
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Summer 8-31-1998

Telephone-accessed controller using CEBus for device control Telephone-accessed controller using CEBus for device control

over power line over power line

Gerald Aska
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Aska, Gerald, "Telephone-accessed controller using CEBus for device control over power line" (1998).
Theses. 898.
https://digitalcommons.njit.edu/theses/898

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F898&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F898&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/898?utm_source=digitalcommons.njit.edu%2Ftheses%2F898&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

TELEPHONE-ACCESSED CONTROLLER USING CEBUS FOR DEVICE
CONTROL OVER POWER LINE

by

Gerald Aska

The CEBus standard has made it possible for devices developed by different

manufacturers to communicate over the power line. Further, the standard allows analog

adjustments of devices besides transmitting and receiving binary information. This

Controller extends the distance from which these devices can be controlled.

To extend the distance of communication with a device, a telephone line interface

was developed that allows the user to communicate with a CEBus device via the

Controller. The Controller responses to Central Office signaling and opens its

communication channel to allow the user to provide it with the commands by using the

telephone keypad. The Controller interprets these commands and sends the appropriate

information over the power line to the device specified in the command.

To make the Controller user friendly a voice circuit has been included. This

circuit provides all the prompts and responses to guide the user for proper operation of

the Controller.

TELEPHONE-ACCESSED CONTROLLER USING CEBUS FOR DEVICE
CONTROL OVER POWER LINE

by
Gerald Aska

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

August 1998

APPROVAL PAGE

TELEPHONE-ACCESSED CONTROLLER USING CEBUS FOR DEVICE
CONTROL OVER POWER LINE

by
Gerald Aska

Dr. Constantine N. Manikopoulos, Thesis Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Stanley S. ReismRn, Committee Member 	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Yun-Qing Shi, Committee Member	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Gerald Aska

Degree:	 Master of Science

Date:	 August 1998

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1998

• Bachelor of Science in Engineering Technology,
New Jersey Institute of Technology, Newark, NJ, 1996

Major:	 Electrical Engineering

To my dear wife, Pauline, and mother-in-law, Cynthia, for their invaluable support during

my studies at NJIT. To my daughter, Abigail, from whom time was taken so that I could

complete my studies.

ACKNOWLEDGMENT

There are a number of persons that I must give special thanks for their contribution to my

success in completing this thesis. I thank Dr. Constantine N. Manikopoulos for allowing

me to work under his supervision and for providing me with the information that gave me

the basic understanding of CEBus. Thanks to Dr. Stanley S. Reisman and Dr. Yun-Qing

Shi for consenting to be committee members. Special thanks also to Christopher Onjian

for his responsiveness to my questions on CEBus-related issues.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Objective 	 1

1.2 Background Information 	 2

2 SPREAD SPECTRUM 	 4

3 HARDWARE DESCRIPTION 	 ...10

3.1 Power Line Interface 	 12

3.2 Telephone Line Interface 	 18

3.3 Ring Detector 	 23

3.4 Tone Detector 	 29

3.5 Voice Module 	 34

4 SOFTWARE IMPLEMENTATION 	 42

4.1 Bank Memory Implemention 	 42

4.2 Software Development 	 49

4.3 CEBus Message Transfer using CEBench 	 52

4.3.1 Layers Definitions 	 52

4.3.2 CEBench Modifications 	 55

5 USER INTERFACE 	 60

6 CONCLUSION AND FUTURE IMPROVEMENTS 	 65

APPENDIX A CONTROLLER APPLICATION SOURCE CODE 	 68

APPENDIX B CONTROLLER APPLICATION FLOWCHARTS 	 103

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

APPENDIX C COMPILE BATCH FILE 	 .113

APPENDIX D CONTEXTS, OBJECTS AND IVS 	 114

APPENDIX E ALTERA SOURCE CODE 	 .120

APPENDIX F SCHEMATIC DIAGRAMS 	 122

APPENDIX G PARTS LIST 	 128

REFERENCES 	 .132

viii

LIST OF TABLES

Table Page

2.1 Spread spectrum symbol code 6

3.1 DLL functions implemented by CEThinx part of CENode PL 	 13

3.2 CENode/Host processor commands 	 14

3.3 I/O lines and their uses 	 15

3.4 U.S. telephone line operating parameters and limits 	 19

3.5 Truth table of Multivibrator 	 25

3.6 Status register bit description 	 31

3.7 Functional encode/decode table... 	 31

3.8 Control logic to access registers 	 33

3.9 Sythesizer Phonemes 39

3.10 Phonemes Attribute Tokens.. 	 40

3.11 V8600 command summary 	 41

4.1 Data transfer between modules in hierarchical program 	 51

5.1 Valid and Invalid conditions for a command code 	 62

ix

LIST OF FIGURES

Figure	 Page

2.1	 Spread spectrum signal for a 1 bit 5

2.2	 Representation of two consecutive 1 bits 	 7

2.3	 Bit representaion for the preamble 	 8

2.4	 Preamble and preamble EOF signaling 	 8

2.5	 Beginning of data using 4'1 and (02 for symbols 	 9

3.1	 High-level block diagram of Controller 	 10

3.2	 Second-level block diagram of Controller 	 11

3.3	 CENode PL block diagram 	 13

3.4	 Timing diagram of Attention Sequence 	 17

3.5	 Timing diagram of read Command Sequence 	 17

3.6	 Timing diagram of write Command Sequence 	 18

3.7	 Ringing cadence at Tip and Ring 	 21

3.8	 Ringing cadence at output of DAA 	 21

3.9	 Telephone Line Interface Circuit 	 22

3.10 Multivibrator used in Ring Detector Circuit 	 24

3.11 Counter circuit used in Ring Detector Circuit 	 26

3.12 Timing relation of Multivibrator and ring cadence of DAA. 	 27

3.13 Tone Detector Circuit... 30

3.14 V8600 logic symbol 	 35

LIST OF FIGURES
(continued)

Figure Page

3.15 V8600 status flags 	 36

3.16 Microprocessor interface example 36

3.17 Parallel Printer Port interface example 	 37

3.19 RS-232 Serial interface example 	 37

4.1 Altera bank memory implementation program (partl) 	 44

4.1 Altera bank memory implementation program (part 2) 	 45

4.2 Address range of each bank in memory chip 46

4.3 Memory map of Controller (part 1) 	 47

4.3 Memory map of Controller (part 2) 	 48

4.4 Hierarchical arrangement of software program 	 50

4.5 CEBench components of CEBus device. 	 53

4.6 Contexts, Objects and IVs used for the Controller (part 1). 	 56

4.6 Contexts, Objects and IVs used for the Controller (part 2) 	 57

5.1 Operation flowchart of Controller (part 1) 63

5.1 Operation flowchart of Controller (part 2) 64

xi

CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this thesis is to present the design and implementation of a Controller

that is accessible from the telephone line and send control signals via the power line to a

controlled device.

Since the CEBus standard is moving towards becoming a popular standard it will

be inevitable that users will need a device that allows them to be able to control devices

in the home from a remote location. Currently, X-10 allows remote control of device in

the home. The problem is that X-10 is a proprietary standard and only a few devices can

communicate using this standard. CEBus on the other hand is an open standard and

because it flexibility and capability, that exceeds that of X-10, it is expected that many

manufactures will either start or developing home automation devices, using CEBus,

adding to the number of existing manufacturers. The Controller, that has been developed,

satisfies the need for users to be able to communicate with any CEBus device from a

remote location.

In the process of designing the Controller five stages were developed. The first

stage is the Telephone Line Interface. It is responsible for line impedance matching and

generating and receiving central office signaling. All user code entered from a telephone

keypad enters this Interface. The Ring Detector forms the second stage of the Controller.

It detects the ring signal from the Telephone Line Interface after it has been reformatted.

This circuit determines the number of rings the Controller will allow before responding.

The third stage is the Voice Module, which sends synthesized voice prompts and

2

responses to the user. These prompts and responses guide the user through the operation

of the Controller. The fourth stage is the Tone Detector, which detects the code the user

enters from the telephone keypad. The dual-tone signal is then converted to a 4-bit digital

code so that the microcontroller can interpret it. The final stage of the Controller is the

Power Line Interface. This stage is responsible for converting digital-coded information

to spread spectrum format in the transmitting mode and from spread spectrum to a digital

format in the receiving mode. Spread spectrum is the technology used for power line

communication. Since, no device currently exist that allows remote control of CEBus

devices the design was started from an high-level block diagram and proceeded to the

component level design and implementation. Also, the software started with a high-level

flowchart to the writing of many lines of code.

An important consideration used in the development of this device is the ease of

use. This is the reason for including a synthesized voice feedback to the user. The user

knows when to enter a code and receives a feedback on what happen when it was

processed. The Controller receives four-digit access and command codes. It was also

designed to allow the user to be able to use an extension to control a device that may be

in another room of the house that the user is in. This feature was also implemented.

1.1 Background Information

As the market for home automation increases more manufacturers will become involved

in developing home automation devices. To avoid the confusion and hardship for

consumers to find devices that are compatible to those that may already be in the home it

became important to develop a standard among home automation manufacturers. The

3

standard developed by the Electronics Industries Association (EIA) for home automation

is the Consumer Electronic Bus (CEBus) standard. Since it was develop by a standard

organization it will facilitate the interoperation of CEBus devices from various

manufacturers.

The Controller presented in this thesis incorporates the CEBus standard making it

possible to communicate with a CEBus device from a remote location.

CHAPTER 2

SPREAD SPECTRUM

The spread spectrum waveform is a 100kHz to 400kHz bandeaus-filtered signal used in

CEBus for communication over the power line. A 1 bit is represented by the waveform

shown in Figure 2.1. The waveform starts at 200kHz and sweeps to 400kHz then

suddenly changes to 100kHz and sweeps to 200kHz. The total sweep from 200kHz

through to 200kHz again takes 25 cycles and a duration of 100p.sec. This sweep is called

a chirp. To meet FCC standard the out of band frequency above 400kHz must have an

amplitude of less than lmV. This is to ensure that the signal does not affect any AM

radios that might be connected to the power line. The amplitude of the signal less than

100kHz must be less than 5mV to prevent interference with air and marine radio

navigation.

The symbols, 1 and 0, are transmitted along the power line using SUPERIOR and

INFERIOR states. Before any packet of data is transmitted on the power line a preamble

must precede it. The SUPERIOR state of the preamble is that shown in Figure 2.1 and the

INFERIOR state is the absence of the SUPERIOR state. In other words, the type of

modulation used for the preamble is Amplitude Shift Keying (ASK). The preamble is a

series of ones and zeros used in the sensing of the presence of another node transmitting.

The physical layer does this by receiving its own signal. When it sends a signal

(SUPERIOR state) it expects to get back a signal and when it does not send a signal

4

5

(INFERIOR state) it does not expect to receive a signal. However, if it gets a signal

during its INFERIOR state it is an indication that another node is transmitting and that it

Figure 2.1 	 Spread spectrum signal for a 1 bit.

must back off. This detection method is called carrier sense multiple access (CSMA). If.

after all the eight bits of the preamble has be transmitted and no other node has been

detected this node sends a preamble EOF (End of Frame) signal to let the other nodes

know that it is about to transmit data.

In the data portion of the packet symbols are represented by two SUPERIOR

states (phase 1 and phase 2). The signal shown in Figure 2.1 is called SUPERIOR phase 1

(4)1). SUPERIOR phase 2 (4)2) is 180° out phase with SUPERIOR 4)1. Therefore the

modulation method used in the data portion of the packet is Phase Reversal Keying

(PRK). In the data portion of the signal there can be no absence of the signal as in the

preamble. When the receiver detects a valid signal it then locks on to the signal for the

duration of the packet. If the signal became absent the receiver would assume that it has

6

received the whole packet. However, the packet would eventually be discard after

processing.

What is important in spread spectrum to represent a bit is the duration of the

signal and not the phase. Table 2.1 shows the duration of the signal to represent 0, 1, End

Table 2.1 	 Spread spectrum symbol code.

of Frame (EOF), and End of Packet (EOP) for different parts of a packet. A 100i.ts

duration of the signal is called a Unit Symbol Time (UST). Earlier, it was mentioned that

a 1 bit is represented by the signal shown in Figure 2.1, however an inverted or 180° out

of phase signal may also represent a 1 bit provided that the duration of the signal is

100p,s. This inverted symbol is called a INFERIOR or SUPERIOR 4)2 (phase 2) state and

the non-inverted SUPERIOR state is called the SUPERIOR 4)1 state. Spread spectrum

alternates between these phases to represent a series of 1 bits. Figure 2.2 shows the spread

spectrum signal to represent two consecutive 1 bits. Note that after the first 100p.s signal

the phase is reversed to represent the next 1 bit. This phase alternating also applies to the

0 symbol which has a duration of 20011s. Also for a 0 bit, whichever phase is representing

the signal that phase is continued for the duration of the symbol. The chirp will just be

repeated.

7

As shown in Table 2.1, the duration of the signal that represent a symbol for the

preamble is different from that of the data portion. Since a chirp last for only 100us there

is an absence of signal even before the end of the symbol. The states are alternated just as

in the data portion of the packet. Also, to represent a 0 bit there are two consecutive

absences of the signal. The pattern is shown in Figure 2.3.

Figure 2.2	 Representation of two consecutive 1 bits.

8

Figure 2.4 shows an example of preamble and the states used to represent the series of

bits (01101001). The preamble EOF (PRE_EOF) is a series of eight ones and is

represented by eight SUPERIOR states. The SUPERIOR state is represented by 41 and

the INFERIOR state by "---" in the preamble. After the PRE_EOF has been transmitted

the data portion of the packet follows. This is shown in Figure 2.5.

r Calli Li 1G CLU.U.

9

Figure 2.5	 Beginning of data using 41 and (1)2 for symbols.

CHAPTER 3

HARDWARE DESCRIPTION

The high-level block diagram of the Controller is shown in Figure .3.1. The Telephone

Line Interface receives signaling information from the telephone company central office

and DTMF code from the user at the other end of the line. The Ring Detector counts the

number of rings. When the set number of rings are detected the circuit signals the

microcontroller. The microcontroller then accesses the telephone line and sends data to

Telephone Line

Figure 3.1 	 High-level block diagram of Controller.

10

Figure 3.2	 Second-level block diagram of Controller.,

12

the voice module. The Voice Module transmits an intelligible audio prompt to the user

requesting some action. The user responses by pressing appropriate keys on the telephone

keypad. The Tone Detector decodes these entries. The inputs to the Tone Detector are

DTMF tones. The decoded tones are analyzed by the microcontroller to determine the

action to take. The tones must provide information as to which device to operate and

what kind of operation to perform. This communication between the controller and the

controlled device takes place over the power line. The interface to the power line is

provided by the Power Line Interface. Figure 3.2 shows a more detailed block diagram of

the Controller. Refer to Appendix F for schematic diagrams. The following sections

provide details of the functions of the hardware.

3.1 Power Line Interface

The Power Line Interface consist of a toroid impedance matching transformer, a 60 Hz

blocking capacitor, two clamping diodes and the CENode PL Network Interface Card

(SSC ON PLO 1 S-02) made by Intellon. The CENode PL Network Interface Card

contains all of the circuitry and processing to implement EIA-600 Data Link Layer and

Physical Layer of the CEBus Power Line Specification.

A block diagram of the CENode PL is shown in Figure 3.3. The CENode PL

contains the CEThinx that implements the Data Link Layer and the CELinx PL that

implements the Physical Layer of the Controller. The CELinx generates and detects

spread spectrum waveform. In the detection mode of the CELinx PL the received spread

spectrum is compared to an internal representation of the signal. Once a match is detected

13

the receiver locks on to the signal. This is why no absence of the signal can occur in the

information portion of a packet. The receiver can detect signals of amplitudes between

5mV and 7V in the presence of power line noise.

The DLL part of the CENode PL is implemented by the CEThinx. The table

below (Table 3.1) lists the functions of CEThinx in both transmitting and receiving

modes [5]:

Table 3.1	 DLL functions implemented by CEThinx part of CENode PL.

1 4

The CENode to Host interface supports 15 commands. The development software

used for the Controller sends these commands to the CENode. Table 3.2 shows these

commands [4].

Table 3.2	 CENode/Host processor commands.

15

The logical interface between the Host processor and the CENode uses 13 I/O

lines. Eight are bi-directional data lines, four are handshaking, and one is the Reset input.

These 13 lines and their uses are listed in Table 3.3 [4].

Table 3.3	 I/O lines and their uses.

1 6

The time allowed to service a DLLST* signal from the CENode with a HSTST*

signal from the host is up to lmsec. Beyond this time duration the CENode will time-out.

The exception to this rule occurs when DLLST* is asserted for an Attention Sequence. In

this case the HSTST* response cannot be timed out. The DLLST* is a fixed pulse of

approximately 611sec duration. The maximum supported transfer rate between the

CENode and the host processor is approximately 40Kbytes per second.

The CENode uses an Attention Sequence to cause the host to execute a command

sequence. To prevent a race condition, the CENode executes a non-interruptible

Attention Sequence by first asserting DLLWR* and then waiting approximately 15p,sec

while checking for a HSTST* signal. If a HSTST* is seen during the time, DLLWR* is

dropped and the host command sequence is performed. If after approximately 151..isec, no

HSTST* has been seen, the CENode asserts a DLLST* signal. The next HSTST* is then

interpreted as an acknowledgement of the Attention Sequence. The HSTWR* should be

asserted prior to this time by the host and the CENode will drop the DLLWR* signal in

response to the HSTST* signal. Figure 3.4 shows the timing diagram for the Attention

Sequence.

Although the CENode can cause the host to initiate a command sequence, the host

can do it independently and asynchronously. In either case, the host starts a command

sequence by putting the command on the data bus and asserting HSTWR*. If the host is

not responding to an Attention DLLST* it must, in a non-interruptible sequence lasting

not more than 15pec, check that DLLWR* is not asserted before asserting HSTST*. If

DLLWR* is asserted it must wait for the Attention DLLST*, then with a HSTST*

17

acknowledge it and indicate a command on the data bus and continue with the command

sequence. The host may have to wait up to 5p,sec for the initial DLLST* acknowledging

the command. Figures 3.6 and 3.7 show the timing diagrams for the read and the write

command sequences respectively [4].

Figure 3.6 Timing diagram of write Command Sequence.

3.2 Telephone Line Interface

The Telephone Line Interface is an MH88434-P Data Access Arrangement (DAA)

manufactured by Mitel. The device provides isolation to comply with North American

standards -- FCC Part 68.304 and DOC CS03 2.2 [1]. Table 3.4 lists the operating

parameters and limits for telephone equipment in the United States [16].

To protect the device from damage due to over voltage a P3203AB sidactor (SDI)

is connect across Tip and Ring as shown in Figure 3.9. Damaging transient voltage may

occur due to lightning surges of up to 1000 volts and induced voltages from, or short

circuits to, utility electrical power lines. The sidactor is a very fast clamping device.

When it senses high voltages on the line it provide a low impedance in a matter of

nanoseconds to protect communication equipment. It will hold the line voltage low until

the high voltage that triggered the device reaches a safe level.

19

Table 3.4	 U.S. telephone line onerating narameters and limits

**dBrnC = dB value of electrical noise referenced to —90dBm measured with C message

weighting frequency response.

A resistor, zener diode and capacitor in series are connected across Tip and Ring

as a dummy ringer. Its purpose is to provide a load across Tip and Ring.

When Loop Control (LC*) is at logic 0, a line termination is applied across Tip

and Ring. At this logic level the device is in the off-hook state and DC loop currents will

flow through the DAA from the central office. The line termination consists of a DC line

termination and an AC input impedance. The DC termination is dependent on the loop

current and is approximately 3000. Zext represents the additional impedance required for

20

proper impedance matching of the DAA to the line impedance. The following formula

was used to calculate the value of Zext:

Vv nere Lint is tne internal impeaance or me UAA and is equal to I -NCO,. Lin (me

impedance of the telephone line) is equal to 600n.

The resistor R2 sets the sensitivity of the ring voltage detection circuit. Using a

300kQ resistor sets the sensitivity to approximately 20Vrms. The ring signal from the

central office is typically 90Vrms. The ring frequency from the central office is between

16Hz and 60Hz. However, the frequency is doubled (32Hz to 120Hz) when it comes out

of the DAA at the Ring Voltage/Loop Current (RVLC*) pin. This output ring voltage is

at TTL level. Another consideration of the ring signal is the ringing cadence. The ringing

cadence for the United States and Europe is 2 seconds ring and 4 seconds silence. Figure

3.7 shows the ring signal from the central office and Figure 3.8 shows the ring voltage at

the output of the DAA.

The DAA converts the balanced two-wire input at Tip and Ring to a ground-

referenced signal at VX. It also converts the ground-referenced signal at VR to a

balanced two-wire signal across Tip and Ring. The transmit (VX) and receive (VR)

signals are biased at 2.5V. During full duplex transmission an internal cancellation circuit

prevents the signal sent out on TIP and Ring from re-entering on VX.

The transmit gain of the DAA is the gain from the differential signal across Tip

and Ring to the ground referenced signal at VX. Resistors R3 and R4 alters the gain of

21

22

the device. The gain of the device was reduced by 50% (3dB) using a voltage divider

consisting of two 2k0 resistors. The receive gain of the device is the gain from the

ground referenced signal at VR to the differential signal across Tip and Ring. The input

resistance at VR (to ground) is 47k.Q. A 100k0 resistor was used to reduce the gain by

50% (3dB).

23

The DAA shown in Figure 3.9 is capable of monitoring the line condition across

Tip and Ring. The Ring Voltage/Loop Current (RVLC*) detect pin indicates the status of

the device. The output is a logic 0 when loop current flows indicating that the device is in

the off-hook state. The pin will also go low when an extension phone goes off-hook. This

feature was used to implement the extension phone mode of the Controller. In the dial-up

mode the RVLC* pin will output ringing voltage which distinguishes it from the

extension mode.

When the Controller is on-hook, 48V is across Tip and Ring. When the line is

accessed (LC* low) a low DC impedance of 100 to 4000 causes a loop current to flow.

At the time the ring signal is present no loop current flows.

3.3 Ring Detector

The major components of the ring detector are the 74LS 123 retriggerable

monstable multivibrator and the 74LS191 Up/Down Binary Counter. Figure 3.10 shows

the circuit diagram for the multivibrator and Table 3.5 shows its truth table [17]. Resistor

R1 and capacitor Cl essentially determines the basic output pulse duration. For Cl less

than or equal to 1000pF the pulse duration is calculated from:

t = K * R1 * Cl (3.2)

When Cl is greater than or equal to 1 11F, the output pulse duration is calculated from:

t,., = 0.33 * R1 * Cl	 (3.3)

24

For the given equations, as applicable:

K is the multiplier whose value depends on the expected pulse duration. This

value was obtained from the data sheet.

R1 is in KO

Cl is in pF

tw is in ns

Connecting the Cext pin to ground gives maximum noise immunity even though the

device is connected to ground internally. Due to the timing scheme used by the device, a

switching diode is not required to prevent reverse biasing when using electrolytic

canacitors 11 71

TT1T1r1,1 T TMTILT TT('

25

A pulse of 2sec was calculated for the Controller. This duration was used so that

the pulsed would reflect the ringing cadence. Each time the ringing signal is present the

output of the 74LS 123 goes to logic 1 to increment the count. Doing so we can set the

number of times the Controller will "ring" before seizing the telephone line. As Figure

3.11 shows the number of rings can be set to either 2 or 4 using AND gates. We will get

back to the detail of this circuit a little late. For now we want to look at the response of

the multivibrator circuit in relation to the ringing cadence at the output off the DAA.

Recall that the multivibrator used is retriggerable. Therefore when the ring stops and the

silent period begins the output of the multivibrator will be at logic 1 for 2 more seconds

after the ring stops (although it rose to logic 1 at the beginning of the ring). Figure 3.12

shows

Table 3.5	 Truth table of Multivibrator.

26

this timing relation. The 74LS 191 counter has a positive edge clock. When counter

receives a positive-going edge from the multivibrator it will increment at the beginning of

each ring.

The counter begins to operate at power-up. Since at power-up the capacitor has no

charge the upper plate of the capacitor is virtual zero. The Load input of AND late C in

27

Figure 3.11 is also initialized to zero. Therefore the input on the PL* pin of the 74LS 191

counter will be zero. This will cause the inputs on pins P0, P 1 , P2 and P3 to be loaded

into the counter setting the output of counter (QO, Q 1 , Q2 and Q3) to zero. When

"ringing" begins it causes the counter to increment. Note the dial and extension outputs

of the counter circuit. The extension output is low when the count is 1. This will indicate

to the microcontroller that there is a request for access to the Controller. The

microcontroller will then seize the telephone line to begin communication.

Time in seconds

Figure 3.12 Timing relation of multivibrator output (top) and ringing cadence at output
of DAA (bottom).

There was one problem here that needed to be solved. The extension output of

Figure 3.11 should only be active when an extension phone is off-hook. However, it does

28

become active even in the dial-up mode since the counter will eventually reach a count of

1. If this problem is not solved then we will never get to a count beyond 1 and there will

be no distinction between dial-up access and extension phone access. That is, the

telephone line will be seized at the count of one. This will cause the ringing signal from

the central office to stop, ending the count at one. What makes this problem serious is

that for extension access no access code is required and anyone can have access to any

device in the home although the user would be using a remote telephone for access. To

solve this problem a twelve-second software delay was added. Since only the extension

phone can cause the RVLC* pin to be at logic 0 for 12 seconds then the microcontroller

cannot be confused as to which mode of access to provide. In other words, the count of 1,

using a remote telephone, will not remain at 1 long enough for the Controller to accept it

as a local access. After each access to the Controller the microcontroller resets the

counter by setting the Load input on AND gate C to a logic 0.

Because of the timing relation between the multivibrator output and the DAA

output, setting the number of dial-up rings was not straightforward. To set the Controller

to "ring" 2 times the counter had to be set for a count of 3. To explain the reason for this

we must look back at Figure 3.12. Note that the first high output of the multivibrator

occurs when the ring signal goes to logic 0 causing the counter to immediately go to a

count of 1. The output then goes low for 2 seconds before the next ring. After the first

silent period of the ring signal and at the beginning of the second ring the counter will go

to a count of 2 because of the second high at the output of the multivibrator. A count of 3

will occur just at the start of the third ring. In fact the microcontroller will respond to this

29

count of 3 so fast that the ring signal will be cut off before it can even make a complete

cycle. Therefore only 2 rings actually occur for a count of 3 at the output of the counter.

3.4	 Tone Detector

The MT8888C Integrated DTMF Transceiver is responsible for detecting and converting

DTMF tones. Figure 3.13 shows the Tone Detector circuit diagram used in the Controller.

The MT8888C detects a valid dual tone by a steering circuit. Before loading the Receive

Data Register (RDR) with the corresponding 4-bit data the steering circuit in conjunction

with the C2 and R3 checks the duration of the tone. This is done so that voice tones

(which are of shorter duration) are not interpreted as valid tone pairs. When a valid tone

pair is received Est goes to logic 1 which in turn drives St/GT to logic 1. Provided that

the signal is maintained for the valid period, St/GT will reach the threshold voltage of the

steering circuit. This is enough time for the steering logic to register the corresponding

code in the register. After the code is registered GT outputs a logic 1 which will remain

as long as Est stays at logic 1. There will be a short delay to allow the output latch to

stabilize. After this delay the steering output flag goes to logic 1 indicating that a valid

tone pair has been received and registered. The condition of a valid tone pair detection

can be obtained by reading a logic 0 on bit b3 of the status register. Table 3.6 [1] shows

the representation of each bit in the status register. Although the steering circuit rejects

signals that are too short to be considered valid, it will tolerate signal interruptions too

short to be considered a valid pause [1].

The input signal, from the DAA, enters the MT8888C on IN-. In Figure 3.13 the

input is connected in the single-ended mode. Capacitor C 1 and resistors R1 and R2

30

determine the gain of the input amplifier and GS provides the feedback path. Capacitor

Cl also provides dc voltage blocking.

+5V

0

Figure 3.13 Tone Detector Circuit.

The MT8888C is capable of generating sixteen standard DTMF tone pairs with

low distortion and high accuracy. All frequencies are derived from crystal Yl that must

be 3.579545 MHz. The sinusoidal waveforms for the individual tones are digitally

synthesized using a row and column programmable divider and switched capacitor D/A

converters. The standard set for the tolerance of the individual tones in North America is

Register. The individual tones generated are referred to as low group (LOW FREQ.) and

T 	 a "I	 fnfrio rarri ofar 	 r ctorse-4,+; "rt

31

32

high group (HIGH FREQ.) tones. Typically, the high group to low group amplitude ratio

is 2dB to compensate for high group attenuation on long loops.

In certain telephony applications it is required that DTMF signals generated are of

a specific duration determined either by the particular application or by any one of the

exchange transmitter specification currently existing. Standard DTMF signal timing can

be accomplished by making use of the burst mode. The transmitter is capable of issuing

symmetric bursts/pauses of predetermined duration. This burst/pause duration is 51 ms±l

ms, which is a standard interval for auto-dialer and central office applications. After the

burst/pause duration expires the appropriate bit is set in the Status Register which

indicates that the transmitter is ready for more data. The timing described above is

available when the DTMF mode is selected in Control Register A (CRA).

The MT8888C is capable of transmitting single tones from either the low or high

group. To accomplish this bit b2 of Control Register B (CRB) must be set to logic 1 and

the device must be in DTMF mode.

The MT8888C incorporates an Intel microprocessor interface that is compatible

with a 16 MHz 80051 microcontroller. However, this device was interfaced to the

Motorola MC68HC11 in which additional logic had to be use for RD* and WR*

signaling. The MC68HC11 microcontroller has only one pin for both the read and write

signals in which a high indicates a read and a low for write. The MT8888C however has

two pins, one for read and the other for write. Hence the use of addition logic. This chip

was used due to availability. The DTMF chip for the MC68HC11 is the MT8880C.

33

The microprocessor interface of the MT8888C provides access to five internal

registers. The read-only Receive Data Register contains the decoded output of the last

valid DTMF digit received. Data entered into the write-only Transmit Data Register will

determine which tone pair will be transmitted. Transceiver control is accomplished with

two control registers — CRA and CRB — which have the same address. CRB can be

accessed only when a logic 1 is written to bit b3 of CRA. The following control register

write will be to CRB. The third control register write will be to CRA again. If CRB

needs to be accessed again then a logic 1 must be written to b3 of CRA again. Table 3.8

shows the logic levels on the control pins to access the registers. These control levels

must accompany a logic 0 on pin CS*.

Table 3.8	 Control logic to access registers.

^1 A

35

of a 131,072 x 8 ROM which contains the text to speech algorithms. The V8600 supports

524,288 bytes of ROM for storing customization programs such as pre-recorded PCM-

encoded speech. An 8,192 x 8 RAM provides storage for the exception dictionary, a 4K

FIFO buffer for the DAC (Digital to Analog Converter) and tone generators, and the

input text/command buffer. The input buffer and the exception dictionary share

The module supports three types of interfaces namely, microprocessor, parallel

and serial. An example of each interface is shown in Figures 3.16, 3.17 and 3.18

respectively. The microprocessor's read and write signals control the data direction

between the microprocessor and the V8600. The CS* signal can be derived from an

address decoder. In the microprocessor configuration, the host processor can read the

36

V8600 status flags. The bit definitions of the status byte are shown in Figure 3.15. When

the SYNC bit is set to 1 the synthesizer is either talking or sending out data from the tone

generator. It goes to 0 immediately after output ceases. SYNC2 is similar to SYNC but

drops to 0 up to 0.5 seconds earlier. The RDY (Ready) is set to 1 when the V8600 is

ready to accept data. AF (Almost Full) is set to 1 when less than 300 bytes are available

in the text/command input buffer. AE (Almost Empty) is set to 1 when less than 300

bytes are occupied in the text/command input buffer

Figure 3.16 Microprocessor interface example

In the printer port example, the STB* output from the computer's parallel printer

port connects directly to the V8600's WR* pin. The V8600's ACK* and busy outputs

Figure 3.18 RS-232 Serial interface example

serve as handshaking signals with the port. In most cases it is not necessary to utilize both

The V8600's asynchronous serial port provides the means to operate with a handshaking

signals as they essentially convey the same information. In this configuration, the host

computer simply prints the text to be spoken to the V8600 remote computer's

38

communications port. The port operates with 8 data bits, one or more stop bits and no

parity. Baud rate selection is automatic. The V8600 currently does not use the TXD or

DSR pins for any purpose, and may be left unconnected. In this configuration, the host

computer simply prints the text to be spoken to the V8600. Because the V8600's serial

port I/O pins operate at TTL levels, the addition of (at most) two RS-232 line drivers and

receivers are necessary

The baud rate of the serial port is determined automatically from the first

character received on the RXD pin which is usually CR (0Dh). Since this is done by

measuring the duration of the start bit, the first data bit (DO) must be a logic 1 for proper

detection of the end of start bit. The first character is then discarded. The baud rate is

reset only when the V 8600 is reset.

The V8600 has four addressing modes namely Text, Character, Phoneme and

PCM. The modes can be changed at any time, even within the same string of text. In the

Text mode all text sent to the V8600 is spoken as complete sentences. Punctuation is also

taken into consideration by the intonation generation algorithms. The V8600 will not

begin translating text until it receives a CR (0Dh) or Null (00h) character -- this ensures

that sentence boundaries receive the proper inflection.

The Character mode causes the V8600 to translate input text on a character-by-

character basis. In other words text are spelt instead of spoken as words. The V8600 does

not wait for a CR/Null in this mode.

The Phoneme mode is useful for creating customized speech, when the normal

text-to-speech (Text) mode is inappropriate for producing the desired voice effect.

Phoneme mode is used when it is important for the correct stress and emphasis be placed

39

on certain words in a phrase. This detailed modification is not possible with text mode

since changes are only allowed at word boundaries whereas phoneme mode allows

changes within words. Table 3.9 lists the phonemes that can be produced by the V8600

and Table 3.10 lists the attribute tokens. For example in text mode a sentence, in C

language, would be sent to the V8600 as follows:

printf("How dare you speak to me like that way!");

In phoneme mode the same sentence could sent as shown below:

prinf("70H AW -/D>/EH R +<\\YY UW S P\IY K T UW \M IY DH AE T -\W EY

40

FIFO buffer. The results in a very high data rate, and provides the capability to produce

the highest quality speech. This mode also provides sound effects that are not possible in

the text mode.

The V 8600 interprets a list of commands that are used to change the synthesizer's

attributes, such as volume or pitch. A list of these commands is shown in Table 3.11.

The output of the V 8600 (SPKR pin) was connected to the DAA so that the audio

could travel along the telephone line to the user. A resistor was connected between the

V8600 and the DAA as recommended by the manufacturer. A 0.1p.F capacitor blocked

the 2.5V on the VR pin from reaching the V8600. A logic circuit connected to WR* and

RD* provides selection of the Speech Synthesizer only when its address was specified on

the address bus. This logic was necessary since the V8600 does not have a chip select pin

[18].

Table 3.11 V8600 command summary.

41

CHAPTER 4

SOFTWARE IMPLEMENTAION

This chapter contains all the relevant information pertaining to the development of the

software for the Controller. This includes the development software configuration for the

banked memory mode which was used to allow the 16-bit address lines of MC68HC11

microcontroller access 128 bytes of memory. The structure of the device application

program that allows the proper operation of the Controller in relation to CEBus internal

function is described in section 4.2. Also included is the configuration of the CEBench

software to allow correct interfacing of software and hardware for communication over

the power line.

4.1	 Bank Memory Implementation

The file cstartup.s07 contains the routine to configure the hardware after a power-up or

manual reset. The user to comply with the current hardware design can modify this file.

One important area of configuration is to allow memory to operate in banked memory

mode. As mentioned earlier this allow the MC68HC11 microcontroller which has 16

address lines (with address space of 64Kbytes) to access 128Kbytes of memory. When

the banked memory compiler option is selected the designer must assign a memory

location to store the bank number. This assignment should be made in both the

cstartup.s07 and 109.s07 configuration files. The location 106011 was used for this

memory location as shown below in the cstartup.s07 file:

IOPORT	 EQU $1060

42

43

CLR IOPORT

The foregoing instruction switches the bank to bank 0. The 109.s07 file was modified to

include the following assembly code :

IOPORT	 EQU	 $1060

LDAA	 IOPORT

PSHA

STAA	 IOPORT

PULA

STAA	 IOPORT

The second instruction loads the current bank number into the accumulator. The second

stores this number on the stack. After obtaining the new bank number from the X register

it is stored in location 1060H (third to last instruction). After the program, in the selected

bank, has executed the old bank number is pull of the stack then stored in location 1060H

(second to last and last instructions).

The Altera PLD is responsible for putting the bank number onto the memory

address lines. Figure 4.1 shows a copy of the bank-switching program used in the Altera.

The Altera chip outputs the bank number to the memory chip when the instruction

bankreg[].clk = !(bnk & !rw);

is executed. The bank number to the memory chip is determined by the following "if'

statement in the Altera PLD:

Figure 4.1	 Altera bank memory implementation program (part 1).

44

45

Figure 4.1	 Altera bank memory implementation program (part 2).

46

When address line 14 is low the content of the bank register determines which bank is

selected. If the bank register clock is not activated then the accessed location in memory

may be the non-banked location (bank 7) or the current banked location. The non-banked

location is always selected when address line 14 is high. The address range of each bank

is shown in Figure 4.2 and the memory map showing the addresses used for banked and

non-banked memory for the MC68HC11 is shown in Figure 4.3. Figure 4.3 also shows

47

48

the total memory map of the Controller. More will be said about this memory map in the

next section. Each bank contains 16kbytes. The total number of bytes on the memory

Figure 4.3 Memory map of Controller (part 2).

chip used for the Controller is 128kbytes. The address range 8000H to BFFFH of the

MC68HC11 is used to access the banked portion of memory. Switching to the different

banks is done as outlined above. The non-banked area of memory is addressed from

C000H to EDFF and F000H to FFFFH of the microcontroller. These addresses are

directly mapped to non-banked memory.

49

4.2 Software Development

The software program was designed in a hierarchical arrangement to facilitate the limited

timing for the program and for ease of debugging. This hierarchical arrangement is

shown in Figure 4.4. Lower level modules are controlled by the upper layer modules.

However, data may flow from the lower layers to the upper layers as well as from the

upper layers to lower layers. Table 4.1 shows the data transfer between the control and

controlled modules. So as not to be confused, the controller in the first column of the

Table refers to one of the software module and not the entire unit. (We used a capital "c"

when referring to the unit and a lower case "c" for the software module.) This first

module is called the controller since it determines when the other modules execute. The

column list the module that initiates the execution of other modules. The second column

lists the data that is submitted to the called module and indicates the task to be performed.

The third column lists the called modules. The last column shows the data that the called

module returns to the calling module. This data is the result of the module's execution.

Figure 4.3 shows the memory map as seen by the MC68HC11 microcontroller.

The MC68HC 11 only has 16 address lines and therefore can only address 64kbytes

(0000H to FFFFH) of memory. The Controller required much more memory than this to

perform all its functions. The memory was therefore increased to 128kbytes (00000H to

1FFFF) using banked addressing mode. The microcontroller's address range 8000H to

BFFF was used to address each bank of memory. These addresses provided the offset in

each memory bank while the bank selection was done by the Altera PLD, as was outline

earlier. The flowcharts for the device-level programs are in Appendix B.

Figure 4.4	 Hierarchical arrangement of software program.

Command Code
Check

controller

V
Remote Access 	 Remote
Control 	 Command

Control

Line Release
and Counter
Reset

Local Control Line Detector

Command
Activation

DTMF Status
Check

Access Code
Check

DTMF Read

V
DTMF Ready
Counter

Access Code
Counter

Table 4.1	 Data transfer between modules in hierarchical program

51

52

4.3 CEBus Message Transfer using CEBench

CEBus message transfers were made possible by configuring the CEBench software to

suit the Controller's application. The CEBench software consists of Contexts, Objects

and Instance Variables (IVs) that may be written to or read from. They provide the

interface, in conjunction with the IO.0 source file, between the user written program and

the power line hardware. The IO.0 was modified to transfer data to and from specified

IVs so that CEBus messages could be sent at the appropriate times. Another file that was

modified was the HC1.1HAL.C, used to configure the MC68HC11. Figure 4.5 shows the

components of CEBench used to construct a CEBus device. It also specifies the files to

be modified by the user and the file that must be developed by the user [2].

4.3.1 Layer Definitions

This section defines the layers relevant to the development of a CEBus device from a

developer's point of view.

The CAL Control Layer consist of two parts, namely the definition of a data

structure that models a products operation and a command syntax that defines the

operation of a set of methods on the data structure. The CAL is actually responsible for

what products say to each other.

The CAL interpreter is responsible for CEBus message origination and the

receiving and parsing of CEBus messages. It is an element of the application layer. It

provides services to the application including resource allocation and control functions.

53

54

The IVS.0 file defines the CEBus Contexts, Objects and IVs, their initialization,

and their associations to the IO.0 source file. It consists of tables generated by CEBench

from user specifications. This file must not be modified since the target libraries are

written to interface to this file as it is generated by CEBench. Modifying this file may

result in incorrect or non-operation of the target executable file.

The IO.0 is a template file to be modified by the user. It provides the connection

between the Contexts, Objects IVs and the associated target system hardware. This

association is implemented by using a series of case statements in which each case

number corresponds to a number placed in the I/O column of the Context. When the

CEBus execution cycle reaches this I/O number the of the Context the corresponding

series of code will execute.

The USERL.0 file allows the user to implement customized CEBus functionality.

It provides user access to CAL control indications of CEBus functions such as macros,

and result messages and also allows user access to the message transfer layer for sending

CAL messages [2].

Another important file that is not included in Figure 4.5 is MAIN.C. This file

implements the overall target program flow. It is responsible for calling the subroutines to

initialize the CON Control, Message Transfer, Network, Logical Link and the Hardware

Abstract Layers. After the initialization of these layers it then calls the CEBus executive

entry point — CEBus_Proc(). This in turn initiates the execution of the CON Control,

Message Transfer and Network Layers. Since this entry point is in a while loop these

layers are repeatedly executed.

55

The user developed program is also called from within the while loop in MAIN.C.

However the user program must not execute for more than 1 msec. Violating this time

constraint will result in the breakdown of the communication with the CENode. Using

interrupts in the program may also cause problems. Since the Intellon CENode is single

buffered and subject to the stringent timing requirements of the CEBus Data Link Layer,

the Logical Link Layer interface software disables interrupts during CENode

handshaking. This may result in the user interrupts being delayed for up to 2msec or more

depending upon CEBus traffic to the device.

4.3.2 CEBench Modifications

To allow the Controller to operate in a CEBus environment we had to select the

appropriate Context, Objects and IVs. After making these selections we then modified

them to allow the Controller to function as designed.

Figure 4.6 shows the Contexts, Objects and IVs used in the Controller. Three

Contexts are used to perform the function for a light switch and a heater. The Controller

address is set to 0003:0001 as shown in IV 'h' and 'a' in the Universal Context. To

perform the operation for a light switch, we used the Light Context and three Binary

Sensor Objects. Object 06 was set up for automatic data transfer. The automatic data

transfer is initiated by changing IV 'C'. This condition for automatic transfer is set by the

`R' IV (43 ed 00) which tells the Controller to send the data whenever the 'C' IV

changes. The destination of the data is set by the IVs 'H' and 'A'. 'A' contains the system

address (0001) and the MAC address (0002) of the destination device. The IV 'H'

contains the Context ID (21), Object (06) and IV (43 the ASCII for C) in the destination

56

CEBus Remote Access Controller 	 .
# CONTEXT 	

1 	 ID

AO Universal 0 : univ.cxl 	 00
# I 	 OBJECT 	

I 	 CLASS

0 1 Node Control (Device Control) : nodectrl.cob	 I	 01
IV NAME MEM TYPE SIZE RI. WI. VALUE

s serial_# ROM R String 21 3 3 GA1198
n manuf name ROM R String 21 3 3 GA CEBus Solutions
m manuf model ROM R String _ 3 3 CON 997
c product class 1 ROM R String 21 3 3 UNLISTED

. h system_addr NVM R/W Data 1x2 3 3 00	 03
a mac_addr NVM

.-- 6
12/W Data 1x2 3 3 00	 01

context_list ROM R Data 4x2 3 ao	 00 a0 21 a0 74 al 74
f Configured RAM R/W Boolean 1 3 3 True
i setup- RAM R/W Integer 2 3 3 0
u user_feedback RAM '12/W Integer 2 3 3 0

02 Context Control (Context Control) : cntxctrl.cob 02	
1IV NAME MEM TYPE SIZE RL VALUE

o object_list ROM R Data 3x2 3 3 101 01 02	 02	 16 03

03 Data Memory (Event Manager) : datamem.cob 	 I	 16
IV NAME MEM RJW TYPE 	 1 SIZE RI. WL VALUE

C current_index RAM R/W Integer 2 3 3 0
1	 Irriernory_blocic_ RAM R/W Data 1x25 3 3

CEBus Remote Access Controller
. CONTEXT ID

AO Light (Switches) : light.cxl 21
OBJECT CLASS

01 Context Control (Context Control) : cntxctrl.cob 1	 02
IV NAME MEM RAN TYPE SIZE RL Wt. VALUE

o object_list ROM R Data 4x2 3 3 02 01 06 06 06 07 06 08

06 Binary Sensor (Light Switch) : bsensor.cob 06
IV NAME MEM P1W TYPE SIZE RI. Wt. VALUE

C current_state RAM R Boolean 1 3 3 Fal s e

R report_condition NVM R/W Data 1x4 3 3 43 ed 00

H report_header NVM R/W Data 1x6 3 3 21 06 45	 43	 f5

A dest address NVM R/W Dais 1x4 3 3 00 02 00 01

P previous value RAM R Boolean t 3 3 False

07 Binary Sensor (Light Intermediate Switch) : bsensor.cob 	 I/O # (2) 06
IV .,.-	 NAME MEM 1 	 P/W TYPE SIZE RL Wt. VALUE

C current_state RAM R Boolean 1 3 3 Fal s e	
•

08 Binary Sensor (Ack) : bsensor.cob	 I/O # (3)1	 06
IV NAME • MEM R1W TYPE SIZE RL WL VALUE

C current_state RAM' R/W Boolean 1 3 3 False

Figure 4.6 	 Contexts, Objects and IVs used for the Controller (part 1).

Figure 4.6	 Context, Objects and IVs used tor the Controller (part 2).

57

58

device to modify. (If there were more than one Contexts with the same ID in the

destination device then 'H' would have to include the Context sequence number. In the

Controller the sequence number for the Light Context is A0. A second Light Context

would have sequence number Al.) The destination device would read this IV and

perform the functions on its hardware (for example turn off/on the light) accordingly.

When the Controller changes the 'C' IV to true it indicates to the controlled device that

the light must be turned on. A false indicates to turn the light off.

The Object with number 07 is used for temporary storage of the state that will

eventually be transferred to the 'C' IV in Object 06. The reason for this is that we did not

want the user written device application program to affect the timing of data transfer. We

preferred that the data be transferred when the CEBus_Proc() executes.

The Object number 08 is used for acknowledgement. When the Controller send

commands to a device it expects an acknowledgement from the device. This

acknowledgement alters the 'C' IV of Object 08. The Controller reads this IV and

determines whether it has changed from the last time it was read. If it has changed the

Controller will send a response to the user indicating that the task is complete. If it has

not changed the response to the user will indicate that the device has not responded. At

this point the user may try again. If the response is still negative then the controlled

device may be disconnected or defective.

The Context with ID 74 and sequence number Al implements a device with both

binary and analog adjustments. For this Controller it represents a heater control. The

Objects 05, 07 and 09 operates just like the Objects 06, 07 and 08 respectively in the

Light Context. This implement turning the heater on and off. The other Object allows

59

analog adjustments of the heater. Object 02 is set up to allow automatic transfer of data

whenever the IV 'C' changes by 1. This report condition is set in the 'R' IV. The number

43 is the ASCII code for 'C', ed means change by and 31 is the ASCII code for 1. What

the report condition says is transmit data when the 'C' IV changes by 1. Note that in the

report header IV Context sequence number (al) is used since another Context with ID 74

also exist in the Controller. (See Appendix D for all Contexts used.) The '74' is the

destination device Context ID, '05' the destination Object, 45 the method (means `to

set'), 43 ASCII for 'C' and f5 is the delimiter. The same destination address is specified

in IV 'A' as for the Light Context. Actually a different address should be specified. The

same address was used for test purposes only. In testing the Controller the computer was

used for all controlled devices hence, the same address. The acknowledgement for the

analog adjustment is received by object OA that will be set to the temperature value just

sent to the controlled device. In other words, the temperature value sent by the Controller

will be the same value returned by the controlled device as an acknowledgement. The

Object 08 contains the temporary storage for the temperature value that will be read from

within CEBus_Proc() so that it will be sent to the controlled device at the appropriate

time.

CHAPTER 5

USER INTERFACE

This chapter presents the details of how the user would use the Controller to control a

CEBus device. The Controller operates in two modes namely dial-up and extension (or

remote and local). We will first look at the dial-up mode and then describe the procedure

that would not be included in the extension mode.

The Controller must be installed at the location where CEBus devices are

connected to the power line. To install the Controller just plug the Itfl I plug into a

telephone jack. Plug the power line cord into the jack on the Controller and the other end

of the cord into the power line receptacle. This is all that is required for installation. There

are no settings to make. The Controller is now ready to go.

The first step in operating the Controller (in the dial-up) is that the user lifts the

handset and dial the location where a device needs to be accessed and where the

Controller is installed. When the Central Office sets up the connection it will send the

ringing signal to the Controller. The Controller is able to detect this ringing signal and

activate the appropriate circuitry. There is a switch on the Controller that allows the user

to be able to adjust the number of rings the Controller will allow before activating the

circuitry. It may be set to 2 or 4 rings. The Controller however, will not produce an

audible ring. It only needs to detect the ringing signal.

When the set number of rings have occurred the Controller will send a voice

prompt to the user. The prompt will be:

"PLEASE ENTER ACCESS CODE."

The user will then respond by entering a four-digit access code. If the access code is

incorrect the Controller will respond with:

"ENTER ACCESS CODE AGAIN."

Only two errors can be made. On the third error the Controller will respond with:

60

61

"NO MORE TRIES."

After this response the Controller will hang-up.

If the user enters the correct access code the Controller will then give another

prompt. This prompt asks the user to enter the command code. The prompts will be as

follows:

"PLEASE ENTER COMMAND CODE."

The command code is also a four-digit code. The first two digits is the device address and

the last two digits is the actual command for the device. For example, if the user enters

the command code 0270 from the telephone keypad, 02 would be the device address. This

device would then be set to 70. For a heating device this would mean to set the device to

70°F. However, before this device can be set it must first be turned on. The command to

turn it on would be 02#X. The "#' symbol means to turn on the device. The 'X' is just a

filler and can be any digit. To turn off the device the command would be 02*X. The '*'

symbol means that the device is to be turned off. The 'X' is a filler as in the 'on'

command.

There are a number of voice responses that can be generated after issuing the

command code. If the command code is invalid the response would be:

"INVALID COMMAND CODE."

A list of the invalid conditions for a command code is shown in Table 5.1. The Table also

states when a command is valid..

If the user enters the command to turn on a device when it is already on the Controller

will respond with:

"DEVICE IS ALREADY ON."

If the user enters the command to turn off a device when the device is already off the

response would be:

"DEVICE IS ALREADY OFF."

62

Table 5.1	 Valid and Invalid conditions for a command code.

Say that the user wants to turn on a device but the device is not plugged in. The

Controller will also respond to this condition. The response to the user will be:

"NO RESPONSE FROM DEVICE."

The Controller is designed to receive acknowledgements from the devices with which it

communicates. This acknowledgement is different from the one received by the Data

Link Layer (DLL). These acknowledgements are set up in the Contexts, Objects and IV's.

The controlled device must be set to automatically generate this acknowledgment. When

the Controller receives a correct command code and the device to be controlled is

plugged into the power line the user will hear the following response after receiving the

acknowledgement:

"TASK COMPLETED."

After the user hears this command the user hangs up. Figure 5.1 shows a flowchart that

summarizes the interaction between the Controller and the User.

In the extension mode the Controller does not ask for an access code. The only

prompt is for the .user to enter the command code. The rest of the operation follows

exactly as the dial up mode.

63

Figure 5.1	 Operation flowchart of Controller (part 1).

V
Hang up

Enter 4-digit
command code

YES

NO	 YES

"No response
from device."

Hang up

"Task
completed."

Figure 5.1	 Operation flowchart of Controller (part 2).

Hang up

64

Hang up

CHAPTER 6

CONCLUSION AND FUTURE IMPROVEMENTS

The design and implementation of the controller has been completed. The five stages

were first using a high-level block diagram proceeding to the component level design and

implementation. Also the software proceeded from any high-level flowcharts to the

writing of many lines of code. It is able to accept request from either an extension

telephone or a remote telephone in the dial-up mode. In the dial-up mode the user must

enter a four-digit access code followed by a four-digit command code. In the extension

mode no access code is required. Since the first two digits of the command code make up

the device address, the controller can actually handle 100 devices (00 to 99).

The controller analyzes the command code to determine the task or message to

send to the controlled device. When the task is completed the user will receive an

intelligible synthesized voice acknowledgment from the controller. The voice response

also provides the user with the necessary feedback while the user interacts with the

Controller.

There are several changes that can be done to the controller to improve its

capability. The following paragraphs outline some of these improvements.

The Controller could be allowed to automatically acquire all relevant information

about a new CEBus device connected to the power line. After acquiring this information

it should then put the information in a table so that it will know how to communicate with

such device. When a new device is recognized a user address should be assigned and

65

66

displayed to the user. The user knowing this address will be able to use it when the device

needs to be accessed via the Controller.

Currently the Controller allows a user three chances to enter the correct access

code. For the commands, only one try is allowed. That is, whether the command is

correct or incorrect the user cannot issue another command. If the command is correct the

Controller will perform the respective task. If the command is incorrect the Controller

will let the user know that the command is incorrect but will not allow the user to issue

another command. Therefore the user will have to call again. It will require some

modification to the software to allow multiple commands in a single Controller access. In

implementing this change a command could be used to tell the Controller that no more

commands will follow; or a timer could be used to hang-up the Controller when no

commands are received after a certain time elapses.

Another future improve would be to allow the user to change the access code at

any time. This will improve the security of the system since the possibility exists for

unwanted users to access the Controller and operate a CEBus device in the system.

The Controller could be improved so that it can respond to emergence situations.

In this case the Controller would receive packets from devices such a smoke detector or a

burglar alarm. The Controller would then dial the user and issue a voice response that

indicates the emergence situation. In implementing this feature the user should also be

allowed to remotely change the telephone number so that the emergence situation can

still be receive when the user changes location.

Currently, if someone dials the location where the Controller is installed, the

Controller will respond, requesting the access code. This is unacceptable when the

67

purpose of the call is to have a conversation with someone in the house. To get rid of this

annoyance, the Controller could be improved so that it does not respond unless an initial

code is entered. This could be the access code. Therefore the Controller would not

respond with a prompt for the access code but that the code will be entered first then, if

the code is correct, prompt for the command code.

APPENDIX A

CONTROLLER APPLICATION SOURCE CODE

appll.c

/**
Written by Gerald Aska

Purpose :
To monitor and determine the subroutines to be
executed. These subroutines are for local and remote
control, line monitoring, initialization, and
reset/hang-up. Called from main.c.

**/

//The Controller#include "appll.h"#include
"app12.h"#include "app13.h"#include "app14.h"
#include "voice.h"
#include "lcd.h"
#include <stdio.h>

void cntl(void)
{

static long int line count;
static int select;
static int vcom;
int line d, lactive;

switch(select)
{

case 0:
line d = I detect();
if(line_d == 0)

select = 0;
else if(line d == 1)

select = 1;
else

select = 2;
break;

case 1:
if(local_control())

select = 4;
else

68

select = 1;
break;

case 2:
if (remote acc control())

dtmf init();
select = 3;

else
1
dtmf init();
select = 2;

break;

case 3:
if (remote corn control())
{

select = 4;
dtmf init();
vcom = 0;

else
{

dtmf init();
select = 3;

break;

case 4:
line count++;
if (line count == 2000)

select = 0;
line count = 0;
1 init nc();

else
select = 4;

break;

69

70

71

Il

71

74

'7S

76

break;

case 3:

77

if (rvalid)

rselect = 5;
not valid count(0); //reset

v _com code();
rfin = 1; 	 //finished

1
else

if(not valid count(1)) 	 //no
more tries

v trial end();
rcount = 0;
rselect = 5; //reset all

//variables
rbusy = 0;

rrbusy = 0;
rreading = 0;
rrepeat = 0;
rfin = 1;

1
else

rselect = 5; //try again
rcount = 0;
rbusy = 1;

rreading = 0;
v repeat();

rfin = 0;

}

break;
case 5:

rready = dtmf_ready();
if(rready == 0)

rselect = 0;
rfin = 0;

1
else if(rready == 1)

78

79

rready = dtmf_ready();
if(rready == 0)

rselect = 0;
rfin = 0;

else if(rready == 1)

rselect = 1; //read code from dtmf
rfin = 0;

else

not valid count(0); //reset
not
//valid counter

rselect = 5;
rrepeat = 0;
rcount = 0;
rreading = 0;
rready = 0;
rrbusy = 0;
rbusy = 0;
rfin = 1;

break;

case 1:
rdtmf code[rcount] = dtmf read();
if(rcount == 3)
{

rselect = 2;
rreading = 0;
rcount = 0;
rfin = 0;

else

rcount++;
rselect = 5; //check for dtmf read

rreading = 1;
rfin = 0;
1

break;

case 2:
cvalid = c code remote(rdtmf code);

more tries

rselect = 3;
rfin = 0;

break;

case 3:

{
if (cvalid)

rselect = 5;
rbusy = 0;

rrbusy = 0;
rcount = 0;
rreading = 0;

rrepeat = 0;
rreading = 0;
rfin = 1; 	 //finished

1
else
{

v com invalid();_
if (not valid count(1)) 	 //no

80

v trial end();
rselect = 5; //reset all

//variables
rbusy = 0;
rrbusy = 0;

rcount = 0;
rreading = 0;

rrepeat = 0;
rfin = 1;

1
else

rselect = 5; //try again
rbusy = 1;
rreading = 0;

v repeat();
rfin = 0;

}

break;

case 5:
rready = dtmf_ready();
if(rready == 0)

rselect = 0;
rfin = 0;

1
else if(rready == 1)

1
rselect = 5;
rfin = 0;

1
else

not valid count(0); //reset

81

not
//valid counter

rselect = 5;
rready = 0;
rreading = 0;
rbusy = 0;
rcount = 0;
rfin = 1;

break;

return rfin;

S2

83

84

85

86

corn_c = 1;
if(rc code[3] <= 9)

com d = 1;

if (corn_a == 1 && corn_b == 1 && corn_c == 1 && com d
== 1)

c code[0] = (rc code[0] * 10) + rc code[1];
c code[1] = rc code[2];
c code[2] = rc code[3];
valid = do command(c code);

1
else

valid = 0;

return valid;

int not valid count(int set)
1

static int not valid;
int max;

if (set == 1)
not valid++;

else
not valid = 0;

if(not_valid == 3)
max = 1;

else
max = 0;

return max;
1

87

88

R9

IV temp = do com[1] + do com[2];

poke IV int(Oxa1,0x74,0x08,"C",IV temp);_
break;

break;

default:
valid = 0;

break;

return valid;

int not ready count(int set)

static long int not_ready;
int max;

if (set == 1)
not ready++;

else
not ready = 0;

if (not_ready == 5000)
max = 1;

else
max = 0;

return max;
}

90

app14.h

//functions
int do command(int [1);
int not ready count(int);

91

92

voice.c

/**

Written by Gerald Aska

Purpose:
To activate the Speech Synthesizer with the prompts

and responses for the user interface.
**/

//Voice response functions
//funtions

#include "lcd.h"
#include "voice.h"
#include <stdio.h>

int sentlen;

void v corn code(void)
{

char a[] = "Please enter command code.";
sentlen = 26;

disp_gotoxy(12,0);
printf("V");
voice iom(a, sentlen);

void v ack(void)

char ack[] = "Task completed.";
sentlen = 15;

voice iom(ack, sentlen);

void v nack(void)

char nack[] = "No response from device.";
sentlen = 24;

voice iom(nack, sentlen);

11'1

94

voice.h

#define SPEECH (*(unsigned char*) (0x1062)) //voice cct
//address

#define vmaskhi OxlO

//header function for voice module

//funtions
void voice io(char[]);
void voice iom(char[], int);
void v _ com_ code(void);
void v trial end(void);
void v repeat(void);
void v _acc code'(void);
void v _ com _ invalid(void);
void v alreadyon(void);
void v alreadyoff(void);
void v cinext com(void);
void v nconnect(void);
void v ack(void);
void v nack(void);

95

et .r"

include.h

//Include file for main.c
//
//version 1.0

#include <stdio.h>
#include "io6811fl.h"
#include "hal.h"
#include "lcd.h"
#include "appll.h"
#include "appl2.h"
#include "app13.h"
#include "app14.h"

97

OQ

99

v_ack();
send = 0;
lack count = 0;

}

else
{

lack_count++;
if(lack_count = 10)
{

v nack();
lack_count = 0;
send = 0;
}

}

}

•return;

case 4:
if(get_IV_bool("C", &heat_sw)	 2)
{

100

{

}

{

}

}

return;

if(heat_sw)

poke_IV_bool(Oxal, 0x74, 0x05, "C', 1);
sendh = 1;

else

poke_IV_bool(Oxal, 0x74, 0x05, "C", 0);
sendh = 1;

{

case 5:
if(sendh)
{

if(get_IV_bool("C", &h_ack) ---= 2)

v_ackO;
sendh = 0;
hack count = 0;

else
{

hack_count++;
if(hack_count == 10)
{

v_nack();
hack count = 0;
sendh = 0;

}

}

}

return;

case 6:
if(get_IV_int("C", &heat_temp) == 2)

{

poke_IV_int(Oxal, 0x74, 0x02, "C", heat_temp);
hs send = 1;

}

return;

case 7:
if(hs_send)

{

if(get_IV_int("C", &hs_ack) = 2)
{

v_ack();
hs_send = 0;
hs ack count = 0;

}

else
{

hs_ack_count++;
if(hs ack count = 10)

{

v_nack();
hs_ack_count = 0;
hssend = 0;

}

}

101

}

return;

102

no

V	
Remote Control

103

APPENDIX B

CONTROLLER APPLICATION FLOWCHARTS

controller

104

11	 • 	 1 1 	 _ / 	 ..D 1\

105

Line Detect

106

Local Control

Remote Access Control

107

Remote Command Control

108

DTMF Stahic Ch ark

109

Command Activation (without analog adjustment)

110

1 1 1

_3 A

Command Activation (with analog adjustment) — cont'd

Set analog
value

(Return)

112

APPENDIX C

COMPILE BATCH FILE

compile.bat

@echo off
cls
ICC6811 -mb -e -g -L -q -K -P -RRCODE main
pause
ICC6811 -mb -e -g -L -q -K -P ivs
pause
ICC6811 -mb -e -g -L -q -K -P io
pause
icc6811 -mb -e -g -L -q -K -P userl
pause
icc6811 -mb -e -g -L -q -K -P -RRCODE hcllhal
pause
icc6811 -mb -e -g -L -q -K -P -RRCODE lcd
pause
icc6811 -mb -e -g -L -q -K -P -RRCODE appl4
pause
icc6811 -mb -e -g -L -q -K -P -RRCODE appl3
pause
icc6811 -mb -e -g -L -q -K -P -RRCODE appl2
pause
icc6811 -mb -e -g -L -q -K -P -RRCODE appll
pause
icc6811 -mb -e -g -L -q -K -P -RRCODE voice
pause

xlink -f hcll main ivs userl io hcllhal lcd appl4 appl3 appl2 appll voice cb 1 1 libb
msgxl lb netwl lb -o done -1 done.map
:xlink -f he 11 main -o done -1 done.map
pause
sconv done.a07 code.a07
keystack "2code.a07" 13 "M" 13 "3" 13 "A"
eepl

113

APPENDIX D

CONTEXTS, OBJECTS AND WS

The following Contexts, Objects and Ws are used for the Controller:

115

116

117

118

The following Contexts, Objects and IVs were used on the computer to simulate a CEBus

device:

119

APPENDIX E

ALTERA SOURCE CODE

MAX+plus II Version 6.0 11/22/95
-- Modified: 12/01/97

TITLE "68HC11 Banked Memory Control with LCD support";

Subdesign phone

data[7..0]. 	 bidir ;
addr[15..0], iocs, rw 	 : Input;
bank[2..0], dispena, ctload, voice 	 : Output;
dtmfcs, lc 	 : Output;

Variable
bankreg[2..0], daa 	 : dff ;
s, bnk, sdat[7..0], dispa, dispb 	 : node ;
dtmfa, dtmfb 	 :node;
line 	 :node;

BEGIN
bnk = (addr[]==H"1060" 	 & !iocs) 	 ;
dispa = (addr[]==H"1064" & !iocs) 	 ;
dispb = (addr[]==H"1065" & !iocs) 	 ;
ctload = (addr[]==H"1063" & !iocs);
voice = (addr[]==H"1062" & !iocs);
dtmf a = (addr[]==H"1066" & !iocs);
dtmfb = (addr[]==H"1067" & !iocs);
line = 	 (addr[]==H"1068" 	 & 	 !iocs);

s = bnk & rw;
data0 = tri(sdatO, ․) ;
datal = tri(sdatl, ․) ;
data2 = tri(sdat2, ․) ;
data3 = tri(sdat3, ․) ;
data4 =-tri(sdat4, ․) ;
data5 = tri(sdat5, ․) ;
data6 = tri(sdat6, ․) ;
data7 = tri(sdat7, ․) ;

120

121

bankreg[2..0].d = data[2..0] ;
% *** %

if (addr[14]) THEN
bank[2..0] = 7 ;

ELSIF (!addr[14]) THEN
bank[2..0] = bankreg[2..0].q ;

end if;
%***%

if (bnk & rw) then
sdat[2..0] = bankreg[2..0] ;
sdat[7..3] = GND ;

end if ;
%** %

bankreg[].clk = !(bnk & !rw) ;
%** %

% LCD Code ************************************* %

dispena = (dispa # dispb)

% Enable dtmf %
dtmfcs = (dtmfa # dtmfb);

% Enable or disable access to phone line %
daa.clk = ! (line & !rw);
daa.d = data0;
lc = daa.q;

END;

APPENDIX F

SCHEMATIC DIAGRAMS

This Appendix contains all the schematic diagrams for the Controller. The Power Line

Interface is on sheet 1 along with the MC68HC11 microcontroller, ROM and RAM

chips. Sheet 2 shows the Altera PLD and the LCD display. The display was used

extensively in the troubleshooting phase of the Controller's development. It was not

necessary for it to be used when the Controller was fully functional. The Power Supply

and Reset circuits are on sheet 3. Sheet 4 contains the Tone Detector circuit and Voice

Module. The Voice Module (V8600) and associated logic are at the top of the sheet. The

Tone Detector with its gain circuitry and logic devices are at the bottom of the sheet. The

final sheet (sheet 5) shows the Telephone Line Interface in the upper half and the Ring

Detector with associated logic in the lower half.

122

1 	 3

C

—

RI 	
VCC

---.1^....
1011 Y1

et 	 1 16.0003141z I:
4K7

IRS
AK7

....---....-......--,.......F—ATT:0—)

Ill

- 	 24?

	f ELIJA.. K.)

sTriti- r '120 i 	 ..
____i aw

'31.5
MO

R6
4K7 ,..0 0

,, I I
N 17
N 13
N 14 ■,_ IS

a '''cial M P.P.E.V.',7!
60

58

OCT 	 DI 	 8 	 .0D7 	 I 	 P E4
133 	 PEO
D4
DS
Dis 	 AO

D7

AlZ2
RESET 	 A4
X1RQ 	

A5IRQ

	 AlCS PRO()

CaCTOEIN 	a	 C3102 	 All
PCI3 	 iii
P01 	

All
M4

MDR. Y i1312M

,,___,
Nits,
NIUE
%um
14,_ __M=al
tam14ime

	 A8

AO Do

Al 	 ID:ri

A2 	l D3
 Al 	 D,

Al
	

DS

Al 	 D7

	 A9 	 a
A.Al 1 	 OE211 	 ..z.
All
All 	 VCC
A 16 	 VPP

A4

136

13 /
14

17 /
18 /

109 /1

111..k
flaiii

SWAM

PLE4p._.
ilw

DoAO DIAl

A2 	
D2
D3

" 	 134
Z 	 DJAS
A6 	 D6

',78 	
D7 	

A9
A10

"A'-',1 	 E
Ala
AI, 	 vt.X

VS3

I 1 /'
17 /-

 	 1 /
15 /
'6 /17 /

 	 8 /29
NUS

17117g

itilaill

RES t. 1) ----E-/

22
MANS

/NC C
-c maiiil

19 C---c____C!=)
2.
71-"C

IMO 2.

WE 	

74 1
30

—31-1 ,,,,,,

1 T

%tuil
%or=

lm/
77

-1}TA1.49t.L	 IMMO 2,
I1JC3 39.-17---- asgas..,„_, swill 28

75

MVO
iiraim# 4

...1..
..VS3 	

1 2
-----7-6-

,..--

76 m ramo.
2E1324

.'1A;;CVIA A A ,;44
6811C1IP I 214.0102

1-210F.Int)

uns
1130

• SSC $

D7
D6

Do

lisrwit
DLLWR

HSTST
DLLST

RESET
vec
ORD
VAA

20
19 vc, 	 EllA1-1121EL->—, 	 4 	

DS 	D4 	
DI 	

- J
 	 l

16
 /IS

/

17 /11 f

I 	 T 9 	
	 w

10
'D=

C2=1
4 06

400

' 	 FIMISEE-)--

_____<-17M-L--1 USD
2

a .10

USA

U6A U6C IINC 	- '
o T I 	 _trim

--g
n-3--

2 	 9 	 2 3400

D3

El

1 	 s 	 .n
3 	 `"7400

400

NC 	
0 -
- 4

—I-'
3 —rr 	 7400a ,

i,
U613

"TT-
—ra—---,

D6
Di 	

7

Da 	 (la
--M- 	__H—DEL—L--->2
—Mri

iiCI31.10D8 Q
'-----T7 CLII. Ilfla

PROCESSORr-VRATRV--) 7400 7421r-

T—Thi 	1—"IteIE eve
Lell.r

Number Ravi ion

l':
	 10 	 fir-

Vat NM 34-11 	 Dratril613Z17-A 4-t.'
3 	 4

77////7/ /7/

JFV

RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED

LIC L
DIMFCS

C

VOICE
CTLOAD

922@2@i922@ gAgggggg
ocupomocoom

OC

9

DO
DI
D2
D3
04
DS
06
177

-PIN001
-PIN=
DISPENA

BANKO
BANK]
RANX2

49
SS
SY

J

O

68

Si

AZT

U01•1,111

criln'TW"sT
zmiont4

IHSMIMIA10ci

a

a

a

02
--rm.-.

-F--.

Ul Li

0 0—

•• 1321Aa . •as• 2

U2001 7400I , 	 I I
10' U21 0

7404
S

CB
RI I

RIO 	 01 up 	 100K

VCC

IC14

TO. tur

I]

7404

RI 3
1909EN-

114 +
VRtf

SUM
1RQ

WR
CS TONE
RSO
ltD

DO
DI
D2
D3

IRQ/CP

Wel

c

gri
Ul IA

00

IU19)

7404
477-00

111:33

[1 1Y23.579343101z

14TISSIC

32

Ml

0
.=Lr p) 	__c

I	 T-0.1ur

i i

DO
DI
D2
D1

I
—

D4
Di
D6
D7

CI 2
10 --Rti SPKK I

12 010
F—voicE-cxrr)

wit

VS600

VCC

U1913
I112/3

4 FDTICIFIZIC)

1=).	 5

13

VCC

1114
4K7

r3 CI

uP
131(

Thle

SPEECH AND TONE CIRCUITS
Sum 	 I Number 	 Rawilion
!star

t}flG^ 10-Nu-19423
Fig' 	 t`Rl rtlr IlLELAI ill Nell 	iltV

6

VCC

la

127

o	

&S era
r. Za". gerg

7

g

szE

PART ID PART NUMBER DESCRIPTION

SHEET 1 (PROCESSOR)

22pF
22pF
10M
4k7
4k7
4k7
4k7
4k7
68HC11F1
28F010-2
628032-2
SSC CIN PLO1S-02
7400
7400
74273
16.003MHz

Capacitor
Capacitor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Microcontroller
128 Kbytes Flash Memory
32 Kbytes RAM
CEBus Power Line Network. Interface
Quadruple 2-input NAND gates
Quadruple 2-input NAND gates
Octal D-type flip flop with clear
Crystal

Cl
C2
R1
R2
R3
R4
R5
R6
Ul
U2
U3
U4
U5
U6
U7
Y I

PART ID PART NUMBER DESCRIPTION

SHEET 2 (PLD/LCD)

DP1	 OPT40X2	 LCD Display
R9	 10K	 Potentiometer
U8	 CL07064	 Erasable Programmable Logic Device
U9	 7408	 Quadruple 2-input AND gate

APPENDIX G

PARTS LIST

128

PART ID PART NUMBER DESCRIPTION

129

SHEET 3(POWER/RESET)

BR1	 6B4B41	 Bridge rectifier
Ti	 120VAC/12.6VDC	 Transformer
T2	 18:18 turns	 Transformer
CR1	 1N5336B	 Diode
CR2	 1N5336B	 Diode
C4	 4704F 16V	 Capacitor
C5	 470µF 16v	 Capacitor
C6 470P.F 16V	 • Capacitor
C7	 4704F 16V	 Capacitor
C8	 10µF 16V	 Capacitor
C9	 1µF 35V	 Capacitor
VR1	 LM2940-8	 8V lamp low dropout voltage regulator
VR2	 LM2940-5	 5V lamp low dropout voltage regulator
U10	 MC34064	 Microprocessor supervisor
U 1 1	 MC34064	 Microprocessor supervisor
R7	 220	 Resistor
R8	 4K7	 Resistor
C3	 100pF	 Capacitor
S1	 PBS 100	 Push button switch

SHEET 4 (SPEECH AND TONE CIRCUITS)

PART ID PART NUMBER DESCRIPTION

C10 10 11F Capacitor
Cll 0.1 VLF Capacitor
C12 0.1 1AF Capacitor
C13 0.1µF Capacitor
C14 0.1 1-tF Capacitor
C15 0.1 IAF Capacitor
M1 V8600 Speech Synthesizer
R10 2K Resistor
R11 100K Resistor	 .
R12 100K Resistor
R13 390 Resistor
R14 4K7 Resistor
R15 15K Resistor
S1 PBS 100 Push button switch
U12 7408 Quadruple 2-input AND gate
U13 MT8888CE DTMF transceiver
U18 7400 Quadruple 2-input NAND gates
U19 7404 Hex inverter
U20 7404 Hex inverter
U21 7400 Quadruple 2-input NAND gates
Y2 3.579545 MHz Crystal

130

SHEET 5 (LINE INTERFACE AND RING DETECTOR)

PART ID PART NUMBER DESCRIPTION

U20 7404 Hex inverter
U17 7408 Quadruple 2-input AND gate
U19 7404 Hex inverter
U18 7400 Quadruple 2-input NAND gates
U14 MH88434-P Data Access Arrangement
U22 74LS 123 Dual monostable multivibrator with clear
R17 100K Resistor
R18 2K Resistor
R19 300 Resistor
R20 4K7 Resistor
R16 6K8 Resistor
R21 47K Resistor
R22 1K Resistor
C16 10µF[t Capacitor
C17 1 1-1,F Capacitor
C18 100µFIA Capacitor
C19 474F Capacitor
C20 10 1-LF Capacitor
S3 SW153 SPDT switch

131 .

REFERENCES

1. Analog/Digital Telecom Components, Mitel Semiconductor, Kanata, Canada, 1997.

2. CEBench User's Manual, Intellon Corp., Ocala, FL, 1996.

3. CEBus Power Line Encoding and Signaling, Intellon, Corp., Ocala, FL, 1997.

4. CEBus Power Line Network Interface Technical Data Sheet, Intellon, Corp., Ocala,
FL, 1996.

5. G. Evans, CEBus Standard User's Guide. Tualatin, OR: Training Department, 1996.

6. G. Held, Data Communications Networking Devices, New York: Wiley, 1994.

7. H. M. Deitel and P.J. Deitel, C, How to Program, Englewood Cliffs, NJ: Prentice
Hall, 1992

8. M68HC11 Reference Manual, Motorola, Schaumburg, IL, 1991.

9. M68HC11 Technical Data, Motorola, Schaumburg, IL, 1997.

10. MAX+PLUS II Programmable Logic Development System, Altera Corp., San Jose,
CA, 1994.

11. R. L. Freeman, Telecommunication System Engineering, New York: Wiley, 1996.

12. 68HC11 Assembler, Linker, and Librarian Programming, User Guide, IAR Systems,
San Francisco, CA, 1995.

13. 68HC11 C Compiler Programming Guide, IAR Systems, San Francisco, CA, 1995.

14. 68HC11 Command Line Interface Guide, IAR Systems, San Francisco, CA, 1995.

15. 68HC11 UI User Interface, IAR Systems, San Francisco, CA, 1994.

16. S. J. Bigelow, Understanding Telephone Electronics, Indianapolis, Indiana: SAMS
Publishing, 1994.

17. TTL Logic Data Book, Texas Instrument, Dallas, TX, 1988.

18. V8600/1 Speech Synthesizers Data Book, RC Systems, Bothell, WA, 1991.

132

	Telephone-accessed controller using CEBus for device control over power line
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter1: Introduction
	Chapter2: Spread Spectrum
	Chapter3: Hardware Description
	Chapter4: Software Implementation
	Chapter5: User Interface
	Chapter6: Conclusion and Future Improvements
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

