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ABSTRACT

AN INVESTIGATION OF THE EFFECT OF SONIC FREQUENCY IN THE
REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM SOILS USING A

SIREN-PNEUMATIC FRACTURING COUPLED TECHNIQUE

by
Chin-Yu Lin

This study investigates the effect of frequency from sonic energy coupled with soil

fracturing for the removal of volatile organic compounds from low permeability soils.

The laboratory experiments consisted of a test cell, 12 '/2 inches by 12 '/2 inches and 23 3/4

inches high, containing a 1/2 inch geotextile made to simulate the fracture. The pneumatic

sound generator used was a siren type generator designed and built at NJIT.

Laboratory experiments were performed using the NJIT siren at frequencies of

2957, 6637, 10317, 13997 Hertz and baseline tests with no sound energy were also

conducted. The free moisture content was measured by weight loss over time and the

concentration of the contaminant was measured by using gas chromatography with a

Flame Ionization Detector. These measurements were monitored frequently throughout

the experiments. The results of this study at different frequencies were analyzed and

correlated and were also compared with the results obtained by Fernandez (1997) using

the NJIT siren and the whistle. The measurements agreed with those of Fernandez and

showed a slight increase in the removal rate constant with a rise in frequency but this

improvement was not significant.

It was concluded that within the range of frequencies studied, no significant

improvement in removal rate can be attributed to frequency. It is recommended that the

siren should be reconfigured to operate at higher frequencies (20 kHz) and much higher

sound intensities (> 145 dB).
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CHAPTER 1

INTRODUCTION

Li Overview

Due to the increased usage of chemicals in the petroleum and chemical industries and

in government facilities, significant amounts of hazardous wastes have been

generated in the past decades. The lack of awareness of the potential of the

hazardous wastes to impact negatively on human health and the environment led to

mishandling and poor disposal practices.

Facing the need to stop further improper release of hazardous waste, a series

of environmental laws were enacted. These laws include the Resource Conservation

and Recovery Act (RCRA) of 1976, the Comprehensive Environmental Response

Compensation and Liability Act (CERCLA) of 1980, and the Superfund Amendments

and Reauthorization Act (SARA) of 1986.

The initiatives to clean up contaminated sites required by the laws and by

using existing technologies exist. However, the amount of time and the cost required

for clean up and the effectiveness of each technology varies. The current available

technologies can be expensive and time consuming. Thus, the remedial method

presented in this thesis targets the decontamination of hazardous wastes (volatile

organic compounds) in soil, in situ.

A new patented technology called pneumatic fracturing was developed at the

Hazardous Substance Management Research Center (HSMRC) at the New Jersey

Institute of Technology (NJIT). The process involves the injection of high pressure



2

air into the soil to increase the permeability of a formation, allowing for a faster

removal rate of the hazardous waste from the soil.

The feasibility of utilizing pneumatic based ultrasonic devices coupled with

pneumatic fracturing in enhancing the removal of volatile organic compounds from

soils was investigated previously (Fernandez, 1997). Laboratory bench scale studies

of two selected sonic generators, a siren and a whistle, were used in his investigation.

The research presented in this study is to further demonstrate the feasibility of the

removal of VOC's from low permeability soil, utilizing sonic energy generated by a

siren and also the effect of frequency.

1.2 Research Objective and Scope

Although remediation of contaminated soil using ultrasound energy is a relatively

new technology its potential to achieve the clean up goal is promising. With many

different types of pneumatic sound generators available, the study is complex.

The objective of this research is to study the effect of frequency from sonic

energy for the removal of volatile organic compounds from low permeability soil.

The pneumatic sound generator used in this study is a siren type generator designed

and constructed at NET. Laboratory scale tests are to be performed using the siren at

different frequencies to determine the degrees of enhancement achieved with each

frequency. The result of the tests will then be compared to the results from the

control runs where sonic energy is not applied.



CHAPTER 2

BACKGROUND OF STUDY

2.1 Overview of the Current In Situ Remediation Technologies

There are many remediation technologies available today for the treatment of

contaminated soils. The two categories include in situ and ex situ treatment

technologies. In situ treatment technologies are techniques that treat contaminants

right on the site without excavating or moving the soil. Ex situ treatment

technologies unlike the in situ treatment, require the removal of the contaminated

soils from the subsurface and transport to a treatment facility on or off site for

treatment.

Since in situ remediation treats the contaminants in place, there's no extra cost

associated with the transport of the contaminated soils. Some of the current in situ

technologies available for the treatment of volatile organic compounds include soil

flushing, solidification, stabilization, degradation, soil vapor extraction, volatilization

and chemical and biological treatment.

2.2 In Situ Remediation Enhancement Technologies

One of the most often used enhancement associated technologies that is currently

used in the remediation of tight soil is soil fracturing. Soil fracturing is performed by

administering a fluid, which is at a higher pressure than the consolidation pressure of

the geologic. formation to open up a fracture radially or vertically with respect to the

3
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formation. This process is followed by injection of a granular material to keep the

fracture open. There are currently three types of fracturing in use for in situ

remediation and these are hydraulic fracturing, explosive fracturing, and pneumatic

fracturing (Marks 1994).

Soil fracturing is used to enhance the removal of the VOC's from impacted

soil. A fracture is a void in a tightly packed geologic formation. Where it does not

exist naturally, fracturing the formation pneumatically can create this void space.

When air is injected into the fractured formation, it travels through the open void

space, the path of least resistance. Any moisture on the top of the fracture will

evaporate into the air stream as the air injected into the formation passes through and

leaves the soil. As the fractured soil is being dried by the air, this process lends itself

to the analysis by the classical drying theory.

2.3 Basic Drying Theory

2.3.1 Typical Drying Curves

The drying process discussed in this section is concerned with the removal of the

VOC's from the sand in the experimental tank. Drying, in general, is usually referred

as the removal of relatively small amounts of liquid from the material, and

evaporation means removal of large amounts of liquid from the material.

The removal of liquids from a solid material can be divided into four regions,

according to the classical drying theory (Geankopolis, 1993). Figure 2.1 shows the

four regions of a plot of the free moisture content versus time and the rate of drying

versus free moisture content. The first region of the drying process, as shown in
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Figure 2.1 (a), from point A to B, is very short. At time zero, the initial temperature

of the solid is normally colder than its ultimate temperature, and the evaporation rate

increases as the temperature rises and the process reaches the second region. If the

initial temperature of the solid is high, then the process may start at point A' . As the

process reaches point B of the curve, the surface temperature rises to its equilibrium

temperature.

The second region, also referred to as the constant-rate-of-drying region, is

the straight line labeled from point B to C. During this time, the process of drying is

at a constant rate, the surface of the solid is initially very wet and a film of water is

continuously seen on the surface. The water is simply removed from this surface

film and the water acts as if no solid is present. The slope and hence, the rate during

point B to C are constant as shown in Figure 2.1(a) as a straight line. The drying rate

starts to decrease as the process reaches point C, the critical free moisture content, on

the curve. At this time, the surface of the solid is no longer wet since there is

insufficient amount of water to maintain a continuous film of water on the surface of

the solid. During this period, the entire surface is not completely wet, and the wetted

area progressively decreases. The drying process continues until it reaches point D.

In this first falling-rate region, the rate of drying is often linear as a function of

moisture content until it reaches point D. This CD line is called the falling-rate

period as shown in Figure 2.1(a).

The last segment of the Drying-Rate Curve is another rapid fall in the rate of

drying starting from point D when the surface is completely dry until it reaches point
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E, where the equilibrium moisture content is reached. In this region, the plane of

evaporation gradually recedes away from the surface. The heat necessary for

evaporation is now transferred through the solid to the plane of evaporation. The

vaporized water must move through the solid to the solid surface and be removed by

the airflow. In some cases, depending on the material being dried, the falling-rate

period (line CD) may be missing completely or it may constitute all of the falling-

rate period. In the case of the missing of point D, there will be only one line from C

to E, omitting point D completely, forming the falling rate period.

2.3.2 Drying Theory

As described by the Typical Drying Rate Theory (Geankoplis 1993), normally the

data from drying processes are collected from the laboratory experiments where the

solids to be dried are mixed with a known amount of liquid and the weight is

monitored as it dries. The free moisture content is defined as the fraction of the

weight of the moisture remaining in the solids divided by the weight of the dry solid

as expressed in the following equation:

W — W,X _

Using this variable, the rate of removal is given by:

R 
W

'
A dt

(2.1)

(2.2)

where R is the removal rate, W s and A are constants. For the constant drying period,



For the Falling Rate region, it can be assumed that the rate is a linear function of the

moisture content. Hence,

8

Substituting Equation 2.5 into Equation 2.2 gives,



in the following equation,

Equation 2.10 predicts a semi logarithmic correlation for the Falling Rate Region.

2.4 Overview of the Sonic Generator Selected and the
Effect of Frequencies

Extensive studies of the principals and structural designs of different sonic generators

have been discussed (Fernandez, 1997). This section will give a very general

overview of sonic generators and the effect of frequency on the rate of drying.

Many types of sound generators are available today. According to the

physical properties that allow the radiation of ultrasound, the transducers are divided

into 5 main categories including electrostatic, electrodynamic, magnetostrictive,

piezoelectric, and pneumatic transducers (Manthey and Kraemer, 1992).

For the purpose of this investigation, the selected sonic generator is in the

category of pneumatic transducers. Pneumatic transducers are further divided into

static and dynamic generators and these transducers produce sound waves of air. The

siren, the sonic generator used in this research, is a dynamic generator. The basic

principle governing this type of generator is that when a jet of air is periodically

interrupted by a rotating device, resulting puffs of air set up condensations (regimes

of high pressure) and rarefactions (regimes of low pressure) in the air stream. The

result is the generation of sound waves with frequencies which are proportional to the

9
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number of interruptions that the jet air is subjected to in a period of one second.

Thus, the frequency is the number of the revolutions per second times the number of

perforations per row on both the rotator and the stator, which are perfectly aligned

(Allen 1947 and Wood 1937). These aligned perforations per row give the number of

interruptions per revolution. Each interruption represents a cycle of rarefaction and

condensation. The intensity of the sound generated by this type of generator depends

on the amount of gas that is "blocked off' when the jet of air is interrupted and,

hence, depends on the space between the rotator and the stator (Allen, 1959).

The intensity of a sound is defined as the rate of transfer of the vibrational

energy per unit of area of the wave (Hausman and Slack, 1939). Intensity depends on

both the amplitude which is the maximum displacement of the vibration from its mid

position, and the frequency of the wave, or the number of vibrations per second.

Consider a layer of air of thickness, x, and of unit cross sectional area. If v, is the

velocity of wave propagation, then the kinetic energy is,

The mass of material is the density of the medium, p, times the volume which

is (x)(1). Furthermore, the velocity of the propagating wave is,

Therefore, the kinetic energy, in Newton-meters, becomes,

The total energy or the energy density of the wave, in Newton-meters per m 3 or
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Joules per m3 is,

If the wave is traveling at a velocity of v, m/s, then the rate of transfer of

vibrational energy is

in Newton-meters per m 2 per second or Joules per m 2 per second, or Watts per m2 .

Hence, the intensity is proportional to the square of both the frequency and the

amplitude.

In reality, the energy density of wave varies inversely as the square of the

distance from its source. Since the energy density is proportional to the square of the

amplitude, r, it follows that the amplitude of the wave will vary inversely as the

distance from the source and, therefore, the intensity in a given medium at a given

velocity of propagation and given frequency will decline with distance, x, from the

source. A measure of this decay in sound energy is the attenuation coefficient. The

intensity of sound at a distance from the source is given by,

The sound intensity level is normally measured in decibels. Hence,

where the constant, 1 0, is the reference standard and is the threshold of human

hearing, 10" 12 watts per m2 (Sears, Zemansky and Young, 1987) and is the faintest

intensity that can be heard by human ears.



CHAPTER 3

EXPERIMENTAL APPROACH

The objective of this research is to determine the effect of frequency on the removal

of volatile organic compounds from soil using the siren coupled with pneumatic

fracturing. The tests were conducted in the laboratory with both the siren and the soil

testing cell constructed at NJIT.

The approach was to pack a known amount of sand in the test cell (see Figure

3.2) containing an artificial fracture made out of geotextile material aligned where

the holes of the siren were located. Two PVC pipes with 3/4 inch diameter were

inserted into the tank to serve as extraction pipes to remove the effluent gas

containing contaminants from the tank. The monitoring of the loss of moisture by

weight over time was recorded by an electronic scale system and the concentration of

the contaminant (a mixture of Ethyl alcohol and water) was analyzed by a gas

chromatograph using a flame ionization detector (FID). Based on the measured data

and the drying theory described in Chapter 2, conclusions were made on the

effectiveness of the siren and the change of frequency.

3.1 Setup of Experimental Apparatus

Most of the experimental equipment and the apparatus set up used in this research are

adopted from those used by Fernandez in his studies on a siren unit (Fernandez

1997). Some minor modifications were made to the apparatus and they will be

discussed in the following sections of this chapter. Figure 3.1 will serve as a guide

12
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for an overview of the process of the experiment. The measured data collected were

the weight of the test cell and the concentration (parts per million by volume, PPMv)

of ethanol in the exiting stream.

Figure 3.1 Overview of the Experimental Process
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3.1.1 Setup of Experimental Tank

The tank (test cell) used for the experiment was made out of acrylic Plexiglass

constructed at NJIT as used by Fernandez (1997). The shape of the tank is

rectangular, 12 '/2 inches square by 23 3/4 inches in height with a base attached to the

tank made out of an 18 inch square by 3/4 inch thick piece of acrylic plexiglass.

The cover of the tank was constructed with 2 square pieces of plexiglass, one

is 11 inches square and the other one is 12 1/2 inches square and 3/4 inch thick. Both

tank cover pieces have a center hole of 3 inches in diameter and other smaller holes

for the extraction pipes. These Plexiglass covers were then bonded together by using

Rez-N-Bond acrylic bonding compound. The edges of the tank were secured by

placing angle iron to keep the tank safe under pressure (See Figures 3.2 and 3.3).

During each experimental run, after the tank was packed, the tank cover was sealed

by using Silicone II sealant for window and doors.

After the assembly of the tank, chlorinated polyvinyl chloride (CPVC) pipes

were attached to the extraction pipes coming out of the tank. The pipes allow

effluent gas to exit the tank and go into the gas chromatograph for analysis and in-

house treatment (See Figure 3.2).

3.1.2 Setup of Electronic Scale System

The electronic scale system was used to monitor the measurements of the weight of

the moisture in the experimental tank. The scale system was built by using 2 square

pieces of aluminum plates sandwiching three electronic load cells (See Figure 3.4).



Figure 3.2 Apparatus Design

15



Figure 3.3 Experimental Tank. Design
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The electronic signals were then sent to a computer terminal and the data collected

from the computer were converted into units of pounds.

The square aluminum plates were 20 inches square by '/2 inch thick, purchased

from Roncocas Metal Corporation in Roncocas, New Jersey. The electronic load

cells were GSE model number 5353 (See Figure 3.5). The GSE Precision Load Cells

were placed in a triangular arrangement between the aluminum plates. A Radio

Shack DC regulated power supply of 13.8 volts was used to excite the load cells. A

built in Wheatstone bridge inside each of the load cells provided a resistance to the

voltage, which varied with weight. Each of the voltages generated by the load cells

was transferred separately to a terminal block, Model Number 707 (DT707). The

signals were then sent to a data translation system, the XL-System, purchased from

Elexor Associates located in Booton, NJ. The signals were translated into a series of

numbers, which were then converted into readings in the unit of pounds. The weight

of the tank was monitored throughout the experiment with readings taken regularly.

3.1.3 Sample Analysis

The monitoring of the concentration of the volatile organic compounds (VOCs) in the

tank throughout the experiment was important. For the purpose of this study, a gas

chromatograph (GC) was used by attaching it to the extraction line coming out of the

tank as shown on Figure 3.2.

Many steps were involved in the process of sample analysis (shown within the

dash boundaries in Figure 3.1) and samples were drawn out of the exiting stream

frequently (Tables B.4 to B.8). Therefore, the process of analyzing the concentration



Figure 3.4 Electronic Scale System
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Figure 3.5 Precision Load Cell
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of the VOCs was automated by using a Digital Valve Sequence Programmer (DVSP)

by Valco Instruments (See Appendix D).

Chromatography, one of the most important techniques in environmental

analysis, is a method used for separating very small quantities of complex mixtures.

The amount of each component in the sample is measured as it leaves the

column, by passing the effluent through a detector and integrating the detector signal

over time. For quantification, the detector signal is fed into an integrator, producing

a typical plot of signal versus time, as a series of peaks. The peak areas produced by

the integrator relate to the quantity and the identity of each compound in the sample.

For the purpose of this research, attached to the GC is a Flame Ionization

Detector (FID) which is sensitive to organic compounds and shows good sensitivity.

To obtain the reading of the concentration of the outlet air exiting from the tank over

time, an integrator was connected to the GC and produced a series of signals. These

signals form a series of chromatographs with the area under the peaks listed. To

determine the concentration of the samples, the areas under the peaks obtained from

the integrator were converted into concentration readings in units of Parts Per Million

by volume (PPMv) by using the equation obtained from the calibration of the CC.

See Figure 3.6 for the GC calibration Curve and Appendix B for sample calculations.

The GC model used for this research was a Varian 3700 and Matheson Gas

Product Particle Filter model number 6120 with a 0.2 micron efficiency connected to

the extraction line of the outlet of the experimental tank. The sample gas stream was

fed into a 3 milliliter sampling loop. The six-way valve system, which includes the

sampling loop, feeds the contents of the loop into the GC's column for analysis.



Figure 3.6 Calibration of the Gas Chromatograph
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When loaded, the contents of the loop are fed into the column by the carrier gas,

which is Nitrogen gas at 30 milliliters per minute. The GC's column is made of

Carbopack with a length of 10 feet and a diameter of '/ g inch. The flow rate of the air

and the hydrogen gas used for the FID were set at 330 milliliter per minute and 30

milliliter per minute, respectively. The temperature of the column was set at 70

degrees Centigrade and remained constant, and this temperature successfully

separated the water vapor and ethyl alcohol from the gas sample to be analyzed. The

sample in the loop along with the carrier gas was fed to a flame ionization detector

(FID). The FID burned the hydrocarbons and generated signals that were sent to the

integrator. The integrator, HP model 3396A, integrated the signals received from the

detector into a series of peaks along with the areas integrated under the peaks. These

areas correspond to the concentration of the ethanol solution in the effluent gas fed

into the sampling loop. By using the calibration equation, the concentrations were

calculated (See Figure 3.6).

3.1.4 Siren Design

The siren used for this research was constructed at NET, is the same device as used

in the research studies done by Fernandez (1997). It is based on the concept of Allen

and Rudnick (1947), stating that when a jet of air is periodically interrupted by a

rotating device, the result is a sound wave whose frequency in Hertz is given by the

product of the number of revolutions per second of the rotating device and the

number of interruptions per revolution.
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The siren was built by using a pneumatic motor with a rotator attached to it

(see Figure 3.7). The motor with the attached rotator is then encased in a hollow

cylinder, 3 inches in diameter, which is open at one end. Both the casing and the

rotator contain 56 radial perforations per row in 6 rows which can be perfectly

aligned. These holes each have a diameter of 2.1 millimeters and are equally spaced.

Air is fed from the top of the cylinder casing through a '/4 inch Swagelock opening.

After the siren was assembled, it was calibrated with a Digital Stroboscope Model

Number 1965 by setting a known inlet air pressure and measuring the number of

revolutions per minute generated by the motor. A linear equation was obtained for

the calibration of the siren (See Figure 3.8, from Fernandez, 1997). From Figure 3.8,

the speed of the siren at given air pressures fed into the motor can be determined and

the frequency (Hertz) of the sound wave can be calculated.

When the pneumatic motor is in operation, the rotator rotates at a number of

revolutions per minute (calculated by using the equation in Figure 3.8). The number

of holes in each row of the stator and the rotator are sequentially aligned and non-

aligned. Thus, when the holes are aligned, the air passes through freely creating a

rarefaction (regime of low pressure) in the air stream. When the holes are not

aligned, the air does not pass through freely creating a condensation (regime of high

pressure). This combination of a condensation and a rarefaction constitutes a cycle

of high and low pressure creating the sonic wave. With 56 holes per row, there are

thus 56 cycles in each revolution and if this number is multiplied by the revolutions

per second, the result is the frequency of the sound wave in Hertz.
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Figure 3.7 MIT Siren Design from Fernadez (1997)



Figure 3.8 Siren Air Motor Calibration Line from Fernandez (1997)
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The siren is located at the center of the tank at a height of 3 inches from the

bottom with the perforations aligned with the geotextile fracture. To operate the

siren, high pressure air at 40 psig to 85 psig (setting the frequency of the siren at

2,957 to 13,997 Hertz) was fed to the motor. Table 3.1 lists the important

characteristics of the NJIT Siren.

Table 3.1 NJIT Siren Performance Characteristics

Siren Characteristics Operational Parameters
Outer Diameter

(Inches)
Number of

Holes per Row
Inlet Motor Air
Pressure (PSIG)

Motor Speed
(RPM)

Frequency
(Hertz)

3.0 56 40 3,168 2,957
3.0 56 55 7,111 6,637
3.0 56 70 11,054 10,317
3.0 56 85 14,997 13,997
3.0 56 100 18,940 17,677

3.2 Experimental Procedure

The experiment was designed to start with 5 pounds of liquid moisture content and

95 pounds of 00-grade dry sand. The five pounds of liquid solution were composed

of 4.5 pounds of water and 0.5 pounds of sample solution with the following

components, 5% methanol, 90% ethanol, and 5% isopropyl alcohol by volume.

Before assembling the experimental unit, the water and the sample solution

were mixed then poured into the dry sand and mixed carefully to ensure uniformity.

To start the process of packing the tank, first the electronic scale was set up then the

tank was placed on top of the scale. With the contaminated sand packed tightly to

the 3 inch mark, the sandwiched layer of geotextile material was placed on top of the
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sand. The extraction pipes and the sonic equipment were then placed in the end and

the center of the tank respectively. Then the rest of the sand was placed in the tank,

covering the pipes and the siren device. To ensure uniform packing density of each

run, the sand was packed tightly and the height of the total packing extended to

approximately 16 inches from the base of the tank. After packing the sand into the

tank, it was sealed with silicon sealant and left undisturbed for 24 hours, allowing the

sealant to dry out and the excess liquid to migrate to the bottom of the tank near the

artificial fracture.

The experiment was then initiated by setting the inlet airflow rate at 7.0

standard cubic feet per minute (SCFM) and the pressure of the air feeding the siren at

various settings. The sonic experiments were run under different frequencies,

ranging from approximately 2,957 Hertz to 13,997 Hertz (air feed pressure ranging

from 40 to 85 psig). Equipment limitations prevented higher frequency tests. During

the experiment, the concentration of the outlet airflow and the weight of the tank

were monitored. The sample analysis data were measured for approximately 30 to 50

hours and the moisture content weight was collected for approximately 60 hours (at

intervals of every 60 seconds), depending on the amount of time required for the

removal of the contaminants from each test run.

Following the siren runs at various frequencies, two baseline test runs were

conducted. This was accomplished by using a 3 inch diameter PVC pipe with a

similar perforation pattern as the siren, placed in the middle of the tank instead of the

siren.
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The siren motor was run at various speeds ranging from 3168 to 18940

revolutions per minute (2,957 to 13,997 Hertz). The inlet air fed into the siren was

set at 7 standard cubic feet per minute at pressures ranging from 45 to 50 psig and the

outlet flow rate of the air was measured to be 80 inches of water, The extraction

pipes at the opposite corners of the tank allowed the air and vapors and the liquids in

the soil to leave the tank by the pressure gradient (See Figure 3.2). The concentration

of the contaminants and the weight of the free moisture were monitored as discussed

in Sections 3.1.2 and 3.1.3.

The 00-sand used for 13,997 Hertz run was different in size from the rest of

the test runs. The Grain Size Analyses using a standard method (ASTM D 1140-54)

of the two different sands were compared as shown on Figure 3.9. The original sand

was used for all of the experimental runs except for the run performed at a frequency

of 13,997 Hertz.

Figure 3.9 compares the original and the new sand. The percent of sand

passing through each sieve is plotted on the graph versus the particle size diameter.

The results show that there isn't a significant difference in the particle size of the two

different sands. The new sand, which was used only for the siren test run at 13,997

Hertz, appears to be only slightly coarser than the original sand. See Appendix E for

the equipment and standard U.S. sieve sizes used and other details involving the

particle size analysis of the sands.



Figure 3.9 Grain Size Comparison of the Two Sands



CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSION

Experimental test runs were conducted using the NJIT siren as well as baseline test runs

(where the siren was not used). The frequency of the experimental test runs ranged from

zero for the baseline test runs and approximately 2,957 to 13,997 Hertz for the siren test

runs. For each run, the loss of the free moisture content in the test cell was recorded over

time and the concentration of the soil contaminant in parts per million by volume (PPMv)

in the effluent stream was also monitored frequently.

4.1 Data Analysis Method

4.1.1 Moisture Loss Over Time

The contaminants (moisture) in the sample were a mixture of water and ethyl alcohol and

for each experimental test run, the weight of the free moisture content in the test cell was

monitored. The weight of the test cell was recorded by the signals sent from the

electronic scale system (as discussed in Section 3.1.2) to the computer, where the data

were logged into a file. The reading of the weight of the tank was recorded at every 60

seconds for a period of 30 to 60 hours depending on the test run. The signals gathered by

the computer were then converted into units of pounds. Knowing the weight of the

moisture in the tank over time, the rate of the loss of the free moisture content is shown

by plotting the free moisture content in the tank (Pounds of Contaminant per Pounds of

Dry Sand) versus time (Hours), as predicted by the Drying-Rate Curve discussed in

Chapter 2. The raw data, which were collected at 60 seconds intervals were then reduced

30
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by taking a five minute average. The averaged data were then plotted versus time.

Equation 10 as derived in Chapter 2 was used to correlate the data by plotting the

averaged data over time on semi logarithmic coordinates and the corresponding slopes,

intercepts, and coefficients are displayed on each graph. Sample calculations for the free

moisture content and the correlations are shown in the Appendix (Figures A.1 to A.24).

4.1.2 Concentration of Ethanol Over Time

As discussed in Section 3.1.3, the monitoring of the concentration of the contaminants in

the effluent stream was performed by using a gas chromatograph attached to the outlet of

the test cell. The effluent stream of the test cell carries the contaminants (mixture of

ethanol and water) in gas form as they exit the tank. As the signals from the detector

which was connected to the GC were sent to the integrator, the integrator plotted out a

series of numbers representing the areas under the peaks. The areas given by the

integrator each represents a concentration of a contaminant, as detected by the detector

(the Flame Ionization Detector was the choice of detector for its ability to detect volatile

organic compounds).

The sampling of the outlet gas was monitored and recorded frequently, especially

during the Constant Rate of Drying Period. Therefore, for the first few hours of each

experiment, the Digital Valve Sequence Programmer (DVSP) was set to take readings of

the concentration of the gas stream exiting the test cell at every 15 minutes. During the

Falling Rate Period, the samples were analyzed less frequently until the concentration of

the outlet gas reached asymptotic level, which is approximately 30 to 40 hours from the

initial time of the start of the experiment (see Tables B.4 to B.8).
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The data (areas under the peaks) collected from the integrator were then converted

into units of parts per million by volume (PPMv) by using the linear equation obtained

from the GC calibration curve. Then the concentrations of the contaminants in PPMv

were plotted versus time. The behavior of the data showed a trend that called for the

breaking of the curve into 2 separate regions, as discussed in Chapter 2 by the theory

behind a typical drying process. Thus, the curve is divided into a constant rate and a

falling rate region. In the constant rate region where the concentration is dropping, the

time range is about 0 to approximately I. to 3 hour. The data were plotted on linear

coordinates versus time with corresponding coefficients displayed on each graph. The

remaining data fall in the falling rate region where the slope is constant. In this region,

the concentration of ethanol is plotted versus time in semi logarithmic form. Sample

calculations, tables and plots of the results and the correlations for the concentration of

the contaminant are found in Appendix B.

4.2 Discussion of Results

In this section, the results will be discussed and correlated to determine the effect of the

frequency of the siren on the removal rate of the contaminant, the time required to reach

asymptotic value and the estimated penetration depth in the drying process. Each aspect

of the study is discussed in greater detail in the following sections.

4.2.1 Effect of Frequency

The operating range of the siren in this study was set at approximately 2,957 to 13,997

Hertz because of equipment limitations. The purpose of this study is to find the effect of
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the change in frequency with respect to the behavior of the moisture contaminant and its

removal rate over time. The weight loss and the concentration of ethanol are the

variables used for monitoring the effect of frequency. Experimental test runs using the

siren were performed with four different frequencies in the range of 2,957 to 13,997

Hertz and one in the baseline mode.

4.2.1.1 Weight Loss of the Moisture: Figures A.1 to A.24 found in Appendix A are the

results of the free moisture content versus time plots in four different frequencies (2957,

6637, 10317, 13997, and baseline test runs). Figures A.1 to A.8 represent graphs of the

measured free moisture content data plotted versus time. Free moisture content is the

fraction of moisture remaining in the test cell at a given time. All of the graphs show the

same trend as discussed in the Basic Drying Theory in Chapter 2. In the beginning of the

test run, the moisture removal rate is very rapid and as it reaches the falling rate region,

the removal rate slows down and eventually reaches asymptotic value.

The measured free moisture content data were further reduced by taking the

average at every 5 minutes and plotted versus time as shown in Figures A.9 to A.16. To

obtain a correlation, the averaged free moisture content data were plotted versus time on a

semi logarithmic plot using an exponential curve fit and setting the known appropriate

initial values as the y-intercept. The appropriate corresponding coefficients, as shown on

Figures A.17 to A.24, are displayed on each graph. The graphs are in the form of

Equation 2.10,

X = X o e -kt
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where k is the removal rate constant (hr 	 t is time (hour), X, is the initial free moisture

content , and finally X1 is the free moisture content at time t. Table 4.1 shows the

summary of the removal rate constant coefficients obtained from the correlations of the

averaged free moisture content data versus time as shown in Figures A.17 to A.24. The

correlation coefficients for these measurements were excellent.

Table 4.1 Removal Rate Constants of Free Moisture Content versus Time

Siren Frequency
(Hertz)

Removal Rate Constant
k, hr'

Correlation Coefficient,
Fe

Baseline (Run 1) 0.0324 0.9378

Baseline (Run 2) 0.0388 0.8767

2,957 (Run 1) 0.0418 0.9847

2,957 (Run 2) 0.0562 0.9357

6,637 (Run 1) 0.0443 0.8952

6,637 (Run 2) 0.0468 0.9610

10,317 0.0390 0.9678

13,997 0.0784 0.9278

Figure 4.1 is a correlation of the removal rate constants of free moisture constants

versus time obtained from this study in comparison to the results of the studies performed

by Fernandez (1997) using the NJIT Siren and the Whistle. The correlation for the

whistle with a slope of 9x10" showed a greater removal rate than that demonstrated by

the results of the siren, which yielded 2x10' for both Fernandez and this study,

However, the siren, operated at a total frequency range of 0 to 14,946 Hertz,

showed no great significant difference between the results obtained by Fernandez (0 to

14,946 Hertz) and this study (0 to 13,997 Hertz). Both of the siren data were further



Figure 4.1 Comparison of All Removal Rate Constants versus Frequency
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correlated in Figure 4.2, yielded a slope of 2x10 -6 . Hence, there appears to be only a very

small increase in the removal rate constant as frequency rises and the correlation

coefficients are poor (R2 is 0.3112 and R2 = 0.4663).

4.2.1.2 Concentration of Ethanol Versus Time: Figures B.1 to Figures B.15 found in

Appendix B are different graphs of concentration of ethanol versus time using the data

collected from the gas analyses for the siren and baseline test runs. By following the

Constant Rate of Drying Theory as discussed in Chapter 2, the data were divided into two

regions, the constant rate and falling rate regions.

Figures B.1 to B.5 represent the measured concentration of ethanol in parts per

million volume (PPMv) versus time. Figures B.6 to B.10 represent the plot of the

concentration of ethanol versus time in the constant rate region on linear arithmetic

coordinates for all the test runs performed. The plots were then correlated with a linear

curve fit and the coefficients are displayed on each graph. Figures B.10 to B.15 were the

plot of concentration of ethanol versus time in the falling rate region for all the test runs.

The graphs were plotted on semi logarithmic coordinates and correlated with exponential

curve fit with the coefficients displayed on each graph. Table 4.2 is a summary of the

removal rate coefficients obtained from the correlation of the plots of the concentration of

ethanol versus time for both the constant rate and the falling rate regions (Figures B.6 to

B.15). Due to poor measurement difficulties, some data as shown in Table 4.2, were not

available. The removal rate constants were not available for experimental runs conducted

at 13,997 Hertz. And frequencies of 2,957 and 6,637 Hertz, the results for the duplicate



Figure 4.2 Comparison of Removal Rate Constants Versus Frequency for the Siren
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runs were also not available. The reason for the missing data is that the gas

chromatograph did not perform consistently throughout the experiments. Many problems

were associated with the GC giving scattered results. Since some of the data were very

scattered, the GC was calibrated twice with 2 different sets of conditions. The original

conditions used for the calibration of the GC were used for both the baseline test runs

The equation given in Figure 3.6, which is the calibration equation

was used for all of the experimental test runs performed with the siren at the frequency

range of 2,957 to 13,997 Hertz. The concentrations measured at 6,637 Hertz appear to be

very high. There is no apparent reason for this measurement. Appendix B lists the

details of the conditions used including the automation of the processes involved in the

analyses of the gas samples.

Table 4.2 Removal Rate Constants of the Concentration of Ethanol Versus Time
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4.2.2 Effect of Frequency on Time to Reach Asymptotic Value

The asymptote is the point in time where the moisture content reaches a constant value.

As shown on the free moisture content versus time plots (Figures A.1 to Figures A.16),

the trend of the plots started off with a high moisture content and dropped very rapidly in

a short period of time. As it reached the falling rate region, the moisture content

decreased in a diminishing rate and eventually reached an asymptotic value where the

moisture content remained the same for infinite time. The estimated time to reach

asymptotic state is summarized in Table 4.3. The estimated values were taken from

Figures A.9 to A.16, where the averaged measured data were used.

The estimated time to reach asymptotic value is between 35 to 50 hours as

summarized in Table 4.3. This information is also graphically presented in Figure 4.3,

which shows only a slight decrease in the time to reach asymptotic value as the frequency

rises. Figure 4.3 shows that the change in frequency does not significantly affect the time

required to reach asymptotic value. Fernandez (1997), however, showed that the

asymptotic values are lower and are reached much sooner with the whistle.

Table 4.3 Summary of Estimated Time to Reach Asymptotic Value



Figure 4.3 Required Time To Reach Asymptotic Value Versus Frequency
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4.2.3 Estimated Penetration Depth in Drying with Frequency

The estimated equivalent bed depth of the penetration of the drying process for each

frequency can be estimated. Using the method of taking the ratio of the free moisture

content weight at time zero and the initial soil height to the asymptotic value of the free

moisture content, the equivalent bed depth of the penetration of the drying process is

estimated. This information can be useful when deciding on the location and the depth of

the siren in a field project. Table 4.4 is a summary of the bed depth of the penetration in

the drying process as well as the free moisture content that remained in the test cell at

asymptotic value. See Appendix C for a sample calculation of the equivalent bed depth

of the penetration of the drying process.

Table 4.4 Estimated Bed Depth of the Penetration of the Drying Process with Frequency

The bed depth above the siren was 13 inches. From the summary of the free

moisture remaining in the test cell at asymptotic value listed in Table 4.4, the results

show that the siren did not effectively remove all of the free moisture content in the
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test cell. The free moisture content level remained in the test cell at an asymptotic

value, which is in the range of 0.002 to 0.01 pounds of contaminant per pounds of

dry sand. The top 1 to 3 inches of the bed remained moist. Figure 4.4 is a plot of the

equivalent bed depth of the penetration of the drying process versus frequency (Table

4.4). For the frequency ranges used in this study, the change in frequency shows a

slight increase in the bed depth to which drying occurred. The correlation coefficient

is however poor, as the data are scattered and the results are not significant.

Fernandez (1997) showed that with the whistle, the entire bed was almost dried.

Since the whistle used by Fernandez (1997) had a sound level of 160 decibels and the

frequency was 11 kHz (in the same range as this study), it is believed that the sound

level is and important factor in the improved drying. The siren sound levels were

about 98 to 125 decibels. Using Equation 2.16, the intensity of the whistle and siren

can be compared at 11 kHz. Table 4.5 shows a comparison of the frequency, sound

level and intensity of the siren and the whistle.

Table 4.5 Comparison of Calculated Intensity for the Siren and the Whistle

Siren Whistle

Frequency, Hertz 14,946' 11,000'

Sound Level, dB 125' 160'

Intensity, W/m2 3.1623 10,000

1 Fernandez (1997)



Figure 4.4 Equivalent Bed Depth of the Penetration of Drying Versus Frequency



44

Hence, the whistle is generating an intensity of about 3,162 -times more than the

siren. Equation 2.15 shows that for the same frequency and air density, the factors

giving rise to higher intensity are amplitude and velocity of the wave. The

velocity of the wave is given by

"The wave velocity, v, is determined completely by the properties of the transmitting

medium and does not depend on either the frequency of the source or the wavelength.

It follows that whenever f changes there must be a corresponding change in X"

(Hausman and Slack, 1939). Therefore, the principle factor for the comparative

change in intensity is the amplitude. The greater amplitude of the whistle is thus

resulting in greater bed depth of the penetration of the drying process and the whistle

practically dried the entire bed (Fernandez, 1997) but the siren did not.

Boucher (1958) states that sonic drying is best achieved at sound frequencies

between 7 kHz and 20 kHz and sound intensities greater than 145 dB. One would

therefore conclude that a sound source generator should be designed to operate at the

threshold of ultrasonic frequencies (15 to 20 kHz) and at as high an intensity

possible. Penetration in any field study will be affected by the attenuation coefficient

as the amplitude of the wave declines with distance.



CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

The conclusions of the study are:

1. The improvement in the contaminant removal rate as frequency rises for the

range of frequencies used in this study (2,957 Hertz to 13,997 Hertz) is not

significant.

2. A comparison of the siren data with the whistle data in Fernandez (1997)

would lead one to believe that sound level or intensity is a very important

factor in enhancing the removal rate of the contaminants.

3. A comparison of the siren and the whistle cannot be made because of the large

difference in sound intensity.

The recommendations of the study are:

1. Studies should be made to determine the attenuation coefficient for the sound

intensity to determine the extent of penetration of the sound wave in the bed.

2. An attempt should be made to redesign the siren to operate at a frequency of

20 kHz and at an intensity of greater than 145 dB.

3. An attempt should be made to redesign the whistle to operate at a frequency of

20 kHz and an intensity of greater than 145 dB.
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APPENDIX A

SAMPLE CALCULATIONS, TABLES, AND FIGURES FOR
FREE MOISTURE CONTENT VERSUS TIME TESTS

In this section of the appendix, the results of the free moisture content tests for the

siren performed at frequencies of 2957, 6637, 10317, and 13997 Hertz and the

baseline tests are presented. First, the experimental condition is given in Table A.1,

followed by a sample calculation on how to obtain the packing height of the tank.

Then, a sample calculation is demonstrated on the method used to determine the free

moisture content of the data collected. Following the sample calculations, Tables

A.2 to A.6 are presented, where the calculated free moisture content and the elapsed

time are listed for all the test runs performed. Finally, Figures A.1 to A.24 are

presented, where the calculated free moisture content is plotted versus time.

A.1 Experimental Conditions for Both the
Siren and Baseline Tests

As mentioned earlier in Chapter 3, all of the test runs were performed under the same

experimental conditions to avoid introducing extra variables or unknowns. Since this

research focuses on the study of the effect of the change in frequency by the siren,

the only condition changed during the experimental runs was the settings of the

frequencies. The applied frequencies ranged between 3,957 to 13,997 Hertz and the

baseline test runs were the runs where the siren was not used. Table A. is a

summary of the experimental conditions used for both the siren and the baseline test

runs (see Table 3.1 for the NJIT Siren Operating Characteristics).
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Table A.1 Experimental Conditions
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A.2 Experimental Packing Height Calculations

For each run, the tank was packed to a packing density of 95 pounds per cubic foot

and 5 % moisture content. This was accomplished by first weighing 95 pounds of the

00-grade dry sand followed by calculating the total mass of the bed with the moisture

content. The total mass of the bed is determined by the following equation:

From Equation A.1, 95 pounds of dry sand are used and the amount of moisture is 5

pounds. This moisture content is further divided into 10 % ethanol and 90 % of

water by weight.

To determine the total bed volume of sand, the total weight of the bed was

divided by the target density, which was 95 pounds per cubic foot.
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To calculate the total volume of the tank, all the parts found in the tank had to

be considered. The following parts were found in the tank, the siren, the % inch

geotextile fracture and the two extraction pipes. The sum of these parts is the total

volume of the bed. The volume of the siren is 0.065 ft 3 , the total volume of the 2

extraction pipes is 0.00920 ft 3 and the volume of fracture is 0.03196 ft 3 .

Therefore, Total Volume of Bed

= 0.065 ft 3 + 0.00920 ft 3 + 0.03196 ft3 + 1.053 ft3 = 1.1592 ft 3 	(A.3)

In order to determine the height of the bed, the total volume of the bed, as

obtained from Equation A.3, is divided by the cross sectional area of the bed, as

demonstrated in Equation A.4:

Total Volume of Bed 1.1592 ft 3 	(A.4)
Cross Sectional Area 1.03066 ft 2

=1.1247 ft =13.5 inch = Calculated Bed Height

The measured height of the bed was approximately 15 inches.

A.3 Sample Calculations and Tables of Free Moisture
Content in the Tank versus Time

Tables A.2 to A.6 present the results of the siren in various frequencies and baseline

tests runs. The frequencies applied to the tests range from approximately 2,957 Hertz

to 13,997 Hertz.

The level of the moisture content in the test cell was monitored throughout the

experiment. The electronic scale system was programmed to scan and record the

weight of the test cell at every 60 seconds and as discussed in Section 3.2, the
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computer connected to the load cells of the scale system logged the data in a file.

Tables A.2 to A.6 represent the results of the various test runs performed.

The first column of each table shows the elapsed time which is the averaged

time in a two hour interval. For example, at time zero the elapsed time is zero. At

Hour 1, the shown elapsed time is the average taken from time 1 minute to 120

minute. For Hour 3, the shown elapsed time is from 101 minute to 240 minute, etc.

The next column is the weight of the moisture in the tank in pounds and the last

column shows the free moisture (moisture in the tank per pound of dry sand). For

frequencies where a duplicate run was made, the table extends to 2 additional

columns with the results of the data listed in columns 4 and 5 of the table. A total of

8 runs were performed, 2 were baseline tests and the rest were siren tests in 4

different frequencies (2957, 6637, 10317 and 13997 Hertz).

The following is a sample calculation of how the free moisture content was

determined. Take Table A.2 as an example. At time zero, the weight of the moisture

in the tank is 5.10 pounds and the weight of the sand is 94.03 pounds. To determine

the free moisture content,

weight of moisture in test cell
Free Moisture Content 	

total weight of dry sand

	

5.10 0.05424
 lb of moisture

	

94.03	 lb of dry sand

(A.5)
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Table A.2 Free Moisture Content Results for Baseline Tests

Baseline Test (Run 1) Baseline Test (Run 2)

Elapsed
Time

(Hour)

Weight of
Moisture in Tank

(lb)

Free Moisture
(lb of moisture per

lb dry sand)

Weight of	 r

Moisture in Tank
(lb)

Free Moisture
(lb of moisture per

lb dry sand)
0 5.100 0.05424 5.148 0.05507
1 4.753 0.05055 4.653 0.04977
3 4.367 0.04644 4.190 0.04482

5 3.920 0.04169 3.797 0.04061
7 3.632 0.03863 3.435	 0.03675
9 3.503 0.03725 3.205	 0.03429

11 3.307 0.03517 2.893 0.03095

13 3.140 0.03339 2.595 0.02776

15 2.979 0.03169 2.363 0.02528

17 2.772 0.02948 2.142 0.02291

19 2.318 0.02466 2.034 0.02176

21 2.066 0.02197 1.937 0.02072

23 1.987 0.02113 1.859	 0.01989

25 1.854 0.01971 1.747	 	 0.01868

27 1.673 0.01779 1.677	 	 0.01794

29 1.663 0.01769 1.548 0.01655

31 1.645 0.01749 1.449 0.01550

33 1.583 0.01684 1.381 0.01477

35 1.537 0.01634 1.285 0.01375

37 1.441 0.01532 1.232 0.01317

39 1.328 0.01412 1.237 	 0.01323

41 1.175 0.01250 1.173	 0.01254

43 1.138 0.01211 1.122 0.01200

45 1.061 0.01129 1.026 0.01097

47 0.975 0.01037 0.996 0.01065

49 1.380 0.01468 0.967 0.01035

51 0.888 0.00944 0.946 0.01012

53 1.029 0.01094 0.984 0.01053

55 1.031 0.01097 0.873	 0.00934

57 1.019 0.01084 0.867	 0.00927

59 0.936 0.00996 - -

61 0.935 0.00994 - -

63 0.761 0.00809 - -

65 0.628 0.00668 - -



Table A.3 Free Moisture Content Results for a Frequency of 2,957 Hertz
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Table A.4 Free Moisture Content Results for a Frequency of 6,637 Hertz
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Table A.5 Free Moisture Content Results for a Frequency of 10,317 Hertz
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Table A.6 Free Moisture Content Results for a Frequency of 13,997 Hertz
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A.4 Figures for Free Moisture Content versus Time

The results of the siren and the baseline test runs at various frequencies for the free

moisture content are presented. Figures A.1 to Figures A.24 are different graphs of

free moisture content versus time plots in different frequencies and baseline test runs.

As discussed in Section 4.2.1.1, the raw data for each run, were first plotted versus

time then further reduced by taking the average at every 5 minutes and plotted versus

time. Finally, the averaged data were plotted on semi logarithmic coordinates to

obtain the corresponding coefficients.

Figures A.1 to A.8 represent graphs of the measured free moisture content

data (raw data) plotted versus time. Free moisture content is the fraction of the

moisture remaining in the test cell at a given time, as demonstrated in the sample

calculations found in Section A.3 of this Appendix.

Figures A.9 to A.16 represent the averaged free moisture content data plotted

versus time. To obtain a correlation of the free moisture content versus time for each

test run, Figures A.9 to A.16 were plotted on semi logarithmic coordinates. Figures

A.17 to A.24 represent the graphs for the averaged semi logarithmic curve fit of free

moisture versus time plot with the correlation following the form of Equation 2.10,



Figure A.1 Measured Data of Free Moisture Versus Time for Baseline Test (Run 1)



Figure A.2 Measured Data of Free Moisture Versus Time for Baseline Test (Run 2)



Figure A.3 Measured Data of Free Moisture Versus Time for a Frequency of 2,957 Hertz (Run 1)



Figure A.4 Measured Data of Free Moisture Versus Time for a Frequency of 2,957 Hertz (Run 2



Figure A.5 Measured Data of Free Moisture Versus Time for a Frequency of 6,637 Hertz (Run 1)



Figure A.6 Measured Data of Free Moisture Versus Time for a Frequency of 6,637 Hertz (Run 2)



Figure A.7 Measured Data of Free Moisture Versus Time for a Frequency of 10,317 Hertz



Figure A.8 Measured Data of Free Moisture Versus Time for a Frequency of 13,997 Hertz



Figure A.9 Averaged Data of Free Moisture Versus Time for Baseline Test (Run 1)



Figure A.10 Averaged Data of Free Moisture Versus Time for Baseline Test (Run 2)



Figure A.11 Averaged Data of Free Moisture Versus Time for a Frequency of 2,957 Hertz (Run 1)



Figure A.12 Averaged Data of Free Moisture Versus Time for a Frequency of 2,957 Hertz (Run 2)



Figure A.13 Averaged Data of Free Moisture Versus Time for a Frequency of 6,637 Hertz (Run 1)



Figure A.14 Averaged Data of Free Moisture Versus Time for a Frequency of 6,637 Hertz (Run 2)



Figure A.15 Averaged Data of Free Moisture Versus Time for a Frequency of 10,317 Hertz



Figure A.16 Averaged Data of Free Moisture Versus Time for a Frequency of 13,997 Hertz



Figure A.17 Averaged Semi Logarithmic Curve Fit of Free Mositure Versus Time for Baseline Test (Run 1)



Figure A.18 Averaged Semi Logarithmic Curve Fit of Free Mositure Versus Time for Baseline Test (Run 2)



Figure A.19 Averaged Semi Logarithmic Curve Fit of Free Mositure Versus Time for a Frequency of 2,957 Hertz (Run 1)



Figure A.20 Averaged Semi Logarithmic Curve Fit of Free Mositure Versus Time for at Frequency of 2,957 Hertz (Run 2)



Figure A.21 Averaged Semi Logarithmic Curve Fit of Free Moisture Versus Time for a Frequency of 6,637 Hertz (Run 1)



Figure A.22 Averaged Semi Logarithmic Curve Fit of Free Mositure Versus Time for a Frequency of 6,637 Hertz (Run 2)



Figure A.23 Averaged Semi Logarithmic Curve Fit of Free Mositure Versus Time for a Frequency of 10,317 Hertz



Figure A.24 Averaged Semi Logarithmic Curve Fit of Free Mositure Versus Time for a Frequency of 13,997 Hertz



APPENDIX B

ANALYSIS OF GAS SAMPLES AND CALCULATIONS

As discussed in Section 3.1.3, the monitoring of the concentration of the volatile

organic compounds in the test cell throughout the experiment was important. For the

purpose of this study, a GC was used by attaching to the extraction line coming out

of the tank. Figure B.1 shows basic components included in a GC system. The

heated areas of the system are shown by the broken lines.

Figure B.1 Basic Components in a GC System from Walker (1977)

Seven sample solutions were made by mixing an ethyl alcohol composed of a

90% by volume ethanol solution with water. Table B.1 shows the composition and

properties of the sample solution used in the calibration of the gas chromatograph
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(GC) as well as for the experimental tests. Table B.2 shows the composition of the

solutions prepared and used in the calibration of the GC, as well as the concentration

in moles per liter, the area under the peak obtained from the integrator, and the

number of moles injected into the GC for each sampling. Table B.3 provides

information on the condition of the GC's setting. Finally, the results were plotted into

a graph of Moles of Ethanol Detected versus Area Under the Peak. A linear

value of 0.9996 were obtained. (As explain in Section 4.2.1.1, another calibration

curve applies to the baseline test runs 1 and 2)

Table B.1	 Composition and Properties of The Ethyl Alcohol

Compound Specific Gravity % by Volume Molecular Weight

Methanol 0.7914 5 32.04

Ethanol 0.7893 90 46.07

Isopropyl 0.7855 5 60.11

B.1 Calibration of the GC

The method for calibrating the GC involved simple steps. First, a series of sample

solutions with different concentrations were prepared using ethyl alcohol with the

composition listed in Table B.1 and distilled water. As shown in Table B.2, a total of

seven solutions were prepared. Each solution was made with a different amount of

ethyl alcohol as indicated in column 2 of the table. Then, these solutions were

diluted with water up to 100 milliliters (except solution 7). After the solutions were
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prepared, an amount of 1 micro liter Ole for each solution was injected into the GC

for analysis. The results were a series of peak areas obtained from the integrator. As

discussed in Section 3.1.3, the integrator receives and integrates the signals sent by

the detector. The detector will detect the amount of ethyl alcohol and hence the

composition of the compound in the sampling loop. In Table B.2, column 3 shows

the concentration of each sample, column 4 shows the detected areas obtained from

the integrator, and the last column indicates the number of moles in the sample

solution injected for each sampling.

Table B.2 Composition of the Samples Used and Data Obtained For the
Calibration of the Gas Chromatography

Solution

Amount of
Ethyl

Alcohol

Concentration

(moles/liter)

Area Under
the Peak

(Volts-Sec)

Number of

Moles Injected

1 10	 µl 1.54194E-03 189,779 1.54194E-09

2 20 pi 3.08387E-03 380,011 3.08387E-09

3 45 !al 6.93871E-03 828,296 6.93871E-09

4 60	 .1,1 9.25162E-03 1,136,137 9.25162E-09

5 85	 1_11 1.31065E-02 1,735,192 1.31065E-08

6 100	 p,1 1.54194E-02 2,097,802 1.54194E-08

7 1 ml * 6.1677E-02 9,230,834 6.16775E-08

* Solution 7 was prepared with I ml of ethyl alcohol and diluted with water up to 250 ml.

B.2 Sample Calculation for Table B.2

Using solution 1 listed on Table B.2 as an example, 10 micro liters of 90% ethanol

and 100 ml of water shows the concentration of ethanol in the sample solution is:
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and the result of equation B.1 is 1.54194 x 10 -3 moles per liter of solution.

Each injection of the sample into the sampling loop was made consistently in

the amount of 1 micro liter. Since the sample injection was 1 micro liter, the number

of moles in the sample is,

The GC is a very sensitive piece of equipment, therefore it is very important

to keep the conditions consistent. The temperatures, flow rate of the gases and the

sensitivity range were monitored closely throughout the experiments. A new

calibration of the GC is required when any condition listed in Table B.3 is changed.

Table B.3 Gas Chromatogram Conditions

Temperature Column: 70 °C

Injector: 150 °C

FID : 200 °C

Flow Rate Nitrogen: 30 ml per min

Air :	 330 ml per min

Hydrogen: 30 ml per min

Sensitivity Range 10 E-11 amps per MV
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B.3 Sample Calculation for PPMv

Using Table B.6 as an example, at time 0.25 hour, the integrated area of ethanol is

2.21E+7. To calculate the concentration of the ethanol present in the sample in

PPMv, follow the following steps,

1. Given the calibration curve obtained (Figure 3.6) and using the regression

equation,
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The volumetric Flow Rate is 7 standard cubic feet per minute (SCFM), as found

on Table A.1. Since there are 28.32 liters per cubic feet, using simple conversion of

units, 7 SCFM becomes 198.24 liters per minute. Total molar flow rate is calculated

from the ideal gas law,



Table B.4 Results of GC Analysis for Baseline Test (Run I)
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Table B.5 Results of GC Analysis for Baseline Test (Run 2)
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Table B.6 Results of GC Analysis for a Frequency of 2,957 Hertz (Run 1)
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Table B.7 Results of GC Analysis for a Frequency of 6,637 Hertz (Run 2)
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Table B.8 Results of GC Analysis for a Frequency of 10,317 Hertz
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Figure B.1 Measured Data of Concentration of Ethanol Versus Time for Baseline Test (Run I)



Figure B.2 Measured Data of Concentration of Ethanol Versus Time for Baseline Test (Run 2)



Figure B.3 Measured Data of Concentration of Ethanol Versus Time for a Frequency of 2,957 Hertz (Run 1)



Figure B.4 Measured Data of Concentration of Ethanol Versus Time for a Frequency of 6,637 Hertz (Run 2)



Figure B.5 Measured Data of Concentration of Ethanol Versus Time for a Frequency of 10,317 Hertz



Figure B.6 Arithmetic Plot of Concentration of Ethanol Versus Time in the Constant Rate Region for Baseline Test (Run 1)



Figure B.7 Arithmetic Plot of Concentration of Ethanol Versus Time for the Constant Rate Region for Baseline Test (Run 2)



Figure B.8 Arithmetic Plot of Concentration of Ethanol Versus Time for the Constant Rate Region for a
Frequency of 2,957 Hertz (Run 1)



Figure B.9 Arithmetic Plot of Concentration of Ethanol Versus Time for the Constant Rate Region for a
Frequency of 6,637 Hertz (Run 2)



Figure B.10 Arithmetic Plot of Ethanol Versus Time for the Constant Rate Region for a Frequency of 10,317 Hertz



Figure B.11 Semi Logarithmic Plot of Concentration of Ethanol Versus Time for the Falling Rate Region for Baseline Test (Run 1)



Figure B.12 Semi Logarithmic Plot of Concentration of Ethanol Versus Time for the Falling Rate Region for Baseline Test (Run 2)



Figure B.13 Semi Logarithmic Plot of Concentration of Ethanol Versus Time for the Falling Rate Region for a
Frequency of 2,957 Hertz (Run 1)



Figure B.14 Semi Logarithmic Plot of Concentration of Ethanol Versus Time for the Falling Rate Region for a
Frequency of 6,637 Hertz (Run 2)



Figure B.15 Semi Logarithmic Plot of Concentration of Ethanol Versus Time for the Falling Rate Region for a

Frequency of 10,317 Hertz



APPENDIX C

SAMPLE CALCULATIONS FOR
THE DEPTH OF PENETRATION IN DRYING

As discussed in Chapter 4, the equivalent penetration depth of the siren is an

important piece of information. Knowing the effective bed drying distance resulting

from the sonic energy as an indication of the depth intervals, the sonic device can be

placed appropriately in an actual field test to clean a site.

Since the siren is placed in the tank vertically and with the holes aligned to

the fracture, 3 inches from the bottom of the tank, the distribution of the sonic energy

follows a certain pattern. Figure B.1 shows the pattern of the distribution of dry and

wet sand remaining in the tank after asymptotic value is reached.

Figure B.1 Distribution of Sonic Energy in the Test Cell
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Using data from the Baseline Test (Run 1) as an illustration, to estimate the

equivalent penetration depth of the siren, the following information is needed:

• Free moisture level at time zero is 0.05378 lbs of contaminant per pounds

of dry sand, this is taken from Table A.3.

• Free Moisture level remaining in the test cell after reaching asymptotic

value is 0.009 lbs of contaminant per pounds of dry sand, this information

can be found in Table 4.4.

• Measured height of the sand after assembly of the test cell which is 15

inches.

First calculate the weight of the moisture remaining in the test cell at the asymptotic

value and its equivalent depth.

The actual bed penetration depth is the penetration depth* calculated above

minus V2 inch which is the thickness of the artificial fracture minus 3 inches of sand

from the bottom of the tank. Therefore, the Actual Bed Penetration Depth is 9.011

inches.



APPENDIX D

DIGITAL VALVE SEQUENCE PROGRAMMER (DVSP)

The DVSP is a timer/programmer that is connected to the GC for its ability to

perform remote operation of electrical devices such as solenoid valves. With 4

intervals available in different settable time ranges, the DVSP was very useful in

helping the collection of data from the GC simpler (See Table al for specifications).

Table D.1 Specifications of the DVSP (DVSP Manual)

General
3-wire power cord (2 meters)
Externally accessible 2A fuse
95-130 VAC, 25-60 HZ
2 or 4 intervals; settable from 0-99seconds, 0-0.9 minutes, or 0-99 minutes
DPDT relay contacts rated at 3 amps @ 120 VAC resistive load
Elapsed time displayed

Dimensions
11.8" x 6" x 2.4"
weight: 4 lbs

Accuracy
2.16 seconds/day maximum error

Temperature Range
0-70 °C

Power Consumption
110 VAC @ 50 mA
12 VDC @ 200 mA

As discussed in Chapter 3, the analysis of the sample was monitored throughout the

experiment. Since the analysis was done in a frequent manner especially at the
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beginning of each run, it was very helpful to automate the sequence of the cycles. A

typical cycle with 4 sequences is shown in Table D.2.

Table D.2 A Typical DVSP Cycle

Interval Time Left Relay Activity Right Relay Activity

1 15 seconds Vacuum pump on Valve to load

2 30 seconds Vacuum pump on Close 3-way valve

3 45 seconds Vacuum pump on Open 3-way valve

4 14 minutes* Start integrator Valve to inject

* Any length of time in the range of 14-99 minutes is advised.

Interval I is programmed to have 15 seconds to turn on the vacuum pump and

prepare the 6-way valve to load. After the 15 seconds, during interval 2, the vacuum

pump remains on while the 3-way valve closes. Then during interval 3, the pump is

still on and the 3-way valve opens. Finally, 45 seconds later, interval 4 begins by

first turning the pump off. Then, the 6-way valve opens and the sample is injected

and the integrator starts integrating signals from the detector in the GC, making 15

minutes as the total time for the cycle. When the DVSP is in the AUTO mode, the

cycle continues to repeat itself in the programmed sequence until it is manually

turned off.

It is advised that intervals 1 to 3 are set for a short time such as 10-15 seconds

each (such period of time is sufficient for their appropriate assigned activities).

However, the last interval requires a special amount of time. The reason is that

during interval 4, the sample is injected into the column and it requires
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approximately 8-10 minutes to complete the analysis (with the GC set at the specified

conditions as listed in Table B.3). Therefore, interval 4 can be set at any time range

of 10-99, as 99 is the maximum settable time range given by the DVSP.

Since the results follow the trend of the typical drying theory, it is important

to gather enough data in the very beginning of the experiment, especially during the

constant drying period which is the first 2 to 4 hours as shown on Figures 4.26 to

4.30 (also as discussed in Section 4.1.2).



APPENDIX E

COMPARISON OF GRAIN SIZE AND
PARTICLE SIZE ANALYSIS

As discussed in Section 3.2, two different sands were used in the experiment and the

purpose of the grain size analysis was to compare the two sands and determine

whether the difference in sizes contributed to differences in the results.

E.1 Equipment and Standard Sieve Trays Used

All of the sieve trays used for the analyses were U.S. sieves ranging from sieve

number 14 to 200 (opening diameter ranging from 1.4 to 0.075 mm). A balance

sensitive to 0.1 grams, an oven to dry the samples, and a mechanical shaker were

other necessary items to complete the analysis.

E.2 Procedure to the Grain Size Analysis

The standard method, ASTM D1140-54 was used for the quantitative determination

of the distribution of particle size in the soils (for reference, McCabe, Smith, Harriott

1993, was also used). The distribution of the particle sizes was determined by

sieving since the particles were larger than 75 (retained on the No. 200 sieve).

The sieve trays were arranged serially in a stack with the smallest mesh screen at the

bottom and the largest at the top. The sample (dry and known weight) is then placed

on the top of the first sieve tray and the stack was shaken mechanically for

approximately 15 minutes.
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The particles retained on each tray were removed and weighed, and the mass

(g) of the individual increments are converted to mass percentages of the total sample

mass. The particles that passed the finest sieve tray (No. 200) were collected in a pan

at the bottom of the stack. The amount of sands used for the analyses were 337.9 g of

original sand and 390 g of new sand. Tables E.1 and E.2 list the results of the grain

size analyses of both sands.

Table E.1 Results of the Grain Size Analysis of the Original Sand,
U.S. Sieve Series

Sieve
No.

Sieve
Opening

(mm)

Mass
Retained

(g)

Percent
Retained

Cumulative
Percent

Retained

Cumulative Percent
Passing Through

Screen

14 1.400 0.6 0.2 % 0.2 % 99.8 %
18 1.000 0.1 0.0 % 0.0 % 99.8 %
30 0.600 0.3 0.1 % 0.3 % 99.7 %
35 0.500 40.2 11.9 % 12.2 % 	 87.8 %
60 0.250 267.9 79.3 % 91.5 % 8.5 % 	
100 0.150 25.3 7.5 % 99.0 % 1.0 %
200 0.075 3.1 0.9 % 99.9 % 0.1 %
Pan 0.9 0.2 % 100.1 % -0.1 %

100.1 % 100.1 % 

Table E.2 Results of the Grain Size Analysis of the New Sand,
U.S. Sieve Series

Sieve
No.

Sieve
Opening

(mm)

Mass
Retained

(g)

Percent
Retained

Cumulative
Percent
Retained

Cumulative Percent
Passing Through

Screen

14 1.400 0.0 0.0 % 0.0 % 100.0%
18 1.000 0.0 0.0 % 0.0 % 100.0 %
30 0.600 6.6 1.7 % 1.7 % 98.3 %
35 0.500 196.5 50.4 % 52.1 % 47.9 %
60 0.250 185.5 47.5 % 99.6 % 0.4 %
100 0.150 1.7 0.3 % 99.9 % 0.1 %
200 0.075 0.2 0.1 % 100.0% 0. %
Pan 0.1 0.0 % 0.0 %

100.0 %
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