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ABSTRACT

EMISSIVITY MEASUREMENTS AND MODELING OF
SILICON RELATED MATERIALS

by
Vijay Krishnamurthy

The objective of the thesis was to study the radiative properties of silicon related

materials for applications in rapid thermal proceesing. In particular, three distinct

materials have been considered — Silicon, SIMOX and Tantalum.

The research highlights are :Establishment of spectral emissometry as a novel,

reliable and reproducible technique for a) Determination of wavelength and temperature

dependent reflectivity, transmissivity, emissivity of silicon related materials and

structures. The emissometer operates in the wavelength range of 1-20µm and

temperature range of 300-1200K. b) Establishment of methodoligies to obtain the

fundemental constants. Effects of wavelength, temperature, total available free carriers

by doping types have been considered. Comparisons have been sought with the available

knowledge of "a." in the litreture by the extensive use of the Multi-Rad model. This is a

state of the art model that has been developed by MIT/SEMATECH.



EMISSIVITY MEASUREMENTS AND MODELING OF
SILICON RELATED MATERIALS

by
Vijay Krishnamurthy

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

August 1999



APPROVAL PAGE

Emissivity Measurements and Modelling of Silicon related materials

Vijay S. Krishnamurthy

Dr. N.M. Ravindra, Thesis Advisor
Professor, Dept. of Physics, NJIT

Dr. Kenneth Sohn, Committee Member
Associate Chair, Dept. of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member
Associate Director of Computer Engineering Programs, NJIT



BIOGRAPHICAL SKETCH

Author : 	 Vijay Krishnamurthy

Degree : 	 Master of Science in Electrical Engineering

Date 	 August 1999

Undergraduate and Graduate Education :

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ,1999

• Bachelor of Science in Electrical Engineering,
RVCE, Bangalore, India, 1997

Major : 	 Electrical Engineering

iv



To my beloved family and friends



ACKNOWLEDGEMENT

I would like to express my deep appreciation to Dr. N.M. Ravindra, for support and

encouragement. Special thanks to Dr. K. Sohn, E. Hou for actively participating in my

committee. I would also like to thank my friends who helped me during the thesis.

vi



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 	 1

2 BACKGROUND 	 3

2.1 Fundamentals   3

2.1.1	 Semiconductor Materials 	 3

2.1.2	 Properties of Semiconductors 	 7

2.2 Summary of Properties of Silicon . 	 9

2.2.1	 Material Properties 	 9

2.2.2	 Physical Properties 	 10

3 TEMPERATURE MEASUREMENT TECHNIQUES 	 11

3.1 Contact Sensors 	 11

3.1.1	 Thermocouples 	 11

3.1.2	 Limitations of Thermocouples  12

3.2 Non — Contact Sensors  12

3.2.1	 Pyrometers   12

3.2.2	 Limitations of Pyrometers 	 14

4 EMISSIVITY AND RADIATIVE PROPERTIES 	 15

4.1 Blackbody Radiation 	 15

4.2 Relation between Thermal and Radiative Properties 	 15

4.3 Emissivity 	 16

5 EXPERIMENTAL APPROACH 	  19

5.1 Spectral Emissometer 	 19

5.2 Theoretical Background 	 21

v ii



TABLE OF CONTENTS
(Continued)

Chapter 	 Page

6 RESULTS AND DISCUSSION 	 24

6.1 Silicon 	 24

6.2 SIMOX 	 30

6.3 Tantalum 	 35

7 CONCLUSIONS  	 39

APPENDIX I - SPECTRAL EMISSOMETER 	 41

APPENDIX II — MULTI-RAD 	 45

APPENDIX III — DATA TABLES 	 49

	

APPENDIX IV - DOPING   57

REFERENCES 	  59

viii



CHAPTER 1

INTRODUCTION

Silicon technology has remained as the dominant force in integrated circuit fabrication

and is likely to retain this position for the forseeable future. The current trend in silicon

device manufacturing has been to increase physical dimensions of silicon wafers and

reduce device size [1]. This has led to some novel processes such as Rapid Thermal

Processing (RTP), Rapid Thermal Chemical Vapor Deposition (RTCVD) [2] and Metal

Organic Molecular Beam Epitaxy (MOMBE).

In semiconductor manufacturing processes, the precise temperature of the wafer

surface is the most important parameter. Any change in the wafer's temperature means a

change in the annealing temperature or thickness and/or uniformity of the grown or

deposited film/s. The major temperature monitoring techniques utilized in semiconductor

manufacturing are thermocouples and pyrometers.

The objective of this research is to study the radiative properties of silicon and

silicon related materials and structures for temperature determination. To achieve this

objective, a novel spectral emissometer has been utilized to yield the emissivity,

reflectivity and transmissivity as function of wavelength and temperature in the range of

1-20µm and 300-1200K, respectively. The spectral emissometer has been utilized

extensively to measure the radiative properties of (a) single versus double side polished

silicon wafers, (b) silicon as a function of doping, (c) SiO 2/Si, with various oxide

thicknesses (d) SIMOX (Si/SiO 2/Si) and (e) Tantalum .
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In Chapter 2, the background of semiconductors and their properties, particularly silicon,

are discussed. In Chapter 3, the fundamentals of radiative properties are discussed with

their relationship to optical and electrical properties. The fundamentals of emissivity and

radiative properties are presented in Chapter 4. Spectral emissometer is established as

the tool for emissivity and measurements of related optical properties are discussed in

Chapter 5. In Chapter 6, the discussion of the experimental results are presented. In

addition, simulation results, based on a model — Multi-rad developed by MIT/

SEMATECH, are presented. The emissivity values for selected wavelengths are tabulated

in this chapter. Conclusions and remarks based on these studies are presented in the last

chapter.



CHAPTER 2

BACKGROUND

2.1 Fundamentals

2.1.1 Semiconductor Materials

Over the years, many semiconductors have been investigated. Semiconductor materials

are found in column IV and the neighboring columns of the periodic table as shown in the

Fig. 2.1.

The column IV semiconductors, silicon and germanium, are elemental

semiconductors. In addition to the elemental materials, compounds of column III and

column V atoms, as well as certain combinations from II and VI, make up the

intermetallic, or compound semiconductors. In addition, there are numerous

semiconductor materials. The wide variety of electronic and optical properties of these

semiconductors provide the device engineer with great flexibility in the design and

fabrication of electronic and optoelectronic devices. The elemental semiconductor Ge

was widely used in the early days of semiconductor development for the fabrication of

transistors and diodes.

Silicon is now used for majority of rectifiers, transistors and integrated circuits.

However, the III-V compounds are widely used in high-speed devices requiring the

emission or absorption of light. III-V compounds such as GaAs and GaP are commonly

utilized in the fabrication of light emitting diodes (LEDs). Ternary compounds such as

GaAsP and quadrinary compounds such as InGaAsP can be grown to provide added

flexibility in choosing material properties. Fluorescent materials such as those used in

3



Fig. 2.1 Portion of the periodic table related to Semiconductors [3].
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Fig 2.2 Typical range of conductivities for insulators, semiconductors and conductors [3].



Fig. 2.4 Direct and Indirect electron transitions in semiconductors [3]

6

Fig 2.3 Band structure of metal. semiconductor and insulator at 0 K. [3]



television screens usually are II-VI compounds such as ZnS. Photo detectors are

commonly made with InSb, CdSe, or other compounds such as PbTe and HgCdTe.

Silicon and Ge are also widely used as infrared and nuclear radiation detectors. An

important microwave device, the Gunn diode, is usually made of GaAs or InP.

Semiconductor lasers are made using GaAs, AIGaAs, and other ternary and quadrinary

compounds.

2.1.2 Properties of Semiconductors

Semiconductors are a group of materials having electrical conductivity intermediate

between metals and insulators. It is significant that the conductivity of these materials can

be varied over orders of magnitude by changing the temperature, optical excitation and

impurity content. The electronic and optical properties of semiconductor materials are

strongly affected by impurities, which may be added in precisely controlled amounts.

Such impurities are used to vary the conductivity of semiconductors over a wide range

and even to alter the nature of the conduction process. For example, an impurity

concentration of one part per million can change a sample of silicon from poor conductor

to a good conductor of electric current. This process of controlled addition of impurities

is called doping.

Another important characteristic of a semiconductor, which distinguishes it from

metals and insulators, is its energy gap. Semiconductor materials at 0 K have the same

structure as insulator- a filled valence band separated from an empty conduction band.

The difference lies in the size of the band gap E5, which is much smaller in

semiconductors than in insulators. The relatively small band gaps of semiconductors
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allow for excitation of electrons from the lower (valence) band to the upper (conduction)

band by reasonable amounts of thermal or optical energy. For example, at room

temperature, a semiconductor with a 1 eV band gap will have a significant number of

electrons excited thermally across the energy gap into the conduction band, whereas an

insulator with 10eV bandgap will have a negligible number of excitations. An important

difference between semiconductors and insulators is that the number of electrons

available for conduction can be increased greatly in semiconductors by thermal or optical

energy.

As the temperature of a semiconductor is raised from OK, some electrons in the

valence band receive enough thermal energy to be excited across the band gap to the

conduction band. The result is a material with some electrons in an otherwise empty

conduction band and some unoccupied states in an otherwise valence band. For

convenience, an empty state in the valence band is referred to as hole. If the conduction

band electron and the hole are created by excitation of a valence band electron to the

conduction band, they are called an electron-hole pair (EHP). There are two classes of

semiconductor energy bands: direct and indirect. Here, allowed values of energy can be

plotted vs. propagation constant 'le. An indirect transition involves a change in

momentum for electron.
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2.2 Summary of Properties of Silicon

2.2.1 Material Properties

Although many elements and intermetallic compounds exhibit semiconducting

properties, silicon is used almost exclusively in the fabrication of semiconductor devices

and microcircuits.

Of many reasons for this choice, the most important are the following: (a) Silicon

is an elemental semiconductor. It can be subjected to a large variety of processing steps

without the problem of decomposition that are ever present with compound

semiconductors, (b) Consequently it can be fabricated into microcircuits capable of

operation at higher temperatures. At the present time, the upper operating temperature

for silicon microcircuits is between 125° C to 175 ° C, which is entirely acceptable for

both commercial and military applications, (c) Silicon lends itself readily to surface

passivation treatments. This takes the form of a layer of thermally grown SiO 2 which

provides a high degree of protection to the underlying device.

The fabrication of devices such as metal-oxide-semiconductor (MOS) transistors

has emphasized that Si0 2 provides the best possible control of surface phenomena.

Because of the above, a significant technological base has been established to take

advantage of its characteristics.This includes the development of a number of advanced

processes for deposition and doping of silicon layers, as well as sophisticated equipment

for forming and defining intricate patterns for very large scale integration (VLSI).

Although silicon is the workhorse of the semiconductor industry, it is not an optimum

choice in every respect. Indirect band-gap does not allow many functions to be performed

by silicon. These include transferred electron oscillators, lasers, light-emitting devices
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and a variety of highly efficient, lightweight, photovoltaic devices for space as well as

terrestrial applications.

2.2.2 Physical Properties

In single-crystal form, silicon adopts the diamond lattice structure, with 5.2 x 1022

atoms/cm 3 and each atom covalently bonded to four nearest neighbors. Many of its

physical properties result from this strong covalent bonding. In pure form, its lattice

constant is 5.43086 Angstroms at 300 K. Thus it is difficult to make silicon semi-

insulating(SI).

When thermally oxidized, silicon has a significantly lower density of surface

states. The electron mobility of lightly doped silicon is 1350 cm 2 /Vs and that of hole

mobility is 475 cm2/Vs at 300 K [4]. Shear stress for silicon is 3.61 x 107 dyne cm-2 [41

Due to this property of silicon, it is possible to handle a 300mm wafer. The minimum

separation between conduction and valence bands which is the thermal activation energy

or the band gap is 1.1 eV, but the minimum vertical transition is 2.5eV. As in any

semiconductor, the band gap Eg(T) is expected to depend on temperature T, through two

effects, lattice dilation and electron-phonon interaction. Direct transitions will thus only

be possible with visible photons. Any infrared absorption must arise from indirect

transitions.



CHAPTER 3

TEMPERATURE MEASUREMENT TECHNIQUES

In semiconductor processing, it is very important to know the exact temperature of the

wafer surface. The non-uniformity of the wafer temperature at various points on the

wafer surface forces us to determine the spatial distribution of temperature across the

wafer surface. The most widely used measurement techniques to determine temperature

in RTP are optical pyrometry and thermocouple embedded wafers.

3.1 Contact Sensors

3.1.1 Thermocouples

Thermocouples are defined as a junction of two dissimilar materials that, upon heating

will produce a voltage across the two open leads. This effect is called the thermovoltaic

effect. When more than one of the junctions are combined in a single responsive element,

it is known as thermopile.

Some of the important features of thermocouples are discussed in this section.

Firstly, (a) Thermocouple does not measure the junction temperature, and instead it

measures the temperature gradient of the wire. (b) thermocouple does not measure wafer

temperature directly. Only a close approximation is the output of the thermocouple, as

determined by the thermal resistance between the wafer and the thermocouple. (c) the

signal produced by the thermocouple is translated into temperature by a number of

methods. The most common conversion is the use of a standard reference table.

11
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3.1.2 Limitations of Thermocouples

In order to measure the temperature of an object, the thermocouple needs to be in

physical contact or embedded in the object under investigation. This leads to risk of

contamination of the wafer as well as the process chamber. In order to minimize the

contamination, real-time measurements must not involve any physical contact with the

wafer.

Thermocouples can be used as temperature measurement tools in batch reactor

furnaces, where the wafer is in total equilibrium with its sorroundings. By determining

the furnace temperature, wafer temperature can be determined. In processes like Rapid

thermal processing (RTP), the thermocouple should be embedded inside the wafer in

order to determine the wafer temperature since the wafer is not in thermal equilibrium

with the furnace temperature. This technique cannot be used in processes such as rapid

thermal oxidation (RTO), where a layer of thermal oxide is grown on the surface of the

substrate.

Although there are many limitations in using the thermocouples including the associated

large time constants, it is unlikely to see the disappearance of thermocouples in the

semiconductor industry in the near future.

3.2 Non-Contact Sensors

3.2.1 Pyrometers

Pyrometry is an optical technique that determines the surface temperature of the sample

by detecting its radiated flux. Pyrometers consist of responsive elements for IR detection,
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software and hardware coupled with them as part of the control system to determine the

temperature of the object under investigation.

The responsive element in a pyrometer can be one of the following:

(a) Bolometers: Incident IR photons cause an increase in the bolometer temperature.

Since the bolometer resistance versus temperature curve has a non-zero slope, a

change in temperature leads to change in the bolometer resistance.

(b) Photoconductive detector: A change in the incident photon flux on the

semiconductor surface causes a change in the generated free-carriers, thus, causing a

change in the electrical conductivity.

(c) Photoelectromagnetic detector: IR photons absorbed by the detector generate free-

carriers which diffuse in the bulk and are separated by a magnetic field. The charge

separation causes an electrical signal that is proportional to the number of photons.

(d) Photovoltaic detector: changes in the number of incident photons cause change in

the voltage generated by the junction.

(e) Pyroelectric detector: IR photons change the temperature of the crystalline

responsive element. This alters the dipole moment, which produces an external

electric field.

The change in the number of incident photons, which is a function of the radiating

source, causes a change in the electrical signal. Upon monitoring the electrical signal that

results in voltage or conductivity change in a coupled electronic circuit and analyzing the

resulting I-V curves from the pyrometer, the IR intensity is determined. Thus, for an

ultra-clean environment and a tight control over contamination in processes like RTP,

pyrometers will be the better choice for temperature measurements and control.
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3.2.2 Limitations of Pyrometers

Pyrometers are limited by their operating wavelengths, which can limit sensivity to

samples depending on the radiation at that particular wavelength as a function of

temperature. Pyrometers are also limited by their spatial resolution, which is a direct

function of the exitence detector solid angle.

In RTP, the pyrometers are situated at the lower (or upper) level of the chamber

and sometimes at the back of a shield located below the wafer to eliminate stray lamp

radiation as in the AG Associated design. In order to determine the accurate temperature

of the wafer according to the requirements of the industry, i.e ± 3 degrees, emissivity is

the term that will stand out as the most important factor that has to be determined

precisely [5,6].



CHAPTER 4

EMISSIVITY AND RADIATIVE PROPERTIES

4.1 Blackbody Radiation

A blackbody is a perfect absorber of electromagnetic energy. The spectrum of radiation

emitted from a blackbody is described by the Planck radiation function. Actually, it is the

mathematical function for the spectral radiance of blackbodies, and is given by:

unit area and wavelength radiated into the forward hemisphere from a blackbody at the

absolute temperature T in K , at the wavelenghth 'X,' in p.m.

The total energy emitted by a blackbody at any temperature can be found by

summing up the energy emitted at each wavelength. The result is that the total energy

radiated by a blackbody is proportional to its absolute temperature to the fourth power.

This is called the Stefan-Bolzmann radiation law.

Stefan-Bolzmann constant and T is in K.

4.2 Link between Thermal and Radiative Properties

4.2.1 Optical Properties

The optical response of a material can be described using various interrelated

properties.The response of a solid to electromagnetic radiation is generally regarded as a

15
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consequence of its microscopic elements with the electric field and hence it can be

frequency of the wave.

The dielectric constant is not usually measured directly, and a number of other

properties are used to describe the optical response of a material. The complex refractive

index, nc, is defined by the relation,

The complex refractive index can be written as

where 'n' and `k' are refractive index & extinction coefficient respectively. The

relationships between the dielectric function and "n' and "k" are summarized by the

equations,

The absorption coefficient 'a' is defined as

4.3 Emissivity

Emissivity is defined as the ratio of the radiation emitted by a wafer with temperature T,

emitted from a blackbody under the same conditions. It is a function of the azimuthal
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angle if the surface does not have azimuthal symmetry. Since this definition is for narrow

spectral intervals, it refers to spectral emissivity.

In order to make comparison of emission from materials at various temperatures,

we need to remove the temperature effect. This is done mathematically by dividing the

radiance spectrum of selective emitters by that of a blackbody (perfect emitter) at the

same temperature. This result is called an emissivity spectrum. Emisssivity is a property,

which must be known for accurate temperature determination of an object by

measurement of its electromagnetic radiation with a radiation thermometer. For RTP,

there are three reasons to know wafer emissivity:

1) Pyrometry

2) Thermal modeling

3) For wafer design and construction to test the robustness of an RTP chamber or

process.

For normal incidence, the emissivity 6 (X) of a plane parallel specimen is given by :

where 'a' is the absorption coefficient and 't' is the thickness of the material. When the

radiant heat transfer is in an equilibrium state, the emissivity of perfectly opaque bodies
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is given by Kirchoff's law as 1 - R(?) for an opaque body, since T(?) 0. Therefore we

have

The experimentally measured values of transmittance and reflectance include

effects such as light trapping and multiple internal reflections depending on the angle of

incidence, surface roughness, presence of grains, grin boundaries, interface roughness

etc. These apparent T (X)* and apparent reflectance R(X)* are related to real or true

transmittance T(?) and true reflectance R(4 respectively by the following equation:

Equations (4.3.5) and (4.3.6) are the result of considering multiple internal

reflections. With the choice of appropriate models, n (X.) and k (X) of the multilayers can

also be resolved from experimentally measured spectral properties. Emissivity models

can convey to a process engineer, the nature of the films and film thickness, required to

achieve the desired emissivity.



CHAPTER 5

EXPERIMENTAL APPROACH

5.1 Spectral Emissometer

The schematic of the spectral emissometer utilized in this investigation is presented in the

Fig. 5.1. The spectral emissometer has been used to measure the optical properties of

some silicon related materials. The detailed description, along with its operation, is

presented in Appendix 1.

This instrument is used to measure the radiative properties of a sample over a

wide spectral range, in the near to mid-infrared, from 12,500 cm' to 500 cm -I ( 0.8 to

20µm). It consists of a hemi-ellipsoidal mirror providing two foci, one for the exciting

source in the form of a diffuse radiating near blackbody source and the other for the

sample under investigation. A microprocessor controlled motorized chopper facilitates in

simultaneous measurement of sample spectral properties such as reflectance,

transmittance and emissivity.

The Fourier transform infrared (FTIR) data collection system consisting of Ge (0.8-

1.6µm} and HgCdTe (1.6-20µm) detector, is synchronized with the two sets of the

chopper allowing for the distinction of the sample radiation from reflected/transmitted

radiation. A carefully adjusted set of five mirrors provide the optical path for the

measurement of the optical properties. The source of heating of the samples is provided

by an oxy-acetylene/propane torch. A high resolution Bomem FTIR detector, interfaced

with a Pentium proccesor, permits the data acquisition of the measured optical properties.

19



Fig. 5.1 Schematic of Benchtop Emmisometer [7]
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This on-line computer enables the user to flip the mirror to acquire

transmission/reflection via a software Spectra Calc. This instrument has applications for :

(1) industrial quality control of radiative properties of processed materials, (2) research

and development of new materials and temperature measurements by optical techniques in

the near and mid IR.

5.2 Theory

The spectral emissometer allows for simultaneous measurements of radiance, reflectance,

transmittance and the temperature of the sample at the measured point. The theoretical

backround and the methodology are as follows :

The sample is placed at one of the foci of the hemispherical ellipsoidal mirror while

the source, a blackbody at 900 °C, is at the other foci. The chopper permits the

simultaneous acquisition of the radiative properties of interest including the sample

temperature. A front-surface sample measurement, with the chopper closed, yields the

sample's directional spectral radiance :

where in B = A dv an cosθ, we lump together various factors fixed by the experimental

situation; dv is the frequency interval, an is the solid angle, and A is the sample area at
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a blackbody at temperature 'T' per unit frequency per unit solid angle per unit normal

area.

When the chopper is open, the measured radiation is given by,

The constant source radiation is quantified by replacing the sample with the perfect

condition.

The ratio of equations (5.3) to (5.4) results in the measurement of the directional

Once the spectral emissivity is known, the precise sample temperature can be determined

by rearranging equation (5.1)



Comparing (5.6) with Planck function leads to temperature evaluation :

where c1 and c2 are constants.

An on — line computer does all the mathematical operations on the raw data using

Spectra calc. It transforms the interferograms into spectra, calculates spectral emittance

from reflectance and transmittance data and automatically determines the temperature

from the radiance data.

23



CHAPTER 6

RESULTS AND DISCUSSION

6.1 Silicon

The application of spectral emissometry to measure emissivity as a function of

wavelength and temperature for some silicon related materials are illustrated in the first

part of this chapter.

While the measurements are performed on a variety of samples, the results of

measurements on p-type silicon, with front side polished, as a function of wavenumber

for temperatures in the range 35°C to 911 °C, are presented in Fig.6.1, 6.2 and 6.3

observed sharp features in the infra red spectra in the wavelength range of 1 p.m

vibrations in silicon. The spectrum in Fig. 6.3, at 213 °C was measured after heating

the wafer to the maximum temperature of 911 °C. Comparison of the emittance

spectrum in these figures indicates reversibility in emittance changes.

A similar measurement on a double side polished n-type wafer exhibits different

radiative properties. The emissivity of this wafer is negligible at room temperatures

while at high temperatures, it approaches that of single side polished silicon. The most

change in this measurement is the loss of transmissivity at elevated temperatures, due to

increase in free carrier density, with increase in temperature [8].

24
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Fig 6 1 Reflectance, Transmittance, and Emittance of p -type silicon wafer at room temperature
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Fig. (.2 Reflectance, Transmittance, and Emittance of p-type silicon wafer at 911 ° C
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Fig. 6.3 Reflectance, Transmittance, and Emittance of p-type silicon wafer at 213 ° C
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contributions are due to bandgap and above bandgap absorption. For Ephoton< Eg , the

emissivity contributions are due to below bandgap absorption. The free carrier

absorption mechanism plays the dominant role in doped semiconductors in the short —

wavelength range. In the long — wavelength range ( > 10 µm), the phonons contribute to

emissivity changes. These properties are function of temperature.

In general, results of the temperature and wavelength dependent emissivity of

silicon led to the following observations : (a) The effect of doping, in general, is to

reduce the transmittance. Thus intrinsic silicon exhibits high transmittance. (b) As

temperature increases, silicon becomes opaque. This facilitates in designing heating

sources (contact or noncontact) to measure high temperature optical properties of silicon.

Unlike pure silicon, the effect of free carriers/doping is to reduce the emissivity of

silicon with increasing temperature. (c) Double side polished wafers seem to show

unusually low emissivities at low temperatures.

In the silicon industry, manufacturers of commercial RTP systems have chosen

pyrometers to operate at five specific wavelengths — 0.95, 2.5, 2.7, 3.3 and 4.54m. It is

interesting to note that at temperatures above 600 °C, the emissivity is independent of

temperature and wavelength.



Table of simulated values of emissivity of Silicon

(t = 700 microns, N = 1.33 X 10 e +14, boron doped)

29
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6.1.1 Modeling

In order to interpret the above experimental results, a detailed application of the matrix

theory, developed by Abeles [11] has been utilized. In this method, the layers are not

separable from each other and the full stack comprising of the wafer is treated as a single

medium with a certain characteristic matrix. A software package, Multi-Rad, based on

the Abeles matrix theory and developed by MIT/SEMATECH [12] has been deployed

extensively to compare the theoretical results with the experimental data. The detailed

description of this software package is given in Appendix II. This model requires pre-

knowledge of the individual layer thickness and the optical constants, such as resitivity,

doping type, wavelength and temperature-dependent refractive index and extinction

coefficient.

The Multi-Rad model adds the phonon absorption component to the Abeles

matrix theory. In addition, this model includes the database of the temperature,

wavelength and dopant concentration dependent optical constants that are available in the

literature. The observed differences between the measured aand the simulated spectra

could be attributed to slight differences in the extinction coefficient and its temperature

dependence.

The temperature and wavelength dependence of the front-side emittance of

SIMOX, at selected wavelengths, is presented in Table 6.2. The experimental values of

emittance are tabulated for specific wavelengths ( λ = 0.95, 1.1, 2.2, 2.7, 3.3, 4.5 p.m )

as a function of temperature. The simulated values are presented in Table 6.2. These are
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the standard operating wavelengths for pyrometers that are used for process applications,

such as rapid thermal processing (RTP).

6.1.2 Noncontact Methods of Heating

Since silicon is transparent below 600 °C, several approaches are being investigated to

establish noncontact and noninterfering methods of heating silicon so that a reliable

temperature-dependent study of the optical properties may be performed. These methods

include the use of lamps, lasers, e-beams, and flames. The anticipation is that the heat

source signal can be completely eliminated in the measurement process. The present

approach of using flames is appropriate for the measurement technique since the infrared

spectra of the flames are very well known. On the other hand, flames will invariably

modify the surface conditions of the samples under study. Ideally, the method of choice

would be the one that does not modify the surface and bulk composition of the material at

the same time permitting the required optics to measure the radiance from all possible

angles [9].

6.2 SIMOX

In Fig. 6.4, the measured front side reflectance, transmittance and emittance of the

SIMOX sample has been presented for room temperature.

The SIMOX samples exhibit high reflectance compared to that of bare silicon.

Even though silicon comprises more than 99 % of this sample, the results turn out to be

totally different from that of bare silicon. In the SIMOX case and particularly at room

temperature, i.e., Fig. 6.4, the emittance and transmittance of the sample depend strongly
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on the reflectance which depends critically on the thickness of the top two thin film

layers - silicon and silicon oxide respectively. The average reflectance for SIMOX is

higher than that of bare silicon. However for the back side, we see a decrease in the

intensity maxima of the reflectance spectra. This can be attributed to attenuation of the

infra-red photons due to the presence of the thick 700pm silicon substrate.

The emittance of SIMOX at room temperature is typical of silicon. At higher

temperatures, its emittance increases and is determined by the trend in the reflectance

spectra. At these temperatures, where free absorption is the dominant mechanism in

silicon, SIMOX differs from silicon. The buried oxide reflects the infra-red photons in

this wavelength range preventing increased absorption and hence the decrease in its

emittance [10].
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Fig. 6 4 Reflectance, Transmittance, and Emittance of SIMOX wafer at room temperature
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6.3 Tantalum

Tantalum is one of the most versatile corrosion resistant metals. The tantalum metal has

oxidation characteristics very similar to those of molybdenum in that an adherent oxide

of a protective nature cannot be produced at high temperatures [13].

The curves of the Fig.6.5 show the results obtained when polished specimens of

tantalum were measured at room temperature. The temperature dependent emissivity of

tantalum has been reported in the literature [13]. At higher temperatures, the emissivity

increased rapidly until a maximum point was reached, after which an equally rapid

decrease occurred. This decrease was caused by an increasing thickness of a white

crystalline oxide which was very porous and very nonadherent. Although the emissivity

appears to be approaching a stable value, the looseness of the oxide formed precludes any

practical uses for this oxide-coated material [13].

Measurements of total hemispherical emissivity of several stable oxidized

materials indicate the difficulty in making general conclusions for groups of materials.

The manner in which oxidation affects the emissivity may also vary greatly for different

metals. The emissivity of most metals increases with an increase in temperature. Finally,

the increase in emissivity of an oxidized metal depends largely on the thickness of the

coating necessary for stable emissivity. A comparison with the emissivity plots from the

literature are presented in the Fig. 6.6.
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Fig. 6.5 Reflectance, Transmittance, and Emittance of Tantalum wafer at room temperature



Fig. 6.6 Plot of the total normal emissivity of initially polished tantalum wafer from literature
[15]

3



Table of Experimental Values of Emissivity for Tantalum



CHAPTER 7

CONCLUSIONS

The experimental results show that the measurement of high temperature radiative

properties over the wavelength range of 1 to 20 microns and temperature range of 300K

to 2000K can be performed using a novel approach based on the use of a spectral

emissometer. Methodology of obtaining temperature from simultaneous measurement of

reflectance, transmittance and radiance has been shown with applications to silicon,

SIMOX and Tantalum.

Results of the temperature and wavelength dependent emissivity of silicon related

materials from the spectral emissometer were compared with the simulation software,

Multi-Rad (developed by MIT/SEMATECH). The temperature measurement accuracy,

with the emissometer, was found to be within ± 10 ° C of the thermocouple temperature

in the temperature range of 30 ° C to 300 ° C. The results lead to the following

observations:

• The effect of doping in general is to reduce the transmittance. Thus, intrinsic Si

exhibits high transmittance.

• The silicon sample becomes opaque as temperature increases. This characteristic is

critical in designing heating sources (contact or non-contact) to measure high

temperature optical properties of silicon.

Simulation results show the variation in emissivity with respect to the buried oxide in

SIMOX.
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Recommendations :

Spectral emissometer has thus been established as a reliable technique for simulataneous

measurement of temperature and optical properties of semiconductors. In order to make

the technique user friendly, following suggestions could be incorporated :

Silicon is transparent below 600° C, several approaches are being investigated to

establish noncontact and noninterfering methods of heating silicon so that reliable

temperature dependent study of the optical properties may be performed. These

methods include the use of lamps, lasers, e-beams and flames.The heat source signal can

be completely eliminated in the measurement process. The present approach of using

flames is appropriate for the measurement technique since the infrared spectra of the

flames are very well known. The flames will invariably modify the surface conditions o

the samples under study. The method of choice would be the one that does not modify

the surface and bulk composition of the material at the same time permitting the required

optics to measure the radiance from all possible angles. A sample chamber with a

controlled environment would be very useful in keeping the measurement process and

surface conditions of the samples free of contaminants.



APPENDIX 1

SPECTRAL EMISSOMETER

• Instrument Function

The AFR Emissometer measures radiance, directional-hemispherical reflectance, and

directional-hemispherical transmittance from materials at elevated temperatures from

100 degrees to 2000 degrees. The instrument measures these radiative properties over a

wide spectral range, in the near and mid-IR, from 11,100 cm -1 to 500 cm -1 ( 0.9 to 20

Jim ). These measurements are then processed to determine the spectral emittance of the

material and the temperature at the point of measurement. The instrument has

applications for : (1) industrial quality control of radiative properties of processed

materials ; (2) research and development of new materials; (3) temperature measurement

by optical techniques in the near and mid-IR ; aand (4) determination of heat transfer

properties of materials.

• Bomem I Hartman & Braun Model 155 FT-IR Spectrometer

The spectrometer used in the system is a Fourier Transform Infrared Spectrometer. This

instrument does not measure a spectrum directly, but an interferogram, which has to be

Fourier transformed to yield the spectrum. The spectral resolution is variable in the

system. The FT-IR spectrometer is utilized in emission mode, and can accept radiation

from either side of the sample by positioning the select mirror. The design of Bomem's

interferometer allows the incoming beam to be modulated and then split into two beams

of identical information. In the emissometer, two separate detectors are utilized to
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Figure 2.1. Suggested Work Space Configuration for AFR Emissometer
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measure near and mid-IR energy. A room temperature germanium (Ge) detector is

sensitive to near-IR energy ( 0.9 —1.611m ) and a liquid nitrogen cooled mercury-

cadmium-telluride ( MCT) detector is sensitive to longer wavelengths ( 1.6 to 20 pm ).

Both the spectral regions are measured simulataneously.

• Emissometer Optical Bench

The breadboard optical bench supports : (1) the FT-IR spectrometer elevated on a

platform ; (2) the hemi-ellipsoidal mirror in a support housing ; (3) mirrors on supports

for the near-IR and mid-IR energy transfer; (4) sample, source, and calibration furnace

holders ; (5) the water cooled chopper assembly (6) water and air-flow controllers; and

(7) holders for different techniques of sample heating.

• Electronics Cabinet

The Electronics rack houses : (1) the circuitry for chopper speed control and

synchronistic motion with FT-IR data collection ; (2) electronic temperature controllers

for the control of calibration furnace , and source ; (3) thermocouple connections ; (4)

variable output transformers for voltage supply to calibration furnace and source ; (5)

interface board for computer control of beam path selector mirror.

• Computer and Data Acquisition

The computer does all mathematical operations required on the raw data. It transforms

the interferograms into spectra, calculates spectral emittance from reflection and
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transmission data, and automatically determines temperature from radiance data which is

normalized by emittance.

• Procedure for Data Conversion

The procedure that is followed for the conversion, from the raw data detected, to the

tabulated data is as follows :

a) The particular file used for data acquisition is re-opened in GRAMS software.

b) A plot of the acquired data is made.

c) A single-click on the plot allows the user to paste the data in tabular form in a work-

sheet.

d) The data is re-arranged and presented in a tabular form.



APPENDIX II

MULTI-RAD

• Introduction

Multi-Rad, developed by MIT/SEMATECH, is a PC based software that calculates the

radiative properties of thin-film stacks, with emphasis on semiconductor applications.

The model assumes that the layers are optically smooth and parallel, and the materials are

optically isotropic ( the optical constants are not dependent on crystollographic

orientation ). Therefore, the theory does not predict any variation of properties in the

azimuthal direction. For a given multi-layer stack at a prescribed temperature, the user

can calculate the radiative properties as they vary with wavelength and angle of

incidence.

• Spectral Analysis

The method used to calculate the radiative properties is thin film optics, implemented in

the form of matrix method of multilayers. This theory assumes that the interfaces are

optically smooth and parallel, and provides the spectral directional radiative properties.

Angle of Incidence

The program assumes that there is no variation in properties over azimuthal angle.

Single : This will do a calculation for a single angle of incidence. Normal incidence is

zero degrees, grazing incidence is 90 degrees.
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Range : This option allows the user to select a range of agles of incidence, over which

the spectral properties will be integrated. For example, choosing 0 to 90 will yield an

integration over the whole hemisphere ( spectral hemispherical properties ). Integration

over the whole hemishere will increase the calculation time by approximately a factor of

25, relative to a sigle angle calculation. Calculation time decreases with decreasing size

of the range.

• Spectral Range

Min / Max : This dictates the spectral range over which you want to calculate properties.

This limits must be between 0.4 and 20.0 p.m.

Increment : This dictates the increment that the calculation will be done for. The

minimum increment is 0.001 p.m. The smaller the increment, the more calculated data

points, and so the longer the calculation will take.

• Calculation

Once the angle of incidence, spectral range and stack are defined, the calcualtion for the

required optical properties are done. Once the calculations are done, the results are

displayed in the tabular form in the output form in the output box. In most situations,

including rapid thermal processing, the spectral absorptance is equal to the spectral

emittance.
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• Plotting

Once the data is calculated, an x-y plot of the properties can be done. A dialogue box

allows the user to choose the plotted variable, and the limits for the spectral range and the

plotted range. An example of the simulated output of Multi-Rad is shown in Fig. A2.1



Wavelength (Microns)

Fig. A2. I Example of the simulated output of Multi-Rad



APPENDIX III

DATA TABLES

The experimental data of emissivity as a factor of wavenumber, which ranges from

12,500 cm -1 to 500 cm -1 , for various temperatures are given in this chapter. This

chapter includes the experimental data tables for the following samples under

investigation (a) Silicon (b) SIMOX (c) Tantalum

• Silicon

The experimental data tables for the silicon sample are presented in this section. The

variables under consideration are emissivity and wavenumber, at a particular temperature.

Tables A3.1, A3.2 and A3.3 illustrate the function of emissivity with respect to

wavelength at 30° C, 441 ° C and 954° C respectively. The experimental data at 263 ° C

(cooling) is given in Table A3.4.

• SIMOX

The experimental data of the SIMOX sample is presented in Table A3.5. The values of

emissivity as a factor of wavenumber, which ranges from 12,500 cm -1 ( 0.8 pm ) to 500

cm -1 ( 20 inn ) is given in the table.

• Tantalum

Table A3.6 gives the experimental data for the tantalum sample. This table illustrates the

function of emissivity with respect to wavenumber at room temperature.
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Table A3.1 Silicon Sample at RoomTemperature
File DVH
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Table A3.2
Silicon at Temperature 441 degrees
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Table A3.3
Silicon at 954 degrees - File DWG
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Table A3.4
Silicon at 263 degrees (cooling) -
FileDWE
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Table A3.5 - SIMOX at Room
Temperature - File DXD
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Table A3.6
Tantalum Sample at Room Temperature - File DWT
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11372.59 -0_30477 8561 .776 -0.15538 5550.193 -0.00955

Note : In the wavenumber range of 12,500 cm - 1 to 10,000 cm -1 , the signal to noise

ratio is very poor. Therefore, the detector limit of the emissometer is not reliable.

Obviously, any existence of negative integers need to be neglected completely.



APPENDIX IV

DOPING

The effect of doping is discussed in this chapter. The Multi-Rad model supports doping

type in determining the value of emissivity as a function of wavelength. The variations in

the carrier concentrations are based on the resistivity, which is supported by Multi-Rad.

• P-type

The normalized mathematical equation for the value of carrier concentration, at room

temperature, is given below.

Using the above equation, values of carrier concentration can be computed for change in

values of resistivity. The table below illustrates the change in carrier concentration for

values of resistivity ranging from 100 Ω - cm to 0.1 Ω- cm
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• N type

The normalized mathematical equation for the value of carrier concentration, at room

temperature, is given below.

where Al is a normalized polynomial, which is as follows,
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