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ABSTRACT

ASSESSING THE IMPACT OF DESIGN FOR ENVIRONMENT
GUIDELINES:

A CASE STUDY OF OFFICE TELEPHONES

by
Hussam F. Al-Okush

This research addresses a fundamental question: How much of the improvement in a

product's environmental performance is directly attributable to the Design for

Environment (DFE) tools and guidelines, and how much results simply from other design

objectives or enabling technologies? The research examines four generations of a

business telephone over the last thirty years, including the current generation, which has

been designed using DFE guidelines. A lifecycle assessment (LCA) and demanufacturing

analysis were performed on each of the first three generations to determine various

technology and non-DFE trends. This information was used to forecast the progression

to a 1997 non-DFE phone. By overlaying comparable information generated by analyzing

the 1997 DFE-designed phone, the true impact of DFE on the product becomes apparent.

Relevant characteristics and metrics such as raw materials, energy depletion,

environmental burdens, and others were used to analyze the environmental performance

of the telephones. All of the trend characteristics are based on lifecycle data;

consequently, LCA tools and methodologies are the basis for performing this study.

Traditional LCA methodologies have been expanded to incorporate multi-lifecycle

options for the product and its basic materials. In addition, techniques such as the Eco-

Compass, developed at Dow Europe, and Resource Productivity, as proposed by Sony,

are used to compare the various generations.
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CHAPTER 1

INTRODUCTION

1.1 Background

Looking forward towards the millenium, the question of how to improve on the quality

and standard of living of societies becomes a great concern. An environmentally safe and

clean earth must be secured for the upcoming generation. Over the last decade, America's

manufacturing industry has struggled to achieve a balance between economic security

and environmental responsibility. While individual efforts to reduce process wastes and

design green products have been initiated, overall progress has been slow. Due to

increasing political and societal pressures, the need to increase the pace for more

environmentally friendly products is felt by many companies.

Current practices have created a linear flow from raw material extraction and

processing into products and packaging which are all too frequently used once and then

discarded into a landfill. Numerous statistics point out the scope of the problem. The

National Academy of Sciences reported that 94 percent of all natural resources extracted

from the earth enter the waste stream within months [1]. The amount of plastics in the

waste stream is projected to reach 60 billion pounds by 2010; currently, only 2 percent

are being recycled [21. And, according to US Environmental Protection agency (EPA),

municipal solid waste (MSW) increased from 88 million tons in 1960 to a projected 223

million tons by the year 2000 [3].

As the manufacturing pace increased rapidly, efforts were concentrated on "easy

assembled" products with no consideration for disassembly. The continuous decrease in

the lifetime use of the electronic products due to technological advancements with lack of
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design for disassembly and upgradability resulted in a steady increase in the volume of

discarded products. Due to this high volume of discarded electronic products, the

electronics industry is facing a substantial problem in identifying the end-of-life options

for these products. The need for alternative end-of-life options other than landfilling is a

major concern of this industry for several reasons:

• As technology advances and improves, companies aim to make recycling or

reengineering of products more profitable than landfilling them.

• In Germany and other European countries, new laws have been adopted to address the

disposal of electronic products and promote reuse and recycling [3]. Typical of such

legislation is a pending German product takeback law that requires manufacturers to

takeback and recycle their products after consumers are through with them.

• All European Union (EU) members are in the process of imposing a takeback

legislation through "The Priority Waste Stream Project" which aims at minimizing

materials sent to landfills by encouraging reuse and recycling [4].

• In the United States, industry, research institutes and government agencies are

studying several management strategies for discarded electronic products.

According to the USEPA, over 12 billion tons of industrial waste is generated

annually, of which 4.2 billion tons is classified as hazardous waste generated in

manufacturing [5].

• Many of the electronic products contain a variety of toxic substances such as lead,

cadmium, mercury and others [6]. Concern arises from products such as batteries,

switches, cathode ray tubes (CRT) and other products, that contain lead in the glass,
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which may leach out into the soil causing serious environmental damage and health

concerns.

in the context of the above problems and environmental concerns, many

methodologies and strategies have been utilized to help address these issues. Tools such

as lifecycle assessment and Design-For-Environment (DFE) are widely used to evaluate

the products environmental performance throughout its lifecycle. These tools aim to

study and document the environmental impacts associated with materials flow, energy

use, and environmental burdens including air emissions, waterborne waste, and solid

wastes. This information will assist designers in identifying substitute materials, design

alternatives and process options leading to better environmental performance of their

products.

There is a growing body of literature devoted to the development of design for the

environment tools using lifecycle assessment as the mechanism for quantifying the

impact of design and production issues over the working life of a product [2,3]. The

underlying approach of "material and energy balances" is a well-developed concept that

has been the mainstay of chemical engineering practice and is embodied in chemical

process flowsheet simulators. Use of the LCA complements efforts to extend "Design for

X" metrics to include environmental issues in a formalized strategy that gives the

designer feedback on the lifecycle impact of the evolving design. While significant

research is underway to develop fully integrated product and process design systems with

interactive DFE modules, the current state of practice is to translate environmental

lifecycle concerns into design guidelines and assessment matrices. Check lists are used

to assure relevant considerations are included during the design process; and product
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assessment matrices are used to evaluate the environmental "goodness" of a finished

design [1,2,7].

1.2 Research Objectives and Desired Outcomes

Green design tools have been used by various manufacturers in the electronics and

automotive sectors to improve the environmental performance of their products.

A fundamental question needs to be addressed: How effective are existing DFE

tools? Or, stated more specifically, how much of the improvement in the product's

environmental performance is directly attributable to the DFE tools and how much results

simply from other design objectives or associated enabling technologies? For example,

in electronic products, dematerialization is a basic design objective and a natural

consequence of advances in semiconductor technology and newly developed materials.

Dematerialization generally has a positive impact on all phases of the product's lifecycle

environmental and energy performance—from raw material extraction and synthesis to

production, packaging and shipment and on to customer use and eventual end-of-life

management. Consequently, a product may have improved environmental performance

over an earlier generation with the improvement attributable to considerations other than

those explicitly embedded in DFE tools.

This research begins to address this critical question and assesses the true impact

of current state-of-the-art DFE tools. The research focuses on a single product and

examines four generations of this product over the last thirty years, including the current

generation, which has been designed using DFE guidelines. The product chosen for the

study is the basic business telephone designed as a terminal unit connected to a private
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business exchange (PBX). While some of the operational features of the phones differ,

they are considered to be functional equivalents for the purpose of this study. Figure 1.1

displays a photograph of the four generations of business telephones. The desired

outcomes of this research are as follows:

• To conduct a lifecycle material and component inventory and characterization on the

four generations, with a focus on material use, energy consumption, and the

environmental over the lifecycle of the product.

• To develop disassembly process flow charts, and reverse fishbone diagrams, for each

product generation.

• To synthesize and evaluate this data and information into longitudinal trend diagrams

to distinguish between the impacts of general technology evolution and DFE

principles.

• Applying environmental performance metrics such as eco-compass and resource

productivity to evaluate the product.

• Finally, to conduct a survey of existing DFE tools and techniques—including design

guidelines, product assessment matrices, disassembly analysis and planning, and

lifecycle analysis procedures.



Figure 1.1 Photograph of Four Generations of Business Telephones for Study:

	

Top Row (Left to Right): 1965 	 1978

	

Bottom Row (Left to Right): 1989	 1997

1.3 Multi-Lifecycle Engineering

Discarded consumer electronics, computers, and household appliances contribute

significantly to the environmental burden placed on municipalities across the nation. If

discarded products and waste streams, such as these, can be recovered and reengineered

into valuable feedstocks, then we can break this trend and achieve sustainability.

A new approach is necessary, multi-lifecycle engineering (MLCE), that takes a

systems perspective and considers fully the potential of recovering and reengineering

materials and components from one product to create another, not just once, but many
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times. This is not simply recycling or design for the environment, but rather a complex,

next generation engineering system that transcends traditional discipline boundaries in

search of fundamental scientific knowledge, new methodologies and technologies [8].

Multi-Lifecycle Engineering is concentrated towards the following cross-

interdisciplinary thrust areas [8]:

1. Multi-lifecycle Product and Process Design — Consideration of multi-lifecycle

concerns into the earliest phase of product conceptualization and design with

particular emphasis on material and form substitution, lifecycle assessment, next

generation use, material recovery, and value analysis.

2. Reengineered Materials from Waste Stream — Characterization of material from

waste streams, characterization of reengineered material systems, structure/property

relationships, and predictive models for mixtures based on fundamental

characterization of component elements.

3. Separation Technologies — Fundamental research associated with separation

processes for material reclamation and purification and processing of gaseous, liquid

and solid waste streams.

4. Demanufacturing Systems — Advanced Methodologies and technologies for

systematic disassembly, mechanical sortation, and cleaning and testing of discarded

products, components and materials.

5. Policy, Economics and Management — Methodological and theoretical frameworks

and database development for examining product lifecycle assessment, corporate

structures, management initiatives and policy issues affecting multi-lifecycle product

innovation and implementation.
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The methodologies developed by MLCE are adopted and implemented throughout this

study ranging from MLC product and process design to demanufacturing processes and

techniques.

1.4 Thesis Format

The remainder of the thesis is comprised of five chapters:

Chapter 2 presents a brief overview of Design for Environment (DFE), Lifecycle

Analysis (LCA), and Performance Metrics, and, in general, the background information

related to this research in the form of literature review.

Chapter 3 describes the methodology adopted in Multi-lifecycle Assessment, and in

applying trend analysis and other performance metrics to evaluate and assess DFE

guidelines.

Chapter 4 presents a telephone case study, dealing mainly with the demanufacturing

process of the telephones and the results obtained.

Chapter 5 provides the assessment of the DFE guidelines and presents all the

performance metrics utilized and the results obtained from the study.

Chapter 6 concludes the thesis by summarizing the results obtained from the research

and suggests recommendations for further improvements and research.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The world's population is now approximately 8 billion people and is predicted to increase

to approximately 15 billion in the late 21 St century. This human growth was a major

factor in the explosive industrial growth witnessed over the past decades. Natural

resources is the fuel for such an industrial growth, which is a must, to support such a

huge population. At present rate consumption, the world is estimated to have

approximately 30 years of oil supply, 25-year supply of natural gas and a 500-year supply

of coal. Public awareness of environmental issues and their growing concern of depletion

of natural resources have increased over the years [2].

Manufacturers of consumer electronic products are facing many challenges in

developing cleaner technologies and environmentally friendly products. This need is

mainly driven by pending regulations and legislation, especially in Europe and Asia, and

also by public awareness of the value and fragility of an intact ecology. This will

tremendously affect the industry's production methodologies and encourage them to

identify cleaner processes. The concern on environmental issues is not directed towards

the production stage only, but has extended to encompass the various lifecycle stages of

the product, starting from materials extraction through disposal and end-of-life options.

Towards this, the concept of lifecycle assessment applies, as an approach to quantify the

various materials, energy and environmental burdens associated with the product over its

entire lifecycle.

9
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LCA is a time consuming, complex and expensive process of evaluating the

environmental performance of products, yet it is considered the dominant tool available

today for such an assessment. But its ability to affect environmental improvements and

to accurately assess the environmental impact of a product through its entire lifecycle is

still questionable. The Society of Environmental Toxicology and Chemistry (SETAC)

was the first international organization that recognized the potential values of LCA's.

SETAC conducted its first technical workshop on LCA's in august 1990, where the basic

four components of an LCA were developed: Definition of Scope and Boundaries,

Inventory Analysis, Impact Analysis and Improvement Analysis. Also, the International

Organization for Standardization (ISO) has developed an environmental management

standard ISO14000 Series, which is a set of environmental standards that can be

applicable worldwide.

Various LCA research had been conducted on a wide stream of products ranging

from electronic products and automobiles to plastic bottles and cloth diapers. The

Ecobilan (Ecobalance) group is one of the largest companies conducting LCA studies,

performing projects ranging from foods and cosmetics to electronic products. Their LCA

study of telephones will be assessed in this chapter. Manchester Metropolitan University,

UK, has also performed an LCA study on telephones, concentrating mainly on the end-

of-life options of the telephone. The Society of Automotive Engineers (SAE), issued a

study entitled " Uncertainty, Sensitivity, and Data Quality Assessment for Lifecycle

Value Assessment (LCVA)". This paper deals with a major concern of LCA's and that is

the quality of the data, which is the backbone of any LCA study.
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Most of the studies conducted on electronic products were related to the various

lifecycle stages of the product, or to the integration of DFE principles into the design

process. As presented in the previous chapter, this thesis "begins" to address a

fundamental question: how effective are existing DFE tools? In this chapter, previous

research in the areas of DFE and LCA is presented, which focuses on the basis for this

thesis research.

2.2 Design for the Environment (DFE)

Industry has concentrated its efforts on their production processes, with an aim to develop

and modify processes to minimize environmental burdens and conserve energy and

resources. To this, the concept of Design-For-Environment (DFE) applies. DFE is

defined as " The systematic process by which firms design products and processes in an

environmentally conscious way" [7]. DFE is being incorporated into traditional

production processes, where these processes never accounted for environmental burdens

associated with production. DFE introduces a methodology to be followed in the

product/process development and in the overall facility in general.

The concept of DFE is still new and there is no universal methodology that is

followed for implementing or integrating DFE into the product design stages. It is known

that approximately 75% of a product lifecycle cost is determined in the design phase.

The decisions made during this phase will have a profound impact on the total lifecycle

of the product. Therefore, environmental concerns must be addressed at the design phase

so that the overall costs associated with waste streams can be reduced.
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DFE constitutes mainly of a checklist of questions that targets both product and

process designers. This checklist mainly concentrates on materials consumption, energy

use and production of solid residues, gaseous residues, and liquid residues over all the

stages of the product lifecycle. Refer to "Design for Environment" by T. Graedel and B.

Allenby [4], which contains more detailed description of DFE guidelines. More specific

details on DFE guidelines will be stated and analyzed in chapter 5 of this thesis.

Implementing and integrating DFE into the design of products and processes does not

guarantee a 100% environmentally conscious product. It also does not guarantee that the

company is compliant with all environmental regulations, nor does it guarantee that all

environmental issues are resolved. On the other hand, if DFE is implemented properly, it

should assist the company in minimizing the environmental burdens of the product

throughout its lifecycle, and improve its environmental performance. DFE also promotes

the return of materials back to earlier stages of the lifecycle through reuse,

remanufacture, and reengineering of parts and subassemblies. Therefore, closing the loop

on the product lifecycle instead of the traditional disposal methods [9].

Design for Environment works also at a level higher than products and processes.

"DFE is related to and may be integrated with a number of environmental management

practices, strategies, and frameworks including sustainable development, industrial

ecology, product stewardship, pollution prevention, environmentally conscious

manufacturing, and lifecycle analysis" [9]. Figure 2.1 illustrates the relationship between

DFE and the above frameworks. Following is a description of the frameworks described

above:
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Sustainable Development

The accepted definition of sustainable development is that of the Burtland Commission

[9]: "development that meets the needs of the present without compromising the ability

of future generations to meet their own needs." DFE can help attain this goal by using its

framework to guide decision-makers to make more environmentally sound decisions.

• Industrial Ecology

According to T. Graedel, and B. Allenby [3], "Industrial ecology is the means by which

humanity can deliberately and rationally approach and maintain a desirable carrying

capacity, given continued economic, cultural, and technological evolution. The concept

requires that an industrial system be viewed not in isolation from its surrounding systems,

but in concert with them. It is a systems view in which one seeks to optimize the total

materials cycle from virgin material, to finished material, to component, to product, to

obsolete product, and to ultimate disposal. Factors to be optimized include resources,

energy, and capital." Therefore, industrial ecology provides a generic framework that

guides DFE decisions.

• Product Stewardship

Product stewardship refers to the environmental concern that producers show towards

their products throughout the product lifecycle. Product stewardship promotes producers

to evaluate the environmental performance of their products at both the use stage and

final disposition. It also encourages concepts such as take-back, reuse, remanufacture,

and reengineering of products instead of typical disposal. MERC recently conducted a

survey evaluation of product stewardship programs and found great diversity regarding

the definition and implementation of these programs [9].
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• Pollution Prevention

Pollution prevention aims to eliminate manufacturing processes that generate waste and

pollution. This could be done by utilizing DFE concepts to design products and

processes that generate no pollutants and produce no harmful co-products. Many of the

manufacturing processes need to be re-designed, since most of these processes were

designed prior to environmental regulations. [2,9]

• Environmentally Conscious Manufacturing (ECM)

Environmentally Conscious Manufacturing focuses on manufacturing processes with the

aim of minimizing environmental impacts by developing more environmentally

conscious manufacturing methods. ECM deals with various measures of manufacturing

ranging from efficiency of resource conservation to the environmental burdens generated

from a manufacturing process. It not only concentrates on main operations, but also

secondary operations that may be more polluting such as painting. DFE may be

implemented not only to prevent pollution, but also to effectively manage materials as to

reduce environmental burdens from manufacturing processes [2,9].

• Lifecycle Assessment

Following the general guidelines of the Society of Environmental Toxicology and

Chemistry (SETAC), Lifecycle Assessment (LCA) is an objective process to better

understand the environmental burdens associated with a product, process, or activity by

identifying and quantifying energy and material usage and environmental releases, to

interpret the results of those energy and material uses and releases on the environment,

and to use this knowledge to identify and implement opportunities to affect

environmental improvements.
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Figure 2.1 DFE as a Core Environmental Management Practice
[Source 9]

2.3 DFE Case Studies

Many companies have implemented DFE concepts on their products and processes. The

key issue is to make DFE an integral part of the design process by emphasizing its

importance. This section includes case studies of practical applications of DFE

conducted by AT&T on their 5ESS Electronic Switch, and another by Apple Computer

on the Power-Macintosh 7200.

2.3.1 AT&T's Flagship 5ESS Electronic Switch

This study aims at investigating AT&T's flagship 5ESS electronic switch's environmental

performance by applying a selection of DFE tools. The first step in this study was to

review and layout the lifecycle stages of the switches starting from fabrication of

individual components and chips through the assembly of the printed circuit board and
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system assembly to use and finally end-of-life. To assess the environmental performance

of this product, a tool must be used that takes into account all the products lifecycle

stages, such as the matrix assessment. This requires a study of the products design

manufacture, packaging, use, and the end-of-life scenarios. This tool assigns a value to

each element in the matrix ranging from 0 - 4. To graphically display the results of this

matrix, a "target plot" is used, see Figure 2.2. The elements of the matrix assessment are

plotted as sequentially increasing angles which are multiples of 360 /24 = 15. The

closer the elements are to the center, the better the performance of the product. The result

showed that in general the switch was environmentally responsible, but more

concentration was required on premanufacture and product delivery stages.

Figure 2.2 A Composite Target Plot for AT&T's Products
[Source 10]
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Part of the DFE assessment is to provide recommendations for improving

processes to reach the desired goals. Some of the recommendations suggested for

packaging was to revise specifications for packaging material to encourage or mandate

the use of some recycled material in their manufacture. Recommendations for the design

phase included issues as marking of all plastics using the ISO standards, which simplifies

recycling in the end-of-life options. Another recommendation was to minimize the

diversity of metals and plastics used. After assessing the switch and making

recommendations, the next step is to prioritize the recommendations for implementing

and plotting the priorities using a Pareto plot. The highest priority rating for the

manufacturing stage was to investigate the use of landfill methane, then label packaging

for recycling and to specify the use of recycled material by suppliers. On the other hand,

the high priority rating for the design area was to mark major plastic parts with ISO

symbols, and then to use quick-release fasteners instead of screws.

In conclusion, this study provided a practical implementation of DFE using

several tools. The tools used quantify the environmental performance of the 5ESS switch

through its total lifecycle stages, and also produced a chart, visually illustrating the key

issues to be resolved. Also, to simplify the implementation of DFE recommendations, a

priority list was generated that categorized the most important issues to resolve. [10]

2.3.2 A Case Study of the New Power-Macintosh 7200

This study illustrates Apple Computer's implementation and integration of DFE

principles into new product development. The product chosen for this study is the Power

Macintosh 7200 CPU, where the concentration is on the environmental performance
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attributes of the finished product only. Previous lifecycle stages were omitted from the

analysis. Also, systems components such as a monitor, keyboard, and mouse were also

excluded from the study.

The main goal of this study was to quantify the contribution of the products

features and design towards environmental and non-environmental performance

attributes, and to identify improvement areas that are both cost-effective and

environmentally beneficial. The DFE study was conducted through four basic steps:

• Determination of relevant product performance attributes

This was divided into 2 categories: Environmental performance attributes, which

included: Energy conservation, ease of disassembly, recyclability of materials, toxic

materials, and material conservation. Non-environmental performance included: Ease

of assembly, ease of service, and product economics.

• Selection of relevant metrics for each performance attribute

• Information gathering to support the assessment

• Assessment of product performance using selected metrics

The products performance was measured against the previous model, which is the

7100 CPU. In general, the 7200 CPU performed better than the previous model in most

of the metrics analyzed. Energy consumption was reduced by 25%, weight was 12% less

than the 7100 CPU, a reduction of 50% in the screws used, several toxic constituents

were eliminated, and the product cost was projected to fall 15-20% below the 7100 CPU

model. [11]

In conclusion, the case study presented a successful implementation of DFE

concepts on a particular product. Future work could expand the scope of the study from
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concentrating on the finished product only, to include the total lifecycle stages. As a

result, DFE guidelines such as " Is the product designed to minimize the use of materials

whose extraction is energy intensive?" were not examined. This attribute combined with

energy consumption at other lifecycle stage could have effected the results. The

standardization of environmental performance metrics is also an issue under study, which

requires more efforts for achieving comprehensive standardization.

2.4 LCA Background

There is fairly wide spread agreement on the formal structure of LCA, which contains

four stages: definition of scope and boundaries, inventory analysis, impact analysis, and

improvement analysis. The inventory stage is basic to all LCAs and includes measuring

the inputs (e.g. materials, energy, and labor) and the outputs (e.g. waste, pollution, and

usable product) that occur at each stage of the product's life. The interpretation stage,

recently defined with the ISO standardization process, involves isolating the discrete

portions of the product's life and simply "adding up" the inputs and outputs with,

frequently, some translation into broad environmental and health impacts, ranging from

global concerns to site-specific impacts (depending on the scope of the LCA). Some

LCA's are performed to better understand the environmental performance of a particular

product with the objective to identify opportunities for reducing the environmental

impact of a product through process improvements.

• The first stage of LCA defines the scope and boundary of the study. The purpose

of the study and all the assumptions and thresholds are identified at this stage.
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• The second stage of LCA, inventory analysis, is by far the best developed. It uses

quantitative data to establish the levels and types of energy and materials inputs to

an industrial system and the environmental releases that result. In this study, the

assessment is done over the entire lifecycle--materials extraction, synthesis,

production, packaging and distribution, use, demanufacturing, and reengineering.

• The third stage in LCA, impact analysis, attempts to quantify and/or assign

relative weighing factors to the consequences of each input and output. Impacts

considered at this stage include global impacts, health effects, and greenhouse gas

and others. Because the LCA is considering the entire range of end-of-life

management, the factors identified may be realized in the early planning stages of

a disposal process, during operation or even after a process has ceased.

• The forth stage, improvement analysis, is the explication of needs and

opportunities for reducing environmental impacts as a result of industrial activity

being performed or contemplated. It follows directly from the completion of

stages one and two, and in implementation is termed " Design-for-Environment"

(DFE).

Figure 2.3 LCA Technical Framework
[Source 12]
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Figure 2.3 illustrates the original SETAC framework. For the most part, LCA

methodologies are still in their infancy. As more experience is gained and more products,

processes and materials are subjected to assessment, the LCA approaches will become

more useful and more efficient. They will also become more accepted, if the results of

implementing LCA studies prove to be cost efficient and profitable. It is reasonable to

assume that the tools of LCA will become more sophisticated with time as more user-

friendly LCA softwares are being developed [4,5].

2.5 Detailed Description of LCA Stages

This section describes in detail the LCA stages and methodologies [13]. Figure 2.4

illustrates the process flow chart for implementing an LCA.

2.5.1 Goal Definition and Scoping

• Defining the Purpose

The first step in implementing an LCA is to define the purpose of the system under study.

The purpose could refer to a comparison of a new product to that of an older model, or to

investigate the impact of new guidelines and policies introduced in an organization.



Figure 2.4 Process Flow Chart for Implementing an LCA
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• Defining Boundary Conditions

After defining and understanding the purpose of the study, the boundaries and depth level

of the system must be set. For example, what is the percent cutoff for including the

materials of a certain product in the study? The assumption is that if a certain material

constitutes less than 2% of the product by weight, it will not be included in the materials

study. Does the study take into account only those factors that directly affect the

materials extraction phase, or does it consider the impact of production machines and the

associated environmental issues? Or in the transportation model do we consider the

materials and processes required to manufacture the truck and the tires? Or do we only

consider the energy consumption of the truck during transportation of the product?

2.5.2 Inventory Analysis

Materials information is considered the backbone of the inventory analysis stage and of

all the LCA stages. Information obtained from materials is utilized throughout the LCA

stages in quantifying energy and environmental burdens. In order to analyze the products

effect on the environment, sufficient information must be available on all the feedstock

materials composing the product, production processes, use and reuse of the product.

A structured methodology must be followed to implement an LCI. This

methodology or approach has remained consistent over the past 20 years. The secret

behind conducting an efficient LCI is to maintain a consistent and uniform information

on materials, energy and environmental burdens balances for each process within the

system. The source of the data, confidence level and uncertainty of the data are of great

concern in any lifecycle study, therefore these sources must be readily recognized. This
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information helps in identifying the environmental performance of the product and will

assist in later stages in conducting a sensitivity analysis, by comparing the performance

of different materials. An important aspect is to define the system and its boundaries and

document all the assumptions made throughout the methodology followed.

There are four major decisions that must be taken when implementing an LCI.

1. Allocation of inputs and outputs from an industrial operation in the various products

that are produced.

2. The consumption at the use stage of the product.

3. Analysis of the recycling system, and

4. Reporting of energy that is embodied in the products entering the LCI system. [13]

Many stages and interrelations can be identified for industrial systems in terms of

flows of material and energy from unit process to unit process. Energy, process materials,

and transportation are necessary physical inputs for most of these stages, and feedback

and loops make up part of the cycle. Though it is necessary to distinguish the acquisition

and production of energy carriers in a distinct analysis, they are not considered in this

study. Energy profiles were used only as input information to the various stages of

material production. The lifecycle inventory implemented in this study included the

materials, production, use and recovery stages. This constraint made the LCI more

manageable to focus on unit production processes whose inputs and outputs can further

contribute significantly for an environmental impact study. In this study, several

polymers and metals were examined. For each of the materials studied, specific

methodological considerations, assumptions and other details are documented. A
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common procedure was followed for conducting the LCI in the form of a generic process

model, which will be described later in Chapter 3.

Thus, the analysis of each of the polymers consists of the following components:

• Basic initial data about the material,

• A brief description of the major production processes used in manufacturing of the

feedstock material,

• Construction of the generic process model for the materials in terms of production

process flow charts, which indicates the major raw and process materials and unit

processes with quantitative energy and environmental values for the unit operations,

• A detailed inventory chart indicating the amount of raw and process materials and the

total energy requirement, and

• Environmental impact issues associated with the production of the materials.

• Notes and references, which indicate the sources used to develop the generic model in

the inventory chart.[13,14]

The categories of the inventory analysis are as follows:

• Define the Scope and Boundaries

This is a continuation of the goal definition and scoping stage of the LCA, but with more

specific information on the system being incorporated.

• Gather Data

This stage involves gathering information on the raw materials consumed in the product

and all subsequent information related to that material. Information relative includes

mass of raw materials, energy use, environmental releases, and co-products must be



26

quantified for all the process stages. This is necessary for all the LCA stages from raw

material production and continues through product use and disposal.

• Create a Computer-Based Tool

Currently, almost all available LCAs are incorporated into computer based tool. These

tools may vary from simple spreadsheets to sophisticated databases. The purpose of the

computer tool is to allow users to define their product's structure and describe it, and then

compile all the input and output data for the total lifecycle of the product. Also,

computer based tools display the results in varying detail based on the need of the user.

• Analyze and Report the Study Results

After the computer-based tool is designed, the results obtained from the Lifecycle

Inventory (LCI) must be analyzed and reported in a meaningful way. This stage is

critical to the LCI since it represents the results from the inventory stage, which will

assist decision-makers in their decisions. The complete LCA conclusions will be

extracted from this analysis stage, various tools can be utilized to help present the

extensive LCA data. Tools such as eco-compass, resource productivity, and various

trend and graphs are used for this purpose. More details on the use of these tools will be

presented in chapter 5. Metrics such as mass intensity, energy intensity and other

environmental metrics were also considered.

• Interpret Results and Draw Conclusions

Once the results of the study are generated, they can be interpreted and conclusions can

be drawn based on the purpose of the study.
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2.5.3 Impact Methodology

This section is taken from reference Chapter 3 of " Environmental Lifecycle Assessment"

by B. Vigon [13].

This stage converts the results obtained from the inventory stage to a set of

common measures such as habitat disruption, acid rain problems and others, that allows

interpretation of the total environmental effects of the product being evaluated. The

impact assessment is still in the infancy stages and much research and effort is required to

develop these tools in order to conduct a sound LCA. The following three-phase

conceptual model of LCA impact assessment is being extracted from the framework set

by EPA and SETAC:

• Classification

Is the process of assignment and initial aggregation of LCI data into relatively

homogeneous impact groups. SETAC lists three impact categories:

1- Environmental or ecosystem quality. For example, suspended and dissolved solids

affect the chemical oxygen demand (COD), Biochemical oxygen demand (BOD), and

alkalinity measurements. All these pollutant categories impact water quality, which

in turn impacts the ecosystem quality.

2- Quality of human life (including health), its potential impact categories are: human

carcinogen (class A), irritant (eye, lung, skin), corrosive, respiratory system effects

and others.

3- Social welfare. There is no agreement yet on how to conduct an impact analysis on

social welfare issues.
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• Characterization

Is the assessment of the magnitude of potential impacts on the chosen major categories,

(human health or ecosystem quality), described above. For example, carbon monoxide

and dioxide are all classified under the category of greenhouse and global warming. Each

chemical has a potential impact on ecosystem quality. Various characterization models

were developed to assess the contribution of each emission. Some proposed

characterization models follow:

• Loading: these models assess inventory chemical data on quantity alone, with the

assumption that less quantity produces less potential impact.

• Equivalency: These models use derived equivalency factors to aggregate inventory

data with the assumption that aggregated equivalency factors measure potential

impacts.

• Valuation: The assignment of relative values or weights to different impacts. This

allows integration across all impact categories. When valuation is completed,

decision-makers can directly compare the overall potential impacts of each product.

2.5.4 Improvement Analysis

This analysis is necessary in identifying and discovering new opportunities to reduce

environmental emissions, energy and material consumption of products and processes.

For example, a comparison to evaluate the environmental performance of the product as

different materials are substituted can be conducted. A sensitivity analysis, which is a

systematic approach for evaluating the variations in data input and their effect on the final

result, can also be performed.
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2.6 Product Lifecycle

Typical product stages include raw materials extraction, manufacturing,

use/reuse/maintenance, and finally, recycle/waste management. Figure 2.5 illustrates

those product lifecycle stages.

Figure 2.5 Typical Lifecycle Stages
[Source 12]

• Raw Materials Acquisition

Collecting data on materials production is one of the most tedious tasks in an LCA.

Questions such as " do we start the analysis from Hydrocarbon production or take it back

to crude oil production? " or "What level of detail is required for the production processes

of raw materials?" These questions and many more must be addressed and answered

consistently throughout the LCA study.
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• Manufacturing

This stage involves detailed information on the production processes of the finished

product. Details on the energy consumption of machines and environmental burdens

associated with operating these machines are quantified. The level of detail of this stage

could be either at a process level, or based on a specific factory or could be an industry

average for that particular process.

• Use/Reuse/Maintenance

Quantifies the energy consumption and the environmental burdens associated with the

product during its operation time. Assumptions should be made on the actual lifetime use

of the product and the utilization factor, which is the percent of time the product is in the

in-use & stand-by modes. Energy and environmental data associated with the reuse and

maintenance of the product are also essential. Reuse refers to the parts or subassemblies

that can be replaced into another product rather than disposing it. While maintenance

refers to the effort required for fixing or performing maintenance on that product.

• Recycle/Waste Management

Examines the EOL method for the finished product and associated energy and

environmental burdens. This stage is often referred to as the demanufacturing stage or

the end-of-life management of a product. After demanufacturing the product, the parts

and subassemblies can either be remanufactured or extract and recover basic material

from them through reengineering or can finally be disposed of.
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2.7 LCA Limitations

Even though LCAs are the dominant tools used for evaluating the environmental

performance of products, many problems are faced when utilizing these tools. LCA is an

expensive, time-consuming and very data intensive procedure that requires expert

knowledge in materials, manufacturing, use and disposal. The main concern in an LCA

is where to draw system boundaries, what are the assumptions made, and to ensure

consistency throughout the lifecycle stages. For example, if the material feedstock is

divided into materials extraction and synthesis, then this structure should be applied to all

the materials understudy. Also, in the transportation model, are the materials used to

manufacture the transportation mode, i.e. truck, included in the study? or the analysis will

apply only to the energy consumption of the truck during transportation? All these

assumptions must be clearly identified and be classified whenever applicable throughout

all the lifecycle stages. Another concern in LCA studies is the availability of

environmental data and energy information. Most companies refuse to provide

information on the environmental performance of their plants or on specific processes, as

they are considered proprietary information. Thus, data gaps are created in LCA studies

whether it was in materials or production processes or any other stage of the product

lifecycle.

The LCA methodology is another problem, since it is not standardized so far.

Problems encountered in the methodology are:

• The different units by which system inputs and outputs are measured.

• There is no uniform unit by which costs and benefits can be converted into impact

analysis.
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• There is no standardized method for calculating the impact of products or processes

on the health and environment.

• The uncertainty and quality of data. Many users are skeptical about the results

extracted from LCA's if the data used is not from a reliable source. Section 2.8.3

illustrates a case study that deals with uncertainty of data in LCA's.

• It is difficult to compare old products to new products, since lifecycle inventory

analyses and impact assessments have different approaches. Even thought that this

comparison is what all decision-makers really need for assessing product

improvement [4].

2.8 LCA Case Studies

The following section illustrates various studies conducted using LCA methodology.

This section will describe the case studies and show the results and conclusion extracted

from them.

2.8.1 Ecobalance Case Study

The Ecobilan (Ecobalance) group is one of the largest companies conducting LCA

studies, performing projects ranging from foods and cosmetics to electronic products.

They conducted a study entitled " Environmental Lifecycle Profile of End-of-Life options

for two Electronic Products: Telephones and Televisions " August 1 st 1996, which was

commissioned by the Electronics Industries Association (EIA). The aim of the study was

to compare the different end-of-life options for the telephones and televisions, and the

resulting environmental impacts from each scenario. Three end-of-life options considered
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were: Landfilling, incineration or smelting, and recycling. The study accounted for

energy credits that may result from reclamation or use of recycled material into new

products.

The LCA methodology was applied throughout the study, to guarantee

consistency in comparing both products. The first step was to define the system

boundaries and to clearly identify the different assumptions made. The models used for

each end-of-life option were also formulated. Since the input data is variant and uncertain

in many cases, the Monte Carlo method for stochastic simulation was used to produce a

good distribution of the output variable. Following is a description of the models

followed for the telephone and television end-of-life options:

This part was taken from the study [15]

• Telephone end-of-life options

1. Landfilling, after collection similar to that for municipal solid waste, where the

model was based on diesel fuel requirements per 1000 lb. of landfilled material.

2. Incineration in a municipal solid waste combustion facilities, after collection

similar to that of municipal solid waste.

3. Shredding / material recycling. i.e., recovery of the materials (plastics, metals)

after a grinding and separation step. This option has been modeled after the

operation of the Lucent Technologies (formerly AT&T) Material Reclamation

Center (West Chicago, IL). In this option, telephones would be collected from

households with a mail-back network.
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• Television end-of-life options

This part was taken from the study [15]

1. Landfilling, after collection similar to that for municipal solid waste, where the

model was based on diesel fuel requirements per 1000 lb. of landfilled material.

2. Overall recycling, i.e., copper smelting of the whole television after a shredding

step, but without separation of the different constitutive materials.

3. Dismantling/material recycling, i.e., recovery of the materials (glass, plastics,

metals) after a disassembly step. This option has been modeled after the

operation of the Envirocycle dismantling facility (Hallstead, PA).

The results extracted form this study were as follows:

• Telephone Case Study

1. The landfilling option showed consistently the worst profile, except for CO2

emissions, where it was the best option.

The balance between the recycling and incineration options were as follows:

2. For energy consumption, particulate matter and CO2 emissions, both options are

equivalent. However, for these items, the spread of the recycling option is much

bigger than the one of the incineration option, indicating that in some cases, it is

worse than incineration.

3. Incineration is better for NO x emissions.

4. Recycling is better for CO and SOX emissions, COD effluents and solid waste.

• Television Case Study

1. Landfilling option consistently showed the worst profile, except for CO

emissions.
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2. The recycling option showed a better profile than that of copper smelting for

energy, particulate matter, CO2, CO, NOR, and COD. Recycling showed a worse

(or equivalent) profile for SOx and solid waste.

Conclusions extracted from this study show that the recycling efficiency and the

materials recovered strongly influence the results of the recycling option. For example,

HIPS which is 13% of the televisions weight was the main contributor to the televisions

recycling, while the glass closed-loop recycling which is 63% of the televisions weight

was minimal. The energy requirements of the dismantling / separation process also

influenced the results of the recycling option. This study introduced methods to deal with

uncertainty in data, by using a stochastic approach for solving the problem. An important

end-of-life option that was not considered in this study is reuse. Many companies tend to

emphasize the reuse option as it is usually more economic [15].

2.8.2 Manchester Metropolitan University Case Study

Manchester Metropolitan University, UK, performed an LCA study on telephones,

concentrating mainly on the end-of-life options of the telephone. The study was entitled

" Lifecycle energy modeling of a Telephone," by J.M. Young, April 1995 [16]. The aim

of the study was to calculate the energy consumption of the telephones over all the stages

of its lifecycle starting from raw materials production and through eventual disposal. The

study also identifies the end-of-life scenarios based on the "3R's" model of reuse,

remanufacture and recycle. J. Young presented the energy required for the production of

feedstock materials of various metals and polymers. The energy for the manufacturing of
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the telephone (including the Printed Wiring Board, PWB) and the packaging, use, and

disposal stages were also evaluated.

The results of his study showed that the highest energy consumption was during

the use stage of the telephone, which was assumed to be five years and that

improvements in current exchange technology can reduce this consumption. The second

highest energy consumption was in the production of the material feedstock, with the

PWB being the largest contributor to this figure. Recommendations were to use recycled

PWB's and to produce more raw materials from scrap rather than earth. The third largest

value was found at the manufacturing stage which can be readily reduced by promoting

consumers to reuse existing telephones or by modifying the design of the phone itself by

using fasteners, such as snap-fit covers, that would reduce the assembly time and increase

the efficiency of production. By evaluating the end-of-life options, it was difficult to

decide on the best scenario since it depends on variables such as transportation and

additional energy process savings/costs. But the general result is " the more use cycles a

product can survive the better" [16]. Consequently, from the "3R's" model, the reuse of

telephones without maintenance was the preferred option [16].

2.8.3 SAE Case Study

The Society of Automotive Engineers (SAE), issued a study entitled " Uncertainty,

Sensitivity, and Data Quality Assessment for Lifecycle Value Assessment (LCVA)". This

paper deals with a major concern of LCA's and that is the quality of the data, which is the

backbone of any LCA study. This study provides a methodology to qualitatively assess

the quality of data and to estimate the uncertainty; also, it shows how to assess the
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sensitivity within an LCA study. Finally it shows how to provide credibility in the results

obtained from an LCA. Following is a description of the methodology suggested:

1. Data Quality

The data is categorized into three ratings: Green, yellow and red.

• Green ensures that the data sources are known, meaning they have been directly

measured and meet the needs of the LCA study. The uncertainty on this rating is

+/- 10% and the results can be utilized with consideration to the uncertainty.

• Yellow refers to data that has been calculated using standard factors and does not

completely represent the LCA understudy. The uncertainty on this rating is +/-

25% and the results can be utilized with caution especially where the sensitivity

of the results is large.

• Red rating means that the data used has been estimated and is not representative

of the LCA understudy. The uncertainty on this rating is +/- 50% and these data

should be replaced if possible in order to utilize the results.

2. Calculating uncertainty

Data is divided here into two categories: single value data and multiple value data.

• Single valued data should use the ratings (green, yellow, and red) as described

above in data quality. Therefore, an uncertainty is always integrated in the data

used, which gives more credibility to the LCA.

• Multiple data sets utilize a different approach to calculate the uncertainty of the

data. The t-distribution is utilized, which is a distribution of means of small

selections drawn from a population of normally distributed values.
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3. Sensitivity Analysis

"Sensitivity analysis is important in any lifecycle value assessment study

for three reasons: 1) to highlight data sets which affect the overall lifecycle results the

most, 2) to test the effects of assumptions made on allocating inputs and environmental

outputs to different products, and 3) to recognize the relative significance of potential

changes in efficiency and emissions reduction technology. Three different types of

sensitivity analysis are performed in LCVA: sensitivity to different data sets, sensitivity

to different allocation assumptions, and sensitivity to marginal changes in unit process

eco-efficiency." M. Raynolds [17]

• Sensitivity to different data sets: to evaluate the sensitivity of the results, different

data sets must be considered. The best procedure is to use an averaged data set and

then compare it to the "best scenario", which could be a data set predicting a future

plant with improved eco-efficiency. This will allow the assessment of the different

alternatives and to choose the best performance.

• Sensitivity to allocation assumptions: Allocating environmental outputs between

different products from a plant can be based on the volume or market value. These

allocation methods are not suitable to all products at all situations.

• Sensitivity to marginal changes in unit process eco-efficiency: " This provides

controlled changes that affect the eco-efficiency of individual unit processes and the

opportunity to observe the end result of those changes. The eco-efficiency of a unit

process can be improved by two means: Increasing the product efficiency by

producing more product for the same amount of product. This means 1% increase in

eco-efficiency can be obtained by increasing the products of the unit process by 1%



39

while holding the inputs and environmental outputs static, or a 1% increase in eco-

efficiency can be obtained by reducing environmental outputs by 1% and holding the

inputs and product outputs static. This former method can be called marginal

increase in "product efficiency" and the later "environmental efficiency". " M.

Raynolds [17].

In conclusion, this study dealt with an important aspect of LCAs, that is quality of data,

what methodologies are most applicable to assess them, how to estimate uncertainty, and

how to deal with sensitivity of LCA results. Utilizing these methodologies, the users of

LCAs can feel more confident on the results extracted from the LCAs as there are

confidence intervals associated with the data used.

2.9 LCA Software

Some of the thoughts from this section have been taken from chapter 3 of

"Environmental Lifecycle Assessment" by B. Vigon [13].

2.9.1 Introduction

The development of methodology for lifecycle assessment (LCA) is highly theoretical,

where as the collection of data has a direct connection with practice. Software takes a

position in between: it contains formalized methodology in a way that is accessible to the

data, with its practical limitations. The development of software increases the practical

usability of the methodology and the suitability of the data within the theoretical

framework. Software may thus act as a bridge between theory and practice [18].
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The typical users of LCA software are a combination of LCA experts and other

individuals who want to utilize LCA concepts to evaluate the environmental performance

of their product. Because LCA is being used more as a support tool in application of

methods such as Design for the Environment (DFE) or Pollution Prevention (P2)

engineering, LCA software must mesh at some level with the tools typically used by

these disciplines. There are three major user requirements of LCA software:

• To organize the data and minimize the effort necessary to conduct an inventory

analysis or impact assessment.

• To efficiently organize and document large amounts of data, recording decisions

made by the investigators as they conduct the study, and to present the information in

a coherent manner.

• Compatibility of LCA software with other information system components and

software tools, such as marketing and sales data, or tactical one where LCA results

would be used in conjunction with performance and cost measures [13].

2.9.2 LCA Software Models

LCA software products typically comprise a user interface, a database, computational

engine, and a report processor. The most common type of LCA model, as distinguished

from design or engineering LCA modeling tools, is referred to as an input-output model.

The intent of this type of model is to capture the materials and energy balance at the

system or the subsystem level and not to focus on process details. Figure 2.6 shows the

typical structure of integrated LCA software.



Figure 2.6 Typical Structure of Integrated LCA Software
[Source 13]

Product design-oriented LCA tools target a user audience that is not and probably

will not become expert in LCA and has little or no knowledge or technical expertise in

environmental issues. Product design software users can include mechanical design

engineers, packaging designers, product concept specialists, and graphic designers whose

primary interface with software is in computer-aided design (CAD) or

mechanical/structural design packages. Product development support software

incorporates LCA computations in a framework that has the appearance and the character

of a software within the domain of expertise of the designer. Product design-oriented

software also includes software intended primarily for development of environmentally

sensitive packaging.

LCA software products developed for these users typically result in a kind of

"green advisor" that provides recommendations on materials and process choices based

41
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on lifecycle considerations. The user is prompted for information about the physical form

and/or the layout of the components or the product and is given choices regarding

materials that may be used in a given application. Some software also provides the ability

to select alternative processes for manufacture of the item. Within the software, a

database and an expert system have been incorporated to translate the designer's choices

into the necessary inventory and impact assessment computations. Choices on the depth

and the breadth of the LCA may have been pre-selected by the developer in order to

balance the complexity with the multidimensional nature of the decision process [19].

The following section provides an examination of the LCA software models with

respect to the previously defined three stages of Lifecycle Analysis:

2.9.2.1 Lifecycle Inventory Analysis: Most of the current generation inventory software

is based on commercial spreadsheet programs. Microsoft Excel and Lotus 1-2-3 are two of

the more popular systems. The most basic execution of this level of LCA inventory

software uses the unadorned spreadsheet as the input data template, computational

engine, and output form. A simple database on materials and processes may be included

in a section of the spreadsheet so that users are not required to input anything more than

basic functional units and product descriptions. The database is modified or augmented

only with difficulty. Printing of tabular or graphical results is dependent on the internal

capability of the spreadsheet used or the ability to download the output in a graphic or

text post processor.

Some advanced features of contemporary spreadsheets have been used to

advantage in recent incarnations of softwares of this type. These features include a multi-
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sheet capability so that input, intermediate calculation, and output sections can be

separated. Many of the internal computational tools of practitioners as well as industry

commodity data sets are maintained in spreadsheet format. Graphical capabilities of

spreadsheets have been improving to the point where for many users it may not be

necessary to use a separate stand-alone graphics package to present the results in a

meaningful manner. Recently, models have been developed with extended interfaces

between the program and the user. The software does not look like a spreadsheet and the

user has no direct interaction with the underlying computational engine or database. Non-

expert users may use these programs.

2.9.2.2 Lifecycle Impact Assessment: The spreadsheet and extended spreadsheet type of

model does support impact assessment in some of the software packages. Although,

impact assessment is less established in current LCA software packages it is progressing

rapidly. It often includes classification into environmental issues, characterization of

potential environmental impact, and impact evaluation.

2.9.2.3 Lifecycle Improvement Analysis: For improvement analysis, the LCA software

can be used to bring findings back to the product system in a negative feedback mode to

improve environmental compatibility and performance [20].

By posing a series of questions, the LCA software can be used to assist in the

selection of improvement options. The following are some examples of general questions

about the need/purpose of the product or the process:
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• Are there areas where the substitute materials or processes could conserve energy

and/or materials?

• Can the functions of more than one product or service be combined?

• Can the life span of the product be increased?

• Can the overall product efficiency be increased?

• Can toxic substances in the product or its associated manufacture, use, or disposal be

eliminated or reduced?

Answering the above questions involves a data-intensive endeavor. The use of

electronic databases incorporated within the LCA software can markedly increase the

efficiency of performing an LCA. Thus, by requiring the user to supply certain

information items, software can help ensure that LCA's are conducted in full recognition

of the assumptions and the definitions involved.

2.9.3 Survey of LCA Tools

Several surveys have been conducted to evaluate the LCA software's available.

Differences can be found in these tools, depending on the boundaries set by the tool and

the specific problems it is designed to solve. For instance, some software may deal with

energy at the materials extraction and synthesis stage rather than the total lifecycle.

Others vary in the type of databases of materials it uses. Some use custom databases that

address specific products and processes, while others may include large databases in

which generic processes and their emissions and other effects are described. Europe is

considered a pioneer in environmentally friendly manufacturing, and there exists a
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variety of LCA databases and software's produced. The following Table 2.1 lists some

of the available tools and contact information:

Table 2.1 List of LCA Tools Available
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2.9.3.1 Analysis of SimaPro 4.0 Software: SimaPro was chosen for analysis, because of

the availability of a free demo and manual for evaluation. This software allows users to

utilize LCA data to analyze the environmental impact of their products. It provides an

extensive database of materials, processes, energy sources, transportation, use, and waste

treatment scenarios. This database can be expanded and modified by the user to meet

their specific custom needs. The software has the ability to conduct an inventory analysis

and an impact analysis on the product. The user must first describe the product,

specifying the various parts, subassemblies and components. To view the structure of the

product, SimaPro provides a process tree that displays the process and materials used to

create the assembly.

The inventory stage provides a list of raw material inputs and outputs of

emissions associated with the product. This list is useful in showing the substances

coming from the manufacture of an assembly. An impact assessment is also provided

based on a weighing factor scaling the results to a certain level of seriousness. This

measure is derived from the assessment of damage inflicted upon human health. SimaPro

produces a list of the total impact of each material and process in the assembly. Other

than analyzing the products lifecycle, the software also has the ability to compare the

performance of products, and contains models for waste disposal, recycling and reuse.

In conclusion, this software contains a valuable and extensive database of

materials, processes, and evaluating methods. Other than providing inventory analysis,

as most softwares do, it also provides an impact analysis phase. In order to effectively

use this software, the user must invest time in understanding the structure of the software

and the flow of information between the screens. This is a problem faced in many LCA
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softwares, which is to develop user-friendly screens, where the user must not be an LCA

expert in order to navigate through it.

2.10 Performance Metrics

All companies continuously strive to improve their products and services, whether

compared to previous models or to competing products. A critical problem is how to

measure this improvement and what method is used to measure the performance. A set

of consistent and reliable metrics is required to track improvements towards the set goal.

Improvements in environmental performance were previously set due to regulations and

laws, whether state or federal. Presently, environmental performance is becoming more

and more a competitive advantage. A committee has been appointed by the National

Academy of Engineering to undertake a study to assess measuring progress in

environmental performance of U.S. Industries, assess the successfulness of current

methods of measuring environmental performance, and to set recommendations for a set

of industrial environmental performance metrics. Several performance metrics were

identified specifically to the electronics industry, these were divided into three main

categories [21]:

1. Resource related

This includes: Chemical management such as, Toxic Release Inventory (TRI)

emissions, which is a database provided by USEPA, hazardous waste, global

warming chemical and others. Natural resources such as, energy use, water use, and

packaging materials. Finally, DFE tools such as: DFE, and environmental cost

accounting.
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2. Environmental burdens related (waste/impact)

This includes regulatory issues, compliance issues, hazardous waste, landfill disposal,

and others.

3. Human health and safety.

This includes worker protection: accidents / injuries, OSHA recordable injuries and

illnesses, and log and restricted day cases.

Therefore, there is a need to examine a variety of performance metrics and

assessment technologies to clarify important issues. There are several tools that present

environmental performance metrics and provide the ability to visually detect specific

performance improvements of products. Techniques such as the Eco-Compass,

developed at Dow Europe, are used to compare the various generations. The Eco-

compass has six dimensions that quantify significant environmental issues: mass

intensity, energy intensity, health & environmental potential risk, resource conservation,

revalorization and service extension. Resource productivity, as proposed by Sony, is

another comparison tool. The measure attempts to quantify economic value added

related to consumption of material and energy resources.

2.10.1 Eco-Compass

Lifecycle assessment is a useful tool in analyzing the total environmental impacts of a

product by calculating the inputs and outputs of each stage of the products lifecycle. But

there is a need for a comparative tool that will display in a simplified manner the complex

outputs of the LCA so that decision-makers can make sense of it. For this, the Eco-
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compass tool, which was developed in DOW chemicals Inc, can be utilized. Eco-

compass is a comparative tool that has the following features:

• Can be used to compare one existing product with another, or for comparing a current

product with new development options

• "Condenses environmental data into a simple model, which summarizes strategic

issues, trade-offs and improvement opportunities for lay audiences"

• Does not over simplify and remains connected with the detailed analysis

• Can be reliably applied to a variety of business circumstances [22]

The Eco-compass has six dimensions that encompass all significant environmental issues,

Mass intensity, Energy intensity, Health & Environmental potential risk, Resource

conservation, Revalorization, and Service extension [22]. These dimensions will be

presented and defined in chapter 3.

2.10.2 Resource Productivity

The ability to measure the environmental performance of products has been a major

concern for industries and companies. The question is what measure is considered

appropriate for environmental soundness? In an ideal situation, where production and the

environment are in complete harmony, production must fulfill the following goals:

• All materials should be nearly 100% recycled

• Energy consumption should be in a clean manner and limited to only clearly

utilizable sources such as solar energy

• Waste should be within the limit that natural processes are able to degrade
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A new measure is introduced, Resource Productivity, which was developed by Seiichi

Watanabe, Sony corp. Resource productivity is a measure for industrial performance

compatible with environmental preservation. It is defined as the economic added value

multiplied by the lifetime over the sum of (in monetary value):

• The difference between the amounts of material consumed and recycled

• The energy consumed for production and recycling

• The energy consumption by the average use over the product's lifetime

If the technology for recycling is primitive and consumes a lot of energy, then the

resource productivity will be low. The longer the lifetime the better the productivity.

Applications of resource productivity are various and can be used as a comparison tool

between competing products or different generations from the same product, as a way to

quantify environmental improvement and awareness [23].

2.11 Demanufacturing Study

Demanufacturing is the process of separating a product into its smaller parts,

subassemblies, and all the way to basic materials. This process is the first step in

analyzing the end-of-life options for those products. Many methods and tools are utilized

to evaluate the demanufacturing process of products. Some of these tools either quantify

performance attributes and measure them, and others provide a structure for the sequence
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of disassembly. Tools such as the Disassembly Effort Index Metrics (DEIM), quantify

performance metrics for the product and assign a score for each of the weighted

performance metrics. On the other hand , tools such as the Reverse Fishbone Diagram,

provide a visual graph of the sequence of disassembly. These two are further discussed

in the following sections.

2.11.1 Disassembly Effort Index Metrics (DEIM)

DEIM focuses on nine different parameters, which are important while analyzing the

Demanufacturing effort. Dr. Sanchoy Das and his group developed this concept, under

the MERC research program, supported by the New Jersey Commission on Science and

Technology, and was modified from analyzing fasteners only to incorporate a whole

product. The total score for all the parameters adds up to 100 points. The weight

assigned to each parameter is dependent on the importance of that parameter to the study,

and could be modified based on the assumptions and needs of the users. The nine

parameters are [241:

1) Mechanism

2) Handling

3) Disassembly Technique

4) Time

5) Accessibility

6) Tools

7) Part-Hold

8) Force
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9) Instructions

Three more parameters were added to the above nine to expand the concept of DEI and

emphasize other parameters that have significant impact on the products disassembly.

This integrated metric is referred to as revalorization (demanufacturing), which is a

concept of the eco-compass tool that was mentioned earlier in this chapter. Those three

parameters are:

1) Number of different materials

2) Number of different fasteners

3) Material type stamping

The first three DEIM parameters i.e. Mechanism, Handling and Disassembly

Technique are descriptive and only used to guide the dissemblers.

• Mechanism: Describes the way the fasteners achieve their fastening effect. Different

kinds of fasteners achieve their fastening differently.

• Handling: Describes the way the fastener relates to the part or the component and the

way the fasteners can be used to assemble or disassemble a component.

• Disassembly Technique: This describes the way product can be disassembled easily

and assists the dissemblers.

• Time: Time plays an important role while considering disassembling or unfastening,

since it has to take into account a lot of dependent variables like set up time,

disassembly time, instruction time and others.

• Tools: The tools that assist in disassembling a product are broadly classified into six

different categories they are No Tools, Simple, Mechanic, Original Equipment

Manufacturers (OEM) tools, Special and Unavailable. No tools refer to disassembly
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by hand, while simple tools, for example, are a standard pair of pliers, screwdrivers

and others.

• Accessibility: Accessibility explains or focuses on the way parts and subassemblies

can be reached and disassembled. A lot of time and effort is lost since most fasteners

these days are snap fits and it's difficult to approach and access them to unfasten. The

ranges of Accessibility are Z-axis, X-Y Axis, ≥ 4 inch deep head, Dual Axis Complex

Motion, Not Visible.

• Force: The forces that are needed to disassemble parts and subassemblies are cutting,

high impact, low impact, leverage, torsional and axial forces.

• Part Hold: This is again a dependent variable of time because it adds on to the set up

time and effort which then translated, adds on to the disassembly cost. The faster the

set up is the easier it is to remove, if there is no set up time then it gets a higher score.

The ranges of the resolution are from automated, complex fixturing, fixture

necessary, two hand, and no hold.

• Instruction: Instruction as a parameter cannot be ignored because, nowadays a lot of

different types of components need to be disassembled from aircraft's to Coffee

Makers, so the dissemblers need to be trained accordingly. These Instructions involve

training the dissemblers in terms of the feasibility of the disassembly of a part and

where and when to stop disassembling. The ranges of the non-linear parameter

considered are Special classes, Whole Day, Half Day 60-30 min, 5-30 min, and

None.

• Number of different materials: This parameter is added since reducing the various

materials used in a product makes the separation of parts and recycling process easier.
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It also assists in the disassembly process, since the subassembly will not need further

disassembly if all the parts are of the same material. If the number of various

materials is greater than or equal to seven, then a score of zero is assigned to that

product. If the number of various materials is six, then a score of six is assigned to

that product, and so forth.

• Number of different fasteners: The way parts are fastened together tremendously

affects the recyclability of the product after its useful life. Minimizing the number of

fasteners, commonality of fasteners and so forth improve on the manufacturability

and disassemblability of the product. If the number of different fasteners is greater

than or equal to six, then a score of zero is assigned to that product. If the number of

different fasteners is five, then a score of five is assigned to that product and so forth.

• Material Type Stamping: Identifying part material is a difficult task that

tremendously affects the recycling efforts. The multiplicity of plastics in use makes it

difficult to tell one from another, especially if recycling occurs a decade or more after

product manufacture. To alleviate this problem, international standards have been

developed for the marking of plastic parts. The most widely used version is the

International Standards Organization (ISO).

Figure 2.7 shows material type stamping on the stand of the 1997 telephone. The scale

corresponds to the percent of parts stamped using the ISO identification standard. If 0%

of the parts were stamped then a DEI score of 0 is assigned. If 20% of the total number

of plastic parts were stamped then a score of 3 is assigned to the product and so forth.



Figure 2.7 1997 Telephone Stand Stamped with ISO Standard >ABS<

2.11.2 Reverse Fishbone Diagram (RFBD)

The Reverse Fishbone Diagram (RFBD), proposed by Dr. Kosuke Ishii and Dr. Burton

Lee, is essentially a disassembly tool, which graphically describes the disassembly

process, promotes communication to designers and analyzes the design of product

retirement process for minimal environmental impact.

Reverse fishbone diagram is a relatively new disassembly analysis tool in close

concert with design for manufacturability tools. The concept of the reverse fishbone

diagram can be explained as follows [14,251:

• It is most effective when implemented at the layout design stage, so that designers

can identify disassembly complications and ensure that product retirement concerns

are addressed up front.
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• Reverse fishbone diagram is a method of describing and evaluating disassembly

sequences, which promotes a structured approach to advance planning of the

disassembly and the sorting process.

• The diagram is an effective tool for a designer to assess the disassembly process,

identify disassembly difficulties, analyze cost intensive disassembly tasks and steps

that lead to defects, and synthesize towards solutions.

• The RFBD schematically describes the disassembly steps for the product and also

specifies the retirement intent or fate category for each clump.

In short the concept is to graphically represent the disassembly procedure taking into

consideration the sequence independency of the disassembly operations, and

simultaneously identifying the fate category of each component. This technique is used

in chapter 4 to illustrate disassembly for the office telephones.



CHAPTER 3

RESEARCH METHODOLOGY AND PROCESS MODELING

3.1 Introduction

This chapter describes the methodology implemented in this study and illustrates the

process models developed for the lifecycle stages of a product. In assessing the DFE

guidelines, several assumptions were made and certain metrics were chosen to quantify

these guidelines. Also, performance attributes were used to illustrate improvement in

environmental performance of the product, such as the eco-compass and resource

productivity.

DFE utilizes the concepts and methodologies of lifecycle analysis to quantify

environmental, energy and materials performance. Here, the concepts of Multi-lifecycle

engineering and the process models for the various lifecycle stages of a product will be

illustrated. Since lifecycle analysis is data-extensive and time consuming, a Multi-

lifecycle analysis software tool was also developed to simplify the analysis. The

methodology used to develop the software will be described, showing the various screens

designed.

3.2 Design for Environment Guidelines

DFE constitutes mainly of a checklist of questions that targets both product and process

designers. For the purpose of this study, certain questions from the checklist were

addressed based on the availability of information and data extracted from the study. The

aim of this study is to assess the true impact that these guidelines have on the 1997 DFE-
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designed telephone. To effectively assess the guidelines, a specific uniform methodology

must be adopted, and applicable metrics must be evaluated. The methodology

implemented and integrated into assessing the DFE guidelines is the Multi-lifecycle

Analysis (MLCA), which will be further discussed in this chapter.

Following is an extensive look at the guidelines understudy, the methodology, and

the metrics used to evaluate them. Each guideline assessed will be listed detailing its

importance and the specific metrics used that best quantifies the guideline. The

guidelines were classified under five main categories: Environmental burdens, material

conservation, energy conservation, service extension, and demanufacturing.

1. Environmental Burdens

• DFE Guideline: Has manufacturing solid residue been minimized to the greatest

extent possible?

This guideline aims at emphasizing the need for minimizing solid waste residue created

through manufacturing processes during the production of feedstock material and later at

each stage throughout the product lifecycle. The MLCA methodology was applied in

capturing the solid residue created from manufacturing of the feedstock material. For the

materials processing stage, the solid wastes generated from manufacturing of the

feedstock material, including solid wastes from the power source, were calculated. For

the other lifecycle stages: production, use, and recovery, the solid wastes generated from

the power sources were only quantified. The metrics used to assess this guideline is the

amount of solid waste residue created, calculations are based on the weight of the

materials in the product.
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• DFE Guideline: Has manufacturing liquid emissions been minimized to the greatest

extent possible?

Same as solid residue above, with the exception of the metrics used to assess this

guideline, which is the amount of water effluents created, calculations are based on the

weight of the materials in the product.

• DFE Guideline: Has manufacturing gaseous emissions been minimized to the

greatest extent possible?

Same as solid residue above, with the exception of the metrics used to assess this

guideline, which is the amount of air emissions created, calculations are based on the

weight of the materials in the product.

Since it is not feasible to add the values of air emissions, water effluents, and

solid wastes together, a uniform metric is needed to integrate these values into one value.

The metric followed is similar to that of the Eco-Compass, in which a value "2"is

assigned to one product as a base case. Any improvement of more than 50% in the

compared product is assigned a value of "4", and an improvement of more than 75% is

assigned a value of "5". While a decrease of more than 100% is assigned a value of "0".

These improvements are measured for each particulate or category of air emissions, water

effluents, and solid wastes. A weight factor is given to each one, in this case, the

assumption is that all variables carry the same weight. This weighting factor can vary

based upon individual assumptions. Chapter 5 includes the results of this metric and

illustrates how it has been applied to this study.
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2. Material Conservation

• DFE Guideline: Can materials use be minimized by improved mechanical design?

This guideline refers to efforts for dematerialization, where the aim is to minimize the

amount of materials used to meet the design requirements and the functional

requirements of a product. The metrics used to assess this guideline is the total weight of

the telephones and also weight of specific materials and subassemblies.

3. Energy Conservation

• DFE Guideline: Is the product designed to minimize the use of materials whose

extraction is energy intensive?

This guideline aims at promoting the use of materials whose extraction requires less

energy than others. The metrics used to evaluate this guideline is energy value of

feedstock materials composing the product, concentrating mainly at the materials

extraction and synthesis stage.

• DFE Guideline: Is the product designed to minimized the use of energy-intensive

process steps?

This guideline aims at avoiding and minimizing production processes that are energy

intensive. The metrics used to evaluate this guideline is the energy required for

manufacturing the product, relative to the production stage only.

• DFE Guideline: Has the product been designed to minimize energy use while in

service?

This guideline aims at decreasing energy consumption during the use stage of the product

lifecycle, by promoting use of the lowest energy consuming components. The metrics

used for evaluating this guideline is the energy consumption of the telephones during the
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use stage. This value is based on the summation of both the in-use mode and stand-by

mode through the product life use.

• DFE Guideline: Is the product designed with the aim of minimizing the use of energy-

intensive process steps in disassembly? Is the product designed for reuse of materials

while retaining their embodied energy?

The metrics used for these guidelines is named "recovery" which equals the energy

required to recycle the product minus the embodied energy in the plastics. This accounts

for the two above guidelines that promote use of minimal energy-intensive disassembly

processes, and the reuse of materials while retaining their embodied energy.

4. Service Extension

• DFE Guideline: Are subassemblies designed for ready maintainability rather than

solely for disposal after malfunction? Are modules designed for ready removal?

These guidelines refer to issues that deal with the product after it is manufactured.

Service extension is one of the six dimensions of the eco-compass tool, mentioned earlier

in chapter 2, and is divided into three categories: modularity, commonality, and

upgradability. The assumptions made for service extension will be discussed in details

latter in this chapter in section 3.3.2.

5. Dem an ufacturing

• DFE Guideline: Are all plastic components identified by ISO markings as to their

content?

Identifying plastic components by ISO marking simplifies the disassembly and recycling

of the product. The metric used to quantify this guideline is the percentage of plastic

components stamped.
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• DFE Guideline: Has the product been assembled with fasteners such as clips or

hook-and-loop attachments rather than chemical bonds or welds?

Using fasteners such as adhesives and chemical bonds increases disassembly time and

makes separation of parts extremely difficult. Fasteners such as screws and fast

assembly-disassembly snap fits and hook-and-loop attachments, on the other hand,

reduce the disassembly time. The metrics used to quantify this guideline is the number of

different fasteners used.

So, mainly the DFE checklists and guidelines concentrates on materials

consumption, energy use and production of solid residues, gaseous residues, and liquid

residues over all the stages of the product lifecycle. Refer to "Design for Environment"

by T. Graedel and B. Allenby, which contains more detailed description of DFE

guidelines [4].

3.3 Performance Metrics

3.3.1 Resource Productivity

Resource productivity is a measure of industrial performance compatible with

environmental preservation. Resource productivity was presented earlier in chapter 2, in

this section the methodology adopted and assumptions made will be discussed in details.

This measure is calculated using the following formula:
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There was no specific description of how to quantify the variables in the above formula,

therefore, certain assumptions were made to meet the needs and limitations of this study.

The assumptions made are as follows:

• Economic Value added

This is assumed to be the selling price of the product or the leasing price in this case, over

the lifetime use of the product. This value is assumed to be $70 for the 1997 and 1989

telephones. The value assigned to the 1965 and 1978 telephones was $140, since during

that period telephones were owned and leased through one company, AT&T [26].

• Product Life Time

This is the lifetime of the product during the use stage only. This is assumed to be 7.5

years for both the 1997 and 1989 telephones, since technology is advancing quickly in

the electronics industry so is customer needs. On the other hand, the lifetime use for the

1978 and 1965 telephones was assumed to be 15 years, because if the telephones failed

they were repaired and given back to the customer. Presently, if a telephone fails, it is

directly disposed of and replaced with a new one since their prices are relatively cheap

and the cost for repairing is high [26].

• Materials Consumed

Reflects the dollar value for all the feedstock materials in the telephones, which is

obtained by summing all the materials weight. The yield rate is assumed to be 95%. The

dollar value for the materials was obtained from the following sources:

• Aluminum, Steel & Copper prices source:

http://206.228.6.249/metalprice/index.cfm date posted was 5/19/1998.

• ABS price source: Plastics Technology, 06/97
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Materials Recycled

Reflects the dollar value for all the recycled materials in the telephones. The material

recovered is assumed to be only from metals, and copper content in printed circuit boards

(PCB's), which was assumed to be 10% by weight. Plastics were not added because their

recycled value is $0. The yield rate was also assumed to be 95%. The source of these

values was from personal contact with Wade Environmental Inc., on 1/23/98.

• Energy in Production

Reflects the energy required to manufacture the telephones. The value was obtained by

dividing the total facility consumption of energy in monetary value, for a certain facility,

by the total volume of production. As a result, production of the 1997 telephone required

9.25 kWh, 99.89 MJ. This excludes the energy required for printed circuit board (PCB)

production, which is calculated separately and then added to the energy required to

manufacture the telephone. The energy required to manufacture 1 mm 2 of the 21090mm2

1997 PCB was found to be 0.0019 MJ [16]. Production energy for the other telephones

was predicted based on an historical production efficiency ratio, which will be further

discussed in chapter 5. The cost of energy was assumed to be $0.10 / kWh, $0.02778 /

MJ [26].

• Energy in Recycling

Reflects the energy consumed in a facility to shred and separate the telephones. The value

was obtained by dividing the total facility consumption of energy in monetary value by

the total volume of recycled telephones. The result was that the recycling of the

telephone required 2 kWh /Kg (21.6 MJ /Kg) of material. This value was based on the

AT&T Reclamation Center, located in West Chicago, IL. [15]. The metals in the
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telephones are assumed to be the only materials recovered from the telephones, since the

value of recycled plastics is negligible. The cost of energy was also assumed to $0.10 /

kWh, $0.02778 /MJ.

• Embodied Energy

This variable was not included in the resource productivity formula, and was added to

quantify the importance of recognizing the efforts for conserving the embodied energy of

polymers. The values used were extracted from reference [27].

• Lifetime Energy Use

Reflects the energy consumption of the product in the use stage of its lifecycle. This

measure reflects the energy in both the "In-Use mode" and the "Stand-By mode". The

utilization factor was assumed to be 3% over a 24-hour period, based on a small sample.

For the 1997 telephone, the energy consumption rate was taken to be:

In-use mode: 5.5 Watts, Stand-by mode: 2.2 Watts.

These values were obtained based on personal contact with research staff at Lucent

Technologies [26].

3.3.2 Eco-Compass

As mentioned earlier in chapter 2, eco-compass is a comparative tool that can be used to

compare one existing product with another, or for comparing a current product with new

development options. The methodology followed to utilize the concepts of this tool, is to

choose one of the products as the base case for comparison and evaluate the performance

of the other products to the base case. The base case always scores a 2 in each

dimension. The alternative product is then given a score relative to this base case on a

scale of 0-5 in each dimension. The precise score depends upon the percentage increase
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or decrease in performance. The scoring is more logarithmic than linear. The distance

between a 2 and a 5 is a " factor of four" improvement. If the improvement in

performance was of a magnitude of 2 or greater, then a score of 4 would be given to the

product. If the improvement was of a magnitude greater than 4, then the applicable score

would be 5. While a decrease in the performance by a magnitude of 0.5, would be given

a score of 0. The results are plotted on a hexagon scale that provides a visual conception

of the calculated results as seen in Figure 3.1.

Figure 3.1 The Eco-compass
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• Mass Intensity

Detects the change in the material consumption and mass burdens of products or service

chains. The metrics used to measure the mass intensity is based on the weight of the

product, regardless of the functionality of the parts and subassemblies.

• Energy Intensity

Detects the change in the energy usage associated with the product throughout its

lifecycle. This metrics quantifies the energy required to produce the feedstock materials,

energy consumption during production, energy consumption in the use stage, and finally

energy consumption during recovery, which is energy required for recycling minus the

embodied energy of polymers.

• Health & Environmental Risk (H&E Risk)

Detects the change in the environmental burdens associated with the production of the

product over its lifecycle. Environmental burdens include air emissions, solid wastes and

water effluents. This metrics quantifies the environmental burdens generated from the

production of the feedstock materials only, since no data was available for other lifecycle

stages. The methodology used to evaluate H&E Risk is the same as the one described

earlier in section 3.2.

• Revalorization

Otherwise known as "demanufacturing" evaluates the changes and advancements in the

demanufacturing technology, emphasizing on nine important performance attributes.

Those performance attributes are: Material variety, material marking, fasteners

comparison, ease of disassembly, which utilizes the DEIM to measure several factors that
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are crucial to the disassembly process such as disassembly time, accessibility of parts and

subassemblies, force required to disassemble parts, specific fixtures required to hold the

part, specific tools needed for the disassembly process, and finally, the instructions

required, if any, to disassemble the product.

• Resource Conservation

This dimension is concerned with efforts to conserve material and energy usage. The

metric used is the denominator of the resource productivity (RP), which was discussed

earlier in chapter 2. The formula used to calculate resource conservation is:

(Material Consumed - Recycled) + (Energy Consumed for Production + Recycling —

Embodied Energy) + Lifetime Energy Used.

The assumptions used for each variable were discussed earlier in the previous section.

• Service Extension

This dimension concentrates on the extent of service delivery to customers from a given

amount of environmental input. Variables under study are commonality, upgradability

and modularity. The above three metrics were defined as follows

1. Commonality: Refers to the compatibility of the current generation subassemblies

with the next generation.

2. Upgradability: The ability to easily upgrade subassemblies to meet new design

requirements.

3. Modularity: Whether the product and subassemblies are designed so that they can be

easily serviced, replaced and disassembled.
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3.4 Multi-Lifecycle Assessment (MLCA)

Multi lifecycle assessment is a new methodology that extends the traditional lifecycle

stages set forth by SETAC and EPA. It puts greater focus on quantifying materials,

energy and environmental burdens associated with end-of-life options and on value of

returning parts and materials back to use, through demanufacturing, reengineering and

remanufacturing. It also allocates appropriate benefits to the product over multiple

generations rather than one. The aim is to introduce a next generation engineering

system in which the quality of the waste stream is engineered with the same concern as

the product itself, and where discarded products and waste material are reengineered into

valuable feedstocks.

MLCE concentrates on investigating, developing and creating new applications

for materials and components from discarded products. The objective is to enhance the

use of materials and components from discarded products so that they could be used over

more than one product lifecycle, hence the Multi-lifecycle methodology is introduced.

MLCE is more of a systematic approach in analyzing a product, since it accounts

for the multiple lifecycles that materials or components pass through. This requires a

clear vision and understanding of the product from its raw material extraction through use

stage and finally demanufacturing and reengineering. Hence efficient demanufacturing

of the product is one of the prime goals of multi-lifecycle engineering. Design for

disassembly helps in attaining this goal and efforts are being made towards developing a

methodology for it. In order to quantify in a simple and consistent manner, the inputs and

outputs to each of the MLCA stages, a generic process model was developed that would

quantify these values. Also, a generic framework for those stages was developed as to
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analyze different materials and processes in a consistent way. These generic processes

were previously presented in a master's thesis by D. Badwe [14]. Figure 3.2 shows the

generic process modeling structure utilized in the MLC methodology.

Figure 3.2 Generic Process Modeling Structure

In this generic process, the center of the figure refers to any process or stage of an

LCA under study. The process model quantifies all the necessary information that is

needed to analyze the product. Information obtained refers to the equipment used, tools,



71

process time, environment yield rate and others. The inputs to this process are

concentrated on raw materials, energy, water, chemicals, process materials and the

knowledge of the process planner and designer. The outputs from the process box are

divided into the primary product and the secondary outputs. The secondary outputs refer

to any co-products produced, airborne emissions, solid wastes, and water effluents. By

completing the data in the above model, one should be able to obtain a balance of energy,

raw materials, air emissions, and solid wastes for a particular process or stage.

An important aspect of lifecycle assessment is balance flows of energy and

materials and quantifies emissions, solid wastes and water effluents throughout the

product life. Figure 3.3 shows the total lifecycle engineering framework in terms of the

considerations for analysis and modeling.

Figure 3.3 Total Lifecycle Considerations for Analysis & Modeling
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As seen in Figure 3.3, materials production has been divided into two separate

stages, materials extraction and materials synthesis. This breakdown is useful in defining

the depth and level of the study as it gives more options for designers to evaluate their

product based on their specific needs. Another stage that is further quantified in the MLC

methodology is the packaging and distribution stage, which has been separated from the

production phase as a unique stage. This stage quantifies the materials used in the

packaging process, the packaging process itself, as well as methods of transportation,

distance traveled and energy and emissions associated with these processes.

The last stage in the traditional LCA is of recycle/waste management. It has only

three options namely recycle, compost, or discard the waste generated after the full usage

of the product. The main option to consider and where MLCA differs from LCA, is in the

recovery and new life options of the product. LCA addresses two types of recycling

processes, open loop recycling and closed-loop recycling. Closed-loop recycling occurs

when a product is recycled into a product that can be recycled over and over again.

Whereas in open-loop recycling system, a product made from virgin material is recycled

into another product that is not recycled, but disposed off, possibly after a long-term

diversion. So, LCA looks into this as two separate distinct recycling options. This is

where MLCA plays its role, in addressing these two recycling options simultaneously,

rather than in isolation, and not only at the end of products life but also throughout its life

from raw material extraction to final disposal. MLCA calls this transitional stage of

product life cycle as Demanufacturing.

Traditional LCA talks about recycling in which some material is ultimately

disposed to land as in closed-loop / open-loop recycling. Thus, LCA is a cradle-to-grave
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analysis, whereas MLCA tries not to landfill any material as far as possible and so is a

cradle-to-cradle analysis tool. MLCA finds new options for the waste disposed at every

stage so that it can be reengineered into useful products and not just once but again and

again. This reengineering stages acts as the link that closes the lifecycle loop. Finally, the

remanufacturing stage is where the parts and subassemblies are refurbished. Those parts

could then be used in new products at the production stage or for replacements and

maintenance at the use stage or could be sent back for demanufacturing.

3.5 MLCA Stage Description

As mentioned earlier, the MLCA methodology relies on the consistency of the

information throughout the product life stages. Therefore, generic frameworks for the

MLCA stages: Materials extraction and synthesis, Production, Use, Demanufacturing,

Reengineering, and Remanufacturing have been developed. These frameworks capture

product information in a consistent and uniform manner. Following is a description of

the generic frameworks.

3.5.1 Generic Framework for Feedstock Material

A common framework, as shown in Figure 3.4, was developed to serve as the model

structure for each feedstock material in order to have a consistent and standard process

description of all the materials. For polymers, this model indicates the various stages

involved in the production of the resin from extraction of crude oil to final blending and

formulation. For metals, this model incorporates the extraction of ores and initial

beneficiation to finished metal.
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This model is composed of two parts: raw material extraction and material

synthesis. Materials synthesis consists of intermediate processing, final processing and

end-use preparation. The model quantifies energy and material inputs and provides the

output, by-products and environmental impacts of the processes. Through the use of

mass and energy balance equations, the total energy, mass and environmental

requirements for the production of each material were determined.

Figure 3.4 Modeling Framework for Primary and Secondary
Processing of Feedstock Materials
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3.5.1.1 Materials under Study: The generic framework for primary and secondary

processing of feedstock materials described earlier in this section is implemented on the

materials composing the telephones. Necessary information, such as energy and

environmental burdens for the materials composing the product, must be gathered. The

information is then sorted in the generic framework structure. The next step in analyzing

a material is to develop a process tree for the production of materials, as in Figure 3.5.

This structure provides information on the process steps and materials needed to develop

or produce a certain material. Materials analyzed in this study are divided mainly into

polymers and metals. The polymers presented here are Acrylonitrile-Butadiene-Styrene

(ABS), Polyvinyl Chloride (PVC), High Impact Polystyrene (HIPS) and Polycarbonate

(PC). The metals include Steel, Aluminum, and Copper which, were described in another

thesis developed in MERC by D. Badwe [14]. The processing of ABS will be discussed

in details, since the majority of the electronic products housings are made out of ABS

plastic, and because all the plastics used in the telephones understudy are also assumed to

be ABS.

3.5.1.1.1 Acrylonitrile-Butadiene-Styrene (ABS): ABS is an amorphous engineering

thermoplastic whose main features are impact resistance, rigidity, high gloss and low cost

versus other engineering plastics. ABS resins are used in a variety of applications

including, automotive, appliances, construction, electronics and business machine

housings. It is one of the most widely used platable plastics. Figure 3.5 shows the

process tree that was developed for ABS, that displays the various stages involved in the

production of ABS pellets.
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Figure 3.5 Process Tree for Production of ABS Polymer Feedstock
[Reference: Table 3.2]

For each of those stages, a production process was generated. These specific

processes were chosen due to their being the most common commercial production

processes for that material. There are three types of polymerization processes used for the

commercial production of ABS polymers: emulsion, suspension, and bulk. Historically,

emulsion and suspension processes have dominated the field of ABS manufacture.

Recently, however, the bulk process has achieved commercial importance. Because bulk

polymerization does not proceed in water, it has two inherent advantages over suspension

and emulsion polymerization. First, wastewater treatment is minimal. Second, less

energy per pound of product is consumed since dewatering, drying and compounding

steps are not necessary. Disadvantages of the bulk process include less product

flexibility, greater mechanism complexity, and less complete conversion of monomer into

finished polymer. This means that most ABS materials made by bulk require

devolatization to remove residual monomers prior to compounding of the final product.
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After analyzing the various materials composing the ABS resin, the information

gathered was integrated into the generic framework for primary and secondary

production. This framework allows us to visualize the entire production process that

formulates the ABS resin. Mass, energy, environmental emissions and co-products are

all balanced throughout the framework. The consistency in the measurement units used is

critical in analyzing a product and conducting a sensitivity analysis. The units used in

this study for each of the materials was based on a 1000-LB unit. The energy values are

all calculated in Mega-Joules (MA to account for the difference in efficiency of energy

from different sources such as natural gas and electricity. So the units used to measure the

energy required for producing the materials is in MJ / 1000 Lbs. Figure 3.6 shows the

generic framework for ABS processing. The detailed environmental burdens for the

processing of ABS are displayed in Table 3.1. Table 3.2 shows the references from

which information on energy and environmental burdens for the processing of ABS were

extracted. Similar details for the other polymers are given in Appendix A.

The assumptions made when calculating the energy consumption for the

production of the feedstock materials is as follows: Process energy used by the actual

manufacturing operations was considered, energy used for space heating of buildings and

other miscellaneous categories was excluded from the study. Finally, embodied content

of polymers was also not included. Following is a sample of the calculation methodology

for ABS, which is applicable to all the other processes. The values for the environmental

burdens are the actual numbers extracted from the reference, see Tables 3.1 and 3.2.

Energy calculations for manufacture of ABS:



Natural Gas Industrial heat: 2386 scf x 1.0799 MJ / scf = 2576.67 MJ

Electric: 206 kWhe * 3 * 1 MJ / 0.2778 kWhe = 2224.62 MJ

Total Energy = 2576.67 + 2224.62= 4801.29 MJ
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Figure 3.6 Generic Framework for Processing of ABS



Table 3.1 Environmental Burdens Associated with Processing of ABS.
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Table 3.1 (continued)
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Note:
• All figures are from Reference No. Table 3.2
• All figures refer to requirements for production of 1000 lb of ABS.
• Since propylene comes out along with ethylene in the fining process, we assumed types

and quantities of emissions coming along with propylene are same as that of ethylene.



Table 3.2 References for Energy and Environmental Burdens from Processing of ABS

I l/1.4511
	

I 1.)...1

No e: Environmental burdens information for each process were extracted from the same above sources.
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3.5.2 Generic Process Model for Production

The data resulting from the modeling framework for primary and secondary processing

will be integrated into the production stage of the product. A generic production module

was developed that incorporates the concepts of multi-lifecycle engineering and

simultaneously maintaining the balance of materials, energy and environmental data. As

seen in Figures 3.7 and 3.8 below, the processing of parts and subassemblies was

separated to emphasize the different inputs and processes required. The initial inputs to

the parts production process are reused parts that are recovered in the demanufacturing

process and raw (virgin), recycled and reengineered material from other (or same)

products, this also includes process materials. While the inputs to the subassembly

production process includes refurbished subassemblies that are also recovered from

demanufacturing and feedstock inputs rather than materials. The output from these two

processes is integrated into the final assembly process, which results in the finished

product. Throughout the above processes, materials, energy, emissions, co-products and

knowledge are quantified and balanced in each process. Figure 3.9 illustrates the generic

structure of production from a MLCA perspective.
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Figure 3.7 Generic Production Module 	 Figure 3.8 Generic Production Module
of Parts	 of Subassemblies

Figure 3.9 Generic Production Module
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3.5.3 Generic Process Model for Use Stage

Measuring the environmental performance of a product during the use stage is very

crucial, since energy consumption during this stage is usually the highest. A generic

structure was developed as seen in Figure 3.10, that illustrates the various inputs and

outputs to a product during its use stage. Generally, electronic products consume energy

during use in four modes: Active, Idle, Power save, and Off modes. Energy consumption

must be measured in each of those modes, in order to quantify energy consumed during

the products lifecycle. Similarly, environmental burdens are measured during those

modes and quantified. After the product is consumed and disposed of, it is sent to

demanufacturing, where its end fate is identified.

Figure 3.10 Generic Process Model for Use Stage
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3.5.4 Generic Process Model for Demanufacturing System

Discarded products and materials flow into the demanufacturer from a variety of sources,

including distributors, manufacturers and municipal collection systems. Upon receipt,

the demanufacturer performs a preliminary screening to determine if the product is to be

tested for reuse, disassembled or sent to the shredder. Depending on the product, its

condition, and current market demand for parts and materials, the demanufacturer

establishes a disassembly plan to maximize the value to be recovered. This value may be

to resale or remanufacture the product; recover parts, components and subassemblies;

recover basic materials for recycling and reengineering; send commingled materials to a

smelter to recover high-valued constituents; or to an incinerator for the recovery of

energy content. In most demanufacturing activities, small amounts of residue (or fluff)

must be sent to disposal in a landfill or incineration unit. Figure 3.11 is a flow diagram

showing the basic operation of the demanufacturing process, taken from concurrent

research at MERC, by K. Limaye [28].



Figure 3.11 Generic Model for Demanufacturing
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3.5.5 Generic Process Model for Reengineering

Reengineering involves the characterization of waste streams and the reformulation of

materials derived from these waste streams [8]. Figure 3.12 illustrated the generic

process for the reengineering stage, quantifying the major reengineering processes. Five

major reengineering processes were identified for recovered materials: Reprocess,

Compatibilize, Pyrolysis to Fuels, Pyrolysis / Hydrolysis to Monomers, and Shredding of

Metals. Table 3.3 illustrates the step-by-step procedure for each of the above processes.

Material inputs to this stage are mainly obtained from demanufactured products, through

processes such as shredding and separation. Energy consumption and environmental

burdens are measured at each step in the above processes. Finally, the materials resulting

from reengineering can be either integrated into materials synthesis, or can be inputted

directly as feedstock material for production.

Figure 3.12 Generic Process Model for Reengineering



Table 3.3 Reengineering Processes for Discarded Parts and Subassemblies [27]
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3.5.6 Generic Process Model for Rem an ufacturing

Remanufacturing is the process of refurbishing parts and subassemblies for reuse in new

products. Parts and subassemblies entering the remanufacturing process can either be

from demanufactured products, or from manufacturing processes. Figure 3.13 shows the

generic process model for remanufacturing, where the flow of a remanufacturing process

is as follows:

Energy and environmental burdens must be quantified at each of the above steps. The

resultant is either an assembly or a product that is fed back into the manufacturing

process or back to the use stage through maintenance. Also, products and subassemblies

that can not be remanufactured are sent back to demanufacturing for further processing.

Figure 3.13 Generic Process Model for Remanufacturing
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3.6 Multi-lifecycle Analysis (MLCA) Software Development

The MLCA software is an analysis tool that incorporates the concepts of multi-lifecycle

engineering (MLCE). The software introduces a new concept, which is reengineering of

materials and reengineering of parts back into production. As it is known, LCA is a data

extensive and time consuming process. Utilizing databases and software to analyze a

product and efficiently save all the information related to its is crucial. This software

aims to:

• Utilize the MLCE methodology as the backbone of the lifecycle analysis of the

product.

• Develop generic screens that can be utilized by most consumer electronic producers

• Produce a user-friendly tool to evaluate the environmental performance of consumer

electronic products.

• Have environmental information on products and processes readily accessible to

designers, which simplifies the integration of DFE into the design process.

• Help decision-makers to track the environmental performance of products, by using

performance attributed such as eco-compass and trend analysis.

The software is divided into three main levels: Product Description, Lifecycle stages, and

finally, Analysis and Results, which is still under development. This software is

developed using Visual Basic 5.0 as the front-end, and MS Access 97 as the back-end

database. The following sections describe the screen development for the software. Ji

Jin, a graduate student in the computer engineering department at NJIT, assisted in the

design and coding of the software.
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3.6.1 Product Description

These screens allow the users to describe and document the structure of their product in

terms of the different subassemblies and parts. This information is the basic inventory

control of the product, from which a list of all the materials, weights, and quantities of

parts and subassemblies is produced. As seen in Figure 3.14, the screen contains four

major tabs: Subassembly with Part, Final Subassembly, Part, and Circuit Board.

• Subassembly with Part: This tab is used for subassemblies containing several parts or

for subassemblies containing other subassemblies within its structure. For the

subassembly section, the user inputs information such as the subassembly name and a

brief description of the subassembly. The user also inputs information such as the

material type and the total weight of the subassembly. Similar information is inputted

into the parts section.

• Final Subassembly: This tab was designed for subassemblies that require no further

disassembly, such as a power unit. The information entered through this screen

relates to the various materials and the total weight of the subassembly.

• Parts: This tab was designed to describe parts that are not part of any subassembly.

Similar information is entered into this screen as the above.

• Circuit Boards: This screen is still under development. It relates to the circuit board

design, mainly quantifying a physical description of the circuit board.

Currently, efforts are concentrated on connecting this stage to a Computer Aided Design

(CAD) tool, so that the product description is automatically retrieved form a CAD file,

rather than being manually inputted.



Figure 3.14 Product Description Screen for Subassemblies with Parts

3.6.2 Lifecycle Stages Screens

After the user completes the product description stage, they then access the lifecycle

stages screens and input information specific to each stage of the products lifecycle under

study. The lifecycle stages of a product are divided into 7 stages: Materials Processing,

Production, Packaging and Distribution, Use, Demanufacturing, Reengineering, and

Remanufacturing. Detailed description of the above stages was described earlier in this

chapter.

92



93

3.6.2.1 Materials Processing: This screen helps to gather more information on the

materials used in the product. The system automatically displays a Material Inventory

Tree, which retrieves the information entered in the product description stage. The tree

displays a list of all the materials in the product, and lists under each material the parts

made out of that specific material. The user then inputs information related to the

composition of the material, such as the virgin, recycled and reengineered contents. Also

information on the percentage of industrial scrap and post consumer recycled content are

required from the user. This information helps in allocation of energy and environmental

burdens to the product, based on the MLCE concept. The information from this stage

helps analyze the energy consumption and environmental burdens associated with the

production of material feedstock for the product understudy. A modeling framework for

primary and secondary processing of feedstock materials was developed as described in

section 3.5.1. Energy and environmental information is available for metals, polymers

and glass. The data is divided into two sections: Materials Extraction and Materials

Synthesis so that users can specify which stage of feedstock production they are

interested in. This software also gives the users the flexibility to modify the information

on materials extraction and synthesis to meet their specific needs. The users can also

develop their own user-defined framework for existing and non-existing materials in the

database. Figure 3.15 displays the materials extraction and synthesis screen.



Figure 3.15 Materials Extraction and Synthesis Screen

3.6.2.2 Production: In this screen, the production process used to produce each part is

specified. The production tree displays the product parts and subassemblies. The user

then selects a part or subassembly from the tree, upon which information about that part

or subassembly is retrieved from the database. The user is then prompted to select the

production process form a given list of processes. The use of process materials is also

considered where the user can input different materials used and specify their weights.

The user also specifies the yield rate for that particular process and defines the allocation

of energy and environmental burdens either to the product only, or by mass ratio of

product to co-product, or by the price market or it could be user defined. The database
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contains information on eight production processes: Extrusion, Injection,

Thermoforming, Stamping, Milling, turning, Semiconductor processing, and Glass

forming. The database quantifies mainly materials, energy and environmental burdens

associated with those processes. This information is used to help evaluate the total

lifecycle energy, materials and environmental burdens of the product. Figure 3.16

displays the production screen.

Figure 3.16 Production Stage Screen
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3.6.2.3 Packaging and Distribution: Packaging and distribution is part of the lifecycle

of a product, and information on the packaging material and transportation of the

products is considered essential. The packaging and distribution screen allows the user to

input such specific information on the packaging material and transportation. The user

specifies the packaging material used for the product, the percent of recycled material,

weight, and volume. Information on the volume of the product, total packaging weight

and other information are also quantified. The software also allows the user to specify

the mode of transportation and the distance traveled, assuming distance traveled to be

roundtrip. Figure 3.17 displays the screen for the packaging and distribution stage.

Figure 3.17 Packaging and Distribution Screen
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3.6.2.4 Use: This stage relates to the energy consumed by the product while in different

modes. These modes are divided into the active mode, idle mode, power save mode and

off mode. In each mode the product consumes a certain amount of energy that must be

entered into this screen. The user also inputs the amount of time the product is in each

mode. The total energy consumption of the product during its use stage is then calculated

by summing the energy consumption at each mode and multiplying the answer by the

expected life use of the product. Figure 3.18 displays the use stage screen.

Figure 3.18 Use Stage Screen
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3.6.2.5 Demanufacturing: Demanufacturing is an important stage of the product

lifecycle, since the end fate of the various parts and subassemblies is determined here.

The first stage in analyzing the demanufacturing process is to explain the facility

structure used in terms of the size of the facility, yearly energy consumption, cost of

energy, the volume of products handled per year and, the total disassembly time of the

product. The assumption made for demanufacturing is that it occurs manually. The user

then chooses the end fate options for the parts and subassemblies. A list of end fate

options is provided for the user to choose from, in which he/she assigns the end fate for

each part and subassembly. The end fate options provided are: reuse product,

remanufacture parts and subassemblies, recover basic material, or remaining carcass. As

the user specifies and selects the end fate option for each part or subassembly, that part or

subassembly is deleted from the product tree automatically when its end fate is

determined. Figure 3.19 displays the demanufacturing screen, and shows the recovering

of basic materials process.

• Reuse Product

If the end fate chosen for the product is reuse, then product must have undergone a

test that evaluated its functionality. The user must then input the passing rate of the

test and the reselling price of the product. If the product fails the test, the user then

clicks on the " demanufacture product" button, where other end fate options are

specified for the product.
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• Remanufacture Parts and Subassemblies

If the user decides that the optimum value obtained from a part or subassembly is

through remanufacturing that part, then the user must add those parts and

subassemblies into the table provided.

• Recover Basic Material

Material can be recovered from parts and subassemblies by either: disassembly or

shredding. The user creates a custom bin table from a preselected list. This list

includes the various recovered materials, e.g., pure aluminum, commingled

aluminum, and also includes the recovery method: disassembly or shredding. For

example, if commingled plastic is part of the material in the product, then the bin

table will include: commingled plastic—disassembly and commingled plastic—

shredding. The same method applies to all other materials. The user has to input the

parts and subassemblies to the various bins displayed. The user then specifies the

four end fate options for each bin, which are: Reengineering, Waste to Energy,

Smelting, and Landfilling. Having this structure assists the demanufacturers in

specifying the number of various bins they need to allocate for this product.

• Remaining carcass

The remaining parts and subassemblies "fluff', that do not apply to the above end fate

options are entered in this stage. The user can either select all the remaining parts and

subassemblies in the product tree or can select them individually. The options

available to the user are either to smelter, waste to recovery, or landfill the "fluff".
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Figure 3.19 Demanufacturing Screen, Illustrating Recovering of Basic Materials

3.6.2.6 Reengineering: This screen aims at specifying the process required to reengineer

selected materials, simultaneously capturing the materials, energy and environmental

burdens information at each step of the reengineering process. Six different

reengineering processes were identified for the materials: Smelting, Compatiblization,

Pyrolysis to fuels, Pyrolysis/ Hydrolysis to monomers, and finally, Shredding for metals.

For each of the reengineering processes, the main questions that are addressed

are: The environmental burdens, energy requirements, material flows, additional process

materials, and cost of the process. Figure 3.20 displays a screen detailing the cleaning
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step in the reprocessing of materials. The user selects a material for reengineering, after

which the percentage of hazardous material or contaminants in the material is specified

by weight. The user then selects the reengineering process from a given list. An

interactive tree appears, displaying the step by step procedure for the selected process.

The user then selects each step in the process, upon which a window frame pops similar

to the cleaning process window frame in Figure 3.20. Here, the user inputs information

on energy requirements for the cleaning process, environmental burdens associated with

the process and a list of others. The same procedure is repeated for all the materials to be

reengineered.

Figure 3.20 Reengineering Screen, Illustrating the Cleaning Process
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3.6.2.7 Remanufacturing: This screen describes steps that parts and subassemblies

undergo for remanufacturing. Similarly, the main data to be quantified is material flow,

energy consumption, and environmental burdens. The first step for the user is to describe

the remanufacturing facility, where this description is similar to that of the

demanufacturing facility. The user then selects the part or subassembly for

remanufacturing from a given list. This list is taken from the demanufacturing stage,

where the user selected earlier the parts and subassemblies for remanufacturing. The step

by step remanufacturing process is shown in an interactive box at the left hand side,

where the user selects each step and inputs the required data on the opposite window

frame. Figure 3.21 presents the remanufacturing screen.

Figure 3.21 Remanufacturing Screen



CHAPTER 4

TELEPHONE CASE STUDY

4.1 Introduction

Four generations of low-end business telephones will be the focus of the DFE evaluation.

This product was selected because of the availability of multiple generations of the

product of which the most recent was designed using current DFE guidelines; and, the

product has a reasonable level of complexity balanced with product simplicity. Phones

designed and manufactured in 1965, 1978, 1989 and 1997 are already available for study.

The research methodology is straight forward: Initially, an LCA and demanufacturing

analysis was performed on each of the first three generations to determine technology and

non-DFE design trends. This information was used to forecast the progression to a 1997

non-DFE-designed phone. These trends represent the environment performance of the

business telephone without explicit DFE consideration but fully accounting for the

advancements in enabling technologies and use of standard design objectives. By

overlaying comparable information generated by analyzing the 1997 DFE-designed

phone, the true impact of DFE on the product becomes apparent. For example, if no

significant difference was found between the non-DFE projection and the DFE-designed

product for a specific characteristic, then any environmental improvements associated

with the new design is attributable to causes other than DFE. Without examining these

baseline technology trends, the direct impact of DFE on the product lifecycle can not be

determined.
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4.2 System Boundaries

The inventory analysis generally includes energy consumption, waste emissions and

process material requirements at each stage in the production of any raw material. In this

study, process materials and energy required for the production of the materials

understudy will be considered to be inside the system boundary. Energy consumption

during the production, use, and recovery of the telephones will also be quantified. The

environmental burdens associated with the production, use, and recovery were

unavailable to be included in the study. Materials used to fabricate fundamental

equipment and tools as well as those indirectly consumed during the production and

operation of a transportation vehicle will remain outside the boundary. Finally,

assumptions and adjustments were necessary to simplify the analysis. Materials

considered for this study had to meet a threshold of being more than 2 % by weight of the

product or else they were excluded from the study, because their impact was considered

to be negligible. Generally the limits placed on the breadth and depth of LCA analysis

can be classified as restriction on (1) the lifecycle boundaries of a system or (2) the actual

information collected, whether it is limited in its specificity or number of inventory

categories. [14]

4.3 Demanufacturing Analysis

A complete disassembly of the four telephones was conducted. The disassembly process

was recorded by photo images of the various steps and a time study also was performed

simultaneously. The different parts and components of the telephone were identified and

recovered by part name, functionality and material composition. A record was kept on
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the number and different types of fasteners used. Finally parts were weighed using a

balance with an accuracy of +1- 0.01g, and each part was then classified under its

functional subassembly. The result of the disassembly process is captured in the

components inventory list, and, the step-by-step procedure sheet contains the time

required for each process and the tools used in performing the disassembly.

4.3.1 Disassembly Procedure Sheet

The key behind successfully analyzing the results of the demanufacturing process is

documentation. A disassembly procedure sheet was created and used to document step-

by-step, the disassembly of a product. The disassembly sheet is divided into four

columns:

• The subassembly column, referring to the subassembly which has been taken apart

• The tool column, referring to the tools necessary to perform the disassembly

• The procedure column, which informs the operator how to disassemble the part or

subassembly

• Finally, the time column, which is an estimate of the time required to disassemble the

part or subassembly

These disassembly procedure sheets provide data to develop an operational

disassembly process plan. The disassembly sheet describes the end-of-life option for the

components, parts, and subassemblies to capture the maximum value from the product at

the end of its life. The sheet can be distributed amongst disassembly operators, which

will make them more familiar with the product and the disassembly procedure. It will

also reduce their learning curve for disassembling the product, which will minimize the
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disassembly time. On a larger scale, this sheet could be inputted into a database, and

utilized by an automated demanufacturing facility, by feeding the machines on how and

what parts to disassemble. For this study, the total disassembly time is used as a metric

to evaluate the improvement in the disassembly time over the four generations.

4.3.1.1 Disassembly Procedure for the 1997 Telephone: In this section, the detailed

disassembly procedures and the tools used to demanufacture the 1997 telephone will be

illustrated. For each of the four phones, a disassembly procedure sheet was created

similar to Table 4.1, which illustrates the disassembly procedure for the 1997 phone. A

note to be made is, the disassembly of all the phones took place in a laboratory

environment. Therefore, the disassembly time values may not reflect the actual time

taken to disassemble the phone in a demanufacturing facility, but the purpose here is to

illustrate the methods used for documenting the disassembly of products and to use this

information for our purposes not absolute performance.

The first step in disassembling this phone was to unhook the handset cord and

snap off the stand attached to the bottom base. Figure 4.1 displays the bottom base and

the stand separated. The next step was to disassemble the unit, separating the base from

the top. There are two screws and four snap fits located on each corner of the unit. After

unscrewing the two screws using a medium-sized straight blade screwdriver, the snap fits

must be pressed and removed two at a time. This process will separate the top and

bottom bases of the unit. The bottom base has no extra parts attached to it, all the parts

and subassemblies are connected to the top base.



Table 4.1 Disassembly Procedure Sheet for the 1997 Telephone

Disassembly Procedure (1997 Phone)
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Figure 4.1 Bottom Base and Stand for the 1997 Phone
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Due to the Simplified design of the internal unit, the remaining components which

are the circuit board, speaker, keypad, keys, hook, latch spring and clear indicators, can

be removed easily without tools. With this, the unit is completely disassembled. Figure

4.2 illustrates the top cover of the unit with the circuit board and other components.

Figure 4.2 Top Base, Circuit Board and other Components of the 1997 Phone

The subassembly that remains to be disassembled is the handset subassembly. The

handset covers are attached by snap-fits, and strong adhesive. Due to this strong

adhesive, a hack saw well be used and the disassembly of the handset will be considered

a destructive one. Separating the handset covers took an extensive amount of time,

approximately three minutes. The remaining parts, the speaker, rubber housing,



109

microphone and foam.	 Figure 4.3 displays the handset disassembled, showing the

various inner components. Similar disassembly procedures for the other telephone

generations are shown in Appendix B.

Figure 4.3 Handset Subassembly of the 1997 Telephone
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4.3.2 Inventory Tables

As the disassembly process is progressing, it is important to categorize and separate the

different subassemblies, especially with more complex products. An inventory table is

necessary as it provides a detailed list of all the parts in the product, quantifying for each

part the quantity, function, color, weight, material type, number of screws, number of

snap-fits and market value. Following is a detailed description of each column in the

inventory table.

• The first two columns identify the names of the various sub-assemblies and parts in

the telephone. This identification helps the disassembly workers to understand the

disassembly operation.

• The third column refers to the quantity. In this column the quantity of each

component is indicated. With few exceptions everything is just a single quantity.

• The fourth column refers to the function of each part.

• The fifth column refers to the color. This assists in visually differentiating certain

parts, and sorts out parts made from the same material but with different colors, as to

eliminate contamination, if the material is to be recycled.

• The sixth column consists of the 'weight' of these sub-assemblies and parts. By

knowing the weights of the parts, the part which has the most weight, can be

identified and action can be taken to reduce it. The weights indicated here, are the

total weights and not of just one quantity. Therefore, if some parts have a quantity of

eight, then the weight indicated is for all eight parts.

• The seventh column refers to materials. This column characterizes the sub-assemblies

and parts identified in the earlier step. The type of material of which the sub-assembly



111

or the part is manufactured is identified. This identification is particularly important

in deciding the fate categories of these sub-assemblies and parts.

• The eighth and ninth columns refer to the number of screws and snap-fits attached to

each part. This helps in analyzing the ease of disassembling the products.

• Finally, the tenth column refers to the current market value of the part or

subassembly, which helps in identifying the optimal end-of-life fate for the part.

Table 4.2 shows the inventory table of the 1997 telephone. Detailed Inventory tables for

the other telephone generations are shown in Appendix B.



Table 4.2 Inventory Table of the 1997 Telephone



Table 4.2 (continued)
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4.3.3 Disassembly Effort Index (DEI) for 1997 Phone

As mentioned earlier in chapter 2, DEI is a metric that assesses certain parameters

associated with disassembling a product and quantifies them on a linear scale. DEI has

six main parameters: Time, Accessibility, Tools, Part-Hold, Force, and Instructions.

These six parameters were integrated with another three: Number of different material,

Number of different fasteners, and Material type stamping to form what's called

Revalorization. Revalorization expands DEI and provides a more detailed analysis of

ease of disassembly for recovering materials, which is quantified by the parameters:

number of different materials and material type stamping.

The weights assigned to each parameter in the DEI, reflect the relative importance

that each demanufacturer assumes for that parameter. These weights can be modified

according to the needs of each user. Following is a description of how the different

parameter values were extracted for the 1997 phone.

• Number of different materials

Five materials were found in this phone: ABS, Rubber, Steel, Aluminum and Copper.

Based on the revalorization scale, if a product is composed of five materials, then the

linear score assigned is 12.

• Number of different fasteners

Three different fasteners were identified in this phone: Screws, Snap-fits, and

Adhesives. Converting this to a linear scale, the assigned score was 15.

• Material Marking

This scale was developed based on the percentage of plastic parts stamped as per the

ISO identification standards. The 1997 DFE designed phone was the only phone that
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had ISO material stamping on its plastic parts. The percentage of plastic parts

stamped was 20%, converted through the DEl scale to a score of 3.

• Time

The time required to completely disassemble the 1997 phone was 5 minutes and 12

seconds, of which 3 minutes was required to disassemble the handset subassembly

due to the use of adhesives and snap-fits, instead of screws for fastening the covers.

The DEI score assigned was 7.5.

• Tools

Tools needed for disassembling the 1997 phone were simple, mainly a medium sized

straight blade screwdriver, hands, and a hack saw that was used to separate the

handset covers. The linear score assigned to this parameter was 5.

• Accessibility

Accessibility to the various subassemblies of the phone was easy, and all the fasteners

had a z-axis accessibility, which gave this parameter a linear score of 6.

• Force

The force required for disassembly and unfastening was an axial force, which had a

linear score of 4.5.

• Part-Hold

Hands were the only fixture use to hold the parts as they were disassembled, which

converted to the linear scale gets a score of 2.5.

• Instructions

No instructions were necessary for disassembling this phone. The disassembly

process was easy and straightforward. The score assigned for this parameter was 3.
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Summing up the points for all the parameters, the final DEI score for this phone

was 58.5, which was the highest compared to the other three telephone generations. A

high score corresponds to better performance. Figure 4.4 displays the DEI for the 1997

phone. The scores for the other phones were 55.3, 44.7 and 25.5 for the 1989, 1978, and

1965 phones respectively. Appendix B displays the DEI for those phones.

Figure 4.4 DEI for the 1997 Telephone
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4.3.4 RFBD for 1997 Telephone

A RFBD was generated for each of the four telephones. In this section, the 1997

telephone RFBD will be described in detail. Figure 4.5 illustrates the RFBD for the 1997

telephone. From the diagram, one could see that there are three major stages for

completely disassembling the phone. The first stage is separating the handset

subassembly and stand simultaneously. The second stage involves separating the units

top and bottom bases. Finally, the third stage, which is the removal of the internal

components in the unit. From the material variety shown in the RFBD, it can be

concluded that five bins are required to separate the parts and subassemblies into the

different material compositions. Based on the results obtained from the RFBD, designers

and demanufacturers can analyze and conclude different scenarios for the End-of-Life

options. Utilizing the RFBD and the disassembly procedure for the 1997 telephone, the

following analysis was concluded:

• 5 major sort bins are required for separating the parts into the following grades: ABS,

commingled plastics, PCB's, commingled metals and fluff.

• The majority of the components in this phone can be refurbished and reused into the

same line of production or into similar products.

• Demanufacturer can perform a partial disassembly to extract valuable parts or

subassemblies, instead of disassembling the entire telephone.



Figure 4.5 Reverse Fishbone Diagram for 1997 Telephone
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4.3.5 Disassembly Comparison

This section compares the disassembly of the four telephones, detailing the major

obstacles faced if any. Advancements in the technology of electronic products and

components had a huge impact on the noticeable changes in the design of the telephones.

Table 4.3 highlights the comparison between the telephones as a result of disassembly.

Table 4.3 Disassembly Comparison of the Telephones

• 1965 Telephone

The time required to disassemble this phone, 32 minutes and 15 seconds, was the largest

among all the telephones. Many variables had an affect on the disassembly time. The

complexity of the parts, the accessibility to parts and subassemblies, and the fastening

method all contributed to the long disassembly time. For example, the wiring harness

had 48 leads connected to the board with screws. The time required to separate the

wiring harness from the board was approximately 3 minutes and 40 seconds. The time
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required to completely disassemble the " Line select subassembly" was the longest,

approximately 15 minutes, accounting to half of the time required to disassemble the

whole telephone. This was due to the large number of screws, the different fasteners

used, the complexity of the design, large number of parts used, and the soldering of the

joints.

• 1978 Telephone

The major differences noticed when comparing this phone to the 1965 phone was the use

of more circuit boards. Even though some subassemblies of the 1965 phone were

replaced with newer technologies, such as the ringer subassembly that was replaced by a

speaker, the number of parts did not change. Parts were more accessible than the 1965

telephone parts, as they were less complex. Disassembly time improved due to the large

number of parts used in the subassemblies. The keypad subassembly, for example,

remained the same with negligible changes over the years. Also, percentage of plastics

used increased by 30%, mainly in the covers, while the percentage of metals used

decreased by 30%.

• 1989 Telephone

This telephone showed a remarkable change over the 1978 telephone. Technology

advancement in electronics made the telephone solely dependent on one major part, the

circuit board, which replaced all the mechanical parts and subassemblies used in previous

designs. This change reduced the number of parts by more than 70%, disassembly time

was reduced from 30 minutes to 6 minutes, and generally, the disassembly process

became much easier due to less design complexity.
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• 1997 Telephone

This telephone was designed using the state-of-the-art DFE guidelines. Improvements

over the 1989 telephone are negligible and in some cases, the 1989 telephone out

performed the new design. This could be mainly noticed in the handset subassembly.

The 1989 telephone handset was fastened with 2 screws and snap-fits, which required

minimum effort for disassembly, while the 1997 telephone handset was fastened using a

strong adhesive and snap-fits. Disassembling the later handset required a saw and took

approximately 3 minutes to take apart! On the other hand, the keypad subassembly

improved in this phone by reducing the number of parts to three by integrating the keys

into one unit instead of separate parts, which reduces both assembly and disassembly

times.



CHAPTER 5

DFE GUIDELINE ASSESSMENT AND TREND ANALYSIS

5.1 Introduction

A lifecycle assessment (LCA) and demanufacturing analysis were performed on each of

the first three generations to determine various technology and non-DFE trends. This

information was used to forecast the progression to a 1997 non-DFE-designed phone. By

overlaying comparable information generated by analyzing the 1997 DFE-designed

phone, the true impact of DFE on the product becomes apparent. For example, if no

significant difference was found between the non-DFE projection and the DFE-designed

product for a specific characteristic, then any environmental improvement associated

with the new design is attributable to causes other than DFE guidelines. Relevant

characteristics and metrics such as, raw material and energy depletion, environmental

burdens, disassembly complexity, demanufacturability and resource productivity have

been utilized to analyze the environmental performance of the telephones.

Various performance metrics and assessment technologies are needed to evaluate the

environmental improvements in products over the years. Techniques such as the Eco-

Compass, developed at Dow Europe, are used to compare the various generations. The

Eco-compass has six dimensions that quantify significant environmental issues: mass

intensity, energy intensity, health & environmental potential risk, resource conservation,

revalorization and service extension. Resource productivity, as proposed by Sony, is

another comparison tool. The measure attempts to quantify economic value added

related to consumption of material and energy resources. To integrate LCA with these
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metrics, the multi-lifecycle analysis tool has been developed. Using a database of

materials, processes and product information, the software generates results and reports,

utilizing various calculation engines, which help in assessing environmental impacts and

product improvement.

5.2 DFE Guideline Assessment

As mentioned earlier in chapter 3, DFE guidelines were divided into five major

categories: Environmental burdens, material conservation, energy conservation, service

extension and demanufacturing. This section analyzes the effectiveness and the true

impact of the DFE guidelines on each of the metrics quantified. The general equation, Ln

Y = aX +b (Y=e ax+b), applied to the data from the previous three telephone generations,

was used to estimate the values of the 1997 telephone for the different metrics used.

Using such a uniform equation guarantees consistency in the analysis of results.

5.2.1 Environmental Burdens

The following analysis of air emissions, waterborne effluents and solid wastes is for the

production of the feedstock materials and the emissions generated from the power

sources used during this stage. For the other lifecycle stages: production, use and

recovery, the only environmental burdens included are those generated from the power

sources used in those stages, which is assumed to be electric energy. The US grid mix

for 1990 was used as the default electric power mix, where the mix is composed of 54.5%

coal, 3.9% oil, 9.3% gas, 21.7% nuclear, and 10.2 % hydroelectricity {29]. The

environmental burdens generated from plastics processing was based on the data
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presented in chapter 3, while for metals processing, the data was extracted from D.

Badwe's masters thesis [14]. The environmental data generated from the power sources,

which are mainly natural gas and electric, were from S. Young's Ph.D. Dissertation [29].

Appendix C displays the data and the method followed for calculating air emissions,

waterborne effluents, and solid wastes for each of the four telephone generations.

• DFE Guideline: Has manufacturing gaseous emissions been minimized to the

greatest extent possible?

Following is the analysis for air emissions over the product lifecycle: Materials

processing, production, use, and recovery.

• Materials Processing

The values quantified in this stage, are the summation of air emissions generated from

ABS production, metals production (steel, aluminum, and copper), and from the power

sources used in materials processing. For the feedstock material, air emissions was

measured based on the amount of each material in the telephone, while the power source

was measured based on the energy required for primary and secondary processing of the

materials, whether it was natural gas or electric.

Figure 5.1 displays the materials processing air emissions of carbon monoxide

(CO), nitrogen oxide (NO,), particulate, and sulfur dioxide (SO2) for the four telephones.

Carbon monoxide emissions were reduced dramatically from the 1978 to the 1989

telephone, mainly due to the reduction in the quantity of aluminum used, which dropped

from 62g to 0.93g in those years. Reductions in particulate emissions were attributable to

the decrease in the use of aluminum and copper from 1965 to 1989, while SO2 reduction

was mainly due to reduction in the copper content used in the telephones. 50 grams of
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SO2 were emitted only from copper use in the 1965 telephone, and was reduced to 6.2

grams in the 1978 telephone, a reduction of more than 85%.

Figure 5.1 Air Emissions Generated from Materials Processing

Table 5.1 displays the extrapolated air emissions for the 1997 telephone, the

equations used and the regression coefficient (r 2), for the elements displayed in the figure

above. By comparing the actual air emissions from the 1997 telephone to the

extrapolated ones, it is obvious that the actual values are higher by more than 40% over

the extrapolated values. Moreover, all of these air emissions are higher for the 1997

telephone than for the 1989 telephones. Therefore, it can be concluded that DFE

guidelines had no impact on improvements over this metric.



Table 5.1 Extrapolated Values of Air Emissions for Materials
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Carbon dioxide emissions were mainly emitted from the power source required

for manufacturing of ABS plastic, which accounts for 60% of total CO2 emissions, see

Table C.10, appendix C. 30% was emitted from the power sources used for processing of

metals, mainly aluminum manufacturing, see Table C.12, appendix C. Finally, 20% of

the CO2 emissions was from processing of feedstock metals, mainly steel and then

aluminum, see Tables C.4 and C.5 respectively, appendix C. Figure 5.5 illustrates total

CO2 emissions for each stage of the product lifecycle. Appendix C describes the

calculation method for the environmental burdens.

• Production

Air emissions considered in this stage were those generated from the power sources used

during the production stage. The air emissions generated from use of the electric power

source during production were calculated based on the MJ of energy used. Figure 5.2

displays some of the air emissions during the production stage. CO..) had the highest
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impact on air emissions as shown in Table 5.2, which details the air emissions and solid

wastes generated from use of electric power sources. The table also shows the

extrapolated values for the 1997 telephone, the equations used and their regression

coefficients, r2 . The reduction in CO2 emissions over the years is mainly attributable to

improvements in technology and processes. Despite the reduction over the first three

generations, the actual values for the 1997 telephone were 30% more than the

extrapolated value, and were essentially unchanged from the 1989 telephone. Therefore,

DFE guidelines also had no impact on air emission reductions in this stage.

.11

Figure 5.2 Air Emissions Generated from the Production Stage



Table 5.2 Environmental Burdens Generated from Production Stage
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• Use stage

Air emissions considered in this stage were those generated from the power sources used

during the use stage. The air emissions generated from use of the electric power source

during the use stage were calculated based on the M..1 of energy consumed. Table 5.3

details the air emissions and solid wastes generated from use of electric power sources.

The increase in CO2 emissions over the years is due to higher energy consumption of the

1989 and 1997 telephones. Figure 5.3 displays the air emissions generated during the use

stage for the four telephones. Refer to energy consumption during the use stage

calculations on page 146 for more detailed analysis.
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i

Figure 5.3 Air Emissions Generated from the Use Stage

Table 5.3 Environmental Burdens Generated from Production Stage
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• Recovery/ Shredder

Air emissions considered in this stage were those generated from the power sources used

during recovery. The air emissions generated from use of the electric power source

during the recovery were calculated based on the MJ of energy consumed. Figure 5.4

reflects the reduction in air emissions over the years, which is attributable to the

reduction in the weight of the telephones. Table 5.4 displays the air emissions and solid

wastes generated during the recovery stage, showing the extrapolated value for the 1997

telephone, the equations used and the regression coefficient for each equation.

Figure 5.4 Air Emissions Generated during Materials Recovery



Table 5.4 Environmental Burdens Generated during Materials Recovery
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Figure 5.5 displays the CO2 emissions throughout the various lifecycle stages of the

product. The highest CO2 emissions was during the use stage of the 1989 and 1997

telephones, followed by emissions during the production stage.

Figure 5.5 CO2 Emissions over the Product Lifecycle



• DFE Guideline: Has manufacturing solid residue been minimized to the greatest

extent possible?

The following product lifecycle stages were considered:

• Materials Processing

The solid wastes generated from processing of feedstock materials composing the

telephones were quantified, mainly metals, plastics, and the power source used. Figure

5.6 displays the solid waste graph for the four phones and the extrapolated solid waste

value for the 1997 telephone. It also displays the equation, which was derived from the

solid waste values of the previous three generations. Manufacturing of copper produces

the highest solid waste, 164g / gram of material, when compared to the other materials:

steel, aluminum, and ABS. The significant reduction in solid wastes from 1965 to 1978,

was due to reduction in the consumption of copper which was reduced from 180g in 1965

to 22g in 1978. The noticeable increase in solid wastes generated from 1989 to 1997 was

due to the higher percentage of copper material in the 1997 telephone, and also to the

electrical power required to manufacture ABS plastic, where its content was also higher

in the 1997 telephone.

Figure 5.6 Solid Wastes Generated from Materials Processing
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• Production

Solid wastes considered in this stage were those generated from the power sources used

during the production stage. Solid waste generated in this stage was mainly attributable

to the energy required to produce ABS and copper. The noticeable reduction in solid

wastes in Figure5.7, is mainly due to reduced use of ABS and copper over the first three

generations. While the sudden increase in solid waste generation in the 1997 telephone is

due to use of more ABS plastics in the unit covers and stand. Figure 5.7 also displays the

extrapolated 1997 solid waste being less than the actual solid waste generated in 1997.

Figure 5.7 Solid Wastes Generated from the Production Stage
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• Use

Solid wastes considered in this stage were those generated from the power sources used

during the use stage. As seen in Figure 5.8, more solid waste was generated during the

use phase of the 1989 and 1997 telephone, because of higher energy consumption of

those two telephones compared to the older two telephone generations. Refer to the

energy consumption analysis of the use stage of the telephones on page 146 for more

detailed description.

Figure 5.8 Solid Wastes Generated during the Use Stage
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• Recovery

Solid wastes considered in this stage were those generated from the power sources used

during recovery. Solid waste generated during this stage is from the electric energy

supplying the recovery process. Figure 5.9 shows that solid wastes generated were

reduced over time due to reduction in the mass of the telephones. It also shows the

extrapolated solid wastes from the 1997 telephone being less than the actual solid wastes

generated from the 1997 telephone, and in fact that more solid waste is generated for the

1997 telephone than for the 1989 telephone.

In conclusion, by comparing the actual solid wastes generated to the extrapolated

values over the product lifecycle, it is obvious that actual solid wastes generated are more

than the extrapolated values. Therefore, DFE guidelines had no impact on reductions in

solid wastes.

Figure 5.9 Solid Wastes Generated from the Recovery Stage
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• DFE Guideline: Have manufacturing liquid emissions been minimized to the greatest

extent possible?

The following product lifecycle stages were considered:

• Feedstock Materials

The waterborne effluents generated from processing of feedstock materials composing

the telephones were quantified, mainly metals, plastics, and the power source used. No

waterborne effluents were generated from the manufacturing of the metals, all waterborne

effluent values are relevant to the production of ABS only. Figure 5.10 displays the

waterborne effluents for acids, metal ions, and dissolved solids. Since waterborne

effluents are solely dependent on the weight of plastics in the telephones, the shape of the

graph is similar to that of the plastic weight graph. Table 5.5 compares the actual

waterborne effluents generated in this stage to the extrapolated values. It also shows that

the actual waterborne effluents for the 1997 telephone were more than the extrapolated

values, and more than the 1989 values. Therefore, DFE guidelines had no impact on

reducing waterborne effluents in the 1997 telephone. This extrapolation was based on the

equations listed in Table 5.5, which has a low regression coefficient of approximately

0.46.

No water effluents were generated in the other lifecycle stages: production, use,

and recovery, since use of electric power sources generates no water effluents.



Figure 5.10 Waterborne Effluents from Materials Processing
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Table 5.5 Water Effluents Generated during Materials Processing
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5.2.2 Material Conservation

• DFE Guideline: Can materials use be minimized by improved mechanical design?

This metric reflects the concept of dematerialization. Dematerialization impact is evident

throughout the product lifecycle, since the weight reflects the quantity of materials used

in the products, and hence the energy consumption and environmental burden associated

with the production of the feedstock materials, distribution of the telephones, and end-of-

life impacts associated with the product. The materials composing the telephones were

divided into three major categories: Plastics, Metals, and Others. The plastic content of

the telephones was assumed to be ABS, since ABS is the most widely used polymer in

electronic housings and because of the difficulty faced in identifying the different

plastics. Metals were divided between steel, aluminum, and copper. Finally, the others

category, included mainly circuit boards and wires.

Figure 5.11 compares the total weight of the phones and shows that the

extrapolated weight (632.7 g) for the 1997 DFE phone is below the actual weight (1085

g). As can be seen, dematerialization occurred at a rapid ratio due to substitution of

electronics for older mechanical components and use of lighter weight plastics for

materials. The DFE guidelines have NOT had an impact on material conservation for the

telephones. This was also noticed when comparing the copper and steel weights. The

extrapolated values generated from the trend lines were all below the actual weights of

the materials. It was difficult to extrapolate the values of the plastic and aluminum for the

1997 telephone, by fitting a curve through the values of the previous three generations.

But, it is obvious from Figure 5.12 that the weight of plastic material in the 1997

telephone is higher than that of the 1989 telephone. This was due to the design of the
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telephone unit cover and stand. The weight of the 1997 telephone stand was twice the

weight for that of the 1989 telephone, and the weight of the unit covers of the 1997

telephone were also approximately twice that of the 1989 telephone. Table 5.6 shows the

weight of the materials in the telephones, the data was obtained from the

demanufacturing study conducted on the four telephones. Table 5.7 displays the actual

and extrapolated weights for the 1997 telephone, and the equations used for the analysis.

Figures 5.12 - 5.15 shows the total weights of plastic, steel, aluminum and copper

respectively.

Figure 5.11 Total Weight of the Telephones



Table 5.6 Total Weight of the Telephones
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Table 5.7 Extrapolated Values of Material Weights for 1997 Telephone



Figure 5.12 Total Weight of Plastics in the Telephones
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Figure 5.13 Total Weight of Steel in the Telephones



Figure 5.14 Total Weight of Aluminum in the Telephones

142

Figure 5.15 Total Weight of Copper in the Telephones
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5.2.3 Energy Conservation

The energy consumption of the telephones was measured over its total lifecycle stages. It

is expected that more improvements have occurred in energy conservation over time, as

more efficient technologies (electronics) have evolved. In order to incorporate the

evolution of technology over time, the energy efficiency of production of electronic

products was evaluated. Information on energy efficiency during production was based

on personal contact with M. Ross [30]. Available data was from the period 1971-1985,

where the energy intensity fell an average 3% per year. Figure 5.16 shows the energy

efficiency curve for electronics production.

Figure 5.16 Energy Efficiency of Electronic Products in Production
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The lifecycle stages quantified in this analysis are: Feedstock materials, Production, Use

and Recovery.

• Feedstock Material

DFE Guideline: Is the product designed to minimize the use of materials whose

extraction is energy intensive?

Data generated for this stage were based on the energy required to produce the various

materials used in the four telephones and were calculated based on the weight of each

telephone. The source of energy data on the materials was taken from the generic

frameworks that were developed and explained in section 3.5. Figure 5.17 shows the

total feedstock material energy, which also shows the actual energy value for the DFE-

designed phone to be above the extrapolated value, and above the 1989 value. Therefore

DFE guidelines did not have a direct impact on feedstock energy conservation for the

1997 phone. The extrapolated energy value for 1997 was calculated using the same

uniform equation: LnY= aX+b.

Figure 5.17 Total Feedstock Material Energy
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• Production Stage

DFE Guideline: Is the product designed to minimize the use of energy-intensive

process steps?

The total energy required to produce the telephones is also considered. The production of

the circuit board was considered separately from the rest of the telephone production,

because of the high energy consumption during its manufacture. The energy required to

produce the 1997 telephone was found to be 9.25 kWh or 99.89 MJ, based on personal

contact with a research staff at Lucent Technologies [26]. The energy required to

manufacture 1 mm2 of the 21090mm2 1997 PCB was found to be 0.0019 MJ, this

information was based on a study conducted on a telephones lifecycle by J. Young [16].

The efficiency curve for production, Figure 5.16, was applied to both the telephone and

the circuit board production. Table 5.8 displays the total production energy for the four

telephones. The energy required to produce the telephones (excluding the circuit board)

was extrapolated using the following formula:

*
Weight of the telephones does not include the circuit board weight.

Following is the calculation for the production energy of the 1965 Telephone, the same

formula was applied to calculate the production energy for the other telephones.
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Following is the calculations for the production energy of the 1965 circuit board, the

same formula was applied to calculate the production energy for the other circuit boards.

Energy for production of (MJ /mm 2) * Efficiency Ratio * PCB Area (mm2)
of PCB for the 1997 phone

= 0.0019 (MJ /mm2) * 2.4324 * 16900 mm2 = 78.1 MJ

Table 5.8 Estimated Production Energy for the Telephones

• Use Stage

DFE Guideline: Has the product been designed to minimize energy use while in service?

The energy consumption of the telephones during the use stage were defined in two

categories: The In-Use mode and the Stand-By mode. The utilization factor of the

telephones was assumed to be 3%, this percentage was based on an experiment that was

conducted on a small sample of users of the 1997 telephone. The results obtained were

as follows [26]:

Utilization Factor = 3% of 24 Hours (0.72 hours / day)

Product Lifetime = 7.5 Years

In-Use energy consumption = 5.5 Wattse .

Total energy consumption during In-Use mode:
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= No. of Hrs used / day * No. of days / Year * Product Lifetime (Yr) * Energy (Watts e)

= 0.72 hrs / day * 365 days / Yr * 7.5 Yrs * 5.5 Wattse = 10840 Watt-Hre

Stand-By energy consumption = 2.2 Wattse

Total energy consumption during Stand-By mode:

= No. of Hrs in Stand-By / day * No. of days / Year * Product Lifetime (Yr) * Energy

(Wattse)

No. of Hrs in Stand-By / day = 24 - 0.72 = 23.28

= 23.28 hrs / day * 365 days / Yr * 7.5 Yrs * 2.2 Watts = 140204 Watt-Hr e

Total Energy Consumption during Use Stage:

10840 + 140204 = 151044 Watts-Hr = 151.044 kWh e

Based on the above calculations, it can be concluded that the energy consumption

of the 1997 telephone during the Stand-By mode is 14 times greater than the In-Use

mode over the telephone's lifetime. Therefore, designers must place more emphasis on

reducing the energy consumption of the telephone during the Stand-By mode. For the

1965 telephone, the energy consumed during the In-Use mode was assumed to be 5.5

Watts [31]. During the Stand-By mode, the telephone is assumed NOT to consume

energy, since there are no memory cells to store information as the case with the 1989

and 1997 telephones [31]. The same assumption was applied to the 1978 telephone. For

the 1989 telephone, it was assumed that there are no significant difference between it and

the 1997 telephone, therefore it is assumed to consume 5.5 Watts during the In-Use mode

and 2.2 Watts during Stand-By mode. Applying the above assumptions to the previous

calculations presented for the 1997 telephone, the energy use of the other telephones can
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be calculated. The results are shown in Table 5.9, which shows the energy consumption

of the four telephones during the use stage.

Table 5.9 Energy Consumption of the Telephones during Use Stage

Note: Energy consumption is quantified in units MJ in the above table, because all

energy calculations and comparisons for the other lifecycle stages are in units of MJ.

• Recovery

DFE Guideline: Is the product designed with the aim of minimizing the use of energy-

intensive process steps in disassembly? Is the product designed for reuse of materials

while retaining their embodied energy?

As mentioned earlier, in chapter 3, section 3.3.1. the metals in the telephones are assumed

to be the only materials recovered from the telephones, since the value of recycled

plastics is negligible. The materials are recovered by shredding / separation of the

telephones. The energy required to perform this operation is estimated to be 2kWh/ 1 Kg

(21.6 MJ/ 1Kg) of material, based on the AT&T Reclamation Center, located in West

Chicago, IL [15]. The embodied energy of plastics is subtracted from energy consumed

during the recovery process. Since all plastic materials in the phone are assumed to be

ABS (as imprinted on the 1997 hosing cover), the embodied energy of ABS, which is

30.83 kWh / Kg (332.94 MJ/1Kg) [27], is used for the calculations. Table 5.10 shows the
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total recovered energy of the telephones. The recovery energy and embodied energy of

the telephones was calculated as follows:

1965 Telephone:

Recovery Energy = 2325 g * 0.0216 MJ / g = 50.22 MJ

Embodied Energy = 943.55 g * 0.333 MJ / g = 314 MJ

Table 5.10 Energy Consumed during Recovery of the Telephones

Figure 5.18 shows the total energy associated with lifecycle stages of the telephones. The

energy values represented here are all in MJ units, so that efficiency factor of power

sources is all equivalent. This figure shows that energy consumption during the use stage

is by far the highest throughout the product lifecycle. Designers must concentrate their

efforts on reducing energy consumption of electronic products during use stage. Table

5.11 compares the extrapolated energy consumption of the 1997 telephone to the actual

consumption over the telephones lifecycle, showing the equations used for estimation.

The results presented in Table 5.11, show that DFE guidelines had no impact on

reduction in energy consumption over the product lifecycle.



Figure 5.18 Total Energy Consumption over the Product Lifecycle Stages
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Table 5.11 Comparison of Energy Consumption over the Product Lifecycle
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5.2.4 Service Extension

• DFE Guideline: Are subassemblies designed for ready maintainability rather than

solely for disposal after malfunction? Are modules designed for ready removal?

As mentioned earlier, these guidelines concentrate on service delivery to the product after

it has been manufactured and during its use stage. Service extension is one of the six

dimensions of the eco-compass tool, mentioned earlier in chapter 2. Three major

variables were selected to quantify this dimension: Commonality, Upgradability, and

Modularity. Table 5.12 illustrates how each subassembly was defined as common,

upgradable, or modular. It also shows for each of the above three variables, the total

number of subassemblies that met their criteria. Defining whether a certain subassembly

is modular, common or upgradable may differ based on the assumptions made and on the

definition of each variable. Table 5.13 shows the final service extension score, which

was normalized to a scale of 10, since the number of subassemblies was not uniform for

all the telephones. Figure 5.19 presents a chart for the three variables of service

extension. This figure shows consistent improvement in the design of the telephones for

service extension.



Table 5.12 Defining Subassemblies per Service Extension Variables
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Table 5.13 Final Service Extension Scores



Figure 5.19 Service Extension for the Four Telephones
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5.2.5 Demanufacturing

• DFE Guideline: Are all plastic components identified by ISO markings as to their

content?

Parts must be stamped in a generic way that identifies the type of material its made of.

The 1997 telephone was the only telephone stamped with material type identification.

The material stamping helps the demanufacturers in identifying the material each part is

made from, therefore recognizing the economic value of that part. In many cases, parts

that are not identified are thrown into an "unknown materials" bin, which is most

probably landfilled, and results in loss of a possible profit for the demanufacturer. Part

stamping shows improvement that is directly attributable to DFE guidelines, since no

plastic parts were stamped in the previous generations.

• DFE Guideline: Has the product been assembled with fasteners such as clips or

hook-and-loop attachments rather than chemical bonds or welds?

The number of different fasteners used in the products was counted. Mainly two

fasteners were used in all the telephones: slot head screws and snap-fits. As displayed in

Figure 5.20, the number of screws used in the telephones was reduced dramatically over

the years, while the number of snap fits was variable. Table 5.14 compares the actual

values of the snap-fits and screws used in the 1997 telephone to the extrapolated values.

It also shows the equations used for estimating the values for 1997, and the regression

coefficient for each equation. Since the extrapolated number of screws and snap-fits are

both less than the actual one, the conclusion is that the DFE guidelines had no affect on

their reduction. This reduction is mainly attributable to design for manufacturability and

assembly rather than DFE. Also, the handset of the 1997 DFE designed phone was
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fastened by using snap-fits and a strong adhesive, which made its disassembly extremely

difficult. As a result, DFE guidelines did not have a direct impact on this performance

metrics.

Figure 5.20 Total Number of Fasteners

Table 5.14 Comparison of Actual and Extrapolated Fasteners
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• Disassembly Time

This reflects the time, effort, energy and overhead (in terms of cost and energy

consumption) associated with completely disassembling the product. The disassembly

time is also expected to decrease over time. DFE guidelines promote the use of fasteners

such as clips rather than adhesives, as to minimize the disassembly time of the product.

In the case of the 1997 DFE-designed phone, the handset subassembly was joined using a

strong adhesive and snap-fits, which caused difficulty in disassembling the subassembly.

The time required to disassemble the handset only was 180 sec while the time needed to

disassemble the rest of the telephone was 133 sec. Figure 5.21 illustrates the disassembly

time of the four telephones, and displays the extrapolated disassembly time and the

equation used for estimation. The actual disassembly time is greater than the

extrapolated one, therefore, DFE guidelines had no affect on the reduction of the

disassembly time.

Figure 5.21 Total Disassembly Time for the Telephones
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5.3 Other Performance Metrics

• Number of Parts

This metric is an essential comparison as the number of parts has an immense impact on

the material and energy conservation of the product throughout its lifecycle. It is also a

product of the concepts of Design for Manufacturability and Assembly (DFMA), as

minimizing the number of parts improves many aspects of the assembly and disassembly

processes. Figure 5.22 illustrates a comparison of number of parts for the four telephones

and shows that the actual number of parts, 32, for the 1997 DFE phone is lower than the

extrapolated value, 36. This value was extrapolated using the following equation: Ln Y=

-0.0543 X + 5.328, where the number of parts for the first three generations were used to

generate the equation. Since the extrapolated value is slightly higher than actual value,

the improvement might be attributable to both DFE and DFMA guidelines.

Figure 5.22 Comparison of Number of Parts
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• Subassembly Comparisons

Instead of concentrating our study on the complete phone only, we decided to expand our

evaluation to detect any substantial changes that occurred on the subassemblies. Our

analysis covers mechanical, technological, energy consumption and environmental

burdens associated with these subassemblies. The major subassemblies under study are

the Keypad, Covers, Handset and the PCBs. Figure 5.23 illustrates the weight of the

subassemblies for the four telephone generations. It also shows the jump in the weight of

the covers for the 1997, compared not only to the 1989 telephone, but also to all the

previous generations. As mentioned earlier, this was due to the design of the telephone

unit covers which for the 1997 telephone, increased by approximately 70% over the 1989

telephone. Obviously, designers must concentrate efforts on redesigning unit covers with

a goal of reducing their materials consumption, since weights of the other subassemblies

are much smaller when compared to the unit covers.

Figure 5.23 Subassembly Comparisons of the Four Telephones
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• Resource Conservation (Integrated Metrics)

As described earlier in chapter 3, section 3.3.2, this metric aims at measuring material

and energy conservation of the telephones. It utilizes the denominator of the resource

productivity measure, which was also described in chapter 3, to quantify those variables.

The formula for resource conservation is (all values are in monetary value, ($):

(Material Consumed - Recycled) + (Energy Consumed for Production + Recycling —

Embodied Energy) + Lifetime Energy Used. Following is calculation of the resource

conservation metric for the 1997 telephone:

($12.5 + $0.02) + ($3.9 + $0.65 —$7.8) + $45 = $55

The values presented in the above formula are taken from resource productivity, Table

5.23 in section 5.4.2. Figure 5.24 displays the resource conservation values for the four

telephones.

Figure 5.24 Resource Conservation Values for the Four Telephones
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• Keypad Subassembly

Looking at certain subassemblies and comparing their advancement over time, a

significant change was noticed on the keypad subassembly. Table 5.15 shows the

number of parts and weight of the four telephones. The number of parts in the keypad

subassembly includes the circuit boards, but the circuit boards are not included in the

weight values of the keypads. Figure 5.25 shows the tremendous reduction in the number

of parts in a keypad subassembly from 43 parts in 1965 to only 3 parts in 1997, it also

shows the extrapolated number of parts for the 1997 keypad subassembly, 13. Since the

extrapolated number of keypad parts is greater than the actual value for the 1997 keypad

subassembly, DFE guidelines may have had an impact on reducing the number of parts

used. This reduction may also be attributable to design for manufacturability and

assembly, which promote the reduction of parts used. The improvement from 1989 to

1997 was due to integrating all the buttons into one unit rather than being separated. This

integrated unit also reduced the disassembly time of the keypad subassembly.

Table 5.15 Keypad Subassembly Comparison



Figure 5.25 Keypad Subassembly Comparison of the Four Telephones
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5.4 Performance Attributes

5.4.1 Eco-compass

The methodology applied to the eco-compass tool was described earlier in chapter 3.

This tool is utilized to compare and detect the improvement in certain environmental

performance attributes. Six dimensions were quantified: Mass Intensity, Energy

Intensity, H&E Risk, Revalorization, Service Extension, and Resource Conservation. The

1965 telephone was chosen to be the base case, with a score of 2, where the performance

of the other telephones was compared to this base case. The data and information needed

was mainly extracted from the results of the demanufacturing study conducted on the

telephones. The values of all these dimensions have been quantified earlier in this

chapter. Table 5.17 displays the six dimensions of the eco-compass, and the value of each

dimension for each telephone. Following is an illustration of a comparison of the 1997

telephone to the base case telephone.

• Mass Intensity: The weights of the telephones were compared and plotted on the

hexagon scale. The 1965 telephone weighed 2325g, while the 1997 telephone weighed

1085g. Therefore:

Percent improvement = (2325 g-1085 g) / 2325 g = 0.53 * 100 = 53 % improvement.

Thus, a score of 4 is assigned to the 1997 telephone for the mass dimension, since the

improvement is more than 50 %.

• Energy Intensity: The values for this dimension were the result of summing the

energy consumption of each telephone at each stage of their lifecycle as described

previously in section 5.2.3. For example, energy intensity for the 1997 telephone =
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Feedstock material energy (MJ) + Production energy (MJ) + Use energy (MJ) +

recovered energy (MJ) (shredding — embodied) =

50 MJ + 140 MJ + 1631 MJ + (23 MJ — 282 MJ) = 1563 MJ.

By comparing the total lifecycle energy consumption of the 1997 telephone to the 1965

one, it is obvious that the 1997 telephone is less efficient by 140%, because if the high

energy consumption during use stage, mainly in the Stand-By mode as mentioned earlier.

Therefore a score of 0 is assigned to the 1997 telephone.

• H&E Risk: The scores of the health and environmental risk dimension for the eco-

compass were calculated from the data presented in section 5.2.1, and in Appendix C.

The 1965 telephone was considered the base case and given a score of 2, while the scores

for the other three generations were based on comparing their results to the base case

only. As discussed earlier in chapter 3, an improvement of more than 50% get a score of

4, while an improvement of more than 75% gets a score of 5, and a decrease by more

than 100% gets a score of 0. Table 5.16 presents the scores for the H&E risk dimension

of the eco-compass. The total eco-value score for the air emissions was calculated for

each telephone by summing the eco-value for air emissions throughout the product

lifecycle. The same methodology was applied to waterborne effluents, and to solid

wastes. The final eco-value score for each telephone was calculated by averaging the eco-

value scores for air emissions, waterborne effluents, and solid wastes. The weighting

factors were assumed to be equal for all the environmental burdens, these factors are

subject to change based on the assumptions of the users. In the case where the final eco-

compass value does not average to a whole number, it is rounded down, as in the case of
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the 1978 telephone. The final eco-compass score was 2.5, which is an improvement that

is less than 50%, therefore it is plotted as a score of 2.

Table 5.16 H&E Risk Calculations for Eco-compass

Calculations for the other eco-compass dimensions: resource conservation, service

extension and revalorization have been presented earlier in the study. Figure 5.26

displays the eco-compass for the 1997 telephone compared to the 1965.

Table 5.17 Eco-compass Values for the Four Telephones



Figure 5.26 Eco-compass Comparison of 1997 Telephone to 1965
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5.4.2 Resource Productivity (RP)

The assumptions made and methodology followed for implementing the resource

productivity measure was discussed earlier in chapter 3. This section shows the

calculations made for the RP and each of its variables.

• Materials consumed

Reflects the dollar value for all the feedstock materials in the telephone. Table 5.18

displays the value of each material and the total value for each phone. To calculate the

total value of materials consumed incorporating the 95% yield rate assumption, divide the

total value by 0.95. For example, for the 1997 telephone = $11.9 0.95 = $12.5.

Table 5.18 Dollar Value of Feedstock Material
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• Materials Recycled

Reflects the dollar value for all the recycled material recovered from the telephones. The

materials recovered from the telephones are only metals and copper in the circuit boards,

which is assumed to be 10% by weight. Table 5.19 displays the value of each material

and the total value of recycled material for each phone. To calculate the total value of

materials recycled incorporating the 95% yield rate assumption, multiply the total value

by 0.95. For example, for the 1997 telephone = $0.0225 * 0.95 = $0.02

Table 5.19 Dollar Value of Recycled Material



168

• Energy in Production

The cost of energy was earlier assumed to be $0.10/kWh, $0.02778 /MJ. To calculate the

dollar value of energy during production, the cost of energy ($0.10/kWh, $0.02778 /MJ)

is multiplied by the energy during the production stage, which was presented earlier in

section 5.2.3 and listed in Table 5.8, The results are displayed in the following Table

5.20:

Table 5.20 Value of Production Energy for the Telephones

• Energy Consumption During Recovery

The cost of energy was earlier assumed to be $0.10/kWh, $0.02778 /MJ. To calculate the

dollar value of embodied energy and energy during recycling, the cost of energy

($0.10/kWh, $0.02778 /MJ) is multiplied by the calculations made earlier in section 5.2.3

for embodied energy and energy during recycling, which are listed in Table 5.10. The

results are displayed in the following Table 5.21:

Table 5.21 Value of Energy Consumed during Recovery of the Telephones
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• Lifetime Energy Use

The cost of energy was earlier assumed to be $0.10/kWh. To calculate the dollar value of

energy during use, the cost of energy ($0.10/kWh) is multiplied by the calculations made

earlier in section 5.2.3 for energy consumption during use, which are listed in Table 5.9.

The results are displayed in the following Table 5.22:

Table 5.22 Value of Energy Consumption of the Telephones during Use

Using the above calculations and the values assumed for the economic value added and

product lifetime for each telephone as mentioned in chapter 3, the following Table 5.23

quantifies the total values of the RP for the four telephones.

Table 5.23 Total RP Values



CHAPTER 6

CONCLUSIONS

6.1 Summary

The aim of this study was to evaluate the true impact and the effectiveness of the DFE

guidelines on the 1997-DFE designed phone. Several environmental and non-

environmental performance attributes were considered for this evaluation, in which the

values of the previous generations were used to forecast and predict values for the 1997

telephone. After studying the various performance metrics considered, and comparing

the predicted values of the 1997 telephone to the actual values, the general conclusion is

that DFE guidelines did Not have a direct impact on many of those noticed

improvements, except for some performance metrics such as the number of parts.

The study also aimed at introducing and developing a methodology that can be

followed for assessing DFE guidelines. The methodology followed used the concepts of

MLCE for quantifying the material flow, energy consumption, and environmental

burdens associated with the telephones throughout their lifecycle. Also the trend analysis

was used to evaluate performance attributes by forecasting and predicting "next

generation" values. The MLCA Software was also introduced as a useful tool for

evaluating the environmental performance of the telephones, and to simplify the data

intensive process of conducting and LCA.

170
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6.2 Demanufacturing Summary

Following is a summary of the major results extracted from the demanufacturing of the

four telephones:

• 1965 telephone contained many complex parts and subassemblies that were mostly

fastened using screws. Disassembly process was tedious and took approximately 32

minutes.

• 1978 telephone parts and subassemblies became less complex as more circuit boards

were integrated into the telephone design. The disassembly time was still high

approximately 27 minutes, and so were the number of parts, 165.

• 1989 telephone noticed a dramatic change in design. Telephone became solely

dependent on the circuit board. Disassembly time, number of parts, and the weight of

the telephone were all reduced by more than 50%.

• 1997 DFE-designed phone noticed only minor improvements over the 1989

telephone, but generally its performance was below that of the 1989 telephone.

Materials, energy, and environmental burdens were higher due to the larger weight of

the telephone. Disassembly time was less, but the disassembly process of the handset

was complex due to use of strong adhesives and snap-fits for fastening the covers.

• As the back covers of the base units were disassembled, it was noticed that the

internal components of the four telephones were all flipped.
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6.3 DFE Guideline Assessment

The guidelines were divided into 5 major categories: Environmental Burdens, Material

Conservation, Energy Conservation, Service Extension, and Demanufacturing. From the

analysis conducted on the telephones, and the comparison of the predicted values to the

actual values of the 1997 telephone, it is concluded that DFE guidelines had no direct

affect on most of the improvements noticed on the "DFE-designed" telephone.

• Environmental Burdens

The emissions generated from the manufacturing of the feedstock materials for the 1997-

DFE designed telephone, were in general the lowest amongst the other telephone

generations. But, those reductions were not attributable to DFE guidelines, since all the

actual emissions were more than the extrapolated values. In general, reduction was due

to less dependency on metals, where aluminum dropped from 62g in the 1978 to 0.9g in

1997, which had a high impact on reducing carbon monoxide emissions. Copper on the

other hand, has the highest impact on solid wastes, was reduced from 180g in the 1965

telephone to 6g in 1997 one.

• Materials Conservation

Dematerialization efforts occurred at a rapid ratio due to substitution of electronics for

older mechanical components and use of lighter weight plastics for materials. Despite

this reduction. the actual value for the weight of the 1997 telephone was more than the

extrapolated value. This was due to the design of the covers and stand of the 1997

telephone, which consumed more material, mainly ABS. Once again DFE guidelines had

no impact on this metric.
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• Energy Conservation

The energy consumption during the use stage was considered the highest throughout the

product lifecycle. Energy consumption during the Stand-By mode was 13 times more

than consumption during the In-Use mode for the 1989 and 1997 generations, while for

the 1965 and 1978 generations, the Stand-By energy consumption was negligible.

Therefore designers efforts must concentrate on radically reducing energy consumption

during the Stand-By mode. Energy consumption during the other lifecycle stages was

relatively low compared to the use stage.

• Service Extension

This was defined as the modularity, commonality and upgradability of the telephone

subassemblies. The modularity of certain subassemblies improved from 1989 to 1997,

such as the keypad subassembly, which was reduced from 15 to 3 parts only. In general

the 1997-DFE designed telephone noticed improvement in service extension over the

previous generations.

• Demanufacturing

The metrics quantified under demanufacturing were: disassembly time, number of

fasteners and the ISO materials marking. The actual disassembly time was more than the

extrapolated value, mainly because of use of adhesive in fastening the 1997 telephone

handset. The number of fasteners, whether snap-fits or screw, were reduced but remained

larger than the extrapolated values. Therefore DFE guidelines had no affect on

reductions over those two metrics. On the other hand, plastics parts of the 1997

telephone were the only ones stamped with ISO material identification.
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6.4 Future Work

• This thesis study presented a methodology of evaluating performance attributes. In

order to obtain a more accurate prediction for new generations of products

(telephones), more generations of the same product need to be analyzed and

integrated into the study

• Environmental burdens analysis must be expanded to include not only environmental

burdens generated from the power source, but also those generated during the

production, use and recovery stages of the product lifecycle

• Improvements in processing of primary and secondary feedstock material from 1965

to 1997 were not incorporated in the study, mainly in the environmental burdens

calculations, where no improvements in the processes was assumed. Future work

must integrate this factor into the analysis

• Develop a standardized set of performance metrics that effectively quantify and

evaluate the environmental performance of products

• More dependency on software's such as the MLCA software that focuses on

processes that deal with end-of-life options of one product and the beginning of the

lifecycle of another product. 	 More emphasis should be concentrated on

understanding these processes, and to develop better models for them



APPENDIX A

ENERGY AND ENVIRONMENTAL BURDENS OF FEEDSTOCK MATERIAL

This appendix includes the generic framework for primary and secondary processing of

the plastic materials: HIPS, PVC, and PC. It also includes the environmental burdens

associated with the manufacturing of those materials, and the references used for all this

information. The energy information presented here is all in MI /1000 LB of material,

while the environmental data are in Lb / 1000Lb of material.
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Figure A.1 Generic Framework for HIPS Processing.

176



Table A.1 Environmental Burdens Associated with Processing of HIPS.
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Table A.2 References for Energy and Environmental Burdens from Processing of HIPS



Figure A.2 Generic Framework for PVC Processing.
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Table A.2 Environmental Burdens Associated with Processing of PVC.
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Figure A.3 Generic Framework for PC Processing



APPENDIX B

DEMANUFACTURING RESULTS

This appendix includes data extracted from demanufacturing the telephones. For each of

the 1989, 1978, and 1965 telephones, it displays the disassembly procedure sheet,

inventory tables, reverse fishbone diagrams, and revalorization respectively.
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Table B.1 Disassembly Procedure Sheet for the 1989 Telephone



Table B.2 Inventory Table for the 1989 Telephone



Table B.2 (continued)



Table B.2 (continued)



Figure B.1 Reverse Fishbone Diagram for the 1989 Telephone
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Figure B.2 Revalorization for the 1989 Telephone
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Table B.3 Disassembly Procedure Sheet for the 1978 Telephone
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Table B.4 Inventory Table for the 1978 Telephone



Table B.4 (continued)



Table B.4 (continued)



Table B.4 (continued)



Table B.4 (continued)
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Figure B.3 Reverse Fishbone Diagram for the 1978 Telephone
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Figure 13.3 Continued



Figure B.4 Revalorization for the 1978 Telephone
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Table B.5 Disassembly Procedure Sheet for the 1965 Telephone
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Table B.6 Inventory Table for the 1965 Telephone



Table B.6 (continued)



Table B.6 (continued)



Figure B.5 Reverse Fishbone Diagram for the 1965 Telephone
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Figure B.5 Continued
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Figure B.6 Revalorization for the 1965 Telephone
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APPENDIX C

ENVIRONMENTAL BURDENS GENERATED FROM THE TELEPHONES

This appendix contains the air emissions, waterborne effluents, and solid wastes

generated from the manufacturing of the feedstock materials used in the telephones,

mainly metals and plastics, including the environmental burdens from generated from

power source use. It also includes the environmental burdens generated from using the

power source during the production, use and recovery stages of the product lifecycle.

The environmental burdens generated from the feedstock materials and power sources,

multiplied by the quantity of each material in the telephones, produced the environmental

burdens associated with the four telephones over their lifecycle. Since the elements

under air emissions and water effluents can not be added together, each element was

quantified separately.

Due to the vast number of elements quantified whether energy or environmental

burdens, it becomes difficult to manage and calculate these values. Linking spreadsheets

in a software such as, MS Excel, would reduce calculation time and provides more

accurate and reliable results, once the links and formulas entered are validated.
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Table C.1 Environmental Burdens Generated from Production of Plastics

206



Table C.2 Environmental Burdens Generated from Production of Metals
[Source 14]
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Table C.3 Environmental Burdens Generated from Power Sources Used
during Production of Feedstock Material



Table C.4 Air Emissions and Solid Wastes Generated from Steel Production for the Four Telephones



Table C.5 Air Emissions and Solid Wastes Generated from Aluminum Production for the Four Telephones



Table C.6 Air Emissions and Solid Wastes Generated from Copper Production for the Four Telephones



Table C.7 Environmental Burdens Generated from Production of all the Metals in the Four Telephones



Table C.8 Air Emissions and Solid Wastes Generated from ABS Production for the Four Telephones



Table C.9 Waterborne Effluents Generated from ABS Production for the Four Telephones



Table C.10 Environmental Burdens Generated from Power Sources during ABS Production for the Four Telephones



Table C.11 Environmental Burdens Generated from Power Sources during Steel Production for the Four Telephones



Table C.12 Environmental Burdens Generated from Power Sources during Aluminum Production for the Four Telephones



Table C.13 Environmental Burdens Generated from Power Sources during Copper Production for the Four Telephones



Table C.14 Environmental Burdens Generated from Power Sources during Metals Production for the Four Telephones
[Summation of Tables C.10-C.12]



Table C.15 Total Environmental Burdens Generated from Power Sources during Materials Production for the Four Telephones



Table C.16 Total Air Emissions and Solid Wastes Generated from Feedstock Material Production for the Four Telephones
(Summation of Plastics, Metals, and Power Source)



Table C.17 Total Waterborne Effluents Generated from Feedstock Material Production for the Four Telephones
(Summation of Plastics, Metals, and Power Source)
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