
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Fall 1997

Structured document comparison and scientific
data mining on the world wide web
Philip B. Johnson
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Johnson, Philip B., "Structured document comparison and scientific data mining on the world wide web" (1997). Theses. 1009.
https://digitalcommons.njit.edu/theses/1009

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1009?utm_source=digitalcommons.njit.edu%2Ftheses%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

STRUCTURED DOCUMENT COMPARISON AND
SCIENTIFIC DATA MINING

ON THE WORLD WIDE WEB

by
Philip B. Johnson

The usefulness and accessibility of programs and systems have become

important issues for users and researchers alike. A program's usefulness can lw

measured by the frequency with which it is used. From the author's or maintainer's

point of view, the frequency of usage can be determined by how often a request for

the software is received. In the past, a user became aware of a particular tool through

various means, and contacted the author or maintainer to obtain a copy of it. This

presented difficulties, ranging from language barriers to machine incompatibilities

to control of the use of the program. Furthermore, accessibility of the program

was limited to the particular machines on which it was installed (at the remote

site). By porting programs and systems to the World Wide Web, the problems of

accessibility and usefulness can be mitigated. Now programs can be advertised (in a

non-commercial sense) to all interested parties, problems of machine incompatibility

can be reduced (with the exception of browser incompatibilities), and control of the

use and modification can be maintained. This thesis discusses the porting of two

tools to the World Wide Web. The tools are SDISCOVER, a data mining tool used

in protein string matching, and TREEDIFF, a structured document comparison

toolkit. Spinoff of this research is the development of two home pages for conference

registrations and Oracle user account applications in a university environment.

STRUCTURED DOCUMENT COMPARISON AND
SCIENTIFIC DATA MINING

ON THE WORLD WIDE WEB

by
Philip B. Johnson

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

October 1997

APPROVAL PAGE

STRUCTURED DOCUMENT COMPARISON AND
SCIENTIFIC DATA MINING

ON THE WORLD WIDE WEB

Philip B. Johnson

Dr. Jason T. L. Wang, Thesis Advisor 	 Date
Associate Professor, Department of Computer and
Information Science, NJIT

Dr. James McHugh, Committee Member 	 Date
Professor, Department of Computer and Information Science, NJIT

Dr. Peter Ng, Committee Member 	 Date
Professor, Department of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: Philip B. Johnson

• Degree: Master of Science in Computer Science

Date: October 1997

Undergraduate and Graduate Education:

Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1997

Bachelor of Science in Computer Science,
Seton Hall University, South Orange, NJ, 1987

Major: Computer Science

ACKNOWLEDGEMENT

I would like to thank Dr. Jason T. L. Wang for his insightful discussions,

guidance, and helpful pointers durings this project.

I would also like to thank George J. S. Chang for his suggestions on using Linux

and Perl, and most of all for the use of his Web server on one of the NJIT DB Lab

machines.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	

1.1 Structured Document Comparison Using TREEDIFF 	1

1.2 Scientific Data Mining Using SDISCOVER 	

2 STRUCTURED DOCUMENT COMPARISON ON WWW 	 7

3 SCIENTIFIC DATA MINING ON WWW 	 9

4 RELATED WORK 	 12

4.1 Very Large Database Registration 	 12

4.2 Oracle Registration 	 17

5 CONCLUSIONS AND FUTURE WORK 	 19

APPENDIX A RESOURCES FOR SDISCOVER ON WWW 	 20

APPENDIX B RESOURCES FOR LATEX FILE COMPARISON 	 36

APPENDIX C RESOURCES FOR SGML FILE COMPARISON 	 50

REFERENCES 	 67

vii

LIST OF FIGURES

Figure 	 Page

A.1 	First Half of SDISCOVER Page 	 30

A.2 Second Half of SDISCOVER Page 	 31

A.3 Confirmation for SDISCOVER 	 32

A.4 Output From SDISCOVER 	 33

A.5 Example of Protein Sequence Strings 	 34

B.1 LATEX File Retrieval 	 45

B.2 Notification of Successful Retrieval 	 46

B.3 Output of LATEX File Comparison 	 47

B.4 	Notification of a LATEX File Not Found 	 48

C.1 SGML File Retrieval 	 62

C.2 Notification of Successful Retrieval 	 63

C.3 Output of SGML File Comparison 	 64

C.4 	Notification of an SGML File Not Found 	 65

viii

CHAPTER 1

INTRODUCTION

This thesis discusses two tools which have been ported to the WWW for use there.

The two tools are TREEDIFF, a structured document comparison toolkit, and

SDISCOVER, a data mining tool for protein matching. The tools have been modified

slightly in their I/O routines to support batch processing (i. e., non-interactive).

Scripts in Perl and shell are used to handle the input of data and parameters for

execution; typically, the source code for the tools has been modified to support

output with HTML embedded (so the output looks presentable on the user's web

browser). Note that no allowance has been made for those users with non-graphical

browsers (e. g., Lynx). Neither the web pages nor the output for these tools have

been aligned for these types of browsers.

1.1 Structured Document Comparison Using TREEDIFF

The structured document comparison toolkit, TREEDIFF, examines documents

written using the SGML, or Standard Generalized Markup Language. A markup

language is a specification on how to process files, whether they are documents,

spreadsheets, or the like; individual markup instructions are known as 'tags'.

One type of markup language, known as descriptive markup, occurs when the

document processing codes are embedded in the document itself. The codes for

bolding or underlining in a document produced by a word-processing program are

one such example. The codes used by utilities such as nroff and troll are another

example. Some difficulties with these codes are that the processing commands might

be platform specific, and that it is hard to compare two or more documents based

1

2

solely on these embedded codes. Here is an example of markup in a document (this

is nroff source for the Peri 5.003 man page):

.TH PERL 1 "perl 5.003 with" "25/Mar/96" "Perl Programmers Reference

Guide"

.IX Title "PERL 1"

.UC

.IX Name "perl - Practical Extraction and Report Language"

.if n .hy 0

.if n .na

.ds 	C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v\h'-1p'

.de CQ 	 \" put $1 in typewriter font

.ft CW

'if n "\c

'if t \\&\\$1\c

'if n \\&\\$1\c

'if n \&"

\\&\\$2 \\$3 \\$4 \\$5 \\$6 \\$7

'.ft R

.\" @(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2

. \" AM - accent mark definitions

.bd B 3

. \" fudge factors for nroff and troff

.if n \{\

. ds #H 0

. ds #V .8m

ds #F .3m

ds #[\fl

ds #] \fP

.\}

Another type of markup language is called generalized markup. This type is

used to specify the structure of the document, rather than the specific actions to be

carried out when processing the document N. Generalized markup allows for several

improvements over descriptive markup:

3

the preservation of information

arbitrary processing instructions can be set for particular tags. This in turn

provides flexibility and platform independence

it is possible to make 'intelligent' queries on documents

SGML (Standard Generalized Markup Language) is a further abstraction of

markup. It is a meta-syntax for developing other generalized markup languages.

That is, it specifies the rules by which a variety of markup languages can be created

[3]. The most well-known sub-type of SGML is HTML.

Here is an example of a document which has been marked-up using SGML (this

is from a paper on extending DSSSL to handle trees) [2]:

<!DOCTYPE GCAPAPER PUBLIC "-//ATLIS//DTD GCAPAPER.DTD 19960213 Vers 1.0
//EN" "gcapaper1.dtd" >
<gcapaper>
<front>

<title>Semantic Extensions to DSSSL to Handle Trees
<author prime="1"›
<fname>Matthew <surname>Fuchs
<address>

<affil>Walt Disney Imagineering
<aline>1401 Flower Street, P. O. B. 2502
<city>Glendale <state>CA <postcode>91221
<email>matt@wdi.disney.com
<Abstract>

<para>

We consider the syntax and semantics of the
<ACRONYM><TERM>TL</TERM><DD><PARA>Transformation

Language</PARA></DD></ACRONYM>

in the <ACRONYM><TERM>DSSSL</TERM><DD><PARA>Document Style Semantics
and Specification Language</PARA></DD></ACRONYM>
specification<bibref>DSSSL96</bibref>. At present
<ACRONYM><TERM>TEs</TERM><DD><PARA>Transformation
Express ions</PARA></DD></ACRONYM>

are less than first-class language objects - they

must all reside at the top level, and cannot be manipulated like other
DSSSL/Scheme objects. In particular, there is no means of passing

information among TEs, so one TE cannot take advantage of information
derived by another, such as passing data about parent nodes to direct

4

the transformation of child nodes. We propose extending the DSSSL
syntax to allow a DSSSL program to better exploit the tree-like nature
of the source grove by providing a semantics for nesting query
expressions, allowing information to be passed around while retaining
DSSSL's functional nature. The TEs would also come closer to being
first-class objects. We suggest these extensions will make DSSSL
programs easier to write and probably easier to optimize.
</para>

The expression, "document comparison," is to mean the detection of change

of the structure of the document. This differs from a tool such as the Unix dill

utility, which considers the file to be a string of characters. Diff will examine pairs

of files, comparing strictly character-by-character. If the markup within either file

is different from the other, then duff will report that as a difference (and the same

goes for regular text within the files, as well). TREEDIFF compares the structure of

files by first translating each file into an ordered labeled tree. The structure of the

tree is determined by the structure of the markup in the file. After this translation

process, the trees are compared using approximate tree matching techniques. These

techniques will find a minimum quantity of edit operations (insert, relabel, and

delete node) which are required to transform one tree to the other. Furthermore,

TREEDIFF can find portions of one document that are common to the other.

Document comparison is useful in several industries; among them are defense,

aerospace, and publishing. It is also useful for comparing documents marked up

with HTML and LATEX. For example, it is possible to learn if two HTML pages

are different, or for detecting plagiarism within two LATEXdocuments. Detecting

structural changes in documents is important in the areas of data warehousing, digital

libraries, hypermedia, and Internet databases [1].

5

1.2 Scientific Data Mining Using SDISCOVER

In data mining, there can be several applications. One typically is analyzing a

database for similarities among and between records, as ► n purchasing habits or the

likelihood of a prospective credit card applicant to default on their payment based

on their purchasing and payment histories, as well as other factors. Another type

of data mining, the type discussed here, is the discovery of structural patterns in

scientific data [4]. That is to say, a single record of scientific data is examined with

the intent to discern some pattern in that record; then other records are searched for

that same pattern.

Specifically, the scientific data which is investigated for pattern discovery are

protein strings. The protein strings are strings of amino acids; 20 amino acids are

represented by a single capital letter. Here is an example of a pair of sequences [4]:

>RASL_MOUSE TRANSFORMING PROTEIN P21/K-RAS 2B.

MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAG
QEEYSAMRDQYMRTGEGFLCVFAINNTKSFEDIHHYREQIKRVKDSEDVPMVLVGNKCDL

PSRTVDTKQAQELARSYGIPFIETSAKTRQGVDDAHTLVREIRKHKEKMSKDGKKKKKK

SRTRCTVM
>RASN_HUMAN TRANSFORMING PROTEIN P21/N-RAS.

MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAG QEEYSAMRDQYMRTGEGFLCVFAINNSKSFADINLYREQIKRVKDSDDVPMVLVGNKCDL

PTRTVDTKQAHELAKSYGIPFIETSAKTRQGVEDAFYTLVREIRVRMKKLNSSDDGTQG

CMGLPCVVM

The benefit of this work is that if two seemingly dissimilar strings of proteins

have in them a particular pattern, then perhaps these two strings perform the same

function [4]. The patterns discovered are regular expressions of the form *X1* X2*...

where X1, X2, Xn, are segments of a sequence, and '*' represents a Variable Length

Don't Care (VLDC). In matching the regular expression *X1 * X2*... (to be read

as: VLDC 'sequence X1 ' VLDC 'sequence X2' VLDC...) with some other sequence

S, the VLDCs may substitute for zero or more letters in S at zero cost.

6

For example, consider the three sequences shown below [4]:

YDPMIEDKEYSRLVG

82 RMKQLGRTYDPAVWG

S3 : YDPMNWNFEKETLVG

Suppose only exactly coinciding segments of lengths greater than 3 are considered

as 'similar'. Then S1 and S3 have one similarity (or common pattern):

S1 [1, 4] = *YDPM* 	*S3[1, 4]* *YDPM*

where for some sequence V, Vn[x,y] is a segment of sequence Vn from the xth letter

to the yth letter inclusively. If similarities within distance one are sought, i. e., one

mutation, mismatch, insertion, or deletion, then Si , S2, and S3 share three similar

patterns:

S1[1,4] = *YDPM *

< 	> *S2[8,11]* *TYDP *

<==> *S2[9,12]* = *YDPA

	 S3[1,4] *YDPM*

If similarities having the form *X * Y* are sought with lengths greater than r and

one mutation allowed, then S1 and S2 share the following four similar patterns:

S1 [1, 4] S1 [12,15)* = *YDPM * RLVG *

< 	*S1[1, 5]* S1 [13,15]* = *TYDP * LVG *

< 	> *S3[1, 4) * S3[12, 15]* = *YDPA * TLVG *

< 	> *S3[1, 5]*S3[13,15]* = *YDPM * LVG *

End of example

CHAPTER 2

STRUCTURE DOCUMENT COMPARISON ON WWW

The LATEX/SGML document comparison pages have the following fields:

FIELD NAME 	 TYPE

URL 1 	 text, scrollable
URL 2 	 text, scrollable

<submit> <clear> buttons

Field list ends

The steps that occur in using the web versions of the document comparison

tools are as follows:

1. User fills out preliminary form, at one of the two following addresses:

for LATEX use http : //www . cis . njit . edu/ ~discdb/ c latex .html

See figure B.1, page 45.

for SGML, use http : //point njit . edu : 8000/ ~discdb/c sgml. html

See figure C.1, page 62.

2. Each form has two fields. Each field is to have a fully-qualified URL typed in.

This will retrieve the document that the URL points to.

3. Each file that is to be retrieved must be visible by the browser. That is, if

web-browsable documents or files must be placed under the, say, public_html

directory, then the documents to be retrieved must also be similarly placed.

4. User clicks on `submit' . This calls getlatex.cgi', a Perl script. getlatex.cgi

reads the data input by the user, retrieves the files specified, and writes them

7

8

to temporary files. The retrieval process is performed by the 'getstore'

function which is part of the LWP set of Perl modules for web programming.

If an error occurs while retrieval of the documents is being attempted, an

appropriate error message (from HTML) is displayed. If the documents cannot

be found, the an explanatory message is displayed, indicating that the files

must be visible by the browser. For LATEX see figure B.4, page 48. For SGML,

see figure C.4, page 65.

Otherwise, a notice of successful retrieval is displayed, and the user is instructed

to choose some document comparison options. For LATEX see figure B.2,

page 46. For SGML, see figure C.2, page 63.

5. When the user continues, the script dolat ex .sh. cgi ' (a shell script) is called.

This script extracts the two document comparison options and then calls a

command line version of the TREEDIFF program.

The output is displayed on the user's browser in preformatted style; the output

is not saved to any temporary file. For LATEX see figure B.3, page 47, For

SGML, see figure C.3, page 64.

CHAPTER 3

SCIENTIFIC DATA MINING ON WWW

The Protein sequence discovery tool (SDISCOVER,) page has the following fields:

FIELD NAME TYPE

user's name
user's e-mail address
user's web site (optional)
list of sequences
motif type
allowed minimum length of motif
allowed minimum occurrence number
quantity of allowed matches

<submit> <clear> buttons

text, scrollable
text, scrollable
text, scrollable

text box, scrollable
radio buttons
text, scrollable
text, scrollable
drop-down list

Field list ends

The steps that occur in using the web version of the protein discovery tool are

as follows:

1. User fills out preliminary form at

http://www.cis.njit.edu/~discdbihomer.pro4.html

(See figures A.1 and A.2, pages 30 and 31, respectively), and clicks on

submit ' .

2. This calls homer . pro4 cgi, a Perl script. homer pro4 cgi reads the data

input by the user and returns to the user the data that will be submitted to

the discovery program. The form asks the user for confirmation to continue

processing (see fig A.3, page 32). homer . pro4 cgi also writes two temporary

files for use by the discovery program. The first file consists of the set of

sequences, while the second file is a list of analysis parameters (the motif

9

10

type, the minimum length, the occurrence number, and the quantity of allowed

matches).

3. If the user agrees to continue, the shell script homer . pro2 sh. cgi is called.

This script executes a command-line version of the discovery tool. The

command-line version reads the two previously-mentioned files of data and

parameters as input, and writes the output to a temporary file. This temporary

file is in turn used as input to the ssort routine. The sorting routine displays

the result to the user's browser with embedded html formatting (see fig A.4,

page 33).

The Perl cgi script, homer . pro4 cgi, does the following:

1

. The method used by the form is `post'; therefore, the input data is read from

stdin.

2. The Perl script reads the data supplied via the post mechanism into a variable,

which is then split into substrings delimited by the '&' character. These

substrings are further broken down into keys and their associated values

delimited on the 	character. Any escaped character in the value part of the

string is converted to its hexadecimal representation. The values are assigned

to a hash using the key as the index. If the key already has a value assigned

to it, the new value is appended to the old with \O' as the delimiter. If the

key does not have a value assigned, then a new entry is made into the hash.

3. Some error checking is performed prior to executing the discovery tool. The

errors to look for are: no sequences supplied; motif type not 1 or 2* (should

be impossible because this is selected via radio buttons); minimum length of

sequences is non numeric or zero; minimum occurrence is non-numeric or zero.

*Note that 'motif type' does not have a default value.

11

Also, the sequences are cleaned up: any lower-case letters are translated to

upper case, and any non-alphabetic characters (excluding newline) are stripped

out.

Originally, the script was going to perform other checking of the supplied

sequences, such as incorrect placement of comments, but the decision was made

to assume that the user is knowledgeable about such things. Therefore, any

further error error checking is performed in the discovery tool itself during

execution.

The script also writes the data (the cleaned sequences and the other parameters)

to temporary files.

After writing the temporary files, the script execution proceeds as above in

step 2.

CHAPTER 4

• ELATED WORK

Items related to the porting of SDISCOVER and TREEDIFF to the World Wide

Web include the development of an on-line registration page for the Very Large

Database (VLDB) conference, to be held in August of 1998 in New York City, and

the development of an online account registration (in a university environment) for

the Oracle database system.

4.1 Very Large Database Registration

The VLDB Registration page registers a participant for the VLDB Conference, to

be held in August of 1998 in New York City.

The registration page has the following fields:

FIELD NAME 	 TYPE

Last Name 	 text box, scrollable

First Name 	 text box, scrollable

First Name 	 text box, scrollable

title 	 radio buttons

Dr
Mr
Mrs
Ms
Prof

Company/Institution 	 text box, scrollable

Address 1 	 text box, scrollable

Address 2 	 text box, scrollable

Address 3 	 text box, scrollable

City 	 text box, scrollable

State/Province 	 text box, scrollable

Country 	 text box, scrollable

Telephone Number 	 text box, scrollable

Facsimile Number 	 text box, scrollable

Field list continued on next page

12

Internet E-Mail Address 	 text box, scrollable
Payment Method 	 radio buttons

Check
Int'l Money Order
Charge to VISA

Charge to MasterCard
Charge to Amex

Charge to Diner's Club
Advance Registration 	 radio buttons

Member

NonMember
Student

Tutorials for Advance Registration 	radio buttons
One Member/NonMember

Two Member/NonMember
Three Member/NonMember
Four Member/NonMember

Late/On site Registration 	 radio buttons
Member
NonMember
Student

Tutorials for Late/On site Registration radio buttons
One Member/NonMember
Two Member/NonMember
Three Member/NonMember
Four Member/NonMember

Tutorial Selection 	 radio buttons
Tutorial Number 1
Tutorial Number 2
Tutorial Number 3

Tutorial Number 4
Tutorial Number 5
Tutorial Number 6

Quantity of banquet tickets 	 text box, scrollable

Total for banquet 	 text box, scrollable

IEEE Member number 	 text box, scrollable

Check/Money Order Amt 	 text box, scrollable

Credit Card Amt 	 test box scrollable

Name on Credit Card 	 text box, scrollable

Type of Credit Card 	 radio buttons

VISA
MasterCard
AMEX
Diner's Club

Credit Card Number 	 text box, scrollable

13

Field list continued on next page

14

Expiration Date 	 text box, scrollable

<submit> and <reset> buttons

Field list ends

The cgi program does the following:

1. The method used is `post'; therefore, the input data is read from stdin.

2. Read the input and place it in the shell variable `line'. This will be a

temporary working/storage area that will allow extraction of the items of

interest. Strip the trailing carriage return.

3. Data is extracted from the working variable `line' in much the same manner

that data is removed from a stack.

The first field on the line, delimited by the character '&', is extracted (popped)

and stored in a shell variable work'. The remainder of the line gets moved

up one field position, so that the second field is now at the first position. The

popped data item is further manipulated to extract the value, delimited in this

case by the character 	. The code used is as follows:

pop off first field...
work='echo "${newline}" I cut -d'&' -f1'

move line up one field pos....

newline='echo "${newline}" I cut -d'&' -f2-'

extract name of field...

name='echo "${work}" I cut -d=

extract value of field...

value='echo "${work}" I cut -d= -f2-'

4. The registration information is extracted from the input line linearly; that is

to say, the last name is the first item on the string, so it's extracted first. The

15

value of the last name is stored in a program variable of an appropriate name,

usually the item itself (e. g., for last name, the name of the shell variable is

lname '). The first name is the next item on the string, so it's extracted next.

And so on....

In each case, the value of the extracted string is compared to the null string. If

the value is null, an appropriate error message is displayed indicating that none

of the fields can be left blank. Furthermore, the offending field is highlighted.

5. Due to the sequential nature of the way in which the data is extracted from

the working variable 'line', blanks (i. e., fields on the form left empty) are

not permitted. If a field is left unfilled, then all the data which follows this

particular field will not be assigned to the correct shell variable. To guard

against this, if a field is left blank, the script will detect this and issue an

appropriate error message. Note that entering spaces into a field is the same

as entering valid data.

6. The information concerning the tutorials requires special mention. The

difficulty is that a registrant is allowed to register and attend a maximum

of four tutorials, but the form will allow the registrant to sign up for all

six tutorials. The script deals with this by assigning each tutorial a number,

specifically the power of two. Thus, tutorial number 1 has the value 1. Tutorial

number 2 has the value 2, tutorial number 3 has 4, tutorial number 4 has 8,

number 5 has 16, and number 6 has 32. All six tutorial choices are extracted

from the input line, unchosen tutorials are assigned the value 0, and their values

are added together. The sum of all the tutorials indicates which tutorials are

desired. If the sum of all the desired tutorials is equal to certain values, then it

is known that the registrant has requested more than the allowed maximum.

If the registrant has chosen five tutorials, the values of interest are: 31, 47, 55,

16

59, 61, 62. If the registrant has chosen all six tutorials, the value of interest, is

63. If the registrant has chosen 5 or 6 tutorials, an appropriate error message

is displayed.

7. The next two steps deal with files created or appended to to facilitate record

keeping. The files are written to specific directories under control of the

programmer. This is due to the security restrictions on writing files to other

people's directories. If another programmer assumes maintenance of the script,,

then the specific directories will have to be changed to reflect the change in

personnel.

8. An internal-use only file is created or appended to. This file is used to check

if the user has already registered. Pipe symbols are used to delimit the fields.

It is assumed that each individual has a unique email address. Thus, checking

for a previous registration is done via the e-mail address field.

9. Next, the external registration file is created or appended to. This file is sorted

on last name of the registrant and e-mailed to the registration administrator.

Also created is a simple list of registrants, beginning with the first registrant

and ending with the last. This file has appropriate labels for each field. This file

over writes the previous list of registrants each time it is created. The reason

for creating the file anew from oldest to newest is to present the registration

administrator with the most current list of all registrants. This file is e-mailed

to the registration administrator.

17

4.2 Oracle Registration

The Oracle registration page registers two students for accounts or► the Oracle

database system. Each pair of students is considered a group. The registration

page has the following fields:

FIELD NAME 	 TYPE

Student Id 	 text box, not scrollable,
no punctuation allowed

First Name 	 text box, scrollable
Last Name 	 text box, scrollable
Course Number 	 text box, not scrollable
Section Number 	 text box, not scrollable
E-Mail Address 	 text box, scrollable,

punctuation allowed
Telephone Number 	 text box, scrollable,

punctuation allowed
Physical Mailing Address 	 text box, scrollable,

information to be entered
all on one line

<submit> and <reset> buttons

Field list ends

The entire set of fields is duplicated for the other student.

The cgi program does the following:

1. The method used is `post'; therefore, the input data is read from stdin.

2. Read the input and places it in the shell variable 'line ' ; strip the trailing

carriage return.

3. The registration info is extracted from the input line linearly; that is to say, the

student id is the first item on the string, so it's extracted first. The value of the

student id is stored in a shell variable of an appropriate name, usually the item

itself (e. g., for student id, the name of the shell variable is student_id').

18

The first name is the next item on the string, so it's extracted next. And so

on....

In each case, the value of the extracted string is tested to see if the value is

the null string. If the value is null, an appropriate error message is displayed

indicating that none of the fields can be left blank. Furthermore, the offending

field is highlighted. In this form, blank fields are not permitted.

4. The next two steps deal with files created or appended to to facilitate record

keeping. The files are written to specific directories under control of the

programmer. This is due to the security restrictions on writing files to other

people's directories. If another programmer assumes maintenance of the script,

then the specific directories will have to be changed to reflect the change in

personnel.

5. An internal-use only file is created or appended to. This file is used to check

if the user has already registered. Pipe symbols are used to delimit the fields.

Checking is done via the student id field.

6. Next, the external registration file is created or appended to. This file is sorted

on last name of the registrant and e-mailed to the course instructor, so that

it can be passed on to the Oracle DBA. Also created to is a simple list of

registrants, beginning with the first registrant and ending with the last. This

file has appropriate labels for each field. This file over writes the previous list

of registrants. The reason for writing the file anew from oldest to newest is to

present the course instructor with the most current list of all registrants. This

file is also e-mailed to the registration administrator.

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The tools, SDISCOVER and TREEDIFF, were ported to the World Wide Web to

make them more accessible to interested users. In order to maintain the functionality

of the standalone versions in the web-based versions, various types of scripts (Perl

and shell) were used. In addition, the programs themselves were modified to accept

input data on the command line and to output data with embedded HTML codes.

One difficulty that arose was the restriction placed on non-root users of the

web server. This is due to the security measures put in place (which are typically

used in a networked environment). In the case of the SGML file comparison system,

only the root user can open a file in the /tmp directory (for a Unix system). This

problem was surmounted by running a user server (that is to say, a non-root server).

This is why the URL for this comparison tool specifies port 8000. However, whey►

running a non-root server a problem can arise if the machine on which the server is

running is re-booted; then the server must be restarted. Until this non-root server

is restarted, the particular system (i. e., SGML file comparison) will not execute.

A possible work-around of this restriction would be to run a standalone web server.

However, this requires the acquisition of an Internet connection, an Internet address,

and other various items.

Further work includes the development of web site change detection, which will

involve unordered tree matching, and the inclusion of different DTDs and catalog

files for SGML comparison.

19

APPENDIX A

RESOURCES FOR SDISCOVER ON WWW

A.1 INTRODUCTION

This appendix contains the following resources used in implementing SDISCOVER

on the World Wide Web:

1. Perl and shell scripts

2. Screen shots of SDISCOVER

3. A tutorial on using SDISCOVER on the WWW

A.2 SCRIPTS

This section contains the scripts used to implement SDISCOVER on the World

Wide Web. There are two scripts used:

1. homer .pro4.cgi - a Perl 5.003 script

2. homer .pro2.sh.cgi - a Bourne shell script

A.2.1 homer.pro4.cgi

Following is the Perl 5.003 script used to process the user data, prior to execution of

SDISCOVER.

#!/home/discdb/local/bin/perl # library on homer
!/opt/local/bin/perl
library on homer
! /usr/bin/per15 . 003

N. B.: The text of this and the following scripts has been modified slightly. The
modifications are primarily in the form of newlines inserted where they otherwise would
not be. These modifications are imposed by the requirements of the thesis format.

20

21

library on darkstar

$webmaster = "phil\@homer";

$gateway = "CGI Discover Gateway [v1.0]";

$MAXSEQ = 200;

$MAXLENGTH = 5000;

$space = " ";

#$tempseqfile = "/tmp/disco.seq";

$tempseqfile = "/home/discdb/public_html/disco.seq";

#$tempparmfile = "/tmp/disco.parms";

$tempparmfile = "/home/discdb/public_html/disco.parms";

&parse_data (*PROTEIN);

what do we have here?

variable names:

$PROTEIN{'name'} - - - - sender's name

$PROTEIN{'email'} - - - sender's email adress

$PROTEIN{'url'} - - - - sender's URL (optional)

SPROTEIN{'sequence'} - - list of sequences

SPROTEIN{'min_length'} - minimum length of sequences

$PROTEIN{'min_occur'} - minimum # of occurrences

$PROTEIN-{'allowed'} - - number of allowed mutations values 1 - 10

$PROETIN{'type'} - - - - search type: *X* or *X*Y* values 1, 2

############################

the following stuff displays the parsed output from the browser

this should be replaced with error-checking code & then a call

to the discovery program

error conditions (derived from the discovery source)

1. no sequences supplied

2. motif type not 1 or 2

3. minimum length of interesting motifs not numeric

4. minimum occurance number not numeric

5. number of mutations allowed

count number of sequences...

$num_seqs = $PROTEIN{'sequence'} =~ s/\>/\>/gs; # tr/\>/\>/;

if ($num_seqs eq 0) {
&return_error (666, "No sequences",

"No protein sequences were supplied!");
}

see if motif type is 1 or 2...

if ($PROTEIN{'mtype'} eq 1) {
$type = "*X*";

}
elsif ($PROTEIN{'mtype'} eq 2) {

$type = "*X*Y*";
}

else {
&return_error (888, "bad motif",

"Chosen motif type must be 1 or 2!");
}

minimum length is numeric & not zero?;

$PROTEIN{'min_length'} =~ s/\D//;
$min_len = $PROTEIN{'min_length'} =~ tr/0-9//;

if ($min_len eq 0) {
&return_error (444, "Error with Interesting Motifs",

"Minimum length of interesting motifs is not numeric!");
}

elsif ($PROTEIN{'min_length'} eq 0)
&return_error (444, "Length = 0",

"Minimum lenth of interesting motifs is 0!");
}

minimum occurance is numeric & not zero? ;

$PROTEIN{'min_occur'} =~ s/\D//;
$min_occ = $PROTEIN{'min_occur'} =~ tr/0-9//;

if ($min_occ eq 0) {
&return_error (333, "Error with Minimum Occrrance",

22

23

'Minimum occurrance not numeric!");

}

elsif ($PROTEIN{'min_occur'} eq 0) {

&return_error (333, "Error with Minimum Occurrence",
'Minimum occurrence is 0!");

}

check for allowed mutations to be between 1 & 10 ...;
should never happen: 'select, html construct should do this
automatically;

$PROTEIN{'allowed'} =~ s/\D//;

#if (($PROTEIN{'allowed'} 1t 1) or ($PROTEIN{'allowed'} gt 10)) {
&return_error (222, "Bad match allowance",

"Quantity of allowed matches not between 1 and 10

inclusive!");

#}

clean up sequences...

1. strip out non-letters

2. translate to upper case;

$PROTEIN{'sequence'} =~ tr/a-zA-Z\n\>//cd;

$PROTEIN{'sequence'} =~ tr/a-z/A-Z/;

unless (open (FILE1, ">" 	$tempseqfile)) {

&return_error (234, "bad open", "Cannot open (", $tempseqfile, ",

for writing")

}

flock (FILE?, 2);
print FILE? $PROTEIN{'sequence'};

flock (FILE1, 8);

close (FILE1);

unless (open (FILE2, ">" . $tempparmfile))

&return_error (234, "bad open", "Cannot open ' ", $tempparmfile, ",

for writing");

24

flock (FILE2, 2);

print FILE2 $PROTEIN{'mtype'};

print FILE2 $space;

print FILE2 $PROTEIN{'min_length'};

print FILE2 $space;

print FILE2 $PROTEIN{'min_occur'};

print FILE2 $space;

print FILE2 $PROTEIN{'allowed'};

flock (FILE2' 8);

close (FILE2);

unless (open (FILE' $tempseqfile)) {

&return_error (123, "bad file", "Cannot open ' ", $tempseqfile, ",

for reading");

}
flock (FILE, 2);

$stuff = <FILE>;

flock (FILE, 8);

close (FILE);

print "Content-type: text/html\n";

print <<End_Of_Form;

<html>

<head>

<title>Protein Sequence Discovery Tool</title>

</head>

<h3>Here's what you're going to send:</h3>

<hr>

<table>

<tr><td align=right>Your Name: 	 <td>$PROTEIN{'name'}

</td></tr>

<tr><td align=right>Your e-mail address: 	<td>$PROTEIN{'email'}

</td></tr>

<tr><td align=right>Your web site (optional)<td>PROTEIN{'url'}

</td></tr>

</table>
<p>

<hr>

<h4>Your sequences are shown below.</h4>

<pre>

$PROTEIN{'sequence'}

</pre>

<hr>

<p>

The form of the motifs: $type

<p>

The minimum length of interesting motifs: $PROTEIN

{'min_length'}

<p>

The minimum occurrence number: SPROTEIN{'min_occur'}

<p>

The quantity of allowed mutations: $PROTEIN{'allowed'}

<hr>

<h4>To execute the Discovery Program, click on Execute</h4>

<!-- prof wang wants to show only sorted output! 7-29-97 -->

<!-- in that case, use 'homer.pro2.sh.cgi' in place of 	-->

<!-- 	 'homer.prol.sh.cgi' 	 -->

<form method=get action="homer.pro2.sh.cgi"›

<input type="submit" value="Execute>

<!-- <input type="reset" value="Return to Input Form"› -->

<h4>To return to input form. click on Browser Return Button</h4>

</form>

</body>

</html>

End_Of_Form

###########################

sub parse_data

{

local (*FORM_DATA) = @_; # any args passed to an array come

25

26

in via @_

local variables:

local ($request_method, # scalar

$query_string, 	# scalar

@key_value_pairs, # associative array (aka hash)

$key_value, 	# scalar

$key, 	 # scalar

$value 	 # scalar

) ;

$request_method = $ENV{'REQUEST_METHOD'}; # get delivery method

if ($request_method eq "GET") {

$query_string = $ENV{'QUERY_STRING,}; # if ,get,, read

environment var

}

elsif ($request_method eq "POST") {

read (STDIN, $query_string, $ENV{'CONTENT_LENGTH,1);

if 'post,, read

from stdin

}

else {

&return_error (500, "server error", "Server uses unsupported

method.");

}

@key_value_pairs = split (/&/, $query_string); # split string on

'&' boundaries

foreach $key_value (@key_value_pairs) {

($key, $value) = split (/=/, $key_value);

$value =~ tr/+/ /;

$value =~ s/%([\dA-Fa-f0-9)][\dA-Fa-f0-9])/pack ("C", hex

($1))/eg;

if (defined($FORM_DATA{$key}))

$FORM_DATA{$key} = join ("\0", $FORM_DATA{$key}, $value);

}

else

$FORM_DATA{$key} = $value;

}

}

}

###########################

sub return_error

{

local ($status, $keyword' Smessage) =

print "Content-type: text/html", "\n\n";

print "Status: ", $status, " ", $keyword, "\n\n";

print <<End_of_Error;

<head>

<title>CGI Program - Unexpected Error! Status: $status </title>

</head>

<body>

<h1>$keyword</h1>

<h2>$message</h2>

Please contact $webmaster for more information.

</body>

End_of_Error

exit (1);

}

###########################

sub return_thanks

{

if ($PROTEIN{'url'}) {

print "location: ", $PROTEIN{'url'}, "\n\n";

}

else {

print "Content-type: text/html\n\n";

print <<Thanks;

<html>

<title>$gateway</title>

<body>

<h1>Thanks!</h1>

27

28

</body>
</html>

Thanks

}
}

A.2.2 homerpro2.sh.cgi

Following is the Bourne shell script used to execute the command line version of the

discovery program.

! /bin/sh

#touch /home/discdb/public_html/protein.final.html
#chmod 755 /home/discdb/public_html/protein.final.html
echo "Content-type: text/html\n\n"

/home/discdb/public_html/cgi-bin/discover4.cgi \
/home/discdb/public_html/disco.parms

/home/discdb/public_html/disco.seq

/home/discdb/public_html/cgi-bin/homer.ssort.cgi \
/home/discdb/public_html/cgi-bin/data.out

#cp final.html ../protein.final.html

#chmod 644 /home/discdb/public_html/cgi-bin/final.html
#echo "Location: http://www.cis.njit.edu/~discdb

/cgi-bin/final.html\n"

A.3 SCREEN SHOTS FOR SDISCOVER

Following are the screen shots of SDISCOVER on the WWW. The first two are

of the initial page (it's too large to show all on one screen shot), the third is the

confirmation screen, and the fourth is the results screen. The last is an example of

how sequence strings should be entered.

1. First Half of SDISCOVER Page, Fig. A.1

2. Second Half of SDISCOVER Page, Fig. A.2

3. Confirmation for SDISCOVER' Fig. A.3

4. Output From SDISCOVER, Fig. A.4

5. Example of Protein Sequence Strings, Fig. A.5

29

30

Figure A.1 First Half of SDISCOVER Page

3 1

Figure A.2 Second Half of SDISCOVER Page

32

Figure A.3 Confirmation for SDISCOVER

33

Figure A.4 Output From SDISCOVER

34

Figure A.5 Example of Protein Sequence Strings

35

A.4 TUTORIAL ON USING SDISCOVER ON WWW

Following is a tutorial on using SIDSCOVER on the World Wide Web.

1. Type in URL of SDISCOVER:

http://www.cis.njit.edu/~discdb/homer.pro4.html

2. Type in your name, e-mail address, and your web site (if you have one)

3. Type in the following set of sequences:

>RASL_MOUSE TRANSFORMING PROTEIN P21/K-RAS 2B.

MTEYKLVVVGAGGVOKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLIDILDTAG QEEYSAMRNYMRTGEGFLCVFAINNTKSFEDIHHYREQIKRVKDSEDVPMVLVGNKCDL

PSRTVDTKQAQELARSYGIPFIETSAKTRQGVDDAFYTLVREIRKHKEKMSKDGKKKKKK

SRTRCTVM
>RASN_HUMAN TRANSFORMING PROTEIN P21/N-RAS.

MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLDILDTAG
QEEYSAMRDQYMRTGEGFLCVFAINNSKSFADINLYREQIKRVKDSDDVPMVLVGNKCDL PTRTVDTKQAHELAKSYGIPFIETSAKTRQGVEDAFYTLVREIRQYRMKKLNSSNGTQG

CMGLPCVVM

4. Choose the motif form of *X*

5. Click on 'Submit'

6. When the confirmation screen (see figure A.3, page 32) is shown, click on

`Execute' to submit the data to the SDISCOVER program.

APPENDIX B

RESOURCES FOR LATEX FILE COMPARISON

B.1 INTRODUCTION

This appendix contains the following resources used in implementing TREEDIFF for

LATEX file comparison on the World Wide Web:

1. Perl and shell scripts

2. Screen shots of TREEDIFF for LATEX

3. A tutorial on using TREEDIFF on WWW

B.2 SCRIPTS

This section contains the scripts used to implement LATEX file comparison on the

World Wide Web. There are three scripts used:

1. getlatex. cgi - a Perl 5.003 script

2. MOSAIC.FUNCTIONS - a utility Bourne shell script, called by 'dolatex.sh.cgi'

3. dolatex.sh.cgi - a Bourne shell script

B.2.1 getlatex.cgi

Following is the Perl 5.003 script used to retrieve two LATEX files via the URL's typed

in by the user.

#! /home/discdb/local/bin/perl/

use Config;

tip. B.: The text of this and the following scripts has been modified slightly. The
modifications are primarily in the form of newlines inserted where they otherwise would
not be. These modifications are imposed by the requirements of the thesis format.

36

use URI::URL;

use HTML::Parse;
use HTTP::Response;

use HTTP::Status;
use LWP::Debug;
use LWP::UserAgent;
use LWP::Simple;

use CGI;

$texfile1 = "texl.dat";
$texfile2 = "tex2.dat";

my($q) = new CGI;

$1 = 1; # flush headers now
print $q->header('HTTP/1.0 200 OK');
print $q->header(-type => 'text/html,,

-status => ,200 OK,,

) ;
print "\r\n";

print $q->start_html(-title=>,LaTeX File Retriever',
-author=>'pjohnson',
-BGCOLOR=>'#F0F0F0');

print $q->hl('LaTex File Retriever');

print $q->p('© NJIT DB-Lab, 1997');
print $q->hr;

$url1 = $q->param(,texurll');

$url2 = $q->param('texurl2');

$rcl = getstore ($url1, $texfilel);

$rc2 = getstore ($url2, $texfile2);

if return code eq not found for either or both, print out note

stating

that files must be observable by browser

if (is_success($rc1)) {

print $q->h2('Successfully retrieved first LaTeX file!');

else {

print $q->h2('Error retrieving first LaTeX file! Status: ',

37

38

status_message($rc1));
if ($rc1 == RC_NOT_FOUND) {

it'd be nice to show the url entered...
print $q->h2('Could not find the document you specified. The

document must be visible to the web browser.');
print $q->h2('For example' if your web server requires all

accessible files to be placed under the
public_html directory,');

print $q->h2('then the files you wish to analyze must be placed
there in a similar fashion.');

}
}

if (is_success($rc2)) {
print $q->h2('Successfully retrieved second LaTeX file!');

else {
print $q->h2('Error retrieving second LaTeX file! Status: ',

status_message($rc2));
if ($rc2 == RC_NOT_FOUND) {

it'd be nice to show the url entered...
print $q->h2('Could not find the document you specified. The

document must be visible to the web browser.');
print $q->h2('For example' if your web server requires all

accessible files to be placed under the
public_html directory,');

print $q->h2('then the files you wish to analyze must be placed
there in a similar fashion.');

}

}

set up options for document comparison

$method = "post";
$action = "dolatex.sh.cgi";
%details = (

"d", "show all categories, regardless of any changes in either
file",

"s", "show only those categories that have changes",
"o", "default: show categories that have changes"

) ;
%diffs =
"diff", "show output similar to Unix diff"'
"sdiff", "show output similar to Unix sdiff",
"odiff", "show no difference output"

39

);

if ((is_success($rc1)) && (is_success($rc2))) {
print $q->startform($method, $action);

print $q->h3('Having successfully retrieved both LaTeX

files, please choose the'+
' document comparison options');

print $q->h3('Please select the level of detail to be shown on
output,);

print $q->radio_group(-name=>'detail',

-values=>[,d','s','o'],
-default=>'o',

-linebreak=>'true',

-labels=>\%details);

print hr;

print $q->h3('Please choose the difference reporting options,);

print $q->radio_group(-name=>'difference,,

-values=>['diff',,sdiff,,'odiff,],
-default=>'odiff',

-linebreak=>'true,,
-labels=>\%diffs);

print $q->hr;

print $q->submit('Begin document comparison');
print $q->defaults('Reset');

print $q->endform;
}

print $q->end_html;

exit 0;

B.2.2 MOSAIC.FUNCTIONS

Following is the utility file entitled, "MOSAIC.FUNCTIONS". This is called by

`dolatex.sh.cgi.'

Translate escapes from the form to real characters.

note mods: the single quote %27 is eliminated ('); %0D =

unescape_url ()

{

echo "${@}" I tr '+' 	' I tr -d '
' 	I

sed -e 's/%07/~G/g' -e 's/%08/~H/g'

-e 's/%09/ /g' -e 's/%0A/\

/g'\

-e 's/%21/!/g' -e 's/%22/"/g' \

-e 's/%23/#/g' -e 's/%24/$/g' \

-e 's/%25/\%/g' -e 's/%26/\&/g' \

-e "s/%27//g" 	-e 's/%28/(/g' \

-e 's/%29/)/g' -e 's/%2B/+/g' \

-e 's/%2C/,/g' -e 's/%2F/\//g' \

-e 's/%3A/:/g' -e 's/%3B/;/g'

-e 's/%3C/</g' -e 's/%3D/=/g' \

-e 's/%3E/>/g' -e 's/%3F/?/g' \

-e 's/%5B/[/g' -e 's/%5C/\\/g' \

-e 's/%5D/]/g' -e 's/%5E/-/g' \

-e 's/%60/'/g' -e 's/%7B/{/g' \

-e 's/%7C/1/g) -e 's/%7D/}/g' \

-e 's/%7E/~/g' -e 's/%0W
/g'

}

Read the name-value pairs from stdin (from a POSt form), and

put them into the environment.

read_form()

{

read line

line='echo "${line}" 1 tr -d '\015"

while ["${line}"]

do

work='echo "${line}" I cut -d'&' -f1'

line='echo "${line}" I cut -d'&' -f2-'

name='echo "${work}" I cut -d= -f1'

value='echo "${work}" I cut -d= -f2-'

40

41

if ["${value}"]

then

value=(unescape_url "${value}"

fi

eval "${name}='${value}"

if ["${work}" = "${line}"]

then

break

fi

done

}

B.2.3 dolatex.sh.cgi

Following is the Bourne shell script used to process the LATEX file comparison options.

This shell script also executes the file comparison program.

#!/bin/sh

this code from Padmaja Balabhadrapatruni

written for CS project under Dr. J Wang

written to run on Oak, ported to homer by Phil Johnson 4-29-97

/MOSAIC. FUNCTIONS

cat <<END

Content-type: text/html

<TITLE>LaTeX File Comparison (execution)</TITLE>

<h2>File Comparison System Response</h2>

<P>

END

42

#Take the single line of input that is passed from the form

echo "<h3>about to read line from stdin</h3>"

read line

line='echo "${line}" I tr -d '\015"

echo ${line} > /home/discdb/test/testfile

newline='unescape_url

echo ${newline} > /home/discdb/test/newtest

This section processes the input line and extracts the

variables one

at a time and stores them in variables.

Extracting the first item. If data is not entered in

a certain text box, an error message is displayed, and

the program

exits. Until all the required data is not entered,

the program will not proceed further.

get the detail spec... (radio button)

work='echo "${newline}" I cut -d'&' -fl'

newline='echo "${newline}" I cut -d'&' -f2-'

name='echo "S{work}" I cut -d= -f1'

value='echo "${work}" I cut -d=

if ["$value"

then

det="$value"

else

echo " ERROR! PLEASE ENTER ALL THE DATA!!! (detail

spec) <P>"

exit 1

fi

echo "
 the value of the detail spec is: $det "

get the difference spec... (radio button)

work='echo "${newline}" I cut -d'&' -f1(

newline='echo "${newline}" I cut -d'&' -f2-'

name='echo “${work}" I cut -d= -fl'

value='echo "${work}" I cut -d=

if ["$value"]

then

diff="$value"

else

echo " ERROR! PLEASE ENTER ALL THE DATA!!!

(difference spec) <P>"

exit 1

fi

echo "
 the value of the difference spec is:

 $diff "

echo "
 all done extracting data "

set up options...

case "$det" in

o)detl=;;

d)det1='-d',;;
s)det1='-s';;

esac

case "$diff" in

odiff)diff1=;;

diff)diff1='-diff';;

sdiff)diff1='-sdiff';;

esac

echo "
 value of diff1 is $diff1 "

echo "
 value of det1 is $det1 "

now call tdlatex with command-line parameters...

echo "<pre>"

/home/discdb/public_html/cgi-bin/tdlatex $det1 $diff1 tex1.dat

tex2.dat

echo "</pre>"

#******************** 	E N D 	***********************

43

44

B.3 SCREEN SHOTS

Following are the screen shots of TREEDIFF for LATEX file comparison on the WWW.

There are four shots:

1. LATEX File Retrieval' Fig. B.1

2. Notification of Successful Retrieval' Fig. B.2

3. Output of LATEX File Comparison' Fig. B.3

4. Notification of a LATEX File Not Found, Fig. B.4

45

Figure B.1 LATEX File Retrieval

46

Figure B.2 Notification of Successful Retrieval of Two LaTEX Documents

7

Figure B.3 Output of LATEX File Comparison

48

Figure B.4 Notification of a LATEX File Not Found

49

B.4 TUTORIAL ON USING TREEDIFF FOR LATEX ON WWW

Following is a tutorial on using TREEDIFF for LATEX on the World Wide Web.

1. Access the TREEDIFF for LATEX web page at:

http://www.cis.njit.edu/~discdb/clatex.html

2. Type in the following URLs for the LATEX documents:

http://www.cis.njit.edu/-discdb/cgi-bin/TDLATEX_SRC/docl.tex

http://www.cis.njit.edurdiscdb/cgi-bin/TDLATEX_SRC/doc2.tex

3. When the web page indicating successful retrieval s displayed (see figure B.2,

page 46), choose (accept) the default document comparison options and click

on 'Begin document comparison'

4. The results will be shown on the next (web) page (see figure B.3, page 47).

APPENDIX C

RESOURCES FOR SGML FILE COMPARISON

C.1 INTRODUCTION

This appendix contains the following resources used in implementing SGML file

comparison on the World Wide Web:

1. Perl and shell scripts

2. Screen shots

3. A tutorial on using TREEDIFF for SGML file comparison

C.2 SCRIPTS

This section contains the scriptst used in performing the SGML file comparison.

There are three scripts used for SGML file comparison:

1. getsgml. cgi - a Perl 5.003 script

2. MOSAIC .FUNCTIONS - a utility Bourne shell script' called by `dosgml.sh.cgi'

3. dosgml.sh.cgi - a Bourne shell script

C.2.1 getsgml.cgi

Following is the Perl 5.003 script used to retrieve two SGML files via the URLs typed

in by the user.

#!/home/discdb/local/bin/perl

tN. B.: The text of this and the following scripts has been modified slightly. The
modifications are primarily in the form of newlines inserted where they otherwise would
not be. These modifications are imposed by the requirements of the thesis format.

50

file: getsgml.cgi

date written: 6-10-97
# author: 	Phil Johnson
# who: 	 RA for Dr. J. T. L. Wang

purpose: retrieve two sgml files via URL's entered by user on web
page

use Config;

use HTTP::Status;

use LWP::Debug;

use LWP::Simple;
use CGI;

$texfile1 = "sgml1.dat";

$texfile2 = "sgml2.dat";

my($q) = new CGI;

$1 = 1; # flush headers now
print $q->header('HTTP/1.0 200 OK');

print $q->header(-type => 'text/html',

-status => '200 OK''

);
print "\r\n";

print $q->start_html(-title=>'SGML File Retriever',

-author=>'pjohnson',
-BGCOLOR=>'#F0F0F0');

print $q->h1('SGML File Retriever');

print $q->p('© NJIT DB-Lab, 1997');

print $q->hr;

$url1 = Sq->param('texurl1');
$url2 = $q->param('texurl2');

$rcl = getstore ($urll, $texfile1);

$rc2 = getstore ($url2, $texfile2);

51

52

if return code eq not found for either or both, print out note
stating
that files must be observable by browser

if (is_success($rc1)) {
print $q->h2('Successfully retrieved first SGML file!');

} else {
print $q->h2('Error retrieving first SGML file! Status: ',

status_message($rc1));
if ($rc1 == RC_NOT_FOUND) {

it'd be nice to show the url entered...
print $q->h3('Could not find the first document you specified.

The document must be visible to the web
browser.');

print $q->h3('For example, if your web server requires all
accessible files to be placed under the
public_html directory,');

print $q->h3('then the files you wish to analyze must be
placed there in a similar fashion.');

}

if (is_success($rc2))
print $q->h2('Successfully retrieved second SGML file!');

} else {
print $q->h2(,Error retrieving second SGML file! Status: ',

status_message($rc2));
if ($rc2 == RC_NOT_FOUND) {

it'd be nice to show the url entered...
print $q->h3('Could not find the second document you specified.

The document must be visible to the web
browser.,);

print $q->h3('For example, if your web server requires all
accessible files to be placed under the
public_html directory,,);

print $q->h3('then the files you wish to analyze must be placed
there in a similar fashion.');

}

}

set up options for document comparison

$method = "post";

$action = "dosgml.sh.cgi"; # this cgi script will process

& execute...

%details = (

"d", "show all categories, regardless of any changes in either
file",

"s", "show only those categories that have changes",
"o", "default: show categories that have changes"

);

%diffs = (

"diff"' "show output similar to Unix diff",

"sdiff", "show output similar to Unix sdiff",
"odiff", "show no difference output"

);

if ((is_success($rc1)) && (is_success($rc2))) {

print $q->startform($method, $action);

print $q->h3(,Having successfully retrieved both SGML
files, please

choose the document comparison options');

print $q->h3('Please select the level of detail to be shown on
output,);

print $q->radio_group(-name=>'detail',
-values=>['d',,s','o'],
-default=>'o',

-linebreak=>'true',
-labels=>\%details);

print $q->hr;

print $q->h3(,Please choose the difference reporting options');
print $q->radio_group(-name=>'difference',

-values=>['diff','sdiff','odiff'],
-default=>'odiff',

-linebreak=>'true',

-labels=>\%diffs);

print $q->hr;

print $q->submit('Begin document comparison');

print $q->defaults('Reset,);

print $q->endform;

53

54

}

print $q->end_html;

exit 0;

C.2.2 MOSAIC.FUNCTIONS

Following is the utility file entitled, "MOSAIC.FUNCTIONS". This is called by

'dosgml.sh.cgi'.

Translate escapes from the form to real characters.

note mods: the single quote %27 is eliminated ('); %OD =

unescape_url ()
{

echo "${@}" I tr '+' 	I tr -d ' 	I
sed -e 's/%07/-G/g' -e 's/%08/-H/g'

-e 's/%09/ /g' -e 's/%0A/\
/g'\

-e 's/%21/!/g' -e 's/%22/"/g' \
-e 's/%23/#/g' -e 's/%24/$/g' \
-e 's/%25/\%/g' -e 's/%26/\&/g' \
-e "s/%27//g" 	-e 's/%28/(/g' \
-e 's/%29/)/g' -e 's/%2B/+/g' \
-e 's/%2C/,/g' -e 's/%2F/\//g' \
-e 's/%3A/:/g' -e 's/%3B/;/g' \
-e 's/%3C/</g' -e 's/%3D/=/g' \
-e 's/%3E/>/g' -e 's/%3F/?/g' \
-e 's/%5B/[/g' -e 's/%5C/\\/g' \
-e 's/%5D/]/g' -e 's/%5E/~/g' \
-e 's/%60/'/g' -e 's/%7B/{/g' \
-e 's/%7C/I/g' -e 's/%7D/}/g' \
-e 's/%7E/~/g' -e 's/%0D/
/g'

}

Read the name-value pairs from stdin (from a POSt form), and
put them into the environment.

55

read_form()

{
read line

line='echo '${line}" I tr -d '\015"

while ["${line}"]

do

work='echo "${line}" I cut -d'&' -f1'

line='echo "${line}" I cut -d'&' -f2-'

name='echo "${work}" I cut -d= -f1(

value='echo "${work}" I cut -d= -f2-'

if 	"${value}"]

then

value='unescape_url '${value}"

fi

eval "{name}='${value}"

if ["${work}" = "${line}"

then

break

fi

done

}

C.2.3 dosgml.sh.cgi

Following is the Bourne shell script used to process the file comparison options

specifed by the user. This script also executes the SGML comparison program.

#!/bin/sh

this code from Padmaja Balabhadrapatruni

written for CS project under Dr. J Wang

written to run on Oak, ported to homer by Phil Johnson 4-29-97

. 	/MOSAIC. FUNCTIONS

Trap hangup, interrupt, and quit signals; exit gracefully
This shouldn't be an issue, but is included to be safe.

trap 'echo "Content-type: text/plain\n\n";

echo "Your request could not be processed.\n";

echo "An internal error occurred (an interrupt was

caught).";

echo "Please try your request again. If the problem";

echo "persists, please contact the webmaster.";
exit 1' 	1 2 3

cat <<END

Content-type: text/html

<TITLE>SGML File Comparison (execution)</TITLE>

<h2>File Comparison System Response</h2>
<P>

END

#Take the single line of input that is passed from the form ...

echo "<h3>about to read line from stdin</h3>"

read line

line='echo "${line}" I tr -d '\015"

echo ${line} > /home/discdb/test/testfile

newline='unescape_url ${line}'

echo ${newline} > /home/discdb/test/newtest

This section processes the input line and extracts the

variables one

a

time and stores them in variables.

56

57

Extracting the first item. If data is not entered in

a certain text box, an error message is displayed, and

the program

exits. Until all the required data is not entered,

the program will not proceed further.

get the detail spec... (radio button)

work='echo "${newline}" I cut -d'&' -f1'

newline='echo "${newline}" I cut -d'&' -f2-'

name='echo "${work}" I cut -d= -fl'

value='echo "${work}" I cut -d= -f2-'

if ["$value"]

then

det="$value"

else

echo " ERROR! PLEASE ENTER ALL THE DATA!!! (detail

spec) <P>"

exit 1

fi

echo "
 the value of the detail spec is: $det "

get the difference spec... (radio button)

work='echo "${newline}" I cut -d'&' -f1'

newline='echo "${newline}" I cut -d'&' -f2-'

name='echo "${work}" I cut -d= -f1'

value='echo "${work}" I cut -d= -f2-'

if ["$value"]

then

diff="$value"

else

echo " ERROR! PLEASE ENTER ALL THE DATA!!!

(difference spec) <P>"

exit 1

fi

echo "
 the value of the difference spec is:

 $diff "

echo "
 all done extracting data "

set up options...

case "$det" in

o)det1=;;

d)det1='-d';;
s)detl='-s';;

esac

case "$diff" in

odiff)diff1=;;

diff)diff1='-diff';;

sdiff)diff1='-sdiff';;
esac

echo "
 value of diff1 is $diff1 "

echo "
 value of det1 is $det1 "

echo "
 about to call tdsgml via sgml.sh (modified
invokeDCT.sh...)
"

now call tdlatex with command-line parameters...

File: sgml.sh

June 1997, Phil Johnson
modified from: invokeDCT.sh, Jan. 1996, Brophy

This shell script supports the CGI processing related to the HTML
form which allows users to compare 2 document revisions using
George's tdsgml

umask 002

Create a temporary directory for the document comparison

DCTTmpDir=/tmp/DCT$$

/bin/rm -fr ${DCTTmpDir} 2> /dev/null

/bin/mkdir ${DCTTmpDir} 2>/dev/null

58

check to see if command for directory creation succeeded...
most recent status is in $?...
status equal to zero implies successful completion...

if [$? -ne 0]
then

print the MIME header and an error message, and quit

echo "Content-type: text/plain\n\n";

echo "Your request could not be processed.\n"

echo "Error creating temporary directory for processing
output from tdsgml.\n"

echo "Please try your request again. If the problem"
echo "persists, please contact the webmaster."
exit 1

fi

set directory where tdsgml files (executables & such) live ...

H=/home/discdb/public_html/cgi-bin/TDSGML_SRC

cp sgml1.dat $H/sgml1.dat

check for successful file copy...

if 	$? -ne 0]
then

print the MIME header and an error message, and quit

echo "Content-type: text/plain\n\n";

echo "Your request could not be processed.\n"

echo "Error copying temporary file to working directory.\n"
echo "Please try your request again. If the problem"

echo "persists, please contact the webmaster."

exit 1

fi

cp sgml2.dat $H/sgml2.dat

check for successful file copy...

if 	$? -ne 0 1

59

60

then

print the MIME header and an error message, and quit

echo "Content-type: text/plain\n\n";

echo "Your request could not be processed.\n"
echo "Error copying temporary file to working directory.\n"

echo "Please try your request again. If the problem"
echo "persists, please contact the webmaster."

exit 1

fi

now run tdsgml

cd ${DCTTmpDir}

$H/tdsgml $diff1 $detl $H/catalog $H/html.decl $H/sgml1.dat

$H/sgml2.dat \

${DCTTmpDir}/tdsgml.out 2> ${DCTTmpDir}/tdsgml.err

The tdsgml program always exits with 0 status, even on an error

condition. If the error file is empty, we conclude the program

ran successfully.

if [! -s ${DCTTmpDir}/tdsgml.err]

then

successful comparison run:

print the MIME header and the comparison results, and quit

echo "Content-type: text/plain\n\n";

echo "<pre>"

cat MCTTmpDirl/tdsgml.out

echo "</pre>"

no longer need the tmp directory or files; remove them

/bin/rm -fr ${DCTTmpDir} 2> /dev/null

61

exit 0

else

something went wrong...

print the MIME header and an error message, and quit

echo "Content-type: text/plain\n\n';

echo "Your request could not be processed.\n"

echo "An error occurred while comparing the documents.\n"

echo "Please contact the webmaster regarding this error.\n"

leave the DCTTmpDir directory there for problem

investigation

exit 1

fi

end ...

C.3 SCREEN SHOTS

Following are the screen shots of TREEDIFF for SGML file comparison on the

WWW. There are four shots:

1. SGML File Retrieval, Fig. C.1

2. Notification of Successful Retrieval, Fig. C.2

3. Output of SGML File Comparison, Fig. C.3

4. Notification of an SGML File Not Found, Fig. C.4

62

Figure C.1 SGML File Retrieval

63

Figure C.2 Notification of Successful Retrieval of Two SGML Files

64

Figure C.3 Output of SGML File Comparison

65

Figure C.4 Notification of an SGML File Not Found

66

CA TUTORIAL ON USING TREEDIFF FOR SGML FILE
COMPARISON

Following is a tutorial on using TREEDIFF for SGML file comparison on the World

Wide Web.

1

. Access the TREEDIFF for SGML web page at:

http : //www . cis . nj it . edu/ 	s cdb/ c sgml html

2. Type in the following URLs for the SGML documents:

http : //point . nj it . edu : 8000 / ~discdb/ cgi-bin/TDSGML_SRC/memo sgm

http : //point . nj it . edu : 8000/~discdb/cgi-bin/TDSGML_SRC/memo2 gm

3. When the web page indicating successful retrieval is displayed (see figure C.2,

page 63), choose (accept) the default document comparison options and click

on 'Begin document comparison'

4. The results will be shown on the next (web) page (see figure C.3, page 64).

REFERENCES

1. G. J. S. Chang, G. Patel, L. Relihan, and J. T. L. Wang, "A Graphical
Environment For Change Detection In Structured Documents," in
Proceedings of the 21st Annual International Computer Software and
Application Conference, Washington, DC, August 1997.

2. M. Fuchs, "Semantic Extensions To DSSSL To Handle Trees, or, Why Isn't
DSSSL a Tree?," from http://www.sil.org/sgml/fuchsDSSSL-sgm.txt, 1996.

3. M. Goossens, F. Mittelbach, and A. Samarin, The LATEXCompanion, Addison-
Wesley, Reading, Massachusetts, 1994.

4. J. T. L. Wang, G. -W. Chirn, T. G. Marr, B. A. Shapiro, D. Shasha, and
K. Zhang, "Combinatorial Pattern Discovery For Scientific Data: Some
Preliminary Results," in ACM SIGMOD Record, vol. 23/2, pp. 115-125,
1994.

67

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Fall 1997

	Structured document comparison and scientific data mining on the world wide web
	Philip B. Johnson
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgement
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Structure Document Comparison on WWW
	Chapter 3: Scientific Data Mining on WWW
	Chapter 4: Related Work
	Chapter 5: Conclusions and Future Work
	Appendix A: Resources for SDISCOVER on WWW
	Appendix B: Resources for Latex File Comparison
	Appendix C: Resources for SGML File Comparison
	References

	List of Figures

