
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-1999

Design of components for a generic microprocessor architecture Design of components for a generic microprocessor architecture

Pradnesh R. Mohare
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Mohare, Pradnesh R., "Design of components for a generic microprocessor architecture" (1999). Theses.
866.
https://digitalcommons.njit.edu/theses/866

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F866&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.njit.edu%2Ftheses%2F866&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/866?utm_source=digitalcommons.njit.edu%2Ftheses%2F866&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

DESIGN OF COMPONENTS FOR A GENERIC
MICROPROCESSOR ARCHITECTURE

by
Pradnesh R. Mohare

The objective of this thesis was to develop a generic microprocessor design that can be

adapted to many of the existing 16 bit microprocessors. Common features of various

microprocessors were used to develop the design of many generic components which can

then be used to design the required microprocessors instead of custom-designing each

one of them separately. The components were designed using a CISC based micro-

programmed design approach as that was more suitable in terms of design and

verification time for generic implementation. The generic parts designed include the

Register File for temporary data storage, the Effective Address Calculator that generates

the effective address for the operand, the Barrel Shifter for fast multiply/divide operations

and the Priority Encoder for determining the processor state.

DESIGN OF COMPONENTS FOR A GENERIC
MICROPROCESSOR ARCHITECTURE

by
Pradnesh R. Mohare

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

May 1999

APPROVAL PAGE

DESIGN OF COMPONENTS FOR A GENERIC
MICROPROCESSOR ARCHITECTURE

Pradnesh R. Mohare

Dr. Durgamadhab Misra, Thesis Advisor	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin S-H. Hou, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Jin-Biao Huang; Committee Member	 Date
Member of Technical Staff, Sarnoff Corporation, Princeton, NJ

BIOGRAPHICAL SKETCH

Author:	 Pradnesh R. Mohare

Degree:	 Master of Science

Date:	 May 1999

Undergraduate and Graduate Education:

• Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 1999

• Bachelor of Engineering in Computer Engineering,
Bombay University, India, 1996

Major:	 Computer Engineering

Presentations and Publications:

J. Patel, P. Mohare, D. Pattnaik, M. Babladi, N. Patel, A. Patel, S. Sadeq, C. Feng,
D. Misra and E. Hou, "Implementation of exp(x) and log(x) generator using Mentor
Graphics and Autologic II", Mid-Atlantic Region Local Users Group (MARLUG '98),
Baltimore, MD, May 1998.

iv

To my beloved family

ACKNOWLEDGEMENT

The author would like to express his appreciation and sincere gratitude to Dr.

Durgamadhab Misra for his invaluable guidance and moral support throughout the

research. The author has benefited significantly from the technical discussions with Dr.

Misra during this research.

The author is gratefully acknowledging Sarnoff Corporation for the opportunity to

work on such an interesting topic of research. He would also like to thank Dr. Edwin Hou

and Dr. Jin-Biao Huang for serving as members of the committee.

The author would also like to thank his colleagues at Sarnoff, Mr. Koen

Verhaege, Mr. Glenn Vinogradov, Mr. George Guo, Mr. Robert Ho and Mr. Nicola

Fedele for their co-operation and help.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 Background 	 1

1.2 Objective 	 1

2 STANDARD MICROPROCESSORS 	 3

2.1 Background 	 3

2.2 Systems 	 5

2.2.1 System Classification 	 5

2.2.2 Types of Architecture 	 6

2.2.3 Instruction Set Architectures 	 7

2.2.4 Types of Instructions 	 8

2.2.5 Addressing Modes 	 8

2.2.6 Pipelining 	 9

2.3 Important Considerations 	 11

2.4 Design Approaches 	 12

2.4.1 CISC Component-based Architecture 	 13

3 DESIGN 	 16

3.1 Introduction 	 16

3.2 Register File 	 17

3.2.1 Introduction 	 17

3.2.2 Design 	 17

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

3.2.3 Access modes 	 17

3.2.4 Generality 	 18

3.3 Barrel Shifter 	 20

3.3.1 Introduction 	 20

3.3.2 Applications 	 20

3.4 Effective Address Calculator 	 21

3.4.1 Introduction 	 21

3.4.2 Implementation 	 22

3.5 Priority Encoder 	 27

3.5,1 Introduction 	 27

3.5.2 Implementation 	 29

4 SIMULATION RESULTS 	 30

4.1 Introduction 	 30

4.2 Register File 	 30

4.3 Barrel Shifter 	 31

4.4 Effective Address Calculator 	 34

4.5 Priority Encoder 	 36

4.6 Event Sequence	 38

5 SUMMARY 	 40

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

5.1 Conclusions 	 40

5.2 Future work 	 41

APPENDIX 	 42

REFERENCES 	 48

ix

LIST OF FIGURES

Figure Page

2.1 The top structure of the microprocessor 	 13

2.2 Data Path structure of the microprocessor 14

2.3 Control Unit structure of the microprocessor 15

3.1 Block diagram of the Register File 19

3.2 State Transition Diagram of the Finite State Machine 	 23

3.3 Circuit diagram of the Priority Encoder 29

4.1 Barrel Shifter output for a 3 bit left-shift operation 32

4.2 Barrel Shifter output for a 5 bit left-rotate operation 	 32

4.3 Barrel Shifter output for a 7 bit right-shift operation 33

4.4 Barrel Shifter output for a 5 right left-shift operation 	 33

4.5 Barrel Shifter output for a 0 bit right-rotate operation 34

4.6 Priority Encoder output for input = 00110010 and input enabled 	 36

4.7 Priority Encoder output for input = 10010011 and input enabled 	 36

4.8 Priority Encoder output for input = 00000000 and input enabled 	 36

4.9 Priority Encoder output for input = 01011001 and input enabled 36

LIST OF TABLES

Table Page

2.1 List of studied microprocessors 	 4

2.2 Comparison of RISC and CISC Architectures 7

3.1

	

Addressing Modes 21

3.2 Effective Addresses 22

3.3 State Table for the finite state machine 	 23

3.4 CPU operating modes 27

3.5 Truth Table of 8 input Priority Encoder 	 28

4.1 Working of the Register File for different microprocessors 	 31

4.2 Working of the Finite State Machine for different microprocessors 	 35

xi

CHAPTER 1

INTRODUCTION

1.1 Background

Recently, the semiconductor industry is making tremendous progress in the form of

advanced digital signal processors, faster memories and ever increasingly powerful

microprocessors. The constant endeavor of the manufacturers to improve the

performance of their products while cutting down on costs using advanced technology

has reduced the product life spans. In addition, adverse working conditions like

temperature, humidity, voltage fluctuations and aging can further reduce the working life

span of the chips.

An important decision has to be made when the procurement of replacements is

needed or when the chips that fail and are not in current manufacturing cycle. This has

tremendous impact on systems design and implementation. A feasible solution is to

reverse-engineer these chips.

1.2 Objective

The focus of this thesis is to design a generic 16-bit microprocessor that can be readily

used as a replacement part for most systems and could be adapted to many of the existing

16-bit microprocessors. This requires the availability of stringent chip specifications.

These can be obtained from existing samples, performance data, technical specifications

and available running code. After analyzing the existing approaches, a novel approach is

proposed in this thesis towards the design of a generic microprocessor. This new

2

approach involves the design of generic components, which can be customized for final,

generic microprocessor design.

A review of popular existing 16-bit microprocessors from Intel, Motorola, Zilog,

Cypress, Advanced Micro Devices and SGS was carried out. Two possible approaches

were evaluated - 1) RISC-based hardware emulation architectural approach and 2) CISC

based micro-programmed design approach. The CISC based architecture was found more

suitable in terms of design and verification time for generic implementation.

The investigation of different microprocessor architectures and the design

development of a generic microprocessor architecture have been described in this thesis.

Chapter two discusses the fundamentals of computer architectures and the design

approach to be followed. Chapter three describes the architecture of the parts designed.

Chapter four contains the simulation results for the parts designed. Chapter five presents

a summary of the entire work done and throws some light on the possible future work.

CHAPTER 2

STANDARD MICROPROCESSORS

2.1 Background

Two approaches to implementing a generic microprocessor architecture were considered.

To implement a generic microprocessor Vinogradov [I] has followed a top-down

approach in which the architecture functionality is a superset of the functions of the

existing microprocessor architectures. The architecture described consists of a RISC core

controlled by a lookup micro-code ROM. An external interface controller to emulate the

exact behavior of all external interfaces was proposed. The RISC core would execute one

instruction per clock cycle and to maintain compatibility would generate no-operation

instructions for timing purposes. In another paper, Smith et al, [2] describe a method for

automated composition of hardware components. The work describes the automated

design of interfaces between two hardware components. Given the component model that

describes bus functionality or a superset of the bus functionality, conditions for

transferring data to or from the component are determined. A sequence of assignments to

component ports is determined that would make those conditions come true. A Finite

State Machine is then generated that executes the required assignments and monitors the

necessary control ports.

The top down approach suggested by Vinogradov [I] however would have a

considerably higher design time and would be very complex for verification purposes as

well. It is important to note that most of the target microprocessors are CISC based.

While the design assumes execution of one instruction per clock cycle memory

3

4

references would take more cycles and thus hamper the pipelined execution flow, To

counter this Vinogradov proposes a delayed store approach. However, this approach

leads to further problems like concurrency control thereby complicating the design even

further. Another problem would be the different instruction formats for each processor.

While the top-down approach suggested by Smith et al. does seem feasible for automated

interface design the approach is not feasible for microprocessors considering design

complexity. A bottom-up approach involving the design of generic components that

could be used to design an existing microprocessor has been proposed in this thesis. A

thorough investigation of some of the microprocessors was carried out to understand the

architectures, instruction sets and addressing modes of the microprocessors. Most of the

microprocessors currently used for different applications are considered. A list of the

microprocessors studied is given in table 2.1

Table 2.1	 List of studied microprocessors

5

2.2 Systems

To design a generic 16-bit microprocessor we investigated some of the system

fundamentals such as system classification and instruction set architectures

2.2.1 System Classification

System architectures where microprocessors are integrated are divided into three classes

as proposed by Flynn [5] based on the number of instruction and data streams that they

have. They are

1) Single Instruction stream over Single Data stream (SISD)

2) Single Instruction stream over Multiple Data stream (SIMD)

3) Multiple Instruction stream over Multiple Data stream (MIMD)

The traditional von Neumann machine is SISD . It has one instruction stream

executed by one CPU and one memory containing its data. The first instruction is fetched

from memory and then executed. Then the next instruction is fetched, executed, and so

on.

SIMD machines operate on multiple data sets in parallel. The data sets can be

arranged in the form of a vector ALU with multiple inputs or as an array processor in

which a single control unit broadcasts instructions which are carried out by each

processor using its own memory.

In an MIMD machine different CPUs carry out different programs and share

information by using common memory or by passing messages amongst themselves. The

machine has multiple instruction streams and multiple data streams.

6

All the microprocessors studied as a part of this work and mentioned in table 2.1,

are SISD machines.

2.2.2 Types of Architectures

There are two types of computer architectures [6]

• Harvard architecture

• Von Neumann architecture

2.2.2.1 Harvard Architecture: In Harvard type architecture, instructions and data are

stored in separate memory modules. This architecture provides a significant advantage

such that the designer can provide greater flexibility with word-size selection. Increase in

bandwidth allows an overlapping of instruction and data access and consequently

increase performance. The instruction size need not be equal to or a factor of the data

word size.

2.2.2.2 Von Neumann Architecture: The von Neumann architecture consists of the

CPU, instruction/data memory and the input/output. It has been used in many systems for

a very long time. However, sequential and frequent access of memory creates

bottlenecking and limits the flexibility of operation. The control flow as opposed to data

flow leads to performance limitation. Also the bandwidth is reduced as memory and data

must reside in the same memory.

A classical von Neumann-type computer is divided into two main modules, the

control unit and the data-path unit. The control unit synchronizes the entire operation of

7

the computer by generating control signals that activate the particular components

involved in the execution of an instruction.

The data unit contains the components that are used to manipulate the operands

involved in the instruction. The data unit consists of registers and the Arithmetic Logic

Unit (ALU). The registers hold the ALU input while the ALU is computing

The ALU performs addition, subtraction and other simple operations on its inputs,

yielding a result in the output register. The output register can be stored back into a

register and from there, back into memory, if needed.

2.2.3 Instruction Set Architectures

The collection of instructions available to the programmer at a level is called the

instruction set of that level. There are two main types of instruction set architectures

• Reduced Instruction Set Computing(RISC)

• Complex Instruction Set Computing(CISC)

A machine is classified as a RISC or a CISC depending upon the following factors as

described in table 2.2.

Table 2.2	 Comparison of RISC and CISC Architectures

' w 	ti::::::. .	 " 	 .x...,
:.:;,... 	 :::::-„., 	 ,.......m. 	 j.,40.

.:- 	 ..:::::::00::::::::x1 	 ''''' " ' . 	 4:::;:.:::::::::::00:::::::::::iiiiiM
'	 **WI' 	 .:',-...:"."' 0.::::VIiiiiii':::Iiiii:Oii:ANN•

Complex instructions taking multiple cycles Simple instructions taking l cycle

2 Any instruction may reference memory Only Load/Stores reference memory

3 Less pipelining, if present at all Highly pipelined

4 Instructions interpreted by micro-program Instructions executed by hardware

5 Variable format instructions Fixed format instructions

6 Many instructions and modes Few instructions and modes

7 Complex micro-program Complex compiler

8 Single Register Set Multiple Register Sets

8

All the microprocessors studied except the Z8000 family are micro-programmed. The

Z8000 family may also be implemented using micro-programming.

2.2.4 Types of Instructions

Instructions can be divided into three categories.

• Register-Memory

• Register- Register

• Memory-Memory

Register memory instructions allow memory words to be fetched into registers where

they can be used as ALU inputs in subsequent instructions. Register-register instructions

fetch two operands from the registers into the ALU input registers, perform operations on

them and put the results back into a register. A memory-memory instruction fetches its

operands from memory into the ALU registers, performs its operation and stores the

results back into memory.

2.2.5 Addressing Modes

An effective address is an address that contains an operand and is part of the instruction

word. This address consists of two sub-fields, the mode and the register. The mode bits

define the addressing mode of the instruction and the register bits designate the register

involved. To specify an operand completely an effective address may need additional

information.

9

2.2.6 Pipelining

Performance of microprocessors has been increased by faster clock speeds. This does

however have some limitations. Another technique that is used to improve the

performance is pipelining. Pipelining is a form of parallel processing since several

operations of the contents of the pipeline occur simultaneously. The advantage of an

instruction pipeline is in staging the activity associated with the instruction execution in

such a way that the time needed to decode the instruction and the time needed to provide

the control for the execution is not visible outside the chip. This is done as a sequence of

the following steps

1) Instruction Fetch

2) Instruction Decode

3) Operand Fetch

4) Instruction Execution

5) Write hack

Instruction Fetch

The Program counter is loaded with the address of the next instruction to be executed.

The next instruction from memory is then fetched using the Bus Interface Unit and stored

in the Instruction Register.

Op-code Decode

The instruction stored in the Instruction Register is then decoded. The operation code

(op-code) in the instruction gives information on what the instruction is supposed to do.

10

This op-code is then used to point to a particular address in the micro-code ROM which

then issues relevant signals for controlling various functions like the ALU, stack, Bus

Interface Unit, Register file, Interrupt Mechanism.

Operand Fetch

The operand for the instruction may be available in the instruction itself or has to be

calculated using the 5 stage Finite State Machine. The effective address of the operand is

thus calculated. The operand may be fetched from the register file, program counter,

stack pointer or from an external memory location.

Instruction Execution

The micro-program location contains the signals needed for the execution of the

instruction for enabling/disabling certain multiplexers, providing timing information and

so on. The Instruction Execution Control supervises all the activities and also takes care

of activities like interrupt and trap handling, bus conditions and execution state control.

Write Back

The results of the execution may be placed in a register or a memory location. Upon

execution the program counter is updated with the address of the next instruction to be

executed, which may be one of the following

1. The previous value of the program counter plus the word length

2. A direct address specified as in the case of jump or subroutine instructions

3. A return address popped from the stack

11

4. A relative address formed by adding an offset to the current value

5. An address generated from a lookup table for interrupts

6. The starting address following a reset condition.

This calculated value is then put into the program counter as the address of the next

instruction to be fetched. The Instruction Execution Control specifies when the Program

counter is updated.

Thus, if t 1 , t2, t3, t4, t 5 are the times required for the respective steps, then the time

required for a non-pipelined processor is (t1 + t2 + t3 + t4 t5) and the throughput, T np is

1/(t 1 + t2 + t3 + t4 t5). However, if tb is the speed of the slowest point in the pipeline, the

throughput of the pipelined processor is 1/tb and is the maximum throughput of the

pipelined processor.

2.3 Important Considerations

The design of a generic architecture has to consider compatibility issues at various levels.

They are as follows

• Software compatibility

• Object-code compatibility

• Hardware compatibility

Software compatibility refers to the portability of software programs across hardware

platforms and architectures. It usually falls within the purview of system software design

and hence beyond the scope of this thesis.

12

Object-code compatibility, also referred to as binary compatibility refers to the same

binary or object code being able to run seamlessly on different chips which may be

radically different internally but present the same external interface.

Hardware compatibility refers to the issues of physical, pin-out, structural,

electrical and timing compatibility. Physical aspects include operating temperature range,

power dissipation etc. Structural and pin compatibility usually refer to chip-replaceable

design by taking into account the package size, pin count and arrangement. Electrical

characteristics include signal levels, operating voltage specifications, noise margins and

susceptibility, power calculations etc. Hardware compatibility usually falls within the

purview of the physical level and package design and hence not much emphasis was

given to it.

2.4 Design Approaches

Two possible approaches to design a generic architecture were studied. They were

• CISC component-based architecture

• RISC based Hardware emulation

The CISC component-based approach involved the design of generic components that

could be used as-is or with a little modification into the design of the microprocessors

mentioned in table 2.1. The RISC based approach involved design of a RISC core which

would translate the target architecture's instructions into native format. This approach

was found to be too complex and infeasible' as it would have to take into account vital

timing issues thereby increasing the design complexity.

13

2.4.1 CISC Component-based Architecture

The architecture is composed of two units namely the Control Unit and the Datapath

Unit. The Control Unit is responsible for coordinating and synchronizing the various

activities inside the microprocessor while the Datapath Unit deals with manipulation of

data. Internal data is passed between the two units as int_data for data and address

purposes. Figure 2.1 shows the top structure of the microprocessor. Int_trap_ctrl handles

interrupt and trap conditions. Int_ctrl is the internal control for the Bus interface unit.

ALU control is used for controlling the ALU sources, destination and operation, while

Reg_ctrl is used for controlling the register file. Bus_ctrl is responsible for management

of the data and address busses by generating requisite control signals. CPU_ctrl is used

for controlling the state of the microprocessor like run state, wait state, reset etc. Address

and Data are the contents to be put on the address and data busses respectively.

Figure 2.1 	 The top structure of the microprocessor

The Datapath Unit as shown in Figure 2.2 consists of the Arithmetic Logic Unit (ALU),

the Register File and the Address/Data Interface, commonly known as the Bus Interface

14

Unit. Status signals the current status of the microprocessor like an interrupt

acknowledge, memory refresh, internal operation etc. Data A and Data 13 are the output

busses of the register file while int_data is the input. Addr and Data are the address and

data bus interfaces respectively.

Figure 2.2 Data path structure of the microprocessor

Figure 2.3 shows the Control Path for the microprocessor. The input address to the

microcode ROM is multiplexed from the output of the instruction decoder, interrupt/trap

control, stack output and the Program counter. Ctrl_path_ctrl are the control signals for

the various internal multiplexers. Branch provides a branch address to a ROM location.

Figure 2.3 	 Control Path Structure of the Microprocessor

CHAPTER 3

DESIGN

3.1 Introduction

A generic microprocessor is designed using a CISC component-based architecture. Some

of the fundamental components to process diverse instruction sets are required for a

generic microprocessors. In this design we selected some of the important components

normally present in most of the microprocessors. The generic components designed are

• Register File

• Barrel Shifter

• Effective Address calculator

• Priority Encoder

The Register File is used for temporary data storage. Most of the instructions of the

microprocessors studied are register-register or register-memory. The instruction word

supplies information about the addressing mode and other related information that can

then be used to calculate the effective address of the operand using the Effective Address

Calculator.

The microprocessor can be in various states of operation like reset, run, interrupt etc.

The states are accorded priorities using a Priority Encoder and the microprocessor can be

put into the proper state. The Barrel Shifter is used at the ALU output or built into the

ALU for shift/rotate as well as multiply/divide operations. The detailed designs of the

individual components are described in the following section.

16

17

3.2 Register File

3.2.1 Introduction

The registers are used primarily to store data temporarily during the execution of a

program. The instruction set is closely tied to the register file architecture.

3.2.2 Design

The register file has been designed as four eight-byte memory blocks as shown in figure

3.1. Each memory block is dual-ported with one input bus and two output busses. It has

two separate addresses that access two register locations whose contents are then put on

the two output buses. When the instruction is using only one register the two addresses

may be the same but when the instruction uses two different registers the two addresses

may be different.

3.2.3 Access Modes

The register file may be used in both byte as well as word modes. Byte operations use

two of the four memory blocks. When the register file is in byte mode the lower eight

registers are in the LSB memory having addresses 0 through 7 and the higher registers

are located in the LSB memory having addresses 8 through 15 as shown in the input

address of the register file in figure 3.1. When the address references byte locations 0 to

15, the addresses are passed onto the memory in the same way it was received, but the

MSB block of memory is inactive. The 8-bit data from the memory is directed to the

output port and may be positioned in the lower eight bits of the data bus with the upper

eight bits being zeros or replicated into the upper eight bits.

18

Word operations use both the memory blocks. The addresses are passed to both

the blocks as the memory is divided into a lower byte, D7-0 and an upper byte, D15..8 in

each memory block that are combined together to form a word (Figure 3.1). So, word

locations 7-0 would be in the lower block while locations 15-8 would be in the upper

block. Double or Quadruple words require two and four accesses into the register file

respectively. For double word operations there are eight registers available while for

quadruple word operations there are four registers available.

3.2.4 Generality

The register file size can be increased to 32 or more words also. In case of processors

from the Intel family, one of the addresses is fixed (usually 0) and is known as the

accumulator. This does not need any modifications to the register file design except

hardwiring one of the addresses to a constant value.

Figure 3.1 	 Block Diagram of the Register File

20

3.3 Barrel Shifter

3.3.1 Introduction

The Barrel shifter takes its input from the ALU. The output may then be fed back to the

register file or to any other appropriate destination. Unlike conventional barrel shifters that

manipulate input busses depending upon the control inputs, the barrel shifter designed as part

of this work can implement fast shifts/rotates to facilitate speed-up of operations like

multiplication/division. This is necessary for processors like those from the Z8000 family.

The Barrel shifter can handle sixteen bits at a time. The shifter is capable of the following

• Shift Left

• Shift Right

• Rotate Left

• Rotate Right

The barrel shifter can shift or rotate 16 bits at a time as opposed to one or two bits per

clock cycle. Thus it can be up to 16 times faster than a normal shifter.

3.3.2 Applications

The barrel shifter can be used in a dedicated 16-bit multiplication/division unit for fast

computation. The Z8000 family has an in-built barrel shifter. The barrel shifter can be used

as a normal shifter by hardwiring the number of shift/rotate positions to 1.

Multiplication is implemented as successive shifts and adds. For a 16-bit by 16-bit

multiplication we require sixteen 16-bit shifts and sixteen add operations at the maximum.

These 256 shifts would require 256 shift cycles. The barrel shifter on the other hand shifts

21

sixteen bits at a time and would hence require a maximum of only sixteen shift cycles to

implement the 16-bit multiplication.

3.4 Effective Address Calculator

3.4.1 Introduction

The location of the operand for a particular instruction is known as the effective address. The

effective address depends on the addressing mode. The microprocessors studied 9-19 have

modes that are listed in table 3.1 e.g. the Z8002 has eight different addressing modes which

is a superset of the addressing modes of all the other microprocessors. Table 3.2 shows the

addressing modes and the corresponding effective addresses of the operand. EA is the

effective address while R„ is the address of register n and D 1 6 is the direct data needed.

Table 3.1	 Addressing Modes

22

Table 3.2	 Effective addresses

3.4.2 Implementation

These addresses can be calculated using a five-stage Mealy-type Finite State Machine, The

Instruction Decoder decodes the instruction to give the op-code, addressing mode, registers

to be used as well as the word/byte mode. The addressing mode and the register(s) specified

in the instruction are used as inputs to the state machine. The output of the state machine is

the effective address whose contents are to be used for the instruction as an operand. As seen

from the table 3.3, the first state of the state machine is to fetch the instruction. The

addressing mode and the register(s) specified in the instruction are used as inputs to the state

machine to calculate the next state. The next state may actually correspond to an actual fetch

or a no-op. The state is determined from the addressing mode of the instruction. If mode is

not (00X), a fetch occurs. The finite state machine asserts a register read or a memory read

signal depending upon the op-code.

Table 3.3 	 State Table for the Finite State Machine

Figure 3.2	 State Transition Diagram for the Finite State Machine

24

The effective address of the operand is available as the output of the fourth state.

Register/Memory read is asserted during the fetch operand state. The ALU_ctrl signals are

activated during the add stage as well as during the execute stage depending upon the

instruction op-code. Register/memory writes are issued during the execute cycle. The

algorithm for the working is presented below

1) Fetch Instruction

1.1) Assert mem_addr=PC, mem read

2) Decode Instruction

3) Get the addressing mode, mode

4) If mode != 000 goto 4.2.1

4.1.1) Assert reg_read, reg_addr

4.1.2) Perform operation

4.1.3) Assert reg_write, reg_addr

4.1.4) Write back

4.1.5) Goto 5

4.2.1) If mode != 001 goto 4.3.1

4.2.2) Assert reg_write, reg_addr

4.2.3) get mem_addr= reg_contents

4.2.4) Assert mem_read, mem_addr

4.2.5) Perform operation

4.2.6) Write back

4.2.7) Goto 5

4.3.1) If mode != 010 goto 4.4.1

4.3.2) mem_addr = PC + word size

4.3.3) Assert mem_read, mem_addr

4.3.4) Get mem_contents

4.3.5) Perform operation

4.3.6) Assert reg_addr, reg_write

4.3.7) Write back

4.3.8) Goto 5

4.4.1) If mode != 011 goto 4.5.1

4.4.2) mem_addr = PC + word_size

4.4.3) Assert mem read, mem_addr

4.4.4) get mem_contents

4.4.5) mem_addr=mem_contents

4.4.6) Assert mem_read, mem_addr

4.4.7) Perform operation

4.4.8) Write back

4.4.8) Goto 5

4.5.1) If mode != 100 goto 4.6.1

4.5.2) mem_addr = PC + word_size; assert reg_addr, reg_read

4.5.3) Assert mem_read, mem_addr; get reg_contents

4.5.4) mem addr = reg_contents + mem_contents

4.5.5) Assert mem_read, mem_addr

4.5.6) Perform operation

4.5.7) Write back

25

4.5.8) Goto 5

4.6.1) If mode != 101 goto 4.7.1

4.6.2) mem_addr = PC + word_size; assert reg_addr, reg_read

4.6.3) Assert mem_read, mem_addr; get reg_contents

4.6.4) mem_addr reg_contents + mem_contents

4.6.5) Assert mem_read, mem_addr

4.6.6) Perform operation

4.6.7) Write back

4.6.8) Goto 5

4.7.1)1f mode != 110 goto 4.8.1

4.7.2) mem_addr = PC + word_size

4.7.3) Assert mem_read, mem_addr

4.7.4) get mem_contents

4.7.5) mem_addr = PC + mem_contents

4.7.6) Assert mem_read, mem_addr

4.7.7) Perform operation

4.7.8) Write back

4,7.9) Goto 5

4.8.1) Assert reg_read, reg_addr

4.8.2) get reg_contents1, reg_contents2

4.8.3) mem_addr = reg_contents1 + reg_contents2

4.8.4) Assert mem read, mem_addr

4.8.4) Assert reg_addr, reg_write

26

27

4.8.5) Write back

5) PC=PC + word_size

6) Goto 1

3.5 Priority Encoder

3.5.1 Introduction

The microprocessors studied have the following control pins and interrupt modes that affect

the operation of the CPU. They are listed in table 3.4

Table 3.4	 CPU operating modes

28

The microprocessor may be in a particular operation mode at any given time, The

microprocessor can be in the run mode, reset mode, interrupt mode etc. The next instruction

to be executed depends upon the mode in which the microprocessor is. The Program Counter

is loaded with a particular value depending upon this mode.

The microprocessor state can be determined by using a Priority Encoder. The inputs

to the encoder are the control pins as well as the external interrupt signals. The priority

encoder encodes the priority of the signal available at that particular pin and makes it

available at the output. A signal at a higher priority masks out signals with lower priorities so

that only the highest priority signal is encoded at the output. These priorities can be

configured as per specific needs. The priority encoder may be modified to store the signal

requests into latches so that they may be implemented once all other higher priority requests

are attended to. This could also be implemented as a modified programmable interrupt

controller. The priority encoder can also be cascaded further to increase the number of

priority inputs.

Table 3.5	 Truth Table of 8 input Priority Encoder

3.5.2 Implementation

The circuit diagram for the encoder is shown below

29

Figure 3.3 Circuit diagram for the Priority Encoder

The inputs to the priority encoder like the reset signal, interrupt, etc are given as

inputs 17-0 while the encoded output is available as A2-0. These are used by the Instruction

Execution Control to determine the state of the microprocessors and determine the value tc

be used as the Program Counter.

CHAPTER 4

SIMULATION RESULTS

4.1 Introduction

The following parts designed have been simulated.

• Register File

• Barrel Shifter

• Effective Address Calculator

• Priority Encoder

The results have been compared against expected operations and found to be

satisfactory. The Barrel Shifter and Priority Encoder have been implemented in VHDL code.

The simulations are as follows

4.2 Register File

Most of the common instructions used in the microprocessors have been tested against the

register file design for compliance. Mode refers to the Byte/Word Mode to be used in the

register file. Adr_S and Adr_D are the Source and Destination addresses for read access into

the register file and Data_S & Data_D are the corresponding outputs from the register file

onto the two data busses. Data is written into the register file from the Data signal using the

D address as the destination. The register file thus has two read ports and one write port.

Complex instructions can be split up as sequences of primitives using the instruction decoder

and the micro-code ROM that can then be executed sequentially. Table 4.1 shows the

working of the register file for common instructions of the microprocessors studied.

30

31

Table 4.1	 Working of the Register File for different microprocessors

The Register File would have inputs from the ALU, Instruction Execution Control Unit, Bus

Interface Unit and its own output looped back, all controlled by an input source multiplexer.

4.3 Barrel Shifter

The barrel shifter has been designed and implemented using VHDL code. The simulation

was done using the QuickSim VHDL simulator from Mentor Graphics. The results of the

simulation are as under. The input to the barrel shifter is the 16-bit data signal, "d".

Shift/rotate operation is determined using the "s_r" signal with s_r = 0 being a shift operation

and s r = 1 being a rotate operation. Direction control is done using the "l_r" signal with l_r

= 0 for left and 1_r = 1 for right. The number of bit positions to be shifted is specified using

the 4-bit "n shift" signal. The barrel shifter may take input from the ALU or be integrated

32

into the ALU itself Figures 4.1 throsugh 4.5 show the operation of the Barrel Shifter for

Figure 4.1 	 Barrel Shifter output for a 3 bit left-shift operation

Figure 4.2 	 Barrel Shifter output for a 5 bit left-rotate operation

33

Figure 4.3 	 Barrel Shifter output for a 7 bit right-shift operation

Figure 4.4 	 Barrel Shifter output for a 5 bit right-rotate operation

34

Figure 4.5	 Barrel Shifter output for a 0 bit right-rotate operation

4.4 Effective Address Calculator

The addressing modes of the instructions used in the microprocessors have been tested

against the Effective Address Calculator design for compliance. Table 4.2 shows the working

of the Finite State Machine for the addressing modes of the microprocessors studied. All the

possible addressing modes of the microprocessors studied have been considered and

evaluated for conformance and the Finite State Machine has been found to work

satisfactorily.

Table 4.2 	 Working of the Finite State Machine for different microprocessors

36

4.5 Priority Encoder

The 8-input Priority Encoder has been designed and implemented using VHDL code. The

simulation was done using the QuickSim VHDL simulator. The inputs to the Priority

Encoder are the 8 signals 1 7 ..0 . A is the encoded output signal. E _I is Enable input while E_O

is the enable output that can be used for expanding the input size by cascading multiple units.

The Priority Encoder has been simulated and found working satisfactorily. The results of the

simulation are as shown in figures 4.6 through 4.9.

Figure 4.6	 Priority Encoder output for input = 00110010 and input enabled

Figure 4.7	 Priority Encoder output for input = 10010011 and input enabled

37

Figure 4.8	 Priority Encoder output for input = 00000000 and input enabled

Figure 4.9	 Priority Encoder output for input = 01011011 and input disabled

38

4.6 Event Sequence

The following sequence of instructions/events exercise the parts designed

I. Add CX, [BX]

2. ROL CX,1

3. A reset signal received during the execution of the rotate instruction.

The following events occur internally

• The Instruction Execution Control orders the BIU to fetch the first instruction Add CX,

[BX].

• The instruction is then decoded by the instruction decoder and the effective address

calculator determines the addressing mode to be indirect register.

• The decoder then points to the proper micro-code ROM which issues signals to the

register file with Address S BX and Address D = CX, mode 1 and asserting the read

signal.

• The register file outputs this data on the S and D data busses.

• The Instruction Execution Control then puts this data as an address on the BIU that

fetches data from that memory location.

• The ALU then adds this data to the contents on the D Data bus and the micro-code ROM

under the control of the Instruction Execution Control puts this result into the register file

with Address D = CX and the result as data. The write signal is also asserted

• The Instruction Execution Control then Instructs the BIU to fetch the next instruction

ROL CX, 1

3 9

• The instruction is fetched into the Instruction Register and decoded by the instruction

decoder. The effective address calculator determines the addressing mode as register. The

instruction decoder then points to an appropriate location in the micro-code ROM. The

micro-code ROM then generates control signals into the register file with address S =

CX, mode = 1 and asserting the read signal.

• The register file then puts the contents of the CX register on the S Data Bus.

• The Instruction Execution Control now supplies this data to the Barrel Shifter, which then

performs a left rotate operation by two bit positions.

• The Instruction Execution Control now puts this data into the register file with address D

= CX, mode 1 and asserting the Write Signal.

• A reset signal was received during the execution of the rotate instruction. The Priority

encoder determines that there is no other signal that has higher priority and signals the

Instruction Execution Control to jump to the starting address.

• The Instruction Execution Control then puts the value of the default starting address on

the BIU and the instruction at that address is fetched.

• The implementation of this may be customized as to resetting to the starting address after

completion of the current instruction or resetting by aborting the current instruction

execution.

CHAPTER 5

SUMMARY

The CISC component-based approach was found feasible for the implementation of a

generic microprocessor architecture to implement the studied microprocessors. The major

components have been identified for generic implementation and the Register File,

Effective Address Calculator, Barrel Shifter and Priority Encoder have been designed and

simulated. VHDL models for the Barrel Shifter and Priority Encoder were developed and

simulation results were in good agreement with the expected performance. A novel

approach to design the Effective Address Calculator was followed in the form of a finite

state machine such that all the existing microprocessors can use this generic component.

The design of the Effective Address Calculator can handle eight different addressing

modes. The Register File designed, as part of this thesis is capable of handling 8 to 32

bit-wide data. Some of the parts are processor-specific and hence beyond the scope of

this work.

5.1 Conclusions

The CISC component-based approach was found feasible for the implementation of a

generic microprocessor architecture as it has a lower design time and consequently a

lower verification time. The approach is the most effective way to make a generic

microprocessor to replace target microprocessors. There is a little penalty in the form of

increased chip size that is offset by advances sub-micron in fabrication technology.

40

41

5.2 Future Work

The following is a summary of the future work that needs to be done and the

improvements/modifications that can be done to the current design.

• The remaining components - the ALU, Instruction Execution Control, Bus Interface

Unit and the micro-code ROM need to be designed.

• Sophisticated features like super-scalar architectures, branch target buffer, etc. could

also be implemented in the generic architecture

• The design of a fully generic microprocessor architecture could be considered. This

design would be completely compatible with the microprocessors studied and can

also be custom configured. This may even be further modified into a chip-replaceable

design with the customization being done at the hardware manufacturing stage itself

• The final design could be optimized for speed, power and chip-area.

APPENDIX

VHDL SOURCE CODE

A.1 Barrel Shifter

-- Barrel Shifter.vhd
-- This is to create a 16-bit barrel shifter
-- Works for any 4-bit value of L/R Shift/Rotates including 0 and 15.

LIBRARY ieee, std;
LIBRARY work;

USE ieee.std_logic_1164.all;
USE work.common_pkg.all;
USE ieee.std_logic_arith.all;
USE std.textio.all;

ENTITY barrel_shifter IS
PORT(

	

D :	 IN std_data .

	

L_R :	 IN BIT;	 L/R select,0=shift left,1=right

	

S_R :	 IN BIT;	 -- Shift/Rotate 0 = Shift, 1= Rotate

	

n shift :	 IN bit_vector(3 DOWNTO 0);

	

Y :	 OUT std_data

);
END barrel_shifter;

ARCHITECTURE behav OF barrel_shifter IS

CONSTANT max_prop_delay : TIME := 10 ns;
SIGNAL	 temp_out : std_data;
SIGNAL	 nshft : bit vector(3 DOWNTO 0);

PROCEDURE conv_to_int (SIGNAL vect : IN bit_vector(3 DOWNTO 0);
variable int_out : OUT INTEGER) IS

BEGIN
CASE vect(3) IS
WHEN '0' => CASE vect(2) IS

WHEN '0' => CASE vect(1) IS
WHEN '0' => CASE vect(0) IS

WHEN '0' => int_out := 0;
WHEN '1' int_out := 1;
WHEN OTHERS => NULL;

42

END CASE;
WHEN '1' => CASE vect(0) IS

WHEN '0' => int_out := 2;
WHEN '1' => int_out := 3;
WHEN OTHERS => NULL;

END CASE;
WHEN OTHERS => NULL;

END CASE;
WHEN '1' -----> CASE vect(1) IS

WHEN '0' => CASE vect(0) IS
WHEN '0' => int_out := 4;
WHEN '1' => int_out := 5;
WHEN OTHERS => NULL;

END CASE;
WHEN '1' => CASE vect(0) IS

WHEN '0' => int_out := 6;
WHEN '1' => int_out := 7;
WHEN OTHERS => NULL;

END CASE;
WHEN OTHERS => NULL;

END CASE;
WHEN OTHERS => NULL;

END CASE;
WHEN '1' => CASE vect(2) IS

WHEN '0' => CASE vect(1) IS
WHEN '0' => CASE vect(0) IS

WHEN '0' => int_out := 8;
WHEN '1' => int_out := 9;
WHEN OTHERS- => NULL;

END CASE;
WHEN '1' => CASE vect(0) IS

WHEN '0' => int_out := 10;
WHEN '1' => int_out := 11;
WHEN OTHERS NULL;

END CASE;
WHEN OTHERS => NULL;

END CASE;
WHEN '1' => CASE vect(1) IS

WHEN '0' => CASE vect(0) IS
WHEN '0 => int_out:= 12;
WHEN '1' => int out := 13;
WHEN OTHERS => NULL;

END CASE;
WHEN '1' => CASE vect(0) IS

WHEN '0' => int_out := 14;
WHEN '1' => int_out := 15;

43

WHEN OTHERS => NULL;
END CASE;

WHEN OTHERS NULL;
END CASE;

WHEN OTHERS => NULL;
END CASE;

WHEN OTHERS => NULL;
END CASE;
END;

PROCEDURE shifter (SIGNAL 	 D : std_data;
SIGNAL nshft : IN bit_vector(3 DOWNTO 0);
SIGNAL L R : IN BIT;
SIGNAL tmp_out : OUT std_data) IS

CONSTANT filler : std_logic_vector(15 DOWNTO 0) := 0000000000000000;
VARIABLE shift_pos : INTEGER;

BEGIN
conv_to_int(nshft,shift_pos);
IF (L_R <= '0') THEN

FOR i in D'RANGE LOOP
IF (i > shift_pos-1) THEN

tmp_out(i) <= D(i-shift_pos);
ELSE

tmp_out(i) <= filler(i);
END IF;

END LOOP;
ELSIF (L_R <= '1') THEN

FOR i in D'RANGE LOOP
IF (i > 15-shift_pos) THEN
tmp_out(i) <= filler(i);

ELSE
tmp_out(i) <= D(i+shift_pos);

END IF;
END LOOP;

END IF;

END shifter;

PROCEDURE rotater (SIGNAL	 D: IN std data;
SIGNAL nshft : IN bit_vector(3 DOWNTO 0);
SIGNAL L_R : IN BIT;
SIGNAL tmp_out : OUT std_data) IS

44

CONSTANT filler : std_logic_vector(15 DOWNTO 0) := 0000000000000000";
VARIABLE shift_pos INTEGER ;

BEGIN
conv_to_int(nshft,shift_pos);
IF (L_R <= '0') THEN

FOR i in D'RANGE LOOP
IF (i > shift_pos-1) THEN -- Less than or equal to shift_pos
tmp_out(i) <= D(i-shift_pos);

ELSE
tmp_out(i) <= D(16+i-shift_pos);

END IF;
END LOOP;

ELSIF (L_R <= '1') THEN
FOR i in D'RANGE LOOP

IF (i < (16-shift_pos)) THEN
tmp_out(i) <= D(i+shift_pos);

ELSE
tmp_out(i) <= D(i+shift_pos-16);	 -- D(i-(16-shift_pos))

END IF;
END LOOP;

END IF;

END rotater;

BEGIN

barrel : PROCESS (D,L_R,S_R i n_shift)
BEGIN

CASE S_R IS
WHEN '0' => shifter(D,n_shift,l_r,temp_out);
WHEN '1 => rotater(D,n_shift,l_r,temp_out);
WHEN OTHERS => NULL;

END CASE;

END PROCESS barrel;

Y <= temp_out AFTER max_prop_delay;
END behav;

45

46

A.2 Priority Encoder

--Priority_Encoder.vhd
-- This is to create an 8 input Priority Encoder with cascade facility

LIBRARY ieee, std;

USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY pri_enc IS
PORT(

I: IN std_logic_vector(7 DOWNTO 0);
	 E_I:	 IN BIT;	 -- Enable Input, for cascade purposes

	

E_O :	 OUT BIT;	 -- Enable output, for cascade purposes
A : OUT bit_vector(2 DOWNTO 0)

);
END pri_enc;

ARCHITECTURE behavior OF pri_enc IS
CONSTANT max_prop_delay : TIME 10 ns;
SIGNAL	 temp_out : BIT_VECTOR(2 DOWNTO 0);
SIGNAL	 temp_eo : BIT;

BEGIN

temp_out(2)	 <='1' WHEN E_I = '1' AND (I(7) = '1' OR I(6) = '1' OR I(5) = '1' OR I(4) =
'1') ELSE

'0'.

temp_out(1)	 <= 1' WHEN E_I = '1' AND (I(7) = '1' OR I(6) = 11' OR I(3) = '1' OR = I(2) =
'1') ELSE

'0';

temp_out(0) <= '1' WHEN E_I = '1' AND (I(7) = '1' OR I(5) = '1' OR I(3) = '1' OR I(1) =
'1') ELSE	 '0';

temp_eo	 <='1' WHEN E_I = '1' AND I <= "00000000" ELSE
'0';

A <= temp_out AFTER max_prop_delay;
E_O temp_eo AFTER max_prop_delay;
END behavior;

A.3 Common Package

--Common_pkg.vhd
-- This is the common package for the barrel shifter

LIBRARY ieee;

USE ieee.std_logic_1164.all;

PACKAGE common_pkg IS

CONSTANT databus_width : NATURAL := 16;
CONSTANT addrbus_width : NATURAL := 16;
CONSTANT instbus_width : NATURAL := 16;
CONSTANT shft_size : NATURAL := 4;

SUBTYPE std_data IS std_logic_vector (databus_width-1 DOWNTO 0);
SUBTYPE std address IS std_logic_vector (addrbus_width-1 DOWNTO 0);
SUBTYPE std_shift IS std_logic_vector (3 DOWNTO 0);
SUBTYPE std inst 	 IS std_logic_vector (instbus width-1 DOWNTO 0);

CONSTANT logic_0 : std_data := (OTHERS => '0');

END common_pkg;

47

REFERENCES

1. Vinogradov, G., "Implementation of Legacy Microprocessors using RISC-based
Hardware Emulation Architectural Approach", Internal Paper for Sarnoff
Corporation, Princeton, NJ.

2. Mohare, P., Huang, J.B., " General Emulation of Microprocessors", Internal Paper
for Sarnoff Corporation, Princeton, NJ.

3. Smith, J., De Micheli, G., "Automated Composition of Hardware Components",
Design Automation Conference 98, San Francisco, CA.

4. Hepler, E., Internal Paper for Sarnoff Corporation, VLSI Concepts, Malvern, PA.

5. Stone, H.S., Chen, T.C., Flynn, M.J., Fuller, S.H., Lane, W. G., Loomis, H.H., Jr.,
McKeeman, W.M., Magelby, K.B., Matick, R.E., Whitney, T.M., Introduction to
Computer Architecture, Science Research Associates Inc., Amherst, MA, 1975.

6. Veronis, A.M., Survey of Advanced Microprocessors, New York, Van Nostrand
Reinhold, 1991.

7. Tannenbaum, A.S., Structured Computer Organization, Englewood Cliffs, NJ,
Prentice Hall, Ed. 3, 1994.

8. Carter, J.W., Microprocessor Architecture and Microprogramming: A State Machine
Approach, Englewood Cliffs, NJ, Prentice Hall, 1995.

9. Weste, N.H,E., Eshraghian, K., Principles of CMOS VLSI Design, Burlington, MA,
Addison-Wesley, Ed. 2, 1992.

10.Gaonkar, R., The Z80 Microprocessor: Architecture, Interfacing, Programming and
Design, New York, Macmillan, Ed. 2, 1992.

48

49

11.Gaonkar, R., Microprocessor Architecture, Programming and Applications with the
8085/8080A, New York, Merrill, Ed. 2, 1989.

12.Tocci, R.J., Laskowski, L.P., Microprocessors and Microcomputers: The 6800
Family, Englewood Cliffs, NJ, Prentice Hall, 1986.

13.Hall, D., Microprocessors and Interfacing; Programming and Hardware, New Delhi,
Tata McGraw-Hill, 1994.

14.Stewart, J.W., The 8051 Microcontroller, Englewood Cliffs, NJ, Regents/Prentice
Hall, 1993.

15.Lin, W.C., Microprocessors: Fundamentals and Applications, New York, WEE
Press, 1977.

16.Alexandridis, N.A., Microprocessor System Design Concepts, Rockvillle, MD,
Computer Science Press, 1984.

17.Khambata, A.J., Microprocessors/Microcomputers: Architecture, Software and
Systems, St. Paul, MN, John Wiley & Sons, Ed. 2, 1987.

18.Gibson, G.A., Liu, Y.C., Microcomputers for Engineers and Scientists, Englewood
Cliffs, NJ, Regents/Prentice Hall, 1980.

19. Hwang, K., Advanced Computer Architectures, New York, NY, Mcgraw-Hill, Ed. 1,
1994.

	Design of components for a generic microprocessor architecture
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Standard Microprocessors
	Chapter 3: Design
	Chapter 4: Simulation Results
	Chapter 5: Summary
	Appendix
	References

	List of Figures
	List of Tables

