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ABSTRACT 

EXPERIMENTAL INVESTIGATION 
OF COLLISIONAL PROPERTIES 

OF SPHERES 

by 
Laurent Labous 

We present experimental results on the collisional properties of spheres obtained 

through high-speed video analysis. An apparatus is built that produces collisions of 

spheres of various sizes with a wide range of impact, velocities and incidence angles. 

Edge detection techniques are implemented to track the position of the spheres 

from frame to frame whereby the translational velocities may be computed. In order 

to determine the rotational velocities, small markers are imprinted on the surfaces of 

the spheres and also tracked and matched from one frame to the next.. From the pre 

and post collision kinematic data, three collisional properties are directly extracted: 

the coefficient of restitution in the normal direction of impact, the coefficient. of 

friction and the coefficient of restitution of the relative tangential velocity. These 

measurements substantiate an existing impact model predicting exclusively rolling 

and sliding collisions. 

Finally the dependence of the coefficient of restitution on the magnitude of 

the normal impact velocity is studied for two different, materials which both exhibit 

different behaviors from what available theoretical results predict.. We could not 

observe any size dependence of the coefficient, of restitution. This is due to the 

limited accuracy of our measurements but also to the possible sensitivity of the 

coefficient of restitution to the angle of incidence. However softer materials should 

provide more conclusive results. 
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CHAPTER. 

INTRODUCTION 

1.1 Introduction 

Bulk solids or granular materials consist of a. collection of solid components of macro-

scopic sizes immersed in a fluid. These materials are present in nature in a variety 

of common forms like sand or pebbles on a beach, cereal seeds in a hopper, coal 

and slurries. They also appear in geophysical phenomena like dunes, avalanches 

or landslides, mudflows, pack ice flows etc. These flows can develop a tremendous 

amount of energy and cause catastrophic damage. Huge quantities of grains or 

powder have sometimes to be handled in industrial processes where efficient, mixing, 

conveying or storage techniques have to be used that are still under development,. 

Although they appear in nature in simple forms they do exhibit very complex and 

diverse static or dynamic behaviors. The first scientific investigations on granular 

matter were carried out in the 19th century. The pionneering work of Reynolds [I] 

evidenced the tendency of a compact assembly of grains tinder shearing to dilate. In 

recent years granular materials have motivated significant research efforts: because 

bulk solids occupy such a preponderant place in human activities and environment, 

and have so many economical consequences, engineering design solutions cannot 

afford to rely on error and trial development methods. In the past 15 years attention 

has been focused on microstructural level studies that in turn allow for quantitative 

predictions of large scale flows. Hence, more fascinating phenomena have been inten-

sively studied. Typical examples [2] are size-segregation [3, 4, 5, 6, 7] , convection 

[8], surface waves [9, 10] and heap formation [11, 12]. However, both the physics 

and mechanics of bulk materials are nowadays still not well understood: their study 

requires the use of concepts pertaining to general physics, condensed matter physics 

as well as fluid and solid mechanics soil mechanics and rheology. 

1 
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Granular- flows arc characterized by their highly nonlinear nature and often 

comprise fluid-like and solid-like behavior, therefore making the development of 

constitutive equations describing their behavior over a wide range of conditions a. 

challenging goal. Consequently, the need for a. classification of granular flows has 

grown. Bagnold [13] proposed a quantitative one, based on his experimental obser-

vations of an assembly of monodisperse, neutrally buoyant wax spheres bathed in 

a Newtonian fluid and sheared in a coaxial cylindrical cell. lie distinguished three 

different regimes according to the relative importance of momentum fluxes arising 

in the fluid phase and those due to the collisional interactions between grains. Ile 

termed as macro-viscous the regime where viscosity was dominant, and the stress 

proportional to the shear rate as for a Newtonian fluid. At the other extreme of Iris 

scale, where the role played by the interstitial fluid was negligible, he found a grain-

inertia regime: in this case stress is created, according to Bagnold, as a result, of a 

succession of glancing collisions clue to the difference in transport velocities of two 

adjacent sheared layers. Here the shear stress should be proportional to the square of 

the shear rate since both the collision frequency and the momentum exchange during 

one single collision are proportional to the relative velocity of the two layers. In the 

case of a dry cohesionless granular material the situation is a little different because 

other mechanisms for stress generation can appear. (For a review see for example 

[14]). At high shear rate a grain-inertia regime is expected and the solids fraction 

may he high enough so that the same mechanisms of stress generation occurs. This 

is similar to the "hard-sphere" kinetic theory models of dense fluids. However, if the 

solids fraction is low enough, momentum may also be transported by particles moving 

due to their fluctuation velocity around the mean flow, from one layer to the next 

because there is enough void volume to do so. This is the situation encountered in 

kinetic theory of very dilute gases. For low shear rates and high solids concentrations, 

particles will experience enduring frictional contacts: this is a quasi-static regime 
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with Coulomb-type, rate-independent stresses. For low concentrations, particles will 

be able to travel freely on an average distance much larger than their typical diameter 

and stress will be generated by the interchanges of particles between different, layers 

having different transport velocities. For engineering applications, but also natural 

flows, it is likely that both instantaneous collisions and enduring contacts will be 

encountered within the same flow. Understanding of the collision process between 

two granules therefore plays a crucial role in the knowledge of the stress tensor and 

tranport coefficients in rapid granular flows. 

Owing to the complex nature of any granular flow, advances in computers has 

made simulations to study flows feasible. Numerical simulations of hulk solids have 

been turned into a very powerful widely used tool [15], trying to make up for the 

difficulty to make any direct, noninvasive physical measurements in real experiments, 

to complement existing experimental results and test theoretical ones [1 6, 17, 18, 

19, 20, 21]. They provide a means whereby the sensitivity' of theoretical models 

may he tested and validated in the absence of experimental data. Among other 

computational techniques molecular dynamics [22] arid event-driven algorithms [23, 

24, 25, 26] have been used extensively during the past 25 years. Granular flows 

are also studied on the basis of fluid mechanics [27], or, due to their similarity 

with gases in the grain-inertia regime, kinetic theory models of dilute and dense 

gases. [28, 29] However a distinctive property of grains is that their collisions are 

inherently inelastic. Mechanisms generating energy losses and/or transfers during 

collisions are extremely complicated but have to he somehow included in a proper 

approximation of collisions because they constitute a major factor in the complexity 

of granular flows. For simplicity, grains are usually idealized as disks or spheres 

sometimes with different shapes such as ellipses. Rut even the basic problem of the 

impact of two identical frictional spheres is not completely solved. Binary collisions 

are modeled either by some force scheme acting during collision only or by sonic 
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collision operator where the contact time is implicitly assumed to be zero. In both 

cases, the corresponding output, is sometimes highly dependent, on the collision model 

used [18, 30, 31, 32], so it has to be used with much care and must he intimately 

validated through experiment. 

The work which will be presented here will precisely focus on the problem of 

providing experimental validation. 

L2 Outline of the Remaining Chapters 

In Chapter 2, we will go through a literature review in the fields of contact, and 

collision mechanics related to our own work (i.e. the impact of spheres). This 

Will provide some insight on the complexity of the mechanisms involved in a 

collision between elastic frictional spheres and how they may be modeled. Available 

theoretical and experimental results as well as different experimental approaches 

which have been used to investigate collision properties of spheres will also be 

presented. A brief review of the recent use of image analysis as a non-invasive 

technique in the study of physics or granular materials will be done. The theoretical 

foundation of our work will be laid in Chapter 3. Chapter 4 describes our exper-

imental apparatus and method. Finally experimental results are presented and 

discussed in Chapter 5. 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

As it was suggested in the previous Chapter, the peculiarity of granular flows stems 

from the way particulates act on each other when they come into contact.. Both 

numerical simulations and theories rely on the specification of interactions laws. For 

Molecular Dynamics kind of simulations some force scheme will be prescribed acting 

during the time two particulates are in contact, whereas for Event-Driven simulations 

or kinetic theories the pre- and post-collision kinematics of the grains are related by 

an instantaneous operator. Each of these techniques involves parameters that have 

to be linked to mechanical properties of real materials for the forthcoming results 

to be validated and compared with others. For pratical purposes, particulates are 

often idealized as homogeneous and isotropic spheres. Throughout this thesis we will 

focus on this particular case. However, even though the problem of the impact. of two 

elastic spheres has not been completely solved, the advances that have been made 

since the early work of Hertz have brought much insight in the processes involved 

so they can now be modeled reasonably well. Yet, any model requires experimental 

validation to insure that realistic values of material properties arc used. This data 

is still scarce although some efforts have been made using video analysis techniques 

to track the motion of colliding/flowing spheres. 

2.2 The Mechanics of Elastic Spheres in Contact 

Hertz [33] first considered the case of two elastic isotropic spheres pressed together 

by a force parallel to the line joining their centers. By solving the relevant elasticity 

equations, he obtained the relative approach of the two bodies and the pressure distri-

bution across the surface during the contact as well as the duration of the contact. 

His analysis is quasi-static in the sense that. the region where the elastic deformation 

5 
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occurs is constantly in thermodynamic equilibrium and does not loose energy through 

elastic vibration. Some of these predictions were verified experimentally [34, 35] and 

the quasi-static assumption has been checked theoretically [36]. 

Based on Hertz's theory, and assuming the same normal stress distribution in 

the contact surface, Mindlin tackled the case of oblique contact between elastic 

frictional bodies [37]. In his analysis he derived from elasticity equations an 

expression for the tangential compliance when a tangential force was applied in 

a quasi-static way. He showed that as small as the tangential traction may be, 

"micro-slip" will occur at the boundary of the contact region and spread inward if 

the traction is increased until "gross-slip" is established. This led him to describe 

the partition of the contact surface into stick and slip regions. This was further 

extended to various cases of loading and unloading [38]. Mindlin stressed the fact 

that the changes in tractions and displacements during contact depended not. only 

upon the initial state of loading but upon the entire history of loading and upon the 

instantaneous rates of change of the normal and tangential forces. 

About 25 years later, taking advantage of the understanding provided by 

Mindlin, Maw et al. [39] proposed a. theoretical solution to stress and displacement 

fields during an oblique collision through numerical integration of the contact forces. 

They showed that according to the pre-collision velocities, three types of collisional 

behaviors were to be expected: for small incidence angles, i.e. quasi-normal contact., 

the contact surface includes a central disk where the particle stick together, while at. 

larger values "gross-slip" [37] persists throughout the contact. At intermediate values 

however initial gross-slip may be interrupted by the friction force and therefore the 

particles will eventually stick until separation. They also showed that the problem 

could be formulated in terms of a single dimensionless angle of incidence which will be 

illustrated in Chapter 3. With this analysis, although the coefficient of restitution was 

implicitly taken to be unity (as in Hertz's theory), they showed that under suitable 
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circumstances the elastic energy stored during the loading phase of the contact is 

recoverable and the velocity of the contact point in the tangential direction 1 may 

reverse. This "superball" effect [40] is not predicted by the classical theory of impact 

of two rigid bodies based on the conservation of energy and momentum. Their 

theoretical prediction was reproduced experimentally by following the trajectories of 

an air table puck cut from a sphere and bouncing off a flat surface [41] and surface 

velocity reversal was evidenced over a significant range of incidence angles. 

2.3 Macroscopic Model of Impact 

Unfortunately it is impossible to incorporate all the details of Maw et, al.'s analysis 

either in theories or numerical simulations because both require that a. numerically 

and analytically simple collision model be available. On the other hand, whatever the 

approximate modelization of a. binary impact may be, there are some features that. it 

should be able to account for: e.g., the tangential effects which can greatly affect the 

outcome of a collision as evidenced by Maw et al. and energy losses during collision. 

These losses can occur in many forms: initial kinematic energy either transferred 

or lost as elastic strain energy, friction, plastic strain energy, fracture, light, sound 

and so forth. Due to the complexity of the foregoing mechanisms the impact, of two 

frictional inelastic particles is best described in terms of phenomenological quantities. 

2.3.1 Collision Properties of Inelastic Frictional Spheres 

The Coefficient of Restitution: For head-on collisions the dissipation effects are 

described by a coefficient of restitution e. It is usually defined as the ratio of the 

normal component of the relative velocity of the two impacting bodies just after 

collision to that just before. Other definitions are possible which are not strictly 

equivalent in some cases [12]. Throughout this thesis we will use the above mentioned 

'The tangential velocity which we will also refer to as the surface velocity as defined in 
Chapter 3 is the relative velocity of the contact points of the bodies. 
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kinetic definition. It. has been known for about. a century that e is not a. material 

property in as much as it actually depends on the magnitude of the impact velocity 

[43] and is further likely to be affected, especially at minimal impact. velocities, by 

other effects such as those produced by the polish of the surface of the colliding 

bodies [44]. According to Kuwabara et al. [45], the mechanisms responsible for 

energy dissipation in such collisions are of three kinds [45]: 

1. viscosity of the materials damping the elastic deformation, 

2. plastic flow for velocities higher than a yield velocity and fracture, 

3. vibrations of the spheres caused by impact and remaining in each sphere after 

a collision. 

Most of the experimental data available on this topic [43] refers to impacts of a sphere 

on a fixed (flat) target. For colliding spheres it has been shown [34] that. the third 

mechanism could be neglected for pratical speeds (1-10 m/s) and would anyway be 

preempted by other mechanisms for values of speed lower than those above which this 

assumption would fail. Independantly of geometrical factors, e is expected to take 

values close to unity for low impact velocities and to decrease with increasing normal 

velocity magnitudes. For example, the early observations of Raman [44] using two 

metallic spheres hung by bifilar suspensions and impinging at low velocities (from 

a fraction of to a hundred cm/s) corroborated this expectation. Other experiments 

reported in Ref. [43] show similar behaviors. 

The first mechanism above has been studied as an improvement upon Hertz's 

theory by Kuwabara et al. in [4.5]. This led to the prediction that the decrease of 

e would be given by (1 — e) ∝  (impact velocity)1/5 . They carried out an experiment 

similar to that done by Raman by colliding two pendula. Although the agreement 

seems satisfactory for materials with high coefficient of restitution (steel, brass, 

glass), it is not clear how well the decrease of e compares with a 1 /5 power of 
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the velocity. The second mechanism was studied independently by Ning et al. 

[4.6] and Johnson [40] who found e to be proportional to (impact velocity)-1/4 , an  

expression which has proved to agree qualitatively with some experimental obser-

vations. However, experimental results of spheres impacting flat targets reported 

by Johnson [40] and borrowed from Ref. [43] show almost perfect agreement. As 

mentioned in [4.5], for a material where this mechanism predominates, the coefficient 

of restitution should remain close to unity until yield occurs and sharply decrease for 

higher velocities. It is therefore qualitatively very different from the first mechanise ►  

where e is expected to decrease sharply from zero impact velocities, which is more 

likely to occur for materials like hard metals or plastic where visco-elastic effects 

predominate at small deformations [45]. It is worthwhile noticing in both cases that 

the predicted decay of e is slow which somewhat justifies the use of an "average" 

value of e for a given order of magnitude of the expected impact velocities. Finally 

each model predicts a different size dependance for the coefficient of restitution, an 

issue about which very little experimental work has been done so far. Although some 

experimental results reported in [43] seem to indicate a slight decrease of e with the 

size of two impacting spheres , other results from [43] show no variation of c when 

the size ratio of the two impinging spheres is varied from I to 15. 

Friction and Surface Velocity Reversal: Friction is another cause of energy 

dissipation. The original concept of solid friction may be extended to the case of 

impacting bodies and defined as the ratio µ of tangential to normal impulse exerted 

by one body on the other when they slide on each other throughout the impact. 

In this case µ  takes it dynamical value lid, which may differ from the static value 

obtained to initiate a sliding motion. Experiments reported by Brach [47] of spheres 

impacting thick plates show that µ  does reach a constant value for large incidence 

angles of the spheres. Other results however show examples of impacts accompanied 

by surface indentation for which µ tends to decrease at higher angles of incidence. 
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When sliding does not last throughout the impact: i.e., when it. is damped by a 

large enough frictional force, Coulomb's law is not applicable. However, while the 

classical theory of rigid bodies would predict that the two bodies subsequently 

"rolling" with no tangential velocity at separation, Maw et al. [39] showed that 

the relative surface velocity could go through zero and reverse because elastic strain 

energy is restored and maintains the contact surfaces in relative motion. Because 

real surfaces are rough, the surface velocity restitution is usually incomplete and 

may he characterized by a tangential coefficient of restitution as will he seen in 

section 2.3.2. 

2.3.2 Collision Operators 

In kinetic theories, macroscopic quantities are derived by averaging a given velocity 

distribution function over all the collisions. For pratical purposes, the latter arc 

modeled through a "collision operator" relating pre- and post-collision relative 

velocity components through phenomenological quantities. The simplest form of 

collision operator for dissipative collisions of particulates uses only the coefficient 

of restitution in the normal direction. Tangential effects are not always accounted 

for in order to keep the different integrations tractable. In an effort to take surface 

roughness into account Jenkins et al. [48] and Lun et al. [49] introduced a constant 

coefficient of tangential restitution β  analogous to that acting in the normal direction. 

For real particles J3 is not constant, hut. varies between the theoretical limits of -1 

and +1, depending on the material properties and the geometry of the collision. 

To account for "sliding" collisions Jenkins, [50] introduced a constant coefficient of 

friction relating the normal and tangential impulses. Finally Lim and Savage [Si] 

used an impact velocity dependent coefficient of restitution. 

A more complete collision operator was proposed by Walton [52]. This operator 

consists of: 
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• the coefficient of restitution e in the normal direction 

• a tangential coefficient of restitution 

® a coefficient of sliding friction, p 

In his model any collision is either "sliding" or "rolling" and tangential effects (i.e. 

decrease and reversal of the tangential velocity of the contact point) are readily 

included by making β a function of the incidence angle taking values between -1 and a 

positive constant β0. Obviously, the physical meaning of f is not straightforward. It 

imposes a maximum restitution of the tangential velocity when the latter is reversed. 

We will discuss this operator in more detail in section 3.2. 

2.3.3 Computer Simulations 

While "event-driven" type of simulations make use of collision operators, the forces 

models prescribed in MD approaches arc not so straightforward. Some of them 

readily allow reversal of tangential surface velocity [18, 45, 52, 53]. Hut no exphcit 

assumption is usually made about the coefficients of restitution in the normal 

and tangential directions. Recently, Schafer et al. [54] carried out a thorough 

testing of each of them and showed that with an adequate value of the normal to 

tangential stiffness ratio, Maw et al.'s data taken as a basis for• comparison was 

closely reproduced by these force schemes. However the variation of the normal 

coefficient of restitution with the initial normal relative velocity they produce is 

rarely close to experimental observations except for the Hertz-Kuwabara visco-

elastic force scheme [45] and the normal force model proposed in [18] where two 

different spring constants are used for loading and unloading in an attempt to mimic 

plastic deformation effects. On the other hand Ning et al. [46], in order to test their 

theory used a modified version of TRUBAL were plastic effects where explicitly 

included as a modification of Hertz's law for pressures exceeding the yield pressure 

and thus qualitatively reproduced their prediction. incidentally, the force model of 
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[18] predicts a dependence of e on the magnitude of the impact velocity at least 

qualitatively very similar to that obtained numerically by Ning et al. [46]. 

Finally, as mentioned in [54] the reduced mass of the two colliding spheres is 

sometimes included and sometimes not as a, prefactor in the damping part or the 

elastic part of these forces, sometimes in both. This makes the coefficient of normal 

restitution a different function of this reduced mass in each case. Experimental 

verification of this dependence is therefore very important, 

2.4 Other Experimental Observations 

2.4.1 Collision Properties of Spheres 

Experimental data on collision properties are scarce. In order to test their theory, 

Maw et al. [41] performed, as mentioned earlier, a two-dimensional study that 

followed the trajectory of a puck gliding on an air table and bounced off a fiat 

plane. They observed the predicted reversal of the relative tangential velocity and 

also measured a very stable coefficient of dynamic friction. 

Non intrusive video techniques have been further developed to measure trans-

lational. and rotational velocities of two-dimensional assemblies of grains or to inves-

tigate collisional properties of spheres. Foerster et al. [55], used a video camera to 

record the motion of two colliding spheres (either glass or acetate) being dropped 

with no initial velocities and no spin in a vertical plane. Due to the absence of spin 

prior to collision, its measurement after collision is redundant. They find a good 

agreement of their data with both Maw et al.'s theory and Walton's model. in the 

case of the impact on a plate, the transition from gross-slip to collisions involving 

sticking is not precisely captured by this operator. They also note that. Maw et al.'s 

theory is more successful for similar materials. However, the apparatus used did not 

allow Foerster et al. to scan a wide enough range of relative velocity so as to observe 
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the influence of the normal velocity at impact on the coefficient of restitution c or 

that of the tangential velocity on the other parameters. 

Sondergaard et al. [56] carried out a. thorough study of the impact of a sphere 

with zero initial spin on a flat plate. Although their work was more focused on tile 

influence of the plate supports and on the ratio of the sphere diameter to the thickness 

of the plate, it is interesting to note that their results show a slight but systematic 

increase of e with the angle of incidence. They also found that they could reduce, 

but not eliminate, the scatter obtained on the values of their tangential coefficient 

of restitution 2  but not eliminated, by carefully cleaning the surfaces with acetone 

prior to collision. This influence of the effective frictional conditions near the point 

of impact is more important for glancing collisions. 

Dave et al. [57] developed an experiment allowing them to evaluate colhsion 

properties of nylon spheres using high speed video analysis and, for the first time, an 

apparatus where the incident trajectories lay in the same plane but were otherwise 

arbitrary. Their results showed good agreement with Maw et al.'s theory and 

substantiate the simple impact model due to Walton. However this work was focused 

on the feasibility of such an experiment and it is not clear how they computed the 

coefficient of restitution and for what range of impact velocities their results were 

obtained. The topic of this thesis is closely related to the latter work, and further 

details will be given in the following chapters. 

2.4.2 Image Analysis and Granular Flows 

Finally we would like to draw attention on the variety of imaging methods which have 

been used in the study of granular materials with different purposes. Drake et al. [58, 

59] performed two-dimensional inclined chute flow experiments in which quantitative 

information was obtained by employing a combined procedure of manually digitizing 

2The tangential coefficient of restitution used here does not include rotational velocities 
but describes only the motion of the center of mass of the sphere. 



14 

frames together with the use of software to compute particle velocities and spins 

between collisions. Reduction of the data was confounded due to the interference of 

the walls [60] and it. is not certain whether collisional properties can be inferred from 

such an analysis. 

Ahn [61] used fibre-optics pointed through a Lucite sidewall to measure the 

downstream components of the mean velocity, the velocity fluctuation and the linear 

particle spacing of glass beads flowing in an inclined aluminum chute. 

Recently Warr et al. [62, 63] used a high-speed camera. and a. plough Transform-

based software to derive from the motion of the spheres distributions of velocity 

and density profiles in a. two-dimensional vibrated bed. But. this experiment was 

not focused on collisional properties. Finally the development of NMR imaging 

methods for granular flows is perhaps one of the most promising nonintrusive imaging 

techniques. 

2.5 Conclusion and Motivation 

Interpretation of physical experiments and validation of computer simulations and 

theoretical modeling of rapid granular flows require a knowledge of the properties of 

the flow materials used in experiments which makes it necessary to design a three-

dimensional experimental technique to allow for the most arbitrary conditions of 

impact. These experiments should not be limited to the determination of three 

collision properties, but should also include as much as possible their dependence, 

if any, on the magnitude of the normal and tangential velocities of approach. 'lb 

observe such a dependence it is necessary to scan a. large interval of impact velocity 

magnitudes. Finally, the relation of these properties with the particle sizes is still 

to be investigated. The purpose of this work is to present such experimental results 

using an experimental setup similar to and as simple as that used in [57]. 



CHAPTER 3 

THEORETICAL PREDICTIONS 

3.1 Introduction 

The collisional properties we want to measure are phenomenological constants which 

are able to describe the changes in momentum, both linear and angular, of two 

colliding inelastic frictional spheres. This is done by comparing our experimental 

measurements with a. simple impact model proposed by Walton. The results of 

interest to us are presented here and a more complete derivation is given in appendix 

A. 

3.2 Walton's Collision Operator 

Let us consider two homogeneous (see Figure 3.1) spheres with masses m1  and 711.2 , 

diameters σ1 and σ2, moments of inertia, about their center I1 and 12  

and colliding when there centers lie at r1 and i2. 	Prior to the collision the center 

of the spheres have velocities v1 and v2  and the spheres are spinning with rotation 

vectors ω1 and ω2. Because the spheres exert an impulse on each other during 

the collision these quantities are changed when they separate. The new values of 

velocities and rotation, hereafter denoted with a prime, are obtained from the conser-

vation of linear and angular momenta and prescribed relations using the collisional 

properties. 

is the unit vector joining the centers of the two spheres. 

The relative velocity of the spheres at their contact point, or sliding velocity, before 

collision is (see Figure 3.2): 

(3.1) 

This velocity has a normal component vn = (vc •n)n and a component lying in the 
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Figure 3.1 Colliding spheres with spins. 

Figure 3.2 Relative motion of the two spheres of Figure 3.1 and impulse ∆P exerted 
by sphere 2 on sphere 1. 
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tangential plane Fs 	- . The normal coefficient of restitution is defined as: 

(3.2) 

while the coefficient of tangential or rotational restitution is: 

(3.3) 

Possible theoretical values of β lie in the interval [-1; 1]. As mentioned earlier 

(Chapter 2), for tangential effects to be taken into account., 13 has to be a. function 

of the angle of incidence -y . This dependence, as predicted by Walton's model is 

shown in Figure 3.3. In order to determine the tangential component of momentum 

change, Walton assumes that; a. given collision is either sliding or rolling throughout. 

the contact. In the first case, the tangential component is set equal to its frictional 

limit according to Coulomb's law: its magnitude is a. coefficient of friction µ0 times 

the magnitude of the normal component and it is parallel, but oriented in the opposite 

direction, to the tangential component of the contact; velocity. Since Coulomb's la.w 

applies only to sliding and could otherwise lead to an increase of energy for small 

angles of incidence (see Appendix A), i.e. nearly head-on collisions, rolling is effective 

whenever for a given collision the sliding assumption yields a β  value greater than 

β0, an apriori unknown positive constant smaller than one as shown in Figure 3.3. 

Along with e and µo, βo becomes the third unknown collision property we wish to 

determine from our experiment. The equations relating the pre- and post-collisional 

kinematics of the spheres are given by Walton [52]: 

For sliding: 

For rolling: 

1γ is shown in Figure 3.2; it is such that cotγ = vn/vs 



Figure 3.3 Variation of the coefficient of tangential restitution with the angle of 
incidence as given by equation A.10. 

Where K = 41/mσ2 is a constant equal to 2/5 for homogeneous spheres. 	The 

illustration of of these equations is given in Figure 3.4. The analysis of a single collision 

yields the coefficient of normal restitution and only one of the two other parameters 

β0 and µ0. Indeed for a. sliding contact, β is a function of the angle of approach 

while µ0  is now given by the ratio of the tangential to the normal component, 2  of 

the impulse AP. On the other hand, when rolling prevails J3 is equal to βo  but f is 

now varying. Although it is not known apriori whether a particular collision will be 

"rolling" or "sliding", it is still possible, according to \Walton's model, to determine 

/2o  and o by producing a. plot of vs'/v„ values versus vs/vn values. β0 is given by 

the slope of the straight line describing rolling while the y-intersect of the other line 

yields 

It should be noted that the above equations remain vahd for an arbitrary 

function /3 of the incidence angle or a non constant coefficient, of restitution. Without, 

2 We shall hereafter refer to this ratio as the impulse ratio and call it f. 
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Figure 3.4 Relation between the tangents of the recoil and incidence angles in 
the sliding and rolling regimes as predicted by equations 3.4 and 3.5 from Walton's 
collision operator. 

assuming any particular form of the functions β or f, the impulse ratio and the angle 

of incidence γ  , they are still related according to the above model as follows: 

This follows from the fact that one of the basic assumptions made in this model is 

that their is no torsional reaction between the spheres, so that the direction of the 

relative tangential velocity is unaltered. On the other hand while the computation 

of vs  before collision requires the knowledge of the spin of the spheres, that of υ's  and 

thus of may be clone alternatively from equation A.4. without any knowledge of 

the spins after rotation. 



CHAPTER 4 

EXPERIMENTAL METHOD 

4.1 Introduction 

Our intention is to track the motion of two colliding identical spheres in free fall 

under gravity using a. single imager. The only experiment we know of, involving 

two spheres colliding in such conditions, is that. presented in [55] and referred to in 

Chapter 2. In this experiment, the spheres where allowed to collide in a. very limited 

range of relative velocities ( 1.18 ± 0.06m.s-1) with adjustable orientation and no 

initial spin. This restriction allowed the authors to avoid the computation of spin 

before and after collision as was explained at the end of Chapter 3. The experimental 

apparatus used here is designed to produce a much wider range of relative velocities 

but does not allow any control of the inital spin imparted to the spheres, and therefore 

requires that the rotations be computable with sufficient accuracy. The collisions are 

recorded with a single imager and the positions of the individual spheres are tracked 

from frame to frame. The spin may be inverted from the motion of black dots 

imprinted on the surface of the spheres. 

4.2 Experimental Apparatus and Procedure 

The apparatus is essentially the same as that described in [57, 65] except for a. few 

modifications. It consists of two horizontal cylindrical aluminum tubes, the axes of 

which lie in the same vertical plane. Each of them is mounted on a. micro-position ning 

slide, one for horizontal translation and the other for vertical translation. 

The inner diameter of the tubes is just; a little larger than the diameter of 

the sphere it holds. Different tubes may be mounted with different inner diameters 

allowing the use of different sphere sizes. One end of each tube is plugged into a 

pressurized air supply, while a vacuum pump is used to hold the spheres in place. 

A single sphere is placed at. this end of each tube which is expelled with a velocity 
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Figure 4.1 Experimental Apparatus 
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Figure 4.2 Average exit velocity (expressed in meters per second) of the spheres 
versus reading of the pressure gauge for 2.54 cm diameter Nylon (0) and Teflon (o) 
spheres. The solid line is a least-squared cubic fit providing approximate prediction 
of this data given by: 

depending on the imposed pressure. 	Figure 4.2 shows measurements of exit. • 

velocities in meters per second versus values of the imposed pressure for two types of 

2.54 cm diameter spheres. Since the mass ratio of the two spheres was about 1.8, the 

collapse of this data, on a, single line shows that the tubes are long enough so that the 

spheres exit with the velocity of the air jet which is important as far as repeatability 

of the experiment is concerned. Relative impact velocities can be varied up to about 

. In order to check the alignment of the tubes in a. vertical plane, a. piece of 

carbon paper wa.s placed on the end of a tube and. a sphere was launched from the 

other one. After coming out of this tube, the sphere travels a. distance of the order 

of 30 cm, before. it hits the carbon paper target upon which it imprints the location 

of the impact. This experiment is repeated twenty times. The target is then placed 

upon the other tube and the experiment is performed again the other way round. 

The maximum horizontal offset of the impact, point relative to the vertical symmetry 
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axis of the inner section of the target tube was one millimeter on both sides of the 

axis, for both shooting directions. This means that the maximum off-plane velocity 

component.. will be less than one percent of the other components. However there is 

still the possibility that angular momentum is transferred to the spheres. Therefore 

this setup is intrinsically three-dimensional. However if the in-plane components 

of the spins are small enough so that their contribution to the tangential velocity 

may be neglected, the motion of the spheres remain two-dimensional. Although as 

suggested by Dave et al. [57], it is in principle possible to obtain on the same image a 

front. view and a top view of the spheres by using a. 450  inclined mirror reflecting the 

top view within the view field of the imager we did not. use this technique (because 

it considerably reduces the scaling between the image space and the physical space, 

i.e. the resolution of the images). Instead the out-of-plane translational velocities 

were determined from the computed rotation vectors. This point will be discussed 

in Chapter 5. 

The collision takes place between the tubes in a plane parallel to the focal 

plane of a Kodak Ekta Pro 1000 high-speed video camera recording at a. rate of 

1000 frames per second. By using the positioning slides, any geometrical angle of 

incidence may be obtained. The procedure consists of launching the spheres with the 

pressurized air and recording the collision at a rate of 1000 frames per second with 

the high speed camera.. A 90mm Nikon objective is used for 2.54 cm spheres and a. 

200mm Nikon objective is employed for smaller sizes. We use double front lighting 

on a, black background with 750 Watts Lowell DP lamps. An image intensifier is 

necessary. The gate period (i.e. the time the diaphragm remains open) may be 

adjusted between 10 µsec and 5n/sec according to the velocity of the spheres to 

avoid blurring. Recording is triggered manually. The resulting-  gray level images are 

then replayed on a monitor. All the images for which both spheres lie entirely in 

the field of view are saved and downloaded to a PC using an interactive software 
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[66]. The number of such images varies between 4 and 20 according to the size of 

the spheres and the impulse which they are initially given. Finally, these images are 

downloaded to a UNIX platform for processing. The subsequent. analysis is detailed 

in Section 4.4. Figure 4.2 shows a sequence of such gray level images. 

4.3 The Spheres 

The spheres we used in this experiment were made of white plastic materials: Nylon 

6/6 or Teflon. We used 2.54cm diameter spheres for both materials and experimented 

on 1.27cm diameter nylon spheres as well. On the surface of each of them, black 

dots were imprinted with either a permanent black marker for Nylon or black enamel 

paint for Teflon spheres. These black markers have linear dimensions of the order 

of ten times smaller than that of the spheres The fraction of the surface area. of 

the spheres covered by these dots is about 5% thus limiting the probability for the 

contact area during impact to overlap with one such dot to a marginal value. 

4.4 Image Analysis 

As mentionned by Dave et al. [57] the main difficulty of the experiment, was initially 

the ability to obtain good accuracy on the spheres and markers positions in space 

with a low resolution imager (192 x 239). The image analysis software we used was 

originally the result; of different contributions made in our laboratory during the past 

years [65, 67, 68] but was substantially modified. The ultimate task of this software 

is to determine the evolution of the relative positions of the spheres and the location 

of the dots on the sphere surfaces with sufficient accuracy, starting from 192 x 239 

gray level images recorded 1ms or more apart from each other (see Section '1.2). This 

is performed first, by an edge detection phase, where the contours of the two spheres 

and those of the imprinted black dots are marked after the initial gray level image 

has been reduced to a binary image. Following this, a clustering algorithm is used 
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Figure 4.3 Sequence of collision images. The time t is indicated in ins at the lower 
left corner of each frame. The collision takes place between t = 8 and 1. = 9 ins. 
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to fit ellipses and circles on the edge points. Here an Adaptative Hough Transform 

algorithm is used to find the circular contours of the spheres as described in Section 

4.4.2 and a different. "matching" algorithm is used (see Section 4.4.3). 

4.4.1 Edge Detection 

The complete edge detection algorithm is described in [69]: The "Laplacian of 

Gaussian" or LoG, is used with a. standard deviation or space constant. of 2. The 

choice of this constant depends on the size of the markers compared with that. of the 

spheres and the signal-to-noise ratio. The resulting convolution mask is a 17 x 17 

grid. Because in some cases the displacement. of a. sphere on the 192 x 240 pixel grid 

of the camera can be close to a. pixel, subpixel accuracy is used and is implemented 

as also described in [691. First zero-crossings of the initial LoG image are detected. 

Here the LoG images are converted in integers resealed between -1000 and +1000. 

The search for zero-crossings uses a set of predicates [69] where a. zero-crossing is 

marked at the location given by one of the predicates if the latter matches a 3 x 3 

local neighborhood in the image. We use a threshold value of 20 below which a given 

pixel is considered equal to zero. These values are chosen empirically in order to 

eliminate most of the remaining noise pixels while preserving actual edges. A set of 

Tchebychev polynomials is fit onto the 3 x 3 neighborhood of each zero-crossing of the 

LoG image. This neighborhood is then refined by interpolation of these polynomials 

into a. 12 x 12 subpixel neighborhood. The zero-crossings of this subdivided neigh-

borhood are the final edge points we keep. Preliminary precision tests concerning 

the subpixel technique have been carried out and were reported in [05]. Finally, a 

labelling algorithm assigns a different integer value to each group of connected pixels. 

The reason for performing this labelling is explained in the following section. 
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4.4.2 Adaptative Hough Transform and Fuzzy-Clustering Algorithm 

Once the edge points have been determined, it is necessary to identify the resulting 

shapes as being the contours of the black dots (approximately elliptical) or those 

of the spheres. This is done with the "Adaptative Hough Transform" technique 

[70] for the sphere contours. An accumulator array of 30 x 30 x 15 (the smallest 

dimension corresponds to the initial resolution on the radius) is used. This array 

initially maps the entire image. AHT iterations are performed until the maximum 

distance covered by one array element is less than 0.5 pixel. An "Ada.ptative Noise 

Fuzzy-Clustering" [71, 72, 73, 74, 75] algorithm is used as in [57] to And the position 

of the markers' centers in the two-dimensional plane of the image by fitting ellipses 

on their contour. The value of the noise multiplier, A, defined in [72] is taken to be I. 

The markers are then reduced to the centers of the ellipses only. One advantage of the 

Hough Transform technique over the fuzzy-clustering technique used in [57] is that 

the number of objects does not need to be specified as an input variable. Therefore 

even though the sphere contours may sometimes be segmented clue to locally poor 

contrast conditions, thus yielding more clusters than actual edges, labelled clusters 

belonging to these contours can be separated from those belonging to the contours 

of the dots after performing the Hough Transform. To do this, we first define for 

each sphere, an annulus concentric with the circle detected by AHT. The outer and 

inner diameters of this annulus are taken as the detected radius respectively plus 

and minus a. fraction of this radius. Then clusters are considered as being part of the 

sphere contour if one half or more of the points they. contain lie inside this annulus. 

A percentage of 4% of the radius is used. The remaining clusters are either noise or 

dots contours. Since in our images each of the latter is always contained in a single 

cluster, the fuzzy-clustering technique may now be applied. At this point, if a noise 

cluster is still present its size is small enough compared to the others so that. it can 

easily be recognized and removed. 



(4.1) 

(4.2) 
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4.4.3 The Matching Algorithm 

lip to this point each of the six initial frames has been analyzed independently 

and for each, the positions and geometries of the spheres and markers have been 

determined. It is necessary to match from each frame to the next. clusters produced 

by the same marker or the same sphere. A sphere in one frame is matched to the 

closest sphere in the next frame. For the markers more caution has to be taken. 

The simple technique based on the assumption that displacements from one frame 

to the next are small is rejected as being too restrictive. An alternative is to try to 

match markers by groups of three with the constraints that. the triangle that, their 

centers form be not deformed and keep the same orientation. This solution turned 

out to be unsatisfactory because a. maximum deformation had to be imposed which 

depended very much on the quality of the image but also on each collision. lt was 

retained though as we will see as a speed-up technique. Matching of the markers 

is done for the frames before and after collision independently for each sphere by 

using three frames at a. time. We first define a direct orthonormal coordinate system 

(x, y, z), the x and y axes lying in the plane of the image and z pointing towards the 

observer. This coordinate system does not change with time. The center of one of 

the spheres, say sphere a, in frame p is located at Xop with components x, yop, the 

z-component being zero. The jth  clot is located at X7 with components x, yjp,4. 

Another coordinate system whose center is the center of sphere a and same axes as 

the previous one is defined in which the three dimensional relative position of the jth 

clot in frame p is given by: Xjp = Xjp - Xop 	The z-component of Xjp is computed as: 

For each triplet of clots i, j, k in frame p we define the three vectors: 
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which are the three sides of the triangle formed by the triplet. of dots (i, j, k) in frame 

p. For any dot. triplets, (i p, j p, kp), (iq , jg , kq ), (ir , jr , kr ), belonging respectively to 

three consecutive frames p, q, r, we define the matching function over three frames 

p, q and r for these three triplets as: 

(4.3) 

where ∆mn is the time interval between frames in and n. In each of the three 

consecutive frames p, q, r, we now pick one dot triplet, which we call respec-

tively (ip, jp, h,), (iq, j q,kq),( ir , jr , kr ). respectively, as: It has been found that 

minimization of M with respect to the choice of triplets 	k) provided the right. 

matching. More precisely if one triplet, is chosen in frame p, M is minimized 

when the two triplets picked in frames q and r are those obtained by successive 

rotation of the initial triplet; in frame p, with the same rotation vector as that, of the 

sphere. However, if the position of a. sphere center is not properly determined by the 

clustering algorithm, the matching may also turn out to be erroneous. This function 

can be reduced to matching two consecutive images only by setting to zero the part 

of it pertaining to the third frame (frame r in the example above). This alternative 

is required when only two frames are available either before or after collision. The 

matching is performed on each group of three consecutive frames but the resulting 

matching for the first two frames of each group only is conserved except for the 

last group of three frames where we need the correspondence between the last, two 

frames. Since the minization of M over three frames requires testing many marker 

triplets, the choice of these triplets is reduced by considering the area of the triangle 

they form: three triplets of markers (one in each frame) are candidates for matching 
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under the condition that the relative change in the area. of the triangles they form is 

less than 10% and their orientation is conserved. In our algorithm we also added the 

constraint that the dot. product. of two sides of this triangle should not. vary more 

than 10%. 



CHAPTER 5 

RESULTS AND DISCUSSION 

5.1 Computation of Translational and Rotational Velocities 

5.1.1 Translational Motion in the Focal Plane 

As explained in Chapter 4, the trajectories are obtained from the analysis of 

individual gray level images. The edge detection techniques successfully make out 

the features of these images that are the boundaries of the spheres and those of their 

markers. Figure 5.1 shows an example of gray level image and corresponding edge 

image below with the circles best fitting the sphere boundaries and the centers of 

the detected clusters. 	In order to obtain the velocities and positions of the spheres 

at the moment of collision, we perform a least-squares second degree polynomial 

fit of the positions of the center of the spheres extracted from each edge image 

as shown in the above example, independently before and after collision. This is 

based on the assumption that, while in free flight, the two spheres are subject to 

a constant acceleration. Figure 5.2 shows the trajectories of the centers of two 

colliding spheres before and after collision. Six images before the collision and six 

after where recorded. 	In this experiment the colhsion takes place between frames 

6 and 7 which are the frames immediately before and after  collis i on. The ci rc l es  

are the position of their centers determined according to the method presented in 

Chapter 4 while the four solid lines are the four second degree least-squares fits 

performed for each sphere before and after collision independently. The axes are 

graduated in units of sphere diameter and the number of subpixels per diameter is 

approximately 255. We find that the maximum standard deviation of the distance 

of the center positions to the parabolic fit both in the x and y directions, are of 

the same order: ∝ 	x = ∝ y = 	1.5 in subpixel units. Hy computing the components of 

the average velocity of the sphere centers between two consecutive frames, we also 

determine the standard deviation of these velocity measurements with respect to 
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Figure 5.1 Gray level image (top) and corresponding edge image obtained after 

processing. The circles (o) are edge points and the stars (*) arc the centers of the 

detected clusters (sphere or marker boundary). 
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Figure 5.2 Motion of two colliding spheres a and b before and after collision. The 
position of the centers of the spheres are marked by the circles (o) while the solid 
lines represent the quadratic best fits of these positions in tune. 

the first time derivative of the parabolic fits. We find respectively for the x and y 

components of the velocities: a 	„, 	4 cr»...s -1  . For the radius of the spheres we 

find: 1? = 148.7 + 1.77 subpixel units. The instant at which the collision takes place 

is obtained by extrapolation from the fits using the value of 1? above. It. is computed 

from the two pre-collision fits and from the two post-collision fits independently. In 

this particular experiment the two values of the time of collision were found to lie. 

0.1 ins apart. The effective accuracy of the location of the sphere centers is of the 

order of one or two subpixels, which is satisfactory as the occlusion of the contours 

of the markers often perturb the shape of the sphere boundaries. It is important, to 

understand the consequences of this limited resolution on the ability of the whole 

experimental method to yield good kinematic measurements. As a rule of thumb, 

we expect that, if the average time interval between frames is At, then the standard 

deviation obtained on a. velocity component, say in the x-direction, will be related 
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to the standard deviation of the x coordinate of a sphere center according to: 

This can be checked in the above experiment where we find on average that. 

Owing to the fact that. a-, depends only on the accuracy of 

the clustering algorithm and the number of frames used, it. is a measure of absolute 

uncertainty which, as we will see further in this section, imposes pratical limitations 

on the experiment as far as the choice of the sphere sizes and velocities are concerned. 

To see this let us consider the collision of two 2.54 cm diameter spheres. Since we use 

a. four-subpixel expansion (see section 4.4.1), the subpixel images have dimensions 

Lh  x Lv, where Lh  = 4 x240 = 960 is the horizontal dimension and L„ 	x 192 = 768 

the vertical dimension. The scaling relation between the physical dimensions of the 

collision scene and those of the images is the number of subpixels per diameter 

which we call ns. The time interval between two consecutive images is 01 where 

(51 = 1 ms and q is an integer equal or greater than one. Because we need to keep 

the number of images per collision within reasonable limits as far as processing lime 

is concerned, q is sometimes larger than one. Finally let, us assume that the spheres 

are travelling with a typical velocity v expressed in meters per second and that the 

uncertainty on the determination of each coordinate is of .s subpixels. Let δr be 

the typical relative translation of the spheres between two consecutive frames, then 

we may conservatively estimate the relative error made on the measurement, of the 

component of relative velocity v in a. given direction as: 

(5.1) 

where the factor √N (N is the average number of frames before or after collision) is 

included in a statistical sense to account for the decrease Of the standard deviation 

of our measurements with the increasing number of frames used for a fit. The above 

expression shows how optimization of the error depends on the velocity of the spheres, 
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on their relative velocity and orientation and on their size. q and N are dependent 

parameters and are also imposed by the velocities, the relative velocity and the size 

or the ratio ns/d . Equation 5.1 tells us that when 	goes to zero the relative error 

goes to infinity because we cannot. increase N or q infinitely. On t he other hand, when 

ve  becomes very large N decreases because the spheres spend less time in the held of 

view and the relative error becomes infinite in this case too. Since we are interested 

in the values of normal and tangential relative velocities, the previous discussion 

implies that the latter are determined with the same accuracy and the relative error 

therefore diverges for the normal component in grazing impacts, while it diverges 

for the tangential component, in head-on collision. Although the estimate given by 

Equation 5.1 is mostly qualitative, we can try and see how it compares with results 

obtained from a. set of 16 test experiments performed with' varying angles of incidence. 

We compare the prediction of Equation 5.1 with the computed relative variation of 

the total linear momentum. In that case, we used: s = 2,q = 2 ,ns= 	150 and N=5, 

for which values Equation 5.1 predicts δve/ve = 	3N. The results are shown on 

Figure 5.3 where the solid line is the plot of 2/ve. As expected Equation 5.1 seems 

to be a reliable and conservative estimate of the relative error which therefore shows 

that the expected accuracy is controlled essentially by the resolution of the camera. 

and that of the image processing techniques. 

5.1.2 Rotational Motion and Out-of-plane Translation 

The method used for determining the rotational velocities is borrowed from [65] and 

unchanged. It is also a. least-squares technique which computes one rotation vector 

between two successive frames. The rotation vector at collision is taken to be the 

algebraic mean of all the inter-frame rotation vectors. Preliminary precision tests 

were reported in [65] concerning this technique. For the same reason as explained in 

Section 5.1.1, they apply only to very limited experimental conditions. The ability in 
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Figure 5.3 Relative error made on any velocity component, versus its amplitude 
(expressed in units of sphere diameter per second). The solid line is 2/νξ. 

determining the three components of the rotation vector first depends on the accuracy 

with which the center of the sphere is tracked. On the other hand, and similarly to 

what happens in the case of the translation vector, the relative a.ccuracy decreases 

with the amplitude of a given component of rotation. However we may hope that. 

the magnitudes (or the angles of rotation) will be computed with more precision 

than the individual components of rotation. For the same test, experiment, shown 

in Section 5.1.1 we plot in Figures 5.4 and 5.5, respectively for sphere a and sphere 

b (see Figure 5.2) the three components of the rotation vector and its magnitude 

versus time. These plots evidence that the z-component (i.e. the rotation about, the 

z-axis) is much larger and that., like the rotation velocity, it fluctuates much less than 

the x and y components. Also one can notice that the z-components of rotation of 

the two spheres are very close in magnitude and have opposite signs and therefore 

probably provide a negligible contribution to the relative velocity. 	check 

these results on the same set of test experiments as used in Section 5.1.1 by studying 
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Figure 5.4 Measurements of average rotation between successive frames obtained 
from the test experiment for sphere a. The clotted lines are the components of the 
rotation vector: wx  (◊), wy  (□), 	(x). The solid line joining the circles (o) is the 
rotation speed. The split in the figure is clue to the fact that we do not, compute the 
rotation between the two frames immediately before and after the collision occurring 
between t=8 and t=9 ms. 

Figure 5.5 Measurements of rotation obtained from the test. experiment for sphere 
b. Same symbols as in Figure 5.4. 



38 

the contribution of rotations to the relative tangential velocity. Results are shown 

in Figure 5.6 where we plot. 

versus the angle of incidence. As expected, rotations become very important at low 

incidence angles and otherwise (—vs/vn) account for a few percent. of vs only. In 

fact, with the ,velocity range used in these experiments, their contribution (which is 

overestimated in Figure 5.6 because we take into account. the torsional component, i.e. 

the component. of (ω1 + ω2) which is parallel to n) is comparable to the uncertainty 

obtained in the previous section. In any case the the z-components of rotation 

contribute very little to the relative velocity. 

The last unknown component of post-collisional translational velocity is 

that perpendicular to the focal plane, in the z-direction. 	It. is obtained from 

the conservation of angular momentum once the change of hnear momentum has 

been determined from the translational data.. It is therefore computed with much 

less accuracy than the x and y components. 'Hie computation is done according 

to Equations B.1 and 13.2. As mentioned in Chapter 1, the alignment of the tubes 

allows us to overlook the non-zero value of vz before collision considering the expected 

accuracy of the two other components. However, since there is no control on the 

rotation vector, upon emergence from the end of the tubes, there is no reason why it 

should remain so after collision. Figure 5.7 shows the ratio R. of the relative trans- 

lational velocity perpendicular to the focal plane, 	to the normal or tangential 

component of relative velocities. This contribution is not significant because it lies 

within the domain of uncertainty evidenced in section 5.1.1. 

5.1.3 Conclusion 

For our purpose when using 2.51 cm diameter balls, typical velocities of I m.s-1 can 

be measured within 5%. For this fixed value of translational velocity, when the angle 

of incidence is reduced so that the ratio -vs/vn falls below 0.25, the relative tangential 
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Figure 5.6 Estimation of the contribution of rotations to the relative velocity 
component (perpendicular to the image) (◊); X and y components (0). 

Figure 5.7 Normalized relative translational velocity: 
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velocity vs is smaller than approximately 0.25 771-S-1  and is therefore computed with 

20% relative error. The same diagnostic applies for the normal component of relative 

velocity v„ for values of vs/vn  larger than 4. Higher velocities or less frequent. image 

sampling will provide better accuracy. 

5.2 Collision Properties 

In order to test the validity of Equations 3.5 and 3.4, we perform a. series of collisions 

with two identical one inch diameter nylon spheres. For these experiments, the 

pressure level used to expel the spheres out. of the tubes was kept constant, but the 

angle of incidence was varied by moving the right tube vertically. For this particular 

set of results, considering the study carried out in Section 5.1, we increase the release 

velocity of the spheres to about 1.2 m.s-1, producing normal velocities at impact in 

the range 0.1 - 2.5 m/s. This corresponds to velocities 4 times larger than in Section 

5.1 and therefore. to a corresponding decrease of the relative error (see section 5.1.1). 

We used an average of 6 to 8 images before and after collision. Values of —vs'/vn 

versus —vs/vn, where primed quantities are taken after a collision as in Chapter 3, 

are reported on Figure 5.8. 	The points reported qualitatively agree with the 

predictions of the collision operator presented in Chapter 3: Beginning from zero on 

the —vs/vn axis, the tangent of the recoil angle —vs'/v„ first takes decreasing negative 

values indicating that the surface velocity vs  changes direction during the contact. 

(see Equation 3.3). When —vs/vn reaches a value of about 0.8 this trend changes 

and the recoil angle increases linearly as a first approximation. 

For the same data we report directly the coefficient of tangential restitution as a 

function of —vn/vs  on Figure 5.9 where it can be seen that β seems to reach a plateau 

as actually assumed in Walton's operator in the rolling regime but tends to decrease 

as the surface velocity at impact decreases, i.e. when the collision is closer to a normal 

impact. We fit a. straight, line on the points of Figure 5.9 for values of —vn/vs smaller 
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Figure 5.8 Tangent of the collision angle before versus after collision(o). 

than 1.5, which we consider to be the sliding region. According to Equation A.10, the 

slope, in Figure 5.9, of this sliding region is equal to :22://(.1+c). We therefore measure: 

-7ift(1 	= 1.21 + 0.01. The value of β0  is estimated at β0  = 0.44 ± 0.04 from the 

same graph. 	The coefficient of restitution e is obtained by averaging results 

(i.e. measurements of —v /v„) of individual experiments and is found to be equal to 

0.97+ 0.015. However as shown on Figure 5.10, c decreases with increasing angle of 

incidence. Therefore the above value of e was obtained for values of --vs/v„ lower 

than 2. This behavior seems to go against previous observations by Sondergaard 

et al. [56] and experimental results reported by Brach [47] for spheres impacting 

plates. 	Finally we can extract the coefficient of friction //µ  = 0.176 1 0.015. The 

solid lines on Figure 5.9 and 5.8 are the solutions corresponding to Equations 3.5 

and 3.4 of Walton's operator. Alternatively, βo  and /L can in principle be extracted 

from a. plot of the impulse ratio f versus —v,/v„ by using Equations refimpulseratio. 

Accordingly we compute the impulse ratio directly, using Equations A.1 and A.I 

and reported on Figure 5.11 along with the best, fits taken from Figure 5.9. 



Figure 5.9 Coefficient of tangential restitution β versus the cotangent of the angle 
of incidence. 

Figure 5.10 The coefficient, of restitution versus the tangent of the angle of incidence. 
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Figure 5.11 The impulse ratio f versus the tangent of the angle of incidence. 

The sliding branch of Figure 5.8 seems to deviate from the the prediction of the 

operator for large incidence angles. This comes from the fact that µ was determined 

from a linear fit in the sliding regime of Figure 5.9 where β which was constrained 

to go through the point (—t = ∞; β = —1). By doing so, we measured collision 

properties for intermediate angles of incidence (typically for —vs/v„ between 0.25 and 

5 which corresponds to angles between 14° and 80°). The three collision properties 

are therefore well defined over a. fairly wide range of incidence angles (i.e. 15° to 

80°). In extreme impact geometries such as nearly head-on or grazing incidences, 

errors arising from experimental measurements do not allow us to test the model 

equations and to measure precisely the impulse ratio and the coefficient of restitution, 

respectively for large and very small incidence angles. Finally, in their analysis, Maw 

et al. [39] predict the occurrence of micro-slip for very small angles of incidence. 

Precisely, this would yield negative values of β  for —va /v„ < it(2 — v)/2( — v) which 

is about 0.21 if we assume a Poisson ratio r. of 0.3. Our experiment does not allow 

us to verify this prediction accurately. However, as mentioned above, values of /3 
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reported on Figure 5.9 actually seem to decrease again for small angles of incidence 

(large values of vn/vs) and do not stand in contradiction with the possible occurence 

of a. micro-slip region. They also find that when —vs/vn > p(12 — 13v/2(1 — 

(which is a number close to one for v = 0.3 and corresponds to an angle a little 

larger than 45°) gross-slip will persist throughout. the impact.. This is compatible 

with the value of -yo  (see Appendix A) that we find to be approximately 400. 

5.3 Coefficient of Restitution 

As mentioned in Chapter 4, the experimental apparatus allows us to vary the exit. 

velocity of the spheres thanks to the variable air pressure at the end of each tube. 

This was used to investigate the velocity dependence of the coefficient. of restitution. 

In order to obtain maximum accuracy on the trajectory of the spheres, the latter were 

not marked with black dots in most of the experiments whose results are reported 

here, so as to avoid deformation of their contours (see Chapter 4). Figure 5.12 shows 

measured values of e for 1" and 0.5" diameter nylon spheres versus the magnitude 

of the normal component of relative impact velocity. Although for both sizes e is 

clearly a. decreasing function of the impact velocity, starting from I at low velocity 

magnitudes, the scatter obtained shows that the accuracy of our measurement is not, 

sufficient to predict any size dependence for the two sizes used. Such a comparison for 

the material used here would require measurements of e within less than a percent, 

as our measurements may be confounded due to fluctuations of the angle of incidence 

as shown in Figure 5.10. Furthermore if any mass .dependence does exist it can only 

be very weak which is in agreement with the only previous observations reported in 

[43]. 

In both cases, the decrease appears to be much slower than the two theoretical 

power laws presented in [451 and [46]. The same experiments were performed for 

1" teflon spheres and results are reported on Figure 5.13. 	Here the decrease of 



Figure 5.12 Coefficient of restitution (e) versus normal impact velocity for 2.54cm 
(A)and 1.27cm (o) diameter Nylon spheres. 

Figure 5.13 Coefficient of restitution (e) versus normal impact velocity for 2.54cm 
(o) diameter Teflon spheres. 
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e is sharper and appears also quite scattered. A power-law behavior as indicated 

by the solid line in Figure 5.13, seems to be a. good description of the data. with a 

exponent of order 0.12 which is half that predicted by Ning et al. (46] and Johnson 

[40]. The possibility of a coupling between the normal and tangential deformation 

for elastic spheres has been refuted (see for example [40]), but. it. is not. excluded that. 

the existence of a zone of plastic deformation near the contact patch might affect 

the elastic properties of the material. However there are no available theoretical 

results to compare with and we do not know to what. extent this assumption could 

be relevant. Also since we do not have a precise control of the angle of incidence at 

collision, a systematic study could be done only by carrying out a. large number of 

experiments. 



CHAPTER 6 

CONCLUSION 

An experimental apparatus along with the necessary image processing techniques 

were designed to investigate collision properties of spheres. It allowed us to make 

direct measurements of these properties on the basis of a. simple collision operator. 

In contrast to previous experiments [55], it. does not impose any constraints on the 

pre-collisional velocities and spills except that. the pre-collisional trajectories of the 

two spheres have to lie in the same plane. Although measurements made at very 

low or very high incidence angles are not. fully reliable, our results seem to show that. 

there exists in both conditions a. more detailed behavior as that assumed in Walton's 

collision operator. However the decrease of the coefficient. of friction for increasing 

angle of incidence can be due to the existence of dust on the surfaces of the spheres 

or to cratering and is therfore mostly unpredictable. This can therefore lead to 

unpredictable fluctuations of either it  or β0. The accuracy has been shown to be 

well controlled by the exact conditions in which a given experiment was performed, 

i.e. angle of incidence, velocities and size of the objects. Within our accuracy 

we can consider that this setup, although quite rudimentary, produces repeatable 

experiments. 

Although we failed to provide conclusions on the mass dependence of the 

coefficient of restitution, we showed by experimenting on spheres with a mass ratio 

of 1/8 that if it existed it was to a very limited extent.. The influence of the impact. 

velocity, which did not reproduce any of the theoi•etical predictions that we know of, 

was different for the two kinds of materials we used in that the decrease observed for 

Teflon was much sharper as that of Nylon. For comparison with existing theoretical 

power laws, we found an exponent of 0.12 for Teflon which is half the predicted value. 

However a precise measurement of such an exponent, would require an extension of 

the velocity range by another order of magnitude. Finally, the setup could be used 
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to further investigate the dependence on the impact velocity of the coefficient. of 

restitution in the optimal experimental conditions studied in Chapter 5 and is likely 

to produce more conclusive results for softer materials. 



APPENDIX A 

Derivation of Walton's Collision Operator 

Here we will present a derivation of Equations 3.5 and 3.4. The notations are 

therefore the same as in Chapter 3. 

The impulse exerted by sphere one on sphere two, ∆P, relates pre- and post-

collisional velocities and rotations according to: 

(A.1) 

(A.2)  

Using Equation 3.1, we may express the change in sliding velocity occurring during 

collision as: 

(A.3)  

Upon inserting Equations A.1 and A.2 in Equation A.3, this change is now obtained 

in terms of AP as: 

where ∆Pn = (∆P.n)n  is the momentum change in the normal direction. By using 

the definition of the coefficient of restitution given by Equation 3.2, this component 

of momentum change can be rewritten as: 

( A .5) 

If it is assumed that sliding occurs throughout the impact then the two components 

of impulse are related by: 

( A .6) 
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and 

(A.4) 
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where t= vs/|vs|  is a unit, vector with the direction and orientation that the relative 

surface velocity had before contact. Therefore: 

(A.7) 

Since 7r/2 < 7 < r, as may be seen on Figure 3.2, cot -γ < 0. After substitution of 

Equations A.5 and A.7 into Equation A.4, we find: 

(A.8)  

For real contacts during which sliding ends before separation of the two bodies 

Coulomb's law is not valid anymore, e.g. IA -Pt < /co  P„ 	In this case (rolling), 

= /3o, 

(A.9)  

Next Equations A.9 and A.8 are rewritten by projecting each of them along rto yield 

Equations 3.5 and 3A. Comparison of A.9 and A.8 gives the dependa.nce of /5 upon 

the ratio vnlvs: 

where -yo  is given by tan 70  = yo(1 	7k) Ti±c--÷/30  . Similarly, Equations A. I0 may he 

inverted to .find the impulse ratio 

(A.1.1.) 

(A.I2) 

for any angle of incidence: 

Finally we can see, for example in Equation A.10, that if Coulomb's law Vas applied 

for any angle of incidence -y , then 13 would diverge to infinity as vs  would decrease. 
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This is why a coefficient of maximum tangential restitution β0 is naturally defined, 

imposing an upper bound on the restitution of energy in the tangential direction. 



APPENDIX B 

Computation of the Out-of-plane Translational Velocities 

In order to obtain thez-component of the velocities of the spheres, after collision 

it is assumed first that. their trajectories prior to collision are perfectly aligned in 

a vertical plane so that unit vector 	has components (nx, ny, 0) and the velocity 

components of both spheres in the z-direction prior to collision, v1 , and v2 „ are zero 

as well. Here we also assume that the spheres are identical, each having mass m and 

diameter a. From equation A.1 we therefore have: 

( B.1) 

Projecting equation A.2 on the x and y axis, we obtain respectively: 

where 

for i = 1,2 and E= x,y. 

As long as n„ and ny  are non zero, ∆Pz can therefore be computed in four 

different; ways. We choose to compute the following average of these terms: 

(13.2) 

where 

= 0  if |ny| 	< 0.1 |nx| |nx
| 

= I otherwise 

αy 	= 0 i f 	|nx| < 0.1 |ny|  

= 1 otherwise 
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