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ABSTRACT 

DESIGN AND IMPLEMENTATION OF GENERALIZED ADAPTIVE NEURAL 
FILTERS 

by 
Chun Yip Tam 

Generalized Adaptive Neural Filters (GANF) are a class of adaptive non-linear filters. 

This thesis presents a hardware implementation of GANF. Two designs are considered: 

the single neuron implementation and the multi-neuron implementation. The GANF 

design includes the window generator, threshold decomposer, training and filtering unit. 

The designs are verified through a logic design/simulation tool, Logic Works. 
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CHAPTER 1 

INTRODUCTION 

Signals encountered in real life can appear in many shapes and forms. For electrical 

signals, which can be analog (that is continuous in time and amplitude) or digital (that is 

discrete in amplitude), they can represent physical quantities, such as pressure, image 

brightness, etc. or they can convey timing or control information. 

To convert signals into voltages or currents, a sensor or transducer is needed. 

However, sensors are not perfect and can introduce noise. Furthermore signals may be 

corrupted when being transmitted. The performance of a system against noise can be 

measured by the signal-to-noise ratio (SNR). 	  

1.1 Signal Filtering 

In order to improve the SNR, the noisy signal can be processed by filtering. In many 

cases, a linear filter, whose output is a linear function of the input can be used. The 

mathematical analyses of linear filters are quite straightforward. However, there are 

situations where linear filtering does not adequately accomplish the objective. 

Linear filters are most useful for additive Gaussian noise and tend to mask out 

high frequency components in the signal [1]. When applied to images, a linear filter will 

blur the edges and other high contrast areas which are needed for image clarity. Also. in 

many cases the noise encountered may be non-Gaussian, non-additive and may also be 

related to the desired signal. As a result, non-linear filters must be used to achieve 

satisfactory results. However, choosing a non-linear function requires complicated 
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mathematical analysis which does not work well in practice, and non-linear filters may be 

difficult to implement. 

L2 Introduction to Stack Filter 

Recently, there is need for easy to use non-linear filters which means that they must be 

easy to design (deciding on which non-linear function to use) and easy to implement 

(building the hardware). While all digital filters can be implemented in software, it is 

desirable to build fast, dedicated hardware to do the filtering. One non-linear filtering 

structure that is easy to design and implement are "stack filters". It enabled a large group 

of non-linear filters to be easily implemented with VLSI (Very Large Scale Integration) 

technology and it allows the construction of many non-linear filters in a compact and 

modular form. The dedicated hardware will also permit much faster filtering operations 

as opposed to an algorithm implemented with a DSP (Digital Signal Processor) chip [2]. 

Stack filters will be described in detail in the next section. 

The problem of configuring an optimal stack filter has resulted in the 

development of a new class of nonlinear adaptive filters: Generalized Adaptive Neural 

Filters (GANF). The theoretical implications of GANFs are derived from the theories of 

stack filters and neural networks. GANFs encompass a large class of nonlinear filters 

which includes stack filters. It has been shown that the optimal GANF performs better 

under the mean absolute error (MAE) criterion than do stack filters, and that a tight 

upper-bound of its MAE exists. Though the neural filters reported in [I] shared some 

similarities with the proposed GANFs in [2], the analyses and simulations in [2] have 
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been restricted to a single neuron structure consisting of a linear discriminant function 

followed by a hard or soft limiter, referred to as the hard or soft neural filter, respectively. 

In contrast, most of the analyses and properties derived for GANFs do not assume any 

specific neural architecture, and thus GANFs are more general. The objective of this 

thesis is to develop a hardware implementation of GANF. 

1.3 Stack Filter 

Figure 1 shows an overview of the stack filtering process [2]. The input to the filter is a 

sequence of integers belonging to the set {0, 1, 2, 	 M-1}. The filter would examine a 

portion of the input, called a window, and produces an output which is also an integer 

belonging to the set {0, 1, 2, 	 M-1}. 

Figure 1: The general function of a stack filter 

Figure 2 illustrates a stack filter with M=8, window size, B=3 and shows the low 

level operation of the input vector rB(n), which is composed of elements in the set {0, I. 

2, ...., M-1 }. The operation can be written as follows: 



where B is the window size. This vector can be uniquely decomposed into (M-1) binary 

vectors of length B by a threshold decomposition operation defined as follows: 

(2)  

where 

(3)  

and 

Figure 2: Stack filter with window width B=3 and M=8 
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At this point, we have (M-1) binary vectors of length B. Each vector is then used 

as an input to a separate Boolean function on each level. We have a total of (M-1) such 

Boolean functions, operating on B binary inputs and producing (M-1) binary outputs. For 

a stack filter, all of the (M-1) Boolean functions are identical. However, since the inputs 

(the vectors XBi(n)) are not all the same, the Boolean function outputs may be different. 

In addition, the Boolean function is required to be a positive Boolean function. 

After obtaining the (M-1) binary outputs from the Boolean functions on each 

level, the integer output y(n), is computed by summing the outputs of the Boolean 

functions. Note that the inputs to the Boolean functions, and the Boolean functions are 

positive. Let XBi(n) and XBj(n) be the binary input vectors of two separate but identical 

Boolean functions. The outputs of these two functions are yi(n) and yj(n) respectively. 

Then, if i<j the outputs must satisfy yi(n) less than or equal to yj(n). It can be seen that all 

level outputs can "stack". This means that there will always be a column of O's above a 

level output of 0 and a column of l's below level output of 1. There is only one point 

where a transition between 0 and I can occur and the output y(n) will be equal to the 

largest level number which has an output of 1. As a result, the filter output can be obtain 

through a binary search of the Boolean function outputs to determine where the 1 to 0 

transition occurs. This enables a savings in VLSI chip area. 

The median and other rank-order operators possess two important properties: the 

threshold decomposition property and the stacking property. The first is a limited 

superposition property which leads to a new architecture for filters. The second is an 

ordering property which allows efficient VLSI implementation of filters. Any filter which 
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possesses both the threshold decomposition property and the stacking property is known 

as a stack filter. Thus, they are constructed as a "stack" of positive Boolean functions 

based on the threshold decomposition property and the stacking property. 

The Boolean function used on each level defines the operation of the stack filter. 

By selecting an appropriate Boolean function, many types of nonlinear filters can be 

implemented, such as rank order filters and all morphological filters. For example, a 

median filter for window size 3 can be achieved using a Boolean function described by 

y = x1x2  +x2 x3  +x1x3 	 (4) 

As pointed out previously, there are a large number of positive Boolean functions, 

and therefore a large number of stack filters. The next question is how to pick a positive 

Boolean function suitable for a given filtering problem. There are many methods which 

can be used to accomplished this, and this thesis will implement the Ansari-Lin method 

[2]. 
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Figure 3: Single neuron for adaptive stack filtering 

The Ansari-Lin method involves using a single neuron to implement the positive 

Boolean functions required in the stack filter. The basic structure of the filter is shown in 

Figure 3. Its operation is similar to the stack filter with the exception of the positive 

Boolean function. Each separate positive Boolean function is replaced by a single neuron 

which rides up the level to provide separate level outputs. In other words, the single 

neuron looks at the binary vector at a certain level and produces a binary output. Then it 

moves up a level and does the same thing. This is done for all (M-1) levels. The stack 

filter outputs is taken to be the level at which the outputs changes from 1 to 0. 

The neuron consists of a summation node with (B+1) weighted inputs and a non-

linear threshold function. One of the inputs is permanently assigned the value of one; the 
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others come from the binary input vector on a certain level. Because of the threshold 

function, the output is binary. 

By adjusting the weights, different classifications of the binary input vectors can 

be achieved. The weights can be adjusted in many ways. Ansari et al [2] used perception 

learning and have demonstrated good results. The equation for updating the weight is 

given : 

(5) 

where ε is LMS error and µ is the factor decide whether to update the weight. 

This thesis focuses on the hardware implementation of the GANF. It includes 

schematic design, selection of hardware, and the communication method for inter-module 

communication. Information is provided to construct a complete GANF which include 

three major operations. 

There are three major operations involved in the GANF. They are the window 

generation, the training operation and the filtering operation. The window generation is 

implemented by the Window Generator which is responsible for reading and reordering 

the data and forward them to the training and filtering unit. The latter two operations are 

performed by the training/filtering unit. It provides the overall control of the computation 

process, collects results from the neurons to form the final output, and is also used for 

computation in the training phase. 

For normal filtering operations, the weights would first be broadcast by the 

training/production unit to the neuron. The input signals (provided by the Window 

Generator) are then threshold decomposed and then passed to the corresponding neurons. 
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After B (window size) cycles of computations by the neuron, the results are passed back 

to the training/production unit from all the neurons and assembled to form the final 

output. 

During the learning phase, the operation is similar to the normal filtering 

operation except at the last cycle of computation, the desired output is also threshold 

decomposed with the binary values sent to the corresponding neuron and compared with 

the final output. A weight update signal is then generated according to the result of the 

comparison and the weights will be updated according to the learning rule. 

The rest of this thesis is organized into four chapters. 

Chapter 2 describes the Window Generation operation and its hardware 

implementation. Chapter 3 discuses the filtering operation and its implementation. 

Chapter 4 discusses the training process and its hardware implementation and Chapter 5 

presents the conclusion and future research. 



CHAPTER 2 

WINDOW GENERATION 

Due to the size of image and the limited number of neurons that are available in the 

GANF, the image is typically processed in small pieces, called windows. In most 

instances, a square window is used; for example 3 x 3 window with 9 pixels is shown in 

Figure 4 and Figure 5. At each iteration, the window is allowed to slide across the image 

thus generating new data for the filtering operation. 

2.1 Overview 

Figure 4 illustrates a 3 x 3 windows with pixels, B,C,D,L,M,N,T,U,V. The new window 

is generated by sliding towards the right one pixel. As a result, the new window shown in 

Figure 5 contains the new data C, D, E, M, N, 0, U, V, W. 

Figure 4: The current window's position in a picture 

Figure 5: The next window's position in a picture 
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2.2 Window Generator 

As illustrated in Figure 4 and 5, there are common data in the old window and the new 

window. In order to reduce the I/O complexity of re-reading identical pixels as the 

window move across the image, the window generator should be designed so that useful 

pixels are retained. 

2.3 Total Number of Buffer Unit Required 

The first step is to determine how many and which pixels are needed to store. For 

example, given a (W x H) 10 X 10 image and a (w x h) 3 X 3 window as shown in Figure 

6, we will determine the number of buffers needed. In Figure 6, the top figure is a image, 

the middle is a window, the bottom is the image overlapped with the window. The 

scanning starts at the upper left corner and it scans all the way to the right. Then it goes 

back to the left size, and moves down one line of pixel. This process repeats itself until 

the entire image has been scanned. 

If we visualize this scanning process, we will discover that the first line of the 

image is used only once (all successive scan will not use this line of pixel). It is because 

the Window will shift down one line when it starts itself from the left end, and only the 

second and the third line of the current window are useful (for window size = 3). This 

means that the number of pixels need to be stored is (h-1) W. 
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Figure 6: The relationship between window and image 

As the window moves right, it reads a new value that is usable for the next two 

passes. Since we do not want to re-read any of these elements, they must be stored 

temporary for two passes and then overwrote by other elements as the scan progresses. As 

a result, in addition to the above number of elements required to be stored, we also need 

to store another w element, which is 3 in this case. 

The total number of buffer unit required to store all the necessary elements are 

bufferrequired = (h —1)* W + ω 	 (6) 

For example, as shown in Figure 7, a 4 x 3 window in a 10 x 5 image needs buffer 

space to store (2*10)+4=24 pixels. 

Figure 7: An example of 4 x 3 window in a 10 x 5 image 
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2.4 The Scanning Logic 

At the start of the window generation process, all buffers must be initialized with pixels 

from the image. To fill the buffers of the window generator, the pixels will be read from 

left to right and then top to bottom until all buffer space is filled. For example, a buffer 

of 23 pixels will be initialized with first two lines and first 3 pixels from the third line of 

a 10 by X image with 3 by 3 window (X is used to denote the height of the picture 

because it is not a factor in determining buffer size). 

First of all, windows are generated by reading appropriate data from the buffer. 

When the window moves to a new position, the buffer must be updated with new values. 

The buffers are updated by a shifting mechanism. 

1. First round (starts at first line of the picture) : Top left of the window generator is 

placed on the first pixel of the picture. Inside this window, there are no new pixels 

because all of them have already been stored into the buffer during the initialization 

phase. The first set of data (a window) is generated by reading the buffer. The 

window then move left one pixel. Top left hand corner of window generator is now 

located on the second pixel of the picture. Inside this window, there is a new pixels in 

the rightmost, bottom-most corner. The buffer will be updated with this new value. 

Then a window generates. This pattern will continue until the window can not be 

moved to left anymore because the rightmost of the window is already at the far right 

side of the picture. This denotes the end of the First round. 

2. Second round (starts at second line of picture) : Top left corner of window generator 

is placed on the first pixel of the picture's second line. The bottom row of the window 
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contains all new pixels, so the buffer is updated with these new values. A window is 

generated. Window moves one pixel towards the right, and the lower right hand 

covers a new value. Buffer is updated and a window is generated. The pattern 

continues until it reaches the rightmost side of the picture and this denotes the end of 

the second round. 

3. Third and subsequent round : They all follows the same pattern as in the second round 

until (the rightmost, bottom-most) reaches the lower right hand corner which is the 

last pixel of the picture. This denotes the end of the last round and the window 

generation process. 

Figure 8 shows an example of the window generation process. The top part 

displays the content of the buffer chain after each round of processing. The bottom 

displays the picture that is being scanned. It shows the content of the buffers as the 

window move across the image. The first line shows the content of the buffer after 

initialization. The bolded data will be read to generate a 3 by 3 window. After the first 

window is generated by reading the nine bolded data in the first line, all data in the 

buffers will be shifted towards left one pixel to prepare for the second window. After the 

shift, the content of buffers would look like line 2. This process continues until all pixels 

in the original picture are visited by the window generator. 

For reference purpose, two programs written in C -H-  to simulate the process of 

window generation are included in Appendix B and C. Program picgen (Appendix B) 

creates an image of any specified size and program wingers (Appendix C) will generate 

all the windows. 
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buf01 buf02 buf03 buf04 bums buf06 buf07 buf08 buf09 buflO buf11 buf12 buf13 

1 2 3 4 5 6 7 8 9 10 11 12 13 

2 3 4 5 6 	l  7 8 9 10 11 1.2 13 14 

3 4 5 6  7 I 	8 9 10 11 12 13 14 15 

4 5 6 7 8 9 	 10 11 12 13 14 15 16  
5 6 7 8 9 10 11 12 13 14 15 16 17 

6 7 8 9 10 11  12 13 14  15  16 17 18 

1 2 3 4 5 
6 7 8 9 10 
11 12 13 14 15 
16 17 18 19 20 
21 22 23 24 25 

Figure 8: Content of buffer chain and the image 

2.5 Hardware Design and Implementation 

In this section, we will examine the design and hardware implementation of the window 

generator buffer in detail. Throughout this section, a 3 by 4 window on a 50 by 50 image 

(each pixel is 8 bit) will be used as an example. An equation is also provided to determine 

the corresponding variable for other situations and requirements, such as different size of 

window or image. 

The number of buffers defined above is implemented by using shift registers. In 

the above example, it requires 153 shift registers (each of them is 8 bit wide). 

There is a certain number of reading pointer that are set up to indicate where to 

read along the shift registers. Each of them is anchored to a fixed position along the shift 

registers. Their function is to tell the window generator where to start reading data to 

assemble a window. The example requires 4 pointers. The equation defining the reading 

pointer is : 
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The number of reading pointer = Height of window 	 (7) 

At each reading pointer, a value called BufRead controls how many buffer must 

be read. The above example has BufRead equals to 3. It means at each reading pointer, 3 

buffers will be read. The general equation is : 

BufRead = Width of window 	 (8) 

From the above calculation, 4 reading pointers combines with BufRead=3 

producing 12 values which is exactly one window. 

To determine the placement of the reading pointers, the rule of thumb is putting 

the 1st anchor at the head of the shift registers, and each additional reading pointer is to 

be placed every (Width of picture - Width of Window BufRead (B) ) units. 

The generator starts from the left and moves right one pixel after each round of 

scanning. When it reaches the right side of the picture, it goes down one row and starts 

from the leftmost again. When it arrives at the lower right hand corner of the picture, the 

process is finished. 

The number of scanning required to finish a horizontal row is simply 

	

Width of picture - Width of window + 1 	 (9) 

For the above example, there will be 48 scanning in each row (each row contains 50 

pixels). 

The number of horizontal scans required to finish an entire picture is simply 

Height of picture - Height of window + 1 	 (10) 

For the above example, it takes 47 horizontal scans. 
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With all necessary parameters defined, we can examine the entire window 

generation step by step. 

	

1. 	At the start of the window generation process, the following happens: 

a) All buffers will be initialized by reading in data from the image. This is 

done by reading the 1st pixel and writing it to the end of the register chain. 

b) Shift left the registers. 

c) Repeat step (a) and (b) until all shift registers are occupied. 

	

2. 	Generate windows for the picture in the following steps: 

a) Read the 1st line of the window at the 1st reading pointer on the shift 

register chain. BufRead (representing the wide of the window) determines 

the number of buffers to be read (including the buffer pointed by the 

reading pointer). 

b) Read the 2nd line of the window at the 2nd reading pointer on the shift 

register chain. Again BufRead determines the number of buffers to be 

read. 

c) Repeat the above step by continue reading subsequent lines of the window 

started at the corresponding reading pointer until an entire window is 

generated. 

d) Shift left the register chain by 8 bits (depend on the number of bits 

required to represent a pixel). 

e) Feed the next pixel (never read before) from the picture to the right end of 

shift registers. 
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Generate another window by repeating step (a) through (e) until the last 

window of the current row is generated, i.e. Window reaches the rightmost 

pixel of current row of the image. 

g) At this point, the current row is finished and the window will start 

scanning the next row. Left shift the register chain by the number of 

buffers equal to BufRead. Each time a buffer is left shifted, feed in a new 

pixel from the image. 

h) Repeat from the first step until no new pixel is available from the image, 

i.e. The entire image is scanned. 

2.6 Threshold Decomposition 

This unit is responsible for threshold decomposition which occurs between window 

generation and filtering process. It decomposes a X-bit pixel to (2x  - 1) levels. The value 

of 1 in level y implies the value of the pixel must be bigger than or equal to y. If the pixel 

has a value 7, all 7 lower levels would become 1 after threshold decomposition. If the 

pixel is 0, all levels would become 0. At this point, the thresholded data will be 

processed by a neuron. Table 1 shows an example of for a 3-bit pixel. A Logic Works 

simulation of a 3-bit pixel threshold decomposer is shown in the next section. 

The number of threshold decomposer needed in a system depends on the size of 

the Window Generator. Since the neuron requires all pixel threshold decomposed, 

window size of B would then require B threshold decomposers to process all pixels. The 

output of each pixel unit in the Window Generator is connected to the input of a threshold 
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decomposer. At the output of threshold decomposer, data is then setup for the neuron. A 

threshold decomposer contains only combination circuit, so there is no clock or any 

control signal associated with it. When input data arrived, it would be processed 

immediately and result would be available after hardware propagation delay. 

Table 1 - Example of 3-bit decomposer: each column represents a pixel value and each 
row represents the value of the a level, I or 0(empty) 

0 1 2 5 6 7 

VII  1 

VI 1 1 

V 1 1 

IV 1 1 

III 1 1 

II 1 1 1 

I 1 1 1 1 1 
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2.7 LogicWorks Example 

An interactive circuit design software, LogicWorks, is used as a design and simulation 

tool. The software provides a schematic drawing feature that has full digital simulation 

capability. Circuit output may be displayed in the form of timing diagrams or on 

simulated output devices. 

Figure 10 provides a sample circuit implementation of a window generator. The 

circuit implements a 3X3 Window Generator circuit and each pixel is four bits wide. 

The lower right hand corner show the value of each pixel enclosed by the window 

at a particular instance. WI denotes the first pixel in the window and W1-0 denotes the 

least significant bit of this pixel. 

The Hex keyboard is used as an input device for entering pixel values. In an actual 

implementation, a sensor or digital imaging devices would replace it and provide the 

pixel value. 

All CLR (clear, active low) signals are connected together and are controlled by a 

binary switch. This switch is only used in the beginning to reset the system. CLK (clock) 

signals are also connected together, every time the CLK signal is asserted (transition from 

low to high level), the input will be stored in the flip-flop and its value is reflected at the 

output. 

Extending this circuit from 4-bits to 8-bits pixel is straight forward. This can be 

done by duplicating the 4-bit circuit and combining them together. The original circuit 

will handle the least significant 4-bits and the duplicate handles the most significant 4-bu. 



To change the window size from 3 by 3 windows to a X by X window would 

require more modification than just changing the bit size. The first step is to find out how 

many buffer units are required using Equation (6), the number of reading pointer by 

Equation (7) and the number of BufRead by Equation (8). With all the data, we can then 

expand to any size window generator needed. 

Figure 9 provides a Logic Works simulation of a 3-bit pixel threshold decomposer. 

L7 through LI denotes the output of the data in each level, i.e. L7 means level 7. S0 

through S2 are inputs from the actual value of a pixel. Here, three bits input positions are 

used to read a 3-bit pixel. Its function is to threshold decompose pixel, which will then 

be processed by a neuron. The two components involved are AND gates and Binary To 

Decimal Converter(Decoder). If the pixel was 5, all outputs below level 6 (not including 

level 6) became I. If the pixel was 0, then all levels output 0. 

Figure 9: Circuit of the 3-Bit Threshold Decomposer 
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CHAPTER 3 

FILTERING OPERATION 

The operation of the GANF can be separated into 2 operations: training and filtering. In 

the training operation, a set of training data and the desire output is fed into the GANF so 

that the weights in Equation (5) will be adjusted appropriately. 

3.1 Overview 

The hardware requirements for the training and filtering operation are quite similar and 

can be combined together. To reduce the hardware complexity, thus simplifying the 

construction of the neuron, the computation of Equation (5) is performed in a number of 

steps. The weighted sum is first computed, and the thresholded value will determine the 

output. Figure 11 shows a block diagram of the hardware involved in this process. 

3.2 Initial State 

The initialization process includes resetting the register that stores the output of adder. 

loading the weights into the register file, resetting the counter and the window generator. 
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Figure 11: Hardware block diagram of filtering process 
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3.3 The Control Logic 

The procedure is basically controlled by the CLOCK and RESTART signal of the 

system. There are two loops involved and one is nested inside the other one. 

The inner loop determines a partial value (it is partial because the final result 

would be the combination of all level of the thresholded data) of the result. The inner 

loop calculates a thresholded portion of the result. That portion is formulated by adding 

up appropriate weights in the Weight Register File. A set of thresholded data provided by 

the Window generator is used to decide which weights to add up. By examining one level 

of thresholded data from the window generator, this loop will add up the appropriate 

weights in the weight register file. The sum is the partial value of the clean pixel. The 

number of times it loops is defined by the Window size. A 9-pixel window means 9 bits 

of data in one level of the thresholded value, which also implies there are 9 weights in the 

weight register file. 

The outer loop performs initialization and calculates the final output. After inner 

loop completes, the most significant bit (MSB) of the STORE register is recorded in each 

outer loop. Gathering all recorded value is the final result. The number of times it loops is 

determined by the number of level a pixel is thresholded to. If a pixel was thresholded to 

10 levels, the outer loops would loop 10 times to generate 10 MSB value which would be 

the final output. 
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Figure 12: The filtering process flowchart 

3.4 Implementation 

The following section provides a brief description of the hardware components involved 

in the implementation. Figure 11 provides a logical organization of all the components. 
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• An 8-bit ADDER with two operands as input. One from the Weight register file, W7-

W0. The other one is from an 8-bit register called STORE, Y7-Y0. The sum goes into 

the input of STORE register, S7-S0. 

• The STORE register gets S7-SO from the ADDER and output Y7-YO. The clock 

signal connects to CLOCK of the system. The clear signal connects to RESTART of 

the system. The load signal connects to the least significant bit of a right-shift 

register called THRESHOLDED, TO. 

• THRESHOLDED is a right-shift register. The number of bits required is governed by 

the Window size. Shift signal links to CLOCK of the system. Load signal links to the 

RESTART of the system. All bits will be set with data from a level of the thresholded 

value after the Window generation process when RESTART is clocked. 

• Weight Register File - A memory chip is used to store all the weights generated 

during the training process. The number of address space is determined by the 

Window size + 1 (for the always added value). The size of each address space is the 

number of bits required to represent a pixel. There is a counter pointing to the 

address input of this memory module to provide location of the weight wanted. The 

clock of this counter is connected to the CLOCK of the system. The counter will be 

reset to zero when RESTART is clocked. 

* A result counter, RESULT, is used to remember the thresholded final value before it 

is assembled back to a pixel. Its clock signal connects to the RESTART signal of the 

system. The increment signal connects to the most significant bit of the Store register. 

If this significant bit is 1, counter will increment one after RESTART clocked. 
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All of the above components are also used for the Training Operation since the 

filtering operation is a subset of the training operation. The detail actions taken in each 

clock during the filtering operation is as follows. 

It starts with both Store and Thresholded register reset to zero. 

1. RESTART is asserted and CLOCK clocks. Load the w0  from the first address space 

of Weight Register File to Store register by performing steps below: 

a) Send weight from the Weight Register File which connects to one operand 

input of Adder by having the counter of Weight Register File pointing to the 

first address space. 

b) Assert the Load signal of Store register to load the output of Adder which is 

the sum of 0 and the "always added weight" after CLOCK clocks. 

c) At this same clock tick, Thresholded register loads all data bits with the 

bottom set of thresholded value which is just generated by Window Generator. 

2. The CLOCK ticks again. The counter of Weight Register File increments one unit 

and points to the next address space. The Store register will be clocked by the same 

CLOCK. Depending the current value of the Load signal, it determines whether to 

load the sum from the Adder. If current signal is 1, then the sum will be loaded, 

otherwise it will be ignored. In the same clock tick, Thresholded register is right 

shifted one bit by clocking the right-shift signal. Repeat this step until the last Weight 

has been read and processed. 

3. The RESTART is asserted and CLOCK clocks the system. Result counter performs 

increment depends on the most significant bit of Store (increment if the bit is 1. 



29 

otherwise do nothing). The address counter of Weight Register File is reset to zero 

and thus points to the first address space of the file. The Thresholded register loads 

the next set of thresholded data from Window Generator. Store register loads the sum 

of Adder which is the always added Weight. Repeat the previous step. Recursively 

repeat this step until an entire set of window is processed. 

4. An output is generated and the result is stored inside the Result counter. For example, 

if the counter is 6, then the pixel value is 6. 

5. Window Generator performs another sampling and threshold operation. 

6. Go back to step 1 to begin filter another element. 

The above steps will be repeated until there are no more windows available from 

the Window Generator. 

3.5 Multiple Neuron Implementation 

The filtering operation unit discussed previously was a single neuron unit. A single 

neuron is utilized to service all levels of threshold decomposed data by sliding back and 

forth between levels. An alternative is to provide every level a neuron. This is the 

multiple neuron implementation. The advantage of using a single neuron is the filtering 

operation unit becomes more compact on size and less expensive because of hardware 

reduction by having all level of data sharing a neuron, but trade off is slower throughput. 

In the multiple neuron implementation, data from all level of threshold 

decomposition is output to its own level's neuron. All data will then be processed 

simultaneously and the algorithm remains the same. The hardware connection diagram in 
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fact is simpler in term of design because the elimination of the logic to slide a neuron and 

feed data from an appropriate level. Size and cost of the unit is increased due to the 

duplicated hardware components in building neurons. The gain in here is higher 

throughput. With 15 levels of data ready to be processed, throughput measurement in 

multiple neuron unit can perform 15 times better then a single neuron unit. Figure 13 

shows a block diagram of the implementation with multiple neurons. In the figure, an 

instant of the filtering process is captured. The top block labeled "One instant of the 

window" represents the content of a 3 by 3 window (which contains 9 pixels). The block 

below represents a Threshold Decomposer for each pixel. After a pixel is decomposed, its 

decomposed data will be distributed among the groups of Thresholded Register. Each 

decomposed data bit goes to the corresponding Register which belongs to its level. The 

next block is the neuron which responsible for the particular level. 

3.6 Implementation of System Control Unit 

So far we have described the control signals needed for the filtering operation such as the 

CLOCK, Reset of THRESHOLD and Load of THRESHOLD, etc. Control signal 

contains binary information which tells a device how to carry out a particular action. 

These signals control every single operation took place throughout the process and must 

coordinate with other modules such as the Window Generator to obtain faultless result. 
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Figure 13: The block diagram of the multiple neuron implementation 
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The two common methods used to build control units are sequential circuit and 

microprogramming. Sequential circuit are state machines where the operation of the 

system is described by state. The advantage of this method is that the state of the system 

is easy to keep track and if an error did happen, the system will not go to the next state 

and wait for user intervention until the current state exit successfully. The disadvantage 

is the complexity involved in designing and building the combination circuit which 

would drive the cost up. 

The second method of implementing a control unit is microprogramming. The 

control signals are embedded into read only memory (ROM) where each step of the 

operation is stored [8]. 

Table 2 shows the content of the microprogramming code to control the Window 

Generator. Data input and output signals are all listed. The value will be represented by 

different variable which represents any valid data. 
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Table 2 - The microcode content of Window Generator 

CLR 4- bit new pixel 
DCBA 

WWWWWWWWW 

9 	8 	7 	6 	5 	4 	3 	2 	1 
CLK 

0 
0 1 

1 X 0 

1 X X 1 

I Y X 0 

1 Y Y X 1 

1 Z Y X 0 

1 Z Z 	Y X 1 

1 A Z Y X 0 

1 A A Z Y X I 

1 B A Z Y X 0 

1 B B A Z  Y X 1 

1 C B A Z Y X 0 

1 C C B A Z Y X I 

1 D C B A Z Y X 0 

1 D D C B A Z Y  X 1 

1 E D 	C 	B A Z 	Y X 0 

1 E E D C B A Z  Y Z 1 

I F E D C B A Z Y X 0 

1 F F E D C B A  Z Y X I 

Completed initialize and 1st set of window is ready for threshold decompose. 

1 G F E D C B A Z Y X 0 

1 G G F E D C B A Z Y 1 

Another set of window is ready for threshold decompose. 

The next table shows the content of the microprogramming code used to control 

the filtering process within the neuron. It also control the shifting of the Thresholded 

register, and incrementing the Address counter of the Weight Register File so that the 

proper weight is fetched. The Load signal of Store register gets input from the least 

significant bit of the Thresholded register. The variable A is the input. At the last stage 

which adds the always added weight, the Load signal is always asserted. 
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Table 3 - The microcode content of filtering process 

Thresholded Register (right shift) 

CLK 	LOAD 	SHIFT 

Weight 

Addr Ctr CLK 

Store Register 

CLR LOAD 

0 1 0 0001 0 1 A  
1 0 0  0001 1 0 A 

0 0 0 0010 0 0 A 

1 0 1 0010 1 0 A 

0 0 0 0011 0 0 A 

1 0 1 0011 1 0 A 

0 0 0 0100 0 0 A 
1 0 1 0100 1 0 A 

0 0 0 0101 0  0 A 
1 0 1 0101 1 0 A 
0 0 0 0110 0 0 A 
1 0 1 0110 1 0 A 
0 0 0 0111 0 0 A 
1 0 1 0111 1 0 A 

0 0 0 1000 0 0 A 
1 0 1 1000 1 0 A 

0 0 0 1001 0 0 A 
1 0 1 1001 1 0 A 

0 0 0 0000 0 0 1 
1 0 1 0000 1 0 1 



CHAPTER 4 

TRAINING PROCESS 

In the filtering operation, we have seen how unwanted signal is filtered out by the system. 

During this phase, original data is altered by adding appropriate weights from the 

WEIGHT-REGISTER file. These weights have to be determined beforehand. The value 

of these weight plays a critical role on how accurate the result will be. 

To customize the filter to a particular type of noise, the filter has to be trained. In 

other word, it needs to know the characteristic of the noise so the filter can distinguish 

between noise and data. By learning the noise characteristics, the filter became equipped 

and ready to filter the noisy data signaled. In order for it to learn the noise characteristics, 

the filter has to go through a training process. 

4.1 Overview 

The training process will use samples that include both the original data and noisy data. 

The filter will compare both set of data and then derive an updated weight and store it to 

the WEIGHT-REGISTER file. If the number of samples are sufficient, the updated 

weight will be closer to the ideal value (the value which will produce an output exactly 

the same to the original). Getting the ideal value requires huge amount of data samples 

and time. To justify between the cost and result, a certain amount of data samples will be 

provide to obtain a result that meets minimum requirement and expectation. 
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Figure 14: Hardware block diagram of training unit 
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4.2 Initial State 

Training process is the first step when a GANF is assigned with any task. Two sets of 

data are needed, a clean image and the same image corrupted by noise. This noisy image 

is altered by feeding the clean image through the same channel or medium where it will 

be transmitted. 

At this point, the default value is loaded into the WEIGHT-REGISTER file so it 

has data to start with. All registers and counters will be reset before anything starts. Some 

special registers (as we will describe later) will be loaded with predefined constant. When 

all hardware is ready, the process will start feeding in sample data and calculate updated 

weight. 

4.3 The Training Logic 

The weights can be adjusted in many ways. The method used is Ansari et al. [2] which 

uses both LMS and perception learning. Basically, a signal for which the desired response 

is known is processed by the filter. For each sample processed, an error is generated 

which is used to update the weights. For LMS, the error is analog and adaptation attempts 

to minimize this error for future samples. The perception learning scheme is similar, but 

uses a discrete error. For both methods, however, there is no guarantee that the neuron 

will implement a positive Boolean function. In order to achieve this, negative weights can 

be set to zero. Also, it should be pointed out that a single neuron may not be able to 

implement all possible positive Boolean functions. This means that the Ansari-Lin 



method may not find the optimal stack filter among all positive Boolean functions. It will, 

however, find the optimal stack filter among all threshold functions. 

Based on [2], the learning equation is 

(12) 

In this equation, µ is preset with a constant is always less than one. In this thesis, 

it is assumed to be 4 bits wide after the decimal point. The derivation ofµ will not be 

discussed. ω(n+l) is the updated weight while ω(n) is the current value of the weight. 

x(n) is the corresponding level of threshold decomposed value being process. ε is a bit 

resulted by comparing the desired value with the output. If they matched with each other, 

ε would be 0 which means the weight will be unchanged. Otherwise ε would be 1 which 

means the weight in current level (from 1 to B) requires an update. The equation shown 

above is in scalar form. The vector form of the equation will make it more meaningful 

and understandable later in the logic of implementation. The vector is written as 

This equation dictates the updated value of the weight and performing the 

calculation makes up the major part of the training hardware and process. 

When the system is ready to start learning, both the noisy and original data will be 

threshold decomposed continuously until the threshold decompose device is saturated and 

decomposed data is waiting to be processed by next stage. Noisy data will be fed into the 



Window Generator. Original data will be decomposed by another Window Generator and 

its output represents the desired output. 

When the threshold data is ready, the bottom level, x8(n) will be processed as in 

the filtering operation for one cycle (goes through all the weights and adds up appropriate 

one). After this cycle is finished, instead of storing the most significant bit (MSB), we 

compare this bit to the MSB of the desire output, the original data of xB(n). If they are the 

same, ε would be equal to 0, otherwise 1. According to Equation (12), if c equals to 0, 

xB(n) is good and no update is required. If c equals to 1, it needs to calculate the updated 

weight. After finding out the updated weight, it would be written back to the location of 

xB(n). 

At this point, the bottom level of the threshold value can be discarded and then 

process the next level of threshold data, xB-1 using the same rule that determines wB- 

1 (n+1). The above steps are repeated until all samples have been consumed. The logic of 

the training process is described in the flowchart shown in Figure 15. 

A multiplication is needed in Equation (12). This complicates the process because 

multiplication required iterations of addition and is time consuming. The multiplication is 

implemented as follows. 

After the system finds out ε equals to 1, the process flow will go to a calculation 

routine that will find the updated weight using the equation ω(n+l) = ω(n) + µ*x(n)*ε. 

First, µ is multiplied with the current level of the threshold data, x(n). Then the product is 

added to the current weight of same level. 
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Figure 16: Binary multiplication performed by hand 

Multiplication is done by iteration of the addition function. Figure 16 shows the 

required multiplication. This figure calculates AAAAAA.BB * 0.CDEF. 

I. If bit C is 1, AAAAAABB000 will be stored in STORED. Otherwise do nothing. 

2. If bit D is 1, AAAAAABB0O will be added to value in STORED. 

3. If bit E is 1, AAAAAABB0 will be added to value in STORED. 

4. If bit F is 1, AAAAAABB will be added to value in STORED. The product is now in 

STORED and its value has 6 bits after decimal point. 

5. Shift right STORED 4 positions to get rid of the least 4 bits after decimal point 

because the final value should be 6 integer bits and 2 decimal bits as set by the entire 

system. 
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Figure 15: Flow chart of complete training process 
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In our implementation, we will not build a logic circuit exactly like the one above 

but with a little modification. In the above procedure, the system would require 11°-bit 

register (AAAAAABB000 has 11 bits) and adder to do addition in order to take care of 

all bits. The reason for the last three bits is to make room for the biggest possible value 

after multiply by a 4-bit binary integer. If the multiplier has 5 bits, then the system would 

put in 4 bits into the register and of course, using a bigger register to handle the larger 

data. Since other system registers are 8 bits wide and 6 bits are allocated as integer bits 

and the other 2 bits are decimal bits, we will restrict the multiplication implementation to 

conform to the system standard. For the 1st bit of µ, add AAAAA.AB if condition to add 

is valid. In the 2nd bit of µ, add AAAA.AA if condition to add is valid. In the 3rd bit of 

add AAA.AA if condition to add is valid. For the last bit, add AA.AA if condition to 

add is valid. At the end, we do not need to do alignment to the final result because its 

decimal point is already aligned. The only drawback of this modification is everything 

after the second bit of the decimal part will not be considered. 

We have the µ * x(n). Now the last step is to add ω(n) to it. After adding ω(n). 

STORED contains the updated weight and be written back to the corresponding levek 

(1,2, 	 , B). The training process will proceed to the next level or pixel sample. See 

Figure 17 for complete logic of update weight calculation. 
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4.4 Implementation 

The hardware required in this section is a superset of the hardware used in the filtering 

operation. The training phase will reuse the hardware component setup for filtering, and 

adds more complexity in terms of logic and components. 

The following is an implementation of µ * X(n) where X(n) is noisy data. 

1. INPUT-SEL-MLTX must be set to select DATA as the input of the ADDER. 

2. Reset STORE register to zero and makes µMUX to select the most significant bit of µ 

as the input to Load signal of STORED. By asserting Clear of STORED, select 

appropriate input of µMUX and clocks the system. Load the current level (threshold 

decomposed) of noisy data into DATA right-shift register. Then shift right one bit. 

3. Start multiplication of the 1st (most significant bit of µ) bit. 

4. Check the 1st bit of µ, if 1, perform the addition by clocking the system. 

5. Select 2nd bit of µ, shift right DATA one bit. By asserting the Shift of DATA and 

clocking the system. 

6. Start multiplication of the 2nd bit. 

7. Check the 2nd bit of p., if 1, perform the addition by clocking the system. 

8. Select 3rd bit of µ, shift right DATA one bit. By asserting the Shift of DATA and 

clocking the system. 

9. Start multiplication of the 3rd bit. 

10. Check the 3rd bit of µ, if 1, perform the addition by clocking the system. 

11. Select last bit of 	shift right DATA one bit. By asserting the Shift of DATA and 

clocking the system. 
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12. Start multiplication of the 4th (last) bit- 

13. Check the 4th bit of µ, if 1, perform the addition by clocking the system. 

14. INPUT-SEL-MUX is set to select WEIGHT-REGISTER file as the input of the 

ADDER. 

15. Add the current weight with value in STORED (the adjustment to the weight) by 

asserting Load of STORED and clocking the system. 

16. Save the updated weight back to the WEIGHT-REGISTER file from STORED. 

At this point, one level of threshold decomposed noisy data has been learned by 

the system. The above step will be repeated for the remaining threshold decomposed level 

and then for the remaining training data. 

4.5 LogicWorks Sample 

Figure 18 illustrates the complete system which can handle 8-bit pixel. 
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Figure 17: Implementation logic of update weight 



Figure 18: Circuit of Training Unit 46  



CHAPTER 5 

CONCLUSIONS & FUTURE RESEARCH 

5.1 Conclusions 

Two designs, one for single neuron implementation and another for multiple neuron 

implementation of GANF are presented in this thesis. The architectural differences 

between the single neuron implementation and the multiple neuron implementation is in 

the duplicated neurons. Using the current VLSI technology, putting in additional neuron 

would not result in any significant overhead. But the gain in performance is huge. 

Implementing a 7-level GANF in multiple neuron would speed up as much as 7 times 

than implementing it with a single neuron. 

The flexibility in expanding a GANF is also an advantage. Chapter two gave an 

example where the window generator can accommodate different situations and 

requirements. The other components can also be expanded similar to the window 

generator. 

5.2 Future Research 

To use the GANF in a practical situation, a good compromise would be the use of a 

quadric neuron. Smaller window sizes would be desirable at the start of training to 

achieve proper generalization. Then, the window can be expanded to achieve increased 

performance. 

A complete simulation of the multiple neuron design and a VLSI implementation 

should be considered. 
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APPENDIX A 

HARDWARE BLOCK DIAGRAM 

Figure A1: Hardware block diagram of filtering process 
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Figure 	A2: Hardware block diagram or training unit 



APPENDIX B 

THE PROGRAM THAT GENERATE A PICTURE 

/**************************************************** 

* Author Name : Chunyip Tam 
* Purpose : This program is to generate a picture which has 
* height equal to picture_height and width equal to picture_width. 
* The value of each pixel represent the color or grayscale of 
* that pixel. For easy recognition, the value is a combination 
* of three integers, X, 0 and Y. They combine as X0Y to form the 
* value. X represents the number of row while zero is the top. 
* Y represents the number of column from left to right. 0 is inserted 
* between X and Y. 
* 

* To use : edit the value of picture width and height with the desired value 
* then compile the program as "c++ picgen.c" 
* then type "a.out" 
* then result is stored in the file "picture" 

***************************************************** 

50 



THE SIMULATION PROGRAM OF WINDOW GENERATOR 

/* This Program is to simulate the window generation 	*/ 
/* process for GANF 	 */ 

/* To run this program, compile with C++ compiler first. */ 
/* example: g++- wingen.c 	 *7 

/* After compilation, an executable named a.out is created. */ 

/* Then the next step is to run the window generation */ 
/* program which will generate windows according to input */ 
/* provided. Do the following to run the program: 	*/ 

/* At the prompt, type a.out input <enter> 	*1 

/* where "input" is the input file name. 	*/ 

/* The format of the input file has to be in ASCII. 
/* Use the output generated by PICGEN.0 	*1 

/* Each line represents one horizontal line of pixels 
/* on the picture. 	 *1 

#include <iostream.h> 
#include <fstream.h> 

// Modify the following line with proper value 

coast int WindowHeight = 3; 
const int WindowWidth = 3; 
const int PictureHeight = 8; 
const int PictureWidth = 8; 

// Do not modify anything from this point 

int NumOfReg; 	//Total number of Shift Registers required 
int SkipBeforeRead; //Number of registers skip before next line of window 
int TotalReadPerRow; //Number of windows generated in each horizontal scan 
int TotalRow; 	//Total number of horizontal scan 

void take(const int 9); 
void shift(int 9, int, ifstream&); 

// Calculate value from the parameter given 
void calculate () 

{ 
NumOfReg = PictureWidth * (WindowHeight - 1) + WindowWidth; 

*1 

*7 

5I 



SkipBeforeRead = PictureWidth - WindowWidth; 
TotalReadPerRow = Picture Width - WindowWidth + 1; 
TotalRow = PictureHeight - WindowHeight + 1; 

} 

// Subroutine to shift the entire register set to left 
void shift(int Array[], int Frequency, ifstream& fin) 

{ 
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