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ABSTRACT

DUAL FREQUENCY BI-ORTHOGONALLY POLARIZED
ANTENNA FOR GPS APPLICATIONS

by
Anand Arun Mahale

Dual frequency bi-orthogonally polarized antenna to be used in Global Positioning

System applications operating in L1 (1575.42 ± 10.23 MHz) and L2 (1227.60 ± 10.23

MHz) Bands has been studied. To ensure compatibility with existing applications, the

antenna size is limited in dimensions to 4.120" x 4.680" x 1.250" including the radome.

Orthogonally placed two dual frequency probe excited patches were designed using a

high dielectric constant substrate (Є r = 9.8 and thickness of 250 mils, Rogers TMM10i

material) to obtain vertical and horizontal polarization for each band. The measured

performance of this antenna showed good agreement with the specifications required to

meet the application needs. As an attractive alternative a stacked dual patch antenna

configuration has been suggested and a prototype antenna has also been developed.

Using low and high dielectric constants of 2.20 and 9.8 and relative thicknesses of 125

and 250 mils for each layer an orthogonally placed dual patch configuration has been

designed, fabricated and tested on a 2 square feet ground plane. Effects of radomes using

materials with different permittivities have been studied through numerical simulations

and radomes have been fabricated using plastic materials including UMHW, HDPE and

Delrin. Numerical simulations have been carried out using IE3D software package

developed by Zeland Software Inc. Antennas that were fabricated based on optimized



parameters have further required tuning due to inaccuracies in simulation and material

properties. The measurement setup has been enhanced to accommodate axial ratio

measurements in polarization pattern characterization by adding a rotary joint to rotate a

linearly polarized antenna operating in the receiving mode. The performance

characteristics showed that adequate bandwidths and beam widths were obtained and

gain of these antennas were measured to be in the order of 3.5 dBi along the main lobe.

Further work is continuing to obtain antennas with wider bandwidths using thicker

substrates.
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CHAPTER 1

INTRODUCTION

1.1 Antenna For Global Positioning System

Dual frequency bi-orthogonally polarized antenna for use in Global Positioning System

(GPS) receivers operating at Ll (1.57542 GHz) and L2 (1.22760 GHz) frequency bands

were studied. The primary objective of this effort is to develop GPS antenna

configurations that are suitable for use with new signal processing techniques being

developed by Electra-Radiation Incorporated (ERI), Fairfield, NJ [1]. The parameters

such as antenna gain, efficiency, radiation characteristics and bandwidth of the developed

antenna are very critical for successful GPS reception in terms of increasing the antenna

signal to noise performance. By packaging this antenna configuration into a compact

patch type structure it will be suitable for use on the wide variety and large number of

military and commercial vehicles such as aircrafts, helicopters, tanks, missile launchers,

ships and automobiles which use GPS receivers for navigation purposes.

Microstrip antennas [2] have found use in diverse applications due to their light

weight, compact size, rugged and conformal characteristics and often lower costs in

materials and mass production. Although the dual frequency dual polarization antenna

elements have been reported before [2], the GPS application oriented antenna proposed in

this work has its unique characteristics. The parameters that dictate the antenna

requirements, for current GPS system applications require dual frequency reception in

L1 and L2 bands with orthogonal polarization. Research on dual frequency patch

1
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antennas that have been carried out in the last decade has been summarized in a recent

publication [3], indicating that dual frequency antennas can be grouped accordingly, as

shown in

Figure 1,

- Orthogonal dual frequency patch antenna,

- Multipatch dual frequency patch antenna,

- Reactively loaded patch antenna.

However, the current requirement also seeks dual orthogonal polarization for both

L1 and L2 frequency bands. The proposed solution in this work includes combination of

Two orthogonal mode dual frequencies patch antennas,

- Two orthogonal dual frequency stacked patch antennas.

The above combined antenna structures were designed based on numerical

simulations, fabricated and tested.
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CHAPTER 2

MICROSTRIP PATCH ANTENNAS

2.1 Introduction

Low profile, light weight, ease in fabrication, rugged, conformal, and in some cases lower

cost than comparable antennas, are among favorable features which help microstrip

antenna to be used in a broad range of modern applications. Microstrip antennas have

been designed and incorporated in very wide range of systems, from commercial car

navigation GPS systems, biomedical systems, intruder alarms, to sophisticated satellite

communication systems, on board ship radar, aircraft antennas, etc. They are especially

suitable for low power and narrow bandwidth applications due to their inherent

limitations of handling high power and delivering wide bandwidths. Furthermore, the

inherent limited polarization purity can be improved by choosing configurations, which

combine orthogonal polarizations.

2.2 Microstrip Resonator Classification

The basic microstrip resonator [4] geometry given in Figure 2.1 consists of a dielectric

sheet of thickness h and relative dielectric constant s r. The finite conductor with a

variety of shapes is deposited on the top of the dielectric helps the entire resonating

structure to radiate. The microstrip radiator can be classified in two categories; the

narrow strip resonator is usually called the microstrip dipole antenna whereas the broader

4



Figure 2.1. Various microstrip patch antennas.
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conductor is known as a microstrip patch antenna. Figure 2.1 illustrates various shapes of

microstrip patch antennas and a dipole microstrip antenna. Microstrip patch antenna may

have varieties of shapes: rectangular, square, circular, ring, triangular, or elliptical as

shown in Figure 2.1. The selection of a particular shape depends on the parameters one

wishes to optimize: e.g. antenna size, sidelobe levels, cross polarization factors,

impedance bandwidth, etc. Because of the broader width, a microstrip patch antenna may

excite surface current flowing across the transverse direction which will in turn create

unwanted cross polarization radiation interference effects. The intensity of this undesired

radiation depends strongly on the feeding methods and location of the feed and primarily

on the thickness of the substrate in terms of a free space wavelength.

2.3 Analytical Modes for Rectangular Patch Antennas

Although the geometry of a rectangular microstrip antenna appears to be simple, it

becomes quite difficult to determine the electromagnetic field effects analytically due to

the presence of complex boundary conditions at the interface between dielectric substrate,

metal, and air. For more accurate analysis, a full-wave electromagnetic solver is

employed based on methods of numerical solution of Maxwell' s equations. Brief outline

of the currently used numerical methods is given in Appendix A. In this work, as an

example, software package IE3D (Integration Equation Solution 3D) developed by

Zealand Software Inc., is used to analyze and design a dual frequency dual patch

microstrip antenna operating at L1 and L2 bands.

Even though, one can obtain accurate results for patch radiation using software

tools, simulations alone may not be able to lead to simple interpretations on how

radiation takes place. Simple approximate analytical models help to fill in such gaps. The
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common analytical models are based on an equivalent transmission line model and a

cavity model. A combination of both simplified models and accurate numerical analysis

results will offer better insight on how such a structure radiates.

2.4 Transmission Line Model

A transmission line model [5] is the simplest of all approximate methods. It utilizes

transmission line theory to model the patch in terms of parallel radiating slots as shown in

Figure 2.2. Each radiating slot has a length 'w' and width proportional to height 'h'.

Because of its simplicity, it provides results with limited accuracy; however, it does

suggest some physical insights on how energy radiates into upper half space. But it does

not predict the presence of higher order modes. The more complicated cavity model can

predict the existence of higher modes, however it does not lead to equivalent sources that

result in radiation.

A. Microstrip transmission line

A microstrip line consists of a strip conductor and a ground plane separated by a

dielectric substrate as shown in Figure 2.3. Both electric and magnetic fields are not

confined entirely within the substrate below the conducting patch but partial fringing

fields also exists in air so the propagation of electromagnetic energy in the microstrip line

is not restricted to a pure transverse electromagnetic (TEM) mode but necessitates

inclusion of a quasi-TEM mode as well. The characteristic impedance of the microstrip

line can be expressed as [6]
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B. Effective dielectric constant

With finite line width, the fields at the edge undergo fringing and make the microstrip

line appear wider electrically compared to its actual physical dimensions. Effective

dielectric Є r,eff is introduced to account for both fringing and the presence of a quasi-

TEM mode. Effective relative dielectric constant is defined as the relative dielectric

constant of the corresponding uniform dielectric material so that the electrical

characteristics of the structure in Figure 2.3(b) are the same as in Figure 2.3(c) especially

in terms of the propagation constant. The effective dielectric constant of a microstrip line

is a function of the dielectric constant E r, the height h of the dielectric substrate, and the

width w of the strip conductor, which is given by [7]:

If t/h << 0.005:



Figure 2.2. Microstrip Antenna and its Equivalent Transmission Line Model



Figure 2.3. Microstrip line and effective dielectric constant
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C. Effective length, effective width, and resonant frequency

Because of the fringing field effects on the radiating edge of the microstrip patch antenna,

its effective length will be longer than its physical dimension as shown in Figure 2.4. Its

length is extended by an additional amount of Al on both ends of the radiating edge and

expressed as [8]

Since additional length 2A1 added into the total length L, the effective length of this patch

will be L eff = L + 20/ .

The resonant frequency of the patch antenna is given by

where c is the velocity of light in vacuum. Above formula did not take into account the

modified value of the effective length. Therefore, a more accurate version of resonant

frequency for the patch can be expressed as [4]:
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where q is defined as the fringing factor or length reduction factor.

From transmission line model, one can estimate the resonant frequency of the

rectangular microstrip patch antenna. When the substrate height increases, extended

fringing causes M to expand which forces the decrease in the resonant frequency, but

may lead to excitation of surface waves [9].



Figure 2.4. Physical and effective length of rectangular microstrip antenna

13
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2.5 Cavity Model

Cavity model is more complex in nature in comparison to the transmission line model.

Here, the rectangular microstrip patch is modeled as a dielectric loaded cavity where the

normalized field within the dielectric substrate can be calculated accurately by assuming

that region as a cavity bounded by the patch and the bottom ground plane (perfect

conducting electric walls) with perfect conducting magnetic walls in surrounding

perimeter of the patch as shown in Figure 2.5. Cavity model has the ability to predict

higher order modes supported by the structure and the corresponding resonant

frequencies for the cavity are given as [10, 11]:

where m, n, p represent the number of half-cycle field variations along the x, y, 2

directions, respectively. As the dielectric substrate is thin no field variation with respect

to 'x' is assumed. Hence 'm 0'. Therefore the two dominant modes that would be

excited orthogonally are TM 01 and TM10 modes. Figure 2.6 shows the field

configurations for the dominant and the first three higher order modes.



Figure 2.5. Rectangular microstrip patch geometry for a cavity model [8].
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Figure 2.6. Field configurations ( modes ) for a rectangular microstrip antenna
16
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A. Radiation patterns of a rectangular microstrip patch antenna

The approximate far field radiation patterns of a rectangular microstrip antenna operating

in the dominant mode in both E and H planes, respectively are given by [4]:

E — Plane :

2.6 Microstrip Antenna Feeds

Coaxial feed (probe feed), direct microstrip (inset and non-radiating) feed, proximity

feed, and aperture coupled feed could be considered among the most popular feed

structures utilized in excitation of microstrip antennas [9].

Coaxial feed is widely used as a microstrip feed due to its ease in fabrication. The

probe extends from underneath the ground plane, penetrates through the substrate, and

connected to the patch. It is totally hidden under the big patch therefore theoretical!)
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generates no spurious radiation. In this work probe feed is used partially for single layer

patch antenna excitation and aperture coupled feed is used for stacked antenna as shown

in Figure 2.7. IE3D simulations yielded the graphical representation of the vector current

distribution due to coaxial feed and aperture coupled feed used in this work for single

layer and stacked antenna respectively. These distributions are shown in the Figure 2.8

and 2.9.

2.7 CAD Design and Analysis of a Rectangular Microstrip Patch Antenna

In order to facilitate the design process, with the help of simplified models, initial values

for resonant frequency and the feed location can be estimated. Approximate results

provide good initial values for further optimization in numerical simulations. The

pre-calculated dimensions and the feed point location are entered through MGRID, which

is a Windows 95 graphical interface circuit layout editor of IE3D package. The first run

simulated results are analyzed to identify where resonant frequency shift is and also helps

to determine the nature of the impedance of the antenna at the chosen feed location.

A.) Resonant frequency of the patch

The resonant frequency is determined through the zero cross over of the imaginary part of

the impedance. The desired requirement necessitates that for maximum radiation, the

antenna impedance should be purely resistive and the radiation resistance should be equal

to the generator's impedance to ensure maximum power transfer. If there is cancellation

of reactive components in terms of either capacitive or inductive reactance, the net energy



Figure 2.7. Probe feed structures of the antennas developed for GPS applications.

19



20

(b) Frequency = 1.575 GHz
Figure 2.8. Current distribution of a rectangular patch antenna



(b) Frequency = 1.575 GHz
Figure 2.9. Current distribution of a stacked patch antenna

21
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storage will not take place and all resistive power left after experiencing possible losses

will radiate.

B. Determination of the matched feed location

The proper feed location is determined by observing the impedance of the antenna at the

resonant frequency. Figure 2.8 and 2.9 show the current density distribution of the patch.

One can easily observe that the current is minimum at the edge and maximum in the

middle of the non-radiating edge, therefore the impedance is minimum at the center and

maximum at the edge. With this information one can immediately predict whether the

feed location should be moved forward or backward, accordingly.

C Optimization for the resonant frequency and the matched feed

When the probe is moved to a new location, the resonant frequency will be affected due

to the interaction of the impedance of the probe with the patch. Adjusting the length of

the patch for changing resonant frequency also changes the impedance of the antenna.

The total length adjustment leads to the changes in a current density distribution at that

location, resulting in modification of the impedance of the antenna.

Most optimization schemes are based on a linear optimization requiring the user

to define the solution of the problem as close to the optimum as possible, otherwise

iterative solution may be locked into to the local minimum, preventing the proper

convergence for the final solution. As in the case of the patch antenna analyzed here, the

user must be able to tune the antenna to the closest possible length and identify the proper

feed location. Then, these solutions should be placed into the geometry file for final
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optimization. The obtained optimized results were quite impressive, most of the time

very good return loss can be achieved somewhere between -50 to -60 dB for a single

patch antenna as seen in Figure 4.2. This result could be hardly obtained without the

help of the built-in optimization routine in IE3D.

Although the cavity model predicts the presence of higher order modes, the

resonance frequencies corresponding to these modes are not of any practical interest in

this work, since L1 band (1.57542 GHz) is below the second harmonic of the L2 band

(1.22760 GHz).



CHAPTER 3

DUAL FREQUENCY BI-ORTHOGONALLY POLARIZED
MICROSTRIP ANTENNA

3.1 Introduction

Most applications that require dual frequency operation may require wider bandwidth

than the one that can be obtained by a single microstrip antenna. Some dual frequency

systems operate on the transmit-receive bands whereas other applications such as Global

Positioning System (GPS) require two distinct bands for accuracy enhancement. The goal

of this effort is to design and build a prototype dual frequency (L1 and L2 bands) antenna

having two orthogonal polarizations (Vertical and Horizontal) or (Right Hand Circular

Polarization (RHCP) and Left Hand Circular Polarization (LHCP)).

3.2 GPS Antenna Requirements

One of the main factors is the size requirement for numerous GPS applications, i.e. in this

particular case the physical dimensions should not exceed 4.120" x 4.680" x 1.25",

including the radome. Figure 3.1, depicts the required physical dimensions which are

consistent with the existing installations would be adhered in this work. The typical

attribute of the microstrip antenna is its narrow bandwidth. However wider bandwidth

requirement can be met to a certain extent by changing the substrate thickness or

modifying the patch geometry.

The current desired specifications for the dual frequency bi-orthogonally

polarized antenna are:

24
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Figure 3.1. Specified dimensions of the GPS antenna.
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• Item Definition: The dual frequency bi-orthogonally polarized antenna will

include the antenna elements, radomes, mechanical interface and electrical

connectors.

• Interface Definition: The dual frequency bi-orthogonally polarized antenna shall

have an outline and mechanical configuration in accordance with Figure 3.1.

• Characteristics: 

RF Frequency: The dual frequency bi-orthogonally polarized antenna shall meet

its performance requirements for the following frequencies:

RF1: 1575.42 10.23 MHz

RF2: 1227.60 ± 10.23 MHz

Polarization: Dual Orthogonal Linear polarization shall be provided for each RF

frequency specified in the above paragraph.

Mounting Location: The dual frequency bi-orthogonally polarized antenna is

intended as a top mounted antenna installation.

Antenna Gain: The dual frequency bi-orthogonally polarized antenna shall

provide a minimum gain of 0 dBi over a 160 degree solid angle cone of coverage

(above 10 degree elevation angle) for matched polarization signals within the RF1

and RF2 bandwidths these gain requirements shall be met using a test ground

plane two feet square.

VSWR: The dual frequency bi-orthogonally polarized antenna VSWR at the

signal interface shall not exceed 1.8: 1 referenced to 50-ohm characteristic

impedance over the RF1 and the RF2 bandwidths.
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Power Consumption: The dual frequency bi-orthogonally polarized antenna shall

be passive and require no electrical power.

Environmental Conditions: The antenna unit is intended for outdoor applications

in both ground based and air borne installations and shall withstand such

environment without sustaining damage or degraded performance.

Temperature: The dual frequency bi-orthogonally polarized antenna shall be

designed to operate at the temperature range —54 ° C to +71 ° C with storage to

+95 ° C.

Altitude and Humidity: The unit shall withstand altitude of-1500 to 70,000 feet,

and relative humidity upto 100%, including conditions where condensation takes

place.

• Design and Construction: The unit shall be designed for outdoor ground and

airborne applications and shall use applicable portions of MIL-E-5400 and

MIL-E-16400 as a guide.

• Testing

First Article Tests: E&H plane patterns shall be taken for RF1 and RF2 for each

associated port. Calibration of absolute gain at boresight shall be obtained for

each frequency. All data shall be taken while dual frequency bi-orthogonally

polarized antenna is mounted to a 2 feet square ground plane.
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3.3 Dual Frequency Antennas

Dual frequency antennas consist of a single radiating structure, which exhibits a resonant

behavior, both in terms of radiation and impedance matching at two separate frequencies.

In microstrip antenna technology, dual frequency operation can be achieved through

several numbers of different configurations. The basic three categories are [3],

1. Orthogonal Mode Dual Frequency Patch Antenna,

2. Multipatch Dual Frequency Antenna,

3. Reactively Loaded Patch Antenna.

Radiation efficiency, input impedance matching, dual frequency ratio, ease of

fabrication and cost are the primary factors that effect the choice of an optimum

configuration suitable for a specific application. Hence performance of each category will

be studied in terms of the aforementioned characteristics to discuss the possible

configurations for the current GPS application.

1.) Orthogonal Mode Dual Frequency Patch Antenna:

As discussed in the cavity model, TM01 and TM10 modes can be excited on a single

rectangular patch to obtain dual frequency operation by adjusting the width and the

length of the patch according to the two separate resonant frequencies.

It must be noted that two separate modes are orthogonal that might be a drawback

for some applications. However, this behavior makes the configuration a suitable

candidate for the GPS applications in which bi-othogonally polarized dual frequency

operation can be achieved by placing two rectangular patches orthogonally.
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Figure 3.2. Orthogonal-mode dual frequency patch antennas.

As shown in the Figure 3.2, orthogonal modes can be excited either by using a single feed

(in the Figure 3.2(a) and 3.2(b)) or by using two separate feeds (in the Figure 3.2(c) and

3.2(d)). As discussed before, the choice depends on the type of application. When

separate field configuration is used, as long as the spacing between the feed points is

physically realizable, feeds must be positioned close to the center of the corresponding

edges in order to obtain good isolation levels between the ports.

The aspect ratio of the rectangular patch is (WL1 / Wu) is proportional to the ratio

of the frequencies ( fH / fL ). Therefore orthogonal-mode dual frequency antennas are not

suitable for the applications which require large frequency ratios since the H- plane

beamwidth at fH and fl are determined by WL1 and WL2, respectively which results in

different radiation characteristics for two separate frequencies. Therefore this discussion

also validates the choice of orthogonal mode dual frequency patch antenna configuration

for GPS applications, where the frequency ratio is 1.575 / 1.227 = 1.28.
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2.) Multi-patch Dual Frequency Antennas:

The dual frequency behavior is obtained by means of multiple radiating elements, which

may be placed in different dielectric layers (stacked), or on the same substrate (coplanar)

as shown in the Figure 3.3. In the stacked configuration the length of the corresponding

two patches are chosen to obtain resonance at two separate frequencies. Hence, the same

configuration can be used to broaden the bandwidth of a single patch antenna by using

two stacked patches with close dimensions.

Figure 3.3. Multi-patch dual frequency antennas

Unlike the orthogonal-mode dual frequency patch antennas, these antennas

operate with the same polarization at the two frequencies as well as with the dual

polarization. However, for the bi-orthogonal dual frequency operation some

modifications in the configurations are required. The proposed configuration is shown in

the Figure 3.4. For a given set of En and F—T2, the corresponding lengths (W L1,v , WL1,H)

and (WL2,v , WL2,H) are designed to be the resonant lengths at fL and fH , respectively.
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Since the lower patch will behave like a ground plane for the upper one, Єr2 is chosen to

be greater than En  and the ratio of the cumulative permittivity is adjusted to ensure that

the upper patch stays within the limit of the lower one (W L1,v < WL2,v). From port one

(PI) vertical polarization at fL and fH frequencies will be obtained through the lower and

upper patches, respectively. Similarly lower and upper patches will yield the horizontal

polarization at fL and fH, frequencies respectively through port 2 (P2). The details of the

design procedure for the proposed configuration are discussed in Chapter 4.

Figure 3.4. Bi-orthogonally polarized dual frequency stacked patch antenna.



32

Due to the difficulties in optimization of the design, fabrication and tuning of the

stacked configuration these types of antennas are not the primary choice in some

applications. However, stacked patches provide a better directivity compared to their

coplanar counterparts due to increase in the effective aperture of the radiating structure.

Hence, for GPS applications, where the gain is an important parameter, stacked patches

turn out to be an alternative configuration inspite of the drawbacks during fabrication and

tuning phases.

The coplanar dipole configuration with multiple printed resonators as shown in

the Figure 3.3.c, is suitable for the applications where more than two resonances are

required. In the cross-sub array configuration, as shown in the Figure 3.3.d, the inner

crosspatch resonates at one frequency and the outer four square patches resonate at a

much higher frequency. Such an antenna configuration becomes useful for the

applications that require a large frequency ratio.

3.) Reactively Loaded Patch Antennas:

A microstrip antenna is basically a resonator and by introducing a reactive loading to the

patch, a secondary resonance behavior can be obtained. The reactive loading can be

achieved by using a coaxial or microstrip line stubs or by inserting notches at the

radiating edge of the patch (as shown in Figures 3.5(a)-3.5(d)). However in both cases the

frequency ratio cannot be designed to be higher than 1.2 without introducing strong

cross-polarization levels or pattern distortion at the additional frequency. To obtain

higher values of frequency ratio, the structures shown in the Figures 3.5(0-3.5(g) can be

used in which TM 10 and TM30 modes are excited and the frequency ratio (which is
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approximately equal to 3 for the unloaded case) is reduced by loading the antenna with

pins, capacitors and /or slots.

TM20mode excitation is not preferred due to the null in the radiation pattern at the

broadside direction, therefore, TM30 mode is the next mode that can be utilized for the

dual-frequency operation. However in this case the frequency ratio is fixed at a large

value that is approximately equal to 3. This ratio can be reduced by disturbing the field

variations of the TM 10 and the TM30 modes, which are plotted in Figure 3.6 and Figure

3.7, respectively.

Figure 3.5. Reactively loaded antennas.
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As it can be observed form Figure 3.6, by placing shorting pins at a distance L/6 from

the edges, where the E-field distribution of the TM30 mode is zero, the operating

frequency of the TM10 mode can be increased considerably without affecting the

operation of TM30 mode. Similarly, slots inserted at the same location as the pins will

decrease the resonance frequency of the TM30 mode since the H-field distribution of

this mode exhibits a maximum at the slot position, see Figure 3.7. By increasing the

number of pins and adjusting the length of the slots, the frequency ratio can be

Figure 3.6. Aperture E-field distributions of TM 10 and TM30 modes

lowered from 3 to 1.3. However, the narrower beamwidth and grating lobe characteristics

of the radiation pattern at the TM30 operating frequency, makes the use of this type of

antenna unsuitable in GPS applications which require wide angle coverage ranging from

broadside to endfire.



35

Figure 3.7. Aperture H-field distributions of TM10 and TM30 modes

Another kind of slot-loaded patch antenna that consists of a rectangular patch with

two narrow slots etched close to and parallel to the radiating edge is shown in Figure

3.5.h. In this case also, the dual frequency operation arises from the perturbation of the

TM10 and the TM30 modes. The length of the slots and the dimensions of the patch can be

changed to control the frequency ratio in the range from 1.6 to 1.9. However, the length

of the slots has a strong effect on the radiation pattern at the higher operation frequency.

With shorter slots, radiation pattern is similar to the pattern of the unperturbed TM 30

mode. As slot length increases, the width of the main beam first reduces and then a null

occurs at the broadside. A further increase in the length of the slot will result in a

radiation pattern similar to that of the mode. Hence the constraint on the frequency ratio

and the irregularities of the radiation pattern eliminates the possibility of utilizing the

antenna in GPS applications.



CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSIONS

Bi-orthogonally polarized (horizontal and vertical polarization) and dual frequency

(L 1 =1.227GHz, L2=1.575GHz) antennas are designed, fabricated, tuned and measured for

two different configurations. In Chapter 3, dual frequency printed antenna structures

outlined in literature are studied considering GPS application and their performances are

compared in terms of impedance matching, gain, radiation efficiency, applicable

frequency ratios, ease of fabrication and tuning. It is concluded that coplanar and stacked

orthogonal rectangular microstrip patches are the most suitable choices that fulfill the

requirements of GPS antenna for the current application. The detailed design procedure

and measurement results for these antenna structures are presented below in Section 4.1

and Section 4.2.

4.1 Coplanar Orthogonal Rectangular Dual Patch Antenna

Dual frequency bi-orthogonal operation is achieved through the configuration shown in

Figure 4.1, where Wu and WL2 denote the resonance lengths at the frequencies L 1 and

L2, respectively and V and H denotes the vertical and horizontal polarizations,

respectively. Feed locations are expressed in terms of the vertical distances from the

closest edges (x,y) within the patch antenna.

Considering the overall antenna dimensions being restricted to a maximum

dimension of 4.680", a dielectric substrate with a high enough permittivity value that

provides a shorter guided wavelength is required. But on the other hand, higher dielectric

36
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values decrease the bandwidth considerably such that a thick dielectric substrate is

needed to compensate this limitation by broadening the bandwidth. As a result, an

optimum dielectric substrate with a relative dielectric constant of 9.8 and a thickness of

250 mils is chosen to meet the dimension and bandwidth requirements. Availability of the

substrate material with a specific relative dielectric constant leads to another constraint

hence chosen Er has to be available commercially.

Figure 4.1. Coplanar orthogonal rectangular patches

Transmission line model is used initially to estimate the dimensions of the patch

and location of the feed points. The initial estimates are optimized through several

iterative simulation steps and final results are obtained by using a full-wave analysis

program, IE3D of Zealand Software Inc. Good impedance matching (shown in Figure

4.2) and port isolation (~-20dB) values are obtained for the following dimensions and

feed locations:



Figure 4.2. Simulation results for the input return loss of the coplanar antenna

The coplanar antenna is fabricated according to these optimized values, and the

input return loss and port isolation measurements are carried out using HP 8510C

automated vector network analyzer. A shift between the simulated and measured

resonance frequency values is observed which may be due to the following effects:

• the full-wave analysis program assumes an infinite ground plane and dielectric

substrate model,

• the permittivity of the dielectric substrate may exhibit some variations from its

nominal value, due to different batches in manufacturing process,
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• the actual size of the patches may not be exactly same as the optimized one due to the

limited precision of the etching process.

The dimensions of the patch and feed locations are adjusted with the help of files

and adhesive conducting strips in order to tune the antennas to the required operation

frequencies. The tuning process is extended to compensate the frequency shifts caused by

the cover of the antenna (radome). The Ultra High Molecular Weight Polymer (UHMW)

chosen as a radome material, has sr = 2.2 and loss tangent = 2x10 -7 at 4 GHz. Simulation

results on the effect of relative dielectric constant material as a radome has an effect on

overall radiation efficiency of the antenna as shown in Table 1.

Table 1. Radiation efficiency versus 6r of the radome for a single patch of Єr =10 and
thickness t = 250 mils
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After the tuning is achieved, the dimensions of the antennas and feed locations are

measured to be:

For each port, the input return loss versus frequency values are measured when

the antenna was placed on a 2 square feet ground plane, and graphs are presented in

Figure 4.3 and Figure 4.4. The gains of the antennas are measured using commercially

available wide-band dual polarized log-periodic antenna, (TECOM, type no. 201085)

with an average gain of 7.5dBi within its bandwidth of 1.0 — 4.0 GHz. The relative gain

values of the developed antenna are measured as:

Gain at 1.227 GHz (vertical polarization) = 3.62 dBi

Gain at 1.227 GHz (horizontal polarization) = 3.34 dBi

Gain at 1.575 GHz (vertical polarization) = 3.36 dBi

Gain at 1.575 GHz (horizontal polarization) = 2.73 dBi



Figure 4.3. Measured input return loss graph for port 1 and port 2



Figure 4.4. Measured input return loss graph for port 3 and port 4
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Finally, the radiation patterns of the antennas are measured in two principle planes (E and

H planes) and they are plotted in Figure 4.5 — Figure 4.8.

Figure 4.5. Radiation patterns at 1.227 GHz for vertical polarization

Figure 4.6. Radiation patterns at 1.227 GHz for horizontal polarization



Figure 4.7. Radiation patterns at 1.575 GHz for vertical polarization
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Figure 4.8. Radiation patterns at 1.575 GHz for horizontal polarization
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Some dips are observed in the radiation patterns and measurements are repeated

for several low loss antenna covers with different tapering levels to test the effect of

radome on the radiation pattern. However an improvement in the dips could not obtained.

The thick and high permittivity dielectric substrate is prone to excite surface waves,

which may cause the degradation of the radiation patterns. Comparing the radiation

patterns at different frequencies it can be observed that the dips are more dominant at the

higher operation frequency of 1.575 GHz. This observation support the hypothesis on

attributing the cause of dips to the surface wave excitation since the contribution of the

surface wave poles are stronger at higher frequencies.

4.2 Stacked Orthogonally Polarized Rectangular Patch Antennas

The stacked orthogonal patch antenna configuration designed to obtain bi-orthogonal

dual frequency operation is shown in Figure 4.9.

Figure 4.9. Stacked orthogonal rectangular patch antennas
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Horizontal polarization at L1 and L2 frequencies are obtained through port 1 from

the lower and upper patches, respectively. Similarly, vertical polarization at L1 and L2

frequencies are obtained through port 2 from the upper and lower patches, respectively.

When the upper patch is centered with respect to the lower one, the feed positions can not

be adjusted with respect to each patch independently. Hence, the offset values SH and Sv

are introduced to be able to match the ports at these two operation frequencies. Feed

locations and offset values are given by considering the lower left corner of the lower

patch as the origin.

Due to the advantage of the stacked configuration, the available larger area

permits the use of a dielectric substrate with a lower permittivity value. Thus a dielectric

substrate with a relative permittivity of 2.2 and thickness of 120 mils is used for the lower

layer. In order to restrict the dimensions of the upper patch within the lower one, a high

dielectric constant ratio is required, therefore, a dielectric substrate with a relative

permittivity of 9.8 and thickness of 125 mils is chosen for the upper layer.

Using the IE3D software the stacked structure is simulated, the dimensions and

feed positions are optimized to the following values to obtain good input impedance

matching values as shown in Figure 4.10. The isolation between the ports is in the order

of —10dB at the operation frequencies.
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Figure 4.10. Simulation results for the input return loss of the stacked antenna

The stacked antenna is fabricated, tuned and measured. Compared to the coplanar

antenna, a larger shift between the simulated and measured resonance frequencies is

observed. This behavior may be associated with the numerical modeling of the more

complex feeding structure used for the stacked configuration. In addition to adjusting the

patch dimensions and feed locations, the size of the hole in the coupled lower patch is

used as a variable and helped to improve tuning. After tuning the dimensions are

measured as:



Figure 4.11. Measured input return loss graph for port 1 and port 2
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The input return loss values are measured after tuning the antenna and the results

are plotted in Figure 4.11. It can be observed that a good matching characteristic as in the

coplanar configuration could not be obtained through the stacked structure. In spite of

this increase in the input return loss, the measurement results listed below shows that the

stacked configuration exhibits gain values as high as the coplanar one. It might be that the

loss due to the mismatch is compensated by the higher directivity, which is a result of

larger effective aperture obtained through the stacked configuration.

Gain at 1.227 GHz (vertical polarization) = 3.8 dBi

Gain at 1.227 GHz (horizontal polarization) = 3.09 dBi

Gain at 1.575 GHz (vertical polarization) = 2.81 dBi

Gain at 1.575 GHz (horizontal polarization) = 2.73 dBi

Finally, the radiation patterns of the stacked antenna are measured in two principle planes

(E and H planes) and they are plotted in Figure 4.12 — Figure 4.15.

Figure 4.12. Radiation patterns at 1.227 GHz for vertical polarization



Figure 4.13. Radiation patterns at 1.227 GHz for horizontal polarization
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Figure 4.14. Radiation patterns at 1.575 GHz for vertical polarization
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Figure 4.15. Radiation patterns at 1.575 GHz for horizontal polarization

Comparing the radiation pattern plots of the stacked and coplanar antennas, it is

observed that the dips that occur in the coplanar configuration disappear in the stacked

one. Note that the surface waves that might be the cause of the distortions in the radiation

patterns may not be supported in the stacked structure as thinner dielectric substrates are

used. Design and fabrication of the stacked configuration with relative dielectric

constants of Er=2.20 and 9.8, but with thickness of 250 mils for each layer is in progress.

It is expected that thicker substrates will result in increased bandwidths for both L1 and

L2 bands.

Polarization measurements:

Polarization measurements of the antennas developed in this work have been carried out

using the set-up where linearly polarized antenna used for receiving purposes was rotated
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a Circular Polarization (CP) mode using a hybrid coupler is shown in Figure 4.16, where

this antenna was used for transmission. The axial ratio was measured. The set has to be

fine tuned for further accuracy in determining the range of angles for which the antenna

operates in a CP mode.
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Figure 4.16_ Polarization Pattern of the stacked antenna connected to a hybrid coupler at

1.575 GHz.



CHAPTER 5

CONCLUSIONS

Dual frequency bi-orthogonally polarized antennas to be used in Global Positioning

System applications operating in L1 (1575.42 ± 10.23 MHz) and L2 (1227.60 ± 10.23

MHz) bands has been designed using CAD tools, the optimized design values served as a

guide for fabrication. Final tuning has been carried out to meet the strict requirements

needed for file operations. The antenna dimensions were limited to 4.120" x 4.680" x

1.250" dimensions including the radome. Orthogonally placed two dual frequency probe

excited patches were designed using high dielectric constant substrate ( Є r = 9.8 and

thickness of 250 mils, Rogers TMM10i material) to obtain vertical and horizontal

polarization for each band. The measured performance of this antenna showed good

agreement with the specifications required to meet the application needs. As an

alternative, a stacked dual patch antenna configuration was also considered and a

prototype antenna has been developed. Using low and high dielectric constants of 2.20

and 9.8 and relative thickness of 125 mils for each layer an orthogonally placed dual

patch configuration has been designed, fabricated and tested. Effects of radome using

materials with different permitivities have been studied through numerical simulations in

terms of radiation efficiency and radomes have been fabricated using various materials

including UMHW, HDPE and Delrin. Numerical simulations have been carried out using

IE3D software package developed by Zealand Software Inc. Antennas that were

fabricated based on optimized parameters have further required tuning due to

inaccuracies in simulation and material properties. The measurement setup has been
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enhanced to accommodate axial ratio measurements in polarization pattern characterized

by adding rotary joint to rotate linearly polarized antenna operating in the receiving

mode. The performance characteristics showed that adequate bandwidths and

beamwidths were obtained and gain of these antennas were measured to be in the order of

3.5 dBi along the main lobe. Further work is continuing to obtain antennas with wider

bandwidths using thicker substrates.



APPENDIX

ELECTROMAGNETIC SIMULATION SOFTWARE

Currently available various commercial electromagnetic simulation software packages

are based on numerical methods such as:

-Method of Moments (MoM) in Spectral Domain,

-Method of Moments in Spatial Domain,

-Finite Element Method (FEM),

-Finite Difference Time Domain Method (FDTD) [5], and Transmission Line Matrix

Methods (TLM) [6].

Each method has its own advantages as well as disadvantages depending on the

particular specifics of the given application. The brief description of each method and its

relation to the work done in this thesis are presented below:

I.)	 Method of Moments in Spectral Domain: This method has been developed for

analysis of structures commonly described as closed problems, i.e. filters, resonators, etc.

The antenna problem considered in this work falls into a class commonly described as an

open problem requiring the usage of radiation condition. Due to limitation of the spectral

domain approach, boundary conditions which require usage of radiation condition are not

adequately addressed by this method. Additional inherent disadvantage is due to uniform

sampling required through usage of FFT built into this method. Closed structures such as

hybrid ring couplers will be modeled inaccurately due to inadequate a spect of the

uniform sampling.
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2)	 Finite Element Method: The main disadvantages of this method is that it

requires exhaustive computational effort (number crunching) as well as extensive RAM

requirements. As a result, it takes a long time to compute structures of even moderate

size. However it does not encounter limitation in terms of geometrical shape

constraints. In the future when computer speed and RAM will not be of a concern, then

FEM may become an attractive method for electromagnetic simulation. Recent efforts in

extending FEM into time domain may lead to a new possibility if the above mentioned

difficulties are alleviated.

3.) Finite Difference Time Domain ( FDTD ) and Transmission Line Matrix

(TLM) methods : Both methods have similar difficulties. They require solution of both

magnetic and electric fields in three dimensional space, therefore, the number of

unknown variables increase significantly. They need uniform griding, extensive

computer power and memory, and therefore it takes a long time to complete the desired

simulation. The most outstanding features of both methods is that they are simple to be

programmed and they produce results in time domain directly. It needs only one

execution in time which can offer a corresponding wideband frequency response.

Additional attractiveness in FDTD is its usage in conjunction with circuit simulators,

since it has the ability to handle lumped components effectively.

4.) Method of Moments in Spatial Domain Method: It is an open boundary

simulator. It uses both rectangular and triangular cells, therefore, it has a capability to

simulate arbitrary shapes. The main attractive feature of this approach is that it requires
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solution of the current distribution on the conductors only in the 3-D, multi-layered

sections, therefore it takes a lot less time than FEM, FDTD, & TLM. Therefore, it is the

most suitable software due to its capabilities and its efficiency to be used in the current

application with available limited computer resources.

IE3D (Integrated Equation Solution 3D)

The emerging electromagnetic simulation tools in microwave/millimeter-waves

engineering are forming backbone for the successful fabrication of complicated high

density circuits built as microwave monolithic integrated circuits (MMIC) chips for

applications in transmitters, receivers, amplifiers, phase detectors, etc.

The three most basic transmission lines employed in the MMIC technology are

microstrip, slotted-line, and co-planar waveguides, which all can be classified as planar

structures. In the past, the dominant transmission guides were either heavy and bulky

rectangular, cylindrical hollow metallic waveguides or coaxial cables. Unlike

conventional classical waveguide structures, exact analytical analysis of open guided

quasi-TEM mode and higher order modes are not available, therefore numerical analysis

is the only means in attempting to solve these complicated issues.

IE3D [6] is based upon a full-wave integral equation, solved by method of

moments. Current distributions on a true 3-D, multi-layered metallic structures of

arbitrary shapes are determined as an outcome of these simulations. In the IE3D software

tool, currents on true 3-D metalization can be modeled at any arbitrary angle. It

automatically discretizes regular region with rectangular cells and irregular region with

triangular cells. Rectangular cells yield faster solutions whereas triangular cells require
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longer computational time. With this automatic mixed meshing rectangular and

triangular cells capability, IE3D provides nearly optimum solutions for arbitrary shape

structures.

IE3D has a total of three modules: MGRID, MODUA, and CURVIEW. MGRID

is a Windows 95 or Windows NT graphical layout editor. MODUA is a post-processor

for calculating S-parameters and impedance. CURVIEW is also a post-processing tool

capable of determining current distributions, current distribution vectors, and 3-D

radiation patterns.

One of the best features of the IE3D is its built-in gradient optimization routine

which is especially valuable in this application in determining the resonant length of the

patch, as well as the location of the feed probe. Because the location of the probe has an

effect on both input impedance and resonant frequency of the antenna, it is very difficult

simultaneously to place the probe where one can match the antenna and also optimize

the antenna size for the desired resonant frequency. With such built-in optimization in

IE3D, the user can optimize simultaneously the optimum feed point location as well as

the desired resonant frequency dimension. Scalar and vector current distributions are also

very important features which help the user to be able to visualize where current heavily

concentrates and in which direction the current flows in the given geometry. True 3-D

radiation pattern, mapped 3-D radiation patterns, polar and rectangular display of 2-D

patterns, gain, directivity, all are evaluated and are provided as output parameters. All

these features are very practical as trouble shooting tools for the analysis and design of

general radiating structures.
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