
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Summer 1998

Process modeling using ProSLCSE on web-enabled
platform
Orcan Ali Enunlu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Enunlu, Orcan Ali, "Process modeling using ProSLCSE on web-enabled platform" (1998). Theses. 928.
https://digitalcommons.njit.edu/theses/928

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F928&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F928&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F928&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F928&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F928&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/928?utm_source=digitalcommons.njit.edu%2Ftheses%2F928&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

PROCESS MODELING USING
ProSLCSE

ON A WEB-ENABLED PLATFORM

by
Orcan Ali Enunlu

Process modeling is a relatively complex task that needs to be addressed from a different

point of view. The classical approach would be to design the model, to send it for

evaluation, then to return feedback to the developing team, and to reevaluate the model

with the feedback received from the parties involved.

However, it is our understanding that the steps taken during the process modeling

could benefit from the advantages that the Internet offers. To demonstrate the usefulness

of Internet in process modeling, I have taken an existing tool, ProSLCSE, and

implemented it with Java so that it can run on a web-enabled environment. This Web-

enabled version of ProSLCSE, also called ProWEB, will not only facilitate the

implementation, controlling or standardization of the models, but also accelerate the task

of modeling in an efficient and effective way. The developing team of the models would

benefit from the tool in a real-time environment. Other parties, like the monitoring

agencies, or controlling bodies would add their modification to the application in a

sequential form.

The implementation of this Web-enabled process modeling will bring a new level

of abstraction to the modeling and will minimize the difficulties due to geographical

differences for 'time-depending' projects.

PROCESS MODELING USING
ProSLCSE

ON A WEB-ENABLED PLATFORM

by
Orcan Ali Enunlu

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer and Information Science

Department of Computer and Information Science

August 1998

APPROVAL PAGE

PROCESS MODELING USING
ProSLCSE

ON A WEB-ENABLED PLATFORM

Orcan Ali Enunlu

Dr. Murat M. Tanik, Thesis Advisor 	 Date
Department of Computer and Information Science
New Jersey Institute of Technology

Dr. Franz Kurfess, Committee Member	 Date
Department of Computer and Information Science
New Jersey Institute of Technology

Dr. Ali H. Dogru, Committee Member 	 Date
Department of Computer and Information Science
New Jersey Institute of Technology

BIOGRAPHICAL SKETCH

Author:	 Orcan A. Enunlu

Degree:	 Master of Science

Date:	 August 1998

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

• Master of Science in Computer and Information Science,
New Jersey Institute of Technology, Newark, NJ, 1998

• Bachelor of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 1996

Major:	 Computer and Information Science

To My Beloved Family and Friends

A new preacher was assigned to a town. Everybody gathered
around the town square and wondered
what the preacher was going to say.

The preacher came and asked townsfolk whether
they knew what he was going to talk about.

Since nobody had a clue, they all responded: "N0000!"
"Well" the preacher said and added:

"Then, why did you bothered coming here."
One week passed, and people gathered again around the town

and decided to answer the preacher differently.
The preacher appeared again and asked whether they knew

what his topic was.
This time, everybody shouted "Yessss."

Cleverly, the preacher told them they didn't need to listen to his speech
Since they already knew what he was going to talk about.

He left the townsfolk again puzzled.
Another week passed.

The townspeople got very curious about what the preacher
had to say. So they decided that half of the people

would say, "Yes, we know what you are going to say" and
The other half would say, "No, we don't know."

The preacher came and asked one more time:
"Do you know what I am going to talk about?"

As they planned, half of the townsfolk replied "Yes", the other half "No."
Thinking that the preacher is cornered this time, they awaited his response.

Deviously, the preacher responded:
"Well, those who are informed will tell those who are ignorant."

Enjoy.

ACKNOWLEDGEMENT

I would like to express my deepest thanks to Dr. Murat M. Tanik, Dr. Ali H. Dogru, and

Dr. Franz Kurfess, who provided me with moral, technical and financial support

throughout my Master's degree. Those three semesters at NJIT wouldn't have been

successful if they didn't support and encouraged me. Special thanks go to Ms. Sheridan

Quarless, Ms. Jenice Sabb, and Mr. Michael Tress, for their help and support.

During those three semesters, I had the privilege of receiving two awards: One

received through my assistantship at the Learning Center as Leadership Award. The

other was received also in 1997 as the Co-op Student of the Year, from the CIS

department. I would like to thank all the people involved in my success.

I have a feeling that there'll be more good news and hope to celebrate those

special events with my advisors and loved ones.

vi

TABLE OF CONTENTS

Chapter
	

Page

1 INTRODUCTION	 1

1.1 Objective

	

1

1.2 Current Research and Justification 	 4

1.3 Contributions 	 5

2 PROCESS MODELING 	 7

2.1 Overview 	 7

2.1.1 What is a Process? 	 7

2.1.2 Relation between Process and Product Quality 	 7

2.1.3 More about Process 	 9

2.1.4 Process Modeling 	 13

2.2 Current Capability Models 	 19

2.2.1 Capability Maturity Model 	 19

2.3 Workflow 	 22

2.3.1 Historical Facts 	 22

2.3.2 Definition of Workflow 	 23

2.3.3 Organizational Processes 	 24

2.3.4 Workflow Systems 	 25

2.3.5 More in Depth in Functionality 	 28

2.3.6 Comparison of Workflow With Process Modeling 	 31

3 ProSLCSE 	 33

3.1 Overview 	 33

3.1.1 Infrastructure Editor 	 34

3.1.2 Process Editor 	 37

3.1.3 Analyzers 	 39

3.1.4 Enactment 	 39

3.2 Visual Process Modeling Language 	 40

3.2.1 Activities 	 40

3.2.2 Products 	 45

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.2.3 Resource Types and Resources 	 47

3.2.4 Flow Connections 	 50

3.2.5 Data Flow Connectors 	 52

3.2.6 Temporal Connections 	 55

3.2.7 I/O Indicators 	 56

3.2.8 Tunnel Connections 	 56

3.2.9 Other Connections Worth Mentioning 	 58

3.3 Editors 	 61

3.3.1 The Infrastructure Editor 	 61

3.3.2 The Process Editor 	 62

4 ENVIRONMENT AND PROGRAMMING LANGUAGE 	 65

4.1 Internet: The Environment 	 65

4.1.1 History. 	 66

4.1.2 The Web 	 67

4.1.3 Standardization and Control 	 67

4.1.4 Future Expectations 	 70

4.2 JAVA: The Programming Language 	 71

4.2.1 The Origins ofJava 	 71

4.2.2 Characteristics 	 73

4.2.3 Java Applications and Applets 	 75

4.2.4 JavaBean and JavaScript 	 76

4.2.5 Future of Java 	 77

5 ProWEB: THE WEB APPROACH 	 78

5.1 Overview 	 78

5.2 JBuilder 	 78

5.3 ProWEB: WEB Version of ProSLCSE 	 80

5.4 Conclusion 	 83

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

APPENDIX A GLOSSARY 	 84

APPENDIX B SOURCE CODES 	 86

REFERENCES 	 104

ix

LIST OF TABLES

Table Page

2-1 Software process modeling objectives and goals 	 14

2-2 Language types and constructs used for software process modeling 	 18

3-1 VPML constructs representing activities 	 45

3-2 VPML constructs representing products 	 47

3-3 VPML constructs representing resources and resource types 	 51

3-4 VPML constructs representing flow connections 	 52

3-5 VPML constructs representing data flow connectors 	 55

3-6 VPML constructs representing temporal connections 	 57

3-7 VPML constructs representing I/O indicators 	 58

3-8 VPML constructs representing other connection types 	 59

3-9 VPML constructs representing miscellaneous constructs 	 60

4-1 The exponential growth of the Internet 	 69

LIST OF FIGURES

Figure Page

2-1 The influence of process quality on product quality 	 8

2-2 Waterfall Life Cycle Model 	 12

2-3 Process perspectives 	 16

2-4 The five levels of software process maturity 	 21

2-5 Workflow loop 	 28

2-6 Procurement process of an organization 	 29

2-7 Workflow system characteristics 	 31

2-8 Workflow reference model 	 32

3-la Example of infrastructure involving people 	 35

3-lb Example of infrastructure involving machines 	 36

3-1c Example of infrastructure involving location 	 36

3-1d Example of infrastructure involving tools 	 37

3-2a External view of an activity 	 38

3-2b Internal view of an activity 	 38

3-3 User console 	 39

3-4 Leaf activity state transition diagram 	 41

3-5 Automatic activity state transition diagram 	 42

3-6 Composite activity with external and internal view 	 44

3-7 Example of INPUT_OR's and INPUT_AND's 	 53

3-8 Example of OUTPUT_OR's and OUTPUT_AND's 	 54

3-9 Example incorporating a milestone and a timer 	 61

xi

LIST OF FIGURES
(Continued)

Figure Page

3-10 A View of an Infrastructure Editor 	 63

3-11 EditView and create menus 	 64

4-1 The growth of Internet hosts 	 70

4-2 Multiple-platform application 	 73

5-1 JBuilder's Integrated Development Environment 	 79

5-2 ProWEB interface 	 81

5-3 ProWEB with components placed on the screen 	 82

xii

CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this thesis is to analyze the usefulness of process modeling through the

World Wide Web. Since the use of automation in factories started to take place,

engineers have tried to model their work. The processing of that work plays an important

factor in achieving their objectives in a cost-efficient, reliable and timely manner [Tanik,

93].

Processes have been the basic structure for developing large-scale systems.

Taken from the manufacturing community, the concept of presenting the problems of

large-scale systems, by means of processes, is a recently applied concept to the software

industry, as well as to businesses and organizations. Although the use of processes for

the manufacturing community is clearly defined, there is not much difference when it is

applied to the software industry. The objective is the same, whether it is applied for an

organization, a business or a software industry. The primary objective is to clearly define

and present the structure of the system as made of processes, each linked to each other

and thus contributing to the system. Processes help coordinate the people involved with

the system. A clearly defined set of processes will not only ease the interaction of the

people involved, such as the designer, the developer, the client, etc, but also track their

progress more precisely for future references [Humphrey, 95].

Processes are present in every aspects of the development and the maintenance

of the system. Specifically, processes outline the technical and the management

framework for applying methods, tools, and people. They define the relationship of

these entities to each other and to the whole organization. Tasks and roles are defined to

establish the connecting glue between methods, tools and people. Furthermore,

processes determine the inputs and the outputs at every major step, so that the design

and the maintenance of the system are done in an orderly manner. This flexibility allows

better methods to be incorporated into the system without affecting the whole

organization.

Benefits of using processes in an organization are countless. They enable an

effective communication between users, developers, customers, and researchers. They

expand the management's understanding of the organization by presenting an overall

view of the process automation. They provide a framework, allowing the management to

measure the status of the system. The use of processes allows reusability, as well. By

being reusable, development time is reduced and therefore being reusable minimizes the

cost of implementing new features. By being detachable, more effective processes can

easily be mounted, if necessary, in place of older processes. Thus, allowing the

developers to save time and money during the process design [Kellner, 88].

The organizations that effectively communicate, evolve, and manage their

processes are considered to be more efficient. Thus, defining processes are an important

factor in an efficient organization. A well-defined process is an influential element in an

efficient organization. Processes that are not well defined usually result in unstructured,

faulty integration of processes.

Thus, modeling the processes becomes an important issue. Much of the research

on process modeling has been focused on software development organizations, since the

software engineering community has already experienced formal modeling. Software

3

process modeling focuses solely on phenomena occurring during the software creation

and evolution [Curtis, 92]. Usually, organizations, mostly software organizations, do

depend on software life cycle description [Madhavji, 91]. Often these descriptions do

not correspond to the processes performed during development and maintenance. Rather

than organizing the necessary information, they represent high-level abstract plans. This

lack of conformance between the actual processes and the organization's stated

processes could be explained by the following reasons: high—level processes that do not

correspond to the actual project activities. Imprecise, ambiguous, incomprehensible, or

undefined processes that are performed in the project; and failure to update the

documentation as the processes and the structure of the project changes [Curtis, 92].

The "large-grained" traditional life-cycle descriptions outline the different phases

abstractly. These life-cycles models, such as the Waterfall Model or the Spiral Model,

would describe the process at a high-level abstraction. They would lack details needed to

successfully run the project [Lassenius, 97]. Traditionally, these representations have

been considered process models. But, the software process modeling community feels

that something else is needed, because the granularity of these models is too large

[Curtis, 92]. These life-cycle models fail to show the building blocks necessary for

developing and maintaining large projects.

New understanding and research for process modeling has evolved to satisfy the

needs mentioned in the previous paragraph. In forming such model, one has to consider

the following uses for process modeling: to facilitate the human understanding and

communication, to support process improvement, to support process management, to

automate process guidance and to automate execution support [Curtis, 92]

4

Most of Chapter 2 deals with processes and process modeling. There is an

emphasis on process definition, since this is what this thesis is partially based on.

Process modeling is thoroughly reviewed in the second chapter, as well. The objectives

and perspectives of process modeling are outlined. Some of the issues concerning

process modeling are discussed. Capability Maturity Model from SET is discussed as an

example of assessment tool of software processes. This area is tied to the process

modeling, since it brings a tool that enables developers to assess their processes and to

improve their organizational structure .

Chapter 2 is finished with a discussion on Workflow Systems, which is relatively

similar system to process modeling. Workflow is often confused with process modeling .

This section gives the reader a chance to compare those two models and see the

similarities and the differences.

1.2 Current Research and Justification

One of the most difficult problems in process modeling is the inherent complexity of

representing real world processes. During the last few years, much new formalism has

been developed or is still being developed to model processes. Few of them completely

represent what they are supposed to. Some approaches are good for describing processes

and others are good at modeling them at low levels. The granularity of process modeling

is an important issue to be considered. The need for a formalism that represents a high

level modeling has led researchers to combine the good aspects of several formalisms

5

1.3 Contributions

Our approach was to use an already established tool, Process Oriented Software Life

Cycle Support Environment (ProSLCSE). ProSLCSE is a tool that facilitates

improvement efforts in an organizational environment. According to the SEI,

organizations must first define the steps they use to conduct business processes. These

processes are then analyzed and molded in the organizational framework to improve the

structure of the organization. ProSLCSE is a tool that helps users to define and control

processes, therefore enabling the control and improvement of the overall project

[ProSLCSE, 94]. ProSLCSE helps the user in defining the infrastructure of the

organization and the processes used by the organization to perform those tasks,

associating resource types to the process, planning the activities, analyzing the project

through simulation and running the project.

All these functionality led us choose this tool and implement it on a web-enabled

platform. Chapter 3 describes the ProSLCSE environment. ProSLCSE uses a structure-

oriented graphical editor that is based on Visual Process Modeling Language (VPML).

The constructs of VPML are used in two editors, the Infrastructure and Process editors,

which are discussed in detail.

Chapter 4 describes the environment and the programming language that is used

to implement ProSLCSE. The Internet has become the center of scientific and

commercial world. It enables users vast opportunities. The number of users using this

medium is growing exponentially [Hoffman, 96]. Everything has to be associated with

Internet in order to remain alive in this competitive world. Internet offers a medium

where process modeling could evolve. Developers in different locations could model

6

their processes through our web version of the ProSLCSE, which we call ProWEB. They

could design the models, make corrections, align old processes with new ones, and add

new components. All those actions are possible in an almost real-time environment. That

is why ProSLCSE was ported to World Wide Web (WWW).

Java represents another aspect of our attention. We would like to implement

ProSLCSE on a web-enabled platform, whether it is Netscape, Internet Explorer (LE) or

HotJava. Java seems to be the language evolving around those browsers. Java's main

characteristics led us choose this programming language over others. Chapter 4

describes some of those characteristics. But today's Java is not enough. It has limitations

that need to be solved in near future.

Chapter 5 concludes this thesis by describing the implementation of our thesis.

Step by step approach was chosen to let users navigate through the project. Although we

are new in Java programming, there are areas that needs improvement and elaboration.

The project is not yet fully implemented. The areas that are open for improvement are

outlined in the last sections of the chapter.

CHAPTER 2

PROCESS MODELING

2.1	 Overview

2.1.1 What is a Process?

The Webster dictionary [Webster, 83] defines a process as a continuing development

involving many changes and a particular method for doing something, usually involving

a number of steps or operations. The IEEE's definition is similar and defines a process

as a sequence of steps performed for a given purpose [IEEE, 90].

A software process is defined in Capability Maturity Model (CMM) by Software

Engineering Institute (SEI) as a set of activities, methods, practices, and transformation

that people use to develop and maintain software and its derived products [Paulk, 93].

2.1.2 Relation between Process and Product Quality

An engineering problem involves many issues. Cost, reliability and timeliness are three

major factors that make up all the engineering issues [Tanik, 93]. For example, if an

engineering problem is reliable as far as the quality and it is timely delivered, but cost

ten times what it is supposed to, then this solution does not respond to the engineering

problem. Therefore, it is necessary to balance between those factors, in order to establish

a good solution to the engineering problem. Software engineering problems or any other

engineering problems should follow this understanding. Also, processes do provide a

solution to those problems by establishing time predictability, quality, and cost

efficiency. But there are differences between a set of good and bad processes. Immature

processes might conclude in cost and time schedule overruns, expensive rework and

7

8

in the end become the source for project termination [Krasner, 92]. In contrast, a well-

defined processes might provide quality, timely access to the market and customer

satisfaction to both the developer and customer sides. A good process is usually required

to produce good products, establishing a correlation between process quality and product

quality as shown in Figure 2.1 [Lassenius, 97].

People

Technology

0
0

cD

Final Product

Raw

Figure 2-1. Process quality influences product quality

9

2.1.3 More about Process

A process has certain characteristics that enable developers and users to grade and to

make a comparison between processes. Some of those characteristics could be

summarized as the following [Lassenius, 97]:

• Understandability: Is the process defined and understandable?

• Visibility: How visible is the progress to outside?

.14 Reliability: Are there any process errors resulting in product defects?

• Robustness: How well the processes continue in case of unexpected problems?

• Maintainability: Can the process evolve to meet changing conditions and needs?

• Supportability: Can other tools support the process?

• Integration: How well is the process integrated to other processes?

• Acceptability: Is the process acceptable to those involved?

• Productivity: How fast can the system be produced?

2.1.3.1 Process Characteristics: All those questions should to be asked when the

developer begins the process modeling. But considering those issues doesn't necessarily

mean that we have an effective process in our hand. Bill Curtis thinks that an effective

process should have the following attributes: It should be defined clearly to avoid any

misunderstanding. It is advised to document the steps taken toward the use of such

processes. It should be practiced and fully implemented to reach the objectives. An

effective enforcement is necessary to avoid any deviation from the main objective. It

should be measured throughout the project to control the outcome. It should be

10

supported thoroughly. And most of all, the people involved in the project should be

trained to increase the productivity [Curtis, 95], [Lassenius, 97].

2.1.3.2 Representations: There is a distinction made between process model and

process guide. This distinction lies in the way things are represented to the outside

world. Process guides are standard documentation describing the implementation of the

software process. Those instructions are usually represented in text and graphic format.

They are primarily used for planning and training purposes. On the other side, process

models are detailed and formalized descriptions. They are content-rich and powerful

notations to represent activities, products, resources, objects, transformations, events,

etc. Those graphical representations ease the human understanding of the project by

giving a detailed view of the processes. They are primarily used for development,

planning and improvement purposes [Armitage, 94], [Lassenius, 97].

2.1.3.3 Current Issues in Software Community

 Problems with Granularity

Traditional life-cycle models like the "waterfall model"; the "spiral model" or "iterative

enhancement" depicts different phases of a project abstractly. These models have been

considered process models and much of the software process thinking is still based on

the waterfall framework [Humphrey, 89]. But, the granularity of those models is too

large to describe many elemental process blocks necessary to manage and coordinate the

project [Curtis, 92]. They lack the details to support process optimization. They do not

respond adequately to the changes in the software development. They usually follow a

relatively uniform and orderly sequenced set of activities. They fall short in

11

accommodating to recent developments as rapid prototyping or advanced languages

[Humphrey, 89].

Reliance on the waterfall model has limited some of the design improvements.

By describing the process as the sequence of requirements, design, implementation, and

test, where each step depends on the previous one, has caused the phases to be

dependent on each other. The Figure 2-2 shows the standard Waterfall life-cycle model.

Nevertheless, in reality, the requirement is a continuing phase that must be constantly

updated through development phase. Other relevant tradeoffs exist in the following

phases [Humphrey, 89].

• Formality

The level of mathematical formality used in a process modeling language is another

primary concern in the research community, The level of a language's formal precision

is a determinant factor in representing the process. This formality level depends also on

the purpose served by the process model and the agent using it. A process program

enacted by a machine should be more formal than a process enacted by humans [Curtis,

92].

• Fitness

Process modelers would like also to differentiate how processes act on different

situations. Depending on a particular situation, they would like to separate process

models into three categories: prescriptive, descriptive, and proscriptive modeling.

Prescriptive modeling implies that the process should be applied in a certain way. A

12

process modeling that conforms to a certain level of performance is said to be highly fit

to the organization. A descriptive modeling approach, however, is focused on

determining the actual processes currently used in an organization to get work done.

Those types of processes are said to form the organization's process baseline. The third

perspective, the proscriptive modeling deals with behaviors that are not allowed in an

organization. That approach tells process modelers the presence of constraints that

cannot be violated and should be considered with moderate attention [Curtis, 92].

In view of those limitations mentioned above, the software process modeling

community turned to other process modeling descriptions that will satisfy their needs.

Requiremen

Design

Coding

Testing

Operations

Figure 2-2. Standard Waterfall Life Cycle Model [Davis, 93]

13

2.1.4 Process Modeling

2.1.4.1 Objectives: New research for process modeling has concentrated in new areas

to satisfy those needs mentioned above. In forming such model, one has to consider the

following objectives to create a new approach to process modeling: Facilitate the human

understanding and communication, support process improvement, support process

management, automate process guidance and automate execution support [Curtis, 92].

By enabling effective communications among process users, developers,

managers, or researchers, a precise basis for process execution and automation is

developed. This led to an increase in human understanding of the processes. This type of

use requires that a group share a common ground in representing processes.

A support for process reuse and improvement is necessary to avoid repetitions.

This requires a basis for defining and analyzing processes. Process development is time-

consuming and expensive. This reason alone causes project team to save time by reusing

and by improving their old processes. The process models should be used to facilitate

process management, as well. Effective management requires a clear understanding of

plans and a defined process against which actual project behaviors can be compared to

evaluate the status of the project [Humphrey, 89], [Curtis, 92].

From those objectives, it is clear that process models should represent the way

work is performed to achieve the goals. They should provide a clear and a flexible

framework for representing and improving process models, and yet be granular to the

desired level of details. Table 2-1 summarizes the software process modeling objectives

and goals [Curtis, 92].

Table 2-1. Software process modeling objectives and goals [Curtis, 92]

Facilitate human understanding and communication between users
• Represent process in an understandable form
• Facilitate communication among process users
• Formalize the process to let people work more efficiently
• Provide the necessary information to allow an individual or team to perform the

intended objectives
• Form a basis for training the intended process

Support process improvement
• Identify the necessary components of a high-yield software development or

maintenance process
• Reuse process in the future
• Compare alternative process to determine the effect on the overall project
• Estimate the consequences of potential changes to a software process before

putting them into practice
• Assist in the selection of tools that will be used with the processes
• Facilitate organizational learning on implementing effective processes
• Support managed evolution of a process

Support process management
• Develop a project-specific software process to accommodate the attributes of a

particular project
• Outline the reasons for the creation and evolution of those software attributes
• Support development of plans for forecasting purposes
• Monitor, manage and coordinate the processes
• Integrate a comparison basis for process evaluation and measurement

Automate guidance in process performance
• Define an effective software development environment
• Provide users guidance, suggestions and material to increase the performance of

the processes by increasing the human understanding
• Save process representation for future use in a repository

Automate execution support
• Automate parts or portions of the process
• Encourage cooperative work among individual users or teams by automating

process
• Automate the collection of measurement data
• Enforce rules to guarantee process integrity

14

15

2.1.4.2 Process Modeling Perspectives: There is lots of information that users want to

extract from process models. Some of the questions, that they want answers to, are listed

below [Curtis, 92]:

1. What is going to be accomplished?

2. Who is going to participate in this work?

3. How will the work be partitioned among participants?

4. When will it be done?

5. Where will it take place?

6. How will it be done?

7. Why does it need to be done?

8. Who and what are going to be affected by its completion?

The reason why process-modeling languages differs from each other lies in the

way those questions are answered. Since those questions can be viewed and handled in

different ways, different languages provide a solution to particular set of questions .

Process modeling languages and representations usually provide a solution to one or

more different perspectives related to these questions. Four of the most commonly

presented perspectives are functional, behavioral, organizational, and informational

perspectives [Curtis, 92]. Figure 2-3 shows how those perspectives are interrelated with

each other.

Functional perspective might relate to the first question. 'What is done?' `What

is accomplished?' are the questions that find answers if someone implements the

functional perspective. The process elements that are being performed and the

informational entities (e.g., artifacts, products, and data) that are being included are

investigated through this perspective.

Behavioral
informational

Functional

16

Organizational

Actual Process

Figure 2-3. Process perspectives [Curtis, 92]

Behavioral perspective represents the actions with respects to time. 'When things

are done?' `When the processes are performed?' `How are they performed?' are

questions that are studied when behavioral perspective is taken into consideration.

Organizational perspective responds to questions like 'Where is the process

taken place?' and Who is involved in the accomplishment of the process?' The agents

involved in the process and the location, where those processes have taken place, are the

highlighting aspects of the organizational perspective.

17

Informational perspective deals more with informational entities manipulated or

produced by a process. These entities might be data, artifacts, intermediate or end

products, and objects. This perspective considers the relationship among those entities,

as well as their structure within the process.

To have all those perspectives in consideration during the development of

process modeling will result in a better process. It is estimated that the combination of

these perspectives will lead to an integrated, consistent and complete model of the

process in hand. However, in real life, known languages and representations fail to

support all perspectives adequately. In practice, most process descriptions have used

narrative text and diagrams to express process. These types of representations were

bounded by the constructs of the language used for modeling [Curtis, 92] .

2.1.4.3 Process Modeling Paradigms: Most researchers have viewed the development

of software as the first step in developing a process model. Thus, the actual development

of a process has been compared to the development of software. From this perspective,

the concept of process programming has emerged and is defined as "the activity of

expressing software process descriptions with the aid of programming concept" [Tanik,

93]. The researchers who followed this trend were faced with the famous chicken-and-

egg problem [Osterweil, 87]. As Osterweil pointed out: "In order to find out what

language features we need, we need to write process diagrams; in order to write process

programs, we need the appropriate language features." Most languages used by the

software community have been the basis for modeling software processes, and most of

the process modeling languages derived from those languages [Curtis, 92]. Some of

those language types are procedural programming language, system analysis and design,

1 8

state transition and Petri-nets, functional languages, formal languages, data modeling,

etc. Table 2-2 outlines some of those languages and their respective use in the software

industry.

Table 2-2. Language types and constructs used in software process modeling
[Curtis, 92].

Base Language Types and Constructs 	 Sample Software Process Modeling

Procedural programming languages	 APPL/A

System analysis and design	 STATEMATE

Al languages and approaches 	 AP5, GRAPPLE,

Events and triggers	 AP5, APPL/A, STATEMATE

State transition and petri-nets 	 Role interaction Nets, STATEMATE

Control flow	 MVP

Functional languages

Formal languages	 Context-Free Grammar

Data modeling	 APPL/A, PMDB, STATEMATE

Object modeling	 AP5, MARVEL, MVP

Precedence networks	 SPMS

Quantitative modeling	 System Dynamics

19

2.2 Current Capability Models

There are several different diagnostic tools, which are used in the software community

to assess software processes of an organization. The assessment and the evaluation of

software processes have become a major concern worldwide. A software process

assessment is an appraisal by a trained team of software professionals to determine the

state of an organization's current software process, to determine the high-priority

software process-related issues facing an organization, and to obtain the organizational

support for software process improvement. A software capability evaluation is an

appraisal by a trained team of professionals to identify contractors who are qualified to

perform the software work or to monitor the state of the software process used on an

existing software effort [Paulk, 93].

Organizations would like to know if their products meet the standards set by

their respective community. The software community relies on different assessment

tools. The Capability Maturity Model (CMM) is the popular one right now. Other

maturity models are being developed. Some of the current ones are ISO SPICE, ISO-

9000, Trillium, Bootstrap [Lassenius, 97]. Since CMM is becoming a widely approved

tool, more detail is given in the following section.

2.2.1 Capability Maturity Model

The CMM was originally developed to assist the U.S. Department of Defense (DoD) in

software acquisition. The main purpose was to evaluate the contractor's software in

order to make a decision. DoD contractors quickly learned that they needed to change

and guide their organizations to become more aligned with the CMM, Software

Engineering Institute (SEI) saw the benefits of such framework and recommended a

broader participation in the development and improvement of the CMM. Hence, the

model gained visibility in the software engineering community. Soon enough,

commercial organizations adopted the CMM for their own improvement. As of 1993,

commercial organization have performed more assessments than all DoD and other

Federal contractors [Herbsleb, 97].

The Capability Maturity Model for Software provides software organizations

with guidance on how to gain control of their processes for developing and maintaining

software. The CMM was designed to guide software organizations in selecting process

improvement strategies by determining current process maturity and identifying the few

issues most critical to software quality and process improvement. By focusing on a

limited set of activities and working aggressively to achieve them, an organization can

steadily improve its organization-wide software process to enable continuous and lasting

gains in software process capability [Paulk, 93].

Continuous process improvement is based on many small, evolutionary steps

rather than revolutionary innovations. The CMM provides a framework for organizing

these evolutionary steps into five maturity levels that lay successive foundations for

continuous process improvement. These five maturity levels define a scale for

measuring the maturity of an organization's software process and for evaluating its

software process capability. These levels also help an organization prioritize its

improvement efforts.

Each level comprises a set of process goals that, when satisfied, stabilize an

important component of the software process. Achieving each level of the maturity

Predictable
process

Managed
(4)

Standard,
c onsist ent
process

Defined
(3,

Disciplined
process

Repeatable
(2)

21

framework establishes a different component in the software process, resulting in an

increase in the process capability of the organization.

Organizing the CMM into the five levels, as shown in Figure 2-8, helps increase

achieving software process maturity. The labeled arrows in Figure 2-4 indicate the type

of process capability being institutionalized by the organization at each step of the

maturity framework.

C ontinuously
im proving
process

Optimizing
(5)

Figure 2-4. The five levels of software process maturity [Paulk, 93]

22

2.3 Workflow

Workflow management is a fast evolving technology being used in a variety of

industries. Workflow can be summarized as the automation of processes involving

human and machine-based activities, as well as the interaction of Information

Technology (IT) applications and tools with users. This type of technology is mostly

used within the office environment in staff intensive operations such as banking,

insurance, legal administration, and its application to other areas is also expanding. It

became useful for industrial and manufacturing applications, as well. Although the

number of users of workflow management is on the rise, there isn't any standardization

in this new area. The lack of conformity between workflow products limits the

integration of workflow systems and results in incompatible process automation

There are some encouraging works done to remedy this situation. New research

groups have come together to set uniformity within this community. It has been

recognized that all workflow management products have some common characteristics.

This enables some level of interoperability between products. The Workflow

Management Coalition (WFM Coalition) is one of those groups working to find

common grounds between product specifications and to improve integration of

workflow applications with other IT services. An improved and effective use of

workflow technology within the IT is believed to be beneficial to both vendors and users

[Hollingsworth, 94].

2.3.1 Historical Facts

In the early years of 19 th century, Frederick Taylor outlined the principles of "scientific

management" [Winograd, 87], a view that considers work as motions and activities of

23

workers that can be planned and organized to produce the maximum output. But the

introduction of computers, hence automation shifted the definition of work to a new

direction. The individual worker became an information processor, modeled as a

function that processes input information into output information. According to

Denning, another pioneer in this area, Herbert Simon brought a new interpretation to

work [Denning, 95] He described IT as a source of providing information to the worker

to make better decisions. In all those perspectives, work is seen as the process of

transforming the given inputs (information or product) into the desired outputs

(processed information and products).

2.3.2 Definition of Workflow

Workflow is the automation of procedures, where information or tasks are passed

between users, according to a predefined set of rules, to achieve an organizational goal.

While workflow may be manually organized, it is mostly organized within the context of

an IT system. This enables the system users with computerized support for the

procedural automation. Often, workflow is associated with Business Process Re-

engineering, which deals more with the assessment, analysis, modeling, definition and

other operational implementation of business processes of an organization. This

similarity between business process modeling and workflow makes it harder to

distinguish those two business-modeling concepts. What makes workflow technology

different is that it provides separation of the business procedural rules and its IT oriented

operational support. Thus, it enables subsequent changes to be incorporated into the

procedural rules defining the business process.

24

2.3.3 Organizational Processes

There are three distinguished domains to describe the activities within an organization:

Material, Information and Business processes [Medina, 92]. Those three different types

of organizational processes follow the historical definition of work mentioned in Section

2.3.1.

2.3.3.1 Material Processes: This is the standard interpretation of work. Every action is

tied to a physical movement or a change of state. In its traditional context, factory

automation, physical components are transformed and assembled in products. Material

process redesign, along with the application of new technologies, has been used to

provide more efficient outputs [Medina, 92].

2.3.3.2 Information Processes: With the twentieth-century shifl from traditional work

concept to information age, the material process domain fails to capture the important

elements of today's work. With computers all around the organizations, work became

indistinguishable. Theorists and IT providers have developed new and improved ways to

analyze and facilitate the flow of information in an organization. Until recently, one of

the primary objectives of organizations was to identify, study, and optimize their

informational processes [Denning, 95]. Nowadays, much of the work is concerned with

how information is passed around the organization, how effective the current techniques

of data flow, database storage and retrieval, transaction processing, network

communication are [Medina, 92].

2.3.3.3 Business Processes: Business process is the next step after the information

domain. Recently, organizations have realized that the information technology does not

25

address their crucial concerns. The information is considered useless if it does not

generate an action. The business process brings a broader significance to the information

[Medina, 92]. The business process, sometimes called the human process, is concerned

with the coordination of the people involved in performing the actions generated by the

information.

2.3.4 Workflow Systems

A workflow management system is a system that completely defines, manages and

executes business processes through the execution of software. Thus, this system

provides procedural automation of business processes by managing the sequence of the

activities and invoking the appropriate human or IT resources associated with the

various activity steps. Workflow systems can be described according to the type of

process they are designed to deal with. Some of the important types of workflow

systems are explained in the following subsection [Hollingsworth, 94], [Denning, 95].

2.3.4.1 Image-based Workflow: Initially, workflow has been closely associated with

image systems, where workflow software helped to automate image routing. Image-

based Workflow Systems are designed to automate the flow of paper through an

organization, by capturing the paper as images. These were the first workflow systems

that gained wide acceptance. In a typical scenario, incoming mail (consisting of paper-

based information) is digitized and stored on optical discs as images. The workflow

software manages queues of pending forms, automatically balancing the workloads of

individual workers that are processing the incoming forms. After the transformation

process, which is automated, the converted 'images' are passed among users, possibly

26

involving interaction with other IT applications. This interaction creates a need for a

workflow functionality, which is discussed in the next section.

2.3.4.2 Form-based Workflow: Form-based workflow takes image-based workflow

one step further Rather than just routing images to workers, forms, which are text-based

and consist of editable fields, are routed throughout the organization. Forms are

automatically routed according to the information entered on the form. In addition, these

form-based systems can notify or remind people when action is due. Forms also contain

data that is accessible by the workflow system. Conditional decisions can be made

automatically by the workflow system, enabling routine forms to be filled automatically

with the appropriate data. These characteristics provide form-based workflow with a

higher level of capability than image-based workflow systems. Further notes and an

example of how form processing is accomplished can be found in [Teixeira, 93].

2.3.4.3 Coordination-based Workflow: Coordination-based Workflow Systems are

designed to facilitate the completion of work by providing a framework for the

coordination of actions. This framework is addressing the domain of human concerns

(business processes), rather than optimizing information or material processes. Such

systems have the potential to improve organizational productivity by addressing the

issues necessary for customer satisfaction, rather than automating procedures that are not

closely related to customer satisfaction [Denning, 95]. Coordination-based workflow is

based on the theory of communication and coordination developed by Fernando Flores

and Terry Winograd in the late 1970s [Denning, 95]. Amer successful implementation in

several case studies, this theory brought a new understanding of work. Flores proposed

27

that most human coordination occur between people in requesting, making, and

fulfilling commitments. The importance of the computer lies in facilitating this kind of

coordination rather than simply in data processing. This thinking was further developed

by representing coordination of people as a finite-state machine and called "conversation

for action". In the late 1980s, Flores demonstrated that the basic cycle of coordination

reappears at many levels of an organization, not just between individuals, and that the

organization itself could be seen as a network of recurring workflow loops [Denning,

95]. This became the basis of a workflow management system produced and patented by

Action Technologies. It was seen that the workflow-loop map has provided significant

improvements in productivity and in satisfaction of customers and employees. Figure 2-

5 shows the generic structure of a coordination loop, called ActionWorkflow loop by

Action Technologies. This figure views work as a closed loop process in which a

performer completes actions leading to the satisfaction of a customer or client's request.

During any phase, the participants may make requests of others, thus initiating

secondary loops, whose completion will enable forward progress in the previous loop.

The initiation or call to new loops generates a network of connected loops: loop

segments can be further refined.

REQUEST NEGOTIATION

perform er
P

customer
C

PERFORMANCESATISFACTION

28

Figure 2-5. Workflow loop [Denning, 95]

The Figure 2-6 is an example implementing the map for a procurement process of an

organization, which illustrates expansion into secondary workflow loops; in this case,

the primary performance phase is expanded into three sequential secondary loops.

2.3.5 More in Depth in Functionality

All workflow management systems provide support in three functional areas: Build-time

functions, run-time control functions, and run-time activity interaction functions

[Hollingsworth, 94].

2.3.5.1 Build-time Functions: The Build-time functions deal with the definition, and

possibly the modelling of workflow process and its constituent activities. These

functions result in a computerised definition of a business process. During this phase,

real-world processes are translated into formal and computer processed definition. This

definition is often called a process model, a process template, a process metadata, or a

process definition. A process definition represents a number of discrete activity steps,

PROCURE EQUIPMENTcustomer
proc't
office

Accounts
Data System

proc't
office

(recordbids)

vendorsGET BIDS

VERIFY STATUS
accounts
office

proc't
office

ORDER
vendor

29

which could be initiated by a computer or by users. The process definition may be

expressed in textual or graphical form or in a formal language notation

Figure 2-6. Procurement process of an organization [Denning, 95]

30

2.3.5.2 Run-time Control Functions: The Run-time control functions are concerned

with the management of the workflow processes in an operational environment and the

sequencing of various activities to be handled as part of each process. During this phase,

software interprets the process definition. Also, it creates and controls operational

instances of the process, scheduling the various activities within the process and

invoking the appropriate human and IT resources. This software is the core component

of the workflow management and it is often distributed across a number of computer

platforms to manage processes distributed over a wide geographical area.

2.3.5.3 Run-time Activity Functions: The Run-time activity functions enable the

interactions of human users and IT application tools for processing the various activity

steps. Human intervention is often realised with the use of particular IT tools, which

may be some application program that operate on some defined information. The

interaction with the process control software, mentioned above, is necessary, since it

enables the transfer of control between activities, the checking of processes' status, the

invocation of application tools, and the passing of appropriate data.

Figure 2-7 illustrates the basic characteristics of workflow systems and the relationships

between its main functions.

31

Process Design
& Definition

Business Process Analysis,
Modelling & Definition Tools

Interaction with
Users & Application Tools

Applications
& IT Tools

Process
Definition

Process changes

Workflow Enactment Service

Figure 2-7. Workflow system characteristics [Anonymous, 96]

2.3.6 Comparison of Workflow with Process Modeling

Workflow systems are usually understood as process modeling. However, workflow is

not only limited with modeling. It comprises other factors that differentiate it from

process modeling. Figure 2-8 shows the Workflow Reference Model. As seen in the

figure, there are different aspects that make up the Workflow systems. The engine, at the

center of the action, is an engine that controls the flow of information and data. The

main difference lies in this distinction. Workflow generates the flow of data in an

automated fashion. However, process modeling does not deal with data, but represents

products, objects, and information.

maintain

Invokes
may

refer to Application(s

Workflow
control
data

WFM
1 Engine(s)

Workflow
Enactment
Service

Administration
& Control r

Work
List

Interact via

Worklist 1
Handler 1

Workflow
Relevant

Data

Manipulate

Workflow
Application
Data

update

Invokes
Application(s)(Supervisor)

May
reference

Organisation/
Role Model

Data

Definition Tool

Generates

Process
Definition

Interpreted by

32

References

User Interface

Software component

System control data
External product/data

Figure 2-8. Workflow reference model [Hollingsworth, 94]

CHAPTER 3

ProSLCSE

3.1	 Overview

ProSLCSE (Process Oriented Software Life Cycle Support Environment) is a tool

produced by a company named International Software Systems, Inc. (ISSI) [ProSLCSE,

95]. Its main purpose is to facilitate and to enhance the improvement efforts in

organizations. According to the principles of total quality management and continuous

process improvement, organizations need to define clearly the steps that they use to

conduct key business processes. Those steps are then analyzed and controlled to find

better ways to do the job, in an efficient and effective way. Three key points of an

engineering problem are time, cost and reliability, which are addressed with a clearly

defined set of processes.

ProSLCSE helps users reach their objectives in the following ways:

• Define the infrastructure (resources, resource types, and the relationship among

them) in an organization,

• Define the processes used by an organization to perform the tasks at every phase,

• Associate the resource types to the processes,

• Create a project by allocating specific resources (as defined in the infrastructure) to

roles and other resources types and by specifying the planned duration to complete

each tasks and activities,

• Analyze the project with simulations and other analysis tools,

33

34

6 Enact or run the project. The staff members assigned to the project can check the

status of their tasks in an out of the ProSLCSE system. Based on the dependencies in

the project model and the completion of activities reported by the assigned members,

ProSLCSE determines the readiness of the activities to be implemented [ProSLCSE

95].

ProSLCSE has two editors, the Infrastructure Editor and the Process Editor,

which are structure-oriented graphical editors using the Visual Process Modeling

Language (VPML). Following the rules set for interconnecting different components,

these two editors help users construct VPML process models rapidly and correctly. Both

editors use graph-based interfaces to edit infrastructure and process graphs and forms-

based interfaces to edit the attributes of VPML constructs [ProSLCSE, 95].

ProSLCSE and the terms described above would be explained in more depth in

the following section, but I would like to give an introductory overview of what those

editors stand for and what they look like in real life.

3.1.1 Infrastructure Editor

The Infrastructure is defined for an enterprise. An enterprise could be an organization, a

company, a division within the company, or any group that has resources that need to be

allocated to resource types. The Infrastructure Editor displays all the resource types and

resources, along with their relationship to each other. Resources are members of

resource types. An example of an infrastructure from different perspective is shown in

Figures 3-la to 3-1d.

35

Project Manage Hackman

CM Staff Gina

Software Engineer Miller

Technical Writer

Figure 3-1a. Example of infrastructure involving people

Joe

Sparc 10 212

36

Sparc 10

Sparc 10 213

Figure 3-lb. Example of infrastructure involving machines

Building 1

Building

Building 2

Figure 3-1c. Example of infrastructure involving location

37

Framemaker

DeskTopPublishing

Interleaf

Figure 3 - 1d. Example of infrastructure involving tools

3.1.2 Process Editor

Process diagrams are made of leaf activities, composite activities, and automatic

activities that have products, like artifacts, messages, documents, folders, composite

products, as inputs and outputs. Roles are associated with activities, and tools are

associated with products. An example of a process diagram, as seen in Figure 3-2,

illustrates a high-level view of processes. This diagram, also called external diagram

might contain a composite activity (Activity 12). By clicking, the user could illustrate a

more detailed level (also called internal view) of this activity.

Product Product
Activity 12

38

Figure 3-2a. External view of an Activity

Activity

Figure 3-2b. Internal view of Activity 12

The process Editor enables users to assign specific personnel in the infrastructure to

roles and to set time limits for performing activities. Only after all roles in the process

have been assigned to persons that the simulation or the enactment can start.

Project View Task CardV

39

3.1.3 Analyzers

After the completion of a process, two kinds of analysis is possible (optional): the Static

Management Assistant and the Project Simulator. The Static Management Assistant

produces cost and resource utilization reports based on time duration and cost definition.

The Project Simulator allow the user to activate or run the process. Users have the

possibility to simulate the process step by step, one activity at a time, and if desired,

random factors can be added to make a total analysis of the processes.

3.1.4 Enactment

When resources have been assigned to all resources types, the project can be enacted.

The staff members involved in the project can check their activities through a User

Console, as shown in Figure 3-3.

ProSLCSE: User Console

1. Enter the CM system	 11/13/97 09.00 Day(s)

2. Fix problem	 11/14/97 09.00 Day(s)

Figure 3-3. User console

40

3.2 Visual Process Modeling Language

This section introduces the Visual Process Modeling Language (VPML), which is a

graphical language meant to define processes. The components of a process diagram are

activities, products, resources and resources types, annotations, the connections (flow

connections, data flow connectors, temporal connections), input/output indicators, and

other miscellaneous connections. The 'VPML is based on constructs that are shown in

Table 3-1 through Table 3-9. Each construct is represented by its visual representation,

its construct name and its description.

3.2.1 Activities

Activities are the central focus of VPML. They represent the work that is performed in a

process. Other VPML constructs are usually assisting activities to specify details and to

coordinate activities. There are three types of activities in VPML: leaf activity,

automatic activity and composite activities.

3.2.1.1 Leaf Activity: Leaf activity represent work done by one or more persons. It

needs at least one role associated with it to pass the completeness check. This makes the

activity ready to be simulated or enacted. During its enactment, a leaf activity is in one

of the eight states: Wait-For-Start, Pending, Ready, Active, Wait-For-Finish, Cancelled,

Suspended, or Finished. Users are able to follow those states through the user console.

The state of the activity determines what operations are possible to perform. Specific

conditions force the states to change. Those states and how they are related to each other

is shown in Figure 3-4.

Ready
Wait-

For-Star
Pending

Cancelled Suspended

Active
Wait-
For-
Finished

Finished

41

During the first enactment, all leaf activities are set to Pending state. Transition

TI occurs when the inputs to the activity is ready, and at least there is one Finish_Start,

Start_Start, or Start_After_Start connection waiting to be satisfied. T2 occurs when all

the connection mentioned above are satisfied, resulting the transition to the Ready state.

A person assigned to the Ready state has to initiate transition T3 for the activity to pass

to Active state.The reverse, the transition T4, follows the same routine. For the transition

T5 to take place, there are 3 conditions that must hold: Each person assigned to the

activity must approve that the work on the activity has been completed. Furhtermore, the

Figure 3-4. Leaf activity state transition diagram

Pending
Wait- For-Start

Ready

Finished
Wait-
For-
Finish

Active

42

conditions on the Output_OR and Output_AND must also be true, that is, only one path

has been selected for each Output_OR connector and all paths have been selected for

each Output_AND connector attached to the activity. The activity stays in the Wait-For-

Finished state as long as there are any unsatisfied Finish_after_Finish and Finish_Finish

connections. Once those connections are satisfied, the activity is sent to the Finished

state. Transition T7 from the Finished state to the Pending state takes place when at least

another input to the activity is ready again. The manager in the Project [ProSLCSE 95]

controls all other transitions to the Cancelled and Suspended State.

3.2.1.2 Automatic Activity: An automatic activity is an activity that is performed by a

computer script or program. Enactment behaviour for automatic activity is similar to that

of leaf activity. During enactment, an automatic activity is in one of the six states:

Ready, Wait-for-Start, Pending, Wait-For-Finish, Active or Finished. The states and the

transitions are shown in Figure 3-5.

Figure 3-5. Automatic activity state transition diagram

43

All automatic activies start from the Pending state. Transition TI occurs when the

inputs to the activity are ready, and at least there is one Finish_Start, Start_Start, or

Start_After Start connection waiting to be satisfied. After those connections are

satisfied, the activity moves to the Ready state, passing by T2. After the transition from

Ready state to Active state, instructions from the program script are executed. The

program or the script that is being executed has read access to the products along the

reference and data flow connections. It also has create, read, and write access to products

along the outgoing data flow connections for the activity. For the activity to pass to

Wait-For-Finish state from the Active state, three conditions have to be satisfied. The

program or the script for the activity must be finished; Only one selection must be

indicated for each Output_OR attached to the activity; And finally several selections

must give way for each Output_AND attached to the activity [ProSLCSE 95]. The

automatic activity resumes to the next state, Wait-For-Finish, if the activity has any

temporal dependencies that need to be finished. To make the T6 transition, all

Finish_after_Finish and Finish_Finish connections should be satisfied, putting the

activity in the Finished state. Transition from this state to Pending state is possible when

new inputs are ready.

3.2.1.3 Composite Activity: A composite activity enables the user to represent

activities and processes in a varying levels of detail. A single composite activity can

contain leaf, automatic, other composite activities and constructs within itself Because

of this capability, two views are assigned for this construct: Internal and external views.

In its external view, a composite activity can be considered like a leaf activity, which

can be seen in Figure 3-2a. In its decomposed form, a composite activity shows its

Childl Child2

44

component in a detailed view, as seen in Figure 3-6. This decomposition has no effect

during the enactment. This type of activity does not have states It is only for visual

purpose.

The constructs representing activities are summarized in Table 3-1, along with their

definition and their visual representation.

Parent Activity

Figure 3-6. Composite activity with external view and internal view

45

Table 3-1. VPML constructs representing activities (Adapted from ProSLCSE manual)

Visual	 Construct name	 Description
Representation 	 in ProSLCSE

Activity	 Represents work that is performed by one

Activity 	 or more persons or group. Also called
leaf activity.

Automatic	 Represents work performed by a
Activity	 computer script, rather than manual

work.

Composite	 Represents a sub-graph of subdivided
Composite	 Activity	 activities.
Activity

3.2.2 Products

Items that are created, used, modified, and transferred among activities are called

products. A product is being created or modified when it is on an incoming or on an

outgoing data flow. A product, that is on an output flow connection from one activity

and an input flow connection to another activity, is considered to be transfered from the

first activity to the second.

3.2.2.1 Artifacts, Messages, and Documents: An artifact, in VPML, is the most

general class for representing products. It represents products that can not be represented

by document or message constructs. A source code or a database would be some of the

examples for artifact. A message is a specialized artifact. It is used primarily to represent

messages that are sent from one activity to another one. A document is also a specialized

46

artifact and is used to model document that are being created, modified or used during

the activity.

3.2.2.2 Folder: A folder is a graphical representation of a dynamic collection of

products. Folders could collect different products. They could be the input or an output

to an activity. When a folder is connected to a leaf activity, the person assigned to the

activity has to carry out the activity specified in the folder. Same goes for an automatic

folder. But in this case the activity's script specifies the procedure by which products are

extracted or inserted into a folder. The leaf activities that use folders can not move to

the Ready state until the folder is completed. Folders have to be completed for an

automatic activity to move to the Active state, as well.

3.2.2.3 Composite Product: The composite product is a collection of all the products

mentioned above. By representing the group of products as a single product, it is

possible to reduce the space covered by those products to minimal. Unlike folders, the

components of a composite product do not need to be related to each other. Since the

representation of composite product is for visual purpose, this construct does not have

any impact on the enactment.

Table 3-2 represents a summary of the products.

47

Table 3 -2. VPML constructs representing products (Adapted from ProSLCSE manual)

Visual 	 Construct name 	 Description
Representation in ProSLCSE

Artifact	 Represents a general kind of product.

Message	 Represents messages sent from one
activity to another one. It is also a
specialization of artifact class.

Document	 Represents documents created, modified,
or used during a process. It is also a
specialization of artifact class.

Folder	 Holds a collection of products, that may
change dynamically as the process runs.

	 Composite	 Represents a collection of products.
Product	 Product	 Allows users to present multiple products

with a single icon.
t

3.2.3 Resource Types and Resources

VPML resource types and resources are representing real-world resources that are

involved in the accomplishement of an activity. VPML does model human and certain

nonhuman resources such as tools, machines and locations. VPML makes a distinction

between a resource type and an instance of that resource. During a process definition, a

resource type might be assigned to a general construct such as a programmer. Later on in

the instantination phase, a specific person name with that skill might be specified. This

difference allows some flexibility during the definition phase, leaving the choice of to be

made later in the instantination when the activity is ready to be performed.

48

In ProSLCSE, the resources instances for an organization are outlined in the

Infrastructure Editor. Also, resource types may be assigned in the Process Editor. But

specific resources may only be added in the Infrastructure Editor. Users are urged to

specify the relationship first in the Infrastructure Editor, to be able to assign instances to

the resource types.

A summary of all the resource types and resources is outlined in Table 3-3, with

their visual representation and their definition.

3.2.3.1 Person Type and Person: A person type, also called Role, is used to model an

individual person with set of skills necessary to complete the activities in a process. A

programmer, technical writer, tester, manager are some of the examples. However, a

person is specific name that has those particular set of skills to complete the task. A

person may have different skills, allowing that person to be assigned to several activities

at the same time. To be assigned to any activity, a person has to be associated with a

role. A person instance has some attributes that identify it from the rest of the instances.

Name, availability, cost and efficiency are the attributes that are assigned to each person.

An example of role (person type) and associated persons was shown in Figure 3-1a.

3.2.3.2 Machine Type and Machine: A machine type is used to model the equipment

needed to perform the activities of a process such as workstations, printers, etc. A

machine is refered as a specific name of that particular instance of that equipment. The

attributes for a machine are the name, the availibilty and the cost per hour to use that

particular machine. A SunSPARCstation 12, or 1D#234 are some examples of machine

49

instances. The figure 3-1b, showing the machine type and machine instances, was

already illustrated in the previous section.

3.2.3.3 Location Type and Location: A location type is used to model a physical place

where the activity is going to be performed. A factory, a building, or a room are

examples of location types. A specified location name is refered as location in VPML.

The attributes for a location are the name, the availabilty and the cost to use that

particular location. Instances relative to the previous examples might be the

manufacturing factory, building 4, or the conference room. Figure 3-1c shows a visual

example of how location types and location instances are represented in the

Infrastructure Editor.

3.2.3.4 Tool Type and Tool: A tool type is used to model software, application or other

type of tools needed to operate on a product in the process. A tool is referred as an

instance of the tool types. An example of tool type might be spreadsheet and one of the

instance might be Microsoft Spreadsheet. The attributes for a tool are its name, its

availibity, its cost per hour and its number of licences. A visual example was shown in

Figure 3-1d.

3.2.3.5 Group type and Group: A group type is a special type which can contain

several resource types.Roles, machine types, location types and tool types could be

incorporated in this construct. However, a group is an instance of the group type that

might contain more than one persons, machines, locations, and other groups. The group

is differentiated from other groups with its number or name assigned to it.

50

3.2.4 Flow Connections

Flow connections are establishing the relationship between VPML constructs and

passing product information between activities, thus helping the schedule coordination

of activities. VPML has separated flow connections into three categories: data flow,

timer, and reference connections.

3.2.4.1 Data Model Connections: Data model connections model short-term access to

products, and are represented by black arrow, connecting constructs to each other. The

direction of arrow shows the direction of information's flow.

3.2.4.2 Timer Connections: Timer connections are drawn from timers to leaf,

automatic, and composite activities. Timers pass the system clock to activities.

3.2.4.3 Reference Connections: Reference connections model long-term access to

products. They always connect products to activities. Although a reference connection is

similar to data flow connection, it differ itself by making products always available to

activities. A summary of the flow connection construct, along with their visual

representation is presented in Table 3-4.

Table 3-3. VPML constructs representing resources and resource types
(Adapted from ProSLCSE manual)

Visual	 Construct name	 Description
Representation in ProSLCSE

Role

	

	 Represents a person with a particular set
of skills (also called person type).

Machine type	 Represents a set of equipment(e.g., Sun
SparcStations).

Tool type	 Represents a particular set of tools
(e.g.,word processing).

Location type	 Represents a type of location
(e.g., manufaturing building).

Group type	 Is a collection of resources types,
including roles, machines types, location
types, and other group types mentioned
above.

Person

	

	 Represents a specific person who is
aaigned to do the job
(e.g., Robert Duwall).

Machine	 Represents a specific machine
(e.g., Sparc #210).

Tool	 Represents a specific tool
(e.g., Microsoft Word).

Location	 Represents a specific location name
(e.g., Building).

Group	 Is a collection of resources, including
instances of persons, machines, locations,
and other groups.

5 1

52

Table 3-4. VPML constructs representing flow connections
(Adapted from ProSLCSE manual)

	

Visual	 Construct name	 Description

	

Representation	 in ProSLCSE

Data flow	 Connects products to activities. After the
completion of the activity, the input

	

(Black)	 products are reset to indicate that they have
been consumed and need to be produced
again to deactivate.

Timer Connection Associates timers as inputs to leaf and
	 0-	 automatic activities. Timers send their

(Red)	 input at a specified time or at intervals
determined by the tinier attributes or the
system clock.

Reference

	

	 Has a similar role as the data flow, except
that once the product is associated with this

	

(Black)	 construct, the product is always available.

3.2.5 Data Flow Connectors

Data flow connectors enable flexibility in providing different flow path to be considered.

By following alternative flow paths, the process can resume depending on the outcome

of the connector. There are four types of data flow connectors: Input_OR, Input_AND,

OutoutOR, and Output_AND. The Table 3-5 summarizes these connectors.

3.2.5.1 Input_OR and Input_AND: These two connectors allow multiple data flow

connections to be merged. The resulting information is passed to the output connections.

Although Input_ORs and Input_ANDs can be combined in arbitrary ways to form

complexe graphs, there are some stylistic conventions to be followed in order to keep

the resulting graph simple. Input_ORs can only be connected to activities and

Input_ANDs can only be directly connected to Input_ORs. In this way, the graph is

AND, AND)

53

limited to at most one layer of Input_ANDs over one layer of Input_ORs. The following

figure 3-7 shows an implementation of this convention .

Document 1	 Document 2	 Document 3	 Document 4

OR

'Activity'

Figure 3-7. Example of Input_ORs and Input_ANDs [ProSLCSE 94]

This example illustrate that either Document_1 and 2 or Document_3 and 4 are

necessary to resume the activity.

3.2.5.2 Output_OR and Output_AND: Output_OR and Output_AND are data flow

connectors used to provide choices among different outgoing data flow paths originating

from an activity. During the creation of a data flow connection originating from an

OR OR

54

Output_OR connector, ProSLCSE adds a default label which is attached to the

connections. The default name can be changed by right-clicking on the label. Figure 3-8

shows a combination of these two data flow connectors.

Activity

,

AND)

John	 Mary	 Frank	 Patrick

Figure 3-8. Example of Output_ORs and Output_ANDs

The example illustrates that either John or Mary will be chosen as programmer and

either Frank or Patrick will be selected as tester. Table 3-5 represents data flow

connectors with their visual representation and their characteristics.

55

Table 3-5. VPML constructs representing data flow connectors (Adapted from

ProSLCSE manual)

Visual	 Construct name	 Description
Representation in ProSLCSE

Input_OR	 Allow multiple input data flows to be
joined, but only one input to be sent to an
activity.

Input_AND	 Allows multiple input data flows to be
joined, and all inputs have to be sent to
an activity.

Output_OR	 Allows multiple output data flows to be
joined when only one of the flows is to
be followed.

Output_AND	 Allows multiple output data flows to be
joined when all the flows are to be
followed.

3.2.6 Temporal Connections

Temporal connections outline the timing dependencies among activities. Although very

similar to data flow connections, they require only direct connection from one activity to

another. A Finish Start connection requires the first activity to change to Finished state

for the second activity to be initiated toward Ready state. A Start_Start connection is

used to model activities that need to be initiated at the same time. Two activities

connected with the Start Start connection has to wait each other until both of them have

their inputs ready and their temporal conditions satisfied. A Finish_Finish connection is

used in cases where multiple activities have to finish simultaneously. In order for both

activities to advance to the Finished state, both activities should have satisfied their

prerequisites. A Start_after_Start connection urges one activity to change to the Ready

state in order to get itself in the Ready state. The first activity is dependent on the second

56

activity. A Finish_after Finish connection is modeled to display activities that are

dependent on each other, as well. An activity has to be finished before another one is

considered finished. This last two type of connections are somewhat conditional

connections. An activity is wholly dependent on another one and the continuation of the

process depend on the outcome of the first activity. Table 3-6 shows a summary of

temporal connections.

3.2.7 110 Indicators

There are two indicators that are automatically put in the internal view of a composite

activity to show that the products are connected to an external view. Input I/0 indicator

is placed at the beginning of the internal view and the Output I/O indicator is placed on

the last product of the internal view. Table 3-8 lists a summary of those two indicators

along with their visual representation.

3.2.8 Tunnel Connections

There are two tunnel connectors: Tunnel IN and Tunnel OUT. Those two connectors

are used together for different reasons. First, they may represent a data flow between an

activity and the output product, while bypassing all the connector between them, or vice-

versa. Another reason is to show a temporal connection between two activities. The last

option is used when there are large-scale representations to be drawn and the whole

image does not fit in the Editor's view. The two connectors should have the same name.

The use of tunnel connectors is not advised, since it will make the readability of the

diagram harder. These two connections are represented in Table 3-8.

Table 3-6. VPML, constructs representing temporal connections (Adapted from
ProSLCSE manual)

	

Visual	 Construct name	 Description
Representation	 in ProSLCSE

Finish_Start

	

	 Represent a temporal dependency between
activities. The source activity should

	

(Blue)	 change to the Finished state before the
destination activity can is enabled out of
the Pending status to the Ready status.

Start_Start

	

	 Represent a temporal dependency between
activities. This construct prevent the

	

(Green)	 activity to change from Ready state until
all of their products is available.

Finish Finish

	

	 Represent a temporal dependency between
activities. When all the connected activities

(Red)	 have met the requirements for being
finished, then they can change to Finished
state.

Start _ after _Start

	

	 Represent a temporal dependency between
activities. The destination activity has to

	

(Green)	 wait until the source activity is Ready, to
get in Ready state.

Finish_after_	 Represent a temporal dependency between
Finish	 activities. The destination activity is

(Red)	 depending on the source activity to change
to Finished state for itself to be Finished.

57

58

Table 3-7. VPML constructs representing I/0 indicators (Adapted from ProSLCSE
manual)

Visual	 Construct name in	 Description
Representation	 ProSLCSE

Input I/O indicator 	 Represents automatically generated input
products by the Process Editor. Those are
products that are automatically generated in
internal views of a composite activity when
products are specified as inputs in the
external view.

Output I/O indicator Represents automatically generated output
products by the Process Editor. Those are
products that are automatically generated in
internal views of a composite activity when
products are specified as outputs in the
external view.

3.2.9 Other Connections Worth Mentioning

Those are connections that have really special meaning and hereby mentioned in this

section. Those constructs have special characteristics that can not fit into any group: type

instance relation, group member relation, milestone, and timer. Table 3-9 outlines the

characteristics of some of the special constructs.

59

Table 3-8. VPML constructs representing other connection types
(Adapted from ProSLCSE manual)

	

Visual	 Construct name in	 Description
Representation	 ProSLCSE

Association

	

	 Associates a resource to an activity or
product in the Process Editor and also

	

(Red)	 does same for a person to a tool,
location or machine in the Infrastructure
Editor.

Type Instance	 Used to connect a specific resource to a
relation	 resource type in the Infrastructure

	

(Black)	 Editor.

Group member	 Correlate one entity to a group or group

	

(Black)	 relation	 type in the Infrastructure Editor.

Has member group	 Used to indicate that a group is a
member of a group or a group type is a

	

(Black)	 member of a group type in the
Infrastructure Editor.

Tunnel_IN	 Represent a connection in large

	

T4	 diagrams, to diminish the space drawn.
Used along the Tunnel_OUT

Tunnel_ OUT	 Represent a connection in large

	

T4	 diagrams, to diminish the space drawn.
Used along the Tunnel_OUT

3.2.9.1 Type Instance Relation: This type of connection is only used in the Infrastruc-

ture to connect resources to resource types. A process is incomplete if its resource types

are not associated with their respective resources. It allows one or several connections to .

be made from the resource type to resources.

60

3.2.9.2 Group Member Relation: This connection creates a relation between certain

icons in the Infrastructure Editor. The Group types may be connected to other types with

this connection and thereby creating a relation between those types.

3.2.9.3 Milestone: A milestone is used to model a significant event during the process

initiation. Although no work is associated with milestone, it just represents a special

event to be taken seriously. A milestone might be associated with a deadline. It keeps a

record of special timeline as to when an action should take place, or produced by the

milestone.

Figure 3-9 shows an example of milestone and timer.

3.2.9.4 Timer: A timer is used to model events that take place periodically during a

process. A weekly checkup or daily backup is some of the examples. A timer may also

be used to provide data to an activity at a specific time or at periodic intervals. Starting

and the ending times are its attributes.

Table 3-9. VPML constructs representing miscellaneous constructs (Adapted from
ProSLCSE manual)

Visual	 Construct name in	 Description
Representation ProSLCSE

Text	 Annotation	 Used for explanations, not connected to
any particular icon.

Milestone	 Represent a significant event in a
process.

Timer	 Used to model periodic events or
events taking place at a specific time.

61

Resume

activity

Perform_

Backup

Each day

6pm

Figure 3-9. Example incorporating a milestone and a timer

3.3 	 Editors

3.3.1 The Infrastructure Editor

The Infrastructure is a special editor where users define the resources types and

instances of resources. Resources types must be declared with this editor. Any types,

which have not been assigned a resource, can not be defined and will be ignored by the

editor. The resource types and their resources have been thoroughly examined in section

3.2.3. The Infrastructure can also be a medium where relationships other than between

resource types and resources are set. A relation between a machine and a person might

be defined to show that person is using those machines. Those types of indirect relations

62

are usually defined as part of group types. In addition, a group type might be a member

of another group type and so forth. An example of an Infrastructure Editor view is

displayed in Figure 3-10. Resource types and their instances are given a label name and

their connection is established with type instance relation. Setting group member

relation, associations, and has member group type of connections are also made in the

Infrastructure Editor.

3.3.2 The Process Editor

Most of the work is done in this editor. The Process Editor is a structure-oriented

graphical editor, which uses the Visual Process Modeling Language (VPML), as already

mentioned in the Overview section. This editor was intended as a graphical tool to

simplify the drawing of process diagrams. It uses a graphical-based interface to edit

process diagrams and a form-based interface for editing the attributes of objects

[ProSLCSE, 94].

Infrastructure Editor

63

Figure 3-10. A view of an Infrastructure Editor

64

Creating and editing process diagram is a simple task using the menus or popup menus.

By choosing the EditView menu, the users can create, edit or specify constructs. Figure

3-11 shows the graphical interface of such menus .

EditView	 Create
Create	 D Activity
Edit	 Comp_Activity

Auto_Activity
Comp_product
Artifact
Document
Message
Folder
Milestone
Timer
Tunnel IN
Tunnel_OUT
Iput_AND
Input_OR
Role
Group_Type
Machine_Type
Location_Type
Tool_Type
Annotation

Figure 3 -11. EditView and create menus

Popup menus are initiated once the user right clicks on the object created. The next step

is to associate object with each other. Clicking the first object and dragging the mouse to

the second object draws data flow and association connections. Different connections

are possible between objects, as was mentioned in sections 3.2.4 to section 3.2.9.

This concludes the chapter on the ProSLCSE. Further information could be

found in the ProSLCSE User's Manual and through the ISSI's web site.

CHAPTER 4

ENVIRONMENT AND PROGRAMMING LANGUAGE

4.1	 Internet: The Environment

The Internet is growing fast, and nobody can stop it. Due to ease of use, academic,

government, and industrial researchers first populated the Internet [Heffley, 95]. Then, it

has become the playground for millions of users, thanks to an application called the

World Wide Web (WWW) [Heffley, 95]. Now, with user numbers in the tens of

millions, it is a medium of communication no one can deny its existence or what it could

for them. The exponential growth of users is so much fascinating, that companies are

competing to control it. Although the Internet does not belong to anybody, some

companies try to dominate the "networks of networks." Since the access to the medium

is relatively free, not counting the connection cost, to browse the Internet is not. A user

has to own a browser to surf the net. Therefore, whoever sells its browser will dominate

the Internet. Although competition is one important aspect of the Internet, it is not the

only issue. Standardization, government control over the Internet, social changes,

security, e-commerce are some of those issues.

On October 24, 1995, the Federal Networking Council (FNC) passed a resolution

defining the term Internet [Leiner, 98].

"Internet" refers to the global information system that —

(i) is logically linked together by a globally unique address space based on the
Internet Protocol (IP) or its subsequent extensions/follow-ons;

(ii) is able to support communications using the Transmission Control
Protocol/Internet Protocol (TCP/IP) suite or its subsequent extensions/follow-
ons, and/or other IP-compatible protocols; and

(iii) provides, uses or makes accessible, either publicly or privately, high level
services layered on the communications and related infrastructure described
herein.

65

66

In addition to the definition, a historical background to Internet, as well as the

issues mentioned above will be discussed in the following sections. These sections are

intended to give an overview on Internet, on the Web, and on future expectations and

innovations that are being shaped around the net, as well as how our implementation of

ProWeb will shape in this medium.

4.1.1 History

It all started when the Department of Defense wanted a secure command and control

network that would survive a nuclear attack. Its research department, Advanced

Research Projects Agency (ARPA) was set up to research computer networking. Late

1969, the first four nodes of the system went on-line at UCLA, UCSB, SRI and the

University of Utah. The network called ARPANET soon connected 23 host by 1971, and

the growth became exponential as more computer networks joined ARPANET. Soon,

the network became international with the addition of England and Norway, and others

followed this trend. By the late 1970s, National Science Foundation (NSF) saw the

impact that ARPANET was having on university research and government. The NSF

created a virtual network, called CSNET, centered on a single machine, which allowed

researchers to call up and leave messages. NSF, then, set up the NSFNet backbone on

ARPANET in 1984, consisting of 6 supercomputing centers throughout US. By 1987,

the number of computers on ARPANET reached 10,000. It took only 2 years to reach

100,000 computers. In 1990, ARPANET ceased to exist and became known as the

Internet. By 1992, a Swiss researcher created the World Wide Web (WWW), a

hyperlinked interface to the Internet, making it accessible to millions of users. Hence, by

the end of that year, a million of computers were connected to the Internet, worldwide. It

67

is estimated that the number of host computer doubles every year, making Internet the

fastest growing sector [Tanenbaum, 96]. Figure 4-1 and Table 4-1 are very good

illustrations of that growth.

4.1.2 The Web

The World Wide Web (WWW) is often confused with Internet. Although WWW is part

of the Net, it does not represent the whole Network. WWW may be identified as a huge

collection of documents linked to each other without any structure. Web client uses

HyperText Transport Protocol (HTTP) to transmit a request to the web server through

the Internet. The web server, either returns a static HyperText Markup Language

(HTML) document from its origin, or uses some type of scripting language such as

Common Gateway Interface (CGI) or Java. The Internet provides a series of other

services, as well. The main four applications are 'Email', 'News', 'Remote login' and 'File

transfer'. Email came into existence with the early days of ARPANET and nowadays is

the most popular tool used in Internet. News is a specialized forum in which users

interchange message related to one topic. Remote login permit users to log into any

remote machine in the Internet, using Telnet, Rlogin or any other program available.

Using FTP program, a user can transfer files from one machine to another. Companies

and organizations are using the Internet for many reasons. Shopping, information

exchange, development medium are some of its use [Tanenbaum, 96].

4.1.3 Standardization and Control

No government, company or institution owns the Internet. No entity has a controlling

power over the Internet. Although the Internet is a truly collective and collaborative

68

environment, there are some organizations that have some sort of influence over the

decisions taken around the Internet [Cnet, 97]. Some of the influential ones are the

World Wide Web Consortium (W3C), the Internet Engineering Task Force (IETF), the

Internet Society (ISOC) and the Internet Engineering Steering Group (MSG). W3C is

setting the standards for HTML and other specifics on the Web. The MSG manages the

Internet standard process. Those organizations have taken the responsibility to guide the

Internet, not really set the standards. Thus, standardization is still an open issue. It seems

that the lack of general Internet standards poses as the greatest impediment to the Web.

Although the computer industry has set the standards for the Internet protocols, other

issues, such as choice of browser, push-technology still remain unsolved [Donaton, 96].

The security of the Internet needs some improvements. Businesses and customers would

like to get assurance when it comes to transactions, property rights, secure exchange

medium [Spar, 96]. Some specialists recommend the creation of online communities

either formed by service providers or selected group of users that will monitor the net in

their community and take meaningful course of actions against fraud and abuse. The

Internet will certainly affect our social life and people will have to adapt themselves to

those changes. The presence of the net communities will also eliminate or at least

minimize the presence of government. But still, others ask themselves if government

should be totally present in the Internet. Tax issues are still unresolved. The US Treasury

Department is preparing a paper that will look at tax issues posed by electronic

commerce. To avoid tax liability, some companies are locating their servers in states and

countries with little or no tax. Electronic commerce is presenting itself as the ultimate

69

business transaction medium. More and more businesses are creating their web sites and

are using Internet as the transaction medium.

Table 4-1. The exponential growth of the Internet [Zakon, 98]

Date	 Hosts	 I Date	 Hosts Networks Domains

1969	 4	 07/89	 130,000	 650	 3,900

04/71	 23	 10/89	 159,000	 837

06/74	 62	 10/90	 313,000	 2,063	 9,300

03/77	 111	 01/91	 376,000	 2,338

08/81	 213	 07/91	 535,000	 3,086	 16,000

05/82	 235	 10/91	 617,000	 3,556	 18,000

08/83	 562	 01/92	 727,000	 4,526

10/84	 1,024	 04/92	 890,000	 5,291	 20,000

02/86	 2,308	 I	 10/92 1,136,000	 7,505	 18,100

11/86	 5,089	 01/93 1,313,000	 8,258	 21,000

07/88	 33,000	 07/93 1,776,000	 13,767	 26,000

01/89	 80,000	 01/94 2,217,000 20,539	 30,000

07/94 3,212,000 25,210	 46,000

01/95 4,852,000 39,410	 71,000

01/96 9,472,000 93,671 240,000

01/97 16,146,000	 828,000

07/97 19,540,000	 1,301,000

01/98 29,670,000

Hobbes' Internet Timeline. Copyright 019:79 Robert H Zak onhttp://www.lsoc.org/zakon/lnternet/HistoryHIT.html

DATE HOSTS DATE 	 HOTS
1969 	 4 	 10/85 	 1,961
04/71 	 23 	 j 	 02/86 	 2,308
06/74 	 62 	 11/86 	 5,089
03/77 	 111 	 12/87 	 28,174
08/81 	 213 	 07/88 	 33,000
05/82 	 235 	 10/88 	 56,000
08/83 	 562 	 07/89 130,000

10/84 1,024 	 10/89 159,000

35,000,000

30,000,000

25,000,000

20,000,000

15,000,000

10,000,000

5,000,000

New Survey
Old Survey

70

Figure 4- 1. The growth of Internet hosts [Zakon, 98]

4.1.4 Future Expectations

All those issues are still worked on. There are also some improvements made in the

Internet. Microsoft and Netscape are competing over push technology, a method that

delivers information to the desktop. Applications such as web videoconferencing, phone

conversation over the net are areas that will attract more users to the net [Hierhager, 96].

These days, Internet seems the only way to go. Internet has made interconnected

networks, usually connecting different and incompatible networks, a common ground of

information exchange medium. It enables researchers and users to communicate,

exchange ideas, and collaborate. That is one of the most important factors that led us to

71

model are process modeling tool through the Internet, so that the users do have endless

possibilities to experiment with it.

Businesses will have an open window to the world market, being able to sell

their products and services to the world. Our concern is to be able to draw process

diagram through our application. Thus, allowing different teams on different locations to

interact with each other. Hence, the Internet offers endless opportunities for customers,

developers and businesses.

4.2 	 JAVA: The Programming Language

Java means different things for different people. Sun's Scott McNealy believes that Java

is a new kind of industrial revolution [Cnet, 97]. On the other side, Microsoft's Bill

Gates says Java is just another programming language. Nevertheless, the popularity of

this language is well recognized from its adversaries, even by Bill Gates [Cnet, 97].

There are different reason leading us to choose Java programming language over

others [Manning, 97]. Although still new to this language, my advisors and I felt that it

will provide us many opportunities in the future. Java's capabilities compared to other

languages are remarkable. Its portability, its similarity to C++, its ease of learning is

some of the intriguing factors. Other issues like its performance, its limitations and its

future will also be discussed in the next section.

4.2.1 The Origins of Java

Java is a programming language developed at Sun Microsystems in 1990. A small team

headed by James Grosling started to develop this object-oriented programming

72

language. Originally, it was designed to be used on small consumer-electronic devices

such as television set-top boxes or video games, but soon enough Sun realized that Java

could be much more useful than that [Cnet, 97]. With the explosion of the Internet, Java

became an ideal programming language for Internet applications. Java addresses many

issues of software distribution over the network, including interoperability, security,

portability, etc.

Nowadays, most browsers such as Netscape Navigator, Microsoft Internet

Explorer and HotJava contain a Java Virtual Machine (JVM). Desktop platforms such as

Microsoft Windows, MacOS, OS/2 Warp, and Sun Solaris provide standalone JVM

which can execute Java codes directly. Sun is working on way to expand the use of Java

on a wide range of consumer products, such as pagers, telephones, and televisions

[Tilley, 97]. The relationships of applets, applications, Java Virtual Machines, and

platform-independence is show in Figure 4-2.

Stand-alone
Oplets<

W in dow s/x86 MacOStr o erPC 	 UNIXRISC 	 Other la platforms s

Stand-alone Jaye. applications
talk to the OS'C PU through
the run-time environment

or via native methods

Just In Time (JIT)
compilers

convert ,6:14).byte-
code into native
cede on the fly.

W.eb brew 50.7

Java apples
run within a

browser's sandbox

Peer classes
translate Java

objects into
native OS objects

73

Figure 4-2. Multiple-platform application [Tilley, 97]

4.2.2 Characteristics

Java is a high-level programming language similar in flavor to Smalltalk and similar in

syntax to C and C++. However, the Java language is less complex than C++.

Nevertheless, it is an object-oriented that is architecture-neutral, multi-threaded, and

robust. Some of other advantages are its built-in garbage collection, its support of a

single-inheritance class hierarchy. Java does not use pointers, thereby eliminating most

of error sources in many C++ programs. Its syntax resemblance to widely known C and

C++ made the Java language popular to most developers [Tilley, 97].

74

4.2.2.1 Portability: Unlike most other programming languages, Java bytecode is not

platform-specific or native to any particular processor. With most languages, developers

have to translate their programs into the zeros and ones of machine code with a tool

called a compiler. The final result can be understood only by a specific operating

system. However, the Java Virtual Machine instead presents a different level of

interpretation for Java programs. This is a breakthrough for developers because they

only need to write one version of a program to run on any machine. It also means that

users don't have to worry about whether the new application they bought will run on a

specific platform, since it follows a "write once, run anywhere" approach [Cnet, 97].

This platform-neutrality at both source and binary levels means Java is inherently

portable between different platforms. The Java system also provides an extensive library

of classes that provides access to the underlying operating system [Tilley, 97].

4.2.2.2 Safety: The Java platform provides portability, a measure of security, and

inherent trustworthiness, including strong memory protection, encryption and signatures,

rules enforcement, and runtime verification. Java allows applets to be downloaded and

executed without introducing viruses or misbehaved code to the client side. It does this

by placing strict limits on applets. For example, applets cannot read from or write to the

local disk. Unfortunately, while the Java model is secure in theory, it shows signs of

weakness at the JVM level. Exploitation of security flaws in the implementations is still

alarmingly common [Tilley, 97].

75

4.2.2.3 Performance: Performance is a major constraint on Java. In most cases,

interpreted Java is much slower than compiled C or C++. This is the price that must be

paid for being able to run anywhere. But there are ways to speed up Java performance.

Recent versions of popular Web browsers and Java development environments provide

Just In Time (JIT) compilers that produces native binary code (while the program is

loaded and executed). These JIT work with the virtual machine to analyze a Java

program and break it down into simpler and more efficient code that can run more

quickly [Cnet, 97]. JIT compiler's performance is beginning to catch that of optimized

C++ level. For real-time applications, the performance implications of the Java garbage

collector should also be considered. Garbage collection may make it difficult to easily

bound timing properties of the application [Tilley, 97].

4.2.2.4 Cost and Limitations: Java and the source for the Java interpreter are freely

available for noncommercial use. There are some restrictions in incorporating Java into

commercial products. Sun Microsystems licenses Java to hardware and software

companies that are developing products to run the Java virtual machine and execute Java

code. Developers, however, can write Java code without a license. A complete Java

Development Kit (JDK), including a Java compiler, can be downloaded for free [Tilley,

97].

4.2.3 Java Applications and Applets

Java programs start as Java source code, which is then compiled to bytecode and stored

on a server or a local computer. In order to execute a Java program, a user invokes a

76

JVM that executes the Java bytecode. There are two "types" of Java programs:

applications and applets.

4.2.3.1 Applications: An application is a stand-alone Java program that can run outside

of a Web browser, as long as a JVM is available.

4.2.3.2 Applets: An applet is a program written in Java to run within a Java-compatible

Web browser. When they are embedded in a Web page, Java programs are called

"applets." An applet provides a developer the flexibility to develop a more sophisticated

user interface on a Web page. Java applets provide executable content, such as event-

driven pop-up windows and graphical user interface (GUI) widgets, which can support a

variety of applications.

Java is designed to allow applets to be downloaded and executed without fear of

viruses. Some strict limits on applets are placed to prevent malicious actions [Tilley, 97].

4.2.4 JavaBean and JavaScript

JavaBeans are actually reusable software components [Cnet, 97]. They may be viewed

as little chunks of code that perform single functions and can be mixed and matched to

create complex applications. The market for beans is still new, so there aren't nearly as

many available on the market. But Sun Microsystems hopes the cross-platform appeal of

beans will change that [Cnet, 97].

JavaScript and Java have only a very loose relationship [Manning, 97]. Both are

object-based but only Java is truly object-oriented. JavaScript began life at Netscape as a

scripting language called LiveScript. Netscape designed LiveScript as a simple tool to

77

help Web site developer design interactive Web pages. It was simplistic, but performed

the necessary function of letting different parts of a Web page interact with each another.

In 1995, Netscape and Sun joined forces to update LiveScript to JavaScript. JavaScript

is an improvement over LiveScript, but it still isn't a full-fledged programming language

like Java. JavaScript is simply an interpreted scripting language [Cnet, 97].

4.2.5 Future of Java

Sun wants its language to run on any device that has a microprocessor in it, such as

servers, mobile phones, pagers, network computers, smart cards, and Internet set-top

boxes like WebTV. Sun plans to deliver a Java platform that could challenge the

Windows platform in the next decade. If Sun fails, Java will become another has-been

technology. If they succeed, they might slow down Microsoft's dominance in the

computer industry.

CHAPTER 5

ProWEB: THE WEB APPROACH

5.1 Overview

This chapter will give an overview of what we want to accomplish with the project in

hand. It will outline the intentions, the tools, and the problems we have encountered. The

section 5.2 will outline the features of J Builder from Borland. This is the application that

we have used to design and to program our work. Section 5.3 will display some

screenshot of our actual work and future work to be accomplished. Section 5.4 will

present the conclusion of this thesis.

5.2 JBuilder

We have started to design our project with JBuilder [Manning, 97]. JBuilder is Borland's

(now called Inprise Corp.) visual development environment for Java. It includes a

project browser, code editor, visual designer, component palette, property inspector,

integrated debugger, and compiler. JBuilder is JDK 1.1 compliant.

JBuilder has incorporated Borland's "two-way Tools" (originally introduced in

Delphi), which enables the users to switch between the source code and the visual design

synchronized [Manning, 97]. Any changes made to the visual design are reflected on the

source code. Any changes made to the source code are represented in the visual design,

as well. This property gives the user the chance to experiment in both ways.

Borland pioneered the idea of an Integrated Development Environment (IDE),

where the developer could create, compile, debug, and run a program all from the same

interface. The Figure 5-1 presents JBuilder's Integrated Development Environment.

78

Figure 5-1. JBuilder's Integrated Development Environment

79

80

5.3 ProWEB: WEB Version of ProSLCSE

ProWEB is the implementation of ProSLCSE on a web-enabled platform. We wanted to

implement that tool on the Internet, so that developers could model their processes in a

real environment. Although our version is for a single user, we intend to make

modification so that several process modelers could work with each other no matter

where they are. So far, the early version has the following capabilities

• The user could select any of the construct mentioned in Chapter 3

• The user has the ability to display that construct on a frame

• The user can select the construct from a toolbar

• The user can move the constructs on the frame

• The user can display the frame on Netscape

The reason why we focused on Netscape, but not on Microsoft's Internet

Explorer or SUN's HotJava is that most of the browser are still not fully JDK compliant

[Cnet, 97]. As of today, all the major browser such as HotJava, Netscape and IE are JDK

compliant, but not at the full extend. New versions that are fully JDK compliant are on

the shipment phase. Netscape's Netscape Communicator 4.04 or higher is supposed to

be JDK compliant. And since the market seems to be revolving around Netscape for the

moment, we chose to implement our applets on Netscape for the moment. Microsoft's

growth rate in gaining the browser market has also got our attention. Future testing

would also include 1E4 or higher and HotJava. Figure 5-2 shows a sample output seen of

ProWeb application run through an applet

81

Figure 5-2. ProWEB interface

Multiple toolbars are possible to be displayed. The user can either select to view the

Main Toolbar (displayed under the menu), the Connection Toolbar, and/or the Resource

Toolbar.

The main menu bar gives the user a large number of commands necessary to perform the

process editing tasks. The main menu is similar to that of other Windows applications. It

contains menu items that are enabled and disabled in response to the current context.

The following menus along with their menu items are listed below.

File: New, Open, Close, Save, Print, Exit

Edit: Cut, Copy, Paste, Delete

View: Active Toolbar, Resources Toolbar, Connections Toolbar

Insert: Person, Machine, Location, Tool, Group, Role, Machine Type, Location Type,

Tool Type, Group Type.

82

Figure 5-3 shows the interface after selections are made from the button bar. As seen in

Figure 5-3, objects are placed at different locations. They are moveable objects. The user

has the possibility to place them on the screen. Several same components could be

placed on the screen, as well. Appendix B contains the source code of the ProWEB

application. It is made primarily of three Java source codes. One is labeled as

ProApplet.java' which is the main applet. The second is labeled as `Deneme.java' and

contains the source code for the main frame. The third is ProsElementjava', which

contain some of the classes.

Act Rd ty

Figure 5-3. ProWEB with components placed on the screen

83

5.4 Conclusion

This thesis work can be summarized as a) the analysis of the Process Modeling concepts

and a specific tool: ProSLCSE, b) the research on the enabling technologies for the

utilization of internet, and c) the exploitation of networking notions for the distributed

access of process modeling tools, particularly ProSLCSE.

Process Modeling concept has been aided with the introduction of distributed and

concurrent access to a common model by different parties involved. In this framework,

participators develop a model as a group task, or get involved in the evaluation or

inspection of the model. The process model under development could only be treated for

the business aspects of the enterprise, or for compliance with standards or regulations.

A variety of purposes could be supported by allowing remote access to teams of users

who are potentially located in disparate geographical locations. The notion introduced

allows the development, evaluation, and inspection of a model in a faster , consistent,

and a timely manner. For the demonstration of this notion, a web-enabled version of the

ProSLCSE is implemented in a prototype setting.

APPENDIX A

GLOSSARY

In this appendix, some of the terms related to processes and process modeling are

summarized. Some of the important terms used in Chapter 2 are also included.

Activity is a description of a piece of work that forms one logical step within a process.
An activity may be manual, automated or composite, involving either human or
machine participation for its completion.

And-split is a point where a single thread of control splits into two or more parallel
activities.

And-join is a point where two or more parallel activities converge into a single common
thread of control.

Application support technology includes tools used as part of the process by software
developers, which are usually computerized. A compiler is an example of
application support technology.

Automatic activities are described as activities, which can be carried out without human
intervention. It is performed either by a computer script or program.

Capability maturity model is a maturity model available in the software community,
which describes an evolutionary path from ad hoc, chaotic processes to mature,
disciplined software processes.

Design process is defined as the ordered set of activities performed to transform system
requirements into a design representation.

Key practices describe the steps to be taken to satisfy capability maturity model's key
practice area goals. Common features are detailed by key practices.

Key process area is defined as a cluster of related activities, when collectively
performed achieve a set of goals considered important for enhancing process
capability.

Leaf activity is a general activity that is performed by one or more persons.

84

85

Organizational process is a set of activities, which collectively realize a business
objective, or goal within the context of an organizational structure. Completion
of each task within the process is dependent on the innovation and skills of the
responsible individuals.

Or-join is a point where two or more alternative activities converge to a single activity.

Or-split is a point where a single thread of control leads to several branches, upon which
a decision has to be made.

Process execution represents the time during which the process is operational, where
process instances are being created and managed.

Process improvement includes analyzing the process, determining inefficiencies and
ways to improve the process, and implementing those changes.

Process instance is the representation of a single enactment of a process

Process model is a formal representation of a process. This detailed representation of a
process will lend itself to analysis and measurement.

Process modeling is defined as the activity of representing the process as a process
model.

Process state represents the status of a process instance at a particular point in time.

Process support technology is defined to include tools in support of process model
development and execution.

Quality component quantifies the range of a quality attribute.

Software process refers to the total set of activities required to implement a function in
software along with its associated tools, methods, structure, and people.

Software process maturity is defined, as the extent to which a software process is
explicitly defined, managed, measured, controlled, and effective.

Workflow is the automation of a process, in whole or in part, during which information
or tasks are passed from one user to another, according to a set of rules.

Workflow management system is a system that defines, creates and manages the
execution of workflows through the use of software.

APPENDIX B

SOURCE CODES

In this appendix, source codes for the ProWEB application are presented. There are three

source codes attached in this section. The first source code labeled `ProAppletjava' is the

applet that generate other frames, such as the `Deneme.java'. The Java file named

Deneme.java' has the code that generates the frame that holds the menus. The third

source code labeled ProSElement java' holds some of the classes that Deneme java'

needs.

86

ProAppletjava

//Title: 	 ProWeb application: ProSLCSE on WEB
//Version:
//Copyright: 	 Copyright (c) 1997
//Author: 	 Orcan Enunlu & Ali Dogru
//Company: 	 NJIT
//Description: ProWeb is an implementation of ProSLCSE
//on a web-enabled platform
package ProSWEB;

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import borland.jbcl.layout.*;
import borland.jbcl.control.*;
import Deneme;

public class ProApplet extends Applet
XYLayout xYLayoutl = new XYLayout();
boolean isStandalone = false;
Deneme menu Frame = new Deneme();

//Construct the applet
public ProApplet() (
)

//Initialize the applet
public void init() {

try (jbInit();) catch (Exception e) (e.printStackTrace();)

)

//Component initialization
private void jbInit() throws Exception(

xYLayoutl.setWidth(800);
xYLayoutl.setHeight(600);
this.setLayout(xYLayoutl);

)

//Start the applet
public void start()

menuFrame.setVisible(true);
menuFrame.setLocation(100,100);
menuFrame.setSize(800,600);

)

//Stop the applet
public void stop()

menuFrame.setVisible(false);

)

//Destroy the applet
public void destroy()

)

87

//Get Applet information
//public String getAppletInfo() (

// return "Applet Information";
//)

//Get parameter info
public String[] [] getParameterInfo() (

return null;

88

Deneme j ava

//Title: 	 ProWeb application: ProSLCSE on WEB
//Version:
//Copyright: 	 Copyright (c) 1997
//Author: 	 Orcan Enunlu & Ali Dogru
//Company: 	 NJIT
//Description: ProWeb is an implementation of ProSLCSE
//on a web-enabled platform

package ProSWEB;

import java.awt. * ;
import java.awt.event.*;
import borland.jbcl.layout.*;
import borland.jbcl.control.*;

public class Deneme extends DecoratedFrame (
ProSElement LastElement, CurrentElement;
XYLayout xYLayoutl = new XYLayout();
XYConstraints CurrentXYC;
boolean created = false;
ButtonBar MainButtonBar = new ButtonBar();
MenuBar menuBarl = new MenuBar();
Menu FileMenu = new Menu();
Menultem MenuFileNew = new Menultem();
Menultem MenuFileOpen = new MenuItem();
Menultem MenuFileClose = new Menultem();
Menultem MenuFilePrint = new MenuItem();
Menultem MenuFileExit = new MenuItem();
Menu EditMenu = new Menu();
Menultem MenuEditCut = new MenuItem();
Menultem MenuEditCopy = new MenuItem();
Menultem MenuEditPaste = new MenuItem();
Menultem MenuEditDelete = new MenuItem();
MenuItem MenuFileSave = new MenuItem();
Menu ViewMenu = new Menu();
MenuItem MenuViewAct = new MenuItem();
MenuItem MenuViewRes = new MenuItem();
MenuItem MenuViewCon = new MenuItem();
Menu InsertMenu = new Menu();
Menu HelpMenu = new Menu();
MenuItem MenuHelpAbout = new MenuItem();

// Canvas canvas = new Canvas();

public Deneme() f
try f

jbInit();

catch (Exception e)
e.printStackTrace();

89

private void jbInit() throws Exception{
this.setTitle("ProWeb Application");
this.addMouseListener(new Deneme_this_mouseAdapter(this));
xYLayoutl.setHeight(496);
xYLayoutl.setWidth(562);
MainButtonBar.setHgap(2);
MainButtonBar.setBackground(SvstemColor.scrollbar);
MainButtonBar.setButtonType(ButtonBar.IMAGE_ONLY);
MainButtonBar.setImageBase("C:\\JBuilder\\myclasses\\GIFImages ");
MainButtonBar.setLabels(new String)] ("Activity",

"Compact",
"Auto_act",
"Message",
"Artifact",
"Document",
"Folder",
"Comp prod",
"Milestone",
"Timer",
"Text"));

MainButtonBar.setSoft(true);
MainButtonBar.setMargins(new Insets(l, 1, 1, 1));

MainButtonBar.addActionListener(new
Deneme MainButtonBar actionAdapter(this));

//Main menu labeling starts here.../
FileMenu.setLabel("File");
FileMenu.setActionCommand("File");
MenuFileNew.setLabel("New");
MenuFileOpen.setLabel("Open");
MenuFileClose.setLabel("Close");
MenuFileClose.setActionCommand("Close");
MenuFilePrint.setLabel("Print");
MenuFileExit.setLabel("Exit");
MenuFileExit.addActionListener(new

Deneme_MenuFileExit_actionAdapter(this));
EditMenu.setLabel("Edit");
MenuEditCut.setLabel("Cut");
MenuEditCopy.setLabel("Copy");
MenuEditPaste.setLabel("Paste");
MenuEditDelete.setLabel("Delete");
MenuFileSave.setLabel("Save");
MenuFileSave.setActionCommand("Save");
ViewMenu.setLabel("View");
MenuViewAct.setLabel("Activities Toolbar");
MenuViewRes.setLabel("Resources Toolbar");
MenuViewCon.setLabel("Connections Toolbar");
InsertMenu.setLabel("Insert");
HelpMenu.setLabel("Help");
MenuHelpAbout.setLabel("About");

//main button bar images entered here.../
MainButtonBar.setImageNames(new String)] ("Activity_bt.gif",

"Comp_actbt.gif",
"Auto act bt.gif",

90

91

"Message_bt.gif",
"Artifact_bt.gif",
"Document_bt.gif",
"Folder_bt.gif",
"Comp_prod_bt.gif",
"Milestone_bt.gif",
"Timer_bt.gif",
"Text_bt.gif"}
);

//start adding the components to the this layout...,
this.setLayout(xYLayoutl);
menuBarl.add(FileMenu);
menuBarl.add(EditMenu);
menuBarl.add(ViewMenu);
menuBarl.add(InsertMenu);
menuBarl.add(HelpMenu);
FileMenu.add(MenuFileNew);
FileMenu.add(MenuFileOpen);
FileMenu.addSeparator();
FileMenu.add(MenuFileClose);
FileMenu.add(MenuFileSave);
FileMenu.addSeparator();
FileMenu.add(MenuFilePrint);
FileMenu.addSeparator();FileMenu.add(MenuFileExit) ;

EditMenu.add(MenuEditCut);
EditMenu.add(MenuEditCopy);
EditMenu.add(MenuEditPaste);
EditMenu.add(MenuEditDelete);
ViewMenu.add(MenuViewAct);
ViewMenu.add(MenuViewRes);

ViewMenu.add(MenuViewCon);
HelpMenu.add(MenuHelpAbout);
this.add(MainButtonBar, new XYConstraints(0, -2, 401, -1));
this.setBackground(new Color(233, 244, 235));this.setEnabled(true) ;

this.setIconImageName("C:\\JBuilder\Amyclasses\\GIF_Images\\deneme.gif ")

this.setMenuBar(menuBarl);
this.setResizable(true);
this.setSize(new Dimension(500, 400));

//Activity call function entered here.../
void ActivityCall() {

try (ActivityInit();

catch (Exception e) { e.printStackTrace() ;
} ;

} ;

void ActivityInit() throws Exception {
XYConstraints constraint = new XYConstraints (100,100,100,50);

92

Activity activityl = new Activity(constraint);
CurrentElement = activityl;
CurrentXYC = constraint;

// 	 activityl.addComponentListener (new
Deneme activity? componentAdapter (this));_ 	 _

activityl.addActionListener (new

Deneme_elementactionAdapter(this));
activityl.addMouseMotionListener(new

Deneme_element_mouseMotionAdapter(this));
activityl.addMouseListener(new Deneme_element_mouseAdapter(this) } ;
activityl.setVisible(false);

//ActivityCall() ended here

//Composite activity call starts here
void CompactCall()

try { Comp_actInit();

catch (Exception e) {
e.printStackTrace();

} ;

void Compact_actInit() throws Exception {
XYConstraints constraint = new XYConstraints {100,100,100,50);
Compact comp_actl = new Compact(constraint);
CurrentElement = compact?;
CurrentXYC = constraint;
compactl.addActionListener(new

Deneme_elementactionAdapter(this));
comp_actl.addMouseMotionListener(new

Deneme element mouseMotionAdapter(this)) ;
compactl.addMouseListener(new Deneme_element_mouseAdapter(this));
compactl.setVisible(false);

//..CompactCall() ended

//Automatic activity call starts here
void Auto actCall() {

try { Auto_actInit();

catch (Exception e)
e.printStackTrace() ;

);

void Auto actInit{) throws Exception (
XYConstraints constraint = new XYConstraints {100,100,100,50);
Auto_act auto_act1 = new Auto_act(constraint);
CurrentElement = auto_actl;
CurrentXYC = constraint;
autoactl.addActionListener(new

Deneme element actionAdapter (this));
autoactl.addMouseMotionListener(new

Deneme element mouseMotionAdapter(this));

93

auto actl.addMouseListener(new Deneme element mouseAdapter(this));
auto_actl.setVisible(false);

} ;

//..Auto actCall() ended

//Message call function entered here../
void MessageCall(){
try (MessageInit() ;

catch (Exception e) {
e.printStackTrace();} ;

void Messagelnit() throws Exception 1
XYConstraints constraint = new XYConstraints (100,100,90,50);
Message messagel = new Message(constraint);
CurrentElement = messagel;
CurrentXYC = constraint;
messagel.addActionListener(new

Deneme_element_actionAdapter(this));
messagel.addMouseMotionListener(new

Deneme_element_mouseMotionAdapter(this));
messagel.addMouseListener(new Deneme_element_mouseAdapter(this));
messagel.setVisible(false);

} ;

//..MessageCall() ended

//Artifact call function entered here../
void ArtifactCall()(

try (ArtifactInit();

catch (Exception e) {
e.printStackTrace();} ;

);

void ArtifactInit() throws Exception {
XYConstraints constraint = new XYConstraints (100,100,50,50);
Artifact artifactl = new Artifact(constraint);
CurrentElement = artifactl;
CurrentXYC = constraint;

artifactl.addActionListener (new

Deneme_element_actionAdapter(this));
artifactl.addMouseMotionListener(new

Deneme element mouseMotionAdapter(this));
artifactl.addMouseListener(new Deneme element mouseAdapter(this));
artifactl.setVisible(false);

);
//..ArtifactCall() ended

//Document call function entered here../
void DocumentCall() {

try { DocumentInit();

94

catch (Exception e)
e.printStackTrace{);

void DocumentInit{) throws Exception {
XYConstraints constraint = new XYConstraints {100,100,55,70);
Document documentl = new Document{constraint);
CurrentElement = documentl;
CurrentXYC = constraint;
documentl.addActionListener{new

Deneme element actionAdapter{this));
documentl.addMouseMotionListener(new

Deneme element mouseMotiohAdapter(this));
documentl. addMouseListener{new Deneme_element_mouseAdapter (this));

documentl.setVisible(false);
);

//..DocumentCall() ended

//Folder call function entered here../
void FolderCall(){

try { FolderInit ();

catch {Exception e) {
e.printStackTrace();) ;

void Folderlnit throws Exception (
XYConstraints constraint = new XYConstraints (100,100, 85,60);
Folder folderl = new Folder(constraint);
CurrentElement = folderl;
CurrentXYC = constraint;
folderl.addActionListener{new Deneme element actionAdapter{this));
folderl.addMouseMotionListener(new

Deneme_element_mouseMotionAdapter{this));
folderl.addMouseListener{new Deneme element mouseAdapter{this));
folderl.setVisible(false);

) ;

//..FolderCall () ended

//Composite product call function entered here../
void Comp_prodCall{) (

try { Comp_prodInit();

catch {Exception e)e.printStackTrace ();
) ;

) ;

void Comp_prodInit() throws Exception {
XYConstraints constraint = new XYConstraints {100,100,65,70);
Comp prod comp_prodl = new Comp_prod{constraint);
CurrentElement = compprodl;

95

CurrentXYC = constraint;
comp_prodl.addActionListener(new

Deneme_element_actionAdapter(this));
comp_prodl.addMouseMotionListener{new

Deneme_element_mouseMotionAdapter(this));
comp_prodl.addMouseListener(new

Deneme_element_mouseAdapter(this));
compprodl.setVisible(false);

//..CompprodCall{) ended

//Milestone call function entered here../
void MilestoneCall(){

try { MilestoneInit();

catch {Exception e) 1e.printStackTrace ();

);
);

void MilestoneInit() throws Exception
XYConstraints constraint = new XYConstraints {100,100,70,100);
Milestone milestone? = new Milestone(constraint);
CurrentElement = milestone?;
CurrentXYC = constraint;
milestonel.addActionListener{new

Deneme element actionAdapter{this));
milestonel.addMouseMotionListener(new

Deneme element mouseMotionAdapter{this));
milestonel.addMouseListener(new

Deneme_element_mouseAdapter(this));
milestonel.setVisible{false);

) ;

//..MilestoneCall{) ended

//Timer call function entered here../
void TimerCall(){

try { TimerInit{);

catch {Exception e) 1
e.printStackTrace();) ;

) ;

void TimerInit{) throws Exception
XYConstraints constraint = new XYConstraints (100,100,50,50);
Timer timerl = new Timer(constraint);
CurrentElement = timerl;
CurrentXYC = constraint;
timerl.addActionListener{new Deneme element actionAdapter (this));
timerl.addMouseMotionListener(new

Deneme_element_mouseMotionAdapter(this));
timerl.addMouseListener{new Deneme element mouseAdapter(this));
timerl.setVisible{false);

//..TimerCall() ended

//Text call function entered here../
void TextCall () {

try (TextInit();
)

catch (Exception e) {
e.printStackTrace();

1;

void Textlnit{) throws Exception {
XYConstraints constraint = new XYConstraints (100,100,50,100);
Text textl = new Text(constraint);
CurrentElement = textl;
CurrentXYC = constraint;
textl.addActionListener(new Deneme_element_actionAdapter(this));
textl.addMouseMotionListener{new

Deneme_element_mouseMotionAdapter(this));
textl.addMouseListener(new Deneme_element_mouseAdapter(this));
textl.setVisible(false);

);
//..TextCall() ended

// 	 //

// MAin Button bar action events
void MainButtonBar_actionPerformed(ActionEvent e)

created = true;
String actionCommand = e.getActionCommand();
// selection depends on actionCommand, a function is called
if (actionCommand.equals{"Activity")) (

ActivityCall () ;

1
else if (actionCommand.equals{"Comp_act")) {

Comp_actCall() ;
)
else if {actionCommand.equals{"Auto_act")){

Auto_actCall ();
}

else if {actionCommand.equals{"Message"))(
MessageCall{);

else if (actionCommand.equals("Artifact")){
ArtifactCall{);

}
else if (actionCommand.equals{"Document")){

DocumentCall{);
}
else if {actionCommand.equals{"Folder")){

FolderCall();
}
else if (actionCommand.equals("Compprod")){

Comp_prodCall();
}
else if (actionCommand.equals("Milestone")){

96

97

MilestoneCall{);

else if (actionCommand.eguals("Timer")){
TimerCall{);

else if (actionCommand.eguals{"Text")){
TextCall{);

}

// end of main buttonbar selection

	

/*
the mouse events methods which are called 	

	/	 - are listed below, also other methods are listed

void MenuFileExit actionPerformed(ActionEvent e) (
System.exit(0);

}

void this_mouseClicked{MouseEvent e) (
if (created) {
CurrentElement.setLocation{e.getPoint());
CurrentElement.XYC.setX{e.getPoint().x - 4);// - 4: left border width
CurrentElement.XYC.setY(e.getPoint().y - 39);// 42: topborder +

menubar height
this.add(CurrentElement, CurrentXYC);
CurrentElement.setVisible{true);
show{);
created = false;

1

//// activityl controls and methods starts here 	 //
void element_ mouseDragged(MouseEvent e)

ProSElement elem = (ProSElement) e.getComponent();
Point p1 = e.getPoint();
Point p2 = elem.getLocation();
Point p3 = elem.getClickPoint{);
elem.setLocation{p2.x + pl.x - p3.x, p2.y + pl.y - p3.y);
elem.XYC.setX(p2.x + pl.x - p3.x - 4); // 4: left border width
elem.XYC.setY{p2.y + pl.y - p3.y - 39); 	 //42:topborder + menubar

height
1

void element_mouseClicked{MouseEvent e)
// 	 CurrentElement.putClickPoint{e.getPoint{));

}

void element_mousePressed(MouseEvent e) {
ProSElement elem = (ProSElement) e.getComponent();
elem.putClickPoint{e.getPoint{));

}

void element_actionPerformed {ActionEvent e) {
1

///
/ /

98

element {previously called activityl) methods end here ----

Classes that mouse events have created are defined below

//special classes defined in this section {3 so far)
class Deneme_MainButtonBar_actionAdapter implements
java.awt.event.ActionListener{

Deneme adaptee;

Deneme_MainButtonBar_actionAdapter{Deneme adaptee) {
this.adaptee = adaptee;

}

public void actionPerformed(ActionEvent e) (
adaptee.MainButtonBar_actionPerformed{e);

}
}

class Deneme_MenuFileExit_actionAdapter implements
java.awt.event.ActionListener

Deneme adaptee;

Deneme_MenuFileExit_actionAdapter(Deneme adaptee) (
this.adaptee = adaptee;

}

public void actionPerformed(ActionEvent e) (
adaptee.MenuFileExit_actionPerformed(e);

}
}

class Deneme_this_mouseAdapter extends java.awt.event.MouseAdapter f
Deneme adaptee;

Deneme this mouseAdapter{Deneme adaptee)
this.adaptee = adaptee;

public void mouseClicked(MouseEvent e) {
adaptee.this_mouseClicked{e);

}
//end of special classes//

// CLASSES DEFINED FOR All elements...ELl. 	 ------
// generally called 'element', which applies to all elements of
// main toolbar.
class Deneme_element_mouseAdapter extends java.awt.event.MouseAdapter

Deneme adaptee;

Deneme_element_mouseAdapter(Deneme adaptee)
this.adaptee = adaptee;

public void mouseClicked(MouseEvent e)
adaptee.element_mouseClicked(e};

public void mousePressed (MouseEvent e} {
adaptee.element_mousePressed(e};

}-
1

class Deneme_element_mouseMotionAdapter extends
java.awt.event.MouseMotionAdapter 1

Deneme adaptee;

Deneme_element_mouseMotionAdapter(Deneme adaptee} {
this.adaptee = adaptee;

public void mouseDragged(MouseEvent e) (
adaptee.element mouseDragged(e);

class Deneme element actionAdapter implements
java.awt.event.ActionListener {
Deneme adaptee;

Deneme_elementactionAdapter(Deneme adaptee) (
this.adaptee = adaptee;

public void actionPerformed(ActionEvent e)
adaptee.element actionPerformed(e);

//...end of Ell. end of classes for all elements //

99

ProSE lemen t java

//Those are the classes that are called by Deneme.java
//It returns the mouse click on the frame as the ClickPoint
//the images that are displayed on the frame are listed in the
//subclasses of ProSElement

package ProSWEB;

import java.awt.*;
import java.awt.event.*;
import borland.jbcl.layout.*;
import borland.jbcl. control.*;
import java.lang.*;

public class ProSElement extends ImageControl(
public XYConstraints XYC;

Point ClickPoint;
public ProSElement()(
);
public Point getClickPoint(){

return ClickPoint;
)
public void putClickPoint(Point p}(

ClickPoint = p;
)

class Activity extends ProSElement(
public Activity(XYConstraints xyc)

try
init(xyc);

)
catch (Exception e)

e.printStackTrace();
}

} ;

public void init{XYConstraints xyc)throws Exception{
setImageName("C:\\JBuilder\\myclasses\\GIF_Images\\Activity.gif "};
XYC = xyc;

}
};

class Compact extends ProSElement(
public Comp_act(XYConstraints xyc)

try
init(xyc};

}

catch (Exception e} {
e.printStackTrace();

}

100

public void init(XYConstraints xyc}throws Exception(
setImageName("C:\\JBuilder\\myclasses\\GIF_Images\\Comp_act.gif");

XYC = xyc ;

1;

class Auto act extends ProSElement{
public Auto_act(XYConstraints xyc) f

try I
init(xyc};

catch (Exception e} [e.printStackTrace() ;

1;
public void init(XYConstraints xyc)throws Exception(

setImageName("C:\\JBuilder\\myclasses\\GIF_Images\\Auto_act.gif "};
XYC = xyc;

1;

class Message extends ProSElement {
public Message(XYConstraints xyc} {

try {
init(xyc) ;

catch (Exception e}
e.printStackTrace(};

1;
public void init(XYConstraints xyc)throws Exception{setImageName("C:\\JBuilder\\myclasses\\GIF_Images\\Message.gif"};

XYC = xyc;

} ;

class Document extends ProSElement {
public Document(XYConstraints xyc) (

try (init(xyc) ;

catch (Exception e} (e.printStackTrace() ;

1;
public void init(XYConstraints xyc)throws Exception(

setImageName("C:\\JBuilder\\myclasses\\GIF_Images\\Document.gif "};
XYC = xyc;

class Folder extends ProSElement{
public Folder(XYConstraints xyc) {

try (
init(xyc);

1
catch {Exception e) 1

101

e.printStackTrace() ;}
1;
public void init (XYConstraints xyc} throws Exception{setImageName("C:\\JBuilder\\myclasses\\GIF_Images\\Folder.gif");

XYC = xyc;

class Comp_prod extends ProSElement {
public Comp_prod (XYConstraints xyc} {

try {
init (xyc};

}
catch (Exception e} {

e.printStackTrace();
}

} ;

public void init(XYConstraints xyc) throws Exception{
setImageName("C:\\JBuilder\\myclasses\\GIF_Images\\Comp_prod.gif "};
XYC = xyc;

}} ;

class Milestone extends ProSElement {
public Milestone (XYConstraints xyc) {

try {
init (xyc} ;

}
catch (Exception e} {

e.printStackTrace(};
}

} ;

public void init (XYConstraints xyc) throws Exception{
setImageName("C:\\JBuilder\\myclasses\\GIF_Images\\Milestone.gif "};
XYC = xyc;

1
} ;

class Artifact extends ProSElement{
public Artifact (XYConstraints xyc} {

try {
init(xyc) ;

}
catch (Exception e) {e.printStackTrace() ;

} ;

public void init (XYConstraints xyc) throws Exception{
setImageName("C:\\JBuilder\\myclasses\\GIF_Images\\Artifact.gif ");
XYC = xyc;

} ;

class Timer extends ProSElement {
public Timer (XYConstraints xyc} {

try {

102

init(xyc};

catch (Exception e}
e.printStackTrace(};

} ;
public void init(XYConstraints xyc}throws Exception{

setImageName("C:\\JBuilder\\myclasses\\GIF_Images\\Timer.gif"};
XYC = xyc;

} ; 	

class Text extends ProSElement{
public Text(XYConstraints xyc} {

try {
init (xyc);

catch (Exception e) {
e.printStackTrace(};

} ;
public void init(XYConstraints xyc}throws Exception{

setImageName("C:\\JBuilder\\myclasses\\GIF_Images\\Text.gif ");
XYC = xyc;

1

103

REFERENCES

[Anonymous, 96]	 "Workflow Management Coalition, Terminology & Glossary,"
Document number WFMC-TC-I011, Issue 2.0, June 1996.

[Armitage, 94]

[Cnet, 97]

[Curtis, 92]

[Curtis, 95]

[Davis, 93]

[Denning, 95]

Armitage, J. W. et. al., "Software Process Definition Guide:
Content of Enactable Software Process Representations," CMU/SEI
Special Report 94-SR-21, SEI/CMU 1994,

Cnet Staff, "20 Questions about Java,"http://www.cnet.com/Content/Features/Techno/Java20/index.html

(31 July 1997).

Curtis, B., Kellner, M. I., and Over, J., "Process Modeling,"
Communications of the ACM, vol. 35, Sept. 1992, pp.75-90.

Curtis, B., "Software Process Improvement: Methods and Lessons
Learned," Tutorial at ICSE-17, 1995.

Davis, A. M., Software Requirements: Objects, Functions, and
States, Prentice Hall PTR, Englewood, NJ, 1993.

Denning, P. J., Hieb, M. R., and Menasce, D. A., "Introduction to
Workflow," Workflow Management Systems,
http://cne.gmu.edu/modules/workflow/workflow-intro.html
(13 April 1998).

Heffley, B. and Morris, J., "An Introduction to the Internet and the
World Wide Web," ACM, May I995, pp. 365-366.

Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W., and Paulk, M.,
"Software Quality and the Capability Maturity Model,"
Communications of the ACM, vol. 40, June I997, pp 30-40

[Donaton, 96]	 Donaton, S., "Standards required to make the next leap,"
Advertising Age, vol. 67, Iss. 45, Nov 4, I996.

[Harley, 95]

[Herbsleb, 97]

I05

REFERENCES
(Continued)

[Hierhager, 96]	 Hierhager, A., "Web videoconferencing making waves,"
Electronic Engineering Times, Iss. 928, Nov 18, 1996: pp.124, 154.

[Hoffman, 96]	 Hoffman, D. L., Kalsbeek, W. D., and Novak, T. P., "Internet and
the Web Use in the U.S.," Communications of the ACM, vol. 39,
Dec I996, pp.36-46.

[Hollingsworth, 94] Hollingsworth, D., "The Workflow Reference Model," Workflow
Management Coalition, Document number TC00-I003, Issue 1.1,
Nov 1994.

[Humphrey, 89]	 Humphrey, W. S. and Kellner, M. I., "Software Process Modeling:
Principles of Entity Process Models," Proceedings of the 11 th
International Conference on Software Engineering,
15-18 May, 1989.

[Humphrey, 95]	 Humphrey, W. S., A Discipline for Software Engineering, Addison-
Wesley, Reading, Massachusetts, NY, 1995.

[IEEE, 90]

[Kellner, 88]

Institute of Electrical and Electronics Engineers. TREE standard
glossary of Software Engineering Terminology. IEEE standard
610.I2-1990 .

Kellner, M. I., "Representation Formalism for Software Process
Modeling," Proceedings of the 4 th International Software Process
Workshop, ACM press, 1988, pp. 93-96.

[Krasner, 92]	 Krasner, H., Terrel, J., Linehan, A., Arnold, P., and Ett, W.H.,
"Lessons Learned from a Software Process Modeling System,"
Communications of the ACM, vol. 35, Sept I992, pp.9I-100.

[Lassenius, 97]	 Lassenius, C. "Process Modeling Issues,"
http://mordoncs.hut.fi /~cls/ti k-76,631/johdanto/

(10 March I998).

REFERENCES
(Continued)n tin u ed)

[Leiner, 98]	 Leiner, B. M, et al. "A Brief History of the Internet,"
http://www.isoc org/internet/history/brief html
(12 May 1998) .

[Madhavji, 91]	 Madhavji, N. H., "The Process Cycle," Software Engineering
Journal, Sept 1991, pp 234-242.

[Manning, 97]

	

	 Manning, M. M., Borland JBuilder in 21 Days, Borland Press,
Indiana, 1997.

106

[Medina, 92]

[Osterweil, 87]

[Paulk, 93]

R. Medina-Mora, T. Winograd, R. Flores, and F. Flores,
"The Action Workflow Approach to Workflow Management
Technology," CSCW Proceedings, Nov 1992, pp. 281-288.

Osterweil, L., "Software Processes are Software too," Proceedings.
of the Ninth International Conference on Software Engineering,
IEEE Computer Society, Washington, DC, 1987, pp.2-13.

Paulk, M. C., Curtis, B., Chrissis, M. B., and Weber, C. V. "The
Capability Maturity Model For Software, Version 1.1",
Software Engineering Institute,	 Pittsburgh, 1993
http://www2.umassd.edu/SWPJ/sei/tr24f/tr24.html (22 April 1998).

[ProSLCSE, 94]	 ProSLCSE User's Manual, ISSI, Austin, Texas, 1994.

[Spar, 96]	 Spar, D., Bussgang, J. J., " Ruling the net." Harvard Business
Review, vol. 74, May/June 1996, pp.125-133.

[Tanenbaum, 96]	 Tanenbaum, A. S., "Computer Networks," 3rd Edition,
Prentice Hall PTR, NJ, 1996.

[Tanik, 93]	 Tanik, M. M., and Delcambre, S. N., "A Proposed Process
Modeling Framework," Southern Methodist University, 1993.

REFERENCES
(Continued)

[Teixeira, 93]	 Teixeira, D. and Thompson, J., "The Power of Work Flow
Software," The Bankers Magazine, Sept/Oct, 1993, pp.10-14.

[Tilley, 97]	 Tilley, S., "Java,"
http://www.sei.cmu.edu/str/descriptions/java.html
(23 April 1998).

[Webster, 83]	 Webster, N., Webster's New Twentieth Century Dictionary,
2". Edition, Simon and Shuster, NY.

[Winograd, 87]	 Winograd, T. and Flores, F., Understanding Computers and
Cognition, Addisson-Wesley, 1987.

[Zakon, 98]	 Zakon, R. H., "Hobbes' Internet Timeline,"
http://www.isoc.org/zakon/Internet/History/HIT.html
(12 April 1998).

107

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Summer 1998

	Process modeling using ProSLCSE on web-enabled platform
	Orcan Ali Enunlu
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgement
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Process Modeling
	Chapter 3: Pro SLCSE
	Chapter 4: Environment and Programming Language
	Chapter 5: ProWEB: The Web Approach
	Appendix A: Glossary
	Appendix B: Source Codes
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

