
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1-31-1998

A simple neural agent communicating through sets A simple neural agent communicating through sets

James P. Stanski
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Stanski, James P., "A simple neural agent communicating through sets" (1998). Theses. 966.
https://digitalcommons.njit.edu/theses/966

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/966?utm_source=digitalcommons.njit.edu%2Ftheses%2F966&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A SIMPLE NEURAL AGENT COMMUNICATING THROUGH SETS

by
James P. Stanski

Networked agents of the simplest kind offer the power of cooperative problem

solving through parallel operation along with tight packaging potential. Such agents are

self-contained analog machines capable of only a few primitive intelligent operations. In

this thesis, a design will be developed for a simple agent capable of sending, receiving,

and processing information in a environment where agents are coupled together. This

environment imposes unorchestrated simultaneous input while expecting a useful timely

response. Successful collaboration in these conditions is accomplished through sets

encoded within pulse ensembles. The simplicity of the set definition is an inviting

candidate for message communication and processing. Although its use is restricted to

spatial pattern recognition, a predicted side effect of set communication in a multilayer

network configuration is the ability to reintroduce the output back into the input layers

for further processing.

A SIMPLE NEURAL AGENT COMMUNICATING THROUGH SETS

by
James P. Stanski

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

January 1998

APPROVAL PAGE

A SIMPLE NEURAL AGENT COMMUNICATING THROUGH SETS

James P. Stanski

Dr. Franz Kurfess, Thesis Advisor 	 Date
Associate Professor of Computer and Information Science, NJIT

Dr. Qianhong Liu, Committee Member 	 Date
Asistant Professor of Computer and Information Science, NJIT

Dr. Ajaz Rana, Committee Member 	 Date
Assistant Professor of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: 	James P. Stanski

Degree: 	Master of Science

Date: 	 January 1998

Undergraduate and Graduate Education:

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1998

• Bachelor of Science in Electrical Engineering
New Jersey Institute of Technology, Newark, NJ, 1990

Major: Computer Science

This thesis is dedicated to my Mother and Father

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Franz Kurfess for his

wisdom, guidance, and support as my research supervisor. His confidence, patience, and

encouragement enabled me to persevere during the times when no simple solution was

readily available. Special thanks to committe member Dr. Qianhong Liu for her genuine

interest and leadership. Committee member Dr. Ajaz Rana has been an inspirational

model of academic excellence since the beginning of my graduate studies.

I appreciate the help from Dr. Robert Allen at Bellcore for his resources and

insight during my final year.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 Objective 	1

1.2 	Background Information 	 1

1.3 	Deviation from Existing Models 	 2

2 AGENT ENVIRONMENT 	 3

2.1 	Environment Description 	3

3 	AGENT COMMUNICATION MEDIUM 	 5

3.1 	Expected Input/Output Conditions 	5

3.2 	Message Format 	 9

3.2.1 The Language Format of the McCulloch-Pitts Neuron 	 10

3.2.2 Word Sequences 	 11

3.2.3 Space Vectors 	 13

3.2.4 Using Sets as a Language Format 	 14

3.3 	Sending and Receiving Sets 	 15

3.3.1 Single Signal Communication 	 15

3.3.2 Multiple Signal Communication 	 16

3.3.3 Using a Matched Filter 	 18

3.3.4 Problems with the Matched Filter 	 18

3.4 Conclusions 	 20

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

4 RECEIVER DESIGN 	 21

4.1 Nominal Design 	21

4.1.1 Basic Receiver 	21

4.1.2 The Matched Filter and Noise 	25

4.1.2.1 	Unbiased Normalization 	 25

4.1.2.2 	Compete with Neighbors 	 26

4.1.2.3 	Compete with Neighbors, Biased 	 26

4.1.2.4 	Methods that do not Normalize 	 27

4.1.3 Properties of the Memory Material 	 27

4.1.4 Making a Hypithesis 	 28

4.1.5 Handling Aging Sets 	 29

4.2 Maximizing the Parameters 	 30

4.2.1 Performance in Pure Noise 	 31

4.2.2 Single Input Set Performance 	 33

4.2.3 Multiple Input Set Performance 	 34

4.2.3.1 	Two Simultaneous Inputs 	 34

4.2.3.2 	Four Simultaneous Inputs 	 35

4.3 Expected Operating Conditions 	 36

4.3.1 Agent Output Specifications 	 37

TABLE OF CONTENTS
(Continued)

Chapter Page

4.3.2 	Input Combination Specifications 	 37

5 MESSAGE PROCESSING 	 39

5.1 Message Relay 	 40

5.2 Message Correlation 	 41

5.2.1 	Correlation Detection Method 	 42

5.2.2 	Representing Patterns 	 43

5.2.2.1 	Subpatterns 	 43

5.2.2.2 	Shared Patterns 	 44

5.2.2.3 	Evaluating Each Approach 	 44

5.3 Regenerative Agents 	 45

6 PROCESSOR DESIGN 	 47

6.1 Nominal Design 	 47

6.1.1 	Basic Processor 	 48

6.1.2 	Design Performance Goals 	 52

6.1.3 	Design Performance Issues 	 54

6.1.4 	Defining the Detection Algorithm 	 55

6.1.5 	Defining the Learning Algorithm 	 58

6.2 Expected Results 	 60

6.3 Actual Results 	 61

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

6.3.1 	Unfair Competition 	62

6.3.2 	Pattern Stability and Growth 	63

6.3.3 	Uneven Distribuiton of Patterns 	64

6.3.4 	Detection of Subpatterns 	64

6.3.5 	Detection of Shared Patterns 	64

6.4 	Conclusions 	 65

7 TRANSMITTER DESIGN 	 66

7.1 Output Timing 	 66

7.2 Output Specifications 	 68

7.3 A Model for Achieving Output 	 69

7.3.1 	Preventing Abasing 	 72

7.3.2 	Staying within the Octave Boundary 	 72

8 PHYSICAL DESIGN APPROACH 	 7 2

8.1 Materials 	 72

8.2 Integrated Design 	 75

9 CONCLUSIONS 	 7 8

9.1 Overall Design 	 78

9.2 Conclusions for Individual Components 	 79

9.3 Future Work 	 79

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

APPENDIX A RECEIVER SIMULATION RESULTS 	 81

APPENDIX B PROCESSOR SIMULATION RESULTS 	 103

APPENDIX C RECEIVER JAVA APPLET 	 114

APPENDIX D PROCESSOR JAVA APPLET 	 121

REFERENCES 	 128

xi

LIST OF TABLES

Table 	 Page

4.1 	Receiver Noise Immunity 	 33

4.2 Single Signal Reception 	 34

4.3 	Double Signal Reception 	 35

xii

LIST OF FIGURES

Figure 	 Page

3.1 Asynchronous Communication Dilemma 	 7

3.2 Grid of Cooperative Agents for Image Recognition 	 11

3.3 Processing Sections of a McCulloch-Pitts Neuron 	 12

3.4 An Encoded Set 	 15

3.5 Superimposed Encoded Sets 	 16

3.6 Worst Case Scenario for the Matched Filter 	 19

4.1 Initial Signal Into Slow Material 	

	

 	22

4.2 Second Signal Projects First onto Memory Material 	 23

4.3 Third Signal Projects Previous onto Memory Material 	 24

4.4 Receiver Output for Random Input, No Noise Suppression 	 25

5.1 Linear Vs. Regenerative Architecture 	 46

6.1 Two Dimensional Processor Solution 	 49

6.2 Receiver to Processor Transfer 	 49

6.3 Detected Signal Propagating over Long Term Memory 	 50

6.4 A New Pattern Choosing to Grow from an Existing Pattern 	 54

7.1 Simultaneous Pulse Trains 	 69

7.2 Output Ensemble for Two Recognized Patterns 	 70

7.3 Output Rate Limiting Through Decay 	 71

8.1 Electrical Equivalent of the Attenuating Material 	 76

8.2 Electrical Equivalent of the Averaging Material 	 77

LIST OF FIGURES
(Continued)

Figure 	 Page

8.3 	Block Diagram of Agent Design 	 77

A.1 	Receiver Output for Random Input, Bias = 0.5 	 81

A.2 Receiver Output for Random Input, Bias = 1.0 	 81

A.3 	Receiver Output for Random Input, Bias = 1.5 	 82

A.3 (Cont.) Receiver Output for Random Input, Bias = 1.5 	 83

A.4 Receiver Output for Random Input, Bias = 2.0 	 84

A.4 (Cont.) Receiver Output for Random Input, Bias = 2.0 	 85

A.5 Receiver Output for Random Input, Bias = 2.5 	 86

A.5 	(Cont.) Receiver Output for Random Input, Bias = 2.5 	 87

A.6 	Receiver Output for Random Input, Bias = 3.0 	 88

A.7 Receiver Output for 1 Set Input, Bias = 1.5 	 89

A.8 Receiver Output for 1 Set Input, Bias = 2.0 	 90

A.8 (Cont.) Receiver Output for 1 Set Input, Bias = 2.0 	 91

A.9 Receiver Output for 1 Set Input, Bias = 2.5 	 92

A.9 (Cont.) Receiver Output for 1 Set Input, Bias = 2.5 	 93

A.10 Receiver Output for 1 Set Input, Bias = 3.0 	 94

A.11 Receiver Output for 2 Sets Input, Bias = 1.5 	 95

A.11 (Cont.) Receiver Output for 2 Sets Input, Bias = 1.5 	 96

A.12 Receiver Output for 2 Sets Input, Bias = 2.0 	 97

A.13 Receiver Output for 2 Sets Input, Bias = 2.5 	 98

xiv

LIST OF FIGURES
(Continued)

Figure 	 Page

A.14 Receiver Output for 4 Sets Input, Bias = 1.5 	 99

A.14 (Cont.) Receiver Output for 4 Sets Input, Bias = 1.5 	 100

A.15 Receiver Output for 4 Sets Input, Bias = 2.0 	 101

A.15 (Cont.) Receiver Output for 4 Sets Input, Bias = 2.0 	 102

B.1 Input Test Patterns 	 103

B.2 Initial Sensitive Setting 	 104

B.3 	General Result of Positive Learning 	 104

B.4 	Application of Negative Learning Algorithm 	 105

B.5 	Introduction of a Second Pattern 	 106

B.6 	Detection of Two Patterns 	 106

B.7 	Detection of Three Patterns 	 107

B.7 	(Cont.) Detection of Three Patterns 	 108

B.8 Biased Three Pattern Detection 	 108

B.9 	Forced Learning of Two Patterns 	 109

B.9 	(Cont.) Forced Learning of Two Patterns 	 110

B.10 Overgrowth of a Single Pattern 	 111

B.11 Learning Too Many Patterns 	 111

B.12 Detection of Subpatterns 	 112

B.13 Detection of Shared Patterns 	 113

xv

CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this thesis is to present the issues involved in considering the design for a

simple analog agent. The simplicity of an agent is determined by its footprint in

anticipation of computer chip packaging. The footprint will be minimized by scaling size

according to the complexity of the information being processed instead of the number of

parallel inputs. Other efforts to minimize agent size are to employ special materials

instead of discrete components as well as choosing a simple means of communication

between agents.

Once considering the environment an agent will be placed in, the focus will be

placed on communicating using sets. This design will be subdivided into three parts;

receiver, processor, and transmitter of which the first two will be analyzed. Although the

exact physical design will not be presented, an abstract layout and description of the

materials needed will be established. Once considering the design described in this thesis,

other designs are possible following the guidelines presented.

1.2 Background Information

In order to realize the parallel processing benefits of neural networks, efforts are made to

place these networks on silicon chips. Development efforts can be divided into several

categories such as analog designs, digital designs, hybrid designs, artifical neuron

approximation, and biological neuron approximation. Biological designs such as the

1

2

hippocampus [7] require several microcomponents due to a digital design and a two

dimensional processing section. Another effort is to understand and duplicate biological

neurons [2,18]. This includes simulating molecular functions of a biological neuron with

silicon counterparts according to the physics of field effect transistors [3]. The results are

a higher utilization of silicon area due to creative design. The design presented in this

thesis is a combination of implementing an artificial neuron using the same creative

physical designs.

The design includes using a material to propagate pulses slowly similar to a

previous design of an artificial Cochlea [12], but is inspired from the novel processing

possibilities provided from slow diffusion ion channels found in biological neurons [5].

Slow diffusion is useful in sequential processing [6] and will also be shown useful in

communicating with sets.

Research exists in asychronous communication between neural assemblies [13] and

will be extended to the level of individual agents.

1.3 Deviations from Previous Models

The agent described here contradicts behaviour witnessed in biological neurons. There are

no synaptic weights in the design. All inputs are treated equally and the usefullness of

each signal is determined by how well it correlates with other signals. It has been found

that biological neurons have the natural ability to interpret ensemble synchrony codes [8],

however, the current agent design allows for just the opposite in detecting asynchronous

pattern codes.

CHAPTER 2

AGENT ENVIRONMENT

This chapter will describe how the agent will be used in order to provide a better

understanding when designing the agent components. The term agent is used in the place

of the term neuron because neurons are usually described in terms of a mathematical

equation while an agent is described in terms of goals. The goal of the agent presented

here is to recognize and present input patterns. The agent has the same anatomy of a

neuron containing several inputs and one output, but uses an advanced communication

medium to enhance its processing power.

2.1 Environment Description

The environment of the agent will be similar to that of multilayer feedforward neural

networks [14]. Chapter 5 describes how the communication medium chosen allows for

the last stage and hidden stages to feed backwards to previous stages, forming loops.

These loops do not induce oscillation, but allow one agent to process at several levels of

comprehension when the network is recognizing a complex pattern. Regenerative agents

are efficient for utilizing the full potential of an agent as well as correlating events patterns

across levels of comprehension.

When operating within the network, agents will be presented with several

simultaneous inputs. As discussed in Chapter 3, the option the agent faces is to either

expect these inputs to be synchronized and process these as ensemble synchrony codes, or

to accept and understand these inputs inputs as unsynchronized.

3

4

The environment will also demand an appropriate response within a reasonable

time. If the input pattern is changing, then the detection rate must be able to sample the

input at a high enough rate to provide sufficient results. The requirement is local

processing.

Each agent is self contained and has no access to global information. The learning

algorithms must be local.

Since patterns will be recognized at each level in the hierarchy and presented to the

next for further processing, these patterns must be stable throughout the learning process.

CHAPTER 3

AGENT COMMUNICATION MEDIUM

This chapter applies the ideas presented in Chapter 2 to concrete solutions after

considering what communication attributes are desired and what is possible to achive

working with these attributes. These attributes include what type of information is to be

passed, what it represents, and under what conditions it will be sent. Lower level

concerns will also be addressed such as vocabulary and message size as well as physical

interconnections and intended network architecture. The results of these considerations

will converge on the suggestion to communicate by sending sets of numbers where each

number represents another set of numbers or multiple sets sharing several members. The

discussion of processing the information is continued in Chapter 5 where limits of this

medium will be presented.

3.1 Expected Input/Output Conditions

The first condition imposed on a design of a communication medium is the physical

interconnection between agents. Inspiration comes from biological nerual networks with

the serial unidirectional connections between neurons. Information is either sent with a

single pulse or through a pulse ensemble. This serial connection is superior over a parallel

connection in the savings of interconnecting only one wire instead of several. The speed

of communication suffers in a serial connection, but this may not be a factor in slow

moving environments while serial communication offers the ability to vary the size of the

message being sent. Pulse ensembles are favored over a single pulse since the only

5

6

information that can be represented in a single pulse is its presence and its relative

position. Pulse ensembles, however, can be used to carry much more information within

the relative positions of the pulses. The pulse ensemble offers the advantage of having its

pulses relative to others within the same burst. When receiving a single pulse, the time of

the pulse's arrival must be relative to something else external, such as other incoming

pulses. The remainder of this chapter will concentrate on communicating through pulse

ensembles.

Another feature of biological networks is the mandatory broadcasting of messages

to all other neurons physically linked to the output axon. There is no routing of messages

along the axon. The design in this thesis will copy the broadcast architecture for its

simplicity. Therefore, as in biological neural networks, an agent can receive from several

agents, and broadcast its output to all agents connected to its output. All connected agents

receive the exact same message.

Since pulse ensembles can be treated relative to themselves, they need not

synchronize precisely with other ensembles. It is best to avoid synchronizing problems

since one agent may have to synchronize with many other agents at the same time.

Occasionally, it will be impossible to do this unless all of the agents are synchronized

together. This is not an impossibility but implies complete interconnection among agents.

If one agent must synchronize with two others, then the two must be synchronized with

each other. This would assume some form of synchronizing information being passed

between the two. This should not be confused with synchronizing processes in an

operating system where one process waits for another to finish. Figure 2.1 represents this

7

synchronization problem where Al must synchronize with A2 and A3, but there is no

guarantee A2 and A3 are synchronized with each other.

Figure 3.1 Asynchronous Communication Dilemma

To solve the problem, A2 and A3 must synchronize with Al. However, A2 may

have other commitments and may not be as flexible. To avoid this problem, there will be

no ensemble synchronizing at a micro scale. At a macro scale, the ensemble must fit

within a specified window for its information to be considered relevant to the current

problem being solved.

Just as asynchronous communication relaxes constraints on the transmission end of

communication, it can also impede the design of the receiver. Multiple synchronous

signals are simpler to receive since multiple signals are designed to work together rather

than interfere with the other. A research decision was made to investigate asynchronous

communication at the cost of solving the problems that follow.

The main problem with asynchronous communication is the simultaneous reception

of several signals which are not considerate of the other. An example of this problem is to

consider the problems of listening in a crowded room or listening to the echo from

8

multiple speakers of a PA system. Either way, the infomation received is either

completely different or exactly the same but out of phase. The agent receiving such

messages must be able to listen to all messages at the same time. It may be a simpler

alternative to have an agent choose which message to listen to and reject the others as

humans try to do, but then there would be no guarantee that a message sent is a message

received. What would be required then is a confirmation message. The problems that

would arise are twofold. First, this requires bidirectional communication between agents,

second, it would require the ability to direct individual messages to targets. Messages will

also have to include the identification of the target agent to receive the message. Without

this mechanism, the sender would have to broadcast again to everybody even if one

receiver missed the message. Asynchronous, simultaneous communication is not difficult,

if the messages sent can all be combined into one large message and interpreted as such.

When all messages are lumped together, the uniqueness of the message and sender is lost.

Gains can be made in this dilemma by haveing each sender use its own signature.

Consider messages sent encoded with a unique signature. Like fingerprints, there

is no guarantee each is unique, but likely. A discriminating receiver can recognize

different message signatures and be able to separate messages encoded by comparing

signatures. A less complicated use for signatures is to prevent any incoming messages

from sounding alike. If two sources give the exact same message and these two messages

are lumped together, the receiver will only see one and will never know two of the exact

same were sent. This is critical if the senders are employing two different languages which

sound the same but have different meanings. For example, if Agent Al means 'Yes'

9

when saying `No' and agent A2 means `No' when saying 'No', then when they both say

`No', the receiving agent will get just one 'No' and never confirm whether agent Al really

meant 'Yes' or agent A2 meant 'No' or both. Since the word is shared, the same

confusion exists even if only one agent sends 'No' and the other is quiet. In this example,

a unique signature means not using the same words as other agents since the same words

can have different meanings.

A crippling problem with this arrangement will be a shortage of available words to

communicate with in large networks containing several agents. In order to discuss this

problem, it should be understood that each communication link communicates with its

own vocabulary understood by only the sender and connected receivers. For each link,

the language will be different. There is no global language requiring all members to use

different words in that language. Local languages allow local problems to be solved.

There criteria for determining whether or not signatures are unique in a local language

network is to prove each vocabulary sent to a given agent is unique from the others being

sent to it. If an agent receives from eight other agents, then these eight senders must

possess their own vocabularies.

3.2 Message Format

The low level message format is paramount in determining the flexibility and power of

expression for a communication link. Although each link in Section 3.1 operates within its

own language, all links obey a common message format. This section will discuss four

10

such formats, evaluating these according to power of expression, capability to implement,

and ease of processing.

3.2.1 The Language format of the McCulloch-Pitts Neuron

The McCulloch-Pitts neuron [1] is a early type of artificial neuron designed to respond to

one pattern presented at its inputs when trained properly. The neuron issues a single

output which is a real value between zero and one. A low output value is interpreted to

mean that the current input pattern matches the internal reference pattern poorly. A high

output value implies a close match. The transition from low to high can be either linear or

nonlinear. The above interpretation is the message format of the McCulloch-Pitts neuron.

It has been chosen as a first example due to its simplicity and legacy althouth it no longer

plays a part in computational neuroscience [9]. This type of neuron is an agent which can

give an opinion about one thing. The message it sends exclusively contains the strength of

that opinion. Since inputs are additive, there are no problems with multiple reception.

The McCulloch-Pitts agent uses a three stage processor. The first determines the

value of each input. Unlike the statement in Section 3.2, the McCulloch-Pitts neuron

identifies a message with a sender and the messages do not carry a unique signature. The

second stage adds the inputs, while the third applies a nonlinear function to the result. In

terms of networking, the problem with this neuron is its poor expressive power. Although

simple to implement, the options for processing are limited. Even if more powerful

processing was employed such as finding subpatterns, it would be impossible to

communicate these findings since the output is restricted to 'Yes', 'No', and 'Maybe'.

11

3.2.2 Word Sequences

Information can be expressed in the sequential order of a limited vocabulary. Much like

natural language, these sequences are equivalent to a sentence of variable length. Such a

language format is ideal for agents working towards a common goal since the power of a

written expression could be equal to that of humans. Realistically, an application for this

language format would be in a cooperative image recognition grid shown in Figure 2.2.

Figure 3.2 Grid of Cooperative Agents for Image Recognition

Given one agent per square, these are capable of discussing who is black and who

is not. The image may even be disconnected. From information that is relayed through

the network, all of the grey agents can classify the image impressed upon them. Another

option is to have one agent recognize this pattern based on all of the information it

receives. The key to the success of this architecture is the language format supporting

message relays [11]. The expressive power of word sequences allows for this.

Since what is expressed is determined by the words used and the order they are

placed, a wrong word or a misplaced word may create an entirely different meaning.

When communicating in pulse ensembles, a simple encoding method is to represent

12

different words using a unique timing between pulses. A sequence of pulses is a sequence

of timings representing a sequence of words. If noise enters the system, added pulses can

destroy the entire meaning of the sentence if more robust modulation methods are not

used.

The processing model of McCulloch-Pitts neuron is simple and could be split into

two basic parts. The main processing section adds and applies a nonlinear function. The

second half is dedicated to serve each input. These are the weights. Figure 2.3 illustrates

this model.

Figure 3.3 Processing Sections of a McCulloch-Pitts Neuron

Since the dedicated part of the processing is a simple multiplier, this agent can afford to

dedicate one for every input. When choosing a research path, it was concluded that a

processor capable of interpreting word sequences probably would not be simple enough to

afford dedicating processing power to each input. Even if some processing function could

be dedicated, there would still be a centralized processor struggling to process several

simultaneous messages. The risk is that the power of the language format may lead to the

13

inability to receive simultaneous inputs and process each equally. A simpler solution is

needed that is between the limited expressive power of a McCulloch-Pitts neuron and the

complex solutions surrounding word sequences.

3.2.3 Space Vectors

The space vector is an inviting alternative to word sequences. Space vectors are limited

in expression according to the number of dimensions desired, thus simpler to understand

and reason with. Also, space vectors provide interesting avenues for processing functions

such as addition and multiplication of vectors, multiplication through a matrix, splicing of

components between inputs, as well as normalization. Some simple vector processes can

be dedicated to each input easing simultaneous communication difficulties. One process

of interest would be to detect correlation between vectors and have each vector influence

the other based on the strength of the correlation.

Agents would pass vectors through pulse ensembles. Time distances between

pulses can represent the value of each component of a vector. A requirement in this

transmission is to preserve the components without confusing which is which.

Information containing dimension identification for each scalar value is required. It is

expensive to correlate several vectored inputs. Given n vectors of m dimensions, a

correlation matrix of mn2 is required to see a correlation of just one set of values between

two vectors for each pair of vectors. Before vector correlation can become a contender as

a simple networking agent, a simple method for vector correlation is needed. In general,

correlation of n inputs should not result in an n2 matrix. The language format chosen

14

should allow for inexpensive correlation. The McCulloch-Pitts neuron can also perform a

correlation operation by multiplying inputs together. Unless specific inputs are only

allowed to be multiplied with specific other inputs, an n2 matrix is also required. Chapter

6 shows how set members can be correlated without using this expensive matrix.

3.2.4 Using Sets as a Language Format

Communicating through sets is another limited language format easy to understand and

reason about. Expression is through the presence and absence of designated members in

the set. Each member or a group of members can represent a concept such as a

recognized pattern. A McCulloch-Pitts neuron can only represent one concept while an

agent communicating with sets can represent several concepts. The tradeoff is that

McCulloch-Pitts neurons can express a range of opinion of a concept while sets can only

indicate whether a concept is present or not. It has not been discovered how to relay

messages using the expressive power in sets to solve the problem in Figure 3.2.

Sets are chosen as the language format of choice for the expressive power over the

McCulloch-Pitts family of artificial neurons and the ability to be received simultaneously

and asynchronously. With allowable degradation of performance, correlation can be

performed with a cost proportional to the average set members sent per transmission.

A non-empty set contains one or more unordered, nonrepeating members. This

simplicity allows for robust reception and simple processing. When sending a set through

a pulse ensemble, members are represented by the time distances between pulses. Since

order is not important, no extra information is needed. If the set is sent more than once,

15

then the transmission is resistant to noise. This observation is the foundation to

asynchronous simultaneous communication. If order preservation or special value

identification was required during transmission, reception of superimposed signals would

require message processing schemes more complicated than those presented in Chapters 4

and 6.

3.3 Sending and Receiving Sets

This section addresses how asynchronous simultaneous communication is possible at the

abstract level. The discussion will begin with simple single input reception and graduate

to the difficulties presented with several superimposed signals. The essential component

used for both reception and processing is the matched filter, capable of extracting signals

from noise.

3.3.1 Single Signal Communication

The members of a set are represented by time distances between pulses in a pulse

ensemble. Figure 3.4 is an example of a pulse ensemble encoding the set {11,20,23,28}.

Figure 3.4 An Encoded Set

16

Note the indifference to the order members are presented as well as the

indifference to the arrival time of the ensemble. Members of a set can be determined as

the ensemble is received one pulse at a time. There may have been a pulse received 143

time units ago before this ensemble appeared. This would make 143 a member of the set

also which introduces the first restriction when communicating with sets. Only positive

integers less than a predetermined value are allowed to exist in a set. Subsection 3.3.2

further tightens this constraint. Such constraints prevent spurious members from being

accidentally included in the set.

3.3.2 Multiple Signal Communication

The model presented does not employ dedicated receivers for each input, therefore, all

input is superimposed and sent to one receiver and processor. Figure 3.5 adds a second

signal to Figure 3.4 representing the set {15,24,33,8}. When the two are superimposed

using the dashed lines, the resulting interpretation is disturbing.

Figure 3.5 Superimposed Encoded Sets

17

The resulting set is {2,8,10,11,15,13}. Although some intended set members were

counted for, the amount of error will grow as more and more sets become superimposed.

Smaller numbers are likely to be added while larger numbers are more likely to be cut by

an interfering pulse. The corruption of the received set is in two directions. A way to

eliminate this kind of of discrimination to larger set members is to consider all of the

distances between all of the pulses. Using this method, the pulse ensemble in Figure 3.4

now yields a larger set of {10,31,59,82,11,39,62,28,51,23}. This set contains the

intended members plus extras. The resulting set for Figure 3.5 contains the union of the

two sets {2.10,20,31,33,48,59,72,82,8,18,29,46,57,70,80,21,23,38,49,62,72,11,13} and

{28,39,52,17,41,51,15,26,24,34}. Again, all of the intended set members are present with

extras. It is unacceptable to see the ensemble in Figure 3.4 generating so many extra

members. Once the method of counting distances betwen all pulses can be applied to a

single signal without spurious results, it can be used for multiple signals. Again, the

advantage of this method is the ability to still capture all intended set members.

The way to prevent spurious set members from forming when interpreting the

ensemble in Figure 3.4 is to further restrict the set member boundary to one octave in

values. For example, if the lowest member of the set is 8, then the highest member can be

15. When these kinds of sets are encoded, decoding returns the same set since all of the

additional numbers will be above one octave boundary. When applied to multiple signal

input, the values above and below the octave limit are cut, but the extra members within

the octave are counted. The matched filter described in the following Subsection will

eliminate these extra members.

18

3.3.3 Using a Matched Filter

A matched filter is special kind of filter that expects what the input signal will appear like

and pull it out of the noise [10]. If a matched filter is looking for the number 34, it will

reject all other numbers except for 34. In terms of pulse ensembles, the matched filter

looks for a certain time distance between pulses. The plan for properly using this filter is

to find which time distance to tune the filter to and record the output. The previous

sentence sounds awkward at first since if the distance is already known, it should just be

added to the set bypassing the filter. This is correct except that there is a filter for each

possible member in the set octave and the filter tunes it self by becoming more sensitive to

a distance each time it occurs. The object is to send the set several times within one

ensemble. As the intended distances are repeated, the filters tuned to these distances

become more sensitive and allow these numbers to enter into the received set. The

unintended pulse distances are less likely to repeat as often as the intended distances,

therefore, these filters will be less sensitive, and will reject the noise. This depends on the

spurious distances ocurring less frequently

3.3.4 Problems with the Matched Filter

Proper operation of the matched filter approach requires the spurious time distances to

occurr less frequently than the intended distances. This will not be the case if the

ensemble combination in Figure 3.5 is repeated exactly the same each time. At this rate

the noise can not be separated from the intended signals. It is best to eliminate any

periodic patterns between simultaneous sets. The time it takes for a set to be represented

19

once in an ensemble is the sum of all the members. If one set repeats every 100 time units

and another set repeats every 80 time units, then the pulse relations will be exactly the

same every 500 time units. At this rate, the first set sends its intended signals 4 times

before the exact same spurious distance squences repeat twice. In the case where the set

sums are identical, there needs to be more effort to keep spurious distances from

repeating.

If each time the set is sent through an ensemble the order of the members is

changed, then the chance for repetition is decreased even more. Tests show that the

combination of long periods and random member selection sufficiently scatters the

spurious pulse distances. The worst case would be several sets with few members and

short repetition periods. Figure 3.5 show the results of such a test. Here, the acceptable

octave is from 100 to 199. The height of the line represents the strength of the presence

of the set member it represents.

Figure 3.6 Worst Case Scenario for the Matced Filter

20

The sets are {100},{125},{150}, and {175} being the best candidates for periodic

behaviour. Note on how the noise is grouped together and additive unlike other samples

in Appendix A. The intended signals still dominate over the noise, but according to the

detection thresholds set in Chapter 4 as -1.71 or -1.33, several noise products will also be

interpreted as acceptable signals.

3.4 Conclusions

When encoded and decoded properly, communication through sets appears to be an

effective alternative to the other possibilities presented. The key concept is bringing the

set members out of the noise by repetition.

CHAPTER 4

RECEIVER DESIGN

Given the input medium is a pulse ensemble where distances between neighboring pulses

represent numbers in a set, this chapter will design a receiver capable of interpreting such

input. Other criteria set in Chapter 3 are the abilities to handle simultaneous signals

asynchronously. Following the guidelines of the thesis objective, the design will be analog

in nature. See Chapter 8 for a suggested physical implementation.

4.1 Nominal Design

The nominal design concentrates on basic architecture and algorithms to ensure the above

criteria can be accomplished. Section 4.2 is concerned with achieving maximum

performance. It would be ordinarily be difficult to detect pattern codes [8], but the

matched filter presented in the design below simplifies the design.

4.1.1 Basic Receiver

The basic problem to be solved from Chapter 3 is how to measure the distance between

two pulses when one or several interfering pulses are positioned in between. In the case

of simultaneous input, there will be several ongoing pulse width calculations of which each

input must be received through the interference caused by the others. The digital solution

would be to use an array for all integers in an octave. A linked list is used to store all

possible pulse widths less than or within the above octave. As a new pulse arrives, a new

element is formed in the linked list containing the distance in time from the current pulse

21

22

to the previous pulse. This distance is also added to each link in the list. If the distance in

the link becomes greater than the highest accepted value in the octave, then the link is

removed. In this way, all possible pulse distances can be remembered. The matched filter

can be employed to pull the intended distances from the noise. The problem with this

design is the complexity required to operate the linked list.

All pulse widths can be memorized dynamically by allowing them to travel slowly

through a special material. This slow material is the heart of the receiver and processor

design. The next three figures show the basic concept of determining all possible pulse

distances as a new pulse arrives. The first step is to start with the first pulse. This enters

at the left and travels through the fast material. A simplification in the design is to treat

the fast material as instantaneous in pulse propagation relative to the slow material. This

pulse instantaneously travels throught the fast material and ends at the far right. The pulse

will now continue its travel to the left along the slow material.

Figure 4.1 Initial Signal into Slow Material

On the far right of the slow material is a pulse propagating to the left. A second pulse will

now arrive on the input as shown in Figure 4.2. Before this though, some time has passed

and the first pulse has been allowed to propagate along the slow material. Now, the

distance in time between the first pulse and the second pulse is represented in the slow

23

material as a distance in length. Since this distance needs to be entered into the matched

filter, a third material is introduced into Figure 4.2. This material has analog static

memory along its length. When a pulse travels throught the fast material, it intersects all

pulses traveling in the slow material. Where the fast pulse meets the slow pulse is where

this pulse distance is recorded on the memory material. The position of the projection

relative to the right edge of the memory material marks the value of the received signal.

Figure 4.2 Second Signal Projects First onto Memory Material

A third example, shown in Figure 4.3, demonstrates how all pulse widths are

remembered by the memory material. When the third pulse arrives, the first two have

propagated accordingly throuth the slow material. Again, the third pulse will intersect

with the pulses in the slow material and project this intersection upon the memory

material. In this Figure, the octave bounds have been added. It can be seen that the time

distance between the first and third pulses is beyond the upper range of the octave. Out of

range pulse widths are shown to be projected onto the Memory material, however, actual

implementations need not do this. The simulation program does not clip these projections

24

in order to show the kinds of spurious signals that can occur, and to demonstrate the need

for the octave boundaries.

If a fourth pulse were to arrive, it will be treated much like the first. When enough

pulses arrive in order to send each member of a set more than once, the travelling pulse

along the slow material will be projected onto the same place more than once. This

activity makes the memory material more sensitive in this area. As discussed in Chapter 3,

the amount of added projection onto the memory material is exponentially equal to the

amount of projection already present at the moment.

Figure 4.3 Third Signal Projects Previous onto Memory Material

This method for recording all meaningful pulse widths is demonstrated in all of the

figures in Appendix A. The values from 0 to 300 mark the distance along the memory

material as in the above figures. In each figure, on the top right of the graph is a

measurement called PULSES. This indicates the total number of pulses input to the

receiver. Figure A.10 shows exponential growth on the memory material. As discussed in

Chapter 3, this exponential growth is the matched filter adjusting itself to either accept the

intended signal that repeats frequently or to reject the noise which shouldn't.

25

4.1.2 The Matched Filter and Noise

At this point, the matched filter self-adjusts to exponentially accept repeating signals.

However, if a long enough period persists, the unwanted pulse widths will also repeat and

begin to project increasingly stronger onto the memory material. Figure 4.4 is similar to

Figure A.3 except that it is sensitive to repetitive noise. Another relationship between

signal and noise needs to be exploited more fully is that the intended signal will statistically

repeat itself more often than the noise at a given slot. The receiver can take advantage of

this relationship by having competition among projections. This Subsection intends to

study three methods for managing competition. All methods of competition are a foi 	in of

normalization upon the memory material. Eventually, how to normalize will best be

determined when attempting to physically implement the receiver in Chapter8. In general,

any normalization is better than none.

Figure 4.4 Receiver Output for Random Input, No Noise Suppression

4.1.2.1 Unbiased Normalization: This concept is the simplist to visualize. Given there

are 100 individual slots in the memory material, any increase in a given slot will cause

An= eVn (4.1)

26

equally distributed decrease to all its neighbors. If the increase is by .25 then all the other

. slots will be decreased by .25/99.

4.1.2.2 Compete with Neighbors: This concept treats the memory material like a

transmission line. As a pulse is projected, the increase of the slot potential in the memory

. material causes a negative wave to the left and right of the projection. Each wave begins

at half the value of the initial increase. As the wave travels, a percentage of the wave is

absorbed at each slot and the remaining part of the wave continues to the next slot. If the

edge of the material is reached, then the wave is reflected back as in an open circuit

reflection. As the percentage absorbed approaches zero, this type of normalization

becomes unbiased as in 4.1.2.1. This type of competition favors slot potentials to be

. spread out evenly across the octave. If intended set members are close in value, then they

will compete with each other rather than the noise. Section 4.3 discusses expected set

member distribution.

4.1.2.3 Compete with. Neighbors, Biased: The method descriped here is the same as

above except that instead of absorbing a small percentage that is predetermined and fair to

all slots, an unfair amount is absorbed according to the current value in the slot. All data

in Appendix A use this method. The amount absorbed is shown below where A„ is the

amount absorbed in the slot n and Vn is the total potential for the memory slot.

27

What is not absorbed continues on in the wave. This method favrs higher memory

potentials over lower ones.

4.1.2.4 Methods that do not Normalize: Perhaps a hybrid between the previous two

methods can be achieved by applyng the negative potential across all slots at once, but

each slot absorbs according to its current potential. This method does not normalize, but

also does not target neighbors unfairly. A failure to normalize can result in unbalancing

the sensitivity of the receiver. No competition causes an unbalanced state where the

sensitivity of the receiver is greater than it should be for a given slot. Too much

competition will hurl the receiver in the other direction where intended signals will not be

detected due to poor sensitivity. An iterating algorithm can be employed to ensure

normalization does occur, however, this will be complicated and will go against the goals

of building simple analog circuits.

4.1.3 Properties of the Memory Material

The memory material is for short term use only. Once the agent has sent its signal, the

memory material will be reset for another round of input. As to exactly what potential to

set this material depends on a compromise between signal to noise ratio and response

time. This subject is discussed in detail in Section 4.2.

28

4.1.4 Making a Hypothesis

Given the mechanisms to separate the intended signal from the noise, there needs to be a

final hypothesis as to whether or not a slot contains an intended signal or just noise.

Figure A.7 shows a progression of snapshots of the receiver's memory material. Given

the octave is from 85 to 170, one can see there is no noise present. After 25 pulses have

been received, the intended set is clearly identified. Figure A.11 shows a progression that

is not so clear. After 75 pulses, frame (c) clearly detects the set { 103,148}, but it is less

clear on detecting the complete set {165,115,85}. Note that for each input, which

member of a set to send in the next pulse is determined by a standard random number

.generator. Apparently, the number 85 has not been sent as many times as its brothers in

the set. This fairness issue is discussed in Chapter 7. Another factor is the set size for

each input. The first input has 3 members to represent with a fixed amount of pulses,

while the second input needs to only represent 2 members given the same number of

pulses. This results in superior detection of the second set over the first. The task is to

recognize both sets equally.

One simple method is to employ a detection threshold. Any slot in the memory

material having a potential greater than a given limit will be considered as an intended

signal, a set member. Those being less are considered as noise. For Figure A.11, a

possible threshold can be a potential of -2. Figure A.13 (d) shows a complex graph with

four input sets with about two members each. A threshold of -1.5 will work well in this

situation. A general equation can be used to determine an acceptable threshold:

T = In ((B + eB) + e(B+eB)) (4.2)

29

T is the threshold and B is the initial bias on the memory material. The equation places

the threshold threshold to the value of a slot after it has been projected upon twice. Three

times will be necessary to exceed the threshold. Note that if competition as described in

Subsection 4.1.2 is employed, then the slot may have to be projected upon by more than

tree times. Applying this equation to Figure A.11, the threshold should be 2.33 which is

fine given no noise. Applying this equation to Figure A.13 yields a threshold of 1.71

which also works well with multiple input sets.

Another bias equation is to avoid exponents and look for a signal to rise a certain

percentage of the bias determined by K.

T = (K-1)B 	 (4.3)

The general rule is to increase the threshold to make a more certain hypothesis

while decreasing the threshold will produce a quicker response.

4.1.5 Handling Aging Sets

A set ages after it is detected resulting in a diminished presence in the receiver memory. If

competition is employed, then a set sent previously will be erased by more recent input.

The examples given so far have been worst case where all input sets occur superimposed.

A more probable scenario are the sets arriving in streams of about 20 pulses, where these

streams may partially overlap, or not overlap at all. The acceptable window to receive a

stream may be relatively large in comparison to the stream itself. Speculations on the

average case will be discussed in Section 4.3. The question is whether to forget aging sets

or to remember them.

30

Assume a set was received early and although it has been received, the members of

the set are not sufficient to cause output. See Chapter 7 for criteria to send output. After

this isolated event, nothing happens for a long time. This makes the initial input set stale.

It is likely that this set is no longer relevant. This set should be forgotten.

Assume a set was received early as above. Another set has been received either on

the overlapping end of the first set or immediately after. In this case, the first set should

be remembered. A decay should be employed upon the slot potentials of the memory

material. This decay should be adjusted accordingly as to not ruin relevant set members or

to preserve stale set members. Given the decay function will approach the original bias

from either side, it can be written as:

Vn = (Vn - B)e-t/T (4.4)
T = KMS/O (4.5)

Where T is the decay rate, M is the length in time to send a set, S is the number of sets

expected, and 0 is the expected set overlap. K is a constant to control the rate of decay.

The actual values of these parameters depend on constructing actual networks which is

beyond the scope of this thesis.

4.2 Maximizing the Parameters

This section is dedicated to study the response of a receiver constructed in Section 4.1

using the competition method described in 4.1.2.3. There are three general areas of

performance: pure noise response, single set response, and multiple set response. The key

issue is where to set the bias for the memory material. This section also serves as an

31

analysis of the design presented in Section 4.1. After studying the graphs in Appendix A,

one can get a feel for the capabilities and limitations of this receiver.

4.2.1 Performance in Pure Noise

The pure noise tests are a prelude to Subsection 4.2.3 where multiple inputs will interfere

with each other. The goal of this section is to understand how setting the bias affects

noise performance in the presence of competition. In these tests, the noise is generated by

a simple random number generator supplied with the Sun Java 1.0.2 compiler.

Figure A.1 shows the results of applying just five pulses of pure noise to the

receiver input. No input is allowed to exceed a potential of zero. If this were not the

case, then the slot potential will continue to grow exponentially and kill all competitors.

Also, when attempting to construct a physical circuit, there needs to be a physical cutoff

limit. From Figure A.1, it can be seen that only one pulse is required to push the slot

potential to the limit. When observing the base of each active slot, the negative impact the

slot has upon its neighbors can be seen in negative skirts. With the bias level at just -0.5,

these skirts are too narrow. If the skirts are too narrow, then the affect of the skirt is local

only, and at a distance has the effect of no competition at all.

Figure A.2 shows slightly improved results over the previous figure. Here, the bias

has been set to -1.0. Two hits on the same slot are required to push the slot potential to

its limit. The competition skirts are wider and noticable in frame (c). The intention of the

competition skirts is to reduce the slot potential of neighbors. If the receiver is exposed to

enough noise, some slots will be hit more than once. The object is to reduce the potential

32

of the slot before the second hit is due. Given a good random distribution, several

neighbor slots will be hit at least once before the same slot is hit twice. As the neighbors

are hit, thier competition skirts will reduce the potential on the central slot.

Figure A.3 (d) shows the intended application of the skirt. Compared to the

previous figures, the Bias of -1.5 will be the maximum acceptable for noise rejection.

According to the detection threshold set in Subsection 4.1.4, a slot potential of -1.0 is

enough to be judged as an intended signal. In this example, 15 to 25 random pulses are

required to produce a false signal.

Figure A.4 shows the skirt in a different mode where it begins to appear flat as

more random signals are input. Eventually, the shape of the skirt seen in (c) is lost in (e).

From 30 to 60 random pulses are required to produce a false result. At this point, the bias

is at -2.0

Increasing the bias past -2.0 does not increase the noise rejection significantly

farther. Setting the bias to -2.5 produces a false signal at around 60 pulses and setting the

bias to -3.0 produces a false signal at around 60 pulses also. If the second equation of

Subsection 4.1.4 is employed, then noise rejection increases steadily as bias decreases.

Table 4.1 displays the compiled results.

33

Table 4.1 Receiver Noise Immunity

Bias Threshold Eq. 1 Threshold Eq 2 (33%)

-0.5
-1.0
-1.5
-2.0
-2.5
-3.0

<1 pulse
15 pulses
15 to 25
30 to 60
60 pulses
60 pulses

<1 pulse
<1 pulse
15 to 25
120 to 200
> 500 pulses
> 500 pulses

As mentioned in Section 4.3, there will be no situation of random noise only. The

purpose of this test is to predict performance in Subsection 4.2.3. From the results given

here, the best bias to use is from -1.5 and below.

4.2.2 Single Input Set Performance

The objective of this Subsection is to determine the response time of the receiver without

any noise input. This time should be about 10 pulses regardless of the bias given

according to the threshold calculation given in Subsection 4.1.4 first equation. If the other

threshold equation is employed, with K=0.33, then the slot potential must exceed one

third the distance from the bias to the top.

Figure A.7 is a trial with a bias of -1.5. This is considered the minimum acceptable

by in the last Subsection. Here, 10 pulses meets the threshold for either equation. As an

improvement, Figure A.8 is a rceiver with a bias of -2.0. Here, 10 pulses push the

appropriate slots past the first equation threshold as expected. With the second equation,

about 15 to 20 are required. As the bias decreases, more and more pulses are required as

shown in table 4.2.

34

Table 4.2 Single Signal Reception

Bias Threshold Eq. 1 Threshold Eq 2 (33%)

-0.5
-1.0
-1.5
-2.0
-2.5
-3.0

<1 pulse
15 pulses
15 to 25
30 to 60
60 pulses
60 pulses

<1 pulse
<1 pulse
15 to 25
120 to 200
> 500 pulses
> 500 pulses

4.2.3 Multiple Input Set Performance

The true test for this receiver is to input multiple sets where each set has at least two

members. As discussed in Chapter 3, when two or more inputs are simultaneous, spurious

pulse widths will be generated and will be the limiting factor in these tests. The first test

will be using two simultanous sets, while the second test will double this amount to four.

The objective is to determine an appropriate operating bias of the memory material as well

as to measure how well the receiver performs at these levels of difficulty.

4.2.3.1 Two Simultaneous Inputs: Figure A.11 shows the reception of two sets of

numbers. The first set is {165,115,85} and the second set is {103,148}. The operating

bias is -1.5. 	For either threshold calculation, it takes about 30 pulses to detect the

intended signal. This comes to 15 pulses from each source. Spurious noise is present and

will eventually punch throught the threshold as well. At this bias level, noise is noticable,

but not a factor after 60 pulses.

35

Decreasing the bias to -2.0 requires more input pulses to produce output results,

but performs better with noise. In Figure A.12, the first threshold equation finds all five

numbers after about 30 pulses. The second threshold equation needs about 60 pulses.

Lowering the bias even more produces the results in Figure A.13. It takes 35

pulses for the first equation and 75 pulses for the second. Note how the noise is

practically eliminated.

From the compiled results in Table 4.3, the best choices at this time are a bias of

-1.5 and -2.0. These are the critical points for receiver sensitivity. A higher bias allows

too much noise, while a lower bias requires too many input pulses.

Table 4.3 Double Signal Reception

Bias Threshold Eq. 1 Threshold Eq 2 (33%) Noise

-1.5
-2.0
-2.5

15 pulses each
15 pulses each
18 pulses each

15 pulses each
30 pulses each
38 pulses each

Noticeable
Low
None

4.2.3.2 Four Simultaneous Inputs: This is the most difficult test for this receiver. Only

the two recommended bias values from the previous tests will be used in this study. The

noise factor is expected to corrupt results as well as competition among intentional

signals, requiring more pulses input to meet detection threshold. The four input sets are

{165,115,85},{103,148},{155,93}, and {132,121}.

The first test is at a bias of -1.5. Figure A.14 shows that after 39 pulses, 8 out of 9

numbers have been detected and one spurious result between 125 and 150. After 58

36

pulses, all 9 numbers are detected with one spurious result. After 78 pulses, two spurious

numbers are showing. The receiver at this bias level is able to detect the intended signals,

but unable to reject the noise.

The second test is at a bias of -2.0. Figure A.15 show that after 90 pulses, all

intended numbers are detected. This is at about 22 pulses per input source. After about

180 pulses did spurious results show. Using the second threshold equation at 33% of bias,

all pulses were not detected until about 130 pulses have passed. However, no spurious

signals were detected even after 180 pulses have been present.

The conclusion of the test is that a bias of -2.0 is recommended for operation while

the detection threshold method is not a critical factor in receiver sensitivity. The first bias

equation is recommended over the second due to improved response time. It will be

shown in Chapter 5 that these spurious results have a low chance in affecting agent

output.

4.3 Expected Operating Conditions

This section discusses what environment the receiver is expected to perform in. It can

also be interpreted as specifications for which operation is possible. Two main catagories

of specification are the expected output specifications of an agent and specifications on

how inputs can overlap. These specifications are a result of receiver design criteria and

test results.

37

4.3.1 Agent Output Specifications

Each agent outputs one set containing one or more numbers. The number of pulses sent

must be proportional to the number of members in the set. For single signal reception,

only 3 pulses per member are needed but this number increases to 7 in noisy environments.

Members in a set are expected to be distributed evenly. See Chapter 6 for more details on

how to accomplish this. None of the output pulses are spurious. Members of a set will be

transmitted randomly in order to randomize spurious pulse widths when combined with

other output signals. Members of a set are represented fairly in the output stream.

Negligence towards one member in a set will result in failure to detect.

4.3.2 Input Combination Specifications

The tests performed previously are worst case scenarios where all sets completely overlap

each other. The case of single signal reception is also a best case scenario which will not

occur every time. There is no experimental information to suggest the true operating

environment these receivers will be subjected to. The purpose of this section is to suggest

one. This section affects the aging decay half life introduced in Subsection 4.1.5. Below

is a table suggesting operating preferences of the receiver.

Table 4.4 Specifications for Multiple Inputs

Shortest output pulse width 	 85t
Longest output pulse width 	 170t
Avg. pulse width 	 127.5t
Avg. number of pulses per input 	15
Average length of set stream 	 1912.5t
Avg. number of sets to receive 	 8
% overlap between sets 	 60%
Min. number of simultaneous inputs
Max.. number of simultaneous inputs 	3
Avg. % stream shared with none 	21%
Avg. % stream shared with one 	 42%
Avg. % stream shared with two 	 37%
Avg. length of combined stream 	 7267.5t

38

CHAPTER 5

MESSAGE PROCESSING

The goal of the processing unit is to transform the input message intelligently to an output

message. The intelligent aspect of the transform in may not be readibly comprehendible for

a stand alone agent, and may be realized when within a group of agents networked

together. Two basic processing functions are available; message relaying, and message

correlation. This chapter will present the possibilities of both using sets.

In general, the objective of the processing stage is to combine all inputs into one

consistent output. The consistent output can be interpreted as one voice, instead of

several voices sharing one output path. All agents connected to the output are only

concerned with interpreting the one voice instead of several. If the output appears to be

several languages overlapped, then agents not only learn the language of the previous

stage, but of the stages before. The one voice is comparable to the output signature

presented in Chapter 3. The single voice initiative is a concept fitting for an agent having

several inputs and only one output.

Given an agent with several simultaneous inputs carrying large quantities of

information, it will be impossible to fit all of these inputs into one output, and as

mentioned above, undesirable since the output will consist of several different voices.

When combining the inputs, compression is required to eliminate redundant messages.

Two policies can be applied to this method. The first is to output only the messages that

can be combined, and the second is to output as much as possible. The second policy is

39

40

more complicated since it requires decision making about messages that can not be

combined with others.

5.1 Message Relay

A message relay mechanism within an agent is useful for recognizing variance in input

patterns. Regardless of where the pattern is placed on the input, the pattern will be sent to

the proper agents for processing. The alternative to message relaying is to have each

agent in a network trained for every possible variance.

The primary goal is to combine inputs that can be combined in order to produce an

output of one voice. The inputs that can not be combined can either be omitted from the

output process, or can be sent in addition to the combined output according to the

message bandwidth left over. These additional messages are essentially relayed. As

mentioned in the introduction, decisions need to be made on what messages can get

relayed and which will not.

The above policy does not guarantee sending the proper messages to a destination

where the information will be useful. Along with a relayed message, a destination tag is

required. This tag can be interpreted by all agents along the way. An individual agent will

be responsible for reading the tag and deciding either to relay or not to whether or not one

of its output paths brings the message close to the destination. This requires the agent to

know its position relative to all destinations. Even if one of the output paths leads to the

destination, the message will get relayed to all agents connected to the output. These

agents may or may not retransmit the message. According to Chapter 2, agents will be

41

networked in a mesh resulting in an indirect path from the output of the agent back into

the input. These closed loops can be dangerous causing unwanted oscallation of relayed

messages. Unless the relay process is handled properly, it will cause more harm than

good. Currently, these issues do not implement well using the set communication medium

and will not be considered. Focus on the processing section will be spent combining

several messages into one based on correlation. Messages not correlating are omitted.

5.2 Message Correlation

Chosen as the only processing function, there are several issues concerning message

correlation including how to define and measure correlation according to what information

is suppplied and what is needed. In set communication, the presence of a number is a

positive indication of an event or a set of events. The absence of a number indicates no

event by default. Only the positive presence of events will be measured, ignoring absent

events. Other issues are policies on representing complex patterns with hierarchical

structures.

Two messages correlate when two or more numbers from the union of the sets

occur often enough to be noticed in competition with all other message combinations.

Only a top percentage of message combinations resulting in the highest correlation

detection will be accepted as a correlation event. Every time this happens, the agent will

output a single number to represent the number pair or group. When communicating with

sets, each number either represents itself or another set of numbers. When considering

complex patterns, a number in a set may represent more than one set.

42

5.2.1 Correlation Detection Method

Correlation may be measured loosely or tightly. Consider two coins being tossed at the

same time. The results of the one coin do not track the other, therefore it can be said the

results of the coin toss do not correlate. The other approach is to maintain there are four

popular patterns, {H,H},{H,T}, {T,H}, and {T,T}. The second approach is more useful in

categorizing the coin toss. The equations for both methods are presented below:

C(AB) = P(AB) P(AB) - P(AB) P(AB) 	 (5.1)
C(AB) = P(AB) 	 (5.2)

C is the correlation function while P is either a probability or a frequency function.

Equation 5.1 measures how often both coins are the same in relation to how often both

are different. The second equation measures how often both coins are {H,H} in relation

to no other combination frequencies. To measure the correlation of all the other

combinations, three more equations like Equation 5.2 are required measure the

frequencies of {H,T}, {T,H}, and {T,T}. Equation 5.2 has advantages over 5.1 in being

easier to calucluate and not being able to track when an event does not happen. The

results are more plentiful and preference is given to message sets occurring frequently over

those that are rare. Two numbers that track each other very well but occur seldom will be

measured strongly by 5.1 and ignored by 5.2. Likewise, two numbers that never occur

simultaneously are also recognized by 5.1 and ignored by 5.2. When communicating with

sets, the presence of a number represents an event or a set of events. It would be useless

to measure how often two events do not occur, therefore Equation 5.2 detects useless

correlations. Given the design approach in Chapter 6. only equation 5.2 is possible. In

this case, several patterns will be recognized, requiring competition for the strongest. In

43

order to make 5.2 behave closer to 5.1, numbers ocurring at low frequencies must have an

equal chance to be recognized as those occurring often. Equation 5.3 provides an

equalizer.

 CAB = P(AB)/P(A)+P(B) (5.3)

5.2.2 Representing Patterns

This Subsection provides possible solutions to representing the correlation of complex

patterns. The policies for representing these patterns will be determined by the actual

processing algorithm. Desirable solutions, however, will be presented here.

The simplest pattern recognizable in a set message is two numbers. When these

two numbers occur, a pattern is recognized. This process can be expanded to three

numbers or more. Each time, the number assigned to the pattern represents the numbers

within the pattern. Complex patterns are hierarchichal in nature and are not readily

representable with flat sets. In this process, some information will be lost, either the

hierarchical relationship or the difference between layers in the hierarchy. Both pieces of

information can be preserved by assigning one number to represent what is common and

one number to represent what is different. Discussions will be limited to two levels within

the hierarchy.

5.2.2.1 Subpatterns: A subpattern is a relationship where one pattern is contained

completely within another. For example, {7,2} is a subpattern of {10,7,2,18}. If the

parent patterns occurs, then it is simple to assign a number to this pattern. In the event of

44

the subpattern, there are three choices. The first is to maintain the relationship in the

hierarchy and represent both patterns as the same number, the other is to maintain the

difference by representing both by individual numbers. A third option is to keep both by

having one number represent the hierarchy and the other represent a modification within it.

In this example, the set {22} represents the subpattern, and the set (22, 25} represents

both the subpattern and the parent patttern. It is unclear what the set {25} represents. If

subpatterns are treated as a type of shared pattern, where both share {7,2}, then {25}

represents {10,18}.

5.2.2.2 Shared Patterns: A shared pattern is a combination of overlaping patterns such

at {12,15,8} and {5,12,15}. Again, there are three ways to represent these types of

patterns. The first is to preserve the relationship by assigning one number to represent

both patterns. The definition of the pattern becomes (12 ∩ 15) ∩ (5 U 8). The second

interpretation preserves the difference by assigning separate set numbers for each pattern.

The third approach attempts to preserve both by assigning one number for (12 ∩ 15), a

second number for (5) and a third number for (8). The second and third numbers are not

allowed to appear without the first.

5.2.2.3 Evaluating Each Approach: The third approach presents the most information

at the cost of using more numbers. The worst case is a group of two shared patterns such

as {1,5} and {1,3}. According to the first method, one number is required to represent

the input pattern of {1,3,5}. The second method requires two, and the third requires three

45

numbers. From this example, the third method has performed no compression of the

information. The best way to understand how each method will perform is to evaluate

what will happen at the following stages. Since the third method did not perform any true

processing for the worst case, it will be propagated through all stages in an endless loop.

This is not acceptable. Even without the worst case at first, the worst case will eventually

be derived and propagated. The first method will output one number for either pattern

matched. This number will go to the next layer of agents. If this number correlates,

strongly, then it will be represented as part of another pattern. If it does not correlate,

then the influence of the original patterns stops at these agents. With the first method,

information that two patterns have been presented is forgotten and is treated as if only one

pattern is present. Either this relationship is forgotten, or another agent sharing similar

inputs will detect one of the two patterns also. The second method is a compromize

between the first two. Two overlapping patterns are represented as two numbers, the

following stage can easily correlate these two numbers and represent the two sets as one

number. The second stage can also use each pattern number to combine with others. This

option is the most flexible and is encouraged.

5.3 Regenerative Agents

An advantage of communicating and processing sets is the ability to create regenerative

agents. When an object is regenerative, its output or a function of the output can be

routed back into the input for the positive effect of further processing. These agents

operate at several levels in the hiererchy, one leavel for each cycle in the loop. This avoids

46

the linear approach to cascading agents as in Figure 5.1. Instead of a strait line, the output

of the last layer can be wrapped back around to the first layer again. Here, the first layer

processes low level input information as well as higher levels.

Figure 5.1 Linear Vs. Regenerative Architecture

The advantages of a regenerative architecture come from two areas. First, the

feedback path allows complex information to develop without ending. The complexity of

the results depends on the number of layers in the linear architecture. A drawback is in the

difficulty of extracting the result, since it can be anywhere along the length. The same can

be said for the linear design, since simple patterns will be recognized early. The second

advantage area is the inherent method for which input is forwarded upstream. In the case

where a complex pattern higher in the processing chain requires low level input to

continue, several forwarding paths are required to accomplish this. The regenerative

design provides this path naturally.

With an agent comnumicating with sets, all set numbers are combined together-

providing anonymity to the sender. Therefore the sender can pretend to be several virtual

agents providing several sets, one for each level in the hierarchy, to the target agent. The

target agent will see correlations among several inputs for each level of communication as

well as correlations between levels.

CHAPTER 6

PROCESSOR DESIGN

This chapter will present a design for a simple processing unit to recognize frequent sets.

Finding a correlation between several input sets would normally require an n by n array to

compare each possible number with every other. This approach becomes three

dimensional when attempting to correlate sets of three numbers. With receiver

specifications set to handle several simultaneous sets, a more efficient design is required.

The scheme presented below performs a similar operation using an n element one

dimensional array. As expected, there is a compromise in performance, requiring

iterations of tuning for acceptable results. This design is substantially more complicated

than the receiver not only in algorithm form shown in Appendix D, but also in the physical

design approach presented in Chapter 8.

A similarity exists with visual pattern recognition where sets can be mapped out in

a grid as in Figure B.1. Here, the members allowed to be in a set belong to a pool of

sixteen numbers. These numbers are chosen randomly, but are consistent from set to set.

6.1 Nominal Design

The nominal design concentrates on basic architecture and algorithms. Since this design

presents a compromise in performance, it will be necessary to utilize the scheme presented

below with the upmost efficiency in both the careful selection of performance goals as well

as proper algorithms to achieve these goals. Given the current constraints of a simple

physical design, the performance of this current design falls short of expectation. This

47

48

nominal design should be interpreted as a starting place rather than the end. This section

provides several selections and guidelines for design, while Section 6.4 suggests

improvements on the design based on the test results.

6.1.1 Basic Processor

The goals of this Subsection is to present the paradigm to solve for correlation in one

dimension. The design paradigm and materials are the same as used in Chapter 4. As

discussed in Chapter 5, the exact method for correlation will not be achieved but rather a

measurement for the frequency of coincidence. A side effect of this measurement is that a

recognized pair of numbers may just be appearing at a high rate and are not related in any

way. This method was found to be acceptable and even more desirable over exact

correlation since even though a pair or group of events may not correlate, frequent

combinations will be noticed. For reasons of simplicity, Equation 5.3 will not be

implemented.

Before presenting the single-dimensional design, the two-dimensional design is

presented first as shown in Figure 6.1. Each axis contains the complete pool of possible

members that can belong to any imaginable set detected by the receiver. Each square on

the grid represents a correlation measurement between two possible numbers. The

blackened squares present a meaningless measurement since each event correlates with

itself automatically. This two dimensional grid requires a wide physical area and is not

suitable for the complex examples presented in Chapter 5. Strict correlation can be

measured here since the presence of one number and the absence of another can be noted.

49

Figure 6.1 Two Dimensional Processor Solution

A method called autocorrelation is used to find patterns in numbers similar to the

matched filter from Chapter 4. Figure 6.2 shows the pairing of the receiver to the

processor. The receiver has currently detected three numbers represented by vertical lines.

When it is time to process, these lines become pulses traveling to the right out of the

receiver and into the processor, along the same slow material without interruption.

Figure 6.2 Receiver to Processor Transfer

These pulses represent detected signals and are not to be confused with the

receiver input pulses from Chapter 4. Once in the processor section, the pulse train

continues to flow, disappearing off the right edge. The processor section consists of a

long term memory material marking input patterns the same way the matched filter

50

marked intended signals in the receiver. The long term 	in memory also serves as a matched

filter not to detect incoming pulse widths, but incoming distance pattterns between

detected signals. As the detected pulse train passes over the preset memory material, the

matched filter will detect the pattern if one fits. The matched filter acts as an unfinished

puzzle, detecting when the last remaining pieces can fit. Figure 6.3 demonstrates the

matched filter in operation. There are two important observations to mention. First, the

detected signal consists of three numbers, not just two. It could have been more or less

than this. Second, the impressed pattern on the long term memory material is more than

what is needed to match to the three propagating pulses. The three matching filter values

are embedded within the group of memorized patterns. This memory material serves for

all patterns recognized by the agent causing patterns to overlap.

Figure 6.3 Detected Signal Propagating over Long Term Memory

A drawback to this approach is the increased probability for a partial match

between the detected signal and another pattern stored in the long term memory. Careful

planing is required to render this method of processing accurate. A second drawback is

the reliability upon distinct and exclusive number spacings in order to avoid {90,120} and

{135,165} from matching in the same place. An agent receiving several numbers will end

up with many short spacings between pairs of numbers. The chances of these number

51

spacings duplicating increases to the point where it can not be ignored. This may require a

double constraint upon set transmission stating that multiple inputs should have

noninterfering relative spacings as well as separate numbers. This would be impossible to

expect since numbers spacings are between all input sets. Fortunately, this is not a

problem due to the output scheme to be introduced in Chapter 7. Duplicate spacings

between sets of three numbers or more are less likely and can be handled by the output

algorithm.

The final step is to present the match as output. For now, the responsibility of the

prcessor is to match each independent pattern at an independent position along the long

term memory material. Chapter 7 discusses the means for accessing this position for

broadcast. It is the job of the processor to indicate a match and its unique position.

These patterns within the Long Term Memory (LTM) do not come prepackaged

and will require a learning algorithm to grow patterns within memory. Proper growth of

patterns ensures proper detection. The reverse is also true. When serveral patterns have

to be shared in a fixed length of LTM, the chance of interference between patterns

increases. The length of the LTM can be increased in order to detect more patterns. This

feature is sensible since the size of the design becomes proportional to the amount of

processing power expected. The size of the two dimensional array must account for all

possible number pairs possible, not for the just the minimum amount of matching patterns

expected. Another approach to differentiating the two approaches is to view the two-

dimensional array as a static implementation and the one-dimensional array as a dynamic

one. Patterns grow dynamically in the LTM instead of in predetermined static positions.

52

6.1.2 Design Performance Goals

This subsection presents the goals[16] to be accomplished from the basic design presented

in the previous subsection. Design decisions will be applied to these goals first since these

goals ensure a foundation for proper operation. Any remaining goals introduced in

Subsection 6.1.3 such as policies towards complex patterns will be evaluated with less

importance. When attempting to satisfy all goals it will be discovered later that some

compromises must be made. The two major design variables are the threshold calculation

and the learning algorithm to apply to the matched filter.

Simplicity is the pervasive design goal of this thesis. The basic approach for the

processing section matched filter is taken from the receiver section. The solutions for

detection and learning in the processor should also be just as physically simple. it is

tempting to abandon this goal in the presence of other goals demanding performance.

Only frequent coincidence of two or more number patterns are suitable for learning

and detection. The occurrence of a single pulse should not be considered as meaningful.

Frequent patterns are expected to be recognized quickly. Quick learning is also

expected when learning multiple patterns at once.

It is expected for patterns to compete with each other such that the resulting effect

is the memorization of the most frequent patterns over those less frequent. Pattens no

longer in use should eventually fade away.

A pattern already established should not prevent another pattern from growing, if

the second pattern is competitive in frequency. This occurs when mature patterns are

53

allowed to compete unfairly when detection alone causes an extra amount of competitive

power.

A mature pattern in the LTM should be stable in the face of other growing

patterns. There should not be a temporary absence of detection in a learning environment.

A strong pattern just learned may be a candidate for unlearning.

A simple pattern should be represented by one unique position along the LTM.

Multiple detection can form from two scenarios. The first being the the same pattern is

growing in two separate places in the LTM. Each is not aware of the other. The second

is the case where one slot in the LTM is too sensititive and will cause a pattern match with

just one pulse matched. In this case, a receiver's detected set of three numbers wil cause

three pulses to travel across the LTM. Each pulse will trigger a match as it passes over

the sensitive slot in the LTM. The result is three detections for this and multiple detection

of every other receiver output presented. Two approaches for accomplishing this goal is

to either prevent a single slot from being over sensitive by modifying the learning

algorithm, or to modify the detection criteria to accept matches of two pulses or more.

Two unrelated patterns should be represented by a unique matching position along

the LTM. It seems natural for this goal to be obeyed since unrelated patterns cannot

occupy the same position in the LTM..

The position of each matched pattern must not only have its own unique location

along the LTM, but these patterns must also be equally distributed in order to ensure the

least chance of the output set for this agent does not collide with the output sets of others.

This random distribution will be the partial result of fairness along the LTM for a pattern

54

to be learned. Improper design will create edge effects, resulting in patterns gouping

along the egdes, or the middle, the end, or the beginning of the LTM. Random

distribution can also be denied if a new unrelated pattern chooses to form itself attached to

an existing memory pattern. This causes unwanted grouping of patterns. Figure 6.4

describes this effect. Here, the middle slot of the new and growing pattern shares the left

slot of an established pattern. The basic choice a new memory pattern has for forminh is

to either grow at a random position or to grow in a place that advances its ability to grow

and be established quickly. Even if this grouping occurs, the output algorithm can

separate patterns that partially and fully overlap. The general theme is to prevent

grouping of patterns to provide a uniform distribution.

Figure 6.4 A New Pattern Choosing to Grow from an Existing Pattern

6.1.3 Design Performance Issues

This Subsection is distinct from the previous in the uncertainty of either the correctness or

the importance of the goals presented here.

Patterns of two numbers should be detected as easily as patterns of three numbers

or more. This goal conflicts with the goal of having having only one number being

meaningless. There will need to be extra rules and extra physical design complexity in

place to account for this irregularity. In contrast, the strength of a pattern can be

55

porportional to its size. The problem with this is that a 20 pulse pattern from the receiver

may match poorly on the LTM, but still command strength to detected.

Subpatterns of a larger pattern may grow within the parent pattern or as a

duplicate unattached. Growing a subpattern within a main pattern results in the possible

inability of the processor to distinguish the difference between when a subpattern is

presented alone or within the parent pattern. This may be possible if the detection

algorithm is clever enough. The alternative is growing the subpattern in a separate section

of the LTM. This requires extra overhead, and is not considered an efficient use of the

LTM. Common patterns and subpatterns should grow attached to one another and share

common slots for sections of the pattern that is shared. Multiple patterns with shared

numbers should have these numbers sharing the same slots in the LTM. Since these

patterns are at equal level and one is not inside the other, detection should be straight-

forward. As two patterns share more and more of each other, it will become increasingly

difficult to detect the two separately.

6.1.4 Defining the Detection Algorithm

Determining how to recognize a match from the received pattern to a pattern in the LTM

is critical in order to correctly identify pattern matches when present and to avoid false

detections. Discerning detection alglorithms can go farther by detetecting separate

subpatterns withing patterns if desirable. Below are some methods available for detection,

all of which share some basic traits. As the received pattern passes over the LTM, if a

pulse from the receiver passes over a sensitive slot of the LTM, this slot generates a

56

potential, this potential combined with other potentials across the LTM to detect a match.

The suggestions presented here are in agreement with simple physical design. More

complex methods may be possible.

A second application of the detection method is to give a heuristic indication to the

learning algorithm. This application of the algorithm even when the result is below the

threshold helps the patterns growing in the LTM to mature by strengthening the correct

slots. It would make poor sense to detect patterns according to one measurement and

grow them according to another.

The limiting situation with using this design is when the receiver sends several

pulses representing several numbers. These numbers will correspond to one or more

patterns in the LTM. As the pulse train propagates, some of the pulses will unintentionally

pass over sensitive slots, causing spurious readings. The detection algorithm decides a

true match from these spurious readings. The reliance is on a fully matched pattern

dominating over noise expected in pulse train propagation. Detection problems increase

as the number or receiver output values increase in proportion to the size of the patterns

stored in the LTM. This will increase the noise element over the intended potential.

The first method is to total all of the potentials across the LTM at any instant. If

the instantaneous potential at this point is greater than a given threshold, then mark the

detection of a valid pattern at this point in time. This gives preference to more pules in the

receiver pulse train than less. Large receiver input to the processor may cause false

detection due to the addition, of many small numbers, This method can differentiate

between parent patterns and subpatterns by rejecting subpatterns since there are not

57

enough slots matching to generate a cumulative result over the threshold. The main

difficulty is the wide ranges of output values due to the number of pulses propagating and

the number matching. The resultant potential of a detected pattern spans too great to

determine a standard threshold to apply in all situations. For this reason, detection by

addition is not acceptable.

Another detection method is to average all of the slot potentials of LTM slots

currently projected upon by the receiver pulse train. Consequently, it has the opposite

effect of being unfair to receiver pulse trains of several pulses. The receiver output may

contain several unrelated patterns to be detected by the LTM in different areas of the

LTM. At a given moment, only one of those patterns will be matched. If the number of

pulses in the receiver pulse train is 8 pulses, representing 8 numbers, and the current

matched pattern uses only two of these numbers while the other 6 remain in slots that may

or may not be sensitive. The worst case average will be (0+0+0+0+0+0+1+1) /8 = 0.25.

This result will be too low even for the most lenient threshold. The best case will be when

all receiver pulses match to a pattern in the LTM.

Another shortcoming of the averaging method is the failure to prevent a receiver

output of only one pulse from triggering when matched with a sensitive LTM slot. This is

possible since the average will be just the value of the single pulse.

A third detection method is to first calculate the average of all the slot potentials,

then calculate the total deviation from this average. The lower the deviation, the stronger

the match. This method is presented for variety only and lends itself to the same troubles

as the averaging method.

58

In conclusion, no current detection algorithm will guarantee acceptable results.

The averaging method is chosen over the addition algorithm since its detection threshold is

limited to values between zero and one. As mentioned above, the detection result is used

a a heuristic for the learning algorithm. It follows that poor detection will lead to poor

pattern growth in the LTM.

6.1.5 Defining the Learning Algorithm

The leaning algorithm will be presented relative to the detection algorithm. The amount of

learning to be applied at any instant will depend on the detection value given at that instant

The goal of the learning algorithm is to use the detection results wisely in order to grow

patterns spread uniformly across the LTM. This Subsection presents positive and negative

learning in order to keep the LTM in equalibrium. Methods using other heuristics than

detection will be discussed last.

The positive algorithm grows patterns in the LTM. As the receiver's pulse train

propagates over the LTM the detector calculates a value for each position. For a given

position of the pulse train, the slots containing pulses will project into the LTM according

to Equation 6.1.

Pn = Pn + Dt,(1 - ePn)L (6.1)

P

n

 = Pn + Dt(ePn)L (6.2)

Where P

n

 is the potential of LTM slot n and Dt is the result of the detection algorithm at

time t. Equation 6.1 ensures quick growth at the beginning, slowing as the slot potentials

apporach the upper limit. A variation of 6.1 is 6.2 which speeds the apporach to the limit.

59

In this case Pn must be limited to a maximum value of zero. L is a learning constant

designed to keep events from happening to quickly resulting in unstable pattern categories.

Figure B.3 shows the results of positive learning. The valid LTM detection area is

between 100 and 200. The buffer zones on the left and right are used to help eliminate

edge effects described later when positive and negative learning combine. The result is a

steady increase in slot potentials across the band. This is to be expected since the

propagating pulses pass over and potentiate all slots. All slots are adjusting to match the

pattern without any competition. The least that can be done is to give an equal chance for

the pattern to end up anywhere withing the 100 to 200 band. There is a bow across the

band suggesting the pattern will definitely use a slot in the middle. Ideally, there should be

no bow. This is due to edge effects.

Negative learning is needed to allow the incoming patterns to match only once.

The idea is to let the winning pattern in the race suppress the rest. The winning pattern is

the one which is detected as a valid pattern by the detection algorithm. Suppression is the

result of the negative learning algorithm which accomplishes the opposite of the positive

algorithm. A negative pulse train is sent across the LTM and any matches besides the

winning match are suppressed. This allows only the winning pattern to thrive. The rest of

the slots will only grow when adjusting to other patterns. The negative learning equation

is shown below having strong relation to Equation 6.l :(

Pn = Pn -

D

t(1 - ePn)S 	 (6.3)

The negative learning coefficient S determines the amount of punishment. Figure B.4

shows the result of the negative learning algorithm once a winner is selected. All of the

60

competing slots are reduced to a low state. Figure B.5 shows a second pattern being

introduced. This second pattern is expected to climb to detection levels, but

unfortunately, this is as high at the second pattern could get when combined with the first.

This is a major setback in the design of the detection and learning algorithms.

A brief note is required about the edge effects. Since the detection algorithm

depends on an average value of all pulses in the propagating pulse train, the most accurate

calulation of the learning heuristic will be when all of these pulses are being accounted for.

Two edge conditions occur when the pulse train is just entering the LTM area and when

the pulse train is just leaving. At these times, the average is not as accurate as desired.

To avoid this problem is to restart over and avoid the basic design in Subsection 6.1. The

alternative becomes another goal for the detection algorithm. The algorithm must handle

edge effects without distorting general trends of slot potentials away from or towards the

edges. The region between 0 and 100 and the region between 200 and 300 are buffer

zones where all slot potentials are a high negative value. These zones will not be

discussed in detail since it is considered by the author to be a temporary solution. For

details, see the source code of the applet in Appendix D.

6.2 Expected Results

This section describes expected results based on the criteria described in Subsections 6.1.2

and 6.1.3. The expected results will be compared with the actual results described in

Section 6.3. The comparison will determine how well understood the issues and

algorithms truly are. The minumum result is the ability to recognize at least one pattern

61

which has already been accomplished. Following this come expectations for recognizing

multiple patterns. During these tests, it is expected that each unrelated pattern maps to a

unique detection position along the LTM. The following are other performance

expectations.

1. It is expected that only the most frequent pattern will be detected and will suppress all
others.

2. The mature pattern is stable since it kills all competition. The pattern, however, will
continue to grow to a condition where single pulses can be triggered at very sensitive
slots.

3. The slot growth is not distributed completely evenly, resulting in the new pattern being
formed about the center.

4. Subpatterns will be detected but identified the same as the parent pattern.

 6. Shared patterns will be detected and identified with uniquely.

6.3 Actual Results

The actual results can be viewed in Appendix B. There are two basic graphs to be seen

for each snapshot. The first graph describes the state of the LTM. Experimental

parameters are also included such as learning coefficients Plearn, Nlearn for positive and

negative learning. The coefficient Ntr is the negative learning cutoff threshold. During the

negative learning cycle, any pattern matching below this threshold is not applicable to

negative learning. Other information includes the current pattern being applied, the

patterns in the current learning set, and the number of learning trials performed. The

second line displays the position of the detection if one should occur. This line will occur

farther down from where the pattern matched as explained in Chapter 7.

62

6.3.1 Unfair Competition

When the training set contains two unrelated patterns appearing separately but chosen

randomly in the training phase, one will grow in the LTM and one will not. This behavior

can be seen in Figures B.6 and B.7. Initially, the LTM slots begin in relatively sensitive

positions as shown in Figure B.2 in order to generate a quick match. Figure B.6(a) shows

pattern 1 being recognized after only 14 trials and represented by the slot on the lower

axis. More or less trials are expected according to the setting of the positive learning

coefficient Plearn. Pattern 0 does not become recognized until trial 66 in Figure B.7(b).

Both patterns are set to appear an equal amount of times.

Figure B.7 shows the LTM attempting to learn three independent patterns

presented separate and randomly. Figure B.7(a) shows pattern 2 being recognized after

17 trials. After 27 trials, pattern 0 is recognized but at the same position as pattern 2.

This violates the performance constraint demanding a unique detection value for each

unrelated pattern. Figure B.7(c) shows a continuing failure to detect pattern 1 even after

200 trials.

It is possible to learn multiple patterns when the learning process is modified into

the following instructions. The first step is to present multiple patterns randomly until one

is learned as shown in Figure B.9(a) where pattern 4 has been learned first. The second

step is to stop presenting the patterns randomly and present any of the others not yet

learned until it is also learned as shown in Figure B.9(b) where pattern 5 is finally learned.

Since the first pattern has just been learned, it may not be as stable. Presenting both

63

patterns again randomly will allow both to mature as in Figures B.9(c) and (d). Multiple

pattern learning is possible, however, requiring performance feedback.

The above examples have been involving at most 3 patterns. When more patterns

are input, the LTM fails to detect a pattern in only one position, but in many simultaneous

positions as in Figure B.11. This behavior makes the LTM useless at this level of

difficulty.

It is expected that a more frequent pattern can be learned more quickly than one

which appears less frequent. This the case given the current design. Figure B.8 shows

pattern 1 set to appear twice as often as patterns 0 and 2 by specifying the patterns to

randomly input as 0,1,1,2. As expected, pattern 1 is learned first. This is generally the

case.

6.3.2 Pattern Stability and Growth

Pattern stability was demonstrated in the last subsection when it was shown how the LTM

can learn multiple patterns if these are presented one at a time. The issue with pattern

stability may be the trend to continue growing the pattern in the LTM until it is over

sensitive. In Figure B.10 pattern 5 is allowed to grow with LTM sensitivity exceeding

that of earlier figures. Since the firing threshold is determined mined by the average match

across the LTM, these inflated slot sensitivities may cause cases of matching patterns

where none exist. This case, however, was never seen yet. As mentioned, a single

received number will cause a match in three places, but as mentioned in Chapter 5, single

pulses are not allowed to match by themselves.

64

6.3.3 Uneven Distribution of Patterns

A general sign of uneven distribution of patterns is a bow in the LTM band between 100

and 200 in the figures presented in Appendix B. Figure B.6(b) is a good example of a

bow in LTM band, while Figure B.7(c) shows no bow. Another factor determining

pattern distribution along the LTM band is whether or not new patterns grow attached to

existing patterns. According to the detection and learning algorithms, patterns will grow

attached to existing or other growing patterns, resulting in poor pattern distribution.

This uneven distribution can be seen from the figures already studied, there is a

trend for multiple patterns to be identified in clusters at the far right of the LTM band as in

Figure B.7. Figure B.9 shows another cluster between 150 and 175 on the LTM band. A

pattern has yet to be identified out of these regions.

6.3.4 Detection of Subpatterns

Due to the general design, received subpatterns will easily match with parent patterns in

the LTM. It is expected that the subpattern will be identified the same as the parent

pattern based on the averaging property of the detection algorithm. A received subpattern

and a received parent pattern will produce the same detection threshold in the same

position at the LTM parent pattern. This can be seen in Figure B.12 where pattern 6 is the

parent pattern of pattern 5. Both patterns match at about position 155 along the LTM.

6.3.5 Detection of Shared Patterns

It is expected for shared patterns to share the common slots in the LTM. What makes

each pattern unique is determined by the slot patterns to the left and right of the shared

65

slots. Each pattern should match in one unique place. These expectations were not

realized as in Figure B13 where patterns 0 and 3 share common numbers. Here, pattern 0

is detected appropriately, but when pattern 3 is received, it matches the same as pattern 0

as well as in another place within the LTM. This is possible if the shared numbers of the

two patterns do not share the same slots within the LTM.

6.4 Conclusions

Before any more testing can be performed on this design, some of the most basic pattern

detection rules must first be obeyed. Most important, a received pattern should match in

only one place within the LTM, not in two places or more. Secondly, two unrelated

patterns should not match in the same place within the LTM. These two basic rules have

not been observed. After this point, there needs to be a pattern growing policy which

forces shared patterns to share slots in the LTM, and forces unrelated patterns to not share

any slots in the LTM. The design approach presented in this chapter has potential and has

proven adequate to detect a single pattern, but the detection and learning algorithm

require another approach to meet the basic requirements to be an acceptable pattern

matching process.

CHAPTER 7

TRANSMITTER DESIGN

The agent transmitter is the least important aspect of the design since it should not be

considered difficult to convert set numbers into pulse widths. However, in the light of

maintaining a simple analog design, building a transmitter can be challenging. This chapter

is presented for the sake of completing the agent design. Special attention is allocated to

output timing as well as providing output acceptable to the receiver input specifications

proposed in Chapter 4.

7.1 Output Timing

In review, the receiver will gradually detect the intended numbers. Once it is determined

all of the numbers have been received, the numbers are processed and the results are

output in the form of a pulse ensemble. The questionable part of this chain of sequences is

when to judge the receiver has obtained all intended input. This determination is the

responsibility of the output section. There are two basic models to determine when to

process. The first is to determine a threshold of sufficient input or correlation and the

second is to continuously send output based on processor correlations at the moment.

Output threshold can be determined by the amount of information already present

such as the number of input members, the number of input members multiplied by an

importance factor, the amount of correlation, or the amount of correlation multiplied by

an importance factor. The objective is to start sending output when it is determined all of

the inputs have been detected by the receiver. If there is a sufficient amount of detected

66

67

signals or correlated patterns, the agent will output without waiting for more signals. The

alternative is to begin processing when the change in receiver detection rate decreases

below a threshold. As the last signal is received, the receiver stops potentaiting slots that

haven't exceeded the receiver detection threshold. This will cause a drop in the detection

rate, signaling the agent to process and output. A worst case scenario is when the input is

continuously changing, causing the reciever to detect new numbers at a steady rate. In

this case, the detection rate stays constant and the agent sends no output. The limitation

to the severity of the case is the limitation of the set size to one octave. In the

experiments, the octave is from 85 to 170. Eventually, all of the numbers will be detected

leaving none left. This will cause a drop in the detection rate, firing the agent. The

message the agent sends will be all possible pattern correlations. To avoid this problem,

the detection time for an input must be faster than the rate of new information. The

receiver requires more pulses per set member as the number of members per set increases.

This translates to a general statement that messages of small sets are detected quicker than

messages contained in large sets. Since all numbers are combined at the receiver input,

multiple inputs containing multiple numbers are detected slower than a single input only.

The second policy for output is to continuously send information about whatever is

correlating at the moment. This allows sufficient tracking of changing input but can not

delete old input within a reasonable time. In order to keep up to date, as the neuron fires,

it is desirable to clear out the short term memory of the receiver and start with only

current signals. This function needs to be omitted when there is continuous output since

the short term memory will be continuously cleared if the function is allowed. The

68

advantage of clearing the receiver is to purge old input set members instantly. Without

this, old set members must age according to an exponential decay rate in equation 4.4.

Before a previous set member can decay to a point below the detection threshold, it is still

considered as a valid signal and may produce output. The result is recent continuous

output based on input that is not always recent. Increasing the slot potential decay rate

will ensure only the most recent input patterns will be transmitted.

7.2 Output Specifications

Most of the output specifications are determined by the receiver input specifications

proposed in Chapter 4. Again, if more than one member is in the output set, the set

members should be sent in non repeating orders to minimize spurious results at the

receiver end. Also, if the output set contains several members, then these members should

be repeated more often within the pulse ensemble than if only one member belonged to the

set.

Chapter 5 mentions how the output circuit will be able to differentiate aliasing

within the processor. An example of processor aliasing is the pattern {10, 33 } and the

pattern {24, 47}. Each has the same distance between members. The processor LTM will

not differentiate between these two patterns since only the distance between numbers is

used to determine correlation. The following section explains how this problem is

naturally avoided.

69

7.3 A Model for Achieving Output

The output process must translate the processor results into a pulse ensemble wile obeying

the above criteria. The same slow and fast materials can be used to perform this

operation. Using the first method for determining output threshold, the general

sequencing is as follows:

1. Receive input pulses. Wait until the output threshold is reached.

2. Send the first pulse while simultaneously starting the process sequence. The process
sequence begins by projecting detected values from the receiver STM onto the slow
material. This pulse train travels from the receiver towards the processor LTM. See
Figure 6.2.

3. As the pulse train passes over the LTM, some patterns may match. When a match is
detected, the agent fires another pulse to the output. This pulse position is the value given
to the pattern stored in the LTM. Whenever the agent fires, send another train of pulses
from the receiver as in step 2.

4. Currently, the first train of pulses is passing over the LTM while another train of pulses
has just begun to propagate towards the LTM. See Figure 7.1. If the first train of pulses
finds a second match shortly after the first, then fire another pulse out. This will create a
third train of pulses propagating towards the LTM.

5. Repeat step 4 until it is determined that a sufficient number of pulses has been sent.

6. Clear the receiver STM for another cycle starting at step 1.

Figure 7.1 Simultaneous Pulse Trains

70

These six steps outline the output cycle as well as how matches in the LTM are

converted into pulse ensembles. If the detected signals from the receiver produce only one

match, then the time spacing between output pulses will be the time required for the pulse

train to travel across the slow material. If the receiver's detected signals match to the

LTM in several places, then the output sequence will become more complicated. Shown

in Figure 7.2, the second and third output pulses will be presented close in time relative to

the first pulse. The output values represented by the first three pulses are the distances

from the first to the second represented by a red line and from the first to the third

represented by a blue line. The distance from the second to the third is only noise. Since

the agent will send output twice in a short time span, two pulse trains will be propagating

from the receiver closely together. Each pulse train will cause the agent to fire twice,

resulting in four pulses fired for two pulse trains. Actualy, only three pulses are fired due

to overlap. The next round will contain three pulse trains resulting in four pulses fired. If

this pattern continues, then the output will saturate.

Figure 7.2 Output Ensemble for Two Recognized Patterns

71

It can be seen that a single output signal can generate a substantial amount of noise

due to the short output pulse spacings. As the output apporaches saturation, the noise

will increase to intolerable levels. What is needed is a pulse rate limiter in the form of an

exponential decay and a threshold. Figure 7.3 shows the decay from zero to a steady state

value. When the agent fires, the limiter value is set to zero and the agent can not fire again

until the value is above the permission threshold. The maximum firing rate is deter 	mined

by a combination of the decay rate and the threshold value. The firing permission scheme

will also help mix up the order in which multiple patterns are represented by the output

pulse ensemble.

Figure 7.3 Output Rate Limiting through Decay

Step 5 requires another value to to determine when enough pulses have been

transmitted by the agent. As stated in Chapter 4, the number of total pulses sent should be

proportional to the size of the set being sent. This can be achieved by using an integration

function tied to the output limiting function. If a pulse is allowed to fire, then the current

value in the limiting decay function is applied to ensemble stop integrator. If two or more

patterns will be matched, then the decay value will be close to the threshold. This will

72

allow only small values to be added in the integrator. Once the integrator exceeds the stop

threshold, the output cycle stops. The integrator is reset to zero until the output cycle

begins.

7.3.1 Preventing Aliasing

The aliasing problem stated in section 7.2 is naturally bypassed since the two pairs of

values detected by the receiver will match in with LTM at different times. The only way

to match at the same time is to have both vaues the same. If the pair { 10,33 } is detected

at 90 units of time from the receiver slots to the LTM slots, then the pair {24,47} will be

detected in the same LTM slot but later at 90+14 units of time. As shown in Figure 7.1,

the value assigned to the pattern match is the distance in time from the receiver slots to the

matching LTM slots.

7.3.2 Staying within the Octave Boundary

The output set range is confined to the same octave boundary range as determined by the

receiver. For example, if the receiver is designed to receive values from 85 to 170, the

output values must also be within this range. According to the current output method,

there is no guarantee of this. As mentioned before, the value of the match is the time

required for the pattern to travel from the receiver slots to the pattern slots in the LTM.

This timing is determined by both the receiver slot position and the LTM slot position.

Since both can vary by the amount of 85 time units, the total span is actually 170 and not

the 85 required by the receiver in the next stage. Part of the solution is to fix the output

rate limiter to stop the agent from firing within 85 time units. The other part of the

73

solution is to place the LTM closer to the receiver. Figure 8.3 shows the processor far

away for the receiver for the sake of simplicity. Actually, the processor must be contained

within the first half of the receiver where values 0 to 84 would be detected. There would

be nothing to the right of the fast material. This solution would require solving problems

concerning edge effects within the processor learning algorithm.

Vft >> Vs (8.1)

CHAPTER 8

PHYSICAL DESIGN APPROACH

8.1 Materials

The main materials include a fast material, slow material, short term memory material,

long term in memory material, negating material, resistive material, and an averaging

material. The speed at which pulses travel in the slow material is several times slower than

that of the fast material.

Both the fast and slow material require proper terminations at the ends to prevent

pulses from reflecting backwards. When the pulse reaches the far end of the material, the

energy stored within the pulse is dissapated within the terminator. The value of the

terminator must mate the impedance of the materials. Consider these materials as

transmission lines.

Both memory materials are long, thin slices able to maintain analog potentials

along their lengh. Consider the memory materials similar to magnetic tape found in an

audio cassette. The long term memory material (LTM) is static in nature with no memory

decay, while the short term memory material (STM) is dynamic in nature with decay life

determined by Equations 4.4 and 4.5. The STM material is potentiated when a pulse from

the fast material intersects a pulse on the slow material. The amount of potentiation is

determined by equations 4.1. For LTM, just the presence of pulses in the slow material

causes potentiation or depotentiation according to 6.1, 6.2, 6.5. STM will be equipped

with extra normalization circuitry causing depotentiation as a function of the normalization

74

75

signal. This is represented in the equation below where Pn is the potentiation of the STM

and Vn is the noormualization input at position n.

Pn = P n - eVn (8.2)

There exists an ability for the STM to project upon the slow material when

commanded to do so by logic circuitry. This case will be when it has been decided to

process the numbers received by the receiver. All potentials in STM above the detection

threshold will be projected onto the slow material. From here the pulses can travel in both

directions. The direction away from the processor will lead to a terminating resistor. The

correct direction will be towards the processor.

Another special material called a negating material is needed to project negative

pulses upon the slow material where positive pulses currently exist. This material

performs the negative learning cycle of the LTM where negative pulses of the matched

pattern are propagated along the slow material to diminish any similar patterns in the

LTM. The composition of this material is unknown and becomes the first major obstacle

in completing the design of the agent. Descrete components may be needed in place of

continuous materials with distributed properties.

The resistive material is used for normalization of the STM in the receiver design

and can come in two types depending on the type of normalization required. If an

unbiased neighbor competition is desired as in 4.1.2.2, then an attenuating resistive

material is required as shown in Figure 8.1. In this case, the STM draws no current from

the resistive material when normalizing. When a slot in the STM becomes potentiated, a

76

pulse is sent to the resistive material to depotentiate its neighbors. The voltage along the

attenuating material dissapates exponentially with length.

To STM (STM draws no current, or fixed amount)

Figure 8.1 Electrical Equivalent of the Attenuating Material

To perform the biased competition in 4.1.2.3, a resistive material is required. This

material is similar to what is shown in Figure 8.1 but without the shunting resistors. The

purpose of the shunting resistors was to draw a fixed amount of current to ground per unit

length. This was fair and required the STM to also draw no current or a fixed amount to

maintain this fairness. Since unfair competition is used, the fairness constraint is no longer

needed. This time, the STM should draw current exponentially porportional to the

potential at any given slot along its length as shown in Equation 8.3.

In = Vn * ePn (8.3)

The current to be drawn is I„ and the present voltage on the resistive material is Vn .

A averaging material is used in conjunction with the LTM in order to determine

the detection value along the LTM during the processing cycle. If the averaging material

is used to calculate the average, then it is similar to Figure 8.1 but this time without the

lengthwise resistors. Figure 8.2 shows the necessary modifications. The attenuating,

resistive, and averaging materials are all related and consist only of resistance. The major

77

difference with the averaging material is that it requires discrete resistive values while the

other two only require distributed resistance along the material's length.

Figure 8.2 Electrical Equivalent of the Averaging Material

8.2 Integrated Design

This section addresses the physical design of all components together suggesting a

possible layout and providing a larger view. Some circuits such as the output circuit will

require regular transistor circuitry and will not be described. Figure 8.3 shows the entire

design of the agent.

■ Fast Material
• Slow Material
▪ Memory Material

 Resistive Material
• Summing Material
■ Negating Material
■ Output Logic

Figure 8.3 Block Diagram of Agent Design

CHAPTER 9

CONCLUSIONS

9.1 Overall Design

The design of the agent in question was a process spanning three layers in a hierarchy.

The top layer states a design using simple analog circuits. There is hardly any question

there since simple analog circuits are desirable but may not be appropriate since evidence

suggests the biological neuron may be a complex as as some entire artificial networks [4].

The second layer design decision was to employ communication through sets. This

decision worked well for receiving but has undetermined suitability for processing. The

major drawback for set communication is the inability to relay messages and cooperate

with other agents in a flat society. The set processing presented here only correlates

incoming sets from lower members in the hierarchy and passes results to higher members.

This hierarchy can be flattened by using the regenerative properites of set processing

agents. Regenerative agents may be able to actively participate at several layers within the

hierarchy. The final design decision was to use the principle of propagating pulses along a

slow material for all three stages. This is a wise choice for an analog design, but there are

many details to be answered about the availability and feasibility of these materials.

What has been accomplished is the theoretical design for a simple agent using

different materials to accomplish intelligent operations. It is an approach which should not

be abandoned, but improved upon by either improving the design details of the current

agent or to redesign the agent at one of the two lower layers of the design hierarchy

described above.

78

79

9.2 Conclusions for Individual Components

Of the three components, the receiver performed the best. This may have been the result

of the designing the language in terms of the receiver's performance, while ignoring the

processor and the output stages. The use of sets, however, is still applicable to simple

processing and output. The status of the processor section ranges from tweaking the

detection and learning algorithms to considering an entirely different design approach.

The key to solving the problems with the processor is with the detection method. The

proper method will launch this agent to a stage where entire networks can be built and the

behaviour of such networks obsevered. This is will determine the true value of this agent.

9.2 Future Work

Future work on this agent should almost exclusively go into refining the detection and

learning algorithms of the processing unit. It is suggested to look beyond the simple slot

values within the LTM for other information to help provide sharper selection of the

intended pattern over the noise generated by the propagating receiver pulse train.

Negative learning needs to target duplicate patterns accurately, leaving unralated patterns

untouched. Both suggestions for improvements require a sharper detection of patterns

requiring an improved detection algorithm. The design goals and approach given in

Chapter 6 will be useful when considering future algorithms.

Other related work can be in finding ways to make combinations of materials

behave intelligently with input, output, and processing stages. The intelligent behavior can

range from pattern recognition to automata. Creative designs such as using slow and fast

80

materials extends the definition of analog computing from just using the basic adders,

integrators, and multipliers[15]. Such materials will form the simplest computers, and

maybe someday the most powerful.

APPENDIX A

RECEIVER SIMULATION RESULTS

Figure A.1 Receiver Output for Random Input, Bias = 0.5

Figure A.2 Receiver Output for Random Input, Bias = 1.0

81

Figure A.3 Receiver Output for Random Input, Bias = 1.5

82

Figure A.3 (Cont.) Receiver Output for Random Input, Bias = 1.5

83

Figure A.4 Receiver Output for Random Input, Bias = 2.0

84

Figure A.4 (Cont.) Receiver Output for Random Input, Bias = 2.0

85

Figure A.5 Receiver Output for Random Input, Bias = 2.5

86

Figure A.5 (Cont.) Receiver Output for Random Input. Bias = 2.5

Figure A.6 Receiver Output for Random Input, Bias = 3.0 88

Figure A.7 Receiver Output for I Set Input, Bias = I.5

89

Figure A.8 Receiver Output for 1 Set Input, Bias = 2.0

90

Figure A.8 (Cont.) Receiver Output for 1 Set Input, Bias = 2.0

91

Figure A.9 Receiver Output for 1 Set Input, Bias = 2.5

92

Figure A.9 (Cont.) Receiver Output for I Set Input, Bias = 2.5

93

Figure A.10 Receiver Output for 1 Set Input, Bias = 3.0

94

Figure A.11 Receiver Output for 2 Sets Input, Bias = 1.5

95

Figure A.11 (Cont.) Receiver Output for 2 Sets Input, Bias = 1.5

96

Figure A.12 Receiver Output for 2 Sets Input, Bias = 2.0

97

98

Figure A.13 Receiver Output for 2 Sets Input, Bias = 2.5

Figure A.14 Receiver Output for 4 Sets Input, Bias = 1.5

99

Figure A.14 (Cont.) Receiver Output for 4 Sets Input, Bias = 1.5

100

Figure A.15 Receiver Output for 4 Sets Input, Bias = 2.0

101

Sigl: 165,115.85 	 Sig2: 103.148
Sig3: 155.93 	 Sig4: 132,121
BIAS: 2.0 Random Lo: 20 Hi: 200 Pulses: 90

Sigl: 165.115,85 	 Sig2: 103,148
Sig3: 155.93 	 Sig4: 132.121
BIAS: 2.0 Random Lo: 20 Hi: 200 Pulses: 129

(e)

Sig1: 185.115_85 	 Sig2: 103.148
Sig3: 155.93 	 Sig4: 132.121
BIAS: 2.0 Random Lo: 20 Hi: 200 Pulses: 183

(t)

Figure A.15 (Cont.) Receiver Output for 4 Sets Input, Bias = 2.0

102

APPENDIX B

PROCESSOR SIMULATION RESULTS

Figure B.1 Input Test Patterns

103

Figure B.2 Initial Sensitive Settings

104

Figure B.3 General Result of Positive Learning

Figure B.4 Application of Negative Learning Algorithm

105

Figure B.5 Introduction of a Second Pattern

Pattern: 1 	Patterns: 0,1
Bias: 1.0 	Trials:14
Plearn: 0.01 N learn: 0_01
Threshold: 0.7 Ntr: 0.3

(a)

Pattern: 0 	Patterns: 0.1
Bias: 1.0 	Trials:66
Plearn: 0.01 	Nlearn: 0.01
Threshold: 0.7 Ntr: 0.3

(b)

Figure B.6 Detection of Two Patterns

106

Pattern: 2 	Patterns: 0.1.2
Bias: 1.0 	Trials:17
Plearn: 0.01 Nlearn: 0.01
Threshold: 0.7 N tr: 0.3

(a)

Pattern: 0 	Patterns: 0.1.2
Bias: 1.0 	Trials:27
Plearn: 0.01 	Nlearn: 0.01

Threshold: 0.7 N tr: 0.3

(b)

Figure B.7 Detection of Three Patterns

107

Pattern: 1 	Patterns: 0.1.2
Bias: 1.0 	Trials:200

Plearn: 0.01 	Nlearn: 0.01
Threshold: 0.7 Ntr: 0.3

(c)

Figure B.7 (Cont.) Detection of Three Patterns

Pattern: 1 	Patterns: 0.1.1.2
Bias: 1.0 	Trials:19
Plearn: 0_01 Nlearn: 0.01
Threshold: 0.7 Ntr: 0.3

Figure B.8 Biased Three Pattern Detection

108

Pattern: 4 	Patterns: 4
Bias: 1.0 	Trials:15
Plearn: 0.01 	Nlearn: 0.01
Threshold: 0.7 Ntr: 0.3

(a)

Pattern: 5 	Patterns: 5
Bias: 1.0 	Trials:17
Plearn: 0.01 Nlearn: 0.01
Threshold: 0.7 Ntr: 0.3

(b)

Figure B.9 Forced Learning of Two Patterns

109

Pattern: 4 	Patterns: 4
Bias: 1.0 	Trials:20
Plearn: 0.01 Nlearn: 0.01
Threshold: 0.7 Ntr: 0.3

(c)

Pattern: 5 	Patterns: 5
Bias: 1.0 	Trials:23
Plearn: 0.01 Nlearn: 0.01
Threshold: 117 Ntr: (13

(d)

Figure B.9 (Cont.) Forced Learning of Two Patterns

110

75 11 28 40 70 51 4 3 13 15 31 0 6 1 2 71
Pattern: 5 	Patterns: 5
Bias: 1.0 	T Trials:190
Plearn: 0.01 N learn: 0.01

Threshold: 0.7

Ntr: 0.3

Figure 13.10 Overgrowth of a Single Pattern

Pattern: 5 	Patterns: 0.1.2.2.3.4.5.6.7.8
Bias: 1.0 	Trials:147
Plearn: 0.01 Nlearn: 0.01
Threshold: 07 Ntr: 0.3

Figure B.11 Learning Too Many Patterns

111

Pattern: 5 	Patterns: 5.6
Bias: 1.0 	Trials:24
Plearn: 0.01 Nlearn: 0.01
Threshold: 0.7 Ntr: 0.3

(a)

Pattern: 6 	Patterns: 5.6
Bias: 1.0 	Trials:25
Plearn: 0 01 Nlearn: 0.01
Threshold: 0.7 Ntr: 0.3

(b)

Figure B.12 Detection of Subpatterns

112

Pattern: 0 	Patterns: 0.3
Bias: 1.0 	Trials:41
Plearn: 0.01 Nleaurn: 0.01
Threshold: 0.7 Ntr: 0.3

(a)

Pattern: 3 	Patterns: 0.3
Bias: 1.0 	Trials:42
Plearn: 0.01 	Nlearn: 0.01
Threshold: 0.7 Ntr: 0.3

(b)

Figure B.13 Detection of Shared Patterns

113

APPENDIX C

RECEIVER JAVA APPLET

// Applet Javal
// by James Stanski
// 11/15/97
//
// This program simulates a receiver for interpreting input pulses
// from various sources. Up to 4 sources may be used as well as
// several signals per source. The accepted value range for input
// signals is 100-199. If no signal numbers are input for the
// first input, then a random signal will be simulated instead.

import java.awt.*;
import java.applet.*;

public class javal extends java.applet.Applet {
//
// main variables for this class
//
double gain[] = new double[300]; // Receiver output
int pulse[] = new int[300]; 	// Marks present pulse in slow

// material
int input [] [] = new int[10][10]; // Inputs Input source X signals per
int next[] = new int[10] ; 	 // Holds when each source fires

// again
int count[] = new int[10] ; 	// How many singnals per input
boolean isrand[] = new boolean [10]; // True if a random signal is due
int max, 	 // max length of slow material

randh, randl, 	 // hi,low bounds in random gen
pulses, 	 // Current #pulses in simulation
time; 	 // Current time in simulation

double min, 	 // min value to account for
vgain, 	 // Vertical scale on out graph
bias, 	 // current bias
oldbias; 	 // Previous bias

Button convButton; 	 // Runs simulation
Label labelF, labelG, labelH, labelI, labelB, labelRH, labelRL;
TextField textF, textG, textH, textI, textB, textRH, textRL;

114

115

/1
/1 Function builds entire display
//

public void paint(java.awt.Graphics g) 1
int first = 370; 	 // Rcvr out X axis
int second = 470; 	 /1 Input in X axis
g.drawLine(50,second,max+50,second);
g.drawLine(50,first,max+50,first);
//
// Add X calibration
//
for (int x = 0; x <= max; x += 25) {

int y = (int)(vgain*bias);
g.setColor(Color.lightGray);
g.drawLine(x+50,first+15,x+50,first-y);
g.setColor(Color.black);

g.drawString(String.valueOf(300-x),x+44,first+30);
}
//
// Add Y calibration
//
for (double x = -0.25; x <= bias; x += 0.25)
int y = (int)(first-x*vgain);
g.setColor(Color.lightGray);
g.drawLine(50,y,355,y);
g.setColor(Color.black);
g.drawString(String.valueOf(x - bias),360,y+4);

}
//
// Place information on top
//
int y = (int)(first-bias*vgain);
g.drawString("BIAS: "+textB.getText()+

" 	Random Lo: "+textRL.getText()+
" 	Hi: "+textRH.getText()+
" 	Pulses: "+String.valueOf(pulses),50,y-10);

g.drawString("Sigl: "+textF.getText(),50,y-40);
g.drawString("Sig2: "+textG.getText(),220,y-40);
g.drawString("Sig3: "+textH.getText(),50,y-25);
g.drawString("Sig4: "+textI.getText(),220,y-25);
//
7/ Draw graphs
//
for (int x = 0; x < max; x++) {

g.drawLine(x+50,second,x+50,second-pulse[x]*50);
g.drawLine(x+50,first,x+50,(int)(first-(gain[x]+bias)*vgain));

}

}

//
// Before simulation is run
//

public void init() {
setBackground(Color.white);
max = 300; 	// Slow material is 300 units long
min = 0.00005; // Ignore values below this
vgain = 50.0;
time = 0;

// Set Text Fields
labelF = new Label("Signal 1:"); add(labelF);
textF = new TextField("165,115,85",16); add(textF);
labelG = new Label("Signal 2:"); add(labelG);
textG = new TextField("",16); add(textG);
labelH = new Label("Signal 3:"); add(labelH);
textH = new TextField("",16); add(textH);
labell = new Label("Signal 4:"); add(labelI);
textl = new TextField("",16); add(textl);

// Set Lables
labelB = new Label("Bias:"); add(labelB);
textB = new TextField("3.0",3); add(textB);
labelRL = new Label("Random Low"); add(labelRL);
textRL = new TextField("20",3); add(textRL);
labelRH = new Label("Random Hi"); add(labelRH);
textRH = new TextField("200",3); add(textRH);

convButton = new Button("Run"); add(convButton);

// Get Bias Value, set
oldbias = bias = Double.valueOf(textB.getText()).doubleValue();
for(int x = 0; x < max; x++) gain[x] = -bias;

// Start all sources off randomly;
for(int x = 0; x < 10; x++)

next[x] = (int)(Math.random()*180)+20;
isrand[x] = true;

} }

116

117

/1
// Function reads signal input fields and puts all input values into
// input[] [] Array according to the 'which' variable. Function returns
// number of input values.
1/

public int getin(TextField infield, int which) {
String in = new String(infield.getText());
int length = in.length();
int x = 0; int count = 0;

// Continue to parse inputs
while(x < length) {
int index2 = in.indexOf(',',x);
// look for another ','
if (index2 >= x)

input[whichl[count] =
Integer.valueOf(in.substring(x,index2)).intValue();

x = index2 + 1;
}
else { // end of string

input[which][count] =
Integer.valueOf(in.substring(x)).intValue() ;

x = length;

count++;

return count;

//
// Main function of Simulation. Manages all four inputs and determines
// when the next pulse will be input. There is an option to insert
// random pulses in betwee. But this option is currently turned off.
//

public void getstream() {

// If Bias changed, adjust
bias = Double.valueOf(textB.getText()).doubleValue();
for(int x = 0; x < max; x++) {

gain[x] -= (bias - oldbias);
}
oldbias = bias;

// Reload new random values
randh = Integer.valueOf(textRH.getText()).intValue();
randl = Integer.valueOf(textRL.getText()).intValue();

// Read from all 4 input sources
count[0] = getin(textF,0);
count[1] = getin(textG,1);
count[2] = getin(textH,2);
count[3] = getin(textI,3);

118

// Send five pulses each time this function is called
1/ Send pulse from source which is ready to send the next pulse
for(int x = 0; x < 5; x++) {

int which = getlow(); // Get next source to fire

// All signals start as random, send random pulse instead
// of actual information.
if (isrand[which]) {

if (count[which] > 0) isrand[which] = false; // next is not rand
if (next[which] > time)

perpulse(next[which] - time);
time = next[which];

next[which] = time 	(int)(Math.random()*(randh-randl))+(randh)); }

// Send a pulse carrying real information
else {

// 	isrand[which] = true; // dont send any more random pulses
if (next[which] > time) {

perpulse(next[which] - time);
time = next[which];

next[which] = time 	input[which][(int)(Math.random() *
count[which])]; } } }

//
// Determines which input source is ready to send the next pulse
// Return source number ready
//

public int getlow()
int lowest = next[0]; int z = 0;

// Scan over all 4 sources
for (int y = 1; y < 4; y++) {

if ((next[y] < lowest) && (count[y] > 0))
lowest = next[y] ; z = y;

}
}
return z; }

119

//
// This function is the core of the receiver. Each input is a delay
// before a pulse is to be entered. The function manages the slow
// material. When an incoming pulse intersects with reflected slow
// pulses, the result in this position is increased. There are options
// to normalize this increase.
//

public void perpulse(int delay) {

// Increment the number of total pulses sent
Pulses++;

// forward all pulses by delay along slow material
for (int y = 0; y < delay; y++) {

for (int x = 0; x < max - 1; x++)
pulse[x] = pulse[x+1];

}
pulse[max-1] = 0;

// After this, assume incoming pulse came, now
// adjust values according to input.
for (int x = max-l; x >= 0; x--)
if (pulse[x] == 1)

// Increase exponentially
double value = Math.exp(gain[x]);
// If hit limit, stop
if (value + gain[x] > 0.0) {

value = 0.0 - gain[x];
}
gain[x] += value;

// Normalize this offset, helps reject noise.
left(value/2.0,x-1);
right(value/2.0,x+1);
}

}
// Add a reverse traveling pulse on slow material

pulse[max-1] = 1;
// Show results on screen.
repaint(); }

//
// The next two recursive functions implement the normalizing
// task. Below, the function left normalizes to the left of the
// Receiver out increase. The current method is to take away from
// outputs of higher value and take less from lower values
//

public void left(double strength, int position) {

// Check bounds
if (position < 0) {right(strength,0);}
else {

double here=strength 	Math.exp(gain[position]);
double there = strength - here;
gain[position] -= here;
7/ See if value is large enough to be considered
if (there > min) {
left(there,position - 1); // recursive call

}
else {

gain[position] -= there;

}

//
// Same as left but to the right of output increase
//

public void right(double strength, int position) {
if (position >= max) {left(strength,max - 1);}
else {

double here=strength * Math.exp(gain[position]);
double there = strength - here;
gain[position] -= here;
if (there > min) {

right(there,position + 1);

else {
gain[position] -= there;

}
}

//
// Works with Java API and responds to a button press to
// run simulation.
//

public boolean action(Event e, Object arg) {
if (e.target == convButton) {

getstream();
return true;

}
return false;

} }

120

APPENDIX D

PROCESSOR JAVA APPLET

// Applet Java2
7/ by James Stanski
/7 11/20/97
//

// This program simulates the processing section of the agent. The
// Input shapes are 4x4 patterns. When running, the user can select
// which shapes will be rotated as input to the porocessor. This
// program will identify each shape with a value. Random values
// are assigned for each cell in the 4x4 patterns.

import java.awt.*;
import java.applet.*;

public class java2 extends java.applet.Applet {
//
// Main variables of this class
//

double gain[] = new double[300]; 	// processor LTM
int projcnt; 	 // True firing time
double project[] = new double[620]; // Learning buffer
int pulses() = new int[30]; 	 // all pulses in slow material
int pulse[] = new int[300]; 	 // array for propagation
int fire() = new int [620]; 	 // indicates when fired
int input[] = new int[30]; 	 // user pattern ids
int max, 	 /7 max size of slow material

trials; 	 // number of cycles so far
double plearn, 	 // Learn coefficient to increase

nlearn, 	 // Learn coefficient to decrease
vgain, 	 // Vertical scale on out graph
bias, 	 // Current LTM bias
oldbias, 	 // Previous LTM bias
threshold, 	 // Threshold to fire
nthreshold; 	 // Threshold to stop quence

Button convButton; 	 // Runs one cycle
Label labelF, labelB, labelP, labelN, labelT, labelNT;
TextField textF, textB, textP, textN, textT, textNT;
int location[] = new int[16]; 	// integers for all 16 squares
int width; 	 // used to get true firing time
int pattno; 	 // pattern number to run

int pattern [] [] = { { 0,0,0,1, 0,0,1,0, 0,1,0,0, 1,0,0,0),
{1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1),
{ 0,0,0,0, 1,0,0,1, 1,0,0,1, 0,0,0,01,
{ 0,0,0,0, 0,0,0,0, 0,1,1,0, 1,0,0,11,
{ 0,1,0,0, 0,1,0,0, 0,1,0,0, 0,1,0,0),
{ 0,0,0,0, 1,0,0,0, 1,0,0,0, 0,0,0,0),

(0,0,1,0, 1,0,0,0, 1,0,0,0, 0,0,1,0),
(0,0,1,0, 0,1,0,0, 0,1,0,0, 0,0,1,0),
(1,0,0,0, 0,1,0,0, 0,0,0,1, 1,0,0,0),
{0,0,0,0, 0,1,1,0, 0,1,1,0, 0,0,0,0} };

121

//
// Function builds entire display
//

public void paint(java.awt.Graphics g) {
int first = 270;
int second = 390;
g.drawLine(50,second,max+50,second); // Processor out
g.drawLine(50,first,max+50,first); 	// LTM
//
// Add X calibration
//
for (int x = 0; x <= max; x += 25) {
int y = (int)(vgain*bias);
g.setColor(Color.lightGray);
g.drawLine(x+50,first+35,x+50,first-y);
g.setColor(Color.black);

g.drawString(String.valueOf(x),x+44,first+50);

//
// Add Y calibration
//
for (double x = -0.50; x <= bias; x += 0.25) {

int y = (int)(first-x*vgain);
g.setColor(Color.lightGray);
g.drawLine(50,y,max+55,y);
g.setColor(Color.black);

g.drawString(String.valueOf(x - bias), max+ 60,y+4);

//
/7 Place information on top
//
int y = (int)(first-bias*vgain);
for (int x = 0; x < 16; x++) {

g.drawString(String.valueOf(location[x]),50 + 17*x,y-70);
}
g.drawString("Bias: "+textB.getText(),50,y-40);
g.drawString("Threshold: "+textT.getText(),50, y-10);
g.drawString("Patterns: "+textF.getText(),135,y-55);
g.drawString("Pattern: "+String.valueOf(pattno),50,y-55);
g.drawString("Nlearn: "+textN.getText(),135,y-25);
g.drawString("Plearn: "+textP.getText(),50,y-25);
g.drawString("Ntr: "+textNT.getText(),135,y-10);
g.drawString("Trials:"+String.valueOf(trials),135, y-40);
//
// Draw graphs
//
for (int x = 0; x < max; x++) {
g.drawLine(x+50,second,x+50,second-fire[x]*50);
g.drawLine(x+50,first,x+50,(int)(first-(gain[x]+bias)*vgain));

122

//
// Before asimulation is run
//

public void init()
setBackground(Color.white);
max = 300; 	// Slow material is 300 units long
vgain = 50.0;
trials = 0;

// Set text fields and lables
labelT = new Label("Threshold:"); add(labelT);
textT = new TextField("0.7",3); add(textT);
labelB = new Label("Bias:"); add(labelB);
textB = new TextField("1.0",3); add(textB);
labelP = new Label("Plearn:"); add(labelP);
textP = new TextField("0.01",5); add(textP);
labelN = new Label("Nlearn:"); add(labelN);
textN = new TextField("0.01",5); add(textN);
labelNT = new Label("Nthreshold:"); add(labelNT);
textNT = new TextField("0.3",3); add(textNT);
labelF = new Label("Patterns:"); add(labelF);
textF = new TextField("0,1",16); add(textF);

convButton = new Button("Run"); add(convButton);

7/ init bias
oldbias = bias = Double.valueOf(textB.getText()).doubleValue();
for(int x = 0; x < max; x++) gain[x] = -bias;
for (int x = 0; x < max; x++)

gain[x] += (Math.random()*0.2-0.1)+.50;

// get random locations of inputs;
for (int x = 0; x < 16; x++)
int temploc, found;
do

found = 0;
temploc = (int) (Math.random()*99);
for (int y = 0; y < x; y++) {
if(location[y] == temploc) {

found = 1; break;

while (found == 1);
location[x] = temploc;

// locate offset for true firing time
int lowest = 100;
for (int x = 0; x < 16; x++) (

if(location[x] < lowest) (
lowest = location[x];

}

width = lowest;

123

//
// Function reads signal input fields and puts values into
// intput[]. Function returns number of inputs in line
//

public int getin(TextField infield) {
String in = new String(infield.getText());
int length = in.lengtft();
int x = 0; int count = 0;
while(x < length) {

int index2 = in.indexOf(',',x);
if (index2 >= x)
input[count] = Integer.valueOf(in.substring(x,index2)).intValue

x = index2 + 1;
} else

input[count] = Integer.valueOf(in.substring(x)).intValue();
x = length;

count++;

return count;

//
// Main Function in simulation. Selects an input patterns and
// feeds this pattern to the sweep algorithm which performs the
// autocorrelation
//

public void getstream()
int x;

// Reload all user set values
plearn = Double.valueOf(textP.getText()).doubleValue();
nlearn = Double.valueOf(textN.getText()).doubleValue();
nthreshold = Double.valueOf(textNT.getText()).doubleValue();
bias = Double.valueOf(textB.getText()).doubleValue();
threshold = Double.valueOf(textT.getText()).doubleValue();
for(x = 0; x < max; x++)

gain[x] -= (bias - oldbias);

oldbias = bias;

trials++;
// clear all firings, pulse array
for(x = 0; x < max; x++) {

fire[x] = 0;
pulse[x] = 0;
project[x] = 0;

projcnt = 0;

124

// retrieve pattern to run
int inputs = getin(textF);
pattno = input[(int)(Math.random() * inputs));
7/ find lowest number
int lowest = 101;
for (x = 0; x < 16; x++) {
if(pattern[pattno][x] == 1) {

if(location[x] < lowest) {
lowest = location[x];

}
}

// get next lowest number until end
int oldlowest = lowest;
do {
lowest = 101;
for(x = 0; x < 16; x++) { // find nest lowest

if(pattern[pattno] [x] == 1) {
if(location[x] < lowest && location[x] > oldlowest
lowest = location[x];

}

sweep(lowest - oldlowest};
oldlowest = lowest;

} while(lowest < 101};

// flush out slow material
sweep(max+1);
for (x = 0; x < max; x++) {

gain[x] += project[x];
if (gain[x] > 0.0) gain[x] = 0.0;

}
repaint();

}

//
// This function simulates the slow material as will as the
// correlation detection and learning algorithms.
7/
public void sweep(int delay) {
// forward all pulses by delay.

for (int y = 0; y < delay; y++) {
for (int x = max-1; x > 0; x--) {

pulse[x] = pulse[x-1];
}
if (y == 0) {

pulse[0] = 1;
}
else {

pulse[0] = 0;

125

// get a list of pulses
int num_pulses = 0;
for (int x = 0; x < max; x++)

if (pulse[x] == 1}
pulses[num_pulses] = x;
num_pulses++;

// get average potential on slow material
double avg = 0.0; int n_pulses = 0;
for (int x = 0; x < num_pulses; x++) {
if (pulses[x] >= 100 && pulses[x] < 200) {

avg += Math.exp(gain[pulses[x]]);

avg = avg/num_pulses;

// learning algorithm
for (int x = 0; x < num_pulses; x++)

// 	if (avg <= threshold) {
project[pulses[x]] +=

avg * plearn * (1-Math.exp(gain[pulses[x]]));
//

126

127

//
// If the threshold is exceeded, then fire
//
if (avg > threshold) { // fire, kill competition

// put a pulse in the fired set
fire [projcnt - width] = 1;

1/ Hurt the rest having a similar pattern
// These are the competitors of the fired pattern
for (int x = -101; x < max; x++)
double navg = 0.0;
int poffset = pulses[0);
n_pulses = 0;

// find average of competitors.
if (x != poffset) 	/1 dont kill yourself;

for (int z = 0; z < num_pulses; z++) {
int tpulse = (pulses[z] - poffset)+ x;
if ((tpulse >= max) II (tpulse < 0)) continue;
navg += Math.exp(gain[tpulse]);
n_pulses++;

navg = navg/n_pulses;

// Quench only if above threshold
if (navg > nthreshold) {
for (int z = 0; z < num_pulses; z++)
int tpulse = (pulses[z] - poffset) + x;
if ((tpulse >= max) 11 (tpulse < 0)) continue;

project[tpulse] -= navg * nlearn * (1-
Math.exp(gain[tpulse]));

}

} // punish all but self
1/ punish all who attemp to copy

} // if fired
projcnt++;
// delay counter

//
// Works with JAVA API and responds to a button press to
// run simulation
//

public Boolean action(Event e, Object arg) {
if (e.target == convButton)

getstream();

return true;

return false;
}

REFERENCES

1. W.S. McCulloch and W. H. Pitts, "A logical calculus of the ideas immanent in nervous
activity," Bull. Math. Biophys., vol. 5, pp.115-133, 1943.

2. M. Conrad, Molecular computing, in Advances in Computers, Academic Press,
Boston, MA, 1990.

3. P. E. Burrows and E.G. Wilson, "The inchworm memory: A new molecular electronic
device," J. Mol. Electronics, vol. 6, pp. 209-220, 1990.

4. W. Rail and I. Segev, Functional possibilities for synapses on dendrites and on dendric
spines, in Synaptic Function, (G. M. Edelman., E.E. Gall., and W.M. Cowan.,
Eds.) Wiley, New York, NY, 1987, pp. 605-636.

5. P. F. Pinsky and J. Rinzel, "Intrinsic and network rhythmogenesis in a reduced model
of CA3 neurons, I. Computat. Neurosci., vol. 1, pp. 39-60, 1994.

6. H. Kargupta and Sylvian R. Ray, "Temporal sequence processing based on the
biological reaction-diffusion process," IEEE International Conference of Neural
Networks, pp. 2315-2320, 1994.

7. O. T. C. Chen, T. Berger, and B. J. Sheu, "VLSI implementation of the hippocampus
on nonlinear system model," IEEE International Conference of Neural Networks,
pp. 2009-2014, 1994

8. J. E. Dayhoff, "Temporal codes for pulsed networks," IEEE International Conference
of Neural Networks, pp. 1273-1277, 1994.

9. M. A. Arbib, Introducing the neuron, in The Handbook of Brain Theory and Neural
Networks, MIT Press, Cambridge, MA, 1995, pp. 4-11.

10.

C. W. Helstrom, Statistical Theory of Signal Detection, Pergamon Press, London,
1968, pp. 102-143.

11. B. Hasslacher and M. W. Tilden, "Living machines," NSF Workshop on
Neuromorphic Analog VLSI Systems, 1994.

12. R. F. Lyon and C.A. Mead, "An electronic cochlea," IEEE Trans. Acoustics, Speech
and Signal Processing, vol. 36, pp. 1119-1134, 1988.

13. J Marienborg and T. Suerrelande, "Neuromorphic analog communication," IEEE
International Conference of Neural Networks, pp. 920-925, 1995.

128

129

14. S. Haykin, Neural Networks, Macmillan College Publishing Company, New York,
NY, 1994, pp. 18-22.

15. A. S. Jackson, Analog Computation, McGraw-Hill Book Company, INC., New York,
NY, 1960, pp. 35-72.

16. A. Nigrin, Neural Networks for Pattern Recognition, The MIT Press, Cambridge,

MA, 1993, pp. 20-32.

17. S. Russel and P. Norvig, Artificial Intelligence, A Modern Approach, Prentice Hall,

Upper Saddle River, NJ, 1995, pp. 31-52.

18. T. Kanminuma and G. Matsumoto, Biocomputers The next generation . from Japan,

Chapman and Hall, London, 1991.

	A simple neural agent communicating through sets
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 5)
	Table of Contents (2 of 5)
	Table of Contents (3 of 5)
	Table of Contents (4 of 5)
	Table of Contents (5 of 5)
	Chapter 1: Introduction
	Chapter 2: Agent Environment
	Chapter 3: Agent Communication Medium
	Chapter 4: Receiver Design
	Chapter 5: Message Processing
	Chapter 6: Processor Design
	Chapter 7: Transmitter Design
	Chapter 8: Physical Design Approach
	Chapter 9: Conclusions
	Appendix A: Receiver Simulation Results
	Appendix B: Processor Simulation Results
	Appendix C: Receiver Java Applet
	Appendix D: Processor Java Applet
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

