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ABSTRACT 

THREE-DIMENSIONAL STRESS ANALYSIS OF THE FEMUR WITH 
PROSTHETIC HIP STEM UTILIZING COMPUTED TOMOGRAPHY SCANS 

OF THE FEMUR FOR GEOMETRY AND MATERIAL PROPERTIES 

by 
Thomas J. Lavin 

Three-dimensional finite element stress analyses of the femur with prosthesis hip 

stem were performed for two cases, one male and one female, using ideally bonded 

cemented titanium prostheses. Computed tomography data files were used to derive the 

three-dimensional femur geometry and material properties for each cortical bone element. 

The maximum shear stress (4.7 MPa) in the cement was greater then the maximum tensile 

stress and occurred at the cement-bone interface. The tensile stresses in the cement were 

less then the fatigue strength of the cement. The stress patterns were quite similar for the 

two cases. 

A data analysis program was developed to processes computed tomography data 

files of a proximal femur into a finite element model file with prosthesis. The program 

utilizes Microsoft Excel, it Visual Basic Modules, Math Soft Mathcad, dynamic data 

exchange, custom menus and user input boxes to make the user interface as efficient as 

possible. 
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CHAPTER 1 

INTRODUCTION 

1. 1 Hip Prosthesis Design Factors 

The following factors need to be considered in the design and analysis of a prosthetic hip 

stem. The existing shape and condition of the femur bone. The prosthesis material and 

geometry. The method of attachment of the prosthesis to the bone. The loads that the 

prosthetic and bone will experience. The rate at which these loads will be applied. The 

fatigue life of the prosthesis. The stress levels that the bone and prosthesis will 

experience. The changes in the femur stress levels induced by the present of the 

prosthesis. The most likely mode of failure of the prosthesis and the method of analysis. 

Osteoarthritis of the hip, characterized by the chronic degeneration of the 

cartilage of the hip joint, is the primary diagnoses requiring total hip arthroplasty. 

Osteoarthritis causes severe pain and severely affects the individual's physical activity, 

social interactions, as well as overall health. Total hip arthroplasty results in a rapid and 

complete improvement in the health-related quality of life of the patient, and affects all 

aspect of the patients overall well-being (Rorabeck 1994). 

A total hip arthroplasty involves the replacement of the hip ball and socket joint. 

The typical hip prosthesis includes a hip stem, a femoral ball, and an acetabular 

component. Some hip stem prostheses include a collar portion, designed to contact the 

calcar. This research deals with the hip stem portion of the joint replacement. 

A Computed Tomography Data Analysis Program has been developed that uses 

Computed Tomography data files and ANSYS Finite Element Analysis Software to allow 
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an engineer to analyze various prosthetic designs for a given femur bone geometry. The 

following sections elaborate on the various factors that influence the design and finite 

element modeling of a hip prosthesis. 

1.2 Finite Element Method 

Given that the femur with prosthesis is a geometrically complex structure composed of 

materials with different properties, the finite element method of analysis is an ideal way to 

model this complex structure and has been used in this research. The finite element 

method is an effective computational method to analyze the displacements and stresses 

that will occur in a structure under a defined set of loads and boundary conditions. The 

finite element method allows the modeling of structures with complex geometries 

containing multiple materials with different properties. It also allows a structure to be 

analyzed under various load conditions and boundary constraints. 

The general procedure involved in the finite element analysis of a structure are as 

follows: (1) Discretization of the structure into a collection of finite elements of 

geometrically simple shapes; (2) Formulation of element equations for all typical elements 

in the model; (3) Assembly of the element equations to obtain the equations of the whole 

structure; (4) Imposition of the boundary conditions of the problem; (5) Solution of the 

assembled equations; and (6) Postprocessing of the results (Reddy, 1984). 
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1.2.1 Discretization of the Structure 

The number, type (i.e., linear, quadratic), and shape (i.e., tetrahedral, brick) of elements 

used to model a structure depends on the accuracy of the results desired. All interfaces 

where there is an abrupt change in geometry or material properties need to be modeled. 

The geometrical shape of an element is defined by coordinate points, called nodes. 

The solution convergence characteristics of the finite-element approximation 

should be investigated by refining the mesh (i.e., increasing the number of elements in the 

model). 

1.2.2 Formulation of Element Equations 

The variational formulation of the governing differential equation over the typical element 

is constructed to obtain an element equation in the form 

where K = element stiffness; u = displacement and F = force. 

All forces associated with an element are assumed to be concentrated at the nodal points. 

The above equation called the element stiffness matrix relates the nodal point forces to 

the nodal points displacements. 

1.2.3 Assembly of the Element Equations 

The correspondence between the local nodes and the global nodes is expressed in the 

form of an array, called the Boolean connectivity matrix. The element equations are 
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expressed in terms of global nodal values and indicate the contribution of each element to 

the overall problem. Superimposing is used to obtain the global system equation 

The numbering of the nodes directly affects the bandwidth of the global system 

equation, and therefore the storage requirements and computational cost of running the 

analysis. To reduce the bandwidth of the global system equation the elements must be 

ordered for the solution phase so that the element for which each node is mentioned first 

is as close in sequence to the element for which it is mentioned last. All elements, 

including those of different types, should be included in this node numbering sequence. 

1.2.4 Imposition of the Boundary Conditions 

The imposed nodal constrains (i.e. selected nodes fixed in x, y, and z) and loads 

associated with the problem are incorporated into the global system equation. At this 

point the finite element input file would contain a nodal point coordinate file containing 

each node number and its associated coordinates, an element (node-connectivity) file, a 

material properties file for all of the elements in the model and the locations and 

magnitudes of all of the applied forces and constraints. 

1.2.5 Solution of the Assembled Equations 

The global system equation is partitioned into the following form 
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where {∆1}is the column of known displacements, {∆2} is the column of unknown 

displacements, {F1} is the column of the unknown forces, and {F2} is the column of the 

known forces (Reddy, 1984). 

The above equation can be written as two matrix equations to obtain 

[K11] {∆1} + [K12] {∆2} = {F1} [K21] {∆1} + [K22] {∆2} = {F2

} 

The unknown displacements {∆2

} 

 are determined by solving the second matrix equation, 

rearranged as shown below 

{∆2

} 

 = [K22

]

-1 ({F2} - 

[K21] {∆1}) 

Once the unknown displacements {∆2

} 

 are determined the unknown forces {F1} can be 

computed from the first matrix equation. 

1.2.6 Postprocessing of the Results 

The solution of the global system equation gives the nodal values of the primary 

unknowns (e.g., displacement). Postprocessing of the results includes the calculation of 

the strains from the strain-displacement relations and then calculation of the stresses from 

the stress-strain relations. The results are then represented in tabular and/or graphic 

form. 

The use of the finite element method combined with computer tomography, which 

provides the 3-dimensional bone geometry and properties, and a pre-processing method 

to determine the prosthesis geometry is an efficient way to determine the stresses in the 

femur with prosthesis. 
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1.3 Bone Properties 

In order to develop a finite element input file of the femur with prosthesis the material 

properties of all of the materials in the model need to be known. The following is a 

summary of the bone properties reported in the recent literature. Cowin (1995) showed 

mathematically, using the minimization and maximization of the strain energy density, 

that the midshaft of a long bone, such as the femur, has the greatest stiffness in the 

direction of its long axis and its greatest impact loading resistance in the transverse 

direction. Table 1.1 list the Young's Modulus of Trabecular and cortical bone measured 

ultrasonically and mechanically, by Rho et al., (1993). 

Table 1.1 Young's Modulus of Trabecular d Corti Bone 
Ultrasonic 
(2.25 MHz) 

Mechanical 
(Tensile) 

Young's 
Modulus 1 Sigma 

Young's 
Modulus 1 Sigma 

Material (GPa) (GPa) (GPa) (GPa) 

Trabecular Bone 14.8 1.4 10.4 3.5 
Cortical Bone 20.7 1.9 18.6 3.5 

Rho et al., (1993) shown that the Young's modulus of cortical bone cannot be 

extrapolated from the Young's modulus vs. density relationship for cancellous bone, yet 

the Young's modulus of trabeculate can be predicted by extrapolation from the 

relationship between Young's modulus vs. density of the cancellous bone. This implies 

that mechanically cortical and trabecular bone are not the same material. Trabecular bone 

being the bone tissue within cancellous bone. 
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The two most frequently used methods to determine, the Young's modulus of 

bone is ultrasonic and microtensile or microcompression testing. In Ultrasonic testing, 

ultrasonic waves propagated through the bone specimen at a given frequency (i.e. 2.25 

MHz). The Young's modulus in a specific direction is equal to the bone density 

multiplied by the through the thickness propagation velocity squared (Kohles et al., 

1994). The bone specimens are saturated with physiological saline during the tests (Rho 

et al., 1993). In microtensile tests the bone specimen are often glued to an attachment 

using a cyanoacrylate glue (Rho et al., 1993). 

Rho et al., (1993) states that the actual Young's modulus of trabecular bone 

material probably falls nearer to the upper end of values obtained by bending test (3.2 

7.8 GPa) and towards the lower end of the range found using microtensile and other tests 

(8.7 - 12.7 GPa). There is not a single value for Young's modulus of trabeculae, as the 

properties may vary depending upon the location, age, density, species, and state of 

health. Since the trabecular bone undergoes a considerably higher rate of turnover than 

cortical bone, there is a great deal of variation in its properties. Rho et al., (1993) found 

that Ultrasonic testing gave higher values for Young's modulus for both microspecimens 

of cortical bone and individual trabeculae then microtensile testing. They state that it is 

possible that this discrepancy is due to the dependence of Young's modulus in bone upon 

strain rate, and may indicate that the very slow strain rate used in the microtensile tests 

(5.5 x 10-6/sec) was not equivalent to the strain associated with the elastic wave 

propagation used in Ultrasonic testing. For the bone specimens measured by Rho et al., 



(1993) the following equation, which is valid for both cancellous bone cubes and 

trabecular bone material, was derived: 

E = -0.29 + 0.0042 p + 1.8 x 10-6 p2, (r2  = 0.97) 

where E is in GPa and p is in kg/m3. 

As stated previous Rho et at, (1993) found that the Young's modulus of cortical. 

bone could not be extrapolated from cancellous bone data. 

Van Rietbergen et al., (1995) developed a realistic three dimensional model of 

trabecular bone, representing a 5.15 by 3.64 by 5.12 mm cube, consisting of 296,679 

elements. The geometry for the model was obtained by using micro-CT-scanning to 

digitize a 7 by 7 by 7 mm trabecular bone cube. There was a total of 176 slices each with 

a resolution of 176 by 248 pixels. The model represented the center section of the cube. 

All elements were assigned isotropic material properties. A Young's modulus of 1000 

MPa was used so that the results could be scaled (analysis was linear elastic) to any 

isotropic Young's modulus with a Poisson's ratio of 0.3 (as used in their model). Based 

on experimental data (88 to 400 MPa) they estimated the tissue Young's modulus for 

trabecular bone to be between 2.23 GPa and 10.1 GPa. 

Keaveny et al., (1993) points out, that because the ends of any bone specimen is 

machined there is a damage artifact which results in a lower experimentally measured 

Young's modulus. There may also be frictional artifacts which depend on the specimen-

platen interface conditions. The frictional artifacts increase the experimentally measured 

Young's modulus. The experimentally measured artifacts are sensitivity to the specimen 

size, aspect ratio and the Poisson's ratio of the bone being tested. Based on a series of 
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finite element models used to represent different specimen sizes and frictional effects 

Keaveny et al., (1993) discovered that the error in the Young's modulus measurement 

can be substantial for certain specimen geometries. They also repotted that the platens 

Young's modulus may vary from less than 30 % to over 175 % of the Young's modules 

of the bone specimen. They concluded that one needs to question the accuracy of the 

Young's modulus data so far obtained with the conventional compression test, and that 

any inter-study comparisons, where the aspect ratio, Poisson's ratio, frictional 

characteristics, and specimen size differ, are invalid. 

They also discovered that when strain is measured by an extensometer, there is no 

initial, nonlinear "toe" in the stress-strain curve. Thus, the trabecular bone specimen 

behaves in a linear fashion up to yielding. Therefore, the initial nonlinearity seen during 

testing of trabecular bone may also be an experimental artifact due to specimen-platen 

damage. Keaveny et al., (1993) recommended the use of ultrasound or direct attachment 

of extensometers to material away from the platens to overcome problems with accuracy. 

In this research the Young's modulus of cortical bone was assumed to following 

the Carter and Hayes (1977) equation listed below 

E = 3790(strain rate)0.06 (Density)3  (MPa); 

where strain rate is in units of (1/sec) and density is in g/cm3  

and the Young's modulus of cancellous bone was assumed to be a constant and equal to 

1000 MPa, as used by Chang (1994). 
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1.4 Computed Tomography Number vs. Density 

Computed Tomography (CT) scans of the femur are used in this research to determine 

the 3-dimensional geometry of the femur and the material properties of the cortical bone 

to be used in the finite element model. This research is a continuation of the procedure 

used by Marom and Linden (1985) and further developed by Chang (1994) to created a 

3-D finite element model from Computer Tomography (CT) data. In computed 

tomography two dimensional cross-sectional views of a object are obtained. These two 

dimensional cross-sectional views can be combined to form a three-dimensional image. 

The three-dimensional image gives a much more accurate geometrical representation of 

the bone structure then can be obtained from the review of anteroposterior and lateral x-

rays. This three-dimensional image can be used as the basis for designing a custom 

prosthesis. 

A CT number is associated with every pixel location in the cross-section. There is 

a relationship between the pixel CT number and the density of the object at that location. 

In this research the relationship between cortical bone density and CT number is assumed 

to be linear. The equation used to relate CT number to cortical bone density is of the 

following form: 

Density = (A)(CT#) + B (g/cm3) 

The Computed Tomography Data Analysis Program allows the user to vary the 

values of A and B so that this CT data analysis program can be used with any CT scanner 

that gives a CT number that is linearly related to the cortical bone density. Studies have 

show that there is a relationship between the density of cortical bone and its Young's 
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modulus. Therefore, not only does a CT scan give an accurate geometrical representation 

of the bone structure it also allows one to determine the Young's modulus of the bone. 

The following rate dependent equation has been used to relate the density of the cortical 

bone to its Young's modulus (E): 

E = 3790(strain rate) 0.06 (Density)3 (MPa); Carter and Hayes (1977) 

where strain rate is in units of (1/sec) and density is in g/cm3  

The program allows the user to input various strain rates. The Young's modulus 

of cancellous bone was assumed to be a constant in this research and not a function of the 

density (CT number) of the cancellous bone. 

1.5 Prosthesis Material/Geometry 

In order to develop a finite element input file of the femur with prosthesis the material 

properties and geometry of all of the materials in the model need to be known. This 

section discusses the prosthesis materials and geometries reported in the recent literature. 

The goal of a hip prosthesis is to restore the natural kinematic motion of the joint. This 

must be accomplished in such a way that the prosthesis does not cause pain. Ideally the 

life of the prosthesis should exceed the life expectancy of the patient. In reality the 

prosthesis sometimes fails and revision surgery is required. The typical prosthesis 

materials are titanium aluminum vanadium (TiAIV) and cobalt-chrome molybdenum alloy 

(CoCrMb). Stem length as well as stem cross-section plays a major role in the stability of 
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the prosthesis. The use of a calcar support (collar) on a hip prosthesis has received both 

support and disapproval. 

Head et al., (1995) suggests that titanium alloy is the material of choice for 

cementless femoral components even though they state that the most widely used 

cementless femoral component in the United States is the Anatomic Medullary Locking 

(AML; DePuy, Warsaw, IN) which is made of CoCrMb alloy. Their reasoning was that 

TiAIV has a much lower Young's modulus then CoCrMb and therefore a lower bending 

stiffness which results in less stress shielding (less bone reabsorption), especially for stem 

with diameters larger than 13.5 mm. Since the bending stiffness is proportion to the 

Young's modulus times the radius raised to the fourth power. Lower incidence of thigh 

pain is also associated with the decreased rigidity of TiAlV. Superior biocompatibility of 

TiAlV was also pointed out. However, advantages with respect to implant fixation has 

not been confirmed. TiAlV was not recommended to be used as a bearing surface 

because of its poor wear resistance. CoCrMb stems were preferred for cemented femoral 

stems because FEA shown that titanium alloy stems placed greater stress on the cement. 

Sotereanos et al., (1995) on the other hand, stated that chrome-cobalt femoral 

prostheses have the following three advantages over titanium stems. Cobalt-chrome 

implants have been used successfully for a longer period than titanium ones. Secondly, 

the porous coating can be applied to the entire surface of the prosthesis stem with a low 

incidence of fatigue failure. This ability to apply a porous surface to an entire implant has 

distinct advantages in revision surgery. Applying a similar coating to a titanium stem 

increases the risk of stem fracture. The third advantage of cobalt-chrome implants over a 



13 

titanium alloy implant, being the greater surface hardness of cobalt-chrome, which results 

in less abrasive wear in the uncoated distal portions. 

Callaghan (1993) also states the advantages of cobalt-chromium as being its 

material hardness which should result in less wear debris, and it's ability to more readily 

maintain strength, through the sintering process of applying porous beads, since it has less 

notch sensitivity. Titanium however is believed to have the potential of obtaining greater 

bone ingrowth since pure titanium can bond chemically to bone. Titanium also has 

decreased material stiffness, therefore less stress shielding will occur in the bone and there 

are less biocompatibility concerns associated with its use. As seen from the above there is 

not universal agreement of the choice of stem material. 

Typically, stems are either straight or curved. The advantage of a straight stem is 

that it is more versatile for use in patients who have an abnormal femoral anatomy. 

However, a curved stem allows for better initial torsional stability in patients with normal 

femoral anatomy. Modular stem designs also exist. They allow for a more custom fit but 

fretting at the modular tapers which results in the production of wear debris is a concern. 

Some hip prosthetic stems contain a collar to allow for proximal medial stress transfer 

and increased initial stability of the implant. However, initial collar contact is not always 

obtained and when it is obtained initially it is not maintained in a relatively large 

percentage of patients due to bone remodeling. Another concern with the use of a 

collared stem is that by the collar making contact it may inhibit adequate seating of the 

prosthesis, and prevent the desired press fit of the prosthesis from being obtained. 
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Munting and Verhelpen (1995) performed a pre-clinical biomechanical evaluated 

of a femoral implant that has no intramedullary stem. It fits into an angular resection of 

the femoral neck. The stemless prosthesis was made of titanium alloy (Ti, 6% Al, 4% V) 

and had a hydroxyapatite coating. An 8 mm diameter trans-trochanteric screw is used to 

provide immediate strong fixation. There is an ongoing clinical trial with consenting 

patients under the age of 50. 

The Computed Tomography Data Analysis Program developed in this research 

allows the user to vary the prosthesis material and geometry. 

1.6 Prosthesis/Bone Interface 

One of the areas of greatest concerns in the hip stem joint is the interface between the 

femur bone and prosthesis. This interface plays a major role in the transfer of loads 

(stress) from the prosthesis to the bone. The important of stress transfer is discussed in 

Section 1.9. This section discusses the present methods used to attach the prosthesis to 

the bone. 

The three most popular means of attaching the prosthesis to bone are bone 

cement, porous surfaces and bone compatible coatings. The most common bone cement 

is Polymethylmethacrylate (PMMA) pioneered by Charnley in 1970. Simplex P bone 

cement (Howmedica, Rutherford, NJ) is also commonly used. To reduce the chance of 

an inflection an antibiotic, such as cephalosporin, is often added to the bone cement. The 

techniques employed in the use of bone cement has evolved. The original method 

consisted of finger packing the cement into the femur without a medullary plug ("first- 
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generation cementing techniques"). Around 1976, the use of a medullary plug and 

cement gun for cement delivery was incorporated. In 1978, some surgeons began using a 

Water Pik (Daval, Cranston, Rhode Island) to clean the bone interstices of blood and 

marrow. Cement pressurization through the use of a cement compactor was incorporated 

later that year. Newer cementing techniques now, also use cement porosity reduction 

techniques, e.g., vacuum mixing or centrifugation and a layer of methylmethacrylate 

precoated on the metal (Estok and Harris 1994). 

The goal of proximally porous-coated femoral prosthesis is to provide a lifelong 

biologic fixation between the implant and bone without severe femoral stress shielding. 

Coating materials include porous layers (beads or mesh), plasma-sprayed metals, 

hydroxyapatite, and tricalcium-phosphate (approximately fifty micrometers thick, used to 

enhance bone ingrowth). This alternative method of fixation is being pursued because the 

cement joint is believed to be the weak link in the bone/prosthesis interface. The ideal of 

a biological bond to the bone in theory can extend the life of the prosthesis which is 

required for younger more active patients. The bond between hydroxyapatite and the 

prosthesis may turn out to be the weak link, rather than the bond between hydroxyapatite 

and bone. The strength requirements of a prosthesis prohibits the use of a fully porous 

implant, so a porous coating is placed on a solid substrate. Sintering, diffusion-bonding, 

and plasma-spraying are the commonly used methods to create porous surfaces. 

Sintering is a high-temperature process that fuses spherical beads (cobalt-chrome 

or titanium), differing only in bead size, to the substrate and to each other at the contact 

points. The sintering technique works for either a cobalt-chrome or titanium substrate. 
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The spherical beads are initial held in place on the substrate with a jelly-like binder which 

dissipates during the heating process. Sintering reduces the fatigue strength of the implant 

material. The process of sintering redistributes carbide phases in the case of chromium 

alloys and creates notches at the sites of attachment in the case of titanium alloys. There 

is also a reduction in strength in the area without the porous coating due to phase 

transformation that occurs during sintering. This would include the smaller-diameter 

neck (Callaghan 1993, Bourne et al., 1994). 

Diffusion-bonding is a process which uses heat and pressure (less heat than 

sintering) to attach titanium fiber metal porous pads to a titanium alloy substrate. The 

fatigue strength of the titanium alloy components reduces from 78,000 to 30,000 psi as a 

result of diffusion bonding or sintering, largely because of notch sensitivity (Callaghan 

1993, Bourne et al., 1994). 

The optimum pore size for bone ingrowth is believed to be in the range of 100 to 

400 micrometers. Since the porous coating does not result in an immediate bond, the 

initial strength of fixation that is achieved is less than that achieved with the cured bone 

cement, however, within two weeks the interfacial strengths are equivalent to those 

obtained in cancellous bone (1.4 to 2.6 MPa) (Callaghan 1993). 

Metal ion contamination is a potential concern with porous-coated implant 

because of the large surface area exposed to bone. Wear, electrochemical corrosion, and 

fretting corrosion all result in the release of metallic ions. 

Plasma-spraying involves the partial melting of metal powders in a hot plasma 

flame within the spray nozzle (only the coating material is heated) and the delivery of this 
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product (i.e. titanium coating powder) to the substrate through a carrier pressurized gas 

mixture, under an applied electrical field. A textured surface results. The plasma spray 

process reduces the fatigue strength of a titanium alloy implant from 78,000 to 70,000 psi 

due to the notch-sensitivity (Callaghan 1993, Bourne et al., 1994). 

The major concerns with these coating processes are the fact that they reduce the 

bulk mechanical strength of the implant, have the potential for debonding between the 

porous surface and substrate and cause an accelerated rate of corrosion (due to the large 

surface area). 

The relative motion between the prosthesis and the adjacent bone effects the type 

of tissue that grows within the porous surfaces. There appears to be a relative motion 

threshold. If the relative motion exceeds the threshold, bone ingrowth will not occur, 

instead a fibrous tissue layer will result. The threshold has been estimated to be as low as 

40 µm and as high as 150 µm. If stability is achieved and maintained, the following three 

phases of primary fracture-healing occur at the porous interface: first, there is an initial 

inflammatory phase; then, there is reparative woven bone which occurs at one to two 

weeks; and finally there is the remodeling lamellar-bone phase which occurs at four weeks 

(Gilbert et al., 1992, Callaghan 1993). 

Using rigid-body motion mechanics Gilbert et al., (1992) developed a method to 

measure the three-dimensional motion of a femoral prosthesis with respect to the femur 

containing it. They obtained the following relative motions. "For an uncemented 

prosthesis the total migration was 193 pm in magnitude (with 12 pm in the anterior 

direction, 150 p.m in the medial direction, and 122 p.m distally) and the micromotion at 
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the end of the test was 52 µm in magnitude (with 21 µm anterior, 44 µm medial, and 17 

µm axial micromotion)". The difference in magnitudes observed by Gilbert et al., (1992) 

between the relative motion at the peak loads and the prosthesis migration are at or 

exceed the relative motion threshold believed to result in the development of a fibrous 

tissue layer. The exact prosthesis used by Gilbert et al., (1992) was not specified. 

The most important factor for the maximization of bone ingrowth into porous 

surfaces is the achievement of stability between the implant and bone. The percentage of 

available porous surface in which bone ingrowth actual occurs is believed to be 

somewhere between 0 to 65 per cent (Callaghan 1993). There is greater proximal 

cortical bone loss with the use of more extensively coated stems and of stems that have a 

diameter of more than 13.5 millimeters due to proximal stress shielding. However, many 

investigators prefer extensively coated stems because they question the durability of the 

fixation attained with proximally coated stems, especially in view of the potential 

destruction of bone that has recently been realized to occur due to the biological response 

to particulate debris. There is also a lower incidence of thigh pain associated with the use 

of extensively coated stems. 

A greater rate of intraoperative fractures occur with procedures performed 

without cement, due to the fact that cementless prosthesis tend to be thicker and require a 

press fit for initial stabilization. 

The development of connective soft tissues at the interface between implants and 

bone can endanger the stability of the implant fixation. This is a biological reabsorption 

process of the bone facing the implant, which sometimes occurs after many years of 
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successful functioning. The interface bone is replaced by a soft tissue layer which can 

easily deform under compression and is not capable of transmitting shear and tensile 

stresses. The soft tissue formation between implant and bone results in a clinically loose 

implant (Weinans et al., 1993). 

Huiskes and Reitbergen (1995), point out that the long-term survivorship of 

noncemented hip stems in total hip arthroplasty is subject to incompatible design goals. 

Stated slightly differently we have, the goals of minimal bone loss and maximal interface 

security are incompatible. To reduce bone absorption, bones should be stressed to their 

normal physiologic levels and loads should be transferred proximally. This is achieved by 

using short, flexible, proximally bonded stems. Conversely to maximized bone ingrowth 

and minimize micromotions stems ought to be long, rigid and bond over their entire 

length. 

Rorabeck (1994) conducted a double-blind study of 250 cases comparing the 

cemented Mallory Head Implant (Biomet, Inc. Warsaw, Indiana) to the cementless 

version. They found no difference in impact on patients health-related quality of life 

between cemented and cementless total hip arthroplasty at two years. They compared 

Harris Hip score, D'Aubine Score, WOMAC Osteoarthritis Index, MACTAR index, 

Sickness Impact Profile, Time Trade-Off (how many of their current years of life are 

patients willing to give up to achieve full health), Six-Minute Walk, and Economic 

factors. Rorabeck et al., (1994) plan to follow this group of patients for ten years to 

determine the relative revision rates of the cemented and cementless implants. 
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The Computed Tomography Data Analysis Program developed in this research 

allows the user to vary the interface properties used in the 3-dimensional finite element 

model of the femur with prosthesis. For the two cases analyzed in this study, a titanium 

prosthesis with an ideally bonded cemented interface was modeled. Section 1.11 

discusses methods that can be used to model other interface conditions. 

1.7 Hip Forces 

The boundary conditions used in the finite element models created in this study consisted 

of assigning zero displacement constraints to the distal most portion of the femur (e.g. the 

distal most set of nodes were fixed in X, Y, and Z). In addition a joint load was applied 

to the top of the prosthesis neck and a muscle reaction force was assigned to femur nodes 

associated with the greater trochanter muscle attachment site. This section discusses the 

hip joint and muscle reaction forces found in the literature. 

Telemetering total hip implants (Bergmann et al., 1993) allow one to measure the 

magnitudes, directions and moments of force in real time. Instrumented prostheses were 

implanted in the left and right hips of an 82 year old male patient (650 N body weight 

(BW)) with severe arthritis (first patient). This patient is a healthy active individual being 

able to run at 8 km/hr 30 months after implantation. In the frontal plane the left 

prosthesis restored the femur preoperative location relative to the femur to within 3 mm. 

The right prosthesis caused the femur to be 1.3 cm more lateral and 1 cm more distal 

after the implantation. 
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The second patient a 69 year old female (470 N BW) has a unilateral idiopathic 

femoral head necrosis and received a right hip prosthesis. This patient also suffered from 

a neurologic disorder which caused an abnormal gait pattern. The median peak forces of 

this patient were about 20-30 % larger than those of the first patient at the same speed. 

The second patient was unable to run. 

Bergmann et al., (1993) reported median peak forces of about 550 % of BW for 

jogging and very fast walking in the first patient using telemetering total hip prostheses. 

In the second, less active, patient a median peak force of 410 % of BW for 3 km/hr 

walking was reported. In instances of stumbling a force of 720 % and 870 % of BW was 

reported for patient one and two respectively. Tests with the first patient showed that he 

was unable to willingly create forces of this magnitude with any kind of exercise. 

Torsional moments around the stem of the implant were 40.3 Nm and 24 Nm for patient 

one and two respectively. Torsional moments can lead to high bone stresses and large 

motion between implant and bone. The data obtained indicate that an increase of the 

torsional moments with a smaller anteversion angle is probable. Therefore, implant 

anteversion must be carefully considered by the surgeon. 

Since the peak forces and moments were much larger when the patients stumbled 

then measured with walking or running, Bergmann et al., (1993) points out that the role 

"accidental" forces play in the initiation of prosthetic loosening must, therefore, be 

considered. 

Bergmann et al., (1995) investigated the loads and moments produced by staircase 

walking. Staircase walking has been thought as one activity that places the highest loads 
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and moments on the hip joint. Bergmann et al., (1995) reported that although the joint 

force and bending moments are greater for going up or down stairs then for level 

walking, walking at 5 km/hr causes forces and moments of similar magnitudes. The 

torsional moments observed in vivo (Bergmann et al., 1995), greater than 5% of body 

weight, are probably close to the torsional strength limits of implant fixations. Therefore 

high torque around the stem axis may contribute to implant loosening. 

Delp and Maloney (1993) developed a three-dimensional biomechanical model of 

the human lower extremity to determine how a 2 cm displacement of the hip center 

affects the moment-generating capacity of four muscle groups: the hip abductors, 

adductors, flexors, and extensors. Their results show that the functional result of an 

otherwise satisfactory hip reconstruction may be compromised, if the capacity of the 

muscles to generate moments is greatly reduced, due to post surgical displacement of the 

hip center. For example, if the hip center is displaced superiority the hip abductors may 

be unable to develop the moments needed to counteract the moment from body weight 

during single-leg stance, and a limp is likely to result. Posterior hip center displacement 

may reduced the hip extensors moment generating capability sufficiently that climbing 

stairs, or rising from a chair may be impossible. 

Surgical changes that alter the hip center may reduce the force-generating 

capacity of a muscle group, by altering the length-tension relationships of the muscles in 

the group, and change their moment arms about the joint, by altering the distances 

between the muscles and the hip center. 
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The Computed Tomography Data Analysis Program developed in this research 

allows the user to vary the magnitude and direction of the joint force and greater 

trochanter muscle force to be applied to the 3-dimensional finite element model. The 

joint and greater trochanter muscle force used for the two cases analyzed in this study are 

listed in Table 3.5. 

1.8 Stress Analysis 

The goal of the finite element analysis of the femur with prosthesis is to estimated the 

resulting stress levels. If the stress levels are to great, failure of the hip joint may occur 

and if the stress levels in the femur are to low, bone reabsorption (stress shielding) may 

occur which eventually leads to failure of the joint. Modes of failure are discussed in 

Section 1.10 and stress shielding is discussed in Section 1.9. This section discusses the 

maximum shearing stress and maximum distortion energy theories of failure. 

The complete description of stress at a point requires the specification of the 

stress on all planes passing through the point. A total of nine scalar stress components 

define the state of stress at a point. The Stress Tensor shown below indicate the nine 

stress components. 
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where: τij shear stresses; i = x, y, or z; j x, y, or z 

σm = normal stresses; n = x, y, or z 

The components of stress generally vary from point to point in a stressed body. 

The variation of stress with position may be expressed by the following differential 

equations of equilibrium 

Three principal planes of zero shear stress exist that are mutually perpendicular 

with normal stresses that have maximum or minimum values. These normal stress are 

referred to as principal stresses (σ1, σ2, and σ3). The algebraically largest stress is 

represented by σ1, and the smallest by 

 

σ3 . The principal stresses can be determine by 

solving the following determinant for the three roots of σp (σ1, σ2, and σ3). 
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The values of the principal stresses are used to predict the likelihood of failure. 

Two theories of failure are discussed below. The maximum shear stress theory and the 

maximum distortion energy theory. The maximum shear stress theory predicts that 

yielding will start when the maximum shear stress in the material equals the maximum 

shear stress at yielding in a simple tension test. The maximum shear stress at the yield 

point (τyp) in a tension test equals the maximum principal stress (σyp) at the yield point 

divide by two. Therefore we have in a simple tension test 

The value of the maximum shearing stress is given by the following equation: 

At the yield point we have 

or 

In the maximum distortion energy theory failure by yielding occurs when, at any 

point in the body, the distortion energy per unit volume in a state of combined stress 

become equal to that associated with yielding in a simple tension test. Mathematically 

this is written as 

This stress is known as the von Mises yield stress.  
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The stresses obtained from postprocessing of the finite element model 

displacement solution are used to predict whether the prosthesis will fail. ANSYS the 

finite element package used in this research allows the user to obtain the stress levels in 

various formats (e.g., nodal stresses, principal stresses, von Mises stresses). 

1.9 Bone Adaptation/Stress Shielding 

Although a bone remodeling routine was not part of this research, the maximum principal 

stress and maximum shear stress calculated in the femur with prosthesis, at the time of 

implantation can be used to accurately predicts the bone density remodeling caused by the 

prosthesis (Skinner et al., 1994). The following is a brief review of bone adaptation and 

how it relates to hip prostheses. 

Wolff's law states that there is a natural bone remodeling processes that adjust the 

structure and the microstructure of bone to support the loads borne by the skeleton with a 

minimal amount of material. It has been shown that there is a direct connection between 

the bone remodeling process as a point-by-point reaction to mechanical strain energy 

density and bone remodeling as a process which produces a structure which satisfies an 

overall structural goal (Harrigan & Hamilton 1994). It is generally accepted that bone 

adapts to mechanical loading. A decrease in mechanical load causes reabsorption of bone 

(atrophy), whereas an increase in mechanical load leads to bone formation (hypertrophy) 

(Mullender et al., 1994). The degree of bone stress shielding that occurs around a 

femoral stem is affected, first of all by the bonding conditions of the implant/bone 

interface and secondly by the stem stiffness (i.e., stem thickness and Young's modulus) 
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(Weinans et al., 1994). A common, though not universal, biologic reaction for partially 

porous coated cementless hip prostheses observed clinically is bone hypertrophy 

(increased bone density or perhaps new endosteal bone formation) at the junction of the 

porous coated and smooth surface of the stem. As stated previously there is a trade-off 

between stress shielding and relative motion for cementless hip implants (Keaveny and 

Bartel 1994). 

When too much bone is lost, the fixation strength of the implant is jeopardized 

and the prospects for a successful revision operation are diminished (Weinans et al., 

1994). If excessive stress shielding (proximal bone loss) or excessive degenerative 

arthritis occurs the proximal femur may need to be replaced. Chandler (1994) reported 

on a technique of reconstruction using proximal femoral allograft-prosthetic composites. 

In this technique a modular long-stemmed prosthesis was cemented to an allograft 

proximal femur and press-fitted into the host bone. This procedure involves the adding of 

bone stock to the deficient femur while loading the remaining host bone in a physiologic 

manner. 

Sadegh et al., (1993), employed surface bone remodeling theory (shape evolution 

of bone due to a change in the bone's strain distribution) and the boundary element 

method (only the boundary and not the whole domain needs to be discretized) to 

investigate the microstructural remodeling of bone at the bone-implant interface. They 

determine that in order to achieve a successful mechanical interlocking between implant 

and bone, one needs to ensure the existence of a normal compressive strain in the bone 

tissue in the region close to the implant and in the direction perpendicular to the direction 
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of ingrowth. Their models show that not only does the depth of ingrowth increase with 

increasing applied stress but the rate of ingrowth increase at higher applied stresses. 

Harrigan & Hamilton (1994), have shown that a remodeling rate equation, that 

uses density taken to a power as a state variable, can be part of a process that optimizes a 

weighted sum of the strain energy in the structure and the total mass of the structure. 

Specialized cells, the osteoclasts and osteoblasts are responsible for bone reabsorption 

and bone formation. It has been suggested that bone contains mechanoreceptors which 

regulate bone at a local level. Mullender et al., (1994) developed a bone adaptation 

simulation model in which osteocytes act as sensors by appraising a mechanical signal. 

Each sensor then produces a stimulus for bone mass regulation which diminishes 

exponentially with distance from the sensor's location. Unlike the previous models, in 

which each element is assumed to have one sensor cell which regulates bone mass in that 

element (uniform density in an element), which has produced discontinuous structures 

(alternating checkerboard pattern) and were mesh dependent (Weinans et al., 1992), this 

model which separates the sensor density and range of action from the element mesh, 

produces results that are more physiologically and mechanically consistent with the 

continuum assumption. The predicted trabecular morphology in this model is dependent 

on the actual relationship between local load, sensor density and range of influence. 

Fyhrie and Schaffler (1995), developed a bone remodeling theory that assumes for 

a given constant strain E there will exist a steady-state or homeostatic relationship 

between density and the mechanical variable as given below: 

= M(E) 
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where the exact form of M is to be determine. 

The remodeling equation based on the 'error' term pa  - M(E) is 

where B is an unknown constant. 

They further stated that: 

where, C is an unknown constant of integration. 

This remodeling equation differs from the others in the fact that there is no 

constant goal state. Due to the fact that the time scales for the rates of change of the 

strain E and of the change in apparent density pa  are completely different the function M 

must include some type of time averaging of the strain. M(E) is defined as the 

homeostatic (or steady-state) value of apparent density that the bone would attain under a 

constant strain. This remodeling equation has been shown to be stable for the cases 

which are known to be spatially unstable for other formulations. The fundamental 

character of this remodeling equation is also exponential which is consistent with the 

experimental observations of bone density changes that occur during disuse, after hip 

replacement surgery, during growth and during aging. 

Pritchett (1995) reported on the use of dual energy xray absorptionmetry scans to 

determine the relative bone loss in the proximal femur for 50 sterns of 5 different types. 

The bone mineral density in the neck medial of the hip receiving the prosthesis was 

compared to the hip without the prosthesis. A data summary is presented in Table 1.2. 
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Table 1.2 Bone Loss After Hip Replacement 

Number 
of 

Patients Prosthesis Collar Remarks Interface 

Measure Loss of 
Bone Density 

Compared With 
Opposite Side (%) 

Standard 
Deviation 

15 Physiological Stress 
Loading 

Large horizontal 
collar 

Proximal porous 
coating 

8 14 

13 Conical Collar (C-2) Large collar 
perpendicular to 
the resultant 
forces 

Cementless 14 19 

6 Anatomic Medullary 
Locking 

Collarless Cementless 34 15 

6 Harris Precoat Collarless Cemented 43 13 
10 Mueller Collarless Cemented 57 13 

As seen from the above table, the percent of loss of bone density associated with 

total hip arthroplasty can be quite significant (> then 50%) and plays a major role in the 

likelihood of long term survival of the prosthesis joint. 

The patients with the Physiologic Stress Loading stem had the smallest average 

bone loss, 8%. Five of the 15 patients with the Physiologic Stress Loading stem had a 

gain of 5 to 20 %. Eighth of the 15 have a loss of 5 to 20%. The collar of the stem in the 

remaining two was not in contact with the medial femoral neck. These two patients had a 

loss of 30%. 

The patients with the Mueller straight stem prosthesis shown the greatest average 

bone loss, 57%. All 10 patients with a Mueller straight stem prosthesis showed a loss of 

bone mineral density (range, 42% - 85%). 

Rubin and Mc Lead's (1994) experiments on the turkey ulna showed that brief 

exposure to extremely low-amplitude mechanical strains can enhance the biologic fixation 

of cementless implants. The degree of ingrowth is dependent on the frequency of the 
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applied strain. These low-magnitude (< 500 µε), frequency-specific (15 - 30 Hz) strains 

are potentially osteogenic and since they are far below those strain levels that jeopardize 

the structural attributes of bone, these mechanical signals are an attractive alternative for 

the promotion of bone ingrowth into non cemented prostheses. This method allows one 

to harness bone tissue's capacity to adapt to biophysical stimuli which reduces the burden 

of inducing bone ingrowth solely through the design attributes of the component or the 

bioreactivity of its surface. 

The resulting stress levels that occur with the implantation of a prosthesis into a 

femur and the resulting bone adaptation that occurs plays a significant role in the survival 

of the prosthesis joint. The finite element method of analysis combined with the 

Computed Tomography Data Analysis Program developed in this study allows one to 

obtain an estimate of the resulting stress levels in the actual femur in which the prosthesis 

will be implanted. 

1.10 Modes of Failure 

As stated previously, the goal of the finite element analysis of the femur with prosthesis is 

to estimated the resulting stress levels to predict the likelihood of failure. In order to be 

able to predict failure of the structure one must first understand the modes of failure that 

can occur. This section discusses the common modes of failure for prosthesis hips. 

A hip prosthesis needs to be resistance to processes such as fatigue, corrosion-

fatigue, stress-corrosion, wear, cracking, etc. The following are the most common causes 

of femoral prosthesis revision: loosening of component (due to bone reabsorption, 
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micromotions at the interfaces and/or interface debonding), pain, fracture of femur, 

inflections, component fracture, and excessive wear. Femoral component loosening is the 

most common mode of failure in total hip arthroplasty (Havelin et al,, 1993). Patients 

who have a porous-coated implant have a greater potential to be exposed to metal ions 

because of the large surface area exposed to bone. Wear, electrochemical corrosion, and 

fretting corrosion are mechanisms for the release of metallic ions. 

Initial loss of fixation for a cemented prosthesis occurs primarily by debonding at 

the prosthesis-cement interface or crack initiation in the cement itself associated with 

voids and pores (Harrigan & Harris 1991). 

The reabsorption of interface bone and the subsequent generation of fibrous tissue 

that is associated with aseptic loosening may be caused by one or more of the following 

factors; a bone-implant gap left when inserting the implant, by foreign body reactions 

against wear particles i.e. debris of polyethylene, polymethyl-metacrylate, or metal, by 

physiological bone remodeling resulting from stress shielding or local overloading. For 

cemented implants, it is also likely that the heat generation in acrylic cement during 

polymerization plays a role (Weinans et al., 1993, Munting and Verhelpen 1995), 

As stated above, connective soft tissues at the interface between implant and bone 

can endanger the fixation of the implant. Weinans et al., (1993) described the problem as 

a biological reabsorption process of the bone adjacent to the implant. This reabsorption 

process can occur after many years of successful functioning. The interface bone is 

replaced by a soft tissue layer which can easily deform under compression and is not 

capable of transmitting shear and tensile stresses. Interface bone reabsorption and the 
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formation of a soft tissue layer depends on several factors including the relative motion 

between the bone and implant at the interface and the deformation of the interfacial 

material. At any location that the implant is not mechanically bonded to the surrounding 

bone it can move with respect to the bone (micromotion). The body reacting to this 

repetitive micromotion can form a soft tissue layer between the implant and bone, which 

can finally result in a clinically loose implant. Weinans et al., (1993) hypothesized that 

interface debonding is dependent on the interface stress and soft tissue interface 

interposition is dependent on relative interface motions. Interface disruption and fibrous 

tissue interposition are interrelated and can possibly enhance each other leading to a 

progressive debonding. Local debonding occurs when the interface stresses exceed the 

strength of the bond. At these locations relative motion can occur. It is believed that if 

these relative motions exceed a certain threshold level, bone will be absorbed and 

replaced by a soft fibrous tissue. 

Mathematically, interface failure will occur if 

where a and τ are the actual normal and shear stresses 

and σ0, σ3, and τ0. are constants (Weinans et al., 1993). 

The finite element method allows one to investigate the mechanical modes of 

failure (e.g., stress shielding, fatigue stress cracking, excessive relative motions). Section 

1.11 discusses finite element modeling methods reported in the literature and Section 1.13 

summaries the Clinical results actually obtained. 
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1.11 Finite Element Analysis 

A review of the hip stem prosthesis finite element models in the literature was performed. 

Table 1.3 list the interface modeling parameters, material properties, loads applied, model 

size, etc., for five of the models reviewed. The newer models have used CT data to 

obtain bone geometry and bone material properties. In all of the models reviewed the 

same relationship between density and Young's modulus was used for both cortical and 

cancellous bone. The following is a highlight of some of the modeling techniques used 

and the results reported. 

Harrigan & Harris (1991) investigated the effect of partial cement-metal 

debonding. They reported that the cement interface around a partially debonded implant 

is at a substantial risk for developing radial cracks due to elevated hoop stresses. This 

also sharply increases the risk of pore-based crack initiation. 

Keaveny & Bartel (1993a and b), described the effect of porous coating and collar 

support on early load transfer and relative motion for a cementless hip arthroplasty in the 

early post operative situation. They used thin (0.2 mm thick), nonlinear no-tension 

interface elements over the entire bone-prosthesis interface, with an upper bound on the 

coefficent of friction (Coulomb-friction) of 1.73 over coated surfaces, and zero friction 

over smooth surfaces. This was done to accentuate the frictional effects of the coating. 

The Coulomb-friction interface condition was also employed at the calcar-collar interface 

to model ideal initial calcar-collar contact. This allowed separation at this interface upon 

loading. It was noted that the use of an infinite friction interface results in a high shear 

stress with low normal compressive stress. 



Table 1.3 Finite Element Hip Stem Prosthesis Models 

Harrigan & Harris Keaveny & Bartel Skinner et al., Huiskes & Van 
Rietbergen 

Mann et al., 

(1991) (1993a &b) (1994) (1995) (1995) 

Model Type 3-D 3-D 3-D 3-D 3-D 

Nodes per Element 8 - node 8 - node 15/20 - node 
Element Type linear brick solid quadratic 

isoparametric 
linear isoparametric isoparametric brick linear, elastic quardric 

No. of elements 7,019 1.424 12,971 2.106 1.128 

Femur Right Left Right Right Left 

Prosthesis HD-2 total hip prosthesis 
with collar 

AML with & without 
collar 

AML straight stein Omniflex Number 9 
implant 

4 different stem 
configurations 	 

Interface Cement Porous coating; full. 2/3 
& none 

Porous coating; 5/8 & 
1/3 

Porous coating, full 
proximal, stripes & none 

Cement 



Table 1.3 Finite Element Hip Stem Prosthesis Models 
(continued) 

Interface modeling 
parameters 

Three cases of partial 
cement-metal debonding, 

using contact elements 
with a zero coefficient of 

friction to model a 
slipping cement-metal 

interface. 

Calcar - collar support 
with ideal initial contact 
with separation allowed 

upon loading. No- 
tension interfaces over 

the entire bone-prosthesis 
interface. 	1.73 coulomb 

friction over coated 
surfaces and zero friction 

over smooth surfaces. 

100% porous coating 
fixation. 	100% calcar- 
collar contact. Non- 

linear gap elements used 
in non porous coated 

areas. 

Full bonding between 
bone and implant at the 
coated areas. Uncoated 
areas no bonding and no 

friction. Nonlinear 
interface elements used 
that allowed local slip 

and tensile separation to 
occur. 

Coulomb friction 
interface with normal and 
shear-strain models used. 

Material Properties 
Prosthesis E 200 GPa 200 GPa 220 GPa 110/210 GPa 110/210 GPa 

Cortical Bone E 26 GPa Based on QCT data Based on CT data Based on CT data Based on CT data 
Cancellous Bone E I GPa Based on QCT data Based on CT data Based on CT data Based on CT data 

Cement 2.8 GPa 2.2 GPa 
Poisson ratio 0.3 0.3 .342 for stem & .4 for 

bone 
n/a 0.3 

Maximum Load Case Stair Climbing Gait 3 x BW Walking Gait 

Joint Load 1652 N 3409 N 3200 N 2132 N  3409 N 
461 N (L) 1492 N (L) 930 N (L) n/a 1492 N (L) 
745N (I)) 915N (P) 880N (P) n/a 915N (P) 

1401 N (S) 2925 N (I) 2930 N (I) n/a 2925 N (I) 

Greater Trochanter 608 N 2592 N 2150 N n/a 2592 N 
304 N (L) 1342 N (M) 790 N (M) n/a 1342 N (M) 
306N (A) 832N (A) 770N (A) n/a 832N (A) 
431 N (S) 2055 N (S) 1840 N (S) n/a 2055 N (S) 
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Each bone element in Keaveny & Bartel's (I 993a and b), model was assigned an 

unique Young's modulus based on the mean value of the Quantitative Computed 

Tomography (QCT) data sampled at 27 points within each element. This resulted in a 

bone moduli ranged of 0.1 MPa, used to represent a gap, to 20 GPa with an average 

Young's modulus of 17.1 GPa in the mid diaphysis and 332 MPa in the center of the 

femoral head. The model assumed the reamed shape of the bone was exactly the same as 

the shape of the prosthesis (thus, interference stresses were not modeled). Thin (in the 

radial direction) elements were used adjacent to the prosthesis to accurately describe the 

Young's modulus distribution of the material (either bone or a gap) immediately adjacent 

to the prosthesis. 

This modeling assumption assumes that the prosthesis is well fitted in the bone so 

that the relative displacements do not fully close the "gaps" upon loading. The load is 

transferred from the prosthesis to the bone primarily through the bone, and that only 

negligible loads are transferred through the very low Young's modulus material which 

represents a gap. This method of using a very low Young's modulus material to 

represent a gap eliminated the need to model gaps explicitly with geometrically non linear 

contact elements. 

The finite element mesh was chosen based on convergence studies of ideally 

bonded interfaces. To minimize the errors associated with the model assumptions used 

and the mesh selected they compared all results for the bone-prosthesis analyses to a 

corresponding analysis of the bone without the prosthesis. 
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Keaveny & Bartel (1993a), reported for the early postoperative situation (no 

bone-ingrowth or fibrous tissue) minimal load transfer of the mediolateral, 

anteroposterior, and axial forces over the proximal 30 mm of the fully coated prosthesis 

with collar support with gradual load transfer all along the remainder of the prosthesis. 

The maximum load transfer occurred at the stem tip. 

They found that the use of a full porous coating reduces the torsional and axial 

loads acting on the distal bone, and that load transfer through the collar substantially 

improves axial and torsional loading of the proximal bone. Collar support and porous 

coating can only be used to control the transfer of bending loads to the proximal bone, 

and even here the effect is marginal. These design variables did affect the manner by 

which the axial force and torsional moment were transferred to the bone more distally for 

the early postoperative situation. The amount of stress shield would change substantially 

if the stem size and the Young's modulus (stiffness) of the prosthesis was revised. The 

flexural stiffness of the implant should be used to control transfer of the bending 

moments, and the proximal geometry (a collar or strong tapers) and surface treatment 

should be used to control the transfer of the axial and torsional loads. 

It was also noted that the load transfer patterns for this model would change 

substantially if a combination of sparse bone ingrowth and fibrous tissue formation was 

modeled. 

Since there is substantial proximal remodeling with fully coated devices the 

potential advantage in improving immediate fixation and long-term fixation may well be 

offset by the consequences of distal bone ingrowth. The bone hypertrophy which occurs 
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at the stem tip is related to the large magnitude of the laterally directed force predicted at 

this site. Compressed stresses of up to 100 MPa were observed, in this region. 

Keaveny and Bartel (1993b) showed that a porous coating could be used to 

reduce early relative motion. Relative motion is usually highest at the stem tip. This 

relative motion at the lateral stem tip could lead to abrasion of the endosteal bone, which 

could lead to thigh pain or metal ion release. The use of a collar or porous coating did 

affect the lateral contact forces at the stem tip. It is possible that thigh pain can be 

reduced by reducing the contact stress at the stem tip. The reduction of the stem flexural 

stiffness or the use of a shorter stem or the formation of a fibrous tissue layer should 

accomplish this. 

Even if initial collar support contact is obtained it may be lost in vivo if there is 

bone death at the resected surface due to interruption of the blood supply or if proximal 

stress shielding occurs. Keaveny and Bartel (1993b) reported that for the fully coated 

device with ideal initial collar contact, early relative motion was dominated by twisting 

due to the resultant torque about the hip joint. Subsidence increases substantially for the 

case without a collar. Distal twist was found to increase as the length of the uncoated 

portion of the stem increases.  

In a concentric cylinder finite element model of a cementless hip stem, Keaveny 

and Bartel (1994), used a nonlinear interface element. A no-tension interface was 

modeled allowing debonding to occur if the normal strains were positive. Shear failure 

could occur in the model if the product of the shear strain and the shear modulus 

exceeded the shear strength as specified by Coulomb friction. They reported that 
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regardless of the precise initial fit, the stiffness of the stem, or the type or extent of 

surface treatment, the distal transfer of the bending load occurs only over a small portion 

of the bone-prosthesis interface. It was found to be concentrated within approximately 

one stem diameter of the lateral stem tip. 

Skinner et al., (1994) using a 3-D finite element model demonstrated that the 

maximum principal stress and maximum shear stress calculated in the femur with 

prosthesis, at the time of implantation accurately predicts the bone density remodeling 

caused by the prosthesis. Skinner et al., (1994) used computed tomography scans, 

(thickness of 3.0 mm, pixel size 1.06 mm, 320 by 320 matrix) of a specific cadaveric 

femur (53 year old male) to generate the 3-D finite element model. The chromium alloy 

AML straight stem, porous coated type prosthesis (Depuy, Warsaw, IN) was modeled. 

Dual energy xray absorptiometry (a noninvasive method of bone mineral density 

measurement) scans were obtained in the anteroposterior plane on the operated proximal 

femoral region of the six male patients that had undergone total hip arthroplasty for 

osteoarthritis. The relationship of bone mineral density (DXA; g/cm2) to stress (a., Pa) at 

the time of implantation is given by the following linear equation 

DXA = mσ + b 

However, the terms of the equation (m, b) varied from patient to patient and also 

varied for the case with and without a prosthesis. The difference noted by Skinner et al., 

(1994) may result from differences in age, activity levels, genetic variation, preoperative 

bone density and placement of the prosthesis. 
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Mann et al., (1995) investigated four stem cross-sectional geometries, two stem 

Young's moduli and two loading conditions in a cemented prosthesis finite element 

model. All of which had only limited effects on the stress distributions in the cement. A 

single element thick (0.05 mm) stem-cement interface layer was incorporated into the 

model around the stem. An 3.0 mm constant-thickness cement interface was used. 

Cement elements extended distal to the stem tip in all models. CT scan data of a normal 

proximal left femur was used to obtain the outer geometry of the bone. A grayscale 

density-Young's modulus relationship was used to determine the Young's moduli for 

each bone element. 

In the Coulomb friction interface model normal and shear-strain models were 

employed. In the normal direction a Young's modulus of 2,200 MPa in compression and 

zero in tension was used. In shear, a Coulomb friction model with a shear modulus of 

1,100 MPa before interface slip was used. After the friction limit was reached, the model 

set the shear stress across the interface to the product of the coefficient of friction (0.3) 

and the normal compressive stress across the interface. 

Three regions of high stress were evident in the proximal cement interface for the 

model with the frictional interface. There were two large region of debonding on the 

anterior and posterior surfaces of the stem, for that model. A region of debonding was 

evident on the anterior surface of the stem from the stem collar to the tip of the stem. On 

the posterior surface of the stem, a region of debonding also existed. It extended from 

the collar to within two stem diameters of the tip of the stem. 
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The use of a realistic Coulomb friction stem-cement interface resulted in the 

largest tensile stresses in the proximal cement interface increasing by 95% over the ideally 

bonded interface model. For the strenuous load case the cement stresses in the proximal 

femur (10.8 MPa) exceed the fatigue strength (8-10 MPa) of PMMA cement. Therefore, 

fatigue failure of the cement in the proximal third of the cement interface is a possibility 

under strenuous cyclic loads. Failure due to fatigue for less active patients would not be 

anticipated. They hypothesize that loosening of the cemented femoral stem could be 

initiated by failure of the cement interface in the proximal femur due to radially directed 

cracks in the cement interface. This in turn would result in a less constrained cemented 

femoral component allowing increased relative motion between the stem and cement, 

which would cause a redistribution of load transfer in the cemented hip system. 

Subsidence of the stem in the cement interface could then occur resulting in a loose 

prosthesis having a stem-cement gap in the lateral region of the proximal stem. 

Weinans et al., (1994) used a 2-D finite element model with a side plate to 

determine cortical bone loss versus prosthesis fit and coating area. A non-site specific 

adaptive bone remodeling feedback loop based on strain energy per unit of bone mass, 

averaged over a particular loading history, was applied to the model. A titanium 

(Young's modulus 110 GPa) stem was used in all of the models. At the noncoated areas 

of the bone-prosthesis interface smooth contact was assumed without any friction, hence 

at these locations only compressive stresses can be transferred. This model predicted 54 

percent and 38 percent bone loss in the proximal femur for the medial and lateral side, 

respectively, for the completely coated (titanium) implant. For a partial coated stem (1/3) 
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the model predicted 50 percent and 22 percent bone loss in the proximal femur for the 

medial and lateral side. A model with a proximal press fit and a overreamed distal end 

produced the least proximal bone loss, 18 percent and 13 percent for the medial and 

lateral side. Whereas, a distally press fit model with the proximal portion overreamed 

produced a 91 percent bone loss proximal/medially and a 48 percent bone loss 

proximal/laterally. 

Huiskes and Van Rietbergen (1995), used a 3-dimensional finite element model of 

a proximal right femur containing 2106, 8-node isoparametric brick elements based on 

computed tomographic data (27, 4 mm slices). A simplify finite element model of an 

Osteonics Omniflex Number 9 implant with a 16 mm diameter distal dip was fitted in the 

femoral model. The maximal CT density value was set equal to an apparent density value 

of p = 1.9 g/cm3. Linear interpolation was used to transform the CT numbers to 

apparent densities. The maximal density in an element in the model was normalized at 

1.73 g/cm3. The Carter and Hayes equation (1977) was used to convert from p to 

Young's Modulus. A value of 110 GPa was used for the Young's modulus of the 

titanium stem and 210 GPa was used for the cobalt chrome alloyed distal tip. 

To represent the reamed medullary canal, the elements at the lateral proximal side 

of the stem and around its distal part were given a low apparent density of 0.01 g/cm3. 

Full bonding between bone and implant was assumed at the coated regions. No bonding 

and no friction were assumed at the uncoated areas, including the distal tip. A 10-µm gap 

was interpositioned in these areas to represent a thin fibrous interface. Special nonlinear 

interface elements were used to allow local slipping and tensile separation to occur. The 
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fully coated model showed 47.5% to 59.3% bone loss in the proximal medial region. The 

proximal coated model showed 47.3% to 60.2% bone loss in this region. 

Hollister et al. (1993), pointed out that the cellular processes controlling bone 

ingrowth are significantly influenced by the mechanical environment that exist at the 

bone-implant interface. As a result of surgery a fracture healing response occurs at the 

implant interface. Hollister et al. (1993), used a plane stress two-dimensional finite 

element model combining 14,698 four-node linear quadrilateral elements, to model an 

implant-bone porous coating interface, and compared their results to animal retrieval 

studies. 

Hollister et al. (1993), reported that the amount of bone ingrowth may be related 

to the stiffness of the porous coating. It is believed that bone ingrowth and apposition 

occur in areas where it is best suited to support the implant under load. However, unlike 

cortical bone, trabeculae bone rarely contain haversian systems and the osteocytes within 

trabeculae must receive nutrition by diffusion. Hollister et al., (1993) concluded that (1) 

bone adaptation is not solely a global optimization process, both mechanical and 

nutritional demands are reflected in the final bone structure; (2) the porous coating 

stiffness itself may stress-shield initially ingrown tissue, and (3) implant shape significantly 

affects the bone adaptation process. 

The two finite element models created in this study using the Computed 

Tomography Data Analysis Program used CT data files to obtain the femur 3-dimensional 

geometry and material properties. A titanium prosthesis with an ideally bonded cement 

joint was fitted into the femur based on the femur size and shape. Linearly elastic, 
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ANSYS element type 45 (3-dimensional, 8 node, homogeneous and isotropic, 3 degree 

of freedom elements allowing only translation about the X, Y and Z axis), were used for 

all of the elements in the model. There were 2,544 elements and 2,691 nodes in each 

model. The prosthesis was modeled using two elements in the radial direction per cross-

section. The interface, cancellous bone and cortical bone were modeled with one element 

in the radial direction per cross-section. 

The material properties used in the finite element models are listed in Table 3.4. 

The Young's modulus of the cortical bone elements varied as a function of density. The 

maximum cortical bone Young's modulus was 24,724 MPa and 27,194 MPa for Case 1 

and Case 2, respectively. The minimum cortical bone Young's modulus was 3,556 MPa 

and 2,927 MPa for Case 1 and Case 2, respectively. 

As stated above, the interface was modeled as an ideally bonded cement joint 

using linearly elastic elements to minimize the run time and to allow a direct comparison 

with the results of Chang 1994 for the same CT data files. 

1.12 Norway National Resister for Total Hip Replacement 

Havelin et al., (1993) reported on 17,444 total hip replacements. This was the largest 

single source of hip replacement data I found in the literature and it proved to be a 

valuable source of general information on total hip replacements and is summaries below. 

A national register for total hip replacements was established in Norway on 

September 15, 1987. Havelin et al., (1993) reported on the first 17,444 total hip 

replacements recorded (September 1987 through December 1990); 2,350 of these were 
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revisions (13.5 percent). Sixty nine percent of the patients were women. Table 1.4 list 

the age of the total hip replacement patients. The median age was 70 (12-97) years for 

primary operations and 71 (18-93) years for revisions. The revision rate for men was 

17.4 percent (801/4607) and 14.8 percent (1549/10487) for women. Table 1.5 list the 

reasons for the primary operations. Primary arthritis was the diagnosis in 68 percent of 

the primary operations. Ninety percent of the revised prostheses had been operated into 

the patients before the period of registration. Table l.6 list the reasons that the revision 

operations were required. The Christiansen prosthesis was the most common of the 

revised prostheses. It accounted for twenty three percent of the revisions. The total 

number of Christiansen prosthesis implanted was not available so the actual revision rate 

of this prosthesis was not reported. Loosening of the acetabular component was the 

reason for revision in 56 percent of the revisions. Loosening of the femoral component 

was the reason for revision in 64 percent of the revisions. The percentage for loosening 

of one or both components was 87 percent. Pain was listed as the indication for revisions 

in 11 percent, deep infection in 4 percent, dislocation in 4 percent, and fracture of femur 

in 4 percent, also. Multiple causes are possible for each revision. The frequency of 

femoral fractures increased to two percent for the revisions operations from 0.2 percent 

for primary operations. A fissure in proximal femur or fracture of the major trochanter 

occurred in 3 percent of the operations when an uncemented femoral prosthesis was used 

in the primary operations, and 0.7 percent when cemented femoral components were 

used. These complications occurred in 3 percent of the revision operations regardless of 

use or non-use of a cemented prosthesis. 



The use of antibiotic prophylaxis increased from 84 percent in 1987 to 95 percent 

in 1990. It was used in 90 percent of the primary operations, and in 95 percent of 

revisions. The median operative time increased from 95 (30 - 430) minutes for primary 

operations to 135 (25 - 390) minutes for revisions. Operations using cemented 

prostheses and operations with trochanteric osteotomy required some 10 - 20 minutes 

more than those without cement or osteotomy. A lateral surgical approach was used in 

61 percent, and a posterolateral approach was used in the remaining 29 percent. A 

trochanteric osteotomy was required in 24 percent of the operations. In 53 percent of the 

primary and 84 percent of revision cases using uncemented prostheses, some kind of bone 

transplant (not specified) occurred. A bone transport occurred in only 7 percent of the 

patients receiving a cemented prosthesis. 

In Norway during this time, 12 different types of cements were applied. In 45 

percent of the primary operations with a cemented prostheses a cement with antibiotics 

was used. The use of cement with antibiotics was 96 percent for revision operations 

with cemented prosthesis. 

A very large number of different components and sizes were used, in fact, there 

was a total of 422 different designs and sizes of acetabular implants, and 398 different 

femoral implants used. Some surgeons used prosthesis designed for uncemented use, 

with cement. Uncemented acetabular implants were used in 17 percent of the primary 

operations. Uncemented femoral implants were used in 12 percent of the primary 

operations. In revision operations an of uncemented acetabular implants used was 21 

percent of the time, and an uncemented femoral implants was used 17 percent of the time. 



Table 1.4 Age of Total Hip Replacement Patients vs Number of Operations 
(Norwegian Arthroplasty Register 9/87 - 12/90) 
Age Revisions Primary 

<20 2 15 
20-29 13 62 
30-39 40 191 
	40-49 101 541 
50-59 184 1543 
60-69 675 4866 
70-79 1012 6500 
>80 322 1374 

Total 2349 15092 

Figure 1.1: Age of Total Hip Replacement Patients vs Number of Operations 
(Norwegian Arthroplasty Register 9/87 - 12/90) 
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Table 1.5 Diagnoses at primary operations 
(Norwegian Arthroplasty Register 9/87 - 12/90) 

Primary arthritis 1 68 % 

Rheumatoid arthritis 4 % 

Sequelae after hip fracture 13 % 

Sequelae after dysplasia 8 % 

Dysplasia with dislocation 2 % 

Other pediatric hip disease I % 

Ankylosing spondylitis 0.4 % 

1 
 Other :2%  

Table 1.6 Diagnoses at revision operations 
(Norwegian Arthroplasty Register 9/87 - 12/90) 

Loosening of femoral component 64 % 

Loosening of acetabular component 56 % 

Pain 11% 

Dislocation 4 % 1 

Infection 4 % 

Fracture of femur 4 % 

Other 5 % 

The Charnley cemented acetabular was used in 59 percent of the operations and 

the Charnley cemented femoral prostheses was used in 57 percent of the operatives. The 

use of a combination of a cemented and an uncemented component in the same hip was 
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rather common. Twenty-five percent of the uncemented acetabular prostheses were used 

with a cemented femoral prosthesis. 

Because of the fact that loosening of the femoral component was the reason for 

revision in 64 percent of the revisions and so many different femoral implants (398) were 

used it appears that a better method is required to design and analysis hip prostheses. 

The use of the Computed Tomography Data Analysis Program combined with a finite 

element analysis program can be used to estimate the stress patterns induced in the actual 

femur in which the implant is to be install and an alternate implant can be chosen and 

analyzed if required prior to surgery. This tool also allows for the investigation of new 

prosthesis shapes and materials to be evaluated pre-clinically. 

1.13 Clinical Results 

One of the fundamental goals of a finite element model is to represent the real world. 

Therefore one must study the clinical results of total hip arthroplasty to determine if there 

is a correlation between the failure mode (or lack thereof) predicted by the finite element 

model and the actual results obtained. 

To better understand the long term outcome of total hip arthroplasties a review of 

the hip stem prosthesis clinical results reported recently in the literature was performed. 

Table 1.7 list the type of prosthesis used, the prosthesis bone interface, the years during 

which the surgeries were performed, the number of prosthesis in the study, the 

male/female ratio, the mean age of the patient at time of surgery, the principal diagnosis, 
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Table 1.7 Clinical Results 

DaII et al., Raut et al., Berry et al., 
Estok & 
Harris Katz et al., Engh et. al., 

(1993) (1995) (1995) (1994) (1995) (1994) 

Hip Prosthesis Charnley low- 
friction 

arthroplasties 

Chamley low- 
friction 

arthroplasties 
(DePuy) 

Six porous 
coated 
femoral 
designs 

HD-2 & 
calcar 

replacement 
implant 

(Howmedica) 

Iowa 
(Zimmer); 
Charnley 
(Zimmer); 

and 
Richards 

Anatomic 
Medullary 
Locking 
(Depuy) 

Interface Cement Cement Porous 
coating 

Cement Cement Porous 
coating 

Operating 
Years 

1970-1985 1974-1990 1985-1989 1976-1980 1977-1983 1977-1981 

Number of 
prosthesis 

 811 125 375 38 79 166 

Male/Female 
ratio 

2/3 72.8% 59.7% 61.1% 46.6% n/a 

Mean Age 60 67 60 53 64 n/a 
Principal 
Diagnosis 

Arthrosis Fractured 
Stem 

Aseptic 
loosening 

Aseptic 
loosening 

Aseptic 
loosening 

Osteoarthritis 

Percentage 72 100 80 100 68 n/a 
% of primary 
procedures 

93 0 0 0 0 100 

% of revision 
procedures 

0 100 100 100 100 0 

Survivorship 
analysis 

87% @1O - 
12 years 

86% @O 
years 

58% @ 8 
years 

79% @ 11.7 
years 

74% @ 10 
years 

89% @0.O 
years 

Stem Revision 
Percentage 

7% 10% 17% 11% 10% 3% 

No pain n/a 67.2% n/a 58% 45% n/a 
Mid pain n/a 22.4% n/a 26% 25% n/a 
Significant 
discomfort 

n/a 10.4% 23% 16% 30% n/a 



Table 1.7 Clinical Results 

(continued) 

Engh et. al., Xenos et. al., Tonino et. al., Rossi et al., 
McPherson et. 

al., 
McPherson et. 

al., 
(1994) (1995) (1995) (1995) (1995) (1995) 

Anatomic 
Medullary 
Locking 
(Depuy) 

Porous 
Coated 

Anatomic 
(Howmedica) 

ABG 
(Howmedica) 

ABG 
(Howmedica) 

Anatomic 
Porous 

Replacement-I 
(Intermedics) 

Anatomic 
Porous 

Replacement-1 
(Intermedics) 

Porous 
coating 

Porous 
coating 

Hydroxyapatite Hydroxyapatite Porous coating Hydroxyapatite 
on porous 

coating 
n/a 1982-1984 1983-1986 1990-1991 1989-1991 n/a 

227 100 222 100 42 42 

n/a 68.1% 57.4% 34.0% 57.1% 57.1% 

n/a 58 63 63 56.5 55 
Osteoarthritis Osteoarthritis Osteoarthritis Osteoarthritis n/a n/a 

n/a 62 75 64 n/a n/a 
100 100 100 100 100 100 

0 0 0 0 0 0 

98% @ 8.4 
years 

87% @ 7 
years 

100% @ 2 
years 

100% @ 2 
years 

95% @ 3 
years 

95% @ 3 years 

0.4% 2% 0% 0% 0% 2% 

n/a n/a 87.2% 96% 91% 85% 
n/a n/a 12.3% 4% 7% 10% 
n/a n/a 0.5% 0% 2% 5% 
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percentage of patients having that diagnosis, percentage of primary operations in the 

study, percentage of revision operations in the study, survivorship estimates, actual stem 

revision percentage and relative levels of post operative pain for the studies reviewed. 

The following is a highlight of studies reviewed. 

Dall et al., (1993) reported on the survivorship of 811 cemented Charnley low-

friction arthroplasties performed between 1970 and 1985. The principal diagnosis was 

arthritis. Ninety-three percent of the operations were primary procedures, the other 

seven percent were conversions for failed previous surgery other than total hip 

replacements. A trochanteric osteotomy was required in the majority of cases. There 

was an 87 percent probability of survival (Kaplan-Meier survivorship analysis) at 10-12 

years for the total hip arthroplasty. Revision of I or both components was required in 68 

of 811 hips (8 percent), all but 2 within 10 years, see Table 1.8. The authors had a 

minimum 3-year follow-up on 630 of the remaining 743 unrevised hips. There was 

evident of radiographic loosening, in 38 of the 630 hips, which is an indicator of 

impending failure. Twenty-two of the 38 hips with radiographic loosening had 

good/excellent clinical results, and the other 16 had fair/poor clinical results. Dall et al., 

(1993) found that certain parameters gave a higher incidence of cases requiring revision 

surgery, notably male, protrusio, osteonecrosis, medial cup position, and valgus stem 

position. 

It was noted that fewer of the cemented sockets required revisions than the 

cemented stems and that this is at variance with current perceptions of using a cementless 

socket and cemented stem. 
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Table 1.8 Charnley Hip Failures 

Cause of Failures 

Sepsis 12 

Recurrent 
Dislocation 

3 

Loose Sockets 6 

Loose Stems 20 

Both Components 
Loose 

12 

Stem Fracture 15 

Total 68 

Raut et al., (1995) reported on the use of cemented Charnley revision arthroplasty 

for fractured stem in 125 patients between January 1974 and December 1990, each 

patient only having one hip operated on. The fractured stems were made of annealed 

stainless steel and the proximal fragment of the stem was always loose. None of these 

authors experienced a fractured stem which the newer design of Charnley prostheses 

introduced in the mid-1980s. Newer cement mixing techniques such as centrifugation or 

vacuum mixing of the cement were not performed at the time of these revision 

arthroplasty. Eighteen hip stems (14.4%) showed radiographic stem loosening. Thirteen 

hips (10.4%) required further re-revision, seven (5.6%) of these were due to aseptic stern 

loosening. There were five (4%) additional stem fractures. These stems were also 

annealed stainless steel stems. The thirteenth one (0.8%) needed a revision because of a 

loose socket which caused recurrent dislocation. The stem on this hip was well fixed. 

The authors noted that the "incidence of failure was significantly increased by 

preoperative endosteal bone loss; need for lateral cortical window for extraction of distal 



53 

fragment of the fractured stem; not placing the stem in neutral; and unsophisticated 

surgical technique, i.e., not using intramedullary femoral cement block and not excavating 

the lesser trochanter resulting in poor quality femoral cementing". 

Berry et al., (1995) reported on the results of proximally porous-coated femoral 

components used in three hundred seventy-five revision total hip arthroplasty in 356 

patients, performed between 1985 to 1989, using six prosthesis designs. More severe 

preoperative bone loss correlated with poorer survivorship, free of aseptic loosening of 

the prosthetic and subsidence of 5 mm. Intraoperative proximal femoral fractures were 

common (26%). The survivorship free of revision for aseptic failure was 58% at 8 years. 

The authors caution that the damaged, weaken bone that is often present in the proximal 

femur, does not provide the required proximal bone environment, for prosthesis that rely 

on the proximal femoral bone for fixation. 

Estok and Harris (1994) reported on the results of cemented femoral revision 

surgery using second-generation techniques. This includes the use of a medullary plug 

and cement gun for cement delivery which was incorporated approximately in 1976. 

Since January, 1978 the cementing technique also employed a Water Pik (Daval, 

Cranston, Rhode Island) to clean the bone interstices of blood and marrow. Cement 

pressurization through the use of a cement compactor was incorporated November, 1978. 

From a group of 38 hips in 36 patients receiving a cemented femoral component during 

revision surgery, cemented using the above techniques, a survivorship of 90% and a 79% 

incidence of well-fixed femoral components was observed at an average 11.7 years 

follow-up. Newer cementing techniques now, also use cement porosity reduction 
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techniques, e.g., vacuum mixing or centrifugation and a layer of methylmethacrylate 

precoated on the metal. These revision results compare favorably with the results 

previously obtained for primary cemented prosthesis. 

Katz et al., (1995) reported on 42 revision total hip arthroplasties performed from 

1977 to 1983, using improved cementing techniques (distal intramedullary cement plug, 

cement gun delivery system and pressurized) that had a minimum of 10 year follow-up 

radiographs. Simplex P cement (Howmedica, Rutherford, NJ) with two grams of a 

cephalosporin antibiotic was used. The incidence of femoral re-revision for aseptic 

loosening for the study was 9.5% (4/42). The incidence of radiographic femoral failure 

which was defined as a revision or definite or probable loosening was 26.1% (11/42). 

These results were reported as being an improvement compared to the failure rates with 

the older cementing techniques. The author recommended the incorporation of impaction 

bone grafting, antibiotics in the cement as well as the new cementing techniques. 

Engh et al., (1994) reported on the clinical results obtained using the AML hip 

prosthesis. There was a 10.8% (18 Of 166) failure rate (5 revisions and 13 stems having 

radiographic evidence of instability) at a radiographic follow-up period of 106 months, 

for a single size fully porous coated AML prosthesis implanted prior to 1982. For the 

variable size AML stems used between 1982 and 1984, with a mean radiographic follow-

up period of 101 months there was a 1.8% (4 of 227) failure rate (1 revision and 3 

radiographicly graded unstable). Engh et al., (1994) uses the proximal loss of 

periprosthetic bone loss density (5% - 52%) caused by the stress-shielding characteristic 

of this prosthesis as a sign that the femoral prosthesis was fixed by bone ingrowth. Bone 
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ingrowth was observed on 57% of the porous-surface area of the femoral components. 

The authors commented that the extent of bone reabsorption which occurs is related 

more to the preoperative condition of the femur bone than to the in vivo duration. They 

also felt that the articulating surfaces were the weak link in the design rather the porous 

coated implant. 

Periprosthetic bone loss (osteolysis), along the femoral components, was observed 

by Xenos et al., (1995) in 13 of 100 uncemented total hip arthroplastices performed using 

a Porous Coated Anatomic (Howmedica, Rutherford, NJ) cobalt-chrome hip prostheses. 

This femoral prosthesis is porous coated in the proximal third. The 100 hips had a 7 year 

minimum follow-up. It was noted that the average age at surgery was 10 years younger 

for the bone loss group than for the non-bone loss group. Osteolysis was defined as any 

local area of endosteal bone loss >5 mm that appeared adjacent to the femoral 

component. Eighteen hips showed scalloping of >5 mm in the proximal medial femur 

(calcar area) due to the stress shielding effects of the prosthesis. Two revisions of the 

femoral components were done in this series. 

Tonino et al., (1995) reported on the results of 222 patients (hips) that received a 

titanium alloy hip prosthesis, the ABG total hip arthroplasty (Anatomique Benoist 

Giraud, Howmedica International, Staines, England), with a 60 micron hydroxyapatite 

coating on the proximal third, from January, 1990 to April, 1991. The stem had a macro 

relief scaled surface which was designed to transform shear forces on the anterior, 

posterior, and medial surfaces into compression forces. The proximal portion of the stem 

was pressed fitted and the distal femoral was over-reamed to promote proximal femoral 
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stress transfer. The average follow-up was two years. Five trochanteric fractures 

occurred during hip surgery, and one subtrochanteric fracture occurred on mobilization. 

None of the fractures required revision. All six fractures headed with bed rest. Minor 

distal stem migration (<5 mm) was observed in 6 patients. Cortical bone hypertrophy in 

the transition zone of coated to uncoated was observed in 4 to 6% of the patients (bone 

densification were observed in 54%). Slight bone reabsorption of the calcar was 

observed in 21.8%. In 3.6% of the patients there was some form of thigh pain after 2 

years. There were no cases of loosening or suspected radiographic loosening. Distal 

over-reaming was noted as being of paramount importance to shift the load transfer 

proximally. 

Roosi et al., (1995) reported on 100 consecutive patients who received the ABG 

total hip arthroplasty (Anatomique Benoist Giraud, Howmedica International, Staines, 

England), during September, 1989 to January, 1991. The titanium femoral stem of this 

implant is hydroxyapatite coated on the metaphyseal portion. Rossi et al., (1995) points 

out that immediate stability is essential to achieve long-term biologic integration. 

Increased cortical bone density and thickness at the junction between the proximal coated 

portion and the rest of the stem was noted on 20 patients and cancellous bone thickening 

was evident in another 10. Thigh pain was not reported, even for the 25 patients that had 

radiolucent lines present (indicative of micromotion) around the distal portions of the 

stem. 

McPherson et al., (1995) reported the results of a matched pair study of 2 groups 

of uncemented total hip replacements. A titanium alloy Anatomic Porous Replacement-I 
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primary hip (Intermedics Orthopaedics, Austin, TX) was the prosthesis used in all 

patients. One group received stems with hydroxyapatite on the proximal femoral patched 

porous surfaces. The other group received stems without hydroxyapatite on their 

proximal femoral patched porous surfaces. The proximally patched porous coating was 

on the anterior, posterior, and medial surfaces. The stem had a porous-coated collar and 

an anatomic posterior bow. The patients were matched one to one in terms of gender, 

age (within 5 years), weight (within 25 pounds), bone type, activity level and diagnosis. 

At a 3-year follow-up the mechanical failure rate was only %5 in each group. However, 

the incidence of osteolysis, 17% (7 stems in each group) was 10 times higher than in a 

circumferentially coated Anatomic Porous Replacement-I stem. 	Patients with 

hydroxyapatite-coated femoral stems exhibited proximal cancellous hypertrophy at a 

quicker rate than those without the hydroxyapatite-coating. The authors felt that there 

was no clinical advantage to the use of hydroxyapatite over the porous coatings. Because 

of the high incidence of osteolysis, the use of a patched porous coating with or without 

hydroxyapatite was discouraged. The femoral head in the study was made of titanium 

alloy. Since titanium alloy burnishes and abrades easily, it should not be used as an 

articulating surface. It was felt that the used of a titanium alloy femoral head was a 

contributing factor in the high rate of osteolysis observed. 

Kohles et al., (1994) performed unilateral total hip arthroplasty in 15 adult mixed-

breed dogs. A collared femoral prosthesis was implanted into nine of the 15. The other 

six received a collarless femoral prosthesis. A titanium alloy implant (Techmedica Inc., 

Camarillo, CA) with recessed titanium mesh inserts on the proximal portion of the stem 
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(cranial and caudal faces) was used. Postoperatively, the 15 dogs were allowed free 

weight bearing and exercise. The dogs were euthanized four months after the total hip 

arthroplasty, and transverse sections at the midstem and 1 cm distal to stem locations 

were obtained. Ultrasonic and densitometric measurements were performed at eight 

locations circumferentially on each section. The section of bone directly under the collar 

was not tested and therefore, any changes that may have occurred in this region was not 

reported. The results obtained showed no difference in 4 month postoperative bone 

elasticity or bone density between collared and collarless designs. However, there was 

decreased values in bone mineral densities and Young's modulus when compared to the 

control values. The degradations were noted to be generally consistent around the 

perimeter for both the proximal and distal cross-section. Since the distal portion should 

not be stressed shielded it is believed that reduced limb loading occurred. 

As stated previously , one must study the clinical results of total hip arthroplasty 

to determine if there is a correlation between the failure mode (or lack thereof) predicted 

by the finite element model and the actual results obtained. A lack of correlation would 

indicate invalid modeling assumptions or that another phenomena plays the major role 

and that a different type of analysis and/or correction action may be required (e.g., if 

infection due to non-biocompatibility of the interface material was the major cause of 

revision operations, the stress pattern in the femur/prosthesis would not be of paramount 

importance). However, since the clinical results show that femoral component loosening 

is the major cause of hip stem revisions a detail finite element analysis should provide 

useful information as to cause and can be used to develop correction actions (e.g. new 

prosthesis designs). 



CHAPTER 2 

OBJECTIVES 

There were two objectives in this study. The first objective was to develop a Computed 

Tomography Data Analysis Program which takes CT data of a proximal femur as an 

input, and outputs a "3-D" finite element model with prosthesis. The main advantage of 

this tool is that an estimate of the stress pattern induced in the actual femur in which the 

implant is to be installed can be assessed prior to surgery, and an alternate implant can be 

chosen and analyzed if required. The second objective was to run the resulting finite 

element models for two cases and to compare the results, to the results obtained from the 

previous modeling process (Chang 1994). The differences between the two modeling 

processes are discussed in Chapter 3 and Chapter 4. The CT data is used to determine 

the geometry, density and Young's modulus of the cortical bone section of the finite 

element model. The CT data analysis program created utilizes two commonly used 

Windows software packages, Microsoft Excel and Math Soft Mathcad. The program 

performs the following tasks: (a) determines the area of interest in the CT data files for 

each cross-section; (b) plots the inner and outer cortical bone boundaries versus a range 

of CT numbers; (c) creates color plots of area of interest and black and white boundary 

plots for CT densities chosen by the user for each cross-section; (d) determines the center 

of each cross-section; (e) plots a 3-D image of the inner and outer cortical bone boundary 

for each cross-section (as scanned); (0 screens the model created for warped elements 

and adjust the cortical bone outer boundaries; (g) displays unadjusted and adjusted 

cortical bone boundaries; (h) determines the node locations for all elements in the finite 
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element model; (i) plots 2-D nodal boundaries for each cross-section; (j) plots 3-D 

cortical bone outer boundary, with tilt of bone axis to CT scanner axis removed; (k) 

determines the average CT number and density for each cortical bone element; and (1) 

creates a "3-D" finite element model file. 

The CT data analysis program allows the user to vary the following parameters: 

(a) the CT number to be used for the cortical bone inner boundary for each cross-section; 

(b) the CT number to be used for the cortical bone outer boundary for each cross-section; 

(c) the angular spacing between elements in the finite element model; (d) the prosthesis 

size relative to the size of the femur receiving the prosthesis in the medial-lateral and 

anterior-posterior planes at three locations; (e) the number of prosthesis, interface, 

cancellous and cortical bone elements in the model; (f) interface thickness; (g) minimum 

cancellous bone thickness; (h) minimum cortical bone thickness; (i) constants of the linear 

equation that relate CT number to density; (j) prosthesis material and properties; (k) 

interface material and properties; (I) cancellous bone properties (note the cortical bone 

Young's modulus is determined based on the CT number); and (m) joint force and 

trochanter muscle force to apply. 

The data obtained from solving the finite element model can be used to determine 

what prosthesis changes need to be incorporated to alter the stress pattern (i.e. to prevent 

proximal stress-shielding, to reduce the stress level in the bone cement, etc.) in the femur 

to decrease the likelihood of mechanical failure of the prosthesis. As stated previously, 

the main advantage of this tool is that an estimate of the stress pattern induced in the 

actual femur in which the implant is to be installed can be assessed prior to surgery, and 

an alternate implant can be chosen and analyzed if required. 



CHAPTER 3 

MATERIALS AND METHODS 

3.1 Computed Tomography Data Analysis Program 

A Computed Tomography Data Analysis Program to process computed tomography data 

files of a proximal femur into a three-dimensional finite element model file with prosthesis 

was developed. The computed tomography data analysis program created utilizes two 

commonly used Windows software packages, Microsoft Excel, it Visual Basic Modules, 

and Math Soft Mathcad. The material properties of the femur, density and Young's 

modulus, are determined from the computed tomography data. The program performs 

the following tasks; displays the CT images, determines the inner and outer cortical bone 

boundaries, creates the prosthesis, display 3-D images of the prosthesis and bone, 

corrects warped elements, generates nodes, generates elements, determines material 

properties, applies boundary conditions and creates a finite element input file for ANSYS 

(Swanson Analysis Systems Inc.). The program utilizes dynamic data exchange, custom 

menus and user input boxes to make the user interface as efficient as possible. 

This method is useful in determining the resulting stress pattern that would be 

induced by a particular prosthesis, allowing one to optimize the prosthesis selection for a 

particular femur geometry and bone state of health. This method also allows the 

investigation of new prosthesis shapes and materials to be evaluated pre-clinically. One 

can also used this method to predict the expected failure mode and location, of a 

particular prosthesis. 
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The main advantage of this tool is that an estimate of the stress pattern induced in 

the actual femur in which the implant is to be installed, can be assessed prior to surgery 

and an alternate implant can be chosen and analyzed if required. 

3.2 Scanned Femoral Bone Data 

Computed tomography data was obtained for two patients scanned pre-operatively at the 

Radiology Department of Saint Barnabas Medical Center in Livingston, New Jersey. 

Case 1; An active, 30-year-old male patient had suffered osteoarthritis in the left femur 

and was treated by left total hip arthroplasty. The left femur was scanned from 20 mm 

below the femoral head to the knee. Case 2; An active, 36-year-old female patient had 

suffered osteoarthritis in the left femur and was treated by left total hip arthroplasty. The 

left femur was scanned from 10 mm below the femoral head to the mid shaft. Both 

femora were scanned by Siemens Scatter, Somatom DR. The above patient data was 

obtained from Chang (1994), page 61. 

The pixel data (CT numbers) obtained from the scans represent pixel radiographic 

densities. The CT numbers are stored in binary CT data files as integers in the range of 0 

to 4095, each integer requiring two bytes, each byte consists of 8 bits. The matrix size 

for each cross-sectional scan was 512 x 512 pixels. The spacing between pixels were 

0.257x0.257 millimeters. The spacing between slices was 10 mm. Only the most 

proximal, seventeen slices (170 mm) for each case was used in this research. 
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The CT data files scanned at St. Barnabas Medical Center was stored on a 12 inch 

optical disc. This data was transferred to cassette by Siemens Company in Iselin, New 

Jersey. The data was then copied to the NJIT computer system. Chang (1994) 

developed a C language program that separates the CT data from the file header and a 

FORTRAN program combines with the NJIT HOOPS package to display color images. 

The user defines the area of interest in the CT image being displayed by entering the 

coordinate of the starting point (the upper left corner point of the area of interest), as well 

as, the width and length of the image to be stored. This method significantly reduces the 

size of the matrix which needs to be stored and processed. For Case 1, the matrix was 

reduced from 512x512 to 285x225 (24.5%) and to 270x210 (21.6%) for Case 2. This 

data was stored in ASCII text format (1 character per byte). The ASCII text data for the 

areas of interest in the seventeen slices of Case 1 and Case 2 occupied 5,523,328 bytes 

and 4,883,840 bytes, respectively. 

3.3 Transfer of Computed Tomography Data 

The ASCII text data files for Case 1 (CT2BNUM.DAT.Z) and Case 2 

(CT5NUM.DAT.Z) stored in Dr. Linden's MIT computer account were copied to the 

NJIT tmp directory and uncompressed. The uncompressed data files were copied onto a 

personal computer using binary Kermit modem transfer. Chin - Yang Huang a WIT 

doctoral student supplied to me the names of the data files and the instructions for 

modern transferring of data. The uncompressed copies of the data files in the NJIT tmp 
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directory were deleted as is customary. On the personal computer the data files were 

copied to a different directory and renamed CASE1.DAT and CASE2.DAT. 

3.4 Data Conversion back to Binary 

A Visual Basic module (CTCASE1F.XLS) was created using Microsoft Excel 5.0a to 

separate the CASE1.DAT data file into seventeen different data files (one for each cross-

section). The newly created files were created as binary random access files. A similar 

Visual Basic module (CTCASE2F.XLS) was written for the CASE2.DAT data file. 

Each of the Case 1 cross-sectional data files occupied 128,250 (285x225x2) bytes. Each 

of the Case 2 cross-sectional data files occupied 113,400 (270x210x2) bytes. The total 

required storage for Case 1 reduced from 5,523,328 to 2,180,250 bytes and for Case 2 

from 4,883,840 to 1,927,800 bytes. This reconversion to binary format served three 

purposes; (1) it reduced the memory storage requirements, (2) by separating the files into 

cross-sectional files it allows complete files to be copied to floppy disks and (3) the 

program that was written to create the finite element input file was written to be able to 

work with the 512x512 CT cross-sectional binary data files with the header removed. 

3.5 The Auto-Open Module 

A module which runs automatically, when the computed tomography data analysis 

program (CTPROG.XLS) is opened, was created. This modules caused the following 

message to be displayed on the computer screen. 
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Computed Tomography Data Analysis Program 

This program was created by Thomas Lavin as part of a NJIT Master's Thesis; Dec 95-April 96. 
The program reads in Femur CT data  files and outputs an ANSYS (FEA) input File with 
prosthesis. 

The program utilizes 
Microsoft Excel 5.0a (and its Visual Basic Modules) 
and MathSoft Mathcad 5.0. 

Please open Mathcad 5.0 prior to running this program. 

Please select the menu items contained in the above CT_Data menu, 
in sequential order to run this program. 

This message informs the user that they must open Mathcad 5.0 prior to running 

the modules in this program. Several of the Excel modules access Mathcad programs 

using dynamic data exchange. In order for the Excel modules to be able to pass the data 

to the Mathcad programs, Mathcad must be open. The dynamic data exchange 

commands will then automatically open the required Mathcad program for that 

procedure. 

In order to make the program easy to use a menu item called CT_Data was 

created and appears in the main menu bar of all the Excel sheets in this program. The 

sub-menus of the CT_Data menu access the nine modules created to process the raw CT 

data into an ANSYS Finite Element Input File. The program was design so that the user 

sequentially selects the nine sub-menu items. The names of the nine sub-menu items are 

as follows: (1) Create CB ASCII Files; (2) Boundaries vs. CT Number; (3) Minimum CB 

Density; (4) CB Color Plots; (5) Boundaries; (6) Prosthesis Size; (7) Nodes; (8) Average 

CT Number; and (9) FEA Input File where CB stands for cortical bone. 
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3.6 Create Cortical Bone ASCII Files 

This module determines the area of interest in the CT data file and creates ASCII text 

files that can be read by Mathcad. All data exchanged between the user and program is 

handled using Excel Visual Basic Input Boxes. The user is requested to enter the 

following data file information: (a) the maximum data matrix row number; (b) the 

maximum data matrix column number; (c) the spacing between pixels rows; (d) the 

spacing between pixels columns; (e) the height spacing between cross-sections; (f) the 

total number of cross-sections; (g) the name of the Mathcad directory; (h) the minimum 

outer cortical bone CT number; and (I) the names of the CT cross-sectional data files. 

Based on the matrix size the program determines a column and row pixel spacing 

to use to quickly scan the data file of each cross-section to determine the area of interest. 

This method differs from that method used by Chang (1994). Chang (I994) required the 

user to display the cross-section and then manually pick a coordinate on the screen using 

the mouse. The user would have to record the x and y coordinate value displayed and 

then select the opposite corner point. The user was then required to input the values of 

the coordinates for the first corner point, as well as, the different in length and width 

between the two corner points. This revised program determines the area of interest 

using the user supplied minimum cortical bone CT number without requiring the images 

to be displayed or further user input. Since every pixels value is not compared to the 

minimum cortical bone density the boundary determined is enlarged slightly to insure that 

it encompasses all pixels of interest. In order to allow relative size comparison and 
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geometrically orientation comparisons between the displays of the various cross-sections, 

a single boundary is determined which is used for all the cross-sections. 

Once the boundary to use is determined, ASCII text files of the data contained in 

the area of interest of each cross-section are created. The Mathcad programs cannot read 

binary random access data files so ASCII text files are required. 

Although the data files processed in this work were already significantly reduced 

from their original 512x512 matrix size, the program was written to handle any size 

binary data matrix with the header file already removed. 

3.7 Boundaries vs. Computed Tomography Number 

The next module in the sequence uses the ASCII text files of the area of interest created 

in the previous module, and a Mathcad program to plot the inner and outer cortical bone 

boundaries versus CT numbers ranging from I200 to I400 in steps of 40. The user is 

requested through an input box to enter whether the hip side receiving the prosthesis is 

the right or left hip. The Mathcad plots display M, P, L, and A for the median, posterior, 

lateral and anterior side, respectively. Since the medial and lateral call outs are reversed 

for a left and right hip the Excel program needs to know which Mathcad program (display 

format) to access. CBRDATA.MCD is accessed if the data files are for a right hip and 

CBLDATA.MCD is accessed for a left hip. 

The program was designed to automatically plot out the cortical bone inner and 

outer boundaries versus CT numbers for all of the cross-sections, without requiring user 

input to issue print commands or next cross-section commands. However, on a personal 
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computer having only 8 M of RAM, "not enough memory" errors were encountered 

which resulted in some blank displays. This memory limitation forced the user to 

manually run one cross-section at a time using only the Mathcad program instead of 

being able to have this process fully automated through the dynamic data exchange 

commands of the visual basic module as intended. With the memory on the computer 

increased from 8 M of RAM to 40 M the program plotted out the displays automatically 

as intended. The minimum required amount of RAM required to accomplish this was not 

determined. The cortical bone boundaries versus CT number for cross-section 1 (most 

proximal cross-section) and cross-section 17 (most distal cross-section), of Case 1 are 

displayed in Figure 3.1 and Figure 3.2, respectively. 

As seen from Figures 3.1 and 3.2 the boundaries of the proximal cross-sections 

are much more sensitivity to the choice of CT number that the distal cross-sections. 

3.8 Minimum Cortical Bone Density 

Using the plots obtained from the previous module the user is requested to enter the 

minimum inner and outer cortical bone CT numbers for each cross-section. The numbers 

entered are stored in Excel cells that are accessed by other modules in the program. 
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CT Number z 1200 	 CT Number 1240 

CTa 	 CTa 

CT Number z 1280 	 CT Number z 1320 

CTa 	 CTa 

CT Number 1360 	 CT Number ≥ 1400 

CTa 	 CTa 

Figure 3.1 Case 1; Cross-section 1; Cortical Bone Inner and Outer Boundaries vs. CT 
Number 



CTa 

CT Number 1280 

CTa 

CT Number z 1320 

CT Number 1200 	 CT Number ≥  1240 
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CTa 	 CTa 

CT Number z 1360 	 CT Number z 1400 

CTa 	 CTa 

Figure 3.2 Case 1, Cross-section 17; Cortical Bone Inner and Outer Boundaries vs. CT 
Number 
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3.9 Cortical Bone Color Plots 

This module creates color plots of the CT data using Mathcad, as well as, a black and 

white inner and outer boundary plot. The CT number entered in the previous module is 

used to determine what number to use for the boundary plot. If the prosthesis is for a 

right hip Mathcad program CBRIGHT.MCD will be executed. For a left hip 

CBLEFT.MCD will be executed. A legend displaying color vs. CT number is created 

for each cross-section. This program was also designed to automatically print out all of 

the plots for each cross-section without requiring additional user inputs. Due to memory 

limitations the user may need to run one cross-section at a time directly in the Mathcad 

program. Once again with the computer memory increased these plots also ran 

automatically as intended. Figure 3.3 and Figure 3.4 contains the black and white 

versions of the color plots for cross-section 1 and cross-section 17, of Case l, 

respectively. 

3.10 Boundaries 

This module determines the x, y and z values of the inner and outer cortical boundaries. 

The user is required to enter the angular spacing angle desired between elements. Ninety 

divided by the angular spacing angle must be an integer to insure that nodes lie along the 

medial-lateral and anterior-posterior planes. If the user enters an angular spacing angle 

that results in ninety divided by that angle, not being an integer i.e. 20 degrees, the 

program revises the angular spacing angle so that the result will be an integer i.e. the 20 

degree value would be revised to 18 degrees, and similarly if 24 degrees was entered it 

will be revised to 22.5 degrees. 
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Xsection = 1 Blue A =768 B =1019 

CBDmin= 1280 Light Blue B =1019 C = 1269 

Green C = 1269 D = 1520 

Light Green D = 1520 E = 1771 

Yellow E =1771 F = 2021 
For LEFT FEMUR 

Red F = 2021 G = 2272 

Figure 3.3 Case l; Cross-section 1; Black and White versions of the Color Plots 

Xsection= 17 Blue A = 720 B = 1032 

CBDmin= 1360 Light Blue 13 = 1032 C = 1344 

Green C = 1344 D = 1656 

Light Green D = 1656 E = 1968 

Yellow 1E =1968 F =2280 
For LEFT FEMUR 

Red F =2280 G =2592 

Figure 3.4 Case l; Cross-section 17; Black and White versions of the Color Plots 
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Since the CT numbers that are used to determine the cortical bone boundaries 

may have been revised in a previous module, this modules re-determines the area of 

interest using the updated CT numbers. 

An estimate of the center of the cortical bone is determined for each cross-section 

in the following manner, using the boundary determined for each individual cross-section 

a x and y starting point is determined which is at the center of the boundary for that 

particular cross-section. Since the proximal portion of the femur bone is not circular this 

point is only used as the starting point. From this point every pixel along a south-east line 

and along a north-west line is compared to the minimum cortical bone CT number for 

that cross-section, and the coordinates of the last pixel having a CT number less then the 

minimum CT number is recorded. The center of the two points, one found during the 

south-east search and the other found during the north-west search, is used as a starting 

point for a north-east and a south-west line on which every pixel is compared to the 

minimum cortical bone CT number for that cross-section. The center of the two points, 

one found during the north-east search and the other found during the south-west search 

is taken as the center of that cross-section. 

However, since we wish to fit a prosthesis into the bone we need to revise the 

centers to be along a straight line from distal stem to mid stem, and then along a tapered 

line from mid stem to proximal stem. This is accomplished by performing two linear 

regression analysis. The first one uses the centers of the sixth through the seventeenth 

cross-section, with the seventeenth cross-section being the most distal cross-section. The 

second linear regression analysis uses the centers of the first, second, fifth and sixth cross- 
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section. Due to the irregular shape of the third and fourth cross-section their centers 

were not used in the linear regression analysis. The values from the first linear regression 

analysis are used to determine the center of the sixth through the seventeenth cross-

section. The centers of the five most proximal cross-sections are determined using the 

values from the second linear regression analysis. The difference between the center 

determined by the first and second linear regression analysis is determined for the five 

most proximal cross-sections. These values are used to correctly position these cross-

sections in three dimension space relative to one another. All node location calculations 

are performed from the center of each cross-section. 

The node locations for the inner and outer boundaries of the cortical bone are 

found by performing a x and y sort, and then determining the one which results in a 

smaller radial length for the inner boundary and the one which results in a larger radial 

length for the outer boundary. Note that the smallest x and y values of the boundary are 

location in the upper left corner (see Figure 3.5). Similarly, the largest x and y.values are 

located in the lower right corner i.e. in a 5I2x512 matrix, pixel 1,1 would corresponds to 

the upper left corner and pixel 512,512 would corresponds to the lower right corner. 

Also note, that all angles are given from the center of the inner cortical bone boundary. 

At the cardinal headings, angle = 0 and angle = 180 degrees, only a x sort is 

required. Similarly at cardinal headings, angle = 90 and angle = 270 degrees, only a y 

sort is required. The x sort is performs as follows, for each angular spacing angle in a 

quadrant, x is varied from the x center point to either the highest x boundary (for 

quadrants I and IV) or the lowest x boundary (for quadrants II and III). Where quadrant 
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I is 0 to 90 degrees; quadrant II is 90 to 180 degrees, quadrant III is 180 to 270 degrees 

and quadrant IV is 270 to 360 degrees. 

Figure 3.5 Cortical Bone Boundary Display 

The y value for a x sort is equal to the x value minus the x center value, times the 

tangent of the angle for which the boundaries are being determine. The CT number for 

the corresponding x and y point is compared to the minimum CT number for that cross-

section. The smallest and largest radial lengths that have CT numbers greater than or 

equal to the minimum CT number for that cross-section, are recorded corresponding to 

the x sort, inner and outer cortical bone boundary for that angle. Since not every pixel is 

being checked using this method an y sort is performed, for each quadrant y is varied from 

the y center point to either the lowest y boundary (for quadrants I and II) or the highest y 
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boundary (for quadrants III and IV). The lowest y value occurs in quadrant I or II and the 

highest y value occurs in quadrant III or IV. The x value for an y sort is equal to the y 

center value, minus the y value, divided by the tangent of the angle for which the 

boundaries are being determine. The CT number for the corresponding x and y point is 

compared to the minimum CT number for that cross-section. The smallest and largest 

radial lengths that have CT numbers greater than or equal to the minimum CT number for 

that cross-section, are recorded corresponding to the y sort, inner and outer cortical bone 

boundary for that angle. As previously mentioned, the node locations for the inner and 

outer boundaries of the cortical bone are found by determining if the values for the x or y 

sort results in a smaller radial length for the inner boundary or a larger radial length for the 

outer boundary. 

Note that by performing the linear regression analysis, the centers of each cross-

section (except the most proximal five) are placed at x = 0 and y = 0 so any angular tilt 

that may have existed due to the orientation of the patient's leg in the CT scanner has 

been removed. The calculated boundaries with the tilt removed are listed on sheet 2 of 

the Excel workbook for all angular spacing angles and all cross-sections. After the 

calculations to determine the cortical bone boundaries are completed, the user is given the 

option to plot the bone boundaries. These plots represent the actual bone orientation in 

the CT scanner, so the above mention tilt has not been removed. Figure 3.6 and Figure 

3.7 are the 3-D Mathcad plots of the inner and outer cortical bone boundaries for Case 1 

and Case 2, respectively. 



77 

For Case 1, a minimum CT number of 1280 was used for cross-sections 1 through 

7 and a minimum CT number of 1360 was used for cross-sections 8 through I7. 

Figure 3.6 Case l: 3-D Cortical Bone Inner and Outer Boundary Plot 
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For Case 2, a minimum CT number of 1280 was used for cross-sections 1 through 

6 and a minimum CT number of I360 was used for cross-sections 7 through 17. The 

Mathcad program (3DCBPLOT.MCD) used to create the plots is access using dynamic 

data exchange through the Excel program. 

Figure 3.7 Case 2: 3-D Cortical Bone Inner and Outer Boundary Plot 
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3.11 Prosthesis Size 

The next module in the sequence determines the size of the prosthesis using the cortical 

bone boundaries and user inputs. The user is requested to enter the following prosthesis 

information: (a) the medial - lateral ratio of prosthesis to cortical bone at the distal stem; 

(b) the medial - lateral ratio of prosthesis to cortical bone at the mid stem; (c) the medial - 

lateral ratio of prosthesis to cortical bone at the bone cut surface; (d) the anterior - 

posterior ratio of prosthesis to cortical bone at the distal stem, (e) the anterior - posterior 

ratio of prosthesis to cortical bone at the mid stem; (f) the anterior - posterior ratio of 

prosthesis to cortical bone at the bone cut surface, (all of the above ratios must be within 

.25 and .75); (g) the bone cut angle; (h) the neck to shaft angle; (i) the width from distal 

stem center to the center of the neck post in the medial - lateral plane (W1); (j) the 

prosthesis height from the medial prosthesis bone cut surface to the center of the neck 

post (H3); (k) the medial - lateral neck post diameter; (1) the anterior - posterior neck 

post diameter; and (m) the neck post angle. Figure 3.8 contains medial - lateral and 

anterior - posterior plots of a prosthesis showing the locations of some of the items listed 

above. 

The elements created in the finite element models, in this research are 8 node 

brick elements. The ideally shaped 8 node brick element would be a cube. A cube has six 

equal side, each in a flat plane and all corner angles are 90 degrees. As the shape of the 

finite element deviates from the ideal shape (a cube) one or more sides are no-longer 

contain with-in a flat plane and the element is distorted. The ANSYS finite element 

program converts the matrices and load vectors of the element from the points on the flat 
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Figure 3.8 Medial - Lateral and Anterior - Posterior Prosthesis Parameters 
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plane in which the element is derived to the actual nodes. However, if the distortion is 

excessive the element is consisted warped and the ANSYS finite element analysis 

program will terminate. Figure 3.9 shows the shape of an ideal and distorted finite 

element. 

Figure 3.9 Ideal (a) and Distorted (b) Finite Element 

In an attempt to reduce the number of warped finite elements created, the outer 

boundaries of the cortical bone are modified according to the following: 

1) If the radius at any angle for any cross-section (i.e. 1) is greater than the radius 

for the adjacent distal cross-section (i.e. 2), and the radius at the next angle for that cross-

section (i.e. 1) is also greater than the radius for the adjacent distal cross-section (i.e. 2), 

the boundaries are not changed. 

2) If the radius at any angle for any cross-section (i.e. 1) is less than the radius for 

the adjacent distal cross-section (i.e. 2), and the radius at the next angle for that cross-

section (i.e. 1) is also less than the radius for the adjacent distal cross-section (i.e. 2), the 

boundaries are not changed. 
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3) Provided that neither number 1 nor number 2 above applies, the following is 

checked. If the absolute value of the difference between the radius for any cross-section 

(i.e. 1), and the adjacent distal cross-section (i.e. 2) for any angle is greater then 40 

percent of the height spacing between the two adjacent cross-sections, the outer 

boundaries of both cross-sections are revised. The larger radius is decreased by one 

quarter of the difference between the two radius, and the smaller radius is increased by 

the same amount. 

i.e. if the radius at cross-section 1, angle 1 (R1,1) = 16.0 and the radius at cross-

section 2, angle I (R2,1) = 10.0 and the height spacing between the cross-section 

was 10.0. Rl,1 would be revised from 16.0 to 14.5 and R2,1 would be revised 

from 10.0 to 11.5. 

The resulting cortical bone outer boundaries are displayed on sheet 2 of the Excel 

program, next to the previously determined cortical bone outer boundaries. If any of the 

cortical bone outer boundaries had been revised the program displays them in a bold 

font. Note that, if there are any warped finite elements the ANSYS program will not run. 

Although the above method does eliminate some warped elements it does not insure that 

no warped elements will be created. 

In addition to trying to prevent warped elements, the program checks that the 

diameter of the distal portion of the prosthesis is not larger than the prosthesis mid stem 

diameter, and similarly, that the mid stem prosthesis diameter is not larger than the 

diameter of the prosthesis at the bone cut surface. This ensures that the prosthesis can be 
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inserted with a minimum amount of bone removal, and that there is an uniform fit 

between the prosthesis and bone. 

The total length of scanned bone used in this research for each case was 160 mm. 

This corresponds to seventeen cross-sections, each 10 mm apart. The most distal 20 mm 

is assumed to be composed of bone without prosthesis. The most distal part of the 

prosthesis starts at this height. The prosthesis center is assumed to be in a vertical line up 

to the mid stem. The mid stem is defined as being 40 mm below the most proximal cross-

section. Therefore, the height from the distal portion of the prosthesis to the mid stem is 

100 mm. The center line of the proximal portion of the prosthesis is allowed to be tilted 

in both the medial-lateral and the anterior-posterior plane. 

The prosthesis parameters that were used to create the prosthesis portions of the 

finite element input files are show in Table 3.1 and 3.2 for Case 1 and Case 2, 

respectively. The calculated parameters are: (a) the medial-lateral diameter for the distal 

stem; (b) the medial-lateral diameter for the mid stem; (c) the height to the medial bone 

cut surface from the distal stem (H2); (d) the prosthesis medial angle; (e) the prosthesis 

lateral angle; (f) the length from distal stem center to the center of the neck post in the 

anterior-posterior plane (L1); (g) the anterior-posterior diameter for the distal stem; (h) 

the anterior-posterior diameter for the mid stem; and (i) the anterior-posterior diameter 

for the bone cut surface. 
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Table 3.1 Case 1: Prosthesis Parameters 
Prosthesis Input Parameters Enter Left or Right in next 

column left 
Front (Medial - Lateral) View 

Ratio of Prosthesis to Cortical Bone 
distal stem rPtoBdsml 0.50 

@ mid stem rPtoBmsml 0.50 
bone cut surface rPtoBbcml 0.50 

Diameter (distal stem) Dds(mI) 15.55 mm 
Diameter (mid stem) Dms(ml) 19.15 mm 

Height to mid stem from distal end H1 100.00 mm  
Height to bone cut from distal end H2 154.76 mm 

Prosthesis Medial Angle Ang1 88.07 deg 
Prosthesis Lateral Angle Ang2 97.23 deg 
Angle of bone cut Ang3 150.00 deg 
Neck to Shaft Angle Ang4 128.00 deg 

Width from Distal Stem Center to 
Center of Neck Post 

W1 62.20 mm 

Height from Bone Cut to Center of 
Neck Post 

H3 48.30 mm 

Diameter of Neck Post Dnp(ml) 16.50 mm 
Neck Post Angle Ang5 150.00 deg 

Side (Anterior - Posterior) View 

Ratio of Prosthesis to Cortical Bone 
@ distal stem rPtoBdsap 0.50 
© mid stem rPtoBmsap 0.50 
@ bone cut surface rPtoBbcap 0.50 

Length from Distal Stem Center to 
Center of Neck Post (if tilt is towards 
anterior enter a positive number) 

L1 0.00 mm 

Diameter (distal stem) Dds(ap) 14.65 mm 
Diameter (mid stem) Dms(ap) 14.65 mm 
Diameter (bone cut surface) Dbcs(ap) 22.36 mm 
Diameter of Neck Post Dnp(ap) 16.50 mm 



Table 3.2 Case 2: Prosthesis Parameters 
Prosthesis Parameters Enter Left or Right in next 

column left 
Front (Medial - Lateral) View 

Ratio of Prosthesis to Cortical Bone 
@ distal stem rPtoBdsml 0.50 
@ mid stem rPtoBmsml 0.50 
@ bone cut surface rPtoBbcml 0.50 

Diameter (distal stem) Dds(ml) 14.14 mm 
Diameter (mid stem) Dms(ml) 18.89 mm 

Height to mid stem from distal end H1 100.00 mm 
Height to bone cut from distal end H2 149.96 mm 

Prosthesis Medial Angle Ang1 78.47 deg 
Prosthesis Lateral Angle Ang2 97.23 deg 
Angle of bone cut Ang3 150.00 deg 
Neck to Shaft Angle Ang4 128.00 deg 

Width from Distal Stem Center to 
Center of Neck Post 

W1 
62.20 

mm 

Height from Bone Cut to Center of 
Neck Post 

H3 48.30 mm 

Diameter of Neck Post Dnp(ml) 16.50 mm 
Neck Post Angle Ang5 150.00 deg 

Side (Anterior - Posterior) View 

Ratio of Prosthesis to Cortical Bone 
@ distal stem rPtoBdsap 0.50 
@ mid stem rPtoBmsap 0.50 
@ bone cut surface rPtoBbcap 0.50 

Length from Distal Stem Center to 
Center of Neck Post (if tilt is towards 
anterior enter a positive number) 

L1 -10.73 mm 

Diameter (distal stem) Dds(ap) 14.52 mm 
Diameter (mid stem) Dms(ap) 14.52 mm 
Diameter (bone cut surface) Dbcs(ap) 23.00 mm 
Diameter of Neck Post Dnp(ap) 16.50 mm 
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3.12 Nodes 

The next step in the creation of the finite element input file is the determination of the 

nodes for all of the elements in the finite element model, which includes the cortical bone, 

cancellous bone, interface (porous coating or cement), prosthesis stem and neck 

elements. The user is requested to enter the following finite element model information: 

(a) the number of elements from the inner radius to the outer radius of the prosthesis; (b) 

the number of elements from the inner radius to the outer radius of the porous coating (or 

cement) interface; (c) the number of elements from the inner radius to the outer radius of 

the cancellous bone; (d) the number of elements from the inner radius to the outer radius 

of the cortical bone; (e) the porous coating (or cement) thickness; (f) the minimum 

allowable cancellous bone thickness; (g) the maximum allowable change in the cortical 

bone inner boundary from one cross-section to the next (this is requested to avoid warped 

elements); and (h) the minimum allowable cortical bone thickness. 

The total number of elements from the inner radius to outer radius for each cross- 

section (NeT) is equal to: 

NeT = PEfRiRo + lEfRiRo + CanBEfRiRo + CBEfRiRo 

where PEfRiRo = the number of elements from the inner radius to the outer radius of the 

prosthesis 

lEfRiRo = the number of elements from the inner radius to the outer 

radius of the porous coating (or cement) interface 



87 

CanBEfRiRo = the number of elements from the inner radius to the outer 

radius of the cancellous bone 

CBEfRiRo = the number of elements from the inner radius to the outer 

radius of the cortical bone 

The number of Elements per cross-section (ElempCS) is equal to: 

ElempCS = (NeT)(360/SA) 

where SA = the angular spacing between nodes 

The number of Nodes per cross-section (NodespCS) is equal to: 

NodespCS = ElempCS + 1 

The 1 comes from the node in the center of the prosthesis that the inner set of prosthesis 

elements are attached to. 

The maximum node number in the model (NumNode) is equal to: 

NumNode = (Slices + 9)( NodespCS) + (3 60/SA)(PEfRiRo) + 1 

where Slices = the number of cross-sections 

The nine (9) comes about in the following way. The upper bone/prosthesis cross-

section is rotated twice (2) to model the geometry between the most proximal cross-

section and the bone cut surface. The prosthesis neck contains eight layers of elements, 

Since the final layer does not need to contain any nodes beyond the prosthesis nodes, only 

seven (7) of these layers get multiplied by the number of nodes per cross-section. This 
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method of node numbering was used so that there is a fixed number of nodes 

(NodespCS) between the nodes of adjacent layers. 

The actual number of nodes (ActNumNodes) defined in the model is a somewhat 

smaller number given by the following equation: 

ActNumNodes = (Slices + 2)(NodespCS)+ (8){(360/SA)(PEfRiRo) + I) 

The maximum element number in the model (NumElem) is equal to: 

NumElem = (Slices + 8)(ElempCS) + (360/SA)(PEfRiRo) 

The eight (8) comes about in the following way. There are (Slices-1)(ElempCS) elements 

in "Slices" cross-sections, i.e. in 17 cross-sections there are only 16 times the number of 

elements per cross-section elements. To the (Slices-1) number we need to add the 

elements for the 2 rotated sections and 7 of the 8 sets of elements for the prosthesis neck 

section, so we have (Slices-1 + 2 + 7) which equals (Slices + 8). Since the final layer 

does not need to contain any elements beyond the prosthesis elements, this layer does not 

get multiplied by the number of elements per cross-section. Similarly, this method of 

element numbering was used so that there is a fixed number of elements (ElempCS) 

between the elements of adjacent layers. 

The actual number of elements (ActNumElem) defined in the model is a 

somewhat smaller number given by the following equation: 

ActNumElem = (Slices + 1)(ElempCS) + (8) { (360/SA)(PEfRiRo) 
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A check is performed to insure that the maximum allowable change in the cortical 

bone inner boundary from one cross-section to the next is within the user defined limit. 

The check is performed from the distal end up. The inner boundaries of the cortical bone 

nodes of the most distal cross-section (i.e. 17) is compared to the inner boundaries of the 

next adjacent proximal cross-section (i.e. 16). If the boundaries of the proximal cross-

section (i.e. I6) is greater than or less than the boundaries of the distal cross-section (i.e. 

I7), plus or minus the user defined limit for any angle, the values of the boundaries of the 

proximal cross-section (i.e. 16) for that angle are revised to be at the user defined limit. 

Then the boundaries of that cross-section (i.e. 16) would be compared to the boundaries 

of the next adjacent cross-section (i.e. I5). This method is repeated until the boundaries 

of all of the cross-sections are adjusted as required to meet the user defined limit. The 

reason the check is performed from the distal end up is because the inner boundaries of 

the distal cortical bone tend to be much more uniform in shape, and less sensitivity to the 

choice of the CT number that was used to define the boundaries. 

A check is then performed to make sure that the cortical bone thickness is equal 

to or greater then the minimum cortical bone thickness defined by the user. If the 

thickness of the cortical bone is thinner then the user defined limit for any angle, the inner 

boundaries of the cortical bone for that angle is moved in to meet the minimum thickness 

requirement. It should be noted that since this check is performed after the first check, it 

is possible that the second check may "undo" the changes performed in the first check. 

The resulting cortical bone boundaries are displayed on sheet 2 of the Excel program, 

next to the previously determined cortical bone boundaries. If any of the cortical bone 
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boundaries had been revised the program displays them in a bold font. Since bone is 

being "removed" to insert the prosthesis from the medullar canal, the inner boundaries of 

the cortical bone will be revised, if needed, to allow room for the prosthesis, interface 

layer and a minimum user defined thickness for the cancellous bone layer. A cancellous 

bone section is required in each cross-section for element connectivity. 

The location of the most medial cortical bone node is determined. The location of 

this node is needed to determine the starting location for the rotation section that creates 

nodes from the most proximal cross-section to the bone cut surface. For a right femur 

this would be the most positive x node. For a left femur this would be the most negative 

x node. The most proximal prosthesis node is equal to the height from the mid stem to 

the bone cut surface, divided by the tangent of the prosthesis medial angle, plus one-half 

the prosthesis mid stem diameter. 

The distal to mid stem slopes of the prosthesis in the medial-lateral and anterior-

posterior planes is equal to the change in diameter from mid stem to distal stem, divided 

by the height from the mid stem to distal stem. This height has been set to a constant 

value of 100 mm for this study. The tilt of the prosthesis, if any (towards the anterior or 

the posterior side), is calculated next. This tilt is equal to the arc tangent of the length 

from the distal stem center, to the center of the neck post, divided by the height from the 

center of the neck post to the mid stem. In addition to the proximal portion of the 

prosthesis being tilted in the anterior-posterior plane, it may also have a taper in this 

plane, i.e. the proximal portion could be wider then the mid stem portion. The anterior- 
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posterior proximal taper is defined as being equal to the arc tangent of the change in 

prosthesis radius, from the bone cut surface to the mid stem, divided by 40. 

The center of the most distal cross-section has a x, y, z coordinate of (0,0,I60), 

for a right femur +X is Medial, +Y is Anterior, and +Z is Inferior. Similarly, for a left 

femur +X is Lateral, +Y is Anterior, and +Z is Inferior. The bone distal to the prosthsis 

is assumed to be cancellous bone in the region directly below the most distal portion of 

the prosthesis and interface layer. The same x and y node locations are used for the bone 

nodes distal to the prosthesis, as used in the most distal cross-section containing the 

prosthesis, except for the nodes defining the cortical bone. This insures properly shaped 

elements in the distal portion of the model. 

Since there is no CT data available for the geometry of the bone at the surface in 

which the bone is cut, a rotation method is used to approximate the geometry in this 

region. The nodes of the most proximal cross-section are rotated about a point, located 

at the most median node, plus 6 divided by the tangent of the bone cut angle. The desired 

bone cut angle is inputted by the user. A second set of nodes is defined as being centered 

between the set of nodes of the most proximal cross-section and the rotated set just 

created. By including the 6 divided by the tangent of the bone cut angle term in the 

rotated equation, better shaped elements are created, since the three cross-sections (the 

most proximal cross-section, and the two "rotated" cross-sections) do not share a 

common node. If the rotation occurred strictly about the most medial cortical bone node, 

all three layers would have that node as a common node, and the elements sharing that 

node would be poorly shaped. This node would have a Z value of 0, in the method used 
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the most medial cortical bone node has a Z value of 0, -3, and -6 for the most proximal 

cross-section and the two "rotated" layers, respectively. 

The shape of the portion of the prosthesis extending beyond the bone is assumed 

to vary linearly, from its shape at the bone cut surface, to its shape at the top of the neck 

post. Eight element layers are used to model this section of the prosthesis. 

The programs creates ASCII text node files containing the x, y and z locations of 

all of the nodes which are used to create the finite element input file. ASCII text files of 

the 3-D outer boundaries of the cortical bone and prosthesis are created. The user is 

given the option to plot the 2-D nodal boundaries for the 17 cross-sections, as well as, 

the option to plot the 3-D cortical bone and or the 3-D prosthesis outer boundaries using 

Mathcad programs. The Mathcad program used to plot the node boundaries is 

NODEPLOT.MCD. The limits of the plots were manually selected for each case to 

contain the largest cross-section (section 1). The same boundaries were used for all 

sections of the same case. Appendix A contains the 2-D node boundaries plots for Case 

1. CB3DPLOT.MCD is used to plot the 3-D cortical bone plots and 3DPPLOT.MCD 

is used to plot the 3-D outer boundaries of the prosthesis. The 3-D cortical bone outer 

boundary plots are shown in Figure 3.10 and 3.11 for Case 1, and Case 2, respectively. 

Similarly, Figure 3.12 and 3.13 contain the 3-D prosthesis plots for Case 1 and Case 2. 

The bone tilt, mentioned previously, shown in Figures 3.6 and 3.7 has been removed from 

the data as can be seen from Figures 3.10 and 3.11. Figures 3.10 and 3.11 also contain 

the nodes associated with the outer boundaries of the cortical bone of the two rotated 

layers. 
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Figure 3.10 Case 1: 3-D Cortical Bone Outer Boundary Plot 
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Figure 3.11 Case 2: 3-D Cortical Bone Outer Boundary Plot 
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Figure 3.12 Case 1: 3-D Prosthesis Outer Boundary Plot 
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Figure 3.13 Case 2: 3-D Prosthesis Outer Boundary Plot 
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3.13 Average Computed Tomography Number 

The average CT number is determined for each 2-D cortical bone area by taking the 

average of the CT number of all of the pixels contained in the 2-D area of interest. Each 

2-D area represents either the top or bottom surface of an element. The user is requested 

to input the values of the constants ("A" and "B") that relate the CT number to density in 

the linear equation listed below: 

Density = (A)(CT#) + B (g/cm3) 

The program reads the revised cortical bone boundaries previously printed to sheet 2 of 

the Excel program. For each truncated pie shape cortical bone 2-D area the boundaries 

of the smallest box containing this area is determined. Figure 3.14 shows two truncated 

pie shape areas representing two cortical bone 2-D areas (the shaded portions of Figure 

3.14) and the corresponding smallest boxes in which each 2-D area is contained. 

Figure 3.14 Cortical Bone Box Boundaries 
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The corresponding upper and lower limits for each box containing a 2-D cortical 

bone area is determined. The boundaries of two of the four lines defining a 2-D cortical 

bone area is given by the angles in which the area is contained, i.e. if the angular spacing 

between elements is 15 degrees there would be a cortical bone element area whose two 

lines are defined by 0 degrees and 15 degrees, etc. The slope and y intercept for the 

remaining two line bounding the 2-D cortical bone area is determined for each cortical 

bone section. The location of each pixel in each box (from Xmin,Ymin to Xmax,Ymax; 

see Figure 3.15) containing a cortical bone 2-D area is check to see if it is inside the four 

lines defining the cortical bone. If it is, a value of 1 is added to a running count of the 

number of pixels contained in that area and its CT number is added to a running sum. 

The total number of pixels contained in a 2-D cortical bone is determined as well as the 

average CT number. 

Figure 3.15 Lines defining a 2-D Cortical Bone Area 
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Based on the average CM the bone density of each 2-D cortical area is calculated 

using the linear equation stated above. The density, average CM, sum of the CT#s, and 

number of pixels contained in each 2-D cortical bone area is printed to sheet 2 of the 

Excel program. As a check of "element size" the program will print in bold font any 

pixel count value that is less than 100. An example of the cortical bone data printed to 

sheet 2 of the Excel program for cross-section 1, Case 1 is shown in Table 3.3. 

3.I4 Finite Element Model Input File 

This module creates the finite element input file, which includes the cortical bone, 

cancellous bone, interface (porous coating or cement), prosthesis stem and neck 

elements. The user is requested to enter the following finite element model information: 

(a) the name of the ANSYS input file to be created; (b) the prosthesis material (i.e. 

Titanium); (c) the prosthesis Young's modulus in MPa; (d) the prosthesis Poisson's ratio; 

(e) the interface (between bone and prosthesis) material (i.e. PMMA); (f) the interface 

material Young's modulus in MPa; (g) the interface material Poisson's ratio; (h) the 

cancellous bone Young's modulus in MPa; (i) the cancellous bone Poisson's ratio; (j) the 

values of the constants ( "A" and "B") that relate the CT number to the cortical bone 

density in the following linear equation: Density = (A)(CT#) + B (g/cm3); (k) the strain 

rate (in 1/sec) that relates the cortical bone density to Young's modulus in following 

equation: E = 3790(strain rate)0.06 (Density)3  (MPa); (1) the cortical bone Poisson's ratio; 

(m) the medial-lateral, posterior-anterior and superior-inferior joint force in Newtons; (n) 

the medial-lateral, posterior-anterior and superior-inferior greater trochanter muscle force 

in Newtons. 



Table 3.3 Case 1; Cross-section 1; Cortical Bone Data 

File Name = e:\thesis\Case  1 s1.dat 
X center = 177 Xcbcen = 3.598 
Y center = 124 Ycbcen = 0 
Z Height = 0 
X range = 277 min CT# = 1280 
Y range = 208 

Ang Num Angle X min  Y min 
Revised 
X min 

Revised 
Y min X max Y max 

Revised 
X max 

Revised 
Y max Density Avg Sum CT Count 

1 15 22.359 5.140 16.145 3.411 26.214 6.168 26.214 6.168 1.14 1264 1099328 870 
2 30 20.046 9.509 14.666 6.590 21.331 10.280 21.331 10.280 1.18 1320 813248 616 
3 45  14.649 11.051 12.315 9.319 17.733 14.135 17.733 14.135 1.19 1331 625424 470 
4 60 10.794 12.336 9.250 11.414 12.593  15.677 12.593 15.677 1.22 1364 552336 405 
5 75  6.168 10.023 5.681 12.730 8.481 18.504  8.481 18.504 1.26 1417 497440 351 
6 90 3.598 13.621 2.827 13.179 3.598 23.130 3.598 23.130 1.25 1400 707152 505 
7 105 1.028 9.509 -1.972 12.730 -2.827 24.158 -2.827 24.158 1.16 1295 828640 640 
8 120 -5.397 15.677 -5.536 11.414 -10.023 23.644 -10.023 23.644 1.24 1385 1119088 808 
9 135 -2.056 5.654 -8.595 9.319 -25.443 29.041 -25.443 29.041 l.20 1345 2381856 1771 

10 150 -7.196 6.168 -10.943 6.590 -36.494 23.130 -36.494 23.130 1.19 1324 4234384 3197 
2943 

II 165 -10.280 3.598 -12.419 3.411 -34.438 10.280 -33.045 9.818 1.32 1483 4364256 
12 180 -3.084 0.000 -12.923 0.000 -21.845 0.000 -21.845 0.000 1.48 1679 2321056 1382 
13 195 -5.140  -2.313 -12.419 -3.411 -14.135 -4.626 -14.135 -4.626 1.48 1678 672752 401 
14 210 -3.084 -3.855 -10.943 -6.590 -10.794 -8.224 -10.794 -8.224 1.29 1453 95920 66 
15 225 -7.196 -10.794 -8.595 -10.729 -9.252 -12.850 -9.252 -12.850  1.31 1470 108768 74 
16 240 -1.542  -8.995 -6.112 -11.414 -6.682 -17.733 -6.682 -17.733 1.17 1303 237168 182 
17 255 1.542 -7.453 -3.091,  -13.630 -2.056 -20.817, -2.056 -20.817 1.08 1189, 247344 208 
18 270  3.598 -20.046 1.851 -17.509 3.598 -21.588 3.598 -21.588 l.07 1187 257472 217 
19 285 8.738 -19.275 6.179 -16.333 9.252 -21.074 9.252 -21.074 1.12 1242 445776 359 
20 300 13.621 -17.219 9.250 -11.431 14.649 -19.018 14.649  -19.018 l.11 1230 720816 586 
21 315 17.219 -13.621 12.315 -9.897 19.275 -15.677 19.275 -15.677 1.15 1285 769456, 599 
22 330 20.817 -10.023 14.828 -8.598 24.158 -11.822 24.158 -11.822 1.21 1354 811088 599 
23 345 23.644 -5.397 16.145 -3.411 27.756 -6.425 27.756 -6.425 1.18 1310 1064768 813 
24 360 25.700 0.000 16.649 0.257 29.298 0.000 29.298 0.000 l.13 1253 1111408 887 
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Linearly elastic, ANSYS element type 45 (3-dimensional, 8 node, homogeneous 

and isotropic, 3 degree of freedom elements allowing only translation about the X, Y and 

Z axis), are used for all of the elements in the model. There were 2,544 elements and 

2,691 nodes in each model. The prosthesis was modeled using two elements in the radial 

direction per cross-section. The interface, cancellous bone and cortical bone were 

modeled with one element in the radial direction per cross-section. 

The material properties used in the finite element models are listed in Table 3.4. 

The Young's modulus of the cortical bone elements varied as a function of density. The 

maximum cortical bone Young's modulus was 24,724 MPa and 27,194 MPa for Case I 

and Case 2, respectively. The minimum cortical bone Young's modulus was 3,556 MPa 

and 2,927 MPa for Case 1 and Case 2, respectively. 

Table 3.4 Finite Element Model Material Properties 

Material 
Young's 
Modulus 

Poisson's 
Ratio 

(MPa) 

Cortical bone .0 6p3  E = 3790(ε)°  0.30 

Cancellous 1,000 0.30 
Cement (PMMA) 2,000 0.33 
Prosthesis 
(Titanium) 

100,000 0.29 

In the finite element models the following boundary conditions and loads are 

assumed. The most distal set of nodes are fixed in X, Y and Z. This imposes a zero 

displacement condition on these nodes, meaning that these nodes cannot translate any 

amount in any direction. The joint force is evenly distributed among the most proximal 



102 

set of prosthesis neck nodes. The greater trochanter muscle force is evenly distributed 

among all of the cortical bone nodes contained in the bone cut layer, within plus or minus 

30 degrees (posterior-anterior) of the lateral cortical bone nodes. The joint force and 

greater trochanter muscle force used in the finite element models are shown in Table 15. 

Table 3.5 Joint and Greater Trochanter Muscle Force 
Joint Force Newtons 

X Medial(-) Lateral(+) 642 

Y Posterior(-) Anterior(+) 196 

Z Superior(-) Inferior(+) 1750 

Greater Trochanter Muscle Force 

X Medial(-) Lateral(+) -490 

Y Posterior(-) Anterior(+) -150 

Z Superior(-) Inferior(+) -1006 

This module reads in the ASCII node files created in the Nodes module. The 

number of materials defined in the model equals three (1 for the prosthesis, 1 for the 

interface material and 1 for the cancellous bone) plus the number of cortical bone 

elements. Since each cortical bone element can have a different average CT number, and 

therefore, a different Young's modulus, there needs to be a different material number for 

each cortical bone element to be able to assign each cortical bone element its own 

Young's modulus. 

Node connectivity for each element is also defined in this module. As stated in 

the Nodes section (3.12) there is a fixed number of nodes (NodespCS) between the nodes 
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of adjacent cross-sections. Four of the eight nodes of an element comes from one cross-

section and the other four come from an adjacent cross-section. For example if nodes n1, 

n2, n3 and n4 are the four nodes in cross-section N of an element, the remaining four 

nodes located in cross-section N+1 are (n1 + NodespCS), (n2 + NodespCS), (n3 + 

NodespCS) and (n4 + NodespCS). 

Each set of the four node defining a "distal" or "proximal" section of an element is 

a 2-D Cortical Bone Area (see Figure 3.15) for which an average CT number has been 

determined (see section 3.13 Average CT Number). The average of the average CT 

number for each of the two 2-D Cortical Bone Areas defining an element is used as the 

CT number for that element. For the elements created by rotating of the most proximal 

bone cross-section, the average CT numbers of the 2-D Cortical Bone Areas for the 

rotated cross-section are used. As stated previously the Young's modulus for each 

element is determined by converting the average CT number into a density, and then 

converting the density into a strain rate depended Young's modulus, using the following 

equations: 

Density = (A)(CT#) + B (g/cm3) 

E = 3790(strain rate)0.06 (Density)3  (MPa) 

Each element in the model is associated with a material number, and each material 

number is associated with a Young's modulus and Poisson's ratio. 

Additional code is added to the end of the input file that causes the file to be 

automatically executed when it is read in ANSYS. The ANSYS input file is written to 

worksheet 3 of the Excel program CTPROG.XLS. The user needs to do the following 
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to create the ASCII text FEA input file that can be read by ANSYS; with worksheet #3 

active, select File; Save As; (Formatted Text (Space Delimited)); then enter the file name. 

Note, only the data on worksheet 3 (the ANSYS FEA input file) will be saved to that file, 

so one may wish to save the file using "Save" prior to issuing the "Save As" command. 

The file extension for the ASCII text FEA input file will change from a ".xls" to a ".prn". 

3.15 Simulated Right Femur Computed Tomography Data 

The Computed Tomography Data Analysis Program was designed to process data from 

either a left or right femur. The CT data analysis program accesses different sub-

programs depending of whether the data is for a left or right femur. Since both Case I 

and Case 2 are for left femurs, a simple Visual Basic module (CREATERI.XLS) was 

created using Microsoft Excel 5.0a to convert the seventeen different data files (one for 

each cross-section) of Case 2 into data files corresponding to a right femur. This newly 

created data file was processed though all the programs to insure that the program would 

access the correct sub-programs for a right femur. 

3.16 ANSYS Finite Element Analysis Runs 

At this point, all of the steps required to create an ANSYS three-dimensional finite 

element input file have been discussed. Each finite element input file created in this 

research contained over 8,000 lines of code. It must be pointed out that the Computed 

Tomography Data Analysis Program creates these files without requiring the user to enter 

a single line of code. 
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The finite element input files contain the following information: (a) a list of all of 

the nodes and their 3-dimensional coordinates; (b) a list of all of the elements and their 

node connectivity and associated material number; (c) a material property list containing 

Young's modulus and Poisson's ratio for each material; (d) a list of nodes which are fixed 

(zero displacement in X, Y, and Z); (e) a list of nodes and associated values of forces 

representing the joint force and greater trochanter muscle force; and (f) code that 

automatically causes ANSYS to enter the solution phase. 

The file extension for the ASCII text, FEA input file created in the FEA Input File 

module (see 3.I4) was changed from a ".pm" to a ".dat" because the ANSYS finite 

element programs data file default extension is ".dat". If no warped elements or other 

errors exist in the model only the following command needs to be issued in the ANSYS 

program "linputfilename,dat" to completely solve the FE model. 	The 

"/inputfilename,dat" command results in ANSYS reading the ASCII text, FEA input file, 

which contains all of the node, element, boundary conditions and loads data. Commands 

are contained in the FEA input file that will cause ANSYS to continue into the solve 

mode if no modeling errors occurred. Unfortunately the initial steps taken to eliminate 

warped elements, from occurring in the model, was not 100% successful. In each of the 

models one warped element face still existed resulting in ANSYS given an error message 

and not entering the solution stage. As a result of this the last three lines of code starting 

with "/SOLO" was deleted from the ASCII text FEA input file. Now, when the 

"/input,filename,dat" command was entered ANSYS remained in the PREP7 (modeling 

mode). The nodes associated with the warped face was revised. In the Case l, one 
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cortical bone thick model file, an error element occurred because face 3 of element 1788 

was warp. The x value of two of the nodes associated with face 3 of this elements (nodes 

1804 and I925) was revised as shown below: 

Node from to 

from 	1804 -29.812 	-28.46275 

	

1925 -24.415 	-25.76425 

The screen used to eliminate warped elements was revised and is discussed in section 

3.Il. 

The models were run interactively after the required nodal position adjustments 

were made. The six components of stress (ax, cry, az, τxy, τxz, and τyz) for each node 

along the medial/lateral and anterior/posterior planes were recorded. An excel/visual 

basic program (FEADATA.XLS) that accessed a M at hcad program 

(STRESSRT.MCD) was created to computed the von Mises and maximum shear stress 

for each of these nodes using the components of stress obtained from the ANSYS runs. 



CHAPTER 4 

RESULTS AND DISCUSSIONS 

4.I Results 

This study consisted of the analysis of the stress in a femur with a prosthesis involving (1) 

a titanium stem prosthetic with cement, (2) the comparison of the stress patterns for a 

male femur (Case 1) and a female femur (Case 2), and (3) a comparison to the previous 

results (Chang 1994). The stresses in the proximal femur and the cement interface are of 

particular interest, because of the problem of proximal stress shielding and clinical 

loosening of the femoral component due to fatigue failure of the cement. A material, 

such as the cement interface, subjected to fluctuating stresses which are below the 

ultimate tensile strength of the material may fail after repeated cycling. This phenomenon 

is termed fatigue. Fatigue failure begins with the generation of a fatigue crack which 

occurs at a point of high stress concentration. Tensile stress, and to a lesser degree 

shearing stress leads to fatigue crack propagation. The fluctuating stresses, required for 

fatigue failure, occur due to the changing stress patterns that occur during normal 

activities; i.e. walking, running, chair raising and seating, stair climbing etc. Two other 

theories of failure, the maximum shear stress theory and the maximum distortion energy 

theory are discussed in section 1.8. 

The normal, maximum shear and von Mises stress distribution along the lateral 

and medial sides of the prosthesis, interface, cancellous bone and cortical bone are 

displayed in Appendix B for Case I and Case 2. The stresses along the anterior and 

posterior sides were much lower and are not presented. A summary of the maximum and 

107 



108 

minimum normal, von Mises, and maximum shear stresses for Case I and Case 2, are 

contained in Table 4.1.  

Table 4.1 Case 1 and Case 2 Finite Element Analysis Results 
Case 1 Case 2 

Prosthesis Prosthesis 
Normal vonMises max Shear Normal vonMises max Shear 

max 63.6520 64.2478 40.6512 71.1290 71.3776 39.5971 
min -69.5590 3.8556 2.2575 -78.1680 1.1041 0.6059 

Interface Inner Interface inner 
Normal vonMises max Shear Normal vonMises max Shear 

max 1.4274 6.7765 4.4603 1.6175 6.1320 3.6618 
min  -5.3098 0.2979 0.0978 -3.6987 0.2626 0.1052 

Interface Outer Interface Outer 
Normal vonMises  max Shear Normal vonMises max Shear 

max 1.6430 7.0869 4.6876 1.8057 7.0999 4.3604 
min -4.5466 0.3560 0.1441 -2.9095 0.2798 0.1110 

Cancellous Bone Inner Cancellous Bone Inner 
Normal vonMises max Shear Normal vonMises max Shear 

max 0.9115 6.0483 3.9667 0.9907 4.3631 2.8026 
min -3.5104 0.1386 0.0633 -2.2033 0.1191 0.0504 

Cancellous Bone Outer Cancellous Bone Outer 
Normal vonMises max Shear Normal vonMises max Shear 

max 1.0883 6.1454 4.0382 1.2387 4.2743 2.7468 
min -3.3235 0.1892 0.0867 -2.4536 0.1606 	0.0670 

Cortical Bone Inner Cortical Bone Inner 
Normal vonMises max Shear Normal vonMises max Shear 

max 23.2710 24.4171 14.9057 27.6990 29.3432 17.0328 
min -26.6530 0.3778 0.1574 -30.8770 0.4627 0.1803 

Cortical Bone Outer Cortical Bone Outer 
Normal vonMises max Shear Normal vonMises max Shear 

max 36.9320 35.9019 20.2318 48.4440 46.9498 23.8220 
min -42.0560 0.6660 0.3280 -42.6630 0.2524 0.1077 

As stated previously, for the loads applied, the stresses in the medial-lateral plane 

were greater then the stresses in the anterior-posterior plane. The titanium prosthesis 

stem is in tension on the lateral side and compression on the medial side. The maximum 
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tensile stress, on the surface of the prosthesis along the interface, occurs at the mid-distal 

lateral side. The maximum tensile stress was 64 MPa for Case 1 and 71 MPa for Case 2. 

The maximum shear stress was 41 MPa for Case 1 and 40 MPa for Case 2. 

The maximum tensile stress in the interface (cement) occurred at the proximal 

medial side of the cement-bone interface. It was 1.6 MPa for Case 1 and 1.8 MPa for 

Case 2. The maximum shear stress in the cement was greater then the maximum tensile 

stress. The maximum shear stress also occurred at the cement-bone interface as opposed 

to the prosthesis-cement interface. For Case I the maximum shear stress in the cement 

occurred at the most proximal medial section and was 4.7 MPa. It occurred at the most 

distal medial section for Case 2 and was 4.4 MPa. The maximum shear stress versus 

longitudinal location was U shaped for both Case 1 and Case 2 (see Appendix B6). The 

maximum von Mises stress occurred at the cement-bone interface and was 7 MPa for 

both Case I and Case 2. 

The tensile stress in the cancellous bone was less than 2 MPa for both Case 1 and 

Case 2. The maximum shear stress in the cancellous bone was 4.0 MPa for Case 1 and 

2.8 MPa for Case 2. 

The greatest cortical bone tensile stress occurred at the outer distal-lateral side. It 

was 37 MPa for Case I and 48 MPa for Case 2. The tensile stress on the lateral side 

generally decreased proximally. In fact, the tensile stress at the lateral proximal end was 

close to zero. The medial portion of the cortical bone was in compression. The 

maximum shear stress also occurred in the outer portion of the cortical bone. For Case I 
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it occurred on the distal medial side and was 20 MPa. For Case 2 it occurred on the 

distal lateral side and was 24 MPa. 

The maximum tensile stresses for Case 2 (female) for the prosthesis, cement and 

cancellous bone were about 9% to 14% higher then for Case 1 (male). The maximum 

tensile stresses in the cortical bone were about 19% to 3I% higher. The maximum shear 

stress was higher for Case 1 (male) in the prosthesis, cement and cancellous bone, but 

lower in the cortical bone, then for Case 2 (female). The stress patterns were quite 

similar for the male femur (Case I) and the female femur (Case 2) in the medial-lateral 

plane. The stresses in the anterior-posterior plane tended to be small and the stress 

patterns between Case I (male) and Case 2 (female) were not as consistent as in the 

medial-lateral plane. 

The maximum tensile stress along the lateral prosthesis boundary for Case I was 

64 MPa and it occurred mid stem in this study. Chang (1994) reported a maximum 

tensile stress along the lateral prosthesis boundary of only 23 MPa, occurring proximally. 

The maximum tensile stress between the cement and the bone at the lateral interface was 

l.6 MPa (distal) versus 13.4 MPa (proximal). The maximum shear stress between the 

cement and the bone at the medial interface 4.7 MPa (proximal) versus 2.5 MPa 

(proximal). The maximum shear stress between the cement and the bone at the lateral 

interface 3.3 MPa (distal) versus 8.0 MPa (proximal). The maximum von Mises stress 

along the medial femoral surface was 29 MPa (distal) versus 17 MPa (distal). The 

maximum von Mises stress along the lateral femoral surface was 36 MPa (distal) versus 

3I MPa (proximal). As seen from the above, there tended to be differences between the 
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results obtained in this study and the results obtained by Chang (I994) for the same CT 

data file (Case 1). 

4.2 Discussions 

A 3-D finite element analysis of a femur with prosthesis was performed for two cases. 

Computed tomography was used to obtain the geometry and material properties of the 

cortical bone. One of the most important aspects of the prosthesis design is the load 

transfer to the proximal portion of the femur. In this study the most proximal portion of 

the femur was not scanned and a rotation method had to be used to model this critical 

region. The primary goal of this study was to develop a Computed Tomography Data 

Analysis Program that could take a CT data files as an input and output a 3-D finite 

element file of femur with a prosthesis. Since the most proximal portion of the femur was 

not scanned there was no choice but to used a method to simulate this section of the 

femur. Future scans should include the proximal portion of the femur so that the actual 

bone geometry and bone density in this area can be modeled. 

The cancellous bone was modeled as having an uniform Young's modulus. This 

method of assigning properties to the cancellous bone was chosen so that the results 

could be compared directly with the results from Chang (I994), who used the same CT 

data files and cancellous bone properties. Since this portion of the femur bone makes 

contact with the interface layer (cement/porous coating) its properties greatly effect the 

load transferred to the cortical bone. In future models the properties of cancellous bone 

should be inputted based on the CT values either using the relationship between density 
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and Young's modulus developed by Carter and Hayes (1977), or the relationship 

developed by Rho et al., (1995). 

All elements in the model were linear elastic, homogeneous and isotropic. Ideally 

bonded surfaces were assumed for all interfaces. The use of linear elastic, homogeneous 

and isotropic elements for the prosthesis and bone is the standard modeling assumption 

found in the literature (Harrigan and Harris 1991, Keaveny and Bartel 1993 a,b and 1994, 

Skinner et al., 1994, Huiskes and Van Rietbergen I995, Mann et al., 1995). However, 

the interface layer has been modeled in the literature using non-linear gap elements, 

elements with Coulomb friction and or shear-strain properties. The use of linear elastic, 

homogeneous and isotropic element properties with ideal contact was used for the 

interface elements for two reasons (1) this modeling technique requires the minimum 

amount of computer memory and run time, on the present NJIT computer system used to 

run ANSYS a model with non-linear properties would take an excessive amount of time 

to run and may exceed the user's allotted space and (2) this was the modeling assumption 

used in the study in which these results were compared (Chang 1994). 

Only one load case was run of the finite element model. This load case was meant 

to simulate normal gait for a I54 pound patient. Loads were 2.6 times body weight. The 

load was represented by a single joint force and a single muscle force so the results 

represent a static stress condition and not the actual dynamic stress condition that occurs 

in the bone. The effects of stress shielding and the resulting bone remodeling were not 

considered. 
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In order for the ANSYS finite element program to run the node locations of 

some outer cortical bone elements have to be repositioned. For Case 1 and Case 2, 4 

nodes of the 456 outer cortical bone nodes needed to be modified, on each model. In the 

finite element models created in this study, the elements were 15 degrees apart. In the 

previous models (Chang 1994) the elements were 22.5 degrees apart. The spacing of the 

outer cortical bone elements along a radial arc was 8.4 mm apart in this model and 12.6 

mm apart in Chang (1994) model, at the locations in which the nodes were adjusted. 

Although, repositioning of the nodes was undesirable, the largest required movement was 

less than 1.4 mm. This number is small compared with the spacing between cross-

sections (I0 mm) and is less then the increase in the overall resolution of the model (8.4 

mm from 12.6 mm). Therefore, this required repositioning will have a minimum effect of 

the results and is within the overall accuracy of the model's mesh. 

Convergence runs performed on a linear elastic, homogeneous and isotropic 

model of the femur with prosthesis using elliptical cross sections showed that at even at a 

much larger model size than the single layer cortical bone model used in this study, 

convergence is not reached. Two methods were used for checks of convergence of the 

simple elliptical model. The first method compared the maximum equivalent stress 

obtained from an individual model to the estimated maximum equivalent stress, 

considering the effect of discretization error, as predicted by the FEA solver (ANSYS). 

The second method compared the maximum equivalent stress predicted for each of the 

models. The maximum equivalent stress along the medial and lateral outer surfaces of the 

prosthesis, and the maximum equivalent stress along the medial outer surfaces of the 



114 

femur bone were the locations chosen to estimate convergence. The calculated stresses 

were very sensitive to the number of radial elements in a cross-section. Since a single 

layer was used to model the interface, cancellous bone and cortical bone in this study, the 

validity of the stress results may be suspect. The "single layer" model mesh was based on 

the model size used by Chang (1994), and therefore, comparison of results to that model 

is valid. 

The maximum tension stress in the cement determined in this study 1.6 MPa and 

l.8 MPa, for Case 1 and 2, respectively, are within the fatigue strength of the cement (8 - 

10 MPa). The von Mises stress in the cement was 7 MPa which is very close to the 

fatigue limit. One must also keep in mind that the most strenuous load case possible was 

not used (Bergmann et al., 1995). Therefore the actual stresses in the cement may be 

higher then those reported here. The stress observed in the cancellous bone were all very 

low. This is a direct result of the low Young's modulus associated with the cancellous 

bone (1,000 MPa). The lowest Young's Modulus used for the cortical bone was 3,556 

MPa and 2,927 MPa for Case 1 and Case 2, respectively. Therefore, between the 

cancellous bone and cortical bone there was a step change in modulus as opposed to a 

smooth transition. In the actual bone there is probably a smoother transition then the one 

modeled. 

A comparison of the stress levels in the cortical bone without prosthesis was not 

performed, so the degree of stress shielding that may be induced by the prosthesis was 

not reported. 



115 

The stress levels in general were greater for the female case (Case 2) then for the 

male case (Case 1). However, the actual body weights may not have been the same as 

assumed in the model. The loads applied to the model was based on body weight and the 

same body weight was used for both cases. If the female patient weighed less then 

modeled the resulting stress levels would have been lower then reported. The Young's 

modules for the cortical bone of the male case ranged from 3,556 to 24,724 MPa. The 

Young's modules for the cortical bone of the female case ranged from 2,927 to 27,194 

MPa. It was surprising that the female case had a range of Young's modulus that was 

15% larger then the male case and had the lowest and highest Young's modulus. It is 

unclear if this large range of Young's modulus is normal, or if it is due to the modeling 

method employed, or if it is an indication of a more progressive bone disease condition 

than observed in the male patient. 

There was differences between the stress results of this study and the stress levels 

reported by Chang (1994) for the same CT data (Case 1). The exact size of the 

prosthesis used by Chang (1994) was not clearly defined. It is possible that the prosthesis 

used in this study was slightly larger, which would results in the higher prosthesis stresses 

observed, since stiffness is proportional to the radius to the fourth power. There were 

also modeling differences in the neck portion of the prosthesis which would effect the 

proximal stress levels. It is believed that the stresses reported by Chang (1994) were 

"mixed material" stress results and this would account for the other differences observed. 

All nodes in the model except for the nodes associated with the outer cortical bone layer 

and the prosthesis neck, and prosthesis inner layer are nodes that are shared by two 
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dissimilar materials. For example, the same node would be shared by a prosthesis element 

and a cement element, or by a cement element and a cancellous bone element, or by a 

cancellous bone element and a cortical bone element. Since these materials have different.  

Young's modulus, the nodal stress is different for the different materials. In the post 

processing method employed in this study the stress levels at each node was obtained for 

each of the materials associated with that node, whereas, in the method employed by 

Chang (1994) only one stress level was outputted per node(a "mixed material" stress). 

The software program developed by Chang (1994) required the user to have 

access to the following software packages: Hoops, C, FORTRAN, ANSYS and IDEAS. 

Since these software items do not come as a standard package it limited the portability 

and likely acceptance of this tool. The Computed Tomography Data Analysis Program 

created in this study only requires the use of two common software packages (Microsoft 

Excel and Math Soft Mathcad) and a finite element processor (ANSYS). This use of 

common software packages increases the acceptability of the program and makes it easier 

to update and maintain. 

Chang's (1994) software program also required the user to type in long lines of 

code to access the program i.e. f77 ctfem2por2.F -Ihoops -lsuntool -Isunwindow -lpixrect 

-lX11 -lxgl -lm -L/usr/openwin/lib. The user interface has been made simple by the use of 

a window base program with custom menu items and user input boxes. 

In Chang's (1994) software program the user was required to call up each cross-

section and choose an area to be processed. It required the user to manually record the 

location of the pixel defining the upper left corner point, and to calculate the width and 
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length between this pixel and the pixel defining the lower right corner of the area to be 

processed. This required a lot of user interfacing, was time consuming and therefore was 

not a "selling" point of the program. In the Computed Tomography Data Analysis 

Program an algorithm was written to quickly find the approximate center of the femur 

and the maximum area of interest without requiring the user to perform this task. 

In Chang's (1994) software program the user had to select a minimum CT number 

to associate with the cortical boundaries of each cross-section by a trial and error method. 

The Computed Tomography Data Analysis Program automatically plots out the cortical 

bone boundaries, versus a range of CT numbers so that the user has a visual aid (see 

Figures 3,1 and 3.2) in selecting the CT number to use for each cross-section. 



CHAPTER 5 

CONCLUSIONS AND SUGGESTIONS 

5.1 Conclusions 

There were two objectives in this study. Both of which were met. The first objective 

was to develop a Windows based Computed Tomography Data Analysis Program to 

process CT data files of a proximal femur into a "3-D" finite element model with 

prosthesis. This was accomplished by creating a data analysis program that utilizes 

Microsoft Excel 5.0a (and it's Visual Basic Modules) and Math Soft Mathcad 5.0. 

The program performs the following tasks: (a) the area of interest in the CT Scans 

are determine and ASCII "Text" files which can be read by Mathcad are created; (b) the 

cortical bone inner and outer boundaries versus various CT Numbers are automatically 

plotted for each cross-section, using Dynamic Data Exchange between the Excel program 

and a Mathcad program; (c) color displays of the area of interest for each cross-section 

are automatically plotted for each cross-section, using Dynamic Data Exchange between 

the Excel program and a Mathcad program; (d) the centers of the cortical bone as well as 

the inner and outer boundaries are calculated for each cross-section; (e) 3-D images of 

the inner and outer cortical bone boundaries are plotted; (f) a prosthesis is fitted into the 

cortical bone, based on the bone geometry and user inputs; (g) the nodes that define the 

geometry of the prosthesis, interface layer, cancellous bone and cortical bone, including 

the prosthesis neck are determined; (h) 2-D nodal boundaries for each cross-section are 

plotted as well as 3-D cortical bone and prosthesis outer boundaries; (i) the average CT 

Numbers of all of the pixels contained in each two dimensional element boundary is 

calculated; and (j) an ANSYS finite element input file is created. 
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The Computed Tomography Data Analysis Program has been designed to be very 

versatile and user friendly. A menu item was created in the Excel program which 

contains the programs modules in the sequential order in which the user needs to run 

them. Throughout the CT data analysis program the use of input boxes with default 

values has been incorporated. These input boxes allow the user to vary many parameters 

without needing to revise the source code. The following is a list of some of the 

parameters the user can vary: (a) the size of the CT data matrix; (b) the spacing between 

the pixels; (c) the spacing between cross-sections; (d) the number of cross-sections; (e) 

the relationship between CT number and density for the CT scanner being used (all of 

which allows this program to be used for a wide varied of CT data files from different CT 

scanners); (f) the prosthesis size relative to the size of the femur receiving the prosthesis 

in the medial-lateral and anterior-posterior planes at three locations; (g) the bone cut 

angle; (h) the prosthesis neck to shaft angle; (i) the location of the center of the prosthesis 

neck relative to the prosthesis stem; (j) the neck post diameter in the medial-lateral and 

anterior-posterior planes; (k) the neck post angle (items (0 through (k), allows the user to 

vary the prosthesis size and shape to optimize the resulting stress distribution); (1) the 

angular spacing between elements in the finite model; (m) the number of prosthesis, 

interface, cancellous and cortical bone elements in the model; (n) the interface thickness; 

(o) the prosthesis and interface material properties; (p) the joint force and trochanter 

muscle force to applied (items (I) through (p), allows the user to define the "mesh" of the 

finite element model and to easily vary the load cases to be applied to the model). 

The second objective was to run the finite element models obtained from this 

program for the two cases studied, and to compare the results obtained with the previous 
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reported results for Case 1 (Chang 1994). There were differences in the stress results of 

this study and the stress levels reported by Chang (1994) for the same CT data (Case 1). 

These differences are believed do be due to the use of slightly different prosthesis shaped 

stems and the reporting of "mixed material" stresses by Chang (I994). 

The von Mises stress in the cement was 7 MPa, for the load case modeled, which 

is very close to the fatigue limit. Since this is not the most strenuous load case possible, 

fatigue failure of the cement joint is a possibility. 

The fact that, case 2 (the female patient) had a 15% larger range of Young's 

modulus then the male case may be an indication of a more progressive bone disease 

condition in that patient. 

In summary, a method to create a three-dimensional finite element model of a 

femur with a prosthesis from CT data of the femur was developed. This method is useful 

in determining the resulting stress pattern that would be induced by a particular 

prosthesis, allowing one to optimize the prosthesis selection for a particular femur 

geometry and bone state of health. The method allows the determination of the material 

properties of the femur, i.e. density and Young's modulus, from the CT data. This 

method also allows the investigation of new prosthesis shapes and materials to be 

evaluated pre-clinically. One can also used this method to predict the expected failure 

mode and location. It can also be used as a evaluation tool to determine why a particular 

implant failed. 

The main advantage of this tool is that an estimate of the stress pattern induced in 

the actual femur in which the implant is to be installed can be assessed prior to surgery, 

and an alternate implant can be chosen and analyzed if required. 
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5.2 Suggestions 

In CT scans the bone geometry is normally typical of an arthroplasty patient but the 

material properties (density) are calibrated to represent average bone properties. It is 

suggested that during a CT scan, that two standards with known different densities be 

properly prepared and scanned also. These standards should be used to determine the 

relationship between CT number and density in place of the present method of assuming 

certain densities at certain locations. 

The present program only allows the prosthesis shape to be varied as a function of 

the size of the bone in which it is being implanted. The program could be further 

enhanced by allowing the use of other prosthesis options, i.e. prosthesis with collars, 

prosthesis with different amounts of porous coatings, standard existing prosthesis shapes 

and sizes. The program could also be revised to allow the use of a distal tip with its own 

material properties. 

A model containing the femur head geometry should be run to determine the 

stress levels in the femur without a prosthesis so that the degree of stress shielding can be 

determined. 

The finite element modeling section of the program should be updated to allow 

the use of non-linear interface elements as done by Keaveny & Bartel, (1993 a,b and 

1994), Huskies and Van Rietbergen (1995), and Mann et al., (1995). A bone adaptation 

model could also be incorporated into the solution phase as done by Weinans et al., 

(I994), Huiskes and Van Rietbergen (1995). 
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APPENDIX A 

2-D NODE BOUNDARIES PLOTS FOR CASE 1 

Appendix Al: Case 1; Cross-section 1; Node Boundaries 

Appendix A2: Case 1; Cross-section 2; Node Boundaries 
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Appendix A3: Case 1, Cross-section 3; Node Boundaries 

Appendix A4: Case 1; Cross-section 4; Node Boundaries 
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Appendix A5: Case l; Cross-section 5; Node Boundaries 

Appendix A6: Case 1; Cross-section 6; Node Boundaries 
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Appendix A7: Case 1; Cross-section 7; Node Boundaries 

Appendix A8: Case 1; Cross-section 8; Node Boundaries 
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Appendix A9: Case 1; Cross-section 9; Node Boundaries 

Appendix A10: Case 1; Cross-section 10; Node Boundaries 
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Node Plot 
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Appendix All: Case I; Cross-section Il; Node Boundaries 

Appendix Al2: Case 1; Cross-section 12; Node Boundaries 
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Appendix A13: Case 1; Cross-section 13; Node Boundaries 

Appendix A14: Case l; Cross-section 14; Node Boundaries 
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Node Plot 
Cross- Section # 16 

Appendix A15: Case 1; Cross-section 15; Node Boundaries 

Appendix A16: Case 1; Cross-section 16; Node Boundaries 
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Appendix A17: Case I; Cross-section 17; Node Boundaries 



APPENDIX B 
STRESS DISTRIBUTION OF FEMUR WITH PROSTHESIS 

Lateral Side Along Prosthesis 

Appendix B1: The stress distributions of lateral side along prosthetic stem surface 
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Appendix B2: The stress distributions of medial side along prosthetic stern surface 
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Appendix B3: The stress distributions of lateral side along Interface (Inner) 
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Appendix B4: The stress distributions of medial side along Interface (Inner) 
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Appendix B5: The stress distributions of lateral side along Interface (Outer) 
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Appendix B6: The stress distributions of medial side along Interface (Outer) 
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Appendix B7: The stress distributions of lateral side along Cancellous Bone (Inner) 
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Appendix B8: The stress distributions of medial side along Cancellous Bone (Inner) 
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Appendix B9: The stress distributions of lateral side along Cancellous Bone (Outer) 
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Appendix B10: The stress distributions of medial side along Cancellous Bone (Outer) 
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Appendix B11: The stress distributions of lateral side along Cortical Bone (Inner) 
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Appendix BI2: The stress distributions of medial side along Cortical Bone (Inner) 
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Appendix B13: The stress distributions of lateral side along Cortical Bone (Outer) 
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Appendix B14: The stress distributions of medial side along Cortical Bone (Outer) 
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