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ABSTRACT

A SIGNAL CONDITIONING APPROACH FOR
THE EXTRACTION OF THE OSCILLATORY POTENTIAL

FROM THE ELECTRORETINOGRAM

by
Peter Haines Derr

The oscillatory potential (OP), a signal component of the electroretinogram (ERG), was

investigated to determine correlation of the OP and pathological conditions of the inner

retina. Large transients characterize the ERG. Such transients stimulate a filter's natural

response. Since these responses can co-occur with the OP, a distorted OP will be

extracted. A proposed signal windowing and padding technique for conditioning the

ERG signal has been implemented for the extraction of a minimally distorted OP.

Windowing is used to capture only the OP period. The windowed ERG signal is

then signal conditioned to generate initial values for the filter's state variables. Such

correct initial conditions eliminate the perturbations created from filtering the windowed

ERG. OPs were successfully extracted from a database of fifty human ERGs. The

extracted OPs did not display any filter-induced oscillations and did provide some

indication of the retina's pathology.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The electroretinogram (ERG) has been recognized as a diagnostic tool for the

identification of retinal disease for many years. The ERG is primarily useful for

diagnosing problems of the outer retina, i.e., the receptor cell layer and the retinal

pigment epithelium. However, some specific components of the ERG signal may merit

consideration as a prognostic and or diagnostic tool for diseases of the inner retina. The

focus of this research will be the oscillatory potential (OP), which has been studied for

more than thirty years as a possible diagnostic tool for diabetic retinopathy, with a

technique being proposed for filtering the ERG to extract a minimally distorted OP from

the ERG. Diseases of the inner retina, which may be detected by the OP, include

diabetes, in which retinal damage can be calamitous and which has few obvious

indicators in the slow course of this disease.

The medical and electrophysiology professions hypothesize that a correlation exists

between the existence/quality of the OP and diseases of the inner retina, such as Central

Retina Vein Occlusion (CRVO) and diabetic retinopathy. Since the inner retina is

nourished via the central artery and the central vein, any deterioration of the vein's

function will affect the systems responsible for the transformation of photon energy to

electrical signals. To understand the possible significance of the OP, a basic summary of

the retina's anatomy and a brief history of the ERG is necessary.
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1.2 Background Information

1.2.1 Basic Anatomy of the Retina

The retina is a curved physiological system about 200 to 250 micrometers thick lining

one half of the inside of the eye [5], [15] (see figure 1.0 for a general anatomy of the eye

and the location of the retina). The retina, comprising of light sensitive cells [15],

converts photon energy to multiplexed electrical signals, which are sent to the lateral

geniculate nucleus [15]. The lateral geniculate nucleus accepts inputs from the optic

nerve and sends fibers to the cortical receiving area for vision [3].

Figure 1.0 - Basic anatomy of the human eye (Adapted from E. Bruce Goldstein,
Sensation & Perception, fifth edition, Brooks/Cole Publishing Company, New York,
NY., 1999, pp. 29-70)



*
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The brain interprets these electrical signals to provide visual perception [3]. The

description of the retina can be simplified as being comprised of five neuron * layers.

Referring to figure 1.1, the layers are: 1) rod and cone receptors, 2) horizontal cells; 3)

bipolar cells; 4) amacrine cells and the 5) ganglion cells [3].

The photons enter the eye, passing through the translucent neurons of the retina,

where they are reflected off of the pigment epithelium (see figure 1.0). The pigment

epithelium provides the nutrients to the receptor neurons and also contains melanin,

which prevents the scattering of light within the retina [3]. The rod and cone

photoreceptors are oriented toward the pigment epithelium to intercept the reflected

photons [3], [14]. The photoreceptors are excited by the isomerization ** of the pigment

molecule caused by the impact of a photon [3]. The photoreceptors hyperpolarize during

illumination *** . The receptors respond identically to a spot (100 gm in diameter) or an

annulus (250 gm to 500 gm in diameter) stimulus [2], indicating that the individual

receptor's response is stimulated by a single photon at a time. The photoreceptors

synapse to the horizontal cells in the outer plexiform layer. A horizontal cell provides a

summation of a wide field of photoreceptor responses and has a large hyperpolarizing

response [2]. The horizontal cells appear to provide negative feedback to the individual

photoreceptors, controlling spatial contrast and color properties of the cones by causing

selected photoreceptors to depolarize[2].

a neuron is a cell that generates and transmits electrical impulses..
isomerization is defined as the pigment molecule's change in shape in response to the

absorption of a quantum of light [3].
A reduction of a cell's membrane potential is termed depolarization as opposed to

hyperpolarization or an increase in the cell membrane's potential.
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Figure Li — Basic anatomy of the human retina. (From E. Bruce Goldstein, Sensation &
Perception, fifth edition, Brooks/Cole Publishing Company, New York, NY., 1999, pp.
29-70)

The retinal neural network is comprised of the bipolar, amacrine and ganglion

neurons. The cell bodies of bipolar and amacrine neurons are spatially located within the

inner nuclear layer while the ganglion neurons are in the ganglion cell layer. Multiple

rod and cones axons synapse with the bipolar dendrites (cone bipolars and rod bipolars)

in the outer plexiform layer. The bipolar neurons respond to a mixture of spot and annuli

stimulation [2]. The bipolar cells initiate the on and off channels as a result of their

hyperpolarizing or, add responses before depolarizing [18]. The bipolar neurons synapse
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to both the ganglion cells and the amacrine cells [2],[1 8]. The amacrine neurons has

multiple bipolar axons synapsed to its dendrite in the inner plexiform layer. The

amacrine neurons provides on/off channel responses to illumination any where in their

receptive fields [2]. The amacrine cells may provide directional and motion information

to the ganglion cells [2]. The amacrine neuron also appears to provide depolarizing

negative feedback to the bipolar neurons [2]. There are two types of ganglion neurons.

The first type receives inputs from multiple synapsed bipolar neurons. The ganglion

neuron is depolarized during spot illumination while annuli stimulus inhibits the

depolarization [2]. Multiple amacrine neurons are synapsed in the inner plexiform layer

to the second type of ganglion neuron [2]. In general, the ganglion neurons provide

information about both plexiform layers to the brain via the optic nerve fibers [3]. The

ganglion cells generates three types of responses. The first is an "On" response. When a

light stimulus is applied, the ganglion cell responds with a rapid burst of impulses and

then decays to a slower discharge. The second, "On-Off', response to light stimulus

generates a burst of impulses and stops completely. The third, "Off', response of rapid

impulses occurs when the light stimulus is turned off [2]. The synapses of the bipolar,

amacrine and ganglion neurons can be inhibitory, excitatory or a combination of both [3].

These synapses appears to provide a weighting function to the converging electrical

responses to multiple photon excitation [3]. This weighting guarantees that a spot

stimulation in close proximity to an annuli stimulation will be perceived [3].

The two diseases of interest in this study, which affect the inner retina neurons, ie,

the bipolar, amacrine and ganglion cells, are Diabetic Retinopathy and Central Retinal

Vein Occlusion. Diabetic retinopathy is the constriction and ultimately the death of some
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of the small blood vessels of the inner retina [14]. The remaining blood vessels may

hemorrhage, leaking blood into the retina and causing a permanent reduction in sharpness

of vision [14]. In some pathological cases neovascularization may occur, which results in

fragile new blood vessels growing within the retina and ultimately leaking blood into the

vitreous humor [14] (see figure 1.0). Central Retinal Vein Occlusion (CRVO) is the

blockage of the central vein, which returns blood supplied to the inner retina cells, or one

of its branches by a blood clot [14]. As a result of the clot, blood leaks out of the blocked

vein and passes into the vitreous humor causing blurred or loss of vision.

1.2.2 Electroretinogram

Frithiof Holmgren's discovery of the ERG (see figure 3.3 for the ERG of a non-diagnosed

eye) in 1866 has provided the ophthalmology field with a powerful tool for observing a

retina's response to light stimulus [1]. The prior year Holmgren observed an alteration in

the electrical potential when light fell on the retina [2]. In 1877, Dewar recorded the first

human ERG [2], thus creating the necessity to decompose the ERG into primary signal

components. The first real attempts at decomposition of the ERG was in the 1930s by

Ragnar Granit.

Granit identified three components of the ERG, which disappeared successively

from a cat ERG. He termed the processes P-1, P-II and	 and considered the ERG as a

summation of the processes (see figure 1.2) [2]. Following Granit, Eithoven and Jolly

derived four sub-signals of the ERG (see figure 1.3). When subjecting a dark-adapted

eye to white light, they observed the following sequentially occurring components: 1) a
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Figure 1.2 - Granit identified three components of the ERG, which disappeared
successively from a cat ERG. He termed the processes P-1, P-II and P-III, and considered
the ERG as a summation of the process. The top plot had a stimulus ten times larger than
the bottom plot. (Adapted from F.H. Adler, Physiology of the Eye, The C.V. Mosby
Company, Saint Louis, Mo., 1975, pp. 453-499).

cornea negative a-wave; 2) a cornea positive b-wave; 3) a slower cornea positive c-wave;

and 4) a d-wave, which coincided with the elimination of stimuli in some mammals [2].

With the identification of the prime components of the ERG signal, the origin of the

components had to be investigated.

Tomita observed that components of the ERG could be localized within the frog

retina, by depth recording utilizing microelectrodes. He also obtained similar waveforms

from corneal recordings [2]. Brown and Wieser determined that the different components

of the ERG could be localized to different layers of the retina. They also determined that

the a-wave is generated from a location different from the b-wave's source [2]. Brown

and Watanbe found that a large a-wave could be obtained from the photoreceptor
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Figure 1.3 - Eithoven and Jolly derived four sub-signals of the ERG. When subjecting a
dark-adapted eye to white light, they observed the following sequentially occurring
components: 1) a cornea negative a-wave; 2) a cornea positive b-wave; 3) a slower
cornea positive c-wave; and 4) a d-wave, which coincided with the elimination of stimuli
in some mammals. (Adapted from F.H. Adler, Physiology of the Eye, The C.V. Mosby
Company, Saint Louis, Mo., 1975, pp. 453-499)

abundant foveal of the monkey. A large b-wave with a relatively smaller a-wave could

be found in the inner nuclear prominent peripheral retina [2]. Murakami and Kameko,

using Granit's terminology of the ERG's three processes, subdivided the P-III process

into a distal and a proximal component. The distal P-III was isolated to the photoreceptor

layer and the proximal was isolated in the inner nuclear layer. The distal P-III is the a-

wave, however the proximal	 even though thought to be the b-wave, has not been

observed in all mammals [2]. With the a-wave's generation being isolated to the

photoreceptor layer, the photoreceptor layer is subdivided into rod and cone systems.



Armington, Johnson and Riggs recorded the a-wave on the cornea of a dark-adapted

human eye (see figure 1.4). The a-wave showed the summation of the photopic response

of the cones and the scotopic response of the rods. The cone spectral sensitivity, ap, was

found be unaffected by dark-adaptation, while the rod spectral sensitivity, a s , was

observed to have a significant attenuation and latency after dark-adaptation [2]. The

spectral sensitivity responses of the dark-adapted photoreceptors are plotted in a "Dark

adaptation curve" (see figure 1.5) [3]. The plot verifies that the photoreceptors comprise

of two cell types, the rods and cones [3].

Figure 1.4a Armington, Johnson and Riggs recorded the a-wave on the cornea of a dark-
adapted human eye. The a-wave showed the summation of the photopic response of the
cones and the scotopic response of the rods. They further observed that the a-wave and b-
wave components of the cornea measured ERG of the dark-adapted human eye contained
photopic and scotopic a and b waves. The top curve is the photopic response, while the
bottom curve is the scotopic response. (Adapted from F.H. Adler, Physiology of the Eye,
The C.V. Mosby Company, Saint Louis, Mo., 1975, pp. 453-499)
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Figure 1.5 - The "Dark adaptation curve" illustrates evidence that the retina's
photoreceptor are comprised of two cell systems (rods and cones). The eye is subjected
to an intense light. After which it is dark adapted for a specific time. At that time, the
eye is subjected to a manually increasing point light source until the patient is able to
detect the light. That point is the threshold of light perception. The plot contains the rod
and the cone spectral sensitivities and the summation of both. [3]. (Adapted from E.
Bruce Goldstein, Sensation & Perception, fifth edition, Brooks/Cole Publishing
Company, New York, NY., 1999, pp. 29-70)

This differentiation of rod and cone responses is useful in tailoring the ERGs for

obtaining the response of a specific receptor of the retina. Using a light adaptation of

1.60 log cd/m2* and a white xenon flash stimuli of 0.85 log cd s/m2* [4], Peachey

* The luminance level is defined as candela per square meter (cd/m 2). The time-
integrated luminance for brief flashes of light is defined as candela-seconds per square
meter (cd-s/m2). Therefore, 1.60 log cd/m 2 = 39.81 cd/m2 [19]. One candela radiates
47c lumens of light flux. One lumen is defined as a one candela point light source
illuminating a 1 ft2 of a sphere with a 1 ft radius.
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tailored a mouse ERG to measure the response of the cone system [4]. Armington,

Johnson and Riggs further observed that the a-wave and b-wave components of the

cornea measured ERG of the dark-adapted human eye contained photopic and scotopic a

and b waves (see figure 1.4) [3]. Both the photopic and scotopic b-waves are cornea

positive signals; however the scotopic b-wave contains a significant larger amount of

spectral energy than the photopic b-wave. It can be surmised that the a-wave is generated

in the photoreceptors. The location of the b-wave origin has not been clearly isolated.

However, the photoreceptors are probably not the source. The ERGs of retinas with

central artery occlusion contain an a-wave but the b-wave is not present [2]. The

photoreceptors are not affected but the disease destroys the inner nuclear layer [2].

Even though the b-wave is not generated in the photoreceptors, the photoreceptors

strongly influence the profile of the b-wave in peak amplitude and latency. Adrian

observed that stimuli (photopic) that favored cone response produced small b-waves with

a short latency where as stimuli (scotopic) that favored rod response produced large

cornea positive b-waves with a longer latency. The photoreceptors are made up of cones

and rods; however both the rods and cones can be sub-divided into spectral sensitive

specific rods and cones. Stiles and Wald identified three different cone mechanisms,

each with a specific spectral sensitivity curve, that could be separated from the

cynomologus monkey's b-wave [2].

Muller and Dowling, using a mudpuppy ERG, showed that müller cells * have

evidence to be the site of the generation of the b-wave. Using microelectrodes, they

* The mailer cell is a macroglial cell, which spans the entire thickness of the retina. It
forms the inner limiting membrane of vitreal surface and the outer limiting membrane at
the photorecptor's inner segments [17].
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measured across the cells of the inner nuclear layer, including the horizontal, bipolar,

amacrine and ratifier cells. The inner cell response closely matched the b-wave. An a-

wave was not present in the measurement [2]. The c-wave appears to begin at the

occurrence of the peak amplitude of the b-wave and has been measured at the pigment

epithelium.

Steinberg et al measured the c-wave intercellularly from the pigment epithelium of

a cat and Noell reduced the amplitude of the c-wave of a rabbit by severely damaging the

pigment epithelium using sodium iodate [2]. The generation location of the c-wave is not

specific, but the pigment epithelium appears to have significant importance to its

existence. Dowling and Riggs experimented on an all-rod skate retina; suspended in an

eyecup. Applying sodium aspartate, they suppressed the proximal response (b-wave)

without affecting the a and c waves. Leaving the pigment epithelium, the retina was

removed from the eyecup. The c-wave vanished. They concluded that the pigment

epithelium must be present for the c-wave to exist. However, the dark-adapted c-wave

has the response corresponding to the absorption spectrum of rhodopsin found in the rods

and not the melanin in the pigment epithelium [2].

1.2.3 Application of the Electroretinogram

The full-field ERG is a non-invasive standardized ocular electrophysiologic test for

extracting specific responses of the retina [6]. The typical responses of interest are a)

dark-adapted rod response; b) maximal response of the dark adapted eye; c) oscillatory

potential; d) cone response and e) response from a flicker stimulus [6]. Adhering to the

International Society for Clinical Electrophysiology of Vision (ISCEV) protocol, the
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ERG is administered by placing a contact lens electrode on the cornea of the eye; a

reference electrode, usually part of the contact lens electrode, is contacted with the

conjunctiva; and a grounding electrode is attached to the ear or forehead [6]. The retina

is subjected to Ganzfeld stimulation, which guarantees equal illumination of the retina.

The retina is stimulated by a combination of a luminance flash (cd-s/rn2) and background

illumination (cd/m2). The background illumination is utilized to provide a calibrated

level of light adaptation. The eye is dark adapted for a period of twenty minutes to allow

for the rods and cones to desensitize [6]. Dependent on the adaptation of the retina prior

to a calibrated light stimulation, the response of the ERG can be rod dominant or cone

dominant.

1.2.4 Oscillatory Potential

The oscillatory potential (OP) shows promise as a possible indicator of the early

development of inner retinal diseases. Eyes with certain pathological conditions, such as

diabetic retinopathy, appear to produce ERGs with a degraded or missing OP component,

while other components of the ERG such as the a-wave and b-wave are unaffected [7].

The OP is observed as a envelope of sinusoids (see figure 3,3 for an extracted OP)

riding on the positive cornea b-wave of the electroretinogram (ERG) [7], [20]. It is

observed that the onset of the OP occurs when the polarity of the ERG's slope changes

from negative to positive, as a result of the ERG's positive cornea b-wave dominating

over the negative cornea a-wave. The OPs termination is an exponential decay. The OP

appears to has frequency bandwidth between 100 and 200 Hz. Wachtmeister has

documented the bandwidth to be 105 to 150 Hz [20]. Since the objective of this paper is
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to present a technique for extracting a minimally distorted OP from the ERG, the

currently used methods for evaluating the characteristics of the OP will be addressed in

Chapter 2, Literature Survey, However, a history of the observance and evaluation of the

OP is warranted.

The OP was first observed in the ERGs recorded by Riggs and Armington [7]. But

Cobb and Morton provided the first attempt at describing the OP found in the human

ERG [7],[20]. They observed "... 4-6 rhythmic wavelets having an interpeak interval of

about 7 msec" [7]. Yonemura et al were the first to term the "wavelets" as oscillatory

potentials and postulated that the OPs were a separable component of the ERG based on

the observance that the OP was degraded or missing while the a and b--waves were

unchanged in certain pathological conditions [7], [20].

The generation of the OP is highly dependent on the level of light stimulation and

background adaptation The OP with the largest energy level was observed to be

generated under mesopic adaptation conditions and rapid flash stimulation [20]. When

the time interval between flashes increased, the OP's energy content decreased.[20].

Dawson and Stewart brought up an important observation that cautioned the use of

the term of oscillatory potential, since the signal was not a true oscillation. They also

observed that the variability of the OPs characteristics is highly dependent on the test

conditions in which the ERG was obtained [7]. Adams and Dawson showed that

oscillatory potentials are produced under mesopic conditions whereas under photopic and

scotopic conditions, oscillatory potentials had reduced amplitudes or were not observed

[9]. Not to take Adams and Dawson out of context, they were evaluating the "Fast

Retinal Potential", which is an umbrella term which includes the oscillatory potential [9].
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The literature supports that the OP is dependent on retinal circulation, which

eliminates the photoreceptors and horizontal cells as sources [8],[20]. Initially Brown

localized the OP to the inner retinal layers [20]. Yonemura and Hatta found the largest

OPs in the region of the bipolar cells [20]. Using depth recording and principal

component analysis, Heynen et al suggest that a feasible source of the OP is the bipolar

cells[8]. The bipolar cells significantly spans the retina laterally and in depth to support

the resulting "current-source density profiles" [8].

Since the OPs are elicited by mesopic conditions, which is a mixture of photopic

and scotopic processes, the responses of the rod and cone may be part of the OP

generation process [20]. This further supports the generation of the OPs by the bipolar

cells, since they are stimulated by both the rods and cones.



CHAPTER 2

LITERATURE SURVEY

A survey of the ophthalmologic literature on the oscillatory potential (OP) resulted in

numerous papers supporting the hypothesis of using the OP as an indicator of circulatory

diseases of the inner retina [7]. Even though mentioned as a concern, filtering

techniques for extracting a minimally corrupt OP from the ERG have not been the

objective of the surveyed literature.

The standards for ophthalmologic electrophysiological measurements are

established by ISCEV [6]. Presently, ISCEV' s protocol for the filtering of the ERG to

extract the OP is limited to defining the bandwidth of a bandpass filter [75 to 300Hz].

However, ISCEV does caution the clinician to test for corrupting artifacts and filter-

induced ringing [6].

The surveyed literature suggests three methods for evaluating the OP: 1) measuring

the peak amplitudes of each OP peak relative to a baseline [7]; 2) evaluating the ERG in

the frequency spectrum, i.e. measuring the spectral power of the ERG [7],[10],[11]; and

3) evaluating the OP in the time domain [12].

The first method uses the "oscillatory index" or "caliper-square method" [7]. This

method sums the first order approximation of each oscillation peak. The baseline

traverses the troughs of each oscillation [7]. Error can be induced as a result of the

measured amplitude of the OP peaks being subjected to the slope of the b-wave [7].

The second method, rationalized by Speros et al [7] and discussed by Van der

Torren et al [11] and Wachtmeister [20], incorporates Fourier analysis of the ERG in the

16
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frequency domain. The method attempts to obtain a benchmark of the power density of

the frequency spectrum of an ERG without an OP and comparing the result to an ERG

containing an OP. Van der Torren et al illustrates the method [11],[12]. The time

domain ERG of an eye without arterial occlusion is transposed into the frequency

domain. Twelve hours after an arterial occlusion, another ERG is performed on the

patient's eye and the ERG is transposed into the frequency domain. Two weeks after the

occlusion, another ERG is taken on the eye and again transposed into the frequency

domain. The frequency spectrum of the second ERG is subtracted from the first ERG.

The residual is suggested to be the spectral energy of the OP, without the a-wave

component. The artery of a normal patient cannot be blocked, therefore, this method

cannot be used for human testing. Wachtmeister used Fourier analysis to measure the

energy content and the primary frequency component of the OP [20].

The third method was proposed by Meyer et al [12]. The method suggests the use

of a time domain OP signal model (see figure 4.2), which attempts to describe the

dynamics of the OP signal [12] in a finite set of parameters which can be evaluated

statistically. The OP is extracted from the ERG using a bilateral filter which induces zero

phase shift. Haupt et al [13] performed a statistical study on twenty five patients

diagnosed with CRVO eyes. The residual filtering technique, smoothes out a large

portion of the distorting artifacts of the ERG. Prior to bilateral bandpass filtering, the

ERG signal is conditioned by subtracting a bilateral lowpass filtered ERG signal from the

original ERG; creating a residual signal. Meyer's single envelope OP model [12] was

fitted to a windowed segment of the bandpass filtered ERG signal. The use of this

method is subjected to limitations of MATLAB' s bilateral filter algorithm, filtfilt.m..



CHAPTER 3

MATERIAL AND METHODS

3.1 Electroretinogram Data

Dr. Mitchell G. Brigell of Loyola University of Chicago supplied 50 electroretinogram

(ERG) data files, obtained from 25 patients, with one normal (fellow) eye and one

diagnosed eye, (see appendix Al for file format). The latter eyes had Diabetic

Retinopathy, of which some had progressed to completion of neovascularization and the

remaining eyes remained unchanged. The ERG data used in this study contained large

flash artifacts, possible attributed to the method of measuring the ERG, occurring

instantaneously after the flash stimulus. The flash artifact can possibly be attributed to

method in which ERG was obtained. The artifact obscures any possible negative cornea

a-wave. However, the positive cornea b-wave appears to be unaffected.

3.2 Filtering Method

To extract the OP, the ERG was filtered using a bandpass bilateral Butterworth digital

filter, with 80 dB/decade rolloff. The bandwidth of the filter was chosen to attenuate the

a and b wave components of the ERG. The bandpass used in this study was 65 to 250

hertz. The filter was constructed with two cascaded 4 th order digital bandpass filters.

Each digital filter was a Direct Form Type II with a realization illustrated in Figure 3.0.

To accomplish the bilateral function, which eliminates phase delay, the signal y(k) was

reversed and re-filtered with the second bandpass filter. After re-filtering, the signal was

reversed to the correct direction.

18
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Figure 3.0 - 65 to 250 hertz Direct Form Type H bandpass digital filter with 4 th order
butterworth coefficients applied. The coefficients are calculated using MATLAB's
butter.m function. b=[0.0591 , 0 , -0.1183 , 0 , 0.0591] and a=[1 , -2.9433 , 3.4358 ,
-1.9157, 0.4407]. u(k) is the input signal and y(k) is the unilateral filtered output signal.
Reference Appendix A2 for a state space model derivation and the state variable values in
response to a unit impulse.

3.3 Signal Conditioning

When bandpass filtering the ERG, for the extraction of the OP, care must be taken in the

process to minimize the filter from generating a non-OP response as a result of the flash

artifact and fast changes in the slope of the ERG. Figure 3.1 illustrates how a single stage

of the filter's natural response is obtained from a unit impulse stimulus. For example, the

typical bandpass filter response to an impulse may be of the form,
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Figure 3.1 - If a system is excited by an impulsive source, the resulting output is the
natural response of the system. When a bandpass filter, [65 and 250 Hz] is excited by an
impulse, the expected response of the filter is generated.

Parameter a is the system's rate of decay. B1 and B2 are the initial values of Vout(t) and

dVout(t)/dt ,respectively. The dynamics of the filter determines the natural response. The

filter's dynamics are defined by the time required for the filter's state variables to reach a

steady state value. For the impulse response, the steady state value is zero. For the

second order bandpass filter, the dynamics of the four state variables are illustrated in

Figure 3.2. Reference Appendix A2 for the state space model of the filter and the values

of the system's state variables after being stimulated by an impulse.
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The transient response of the filter, which unfortunately by nature is of similar

form and bandwidth as the OP, is superimposed on the extracted OP. Since these non-OP

transients may occur over the temporal epoch of the OP, a distorted OP may be extracted.

Fortunately, the major impulsive sources are outside the temporal epoch of the OP. A

technique comprising signal windowing and conditioning has been utilized. The ERG

signal is first windowed in the time domain and the resulting signal is conditioned. The

windowing removes the impulsive sources and conditioning corrects for the units steps

generated by windowing. Figure 3.3 illustrates an example of a fellow eye's ERG, a

poorly extracted OP and a properly extracted OP.

Figure 3.2 — The response of the filter's individual state variables to a unit impulse
stimulus. Each variable contains a finite amount of energy, which must decay over a
finite period of time. When all the states have reached a steady state, the filter, as a
system, will also reach steady state.
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Figure 3.3 -a) An ERG of a fellow eye with the flash artifact and the onset of the positive
cornea b-wave identified. b) The result of bilateral bandpass filtering the ERG, without
signal conditioning the ERG to remove the large flash artifact. The OP is not discernable
within the period of t 1 5_ t	 c) The result of bilateral bandpass filtering after the
proposed signal conditioning technique is applied to the ERG. The OP is clearly
identifiable within the period of t i t T2.
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3.3.1 Windowing

The OP, which is of similar form and bandwidth of natural response of the filter, must be

sectioned from the ERG. If the filter's natural response is present in the temporal epoch

of the OP, a severe distortion in the interpretation of the statistical evaluation will occur.

An aggressive windowing approach must be utilized.

Windowing has been employed to process only the portion of the ERG containing

the OP. Consider the segment of the ERG illustrated in Figure 3-4 a). The region of the

ERG that may contain an OP is located between r1 and T2. Windowing is chosen for the

removal of all the impulse sources prior to it and the removal of the ERG signal that does

not contain the OP signal for t > 1 .2 . Since the OP is located between τ 1 and τ2, parameter

fitting an OP model to the extracted OP for t > 1-2 will produce statistical errors and cause

unnecessary computational delay.

The windowing technique chosen is the rectangular pulse. By using a uniform

pulse, all impulsive sources outside of the OP's temporal epoch are removed. Since the

OP extraction employs bilateral filtering, impulsive sources pre and post OP must be

eliminated.

The windowing signal, W(t), multiplies ERG(t) by unity inclusive of the range

[i1, 'r2] and by zero elsewhere. Multiplying ERG(t) and W(t) together will produce S(t),

illustrated in Figure 3.4 c).

The occurrence of the OP is located on the ascending b-wave[7],[20]. The onset of the

observable positive cornea b-wave is termed 2 .1 . For the 50 eyes used in this study, T.1
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was observed to be a local minimum of the ERG signal. Therefore, this location was

chosen for the application of the unit step u(t-τ 1 ). The local minimum is easily identified

using the OP extraction algorithm (see section 3.4). For this study, the unit step -u(t-τ 2),

is located at twice the OP's center time, which is well past the evidence of an OP.

Figure 3.4 — a) The signal ERG(t), of a fellow eye, with the of location of the OP
identified as occurring between τ1 ≤ t ≤ τ2 	 b) The rectangular window W(t), is assigned
the value of 1 for τ1 ≤t ≤ τ-2 and 0 elsewhere. c) The signals ERG(t) and W(t) are
multiplied together to produce signal S(t); the windowed ERG.
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3.3.2 Pre filtering Signal Conditioning

The goal of pre filtering signal conditioning is to eliminate the filter's natural response

resulting from the stimulation of the abrupt roll-offs of the windowed ERG signal, S(t).

These abrupt roll-offs can be characterized as unit steps. Just as the impulse response is

determined by the filter's dynamics, the filter's step response is also resultant to the same

dynamics. Figure 3.5 illustrates the step response of a unilateral bandpass filter. The

response, which may corrupt the shape of the extracted OP, may be of the form,

Figure 3.5 — The step response of a unilateral second order butterworth bandpass filter.
Since the step response has the same form and bandwidth as the OP, the extracted OP
may be distorted. The period of this example signal is typical to the period of a human
ERG.

To eliminate the effect of the filter's step response, the abrupt changes in S(t) are

removed by the attachment of padding signals at the discontinuities. The padding signals

are designed to maintain the fundamental slope of S(t). Equation 3.5 represents the

discontinuities of S(t) [see figure 3-6b],
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Since bilateral filtering is employed, two padding signals will need to be created,

one for filtering in the forward direction and the other for filtering in the reverse

direction. The two padding signals are lowpass filtered inverted mirrored images of the

entire signal S(t). The images are lowpass filtered at a corner frequency of 60 Hz, which

retains the bandwidth of the positive cornea b-wave.

Since the number of data points contained in the padding signals one data point less

The time shifted S(t) is referred to as S shift(t)• S shift(t) is defined by equation (3.6) (see

figure 3-6c),

With respect to the Sshift(t), the unfiltered left and right padding signals are the

inverted mirror images of Sshift(t) pivoted at (τ2—τ1 ) and 2(τ2-τ1 ), respectively. The left

inverted mirrored image, S LM(t), and the right inverted mirrored image, S RM (t), are

defined in equations 3.7 and 3.8, (see figures 3-6d and 3-6h respectively),



S LM(t) and S RM(t) are lowpass filtered for the extraction of the fundamental slope.

The lowpass filter has the same form as the filter in figure 3.0 with the following

resulting filtered signals, equations 3.9 and 3.10, are summed with S shift(t) to produce
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is filtered using the filter described in section 3.2. The resulting signal must have the

filtered padding signals removed and be time shifted back to S(t) original location. The

signal that is remaining is the oscillatory potential, providing the ERG contained an OP.

Figure 3.6 details the entire procedure for the extraction of an oscillatory potential from

the ERG of a non-diagnosed eye. To digress, prior to lowpass filtering of the left and

right padding signals pre filtering conditioning is also required. The pre conditioning of

these signals is accomplished by the attachment of padding signals. Figure 3.6 1)-g)

illustrates the derivation of the left padding signal SFLM(t) and Figure 3.6 h)-k) illustrates

the derivation of the right padding signal S FRM (t). Left and right padding signals are

generated for both SLM(t) and SRM(t), however these padding signals do not require

filtering.
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Figure 3.6 — a) As explained in the windowing section, the electroretinogram ERG(t) is
windowed, S(t) in b), to capture only the OP which is present between τ1≤ t ≤ τ2 . c) S(t)
is time shifted, S shift(t), to allow for the left padding signal to be inserted between

0≤ τ ≤ (τ2-τ1).
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Figure 3,6 (continued) — d) The pre filtering conditioning technique requires the
attachment of padding signals. S LM(t) is the unfiltered left padding signal and is the
inverted mirror image of S shift(t) pivoted at τ2—τ l . e) To extract the fundemental slope by
filtering, S LM(t) is time shifted and has left and right padding signals attached for
endpoint matching. f) The conditioned left padding signal is bilaterally lowpass filtered
at 60 hertz, to create the left filtered padding signal, S FLM (t). g) SFLM (t) has the reminants
of the padding signals removed and is shifted back to its correct location.
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Figure 3.6 (continued) — h) The pre filtering conditioning technique requires the
attachment of padding signals. S RM(t) is the unfiltered right padding signal and is the
inverted mirror image of S shift(t) pivoted at 2(τ2—τ1 ). i) To extract the fundemental slope
by filtering, SRM(t) is time shifted and has left and right padding signals attached for
endpoint matching. j) The conditioned right padding signal is bilaterally lowpass filtered
at 60 hertz, to create the right filtered padding signal, SFRM (t). 	 SFRM(t) has the
reminants of the padding signals removed and is shifted back to its correct location.



Figure 3.6 (continued) — 1) The pre filtering conditioning technique requires the
attachment of padding signals prior to filtering. S cond(t) is the time shifted windowed
ERG signal, S shift(t), with padding signals S LM(t) and SRM(t) attached. m) To extract the
OP. Scond(t) is bilateraly bandpass filtered. n) OP(t) has the reminants of the padding
signals removed and is shifted back to its correct location.
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3.4 Oscillatory Potential Extraction Program

To extract the OP from the ERG signal, an oscillatory potential extraction program was

developed. The program realizes the pre-filtering signal conditioning technique

discussed in section 3.3. The program provides versatility to the user in the extraction

and evaluation of OPs. The user has the ability to extract OPs from multiple ERG data

files in a batch process and then to manually reprocess discrete ERG data files for closer

evaluation. The OP model used in this study has its parameters optimized to the

extracted OP to minimize the root mean square error. The program provides the ability to

view extracted OPs and to save the results in output data files. Figures 3.7 through 3.24

provides a summary of the theory of operation of the "Oscillatory Potential Extraction

Program" through a sequential explanation of the graphical user interfaces. Appendix B

lists the custom program modules and source code utilized in the extraction program..

The algorithm was implemented within the MATLAB Student Edition Version 5.0

environment. The program was developed using a module concept and was coded based

on object oriented programming. Both built-in and custom functions were utilized in the

realization of the algorithm. Custom functions were required to implement the ERG

signal conditioning and filtering technique discussed in sections 3.2 and 3.3.
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Figure 3.7 — The initial graphical user interface (GUI) of the Oscillatory Potential
Extraction Program. The program provides two modes of OP extraction, Manual and
Automatic. In Automatic mode, the OPs of a batch of ERGs are automatically extracted.
The bandpass filter uses default corner frequencies in the OP extraction algorithm. The
optimized parameters of the previous OP extraction are used as the OP model's
parameters initial conditions for the current OP extraction. After the batch extraction,
ERG header information, optimized OP model parameters and quality of extracted OP is
stored in a file named "Evalute.dat". Also an ascii file containing the matrix with the
column vectors ["Time", "OP model", "Extracted OP"] is created and name { ERG
NAME } .OP. In the Manual Mode, the user has control over the selection of the
windowing location and the corner frequencies of the bandpass filter used to extract the
OP and selection of the OP model's parameters initial condition in the OP model
optimization. After the manual extraction/optimization, ERG header information,
optimized OP model parameters and quality of extracted OP is stored in a file named
"Single.dat". Also an ascii file containing the matrix with the columns vectors ["Time",
"OP model", "Extracted OP"] is created and name {ERG NAME}.OP.



Figure 3.8 — After depressing the "Manual" button on the program's main GUI, figure
3.7, the "Manual OP Extraction Mode" GUI is called. The "Choose ERG File" and
"Done" buttons are initially the only functions available. The "Choose ERG File" is
depressed to proceed with the extraction. If the "Done" button would have been
depressed, the program would have returned to the GUI in Figure 3.7.
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Figure 3.9 — The user must select the folder which contains the ERG data file to be
processed. After extracting the OP, the file "Single.dat and the ascii file containing the
matrix ["Time", "OP Model" and "Extracted OP"] will be saved to this folder.



36

Figure 3.10 — The user must select the ERG file to be processed. The file must be in the
format illustrated in Appendix Al.
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Figure 3.11 — The "Extract OP Via Windowing ERG" GUI is the engine for extracting
the OP in the manual mode. The ERG with its frequency spectrum is initially displayed.
The 'Window ERG", "Print", "Help" and "Done" buttons are active. The user can
window the ERG with a uniform window. The displayed plots can be printed. A help
window is available by depressing the "Help" button. The program can be returned to the
GUI on figure 3.9 by depressing the "Done" button. The 'Windowed ERG" will be
depressed. The user is prompted to select the left and right windowing locations. The
selection is made by positioning the crosshairs over the left and right locations and
clicking the left mouse button for each location, respectively.
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Figure 3.12 — After selecting the left and right windowing locations, the windowed ERG
is highlighted and the frequency spectrum of the windowed ERG is plotted. The "[65Hz,
250Hz]", "Choose [F(hp), F(lp)]" and "Redo ERG" buttons are now active. The user can
use the default bandpass filter of [65Hz, 250Hz] by depressing the "[65Hz, 250Hz]"
button. A custom bandpass can be selected by depressing "Choose [F(hp), F(lp)]". The
user will select the highpass and lowpass cutoff frequencies by positioning the crosshairs
in the frequency spectrum plot and clicking the left mouse button, respectively. The
default bandpass will be selected. After selecting the bandpass filter, the "Extract OP"
button will be activated.



Figure 3.13 — The "Extract OP" button was depressed. The extracted OP is plotted
below the ERG plot. If the user would like to choose different cutoff frequencies but
retain the current OP plot for future comparison, The "Hold OP Plot" box can be
checked. If the box is not checked the current OP will be overwritten. If the OP is
satisfactory, the "Done" button can be depressed.
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Figure 3.14 — After extracting the OP, the program returns to the "Manual OP Extraction
Mode" GUI. The "Parameter Opt" button is active. The button is depressed to goto the
OP model parameter optimization engine.



41

Figure 3-15 — The "Model Parameter Estimation" GUI is the engine that provides
optimization of the selected OP model's parameters to the extracted OP. The ERG and
the OP are initially the plotted. The user must select the desired OP model. For this
study the Single Envelope model was used.
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Figure 3.16 - The Single Envelope Model was used for this study. The user could select
any model displayed in the pull down menu or create a new model by depressing the
"Model Editor" button.
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Figure 3.17 — After the OP model is selected, the OP model's parameters initial
conditions are displayed; along with the %ErFit [(Fit Error / A )*100] and %RelAmp [(A
/ Atp)l00]. By depressing the "Initial Condition" button, the OP model is plotted on the
Extracted OP plot.
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Figure 3.18 — After the depressing the "Optimize" button, the engine uses MATLAB's
fmins simplex algorithm to optimize the OP model's parameters to the extracted OP. If
by visual inspection and evaluation of the values %Erfit and %RelAmp, the fit is deemed
unsatisfactory, the user can supply another set of initial conditions and rerun the
optimization. When the optimization is completed, the "Done" button is depressed.
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Figure 3.19 — After completing the OP model parameter optimization, The program
returns to the "Manual OP Extraction Mode" GUI. The "Save Results" button is active.
By depressing the "Save Results" button the ERG header information; bandpass filter's
cutoff frequencies; sample frequency; b-wave's trough to peak amplitude; optimized OP
model parameters; fit error; %ErFit and %RelAmp are saved in the ascii file "Single.dat".
The file is stored in the folder containing the ERG file. The user can process another
ERG or quit the Manual mode. By depressing the "Done" button will return the user to
GUI illustrated in figure 3.7.
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Figure 3.20 — If the "Automatic" button on the "Oscillatory Potential Extraction
Program" GUI, see figure 3.7, is depressed, the user must select the folder containg the
batch of ERG files to be processed.



Figure 3.21 — In the Automatic mode, the user must supply an ERG index file. The
index file contains a list of the ERG files, including the file extention, to be processed.
For convience the index file should be named "data.txt".
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Figure 3.22 — The user must select the OP model to have its parameters optimized to the
extracted OP. The user can input the evaluator's name. The automatic extraction process
is date/time stamped.
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Figure 3.23 — After the OP model is selected, the "Start" button is active. After
depressing the "Start" button the GUI provides real time process status. The process time
remaining is posted along with a percent completed bar. After the automatic extraction
program is completed the ERG header information; bandpass filter's cutoff frequencies;
sample frequency; b-wave trough to peak amplitude; optimized OP model parameters; fit
error; %ErFit and %RelAmp are saved in the ascii file "Evaluate.dat". The file is stored
in the folder containing the ERG file. Depressing the "Done" button will return the user
to GUI illustrated in figure 3.7.
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Figure 3.24 — The "Create An OP Model" GUI provides a means to create new OP
models. The model information must follow a specific syntax. It is suggested to follow
an existing model's format for proper syntax.



CHAPTER 4

RESULTS AND DISCUSSION

4.1 Verification of Method

The proposed windowing and signal conditioning technique was tested to verify that the

electroretinogram (ERG) signal could be successfully bandpass filtered to extract a bona

fide oscillatory potential (OP). A test signal, which resembles an ERG, was constructed.

The signal contained characteristics of the ERG, which may produce the natural response

of a filter, if not conditioned prior to filtering. The characteristics were the impulse-like

flash artifact, the transition to the positive cornea b-wave and a simulated OP. Figure 4.0

illustrates the a) simulated OP (solid trace) and the composite signal (dotted trace)

without the simulated OP; b) the composite signal with the superimposed simulated OP;

and c) the extracted OP (solid trace) compared to the original OP (dotted trace).

The simulated OP signal was generated using the single envelope OP model,

equation 4.0, developed by Dr. Andrew Meyer of New Jersey Institute of Technology.

flash artifact was modeled using the signal constructed by equation 4.1. The a + b wave

* The initial condition values for the parameter vector was chosen based on the results of
a previous investigation [13]. Special attention in selection of initial conditions is needed
to guarantee curve fitting to a global minima error.
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signal was constructed based on equation 4.2. The composite signal, illustrated in

equation 4.3 is the summation of equations 4.0, 4.1 and 4.2.

Using the OP extraction program, which implements the windowing and pre filter

signal conditioning technique, the simulated OP was successfully extracted. The root

mean square (rms) error between the extracted OP and the simulated OP was calculated

and was equal to 2.1240. Also visual inspection of the extracted OP shows that there was

no significant difference between the two signals. The differences that are present can be

accounted by spectral overflow from other components of the windowed composite

signal which has frequency components within the OP bandwidth. Figure 4.1 a) shows

the frequency spectrum of the simulated OP (solid trace) and the windowed composite

signal without the OP (dotted trace). Figure 4.1 b) compares the simulated OP with

component of the windowed composite signal that did not contain an OP, which has the

same frequency bandwidth of the simulated OP.

To give some perspective to the calculated rms error, a signal of normally

distributed random noise with zero mean and a variance of one, which was amplified by a

gain of forty, was compared to the simulated OP. The comparison was based on the

resulting rms error of the two signals. After curve fitting to the OP model, the noise's

rms error was equal to 41.2 and the envelopes amplitude was equal to 40. To provide a

more meaningful rms error value, the error should be scaled by the size of the OP.
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Therefore, the rms error of the two OP becomes (2.2140/40)*100 or 5.53% and the

comparison of the random noise to the OP becomes (41.2/40)*100=103%. This error

percent is termed %ErFit. The low %ErFit for the extracted simulated OP compared to

the original simulated OP verifies that the extracted OP is in fact a slightly distorted.

Figure 4.0 - a) simulated OP (solid trace) and the composite signal (dotted trace) without
the simulated OP; b) the composite signal with the superimposed simulated OP ; and c)
the extracted OP (solid trace) compared to the simulated OP (dotted trace).
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Figure 4.1 - a) shows the frequency spectrum of the simulated OP (solid trace) and the
windowed composite signal without the OP (dotted trace). b) compares the simulated OP
with component of the windowed composite signal that did not contain an OP, which has
the same frequency bandwidth of the simulated OP.
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4.2 Extracted Oscillatory Potential

Using the proposed signal conditioning technique , Dr. Brigell's fifty electroretinograms

(ERG) were windowed, signal conditioned and filtered in an effort to extract the

oscillatory potential (OP). Using the "Oscillatory Potential Extraction Program", Dr.

Andrew Meyer's five parameter single envelope OP model [12], [13], equation 4.4 was

optimized to the extracted OP. Figure 4.2 illustrates a possible OP model.

Figure 4.2 — The solid line plot is an OP model based on equation 4.4. The model
parameters were chosen to be A=50 uV, Tc=40 ms, F=121 Hertz , ANG=O and N=7. The
OP model envelope is outlined by the dashed line plots.



56

The single OP model's parameters are defined as follows: A is the maximum amplitude

of the OP model envelope; Tc is the time in which A occurs; F is the frequency of the OP

signal; ANG is the phase angle of the OP signal; and N is the steepness factor of the OP

model envelope. The parameters were optimized to minimize the rms error of the OP

model and the extracted OP, reference equation 4.5, where M is the OP model and OP is

the extracted signal.

The proposed technique was implemented using the OP extraction program. The

ERGs were processed with the program set to automatic mode. Cases with questionable

parameters, such as the model's central time occurring prior to 'CI , or the model's

frequency exceeding the filter's bandpass frequencies, were reprocessed with the

program's manual mode. The bandpass filter was kept constant for all fifty ERG cases,

with the corner frequencies set at 65 and 250 hertz. The fifty sets of optimized OP

parameters are tabulated in Table 4.0. The cases in the table are grouped by diagnosis

with each group containing two sub groups; the eyes that went to neovascularization and

those which did not go to completion. The arithmetic mean is calculated for each group

and subgroup.

Comparing each diagnosed group, including the subgroups which went to neo

vascularization completion, the calculated mean of each group suggests that the OP

parameters do change dependent on the condition of the eye. The calculations which

show the most obvious separation of the four diagnosis groups are the %ErFit and

%RelAmp. %ErFit and %RelAmp are determined by equations 4.6 and 4.7.
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The Error is calculated using equation 4.5. A is the OP model envelope's maximum

amplitude and Atp is the filtered positive cornea b-wave's amplitude. %ErFit provides a

relative interpretation to the parameter optimization error. The Error is scaled by the

amplitude of the OP model envelope's amplitude. If the optimization error is not scaled,

the resulting value from equation 4.5 will be misleading. An extracted OP with a large

amplitude will most probably produce a large error in comparison to a small amplitude

signal producing a smaller error. The difference in error has nothing to do with the

quality of the optimization, but is directly correlated to the shear magnitude of the OP

signal and the difference squared component of equation 4.5. %RelAmp provides a

relative amplitude of the extracted OP in comparison to the filtered positive cornea b-

wave. The calculations show that the fellow eye ERGs generally contain OPs with both

the largest envelope amplitude and %RelAmp, were eyes diagnosed as non profuse eyes

had the largest % ErFit and smallest %RelAmp. Figure 4.3 is a scatter plot of %RelAmp

versus % ErFit. The fellow eyes are clustered along a %ErFit vertical line of 18.84, with

a distribution of %RelAmp along that line. The diagnosed eyes, with the exception of the

least profuse cases, have a large % ErFit distribution to the right of the fellow eye's mean

%ErFit. All the diagnosed eyes have a smaller %RelAmp. Ten of the twelve diagnosed

eyes which went to neovascularization are clearly detectable from the non diagnosed

eyes. Using multi-variant analysis, the diagnosed eyes can be scored based on the

diagnosed eyes contained within the 2sd (standard deviation) oval (see figure 4.3).



Table 4.0 — Optimized OP model parameters for Dr. Brigell's fellow eyes.
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Table 4.0 (Continued) — Optimized OP model parameters for Dr. Brigell's eyes
diagnosed indeterminate hemorrhage, non perfuse and perfuse. The arithmetic mean is
calculated for each group of diagnosed eyes that went to neovascularization and those
that did not go to completion. The overall mean of each group is also calculated.
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Figure 4.3 - Scatter plot of %ErFit vs %RelAmp. The OP Model's parameter
optimization error (see equation 4.5), scaled by the OP's amplitude, is compared to the
OP amplitude, relative to the positive cornea b-wave's peak to trough amplitude.
Evaluating the plot, the 13 out of the 25 diagnosed eyes have a smaller OP amplitude
compared to the fellow eyes, relative to the positive cornea b-wave's peak to trough
amplitude.
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CHAPTER 5

CONCLUSION

The proposed pre filtering windowing and signal conditioning technique, utilizing the

"Oscillatory Potential Extraction Program", successfully extracted non distorted signals

from Dr. Brigell's 50 electroretinograms. Some of the extracted signals did not have the

appearance of an OP. Figure 5.0 illustrates two extremes of extracted signals. The signal

(fellow eye) plotted in figure 5.0 a) has the characteristics of an OP, the signal is

contained within a distinguishable OP model envelope. The signal (diagnosed eye which

went to neovascularization completion) plotted in figure 5.0 b), which by inspection is

clearly not an OP. When fitted to the OP model, the extracted signal produced a small

amplitude, a long center time latency and a high frequency parameter.

Haupt et al [16] compared the proposed technique with extracted results from this

research to a previous study completed by Haupt et al [13]. The current results produced

larger envelope amplitudes and lower frequencies (lengthened half-wavelengths)

compared to previous study. The signals with increased half-wavelengths appear more

frequently in the diagnosed eyes which went to neovascularization completion. This

result suggests that the proposed technique can extract both a non distorted OP and a

pathological significant signal, which may be a severely degraded OP or not an OP at all.
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Figure 5.0 - Two extremes of extracted signals. The signal (fellow) in a) has the
characteristics of an OP, the signal is contained within a distinguishable OP model
envelope. The diagnosed eye, which went to neovascularization completion, in b), when
fitted to the OP model, produced a small amplitude, a long center time latency and a high
frequency parameter.



CHAPTER 6

SUGGESTIONS FOR FUTURE RESEARCH

Prognosis and early diagnosis of circulatory disorders of the inner retina, such as diabetic

retinopathy and central retina vein occlusion, may minimize the impact of such diseases

on the pathological state of the retina. Since the oscillatory potential (OP) may be the

indicator for these diseases, any method which improves non evasive extraction of the OP

or provides further insight into the source of the OP warrants further research.

The results obtained from the proposed pre filtering signal conditioning technique

used in conjunction with the single envelope OP model provides parameter separation

between non diagnosed and diagnosed eyes. However, since separation of the

pathological eyes was not obtained, the results are not conclusive. Reasons that

pathological separation was not obtained may be attributed to the possible truncation of

the OP during the windowing process or the OP model is not fitting the extracted OP's

endpoints accurately. Since the method was tested on a single source database of fifty

ERGs, it is suggested that further ERGs which are obtained from multiple sources be

processed. Extensive ERG processing will aid in the determination of optimal initial

conditions for the parameter optimization algorithm. Also, it is suggested that variations

of the OP model be evaluated. Since the proposed technique is applicable to stored ERG

data, it may also prove beneficial to research improvements to real time data processing

of the ERG and the OP.
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APPENDIX A

A.1 Electroretinogram Data Format

Table A.0 illustrates the format of the ERG data file. The first line contains header

information about the case. Successive lines are row vectors containing sampling time

and the measured ERG voltage. The Dr. Brigell's ERG' s, usually contains pre-stimuli

measurements of about 20 milliseconds for the determination of sensor offset. The data

file contains 235.5 milliseconds of post stimuli data. Typically, each ERG data file has

512 data points

Table A.0 - Electroretinograph data file format. The first line contains patient case
information. The following rows comprise of the data matrix. The data is formatted with
the time vector in the first column and the signal vector in the second column.

A.2 State Space Model for Direct Form Type II Bandpass Digital Filter

Reference figure 3.0 for the realization. The state equations are defined as followed:
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Table A.1 — Direct form type II bandpass digital filter's state space variable values after
being stimulated by a unit impulse. Reference figure 3.1 for a plot of the state variables



APPENDIX B

The following modules are required for the execution of the MATLAB program erg.m.

The program must be ran in a version of MATLAB that supports object oriented

programming and advanced data structures such as cells, structures and multidimensional

arrays.
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