
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Fall 1998

Iceberg database system for the graduate advisors of
Computer and Information Science Department of
New Jersey Institute of Technology
Tao Lin
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Lin, Tao, "Iceberg database system for the graduate advisors of Computer and Information Science Department of New Jersey Institute
of Technology" (1998). Theses. 862.
https://digitalcommons.njit.edu/theses/862

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/862?utm_source=digitalcommons.njit.edu%2Ftheses%2F862&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

ICEBERG DATABASE SYSTEM FOR THE GRADUATE ADVISORS
OF COMPUTER AND INFORMATION SCIENCE DEPARTMENT

OF NEW JERSEY INSTITUTE OF TECHNOLOGY

by
Tao Lin

Iceberg system is a departmental database system. It is built for the graduate

advisors of the CIS department. It stores the graduate student's information, such as

background, bridge requirement and transcript. The graduate advisors can process

the student's records using the graphic user interface of Iceberg system.

Iceberg system is an example of the powerful Java language. We use the latest

Java technologies to build a flexible system, which is easily extended. The system

consists of Iceberg client, Iceberg server and Oracle data source. The Iceberg client

is a web-based applet, which can be easily accessed using a browser. The Iceberg

server runs on a fast UNIX machine, providing service to the Iceberg client through

RMI.

The most interesting feature of Iceberg system is the component architecture

of the Iceberg client. The Iceberg client is consisted of visual components that have

no knowledge of each other at compile time. They are assembled together at run

time, following the instruction of a script file. Since the container component can

hold any components, the Iceberg system is readily extendable.

ICEBERG DATABASE SYSTEM FOR THE GRADUATE ADVISORS
OF COMPUTER AND INFORMATION SCIENCE DEPARTMENT

OF NEW JERSEY INSTITUTE OF TECHNOLOGY

by
Tao Lin

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

January 1999

APPROVAL PAGE

ICEBERG DATABASE SYSTEM FOR THE GRADUATE ADVISORS
OF COMPUTER AND INFORMATION SCIENCE DEPARTMENT

OF NEW JERSEY INSTITUTE OF TECHNOLOGY

Tao Lin

Dr. James McHugh, Thesis Advisor 	 Date
Acting Chairperson
Professor of Computer and Information Science, NJIT

Dr. Franz Kurfess, Committee Member 	 Date
Assistant Professor of Computer and Information Science, NJIT

Mr. Leon Jolohan, Committee Member 	 Date
Director of Computing, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Tao Lin

Degree: 	 Master of Science in Computer Science

Date: 	 January 1999

Undergraduate and Graduate Education:

• Master of Science in Computer Science
New Jersey Institute of Technology, Newark, NJ, 1999

• Bachelor of Chemistry
Peking University, Beijing, China, 1996

Major: 	 Computer Science

To my parents
for their long time expectation

v

ACKNOWLEDGMENT

I particularly want to thank Dr. McHugh. As my thesis advisor, he not only initiates

the project, but also contribute a lot of time and valuable opinions to it. He helped

me to get the necessary resources and stay with me to test the program.

I would like to thank Dr. Kurfess for his support and kindness. His insight let

me avoid many errors in the early design phase.

I would like to thank Mr. Jololian for his support. He provides me the resources

to make this project possible.

I also thank Dr. Shih for testing the program and offering good advice.

Thanks for all graduate advisors of CIS department for this thesis would have

been impossible without their help and encouragement.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Objective 	 1

1.1.1 Distributed Access 	 1

1.1.2 Concurrently Process 	 2

1.1.3 Crash Recovery 	 2

1.1.4 Easy to Use 	 2

1.1.5 Future Extendibility 	 2

1.1.6 User Customizable 	 3

1.2 Back ground Information 	 3

1.2.1 Java and JDK 	 3

1.2.2 JFC and Swing 	 4

1.2.3 Java Bean Architecture and InfoBus 	 5

1.2.4 Infobus 	 6

1.2.5 RMI and Java's Superior Network Capability 	 6

1.2.6 JDBC and Java's Database Access Capability 	 6

1.2.7 Java applet Security Model and Digital Signature 	 7

1.2.8 Java Plug-in 	 7

2 SYSTEM ANALYSIS 	 9

2.1 Implementation of the Iceberg Client 	 9

2.1.1 Class Initiating Sequence 	 10

2.1.2 Data Communication between Components 	 13

2.1.3 Extendibility of the Iceberg Client 	 14

2.1.4 Digital Signature 	 15

2.2 Implementation of the Iceberg Server 	 18

vi'

Chapter 	 Page

2.2.1 Session Management in Iceberg System 	 19

2.2.2 The iceberg.server.AdvisorServer Server 	 22

2.3 Oracle Data Source 	 22

3 USER MANU 	 23

3.1 Log Into Iceberg System 	 23

3.2 Process the Student's Records 	 24

3.2.1 Open Student's Records 	 24

3.2.2 Change the Background Information 	 25

3.2.3 Assign the Bridge Requirement 	 26

3.2.4 Write Logs 	 26

3.2.5 Change Personal Information 	 27

3.2.6 View the Student's Transcript 	 27

3.2.7 Save the Change 	 27

3.3 Create a New Record 	 27

4 CONCLUSION 	 29

4.1 The Work Done 	 29

4.2 Future Work 	 30

APPENDIX A DATABASE SCHEMA 	 33

APPENDIX B PROPERTY FILES FOR CLIENT AND SERVER 	 37

APPENDIX C PACKAGE iceberg.advisor 	 45

APPENDIX D PACKAGE iceberg.server 	 140

REFERENCES 	 214

viii

CHAPTER 1

INTRODUCTION

In this thesis, we will explain our design and implementation of a departmental

database system for graduate advisors of CIS department. The database system

is named 'Iceberg', so we will call it Iceberg system in the whole paper. Iceberg

system is coded in Java 1.1, and takes fully advantage of Java's superior network

and database manipulation capability. Iceberg system uses an Oracle 8.0.3 enterprise

server as the storage device for the student records. The idea of Iceberg system comes

from the graduate advisors of the CIS departme nt, especially Dr. McHugh. The

CIS department is one of the biggest departments in NJIT. It has more that 500

hundred Master students and 80 doctoral students . During the daily operation, the

graduate advisors of CIS department strongly feel the need of sharing the student's

records among themselves. They also want other advisors to know their decision

for students. Sometimes, students got di fferent instructions from different advisors.

They are free to choose the most favorable instruction to follow. To end this lack of

communication among adviso rs, a centralized database system is needed to make

one decision for a student immediately observable by other advisors. Maintaining

student's records also be come easy using a centralized database. Iceberg system is

the name of the proje ct to build such a database.

1.1 Objective

During the design of Iceberg system, we have the following goals in mind:

L1.1 Distributed Access

The graduate advisors can run Iceberg system from any machine. To accomplish this,

we decided to make Iceberg system web based applet. To run the Iceberg system,

1

2

the graduate advisors need only type the URL of the Iceberg system in a browser,

such as Netscape Navigator or Internet Explorer.

1.1.2 Concurrently Process

The graduate advisors may log into the Iceberg System at the same time, processing

the student's records. Iceberg system must make sure that no two users are processing

the same student's record, so they can not corrupt the student's record by writing

to it simultaneously.

1.1.3 Crash Recovery

If one client crash in the middle of a session, it must not affect the server and other

graduate advisors who are logging in. Iceberg system must detect the failure and

take action on it.

1.1.4 Easy to Use

The Iceberg system shall provide the graduate advisors an easy-to-use graphic user

interface. The interface displays the student's information in tables, check boxes and

lists. The graduate advisors do not need to learn SQL (Structured Query Language)

to process the data in the Oracle database. We are inspired by the web browser and

provide a color navigating capability. For example, If multiply student's names are

shown as a list, the names of the visited student change the color to pink, while the

names that have not been visited remain blue. This feature is the same that a visited

link in a web page will change color.

1.1.5 Future Extendibility

New functionality shall be able to be incorporated into the Iceberg system easily.

Later when needed, new service for CIS students and faculties may be added into

the Iceberg system. That means we must take a modular approach, separate the

3

functionality into different modules. New modules shall use the currently available

service easily. We have taken this design a step further to embrace the Software

Component infrastructure. By coding each module as a self-contained component,

complicated system can be build faster and less frustrating than put everything into

one huge executable (a monolithic approach).

1.1.6 User Customizable

Different users shall be able to tailor to Iceberg system to their own need. Not only

changing some parameters like the window size, table header width, the graduate

advisor shall also be able to choose the functionality they want to use. For example,

one graduate advisor may be named as the super user of the Iceberg system. His

Iceberg user interface may contain some menu items, tools and panels not seen in

most other advisor's window. This change shall not require different executable

files to be compiled. Moreover new functionality may be added into the current

interface without modifying current code. This goal also requires us to use component

architecture to build the system.

1.2 Background Information

Iceberg system is a showcase of the powerful Java language. We use the new JFC

(Java Foundation Class) package to build the user interface. We also extensively

use Java RMI (Remote Method Invocation), JDBC and multitasking. We also use

features like Java Plug-in, Java digital signature.

1.2.1 Java and JDK

Java is an object oriented programming language invented by a group of Engineers

from Sun Microsystems, Inc. From its birthday, Java has been aimed at "Write

once, run everywhere". The source code is compiled into byte code, a machine

independent format. The byte code can be download across the network to the user

4

machine. A Java Virtual Machine then executes the code. If available, the virtual

machine can also run a Just-in-time compiler through the byte codes, translate them

into the machines specific machine code. The machine code may run at full speed

like ordinary c program.

JDK (Java Development Kit) is the Java development environment distributed

by Sun Microsystems, Inc. JDK includes a set of tools for create and run Java

programs. It also include codes published by Sun which called Java core API (appli-

cation programming interface). Those codes provide standard access routines to the

service of Java Virtual Machine as well as a lot of reusable components that can be

used to build our own programs. The current JDK version is 1.1.6. JDK 1.2beta4

is available freely from Sun's Web site. They can be download from Sun's web site

freely. Iceberg system is built using JDK 1.1 class package.

1.2.2 JFC and Swing

JFC (Java Foundation Class) is the new GUI (graphic user interface) package aimed

at replace the AWT (Abstract Window Toolkit) package in JDK. JFC includes Swing

package [?], Accessibility package and Java 2D package. Among them, we use Swing

package extensively to build a powerful GUI for Iceberg. Like AWT, Swing is able

to run on different platform, but the underlying architecture and implementation

are totally different. AWT components, as the letter 'A' (Abstract) implies, do not

provide implementation by themselves. They simply create peer components of the

underlying operating system and show them on the screen. Therefore on a machine

running Windows 95, a AWT button looks same as a Windows 95 button, while on

a machine running X Windows, a AWT button is the same as a X Windows button.

Swing components actually draw themselves on the screen. They borrow a portion

of the screen real estate and draw themselves from scratch. From the viewpoint

of the underlying operating system, a Swing button is nothing more than a small

5

picture. Swing package is much more powerful that the AWT package. There is no

limit on Swing. You can create strange looking buttons or lists as you like. On the

contrary, the AWT components are limited to the components provided by existing

operating system. Worse yet, AWT has to satisfy with the components available on

all platforms. That means you can not find an AWT component functions like the

toolbar of the Windows 95, because other operation systems do not support toolbar.

Iceberg System uses Swing package to create a powerful user interface. There is a

list component that the currently selected student's names are displayed in it. Each

entry has a small icon on the left. When not selected, the icon shows a quiet face.

When this entry has been selected, the icon shows a smile face. This feature can

remind the graduate advisors which student's record they have not processed.

1.2.3 Java Bean Architecture and InfoBus

Java Bean [?] Architecture is the Java's software component infrastructure. It

specifies how a piece of software may export its service to the outsider, such as

a compound document framework. To build a Java bean program, programmers

may buy existing Java bean components from the component venders, assemble

them together and fill in the necessary flow control code. InfoBus is a standard

extension of the Java bean architecture. It provides standard protocols to facilitate

data exchange between components. The concept of the InfoBus is like hardware

buses on PCs. CPU, memory and hard disks are plugged into the bus. They listen

to the activity of the bus, receive data from the bus and send data to the bus. In a

similar way, components can be plugged into the InfoBus. Whether they have data

or need data, they all talk to the InfoBus. Each component is oblivious of other

components on the InfoBus.

6

1.2.4 Infobus

InfoBus [?] is jointly developed by Sun Microsystems and Lotus Development Corpo-

ration, aiming at providing an inter-component communication mechanism for the

Java bean architecture. Strictly speaking, it is not an object bus since it is not

capable to pass object reference around. However it is a very powerful tool for pure

data exchange.

1.2.5 RMI and Java's Superior Network Capability

RMI (Remote Method Invocation) is the Java version of RPC (Remote Procedure

Call). By using RMI, objects on one machine are able to invoke methods of objects

resided on other remote machines. Considering the difficulty that the address space

are discontinued for the two machine, RMI successfully disguises the dirty works of

establishing the connection, packing up the parameters, calling the remote method,

handing back the result if any and finally tearing down the connection. It is greatly

simplify the Iceberg system by using RMI as the methods to connect the client and

server. RMI is more powerful than RPC in that RMI can pass not only primary

data types (like RPC) but also complex objects across the network. This feature is

valuable in an object world because objects can now walking around the network on

their wish. No other language has such powerful network abilities.

1.2.6 JDBC and Java's Database Access Capability

JDBC (Java DataBase Connectivity) is Java's standard API for manipulating

Relational Databases. Each database venders who want to support JDBC should

implement the API. This piece of code is called JDBC driver. Java programs talk

to any JDBC drivers using the JDBC API. From their viewpoint, all database are

the same data sources, no matter it is an Oracle or Sybase database. In a network

with heterogeneous database coexist, JDBC program are able to talk to any of them

without any consideration in the coding phase.

7

1.2.7 Java applet Security Model and Digital Signature

Java Virtual Machine has an elaborated security model to handle applet. An applet is

a piece of code that is able to run in a browser. Applets are stored on the web server.

When meeting the embedded applet tags in html pages, a web browser downloads

the code from web server, passes them to a Java Virtual Machine to run. Since

it do not know who write the applet and what the applet do, the Virtual machine

scrutinize the applet, prohibit them from performing certain action, such as open a

file on the local machine or connect to another machine. In Java's term, the applets

run in a sandbox. While being cautious won't hurt, sometimes we need more freedom

to have the work done. Java provides tools to digitally sign an applet. By verifying

the signature, the Virtual Machine will let the signed applet do whatever it can do.

Java's digital signature framework is based on the public-private key pair algorithm.

The public key and private key are generated pair wise. Programmers use the private

key to sign the applet. The users hold certificates, which contain public keys. Before

running a signed applet, the Virtual Machine verifies the private key with the public

key. If the two keys match, then it knows who create the applet and trust the applet

will behave well.

1.2.8 Java Plug-in

Java plug-in [?] is the solution of browser incompatible problem from Sun

Microsystems, the Java's birthplace. Sun has been advocating the motto 'Write

once, run everywhere' from the first Java day. Unfortunately, that miracle has

not happened plainly. Every major browsers or even different versions of the same

browser have Java Virtual Machines with some distinct characters. Those difference

cause an applet runs well in a Netscape Navigator crashes in the Internet Explorer,

or the other way around. The annoyed applet programmers finally agree the motto

from Sun with minor change 'Write once, debug everywhere'. Java Plug-in can

8

provide a consistent Java runtime environment across all browsers. It come with

the Java Virtual Machine from Sun and the standard core Java API also available

in the JDK. A modified HTML page can specify to invoke the Virtual Machine of

the Java Plug-in, not the default Virtual Machine of the browser if the browser has

installed Java Plug-in. Another advantage of Using Java Plug-in is that its Virtual

Machine is always newer than those browsers' Therefore it is possible to deploy

the latest Java technologies just when they come out and hot. The front end of the

Iceberg system is web based Java applets. It uses the latest Java technologies like

JFC, InfoBus. Currently no browsers are capable of handling it. Therefore Iceberg

system is designed to work with Java Plug-in.

CHAPTER 2

SYSTEM ANALYSIS

Iceberg system is consisting of three tires. The first tire is the Java applet that

interacts with the graduate advisors. It plays the role of the client in the client/server

model. We will call it Iceberg client. The second tire is the Java application server

that interacts both with Iceberg client and the Oracle database. We will call it

Iceberg server. The third tire is an Oracle database instance acting as the data

source. Basically it is a passive part of the database. We will refer it as the Oracle

data source.

The Iceberg system class hierarchy is composed of four Java packages.

Basically, iceberg.advisor package contains the classes of the Iceberg client and

iceberg.server package contains the classes of the Iceberg server. In the iceberg.util

package are the data structures used by Iceberg client and Iceberg server. They

will be passed across the network between the Iceberg client and Iceberg Server and

are implemented as class with only public fields and no methods. The last package,

iceberg.guiUtility is only used by the Iceberg client. Later the Iceberg system may

have other client packages like iceberg.student and iceberg.faculty. Those client

packages can share the iceberg.guiUtility package. This is the reason to separate it

from the iceberg.advisor package. In this thesis, we will use the full package name

when we refer to a class or interface.

2.1 Implementation of the Iceberg Client

The Iceberg client is a Web based Java applet. It provides an easy-to-use graphic user

interface for the user to view the student's records and make decisions for students.

The applet can be run from any browsers which have the Java Plug-in installed

9

10

The Java Plug-in is required because Iceberg client applet utilize some latest Java

technologies which are not supported by existing browsers.

The Iceberg client consists of Java bean components and Java bean container

frameworks. It takes fully advantage of the Compound Document Architecture,

the most popular Software Component Infrastructure. Each Java bean component,

such as advisor.BackgroundInfoPane 1 can be used to view part of the student's

records. They are compiled separately with no knowledge of the existence of other

components. The Java bean components can be placed in the Java bean container

frameworks. The container framework give out a portion of its own screen space

to each component, instruct the component to draw itself. After the components

have shown, they will process their own mouse and keyboard event and exchange

information with other components. The container framework also displays menu

items of the components in its menu bar.

2.1.1 Class Initiating Sequence

Iceberg client takes a hierarchical approach to load its components, so it may achieve

maximum flexible and is very user customizable. It first initiate the container

frameworks, the frameworks in turn Using a property editor, users can instruct

Iceberg client to run any combination of container frameworks and any components.

That feature shall satisfy the users with diversified need. For example, some

graduate advisors are super users of the Iceberg system. Their user interface will

include components not used by most other advisors. Iceberg client needs not to be

recompiled to suit each advisor's requirement.

The first class loaded in the browser is the iceberg.Iceberg applet. When initiate

itself, it connect to Iceberg server, get a reference of the server.SessionServerX 2

interface. This applet then asks user for user ID and password and try to establish

1 The full package name of advisor package is iceberg.advisor.
2The full package name of server package is iceberg.server.

1 1

a session with the server.Sessionserver on the Iceberg server. If the advisor logs in

successfully, a session number will return to the iceberg.Iceberg applet from Session-

Server. Session number is a random generated long value. The server.SessionServer

guarantees this number to be unique so following requests to the Iceberg server will

use this session number as the identification.

The iceberg.Iceberg then begins to load the user interface. First it requests

the server.SessionServer for the properties table of this advisor. The properties are

stored in a file. Each line has the following format: NAME=VALUE. The lines begin

with '#' are commands. Following is part of the currently used property file s :

OUTER_FRAMEWORK=iceberg.advisor.ControlWindow
INNER_FRAMEWORK=iceberg.advisor.DataPane

PERSON_LIST_WIDTH=150
STUDENT_TAB_PANE_HEADER=Bridge Requirement|Student Info

Bridge Requirement_HEADER=BridgeRequirementPanelBackgroundInfoPanelLogInfoPane
Bridge Requirement_MENU_LABEL=BridgeTabPane

BackgroundlnfoPane_ACTION=iceberg. advisor. BackgroundlnfoPane
BackgroundInfoPane_HEIGHT=4
BackgroundInfoPane_WEIGHT=3
BACKGROUND_INFO_TITLE=Education Background
BACKGROUND_TABLE_HEADER=DegreelMajor1CollegeIGDatelG.P.A.
BACKGROUND_TABLE_HEIGHT=6
Degree_LENGTH=44
Major_LENGTH=61
College_LENGTH=101
GDate_LENGTH=67
G.P.A._LENGTH=20

BridgeRequirementPane_ACTION=iceberg.advisor.BridgeRequirementPane
BridgeRequirementPane_HEIGHT=3
BridgeRequirementPane_WEIGHT=1

LogInfoPane_ACTION=iceberg.advisor.LogInfoPane
LogInfoPane_HEIGHT=12

3 See APPENDIX B for the complete property file

12

LogInfoPane_WEIGHT=10

Student Info_HEADER=PersonalInfoPanelTranscriptInfoPane,

PersonallnfoPane_ACTION=iceberg. advisor. PersonallnfoPane
PersonalInfoPane_HEIGHT=6
PersonalInfoPane_WEIGHT=2
PERSONAL_INFO_TYPE=idinameIbDatelgenderladdresslhomePhonelworkPhoneleAddress
id_LABEL=SSN\#/SID\#:
name_LABEL=Student Name:
bDate_LABEL=Birthday:
gender_LABEL=Gender:
address_LABEL=Home Address:
homePhone_LABEL= Home Phone:
workPhone_LABEL= Work Phone:
eAddress_LABEL= Email Address:

TranscriptInfoPane_ACTION=iceberg.advisor.TranscriptInfoPane
TranscriptInfoPane_HEIGHT=10
TranscriptinfoPane_WEIGHT=10TRANSCRIPT_TABLE_HEADER=CN0ICnamelSemesterIGrade

CNO_LENGTH=34
Cname_LENGTH=34
Semester_LENGTH=34
Grade_LENGTH=9

The iceberg.Iceberg looks into the 'OUTER_FRAMEWORK' property to find

the class to load. According to the example property file, it is the advisor.ControlWindow.

The advisor.ControlWindow is a Java bean framework. Other Java bean

components can be added to it. It loads the class specified in the 'INNER_FRAMEWORK'

property. It is the advisor.DataPane.

The advisor.DataPane is another Java bean framework. It loads the classes

specified in the 'STUDENT_TAB_PANE'.

By looking up the values in the property table, Each Java bean container knows

which components to load. This information is only available at run time. We can

change the look and functionality of an Iceberg client but just editing the property

file. No recompile is needed.

13

2.1.2 Data Communication between Components

Iceberg components communicate with each other via InfoBus mechanism. Since the

Iceberg client is assembled in runtime, components can not call methods of another

component directly.

The javax.infobus package defines a small set of standard interfaces, and some

standard service. Components implement the InfoBusMember4 interface are able

to join the InfoBus. They may optionally implement the InfoBusDataConsumer

interface, InfoBusDataProducer interface or both. A component implements the

InfoBusDataProducer interface is able to tell InfoBus it has data available. On the

other hand, if a component implements the InfoBusDataConsumer interface, InfoBus

is able to inform it when new data is available. InfoBus does not interested in the data

flowing through it. All those data are objects that implement the DataItem interface.

That object may optionally implement the DataltemChangeManager interface. Thus

a InfoBusMember may implement the DataltemChangeListener interface so that it

can register itself to the DataItem.

There are three basic scenarios for the InfoBus data flow. In all three scenarios,

the InfoBusDataProducer and InfoBusDataConsumer do not interact with each other

directly. They exchange data through the InfoBus or the Dataltems.

• Scenario one, an InfoBusDataProducer informs the InfoBus that it has a new

DataItem object available. The InfoBus notifies all the registered InfoBusDat-

aConsumers that a DataItem is now available. One or more InfoBusDataCon-

sumers may then ask the InfoBus for this DataItem. The InfoBus goes back to

the InfoBusDataProducer to fetch the DataItem, pass them to the requested

InfoBusDataConsumers.

4 The class name specified in this section are all come from the javax.infobus package if
a package name is not prefixed.

14

• Scenario two, an InfoBusDataConsumer request a Dataltem B from the

InfoBus. The InfoBus ask all the registered InfoBusDataProducers who has

the Dataltem B. If one InfoBusDataProducer replies that it has the DataItem,

the InfoBus fetches the DataItem and send it to the InfoBusDataConsumer.

If none InfoBusDataProducer replies, the InfoBus simply return null back.

If more that one InfoBusDataProducers reply, the InfoBus get the DataItem

from the first replied InfoBusDataProducer.

• Scenario three, an InfoBusDataConsumer gets a DataItem C. It register itself

as DataltemChangeListener to the DataltemChangeManager of the DataItem.

When the owner of the DataItem, a InfoBusDataProducer changes the value of

the DataItem, all registered DataltemChangeListener are informed the change.

The InfoBus is not involved in this scenario.

The components of the Iceberg client use InfoBus as their communication

mechanism. Iceberg system has two GUI components, guiUtility.IcebergJFram e5 and

guiUtility.IcebergJPanel and one non-GUI component, util.IcebergInfoBusDataMember

2.1.3 Extendibility of the Iceberg Client

Java bean component architecture and InfoBus inter-component communication

mechanism make Iceberg client extremely flexible. Graduate advisors may change

many settings of the system and tailor the system to their needs. Moreover, Iceberg

client is open and easy to extend to greater functionality. Now components can be

added into the Iceberg client and currently used components may be replaced by new

component with lease effort. Iceberg system takes a modular design approach. Only

iceberg.Iceberg has the knowledge of server.SessionServer and advisor.DataStore

handles the request to server.AdvisorServer. Other components only concern about

5 The full package name of guiUtilitiy package is iceberg.guiutility.

15

the DataItem they can send out and get in. Therefore, replacing an old component

with a new one is very easy.

2.1.4 Digital Signature

Digital Signature is used to sign the applet so the browser may give the signed applet

more freedom to fulfil its task. The Virtual Machines in the browsers has a set

of sophisticated mechanism to restrict the applets from doing something harmful.

For example, applets are not allowed to read and write local files, open network

connections to other machines except the home machine where it come from. This

is a valuable feature that protects the majority Internet users. However, if we knows

who write the code and trust the author, we would allow the applet to run without

restriction. This often occurs in an company's Intranet environment where user can

always trust the code coming from their own company's web site.

Digital signature provides the mechanism to explicitly establish the trusted

relationship between the Intranet users and the applet authors. It is based on the

public-private key pair algorithm. Both keys are long byte sequences generated

together. The magic in it is that only the public key can decrypt the applet having

been encrypted by the corresponding private key. We will show how Java use the

digital signature.

JDK 1.1 includes a tool, javakey, to perform the key generation and management

tasks. The javakey utility provides a command line interface with quite a few options.

In the Java security infrastructure, there are identities, signers and certificates. An

identity is associated with a public key and used by the web user's Java virtual

machine. An signer is associated with a public-private key pair and stored on

the applet author's machine. The javakey manages a database that can store

identities and signers. This database is actually a serialized Java Object stored

in the identitydb.obj file in the javakey user's home directory. In a Windows 95

16

environment, the identitydb.obj file is stored in the Windows directory. An certificate

holds a public key so it can be passed from the key owner to the users. The signing

process begins at the applet author side.

• First, the applet author creates a signer entity. Following command create a

trusted signer taolin.

javakey -cs taolin true

• Second, the author generates the public-private key pair. Following command

instructs the javakey to generate an 512 bytes long key pair use DSA algorithm,

and associate the key pair with the named signer taolin.

javakey -gk taolin DSA 512

• Third, the author generates a certificate. He need create a directive file first.

Th instructions are stored in the directive file. A example file, certificate.dir,

is as following:

issuer.name=taolin

subject.name=taolin
subject.real.name=Frank T. Lin
subject. org .unit=Research Division
subject.org=Network Research Lab.
subject.country=USA

start.date=11 Jun 1998
end.date=10 Aug 1998
serial.number=1001

out.file=taolin.x509

Following command generate a certificate stored in the file taolin.x509. Now

the applet author can send the certificate to the applet users.

17

javakey -gc certificate. dir

Forth and the last, the author sign his applet with the private key. The applet

must be stored in a jar file. Actually, the javakey encrypted the jar file use the

private key. Another directive file is needed to instruct javakey. A sample file,

signer.dir, is as following:

signer=taolin
cert=1
chain=0
signature.file=iceberg
out.file=Iceberg.jar

Assuming our applet is stored in the Iceberg.jar file, following command will

sign the jar file and store the signed file in the Iceberg.jar.sig file. We need

to rename the Iceberg.jar.sig to Iceberg.jar. The signer.dir is another directive

file, its content is as following:

javakey -gs signer.dir Iceberg.jar

Now the applet is ready to use. However we still need configure the user

account. we assume the users trust the applet author and know how to play with

the javakey utility.

First, a user shall create a identity for the applet author. Following command

generates a named identity taolin and marks it as trusted. It is very important

to mark the identity as trusted. Otherwise although signer taolin has signed

the applet, the virtual machine on the user machine still consider the signed

applet as entrusted.

javakey -c taolin true

18

• Second, the user get a certificate from the applet author. The certificate

shall contain the public key of that author. Following command imports the

certificate into the security database, associate it with the identity taolin.

javakey -ic taolin taolin.x509

Now the user has finished his work. Once the signed jar file is downloaded

to the user machine, the virtual machine goes to the security database in the users

home directory and find the public key of the applet author. It then tries to decrypt

the jar file. If the description is successful, the jar file is considered trusted by the

virtual machine and runs without any restriction enforced on other applets. As we

can see, this scheme involves five steps and is cumbersome to use.

2.2 Implementation of the Iceberg Server

The Iceberg server handles the request from the applets, query the oracle database

using JDBC and send the result back. It runs in the background on a UNIX machine

in CIS department. . The application server are also act as the session server which

controls the user log in and log out process.

Iceberg server is composed of several RMI interfaces and their implements.

When iceberg.server.IcebergServer runs, it first read in a property file, find the Oracle

database login ID and password, and try to log into the Oracle database. If the log

in is successful, it initiates all the servers include iceberg.server.SessionServer. and

iceberg.server.AdvisorServer and registers these service with the rmiregistry. The

rmiregistry is the Naming service provided by the JDK. The servers then sit there

passively and wait for requests from the Iceberg clients.

19

2.2.1 Session Management in Iceberg System

The iceberg.server.SessionServer takes care of the session management, acts as the

guard of the whole Iceberg server. It provide public methods through a RMI interface

iceberg.server.SessionServerX. Iceberg clients can obtain a reference of this interface

and call its methods to create a session.

The iceberg.server.SessionServerX provide following public methods:

public Long login(String userlD, String passwd)
public void logout(Long sessionlD)

When a Iceberg client call the login method, passing the userlD and password.

Iceberg will check the ACCOUNT table in the Oracle data source for a matching

account. If it finds one, it gathers this user's information and create a server.Session

Object. If it can not find a match, it throws a server.IncorrectLoginException. The

server.Session class is defined as:

public class Session
{

public Long 	 sessionlD;
public String currentLock;
public int 	 timer;
public Person user;

}

The user's SSN, name and other information are stored in user Session.user

field as an util.Person object. The server.SessionServer then generates a random

long number as the sessionlD and check whether any other active session already use

this number. If so, it will generate another number and verify it's unique again. by

this way, the server.SessionServer can make sure this sessionlD is unique across the

system. It then put the server.Session object into its internal tables, return the long

value back to the Iceberg client. Iceberg client can use this number to identify itself.

The server.SessionServer has a methods to verify a sessionlD.

20

Session matchSession(Long sessionlD)

Any RMI request from a Iceberg client brings the sessionlD with it. The

server.AdvisorServer provides service for the graduate advisor. Its public methods

first call SessionServer.matchSession to verify the sessionlD of the client. If the

sessionlD field of a currently active session matches the sessionlD of the caller,

this session will be returned. Otherwise null is returned. If the methods of the

AdvisorSever gets a null value, it will throw a server.SessionNotExistException and

stop. Iceberg client will report error to the graduate advisor. This mechanism

prevent the unauthorized access to the server.

The server.Session object has a Session.currentLocks field. This field can hold

a java.lang.String object as a student ID. By recording which student the graduate

advisor is currently processing, we prevent two graduate advisors from working on

the same student's record at any time. The server.SessionServer has a method:

synchronized void setLock(Session session, String id)
throws DataProcessException

Any session wanted to read a student record must first call setLock, trying to

set a lock on this student's record. If succeeded, nothing happen and the request can

go on. However, if server.SessionServer detects a lock already set on this student's

record, it will throw an util.DataProcessException. The exception will terminate the

current request and Iceberg client will report error to the unlucky graduate advisor.

When the server.Session object is initiated, the Session.timer field is set to

zero. This field is used by the server.SessionServer to guard against client crashing.

The Session.currentLock field keeps the state of a session, so Iceberg server is a

stateful server. The old student's record lock is released when the graduate advisor

shifts to a new student's record or he logs out. However if the client process is

stopped abruptly as a power failure or the advisor presses Ctrl-C, no clean up

21

routine will be done and the lock in the server side will not be released. Just

imagine the student's record lock can sit in the server.SessionServer forever, prevent

anyone from touching the record. This situation is too bad to live with. Thus

as soon as the server.SessionsServer initiate, it create another thread. This thread

sleeps in the background and periodically wake up. When it is up, it checks each

session currently active in the server.SessionServer. The thread increase the timer

by one. If the value of the timer is bigger than a predefined threshold now, the

thread concludes that the Iceberg client creates this session has died. Then it will

release the Session.currentLock if there is one and clean up the session object from

the internal tables of the server.SessionServer. The current setting is that the thread

wakes up every 60000 ms and the session whose value of the timer bigger than 5 will

be purged. This setting is set in the IcebergServerInfo.properties file and read into

the system when server.SessionServer initiated. Using a text editor can change these

settings.

Iceberg client has two ways to tell the server.SessionServer it is alive. First,

we have said each RMI call from a Iceberg client to the server.AdvisorServer calls

SessionServer.matchSession(). This method also refreshes the timer of the valid

session to zero. In the second case, we have to consider that five minutes is the

longest time the server.SessionServer can tolerant a idle client. It is possible for a

Iceberg client to idle more that 5 minutes because the graduate advisor may works

on something else. Therefore the iceberg.Iceberg class, which is the only class knows

server.SessionServer, must automatically touch the server from time to time. There

is a public method in the server.SessionServerX interface:

public void isAlive(Long sessionID)
throws SessionNotExistException, DataProcessException

As soon as the iceberg.Iceberg successfully verified the uesrlD and password.,

it will lunch a thread sleeping in the background. The thread wakes up periodically

22

and call SessionServerX.isAlive method, then sleeps again. This methods just call

SessionServer.matchSession to refresh the timer. The setting is for the thread to

wake up every 60000ms. It is set in the HTML page and can be changed. By this

way, the session will stay in the SessionServer as long as the iceber.Iceberg is alive.

2.2.2 The iceberg.server.AdvisorServer Server

The server.AdvisorServer provides service for graduate advisors. It defines methods

to query and update student's records from the Oracle data source. Each public

method begin with the routine of checking the validity of the sessionlD. All methods

that updates the student's records also check if the student is the one locked

by this session. If in the future, other servers like StudentServer or Faculty-

Server are developed, these codes shall be preserved in the front of each public

methods. The server.AdvisorServer do not include any code querying or updating

the database. Querying means reading data from the database, while updating

means changing data in the database. Those functionality is delegated to two utility

class, server.QueryFactory and server.UpdateFactory. Utility class typically only

contain public static methods which are call user ClassName.methodName. We

consider that in the future, new servers may be added into the Iceberg server. It is

best for them to share the utility classes.

2.3 Oracle Data Source

Student's records are stored in the tables maintained in the Oracle database. The

user name and password of the Iceberg users are also stored in the database. The

application server contacts the Oracle database by a set of Oracle thin JDBC drivers

freely distributed by Oracle Corporation. APPENDIX A provides the complete SQL

DDLs for create these tables.

CHAPTER 3

USER MANU

This chapter provides information on how to use the Iceberg system. Step by Step,

we will show how to process student's record and create new records.

3.1 Log Into Iceberg System

The Iceberg client is a web-based applet that can be accessed from any browser. Make

sure your browser has installed the Java Plug-in 1.1. The Iceberg client can only run

in the Java Plug-in. The URL of Iceberg client is http://www.cis.njit.edu/ taolin/Iceberg.html.

After the HTML page is displayed in the browser, the browser loads the Java

Plug-in into the memory. The status bar shows a line "Loading plug-in". This

loading may take 30 seconds. Then the virtual machine in the Java Plug-in loads

the Iceberg.jar archive and run the iceberg.Iceberg applet. This may take another

30 seconds and there is a line "Loading applet..." shown in the browser.

The iceberg applet pops up a small login window (Figure 3.1), asking the

user for the userlD and password. The graduate advisor keys in their userlD and

password and press 'Connect button'. If the information is correct, the login window

will disappear and main window will appear. Otherwise, the login window stays on

the screen and a dialog window appears, telling the graduate advisor that the userlD

and password are not correct. The graduate advisor can try to type in the correct

value again. At any time, the graduate advisor may get out of the Iceberg applet

by press the "Exit" button or the dispose box on the right upper corner of the login

window.

The main window (Figure 3.2) will appear if the graduate advisor loges in

successfully. Due to the size of the program, this may take 15 seconds. The

main window has menu bar and tool bar. Left side of the window is a list where

23

24

student names will be displayed. Right side is a tabbed panel. The first panel

displays the student's background, bridge requirement and the logs written by the

graduate advisors. The second panel displays the student's personal information and

transcript.

Iceberg system has two basic functions. One is create new student records in

the database. The other is processing a student's record.

3.2 Process the Student's Records

The main function of Iceberg system is processing the student's records. The main

window can display one student's record at one time.

3.2.1 Open Student's Records

To open one or more student's records, the graduate advisor may go to the 'Record'

menu and press 'Open', or he can press the 'Open' button on the tool bar. A

window pops up. The window has three fields, for the student's ID, name and email

address. Each field has different search criterions to choose. Iceberg system has

vague search ability. Each field has a 'Find similar' option. The graduate advisor

may input as much as he can remember and select the 'Find similar' in the combo box.

Iceberg system will try to mach student's records that close to the search string. For

example, search for ID '135026823' using 'Find similar' option, the Iceberg server will

return student whose ID is '135026822'. This option may return multiple records. In

addition, the name field has a 'Sound like' option. If 'Sound like' is selected, Iceberg

system tries to find students whose name pronounces like the inputted name.

The search result shows in the list in the left part of the main window. The

student's name is displayed as an entry in the list in blue letters. At the left of each

entry is an icon with quiet face. If an entry has been selected, the color of its name

turns into magenta and the icon changes to a smile face. This mechanism helps the

25

graduate advisor to differentiate the student's records they have processed with those

they have not. This design is inspired by the web browser design that the color of

hyperlink changes after it has been visited.

When an entry is selected, the student's record is displayed in the tabbed panel.

There are two tab panels. The 'Bridge Requirement' panel contains background infor-

mation, bridge requirement and system log information. The 'Student Information'

panel contains student's personal information and transcript.

Iceberg system has a concurrency control mechanism to guard against two

advisors modifying the same student's record. When the graduate advisor selects

a student's record to view, sometimes a dialog window will appear, showing that

another graduate advisor is processing the student's record. There is no way to

access this student's record now; this graduate advisor has to try later.

3.2.2 Change the Background Information

The background information is displayed in a table. Each row is an entry of the

student's background. The width of each row is changeable and the relative position

can be changed also. You can drag a column header to change its place with adjacent

columns.

The graduate advisor can edit the content of the background table. Click any

place in a row selects this row. The color of the row changes into blue. Double click

a field selects the row and a cursor appears in the field rectangle. The graduate

advisor can edit this field now. When finished, he can click any other place or press

the 'Enter' key. The cursor disappears and the content is fixed.

The graduate advisor can add and delete rows. Go to the menu bar and open

the TabA menu, there are two menu items 'Add a background entry' and 'Remove

a background entry'. Press the 'Add a background entry', a new row with blank

content appears in the bottom of the background table. The graduate advisor may

26

fill in the fields of the new row. To delete a row, the graduate advisor needs to select

the row first. Make sure the background color of this row turns into blue, then press

the 'Remove a background entry' menu item. That row is deleted.

3.2.3 Assign the Bridge Requirement

The student's bridge requirement is shown in a panel labeled 'Bridge Requirement'.

The panel displays all possible bridge courses required by the student's program. The

checked checkbox indicates that the student needs to take this course. The graduate

advisor can click any checkbox to check or uncheck it.

3.2.4 Write Logs

A graduate advisor can write logs in the 'System Log' panel. The logs are stored in

the database so that other advisors can see them. The logs displayed are associated

with the current student and the graduate advisor shall write something relevant to

the current selected student. The logs are displayed with the newest one on the top

and the oldest one at the bottom. The header of each log entry displays the creating

time and the creator's name. The log content follows the header. The log content

can be modified and the whole text area will expend if more space is needed. The

modified log entry will have a new time stamp indicates the last modification time.

Be ware that a graduate advisor can only modify the logs he created.

The graduate advisor can add log entries. Click the TabA menu and press 'Add

a log entry', a new log entry appears. A line 'New entry" appears in the timestamp

position. In the writer position is the current advisor's name. The graduate advisor

may type letters in the empty text area. It is impossible to delete a log entry since

this contradicts to the purpose of having logs.

The log panel has color navigating ability. The log entry headers are shown in

blue color. If an entry is modified, the color of the header changes to magenta. This

feature reminds the graduate advisor which log entries he has modified.

27

3.2.5 Change Personal Information

The student's personal information shows in the 'Personal Information' panel. There

are eight fields in the panel. They are 'ID', 'Name', 'Birthday', 'Gender', 'Address',

'Home phone', 'Work phone' and 'Email address'. the graduate advisor may change

all fields except 'ID' and 'Name'.

3.2.6 View the Student's Transcript

The student's transcript is showing in the 'Transcript' panel in a table form. Each

column width and the relative sequence are changeable. However the content can

not be changed.

3.2.7 Save the Change

After the graduate advisor has made the necessary change, he may save the change

to the database. Go to the 'Record' menu and press 'Save', or click the 'Save' button

on the tool bar, Iceberg system begins to save the changed data. Iceberg system first

checks the validity of those data. If any field is wrong, a dialog window will pop up,

indicating the incorrect field. The graduate advisor needs to change the incorrect

data and save the data again.

3.3 Create a New Record

To create a new student's record, the graduate advisor may click the 'Record' menu

and press 'New', or he can press the 'New' button on the tool bar (All buttons have

ToolTips). A window pops up. The graduate advisor then input the student's ID,

name and an optional email address. The ID, first name and last name field must

be filled out. The graduate advisor must choose the student's program too. After

filling out necessary information, the graduate advisor press 'Start' buttons. Iceberg

system will check all inputted data. If some data is not correct, a dialog window will

appear, telling the graduate advisor what is wrong.

28

If the student's information is correct, a student's record is created in the

database. The small window disappears and the new student is the current student

selected in the main window. The graduate advisor may change the student's record

as same as processing other student's records.

CHAPTER 4

CONCLUSION

4.1 The Work Done

Iceberg system is a useful tool for the graduate advisors. It allows multiple graduate

advisors to log into the system, view the student's records and make decisions. The

system basically fulfils the goals we have set at the beginning. Iceberg system is a

good example of the powerful Java language. It utilizes many new Java technologies

such as RMI, JDBC and Java bean architecture. The distinctive character of the

Iceberg system is that the system is an extensible framework. We have this goal in

mind and take fully advantage of the software component architecture. Iceberg client

consists of components that form a hierarchical structure. When it is assembled, the

parent components follow the instructions of a resource file to load and initiate its

children components. By editing the resource file, We can add new components

to the Iceberg client easily without modifying the existing code. Iceberg system is

more like an open framework than a program. Such architecture is superior to the

traditional software architecture because it extends the reusable software concept to

a new height.

Software reuse concept has been proposed for more than thirty years. The first

form of reusable software came as function library. They have to be linked with

the program to generate the executable. The second form is the class library where

data and functions are encapsulated in classes. These class libraries are easier and

safer to use because the classes know what data they can handle. the Java core

API is an example of carefully designed class libraries. However, classes are too

small building blocks to build a program. They are more like pebbles than blocks.

Software component architecture addresses this problem. Components are modules

that provide services as well as a way to let the outsider to detect their service.

They can not only use by inspecting the source code, but also can be used in visual

29

30

frameworks. This is the key point behind the Microsoft Visual Basic and Borland

Delphi. Although a component may contain only one class, it is abstracted from a

higher level of usage than a class is.

4.2 Future Work

Iceberg system provides a basis for later work. On the server side, it is a full-

fledged session management and concurrency control system. The design of the

Oracle relational schema has also considered the future extendibility . Therefore the

Iceberg server is ready to serve other functionality. On the client side, it utilizes

the software component architecture. New components can be add to the system

with lest effort. New modules for students and faculties are considered. The student

module may include an iceberg.server.StudentServer and a set of visual components.

It will allow the student to see his record and input data his or her data into the

database. The faculty module is useful for faculty members to post their available

project topics.

Java is a fast evolving technology. The current implementation uses mostly the

features of Java 1.1. Later it can be enhanced with the Java 1.2 technology. The

JDK 1.2 is now under the beta test and will be available soon. Java 1.2 provides

several advantages and addresses several shortcoming of the Java 1.1.

The enhancement may include following features:

The swing user interface. The swing package is part of the core API in the

JDK 1.2 release. It is turned up for faster speed and better performance.

Base on the source from Javasoft, it screen rendering speed may be doubled in

the new release. The current swing 1.0.3 is good enough for daily operating.

However there are still several bugs in the JTable class. The swing 1.1 package

comes with JDK 1.2 corrects those bugs, so we will not manually fix those bugs

ourselves and would rather wait for the new release.

31

• The RMI package. Java 1.2 add an activation mechanism to the RMI package.

A server object need not to be instantiated when it is registered with the

rmiregistry. The rmiregistry can create an instance of the server object

whenever there is a request to use its service.

• The Java bean architecture. The Java bean architecture is improved in the

Java 1.2 as the shortcoming of the Java bean 1.0 specification has become

apparent. The Java bean 1.0 does not provide methods to describe the hiarchy

of logical structure of the Java beans. It does not specify how a bean can import

services from outside environment or export its service to the outside. For

example, in the Iceberg client, any component should response to the certain

action command such as 'Save', 'Clear' and 'New'. Therefore if a menu item

in the parent container is clicked, all of its children shall be ask to perform the

action. However the containers do not know what their children can do and

the Java bean 1.0 specification does not specify how a container can obtain

that information. The coming Java 1.2 include the Java bean 1.2 specification

that addresses those fields. Although we can hand coin our own import and

export protocols, we felt it is better to wait the Java bean 1.2 specification to

come. By deploying Java bean 1.2 specification, we can create more robust

bean components.

• Java collection framework. The Java collection package is a new package in

the Java 1.2. it compose of a set of primary datatypes such as list, set and

map. Using collection object may simplify the API design. Unlike Vector and

Hashtable, the collection objects are unsynchronized. Using collection package

may speed up the program

32

Java technology will provide greater and greater functionality as it evolves

rapidly. Iceberg system shall keep evolving with the Java so that it may provide

greater functionality to the users.

APPENDIX A

DATABASE SCHEMA

This appendix provides the internal structure of the Oracle data source. The database is

created using SQLplus software come with the Oracle 8 database.

Following is the SQL DDL commands that create the database

Create table PERSON (
ID
LNAME
MNAME
FNAME
BDATE
GENDER
ADDRESS
HOMEPHONE
WORKPHONE
EADDRESS

char(9) not null,
varchar2(30) not null,
varchar2(30),
varchar2(30) not null,
date,
char,
varchar(150),
char(10),
char(10),
varchar2(40),

primary key (ID));

create table ACCOUNT (
ID 	 char(9) not null,
USERID 	 varchar(30) not null,
PASSWD
	 varchar(30),

USAGE 	 char,
primary key (ID, USERID),
foreign key (ID) references PERSON(ID));

create table PROGRAM (
PNO 	 number(2) not null,
PNAME 	 varchar(80) not null,
DEGREE 	 varchar(6) not null,
primary key (PNO));

create table TRACK (
TRNO 	 number(2) not null,
PNO 	 number(2) not null,
TRNAME 	 varchar(80) not null,
primary key (TRNO, PNO),
foreign key (PNO) references PROGRAM(PNO));

create table FACULTY (
FID 	 char(9) not null,
primary key (FID),

33

foreign key (FID) references PERSON(ID));

create table STUDENT (
SID 	 char(9) not null,
PNO 	 number(2) not null,
TRN0
	

number(2),
STATUS
	

char,
primary key (SID),
foreign key (SID) references PERSON(ID),
foreign key (PND) references PROGRAM(PNO),
foreign key (TRNO,PNO) references TRACK(TRNO,PN0));

create table ADVISOR (
ID 	 char(9) not null,
PNO
	

number(2) not null,
ISADM 	 char,
primary key (ID, PND),
foreign key (ID) references PERSON(ID),
foreign key (PND) references PROGRAM(PNO));

create table COURSE (
CNO 	 varchar2(7) not null,
CNAME 	 varchar2(80) not null,
CREDIT 	 number(2,1) not null,
primary key (CNO));

create table PROGRAM_OFFER_BRIDGE (
PNO 	 number(2) not null,
CN0 	 varchar2(7) not null,
primary key (PN0, CNO),
foreign key (PN0) references PROGRAM (PN0),
foreign key (CN0) references COURSE (CNO));

create table PROGRAM_OFFER_CORE (
PNO 	 number(2) not null,
CNO 	 varchar2(7) not null,
primary key (PND, CN0),
foreign key (PND) references PROGRAM (PN0),
foreign key (CND) references COURSE (CNO));

create table TRACK_OFFER_ELECTIVE (
PNO 	 number(2) not null,
CN0 	 varchar2(7) not null,
TRN0 	 number(2) not null,
primary key (PNO, CNO, TRNO),

34

foreign key (PNO) references PROGRAM (PN0),
foreign key (TRNO, PNO) references TRACK(TRNO, PN0),
foreign key (CNO) references COURSE (CN0));

create table PROGRAM_OFFER_REQUIRED (
PN0 	 number(2) not null,
CN0 	 varchar2(7) not null,
primary key (PNO, CN0),
foreign key (PNO) references PROGRAM (PNO),
foreign key (CN0) references COURSE (CNO));

create table EDU_BACKGR0UND (
ID 	 char(9) not null,
COLLEGE 	 varchar2(80),
L0CATION 	 varchar2(80),
MAJ0R 	 varchar2(30),
DEGREE 	 varchar2(30),
GDATE 	 varchar2(15),
GPA 	 number(3,2),
foreign key (ID) references PERSON(ID));

create table STUDENT_TAKEN_COURSE (
SID 	 char(9) not null,
CN0 	 varchar(7) not null,
SEMESTER
	

char(5) not null,
GRADE 	 number(2,1) not null,
primary key (SID, CN0),
foreign key (SID) references PERSON(ID),
foreign key (CNO) references COURSE(CN0));

create table STUDENT_TAKING_C0URSE (
SID 	 char(9) not null,
CNO 	 varchar2(7) not null,
primary key (SID, CNO),
foreign key (SID) references STUDENT(SID),
foreign key (CNO) references COURSE (CNO));

create table BRIDGE_REQUIRE_STUDENT (
SID 	 char(9) not null,
CN0 	 varchar2(7) not null,
primary key (SID, CNO),
foreign key (SID) references STUDENT(SID),
foreign key (CNO) references COURSE(CNO));

35

create table STUDENT_GRADUATE (
SID
	

char(9) not null,
GDATE
	

date not null,
ADVISOR 	 char(9),
GTOPIC 	 long,
STATUS 	 char,
primary key (SID),
foreign key (SID) references STUDENT(SID),
foreign key (ADVISOR) references FACULTY(FID));

create table GRADUATE_REQUIRE_STUDENT (
SID 	 char(9) not null,
CNO 	 varchar2(7) not null,
primary key (SID, CNO),
foreign key (SID) references STUDENT(SID),
foreign key (CN0) references COURSE(CN0));

create table EMESSAGE (
0WNER 	 char(9) not null,
SUBJECT 	 varchar(60) not null,
C0NTENT
	

long,
primary key (0WNER, SUBJECT),
foreign key (0WNER) references FACULTY(FID));

create table SYSL0G (
FROM_ID 	 char(9) not null,
TIME
	

date 	 not null,
TYPE 	 char,
T0_ID 	 char(9),
CONTENT 	 varchar2(2000),
foreign key (FR0M_ID) references PERSON(ID),
foreign key (TO_ID) references PERSON(ID));

36

APPENDIX B

PROPERTY FILES FOR CLIENT AND SERVER

This appendix provide the property files used to configure the Iceberg client and Iceberg

server

37

38

Iceberglnfo.properties is the property file used by the Iceberg client to initialize the

user interface. All the Iceberg components get information from this file.

#***********************
IcebergInfo.properties
#***********************

Iceberg System Parameter
0UTER_FRAMEWORK=iceberg.advisor.ControlWindow
INNER_FRAMEW0RK=iceberg.advisor.DataPane

#ImageSuffix=_IMAGE
#LabelSuffix=_LABEL
#ToolTipSuffix=_TOOLTIP
#LengthSuffix=_LENGTH
#HeaderSuffix=_HEADER
#WeightSuffix=_WEIGHT
#HeigthSuffix=_HEIGHT
#ActionSuffix=_ACTI0N

#*************************
ControlWindow parameters
#*************************
C0NTROL_WINDOW_TITLE=Iceberg System for Advisor
C0NTROL_WINDOW_WIDTH=680
CONTROL_WINDOW_HEIGHT=669
C0NTROL_WINDOW_XPOSITION=151
C0NTROL_WINDOW_YPOSITION=50

Menubar definition
MENUBAR=Record|Tool

Record menu definition
Record=New|Open|Save|-|Exit
New_ACTI0N=iceberg.advisor.RecordGenerator
New_IMAGE=images/new.gif
0pen_ACTION=iceberg.advisor.Searcher
0pen_IMAGE=images/open.gif
Save_IMAGE=images/save.gif

Tool menu difinition
Tool=StoredProcedure|Mail
StoredProcedure_ACTION=iceberg.advisor.Browser
StoredProcedure_IMAGE=images/browse.gif
#Mail_ACTION=iceberg.advisor.Mailer
Mail_IMAGE=images/mail.gif

39

40

41

42

43

44

The IcebergServerinfo.properties property file is used when the server is launced. It

provide the Oracle log in user ID and password. For security reason, the value fields of

these line are ommitted.

APPENDIX C

PACKAGE iceberg.advisor

The iceberg.advisor package contains all the visual components used by the Iceberg client

of the graduate advisors. These components are separately compiled and are assembled

together in the run time to form the Iceberg client.

This package contains following classes:

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

panel.add(input [index]);
return panel;

public void actionPerformed (ActionEvent event)
{

String arg = event.getActionCommand();
if (arg.equals("Search"))

processSearchInfo();
else if (arg.equals("Reset"))

reset();
else if (arg.equals("Cancel"))

processWindowEvent(new WindowEvent(this,WindowEvent.WINDOW_CLOSING));
else

System.err.println("Searcher unknown event: " + event.toString());

protected void processSearchlnfo() {
SearchInfo s = new SearchInfo();
s.id = input[0].getText();
if(s.id .equals(""))
s.idChoice = Searchlnfo.NO_SEARCH;

else if(isID(s.id))
s.idChoice = choiceList[0].getSelectedIndex();

else
return;

s.name = input[1].getText();
if(s.name.equals(""))
s.nameChoice = Searchlnfo.NO_SEARCH;

else if(isName(s.name))
s.nameChoice = choiceList[1].getSelectedIndex();

else
return;

s.eAddress = input[2].getText();
if(s.eAddress.equals(Jul))

s.eAddressChoice = Searchlnfo.NO_SEARCH;
else if(isEAddress(s.eAddress))

s.eAddressChoice = choiceList[2].getSelectedIndex();
else

return;
if(s.idChoice == Searchlnfo.NO_SEARCH &&

s.nameChoice == Searchlnfo.NO_SEARCH &&
s.eAddressChoice == Searchlnfo.N0_SEARCH) {
J0ptionPane.showMessageDialog(this,

125

"No search information present", "Error",
JOptionPane.ERROR_MESSAGE);

return;
}

s.resultSize = numSlider.getValue();

	

fireDataItemAvailable 	 "SEARCH_INFO", s, null);

if(pinBox.getState() == Pin.UP)
processWindowEvent(
new WindowEvent(this, WindowEvent.WIND0W_CLOSING));

reset();
}

protected void reset()
{

for (int i=0; i<3; i++)
{

input[i].setText("");
choiceList[i].setSelectedIndex(0);
numSlider.setValue(5);

}
repaint();

protected boolean isID(String id) {
if(id.length() != 9) {

	

if(id.length() == 11 	 (

	

(id.charAt(3) == 	 && id.charAt(6) ==) 11
(id.charAt(3) == ' 	 && id.charAt(6) == '))) {

StringBuffer idBuffer =
new StringBuffer(id.substring(0,3));
idBuffer.append(id.substring(4,6));
idBuffer.append(id.substring(7));
id = idBuffer.toString();

}
else {
JOptionPane.showMessageDialog(
this, "Incorrect ID format", "Error",
J0ptionPane.ERROR_MESSAGE);
return false;

}

1
for(int i=0; i<9; i++) {

if(!Character.isDigit(id.charAt(i))) {
JOptionPane.showMessageDialog(this,

126

127

128

129

130

131

132

133

134

135

136

137

138

139

APPENDIX D

PACKAGE iceberg.server

The iceberg.server package contains the classes of the Iceberg server.

This package contains following classes:

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

19'T

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

REFERENCES

1. The 	 swing 	 connection. 	 Javasoft, 	 December, 	 1998
http://www.javasoft.com/products/jfc/tsc/index.html

2. JavaBeans "Glasgow" Draft Specifications 	 JavaSoft, December 1998
http://www.javasoft.com/beans/glasgowi

3. eSuite Infobus Technology Brifing 	 Lotus Inc., December 1998
http://java.sun.com/beans/infobus/index.html

4. Java Plug-in 1.2 Overview 	 JavaSoft Inc, 	 December 1998

http://www.javasoft.com/products/plugin/1.2/overview.html

214

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Fall 1998

	Iceberg database system for the graduate advisors of Computer and Information Science Department of New Jersey Institute of Technology
	Tao Lin
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: System Analysis
	Chapter 3: User Manu
	Chapter 4: Conclusion
	Appendix A: Database Schema
	Appendix B: Property Files For Client and Server
	Appendix C: Package iceberg.advisor
	Appendix D: Package iceberg.server
	References

