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ABSTRACT 

TESTING STATISTICAL SIGNIFICANCE 
IN SEQUENCE CLASSIFICATION ALGORITHMS 

by 

Tom Tien-Hua Shih 

Multiple sequence alignment has proven to be a successful method of representing and 

organizing of protein sequence data. It is crucial to medical researches on the structure 

and function of proteins. 

There have been numerous tools published on how to abstract meaningful 

relationship from an unknown sequence and a set of known sequences. One study used a 

method for discovering active motifs in a set of related protein sequences. These are 

meaningful knowledge abstracted from the known protein database since most protein 

families are characterized by multiple local motifs. Another study abstracts knowledge 

regarding the input sequence using a preconstructed algorithm from a set of sequences. 

Most of these studies of classification processes use statistically optimized 

heuristics to enhance their accompanying algorithms. Therefore, these algorithms can be 

analyzed for statistical significance using Baysian Theorems. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 



TESTING STATISTICAL SIGNIFICANCE 
IN SEQUENCE CLASSIFICATION ALGORITHMS 

by 
Tom Tien-Hua Shih 

A Thesis 
Submitted to the Faculty of 

New Jersey Institute of Technology 
In Partial Fulfillment of the Requirements for the Degree of 

Master of Science in Computer Science 

Department of Computer and Information Science 

October 1997 



 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL PAGE 

TESTING STATISTICAL SIGNIFICANCE 
IN SEQUENCE CLASSIFICATION ALGORITHMS 

Tom Tien-Hua Shih 

Dr. Jason T. L. Wang, Thesis Advisor 	 Date 
Associate Professor of Computer and Information Science, NJIT 

Dr. James McHugh, Committee Member 	 Date 
Professor of Computer and Information Science, NJIT 

Dr. &ter A. Ng, Committee Member 	 Date 
Professor and Chairman of Computer and Information Science, NJIT 



BIOGRAPHICAL SKETCH 

Author: 	 Tom Tien-Hua Shih 

Degree: 	 Master of Science 

Date: 	 October 1997 

Undergraduate and Graduate Education: 

• Master of Science in Computer Science 
New Jersey Institute of Technology, Newark, NJ, 1997 

• Master of Science in Education 
Queens College of City University of New York, NY, 1995 

• Bachelor of Science in Engineering 
The Cooper Union for the Advancement of Science and Art, NY, 1992 

Major: 	Computer Science 

iv 



To my beloved parents 



ACKNOWLEDGMENT 

I wound like to express my deepest appreciation to Dr. Jason Wang, who not only 

served as my research supervisor, providing valuable and countless resources, insight, 

and intuition, but also constantly gave me support, encouragement, and reassurance. 

Special thanks are given to Dr. James McHugh and Dr. Peter A. Ng for participating in 

my committee. 

Many of my fellow graduate students in the Data and Knowledge Engineering 

Lab are deserving of recognition for their support. 

vi 



TABLE OF CONTENTS 

Chapter 	 Page 

1 INTRODUCTION 	  

2 ACTIVE MOTIFS AND PROTEIN SEQUENCES 	  4 

2.1 Overview 	4 

2.2 The DISCOVER and CLASSIFY SYS 'EMS 	  

2.3 Discovery Algorithm 	6 

2.4 Classification Algorithm 	7 

3 THE DISCOVERY ALGORITHM AND BAYSIAN THEOREMS 	 9 

3.1 A Baysian Form of Classification Tree 	9 

3.2 Algorithm for Classifier I 	10 

3.3 Summary of Statistical Theorems 	12 

3.4 Statistical Significance on the Discover Systems 	14 

4 THE FINGERPRINT ALGORITHM AND BAYSIAN THEOREMS 	 17 

4.1 DNA Sequence Classification 	17 

4.2 Algorithm for Classifier II 	18 

4.3 Statistical Significance of the Fingerprint Algorithm 	19 

4.4 Complementary Problems 	  20 

5 CONCLUSION 	  21 

APPENDIX A SOURCE CODE FOR SORTING SCORES 	  22 

APPENDIX B SOURCE CODE FOR CALCULATING MEANS OF SCORES 	 24 

vii 



LIST OF TABLES 

Table 	 Page 

I Selected threshold scores of the Fingerprint algorithm 	  20 

viii 



LIST OF FIGURES 

Figure 	 Page 

1 The set S of three sequences 	4 

2 Three base sequences  	11 

3 Algorithm Gluing  	12 

4 Algorithm Scoring  	19 

ix 



CHAPTER 1 

INTRODUCTION 

Multiple sequence alignment has proven to be a successful method of representing and 

organizing of protein sequence data. It is crucial to medical researches on the structure 

and function of proteins. It is becoming more probable that a search for similarity will 

succeed in detecting a relationship between any newly determined sequence and one or 

more known sequences. Medical researchers have been able to abstract important clues 

regarding gene or protein function. The question remains that when to determine the 

similarity between the testing sequence and the known sequence is too weak for a 

potentially meaningful relationship. 

There have been numerous studies published on how to abstract meaningful 

relationship from an unknown sequence. Detection of distant relationships can be aided 

by the presence of multiple members of a single protein family. In fact, most studies have 

utilized this principle in constructing their sequence databases. Usually, a sequence is 

divided into numerous blocks, where each block is a local multiple alignment from a 

group of related proteins [3]. A query sequence is searched against an established 

database of blocks by calculating a position-specific score. Different studies use different 

algorithms in calculating the scores. For example, multiple sequence alignment has been 

instrumental in the study of molecular evolution [7]. 

These studies can often provide specific information on local relationships useful 

for identifying sequence motifs. These are meaningful knowledge abstracted from the 
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known protein database since most protein families are characterized by multiple local 

motifs. 

There have been many tools for discovering motifs in sets of protein or DNA 

sequences. These tools try to abstract knowledge regarding the input sequence using a 

preconstructed algorithm from a set of sequences. A desirable tool would have the ability 

to find motifs in a totally unsupervised operation, and it also can allow itself to benefit 

when prior knowledge is available. In most of the studies mathematical theorems have 

been proven to be very helpful in protein modeling, structure prediction and 

bioengineering. 

Another important problem in computational biology is DNA sequence 

classification. DNA sequence classification is the activity of determining whether or not 

an unbiased sequence belongs to an known class. Many algorithms have been developed 

in constructing classifiers from a library of labeled sequences. These techniques have 

been categorized into three classes: 

(1) consensus search - this approach takes a collection of sequences of a class C and 

generates another sequence which is used to identify sequences in uncharacterized DNA. 

(2) Inductive learning/neural networks - this approach takes a set of sequences of the 

class C and a set of sequences not in C. Using learning techniques, it derives a rule that 

determines whether the unlabeled sequence belongs to C or not. 

(3) sequence alignment - this approach aligns the unlabeled sequence S with members of 

C using an existing tool and assigns S to C if the resulting alignment score is high. 
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There are many studies using probability models in detecting motifs. Many 

statistically based algorithms are used. It is the purpose of this thesis to analyze some of 

the studies on DNA classifications based on known statistical models. 



CHAPTER 2 

ACTIVE MOTIFS AND PROTEIN SEQUENCES 

2.1 Overview 

In the study by Wang et al. [14] a method for discovering active motifs in a set of related 

protein sequences is described. This method is a two-step process: 

(1) find candidate motifs in a small sample of the sequences; 

(2) test whether these motifs are approximately present in all the sequences. 

This approach was used to discover commonly active motifs in a set of related protein 

sequences [7]. The structures of the motifs being discovered are regular expressions of 

the form *S1*S2*... The S1, S2, ... are segments of a sequence or subsequences made up 

of consecutive letters. Following is an example. 

Consider the set of three sequences in Figure 1. 

S1: FEVHYDPMISEDENRLWYPEVPSVG 

S2: GWWRADVNHPTYDPAP FRMKENRAR 

S3: WRYDPMNSEDKTMT I TLVGWNRLCD 

Fig. 1. The set S of three sequences 

Suppose only exactly coinciding segments occurring in at least two sequences and 

having lengths greater than 3 are considered active. Then S contains one active motif: 

*S1[5,8]* = *YDPM* and S3[3,6] = *YDPM* 

where V[x,y] is a segment of a sequence V from the xth to the yth letter inclusively. 

To discover such active motifs in a set of sequences, two optimization heuristics 

based on statistical estimation and pattern matching techniques were developed. By 

combining the discovered motifs with an existing fingerprint technique, a protein 

4 
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classifier is developed. A number of techniques may be used to locate the active motifs. 

These techniques are based on either one of two approaches: (1) a multiple alignment of 

the sequence as a whole, and (ii) a search for local similar segments in the set. Both 

approaches have their own merits and deficiencies. The method used by Wang et al. [14] 

to find active motifs is implemented without prior knowledge of their structures, 

positions, or occurrence. This method is used to find active motifs composed of 

nonconsecutive segments separated by variable length without prior knowledge of their 

structures, positions, or occurrence frequency. 

2.2 The DISCOVER and CLASSIFY Systems 

DISCOVER takes a set of related proteins and produces a collection of active motifs in 

the set. CLASSIFY accepts a query protein and displays a PROSITE group to which the 

protein should belong. These systems can be executed either manually using user-

specified parameters or using those determined by the systems. 

There are other methods published for classifying proteins. One common way is 

via profile analysis [10, 12]. In Wang's study [14] the most frequently occurring segments 

and fingerprints are used as the selection criteria. In profile analysis profiles are obtained 

by global multiple segments. Each profile is a position-specific scoring table. Each table 

is created by aligning a group of related sequences. When determining the relevance of 

the query sequence to a group, one compares the sequence to all the profiles in the 

database. 
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Another technique for detecting distantly related sequence is via testing patterns 

[9]. Given patterns are generated by clustering the pairwise similarity scores among a set 

of related sequences to build a binary tree. The tree is reduced in a stepwise manner by 

progressively replacing a node. The node is replaced by connecting the two most similar 

termini by one common pattern until only a single common root pattern remains. 

2.3 Discovery Algorithm 

The algorithm consists of two phases: (1) find candidate segments among a small sample 

of the sequences; (2) combine the segments to form candidate motifs and evaluate the 

activity of the motifs in all samples to determine which motifs satisfy the specified 

requirements. 

Phase one can be divided into two stages. In stage one, a generalized suffix tree 

for the sample of sequences is constructed. A suffix tree is a tree-like data structure that 

represents a string by collapsing a series of nodes having one child to a single node 

whose parent edge is associated with a string, A generalized suffix tree is an extension of 

the suffix tree, designed for representing a set of strings. Each suffix of a string is 

represented by a leaf in the generalized suffix tree. In stage two, the generalized suffix 

tree is traversed to fine all the segments that satisfy the minimum length. If the pattern 

specified by the user has the form .X., then the minimum length is simply determined by 

the specified pattern. If the pattern specified by the user has the form .X1.X2., all the 

segments V I , V2  are found, where at least one of the Vi  is larger or equal to half of the 

specified length. 
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Phase two also has two stages. In stage one, the activities of the candidate motifs 

are evaluated and ranked from highest to lowest according to their occurrence numbers 

on the sample with respect to the mutation sequences. In stage two the most likely 

candidate motifs found in stage one are evaluated with the entire set. Simple sampling 

without replacement was used to select sample sequences from the set to achieve an 

optimization of selecting the comparison candidates. 

2.4 Classification Algorithm 

A training sample was selected from all known groups. 70% of the sequences in each 

group were selected at random to serve as a training sample. The training sample was 

processed as follows: 

Find 50 characteristic motifs from the training sample of each group. The motifs are the 

length 4 segments having the highest occurrence numbers with zero mutations. When 

there are ties for occurrence numbers with respect to zero mutations, we break the ties by 

considering occurrence numbers with respect to one mutation. The training sequences are 

then hashed using the gapped fingerprint technique. 

When classifying a query sequence T, T is compared with all the characteristic 

motifs. After comparison, each group obtains a raw score. The raw score equals the sum 

of the weights of the group's characteristic motifs occurring in T. The raw score for a 

group is normalized by dividing it by the total weight of all the characteristic motifs in 

that group and multiplying by 100. The highest-scoring group is then displayed as the 
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result of the classification provided that its score is greater than an experimentally 

determined threshold. 

In the second phase, T is hashed by using the same hash function as the one used 

for the training sequences. The group containing sequences with the highest vote is 

displayed as the result of the classification. 



CHAPTER 3. 

THE DISCOVERY ALGORITHM AND BAYSIAN THEOREMS 

3.1 A Baysian Form of Classification Tree 

The classification problem can be approached by building a binary decision tree 

according to some splitting rule based on some predicting variables. The partitioning is 

repeated until a node is reached for which no split is feasible. The splitting is stopped and 

this node becomes a terminal node. Prediction is determined by terminal nodes and takes 

the form of a class level in classification problems. 

A tree T has a root node whose daughters can be divided into terminal nodes, and 

split nodes. The branch of T stems from node t includes t itself and all its daughters. The 

tree is grown as following the rules at each node. 

(1) Examine every allowable split on each predicting variable. 

(2) Select and execute the best splits. 

(3) Stop splitting on a node when some stopping rule is satisfied. 

Suppose the data consists of vector variables X = (X1, X2, 	Xm), with fixed 

dimensionality m. For ordered variables X, the questions in step I are: is X, > c for all c 

in the range of Xi. Those cases in t satisfying the inequality go to the left descendant node 

and those not satisfying to the right descendant. One of popular criteria for rule two are 

Least Absolute Deviations. Let µ = ave. of X i , X,, , Xm. Then c is defined as the min(µ - 

X1 , µ-X2, 	µ-Xm). Most applications use the minimum deviation as a selection criteria 

for sorting the nodes. 

9 
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The tree tends to grow too big and to have too few data points in each terminal 

node because of rule three. To overcome this problem, trees are recursively pruned. The 

pruned subtree is constrained to have more than some minimum number of data points in 

each terminal node. 

CART could be used to creat another way of classifying the protein sequence. 

Given a set of attributes, different subsets of values within those attributes can be 

grouped to form homogeneous populations. For example, if we have a group of input 

sequences and two groups of known sequences, A and B. We could devise an algorithm 

using attributes from A and B to classify the input sequences into group A or B. The 

unknown sequence may not belong to either group A or B. Given a set of protein 

structures, an classification can be set up to find their interior motifs using CART. 

3.2 Algorithm for Classifier I 

Given a set of base sequences, Classifier I first searches for active segments that 

approximately occurring the majority of sequences in the set of base sequences. A 

segment is defined as a substring made up of consecutive nucleotides of a sequence. 

Other factors considered are the length, occurrence number, and mutation of the segment. 

A mutation is defined as a mismatch, insertion or deletion of a nucleotide when matching 

the segment with a base sequence. 

For example, consider the three base sequences in Fig. 2. Suppose the segment to 

be sought has length greater 6 ( i.e., it contains more than 6 nucleotides), occurrence 

number 3 ( i.e., it matches all three base sequences) and mutation 1 (i.e. one mismatch, 
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insertion or deletion of a nucleotide is allowed, when matching the segment with a base 

sequence). Then GCCGGGC and GCCAGGC underlined in Figure 2 are two qualified 

segments. 

GGAGAGGCCGGOCGTGTGCCGGTAC 
GGCCAGGCGGCAGATCTTGACCAGG 
TGTAATCAGAGCGCCAGGCAAACAT 

Fig. 2. Three base sequences 

The found segments may share a large common portion among them. A gluing 

procedure is used to combine two segments into a longer one. In gluing two segments 

together, the procedure aligns their common portion as much as possible. 

To classify an unlabeled sequence, Classifier I preprocesses the base sequences in 

B by generating a set of representative patterns. The classifier first sorts the discovered 

active segments according to their occurrence numbers in B. This sorting indicates the 

order in which the segments are examined. For a segment at the 	position in the sorted 

list, the classifier looks at elements below it in the list to see which element can be glued 

together with it. If it is found that the jth  segment qualifies where i < j, then the newly 

glued segment is placed at the eh  position and the original two segments are removed 

from the sorted list. The newly glued segment is used to represent the original two 

segments in the list. Figure 3 summarizes the algorithm. 

Input: A sorted list L of active segments discovered from the set B of base sequences. 
Output: A set R of representative patterns of the base sequences. 

1; 
repeat 

/* Let the segment placed at the I position in L be S1. */ 
if there exists a segment which can be glued with S i  and 
whose position in L is lower than i then 

begin 
/* Let S2 be the first such segment and its position in L be j, <j. */ 
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glue S1  and S2 and call the result S3; 
remove S1  and S2 from L; 
place S3  at the ith position in L; 

end 
else 

i = i + 1; 
until L can not be shrunk further and i = |L| + 1; 

Fig. 3. Algorithm Gluing 

3.3 Summary of Statistical Theorems 

This section will try to summarize general statistical theorems to reach a theoretical 

conclusion on how to calculate the statistical significance of Discovery algorithms. 

(1) Definition of Conditional Probability 

Let A and B be events with P(B) > 0. The conditional probability of the occurrence of A, 

given the occurrence of B, is defined to be the quantity : 

P(Al B) = P(A)  
P(AB) 

(2) Bayes' Theorems 

a. P(A'|B) = 1 - P(A|B) 

where P(A') is P(event A not happen) 

b. P(AB) = P(AIB)P(B) 

(3) Hypothesis Testing 

A statistical hypothesis is a hypothesis about a parameter of a distribution. One 

hypothesis is the null hypothesis and label it Ho. The other hypothesis is the alternative 

hypothesis and label it H1. There are two types of errors involved: 
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Type I error: A type I error is the error of rejecting the null hypothesis when the null 

hypothesis is true. 

Type H error: A type II error is the error of accepting the null hypothesis when the null 

hypothesis is false. 

For example, we want to test a coin is a regular dime or rare dime. Suppose Po,  P, P are 

probabilities of heads using the rare dime, an ordinary dime and the testing dime. There 

are two possible hypotheses concerning P. Either P = P0= 0.75 or P = P1  = 0.5. The first 

hypothesis is called the null hypothesis and the second hypothesis is called the alternative 

hypothesis. A type I error is the error of rejecting the testing dime as a rare dime while it 

is indeed a rare dime. A type II error is the error of accepting the testing dime as a rare 

dime while it is indeed a regular dime. 

(4) Critical region 

Suppose C is the subset of the sample space which, by a prescribed statistical test, leads 

to the rejection of the hypothesis under consideration. Then C is called the critical region 

of the test. 

(5) Power function 

The power function of a test of a statistical null hypothesis Ho  against an alternative 

hypothesis H1  is the function, that defined for all distributions under consideration, which 

yields the probability that the sample point falls in the critical region C of the test. A 

power function is a function which yields the probability of rejecting the hypothesis 

under consideration. The value of the power function at a parameter point is called the 

power of the test at that point. 
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(6) Significance Level 

Let Ho  denote a hypothesis which is to be tested against an alternative hypothesis 1-I t  in 

accordance with a prescribed test. The significance level of the test is the maximum 

value of the power function of the test when Ho  is true. 

3.4 Statistical Significance on the Discover Systems 

Let H be the hypothesis that a given protein sequence contains these data motifs or the 

unknown testing sequence is classified into family F. 

Let D be the event that a candidate motif belongs to a protein sequence or the unknown 

testing sequence. 

Now we can define Confidence Level of P(HID) as 

P(H | D)  

1 - P(HI D) 

The way to calculate P(H|D) is discussed as follows. Given is D (the unknown testing 

sequence T); the hypothesis H is that T is classified into family F. First, we observe that 

calculation of P(H|D) is algorithm dependent. Now we will divide the calculation into 

two parts. 

(1)1-family classification algorithm 

Given is a known family F. Call F training data. First discover b characteristic motifs 

from F. Now, suppose we are given an unknown testing sequence T. 

If the testing sequence T contains ≥  c (out of b) characteristic motifs, then classify T into 

family F. Otherwise, we can classify T as non-F. We have the following constants: 
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b = number of characteristic motifs chosen for family F 

d = length of characteristic motifs 

Thus p = the probability for a randomly generated subsequence to be a characteristic 

motif. It is obvious that 

b 
P = 20d - 

Now pr  = the probability for r characteristic motifs to appear in T ( for example, T 

contains these r motifs). Let n = length of the testing sequence T. 

Then the probability for the other portion of T not containing any characteristic motif is 

(I-p) 

So the probability for a given unknown testing sequence T to be classified into family F 

is P(H|D): 

Now we can use this formula to evaluate the theorectical confidence level of the 

Discovery algorithm. 

(2) k-family classification algorithm 

Suppose we are given k families. Each family has the same number, namely b, of motifs. 

The algorithm classifies T into the family with the most characteristic motifs appearing 
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in T. So, let h = max  ( j1,..., 	jk ) where ji is the number of motifs of family i that appear 

in T. We can derive a similar formula for the probability for a given unknown testing 

sequence T to be classified into family F. Therefore, P(HID) = 



CHAPTER 4 

THE FINGERPRINT ALGORITHM AND BAYSIAN THEOREMS 

4.1 DNA Sequence Classification 

There have been two new techniques for DNA sequence classification developed. The 

first technique used a computational tool to find active segments from a set of sequences. 

The second technique generated and matched gapped fingerprints of the sequences. The 

two proposed classifiers differ in their ways of processing the base sequences and 

calculating scores for the training sequences. The standard set includes positive 

sequences as well as negative sequences. 

The approach works by first randomly selecting a set B of sequences of the class 

C, referred to as base data, Then another set of sequences of C is taken, referred to as 

positive training data. For each positive training sequence, a score is calculated with 

respect to the base sequences. The minimum score thus obtained is called the positive 

lower bound, denoted L. Next, a set of sequences not in C is taken, referred to as 

negative training set. For each negative training sequence, a score with respect to the base 

sequences is calculated. The maximum score obtained is called the negative upper 

bound, denoted U. Let Bhigh  = max ( Lp, U„) and Blow = (Lp, U„). When classifying the 

unlabeled sequence S, we calculate S's score with respect to the base sequences, denoted 

c. If c Bhigh, then S is classified to be a member of C. If c Blow then S is classified not 

to be a member of C. If Blow  < c < Bhigh, then S cannot be classified. 

17 
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4.2 Algorithm-for Classifier II 

Classifier ii uses a hash-based fingerprint technique to calculate the score of a sequence. 

Given a set of base sequences, their fingerprints are stored into a number of fingerprint 

files. Let S be a sequence in the set of base sequences. Every segment of length n from S 

is generated to form gapped fingerprints. The set of all generated segments from S is 

denoted Sseg. Each fingerprint is a substring of Sseg that begins with the segment's first 

nucleotide. 

For each fingerprint f, a hash function hk  is used to hash f into a fingerprint file. In 

each fingerprint file, f is associated with a pair of integers (x,y). This pair serves as the 

position marker for 1, where x indicates that f is generated from a segment of the xth 

sequence in the set of base sequences and y means that the first nucleotide of f occurs at 

the yth position in the sequence. 

When calculating the score of a training sequence S, the sequence is segmented in 

the same way as the base sequences and fingerprints are generated from the resulting 

segments. The fingerprints then are hashed, using the same hash functions as for the base 

sequences. When a match between S's fingerprint and a base sequence's fingerprint 

occurs, one score is given to an appropriate position in the base sequence. Figure 4 

summarizes the algorithm. 

Input: A sequence S, a set B of base sequences and B's fingerprint files. 
Output: A histogram of scores on the base sequences in B. 
1* Let F contain all fingerprints generated from S. */ 
for each fingerprintfin F do 

begin 
/* Let the length of f be k. */ 
hash fusing hk  and probe into the fingerprint file Fk; 
for each match between fand a fingerprintfin FA, do 

begin 
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/* Let the position marker associated with f be 	*/ 

/* Suppose the first nucleotide off occurs at the p position in S. */ 
add one score to the position q - p + 1 in the ith base sequence in B; 

end; 
end; 

Fig. 4. Algorithm Scoring 

4.3 Statistical Significance of the Fingerprint Algorithm 

In general the systems regarding DNA sequence classification are very complicated to 

allow realistic models to be evaluated. This system can be studied by means of 

simulation. In regard to the Classifier II algorithm, the statistical significance of the 

algorithm is dependent on the way hash functions are devised. 

The actual confidence level can be implemented through a simulation modeling 

of the standard set. However, the confidence level depends on how the standard 

sequences including positive as well as negative sets are related. Furthermore, unbiased 

input data needs to be generated to estimate the desired characteristics of the model. 

The statistical reliability of the fingerprint algorithm could also be analyzed using 

the Baysian technique. The general rule is to use Confidence(0|I) = P(O|I)/(1- P(011)) 

where P(0|1) stands for the probability of the output sequence belonging to the set of 

standard sequences, given the input set. 

Due to the complexity of the fingerprint algorithm, the threshold scores are used 

to approximate the confidence level of the algorithm. By adding the scored P(0|1) and 

P(0'|I), we can obtain an approximation to the confidence level. Several programs 

running the fingerprint algorithm have been designed. By running these programs, a 
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sample of ten scores have been obtained. As can be seen from the following table, the 

confidence level can reach 96%. 

Table 1. Selected Threshold Scores of the Fingerprint Algorithm 

Positive 
U bound 

Positive 
L bound 

Negative 
U bound 

Negative 
L bound 

High 
Score 

 Low 
Score 

P(011) P(O'|1) Confidence 

79.66 7.49 6.27 1.27 7.49 6.27 92.51% 6.27% 98.78% 

87.59 12.59 6.27 1.50.  12.59 6.27 87.41% 6.27% 93.68% 
87.59 9.94 5.62 1.67 9.94 5.62 90.06% 5.62% 95.68% 
64.96 11.50 6.27 1.67 11.5 6.27 88.50% 6.27% 94.77% 
88.66 8.14 8.43 1.67 8.43 8.14 91.57% 8.14% 99.71% 
62.32 8.46 7.23 1.67 8.46 7.23 91.54% 7.23% 98.77% 
53.62 13.71 7.23 1.50 13.71 7.23 86.29% 7.23% 93.52% 
67.88 10.62 6.02 1.50 10.62 6.02 89.38% 6.02% 95.40% 

51.74 9.93 6.91 1.50 9.93 6.91 90.07% 6.91% 96.98% 
81.72 10.81 6.45 1.50 10.81 6.45 89.19% 6.45% 95.64% 

Ave.  10.35 6.64 89.65% 6.64% 96.29% 

4.4 Complementary Problems 

We have analyzed both the Discovery algorithm and the Fingerprint algorithm. There are 

other tools developed for protein classifications using different approaches. How do we 

synchronize all these different approaches? 

Suppose we have two approaches, A and B. A and. B are complementary if using 

both A and B can produce more effective results than using A or B alone. When doing 

complementary analysis, one important factor that needs to be considered is the 

randomness factor. We should only consider the combinations of approaches which are 

more effective than the given approach combined with an random algorithm. 



CHAPTER 5 

CONCLUSION 

There have been numerous tools published on how to abstract meaningful relationship 

from an unknown sequence and a set of known sequences. One method is to discover 

active motifs in a set of related protein sequences. Another method is to abstract 

knowledge regarding the input sequence using a preconstructed algorithm from a set of 

sequences. These are meaningful knowledge abstracted from the known protein database 

since most protein families are characterized by multiple local motifs. 

Experimental results have been used to determine the performance of the 

algorithms. Most of these studies of classification processes use statistically optimized 

heuristics to enhance their accompanying algorithms. Therefore, these algorithms can be 

analyzed for statistical significance using Baysian Theorems. 
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APPENDIX A 

SOURCE CODE FOR SORTING SCORES 

#include <iostream.h> 

const int MAX = 100; // maximum number of scores 
const int TRUE = 1; 
const int FALSE = 0; 

int obtainNumData() 

int m; 
do { // obtain number of data points 

cout << "Enter number of data points [2 to " 
<< MAX << "] : "; 

cin >> m; 
cout « "\n"; 
} while (m < 2 || m > MAX); 
return m; 

1 

void inputArray(float inputArr[ ], int n) 

//prompt user for data 
for (int i= 0; i < n; i++) { 

cout << "aril" << i <<"] : 
cout << inputArr[i] << " "; 

} 
cout << "\n"; 

} 

void showArray(float inputArr[], int n) 
{ 

//prompt user for data 
for (int i= 0; i < n; i++) { 

cout. width(5); 
cout << inputArr[i] << " "; 

} 
cout « "\n"; 

} 

void sortArray(float inputArr[], int n) 

int offset, inOrder; 
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float temp; 

offset = n; 
do { 

offset = (8 * offset) Ill; 
offset = (offset 	0) ? 1 offset; 
inOrder = TRUE; 
for ( int i = 0, j = offset; i < (n - offset); i++, j++){ 

if (inputArr[i) > inputArr[j]){ 
inOrder = FALSE; 
temp = inputArr[i]; 
inputArr[i] = inputArr[j]; 
inputArr[j] = temp; 

} 
} 

} while (?(offset 	1 && inOrder 	 tRUE)); 

main() 

float arr[MAX]; 
int n; 

n = obtainNumData(); 
inputArray(arr, n); 
cout << "Unordered array is:\n"; 
showArray(arr, n); 
sortArray(arr, n); 
cout << "\nSorted array is:\n"; 
showArray(arr, n); 
return 0; 
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APPENDIX B 

SOURCE CODE FOR CALCULATING 
MEANS OF SCORES 

<iostream.h> 

const int MAX COL = 10; // maximum number of columns 
const int MAX ROW = 100; I/ maximum number of scores 

int getRows() 
{ 

int n; 
// get number of rows 
do { 

cout « "Enter number of rows [2 to " 
« MAX ROW « "] :"; 

cin >> n; 
} while (n< 2 > MAX_ROW); 
return n; 

} 

int getColumns() 

int n; 
JI get number of columns 
do { 

cout « "Enter number of columns [1 to " 
« MAX COL « "] : "; 

cin >> n; 
} while (n < I n > MAX_COL); 
return n; 

} 

void inputMatrix( double mat[][MAX_COL], 
int rows, int columns) 

{ 
// get the matrix elements 
for (int i = 0; i < rows; i++) { 

for (int j = 0; j < columns; j++) 
cout « "X[" «i «"][" «j «"j : "; 
cin >> mat[i][j]; 

} 
cout << " \n"; 

} 
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} 

void showColumnAverage(double mat[][MAX_COL], 
int rows, int columns) 

{ 

double sum, sumx, mean; 
sum = rows; 
// obtain the sum of each column 
for (int j = 0; j < columns; j++) 

// initialize summations 
sumx = 0.0; 
for (int i = 0; i < rows; i++) 

sumx += mat[i][j]; 
mean = sumx / sum; 
coot << "Mean for column " << j 

<< "=" << mean << "\n"; 

main() 

double x[MAX ROW][MAX_COL]; 
int rows, columns; 
rows = getRows(); 
columns = getColumns(); 
// get scores 
inputMatrix(x, rows, columns); 
// show means of scores 
showColumnAverage(x, rows, columns); 
return 0; 

} 
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