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ABSTRACT

COMPETITION OF COPPER,
LEAD, AND CADMIUM ADSORPTION TO GOETHITE

by
Chris A Christophi

Competition of copper, lead, and cadmium adsorption on goethite
depends on metal ion and oxide surface characteristics. Goethite was
characterized via X-ray diffraction, potentiometric titrations, site density
determination, particle size analysis, and optical microscopy. In this thesis, a
hypothesis was tested that electronegativity is the most important factor in
metal affinities and adsorption competition to goethite.

Metal affinity and site density for the goethite surface were assessed
by performing adsorption edges and isotherms. Based on the results of these
experiments, competition studies were designed to observe adsorption and
displacement of the competing metals by limiting the number of available
sites on the oxide surface. Adsorption competition was studied by conducting
competition isotherms in two-metal and three-metal systems, where the
temperature and pH were maintained constant. Competing metals of
equivalent, below saturation, concentrations were introduced in solution in
alternative orders as well as simultaneously.

In adsorption edges, ionic strength was varied and no changes were
observed in the amount of metal adsorbed, suggesting that copper, lead, and
cadmium were specifically adsorbed on goethite. Metal affinity and capacity

for the goethite surface were found to increase with metal electronegativity:



Cu>Pb>Cd. Neutrally charged hydrolysis products of metal ions were found
to slightly decrease metal affinities for goethite. Goethite posses distinct types
of sites with varying affinities for adsorbates. In addition to the sites used by
heavy metals (Cu, Pb, and Cd), strontium, apparently binds to another group
of, possibly lower energy sites.

Modeling of copper, lead, and cadmium adsorption and competition
was best described with a two-site Langmuir isotherm. From the equilibrium
constants obtained from the two-site Langmuir model, more electronegative
species were preferably adsorbed over less electronegative species on the
high affinity sites of goethite. However, lead showed higher affinity than
copper for the low energy sites.

In Cu and Cd competition studies, cadmium was completely displaced.
In the Pb and Cd studies, lead displaced cadmium from the sites it required.
Because sites were not limited in this experiment, unoccupied ones were
then filled with cadmium.

During Cu and Pb as well as Pb, Cu, and Cd competition studies,
copper preferably adsorbed over lead to the high energy sites, whereas lead
showed greater affinity for the lower energy sites. During Pb, Cu and Cd
competition studies, cadmium was completely desorbed. Furthermore, during
the same competition study, the hydrolysis product Cu(OH)aq decreased
copper adsorption on goethite where only 30% of this species was adsorbed.

The two-site Langmuir model worked well with Cu and Cd competition

and Pb and Cd competition, but it was not able to predict the Cu and Pb and



the Cu, Pb, and Cd systems’ results. The findings from this thesis suggest
that electronegativity is an important factor in adsorption competition of
pollutants on high affinity sites on the goethite surface. However, lead
showed higher affinity than copper for the low energy sites. This study
confirms that adsorption competition plays a crucial role in contaminant

mobility in the environment.
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CHAPTER 1

INTRODUCTION

1.1 Objectives

The main objective of this thesis is to study adsorption competition of copper,
lead, and cadmium on goethite. The important factors in adsorption are the
physical and chemical characteristics of the metal which include,
electronegativity, hydrated and ionic radii, polarizability, and speciation. In
addition, the ionic strength and the pH of the bulk solution, the presence of
complexing ligands, and metal concentration are also important factors in
adsorption. One aim of this study is to determine which of the metal ion
characteristic(s) is most important in adsorbate affinity and competition for the
goethite surface. This study includes the following:

e Adsorption edge experiments for each of the three adsorbates to
assess metal affinities for the goethite surface.

e Adsorption isotherm experiments for each adsorbate to evaluate
types of sites and metal capacities for the goethite surface.

e Isotherm studies for two-metal and three-metal systems to

understand and model competition.

e Determination of the most important factor(s) in competition studies.



1.2 Background Information

1.2.1 Overview

Adsorption of trace metals and organic matter on hydrous oxides is an
extremely important process in the environment (1, 2, 3, 5, 6, 34). The
hydrous oxides’ role as sorbents for trace metals affects contaminant mobility
(2, 3, 4, 18, 34). Although competitive adsorption of metal ions on hydrous
iron oxides may have an significant impact in contaminant migration (3), it has
not received a lot of attention. In this study, adsorption competition of Cu, Pb,
and Cd on goethite are examined; these metals are contaminants in the
environment at trace levels (3). Goethite was selected as the adsorbent
because of its great capacity for metal ions (1, 4, 18) and its widespread

abundance in the environment (3, 9, 10).

1.2.2 Goethite Occurrence and Characteristics
Goethite is one of the most common iron oxide minerals found in almost
every soil type and climatic region (9, 10, 11). Under most soil conditions,
goethite is a thermodynamically stable crystalline iron oxide mineral, giving a
yellowish brown color to many soils and weathered material (9, 10, 11).
Goethite is structured by double chains of Fe-OH octahedra extending
along the Z crystallographic axis. These octahedra are bonded to neighboring
double chains by Fe-O-Fe bonds that are 0.265 nm in length (10, 12).
Synthetic goethite is usually of acicularly shaped crystals, greater than 200

nm in length (10). Acicular soil goethite crystals exhibit needle lengths of 50



to 100 nm and less than 20 nm in width (10). In natural soils, however, this
acicular shape is much less common where irregularly shaped aggregates
are predominant (10, 13).

Pores constitute 53% of the goethite surface. Micropores usually
extend into the interior region of the crystals with diameters less than 2 nm
(13, 36). Goethite crystals have characteristic fissure-separated domains (10,
13). Wedged-shaped pores, greater than 100 nm in length, exist along the
domain boundaries and are 20 to 30 nm wide and 4 to 6 nm deep (13).
Micropores within these domains are highly ordered (10, 13, 14).

Surface area of goethite varies depending on the particle size and
porosity; generally it has been observed to range from 7 to 235 mzlgram (10,
36). A surface area of approximately 75 mzlgram is frequently reported for
laboratory synthesized goethite (13, 25).

The pH zero point of charge (zpc) of goethite, the pH at which the
oxide possesses no net charge, is generally between pH 7 to 9. Because of
the lack of surface impurities, synthetic goethite usually exhibits a greater pH
zpc than naturally occurring goethite. In general, for a given oxide, pH zpc
varies depending on the degree of hydration, contamination of the surface by
other ions, and method of determination (electrophoretic mobility,
potentiometric titrations, or cation and anion adsorption) (10).

As with any other oxide, the extent of metal adsorption on goethite
depends on the pH (1, 2, 3, 5, 6, 34). Adsorption of heavy metals on goethite

has been observed to follow the order of Cu>Pb>Zn>Cd>Co>Ni>Mn (10).



1.2.3 Adsorption Forces and Solid/Solution Interface

Many scientists have studied the adsorption process of metals and organics

on various hydrous oxides (1, 3, 4, 5 10, 11, 17, 18, 23, 26, 30-35). lon

adsorption on oxides is due to the existence of a surface charge (1, 9, 10).
The oxides and hydroxides of Al, Fe, Mn, and Si do not posses any

permanent surface charge (9). The net positive or negative charge of these
amphoteric oxides is dependent on pH. When the concentration of H™ and

OH on an oxide's surface is equal, the net surface charge is zero; this pH
defines zpc. The pH zpc is very important in metal ion adsorption on hydrous
iron and other oxides in aqueous environments. At pH greater than pH zpc,
cation adsorption is favored whereas anion adsorption increases at lower pH
values. As stated earlier, for iron oxides, the pH zpc ranges from 7 to 9
without any distinct differences between the various minerals (9, 10).

Using a double layer to describe the charged surface, adsorption in the
inner layer is referred to as specific, chemical, or inner layer complexation (9,
10). Metal cations and various inorganic and organic anions are capable of
being specifically adsorbed on iron oxides (9); they coordinate with surface
hydroxyl groups thus forming a relatively strong, covalent bond (9). In the
outer layer, however, adsorption is due to physical forces and is called outer-
layer or nonspecific complexation where the excess charge on the surface is
balanced by counter-ions that are held on the outer layer of the diffuse double
layer. At high ionic strengths the diffused double layer is reduced, decreasing

lon adsorption in the diffused layer. The ions of CI’, NO5, and ClO, and the



alkali cations are generally adsorbed in this manner (10).

Adsorption onto these different types of sites on the oxide surface is
usually studied by performing adsorption edge and isotherm experiments.
During the former, the percent of metal adsorbed is recorded as a function of
pH for different ionic strengths. In isotherms, the metal distribution between
the adsorbed and the bulk aqueocus phases is examined as a function of
increasing initial metal concentration, while the pH and temperature are

maintained constant.

1.2.4 Existing Adsorption Studies on Goethite

Numerous studies exist on the adsorption of various adsorbates on goethite.
Adsorbates affinity for the goethite surface has been examined as a function
of pH (3, 10, 15), temperature (3), ionic strength (11, 33, 34) as well as
adsorbate and goethite concentration (19). Furthermore, adsorbate-surface
complexation, kinetics, and mechanisms of adsorption were investigated by a
number of researchers (2, 23, 33, 34, 35). An outline of the results from a
number of these studies follows.

Coughlin and Stone (3), studied the adsorption and release of heavy
metals on goethite as a function of pH. They observed typical, “S” shaped
adsorption edges for all metals; with increasing pH, adsorption increased
from zero to aimost 100% over a narrow pH range of approximately 1.5 units.
This change indicates that cation adsorption on goethite is favored as pH

increases and surface charge decreases. Furthermore, they found that metal



affinities for the goethite surface follows the order of Cu>Pb>Ni>Co >Mn.
These results suggest that electronegativity is very important in metal
adsorption on goethite; metal affinity for the goethite surface increases with
increasing electronegativity. The same trend is seen in other studies (10, 23)
with an interchange position of Ni and Co (10). The electronegativities of
Nickel and Co are very close, with Ni being slightly greater by 0.03 units.

Johnson (18) examined the adsorption of Cd on goethite as a function
of pH and temperature. The typical, ‘S” shaped adsorption edge was
observed here as well. In addition, Johnnson found that adsorption edges were
shifted to higher pHs as the temperature was decreased, indicating an
endothermic adsorption reaction.

A number of studies suggest that metals are specifically adsorbed on
the goethite surface (33, 34, 35). Grossl et al. (33) studied the adsorption of
chromate and arsenate on goethite. They observed no changes in the
amount sorbed in adsorption edges of either chromate and arsenate with a
tenfold increase of the ionic strength; they, therefore, concluded that
chromate and arsenate were specifically adsorbed on goethite. In kinetic
studies, using a pressure-jump apparatus, Gross| et al. observed a two-step
adsorption process. They modeled the second step as an inner-sphere
bidentate surface complex.

Similar results were reported by Manceau and Charlet (35) who
investigated the mechanisms of selenate and selenite adsorption to goethite

and hydrous ferric oxide using X-ray absorption spectroscopy (XAS). They



found that these anions were also specifically adsorbed on goethite and
reported that selenite behaved like selenate and arsenate in forming the
same type of inner-sphere surface complexes with iron oxides.

Grossl! et al. (34) also investigated copper adsorption on goethite. In
adsorption edge studies, they observed no changes in the amount of copper
adsorbed when the ionic strength was increased, suggesting that copper was
specifically adsorbed on the goethite surface. Grossl! et al. reported that from
kinetic studies, a monodentate, inner-sphere complex was the dominant
adsorption complex for copper on goethite.

A number of adsorbates, however, were observed to not be
specifically adsorbed on goethite (2, 23). Gunneriusson et al. (2) questioned
the presence of specific high affinity sites on the goethite surface for Hg(ll) at
trace concentrations. At pH 9, they found only 80% adsorption of Hg(ll) and
15% adsorption of methyl mercury. The authors expected mercury to have a
greater affinity for goethite at this pH. Forbes et al. (23) who studied
adsorption of inorganic mercury and cobalt ions on goethite also observed
that mercury has a low affinity for the goethite surface; at pH of 4.40, they
found only 20% adsorption of Hg(ll) and no adsorption of Cao (lll). They
concluded that the cobalt complexes were not specifically adsorbed, because
of the hydroxo cobalt complex in solution prevented the formation of hydroxo
bridges between the surface and the cobalt complex.

Surface characteristics and surface coverage are also important in

adsorption on goethite and were investigated in a number of studies (11, 32).



Ainsworth et al. (11) studied the adsorption of chromate on goethite as a
function of aluminum substitution in the goethite, pH, sorbent concentration,
and ionic strength. Their results showed that at all sorbate concentrations,
chromate. showed a greater affinity for pure goethite over the aluminum
substituted surface. Such a difference was not attributed to the variations in
adsorption capacities or to pH zpc. Ainsworth et al. concluded that aluminum
substitutions altered the adsorption sites on the goethite surface, reducing
chromate adsorption. Furthermore, the authors reported that a 40% decrease
in chromate adsorption with a tenfold increase of the ionic strength was
caused mainly by the reduced activity of the chromate ion in solution. They,
therefore concluded that chromate was specifically adsorbed on goethite.
However, a decrease in adsorption with an increase in ionic strength is also
consistent with outer sphere complexation (9, 10).

Fendorf et al. (32) used XAS spectroscopy to examine the adsorption
of chromate on goethite and found that surface coverage was important in
terms of the type of complexes. Based on the oxyanion-iron distances, they
concluded that at low surface coverage the monodentate complex was
favored, whereas at higher surface coverage the bidentate complexes
prevailed.

Adsorption competition of metals on goethite has also been examined
by researchers. A number of such studies and their results are presented

and discussed in the next section.



4.2.5 Existing Competition Studies

The adsorption of heavy metals on goethite and other hydrous oxides was
studied by a number of researchers (3, 11, 18, 23, 26, 30-36). However, only
a limited number studies dealt with heavy metal adsorption competition on
hydrous oxides. In a natural setting, however, the presence of multiple
competing ions is more frequent than the existence of only one contaminant
(3); heavy metals along with plant nutrients are present in soil and water in
trace levels. The following discussion of the results is from a number of
competition studies.

In a number of studies (37, 38) adsorption competition was examined
in the form of adsorption edges, the effect or the shift of a metals adsorption
edge is recorded when a second metal of greater concentration is added into
the system. Adéorption edge shifts are indicative of desorption of the sorbed
metal. However, when competing metals are not presented with a limited
number of sites on a sorbent surface, competition can not be observed.
Furthermore, during edge experiments, the pH is varied; surface
characteristics such as site density and net surface charge along with metal
speciation and its saturation change with pH.

Benjamin and Leckie (37) studied the competitive adsorption of Cd,
Cu, Pb, and Zn onto amorphous iron oxyhydroxide (Fe,O3H20). They
concluded that competitive interactions between metals were minimal,
because of the existence of distinct types of sites for each metal on the oxide

surface. The adsorption edge of a given metal, was shifted to higher pHs, in



10

the presence of a competing metal. For example, the adsorption of cadmium
was decreased by approximately 18%. in the presence of copper. The
concentration of copper in solution was 5x10° M, 100 times greater than that
of the cadmium. Such high concentrations exceeded the saturation limits of
copper. In all competition experiments, as in the case of copper and
cadmium, competition was not observed until the competing metal(s) were
added in much higher concentrations, 10 to 100 times greater, than the other
metal in solution. However, when metals exceed their saturation, both
precipitation and adsorption may occur, therefore, adsorption effects cannot
be distinguished from surface precipitation.

Cowan et. al (38) studied the adsorption of Cd on amorphous iron
oxides in the presence of alkaline-earth metals (Ca, Mg, Sr, and Ba) using
methods similar to those of Benjamin and Leckie (28). Competition was
observed primarily in the Cd-Ca systems where 25% of cadmium was
displaced, while less than 8% of cadmium desorbed when Mg, Sr, and Ba
were the competing metals. However, cadmium was present in solution at
much lower concentrations than the competing metals. For example,
desorption of Cd by Ca was not observed until 2.5 mM of Ca was added,
over 1000 times greater concentration than Cd. Similar observations are seen
in the study by Posselt et al. (6) who reported a 66% decrease of Cd
adsorption on manganese dioxide in the presence of Ca. Again, calcium
concentration was, 2x10™ M, 100 times greater in concentration than the 10~

M Cd. O’ Connor and Renn (22) on the other hand, found that Ca had no



effect on Zn adsorption on river sediments. Zinc, however, was present in
solution at 200 ppm, 3 times greater than the Ca concentration. Furthermore,
such a high concentration is above the saturation limit of zinc. Therefore,
adsorption effects cannot be distinguished from precipitation.

Gadde and Laitinen (17) studied heavy metal adsorption competition
on hydrous manganese oxides in the form of competition isotherms. They
found a 64% displacement of Cd and Zn when an equal Pb concentration,
10 M. was added to the system at pH 6. The results showed no significant
variations when the order of metal introduction was reversed. However, all
metal concentrations used in these experiments exceeded their saturation
limits.

Zasoski and Burau (19) examined adsorption competition between Cd
and Zn for the hydrous manganese oxide (3-MnO3) surface by conducting
adsorption competition isotherms. In their studies, Zasoski and Burau
reported that Cd and Zn adsorbed on two types of sites: high energy sites
which were filled first, and lower energy sites. They found that the higher
energy sites showed preference for Cd over Zn, whereas the reverse was
true for the lower energy sites. These authors found Cd adsorption
decreased by approximately 25% in the presence of equimolar
concentrations of Zn. On the other hand, Zn adsomption decreased 50% in
the presence of Cd. Adsorption competition was observed in this study,
because site densities were evaluated first and the métais were presented

with a limited number of available sites during competition. Furthermore,

11



competing metals were added in equimolar levels and in an N, atmosphere,
avoiding precipitation.

When examining adsorption competition, site density needs to be
evaluated first. Competition studies need to be designed based on the
obtained site density as to present the competing metals, of equal
concentrations, with a limited number of sites. The pH needs to be
maintained constant to minimize any surface changes such as site density,
and net surface charge along with metal speciation and saturation. When the
above requirements are met, competition among the various metals should
reveal the most important factor for adsorption competition. In this research,
adsorption competition is examined at constant pH and temperature,
minimizing any oxide surface changes. Furthermore, the site density is
evaluated prior to competition studies. In order to determine the most
important factor in adsorption competition, competing metals of equal
amounts are studied below their saturation limits with a limited number of

sites available on the goethite surface.
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CHAPTER 2

HYPOTHESIS STATEMENT

Because metal affinity to goethite tends to increase with metal
electronegativity (3, 10, 17, 23), electronegativity is expected to be the most
important factor in competition studies. Adsorption of less electronegative
metals decreased in the presence of more electronegative metal(s) (17, 24)
and have little or no effect on the adsorption of more electronegative ones
(20, 22).

To test the hypothesis that electronegativity is the most important
factor in adsorption competition, adsorption edge and isotherm experiments
are performed to establish the order of metal affinities. Based on
electronegativity; metal affinities are expected to be of the order Cu>Pb>Cd.
Furthermore, given a limited amount of available sites, less electronegative
metals are expected to be displaced when competing with more
electronegative species. Such results are expected to be independent from
the order of introduction of the competing metals in solution. In other words,
results are expected to show no variation when the order of introduction of
the competing metals in solution is reversed or upon simultaneous
introduction.

Under the condition that the initial metal concentrations will be
equivalent in all competition experiments, and that a limited number of sites

will be available, the following hypotheses will be tested:

13



e Metal affinities are governed by electronegativity; affinities obtained
from adsorption edge and isotherm experiments will, therefore, be of the
order of Cu>Pb>Cd.

e Cu, Pb, and Cd adsorb on the same type of sites on the goethite
surface and therefore, there is a finite number of sites for their sorption.

» Based on electronegativity, Cu will displace Pb and Cd, and Pb will

displace Cd, in competition studies.

14



CHAPTER 3

MATERIALS and METHODS

3.1 Overview
Standard methods procedures (21) were followed throughout for standards
preparation, instruments calibration, sample preparation, and sample analysis

(Appendix A).

3.2 Materials
Ferric nitrate (99%) Fe(NO3);9H,O and NaOH were used in goethite
synthesis. For pH adjustments, (10‘1 N) NaOH and HNO; were used.

One millimolar stock solutions of lead and cadmium nitrate were used.
High purity, 99.9%, Cu(NO;);H»0, was used in preparing a 10° M, pH 3,
stock solution. A 107 M, ®°Sr** stock solution was used for site density
experiments.

A 10 M sodium nitrate stock solution was prepared for ionic strength
adjustment in adsorption edge, isotherm, and competition experiments. In
cases where an ionic strength greater than 10 M was desired, sodium
nitrate was added directly to the water.

Nalgene polyethylene 100 ml and 1000 ml containers were used in all
experiments. Metal dilutions were carried out by using 1 ml and 10" ml fixed-
volume pipettes. A Labline temperature controlled shaker bath and teflon

coated stirring bars with a magnetic stirrer were used for mixing. Both

15



samples and standards were completely mixed. An Orion pH/mV meter and
ion selective electrodes (ISE) were used throughout for pH and mV

measurements.

3.3 Goethite Synthesis and Characterization

3.3.1 Goethite Synthesis
In this study, a slightly modified version of Atkinson’s method (25) for goethite
synthesis was implemented. The aging of the ferric nitrate solution was
deemed unnecessary and was eliminated; ferric nitrate was observed to
easily dissolve in water hence the bright yellow color. The method was
developed and finalized through oxide characterization via x-ray diffraction
analysis and physical examination of the goethite crystals.

Individual goethite batches of 2 and 10 gram were synthesized by

adding 10" M Fe(NO;)39H,0 to deionized water. Once the ferric nitrate was
dissolved, sodium hydroxide was slowly added to the solution until a pH of
12 was attained. In all batches, the molar ratio of Fe to OH™ was 1:4 with an
jonic strength of 0.4. The resulting solution was mixed for 3 to 4 hours and

aged in a 60° C oven (25). This aging period was varied between 48 to 168
hours. The 168 hour aging exhibited the greatest crystallinity, the lowest
background, and was thus used when synthesizing the final five, 10 gram per
liter goethite batches.

The aged solution was filtered through 10™ um membrane filters and

the goethite particles were washed repeatedly with deionized water. The



conductivity of the effluent was monitored to remove the concentrated
electrolyte (25). Goethite crystals were then freeze-dried (29), stored in a

polyethylene container, and sealed from ambient air for later use.

3.3.2 X-ray Diffraction Analysis

Goethite batches were examined for homogeneity and crystallinity via X-ray
diffraction (XRD). A Philips, X-pert MPD, XRD and a PC-APD diffraction
software were used in analyzing and presenting the obtained data. Table 1

shows the XRD settings implemented in all examinations.

Table 1

XRD Settings
VARIABLE SETTINGS
Anode - Cu
Generator Voltage 40 KV
Tube Current 45 mA
Scan Type Continuous
Scan Step time 1 Sec
Scan Step Size 0.020 (2q)
Diffraction Number 1
Divergence Slit Fixed, 1°
Monochromator Used Yes

3.3.3 Optical Microscope
A Zeiss Standard 2S optical microscope with a 100x magnification was used
to further investigate the goethite particles. The particles were examined after

freeze-drying and resuspension in a pH 8, 10 ionic strength, and 1 gram per

liter goethite solution.

17



3.3.4 Particle Size Analysis

Particle size distribution (PSD) was examined as a functioned of pH and ionic
strength. Individual 1 gram per liter goethite solutions with a specific pH and
ionic strength were prepared and used for these analyses. A MasterSizer X
manufactured Version 1.2b particle size analyzer equipped with an MSX14
sampler and a 2.4 mm beam length were used in examining the goethite
particle size distribution. A Polydisperse model was implemented in obtaining
the PSD data; this model accounts for the two dimensional shaped goethite

particles.

3.3.5 Potentiometric Titrations

Potentiometric titrations were performed by adding 1 gram of goethite per liter
in an aqueous-electrolyte solution and a nitrogen gas atmosphere. Following
the addition of goethite, the pH was raised to a value of 10 to 10.5, with
NaOH. The titrations began by then adding 1 ml increments of 10" N HNO,
and recording the resulting pH (25).

Two sets of titrations were performed for the determination of the pH
zpc of the synthesized goethite. During the first set of titrations, 1072, 10" and
2x10™ ionic strengths (sodium nitrate based) were used. The solutions were
allowed to equilibrate up to 20 minutes after the addition of acid or base; the
pH was not recorded until a “ready” signal was given by an Orion pH meter.
Equilibration period, therefore, varied from half a minute, at the extreme pH

values, to 20 minutes in the vicinity of pH zpc. During the second set of

18



titrations, equilibration time was minimized to haif a minute. lonic strengths of

107" and 102 were used during this second set of titrations.

Blank titrations with 10 and 10? ionic strengths were also carried out.
The data obtained from the potentiometric and blank titrations were used to

. 2 ,
calculate goethite adsorption densities in uC/m® as a function of pH. The

equivalents of H® and OH™ adsorbed by goethite was calculated by taking the

difference between test suspension and blank titration volumes at each pH.

3.3.6 Surface Area Determination

Nitrogen adsorption/desorption is wusually used for surface area
determinations (13, 36). Atkinson (25) determined the surface area of
goethite to be 70.9 m?gram, using the Brunauer-Emmett-Teller (BET)

nitrogen adsorption method.

3.4 Analytical Techniques Theory of Operation and implementation

3.4.1 lon Selective Electrodes

lon selective electrodes (ISE) consist of three components: a reference
electrode, a sensing electrode, and a pH/mV meter. The reference electrode
provides a steady potential, independent of any ion in the test solution. The
sensing electrode, gives a potential that varies according to the activity of a
specific ion in a test solution. When both electrodes are immersed in the
same test solution a potential develops across the sensing element. This

potential, which depends on the level of the specific free metal in solution,

19
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can be measured by using a pH/mMV meter. The measured potential,
corresponding to the level of the specific free metal in solution, is described

by the Nernst equation:
E = Eq - S*log(A)
where,
E : measured electrode potential (mV)
Eo : reference potential (mV)
S - electrode calibration slope (mV)
A : the concentration of the free metal in solution
S = (2.3*R*T)/n*f
R : gas constant, 8314 mJ/mol K
T : absolute temperature, in K
n : number of electrons transferred/mole
F . Faraday constant, 96,487 C/equivalents
ISEs were used in the analysis of samples from all experiments expect
that of Cu-Pb and Cu-Pb-Cd competition because of the poisonous effect of
Cu®* ion on the lead ISE membrane (Table 2). Orion manufactured, filling
solutions were used to fill the ISE prior to any use. In all experiments where
ISEs were used at least three standards covering the expected residual metal
concentration were prepared. Freshly prepared standards were used in each
analysis. Calibration curves were constructed for standards by plotting the
mV against the logarithm of metal concentration(s) (Appendices D to L).

Calibration curves were constructed when the samples were ready for



analysis as the manufacturer recommends sample analysis within one hour of
calibration. Although a steady mV signal was usually obtained in less than a
minute (Table 2), the mV value was not recorded 2 to 3 minutes after
electrode introduction in solution (Appendix A).

The analysis of a given set of samples was completed within the same
day, in less than an hour. Such a practice eliminated any mV errors due to
temperature or light variations. In the event that the analysis was not
completed within an hour, the electrode was re-calibrated and the analysis of
the remaining samples was continued based on the new calibration curve.
Using this method, the accuracy was within 2%. In the case of competition
isotherms, standards were prepared containing all competing metals present
in the samples: this allowed for compensation of any interference due to the
presence of thé second metal in the sample ( 0.2% mV variations were
observed when a second metal was added into the standards) (Appendices

F oL L)

3.4.2 Atomic Absorption Spectroscopy

In atomic absorption (AA) spectroscopy the sample is atomized in a
thermoelectric oven. In this study, a small portion of the sample was placed in
a small graphite tube which is held between two electrodes. A current is
passed through the walls of the tube thus increasing the temperature in a
programmed fashion. The temperature increase is usually performed in three

stages with the last being a very rapid rise of the temperature over 2000° C.

21
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Such an increase of the temperature volatilizes the metals into a light beam.

The absorbency of this atomic vapor is then measured.

Hollow cathede lamps (HCL) were used as the light source for each

23

metal. These lambs emit the atomic spectra of the metal analyte. A detector

at the other end of the beam measures absorbency and converts absorption

into a meaningful metal concentration. Beer's law describes the relation

between absorbency and metal concentration. Beer's law is shown below:

A= gxb=*C
where,

A . absorbency

¢ : molar absorptivity

b : length of the beam path (cm)

C : metal ;:oncentration (M)
A linear relation exists between absorption and metal concentration.
Calibration curves can be constructed by using solutions of known metal
concentration. The absorption of these standards is plotted against metal
concentration. A Perklin Elmer 4110ZL graphite AA spectrometer unit
connected to a, Gateway 2000 P5-75, PC equipped with an AAWiniab
software was used in analyzing the Cu-Pb and Cu-Pb-Cd competition
adsorption samples. Table 3 lists the settings implemented in these
experiments. Only one 50 ppb standard was prepared for each metal. The

unit was programmed to automatically dilute appropriate volumes of these

standard(s) to construct the calibration curve(s). All samples were analyzed in
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duplicate and some of them in quadruplicate. Samples that exhibited
absorbency greater than the standard, were automatically diluted by the unit
until their adsorption was within the calibration curve range. The unit was also
programmed to re-calibrate at the beginning, middle, and end of each set of
samples. In all cases samples showed higher than 97% reproducibility

(Appendices W, X).

3.5 Adsorption Experiments

3.5.1 Adsorption Edge Experiments

Adsorption edge experiments were carried out at 10" and 107 ionic strengths
with 1 gram per liter goethite. The 1 liter solution was then divided into ten
100ml aliguots. The pH of each aliquot was adjusted to the desired value,
followed by métal(s) addition. The pHs were checked and adjusted once
again. A shaker was used to mix the samples for the four hour equilibration
period. Every 20 to 30 minutes, the pH of the samples was checked and
adjusted. No buffer was used to avoid any competing and complexing effects
with the metal adsorbates. After four hours, the samples were centrifuged
and the solution was used for metal analysis (Appendices P to R). A Sorvall
Rc 28S was used in centrifuging the samples at 22° C and 8,000 repetitions

per minute (rpm).
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3.5.2 Adsorption isotherms

Metal affinities for goethite were examined as a function of metal
concentration at pH of 6, 10 ionic strength, and 1 gram per liter goethite.
Both two and four hour equilibration periods were used. The same procedure
used in the edge experiments was also used in conducting the isotherms, in
terms of aliquot preparation, ionic strength and pH adjustment. Orion ISEs

were used for the analysis of all samples (Appendices T to V).

3.5.3 Site Density
Site density was examined by flooding the sites with *°Sr** and measuring the
amount adsorbed to goethite. A Beckman LS 6000SE, liquid scintillation
counter was used in measuring the site density of goethite based on N5
adsorption. The experiment was performed in quadruplicate by allowing a
10" M initial *°Sr** concentration to equilibrate for four hours with 10™ gram
per liter goethite at pH 6 and 10~ ionic strength. The solution was then
filtered through a 0.2 um membrane filter. Two milligrams of the filtrate were
placed in a 6 mi vial with 4 ml of Beckman cocktail. After the vial was capped
and mixed, the sample was then analyzed.

Adsorption isotherms were also used in calculating the site density of
goethite by determining metal capacity of goethite. Nitrogen adsorption using
the BET method was also employed in determining the site density and the

surface area of goethite.

26



27

3.5.4 Metai Adsorption on Containers

Metal adsorption on containers was examined in triplicate for each metal
individually as well as in the presence of other metals. The solutions were
equilibrated for four hours at pH of 6 and 10 ionic strength in the absence of
goethite. Results revealed that 2.2%, 2.0%, and 2.0% of initial metal
concentration adsorbed on the containers for copper, lead, and cadmium,
respectively. The percent of metal adsorption remained the same, despite
increasing initial metal concentration or presence of other metals, indicating

that containers do not posses a site capacity for metals.

3.5.5 Competition Adsorption Isotherms

Competition isotherms were performed at different concentrations at pH 6,
10” ionic streﬁgth, and 10" gram per liter goethite with initial metal
concentrations being equal in any given experiment. The same procedure as
wiin the edge experiments, in terms of aliquot preparation, ionic strength and
pH adjustment, was used in conducting the competition isotherms as well.
The metals with the lowest adsorption affinities were allowed to be adsorbed
first (competition 1) for two hours, the addition of the competing metal(s)
followed. Both metals were then allowed to equilibrate for an additional two
hour period. The order of metal introduction into the solution was then
reversed (competition Il) in order to further examine metal affinities. Finally

both competing metals were introduced into the solution simultaneously

(competition 1i1).
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During the last set of competition experiments, metal affinities were
examined when all three competing metals of equal initial concentrations
were introduced simultaneously {competition ill) into the solution. All three
metals were allowed to equilibrate for four hours. ifon Selective Electrodes
were used in all competition isotherms except in the case of Cu-Pb and Cu-

Pb-Cd where an atomic adsorption spectrophotometer was used (Appendices

AA, AB).



CHAPTER 4

RESULTS AND DISCUSION

4.1 Overview

In this chapter, results from goethite characterization, adsorption edges,

isotherms, and competition studies are presented and discussed.

4.2 Goethite Characterization

The synthesized goethite used in all experiments was characterized via XRD,
potentiometric titrations, particle size analysis, site density measurements,
surface area, and optical microscopy. A more detailed account of such

characterization follows.

4.2.1 X-ray Diffraction Analysis

XRD analysis was used in examining the crystallinity and homogeneity of the
synthesized goethite (Figure 1). Table 4A shows the goethite characteristics
and Table 4B lists the diffraction angles of goethite which are also seen in
Figure 1. None of the batches reveal any diffraction peaks other than those of
goethite. The 48 hour sample, however, exhibits the greatest background of
all three batches. Such a background is most likely due toc the presence of
amorphous iron oxide.

The peak width at half height (WHH) was used to determine the
crystallinity of minerals. Typically, the WHH of the most intense diffraction
peak of crystalline goethite varies from 0.1° to 2” with an average of 0.6° (10).
As seen in Figure 1, all batches exhibit WHH within the crystalline range of

goethite. The 168 hour aging batch exhibited the lowest background and the
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Figure 1 X-ray diffractograms of goethite as a function of aging.
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Table 4B .
X-ray powder diffraction data for iron oxides (29).

Goethite | Hematite f Ferrihydrite
d Intensity | hki | d (nm) | Intensity | hki  d intensity | hki
(nm) (nm)
0.498 12 020 | 0.366 25 012 | 0.250 | 100 110
0.4183 100 110 | 0.269 100 104 10221 |80 112
0.3383 10 120 | 0.251 50 110 | 0.196 | 80 113
0.2693 35 130 | 0.2285 2 008 0.172 | 50 114
0.2583 12 021 {0.2201 30 113 [ 0.151 | 70 115
0.2527 4 101 ;0.2070 2 202 10.148 | 80 300
0.2489 10 040 | 0.1838 40 024
0.2450 50 111 | 0.16890 60 116
0.2303 1 200  0.1634 4 211
0.2253 14 121 | 0.1586 16 018
0.2190 18 140 | 0.1484 35 214
0.2089 1 220 | 0.1452 35 300
0.2011 2 131 | 0.1349 4 208
0.1920 5 041 | 01310 20 1010
119
0.1802 6 211 101258 |8 220
017728 1 141 | 01226 2 036
0.17192 20 221 | 01213 | 4 233
0.16906 6 240 | 0.1189 8 128
0.16593 3 060 | 0.1182 10 0210
0.16037 4 231 | 0.1141 12 134
0.15637 10 151 | 0.1102 14 226
0.15614 8 160 | 0.1976 2 042
0.15091 8 002, | 0.1055 18 2110
250
0.14875 2 320 | 0.1042 2 1112
0.14541 5 061 | 0.1038 2 404
0.14207 2 112 | 0.0988 10 232,
318
0.13936 3 330 | 0.0971 2 229

hkl refers to the planes of the crystals
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smallest WHH. The iower background and the smailer WHH are indicative of
less amorphous oxide and greater crystallinity, respectively, resuiting from the

jonger aging period (10). A 168 hour aging period was therefore used in the

final batches.

4.2.2 Potentiometric Titrations
Potentiometric titrations were performed to determine the pH of zero point of
charge (zpc) of the synthesized goethite. By definition the pH zpc is the pH
where the net surface charge of the oxide is zero. Surface charge varies with
pH; with increasing pH the charge becomes more negative, as the ratio of
bound OH to H increases. Similarly, surface charge increases at lower pH,
as the H" becomes the predominant species bound on the surface (6, 10).
The pH zpc results when the amount of OH and H™ on the oxide surface is
equal.

The data obtained from the potentiometric and blank titrations were
used to calculate net adsorption, '™ - Ton'. Thus

o=(l/A)* Ty - LTon )

where,

o : Surface density of charge (pC/mz)

A : Surface area (mzlg)

[ and Ton : surface excesses (uC/g)
The titrations can be treated as adsorption isotherms, when the following
approximation is implemented (25)

oA=(Tw -Tow )= I on the acid site of zpc

cA=(I'y -lon )= [ on the alkaline site of zpc

Negative surface charges are due to the excess of surface OH" , whereas the



positive surface charges are due to the excess of H' on the surface (25).
The results from the potentiometric titrations (Figure 2) reveal that the
pH zpc of the synthesized goethite is 7.78. For goethite, pH zpc varies from

pH 7.7 to 9 depending on the method of determination, degree of hydration,

and method of synthesis (9, 18, 23, 25).

4.2.3 Surface Area

Atkinson et al. (25) and Mc Bride (9) found the surface area of goethite to be
70.9 m°/gram. Others have found the surface to be in the range from 7.9

mzlgram to 235 mzlgram (38).

4.2.4 Particle Size Analysis

Particle size distribution (PSD) of goethite was examined as a function of pH
and ionic strength (IS) after freeze-drying and resuspension in deionized
water (21). The results of this PSD analysis are shown on Figure 3. A
bimodal distribution (1.5 um by 40 um) was revealed, thus the non-spherical
model was used in this analysis.

Minor aggregation occurred at pH 7.80, the pH zpc (Figure 3). At such
pH, goethite net surface charge is very close to zero thus promoting
aggregation due to the absence of any repulsion forces between particles.
Repuision forces are present at extreme pH values where goethite particles
are similarly charged. Aggregation is also promoted with increasing ionic
strength. At high ionic strengths, the diffuse double layer is compressed (9)

which allows particles to come closer together, promoting aggregation. Such
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a process is evident (Figure 3) when PSDs of pH 850 and 8.80 are
compared. The PSD at pH 8.50 with an lonic strength of 0.2 showed a
greater mean particle length than the pH 8.80 with ionic strength of 0.01
distribution. In this case, aggregation is thought to be due to the tenfold
increase in ionic strength, despite the fact that the 0.3 pH units difference
between the two distﬁbutions might be a contributing factor, as well.

Although the tendency of goethite to aggregate is, as described above,
partially illustrated, it is not consistent throughout. The PSD of pH 8.80 with
ionic strength of 0.01 and pH 9.69 with ionic strength of 0.01 do not follow the
same trend as the other distributions. The PSD of pH 9.69 with ionic strength
of 0.01 exhibits a greater mean particle length than the pH 8.80 with 0.01
ionic strength. Furthermore, the PSD of pH S.27 with ionic strength of 0.1 and
that of pH 9.52 with ionic strength of 0.1, exhibit great differences although
they are of similar pH and equal ionic strength. The variations in particle
length observed in Figure 3 are thought to be partially due to goethite
aggregation. Such an aggregation phenomenon or its extent were not

modeled here.

4.2.5 Optical Microscope
An optical microscope was used to investigate the goethite particles. An
acicular shape was revealed (Figure 4) where particles were on the

average50 mm by 1.5 mm. This particle shape is consistent with the PSD

results and with what others have found (10, 13).



Figure 4 Goethite particles as seen through an optical petrographic

microscope with x100 magnification
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4.2.6 Physical Appearance
The freshly precipitated goethite was of a brown-yellow color (Table 4). Ared
color, indicative of ferrihydrite and possibly hematite impurities, faded away

and a brown-yellow prevailed as the aging process was optimized.

4.3 Adsorption Experiments

4.3.1 Adsorption Edge Experiments

To understand metal affinities for goethite as a function of pH, adsorption
edges were performed using metal concentrations below their saturation
limits (Appendix M). The results from the edge experiments are shown in
Figures 5, 6, 7, and 8. Metal adsorption for copper, lead, and cadmium
increased with increasing pH. As pH increases the net surface charge of
goethite becomeé more negative. This increase in negative charge results in
an increase in cation adsorption and the typical “S” shaped adsorption edge
is observed (1, 3, 6, 17, 18, 23, 26). Furthermore, no changes in the amount
of metal sorbed in adsorption edges of copper, lead, and cadmium were
observed with a tenfold increase of the ionic strength, indicating that these
metals are specifically adsorbed on goethite (34).

The adsorption edge results are consistent with what others have
found (3, 10, 24). For example, studies (3, 10, 24) have revealed that copper
shows high affinity for the goethite surface at a pH as low as 4. In the present
study, however, copper exhibited a slightly greater affinity for goethite at a

lower pH than when compared to Coughlin and Stones results (3). They
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found that at pH 4.5, 75% of copper was adsorbed on goethite. In this
experiment, 75% adsorption was observed at a pH of 4.3 (Figure 5). In
general, results from this study show that copper has a slightly greater affinity
for goethite in the pH range of 4 to 4.5. Above this range, however, little to no
variation is seen when compared to others results (3, 10, 24).

Results of lead adsorption on goethite (Figure 6) are consistent with
those of Schwertman and Taylor (10), Coughlin and Stone (3), and Muller
and Sigg (26). Cadmium exhibits the lowest affinity of all three metais for the
goethite surface (Figures 7 and 8). The results in this thesis indicate that
cadmium had a greater adsorption affinity for goethite than what was
observed in Johnson's study (18). This discrepancy is, however, expected as
Johnson used goethite with a pH zpc of 9. The goethite used in this study
was observed to have a pH zpc of 7.75, resulting in a greater negative
surface charge for a given pH.

Figure 8 shows the adsorption affinity for the metals follows the order

of Cu>Pb>Cd. No correlation is observed between metal affinity and its ionic
or hydrated radii (Table 5 and Figure 8), suggesting that size is not a
significant factor for adsorption of these heavy metals to goethite.
Metal affinities are reversibly related to the ions’ polarizabiiity (Figure 8 and
Table 5). Polarizability describes the ease with which an electron cloud of a
molecule or atom can be distorted by a nearby electric field (29). Polarizability
is also reversibly related to the metals’ ability to hydrolyze.

Hydrolysis products of metal ions include hydroxo and dihydroxo



Table 5

Metal ion characteristics

Characteristics Metal
CU2+ Pb2+ Cd2+
Hydrated radius (Angstrom)’
4.19 4.01 4.26
lonic radius (Angstrom)’
0.72 1.32 0.97
Relative electronegativity
scale’ 1.90 1.80 1.69
Polarizability (ground state)
(10*cm?)’ 6.1 6.8 7.2
Electron configuration®
4s'3d" 6s%4f'*5d"%p? | 55%4d"
Group?
1B 4A 2B
Percent speciation 97.0 Cu* 96.4 Pb* 99.7 Cd**
in the absense of another 1.8 Cu(OH)z¢aq) 1.7 PbOH?
metal® 1.2 PbNO,"
In the presence of: Cd Cd Pb
97.1 Cu® 97.1 Pb* 99.8 Cd*'
1.8 Cu(OH); (aq 1.7 PbOH"
1.2 PbNO;"
In the presence of: Pb Cu Cu
97.1 Cu® 96.4 Pb* 99.7 Cd**
1.8 Cu(OH)zaq) 1.7 PbOH"*
1.2 PbNQO,"
In the presence of: Cd & Pb Cd & Cu Pb & Cu
82.6 Cu* 93.6 Pb?' 99.8 Cd**
2.3 CuOH" 5.2 PbOH’
15.0 Cu(OH)oaqy | 1.2 PbNQO;"

Sources:
11 (29)
21 (8)

% : Metal Speciation as calculated using MINTEQAZ2 (40) at pH 6
and 107 ionic strength (sodium nitrate).
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species (Table 5). Cadmium, which exhibits the greatest polarizability of all
three metals of interest, forms the least amount of hydroxo species. Some
metal hydroxo species are preferably adsorbed over the divalent form of the
metals when the surface has a net positive charge (23). Differences in metal
adsorption of copper, lead, and cadmium to goefhite range from 10% to 80%
over the pH range studied (Figure 8); these differences can not, however, be
accounted for by metal speciation. The predominant species (>96%) for all
three metals at pH 6 is their uncomplexed divalent form.

As mentioned above, the adsorption affinity for the metals follows the order of
Cu>Pb>Cd (Figure 8); this order suggests that electronegativity may be the
most important factor as metal adsorption increased with increasing
electronegativity (Table 5). Schwertman and Taylor (10) reported the affinity
of heavy metals for goethite followed Cu>Pb>Zn>Cd>Co>Ni>Mn order which
is in agreement with electronegativity being the most important factor.
Similarly, Forbes and Posner et. al (23) observed metal affinities for goethite
to be in the order of Cu>Pb>Zn>Cd>Co. Gadde and Laitinen (17) found that
metal adsorption to hydrous Fe and Mn oxides is of the order Pb>Zn>Cd.
Coughlin and Stone (3) studied the adsorption of heavy metals on goethite
and found that the adsorption affinities followed Cu>Pb>Ni~Co>Mn. Contrary
to other studies (10, 17, 23), in the Coughlin and Stone study Co and Ni
showed similar affinities as opposed to Co being greater than Ni. Despite this
discrepancy, the results from all these studies are consistent with

electronegativity being the most important factor (10, 17, 23).
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For isotherm and competition studies, pH 6 was chosen as it is a
common pH in natural waters (15). Furthermore, this pH allows metal
concentrations up to 10° M without precipitation. Dilute or trace
concentrations of heavy metals are relevant with respect to contaminants
existing and of concern (28). Furthermore, the metal affinities for goethite at

pH 6 are great; this is expected to be helpful for saturating adsorption sites

on the goethite surface in competition studies.

4.3.2 Single lon Adsorption Isotherms

Isotherms were performed for each metal at pH of 6 and 10™ ionic strength.
These experiments were conducted for both two and four hour equilibration
periods. The two hour equilibration period experiments were performed to
verify that equilibrium is reached within two hours, as such a period was then
used in competition isotherms. No variation in metal adsorption was observed
between these two equilibration periods (Figures 9, 10, 11, 12) suggesting
that equilibrium is reached within two hours. Data from other studies suggest
that two hours, or less, is an adequate time for equilibration (6, 28).

The change in pH during each isotherm experiment was monitored and was
found to be due to the addition of the metal nitrate stock. No hydrogen ions
were released during metal adsorption on goethite. The adsorption reactions

were observed as the following:

—FeOH + M «——— ——FeOHM"



48

‘Jopow sinwbue syussa.idas aul pljog “(sjeayiu wnipos) yibuais oluol
€-31 pue ‘g Hd ‘syyieob sey sed weib | yum ayyleob o) uondiospe no o wisyjos| g a4nbi4

| uoneiqiinbz uyz o uonesqiinbg Uy y e |
(W) [2]

90-39 90-d¥ 90-3¢ 90-3¢ 90-d1 00+30
e S e —— 00+30

, S0-31
80-3¢
90-3¢
80-3v
80-3S
90-499
90-34

90-38

-2

3 '._.1
p—f—i
’rﬁ-—-{

90-46

S0-41

(B/paquos ny jo ssjow) X



49

9049

‘Jepow Jinwbue sjussaidal aui| pios “(8jeJHu wWnIpos) yibusiis oluol
e-31 pue ‘g Hd ‘auyieob Jay Jad weib | yum ajuieob o) uondiospe qd Joj wisylos| Q) ainbi4

| uopeiqinbg 1y y e uoneiqinby 1yzv |

(W) [0]
90-dv S0-4¢ 90-4¢ 90-91

00+30

I S T S S S S

(SN ST TR W S S S

80-dv

90-36

90-39

90-34

90-38

(6/paqios g4 jo sajow) X



50

90-3¢

‘lepow dinwbue syuasaidal sull pijog “(sresyiu wnipos) yibualis oiuol
e-J1 pue 'g Hd ‘spyieob sy Jad wesb | yym auyeob oy uondiospe po) Joj wisyios| L} ainbi4

| uonesqiinb3 1y Z © uoneiqiinb3 1y p m

90-3% 90-3€ W) [oi 90-d¢ 90-d1

00+30
00+30

ﬁ
?

i
i
F—O—
—
—E—

—
—E—
—g—

B
—a—

90-31

90-3¢

90-3¢€

90-3¥

90-3§

llb]_L!llll|lr~'!1rwv}x;llb!lh)llx!vtIj\slx‘#v;)l'l!lelj')J'

90-39

(6/paquos po jo sajow) ¥



1E-05
9E-06 T 1 y
| ety
8E-06 | ) l T Ly T
A A T
| Tl T T !
7E-06 | %%T T /T\ % ? T Jﬁ
E 6E-06 | i
2 | f }
w Tt : 1 T - ) T TT
ése-oe ;TT} : Z S & ? e
3 *§I ? T ¢
S 4E-06 i ; t
> l '
3E-06 | &
A
2E-06 i .
: s
1E-06 |4
am
0E+00 | - L — e
0E+00 1E-06 2E-06 3E-06 4E-06 5E-06
[C] (M)
¢ Cd A Pb e Cu 1

51

Figure 12 Adsorption isotherms for Cu, Pb, and Cd adsorption to
goethite with 1 gram per liter goethite, pH 6, and 1E-3 ionic
strength (sodium nitrate).
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where i FeOH represents a surface site on goethite; M*' is the copper, lead
or cadmium ion in the bulk agueous phase: and ——_ FeOHM® is the
adsorption complex. -

Adsorption isotherms are graphically displayed as plots of metal
adsorbed, X (moles per gram), versus residual metal concentration in the
bulk aqueous phase, C (moles per liter). Isotherms describe adsorbate
distribution between the bulk aqueous and adsorbed phases at equilibrium
(1).

The isotherm for copper adsorption to goethite (Figure 9), indicates
that metal adsorption increases with increasing metal concentration. This
increase in adsorption is seen as the “rising” part of the isotherm. At the
“plateau” area of the isotherm, however, the amount of copper adsorbed
remains constant despite the continuous increase in initial metal
concentration. This “leveling” indicates a limited number of sites, and that
goethite’s capacity for copper has been reached. All three isotherms exhibit
the same shape as the one in Figure 9 (Figures 10 and 11).

Metal capacities for goethite follow the order of Cu>Pb>Cd (Figures
12). Because goethite exhibited a limited number of sites (Figure 12), the
Langmuir model was used to fit the data. This model assumes a fixed
number of total sites or a monolayer capacity, X, that can be occupied by a
given metal. Furthermore, this model is based on the assumption that the free
energy of adsorption is independent of surface coverage. That is, the driving

force for adsorption is the same whether an adsorption surface is nearly filled



or completely empty. This assumption leads to the development of an ideal
surface solution model in which their are no interactions between adjacent
surface species. Similarly, the affinity of an adsorbate for a given site is not
affected by the fact that neighboring sites are occupied by water or adsorbate
species (1). The Langmuir isotherm for one type of adsorption site has the
form:

X = (XmKC) 1 (1+K-C)
where,

X : metal sorbed per mass of sorbent {(moles/g)

Xm : monolayer capacity (moles/g)

K : equilibrium constant related to the energy of sorption

C : residual sorbate concentration in bulk aqueous phase (M)

Experimental data were used to calculate X, and K by plotting 1/X
versus 1/C. Such a plot yields a linear trend with intercept of 1/X,, and a
slope of 1/(XnK). The fitted parameters X, and K for these systems are
presented on Table 6. The model and experimental data are shown in
Figures 9, 10, and 11.

The Freundlich model was also used to model the data. This model is
based on an empirical relation and has no theoretical basis (1). The
mathematical expression of Freundlich isotherm is:

FoK.c'm

where,
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Table 6

Calculated parameters from the application of Freudlich and Langmuir
models to experimental data.

Freudlich model Langmuir model
Metal | n K r? Metal | X, K Z
ion ion
cu® 027 28x10% 1074 |Cu™ [91x10° |449x10° |08
Pb® | 0.11 3.0x 10" |0.56 Pb* |73x10% |884x10° |06
Cd** | 042 11x10°% 070 |Cd* [49x10° |19.9x10° |07

" : metal sorbed per mass of sorbent (moles/g)

K : constant related to the energy of sorption

C : residual sorbate concentration in the bulk agueous phase at

equilibrium (M)
n : constant related to the distribution of the bond strength.

The average strength of surface-adsorbate bonds varies with adsorption
densities. In the case of n being unity, all surface sites are equal and the
Freundlich isotherm is reduced to the linear distribution. When total sites are
approximately equivalent to available sites, the Langmuir model reduces to
the linear distribution model (1). In the Freundlich model, the logarithm of C is
plotted against the logarithm of X (metal sorption/gram of goethite); the slope
is equal to 1/n and the intersection is equal to the logarithm of K

As seen in Table 6, the Langmuir model yields a slightly better fit than
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Freundlich model for all systems. Furthermore, the adsorption isotherms are
consistent with the Langmuir model, adsorption initially increases with
increasing metal concentration up to the point where all sites are filled and
adsorption remains constant despite increasing metal concentration. Metal
capacities, however, are not consistent with the obtained K values: based on
the obtained K values, lead showed greater affinity than copper for the
goethite surface. However, copper had greater capacity than lead. This
discrepancy between the K and X, values suggests that more than one type
of sites may exist. Isotherms in Figure 12 show that the metal affinities for
goethite follow the same order as electronegativity (Table 5), again

suggesting that electronegativity is the most important factor in metal

adsorption.

4.3.3 Site Density

Table 7 lists goethite’s mole capacity per gram for various adsorbates
obtained from the adsorption isotherms. Each metal revealed a slightly
different site density. Strontium and N adsorption indicated greater site
densities than copper, lead, and cadmium adsorption.

In addition to the sites used by heavy metals (Cu, Pb, and Cd),
strontium, from group llA of the Periodic Table, apparently binds to another
group of energy sites. Other researchers have identified multiple distinct
groups differ from one another according to whether an oxygen is singly,

doubly, or triple coordinated (5). The presence of four types of sites on the



Table 7
Goethite sorbent capacities

Sorbent Capacity (moles/gram) from | Capacity (moles/gram) from | Difference between
isotherm studies pH 6, 10° | Langmuir model. model and
ionic strength experimental values
Cu2+
8.6x10° 9.1x10°® 3.1%
Pb*
7.0x10° 7.3x10°® 1.3%
cd*
5.0x10°° 4.9x10° 0.7%
N,
5.50x10 * NA NA
sr*
7.2x10 NA NA

* calculated using the BET equation (25)
NA Not applicable

9g
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110 and 021 faces of goethite with different proton affinities was reported by
Venema et al. (30). The presence of these distinct types of sites on an oxide
sorbent is often used to explain different metal capacities (5). Strontium
exhibited greater capacities for the goethite surface, because it most likely
binds to another set of energy sites in addition to those utilized by copper,
lead, and cadmium.

Nitrogen adsorption also indicated greater site densities than that of
copper, lead, and cadmium adsorption. Gas-solid adsorption differs from the
aqueous-solid systems for copper, lead, and cadmium. Nitrogen is most likely
attracted to goethite by different forces than what is being observed in these
studies with metal ion adsorption. Furthermore, nitrogen adsorption
potentially includes meso- and micropore sites. Diffusion of metal ions from
the adsorbed surface in micropores has been observed with amorphous iron
oxides, and is known as the second, slow step of adsorption (28). In this
study, however, short term studies were conducted where the fast, reversible
adsorption of aqueous metal ions to the external surface sites was examined.
During this step, sites located in the micropores are not utilized. The site
density of nitrogen adsorption on goethite is therefore greater than that
of copper, lead, and cadmium.

The three metals of interest, however, are believed to bind to the
same energy sites. The difference in site densities obtained from the use of
these three metal adsorbates may be due to the their different affinities for

goethite. As with their metal electronegativity, site densities follow the order
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of Cu>Pb>Cd. These site densities are consistent with the monolayer
capacity, Xm, values obtained from the Langmuir model (Table 7). The
difference between experimental capacities and those obtained from the
Langmuir mode! are, in all cases, within experimental error of the data.

Overall, the metals exhibit similar capacities for the goethite surface.

4.3.4 Competition Isotherms

Competition isotherms were performed at pH 6, 10° ionic strength, and 10"
gram per liter goethite with the competing metals at equivalent initial
concentrations. Maximum metal concentrations were below saturation
(Appendix M) and were selected based on the obtained site densities (Table
7) as to promote metal competition. Reducing goethite to 10 gram per liter,
the total available sites were limited to 8.57x10” moles per liter, which is less
than those needed for either one of the two metals to be completely
adsorbed.

To test the hypothesis that electronegativity is the most important
factor in adsorption, the metal with the smallest electronegativity was added
first (competition 1), with 2 hour equilibration. Subsequently, addition of the
competing metal(s) followed. The system was then allowed to equilibrate for
an additional 2 hours. If electronegativity is indeed the most important factor
in metal affinities for goethite, the metal with greater electronegativity is
expected to displace the less electronegative species. The order of metal

introduction into the solution was then reversed (competition 1l) to further



examine metal affinities. Finally both competing metals were introduced into
the solution simultaneously (competition lil).

The results of the Cd-Cu competition studies are shown in Figure 13
and Table 8 where copper completely displaced cadmium. The adsorbed
cadmium in Figure 13 reflects the amount adsorbed to the container
exclusively. The order of metal introduction in solution of the two competing
pairs was then reversed (competition I1). Finally, the competing metals were
simultaneously introduced in the system (competition lll). The results from
experiments Il and lll revealed no variation from the first one (competition 1)
(Table 8 and Figure 13). Copper, which has a greater electronegativity than
cadmium, displaced cadmium in all studies. The total sites occupied per gram
of goethite are equal to that observed in the copper isotherm studies,
suggesting that copper and cadmium bind on the same types of sites (Table
9). The experimental amount of total sites occupied is in agreement with the
expected value (results from Cu adsorption isotherm); the difference is within
the error of the data, indicating that metals bind on the same types of sites.

In the case of Cd-Pb competition studies, a large portion of cadmium,
97.5%, is displaced by lead (Table 10 and Figure 14). Two percent of the
adsorbed fraction of cadmium is accounted for by adsorption to the
containers. An average of 0.5% of the cadmium concentration remained
adsorbed to goethite when competing with lead. From adsorption isotherms,

lead capacity is 7.29x1 0 moles per gram of goethite (Table 7). Given a total
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of 8.56x10™° moles per gram (from Cu isotherm) were available in this study,
where 7.29x10° moles per gram are occupied by lead, the remaining 1.2x107
moles per gram are occupied by cadmium. Lead displaced cadmium from the
sites it required. Because sites were not limited in this experiment,
unoccupied ones could then be filled with cadmium. These results are shown
in Table 9 where the percent difference between the occupied and expected
site densities is 4.3%, which is within the error of the data. The order of metal
introduction in solution of the two competing metals was then reversed
(competition 1), to further investigate metal competition. Finally, the
competing metals were simultaneously introduced in the system (competition
[1). The results from the last two experiments showed no variation from the
first one (Tables 10 and Figure 14).

In the case of Cu-Pb competition studies, 40% of lead was displaced
by copper when lead was introduced first to the system (competition 1) (Table
11 and Figure 15). As a result, only 50% of the sites were occupied by
copper. Similar results were obtained when the order of metal introduction in
solution was reversed (Table 11 competition 1l), where 50% of copper was
actually displaced by lead, indicating that copper and lead bind on the same
types of sites. When both metals were competing for the goethite sites
simultaneously (competition Ill), identical results as with the previous
competitions were obtained. Speciation in this case can not be considered as
a contributing factor, as the only change is a 0.1% increase in copper ion

concentration (Table 5).
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The Langmuir model introduced earlier assumed only one average
energy site for the goethite surface and was used to determine the total site
capacity. Based on these competition results, the Langmuir mode! with two
types of sites, of low and high affinity, was used to model the data:

Ky =Xy / (C X))

Ki=XL/(C X))

X=X+ Xy

Xm= Xyt XL +XH
where,

Xy : available sites per mass of sorbent (moles/g)
X : metal sorbed per mass of sorbent (moles/g)

Xm : monolayer capacity (moles/g)

Xy : metal sorbed at high affinity sites per mass of sorbent

(moles/q)
X. : metal sorbed at low affinity sites per mass of sorbent
(moles/g)

Ky : equilibrium constant for high affinity sites

Ky : equilibrium constant for low affinity sites

C : metal sorbate concentration in the bulk aqueous phase (M)
The results obtained from this model are shown in Table 12. This model was
applied to the experimental data (Figure 16) where both lead and copper
occupy high affinity sites: 3.9x10° moles of Pb per gram of goethite and

4.5x10°® moles of Cu per gram goethite. The low energy sites were occupied



Table 12

The Ky and K values obtained from the developed model.

Metal KH XH K[_ XL r?‘ Xm
(moles/qg) (moles/g) (moles/g)
Cu 3.0x10° | 7.2x10°® 1544.1 | 1.4x107 0.9 |8.6x10°
Pb 2.0x10° | 6.5x10° | 40855 | 5.0x107 0.8 |7.0x10°
Cd 1.7x10° | 4.4x10° | 540.00 | 4.9x10°® 0.9 |4.4x10°

69

by lead only and these make up approximately 5.0x107 moles per gram
(Figure 16). Copper was preferably adsorbed over lead on the high affinity
sites. The results in Figure 16 are consistent with those in Table 12, copper
has a greater Ky than lead. In the case of low affinity sites, lead has a greater
affinity than copper (Table 12). However, the model failed to predict the exact
adsorption on the high energy sites (Table 12 and Figure 16) suggesting that
adsorption on more than two types of sites is likely.

Interestingly, during competition |l copper was desorbed by lead:
copper and lead affinities for goethite are similarly high, with copper being
slightly greater (Figure 8). Copper, however, showed greater affinity for the
high affinity sites on the goethite surface, suggesting that electronegativity an
important factor in adsorption competition.

In the last set of experiment, competition among copper, lead, and

cadmium was studied. The three metals were introduced in solution
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simultaneously. When sorption to the containers was accounted for, cadmium
did not sorb on goethite. Lead and copper exhibited similarly higher affinities.
The results from this competition experiment are shown in Table 13 and
Figure 17, and there is little variation from the studies of Cu-Pb system (Table
11 and Figure 15). Lead adsorption showed no changes, whereas copper
adsorption decreased by an average of 4.6% (~ 0.2x10° moles per grams of
goethite). In the presence of cadmium and lead, 15% of the copper is present
as Cu(OH)xaq (Table 5); this hydrolysis product, which is considered
electrochemically inactive (31), decreases copper adsorption. A portion of this
product (O.17’x105 moles per gram), however, is apparently adsorbed on the
goethite surface. Copper occupies 4.1%x10®° moles per gram of goethite high
affinity sites where 0.17x10° moles per gram of goethite are occupied by
Cu(OH)z(aq-

As discussed above, lead adsorption showed no variations from the
Cu-Pb experiment; 4.3x10° moles per gram adsorbed with 3.8x10° moles
per gram sorbed to high affinity sites and 5.0x107 moles per gram to low
affinity sites. Cadmium adsorption, which exhibits the lowest electronegativity
from all three metals, reflects sorption only to the containers (Table 9). From
Table 12, the equilibrium constants for high energy sites are consistent with
electronegativity where Ky follows the trend of Cu>Pb>Cd. On the other
hand, the equilibrium constants for low energy sites are in agreement with the
hydrated ion size; the smaller the ion the greater the K. These results are
consistent with the physical sorption where the adsorbed species resides in

the diffuse layer.
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In Figure 18, Cu and Pb ion adsorption are modeled where again Cu
adsorbed only on high affinity sites and Pb sorbed on both types of sites. As in
the Cu-Pb system, copper showed greater affinity for the high affinity sites on
the goethite surface, indicating that electronegativity is very important in
adsorption competition. However, the model did not predict relative amounts of
metal adsorption on the high energy sites (Table 12 and Figure 18) suggesting
that adsorption on more than two types of sites is likely.

In all experiments metal affinity followed the same order as
electronegativity. Cadmium, the least electronegative metal, was completely
displaced. However, while Cu had a greater affinity than Pb for high affinity
sites, both ions occupied these sites and Pb had a greater affinity for lower
energy sites. Speciation is also a factor in adsorption competition,

electronegativity, however, was found to be the most significant.
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CHAPTER 5

CONCLUSIONS

During this study, a number of conclusions was reached regarding goethite
characteristics and sorbate adsorption to goethite. The following are the most
important conclusions:

e During precipitation, goethite homogeneity and crystallinity
increased with aging in the 60° C oven.

¢ Optical microscopy revealed that goethite particles are of an
acicular, needle like shape. Goethite aggregation occurred at or in the vicinity
of pH zpc. Data also suggest that aggregation increased with ionic strength.

e Adsorption edges revealed that Cu, Pb, and Cd are specifically
adsorbed on the goethite surface. Furthermore, metal affinities for goethite
are in the order of Cu>Pb>Cd, confirming what others have found (10, 23).
Electronegativity is consistent with this trend where metal affinity increased
with increasing electronegativity. Metal speciation affects metal adsorption;
neutrally charged species are less electrochemically active than the divalent
species form and deter metal adsorption on goethite.

e Goethite shows distinct types of sites with varying affinities for
adsorbates. Copper, lead and cadmium adsorbed on the same types of
energy sites. Strontium appears to adsorb on additional, possibly lower

energy sites.
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e [sotherm studies revealed a two-site Langmuir model of adsorption
for copper, lead, and cadmium on goethite best fit the data. Metal capacities
increased with increasing electronegativity: Cu>Pb>Cd. Equilibrium constants
revealed that while Cu had a greater affinity than Pb for high affinity sites, Pb
had a greater affinity for lower energy sites. Electronegativity was observed
to be the most important factor in metal capacities for goethite, a!thdugh
speciation is a factor as well.

e During competition studies, less electronegative metals were
desorbed and displaced by more electronegative species when competing for
a limited number of available sites. During Cu and Cd competition and Pb, Cu
and Cd competition studies, cadmium was completely desorbed. During Cu
and Pb as well as Cu, Pb, and Cd competition studies, copper adsorbed on
high energy sites and lead adsorbed on both high and low energy sites.
However, copper was preferably adsorbed to high energy sites over lead,
whereas lead showed greater affinity for the lower energy sites. In the Pb and
Cd studies, lead displaced cadmium from the sites it required. Because sites
were not limited in this experiment, unoccupied ones were filled then with
cadmium. The two-site Langmuir model worked well with Cu and Cd
competition and Pb and Cd competition, but it was not able to predict the Cu
and Pb and the Cu, Pb, and Cd systems’ results.

Metal affinity for potentially high affinity sites increased with increasing
electronegativity indicating that electronegativity is an important factor in

adsorption competition.



Appendix A

QA/QC Plan
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QA/QC plan
In this study a 95% confidence factor in analyzing the samples is aimed. To
assure accuracy and precision of the analytical process(es), standard

methods (21) were used. The proceeding steps were followed:

Nalgene polyethylene containers were used to hold both samples and

standards to minimize any metal loss to containers.

e Fixed volume pipeties were used in all metal dilutions, acid and base
additions, and sodium nitrate additions.

¢ All containers were washed with soap and distilled water and were soaked
in 10% nitric acid overnight prior to any use in any experiment.

¢ The same electronic balance was used throughout in weighing all
reagents.

e The pH meter was calibrated on a daily basis, prior to any experiments.

e Deionized water was used in sample and standard preparations.

e At least one process blank was competition for each experiment. This

blank was subject to the same treatment as the rest of the samples with

the only difference being that no metals were introduced in solution. Such

blank was analyzed and used in calculating the metal ion concentration in

the rest of the samples. Such a practice minimized any errors associated

with the process itself such as glassware contamination or chemical

interference.
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At least one replicate and a duplicate sample were also competition for
every set of samples, a total of 10, and the results were used in estimating
the accuracy of the analysis.

Calibration curves ware constructed on a daily basis, where ISE are used.
Such a practice eliminated any errors that are associated with temperature
and light variations.

During any analysis where ISE are used, all samples and standards are
stirred in a uniformed rate to avoid errors associated with the amount of
heat generated from stirring.

During all analysis, the samples with lower metal concentrations were
analyzed first to avoid cross-contamination . Where ISE were used, the
ISE were cleaned repeatedly with type |l water between samples.

EPA recommended matrix modifiers were used whenever AA
spectroscopy was used in the analysis of samples.

Sodium nitrate was used as the ionic strength adjuster whenever ISE as
recommended by the manufacturer.

Orion filling solutions and membrane polishing strips were used in the

conditioning of the ISE as recommended by the manufacturer.



Appendix B

Potentiometric Titration data
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Appendix C

Particle Size Distribution Data
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Appendix D

ISE Cu Calibration Curves used in Adsorption Edge Experiments
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Appendix E

ISE Cu Calibration Curves used in Isotherm Experiments
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Appendix F

ISE Cu Calibration Curves used in Competition Adsorption
Experiments
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Appendix G

ISE Pb Calibration Curves used in Adsorption Edge Experiments
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Appendix H

ISE Pb Calibration Curves used in Isotherm Experiments
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Appendix |

ISE Pb Calibration Curves used in Competition Adsorption
Experiments
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Appendix J

ISE Cd Calibration Curves used in Adsorption Edge Experiments
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Appendix K

ISE Cd Calibration Curves used in Isotherm Experiments
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Appendix L

ISE Cd Calibration Curves used in Competition Adsorption
Experiments
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Appendix M

Solubility Graphs for Cu, Pb, and Cd
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Appendix N

Speciation Graphs for Cu, Pb, and Cd
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Appendix O

Data for Metal Adsorption on Containers
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Results of metal adsorption on containers in the absence of goethite:
mV values and calibration curves used.

Metal Metal Metal + Metal + | Calibration | Calibration
added added detected | detected | curve curve
used used

(moles) | (moles) (mV) (mV) #) #
Cu metal 2 Cu metal 2 Cu metal 2
1.0E-7 st 8550 ) e J1
1.0E-6 | e 5330 | e J1 e
1.0E-5 | 20866 | ——emmee J1 e
Pb metal 2 Pb Pb
1.0E-7 | -312.84 | e 17 U —
10E-6 | -287.88 | e 12 R
10E-5 | ————— | -262.865 R ——
Cd metal 2 Cd Cd
1.0E-7 e e -242.90 mmmemememeee L L3
10E6 | e 21540 | e N —
N — — | -187.89 | L3 |
Cu Cd Cu Cd Cu Cd
1.0E-5 [Cd]=1.0E-5 | -19.10 -216.44 K1 M3
Pb Cd Pb Cd Pb Cd
1.0E-5 [Cd]=1.0E-5 | -286.57 -221.79 J2 N3

+ mV obtained after 2 hour equilibration period using ISE(s).
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Appendix P

Data from Cu Adsorption Edge Experiments
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Copper adsorption edge expenmental data. Adsorption as a function of pH,

1 gram per liter goethite, 107 ionic strength (sodium nitrate).

Initial pH Metal ** Calibration | Residual ™ | %
Ccd detected | curve used | Cd detected | Adsorption
added

([M]) (mV) # ([M])

1.00E-5 549 | -4257 A1 0.600E-6 93.41
1.00E-5 6.51 |-76.27 A1 0.0100 E-6 99.91
1.00E-5 5980 |-46.33 At 0.380 E-6 96.20
1.00E-5 6.32 | -59.15 Al 0.0800 E-6 99.21
1.00E-5 567 |-37.83 A1 1.068 E-6 89.32
5.00E-6 6.21 |-55.16 A1 0.130 E-6 97.40
5.00E-6 6.61 | - A1 0E-6 100.0
5.00E-6 649 |-70.56 A1 0.0200 E-6 99.60
5.00E-6 6.12 |-54.85 A1 0.135E-6 97.3
5.00E-6 760 |-6572 A1 0.0360 E-6 99.27
5.00E-6 420 |-3927 B1 1.065 E-6 78.70
5.00E-6 402 |-29.81 B1 2.92E-6 41.60
5.00E-6 8.00 | -76.56 B1 0.0200 E-6 99.60
5.00E-6 7.00 |-79.26 B1 0.G150 E-6 99.70
5.00E-6 4.08 | -32.30 B1 2.24 E-6 55.1
5.00E-6 436 | -42.32 B1 0.770E-6 84.6
5.00E-6 470 |-48.09 B1 0.416 E-6 91.68
5.00E-6 562 |-6344 B1 0.0810 E-6 98.38
5.00E-6 526 |-63.44 B1 0.0810E-6 98.38
5.00E-6 5.00 |-54.20 B1 0.217 E-6 95.65
5.00E-06 * | 4.00 | -26.09 BB1 3.09E-06 38.30
5.00E-06 * [ 4.10 | -30.49 BB1 1.95E-06 61.12
5.00E-06 * [ 4.80 |-46.18 BB1 3.75E-07 92.51
5.00E-06 * | 6.50 | -56.28 BB1 1.30E-07 97.41
5.00E-06 * | 7.50 |-87.34 BB1 5.00E-09 99.90

metal undetected or above detection limit.
* during these runs, 102

ionic strength (sodium nitrate) was used.
** metal detected after 4 hour equilibration period.
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Appendix Q

Data from Pb Adsorption Edge Experiments
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Lead adsorption edge experimental data. Adsorption as a function of pH,

1 gram per liter goethite, 10 ionic strength (sodium nitrate).

Initial pH Metal ** Calibration Residual * %

Cd detected curve used Cd detected | Adsorption
added

) (mV) # {IM])

9. 39E-7 6.43 |-319.61 A2 0.280E-7 95.9
9.39E-7 6.03 |-310.99 A2 0.480E-7 94.88
9.39E-7 6.66 | ----=-mmm- A2 0 100.00
9. 39E-7 6.27 |-265.07 A2 7.03E-7 25.10
1.00E-6 6.12 | -278.53 A2 0.320E-6 93.16
4.69E-6 6.61 |-287.54 A2 1.89 E-7 95.95
4.69E-6 520 |-268.02 A2 0.558 E-8 88.10
4.69E-6 402 |-233.26 A2 4 51E-6 3.80
4 69E-6 4.21 | -120.56 A2 4.319 7.90
4. 69E-6 470 |-25820 A2 1.05 E-6 77.67
4.69E-6 492 |-332.11 B2 0.643 E-6 86.28
4 69E-6 554 1-331.25 B2 0.698 E-6 85.10
4 69E-6 578 |-337.87 B2 0.370 E-6 92.10
4 69E-6 5.90 | -344.495 B2 0.196 E-6 95.80
4 69E-6 554 |-326.516 B2 1.10 E-6 23.58
4 69E-6 7.97 | -361.06 B2 0.0400 E-6 99.80
4 69E-6 6.898 | -361.05 B2 0.0400 E-6 99.90
4.69E-6 7.54 | -361.06 B2 0.0400 E-6 99.90
4.69E-6 562 | -346.35 B2 0.164 E-6 96.50
4 69E-6 5.37 | -334.50 B2 0511 E-6 89.11
4 69E-6 480 | -324.34 B2 0.647 E-6 86.20
4 69E-6 460 |-309.33 B2 2.86 E-6 39.00
4 69E-06 * | 4.30 | -285.76 CCz2 3.85E-06 18.00
4 69E-06* | 4.70 | -291.52 CC2 2.18E-06 53.60
4 69E-06*| 5.01 | -305.90 CC2 5.30E-07 88.71
4 69E-06 * | 6.51 | -314.39 CC2 2.30E-07 95.11
4.69E-06* | 7.50 | -346.90 CC2 9.38E-09 99.80

metal undetected or above detection limit.

* during these runs, 107 ionic strength (sodium nitrate) was used.

k%

metal detected after 4 hour equilibration period.
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Cadmium adsorption edge experimental data Adsorption as a
function of pH, 1 gram per liter goethite, 10 ionic strength (sodium nitrate).

Initial pH Metal ™ Calibration | Residual ** %

Cd detected curve used | Cd detected | Adsorption
added

(M) (mv) # (1))

8.89E-7 |584 |-2261 A3 1.25E-7 859
8.89E-7 7.32 -279.59 A3 0.0179E-7 99.8
8.89E-7 4.06 -196.28 A3 8.89E-7 0
8.89E-7 |5.08 |-200.15 A3 6.66E-7 25
8.89E-7 6.08 -221.77 A3 1.33E-7 85
8.89E-7 6.51 -247 .54 A3 0.195E-7 97.8
4.45E-6 4.35 -174.67 B3 4 45E-8 0
4.45E-6 5.41 -120.21 B3 1.44E-6 67.5
4 45E-6 4.03 -108.60 B3 4 45E-6 0
4.45E-6 4.88 -111.04 B3 3.51E-6 21.07
445E6 | 523 |-115.08 B3 2.37E-6 46.55
4.45E-6 8.00 -148.35 A3 0.0934E-6 97.9
4.45E-6 7.72 -226.52 A3 0.0934E-6 97.9
4.45E-6 6.59 -206.47 A3 0.416E-6 90.64
4.45E-6 5.55 -189.62 A3 1.46E-6 67.00
4.45E-6 5.84 -200.96 B3 0.6274E-6 85.90
4.45E-6 6.36 -129.53 B3 0.582E-6 86.90
4.45E-6 7.83 -134.59 B3 0.356E-6 92.00
4.45E-6 6.06 -127.21 B3 0.729E-6 83.60
4.45E-6 4.65 -110.04 B3 3.87E-6 12.90
4.45E-6 7.00 -131.32 B3 0.489E-6 89.00
4.45E-6* | 4.50 -121.67 BB3 4.01E-6 9.9
445E-6* | 510 -125.05 BB3 2.89E-6 35.1
4.45E-6* | 580 -134.95 BB3 1.10E-6 75.2
445E-6* |6.50 -151.63 BB3 Z2.18E-8 95.1
445E-6* | 7.30 -156.68 BB3 1.34E-6 97

* during these runs, 107 ionic strength (sodium nitrate) was used.
** metal detected after 4 hour equilibration period.
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Data from Cu Isotherm Experiments
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Cu adsorption isotherm experimental data with 1 gram per liter

goethite, pH 6, 10° ionic strength (sodium nitrate).

Initial Cu |Equilibration|Residual Cu |Calibration Residual Cu
period curve used
(M) (Hours) (mV) # (M)

2 00E-08 4 -£1.6681 CH1 3.71E-07
3.99E-06 4 -53.9737 C1 2.15E-07
5.99E-06 4 -46.8569 C1 7.79E-07
S9.00E-06 4 -31.4067 C1 2.61E-08
9.99E-06 4 247136 C1 6.13E-07
5.00E-06 4 -53.9028 C1 1.19E-07
S.98E-07 4 -70.0462 D1 3.06E-07
3.00E-06 4 ~73.0521 D1 6.61E-07
5.00E-06 4 -71.1363 o1 6.48E-07
7.51E-06 4 -52.8326 D1 1.06E-06
9.50E-06 4 -42.7265 D1 1.80E-06
7.71E-06 4 -639.4597 E1 8.00E-07
4 05E-06 4 -80.8843 E1 1.30E-06
5.96E-06 4 -46.8751 F1 3.33E-06
8.76E-06 4 -35.2961 F1 2.26E-06
1.05E-05 4 -29.0582 F1 4.32E-06
1.17E-05 4 -24.8796 F1 2.80E-06
1.27E-05 4 -21.7257 F1 3.79E-06
1.22E-05 2 -32.7188 G1

1.08E-05 2 -37.0482 G1
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Pb adsorption isotherm experimental data with 1 gram per liter

goethite, pH 6, 10” ionic strength (sodium nitrate)

Initial Pb |[Equilibration |Residual Pb Calibration Residual Pb
period curve used
(M) (Hours) (mV) # (M)
4 69E-08 4 -329.957{C2 3.71E-07
5.64E-06 4 -335.465|C2 2.15E-07
7.51E-06 4 -322.467|C2 7.79E-Q7
9.45E-08 4 -310.259{C2 2.61E-06
6.88E-06 4 -324.887|1C2 6.13E-07
8.39E-07 4 -341.438/1C2 1.18E-07
5.50E-06 4 -312.484|D2 3.06E-07
6.50E-06 4 -304.833|D2 6.61E-07
7.20E-06 4 -305.03|D2 6.48E-07
7.98E-06 4 -300.141ID2 1.06E-06
8.92E-06 4 -294.344|D2 1.90E-06
7.80E-06 4 -307.253|E2 8.00E-07
8.29E-06 4 -302.362|E2 1.30E-06
1.00E-05 4 -292.884/E2 3.33E-06
8.69E-06 4 -296.783|E2 2.26E-06
1.11E-05 4 -280.261|E2 4.32E-06
9.84E-06 2 -266.652\F2 2.80E-06
1.09E-05 2 -261.8|F2 3.79E-06
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Cd adsorption xsotherm experimental data with 1 gram per liter

goethite, pH 6, 10 ionic strength (sodium nitrate).

Initial Cd |Equilibration |Residual Cd |Calibration Residual Cd
period curve used

(M) (Hours) (mV) # (M)
1.96E-06 4 -246.297|C3 5.92E-07
3.50E-06 4 -240.563|C3 9.76E-07
5.99E-06 4 -233.542|C3 1.80E-06
5.99E-06 4 -235.787|C3 1.48E-06
8.20E-06 4 -225.465|C3 3.64E-06
9.99E-06 4 -222.292|C3 4.80E-06
9.99E-07 4 -258.088/D3 1.08E-07
3.00E-06 4 -246.984,D3 2.75E-07
5.00E-06 4 -228.927\D3 1.26E-06
7.00E-06 4 -224.1141D3 1.89E-06
1.00E-05 4 -212.758/D3 4.92E-06
5.20E-06 4 -149.41\F3 5.32E-07
6.72E-06 4 -137.673|F3 1.47E-06
7.55E-06 4 -131.54\F3 2.50E-06
8.49E-06 4 -127 523|F3 3 54F-08
2.22E-06 4 -259.027|E3 4.75E-07
2.40E-06 4 -257 124|E3 5.66E-07
3.03E-06 4 -256.365|E3 6.07E-07
7.95E-06 2 -230.158|G3 3.00E-06
9.04E-06 2 -227 245|G3 3.96E-06
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Metal competition results between Cd and Cu with 10" gram

per liter of goethite, 100ml aliquots, at pH 6, and 10 ionic

(sodium nitrate).

q* 2 3 [ 5 *k |
Run | Metal Metal Metal Metal
added added detected | detected
(moles) (moles) (moles) | (moles)
I Cd Cu Cd Cu
1.50E-7 1.50E-7 1.48E-7 6.39E-8
2.50E-7 2.50E-7 2.48E-7 1.6E-07
3.50E-7 3.50E-7 3.47E-7 267E-7
4.50E-7 4 50E-7 4.48E-7 3.63E-7
5.00E-7 5.00E-7 4.99E-7 4.18E-7
il Cu Cd Cu Cd
1.50E-7 1.50E-7 6.99E-8 1.48E-7
2.50E-7 2.50E-7 1.15E-7 1.98E-7
3.50E-7 3.50E-7 2.14E-7 2.99E-7
4 50E-7 4.50E-7 3.13E-7 3.99E-7
5.00E-7 5.00E-7 4.12E-7 4 .99E-7
i Cd Cu Cd Cu
1.50E-7 1.50E-7 1.48E-7 7.07E-8
2.50E-7 2.50E-7 1.99E-7 1.16E-7
3.50E-7 3.50E-7 2.98E-7 2.17E-7
4. 50E-7 4.50E-7 3.99E-7 3.10E-7
5.00E-7 5.00E-7 4.98E-7 4.17E-7

*

system.

** mV obtained after 2 hour equilibration period.

column 1 shows the metal that was introduced first in the

*** during this run, competing metals were introduced

simultaneously in the system
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Data from Cd-Pb Competition Isotherm Experiments
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Metal competition results between Cd and Pb with 10 gram

per liter of goethite, 100ml aliquots, at pH 6, and 10 ionic

(sodium nitrate).

1* 2 3 * g ok
| Run | Metal Metal Metal Metal

added added detected | detected

(moles) (moles) {moles) | (moles)

I Cd Pb Cd Pb
1.50E-7 1.50E-7 1.40E-07 7.85E-08
2.50E-7 2.50E-7 2.41E-07 1.78E-07
3.50E-7 3.50E-7 3.41E-07 2.78E-07
4 50E-7 4 50E-7 4.39E-07 3.76E-07
5.00E-7 5.00E-7 4.90E-07 4.28E-07

i Pb Cd Pb Cd
1.50E-7 1.50E-7 8.0E-08 1.41E-07
2.50E-7 2.50E-7 1.28E-7 1.91E-07
3.50E-7 3.50E-7 2.26E-07 2.92E-07
4 50E-7 4.50E-7 3.27E-07 3.92E-07
5.00E-7 5.00E-7 4.28E-07 4.93E-07

m*>* | Cd Pb Cd Pb
1.50E-7 1.50E-7 1.40E-07 8.32E-08
2.50E-7 2.50E-7 1.91E-07 1.31E-07
3.50E-7 3.50E-7 2.92E-07 2.28E-07
4. 50E-7 4.50E-7 3.92E-07 3.26E-07
5.00E-7 5.00E-7 4.92E-07 4.31E-07

*

system.

** mV obtained after 2 hour equilibration period.

column 1 shows the metal that was introduced first in the

*** during this run, competing metals were introduced

simultaneously in the system
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Data from Cu-Pb Competition Isotherm Experiments
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Metal competition results between Cu and Pb with 10™

gram per liter of goethite, 100mi aliquots, at pH 6, and
10” jonic (sodium nitrate).

1* 2 3 5
Run | Metal Metal Metal Metal
added added detected | detected
{moles) (moles) {moles) | (moles)
| Pb Cu Pb Cu
1.0E-7 1.0E-7 578E-08 | 5.64E-08
2.0E-7 2.0E-7 1.54E-07 | 1.54E-07
3.0E-7 3.0E-7 2.56E-07 | 256E-07
4.0E-7 4.0E-7 3.55E-07 | 3.55E-07
5.0E-7 5.0E-7 4 55E-07 | 4.55E-07
1] Cu Pb Cu Pb
1.0E-7 1.0E-7 561E-08 | 5.81E-08
2.0E-7 2.0E-7 1.54E-07 | 1.54E-07
3.0E-7 3.0E-7 2.59E-07 | 259E-07
4.0E-7 4 0E-7 3.57E-07 | 357E-07
5.0E-7 5.0E-7 4 55FE-07 | 4 .55E-07
H*** | Cu Pb Cu Pb
1.0E-7 1.0E-7 579E-08 | 5.88E-08
2.0E-7 2.0E-7 1.55E-07 | 155E-07
3.0E-7 3.0E-7 2.55E-07 | 2 55E-07
4.0E-7 4.0E-7 3.65E-07 | 3.55E-07
50E-7 5.0E-7 4 54E-07 | 4 54E-07

*

column 1 shows the metal that was introduced first in
the system.

*** during this run, competing metals were introduced

simultaneously in the system
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Data from Cu-Pb-Cd Competition Isotherm Experiments
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Metal competition results between Pb, Cu, and Cd with 10™" gram

per liter of goethite, 100ml aliquots, at pH 6, and 10~ ionic strength
{(sodium nitrate).

Metal Metal Metal Metal Metal Metal
added added added detected | detected detected
{moles) | (moles) | (moles) | (moles) | {moles) (moles)
Cu Pb Cd Cu Pb Cd

1.0E-7 1.0E-7 1.0E-7 5.88E-08 5.91E-08 9.90E-08
2.0E-7 2.0E-7 2.0E-7 1.55E-07 1.56E-07 1.94E-07
3.0E-7 3.0E-7 3.0E-7 2.58E-07 2.57E-07 2.93E-07
4 0E-7 4.0E-7 4.0E-7 3.56E-07 3.58E-07 3.94E-07
5.0E-7 5.0E-7 5.0E-7 4.54E-07 4 55E-07 4 90E-07
1.0E-7 1.0E-7 1.0E-7 5.77E-08 1.00E-07 9.50E-08
2.0E-7 2.0E-7 2.0E-7 1.57E-07 1.56E-07 1.94E-07
3.0E-7 3.0E-7 3.0E-7 2.56E-07 2.59E-07 2.93E-07
4.0E-7 4 0E-7 4.0E-7 3.61E-07 3.58E-07 3.94E-07
5.0E-7 5.0E-7 5.0E-7 4.56E-07 4.55E-07 4,90E-07
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