>		
31	Type the name Sepliq in the blank and then press the <enter> key;</enter>		
32	Type the name Sepsol in the blank and then press the <enter> key;</enter>		
33	Press the <f2> key and highlight the name Simple_Sep and then press the <enter> key;</enter></f2>		
	The screen should now appear as follows:		

	Solids Separation	
Operation	Name:SimpSep	
Pressure D	rop :	
Basis	:Mole	
► ►	Fraction Solids In Vapour:	0.0000
	Fraction Solids In Liquid:	0.0000
	Fraction Liquids In Solids:	0.0000

Step	Action
	Specifying the Pressure Drop (psi) in the Simple Separator.
34	Type the number 5 in the blank and then press the <enter> key;</enter>
35	Type the word Mass and then press the <enter> key;</enter>
36	Type the number 0.1 and then press the <enter> key;</enter>
	The screen should now appear as shown on the following page.

	Solids Separation
Operation	Name:SimpSep
Pressure D Basis	rop :5 :Mass
	Fraction Solids In Vapour: 0.1
	Fraction Solids In Liquid: 0.0000
	Fraction Liquids In Solids: 0.0000

Step	Action
	Looking at the conditions of all of the streams.
37	Press the <insert> key,</insert>
38	Highlight the word Print and then press the <enter> key;</enter>

The various print options can be found on page 335

Step	Action
39	Highlight the word Streams and then press the <enter> key,</enter>
40	Highlight the word All and then press the <enter> key;</enter>
41	Highlight the dash symbol - and then press the <enter> key,</enter>
	Pressing the $\langle F10 \rangle$ key to get the Main Menu off of the screen in order to see the data on the
	screen underneath it.
42	Press the <f10> key;</f10>
	The information will now appear as shown on the following page. Use the <page up=""> and</page>
	<page down=""> keys to scroll the screen text up and down.</page>

Stream		Feed	Sepvap	Sepliq	Sepsol
Description				2 1	-
Vapour frac		0.1541	0,9329	0.0030	0.0000
Temperature	F	60.0000*	60.0000	60.0000	60.0000
Pressure	psia	600.0000*	595.0000	595.0000	595.0000
Molar Flow	lbmole/hr	144.0000*	23.7899	101.4717	18.7385
Mass Flow	lb/hr	6520.4151	511.7355	5407.8117	600.8679
LiqVol Flow	barrel/day	792.8311	94.7378	678.2167	19.8766
Enthalpy	Btu/hr	77443.4267	90452.0555	-50850.5057	38486.7913
Density	lb/ft3	19.6190	2.9506	34.2279	129.2216
Mole Wt.		45.2807	21.5107	53.2938	32.0660
Spec. Heat	Btu/lb-F	0.5412	0.5513	0.5766	0.2091
Therm Cond	Btu/hr-ft-l	2			
Viscosity	сP				
Z Factor					0.0265
Sur Tension	dyne/cm				
Std Density	lb/ft3				129.2216
Methane	mole frac.	0.2540*	0.7270	0.1900	0.0000
Ethane	mole frac.	0.1355*	0.1392	0:1597	0.0000
Propane	mole frac.	0.0924*	0.0360	0.1227	0.0000
i-Butane	mole frac.	0.0701*	0.0131	0.0964	0.0000
n-Butane	mole frac.	0.0701*	0.0097	0.0972	0.0000
i-Pentane	mole frac.	0.0565*	0.0037	0.0793	0.0000
n-Pentane	mole frac.	0.0565*	0.0029	0.0795	0.0000
n-Hexane	mole frac.	0.0473*	0.0009	0.0669	0.0000
n-Heptane	mole frac.	0.0407*	0.0003	0.0576	0.0000
n-Octane	mole frac.	0.0357*	0.0001	0.0506	0.0000
S_Rhombic	mole frac.	0.1412*	0.0671	0.0000	1.0000

Step	Action
	Getting back to the Main Menu.
43	Press the $\langle F10 \rangle$ key;
	Looking at the current Process Flow Diagram (PFD).
44	Highlight the abbreviation PFD and then press the <enter> key;</enter>
	The following figure will appear:

Step	Action
	Looking at the conditions of all of the streams.
45	Press the <esc> key;</esc>
46	Highlight the word Print and then press the <enter> key;</enter>

The various print options can be found on page 335.

Step	Action
47	Highlight the word Spec_Sheets and then press the <enter> key;</enter>
48	Highlight the word Operations and then press the < Enter > key;
49	Highlight the name SimpSep and then press the <enter> key;</enter>
	Pressing the $\langle F10 \rangle$ key to get the Main Menu off of the screen in order to see the data on the
	screen underneath it.
50	Press the <f10> key;</f10>
	The information will now appear as shown below and on the following page. Use the <page< th=""></page<>
	$U_p > and < Page Down > keys to scroll the screen text up and down.$

HYSIM SOLID SEPARATOR SPECIFICATION SHEET HYSIM Version C2.53

Date 96/10/10 Time 10:24:09

Operation Name: SimpSep Operation Note:

Case Name:

	Stream	Ope	eration	Flowrate	
Inlet:	Feed	from -		6520.4151	lb/hr
				144.0000	lbmole/hr
Solids:	Sepsol	to		600.8679	lb/hr
				18.7385	lbmole/hr
Vapour:	Sepvap	to		511.7355	lb/hr
-				23.7899	lbmole/hr
Liquid:	Sepliq	to		5407.8117	lb/hr
_				101.4717	lbmole/hr

Inlet Properties			Outlet Conditions		
Temperature Pressure Mass Frac Vapour Mass Frac Solid Density Spec Grav Mol Weight	60.0000 600.0000 0.0706 0.1000 1.9.6190 0.3149 45.2807	F psia lb/ft3 SG_H2060	Temperature Pressure	60.0000 595.0000	F psia

Vapour Outlet Properties	Liquid Outlet Properties
Density 2.9506 lb/ft3	Density 34.2279 15/ft3
Mol Weight 21.5107 Z Factor	Mol Weight 53.2938 Surface Ten dyne/cm
Solids Outlet Properties	
Density 129.2216 lb/ft3 Spec Grav 2.0741 SG_H2060ap Mol Weight 32.0660	
Solids Outlet Efficiencies	
Solid1 S_Rhombic 92.15 % Solid2 % Solid3 % Solid4 % Solid5 % Solid6 % Overall Efficiency 92.15 %	
NOTES :	

Step	Action
	Getting back to the Main Menu.
51	Press the <f10> key;</f10>
52	Do you want to continue adding other unit operations to this simple separator?
{	 If Yes, turn to the pertinent section of this manual now;
	 If No, turn to the "Exiting HYSIM" Section of this manual

CHAPTER 4

OTHER OPERATIONS IN HYSIM

Section Page
4.6 - <u>Data Recorders</u>
Set Controllers, Section 4.4 - Adjust Controllers, Section 4.5 - Recycle, and Section
Section 4.1, plus sections on: Section 4.2 - Mass and Mole Balances, Section 4.3 -
Chapter 4 contains examples of the following four types of Piping and Fittings in

		-
4.11	Pipeline Segments (Single/Two/Three Phase)	342
4.1.2	Tees (Adiabatic)	351
4.1.3	Valves (Adiabatic)	359
414	Pipe Sizing and Pressure Drop Calculations	366

4.1.1 Pipeline Segments (Single/Two/Three Phase)

Objective - This exercise is an example of a Pipeline Segment calculation. The purpose of these calculations are to take a stream whose composition, flowrate and other processing conditions (such as pipe diameter, length, elevation gain, temperature, and absolute pipe roughness) are known and calculate the pressure drop for the pipeline segment. The pipeline segment can contain one or more phases. This example can be modified by specifying another property package and/or other components, compositions, feed and processing conditions. In this example, a feed stream containing ten different hydrocarbons, nitrogen and carbon dioxide enters a pipeline segment. The conditions and composition of this inlet stream are specified, along with the pipe diameter, length, elevation gain, ambient temperature, heat transfer coefficient and absolute roughness of the pipe. HYSIM calculated the pressure drop to be 226.2 psi.

<u>Technical Example Reference</u>: Reference 1 - Hyprotech's HYSIM User's Guide, Version C2.50, March 1994, pages 7-58 to 7-63. <u>Other References</u>: Refs. 1 & 2

Directions: Pages 343 through 350 outline the execution of a Pipeline Segment example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys ($\leftarrow, \rightarrow, \uparrow$, or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the keys to be typed have been indicated in boldtype in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside $\langle \rangle$ brackets (e.g. $\langle Esc \rangle$) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called *Pipeseg*, is shown below:

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).
	• If <u>Yes</u> , proceed with Step 2.
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2
	Starting with a new case.
2	Highlight the word No and then press the <enter> key,</enter>
	Selecting a Property Package.
3	Highlight the word Peng-Robinson and then press the <enter> key</enter>
	The following screen will appear:

		COMPONENT SELECTION			
Selected	Synonym	Name	Formula	Criteria	
	OIL	OIL		ALL	
	HYPOTHETICAL	HYPOTHETICAL	× ×	HC	
	Cl	Methane	CH4	SOLID	
	C2	Ethane	C2H6	MISC	
	C3	Propane	СЗН8	AMINE	
	i-C4	i-Butane	C4H10	ALCOHOL	
	n-C4	n-Butane	C4H10	KETONE	
	i-C5	i-Pentane	C5H12	ALDEHYDE	
	n-C5	n-Pentane	C5H12	ESTER	
	C5	n-Hexane	C6H14	CARBACID	
	C7	n-Heptane	C7H16	HALOGEN	
	C8	n-Octane	C8H18	NITRILE	
	C9	n-Nonane	C9H20	PHENOL	
	C10	n-Decane	C10H22	ETHER	
	C11	n-C11	C11H24	USER	
	C12	n-C12	C12H26		
* +	└─── ♥ ↓;	Search by SYNONYM			
F1 - Help,	F3 - Menu, F4 PR:	- Flip Srch, F5 - Exa ESS INSERT TO SUBMIT	am, F6 - Mc	ve, F8 - Change	

Step	Action
	Selecting the components in the feed stream.
4	Highlight each of the following component names under the "Component Selection" Section
	(use the $<\downarrow>$ and $<$ Page Down> keys as needed) and then press the $<$ Enter> key so that the
	name then appears in the "selected" column, as follows:
	Highlight the word Methane and then press the <enter> key;</enter>
	Highlight the word Ethane and then press the <enter> key;</enter>
	Highlight the word Propane and then press the <enter> key;</enter>
	Highlight the word i-Butane and then press the <enter> key;</enter>
	Highlight the word n-Butane and then press the <enter> key;</enter>
	Highlight the word i-Pentane and then press the <enter> key;</enter>
	Highlight the word n-Pentane and then press the <enter> key</enter>
- 	Highlight the word n-Hexane and then press the <enter> key,</enter>
	Highlight the word n-Heptane and then press the <enter> key;</enter>
	Highlight the word n-Octane and then press the <enter> key,</enter>
	Highlight the word Nitrogen and then press the <enter> key;</enter>
	Highlight the formula CO2,
	The following screen will then appear.

Colostad		ENI SELECTION		Critoria
	Synonym	Name	Formura	CITCELIA
Methane	C12	Cl2	C12	ALL
Ethane	HCl	HCl	HCl	HC
Propane	F2	F2	F2	SOLID
i-Butane	HF	HF	HF	MISC
n-Butane	Br2	Bromine	Br2	AMINE
i-Pentane	HBr	HBr	HBr	ALCOHOL
n-Pentane	12	Iodine	12	KETONE
n-Hexane	ні	HI	HI	ALDEHYDE
n-Heptane	NitricOxide	NO	NO	ESTER
n-Octane	NO2	NO2	NO2	CARBACID
Nitrogen	N20	N20	N20	HALOGEN
CO2	N2O4	N204	N204	NITRILE
1	SO2	S02	SO2	PHENOL
	S03	S03	SO3	ETHER
	CO	CO	CO	USER
	Sulphur_Rhombic	S_Rhombic	S	
·····	└ ▼ _ ↓Search :	by SYNONYM		<u></u>
F1 - Help, 1	F3 - Menu, F4 - Flip	Srch, F5 - Exa	am, F6 -	Move,
	PRESS INS	ERT TO SUBMIT	F8 - C	hange

Step	Action
5	Press the <insert> key,</insert>
	Changing the units from the HYSIM default SI or metric units (kg, °C, kPa, etc.) to field units
	(10, r, psia, etc.).
6	Highlight the word Utility and then press the <enter> key;</enter>

Step	Action
7	Highlight the word Configuration and then press the <enter> key;</enter>
8	Highlight the word Units and then press the <enter> key;</enter>
9	Highlight the word Field and then press the <enter> key;</enter>
	Getting back to the Main Menu.
10	Press the <esc> key;</esc>

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Specifying the conditions of the Feed stream.
11	Highlight the word Specify and then press the <enter> key;</enter>
12	Highlight the word Stream and then press the <enter> key;</enter>
13	Type the word Feed after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature of the Feed stream in F.
14	Type the number 60 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Feed stream in psia.
15	Type the number 1000 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the molar flow of the feed in lb-mols/hr.
16	Type the number 1317.6565 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the individual molar fractions of each component.
17	Highlight the word Mole-Fractions after the prompt (>) and then press the <enter> key;</enter>
	The following screen will appear:

	Stream Mol	e Fractions	
Methane Propane n-Butane n-Pentane n-Heptane Nitrogen		Ethane i-Butane i-Pentane n-Hexane n-Octane CO2	

Step	Action
18	Enter the following mole fractions beside each component in the feed stream:
	After the word, Methane, type the number 0.9122 in the blank and then press the <enter> key;</enter>
	After the word, Ethane, type the number 0.0496 in the blank and then press the <enter> key;</enter>
	After the word, Propane, type the number 0.0148 in the blank and then press the <enter> key;</enter>
	After the word, i-Butane, type the number 0.0026 in the blank and then press the <enter> key,</enter>
	After the word, n-Butane, type the number 0.0020 in the blank and then press the <enter></enter>
1	key,
	After the word, i-Pentane, type the number 0.0010 in the blank and then press the <enter></enter>
	key;
	After the word, n-Pentane, type the number 0.0006 in the blank and then press the <enter></enter>
	key,
	After the word, n-Hexane, type the number 0.0001 in the blank and then press the <enter></enter>
	key,
	After the word, n-Heptane, type the number 0.0001 in the blank and then press the <enter></enter>
	key;
	After the word, n-Octane, type the number 0.0001 in the blank and then press the <enter></enter>
	key;;
	After the word, Nitrogen, type the number 0.0149 in the blank and then press the <enter> key;</enter>
	After the word, CO2, type the number 0.0020 in the blank,
	The screen should now appear as shown below:

= Stream Mole Fractions =

Methane	0.9122
Propane	0.0148
n-Butane	0.0020
n-Pentane	0.0006
n-Heptane	0.0001
Nitrogen	0.0149

Ethane	0.0496
i-Butane	0.0026
i-Pentane	0.0010
n-Hexane	0.0001
n-Octane	0.0001
CO2	0.0020

Step	Action
19	Press the <insert> key;</insert>
20	Highlight the word Operation and then press the <enter> key;</enter>
	Naming the Operation "Pipeseg".
21	Type the word Pipeseg and then press the <enter> key;</enter>
	Specifying the type of operation you wish to perform.
22	Highlight the word Pipe_Segment and then press the <enter></enter> key;
	The following screen will then appear as shown on the following page.

Step	Action	
30	Press the <insert> key;</insert>	
	Printing out all of the stream information.	
31	Highlight the word Print and then press the <enter> key;</enter>	

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

- b) **Operations** The different unit operations will be printed out.
- c) <u>Spec Sheets</u> The specifications sheets will be printed out.
- d) *Hypotheticals* Hypothetical component information will be printed out.
- e) Format Specifies the format of the printout.
- f) <u>Cost</u> Lists costs of the run, if a royalty is being charged.
- g) File Saves results in a file.
- h) <u>Printer</u> Toggles on a printer.
- i) <u>Cases</u> Lists the stored files.
- j) *Description* Prints case description.
- k) Oil Input Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action			
32	Highlight the word Streams and then press the <enter> key;</enter>			
33	Highlight the word All and then press the <enter> key;</enter>			
34	Highlight the dash symbol - and then press the <enter> key;</enter>			
	Pressing the $\langle F10 \rangle$ key will get the Main Menu off of the screen in enabling you to see the			
	data on the screen underneath it.			
35	Press the <f10> key;</f10>			
	The screen will appear as shown on the following page. Use the $\langle Page Up \rangle$ and $\langle Page Up \rangle$			
	Down > keys to scroll the screen text up and down.			

Stream		Feed	Outlet
Description			
Vapour frac.	•	1.0000	1.0000
Temperature	F	60.0000*	36.8501
Pressure	psia	1000.0000*	773.8243
Molar Flow	lbmole/hr	1317.6565*	1317.6565
Mass Flow	lb/hr	23318.2006	23318.2006
LiqVol Flow	barrel/day	5023.8275	5023.8275
Enthalpy	Btu/hr	4.71991E+06	4.58705E+06
Density	lb/ft3	3.8568	3.0879
Mole Wt.		17.6967	17.6967
Spec. Heat	Btu/lb-F	0.6601	0.6312
Therm Cond	Btu/hr-ft-F	0.0222	0.0202
Viscosity	СР	0.0130	0.0120
Z Factor		0.8228	0.8323
Sur Tension	dyne/cm		
Std Density	lb/ft3	₩ -+	
Methane	mole frac.	0.9122*	0.9122
Ethane	mole frac.	0.0496*	0.0496
Propane	mole frac.	0.0148*	0.0148
i-Butane	mole frac.	0.0026*	0.0026
n-Butane	mole frac.	0.0020*	0.0020
i-Pentane	mole frac.	0.0010*	0.0010
n-Pentane	mole frac.	0.0006*	0.0006
n-Hexane	mole frac.	0.0001*	0.0001
n-Heptane	mole frac.	0.0001*	0.0001
n-Octane	mole frac.	0.0001*	0.0001
Nitrogen	mole frac.	0.0149*	0.0149
CO2	mole frac.	0.0020*	0.0020

Step	Action	
	Pressing the $\langle F 0 \rangle$ key again, to get back to the Main Menu.	
36	Press the $\langle F10 \rangle$ key;	
	Printing the Specification Sheets for the Pipe Segment Operation.	
37	Highlight the word Print and then press the < Enter> key;	

The various print options can be found on page 348.

Step	Action			
-38	Highlight the word Spec_Sheets and then press the <enter> key;</enter>			
39	Highlight the word Operations and then press the <enter> key;</enter>			
40	Highlight the word Pipeseg and then press the <enter></enter> key;			
	Pressing the $\langle F10 \rangle$ key will get the Main Menu off of the screen in enabling you to see the			
	data on the screen underneath it.			
41	Press the $\langle F10 \rangle$ key;			
	The screen will appear as shown on the following page. Use the <page up=""> and <page< th=""></page<></page>			
	Down> keys to scroll the screen text up and down.			

- HYSTM PIPESEG OPERATION -	
HYSIM Version C2.53	Date 96/07/11
Case Name	Time 14:14:23
Operation Name: Pipeseg Operation Note:	
Pipe Segment Inlet Stream	Feed
Pipe Segment Outlet Stream	Outlet
Inside Diameter	4.0000 in
Length	26399.9999 ft
Elevation Gain	100.0000 ft
Ambient Temperature	15.0000 F
Heat Transfer Coeff.	0.1500 Btu/hr-ft2-F
Absolute Roughness	0.0018 in
Pressure Drop	226.1757 psi

Step	Action	
	Pressing the $\langle F_{10} \rangle$ key again, to get back to the Main Menu.	
42	Press the <f10> key;</f10>	
	Looking at the Process Flow Diagram (PFD) for the Pipe Segment Operation	
43	Highlight the letters PFD and then press the <enter> key;</enter>	
	The PFD shown below will appear on the screen.	

-Feed --> Outlet ->

Pipeseg

Step	Action	
44	Press the <esc> key;</esc>	
45	Do you want to continue with other unit operations?	
	• If <u>Yes</u> , turn to the pertinent section of this manual now;	
	If No, turn to the "Exiting HYSIM" Section of this manual.	

4.1 Piping and Fittings (continued)

4.1.2 Tees (Adiabatic)

<u>Objective</u>- This exercise is an example of an adiabatic tee calculation. The purpose of the tee unit operation is to divide or split a feed stream into two or more streams, and then obtain the properties of these streams. The percentage of the split, either on a mass, molar or liquid volume basis, into the outlet streams must be specified. If all but one of the outlet streams are specified, HYSIM will calculate the other stream by difference. This example can be modified by specifying another property package and/or other components, compositions and stream conditions.

In this example, an adiabatic tee separates the feed stream, consisting of methane and ethane, into three outlet streams. The set operations are used to set one outlet stream at 30 % of the feed and another at 40 % of the feed. The third outlet stream is then 30 % of the feed by mass balance. The three outlet streams are at the same temperature, pressure and composition as the inlet stream, but only vary in the amount of total mass flow. *References*: Refs. 1 and 2.

Directions: Pages 352 through 358 outline the execution of an adiabatic tee example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the required word on the menu changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to by typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside the <> brackets (e.g. <Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called <u>Split-1</u>, is shown below:

Step	Action			
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).			
	If <u>Yes</u> , proceed with Step 2.			
	• If No, tum to the "Starting HYSIM" Section of this manual and follow the procedures			
	before proceeding to Step 2.			
	Starting with a new case.			
2	Highlight the word No and then press the <enter> key;</enter>			
	Selecting a Property Package.			
3	Highlight the word Peng-Robinson and then press the <enter> key,</enter>			
	The following screen will appear:			

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL	``	нс
	Cl	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	C3	Propane	СЗН8	AMINE
	1-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H2O	PHENOL
	C10	n-Decane	C10H22	ETHER
	C11	n-C11	C11H24	USER
	C12	n-C12	C12H26	
· ·	⊥9 ▼ ↓9	Search by SYNONYM		. <u></u>
Fl - Help,	F3 - Menu, F4 - PRI	- Flip Srch, F5 - Exa ESS INSERT TO SUBMIT	am, F6 - Move	, F8 - Change

Step	Action
	Selecting the components in the Feed stream.
4 Highlight each of the following component names under the "Component Selection" Sec and press the <enter> key so that the name then appears in the "selected" column, as follows.</enter>	
	Highlight the word Methane and then press the <enter> key; Highlight the word Ethane and then press the <enter> key;</enter></enter>
5	Press the <insert> key;</insert>

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Specifying the conditions of the Feed stream.
6	Highlight the word Specify and then press the <enter> key;</enter>
7	Highlight the word Stream and then press the <enter> key;</enter>
8	Type the word Feed after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature in \mathcal{C} .
9	Type the number 10 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure in kilopascals (kPa).
10	Type the number 101 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the molar flow rate in kg-mols/hr of the stream, "Feed"
11	Type the letter 100 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the units of flow to use when specifying compositions.
12	Highlight the words Mole_Fractions and then press the <enter> key;</enter>
	The screen will then appear as shown below:

ſ		Stream	Mole	Fractions	
	Methane		1	Ethane	

Step	Action
	Specifying the individual mole fractions of each component.
13	Enter the following mole fractions beside each component in the Feed stream:
	After the word, Methane, type the number 0.5 in the blank and then press the <enter> key;</enter>
	After the word, Ethane, type the number 0.5 in the blank;
	The screen should now appear as follows:

		Stream	Mole	Fractions	
Methane	0.5		1	Ethane	0.5

Step	Action
14	Press the <insert> key;</insert>
	Specifying the type of operation.
15	Highlight the word Operation and then press the <enter> key;</enter>
16	Type the word Split-1 and then press the <enter> key;</enter>
17	Highlight the word Tee and then press the <enter> key;</enter>
	The screen will then appear as shown on the following page.

Step	Action
	Naming the outlet and inlet streams.
18	Type the word Feed in the blank and then press the <enter> key;</enter>
19	Type the word Out1 in the blank and then press the <enter></enter> key;
20	Type the word Out2 in the blank and then press the <enter> key;</enter>
21	Type the word Out3 in the blank;
	The screen should now appear as follows:

Step	Action
22	Press the <insert> key;</insert>
	Specifying the type of operation.
23	Highlight the word Operation and then press the <enter> key;</enter>
24	Type the word Setflow and then press the <enter> key;</enter>
25	Highlight the word Set and then press the <enter> key;</enter>
	The screen will then appear as shown on the following page.

0	peration Name:	Setflow	Controller Bl	ock	
	Controlled Variable	Controlled Stream	Multiplier	Independent Stream	Offset
	of	= =	= 1.0000	*	0.0000_

Step	Action
26	Press the <f2></f2> key;
	Specifying the controlled variable for setting the percentage of the feed stream.
27	Highlight the word Mass_flow and then press the <enter> key;</enter>
28	Press the <f2></f2> key;
	Specifying the controlled stream which will be set at a percentage of the feed stream.
29	Highlight the word Out1 and then press the <enter> key;</enter>
	Specifying the fraction (Multiplier) of the Feed stream, which composes the mass flow of the
	Out1 stream.
30	Press the <delete></delete> key until the 1.0000 Multiplier is deleted.
31	Type the number 0.3 and then press the <enter> key;</enter>
32	Press the $\langle F2 \rangle$ key;
	Specifying the independent stream, or the stream from which a certain percentage will
	compose stream Out1.
33	Highlight the word Feed and then press the <enter> key;</enter>
	The following screen will appear:

_____ Set/Controller Block _____

Operation Name: Setflow____

Controlled Variable	Controlled Stream	Multiplier	Independent Stream	Offset
Mass_flow_ of	= Out1 =	= 0.3	Feed	+ 0.0000_

Step	Action
34	Press the <insert> key;</insert>
	Specifying the type of operation.
35	Highlight the word Operation and then press the < Enter > key;
36	Type the word Setflow2 and then press the <enter> key;</enter>
37	Highlight the word Set and then press the <enter> key;</enter>
	The screen will then appear as shown on the following page.

	Set/0	Controller Bl	ock	
Operation Name	: Setflow2			
Controlled Variable	Controlled Stream	Multiplier	Independent Stream	Offset
01	E =	= 1.0000	*	- 0.0000_

Step	Action
38	Press the $\langle F2 \rangle$ key;
	Specifying the controlled variable for setting the percentage of the feed stream.
39	Highlight the word Mass flow and then press the <enter> key;</enter>
40	Press the $\langle F2 \rangle$ key;
	Specifying the controlled stream which will be set at a percentage of the feed stream.
41	Highlight the word Out2 and then press the <enter> key;</enter>
	Specifying the fraction (Multiplier) of the Feed stream, which composes the mass flow of the
	Out2 stream.
42	Press the <delete> key until the 1.0000 Multiplier is deleted.</delete>
43	Type the number 0.4 and then press the <enter> key;</enter>
44	Press the <f2> key;</f2>
	Specifying the independent stream, which contains a certain percentage of stream Out2.
45	Highlight the word Feed and then press the <enter> key;</enter>
	The following screen will appear:

-	Set/Controller Block						
	Operation Name	: Setflow2					
	Controlled Variable	Controlled Stream	Multiplier	Independent Stream	Offset		
	Mass_flow_ of	= Out2 =	= 0.4	* Feed +	0.0000_		
L		,					

Step	Action
46	Press the <insert> key;</insert>
47	Highlight the word Print and then press the <enter> key;</enter>

4.1 Piping and Fittings (continued)

4.1.2 Tees (Adiabatic) (continued)

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) *Operations* - The different unit operations will be printed out.

c) Spec Sheets - The specifications sheets will be printed out.

d) *Hypotheticals* - Hypothetical component information will be printed out.

e) *Format* - Specifies the format of the printout.

f) <u>Cost</u> - Lists costs of the run, if a royalty is being charged.

g) File - Saves results in a file.

h) Printer - toggles on a printer.

i) <u>Cases</u> - Lists the stored files.

i) Description - Prints case description.

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action
48	Highlight the word Streams and then press the <enter> key:</enter>
49	Highlight the word All and then press the <enter> key;</enter>
	Looking at the calculated data for all of the streams.
50	Highlight the dash symbol - and then press the <enter> key;</enter>
	Pressing the $\langle F10 \rangle$ key to get the Main Menu off of the screen in order to see the data on the
	screen underneath it.
51	Press the $\langle F10 \rangle$ key;
	The screen will appear as follows:

Stream	Feed	Out3	Out2	Out1
Vapour frac	1 0000	1 0000	1.0000	1.0000
Temperature	C 10 0000*	10 0000	10.0000	10.0000
Pressure	kPa 101 0000*	101 0000	101.0000	101.0000
Molar Flow	$k_{\text{cmole}/h} = 101.0000 *$	30.0000	40.0000	30.0000
Mass Flow	kg/h 2305.6401	691.6919	922.2560	691.6921
LigVol Flow	m_3/h 6.9063	2.0719	2.7625	2.0719
Enthalpy	kJ/h 1.03014E+06	309042.4412	412056.6406	309042.5198
Density	kg/m3 0.9948	0.9948	0.9948	0.9948
Mole Wt.	23.0564	23.0564	23.0564	23.0564
Spec. Heat	kJ/kg-C 1.8859	1.8859	1.8859	1.8859
Therm Cond	W/m-K 0.0250	0.0250	0.0250	0.0250
Viscosity	CP 0.0099	0.0099	0.0099	0.0099
Z Factor	09943	0.9943	0.9943	0.9943
Sur Tension	dyne/cm			
Std Density	kg/m3			
Methane	mole frac. 0.5000*	0.5000	0.5000	0.5000
Ethane	mole frac. 0.5000*	0.5000	0.5000	0.5000

4.1 Piping and Fittings (continued)

4.1.2 Tees (Adiabatic) (continued)

Step	Action
	Pressing the $\langle F10 \rangle$ key again, to get back to the Main Menu.
52	Press the $\langle F10 \rangle$ key;
53	Highlight the word PFD and then press the <enter> key;</enter>
	The following screen will appear:

-Feed
$$\rightarrow$$
 Out 1 \rightarrow
Out 2 \rightarrow
Out 3 \rightarrow
Split-1

•

Step	Action	
	Getting back to the Main Menu.	
54	Press the <esc> key until you reach the Main Menu;</esc>	
55	Do you want to continue adding other unit operations to this Adiabatic Tee?	
	• If <u>Yes</u> , turn to the pertinent section of this manual now;	
	If No, turn to the "Exiting HYSIM" Section of this manual.	

4.1.3 Valves (Adiabatic)

<u>Objective</u> - This exercise is an example of an adiabatic valve calculation. The purpose of the valve operation is to perform a material and energy balance over the valve for the inlet and outlet streams. The composition and flow rate of the inlet or outlet stream must be specified. Three of the four variables (inlet temperature and pressure, and outlet temperature and pressure) must be specified and the other variable will be determined by HYSIM. This example can be modified by specifying another property package and/or components, compositions and feed conditions).

In this example, the feed stream to the valve contains only propane. The temperature, vapor fraction and flow rate of the feed stream is specified, along with the pressure of the outlet stream. With this information, HYSIM then calculates the rest of the conditions of the outlet stream.

<u>Technical Example Reference</u>: Reference 1 - HYSIM Interactive Tutorial, Hyprotech's HYSIM User's Guide, Version C2.50, March 1994, pages 3-98 to 3-128. <u>Other References</u>: Refs. 1 & 2.

Directions: Pages 360 through 365 outline the execution of an adiabatic valve example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys ($\leftarrow, \rightarrow, \uparrow$, or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <> brackets (e.g. <Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capitals and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called *Valve*, is shown below:

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).
	• If <u>Yes</u> , proceed with Step 2.
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
3	Highlight the word Peng-Robinson and then press the <enter></enter> key,
	The following screen will appear:

		COMPONENT SELECTION			
Selected	Synonym	Name	Formula	Criteria	
	OIL	OIL		ALL	
	HYPOTHETICAL	HYPOTHETICAL		HC	
	Cl	Methane	CH4	SOLID	
	C2	Ethane	С2Н6 `	MISC	
	C3	Propane	СЗН8	AMINE	
	i-C4	i-Butane	C4H10	ALCOHOL	
	n-C4	n-Butane	C4H10	KETONE	
	i-C5	i-Pentane	C5H12	ALDEHYDE	
	n-C5	n-Pentane	C5H12	ESTER	
	C6	n-Hexane	C6H14	CARBACID	
	C7	n-Heptane	C7H16	HALOGEN	
	C8	n-Octane	C8H18	NITRILE	
	C9	n-Nonane	C9H2O	PHENOL	
	C10	n-Decane	C10H22	ETHER	
	C11	n-Cll	C11H24	USER	
	C12	n-C12	C12H26		
│ ¥ ↓	L V VS	Search by SYNONYM	······································		
F1 - Help, 1	F1 - Help, F3 - Menu, F4 - Flip Srch, F5 - Exam, F6 - Move, F8 - Change PRESS INSERT TO SUBMIT				

Step	Action
	Selecting the components in the Feed stream.
4	Highlight the following component name under the "Component Selection" section and press
	the <enter> key so that the name then appears in the "Selected" column, as follows:</enter>
	Highlight the word Propane and then press the <enter> key;</enter>
5	Press the <insert> key;</insert>
	Changing the units from the HYSIM default SI or metric units (kg. kPa, °C, etc.) to field units
	(lb, psia, F, etc.).
6	Highlight the word Utility and then press the <enter> key;</enter>
7	Highlight the word Configuration and then press the <enter></enter> key;
8	Highlight the word Units and then press the <enter> key;</enter>
9	Highlight the word Field and then press the <enter> key;</enter>

Step	Action
	Getting back to the Main Menu.
10	Press the <esc> key;</esc>
	Specifying the type of operation we want to perform.
11	Highlight the word Operation and then press the < E nter> key;
	Typing a name for the operation. (We will call it "Valve").
12	Type the word Valve and then press the <enter> key;</enter>
13	Highlight the word Valve and then press the <enter> key;</enter>
	The following diagram of the valve will appear:
Company of the second	

Step	Action
	Naming the streams.
14	Type the word Feed in the blank and then press the <enter> key;</enter>
15	Type the name Valveout in the blank;
	The screen should now appear as follows:

Step	Action	
	Getting back to the Main Menu.	_
16	Press the <insert> key;</insert>	

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action	
	Specifying the conditions of the Feed stream.	
17	Highlight the word Specify and then press the <enter> key;</enter>	
18	Highlight the word Stream and then press the <enter> key;</enter>	
19	Highlight the word Feed and then press the <enter> key;</enter>	

Step	Action
	Specifying the Temperature of the Feed stream in F.
20	Type the number 120 after the prompt (>) and then press the <enter> key;</enter>
	Specifying that the Pressure of the Feed stream in psia is unknown by typing an "x".
21	Type the letter x after the prompt $(>)$ and then press the $<$ Enter> key,
	Specifying the molar flow rate of Feed stream in lb-mols/hr.
22	Type the number 5.7 and then press the <enter> key;</enter>
	Specifying the basis you wish to use when specifying the compositions.
23	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
24	After the word, Propane, type the number 1.0 in the blank;
	The screen should now appear as shown below:

_____ Stream Mole Fractions _____

Propane 1.0_____

Step	Action		
25	Press the <insert> key;</insert>		
26	Highlight the word Worksheet and then press the <enter> key;</enter>		
27	Place the cursor in the blank under the column for the Stream name "Feed", and in the row labeled as Vapour frac.		
28	Place the cursor in the blank under the column for the Stream name "Valveout" and in the		
20	row labeled as Pressure (psia).		
	Type the number 44.3 and then press the <enter> key;</enter>		
	The screen should now appear as follows:		

		= Streams ===			
	New Value	=	ps	ia	
Stream	Feed	Valveout			
Vapour_Frac	0.0000*	0.4380			
Temperature	120.0000*	7.5309			
Pressure	243.5033	44.3000*			
Flow	5.7000*	5.7000			
Mass_Flow	251.3529	251.3529			
LigVol_Flow	33.9680	33.9680			
Energy_Flow	6154.1805	6154.1805			

Step	Action	
	Getting back to the Main Menu.	
29	Press the <esc> key until you reach the Main Menu;</esc>	
	Looking at the current Process Flow Diagram (PFD).	
30	Highlight the abbreviation PFD and then press the < Enter > key;	
	The figure will then appear as shown on the following page.	

Step	Action	
	Getting back to the Main Menu.	
31	Press the <esc> key until you reach the Main Menu;</esc>	×
	Looking at the Adiabatic Valve Specification Sheets.	
32	Highlight the word Print and then press the <enter> key;</enter>	

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) **Operations** - The different unit operations will be printed out.

c) <u>Spec Sheets</u> - The specifications sheets will be printed out.

d) *Hypotheticals* - Hypothetical component information will be printed out.

e) *Format* - Specifies the format of the printout.

f) <u>Cost</u> - Lists costs of the run, if a royalty is being charged.

g) File - saves results in a file.

h) Printer - Toggles on a printer.

i) <u>Cases</u> - Lists the stored files.

j) *Description* - Prints case description.

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action	
33	Highlight the word Spec-Sheets and then press the <enter> key;</enter>	
34	Highlight the word Operations and then press the <enter> key;</enter>	
35	Highlight the word Valve and then press the <enter> key;</enter>	
	Pressing the $\langle F10 \rangle$ key will get the main menu off of the screen in enabling you to see the	
	data on the screen underneath it.	
36	Press the <f10> key;</f10>	
	The screen will appear as seen on the following page. Use the <page up=""> and <page< th=""></page<></page>	
	Down> keys to scroll the screen text up and down.	

HYSIM VALVE SPECIFICATION HYSIM Version C2.53 Case Name: Operation Name: Valve Operation Note:		Date 96/07/11 Time 16:00:31
Stream (Inlet: Feed from Outlet: Valveout to	peration	Flowrate 5.7000 lbmole 251.3529 lb/hr
Inlet Properties	Outlet P	roperties
Mass Frac Vap 0.0000 Temperature 120.0000 F Pressure 243.5033 psia Density 28.1719 lb/ft3 Specific gr 0.4522 SG_H2060ap Mol Weight 44.0970 Viscosity 0.0790 cP	Mass frac vap Temperature Pressure Density Spec Grav Viscosity	0.4380 7.5309 F 44.3000 psia 0.9486 lb/ft3 0.0152 SG_H2060
Vapour Properties	Vapour P	roperties
Mass Flow 0.0000 lb/hr Std Vol Flow 0.0000 MMSCFD Density lb/ft3 Mol Weight Viscosity CP Z Factor	Mass flow Std Vol Flow Density Mol Weight Viscosity Z Factor	110.0888 lb/hr 0.0227 MMSCFD 0.4221 lb/ft3 44.0970 0.0072 cP 0.9232
Liquid Properties	Liquid Propert	;ies
Mass flow 251.3529 lb/hr Density 28.1719 lb/ft3 Spec Grav 0.4522 SG_H2060api Mol Weight 44.0970 Viscosity 0.0790 cP	Mass flow Density Spec Grav Mol Weight Viscosity	141.2641 lb/hr 34.1335 lb/ft3 0.5479 SG_H2060ap 44.0970 0.1457 cP
Hydrocarbon Liquid Properties	Hydrocarbon Li	iquid Properties
Mass flow 251.3529 lb/hr Density 28.1719 lb/ft3 Spec Grav 0.4522 SG_H2060api Mol Weight 44.0970 Viscosity 0.0790 cP	Mass flow Density Spec Grav Mol Weight Viscosity	141.2641 lb/hr 34.1335 lb/ft3 0.5479 SG_H2060ap 44.0970 0.1457 cP
Heavy Liquid Properties	Heavy Liqu:	id Properties
Mass Flow 0.0000 lb/hr Density lb/ft3 Spec Grav SG_H2O60api Mol Weight Viscosity CP	Mass Flow Density Spec Grav Mol Weight Viscosity	0.0000 lb/hr lb/ft3 SG_H2060ap cP
NOTES :		

Step	Action	
	Pressing the $\langle F10 \rangle$ key again, to get back to the Main Menu.	
37	Press the <f10> key;</f10>	
	Looking at the compositions of the streams.	
38	Highlight the Print key and then press the <enter> key;</enter>	

The various print options can be found on page 363.

Step	Action
39	Highlight the word Streams and then press the <enter> key;</enter>
40	Highlight the word All and then press the <enter> key;</enter>
41	Highlight the dash symbol - and then press the <enter> key;</enter>
	The screen will then appear as shown below. Use the $\langle F10 \rangle$ key and the $\langle Page Up \rangle$ and
	<page down=""> keys as shown in Steps 36-37.</page>

Stream Description		Feed	Valveout
Vapour frac		0.0000*	0.4380
Temperature	F	120.0000*	7.5309
Pressure	psia	243.5033	44.3000*
Molar Flow	lbmole/hr	5.7000*	5.7000
Mass Flow	lb/hr	251.3529	251.3529
LiqVol Flow	barrel/day	33.9680	33.9680
Enthalpy	Btu/hr	6154.1805	6154.1805
Density	lb/ft3	28.1719	0.9486
Mole Wt.		44.0970	44.0970
Spec. Heat	Btu/lb-F	0.7996	0.4890
Therm Cond	Btu/hr-ft-F	0.0467	
Viscosity	СР	0.0790	
Z Factor		0.0613	
Sur Tension	dyne/cm	4.2069	
Std Density	lb/ft3	31.6435	
Propane	mole frac.	1.0000*	1.0000

Step	Action		
42	Do you want to continue adding other unit operations to this valve?		
	• If Yes, turn to the pertinent section of this manual now;		
	If <u>No</u> , turn to the "Exiting HYSIM" Section of this manual.		

5

4.1.4 Pipe Sizing and Pressure Drop Calculations

Objective - This exercise is an example of a pipe sizing and pressure drop calculations using HYSIM. The purpose of these calculations are to take a stream whose composition, flowrate and other processing conditions are known and calculate the pipe size needed given a certain pressure drop or vice versa. This example can be modified by specifying another property package and/or other components, compositions and feed conditions.

In this example, the feed stream contains ten different hydrocarbons. The temperature, pressure and molar flow rate of the feed stream is specified, along with the pipe diameter and schedule. HYSIM can then calculate the pressure drop. If the pressure drop and pipe schedule are specified, without the pipe diameter information, HYSIM will then calculate the pipe diameter.

The dimensionless friction factors used in this calculation by HYSIM were: 0.02253 for the liquid phase and 0.01948 for the vapor phase for the pressure drop calculation, and 0.02250 for the liquid phase and 0.02001 for the vapor phase for the pipe diameter calculation.

HYSIM uses the Darcy equation for single phase stream calculations. In this case the stream is two phase (vapor/liquid) and in the elongated bubble regime. HYSIM uses the pattern map of Mandhane, Gregory and Aziz to determine the flow regime and uses the Mandhane, et.al. modification #1 of the Lockhart-Martinelli model for predicting the pressure drop. (Ref. 2, pages 2-2 to 2-7)

<u>Technical Example Reference</u>: Reference 1 - HYSIM Interactive Tutorial, Hyprotech's HYSIM User's Guide, Version C2.50, March 1994, pages 3-98 to 3-128. <u>Other References</u>: Refs. 1 & 2.

Directions: Pages 367 through 373 outline the execution of Pipe Sizing and Pressure Drop Calculations. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys ($\leftarrow, \rightarrow, \uparrow$, or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the keys to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <> brackets (e.g. <Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).
	• If <u>Yes</u> , proceed with Step 2.
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
3	Highlight the word Peng-Robinson and then press the <enter> key</enter>
	The following screen will appear:

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	Cl	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	C3	Propane	C3H8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H16	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H20	PHENOL
	C10	n-Decane	ClOH22	ETHER
	C11	n-Cll	C11H24	USER
	C12	n-C12	C12H26	
♥ ↓	└──────────↓ ─────	Search by SYNONYM		
F1 - Help,	F3 - Menu, F4	- Flip Srch, F5 - Exa	am, F6 - Mo [.]	ve, F8 - Change
	PR.	ESS INSERT TO SUBMIT		

Step	Action	
	Selecting the components in the Feed stream.	
4	Highlight each of the following component names under the "Component Selection" Section	
	and press the <enter> key so that the name then appears in the "Selected" column, as</enter>	
	follows:	
	Highlight the word Methane and then press the <enter> key;</enter>	
	Highlight the word Ethane and then press the <enter> key;</enter>	
	Highlight the word Propane and then press the <enter> key;</enter>	
	Highlight the word i-Butane and then press the <enter> key;</enter>	
	Highlight the word n-Butane and then press the <enter> key;</enter>	
	Highlight the word i-Pentane and then press the <enter> key;</enter>	
	Highlight the word n-Pentane and then press the <enter></enter> key	
	Highlight the word n-Hexane and then press the <enter> key;</enter>	
	Highlight the word n-Heptane and then press the <enter> key;</enter>	
	Highlight the word n-Octane and then press the <enter> key,</enter>	

Step	Action
5	Press the <insert> key;</insert>

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Changing the units from the HYSIM default SI or metric units (kg, kPa, C, etc.) to field units
	(lb, psia, F, etc.).
6	Highlight the word Utility and then press the <enter> key;</enter>
7	Highlight the word Configuration and then press the <enter> key;</enter>
8	Highlight the word Units and then press the <enter> key;</enter>
9	Highlight the word Field and then press the <enter> key;</enter>
	Getting back to the Main Menu.
10	Press the < Esc > key;
	Specifying the conditions of the Feed stream.
11	Highlight the word Specify and then press the <enter> key;</enter>
12	Highlight the word Stream and then press the <enter> key;</enter>
13	Type the word Feed after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature of the Feed stream in %.
14	Type the number 60 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Feed stream in psia.
15	Type the number 600 after the prompt (>) and then press the <enter> key;</enter>
	Typing an "x" to leave the molar flow of the feed unspecified at this point.
16	Type the letter x after the prompt (>) and then press the <enter> key;</enter>
	Specifying that the composition of each component in the Feed stream will be specified in
	molar flow rates (lb-mols/hr).
17	Highlight the word Mole_Flows after the prompt (>) and then press the <enter> key;</enter>
	The following screen will appear:

		Sti	ean morar	FLOWS		
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Octane	Methane Propane n-Butane n-Pentane n-Heptane		Eth i-! n-! n-!	nane Butane Pentan Hexane Octane	e	

Step	Action
18	Enter the following molar flows (lb-mols/hr) beside each component in the feed stream:
	After the word, Methane, type the number 70 in the blank and then press the <enter> key;</enter>
	After the word, Ethane, type the number 20 in the blank and then press the <enter> key;</enter>
	After the word, Propane, type the number 10 in the blank and then press the <enter> key;</enter>
	After the word, i-Butane, type the number 9 in the blank and then press the <enter> key;</enter>
	After the word, n-Butane, type the number 8 in the blank and then press the <enter> key;</enter>
	After the word, i-Pentane, type the number 7 in the blank and then press the <enter> key;</enter>
	After the word, n-Pentane, type the number 6 in the blank and then press the <enter> key;</enter>
	After the word, n-Hexane, type the number 7 in the blank and then press the <enter> key;</enter>
	After the word, n-Heptane, type the number 4 in the blank and then press
	the <enter></enter> key;
	After the word, n-Octane, type the number 3 in the blank;
	The screen should now appear as shown below:
[[Stream Molar Flows

Step	Action	
19	Press the <insert> key;</insert>	
	HYSIM will next ask you if the total molar flow (144.0000 lb-mols/hr) it calculated from	
	adding up the component flows is correct.	
20	Highlight the word Yes and then press the <enter> key;</enter>	
	Looking at the conditions in the program for the feed stream.	
21	Highlight the word Print and then press the <enter> key;</enter>	

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

- b) *Operations* The different unit operations will be printed out.
- c) <u>Spec_Sheets</u> The specifications sheets will be printed out.
- d) *Hypotheticals* Hypothetical component information will be printed out.
- e) *Format* Specifies the format of the printout.
- f) <u>Cost</u> Lists costs of the run, if a royalty is being charged.
- g) File Saves results in a file.
- h) <u>Printer</u> Toggles on a printer.
- i) Cases Lists the stored files.
- j) <u>Description</u> Prints case description.
- k) Oil Input Lists inputted information on an oil.
- NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action
22	Highlight the word Streams and then press the <enter> key;</enter>
23	Highlight the word All and then press the <enter> key;</enter>
24	Highlight the dash symbol - and then press the <enter> key;</enter>
	Pressing the $\langle F10 \rangle$ key will get the Main Menu off of the screen in enabling you to see the
	data on the screen underneath it.
25	Press the <f10></f10> key;
	The following conditions will then appear on the screen for the Feed stream. Use the <page< th=""></page<>
	Up> and <page down=""> keys to scroll the screen text up and down</page>

836 000* 000*
836 000* 000*
000* 000* 000*
000*
000+
000-
035
378
189
828
653
779
861*
389*
694*
625*
556*
486*
417*
486*
278*
208*

Step	Action
26	Press the $\langle F10 \rangle$ key;
	Specifying that we want to perform a pipe-sizing operation on the Feed stream.
27	Highlight the word Size and then press the <enter> key;</enter>
28	Highlight the word Pipe-Size and then press the <enter> key;</enter>
29	Highlight the word Feed and then press the <enter> key;</enter>
	Specifying a Pipe Diameter in order to obtain the related Pressure Drop in the Pipe in psia.
30	Highlight the word Press_Drop and then press the <enter> key;</enter>

Step	Action				
	Entering the Pipe Diameter (nominal or actual Inside Diameter) in inches.				
31	Type the number 2.5 at the prompt (>) and then press the <enter> key;</enter>				
	Specifying the schedule of the pipe.				
32	Type the number 40 after the prompt (>) and then press the <enter> key;</enter>				
	Pressing the <f10> key will get the Main Menu off of the screen in enabling you to see the</f10>				
	data on the screen underneath it.				
33	Press the <f10> key;</f10>				
	The screen will appear as shown below. Use the <page up=""> and <page down=""> keys to</page></page>				
	scroll the screen text up and down.				

Pressure Drop	Calculation	for	stream	Feed
Vapour-Liquid F	low Regime		Elongated	Bubble

Stream 3	Properties						
Phase	Viscosity cP	Flowrate lb/hr	Velocity ft/s	Velocity Density ft/s lb/ft3			
Vapour	0.0119	1424.4542	4.4122	4.4122 2.6307			
	сP	lb/hr	ft/s	lb/ft3			
Liquid	0.1585	4013.7984	0.9380 34.8684		84		
Pipe Par	ameters						
LIQUID VAPOUR							
Reynolds Number	Friction Factor	Press Drop Psi/100 ft	Reynolds Friction Pre number Factor Psi		Press Drop Psi/100 ft		

63978.48	0.02253	0.03579	3.01E+05	0.01948	
Pipe Dia. in	Schedule	Total Pressure Drop Psi/100 ft			
2.500	Std.	0,772434			

Step	Action
	Pressing the <f10> key again, to get back to the Main Menu.</f10>
34	Press the $\langle F10 \rangle$ key;

0.05170

Step	Action				
	Specifying that we want to perform a pipe-sizing operation on the Feed stream.				
35	Highlight the word Size and then press the <enter> key;</enter>				
36	Highlight the word Pipe-Size and then press the <enter> key;</enter>				
37	Highlight the word Feed and then press the <enter> key;</enter>				
	Specifying a Pressure Drop in order to obtain the related Pipe Diameter in inches.				
38	Highlight the word Diameter and then press the <enter> key;</enter>				
	Entering the Pressure Drop in inches of Water per foot of pipe.				
39	Type the number 1.0 at the prompt (>) and then press the <enter> key;</enter>				
	Specifying the schedule of the pipe.				
40	Type the number 40 the prompt (>) and then press the <enter> key;</enter>				
	Pressing the <f10> key will get the Main Menu off of the screen in enabling you to see the</f10>				
	data on the screen underneath it.				
41	Press the $\langle F10 \rangle$ key;				
	The screen will appear as shown below. Use the <page up=""> and <page down=""> keys to</page></page>				
	scroll the screen text up and down.				

Pipe Diameter Calculation for streamFeedVapour-Liquid Flow Regime--Elongated Bubble

Stream Properties					
Phase	Viscosity cP	Flowrate lb/hr	Velocity ft/s	Density lb/ft3	
Vapour	0.0119	1424.4542	6.4544	2.6307	
	сP	lb/hr	ft/s	lb/ft3	
Liquid	0.1585	4013.7984	1.3722	34.8684	

Pipe Parameters							
LIQUID				VAPOUR			
Reynolds Number	Friction Factor	Press Drop Psi/100 ft	Reynolds number	Friction Factor	Press Drop Psi/100 ft		
77381.00	0.02250	0.09252	3.64E+05	5 0.02001	0.13741		
Pipe Dia. in	Schedule	Total Pressure Drop Psi/100 ft					
2.067	Std.	2.026328					

Step	Action			
	Pressing the <f10> key again, to get back to the Main Menu.</f10>			
42	Press the <f10> key;</f10>			
43	Do you want to continue with other unit operations?			
	• If Yes, turn to the pertinent section of this manual now;			
	If <u>No</u> , turn to the "Exiting HYSIM" Section of this manual.			

This section contains examples of the following two different types of material balances:

Section	Page
4.2.1 Mass Balance	375
4.2.2 Mole Balance	384

4.2.1 Mass Balance

<u>Objective</u> - This exercise is an example of the mass balance operation. This operation takes into account conservation of mass but not of energy, chemical species or moles. This operation should only be used with reactor unit operations. This example can be modified by specifying another property package and/or other components, compositions and feed conditions.

In this example, the inlet feed stream contains ten different hydrocarbons; whereas the outlet stream contains only one. The mass balance envelope insures that the mass flow in is equal to the mass flow out.

<u>Technical Example Reference</u>: Reference 1 - Hyprotech's HYSIM User's Guide, Version C2.50, March 1994, pages 7-51 to 7-53. <u>Other References</u>: Refs. 1 & 2.

<u>Directions</u> - Pages 376 through 383 outline the execution of a mass balance example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <> brackets (e.g.<Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called *Massbal*, is shown below:

Step	Action				
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).				
	• If <u>Yes</u> , proceed with Step 2.				
	• If <u>No</u> , turn to the "Starting HYSIM" Section of this manual and follow the procedures				
	before proceeding to Step 2.				
	Starting with a new case.				
2	Highlight the word No and then press the <enter> key;</enter>				
	Selecting a Property Package				
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>				
	The following screen will appear:				

Selected	Synonym	NENT SELECTION Name	Formula	Criteria
A T	OIL	011		ÀLL
	HYPOTHETICAL	HYPOTHETICAL		HC
	IC1	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	C3	Propane	СЗН8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H2O	PHENOL
	C10	n-Decane	C10H22	ETHER
	C11	n-Cll	C11H24	USER
	C12	n-C12	C12H26	
····	└── ▼ - ↓ ──Search	by SYNONYM-		1
F1 - Help,	F3 - Menu, F4 - Flip PRESS IN	Srch, F5 - Ex SERT TO SUBMIT	am, F6 - Move	, F8 - Change

Step	Action		
	Selecting the components in the Feed stream.		
4	Highlight each of the following component names under the "Component Selection" Section		
	and press the <enter> key so that the name then appears in the "Selected" column. This</enter>		
	"Component Selection" List is very long. Use the <page down=""> and Arrow Keys to find the</page>		
	following components:		
	Highlight the word Methane and then press the <enter> key;</enter>		
	Highlight the word Ethane and then press the <enter> key;</enter>		
	Highlight the word Propane and then press the <enter> key;</enter>		
	Highlight the word i-Butane and then press the <enter> key;</enter>		
	Highlight the word n-Butane and then press the <enter> key,</enter>		
	Highlight the word i-Pentane and then press the <enter> key,</enter>		
	Highlight the word n-Pentane and then press the <enter> key;</enter>		
	Highlight the word n-Hexane and then press the <enter> key;</enter>		
	Highlight the word n-Heptane and then press the <enter> key;</enter>		
	Highlight the word n-Octane and then press the <enter> key;</enter>		
	The following screen will then appear:		

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
Selected Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Octane	Synonym OIL HYPOTHETICAL C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19	Name OIL HYPOTHETICAL n-Nonane n-Decane n-C11 n-C12 n-C13 n-C14 n-C15 n-C16 n-C17 n-C18 n-C19	C9H20 C10H22 C11H24 C12H26 C13H28 C14H30 C15H32 C16H34 C17H36 C18H38 C19H40	ALL HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL
	C20 C21 C22	n-C20 n-C21 n-C22	C20H42 C21H44 C22H46	ETHER USER
F1 - Help, F3 - Menu, F4 - Flip Srch, F5 - Exam, F6 - Move, PRESS INSERT TO SUBMIT F8 - Change				

Step	Action
5	Press the <insert> key;</insert>
	The screen on the following page will then appear.

Work_Sheet Print Specify Operation PFD Remove New Store Ignore Restore Go Hold Utility Size Toggle Report Exit ? Work_Sheet streams in a spreadsheet format Prop Pkg PR - SI Units 9879552 >

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Specifying that you want the units changed from the default metric system (kPa, kg, \mathcal{C} , etc.) to
	field units (psia, lb, F, etc.).
6	Highlight the word Utility and then press the <enter> key;</enter>
7	Highlight the word Configuration and then press the <enter> key;</enter>
8	Highlight the word Units and then press the <enter> key;</enter>
9	Highlight the word Field and then press the <enter> key;</enter>
10	Press the <esc> key.</esc>
	Specifying the conditions of the Feed stream.
11	Highlight the word Specify and then press the <enter> key;</enter>
12	Highlight the word Stream and then press the <enter> key;</enter>
13	Type the word Feed after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature of the Feed in F.
14	Type the number 60 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Feed in psia.
15	Type the number 600 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the flow of the Feed stream in lb-mols/hr.
16	Type the number 100.0 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the composition of each component in the Feed stream in mole fractions.
17	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
	The screen will appear as shown below:

== Stream Mole Fractions =

	,		
Methane		Ethane	
Propane		i-Butane	
n-Butane		i-Pentane	
n-Pentane		n-Hexane	
n-Heptane		n-Octane	

Step	Action	1	
	Specifying the molar fractions of each component in the Feed stream.		
18	Enter the following mole fractions beside each component in the Feed stream:		
	After the word, Methane, type the number 0.9271 in the blank and then press the <enter> key,</enter>		
	After the word, Ethane, type the number 0.0516 in the blank and then press the <enter> key;</enter>		
	After the word, Propane, type the number 0.0148 in the blank and then press the <enter> key.</enter>		
	After the word, i-Butane, type the number 0.0026 in the blank and then press the <enter> key:</enter>		
1	After the word, n-Butane, type the number 0.0020 in the blank and then press the <enter> key.</enter>		
	After the word, i-Pentane, type the number 0.	0010 in the blank and then press the <enter> key</enter>	
	After the word, n-Pentane, type the number 0	.0006 in the blank and then press the <enter> key</enter>	
	After the word, n-Hexane, type the number 0.	0001 in the blank and then press the <enter> key.</enter>	
	After the word, n-Heptane, type the number 0	0.0001 in the blank and then press the <finter> key:</finter>	
	After the word, n-Octane, type the number 0.	0001 in the blank	
	The screen will now appear as shown below:		
	Stream Mol	e Fractions	
Meth	.ane 0.9271	Ethane 0.0516	
Prop	ane 0.0148	i-Butane 0.0026	
n-Bu	tane 0.0020	i-Pentane 0.0010	
n-Pe	ntane 0.0006	n-Hexane 0.0001	
n-He	ptane 0.0001	n-Octane 0.0001	
Step	Step Action		
19	Press the <insert> key;</insert>		
	Specifying the conditions of the Outlet stream	n.	
20	Highlight the word Specify and then press the <enter> key;</enter>		
21	Highlight the word Stream and then press the <enter> key:</enter>		
22	Type the word Outlet after the prompt (>) and then press the <enter> key:</enter>		
	Specifying the temperature in F of the Outlet	t stream as unknown by typing an "x".	
23	Type the letter x after the prompt (>) and then	press the <enter></enter> key;	
	Specifying the pressure of the Outlet stream in psia as unknown by typing an "x".		
24	Type the letter x after the prompt (>) and then press the <enter> key;</enter>		
	Specifying the flow of the Outlet stream in lb-mols/hr as unknown by typing an "x".		
25	Type the letter x after the prompt (>) and then press the <enter> key;</enter>		
	Specifying the individual mole fractions of each component in the Outlet stream.		
26	Highlight the word Mole_Fractions and then press the <enter> key;</enter>		
	The screen will appear as shown below:		
[Stream Mole Fractions		
Metha	ine	Etnane	
Propane 1-Butane		i-Butane	
n-But	n-Bontano n-Verano		
n-Wer			

Step	Action		
	Specifying the molar fractions of each component in the Outlet stream.		
27	Enter the following mole fractions beside each component in the Outlet stream:		
	After the word, Methane, type the number 0.0 in the blank and then press the <enter> key;</enter>		
	After the word, Ethane, type the number 0.0 in the blank and then press the <enter> key;</enter>		
	After the word, Propane, type the number 1.0 in the blank and then press the <enter> key;</enter>		
	After the word, i-Butane, type the number 0.0 in the blank and then press the <enter> key;</enter>		
	After the word, n-Butane, type the number 0.0 in the blank and then press the <enter> key,</enter>		
]]	After the word, i-Pentane, type the number 0.0 in the blank and then press the <enter> key;</enter>		
	After the word, n-Pentane, type the number 0.0 in the blank and then press the <enter> key;</enter>		
	After the word, n-Hexane, type the number 0.0 in the blank and then press the <enter> key,</enter>		
	After the word, n-Heptane, type the number 0.0 in the blank and then press the <enter> key,</enter>		
	After the word, n-Octane, type the number 0.0 in the blank;		
	The screen will now appear as shown below:		

	Stream	Mole Fractions	
Methane	0.0	Ethane	0.0
Propane	1.0	i-Butane	0.0
n-Butane	0.0	i-Pentane	0.0
n-Pentane	0.0	n-Hexane	0.0
n-Heptane	0.0	n-Octane	0.0

Step	Action
28	Press the <insert> key;</insert>
29	Highlight the word Operation and then press the <enter> key;</enter>
	Naming the unit operation as "Massbal".
30	Type the word Massbal and then press the <enter> key;</enter>
31	Highlight the word Mass_Balance and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Balance Envelope/Block Operation Name: Massbal			
Please F	Fill in Stream Names		
Inlet:	<pre>> Outlet: > Outlet: > Outlet: > Outlet: > Outlet: > Outlet: > Outlet: > Outlet:</pre>		

Step	Action		
	Specifying the inlet and outlet stream names into and out of the mass balance envelope.		
32	Type the word Feed and then press the <enter> key.</enter>		
33	Use the mouse to move the cursor to the first Outlet blank and then click the left mouse button,		
	and type the word Outlet.		
	The following screen will then appear:		

Balance	e Envelope/Block			
Operatio	Operation Name: Massbal			
Please	Fill in Stream Names			
Inlet: Feed =>	→ Outlet: Outlet			
Inlet: =>	Outlet:			
Inlet: =>	<pre>> Outlet:</pre>			
Inlet: =>	> Outlet:			
Inlet: =>	> Outlet:			
Inlet: =>	> Outlet:			
Inlet: =>	<pre>>> Outlet:</pre>			
Inlet: =>	<pre>> Outlet:</pre>			

Step	Action
34	Press the <insert></insert> key.
35	Highlight the word Print and then press the <enter> key;</enter>

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) *Operations* - The different unit operations will be printed out.

c) <u>Spec_Sheets</u> - The specifications sheets will be printed out.

d) *Hypotheticals* - Hypothetical component information will be printed out.

e) *Format* - specifies the format of the printout

f) <u>Cost</u> - Lists costs of the run, if a royalty is being charged.

g) File - Saves the results in a file.

h) Printer - Toggles on a printer.

i) <u>Cases</u> - Lists the stored files.

j) *Description* - Prints case description.

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action					
36	Highlight the word Streams and then press the <enter> key;</enter>					
37	Highlight the word All and then press the <enter> key:</enter>					
38	Highlight the dash symbol - and then press the <enter> key:</enter>					
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the Main Menu off of the screen in order to see the data on the screen underneath it					
39	Press the <f10> key:</f10>					
	The screen will then appear as shown below. Use the <page up=""> and <page down=""> or</page></page>					
	arrow keys to scroll the screen text up and down					
	Stream		Feed	Outlet		
	Vapour frag		1 0000			
	Tomporature	┲	1.0000			
	Drogguro	r	60.0000*			
	Molar Flow	psia lbmolo/bx	600.0000* 100.0000*	、		
	Magg Flow	lb/br	1740.0000*	39.6637		
	Liquol Flow	harrel/day	202 6201	1/49.0490 006.0677		
	Enthalny	Btu/br	305.0201	230.3077		
	Density	$\frac{10}{f+3}$	2 1263			
	Mole Wt.	10,100	17 4905	44 0970		
	Spec. Heat	Btu/lb-F	0 5959			
	Therm Cond	Btu/hr-ft-F	0.0203			
	Viscosity	cP	0.0119			
	Z Factor	-	0.8850			
	Sur Tension	dyne/cm				
	Std Density	lb/ft3		an		
	Methane	mole frac.	0.9271*	0.0000*		
	Ethane	mole frac.	0.0516*	0.0000*		
	Propane	mole frac.	0.0148*	1.0000*		
	i-Butane	mole frac.	0.0026*	0.0000*		
	n-Butane	mole frac.	0.0020*	0.0000*		
	i-Pentane	mole frac.	0.0010*	0.0000*		
	n-Pentane	mole frac.	0.0006*	0.0000*		
	n-Hexane	mole frac.	0.0001*	0.0000*		
	n-Heptane	mole frac.	0.0001*	0.0000*		
	n-Octane	mole frac.	0.0001*	0.0000*		
4.2.1 Mass Balance (continued)

Step	Action
40	Press the $\langle F10 \rangle$ key;
	Looking at the PFD (Process Flow Diagram) for the mass balance.
41	Highlight the letters PFD and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Step	Action			
	Getting back to the Main Menu.			
42	ess the <esc> key until you reach the Main Menu.</esc>			
43	Do you want to continue adding other unit operations to this mass balance?			
	• If <u>Yes</u> , turn to the pertinent section of this manual now;			
	I f No, turn to the "Exiting HYSIM" Section of this manual			

4.2.2 Mole Balance

<u>Objective</u> - This exercise is an example of the mole balance operation. This operation takes into account conservation of moles but not of energy. This example can be modified by specifying another property package and/or other components, compositions and feed/outlet conditions.

In this example, there are two feed streams (*Feed1*, *Feed2*) and two outlet streams (*Outlet1* and *Outlet2*) to and from the mole balance envelope. The temperature, pressure and composition were specified for all four streams. The molar flow rate of *Feed1* and *Feed2* were also specified and then HYSIM calculated the mole flow rate of *Outlet1* and *Outlet2*. <u>Technical Example Reference</u>: Reference 1 - Hyprotech's HYSIM User 's Guide, Version C2.50, March 1994, pages 7-54 to 7-55. <u>Other References</u>: Refs. 1 & 2.

Directions - Pages 385 through 392 outline the execution of a mole balance example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in boldtype in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside < > brackets (e.g. <Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this unit operation, called Molebal, is shown below:

Step	Action				
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).				
	• If <u>Yes</u> , proceed with Step 2.				
	• If <u>No</u> , turn to the "Starting HYSIM" Section of this manual and follow the procedures				
	before proceeding to Step 2.				
	Starting with a new case.				
2	Highlight the word No and then press the <enter> key;</enter>				
	Selecting a Property Package.				
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>				
	The following screen will appear:				

	CO	MPONENT SELECTION			
Selected	Synonym	Synonym Name Formula		Criteria	
	OIL	OIL		ALL	
	HYPOTHETICAL	HYPOTHETICAL		HC	
	C1	Methane	CH4	SOLID	
	C2	Ethane	C2H6	MISC	
	C3	Propane	СЗН8	AMINE	
	i-C4	i-Butane	C4H10	ALCOHOL	
	n-C4	n-Butane	C4H10	KETONE	
	i-C5	i-Pentane	C5H12	ALDEHYDE	
	n-C5	n-Pentane	C5H12	ESTER	
	C6	n-Hexane	C6H14	CARBACID	
	C7	n-Heptane	C7H16	HALOGEN	
	C8	n-Octane	C8H18	NITRILE	
	C9	n-Nonane	C9H20	PHENOL	
	C10	n-Decane	C10H22	ETHER	
	C11	n-Cll	C11H24	USER	
	C12	n-C12	C12H26		
│ ₩ ↓	Sea	rch by SYNONYM		1	
Fl - Help, I	F3 - Menu, F4 - F	Lip Srch, F5 - Exa	am, F6 - Move	, F8 - Change	
L	PRESS	INSERT TO SUBMIT			

Step	Action				
	Selecting the components in the process.				
4	Highlight each of the following component names under the "Component Selection" Section and press the <enter> key so that the name then appears in the "Selected" column. This "Component Selection" List is very long. Use the <page down=""> and Arrow Keys to find the following components:</page></enter>				
	Highlight the word Methane and then press the <enter> key;</enter>				
	Highlight the word Ethane and then press the <enter> key,</enter>				
	The screen will then appear as shown on the following page.				

[COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
Methane Ethane	OIL HYPOTHETICAL C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10 C11 C12 C13 C14	OIL HYPOTHETICAL Propane i-Butane n-Butane i-Pentane n-Pentane n-Heptane n-Heptane n-Octane n-Octane n-Decane n-C11 n-C12 n-C13 n-C14	C3H8 C4H10 C4H10 C5H12 C5H12 C6H14 C7H16 C8H18 C9H20 C10H22 C11H24 C12H26 C13H28 C14H20	ALL HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL ETHER USER
F1 - Help, H	 F3 - Menu, F4 PRI	Search by SYNONYM - Flip Srch, F5 - Exa SSS INSERT TO SUBMIT	am, F6 - F8 -	Move, Change

Step	Action	· · ·	
5	Press the <insert></insert> key;		
	The following screen will then appear:		

Work_Sheet PFD	Specify Remove	Operation Store	Print New
Ignore	Restore	Hold	Go
Utility	Size	Report	Toggle
Exit	?	_	
Work_Sheet streams	in a spreadsheet f	ormat	
Prop Pkg PR - SI U	nits 9879552		
>			

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Specifying that you want the units changed from the default metric system units (kPa, kg. \mathcal{C} ,
	etc.) to field units (psia, lb, F, etc.).
6	Highlight the word Utility and then press the <enter> key;</enter>
7	Highlight the word Configuration and then press the <enter> key;</enter>
8	Highlight the word Units and then press the <enter> key;</enter>
9	Highlight the word Field and then press the <enter> key;</enter>

=

Step	Action
10	Press the <esc> key.</esc>
	Specifying the conditions of the Feed1 stream.
11	Highlight the word Specify and then press the <enter> key;</enter>
12	Highlight the word Stream and then press the <enter> key;</enter>
13	Type the word Feed1 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature of the Feed1 stream in F.
14	Type the number 60 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Feed1 stream in psia.
15	Type the number 600 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the flow of the Feed1 stream in lb-mols/hr.
16	Type the number 100.0 after the prompt (>) and then press the <enter> key;</enter>
	Specifying that the composition of each component in the Feed1 stream will be in mole
	fractions.
17	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
	The screen will appear as shown below:

_____ Stream Mole Fractions =

Methane

Ethane

Step	Action			
	Specifying the molar fractions of each component in the Feed1 stream.			
18	Enter the following mole fractions beside each component in the Feed] stream:			
	After the word, Methane, type the number 0.1 in the blank and then press the <enter> key;</enter>			
	After the word, Ethane, type the number 0.9 in the blank;			
	The screen will now appear as shown below:			

		Stream	Mole	Fractions	
Methane	0.1		I	Ethane	0.9

Step	Action
19	Press the <insert> key;</insert>
	Specifying the conditions of the Feed2 stream.
20	Highlight the word Specify and then press the <enter> key;</enter>
21	Highlight the word Stream and then press the <enter> key;</enter>
22	Type the word Feed2 after the prompt (>) and then press the <enter> key;</enter>

Step	Action
	Specifying the temperature of the Feed2 stream in F.
23	Type the number 60 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Feed2 stream in psia.
24	Type the number 600 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the flow of the Feed2 stream in lb-mols/hr.
25	Type the number 100.0 after the prompt (>) and then press the <enter> key;</enter>
	Specifying that the composition of each component in the Feed2 stream will be in mole
	fractions.
26	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
	The screen will appear as shown below:

_____ Stream Mole Fractions _____

Methane

Ethane

Step	Action
	Specifying the molar fractions of each component in the Feed2 stream.
27	Enter the following mole fractions beside each component in the Feed2 stream:
	After the word, Methane, type the number 0.5 in the blank and then press the <enter> key;</enter>
	After the word, Ethane, type the number 0.5 in the blank;
	The screen will now appear as shown below:

		Stream	Mole	Fractions	
Methane	0.5		I	Ethane	0.5

Step	Action			
28	Press the <insert> key;</insert>			
	Specifying the conditions of the Outlet1 stream.			
29	Highlight the word Specify and then press the <enter> key;</enter>			
30	Highlight the word Stream and then press the <enter> key;</enter>			
31	Type the word Outlet1 after the prompt (>) and then press the <enter> key;</enter>			
	Specifying the temperature of the Outlet1 stream in F.			
32	Type the number 60 after the prompt (>) and then press the <enter> key;</enter>			
	Specifying the pressure of the Outlet1 stream in psia.			
33	Type the number 600 after the prompt (>) and then press the <enter> key;</enter>			
	Specifying the flow of the Outlet1 stream in lb-mols/hr as unknown by typing an "x".			
34	Type the letter x after the prompt (>) and then press the <enter> key;</enter>			
	Specifying the individual mole fractions of each component in the Outlet1 stream.			
35	Highlight the word Mole_Fractions and then press the <enter> key;</enter>			
	The screen will appear as shown on the following page.			

	Stream	Mole	Fractions	
Methane		ł	Sthane	

Step	Action					
	Specifying the molar fractions of each component in the Outlet1 stream.					
36	Enter the following mole fractions beside each component in the Outlet1 stream:					
	After the word, Methane, type the number 0.35 in the blank and then press the <enter> key;</enter>					
	After the word, Ethane, type the number 0.65 in the blank;					
	The screen will now appear as shown below:					

ſ			Stream	Mole	Fractions]
	Methane	0.35		1	Ethane	0.65	

Step	Action			
37	Press the <insert> key;</insert>			
	Specifying the conditions of the Outlet2_stream.			
38	Highlight the word Specify and then press the <enter> key;</enter>			
39	Highlight the word Stream and then press the <enter> key;</enter>			
40	Type the word Outlet2 after the prompt (>) and then press the <enter> key;</enter>			
	Specifying the temperature of the Outlet2 stream in F			
41	Type the number 60 after the prompt (>) and then press the <enter> key;</enter>			
	Specifying the pressure of the Outlet2 stream in psia.			
42	Type the number 600 after the prompt (>) and then press the <enter> key;</enter>			
	Specifying the flow of the Outlet2 stream in lb-mols/hr as unknown by typing an "x".			
43	Type the letter x after the prompt (>) and then press the <enter> key;</enter>			
	Specifying that the composition of each component in the Outlet2 stream will be provided in a			
	mole fraction form.			
44	Highlight the word Mole_Fractions and then press the <enter> key;</enter>			
	The screen will appear as shown below:			

	 Stream	Mole	Fractions	
Methane	 	E	Ithane	

4.2 Mass and Mole Balances (continued)

4.2.2 Mole Balance (continued)

Step	Action						
	Specifying the molar fractions of each component in the Outlet2 stream.						
45	Enter the following mole fractions beside each component in the Outlet2 stream:						
	After the word, Methane, type the number 0.25 in the blank and then press the <enter> key;</enter>						
	After the word, Ethane, type the number 0.75 in the blank;						
	The screen will now appear as shown below:						

		Stream	Mole	Fractions	
Methane	0.25		I	Ethane	0.75

Step	Action
46	Press the <insert> key;</insert>
47	Highlight the word Operation and then press the <enter> key;</enter>
	Naming the unit operation as "Molebal".
48	Type the word Molebal and then press the <enter> key;</enter>
49	Highlight the word Mole_Balance and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Balance Enve Operation Name	elope/Block
Please Fill i	in Stream Names
Inlet:	<pre>> Outlet: > Outlet: > Outlet: > Outlet: > Outlet: > Outlet: > Outlet: > Outlet:</pre>

Step	Action			
	Specifying the inlet and outlet stream names into and out of the mole balance envelope.			
50	Type the word Feed1 and then press the <enter> key.</enter>			
51	Type the word Feed2 and then press the <enter> key.</enter>			
52	Use the mouse to move the cursor to the first Outlet blank and then click the left mouse button, and type the word Outlet1 and then press the <enter> key.</enter>			
53	Type the word Outlet2 .			
	The following screen will then appear as shown on the following page.			

Bal Opera	lance Envelope/Block ====================================
Plea	ase Fill in Stream Names
<pre>Inlet: Feed1 = Inlet: Feed2 = Inlet: =</pre>	<pre>>> Outlet: Outlet1 >> Outlet: Outlet2 >> Outlet: >> Outlet: >> Outlet: >> Outlet: >> Outlet: >> Outlet:</pre>

Step	Action
54	Press the <insert> key.</insert>
55	Highlight the word Print and then press the <enter> key;</enter>

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) *Operations* - The different unit operations will be printed out.

c) <u>Spec_Sheets</u> - The specifications sheets will be printed out.

d) Hypotheticals - Hypothetical component information will be printed out.

e) *Format* - specifies the format of the printout.

f) <u>Cost</u> - Lists costs of the run, if a royalty is being charged.

g) *File* - Saves results in a file.

h) Printer - Toggles on a printer.

i) Cases - Lists the stored files.

j) *Description* - Prints case description

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action
56	Highlight the word Streams and then press the <enter> key;</enter>
57	Highlight the word All and then press the <enter> key;</enter>
58	Highlight the dash symbol - and then press the <enter> key;</enter>
	Wait for the printing to the screen to stop. Then, press the $\langle FI0 \rangle$ key to get the main menu
	off of the screen in order to see the data on the screen underneath it.
59	Press the <f10> key;</f10>
	The screen will then appear as shown on the following page. Use the <page up=""> and <page< th=""></page<></page>
	Down> or arrow keys to scroll the screen text up and down.

Stream		Feed1	Feed2	Outlet1	Outlet2
Description			,		
Vapour frac.		0.6901	1.0000	1.0000	1.0000
Temperature	F	60.0000*	60.0000*	60.0000*	60.0000*
Pressure	psia	600.0000*	600.0000*	600.0000*	600.0000*
Molar Flow	lbmole/hr	100.0000*	100.0000*	100.0000	100.0000
Mass Flow	lb/hr	2866.7201	2305.6400	2516.0452	2656.3148
LigVol Flow	barrel/day	557.6812	472.8934	504,6889	525.8857
Enthalpy	Btu/hr 25	57239.0962	378479.1626	369481.4192 3	358936.7282
Density	lb/ft3	7.4294	3.2337	3.8576	4.4302
Mole Wt.		28.6672	23.0564	25.1604	26.5632
Spec. Heat	Btu/lb-F	1.2904	0.6073	0.6560	0.7325
Therm Cond	Btu/hr-ft-F	7	0.0178	0.0172	0.0170
Viscosity	сP	~ ~ ~	0.0117	0.0118	0.0120
Z Factor			0.7671	0.7017	0.6451
Sur Tension	dyne/cm				
Std Density	lb/ft3				
Methane	mole frac.	0.1000*	0.5000*	0.3500*	0.2500*
Ethane	mole frac.	0.9000*	0.5000*	0.6500*	0.7500*

Step	Action
60	Press the <f10> key;</f10>
	Looking at the PFD (Process Flow Diagram) for the mole balance.
61	Highlight the letters PFD and then press the < Enter > key;
	The screen will then appear as shown below:

.

Step	Action		
	Getting back to the Main Menu.		
62	Press the <esc> key until you reach the Main Menu.</esc>		
63	Do you want to continue adding other unit operations to this mole balance?		
	• If Yes, turn to the pertinent section of this manual now;		
	I f No, turn to the "Exiting HYSIM" Section of this manual		

<u>Objective</u> - This exercise is an example of the set operation. This Set operation is used to set a variable (such as the temperature) of a controlled stream equal to that of another independent stream multiplied by a certain multiplier and added to some offset value. This example can be modified by specifying another property package and/or other components, compositions and feed/outlet conditions.

In this example, the pressure, molar flow rate, and composition of both the feed and outlet stream are specified; the temperature of the feed stream is also given. The set operation is used to set the temperature of the outlet stream as the temperature of the feed stream plus 10°C. HYSIM then calculates the temperature of the outlet stream.

<u>Technical Example Reference</u>: Reference 1 - Hyprotech's HYSIM User's Guide, Version C2.50, March 1994, pages 7-113 to 7-114.

Other References: Refs. 1 & 2.

Directions - Pages 394 through 399 outlines the execution of a set/controller example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside $\langle \rangle$ brackets (e.g. $\langle Esc \rangle$) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).
	• If <u>Yes</u> , proceed with Step 2.
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>
	The following screen will appear:

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	C1	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	C3	Propane	СЗН8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H20	PHENOL
	C10	n-Decane	C10H22	ETHER
	Cll	n-Cll	C11H24	USER
	C12	n-C12	C12H26	
∥ ¥ - ↓	₩ ¥;	Search by SYNONYM		1
F1 - Help,	F3 - Menu, F4	- Flip Srch, F5 - Exa	am, F6 - Move	e, F8 - Change
	PR	ESS INSERT TO SUBMIT		

Step	Action			
	Selecting the components in the process.			
4	Highlight each of the following component names under the "Component Selection" Section			
	and press the <enter> key so that the name then appears in the "Selected" column. This</enter>			
	"Component Selection" List is very long. Use the <page down=""> and Arrow Keys to find the</page>			
}	following components:			
	Highlight the word Methane and then press the <enter> key;</enter>			
	Highlight the word Ethane and then press the <enter> key;</enter>			
	The screen will then appear as shown on the following page.			

		COMPONENT SELECTION			
Selected	Synonym	Name	Formula	Criteria	
Methane	OIL	OIL		ALL	
Ethane	HYPOTHETICAL	HYPOTHETICAL		HC	
	C3	Propane	СЗНВ	SOLID	
	i-C4	i-Butane	C4H10	MISC	
	n-C4	n-Butane	C4H10	AMINE	
	i-C5	i-Pentane	C5H12	ALCOHOL	
	n-C5	n-Pentane	C5H12	KETONE	
	C6	n-Hexane	C6H14	ALDEHYDE	
	C7	n-Heptane	C7H16	ESTER	
	C8	n-Octane	C8H18	CARBACID	
	C9	n-Nonane	C9H20	HALOGEN	
	C10	n-Decane	C10H22	NITRILE	
(C11	n-C11	C11H24	PHENOL	
	C12	n-C12	C12H26	ETHER	
	C13	n-C13	C13H28	USER	
	C14	n-C14	C14H30		
│ ¥ ↓	└─── ▾ ── ↓ ────?	Search by SYNONYM			
F1 - Help, 1	F3 - Menu, F4 -	- Flip Srch, F5 - Exa	ım, F6 -	Move,	
	PRE	ESS INSERT TO SUBMIT	·F8 -	Change	

Step		Acti	011	
5	Press the <ins< th=""><th>ert> key,</th><th></th><th></th></ins<>	ert> key,		
	The following	screen will then appear:		
Work_	Sheet	Specify	Operation	Print
PFD		Remove	Store	New
Ignor	e	Restore	Hold	Go
Utili	ty	Size	Report	Toggle
Exit	-	?		

|| >

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Work_Sheet streams in a spreadsheet format

Prop Pkg PR - SI Units 9879552

Step	Action
	Specifying the conditions of the Feed stream.
6	Highlight the word Specify and then press the <enter> key;</enter>
7	Highlight the word Stream and then press the <enter> key;</enter>
8	Type the word Feed after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature of the Feed stream in C.
9	Type the number 60 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Feed stream in kilopascals (kPa).
10	Type the number 600 after the prompt (>) and then press the <enter> key;</enter>

Step	Action
	Specifying the flow of the Feed stream in kg-mols/hr.
11	Type the number 100.0 after the prompt (>) and then press the <enter></enter> key;
	Specifying that the composition of each component in the Feed stream will be specified in mole
	fractions.
12	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
	The screen will appear as shown below:

Methane _____ Stream Mole Fractions _____

Step	Action
	Specifying the molar fractions of each component in the Feed stream.
13	Enter the following mole fractions beside each component in the Feed stream:
	After the word, Methane, type the number 0.5 in the blank and then press the <enter> key;</enter>
	After the word, Ethane, type the number 0.5 in the blank;
	The screen will now appear as shown below:

ĺ			Stream	Mole	Fractions	
	Methane	0.5		H	Ethane	0.5
						l

Step	Action
14	Press the <insert> key;</insert>
	Specifying the conditions of the Outlet stream.
15	Highlight the word Specify and then press the <enter> key;</enter>
16	Highlight the word Stream and then press the <enter> key;</enter>
17	Type the word Outlet after the prompt (>) and then press the <enter></enter> key;
	Specifying the temperature of the Outlet stream in $\mathcal C$ as unknown by typing an "x".
18	Type the letter x after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Outlet stream in kilopascals (kPa).
19	Type the number 700 after the prompt (>)and then press the <enter> key;</enter>
	Specifying the flow of the Outlet stream in kg-mols/hr.
20	Type the number 100.0 after the prompt (>) and then press the <enter> key;</enter>
	Specifying that the composition of each component in the Outlet stream will be in mole
	fráctions.
21	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
	The screen will appear as shown below:

Methane _____ Ethane _____

4.3 Set/Controllers (continued)

Step	Action
	Specifying the molar fractions of each component in the Outlet stream.
22	Enter the following mole fractions beside each component in the Outlet stream:
	After the word, Methane, type the number 0.5 in the blank and then press the <enter> key;</enter>
	After the word, Ethane, type the number 0.5 in the blank;
	The screen will now appear as shown below:

			Stream	Mole	Fractions	
Contrast of the local division of the local	Methane	0.5]	Ethane	0.5

Step	Action
23	Press the <insert> key;</insert>
24	Highlight the word Operation and then press the <enter> key;</enter>
	Naming the set operation as "Set".
25	Type the word Set and then press the <enter> key;</enter>
26	Highlight the word Set and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Operation Name	Set/(Controller Blo	DCK	
Controlled Variable	Controlled Stream	Multiplier	Independent Stream	Offset
of	=	= 1.0000 >	۲ 	+ 0.0000_

Step	Action
	Specifying the controlled variable and stream, the multiplier, the independent stream and the offset value.
27	Type the word Temperature and then press the <enter></enter> key.
28	Type the word Outlet and then press the <enter> key two times.</enter>
29	Type the word Feed and then press the <enter> key.</enter>
30	Type the number 10.00.
	The screen will then appear as shown on the following page.

Operation Name:	Set/C	Controller Blo	ock —————	
Controlled Variable	Controlled Stream	Multiplier	Independent Stream	Offset
Temperatur of	E Outlet =	= 1.0000 +	Feed	+ 10.00

Step	Action	ł
31	Press the <insert> key.</insert>	
32	Highlight the word Print and then press the <enter> key;</enter>	

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) Operations - The different unit operations will be printed out.

c) <u>Spec_Sheets</u> - The specifications sheets will be printed out.

d) Hypotheticals - Hypothetical component information will be printed out.

e) *Format* - Specifies the format of the printout.

f) <u>Cost</u> - Lists costs of the run, if a royalty is being charged.

g) *File* - Saves the results in a file.

h) Printer - Toggles on a printer.

i) Cases - Lists the stored files.

j) Description - Prints case description.

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action
33	Highlight the word Streams and then press the <enter> key;</enter>
34	Highlight the word All and then press the <enter> key;</enter>
35	Highlight the dash symbol - and then press the <enter> key;</enter>
	Wait for the printing to the screen to stop. Then, press the <f10> key to get the Main Menu</f10>
	off of the screen in order to see the data on the screen underneath it.
36	Press the $$ key;
	The screen will then appear as shown on the following page.

Stream		Feed	Outlet
Description			
Vapour frac		1.0000	1.0000
Temperature	С	60.0000*	70.0000
Pressure	kPa	600.0000*	700.0000*
Molar Flow	kgmole/h	100.0000*	100.0000*
Mass Flow	kg/h	2305.6401	2305.6401
LiqVol Flow	m3/h	6.9063	6.9063
Enthalpy	kJ/h	1.24192E+06	1.28744E+06
Density	kg/m3	5.0990	5.7828
Mole Wt.	· · · · · ·	23.0564	23.0564
Spec. Heat	kJ/kg-C	2.0828	2.1221
Therm Cond	W/m-K	0.0319	0.0333
Viscosity	СР	0.0117	0.0121
Z Factor		0.9795	0.9782
Sur Tension	dyne/cm		
Std Density	kg/m3	_ ~ _	
Methane	mole frac.	0.5000*	0.5000*
Ethane	mole frac.	0.5000*	0.5000*

Step	Action	
37	Press the $\langle F10 \rangle$ key;	
38	Do you want to continue adding other unit operations to this set operation?	
	• If <u>Yes</u> , turn to the pertinent section of this manual now;	
	If No, turn to the "Exiting HYSIM" Section of this manual	

<u>Objective</u> - This exercise is an example of the Adjust/Controllers operation in HYSIM. This operation allows the HYSIM user to make a variable for one stream, called the dependent variable (e.g. the flowrate), dependent on a variable for another stream called the adjust variable (e.g. the temperature). The HYSIM user must specify the target value of the Dependent Variable and also the convergence criteria (Target Tolerance and Adjusted Variable step size). This example can be modified by specifying another property package and/or other components, compositions and feed conditions.

In this example, a *Feed* stream containing ten different hydrocarbons is fed into a two phase separator, which separates the vapor and liquid product streams. The adjust operation is used to adjust the temperature of the feed stream until the flow rate of the liquid product stream, *Seplig*, is equal to 100 lb-mols/hr.

<u>Technical Example Reference</u>: Reference 1 - Hyprotech's HYSIM User's Guide, Version C2.50, March 1994, pages 7-15 to 7-26. <u>Other References</u>: Refs. 1 & 2.

Directions - Pages 401 through 411 outline the execution of an adjuster/controller example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <> brackets (e.g.<Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

4.4 Adjust/Controllers (continued)

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).
	• If <u>Yes</u> , proceed with Step 2.
	 If <u>No</u>, turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
3	Highlight the word Peng-Robinson and then press the <enter></enter> key;
	The following screen will appear:

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	C1	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	C3	Propane	СЗН8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	1-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H2O	PHENOL
	C10	n-Decane	C10H22	ETHER
	C11	n-C11	C11H24	USER
	C12	n-C12	C12H26	
∥ ♥ ↓	└──── ♥ ── ↓ ────?	Search by SYNONYM		L
F1 - Help,	F3 - Menu, F4 PRI	- Flip Srch, F5 - Exa ESS INSERT TO SUBMIT	um, F6 - Move,	, F8 - Change

4.4 Adjust/Controllers (continued)

Step	Action	
	Selecting the components in the feed stream.	
4	Highlight each of the following component names under the "Component Selection" Section and press the <enter> key so that the name then appears in the "Selected" column. This</enter>	
	"Component Selection" List is very long. Use the <page down=""> and Arrow Keys to find the</page>	
	following components:	
	Highlight the word Methane and then press the <enter> key;</enter>	
	Highlight the word Ethane and then press the <enter> key;</enter>	
	Highlight the word Propane and then press the < Enter > key;	
	Highlight the word i-Butane and then press the <enter> key;</enter>	
	Highlight the word n-Butane and then press the <enter></enter> key;	
	Highlight the word i-Pentane and then press the <enter> key;</enter>	
	Highlight the word n-Pentane and then press the <enter></enter> key;	
	Highlight the word n-Hexane and then press the <enter> key;</enter>	
	Highlight the word n-Heptane and then press the <enter> key;</enter>	
	Highlight the word n-Octane and then press the <enter> key;</enter>	
	The following screen will then appear:	

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Octane	OIL HYPOTHETICAL C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19	OIL HYPOTHETICAL n-Nonane n-Decane n-C11 n-C12 n-C13 n-C14 n-C15 n-C16 n-C17 n-C18 n-C19	C9H20 C10H22 C11H24 C12H26 C13H28 C14H30 C15H32 C16H34 C17H36 C18H38 C19H40	ALL HC SOLID MISC AMINE ALCOHOL KETONE ALDEHYDE ESTER CARBACID HALOGEN NITRILE PHENOL
▼ ↓ F1 - Help, 1	C20 C21 C22 F3 - Menu, F4 PRI	n-C20 n-C21 Search by SYNONYM - Flip Srch, F5 - Exa ESS INSERT TO SUBMIT	C20H42 C21H44 C22H46 Am, F6 - F8 -	ETHER USER Move, Change

Step	Action
5	Press the <insert> key;</insert>
	The screen on the following page will then appear.

Work_Sheet	Specify Remove	Operation	Print
Ignore	Restore	Hold	GO
Utility Exit	Size	Report	Toggle
Work_Sheet streams Prop Pkg PR - SI U	in a spreadsheet nits 9879552	format	
>			

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Specifying that you want the units changed from the default metric system (kPa, kg, \mathcal{C} , etc.) to
	field units (psia, lb, °F, etc.).
6	Highlight the word Utility and then press the <enter> key;</enter>
7	Highlight the word Configuration and then press the <enter> key;</enter>
8	Highlight the word Units and then press the <enter> key;</enter>
9	Highlight the word Field and then press the <enter> key;</enter>
10	Press the <esc></esc> key.
	Specifying the conditions of the Feed stream.
11	Highlight the word Specify and then press the <enter> key;</enter>
12	Highlight the word Stream and then press the <enter> key;</enter>
13	Type the word Feed after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature of the Feed in F.
14	Type the number 60 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Feed in psia.
15	Type the number 600 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the flow of the Feed stream in lb-mols/hr.
16	Type the number 144.0 after the prompt (>) and then press the <enter> key;</enter>
	Specifying that the composition of each component in the Feed will be given in mole fractions.
17	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
	The screen will appear as shown below:

	Stream	Mole	Fractions	
Methane		E	Sthane	
n-Butane		د i	-Pentane	****
n-Pentane		r	n-Hexane	
n-Heptane		ſ	n-Octane	

Step	Action
	Specifying the molar fractions of each component in the Feed stream.
18	Enter the following mole fractions beside each component in the Feed stream:
	After the word, Methane, type the number 0.4861 in the blank and then press the <enter> key;</enter>
	After the word, Ethane, type the number 0.1389 in the blank and then press the <enter> key;</enter>
	After the word, Propane, type the number 0.0694 in the blank and then press the <enter> key;</enter>
	After the word, i-Butane, type the number 0.0625 in the blank and then press the <enter> key;</enter>
	After the word, n-Butane, type the number 0.0556 in the blank and then press the <enter> key;</enter>
	After the word, i-Pentane, type the number 0.0486 in the blank and then press the <enter> key;</enter>
	After the word, n-Pentane, type the number 0.0417 in the blank and then press the <enter> key;</enter>
	After the word, n-Hexane, type the number 0.0486 in the blank and then press the <enter> key;</enter>
	After the word, n-Heptane, type the number 0.0278 in the blank and then press the <enter> key;</enter>
	After the word, n-Octane, type the number 0.0208 in the blank,
	The screen will now appear as shown below:

_____ Stream Mole Fractions _____

Methane	0.4861	Ethane	0.1389	
Propane	0.0694	i-Butane	0.0625	
n-Butane	0.0556	i-Pentane	0.0486	
n-Pentane	0.0417	n-Hexane	0.0486	
n-Heptane	0.0278	n-Octane	0.0208	
n-Butane n-Pentane n-Heptane	0.0556 0.0417 0.0278	i-Butane i-Pentane n-Hexane n-Octane	0.0625_ 0.0486_ 0.0486_ 0.0208_	

ſ

Step	Action
19	Press the < Insert > key;
20	Highlight the word Operation and then press the <enter> key;</enter>
	Naming the Separator as "V-100".
21	Type the name V-100 and then press the <enter> key;</enter>
22	Highlight the word Separator and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Step	Action
	Specifying the inlet and outlet stream names into and out of Separator.
23	Type the word Feed and then press the <enter> key.</enter>
24	Type the word Sepliq and then press the <enter> key.</enter>
25	Type the word Sepvap
	The following screen will then appear:

Step	Action
26	Press the <insert> key;</insert>
27	Highlight the word Operation and then press the <enter> key;</enter>
	Naming the Adjust Operation as "Adjust".
28	Type the name Adjust and then press the <enter> key;</enter>
29	Highlight the word Adjust and then press the <enter> key;</enter>
	The screen will then appear as shown below:

= Operation Adjust 🛛 💳 Adjust/Controller 💳 💳 Target Indep Variable Dependent Variable Equals the of Dependent Adjust until Target value Stream Variable Variable OR OR of Stream Component Equals Value Heat in Stream Exchanger Convergence Criteria Adjusted Variable Target Minimum Solution Type Tolerance Step Size Maximum Secant____

Step	Action
	Specifying the Independent or Adjust Variable.
30	Type the word Temperature and then press the <enter></enter> key;
	Specifying the Stream name containing the Independent Variable to be adjusted.
31	Type the name Feed and then press the <enter> key;</enter>
	Specifying the Dependent Variable.
32	Type the word Flow and then press the <enter> key two times;</enter>
	Specifying the Stream name containing the Dependent Variable, for which a target value will
	be specified.
33	Type the name Sepliq and then press the <enter> key two times;</enter>
	Specifying the Target value for the Flow Rate of stream Sepliq as 100.0000 lb-mols/hr.
34	Type the number 100.0000 and then press the <enter> key two times;</enter>
	Specifying the converged tolerance of the dependent variable.
35	Type the number 1.0000 and then press the <enter> key,</enter>
	Specifying the Step Size used to adjust the independent variable.
36	Type the number 20.000 and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Step	Action
37	Press the <insert> key.</insert>
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the Main Menu off of the screen in order to see the data on the screen underneath it.
38	Press the $\langle F10 \rangle$ key;
	The screen will then appear as shown on the following page.

Your selected Methane i-Pentane	l components Ethane n-Pentane	are	Propane n-Hexane	i-Butane n-Heptane		n-Butane n-Octane
Adjust Adjust	Iteration 74.366 vs	1:	Temperature of 100.00 lbmole	60.000 /hr	F	gives
Adjust Adjust Flow of	Iteration 68.700 vs	2:	Temperature of 100.00 lbmole,	80.000 /hr	F	gives
Adjust Adjust Flow of	Iteration 80.188 vs	3:	Temperature of 100.00 lbmole,	40.000 /hr	F	gives
Adjust Adjust Flow of	Iteration 86.376 vs	4:	Temperature of 100.00 lbmole,	20.000 /hr	F	gives
Adjust Adjust Flow of	Iteration 93.248 vs	5:	Temperature of 100.00 lbmole,	1.9073E-06 /hr	F	gives
Adjust Adjust Flow of	Iteration 101.34 vs	6:	Temperature of 100.00 lbmole,	-20.000 /hr	F	gives
Adjust Adjust Flow of Adjust Adjust	Iteration 99.881 vs Converged	7:	Temperature of 100.00 lbmole,	-16.684 /hr	F	gives

Step	Action
39	Press the <f10> key;</f10>
40	Highlight the word Print and then press the <enter> key;</enter>

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) Operations - The different unit operations will be printed out.

c) <u>Spec_Sheets</u> - The specifications sheets will be printed out.

- d) *Hypotheticals* Hypothetical component information will be printed out.
- e) Format Specifies the format of the printout.
- f) <u>Cost</u> Lists costs of the run, if a royalty is being charged.
- g) File Saves results in a file.

h) Printer - toggles on a printer.

- i) *Cases* Lists the stored files.
- j) Description Prints case description.
- k) Oil Input Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action
41	Highlight the word Streams and then press the <enter> key;</enter>
42	Highlight the word All and then press the <enter> key;</enter>
43	Highlight the dash symbol - and then press the <enter> key;</enter>
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the Main Menu
	off of the screen in order to see the data on the screen underneath it.
44	Press the <f10> key;</f10>
	The screen will then appear as shown below. Use the $\langle Page Up \rangle$ and $\langle Page Down \rangle$ or
	arrow keys to scroll the screen text up and down.

Stream		Feed	Sepliq	Sepvap
Description				
Vapour frac		0.3064	0.0000	1.0000
Temperature	F	-16.6836*	-16.6836	-16.6836
Pressure	psia	600.0000*	600.0000	600.0000
Molar Flow	lbmole/hr	144.0000*	99.8812	44.1188
Mass Flow	lb/hr	5438.1809	4653.8385	784.3422
LiqVol Flow	barrel/day	788.6361	617.2932	171.3429
Enthalpy	Btu/hr	-73747.2829	-207126.4622	133379.1830
Density	lb/ft3	13.3722	35.6979	2.8386
Mole Wt.		37.7651	46.5938	17.7779
Spec. Heat	Btu/lb-F	0.5538	0.5378	0.6484
Therm Cond	Btu/hr-ft-F		0.0674	0.0175
Viscosity	сP		0.1879	0.0107
Z Factor			0.1647	0.7905
Sur Tension	dyne/cm		11.3211	
Std Density	lb/ft3		31.8352	
Methane	mole frac.	0.4861*	0.3011	0.9049
Ethane	mole frac.	0.1389*	0.1666	0.0762
Propane	mole frac.	0.0694*	0.0952	0.0111
i-Butane	mole frac.	0.0625*	0.0884	0.0039
n-Butane	mole frac.	0.0556*	0.0791	0.0024
i-Pentane	mole frac.	0.0486*	0.0697	0.0008
n-Pentane	mole frac.	0.0417*	0.0599	0.0005
n-Hexane	mole frac.	0.0486*	0.0700	0.0002
n-Heptane	mole frac.	0.0278*	0.0401	0.0000
n-Octane	mole frac.	0.0208*	0.0300	0.0000

Step	Action
45	Press the <f10> key;</f10>
	Looking at the PFD (Process Flow Diagram) for the Separator.
46	Highlight the letters PFD and then press the < Enter > key;
	The screen will then appear as shown on the following page.

Step	Action
47	Press the <esc> key.</esc>
48	Highlight the word Print and then press the <enter> key;</enter>

The various print options can be found on page 407.

Step	Action
49	Highlight the word Spec_Sheets and then press the <enter> key;</enter>
50	Highlight the word Operations and then press the <enter> key;</enter>
51	Highlight the name V-100 and then press the <enter> key;</enter>
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the Main Menu
	off of the screen in order to see the data on the screen underneath it.
52	Press the <f10> key;</f10>
	The screen will then appear as shown on the next page Use the <page up=""> and <page< th=""></page<></page>
	Down> or arrow keys to scroll the screen text up and down.

HYSIM VESSEL SPECIFICATION SHEET =	
HYSIM Version C2.53 Case Name	Date 96/07/17 Time 13:42:55
Operation Name: V-100 Operation Note:	
Stream Operat Inlet: Feed from Vapour: Sepvap to HC Liquid: Sepliq to Hvy Liquid: to	ion Flowrate 5438.1809 lb/hr 784.3422 lb/hr 4653.8385 lb/hr lb/hr
Inlet Properties at Operating Conds	Inlet Mixed Liquid Properties
Temperature -16.6836 F Pressure 600.0000 psia Mass Frac Vap 0.1442 Density 13.3722 lb/ft3 Mol. Weight 37.7651	Density 35.6979 lb/ft3 Spec. Grav. 0.5730 SG_H2O60 Mol. Weight 46.5938 Surface Tens.11.3211 dyne/cm Viscosity 0.1879 cP
Vapour Outlet Properties	
Density 2.8386 lb/ft3 Mol. Weight 17.7779 Z Factor 0.7905 Viscosity 0.0107	
Hydrocarbon Liquid Outlet Properties	
Density 35.6979 lb/ft3 Spec. Grav. 0.5730 SG_H2060 Mol. Weight 46.5938 Surface Tens. 11.3211 dyne/cm Viscosity 0.1879 cP	
Heavy Liquid Outlet Properties	
Density lb/ft3 Spec. Grav SG_H2060 Mol. Weight	
Surface Tens dyne/cm Viscosity CP	
NOTES :	

4.4 Adjust/Controllers (continued)

Step	Action
53	Press the <f10> key;</f10>
54	Do you want to continue adding other operations to this adjust/controller operation?
	• If <u>Yes</u> , turn to the pertinent section of this manual now;
	If No, turn to the "Exiting HYSIM" Section of this manual

<u>Objective</u> - This exercise is an example of the single recycle stream operation in HYSIM. This operation allows the HYSIM user to recycle a stream used in a process. This example can be modified by specifying another property package and/or other components, compositions and feed conditions.

In this example, a process is specified to HYSIM which includes a recycle stream, <u>Recy.</u> The <u>Feed</u> stream to the process is mixed with the Recy recycle steam in a mixer, <u>M-1</u>. The resultant product from this mixer, <u>V-1 Feed</u> stream is fed into a separator, <u>V-1</u>. The vapor product stream from the separator, <u>V-1 Vap</u>, is then fed into a expander, <u>Ex-1</u>. The outlet stream from the compressor, <u>V-2 Feed</u>, is then fed into another separator, <u>V-2</u>. The liquid product stream from the V-2 separator is then separated by half, into streams <u>T-1 Prod</u> and <u>P-1 Feed</u>, with the use of the tee operation, <u>T-1</u>. The P-1 Feed stream is then fed into a pump, <u>Pump-1</u>. The outlet stream from the pump, <u>P-1 Out</u>, is then recycled to the mixer, <u>M-1</u>. <u>Technical Example Reference</u>: Reference 1 - Hyprotech's HYSIM User's Guide, Version C2.50, March 1994, pages 7-90 to 7-108. (This section in the User's Guide should be consulted if multiple recycle streams are required). <u>Other References</u>: Refs. 1 & 2.

Directions - Pages 413 through 431 outline the execution of a process with a recycle stream. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <> brackets (e.g.<Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

A process flow diagram for this process containing a recycle, called <u>*R-1*</u>, is shown below:

4.5 Recycle (continued)

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).
	• If <u>Yes</u> , proceed with Step 2.
	• If <u>No</u> , turn to the "Starting HYSIM" Section of this manual and follow the procedures
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>
	The following screen will appear:

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	Cl	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	C3	Propane	СЗН8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	1-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H2O	PHENOL
	C10	n-Decane	C10H22	ETHER
	C11	n-Cll	C11H24	USER
	C12	n-C12	C12H26	
V J		Search by SYNONYM		L
гі - неір,) 	F3 - Menu, F4 PRI	- Flip Srch, F5 - Exa ESS INSERT TO SUBMIT	am, F6 - Move	, F8 - Change

Step	Action
	Selecting the components in the feed stream.
4	Highlight each of the following component names under the "Component Selection" Section
	and press the < Enter > key so that the name then appears in the "Selected" column. This
	"Component Selection" List is very long. Use the <page down=""> and Arrow Keys to find the</page>
	following components:
	Highlight the word Methane and then press the <enter> key;</enter>
	Highlight the word Ethane and then press the <enter> key;</enter>
	Highlight the word Propane and then press the <enter> key,</enter>
	Highlight the word i-Butane and then press the <enter> key;</enter>
	Highlight the word n-Butane and then press the <enter> key;</enter>
	Highlight the word i-Pentane and then press the <enter> key;</enter>
	Highlight the word n-Pentane and then press the <enter> key;</enter>
	Highlight the word n-Hexane and then press the <enter> key;</enter>
	Highlight the word n-Heptane and then press the <enter> key;</enter>
	Highlight the word n-Octane and then press the <enter> key;</enter>
	Highlight the word Nitrogen and then press the <enter> key;</enter>
	Highlight the formula CO2 and then press the <enter> key</enter>
	The following screen will then appear:

		COMPONENT SELECTI	0N======	
Selected	Synonym	Name	Formula	Criteria
▲ — ↑ —	<u>↓</u> _ ↑			
Methane	C12	C12	C12	ALL
Ethane	HC1	HCl	HCl	HC
Propane	F2	F2	F2	SOLID
i-Butane	HF	HF	HF	MISC
n-Butane	Br2	Bromine	Br2	AMINE
i-Pentane	HBr	HBr	HBr	ALCOHOL
n-Pentane	12	Iodine	12	KETONE
n-Hexane	HI	HI	HI	ALDEHYDE
n-Heptane	NitricOxide	NO	NO	ESTER
n-Octane	NO2	NO2	NO2	CARBACID
Nitrogen	N20	N20	N20	HALOGEN
CO2	N204	N204	N2O4	NITRILE
	SO2	S02	SO2	PHENOL
	SO3	SO3	SO3	ETHER
	CO	CO	CO	USER
	Sulphur_Rhomb	ic S_Rhombic	S	
- V - V - V - Search by SYNONYM-				
F1 - Help,	F3 - Menu, F4 -	Flip Srch, F5 -	Exam,F6 - N	Move,F8 - Change
i i	PRESS INSERT TO SUBMIT			

Step	Action
5	Press the <insert> key;</insert>
	The screen on the following page will then appear.

Work_Sheet	Specify	Operation	Print
PFD	Remove	Store	New
Ignore	Restore	Hold	Go
Utility	Size	Report	Toggle
Exit Work_Sheet streams Prop Pkg PR - SI Ui	? in a spreadsheet fo nits 9879552	ormat	
>			

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Specifying that you want the units changed from the default metric system (kPa, kg, \mathcal{C} , etc.) to
	field units (psia, lb, F, etc.).
6	Highlight the word Utility and then press the <enter> key;</enter>
7	Highlight the word Configuration and then press the <enter> key;</enter>
8	Highlight the word Units and then press the <enter> key,</enter>
9	Highlight the word Field and then press the <enter> key;</enter>
10	Press the <esc> key.</esc>
	Specifying the conditions of the Feed stream.
11	Highlight the word Specify and then press the <enter> key;</enter>
12	Highlight the word Stream and then press the <enter> key;</enter>
13	Type the word Feed after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature of the Feed in F.
14	Type the number 60 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Feed in psia.
15	Type the number 600 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the flow of the Feed stream in lb-mols/hr.
16	Type the number 2635.3364 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the individual mole fractions of each component in the Feed.
17	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
	The screen will appear as shown below:

------ Stream Mole Fractions -----

Methane	Ethane	
Propane	 i-Butane	
n-Butane	 i-Pentane	
n-Pentane	n-Hexane	
n-Heptane	n-Octane	
Nitrogen	C02	

4.5 Recycle (continued)

Step	Action
	Specifying the molar fractions of each component in the Feed stream.
18	Enter the following mole fractions beside each component in the Feed stream:
	After the word, Methane, type the number 0.4826 in the blank and then press the <enter> key;</enter>
	After the word, Ethane, type the number 0.1379 in the blank and then press the <enter> key;</enter>
	After the word, Propane, type the number 0.0690 in the blank and then press the <enter> key;</enter>
	After the word, i-Butane, type the number 0.0621 in the blank and then press the <enter> key;</enter>
	After the word, n-Butane, type the number 0.0552 in the blank and then press the <enter> key;</enter>
	After the word, i-Pentane, type the number 0.0483 in the blank and then press the <enter> key;</enter>
	After the word, n-Pentane, type the number 0.0414 in the blank and then press the <enter> key;</enter>
	After the word, n-Hexane, type the number 0.0345 in the blank and then press the <enter> key;</enter>
	After the word, n-Heptane, type the number 0.0276 in the blank and then press the <enter> key;</enter>
	After the word, n-Octane, type the number 0.0207 in the blank and then press the <enter> key;</enter>
	After the word, Nitrogen, type the number 0.0069 in the blank and then press the <enter> key;</enter>
· · · · · ·	After the formula, CO2, type the number 0.0138 in the blank;
	The screen will now appear as shown below:

_____ Stream Mole Fractions _____

Methane	0.4826
Propane	0.0690
n-Butane	0.0552
n-Pentane	0.0414
n-Heptane	0.0276
Nitrogen	0.0069

Ethane	0.1379
i-Butane	0.0621
i-Pentane	0.0483
n-Hexane	0.0345
n-Octane	0.0207
C02	0.0138

Step	Action
19	Press the <insert> key;</insert>
20	Highlight the word Operation and then press the <enter> key;</enter>
	Naming the Mixer as "M-1".
21	Type the name M-1 and then press the <enter> key;</enter>
22	Highlight the word Mixer and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Adiabatic Mixer
Operation Name: M.1
Operation Name: M-1
Do all mixed streams have the same pressure?
Please Fill in Stream Names
Inlet ·
Inlet ·
Inlet ·
Inict.
Inlet:
Inlet: =>

4.5 Recycle (continued)

Step	Action
	Answering the question, "Do all mixed streams have the same pressure?"
23	Type the word Yes and then press the <enter> key;</enter>
	Specifying the inlet and outlet stream names into and out of the Mixer, M-1.
24	Type the word V-1_Feed and then press the <enter> key.</enter>
25	Type the word Feed and then press the <enter> key.</enter>
26	Type the word Recy.
	The following screen will then appear:

Operation Name	e: M-1
Do all mixed streams ha	ave the same pressure? Yes
Please Fill in	n Stream Names
<pre>Inlet: Feed => Inlet: Recy => Inlet: => Inlet: => Inlet: => Inlet: => Inlet: =></pre>	→ Outlet: V-1_Feed

Step	Action
27	Press the <insert></insert> key;
28	Highlight the word Operation and then press the <enter> key;</enter>
	Naming the Separator as "V-1".
29	Type the name V-1 and then press the <enter> key;</enter>
30	Highlight the word Separator and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Step	Action
	Specifying the inlet and outlet stream names into and out of Separator, V-1.
31	Type the word V-1_Feed and then press the <enter> key.</enter>
32	Type the word V-1_Liq and then press the <enter> key.</enter>
33	Type the word V-1_Vap.
	The following screen will then appear:

Step	Action
34	Press the <insert> key;</insert>
35	Highlight the word Operation and then press the <enter> key;</enter>
	Naming the Expander as "Ex-1".
36	Type the name Ex-1 and then press the <enter> key;</enter>
37	Highlight the words Comp/Expander and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Step	Action					
	Specifying the inlet and outlet stream names into and out of Expander, Ex-1.					
38	Type the word V-1_Vap and then press the <enter> key.</enter>					
39	Type the word V-2_Feed and then press the <enter> key.</enter>					
40	Type the word E-1 Duty and then press the <enter> key.</enter>					
41	Press the <f2> key and highlight the word Expander and then press the <enter> key;</enter></f2>					
	The following screen will then appear:					

Step	Action				
42	Press the <insert> key and then highlight the word Operation and press the <enter> key;</enter></insert>				
	Naming the second Separator as "V-2".				
43	Type the name V-2 and then press the <enter> key;</enter>				
44	Highlight the word Separator and then press the <enter> key;</enter>				
	The screen will then appear as shown below:				

Step	Action				
	Specifying the inlet and outlet stream names into and out of Separator. V-2.				
45	Type the word V-2_Feed and then press the <enter> key.</enter>				
46	Type the word V-2_Liq and then press the <enter> key.</enter>				
47	Type the word V-2_Vap.				
	The following screen will then appear:				

Step	Action					
48	Press the <insert> key;</insert>					
49	Highlight the word Operation and then press the <enter></enter> key;					
	Naming the Tee as "T-1".					
50	Type the name T-1 and then press the <enter> key;</enter>					
51	Highlight the word Tee and then press the <enter> key;</enter>					
	The screen will then appear as shown below:					

Step	Action				
	Specifying the inlet and outlet stream names into and out of the Tee, T-1.				
52	Type the word V-2 Liq and then press the <enter> key.</enter>				
53	Type the word P-1 Feed and then press the <enter> key.</enter>				
54	Type the word T-1_Prod.				
	The following screen will then appear:				

Step	ep Action					
55	Press the <insert> key;</insert>					
56	Highlight the word Operation and then press the <enter> key;</enter>					
	Naming the Pump as "Pump-1".					
57	Type the name Pump-1 and then press the < Enter > key;					
58	Highlight the word Pump and then press the < Enter > key;					
	The screen will then appear as shown below:					

Operation Name: Pump-1
Please Fill in Stream Names and Efficiency
<pre>Inlet: (→ Outlet:</pre>
Energy / \ Stream: Efficiency: 75.00_ %

Step	Action				
	Specifying the inlet and outlet stream names into and out of the Pump, Pump-1.				
59	Type the word P-1_Feed and then press the <enter> key</enter>				
60	Type the word P-1 Out and then press the <enter> key.</enter>				
61	Type the word Duty2 .				
	The following screen will then appear:				
	Liquid Pump				

Operation Name: Pump-1
Please Fill in Stream Names and Efficiency
Inlet: P-1_Feed (\rightarrow) Outlet: P-1_Out
Stream: Efficiency: 75.00_ %

Step	Action	
62	Press the <insert> key;</insert>	
63	Highlight the word Operation and then press the <enter></enter> key;	
	Naming the Set operation as "S-1".	
64	Type the name S-1 and then press the <enter> key;</enter>	
65	Highlight the word Set and then press the <enter> key;</enter>	
	The screen will then appear as shown below:	

Operation Name: S-1					
Controlled Variable	Controlled Stream	Multiplier	Independent Stream	Offset	
0	f =	= 1.0000	*	- 0.0000_	

Step	Action
	Specifying the controlled variable.
66	Type the word Flow and then press the <enter> key.</enter>
	Specifying the controlled stream name.
67	Type the word P-1_Feed and then press the <enter> key.</enter>
	Specifying the Multiplier of the independent stream's flow rate.
68	Type the number 0.5 and then press the <enter> key;</enter>
	Specifying the Independent stream name.
69	Type the word V-2_Liq and then press the <enter> key</enter>
	The screen will then appear as shown on the following page.

	Set/Controller Block						
0p	eration Name	e:S-1					
	Controlled Variable	Controlled Stream	Multiplier	Independent Stream	Offset		
	Flow of	P-1_Feed =	0.5	* V-2_Liq +	- 0.0000_		

Step	Action
70	Press the <insert> key;</insert>
71	Highlight the word Operation and then press the <enter> key;</enter>
	Naming the Recycle operation as "R-1".
72	Type the name \mathbf{R} -1 and then press the $\langle \mathbf{Enter} \rangle$ key;
73	Highlight the word Recycle and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Max Iters:	5	Type: Nested_			Inlet	Stream	
Wegste	in Count	: 3]===			
Q	Max:	0.00					
Q	Min:	-20.00					
S	ensitivi	ties					
Phase Frac.	10.0	Flow	10.0		Outlet	Stream	
Temperature	10.0	Enthalpy	10.0				
Pressure	10.0	Composition	10.0				

Step	Action
	Specifying the inlet stream name.
74	Type the word P-1_Out and then press the <enter> key.</enter>
	Specifying the outlet stream name.
75	Type the word Recy and then press the < Enter > key.
	Specifying the maximum number of iterations.
76	Type the number 10 and then press the <enter> key five times.</enter>

Step	Action
	Specifying the Sensitivity of the Phase Fraction.
77	Type the number 1.00 and then press the <enter> key;</enter>
	Specifying the Sensitivity of the Temperature.
78	Type the number 1.00 and then press the <enter> key;</enter>
	Specifying the Sensitivity of the Pressure.
79	Type the number 1.00 and then press the <enter> key;</enter>
	Specifying the Sensitivity of the Flow.
80	Type the number 1.00 and then press the <enter> key;</enter>
	Specifying the Sensitivity of the Enthalpy.
81	Type the number 1.00 and then press the <enter> key;</enter>
	Specifying the Sensitivity of the Composition.
82	Type the number 1.00.
	The following screen will then appear:

peration R-1.		Recycle Opera	ation $=$	
Max Iters: 1	0	Type: Nested_] Inlet Stream
Wegste	in Count	: 3		P-1_Out
Q	Max:	0.00		
Q	Min:	-20.00		
S	ensitivi	ties		
Phase Frac.	1.00_	Flow	1.00_	Outlet Stream
Temperature	1.00_	Enthalpy	1.00_	Recy
Pressure	1.00_	Composition	1.00_	

Step	Action
83	Press the <insert> key;</insert>
	Specifying the Conditions and initial composition of the Recycle (Recy) stream.
84	Highlight the word Specify and then press the <enter> key;</enter>
85	Highlight the word Stream and then press the <enter> key;</enter>
86	Highlight the name Recy and then press the <enter> key;</enter>

Step	Action
	Specifying the temperature in F of the Recycle (Recy) stream.
87	Type the number 60 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Recycle (Recy) stream in psia.
88	Type the number 600 after the prompt and then press the <enter> key;</enter>
	Specifying the flow of the Recycle (Recy) stream in lb-mols/hr.
89	Type the number 0 after the prompt $(>)$ and then press the <enter></enter> key;
	Specifying that the composition of each component in the Recycle (Recy) stream will be
	specified in mole fractions.
90	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
	The screen will appear as shown below:

	== Stream Mole	Fractions	
Methane Propane n-Butane n-Pentane n-Heptane Nitrogen		Ethane i-Butane i-Pentane n-Hexane n-Octane CO2	

V.						
V.						
V.						
y,						
γ;						
у;						
ey;						
ey;						
ey;						
ey;						
key;						
After the word, n-Octane, type the number 0.0 in the blank and then press the <enter> key;</enter>						
у,						

Step	Action
92	Press the <insert> key.</insert>
93	Highlight the word Worksheet and then press the <enter> key;</enter>
	Specifying the pressure of stream V-2 Feed in psia.
94	Place the cursor in the blank for the pressure of the V-2_Feed stream by using the arrow and
	<page down=""> key, if necessary.</page>
	Type the number 300 and then press the <enter> key;</enter>
	Specifying the pressure of stream P-1 Out in psia
95	Place the cursor in the blank for the pressure of the P-1_Out stream by using the arrow and
	<page down=""> key, if necessary.</page>
	Type the number 600 and then press the <enter> key;</enter>
96	Press the <esc> key;</esc>
97	Press the $\langle F10 \rangle$ key;
	The screen on the following page will then appear saying that the Recycle has converged.
	(Use the $<$ Page Up $>$ and $<$ Page down $>$ keys to see the entire page).

Your selected Methane i-Pentane Nitrogen	components Ethane n-Pentane CO2	are Propane n-Hexane	i-Butane n-Heptane	n-Butane n-Octane	
Recycle Vapour_Frac Temperature Flow Mass_Flow LiqVol_Flow Energy_Flow Methane Bthane Propane i-Butane n-Butane n-Butane n-Pentane n-Hexane n-Heptane n-Heptane Nitrogen CO2	R-1	Old 1.000000 60.000000 0.000000 0.000000 3471.410034 0.600000 0.0000000 0.0000000 0.000000 0.0000000 0.00000000	New 0.000000 10.137188 14.463635 742.425423 94.401760 -2140.748365 0.124708 0.148791 0.144380 0.163109 0.149037 0.114717 0.089224 0.039384 0.013813 0.004229 0.000553 0.008055	Iteration	0
Recycle Temperature Flow LiqVol_Flow Energy_Flow Methane Ethane Propane i-Butane n-Butane n-Pentane n-Pentane n-Hexane n-Heptane Recycle Converged	R-1	Old 10.137188 14.463635 94.401760 -2140.748995 0.124708 0.148791 0.144380 0.163109 0.149037 0.114717 0.089224 0.039384 0.013813 Old	New 9.917132 14.492113 94.525711 -2143.008188 0.124924 0.149032 0.144779 0.163560 0.149337 0.114403 0.088783 0.038859 0.013560 New	Iteration	2

Step	Action
98	Press the <f10> key;</f10>
99	Highlight the word Print and then press the <enter> key;</enter>

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) *Operations* - The different unit operations will be printed out.

c) Spec Sheets - The specifications sheets will be printed out.

d) *Hypotheticals* - Hypothetical component information will be printed out.

e) *Format* - Specifies the format of the printout.

f) <u>Cost</u> - Lists costs of the run, if a royalty is being charged.

g) *File* - Saves the results in a file.

h) Printer - Toggles on a printer.

- i) <u>Cases</u> Lists the stored files.
- j) *Description* Prints case description.

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action
100	Highlight the word Streams and then press the <enter> key;</enter>
101	Highlight the word All and then press the <enter> key;</enter>
102	Highlight the dash symbol - and then press the <enter> key;</enter>
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the main menu
	off of the screen in order to see the data on the screen underneath it.
103	Press the <f10> key;</f10>
	The screen will then appear as shown on the next two pages. Use the $\langle Page Up \rangle$ and $\langle Page Up \rangle$
	Down> or arrow keys to scroll the screen text up and down.

Stream		Feed	V-1_Feed	Recy	V-1_Lig
Description					
Vapour frac.		0.5096	0.5059	0.0000	0.0000
Temperature	F	60.0000*	59.7353	9.9171*	59.7353
Pressure	psia	600.0000*	600.0000	600.0000*	600.0000
Molar Flow	lbmole/hr	2635.3364*	2649.8286	14.4921*	1309.3618
Mass Flow	lb/hr	97838.3051	98581.2897	742.9799	70231.8087
LigVol Flow	barrel/day	14187.2493	14281.7760	94.5257	8733.7169
Enthalpy	Btu/hr	4.55314E+06	4.52209E+06	-31057.0383 -	720424.5001
Density	lb/ft3	7.8786	7.9411	36.4906	34,9180
Mole Wt.		37.1255	37.2029	51,2679	53.6382
Spec. Heat	Bru/lb-F	0.5731	0.5732	0 5322	0.5736
Therm Cond	Btu/br-ft-F			0 0622	0 0568
Viscosity	CP			0.1897	0.1573
Z Factor	••			0 1673	0 1654
Sur Tension	dyne/cm			12 3051	9 7611
Std Density	1b/ft3			34 1186	34 9055
Methane	mole frac	0 4826*	0 4806	0 12/0*	0 1969
Ethane	mole frac	0.1279*	0.1380	0.1240	0.1005
Pronano	mole frac.	0.1375	0.1500	0.1490*	0.1451
i-Butano	mole frac.	0.0090	0.0094	0.1440"	0.1005
n-Butane	mole frac.	0.0021*	0.0557	0.1036*	0.1100
i-Ducane	mole frac.	0.0352*	0.0357	0.1495*	0.1017
n-Pentane	mole frac.	0.0403*	0.0407	0.1144^	0.0930
n-Pencane	mole frac.	0.0414*	0.0417	0.0008*	0.0611
n Vontane	mole frac.	0.0345*	0.0345	0.0389*	0.0689
n-neptane	mole frac.	0.0276*	0.0275	0.0136*	0.0554
Nitrogon	mole frac.	0.0207*	0.0206	0.0041*	0.0416
COS	mole frac.	0.0069*	0.0069	0.0006*	0.0011
Stream	mole llac.	0.0138*	0.0138	0.0081*	0.0094
Description		v-i_vap	V-2_Feed	E-1_Duty	V-2_Liq
Vapour frac.		1.0000	0.9784	2.0000*	0.0000
Temperature	ਸ	59.7353	7.3587	0.0000*	7.3587
Pressure	psia	600.0000	300.0000*	0.0000*	300.0000
Molar Flow	lbmole/hr	1340.4668	1340,4668	0.0000*	28.9853
Mass Flow	lb/hr	28349.4810	28349,4810	0.0000*	1485.9919
LigVol Flow	barrel/dav	5548.0591	5548.0591	0.0000*	189.0568
Enthalpy	Btu/hr	5.24250E+06	4.66977E+06	572727.6030	-65131.0662
Density	lb/ft3	2.7252	1,4498	0.0000	36.4856
Mole Wt.	,	21.1490	21.1490	0.0000	51.2672
Spec. Heat	Btu/lb-F	0.5723	0.5112		0.5345
Therm Cond	Btu/hr-ft-F	0.0189			0.0625
Viscosity	сP	0.0121			0.1920
2 Factor		0.8354			0.0841
Sur Tension	dvne/cm				12.4562
Std Density	lb/ft3				34.1183
Methane	mole frac.	0.7676	0.7676	0.0000*	0.1249
Ethane	mole frac.	0.1330	0.1330	0.0000*	0.1490
Propane	mole frac.	0.0332	0.0332	0.0000*	0.1448
i-Butane	mole frac.	0.0159	0.0159	0.0000*	0.1636
n-Butane	mole frac.	0.0108	0.0108	0.0000*	0.1493
i-Pentane	mole frac.	0.0046	0.0046	0.0000*	0.1144
n-Pentane	mole frac.	0.0031	0.0031	0.0000*	0.0888
n-Hexane	mole frac.	0.0010	0.0010	0.0000*	0.0389
n-Heptane	mole frac.	0.0003	0.0003	0.0000*	0.0136
n-Octane	mole frac.	0.0001	0.0001	0.0000*	0.0041
Nitrogen	mole frac.	0.0125	0.0125	0.0000*	0.0005
CO2	mole frac.	0.0180	0.0180	0.0000*	0.0081

Stream		V-2_Vap	T-1_Prod	P-1_Feed	P-1_Out
Description			0 0000	0 0000	0 0000
Vapour frac		1.0000	0.0000	0.0000	0.0000
lemperature	F	7.3587	7.3587	1,3587	COD 0000
Pressure Molar Blass	psia	300.0000	300.0000	300.0000	14 4026
Molar Flow	1Dmole/m	1311.4013	14.4920	14.4920	14.4920 740 0050
Mass Flow	10/111 barrol/day	20003.4000 5250 0017	144.9909 01 ED01	01 5791	01 5001
BUEPSJUN	Darrer/uay Btu/br	A 734918+06	-30565 5231	-22565 5331	-31058 1673
Density	Jb/fr3	1 3767	36 4856	36 4856	36 4904
Mole Wr		20 4833	51 2672	50.4000	51 2672
Spec Heat	Bru/1b-F	0 5099	0 5345	0 5345	0 5322
Therm Cond	Btu/hr-ft-F	0.0157	0.0625	0 0625	0.0622
Viscosity	cP	0.0103	0.1920	0.1920	0.1897
Z Factor		0.8906	0.0841	0.0841	0.1673
Sur Tension	dyne/cm		12.4562	12.4562	12.3050
Std Density	lb/ft3		34.1183	34.1183	34.1183
Methane	mole frac.	0.7818	0.1249	0.1249	0.1249
Ethane	mole frac.	0.1326	0.1490	0.1490	0.1490
Propane	mole frac.	0.0307	0.1448	0.1448	0.1448
i-Butane	mole frac.	0.0126	0.1636	0.1636	0.1636
n-Butane	mole frac.	0.0077	0.1493	0.1493	0.1493
i-Pentane	mole frac.	0.0022	0.1144	0.1144	0.1144
n-Pentane	mole frac.	0.0012	0.0888	0.0888	0.0888
n-Hexane	mole frac.	0.0001	0.0389	0.0389	0.0389
n-Heptane	mole frac.	0.0000	0.0136	0.0136	0.0136
n-Octane	mole frac.	0.0000	0.0041	0.0041	0.0041
Nitrogen	mole frac.	0.0128	0.0006	0.0006	0.0006
CU2	mole irac.	0.0182	0.0081	0.0081	0.0081
Stredm		Ducyz			
Vanour frag		2 0000*			
Vapour riac. Temperature		0 0000*			
Pressure	nsia	0.0000*			
Molar Flow	lbmole/hr	0.0000*			
Mass Flow	lb/hr	0.0000*			
LigVol Flow	barrel/day	0.0000*			
Enthalpy	Btu/hr	1507.3658			
Density	lb/ft3	0.0000			
Mole Wt.		0.0000			
Spec. Heat	Btu/lb-F				
Therm Cond	Btu/hr-ft-F				
Viscosity	CP				
Z Factor					
Sur Tension	dyne/cm				
Std Density	lb/ft3				
Methane	mole frac.	0.0000*			
Ethane	mole frac.	0.0000*			
Propane	mole frac.	0.0000*			
r-Butane	mole frac	0.0000*			
i-Ducalle	mole frac.	0.0000*			
1-renudile	mole frec	D 0000*			
n-Hevane	mole frac.	0.0000*			
n-Hentane	mole frac.	0.0000*			
n-Octane	mole frac	0.0000*			
Nitrogen	mole frac.	0.0000*			
CO2	mole frac.	0.0000*			

Step	Action
104	Press the <f10> key;</f10>
	Looking at the PFD (Process Flow Diagram) for the Process.
105	Highlight the letters PFD and then press the < Enter > key;
	Pressing the <home> key will reduce the PFD diagram to fit on the screen.</home>
106	Press the <home> key;</home>
	A Process Flow Diagram (PFD) similar to the one below will then appear.

Step	Action
107	Press the <esc> key.</esc>
108	Do you want to continue adding other unit operations to this recycle process?
	 If <u>Yes</u>, turn to the pertinent section of this manual now;
	If <u>No</u> , tum to the "Exiting HYSIM" Section of this manual

Objective - This exercise is an example of the single recycle stream operation in HYSIM, using a data recorder. The data recorder operation allows the HYSIM user to specify certain process variables to be recorded during calculations.

This recycle example can be modified by specifying another property package and/or other components, compositions and feed conditions.

In this example, a recycle process is used to show how the data recorder is utilized in HYSIM. The variables which are to be recorded for various streams are specified, e.g. the temperature of the recycle (*Recy*) stream. As HYSIM does its calculation iterations, the data recorder records the value of the variables which were specified for recording.

<u>Technical Example Reference</u>: Reference 1 - Hyprotech's HYSIM User's Guide, Version C2.50, March 1994, pages 7-90 to 7-108. The data recorder operation is described in the same User's Guide on pages 7-133 to 7-138. This section in the User's Guide should be consulted if multiple recycle streams are required.

Other References: Refs. 1 & 2.

<u>Directions</u> - Pages 433 through 453 outline the execution of a data recorder example. This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the cursor is over the required word on the menu, and that word then changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <> brackets (e.g.<Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this process containing a data recorder is shown below:

Step	Action
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).
	• If <u>Yes</u> , proceed with Step 2.
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures
	before proceeding to Step 2.
	Starting with a new case.
2	Highlight the word No and then press the <enter> key;</enter>
	Selecting a Property Package.
3	Highlight the word Peng-Robinson and then press the <enter></enter> key;
	The following screen will appear:

		COMPONENT SELECTION			
Selected	Synonym	Name	Formula	Criteria	
	OIL	OIL		ALL	
	HYPOTHETICAL	HYPOTHETICAL		HC	
	Cl	Methane	CH4	SOLID	
	C2	Ethane	C2H6	MISC	
	C3	Propane	СЗН8	AMINE	
	1-C4	i-Butane	C4H10	ALCOHOL	
	n-C4	n-Butane	C4H10	KETONE	
	i-C5	i-Pentane	C5H12	ALDEHYDE	
	n-C5	n-Pentane	C5H12	ESTER	
	C6	n-Hexane	C6H14	CARBACID	
	C7	n-Heptane	C7H16	HALOGEN	
	C8	n-Octane	C8H18	NITRILE	
	C9	n-Nonane	C9H20	PHENOL	
	C10	n-Decane	C10H22	ETHER	
	C11	n-C11	C11H24	USER	
	C12	n-C12	C12H26		
↓	└ ₩ ↓S	Search by SYNONYM			
Fl - Help,	F3 - Menu, F4 -	- Flip Srch, F5 - Exa	am, F6 - Move,	F8 - Change	
	PRI	222 INSERT IN SUBMIL			

Step	Action
	Selecting the components in the Feed stream.
4	Highlight each of the following component names under the "Component Selection" Section
· ·	and press the <i><enter></enter></i> key so that the name then appears in the "Selected" column. This
998 - 1998 -	"Component Selection" List is very long. Use the <page down=""> and Arrow Keys to find the</page>
	following components:
	Highlight the word Methane and then press the <enter> key;</enter>
	Highlight the word Ethane and then press the <enter> key;</enter>
	Highlight the word Propane and then press the < Enter > key;
	Highlight the word i-Butane and then press the <enter> key;</enter>
	Highlight the word n-Butane and then press the <enter></enter> key;
	Highlight the word i-Pentane and then press the <enter></enter> key;
	Highlight the word n-Pentane and then press the <enter> key;</enter>
	Highlight the word n-Hexane and then press the <enter> key;</enter>
	Highlight the word n-Heptane and then press the <enter></enter> key;
	Highlight the word n-Octane and then press the <enter></enter> key;
	Highlight the word Nitrogen and then press the <enter> key;</enter>
	Highlight the formula CO2 and then press the <enter> key</enter>
	The following screen will then appear:

COMPONENT SELECTION

	COMPC	NENT SELECT	[ON====================================	
Selected	Synonym	Name	Formula	Criteria
	▲ — ↑			
Methane	C12	C12	C12	ALL
Ethane	HCl	HCl	HCl	HC
Propane	F2	F2	F2	SOLID
i-Butane	HF	HF	HF	MISC
n-Butane	Br2	Bromine	Br2	AMINE
i-Pentane	HBr	HBr	HBr	ALCOHOL
n-Pentane	12	Iodine	12	KETONE
n-Hexane	HI	HI	HI	ALDEHYDE
n-Heptane	NitricOxide	NO	NO	ESTER
n-Octane	NO2	NO2	NO2	CARBACID
Nitrogen	N20	N20	N20	HALOGEN
CO2	N2O4	N204	N204	NITRILE
	S02	SO2	SO2	PHENOL
	SO3	SO3	SO3	ETHER
	CO	CO	CO	USER
	Sulphur_Rhombic	S_Rhombic	S	
♥ ↓	- v - t Search by SYNONYM			
F1 - Help,F3 - Menu,F4 - Flip Srch, F5 - Exam,F6 - Move,F8 - Change				
	PRESS IN	SERT TO SUBM	IIT	

Step	Action
5	Press the <insert> key;</insert>
	The screen on the following page will then appear.

Work_Sheet	Specify	Operation	Print	
PFD	Remove	Store	New	
Ignore	Restore	Hold	Go	
Utility	Size	Report	Toggle	
Exit	?			
Work_Sheet streams	in a spreadsheet	format		
Prop Pkg PR - SI U	nits 9879552			
>				

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action
	Specifying that you want the units changed from the default metric system (kPa, kg, \mathfrak{C} , etc.) to
	field units (psia, lb, F, etc.).
6	Highlight the word Utility and then press the <enter> key;</enter>
7	Highlight the word Configuration and then press the <enter> key;</enter>
8	Highlight the word Units and then press the <enter> key;</enter>
9	Highlight the word Field and then press the <enter> key;</enter>
10	Press the < E sc> key.
	Specifying the conditions of the Feed stream.
11	Highlight the word Specify and then press the <enter> key;</enter>
12	Highlight the word Stream and then press the <enter> key;</enter>
13	Type the word Feed after the prompt (>) and then press the <enter> key;</enter>
	Specifying the temperature of the Feed in F.
14	Type the number 60 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the pressure of the Feed in psia.
15	Type the number 600 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the flow of the Feed stream in lb-mols/hr.
16	Type the number 2635.3364 after the prompt (>) and then press the <enter> key;</enter>
	Specifying the individual mole fractions of each component in the Feed.
17	Highlight the word Mole_Fractions and then press the <enter> key;</enter>
	The screen will appear as shown below:

	Stream Mo	le Fractions	
Methane Propane n-Butane n-Pentane n-Heptane Nitrogen		Ethane i-Butane i-Pentane n-Hexane n-Octane CO2	

Step	Activ	on	
	Specifying the molar fractions of each com	ponent in the Feed	stream.
18	Enter the following mole fractions beside en	ach component in t	he Feed stream:
	After the word, Methane, type the number ${f 0}$.4826 in the blank a	and then press the <enter> key;</enter>
	After the word, Ethane, type the number 0.1	379 in the blank an	d then press the <enter></enter> key;
	After the word, Propane, type the number 0.	0690 in the blank a	nd then press the <enter></enter> key;
	After the word, i-Butane, type the number 0.	.0621 in the blank a	nd then press the <enter></enter> key;
3	After the word, n-Butane, type the number 0	.0552 in the blank	and then press the <enter></enter> key;
	After the word, i-Pentane, type the number 0	0.0483 in the blank	and then press the <enter></enter> key;
	After the word, n-Pentane, type the number	0.0414 in the blank	and then press the <enter></enter> key;
	After the word, n-Hexane, type the number (0.0345 in the blank	and then press the <enter></enter> key;
	After the word, n-Heptane, type the number	0.0276 in the blank	and then press the <enter></enter> key;
	After the word, n-Octane, type the number 0	.0207 in the blank a	and then press the <enter></enter> key,
	After the word, Nitrogen, type the number 0	.0069 in the blank a	and then press the <enter></enter> key;
	After the formula, CO2, type the number 0.0	0138 in the blank;	-
	The screen will now appear as shown below):	
	Stream Mol	le Fractions	
Meth	ane 0.4826	Ethane	0.1379
Prop	ane 0.0690	i-Butane	0.0621
n-Bu	tane 0.0552	1-Pentane	0.0483
n-Ho	0.0414	n-Hexane	0.0345
Nitr	0.0276	CO2	0.0138
11+01			
Step	Actie)n	
19	Press the <insert> key;</insert>		
20	Highlight the word Operation and then pres	s the <enter> key;</enter>	
	Naming the Mixer as "M-1".		
21	Type the name M-1 and then press the <ent< th=""><th>er> key;</th><th></th></ent<>	er> key;	
1 22	TT-1 Table also man 1 B.C. and 1 all and the	$\mathbf{r} + \mathbf{r}$	

Highlight the word **Mixer** and then press the **<Enter>** key; The screen will then appear as shown below: 22

Operation Na	me: M-1
Do all mixed streams	have the same pressure?
Please Fill	in Stream Names
<pre>Inlet: => Inlet: => Inlet: => Inlet: => Inlet: => Inlet: => Inlet: =></pre>	-> Outlet:

Step	Action
	Answering the question, "Do all mixed streams have the same pressure?"
23	Type the word Yes and then press the <enter> key;</enter>
	Specifying the inlet and outlet stream names into and out of the Mixer M-1.
24	Type the word V-1_Feed and then press the <enter> key.</enter>
25	Type the word Feed and then press the <enter> key.</enter>
26	Type the word Recy .
	The following screen will then appear:

Adjabatic Mixer
Operation Name: M 1
operation name. M-1
Do all mixed streams have the same pressure? Yes
Please Fill in Stream Names
Inlet. Feed
Inlet: Pecu
Inlet. Kccy
Inlet: => Outlet: V-1_Feed
Inlet: =>
Inlet: =>
Inlet:

Step	Action
27	Press the <insert> key;</insert>
28	Highlight the word Operation and then press the <enter></enter> key;
	Naming the Separator as "V-1".
29	Type the name V-1 and then press the <enter> key;</enter>
30	Highlight the word Separator and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Step	Action
	Specifying the inlet and outlet stream names into and out of Separator, V-1.
31	Type the word V-1_Feed and then press the <enter> key</enter>
32	Type the word V-1_Liq and then press the <enter> key.</enter>
33	Type the word V-1 Vap.
	The following screen will then appear:

Step	Action
34	Press the <insert> key;</insert>
35	Highlight the word Operation and then press the <enter></enter> key;
	Naming the Expander as "Ex-1".
36	Type the name Ex-1 and then press the <enter> key;</enter>
37	Highlight the words Comp/Expander and then press the <enter></enter> key;
	The screen will then appear as shown below:

Step	Action
	Specifying the inlet and outlet stream names into and out of Expander. Ex-1.
38	Type the word V-1_Vap and then press the <enter> key.</enter>
39	Type the word V-2_Feed and then press the <enter> key.</enter>
40	Type the word E-1_Duty and then press the <enter> key.</enter>
41	Press the <f2> key and highlight the word Expander and then press the <enter> key.</enter></f2>
	The following screen will then appear:

Step	Action
42	Press the <insert> key and highlight the word Operation and then press the <enter> key;</enter></insert>
	Naming the second Separator as "V-2".
43	Type the name V-2 and then press the <enter> key;</enter>
44	Highlight the word Separator and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Step	Action
	Specifying the inlet and outlet stream names into and out of Separator, V-2.
45	Type the word V-2 Feed and then press the <enter> key</enter>
46	Type the word V-2_Liq and then press the <enter> key.</enter>
47	Type the word V-2 Vap.
	The following screen will then appear:

Step	Action			
48	Press the <insert> key;</insert>			
49	Highlight the word Operation and then press the <enter></enter> key;			
	Naming the Tee as "T-1".			
50	Type the name T-1 and then press the <enter> key;</enter>			
51	Highlight the word Tee and then press the <enter> key;</enter>			
	The screen will then appear as shown below:			

Operation Name:	tic Tee
Please Fill in	n Stream Names
Inlet:	<pre>> Outlet: > Outlet: > Outlet: > Outlet: > Outlet: > Outlet: > Outlet: > Outlet:</pre>

Step	Action	
	Specifying the inlet and outlet stream names into and out of the Tee. T-1	
52	Type the word V-2 Liq and then press the <enter> key.</enter>	
53	Type the word P-1 Feed and then press the <enter> key.</enter>	
54	Type the word T-1 Prod.	
	The following screen will then annear	

Step	Action			
55	Press the <insert> key;</insert>			
56	Highlight the word Operation and then press the <enter> key;</enter>			
	Naming the Pump as "Pump-1".			
57	Type the name Pump-1 and then press the <enter> key;</enter>			
58	Highlight the word Pump and then press the <enter> key;</enter>			
	The screen will then appear as shown below:			

Step	Action			
	Specifying the inlet and outlet stream names into and out of the Pump, Pump-1.			
59	Type the word P-1 Feed and then press the <enter> key.</enter>			
60	Type the word P-1_Out and then press the <enter> key.</enter>			
61	Type the word Duty2 .			
	The screen will then appear as shown on the following page.			

Liquid Pump ______ Operation Name: Pump-1_____ Please Fill in Stream Names and Efficiency / ___ Outlet: P-1_Out____ Inlet: P-1_Feed_____(=>) Energy Duty2_____ /__ Stream: Efficiency: 75.00_ %

Step	Action			
62	Press the <insert> key;</insert>			
63	Highlight the word Operation and then press the <enter> key;</enter>			
	Naming the Set operation as "S-1".			
64	Type the name S-1 and then press the <enter> key;</enter>			
65	Highlight the word Set and then press the <enter> key;</enter>			
	The screen will then appear as shown below:			

C	Operation Name: S-1						
	Controlled Variable	Controlled Stream	Multiplier	Independent Stream	Offset		
	01	f =	: 1.0000	۲ ۲	0.0000_		

Step	Action			
	Specifying the controlled variable.			
66	Type the word Flow and then press the <enter> key.</enter>			
	Specifying the controlled stream name.			
67	Type the word P-1 Feed and then press the <enter> key.</enter>			
	Specifying the Multiplier of the independent stream's flow rate.			
68	Type the number 0.5 and then press the <enter></enter> key;			
	Specifying the Independent stream name			
Specifying the controlled variable. 66 Type the word Flow and then press the <enter> key. Specifying the controlled stream name. 67 Type the word P-1_Feed and then press the <enter> key. 68 Specifying the Multiplier of the independent stream's flow rate. 68 Type the number 0.5 and then press the <enter> key; Specifying the Independent stream name. 69 Type the word V-2_Liq and then press the <enter> key. The screen will then appear as shown on the following page.</enter></enter></enter></enter>				
	The screen will then appear as shown on the following page.			

Operation Name: S-1						
Controlled Variable	Controlled Stream	Multiplier	Independent Stream	Offset		
Flow of	P-1_Feed =	= 0.5	* V-2_Liq +	0.0000_		

Step	Action			
70	Press the <insert> key;</insert>			
71	Highlight the word Operation and then press the <enter> key;</enter>			
	Naming the Recycle operation as "R-1".			
72	Type the name R -1 and then press the <enter></enter> key;			
73	Highlight the word Recycle and then press the <enter> key;</enter>			
	The screen will then appear as shown below:			

Operation R-1_	~	_Recycle Opera	tion =				
Max Iters:	5	Type: Nested_]	Inlet S	tream	
Wegstein Count: 3 =]=== .				
Q	Max:	0.00					
Q	Min:	-20.00					
Sensitivities							
Phase Frac.	10.0	Flow	10.0		Outlet	Stream	
Temperature	10.0	Enthalpy	10.0	>			
Pressure	10.0	Composition	10.0				
				د 			

Step	Action
	Specifying the inlet stream name.
74	Type the word P-1_Out and then press the <enter> key.</enter>
	Specifying the outlet stream name.
75	Type the word Recy and then press the <enter></enter> key.

Step	Action			
	Specifying the maximum number of iterations.			
76	Type the number 10 and then press the <enter> key five times.</enter>			
	Specifying the Sensitivity of the Phase Fraction.			
77	Type the number 1.00 and then press the <enter> key;</enter>			
	Specifying the Sensitivity of the Temperature.			
78	Type the number 1.00 and then press the <enter> key;</enter>			
	Specifying the Sensitivity of the Pressure.			
79	Type the number 1.00 and then press the <enter> key;</enter>			
	Specifying the Sensitivity of the Flow.			
80	Type the number 1.00 and then press the <enter> key;</enter>			
	Specifying the Sensitivity of the Enthalpy.			
81	Type the number 1.00 and then press the <enter> key,</enter>			
	Specifying the Sensitivity of the Composition.			
82	Type the number 1.00.			
	The following screen will then appear:			

= C	peration R-1		Recycle Open	ration =		=
[Max Iters: 1	0	Type: Nester	i	Inlet Stream	
	Wegste	in Count	: 3		== P-1_Out	
	Q	Max:	0.00			
	Q	Min:	-20.00			
ſ	S	ensitivi	ties.			
	Phase Frac.	1.00_	Flow	1.00_	Outlet Stream	
	Temperature	1.00_	Enthalpy	1.00_	Recy	
	Pressure	1.00_	Composition	n 1.00_		
L					-	

Step	Action			
83	Press the <insert> key;</insert>			
84	Highlight the word Operation and then press the <enter> key;</enter>			
	Naming the Data Recorder as "Record".			
85	Type the word Record and then press the <enter></enter> key;			
86	Highlight the word Data_Recorder and then press the <enter> key;</enter>			
	The screen on the following page will then appear.			

Operation Name: Record Record information while iterating? No					
Recorded Variables Variable Component Stream -or-Exchanger					
Press "Ins" to Save and Exit					

Step	Action			
	Specifying that the information should be recorded while iterating.			
87	Type the word Yes and then press the <enter> key;</enter>			
	Specifying the type of information which should be recorded.			
88	Type the word Flow and then press the <enter> key two times;</enter>			
89	Type the word Recy and then press the <enter></enter> key two times;			
90	Type the word Temperature and then press the <enter></enter> key two times;			
91	Type the word Recy and then press the <enter> key two times;</enter>			
92	Type the word Energy and then press the <enter> key two times;</enter>			
93	Type the word E-1 Duty and then press the <enter> key two times;</enter>			
94	Type the word Energy and then press the <enter> key two times;</enter>			
95	Type the word Duty2;			
	The following screen will then appear:			

Operation Name: Record Record information while iterating? Yes						
Variable	Recorded Component	Variables Stream -on	- Exchanger			
Flow Temperature_ Energy Energy		Recy Recy E-1_Duty Duty2				
Pres	ss "Ins" to Sa	ve and Exit	1			

Step	Action			
96	Press the <insert> key;</insert>			
	Specifying the Conditions and initial composition of the Recycle (Recy) stream.			
97	Highlight the word Specify and then press the <enter> key;</enter>			
98	Highlight the word Stream and then press the <enter> key;</enter>			
99	Highlight the name Recy and then press the <enter> key;</enter>			
	Specifying the temperature of the Recycle (Recy) stream in F.			
100	Type the number 60 after the prompt (>) and then press the <enter> key;</enter>			
	Specifying the pressure of the Recycle (Recy) stream in psia.			
101	Type the number 600 after the prompt (>) and then press the <enter></enter> key;			
	Specifying the flow of the Recycle (Recy) stream in lb-mols/hr.			
102	Type the number 0 after the prompt (>) and then press the <enter> key;</enter>			
	Specifying that the composition of each component in the Recycle (Recy) stream will be given			
	in mole fractions.			
103	Highlight the word Mole Fractions and then press the <enter> key;</enter>			
	The screen will appear as shown below:			

[=	 Stream Mol	e Fractions	
	Methane Propane n-Butane n-Pentane n-Heptane Nitrogen		Ethane i-Butane i-Pentane n-Hexane n-Octane CO2	

Step	Action							
	Specifying the molar fractions of each component in the Recycle (Recy) stream.							
104	Enter the following mole fractions beside each component in the Recycle (Recy) stream:							
	After the word, Methane, type the number 0.0 in the blank and then press the <enter> key;</enter>							
	After the word, Ethane, type the number 0.0 in the blank and then press the <enter> key;</enter>							
	After the word, Propane, type the number 0.0 in the blank and then press the <enter> key;</enter>							
	After the word, i-Butane, type the number 0.0 in the blank and then press the <enter> key;</enter>							
	After the word, n-Butane, type the number 0.0 in the blank and then press the <enter> key;</enter>							
	After the word, i-Pentane, type the number 0.0 in the blank and then press the <enter> key;</enter>							
	After the word, n-Pentane, type the number 0.0 in the blank and then press the <enter></enter> key;							
	After the word, n-Hexane, type the number 0.0 in the blank and then press the <enter></enter> key;							
	After the word, n-Heptane, type the number 0.0 in the blank and then press the <enter> key;</enter>							
	After the word, n-Octane, type the number 0.0 in the blank and then press the \langle Enter \rangle key;							
	After the word, Nitrogen, type the number 1.0 in the blank and then press the <enter> key;</enter>							
	After the formula, CO2, type the number 0.0 in the blank;							
	The screen will now appear as shown on the following page.							

Step	Action					
105	Press the <insert> key.</insert>					
106	Highlight the word Worksheet and then press the <enter> key;</enter>					
	Specifying the pressure of stream V-2 Feed in psia.					
107	Place the cursor in the blank for the pressure of the V-2_Feed stream by using the arrow and					
	<page down=""> key, if necessary.</page>					
	Type the number 300 and then press the <enter> key;</enter>					
	Specifying the pressure of stream P-1 Out in psia.					
108	Place the cursor in the blank for the pressure of the P-1_Out stream by using the arrow and					
	<page down=""> key, if necessary.</page>					
	Type the number 600 and then press the <enter> key;</enter>					
109	Press the $\langle Esc \rangle$ key;					
110	Press the $\langle F10 \rangle$ key;					
	The screen on the following page will then appear saying that the Recycle has converged.					
	(Use the $\langle Page Up \rangle$ and $\langle Page down \rangle$ keys to see the entire page)					

Your selected Methane i-Pentane Nitrogen	components are Ethane Propane n-Pentane n-Hexane CO2	i-Butane n-Heptane	n-Butane n-Octane	2
Recycle Vapour_Frac Temperature Flow Mass_Flow LiqVol_Flow Energy_Flow Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Hexane n-Heptane n-Octane Nitrogen CO2	R-1 Old 1.000000 60.000000 0.000000 0.000000 3471.410034 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000	New 0.000000 10.137188 14.463635 742.425423 94.401760 -2140.748365 0.124708 0.148791 0.144380 0.163109 0.149037 0.114717 0.089224 0.039384 0.013813 0.004229 0.000553 0.008055	Iteration	0
Recycle Temperature Flow LiqVol_Flow Energy_Flow Methane Ethane Propane i-Butane n-Butane n-Pentane n-Pentane n-Hexane n-Heptane Recycle Converged	R-1 Old 10.137188 14.463635 94.401760 -2140.748995 0.124708 0.148791 0.144380 0.163109 0.149037 0.114717 0.089224 0.039384 0.013813 R-1 Old	New 9.917132 14.492113 94.525711 -2143.008188 0.124924 0.149032 0.144779 0.163560 0.149337 0.114403 0.088783 0.038859 0.013560 New	Iteration	1

Step	Action
111	Press the <f10> key;</f10>
112	Highlight the word Print and then press the <enter> key;</enter>

Print Options:

The various print options available are as follows:

a) <u>Streams</u> - The conditions, physical properties, and compositions of the streams will be printed out.

b) *Operations* - The different unit operations will be printed out.

c) <u>Spec_Sheets</u> - The specifications sheets will be printed out.

d) *Hypotheticals* - Hypothetical component information will be printed out.

e) *Format* - Specifies the format of the printout.

f) <u>Cost</u> - Lists costs of the run, if a royalty is being charged.

g) *File* - Saves results in a file.

h) Printer - Toggles on a printer.

i) <u>Cases</u> - Lists the stored files.

j) *Description* - Prints case description.

k) Oil Input - Lists inputted information on an oil.

NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action
113	Highlight the word Streams and then press the <enter> key;</enter>
114	Highlight the word All and then press the <enter> key;</enter>
115	Highlight the dash symbol - and then press the <enter> key;</enter>
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the main menu
	off of the screen in order to see the data on the screen underneath it.
116	Press the <f10> key;</f10>
	The screen will then appear as shown on the next two pages. Use the $\langle Page Up \rangle$ and $\langle Page Up \rangle$
	Down> or arrow keys to scroll the screen text up and down.

Stream		Feed	V-1_Feed	Recy	V-1_Liq
Description					
Vapour frac.		0.5096	0.5059	0.0000	0.0000
Temperature	F	60.0000*	59.7353	9.9171*	59.7353
Pressure	psia	600.0000*	600.0000	600.0000*	600.0000
Molar Flow	lbmole/hr	2635.3364*	26498286	14.4921*	1309.3618
Mass Flow	lb/hr	97838.3051	98581.2897	742.9799	70231.8087
LigVol Flow	barrel/day	14187.2493	14281.7760	94.5257	8733.7169
Enthalpy	Btu/hr	4.55314E+06	4.52209E+06	-31057.0383 -	720424.5001
Density	1b/ft3	7.8786	7,9411	36,4906	34.9180
Mole Wr	22,	37.1255	37.2029	51 2679	53.6382
Spor Heat	Bru/lb-F	0.5731	0.5732	0 5322	0.5736
Thorm Cond	Bru/hr-ft-F			0.0622	0.0568
Viccosity	cP			0.1897	0.1573
7 Factor	01			0.1673	0 1654
Sur Tonsion	dyne/cm			12 3051	9 7611
Sur rension	15/f+3			34 1186	34 9055
Stu Denstry	mole frac	0 4826*	0 4806	0 1249*	0 1869
Rechance	mole frac	0.4020	0 1380	0.1240*	0 1431
Echane	mole frac.	0,1575	0.1500	0.1430*	0.1451
Propane	mole frac.	0.0090	0.0034	0.1440	0.1005
1-Bucane	mole frac.	0.0021	0.0627	0.1000*	0.1100
n-Bucane	mole frac.	0.0332*	0.0357	0.1493"	0,1029
1-Pencane	mole frac.	0.0405	0.0407	0.1144~	
n-Pentane	mole frac.	0.0414-	0.0417	0,0000+	0.0011
n-Hexane	mole frac.	0.03451	0.0345	0.0389*	0.0605
n-Heptane	mole filde.	0.0278*	0:0275	0.0136*	0.0554
n-Octane	mole frac.	0.0207*	0.0206	0.0041*	0.0416
Nitrogen	mole frac.	0.0069*	0.0069	0.0006*	0.0011
CO2	mole frac.	V-1 Van	V-2 Road	0.0081* 5-1 Duty	V-2 Lia
Decerintion		v ±_vap	v z_reeu	E-T_Dacy	¥ 2_D1Q
Veroux frag		1 0000	0 0794	2 0000*	0 0000
Topporature	ק	59 7353	7 3587	2.0000*	7 3587
Temperature	r	600 0000	300 000+	0.0000	300 000
Melar Flow	psia lomolo/br	1340 4669	1340 4669	0.0000*	200.0000
Molal Flow	1D(())10/111	29249 4910	00000,000LL	0.0000*	1405 0010
Mass FIUW	TD/UT	20349.4010	20349,401V 5549 0501	0.0000*	100 0560
DIGADI LTOM	Dallel/uay	5 34350R,05	A EE0778:00	0.0000-	109.0000
Encharpy		5.2425VB+V8	4.009//6+00	572727.6030	-05131.0002
Density Nolo Wt	TD/ 103	2.1252	21 1400	0.0000	50.4050
MOIE WL.	Dru/lb R	21.1490	21.1490	0.0000	DT.2072
Spec. neal	BLU/ID-F Bru/br-fr-P	0.0120	0.0112		0.0540
Vienositu	BLU/MI-IU-F	0.0109			0.0025
VISCOSICY	CP	0.0121			0.1920
Z FACTOR	dura (am	0.0354			10.0041
Sur rension	Lyne/Cm				12.4002
Stu Density	ID/ILS	 D 7676	0 7(7)		0 1240
Methane	mole frac.	0.7070	0.1010	0.0000*	0.1249
Ethane	mole frac.	0.1330	0.1330	0.0000*	0.1450
i Putono	mole frac.	0.0332	0.0332	0.0000*	0.1440
I-DULANE	mole frac.	0.0109	0.0129	0.0000*	0.101 CONT O
i-Ducdile	mole frac.	0.0108	0.0108		U.1493
r-rentane	mole frac.	0.0046		0.0000*	V.1144 A A000
n-rentane	mole frac.	0.0031	0.0031	0.0000*	0.0000
n-Neptore	mole frac.	0.0010	0.0010	0.0000*	0,0309
n-neptane	MOLE LIBC.	0.0003	0.0003		0.0136
Nitrogen	mole frac.	0.0001	0.0001		0.0041
CO2	mole frac.	0.0120	0.0125	0.0000*	0.0000
	MOIE IIdu,	0.0100	0.0100	U.UUUV*	0.0001

Stream	-	V-2_Vap	T-1_Prod	P-1_Feed	P-1_Out
Description					
Vapour frac	•	1.0000	0.0000	0.0000	0.0000
Temperature	F .	7.3587	7.3587	7.3587	9.9155
Pressure	psia	300.0000	300.0000	300.0000	600.0000*
Molar Flow	lbmole/hr	1311.4815	14.4926	14.4926	14.4926
Mass Flow	lb/hr	26863.4880	742.9959	742.9959	742.9959
LiqVol Flow	barrel/day	5359.0017	94.5284	94.5284	94.5284
Enthalpy	Btu/hr 4	1.73491E+06	-32565.5331	-32565.5331	-31058.1673
Density	lb/ft3	1.3767	36.4856	36.4856	36.4904
Mole Wt.		20.4833	51.2672	51.2672	51.2672
Spec. Heat	Btu/lb-F	0.5099	0.5345	0.5345	0.5322
Therm Cond	Btu/hr-ft-F	0.0157	0.0625	0.0625	0.0622
Viscosity	CP	0.0103	0.1920	0.1920	0.1897
Z Factor	. ,	0.8906	0.0841	0.0841	0.1673
Sur Tension	dyne/cm		12,4562	12.4562	12.3050
Std Density	lb/it3		34.1183	34.1183	34.1183
Methane	mole frac.	0.7818	0.1249	0.1249	0.1249
Ethane	mole frac.	0.1326	0.1490	0.1490	0.1490
Propane	mole frac.	0.0307	0.1448	0.1448	0.1448
i-Butane	mole frac.	0.0126	0.1636	0.1636	0.1636
n-Butane	mole frac.	0.00//	0.1493	0.1493	0.1493
i-Pentane	mole frac.	0.0022	0.1144	0.1144	0.1144
n-Pentane	mole frac.	0.0012	0.0888	0.0888	0.0888
n-Hexane	mole frac.	0.0001	0.0389	0.0389	0.0389
n-Heptane	mole frac.	0.0000	0.0136	0.0136	0.0136
n-Octane	mole frac.	0.0000	0.0041	0.0041	0.0041
Nitrogen	mole liac.	0.0128	0.0006	0.0006	0.0006
Stream	more frac.	Dutv2	0.0081	0.0081	0.0081
Description					
Vapour frac		2.0000*			
Temperature	F	0.0000*			
Pressure	nsia	0.0000*			
Molar Flow	ĺbmole/hr	0.0000*			
Mass Flow	lb/hr	0.0000*			
LigVol Flow	barrel/day	0.0000*			
Enthalpy	Btu/hr	1507.3658			
Density	lb/ft3	0.0000			
Mole Wt.		0.0000			
Spec. Heat	Btu/lb-F				
Therm Cond	Btu/hr-ft-F				
Viscosity	сP				
Z Factor					
Sur Tension	dyne/cm				
Std Density	lb/ft3				
Methane	mole frac.	0.0000*			
Ethane	mole frac.	0.0000*			
Propane	mole frac.	0.0000*			
i-Butane	mole frac.	0.0000*			
n-Butane	mole frac.	0.0000*			
1-Pentane	mole frac.	0.0000*			
n-Pentane	mole frac.	0.0000*			
n-Hexane	mole frac.	0.0000*			
n-Heptane	mole frac.	0.0000*			
n-Uctane	mole frac.	0.0000*			
CO2	mole frac.	0.0000*			

Step	Action	
117	Press the <f10> key;</f10>	
	Looking at the PFD (Process Flow Diagram) for the Process.	
118	Highlight the letters PFD and then press the < Enter > key;	
	Pressing the <home> key will reduce the PFD diagram to fit on the screen.</home>	
119	Press the <home> key;</home>	
	A Process Flow Diagram (PFD) similar to the one shown below will then appear.	

Step	Action
120	Press the <esc> key.</esc>
	Looking at the data recorded by the data recorder during recycle iterations.
121	Highlight the word Operation and then press the <enter> key;</enter>
122	Highlight the word Record and then press the <enter></enter> key;
123	Highlight the word Print and then press the <enter></enter> key;
	The following screen will then appear:

Data Recorder Record

Case	Flow	Temperature	Energy	Energy
	Recy	Recy	E-1_Dutý	Duty2
	lbmole/hr	F	Btu/hr	Btu/hr
1	0.000000	60.0000	574249.	1505.76
2	14.4636	10.1372	572732.	1507.33
3	14.4921	9.91713	572728.	1507.37

Step	Action
	Plotting the flow of the Recy stream vs. its temperature.
124	Highlight the word Plot and then press the <enter> key;</enter>
	Specifying the Temperature of the Recy stream as the X-Variable.
125	Highlight the words Recy_Temperature and then press the <enter> key;</enter>
	Specifying the Flow of the Recy stream as the Y-Variable.
126	Highlight the words Recy_Flow and then press the <enter> key;</enter>
	Specifying that HYSIM should sort the data points.
127	Highlight the word Yes and then press the <enter> key;</enter>
	The screen will then appear as shown below:

Step	Action
128	Press the <esc> key;</esc>
129	Highlight the word Quit and then press the <enter> key;</enter>
130	Do you want to continue adding other unit operations to this recycle process with a data
	recorder?
	• If <u>Yes</u> , turn to the pertinent section of this manual now;
	If <u>No</u> , turn to the "Exiting HYSIM" Section of this manual

CHAPTER 5

COMBINING UNIT OPERATIONS INTO ONE PROCESS AND PFD

<u>Objective</u> - This exercise is an example of how to use the HYSIM program to combine unit operations into one process and PFD (Process Flow Diagram). This example can be modified by specifying another property package and/or other components, compositions and feed conditions.

In this example, separators, heat exchangers, a mixer, a set operation, a distillation column, a compressor, a cooler, and an adiabatic valve are combined into one flow process using HYSIM.

<u>Technical Example Reference</u>: Reference 1 - HYSIM Interactive Tutorial, Hyprotech's HYSIM User's Guide, Version C2.50, March 1994, pages 3-98 to 3-128. Other References: Refs. 1 & 2.

<u>Directions</u> - Pages 455 through 478 outline the combination of various unit operations into one process and process flow diagram (PFD). This exercise requires the user to take certain actions which specify highlighting pertinent words on the menu screens which will pop-up in HYSIM. Highlighting is accomplished by moving the arrow keys (\leftarrow , \uparrow , \rightarrow , or \downarrow keys) until the required word on the menu changes color to indicate that it has been selected. Alternatively, the mouse can be used to highlight a menu item by moving the cursor over to the menu item with the mouse and then "clicking" on that item.

Follow the instructions in the Action column below. The HYSIM menu items to be highlighted and the words to be typed have been indicated in **boldtype** in the Action column. Function keys to be pressed by the user, such as the "Escape" key have additionally been placed inside <> brackets (e.g.<Esc>) in the Action column; supplemental comments are indicated in *italicized* print. Typing can be done in capital and/or small-case lettering, because they are recognized as the same in HYSIM.

The process flow diagram for this operation is shown below:

Step	Action	
1	Are you at the start-up menu of HYSIM? (The start-up menu is described in Section V).	
	• If <u>Yes</u> , proceed with Step 2.	
	• If No, turn to the "Starting HYSIM" Section of this manual and follow the procedures	
	before proceeding to Step 2.	
	Starting with a new case.	
2	Highlight the word No and then press the <enter> key;</enter>	
	Selecting a Property Package.	
3	Highlight the word Peng-Robinson and then press the <enter> key;</enter>	
	The following screen will appear:	

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
A	OIL	OIL		ALL
	HYPOTHETICAL	HYPOTHETICAL		HC
	Cl	Methane	CH4	SOLID
	C2	Ethane	C2H6	MISC
	СЗ	Propane	СЗН8	AMINE
	i-C4	i-Butane	C4H10	ALCOHOL
	n-C4	n-Butane	C4H10	KETONE
	i-C5	i-Pentane	C5H12	ALDEHYDE
	n-C5	n-Pentane	C5H12	ESTER
	C6	n-Hexane	C6H14	CARBACID
	C7	n-Heptane	C7H16	HALOGEN
	C8	n-Octane	C8H18	NITRILE
	C9	n-Nonane	C9H20	PHENOL
	C10	n-Decane	C10H22	ETHER
	C11	n-C11	C11H24	USER
	C12	n-C12	C12H26	
// ♥ ↓	↓ ¥ ↓;	Search by SYNONYM		· /
F1 - Help, F3 - Menu, F4 - Flip Srch, F5 - Exam, F6 - Move, F8 - Change				
PRESS INSERT TO SUBMIT				

Combining Unit Operations into One Process and PFD (continued)

Step	Action		
	Selecting the components in the feed stream.		
4	Highlight each of the following component names under the "Component Selection" Section		
	and press the <i><enter></enter></i> key so that the name then appears in the "Selected" column. This		
	"Component Selection" List is very long. Use the <page down=""> and Arrow Keys to find the</page>		
	following components:		
	Highlight the word Methane and then press the <enter> key;</enter>		
	Highlight the word Ethane and then press the <enter> key;</enter>		
	Highlight the word Propane and then press the <enter></enter> key;		
	Highlight the word i-Butane and then press the <enter> key;</enter>		
	Highlight the word n-Butane and then press the <enter> key;</enter>		
	Highlight the word i-Pentane and then press the <enter> key;</enter>		
	Highlight the word n-Pentane and then press the <enter> key;</enter>		
	Highlight the word n-Hexan e and then press the <enter> key;</enter>		
	Highlight the word n-Heptane and then press the <enter></enter> key;		
	Highlight the word n-Octane and then press the <enter> key;</enter>		
	The following screen will then appear:		

		COMPONENT SELECTION		
Selected	Synonym	Name	Formula	Criteria
Methane		OTL		AT.T.
Ethane	HYPOTHETICAL	HYPOTHETICAL		HC
Propane	C9	n-Nonane	C9H20	SOLTD
i-Butane	C10	n-Decane	C10H22	MISC
n-Butane	C11	n-C11	C11H24	AMINE
i-Pentane	C12	n-C12	C12H26	ALCOHOL
n-Pentane	C13	n-C13	C13H28	KETONE
n-Hexane	C14	n-C14	C14H30	ALDEHYDE
n-Heptane	C15	n-C15	C15H32	ESTER
n-Octane	C16	n-C16	C16H34	CARBACID
	C17	n-C17	C17H36	HALOGEN
	C18	n-C18	C18H38	NITRILE
	C19	n-C19	C19H40	PHENOL
	C20	n-C20	C20H42	ETHER
	C21	n-C21	C21H44	USER
	C22	n-C22	C22H46	
_ ▼ - ↓ ▼ - ↓ Search by SYNONYM				
🛛 Fl - Help,	F3 - Menu,F4 -	- Flip Srch, F5 - Exa	am,F6 - Mov	re,F8 - Change
	PRESS INSERT TO SUBMIT			

Step	Action
5	Press the <insert> key;</insert>
	The screen will then appear as shown on the following page.

.

Work_Sheet PFD	Specify Remove	Operation Store	Print New
Ignore	Restore	Hold	Go
Utility	Size	Report	Toggle
Exit	?	_	
Work_Sheet streams	in a spreadsheet	format	
Prop Pkg PR - SI U	nits 9879552		
>			

NOTE: On returning to the main menu after component selection, HYSIM will provide a list of the component selections. This is helpful in assessing component selections.

Step	Action	
	Specifying that you want the units changed from the default metric system units (kg, kPa, ∞ ,	
	etc.) to field units (lb, psia, F, etc.).	
6	Highlight the word Utility and then press the <enter> key;</enter>	
7	Highlight the word Configuration and then press the <enter> key;</enter>	
8	Highlight the word Units and then press the <enter> key;</enter>	
9	Highlight the word Field and then press the <enter> key;</enter>	
10	Press the <esc> key.</esc>	
	Specifying the conditions of the Feed stream.	
11	Highlight the word Specify and then press the <enter> key;</enter>	
12	Highlight the word Stream and then press the <enter> key;</enter>	
13	Type the word Feed after the prompt (>) and then press the <enter> key;</enter>	
	Specifying the temperature of the Feed in F.	
14	Type the number 60 after the prompt (>) and then press the <enter> key;</enter>	
	Specifying the pressure of the Feed in psia.	
15	Type the number 600 after the prompt (>) and then press the <enter> key;</enter>	
	Specifying the flow of the Feed stream in lb-mols/hr as unknown.	
16	Type the letter x after the prompt (>) and then press the <enter> key;</enter>	
	Specifying that the composition of each component in the Feed will be given in a molar flow	
	rate.	
17	Highlight the word Mole_Flows and then press the <enter> key;</enter>	
	The screen will appear as shown below:	

_____ Stream Molar Flows ___

Methane Propane n-Butane n-Pentane n-Heptane		Ethane i-Butane i-Pentane n-Hexane n-Octane	
n-Heptane	·····	n-Octane	

Step	Action		
	Specifying the molar flow rates in lbmoles/hr of each component in the Feed stream.		
18	Enter the following mole flows beside each component in the Feed stream:		
	After the word, Methane, type the number 70 in the blank and then press the <enter> key:</enter>		
	After the word, Ethane, type the number 20 in the blank and then press the <enter> key;</enter>		
	After the word, Propane, type the number 10 in the blank and then press the <enter> key;</enter>		
	After the word, i-Butane, type the number 9 in the blank and then press the <enter> key;</enter>		
	After the word, n-Butane, type the number 8 in the blank and then press the <enter></enter> key;		
	After the word, i-Pentane, type the number 7 in the blank and then press the <enter> key;</enter>		
	After the word, n-Pentane, type the number 6 in the blank and then press the <enter> key;</enter>		
	After the word, n-Hexane, type the number 7 in the blank and then press the <enter> key;</enter>		
	After the word, n-Heptane, type the number 4 in the blank and then press the <enter></enter> key;		
	After the word, n-Octane, type the number 3 in the blank;		
	The screen will now appear as shown below:		
[Stream Molar Flows		
Metr	iane /0 Ethane 20		
n-Bi	itane 8 i-Pentane 7		
n-Pe	entane 6 n-Hexane 7		
n-He	eptane 4 n-Octane 3		
Step	Action		
19	Press the <insert> key;</insert>		
	Specifying whether the total molar flow rate which HYSIM has calculated (144.0000 lb-		
	mols/hr) is correct.		
20	Highlight the word Yes and then press the <enter> key;</enter>		
	Specifying the type of operation we want to perform on the Feed stream.		
21	Highlight the word Operation and then press the <enter> key;</enter>		
	Naming the first unit operation, (a separator), as "Sep".		
22	Type the word Sep and then press the <enter> key;</enter>		
23	Highlight the word Separator and then press the <enter> key;</enter>		
	The screen will then appear as shown below:		
	Two Phase Separator		
	Operation Name: Sep		
11			
	Please Fill in Stream Names		
	Please Fill in Stream Names		
	Please Fill in Stream Names		

Step	Action
	Specifying the inlet and outlet stream names to and from the separator.
24	Type the word Feed and then press the <enter> key.</enter>
25	Type the word Sepliq and then press the <enter> key.</enter>
26	Type the word Sepvap.
	The following screen will then appear:

Step	Action
27	Press the <insert> key;</insert>
	Naming the second unit operation (a gas/gas heat exchanger) as "Gas Gas".
28	Highlight the word Operation and then press the <enter></enter> key.
29	Type the word Gas_Gas and then press the <enter> key.</enter>
30	Highlight the word Heat_Exchanger and then press the <enter> key.</enter>
	The screen should then appear as shown below:

Operation Gas_Gas	Heat Exchanger
Tube Side Inlet Stream:	Shell Side Inlet Stream:
Tube △P:	
Tube Side Outlet Stream:	Shell Side • Outlet Stream:
UA Specified : UA Calculated :	Btu/F-hr Exchanger Type :Simple Btu/F-hr Shell passes : 0 (0 for Counter Current)

Step	Action		
	Specifying the inlet and outlet stream names and the tube and shellside ΔP .		
31	Type the word Sepvap and then press the <enter> key;</enter>		
32	Type the word Coolgas and then press the <enter> key;</enter>		
33	Type the word Ltsvap and then press the <enter> key;</enter>		
34	Type the word Salesgas and then press the <enter> key;</enter>		
35	Type the number 10 and then press the <enter> key;</enter>		
36	Type the number 10 and then press the <enter> key;</enter>		
	The screen should appear as shown below:		

Step	Action	
37	Press the <insert> key</insert>	
	Naming the third unit operation (a heat exchanger) as "Chiller".	
38	Highlight the word Operation and then press the <enter> key.</enter>	
39	Type the word Chiller and then press the <enter> key.</enter>	
40	Highlight the word Heat_Exchanger and then press the <enter> key.</enter>	
	The following screen will then appear:	

Step	Action			
	Specifying the inlet and outlet stream names and the tube and shells ΔP .			
41	Type the word Coolgas and then press the <enter> key;</enter>			
42	Type the word Coldgas and then press the <enter> key;</enter>			
43	Type the word C3-3 and then press the <enter> key;</enter>			
44	Type the word C3-4 and then press the <enter> key;</enter>			
45	Type the number 10.0 and then press the <enter> key;</enter>			
46	Type the number 0.1 and then press the <enter> key;</enter>			
	The screen should appear as shown below:			

ſĩ	= Operation	Chiller =	= Heat Exchanger
	Tube Side Inlet Strea Coolgas	am :	Shell Side Inlet Stream: C3-3
		Tube DP: 10.0	Shell OP: 0.1
	Tube Side Outlet Stre	eam: Coldgas_	Shell Side Outlet Stream: C3-4
	UA Specifie UA Calcula	ed : ted :	Btu/F-hr Exchanger Type :Simple Btu/F-hr Shell passes : 0 (0 for Counter Current)

Step	Action		
47	Press the <insert> key.</insert>		
48	Highlight the word Worksheet and then press the <enter> key;</enter>		
	Specifying the temperature of the stream Coldgas in °F.		
49	Place the cursor using the arrow keys in the column for the Coldgas stream and the row for		
	the Temperature.		
	Type the number 12.47 and then press the <enter> key;</enter>		
50	Press the <esc></esc> key;		
	Naming the fourth unit operation (a separator) as "LTS".		
51	Highlight the word Operation and then press the <enter> key.</enter>		
52	Type the letters LTS and then press the <enter> key.</enter>		
53	Highlight the word Separator and then press the <enter> key.</enter>		
	The screen will then appear as shown on the following page.		

Step	Action	
	Specifying the inlet and outlet stream names to and from the separator.	
54	Type the word Coldgas and then press the <enter> key</enter>	
55	Type the word Ltsliq and then press the <enter> key.</enter>	
56	Type the word Ltsvap.	
	The following screen will then appear:	

Step	Action Press the <insert> key,</insert>			
57				
	Setting the Temperature of stream Salesgas as 10 F lower than the Temperature of stream			
	Sepvap.			
58	Highlight the word Operation and then press the <enter></enter> key.			
	Naming the Temperature Setting operation (Set) as "Delt".			
59	Type the word Delt and then press the <enter> key.</enter>			
60	Highlight the word Set and then press the <enter> key.</enter>			
	The screen will then appear as shown on the following page.			

Operation Name	: Delt	ontroller big	ock	
Controlled Variable	Controlled Stream	Multiplier	Independent Stream	Offset
0	f =	1.0000	k	- 0.0000_

Step	Action		
61	Type the word Temperature and then press the <enter></enter> key.		
62	Type the word Salesgas and then press the <enter> key two times.</enter>		
63	Type the word Sepvap and then press the <enter> key.</enter>		
64	Type the symbol and number -10.0.		
	The following screen will then appear:		

_____ Set/Controller Block _____

Operation Name: Delt_____

Controlled Variable	Controlled Stream	Multiplier	Independent Stream	Offset
Temperatur of	Salesgas =	= 1.0000	* Sepvap	+ ~10.0

Step	Action		
65	Press the <insert> key;</insert>		
	Naming the fifth unit operation (a mixer) as "Mixer".		
66	Highlight the word Operation and then press the <enter></enter> key.		
67	Type the word Mixer and then press the <enter></enter> key.		
68	Highlight the word Mixer and then press the <enter> key</enter>		
	The following screen will then appear:		

Operation	labatic Mixer
Do all mixed stream	s have the same pressure?
Please Fil	l in Stream Names
Inlet: = Inlet: = Inlet: = Inlet: = Inlet: = Inlet: = Inlet: =	<pre>>> Outlet:</pre>

Step	Action
	Specifying whether all the mixed streams have the same pressure.
69	Type the word No and then press the <enter> key.</enter>
	Specifying the inlet and outlet stream names to and from the Mixer.
70	Type the word Tower_Feed and then press the <enter> key.</enter>
71	Type the word Ltsliq and then press the <enter> key.</enter>
72	Type the word Seplig.
	The following screen will then appear:

Adiaba Operation Name	tic Mixer : Mixer
Do all mixed streams ha	ve the same pressure? No
Please Fill in	Stream Names
Inlet: Ltsliq Inlet: Sepliq Inlet: Inlet: Inlet: Inlet: Inlet:	-> Outlet: Tower_Feed

Step -	Action
73	Press the <insert> key;</insert>
74	Highlight the word Worksheet and then press the <enter> key</enter>
75	Press the <insert> key;</insert>
	Naming the sixth unit operation (a distillation column) as "DEC3".
76	Type the word DEC3 and then press the <enter></enter> key.
77	Highlight the word Column and then press the <enter> key.</enter>
78	Highlight the word Distillation and then press the <enter></enter> key.
	The screen will then appear as shown on the following page.

Step	Action
	Specifying the column flowrates on a molar basis.
79	Press the <enter> key;</enter>
	Specifying the Vapor molar flow rate from stage 1 in lb-mols/hr.
80	Type the number 30 and then press the <enter> key;</enter>
	Specifying the column flowrates on a molar basis.
81	Press the <enter> key;</enter>
	Specifying the Liquid molar flow rate from stage 1 in lb-mols/hr.
82	Type the number 0 and then press the <enter> key;</enter>
	Specifying the top stage reflux ratio.
83	Type the number 1 and then press the <enter> key;</enter>
	Specifying the Temperature Estimate of the top stage in %.
84	Type the number 40 and then press the <enter> key;</enter>
	Specifying the Pressure Estimate of the top stage in psia.
85	Type the number 200 and then press the <enter> key;</enter>
	Specifying the number of stages in the column.
86	Type the number 12 and then press the <enter> key;</enter>
	Specifying the Temperature estimate of the bottom stage in F.
87	Type the number 200 and then press the <enter> key;</enter>
	Specifying the pressure estimate of the bottom stage in psia.
88	Type the number 205;
	The screen should appear as shown on the following page.

Step	Action	
89	Press the <insert> key;</insert>	
	The following screen will then appear:	

Step	Action
	Specifying that the Tower_Feed stream enters the DEC3 distillation column at stage number
	6.
90	Type the word Tower_Feed and then press the <enter> key.</enter>
91	Type the number 6.
	The following screen will then appear:

Step	Action
	Specifying the outlet stream names from the DEC3 distillation column.
93	Type the word Condens and then press the <enter> key.</enter>
94	Type the word Ovhd and then press the <enter></enter> key.
95	Type the word Reboil and then press the <enter></enter> key.
96	Type the word Bttms .
	The following screen will then appear:

Step	Action
97	Press the <insert> key;</insert>
	Changing the flow specification to a mole fraction specification for the overhead flow (which
	is specification number 1).
98	Highlight the word Change and then press the <enter> key.</enter>
99	Highlight the word Specifications and then press the <enter> key.</enter>
100	Type the number 1 and then press the <enter> key.</enter>
101	Highlight the word Fractions and then press the <enter> key.</enter>
	Specifying that the Mole Fraction of Propane in the liquid product leaving stage 12 is 0.02.
102	Type the number 12 and then press the <enter> key.</enter>
103	Highlight the word Liquid and then press the <enter> key.</enter>
104	Highlight the word Mole and then press the <enter> key.</enter>
105	Type the number 0.02 and then press the <enter> key.</enter>
106	Highlight the word Propane and then press the <enter> key.</enter>
	Running the DEC3 distillation column.
107	Highlight the word Run and then press the <enter> key.</enter>
108	Press the <esc> key three times until you get back to the Main Menu;</esc>
	Specifying the composition of stream C3-4.
109	Highlight the word Specify and then press the <enter> key.</enter>
110	Highlight the word Composition and then press the <enter> key.</enter>
111	Highlight the stream name $C3-4$ and then press the $\langle Enter \rangle$ key.
112	Highlight the word Mole_Fractions and then press the <enter> key.</enter>
	The following screen will then appear:

—— Stream Mole Fractions ——

Methane Propane n-Butane n-Pentane	Ethane i-Butane i-Pentane n-Hexane	
n-Heptane	n-Octane	

Step	Action			
	Specifying the mole fractions of each component in the C3-4 stream.			
113	Enter the following mole fractions beside each component in the C3-4 stream:			
	After the word, Methane, type the number 0.0 in the blank and then press the <enter> key;</enter>			
	After the word, Ethane, type the number 0.0 in the blank and then press the <enter> key;</enter>			
	After the word, Propane, type the number 1.0 in the blank and then press the <enter> key;</enter>			
	After the word, i-Butane, type the number 0.0 in the blank and then press the <enter> key;</enter>			
	After the word, n-Butane, type the number 0.0 in the blank and then press the <enter> key;</enter>			
	After the word, i-Pentane, type the number 0.0 in the blank and then press the <enter></enter> key;			
	After the word, n-Pentane, type the number 0.0 in the blank and then press the <enter> key;</enter>			
	After the word, n-Hexane, type the number 0.0 in the blank and then press the <enter> key;</enter>			
	After the word, n-Heptane, type the number 0.0 in the blank and then press the <enter> key;</enter>			
	After the word, n-Octane, type the number 0.0 in the blank;			
	The screen will now appear as shown below:			

______ Stream Mole Fractions _____

Methane	0.0	Ethane	0.0
Propane	1.0	i-Butane	0.0
n-Butane	0.0	i-Pentane	0.0
n-Pentane	0.0	n-Hexane	0.0
n-Heptane	0.0	n-Octane	0.0

Step	Action
114	Press the <insert> key;</insert>
	Naming the seventh unit operation (a compressor) as "K-100".
115	Highlight the word Operation and then press the <enter> key.</enter>
116	Type the word K-100 and then press the <enter> key.</enter>
117	Highlight the words Comp/Expander and then press the <enter> key.</enter>
	The following screen will then appear:

Step	Action
	Specifying the inlet and outlet stream names from the K-100 Compressor.
118	Type the stream name C3-4 and then press the <enter> key.</enter>
119	Type the stream name C3-1 and then press the <enter> key.</enter>
120	Type the stream name K-101 and then press the <enter> key.</enter>
	The following screen will then appear:
[Compressor/Expander
	Operation Name: K-100
Inle	et: C3-4> Outlet: C3-1 -> Energy Stream: K-101 / Function: Compressor / Efficiency: 75.0 % Adiabatic_ / Use curves?: No Calculated Adia. Eff: Calculated Poly. Eff:

Step	Action
121	Press the <insert> key;</insert>
	Naming the eighth unit operation (a single-sided heat exchanger) as "K-103".
122	Highlight the word Operation and then press the <enter> key.</enter>
123	Type the word K-103 and then press the <enter> key.</enter>
124	Highlight the words Cooler/Heater and then press the <enter> key.</enter>
	The following screen will then appear:

Operation Name: K-103
Please Fill in Stream Names and Delta P
Inlet: Delta P = Outlet:
Energy Stream:

Step	Action	
	Specifying the inlet and outlet stream names from the K-103 Cooler.	
125	Type the stream name C3-1 and then press the <enter> key.</enter>	
126	Type the stream name C3-2 and then press the $\langle Enter \rangle$ key.	
127	Type the stream name K-103 Duty and then press the <enter> key two times.</enter>	
	Specifying the ΔP across the Cooler.	
128	Type the number 5.0	
	The screen will then appear as shown on the following page.	

Step	Action
129	Press the <insert> key;</insert>
	Naming the ninth unit operation (a valve) as "V-100".
130	Highlight the word Operation and then press the <enter></enter> key.
131	Type the word V-100 and then press the <enter> key.</enter>
132	Highlight the word Valve and then press the <enter> key.</enter>
	The following screen will then appear:

Step	Action
	Specifying the inlet and outlet stream name for the V-100 Valve.
133	Type the stream name C3-2 and then press the <enter> key.</enter>
134	Type the stream name C3-3.
	The following screen will then appear:

Operation Name: V-100
Please Fill in the Stream Names
Inlet: $C3-2$ $\implies \begin{vmatrix} \\ \\ \\ \\ \\ \\ \end{vmatrix}$ $\stackrel{\frown}{\longrightarrow}$ Outlet: $C3-3$ $_$

Step	Action
135	Press the <insert> key.</insert>
136	Highlight the word Worksheet and then press the <enter> key;</enter>
	Specifying the vapor fraction of the stream C3-4.
137	Place the cursor using the arrow keys in the column for the C3-4 stream and the row for the
	vapor fraction. (Use the $\langle Page Up \rangle$ and $\langle Page Down \rangle$ keys if necessary to find stream C3-4
	on the Worksheet).
	Type the number 1.0 and then press the <enter> key;</enter>
	Specifying the vapor fraction of the stream C3-2.
138	Place the cursor using the arrow keys in the column for the C3-2 stream and the row for the
	vapor fraction. (Use the <page up=""> and <page down=""> keys if necessary to find stream C3-2 $^\circ$</page></page>
	on the Worksheet).
	Type the number 0.0 and then press the <enter> key;</enter>
	Specifying the Temperature of stream C3-2 in F.
139	Place the cursor using the arrow keys in the column for the C3-2 stream and the row for the
	Temperature.
	Type the number 120 and then press the <enter> key;</enter>
140	Press the <esc></esc> key;
	Using the Set operation to specify the Temperature of the Coldgas stream as related to stream
	<i>C3-3</i> .
141	Highlight the word Operation and then press the <enter> key.</enter>
142	Type the letters Set-TC3 and then press the <enter> key.</enter>
143	Highlight the word Set and then press the <enter> key.</enter>
	The following screen will then appear:

_____ Set/Controller Block____

Operation Name: Set-TC3____

	Controlled Variable	Controlled Stream	Multiplier	Independent Stream	Offset
8f = 1.0000 * + 0.0000	0:	f =	= 1.0000	*	+ 0.0000_

Step	Action	
	Completing the Set/Controller Block for the Set Operation.	
144	Type the word Temperature and then press the <enter></enter> key.	
145	Type the stream name Coldgas and then press the <enter> key two times.</enter>	
146	Type the stream name C3-3 and then press the $\langle Enter \rangle$ key.	
147	Type the number 5.00	
	The screen on the following page will then appear.	

Deration Name:	Set-TC3	controller Blo	ock	
Controlled Variable	Controlled Stream	Multiplier	Independent Stream	Offset
Temperatur of	Coldgas =	= 1.0000	- C3-3 +	5.00_

Step	Action
148	Press the <insert> key;</insert>
149	Highlight the word Print and then press the <enter> key;</enter>

Print Options:

The various print options available are as follows:

- a) <u>Streams</u> The conditions, physical properties, and compositions of the streams will be printed out.
- b) *Operations* The different unit operations will be printed out.
- c) <u>Spec Sheets</u> The specifications sheets will be printed out.
- d) *Hypotheticals* Hypothetical component information will be printed out.
- e) Format Specifies the format of the printout.
- f) <u>Cost</u> Lists costs of the run, if a royalty is being charged.
- g) File Saves results in a file.
- h) Printer Toggles on a printer.
- i) <u>Cases</u> Lists the stored files.
- j) *Description* Prints case descriptions.
- k) Oil Input Lists inputted information on an oil.
- NOTE: It is useful to print out all of the inputted process data to check for accuracy.

Step	Action		
150	Highlight the word Streams and then press the <enter> key;</enter>		
151	Highlight the word All and then press the <enter> key;</enter>		
152	Highlight the dash symbol - and then press the <enter> key;</enter>		
	Wait for the printing to the screen to stop. Then, press the $\langle F10 \rangle$ key to get the Main Menu		
	off of the screen in order to see the data on the screen underneath it		
153	Press the $\langle F10 \rangle$ key;		
	The screen will then appear as seen on the following three pages. Use the <page up=""> and</page>		
	<page down=""> or arrow keys to scroll the screen text up and down.</page>		

Stream		Feed	Sepliq	Sepvap	Coolgas
Vapour frag		0 4026	0 0000	1 0000	0 0007
Tomporature		0.4836	0.0000	1.0000	0.9807
Droccure	r	50.0000*	60.0000	60.0000	32.12/4
Molar Elev	psia lbmolo/br	600.0000*	600.0000	600.0000	590.0000
Moldi Flow	10more/m	144.0000*	74.3626	69.6374	69.6374
Mass Flow	10/11	5438.2035	4013.7623	1424.4413	1424.4413
LIQVOL FIOW	Darrel/day	788.6378	499.4297	289.2080	289.2080
Enthalpy	Btu/nr	231865.6189	-41348.8026	273214.4039	243440.9930
Density	ID/IT3	8.2828	34.8685	2.6308	2.8515
MOLE WC.	- /	37.7653	53.9755	20.4551	20.4551
Spec. Heat	Btu/1D-F	0.5779	0.5736	0.5901	0.6020
Therm Cond	Btu/hr-ft-H		0.0572	0.0192	
Viscosity	СР		0.1585	0.0119	
Z Factor			0.1665	0.8365	÷ = - /
Sur Tension	dyne/cm		9.8719		
Std Density	1b/tt3		34.8684		
Methane	mole frac.	0.4861*	0.1933	0.7988	0.7988
Ethane	mole frac.	0.1389*	0.1435	0.1339	0.1339
Propane	mole frac.	0.0694*	0.1040	0.0325	0.0325
i-Butane	mole frac.	0.0625*	0.1067	0.0153	0.0153
n-Butane	mole frac.	0.0556*	0.0979	0.0104	0.0104
i-Pentane	mole frac.	0.0486*	0.0900	0.0044	0,0044
n-Pentane	mole frac.	0.0417*	0.0779	0.0030	0.0030
n-Hexane	mole frac.	0.0486*	0.0929	0.0013	0.0013
n-Heptane	mole frac.	0.0278*	0.0535	0.0003	0.0003
n-Octane	mole frac.	0.0208*	0.0403	0.0001	0.0001
Stream		Ltsvap	Salesgas	Coldgas	C3-3
Description		-	-		
Vapour frac	•	1.0000	1.0000	0.9563	0.4381
Temperature	F	12.4700	50.0000	12.4700*	7.4700
Pressure	psia	580.0000	570.0000	580.0000	44.2496
Molar Flow	lbmole/hr	66.5975	66.5975	69.6374	5.6636
Mass Flow	lb/hr	1295.5755	1295.5755	1424.4413	249.7471
LIQVOL FLOW	barrel/day	271.1740	271.1740	289.2080	33.7510
Enthalpy	Btu/hr	223504.8933	253278.2987	219653.3027	6114.8641
Density	ID/ft3	2.7814	2.3840	3.0323	0.9473
MOLE Wt.	- (** -	19.4538	19.4538	20.4551	44.0970
Spec. Heat	Btu/1b-F	0.6147	0.5862	0.6127	0.4889
Therm Cond	Btu/hr-ft-F	0.0178	0.0190		
VISCOSICY	CP	0.0111	0.0116		
Z Factor	. ,	0.8006	0.8504		
Sur Tension	ayne/cm				
Sta Density	1D/It3				
Methane	mole frac.	0.8239	0.8239	0.7988	0.0000
Echane	mole frac.	0.1304	0.1304	0.1339	0.0000
ropane	mole frac.	0.0272	0.0272	0.0325	1.0000
r-Butane	mole frac.	0.0101	0.0101	0.0153	0.0000
i-Bucane	mole frac.	0.0059	0.0059	0.0104	0.0000
n-Pentane	mole frac.	0.0016	0.0016	0.0044	0.0000
n-Hevene	mole frac.	0.0009	0.0009	0.0030	0.0000
n-Hentane	mole frac.	0.0002	0.0002	0.0013	0.0000
n-Octane	mole frac.	0.000	0.0000	0.0003	0.0000
** "ULLCINE	more rrac.	0 000	0 0000	0 0001	0 0000

Stream		C3-4	Ltsliq	Tower_Feed	Ovhd
Description					
Vapour frac.		1.0000*	0.0000	0.0118	1.0000
Temperature	F	7.3519	12.4700	57.7823	18.1458
Pressure	psia	44.1496	580.0000	580.0000	200.0000
Molar Flow	lbmole/nr	5.6636	3.0399	77.4025	34.0733
Mass Flow	lb/hr	249.7471	128.8657	4142.6277	923.6441
LiqVol Flow	barrel/day	33.7510	18.0341	517.4638	166.8027
Enthalpy	Btu/ni	29902.5546	-3851,6074	-45200.4082	138932.3007
Density	10/103	44 0970	12 2020	33.0600	1.2189
MOLE WC.	Ptu/lb-F	44.0970	42.3920	0 5710	27.1076
Thorm Cond	Btu/10-1 Btu/hr-fr-F	0.0083	0.0528	0.5719	
Viccosity	CP	0.0072	0.0000		0.0191
7 Factor		0.9233	0.1488		0.8674
Sur Tension	dvne/cm		9,1741	• • ·	/
Std Density	lb/ft3		29.9285		
Methane	mole frac.	0.0000*	0.2494	0.1955	0.4441
Ethane	mole frac.	0.0000*	0.2106	0.1462	0.3319
Propane	mole frac.	1.0000*	0.1494	0.1058	0.2149
i-Butane	mole frac.	0.0000*	0.1308	0.1076	0.0080
n-Butane	mole frac.	0.0000*	0.1083	0.0983	0.0010
i-Pentane	mole frac.	0.0000*	0.0670	0.0891	0.0000
n-Pentane	mole frac.	0.0000*	0.0492	0.0768	0.0000
n-Hexane	mole frac.	0.0000*	0.0269	0.0903	0.0000
n-Heptane	mole frac.	0.0000*	0.0065	0.0517	0.0000
n-Octane	mole LIAC.	0.0000*	0.0020	0.0388	0.0000
Stream		Bttms	Condens	Reboil	C3-1
Stream Description		Bttms	Condens	Reboil	C3-1
Stream Description Vapour frac		Bttms 0.0000	Condens 2.0000*	Reboil 2.0000*	C3-1
Stream Description Vapour frac Temperature	F	Bttms 0.0000 260.0444	Condens 2.0000* 0.0000*	Reboil 2.0000* 0.0000*	C3-1 1.0000 155.2748
Stream Description Vapour frac Temperature Pressure	F psia	Bttms 0.0000 260.0444 205.0000	Condens 2.0000* 0.0000* 0.0000*	Reboil 2.0000* 0.0000* 0.0000*	C3-1 1.0000 155.2748 248.5033
Stream Description Vapour frac Temperature Pressure Molar Flow	F psia lbmole/hr	Bttms 0.0000 260.0444 205.0000 43.3292	Condens 2.0000* 0.0000* 0.0000*	Reboil 2.0000* 0.0000* 0.0000* 0.0000*	C3-1 1.0000 155.2748 248.5033 5.6636
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow	F psia lbmole/hr lb/hr	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 325.0610	Condens 2.0000* 0.0000* 0.0000* 0.0000*	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000*	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow	F psia lbmole/hr lb/hr barrel/day	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow Enthalpy Density	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/fr3	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610 315275.6272 31 1878	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 250334.2007 0.0000	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 749752.0763 0.0000	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380 2.1348
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow Enthalpy Density Mole Wr	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/ft3	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610 315275.6272 31.1878 74.2913	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 250334.2007 0.0000 0.0000	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 749752.0763 0.0000 0.0000	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380 2.1348 44.0970
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow Enthalpy Density Mole Wt. Spec. Heat	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/ft3 Btu/lb-F	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610 315275.6272 31.1878 74.2913 0.7292	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 250334.2007 0.0000 0.0000	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 749752.0763 0.0000 0.0000	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380 2.1348 44.0970 0.5220
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow Enthalpy Density Mole Wt. Spec. Heat Therm Cond	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/ft3 Btu/lb-F Btu/lb-F	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610 315275.6272 31.1878 74.2913 0.7292 0.0355	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 250334.2007 0.0000 0.0000 	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 749752.0763 0.0000 0.0000	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380 2.1348 44.0970 0.5220 0.0141
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow Enthalpy Density Mole Wt. Spec. Heat Therm Cond Viscosity	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/ft3 Btu/lb-F Btu/hr-ft-F cP	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610 315275.6272 31.1878 74.2913 0.7292 0.0355 0.1007	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 250334.2007 0.0000 0.0000 0.0000 0.0000	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 749752.0763 0.0000 0.0000 	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380 2.1348 44.0970 0.5220 0.0141 0.0103
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow Enthalpy Density Mole Wt. Spec. Heat Therm Cond Viscosity Z Factor	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/ft3 Btu/lb-F Btu/hr-ft-F cP	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610 315275.6272 31.1878 74.2913 0.7292 0.0355 0.1007 0.0632	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 250334.2007 0.0000 0.0000 0.0000 0.0000	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 749752.0763 0.0000 0.0000 0.0000 	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380 2.1348 44.0970 0.5220 0.0141 0.0103 0.7778
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow Enthalpy Density Mole Wt. Spec. Heat Therm Cond Viscosity Z Factor Sur Tension	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/ft3 Btu/lb-F Btu/hr-ft-F cP dyne/cm	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610 315275.6272 31.1878 74.2913 0.7292 0.0355 0.1007 0.0632 4.7833	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 250334.2007 0.0000 0.0000 	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 749752.0763 0.0000 0.0000 0.0000 	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380 2.1348 44.0970 0.5220 0.0141 0.0103 0.7778
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow Enthalpy Density Mole Wt. Spec. Heat Therm Cond Viscosity Z Factor Sur Tension Std Density	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/ft3 Btu/lb-F Btu/hr-ft-F cP dyne/cm lb/ft3	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610 315275.6272 31.1878 74.2913 0.7292 0.0355 0.1007 0.0632 4.7833 39.5465	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 250334.2007 0.0000 0.0000 	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 749752.0763 0.0000 0.0000 0.0000 	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380 2.1348 44.0970 0.5220 0.0141 0.0103 0.7778
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow Enthalpy Density Mole Wt. Spec. Heat Therm Cond Viscosity Z Factor Sur Tension Std Density Methane	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/ft3 Btu/lb-F Btu/hr-ft-F cP dyne/cm lb/ft3 mole frac.	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610 315275.6272 31.1878 74.2913 0.7292 0.0355 0.1007 0.0632 4.7833 39.5465 0.0000	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 250334.2007 0.0000 0.0000 0.0000*	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 749752.0763 0.0000 0.0000 0.0000*	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380 2.1348 44.0970 0.5220 0.0141 0.0103 0.7778 0.0000 0.0000
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow Enthalpy Density Mole Wt. Spec. Heat Therm Cond Viscosity Z Factor Sur Tension Std Density Methane Ethane	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/ft3 Btu/lb-F Btu/hr-ft-F cP dyne/cm lb/ft3 mole frac. mole frac.	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610 315275.6272 31.1878 74.2913 0.7292 0.0355 0.1007 0.0632 4.7833 39.5465 0.0000 0.0001 0.0001	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 250334.2007 0.0000 0.0000 0.0000* 0.0000* 0.0000*	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 749752.0763 0.0000 0.0000 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380 2.1348 44.0970 0.5220 0.0141 0.0103 0.7778 0.0000 0.0000 1.0000
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow Enthalpy Density Mole Wt. Spec. Heat Therm Cond Viscosity Z Factor Sur Tension Std Density Methane Ethane Propane is Butano	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/ft3 Btu/lb-F Btu/hr-ft-F cP dyne/cm lb/ft3 mole frac. mole frac. mole frac.	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610 315275.6272 31.1878 74.2913 0.7292 0.0355 0.1007 0.0632 4.7833 39.5465 0.0000 0.0001 0.0200 0.1859	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 250334.2007 0.0000 0.0000 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 749752.0763 0.0000 0.0000 0.0000 	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380 2.1348 44.0970 0.5220 0.0141 0.0103 0.7778 0.0000 0.0000 1.0000 0.0000
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow Enthalpy Density Mole Wt. Spec. Heat Therm Cond Viscosity Z Factor Sur Tension Std Density Methane Ethane Propane i-Butane	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/ft3 Btu/lb-F Btu/hr-ft-F cP dyne/cm lb/ft3 mole frac. mole frac. mole frac. mole frac.	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610 315275.6272 31.1878 74.2913 0.7292 0.0355 0.1007 0.0632 4.7833 39.5465 0.0000 0.0001 0.0200 0.1859 0.1748	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 250334.2007 0.0000 0.0000 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 749752.0763 0.0000 0.0000 0.0000*	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380 2.1348 44.0970 0.5220 0.0141 0.0103 0.7778 0.0000 0.0000 1.0000 0.0000 0.0000
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow Enthalpy Density Mole Wt. Spec. Heat Therm Cond Viscosity Z Factor Sur Tension Std Density Methane Ethane Propane i-Butane n-Butane	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/ft3 Btu/lb-F Btu/hr-ft-F cP dyne/cm lb/ft3 mole frac. mole frac. mole frac. mole frac. mole frac.	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610 315275.6272 31.1878 74.2913 0.7292 0.0355 0.1007 0.0632 4.7833 39.5465 0.0000 0.0200 0.1859 0.1748 0.1591	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 250334.2007 0.0000 0.0000 0.0000*	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 749752.0763 0.0000 0.0000 0.0000*	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380 2.1348 44.0970 0.5220 0.0141 0.0103 0.7778 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow Enthalpy Density Mole Wt. Spec. Heat Therm Cond Viscosity Z Factor Sur Tension Std Density Methane Ethane Propane i-Butane n-Butane n-Pentane	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/ft3 Btu/lb-F Btu/hr-ft-F cP dyne/cm lb/ft3 mole frac. mole frac. mole frac. mole frac. mole frac. mole frac. mole frac.	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610 315275.6272 31.1878 74.2913 0.7292 0.0355 0.1007 0.0632 4.7833 39.5465 0.0000 0.0001 0.0200 0.1859 0.1748 0.1591 0.1372	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 250334.2007 0.0000 0.0000 0.0000*	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 749752.0763 0.0000 0.0000 0.0000*	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380 2.1348 44.0970 0.5220 0.0141 0.0103 0.7778 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow Enthalpy Density Mole Wt. Spec. Heat Therm Cond Viscosity Z Factor Sur Tension Std Density Methane Ethane Propane i-Butane n-Butane n-Pentane n-Hexane	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/ft3 Btu/lb-F Btu/hr-ft-F cP dyne/cm lb/ft3 mole frac. mole frac. mole frac. mole frac. mole frac. mole frac. mole frac. mole frac.	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610 315275.6272 31.1878 74.2913 0.7292 0.0355 0.1007 0.0632 4.7833 39.5465 0.0000 0.0001 0.0200 0.1859 0.1748 0.1591 0.1372 0.1613	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 250334.2007 0.0000 0.0000 0.0000*	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 749752.0763 0.0000 0.0000 0.0000*	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380 2.1348 44.0970 0.5220 0.0141 0.0103 0.7778 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow Enthalpy Density Mole Wt. Spec. Heat Therm Cond Viscosity Z Factor Sur Tension Std Density Methane Ethane Propane i-Butane n-Butane n-Pentane n-Hexane n-Heptane	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/ft3 Btu/lb-F Btu/hr-ft-F cP dyne/cm lb/ft3 mole frac. mole frac. mole frac. mole frac. mole frac. mole frac. mole frac. mole frac. mole frac. mole frac.	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610 315275.6272 31.1878 74.2913 0.7292 0.0355 0.1007 0.0632 4.7833 39.5465 0.0000 0.0001 0.0200 0.1859 0.1748 0.1591 0.1372 0.1613 0.0923	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 250334.2007 0.0000 0.0000 0.0000*	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 749752.0763 0.0000 0.0000 0.0000*	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380 2.1348 44.0970 0.5220 0.0141 0.0103 0.7778 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000
Stream Description Vapour frac Temperature Pressure Molar Flow Mass Flow LiqVol Flow Enthalpy Density Mole Wt. Spec. Heat Therm Cond Viscosity Z Factor Sur Tension Std Density Methane Ethane Propane i-Butane n-Butane n-Pentane n-Hexane n-Heptane n-Octane	F psia lbmole/hr lb/hr barrel/day Btu/hr lb/ft3 Btu/lb-F Btu/hr-ft-F cP dyne/cm lb/ft3 mole frac. mole frac.	Bttms 0.0000 260.0444 205.0000 43.3292 3218.9838 350.6610 315275.6272 31.1878 74.2913 0.7292 0.0355 0.1007 0.0632 4.7833 39.5465 0.0000 0.0001 0.0200 0.1859 0.1748 0.1591 0.1372 0.1613 0.0923 0.0692	Condens 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 250334.2007 0.0000 0.0000 0.0000 	Reboil 2.0000* 0.0000* 0.0000* 0.0000* 0.0000* 749752.0763 0.0000 0.0000 0.0000*	C3-1 1.0000 155.2748 248.5033 5.6636 249.7471 33.7510 41472.1380 2.1348 44.0970 0.5220 0.0141 0.0103 0.7778 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Stream		K-101	C3-2	K-103_Duty
Description				
Vapour frac.		2.0000*	0.0000*	2.0000*
Temperature	F	0.0000*	120.0000*	0.0000*
Pressure	psia	0.0000*	243.5033	0.0000*
Molar Flow	lbmole/hr	0.0000*	5.6636	0.0000*
Mass Flow	lb/hr	0.0000*	249.7471	0.0000*
LigVol Flow	barrel/day	0.0000*	33.7510	0.0000*
Enthalpy	Btu/hr	11569.5835	6114.8641	35357.2728
Density	lb/ft3	0.0000	28.1719	0.0000
Mole Wt.		0.0000	44.0970	0.0000
Spec. Heat	Btu/lb-F		0.7996	
Therm Cond	Btu/hr-ft-F		0.0467	and the area
Viscosity	сP	,	0.0790	
Z Factor			0.0613	
Sur Tension	dyne/cm		4.2069	
Std Density	lb/ft3		31.6435	
Methane	mole frac.	0.0000*	0.0000	0.0000*
Ethane	mole frac.	0.0000*	0.0000	0.0000*
Propane	mole frac.	0.0000*	1.0000	0.0000*
i-Butane	mole frac.	0.0000*	0.0000	0.0000*
n-Butane	mole frac.	0.0000*	0.0000	0.0000*
i-Pentane	mole frac.	0.0000*	0.0000	0.0000*
n-Pentane	mole frac.	0.0000*	0.0000	0.0000*
n-Hexane	mole frac.	0.0000*	0.0000	0.0000*
n-Heptane	mole frac.	0.0000*	0.0000	0.0000*
n-Octane	mole frac.	0.0000*	0.0000	0.0000*

Step	Action
154	Press the <f10> key;</f10>
	Looking at the PFD (Process Flow Diagram) containing all of the unit operations in the
	process which was specified.
155	Highlight the letters PFD and then press the < Enter > key;
	Pressing the <home> key reduces the PFD to screen size.</home>
156	Press the <home></home> key;
	The screen will then appear as shown on the following page.

Step	Action
157	Place the cross-hatched lines over the K-103 heat exchanger using the mouse.
	Press the <left button="" mouse="">;</left>
	Typing the letter I (for icons) brings up a menu of icons for various types of heat exchangers.
158	Press the letter <i>;</i>
	Changing the icon for K-103 to reflect that it is an aerial cooler.
159	Place the cross-hatched lines over the first icon (located in the first row and first column).
t .	Press the <left button="" mouse="">.</left>
	The PFD will then appear as shown on the next page.

Step	Action
	Getting back to the Main Menu.
160	Press the <esc> key until you reach the Main Menu.</esc>
161	Turn to the "Exiting HYSIM" Section of this manual.

REFERENCES

- 1. HYSIM User's Guide, Version C2.50. HYPROTECH, 300 Hyprotech Centre, 1110 Centre Street North, Calgary, Alberta, Canada, T2E 2R2, March 1994.
- HYSIM Special Features and Applications Guide, Version C2.50. HYPROTECH, 300 Hyprotech Centre, 1110 Centre Street North, Calgary, Alberta, Canada, T2E 2R2, March 1994.
- 3. Ludwig, Ernest, Applied Process Design for Chemical and Petrochemical Plants, Volumes 1, 2 & 3, Second Edition, Gulf Publishing Co., Houston, Texas, 1984.
- Colley, D.G., W.Y. Svrcek, and Hamish Adam, "Energy and Emission Optimization of the Glycol Dehydrator Process", presented at the 1992 Gas Research Institute Glycol Dehydrator Air Emission Conference, New Orleans, Louisiana, July 20-22, 1992.
- 5. Roche, E., Problem #PD 9604, NJIT Chemical Engineering Dept., Newark, NJ.
- 6. Foust, Alan S., et.al., *Principles of Unit Operations*, Illustration 5.1, John Wiley & Sons, Inc., New York, page 45, 1960.
- 7. Sorensen, J.M. and W. Arlt, Liquid-Liquid Equilibrium Data Collection, Ternary Systems, Chemistry Data Series, Vol. V, Part 2, DECHEMA, p.284, 1980.
- Arnold, Ken and Maurice Stewart, "Design of Oil-Handling Systems and Facilities," Surface Production Operations, Volume 1, Gulf Publishing Co., Book Division, Houston, Texas, 1986.