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ABSTRACT

ANALYSIS OF LONG-TERM HEART RATE VARIABILITY USING LABVIEW

by
Daniel Yang

Long-term heart rate variability measurement is important in understanding the activities

of the autonomic nervous system. Many methods and implications of long-term HRV

were available in the literature. The first two studies focused on two data analysis

techniques that were used on a normal subject. The first study focused on the 1/f

fluctuations. For this analysis, three 11h heart rate variability data sets were collected

with the Polar Vantage NV. A LabVIEW program was used to calculate the power

spectrum of the heart rate, and then the 1/f line was calculated by taking the log of the

power spectrum versus the log of the frequency. The second study focused on the 24h

circadian rhythm characteristics from the low frequency and high frequency portions of

the HRV spectrum. The same watch was used to collect three 22h heart rate variability

data sets. The 22h data sets were divided in to 15min segments. The same computer

algorithm was used to calculate the low and high frequency portions of the power

spectrum. The plot of the low frequency and high frequency versus time was determined

The third study focused on the non-linear dynamics of the HRV. For this

analysis, fifteen long-term ECG data sets were collected with the Polar NV watch from 2

cardiac patients and 3 healthy subjects. lh interval was obtained from each data set, and

each data set was analyzed using the Benoit 1.1 R/S analysis program and the LabVIEW

standard deviation program. The results showed that in normal subjects at rest, the 1/f

fluctuation was observed and the 2-hour circadian rhythm was present. The non-linear

dynamics of HRV was useful in separating the healthy from the cardiac patients.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The goal of this project is to analyze long-term heart rate variability (HRV). In the

literature, there have been many studies done in the area of long-term HRV, particularly

1/f, circadian rhythm and non-linear dynamics. The literature cited the methods and their

implications. It is our goal to apply their techniques and reproduce their findings.

Long-term HRV recording and analysis are important in understanding the

activities of the autonomic nervous system (the sympathetic and the parasympathetic

nervous systems) over a 24h period. Long-term HRV application in clinical situations has

been proven crucial. With continuous (long-term) ECG recordings, physicians can see

how their patients are doing on the operating table and during recovery, and by using

continuous ECG and heart rate, physicians can detect early the killer cardiac arrhythmias

for patients suffering from myocardial-infarction. Furthermore, the continuous (long-

term) monitoring of the fetus during 1abor may save the fetus from distress[1]. We will

discuss in section 1.3 the full implications of HRV recording and analysis.
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1.2 Background Information

1.2.1 Anatomy and Function of the Heart

The human heart is a mechanical as well as an electrical system. Mechanically, the heart

is a four-chambered pump for the circulatory system. The ventricles are the main

pumping chambers while the atria are chambers which aid in the pumping. During a

typical heart cycle, the atria contract pushing the blood into the ventricles. Next, the

ventricles contract pushing the blood into the arteries, this is also called systole. Then, the

atria relax causing the blood to flow in from the veins. Finally, the ventricles relax

causing the blood to fill the ventricles; this is also known as diastole. The well-

coordinated contraction of the ventricles and atria are the result of electrical actions

taking place within the heart. Electrically, an action potential is generated at the

sinoatrial (SA) node (Figure 1.1)[1]. Then, the action potential spreads over the atrial

muscle causing the atria to contract. Next, the action potential passes through the

atrioventricular (AV) nodes causing a 0.1s delay. The action potential then spreads over

the ventricles causing the ventricles to contract. Finally, the atria relax and then the

ventricles relax.

The human heart beats by itself because the process described above will repeat

itself automatically. Since the heart produces bioelectrical signals, the electrical activity

of the heart can be picked up, amplified, and recorded [2]. The best method has been

through noninvasive means such as making electrical measurements of the heart. A

voltmeter measures the voltage across the heart such as using a lead I configuration

(Figure 1.2) [1].



Figure 1.1 The conduction system of the heart[1].

A standard diagnostic ECG recording uses the 12 standard leads, which will be described

in section 1.2.2. From the ECG measurement we know that every heart beat has a P.

QRS, and T waveform, also called the deflection waves. First, we see the P wave with an

amplitude of 0.25mV corresponding to the atrial contraction and depolarization (Figure

1.3) [1].
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Figure 1.2 Standard notation for leads I, II & III [1].

4

Figure 1.3 The electrical active regions of the heart M.
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The P wave 1asts for about 0.08s and about 0.1s after the P wave had begun, the atria

contracts. Next, we see the QRS complex, which corresponds to the ventricular

contraction and depolarization with the R wave having an amplitude of 1-1.5mV. The

average time for the QRS complex is about 0.08s. Its distinct shape reflects the different

size of the ventricle and the time required for each ventricle to depolarize. Finally, we

see the T wave with an amplitude of 0.1-0.5mV corresponding to ventricular relaxation

and repolarization. This wave typically 1asts for 0.16s and its shape reflects that atrial

repolarization was over shadowed by ventricular excitation. From the measurement, we

can see that the P-R interval 1asts for 0.16s corresponding to the beginning of atrial

excitation to the beginning of ventricular excitation (Figure 1.3)[1]. This interval also

includes the atrial contraction as well as the depolarized wave passing through the AV

node. The QT interval 1asts for 0.36s corresponding to the beginning of ventricular

depolarization through ventricular repolarization[2]. The P-P interval is an indicator of

time per beat, 1/HR. For example, a person's heart beating 60bpm will have P-P interval

of 1 s. Actually, we know from the ECG measurement that the average heart rate is 70

beats/min. For a healthy heart, the patterns in the ECG measurement should be

consistent. If the patterns within the waves such as the size, timing and duration are

changed, then there may be a region of myocardial infart or some problems within the

conduction system.



1.2.2 ECG: Making the ECG Measurement

In this section, we will discuss the mechanism of making the ECG recording. First, the

beating heart gives off electrical signals, which can be used to know more about the

functions of the heart. Basically, the ECG is a measurement of the electrical events

within the heart. Second, the electric potentials produced by the heart can be seen

throughout the whole body and on the skin. We can measure the differences in the

potential by placing electrodes on the skin (Figure 1.4)[1].

6

Figure 1.4 Dipole moment of the heart with the dipole moment vector M [1].

Next, since the voltages are different with respect to where the electrodes are placed from

the heart, we need to have standard positions.

In clinical application of ECG, the 12 lead system has been used as the standard
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[1]. In the 12 standard leads, there are 6 leads in the frontal plane and 6 leads in the

transverse plane. The frontal plane is the plane of the body that is parallel to the ground

when lying on the back. First, in Figure 1.5, we see 3 leads of the frontal plane, leads I, II

and III, forming what is called the Eindhoven's triangle. Using Kirchoff s voltage law,

we can express the relationship as a vector addition: I + II + III = 0. Second, in Figure

1.6, we see how the other three frontal leads are formed, augmented leads aVL, aVR and

aVF.

Figure 1.5 Frontal plane: standard leads I, II & III [1].



Figure 1.6 Frontal plane: connections for the 3 augmented leads [1].

Next, in order to get the ECG on the transverse plane(the plane of the body that is

parallel to the ground when standing up), electrodes are placed on the chest wall. In

8



Figure 1.7, we see that from these electrodes, the other 6 transverse leads are obtained,

leads VI, V2, V3, V4, V5 and V6.

9

Figure 1.7 Transverse plane: the 6 precordial leads and their electrode placements[1].

With the usage of 12 standard leads, the ECG has been widely used as a diagnostic tool.

Cardiologists now have an ECG standard they can agree upon to determine the cause of a

cardiac problem. For example, an inverted or lost P wave can mean that the AV node has

been acting as the pacemaker. Furthermore, heart conditions such as atrialventricular

(AV) block (Figure 1.8a&b)[1], premature ventricular contraction (PVC) (Figure 1.9)[1],

paroxysmal tachycardia and atrial flutter(Figure 1.10a&b)[1], and atrial and ventricular

fibrillation(Figure 1.11a&b)[1] can be easily detected.



Figure 1.8 Atrioventricular (AV) block[1].

1 0

Figure 1.9 Extrasystole also known as premature ventricluar contraction(PVC) [11.



Figure 1.10 Paroxysmal tachycardia and atrial flutter: rapid beating rates

11

Figure 1.11 Atrial fibrillation and ventricular fibrillation: uncoordinated beating[1]
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1.3 Literature Review

1.3.1 HRV

In this section we will discuss why heart rate variability is such an important

measurement of the activities of the autonomic nervous system (sympathetic and

parasympathetic nervous systems). We begin the discussion by explaining the

significance of heart rate and HRV in general terms. We know that when a person

increases physical activity, the heart rate also increases. Similarly, when the body is at

rest, the heart beats are regular, but there is still a significant variation. Basically, the

study of HRV is concerned with the amount of variation and the pattern of variation in

the heart rate. This is the reason we emphasized the importance of ECG because we will

derive the heart rate information from the ECG.

Cardiovascular variables such as the heart rate, arterial blood pressure, stroke

volume and the shape of the ECG wave complexes all fluctuate on a beat-to-beat basis.

In the past, these fluctuations have been ignored or averaged out as noise. The variability

in cardiovascular signals reflects perturbations to the cardiovascular function and the

dynamic response of the cardiovascular regulatory systern[9]. Over the last thirty years,

HRV has been gaining attention as a prognostic indicator of risk factors associated with

number of chronic diseases, behavioral disorders, mortality, and even aging[4]. It has

been found that greater variability is better or healthier(Figure 1.12). In contrast, a lack of

variability is a sign of disease (Figure 1.13).
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Figure 1.12 HR Normal Subject
	

Figure 1.13 HR Severe Diabetic Neuropathy

From HRV research, it has been reported that when a person is under stress

(Figure 1.15), there is a decrease in the power in the HF (0.15-0.4Hz) region of the HRV

power spectrum from normal (Figure 1.14). This decrease in the HF region indicates a

decrease in the parasympathetic activity (rest and relaxation). Similarly, it was found that

the power in the LF (0.05-0.15Hz) region reflects the activities of both the sympathetic

and the parasympathetic nervous system[4].

Figure 1.14 Subject normal/healthy.	 Figure 1.15 Subject under stress.

Risks of many chronic diseases can be determined by measuring the power in the

low frequency and high frequency regions of the power spectrum. As mentioned earlier,
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these regions correspond to the activities of the sympathetic and parasympathetic nervous

systems. In the case of sudden infant death syndrome(SIDS), it was found that decrement

in natural log-transformed low-frequency power was associated with a decrease of 70%

in the hazard for all-cause mortality[4]. In the case of all-cause(cancer, cardiovascular

disease, etc.) mortality in the elderly cohort, increased sympathetic tone or decreased in

parasympathetic tone will predispose a patient to ventricular fibrillation, and reduced

HRV associated with increased mortality[4]. Furthermore, in the case of drug addiction,

it has been proposed that strong sympathetic reactivity and a fast return to relaxed

baseline is a sign of physiological toughness, associated with advanced mental and

physical health[4].

The Polar Vantage NV watch was also used to perform short term HRV studies.

In Table 1.1(see complete list in Appendix A), the case of the essential

hypertension:day(at rest), the low frequency power in the hypertensive subjects was

significantly higher than the borderline hypertensive subjects, while the high frequency

component was significantly less than for normal subjects[6]. Next, in the case of SIDS,

an increase in the low frequency(LF) power is an indication of higher risk. Moreover, in

the case of diabetic neuropathy:tilt, when tilting or standing, the increase in LF and

decrease in high frequency(HF) components were greatly diminished[6]. Finally,

smoking is followed by an increased LF component with a decreased in HF component.

The LF/HF ratio is high, 1.5, during rest which corresponds to greater sympathetic

activity.



Table 1.1 Polar HRV Results
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In R.P. Sloan's[7] study with ambulatory subjects, the results revealed significant

effects of individual differences, stress, and physical position on RR interval, with

increases in stress associated with decreases in RR interval as expected. HF power was

significantly lower and LF/HF ratio significantly higher in the standing compared with

the sitting position. Psychological stress was significantly associated with an increased in

the LF/HF ratio, suggesting increases in the relative predominance of sympathetic

nervous system activity during stressful periods of the day. L. Bernardi[8] proposed that

diabetic subjects have a high incidence of cardiovascular accidents, with an altered

circadian distribution and the abnormalities in the circadian rhythm of autonomic tone

may be responsible for this altered temporal onset of cardiovascular disease. He found

that diabetic subjects with or without signs of autonomic neuropathy have decreased

vagal activity (a relatively higher sympathetic activity) during the night hours and at the

same time of the day, during which a higher frequency of cardiovascular accidents has
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been reported. This study will give us insight into increase cardiac risk of diabetic

patients if autonomic neuropathy is present. H.V. Huikuri[9] investigated whether there

was a temporal relation between changes in HRV and the onset of spontaneous episodes

of ventricular tachycardia(VT) in patients at high risk of life-threatening arrhythmias. He

commented that low HRV is associated with an increased risk of arrythmic death and VT.

He found that spontaneous episodes of VT are preceded by changes in HRV in the

frequency domain. Divergent dynamics of HRV before onset of nonsustained and

sustained VT episodes may reflect differences in factors that can facilitate the

perpetuation of these arrhythmias. G.E. Billman[l 0} investigated the effects of

physiologic perturbations such as exercise have on the HRV with animals known to be

susceptible ventricular fibrillation. He commented that periodic fluctuations in the R-R

interval have been used as noninvasive measures of cardiac autonomic tone, and a

reduced HRV has been shown to correlate with an increased mortality in patients

recovering from myocardial infarction. His results shown that exercise elicited a greater

reduction in cardiac vagal tone. H.V. Huikuri[1 1] investigated and compared the

circadian rhythm of cardiac neural regulation and autonomic uncomplicated coronary

artery disease (CAD) and age-matched subjects with no evidence of heart disease. He

found the healthy subjects had a significant circadian rhythm of normalized units of HF

power of HRV with higher values during sleep. Normalized units of LF power and the

LF/HF ration also showed significant circadian rhythm in healthy subjects, with higher

values during the daytime. Their findings suggested the circadian rhythm of cardiac

neural regulation is altered in the patients with uncomplicated CAD. Reduced autonomic

responses to sleep-wake rhythm suggest that the modulation of cardiac autonomic
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function by stimuli from the central nervous system is impaired in CAD. S.S. Hull[12]

did paired studies with dogs to examine HRV before and after myocardial infarction. His

results showed that 30 days after infarction, the mean RR interval, the standard of

deviation, and the coefficient of variance were significantly decreased. His study

suggested the analysis of 30 min of beat to beat heart period at rest 30 days after

myocardial infarction are highly predictive for increased risk of sudden death. F.

Lombardi [13] investigated the circadian variations of spectral indices of HRV with

patients after myocardial infarction (MI) and control subjects. The results showed that

the control subjects were characterized by predominance of LF (-0.1Hz) component

during the day and of HF (0.25 Hz) component during the night, which reflected the

expected 24h pattern of variation of sympatho-vagal balance. The MI patients were

characterized with a 24h elevation of the LF and small HF component during the night.

The two groups were further differentiated by the LF/HF ratio. By spectral analysis of

HRV, the results suggested that in patients after MI there was an alteration of neural

control mechanisms as indicated by the presence of signs of sympathetic activation and

by the attenuation of the nocturnal increase in vagal tone.

1.3.2 1/f

Modern signal processing techniques provide means of analyzing beat to beat

fluctuations in cardiovascular signals, thus permitting a quantitative, noninvasive method

of assessing the activities of the autonomic nervous system. The use of spectral analysis

techniques to quantify short-term heart rate fluctuations on the order of seconds to

minutes has helped to define the autonomic contributions to beat-to-beat control of the



heart rate. J.P. Saul et. al.[15] used similar techniques to quantify the entire spectrum

(0.00003-1.0Hz) of HRV using the standard Holter monitor for 24h ECG. They found

that the human HRV contained 1/f behavior in the frequency range from 0.00003 to

0.1Hz. By plotting the log of the power spectrum versus the log of the frequency of the

entire 24h recording, the power spectrum was inversely proportional to frequency, 1/f

(Figure 1.16).

18

Figure 1.16 1/f in the range 0.00003 to 0.1Hz.

In the literature, considerable attention has been given to the understanding and

application of 1/f fluctuations of the HRV{13,14,15,16]. It has been hypothesized that



19

the circadian rhythm generator is responsible for the 1/f fluctuation [13]. Yamamoto and

Nakamura[17] cited that long-term HRV data (more than 2h) will have the characteristic

of the 1/f spectrum. Kobayashi and Musha [16] reported that the 1/f spectrum appeared

in the frequency range below 0.02Hz during awake bedrest for 10h. Saul et. al.[15] and

Ichimaru et. al.[ 19] both observed the 1/f relationship in the 0.00003Hz to 0.1Hz

frequency range (24h recording). Yamamoto and Hughson[l8] 8] found that there was a

clear 1/f relationship above the frequency of 0.01Hz .

In Ichimaru's[13] study of comatose patients, they also found that the slope of

the power spectrum was -1.17(the frequency band less than 0.01Hz) for the locked-in

syndrome patient (Figure 1.17) and slope of-1.2

Figure 1.17 Locked-in syndrome patient[13]



for the Creutzfeldt-Jakob disease(CJD) patient. For the CJD patient, there was a plateau

in the 0.001 and 0.0005Hz range caused by the rhythmic component during the night

(Figure 1.18)[13].
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Figure 1.18 Creutzfeldt-Jakob disease (CM) patient

In the brain dead patient, there was a peak at 0.2Hz corresponding to the 12bpm

breathing rate and the slope was -1.91 below the 0.01Hz range. The brain dead patient

also had a plateau in the 0.001Hz range caused by the cyclic changes in the heart rate

(Figure 1.19)[13]. Ichimaru et. al.[13] found that the slope of the 1/f scale became

steeper as conscious level decreased. The slope of the log-log power spectrum is

dependent on
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Figure 1.19 Brain dead patient

the high frequency and the very low frequency components. Additionally, it was found

that long-term HRV might be modified by the central nervous system and can be used in

assessing a patient with coma.

1.3.3 Circadian Rhythm

Some researchers suspect that organisms possess internal times called the circadian

rhythm. The circadian rhythm is mainly control by the central rhythm generator in the

brain. The circadian rhythm activities synchronized with the day-night cycle under

constant conditions. If there are no external rhythmic stimuli, the free-running behavior

cycle is usually +1h or —I h different than 24 hours and differs slightly from one

individual to the next. It is likely that some of the mechanisms controlling the circadian



22

rhythm are influenced by the daily activities and by the outer noise{13]. Y. Ichimaru et.

al.[19] did a study on coma patients because they suspect then the heart rate is not

influenced by outer noise, and from the signal processing point of view, the signals are

linked directly to the activities of the central rhythm generator. In their study, the

circadian rhythm of the low frequency region and the high frequency region were

obtained from the fast Fourier Transform(FFT) analyses of the heart rate for every 10

minutes. There was a circadian rhythm in the heart rate in both the LF area and the HF

area. From the power spectrum, the circadian rhythm at night showed an increase in HF

and was decreasing in the LF. By contrast, the normal circadian rhythm in the morning

was increasing in the LF and decreasing in the HF (Figure 1.20)[13].

Figure 1.20 LF & HF vs. time plots
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As a result, Ichimaru et. al.[13] found that the circadian changes were initially there from

the beginning of hospitalization for brain dead patients. The technique is very useful, as

with the 1/f, in long-term HRV application of understanding the activities of the central

nervous system and in assessing coma patients. Others also did work with 24h Halter

monitoring. Burbuera and Gandia[19] did 5min intervals of the 24h data and found that

the greatest difference between day and night was LF/HF ratios. Venkatesh and

Fallen[20]] noted that the HF peak power was during the hours of 6-10am. They also

added that when a normal person gets up the LF power is usually increased. Chakko and

Mulingtapang[21] did a 10min intervals of 24h data analysis. They found that in normal

people, HF fluctuates. The LF power was found to be lower at night and increased

during the morning hours in the control group. Panina and Khot[22] did a 4min interval

of every hour for the 24 hour period, and didn't find any significant variation in the HRV

in congestive heart failure(CHF) patients, but they found out that even with CHF, the

circadian variation was preserved in mean heart rate. The mean heart rate was

significantly reduced in the night time compared to the daytime.

1.3.4 Non-Linear Dynamics

HRV is characterized by a variety of linear, non-linear, periodic and non-periodic

oscillations. Common non-invasive diagnostic methods like Holter monitoring or the

analysis of high-resolution ECG and HRV are unable to accurately assess the individual

risk for sudden cardiac death, since they only describe linear or strictly periodic

behaviors. Using new methods of non-linear dynamics one can now calculate parameters

which much better describe the dynamic behavior of complex systems. The application
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of these new methods should therefore lead to an improved identification of high-risk

patients. J.K. Kanter et. al.[29] investigated the short- and long-term variations in the

non-linen dynmaics of HRV, to determine the relationship between conventional time

and frequency domain methods and the newer non-linear methods of characterizing

HRV. Subjects were investigated by 3h ambulatory ECG recordings, and they found that

there was a significant amount of non-linear dynamics existing in the HRV. Non-linear

predictability is correlated with HRV measured as the standard deviation (a linear

measure) of the R-R interval and the respiratory activity expressed as power of the high-

frequency band. Figure1.21 & Figure 1.22 from our data confirmed their findings where

set 1 was sick and set 2 was healthier.

Figure 1.22 Standard deviation measure: higher standard deviation, healthier.
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Figure 1.23 Beta measure: beta closer to 1.0, healthier.

Their findings suggest that HRV consists of intertwined periods with different non-linear

dynamics. S. Guzzetti et. al.[24] investigated the role of neural mechanisms in

determining non-linear and non-periodic components. Using heart transplanted patients

and controls, they found the non-linear dynamic parameters were significantly lower in

transplanted subjects than the control. These results indicate that non-linear dynamics are

likely to be present in HRV control mechanism, giving rise to complex and qualitatively

different behaviors. A. Voss et. al.[25] investigated new methods of non-linear

dynamics(NLD) and compared these with traditional methods of HRV and high

resolution ECG(HRECG) in order to improve the reliability of high risk classification.

Using long-term ECG recordings of subjects that were high risk and low risk cardiac

patients and healthy people. They found that non-linear dynamics analysis led to a

distinction between healthy and high risk. The time domain and frequency analysis was

successful in less than 90%. A combination of both analyses separated completely these
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groups to 100%. Their findings suggest that methods of NLD describe complex rhythm

fluctuations and separate structures of non-linear behavior in the heart rate time series

more successfully than classical methods of time and frequency domains. This led to an

improved discrimination between normals (healthy persons) and abnormal (high risk

patients). Their methods of symbolic dynamics and renormalized entropy were useful

measures for classifying the dynamics of HRV. T.H. Makikallio et. al.[26] investigated

the possible abnormalities in the beat to beat complexity of heart rate dynamics in

patients with a previous myocardial infarction. It has been proposed that regularity or

loss of complexity of RR interval dynamics may be related to pathologic state. Their

subjects consisted of postinfarction patients and healthy persons. Using approximate

entropy and conventional time and frequency domain measures of RR interval, they

found the postinfarction patients had lower standard deviation. Our data confirmed their

findings as in Figure 1.21. Y. Yamamoto et. al.{18] investigated the effects of the vagal

blocker atropine on the fractal nature of human HRV at rest. Their subjects consist of

cardiac patients and healthy persons. Their result showed that atropine decreased the

normally irregular fractal pattern of resting HRV. Subjects injected with atropine(cardiac

patients and healthy persons) showed significantly less HRV and significantly greater

beta compared to the control. Our data confirmed their findings as in Figure 1.22.

Yamamoto et. al.[17,18] also explained that the Hurst exponent, 0 <H < 1, contained the

information on the dynamics of a random time series. If H = 1, then it corresponded to a

strong positive correlation. If H = 0, then there was a negative correlation. Fractal is

defined as having self-similar property. It implies that the distribution remains

unchanged even after we change the time scale to read it. These fractal fluctuations are



known to have 1413 type of spectra in the log frequency vs. log power. Dependent on

Beta, the fluctuations are called pink noise (Beta = 1), Brownian motion (Beta = 2), and

black noise (Beat = 3). Beta is linked to H by H = (Beta —1)/2 therefore Beta = 2H + 1

for l< Beta < 9 [17, 18].
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CHAPTER 2

METHODS

2.1 Data Acquisition

Long-term heart rate measurement (HRM) was done using the Polar Advantage NV

system (Figure 2.0[271. This system consisted of the Polar coded transmitter, the elastic

strap, and the wrist receiver.

Figure 2.1 Polar Vantage NV parts
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2.1.1 Watch Functions (Figure 2.2) 

• watch with alann clock, calendar and weekly indicator 
• 12/24h display 
• alternative displays in measurement mode(i.e. the HR recording) 

Figure 2.2 Watch functions 

Figure 2.3 shows the D'ata Transfer Functions with the Interface. The electrical signals 

from the heart are picked up by the electrodes on the transmitter. The transmitter then 

sends the signals to the receiver and the receiver downloads the data into the computer 

through the interface. 



Figure 2.3 Watch-interface system 

Figure 2.4 shows how to wear the Polar Vantage NY HRM . 

4. Secure the strap around your chest. below the 
breasts. Lock the buckle . 

5 . Check that the grooved and wet elec-
trode areas are against your skin and the 

Polar logo is in a central upright position. -

.· ..... '.ti~h~Si£;::~~~J~l!.·· ·· 
. >: 'wish to weartheTransmit
. teY'over a shirt, moisten 
th~ sh~rt wen~n.der ·the. eJec

:· troOes;·La(jtes.; )isk your lOcal 
. . dealer about therPolar HaarfBtal . . . , ' . . . .. . . .".. . " ... .. .. . ' . . 

6. Put on the Receiver as you would put on 
an ordinary watch . 

Figure 2.4 Wearing the heart rate monitor (HRM) 
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2.1.2 Changing the Recording Interval

31

Table 2.1 Recording interval alternatives

The R-R-recording indicates the HRV and measures the time in milliseconds between

two successive heart beats. R-R-recording is suitable for measuring HRV in non-exercise

and at resting situations. It's recommended to use Contact Gel (ECG gel) to ensure good

contact between skin and transmitter. It's suggested to minimized the use of lap times,

timers and backlight functions to avoid disturbance during R-R-recording.

This function is vary important because in all three studies setting it to 5s interval

allowed us to do longterm recording. It was especially important in Study 1 where we

had to use the RR and 5s intervals. The detailed information about Heart Rate Monitoring

Functions, Recording Functions, Data Transfer Functions, Setting the HR Limits 1&2,

and starting the heart rate measurement are all listed in Appendix B.
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2.1.3 Study Protocol

For statistical reasons, the standard for research is to have as large a population as

possible. Due to the exploratory nature of this study, the study population was small.

In Study 1(1/f) and Study 2(Circadian Rhythm), one normal subject, a 23 year old male,

was used. In Study 1, for the RR recording, the subject was put in a quiet room. The

electrodes on the transmitter were wet and put on the subject. He was then to recline on

his back. The recording began and ended after 1 hour. Immediately after the RR

recording the data was transferred to the computer. Then the subject was set up for the 5s

recording. The subject put on the transmitter and receiver and the recording began. The

subject was allowed to move and do daily activities outside the house. The activities were

characterized as non-exercise or at resting situations. Recordings were made while the

subject was lying on his back, sitting down reading, watching TV, walking, eating meals

and during deep sleep. After 11 hours, the 5s recording ended. The 5s data was

transferred to the computer and the subject was set up again for the RR recording. This

procedure was repeated three times. As a result, three RR files and three 5s files were

obtained for Study 1. In Study 2, the watch was set to record at 5s interval. The subject

put on the receiver and the transmitter early in the morning (waking up from sleep). The

recording began. The recording continued throughout the day while the subject

performed non-exercise activities such as light walk, sitting down, standing up, lying

down, sleeping, and reading. After 11 hours the recording ended. The data was

transferred to the computer. At night, the subject put on the receiver and the transmitter.

The recording began and the subject was at rest and asleep throughout the night

recording. After 11 hours, the recording ended. The data was transferred to the computer
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and the morning recording began. This morning and night recordings repeated three

times. As a result, we obtained three 11h morning recordings and three 1 lh night

recordings.

In Study 3 (Non-linear Dynamics), five subjects were used. The subjects included

two cardiac patients, a 71 year old male (sk) and a 35 year old female, and three normal

subjects, a 44 year old female (agd), a 62 year old male (id), and a 35 year old female

(kp). The watch was set to record HR. at 5s interval. The subjects put on the receiver

and the transmitter and recording began while the subjects were performing activities that

would be characterized as non-exercise or at resting situations. The recording ended 11

hours later. As a result, we obtained 17 recordings. The breakdown of the recording was

mm (2), adg (3), id (1), kp (2), and sk (9). We also wanted to see trends over a period of

several months. As a result, recordings for sk began 1/18/98 while he was sick to 6/20/98

when he was healthier.

For all the recordings, the upper limit on the watch was set to 160beats/min and

the lower limit was set to 80beats/min (Figure 2.5).
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Figure 2.5 Raw 5s interval recording

In data acquisition, the sampling frequency is important for the type of signal you

have. According to the sampling theorem, sampling frequency must be greater than two

times the signal's highest frequency. The standard for ECG recordings is a sampling

frequency of 250Hz. Since, the watch has the ability to record at 1,000 Hz, our

recordings are fine.



12.2 Preprocessing

In Study 1, the raw HR data (Figure 2.5) was store as a text file (Tab delimited, *.txt).

Then, this file was open in MS Excel for clean up of the HR signal(Figure 2.6).
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Figure 2.6 Cleaned text file

In this process, the HR signal recorded as zero values was replaced with the previous

non-zero value. Next, the HR data in text file was converted to Interbeat Interval (IBI)

file because the LabVIEW program only takes IBI data type. In the R-R HR data, the

conversion factor to get IBI data type:

IBI = 12,000/HR

The conversion factor was derived in the following way:

1. The sampling rate was assumed to be 200samples/beat.
2. The average heart rate is assumed to be 60beats/min.
3. The conversion factor: 12,000 = 200*60.

In the 5sec HR data, the conversion factor to get IBI data type:
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IBI = 60,000/HR

The 5sec conversion factor was derived in the following way:

1. The sampling rate was assumed to be 200samples/beat.
2. The average heart rate is assumed to be 60beats(R-R)/min.
3. The recording was made every 5 seconds.

The conversion factor: 60,000 = 200*60*5.

500pts (z≈1h) segment of the 5sec data was prepared for 1/f spectral analysis. For the R-R

1/f analysis, the entire lh file was to be used. In Study 2, for the circadian rhythm

spectral analysis, as noted in literature[13], 5sec 11h data were broken down into

intervals of every 180pts(≈15min). The raw data was cleaned the same way as Study 1.

To get IBI, the 60,000/HR conversion factor was used. In Study 3, the 11h raw data was

cleaned the same way as Study 1 and Study 2. The literature [17,18] suggested breaking

the data into a 10min segment with the smallest number of abnormal beats. For our

analysis, the data was broken down into 1/2h and lhr data length to see if there were any

differences.
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2.3 Labview Algorithm

LabVIEW software was used to calculate 1/f in Study 1, circadian rhythm power spectra

in Study 2, and the standard deviation in Study 3 (figure 2.7&2.8). LabVIEW stands for

Laboratory Virtual Instrument Engineering Workbench. It is an instrumentation and

analysis software that runs on PCs using Microsoft Windows. LabVIEW is a program

development application that uses a graphical programming language, G, to create

programs in flowchart-like form called block diagram. All block diagrams have the user

interface linked to it such as the one in Figure 2.7 linked to the diagram in Figure 2.8.

Figure 2.7 Standard deviation VI: front panel/user interface

Figure 2.8 Standard deviation VI: diagram/graphical code
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LabVIEW programs are called virtual instruments (VIs) because their appearance and

operation imitate actual instruments. VIs have both an interactive user interface and a

source code equivalent, and data can be passed between them. A VI has three main parts:

1. The front panel is the interactive user interface of a VI. The front panel can contain

knobs, push buttons, graphs, and indicators to simulate the panel of an instrument.

2. The block diagram is the VI's source code. The block diagram is the actual

executable program. The icons of a block diagram represent the built-in functions,

lower VIs and program control structures. Wires are drawn to connect the icons

indicating the flow of data in the diagram.

3. The icon and connector of a VI allow other VIs to pass data to the VI. The icon

represents a VI in the block diagram of another VI. The connector defines the inputs

and outputs of the VI. VIs are hierarchical.

Figure 2.9 shows a portion of the HR power spectrum VI's diagram and its components.

Figure 2.9 HR power spectrum: left side of diagram

The major components included:
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• read_from_spreadsheet (read saved text format file that have columns and rows)

• mean (computes the mean of the values in the input sequence X)

mean = Sum{X[i]}/n

• zero_padder (resizes the input sequence to the next higher valid power of two, sets
the new trailing elements to the sequence of zero, and leaves the first n elements
unchanged where n is the number of samples in the sequence)

• power spectrum (compute power spectrum, Sxx, of the input sequence)

Sxx="YA2, where Y=|FFT[x]|/n
Where FFT is the fast Fourier transform,
n is the number of elements in input sequence

• write_to_spreadsheet (create text file readable by most spreadsheets)

• waveform_plot (plots the power spectrum from 0.05 to 0.5Hz)

APPENDIX D showed the entire program. The program was implemented to calculate

the power spectrum from the LF(0.05- 0.15Hz) and the HF(0.15-0.5Hz) ranges. It reads

IBI data from spreadsheet file, plots a tachogram (R-R-interval), computes the power

spectrum, computes the Lf and HF, and then computes the log-log power spectrum.
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2.4 Benoit RJS Method

The fractal scaling beta is related to the Hurst exponent (H) for the non-linear dynamic

analysis[ 17,18]:

H = (B-1)/2 .•.B = 2H + 1

Benoit R/S method was used to calculate H. Figure 2.10 shows the parameters that were

used to calculate the R/S line for the file 1027a. Parameters such as N (336), the number

of data points used and number of window-interval lengths (11), the number of divisions

of N from 10 to (N/2)-1. In the log scale, the equation of the line (Y=1.82*X^0.272) and

the H (0.272) value were calculated.

Figure 2.10 Benoit program: file 1027a R/S analysis.
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RJS Analysis Method

Consider an interval, or window, of length w in a trace. Within this window, one

can define two quantities:

R(w), the range taken by the values of y in the interval. The range is

measured with respect to a trend in the window, where the trend is estimated simply as

the line connecting the first and the last point within the window. This subtracts the

average trend in the window.

S(w), the standard deviation of the first differences delta y (dy) of the

values of y within the window. The first differences of the y's are defined as the

differences between the values of y at some location x and y at the previous location on

the x axis:

where delta x (dx) is the sampling interval, i.e., the interval between two

consecutive values of x.

A reliable measurement of S(w) requires data with a constant sampling interval dx,

because the expected difference between successive values of y is a function of the

distance separating them. S(w) in the resealed range method is used to standardize the

range R(w) to allow comparisons of different data sets; if S(w) is not used, the range

R(w) can be calculated on data sets that have a non-constant sampling interval.

The resealed range R/S(w) is defined as:
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where w is the window length and the angled brackets <R(w)> denote the average of a

number of values of R(w). The basis of the method is that, because of self-affinity, one

expects the range taken by the values of y in a window of length w to be proportional to

the window length to a power equal to the Hurst exponent H

, i.e.,

In practice, for a given window length w, one subdivides the input series in a number of

intervals of length w, measures R(w) and S(w) in each interval, and calculates R/S(w) as

the average ratio R(w)/S(w), as in (2). This process is repeated for a number of window

lengths, and the logarithms of R/S(w) are plotted versus the logarithms of w. If the trace

is self-affine, this plot should follow a straight line whose slope equals the Hurst

exponent H. The fractal dimension of the trace can then be calculated from the

relationship between the Hurst exponent H and the fractal dimension:

Drs = 2 - H (4)

where Drs denotes the fractal dimension estimated from the resealed range method.

Copyright © TruSoft Intl. Inc. 1997. All Rights Reserved.



CHAPTER 3

RESULTS

3.1 Study 1: 1/f

3.1.1 Study 1: 1/f rr data analysis

For the R-R 1/f analysis, the entire lh file was the input to the HR power spectrum VI.

.From the log-log power spectrum, we calculate the slope of the spectrum to get the 1/f.

Figures 3.1 to 3.3 and Tables 3.1 to 3.3 showed the results from the 1/f spectral analysis.

In literature, it suggested that the slope of the line in the 0.001 — 0.4Hz was —1.2 for X. In

the 0.001- 0.4Hz (-3 to -0.398 log scale) range, RR2(Table 3.1) had a slope of —1.17 with

RA2 of 0.42 and RR3 (Table 3.2) had a slope of —1.58 with RA2 of 0.58. The R-R data, in

term of the slopes and RA2 values, RR2 and RR3 results agreed with each other and were

consistent with the findings in the literature{ 13,15].

-r

Log(frequency)

Figure 3.1 RR2: Log(Power) vs. Log(freq)
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Table 3.1 1/f result: RR2 regression line.

Table 3.2 1/f result: RR3 regression line.
FREQUENCY BAND LINE
0.001 - 0.4 Hz Y= -1.5787X - 1.2975 R^2 = 0.5753
0.001 - 0.01 Hz Y= -0.8229X - 0.5524 R^2 = 0.2418
Start — 0.01 Hz Y= -0.9241X - 0.7708 R^2 = 0.4153

0

4
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Figure 3.2 RR3: Log(Power) vs. Log(freq)



Table 3.3 1/f result: RR1 regression line.
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Figure 3.3 RR1: Log(Power) vs. Log(freq).
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3.1.2 Study 1: 1/f 5sec results

The three lh length 5sec data files were input into the HR power spectrum program and

the results are given in Tables 3.4 to 3.6 and Figures 3.4 to 3.6. In the 0,001-0.4Hz (-3 to

—0.398 log scale) range, 5sec1 had a slope of -1.99 with R^2 of 0.69, 5sec2 had a slope of

-1.87 with a R^2 of 0.65, and 5sec3 had a slope of-1.94 with RA2 of 0.67. In term of the

slopes and R^2 values, the 5sec1, 5sec2, and 5sec3 results agreed with each other and

were consistent with the findings in the literature[13,15].

Table 3.4 1 /f results: Ssec1 regression

Figure 3.4 5secl: Log(Power) vs. Log(freq).

Table 3.5 1/f results: 5sec2 regression line.



Figure 3.5 5sec2: Log(Power) vs. Log(freq).

47

Table 3.6 	 c 1 if results: 5cer.1 rperrpecinr, lint

Figure 3.6 5sec3: Log(Power) vs. Log(freq).
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3.2 Study 2: Circadian Rhythm Results

In this analysis, the HR power spectrum program was used to calculate the LF and HF for

every 15min segment. A total of 45 LF and HF were calculated for the 11h period. After

computing the power spectrum for all the segments, the LF and HF powers were plotted

vs. time. The results are shown in Figure 3.7 to Figure 3.10. According to the literature,

we show sec an increase in LF region from 6am to 10am and the HF region should

increase in the evening. Our results revealed three things. First, the LF and HF regions

increased and decreased simultaneously, which was not consistent with the findings in

the literature. Second, the LF regions increased from 6am-10am throughout the three day

recording (Figures 3.7,3.9&3.10) which was consistent with the findings in the literature.

Lastly, both the LF and HF in all the figures showed the 2h circadian rhythm. Over all,

our results showed that, though there are evidence of some circadian rhythm, the results

are not conclusive enough to say that there was a 24h circadian rhythm.

Figure 3.7 Circadian rhythm: 1 st day 8am to 2nd day 5pm.
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Figure 3.8 Circadian rhythm: 2nd 	12am to 2nd 	6pm.

Figure 3.9 Circadian rhythm: 3 rd day lam to 4th day lam.

Figure 3.10 Circadian rhythm: 3 rd day 1pm to 4th day 12noon.
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3.3 Study 3: Non-Linear Dynamics Results

In this analysis, the 17 data files from the 5 subjects were cut into lh and 1/2 hr segments.

The lh segment results are listed in Table 3.7 and Figures 3.11&3.12. Table 3.7 and

Figure 3.12 revealed that healthier subjects agd (3.85), id (4.53), kp (6.12), and sk

(3.86&5.14 after 4/30/98) had much higher standard deviation averages than less healthy

subjects mm (2.17), sk (1.69, 3.4, &2.51 before 4/30/98). This finding is consistent with

the findings in the literature suggesting that healthier subjects had higher variability in

their HR. Table 3.7 and Figure 3.11 also revealed that healthier subjects id (1.53), and

sk (1.33 after 6/20/98) had beta averages clearly closer to 1.0 than less healthier subject

sk (1.74 before 2/18/98). This finding is also consistent with the findings in the literature

[17,18] suggesting that the healthier subjects' HR was more fractal than the less healthy

subjects.

Table 3.7 Non-linear dynamics: lh(72Opts).



Figure 3.11 Fractal measurement: beta(1h)
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Figure 3.12 Variability measurement: standard deviation (1h)

The 1/2h results are listed in Table 3.8 and Figures 3.13&3.14. Table 3.8 and Figure 3.13

again revealed that healthier subjects agd (3.0), id (4.58), kp (5.58), sk (4.1 after 6/20/98)

had much higher standard deviation averages than the less healthy subjects mm (1.85), sk

(1.42, 1.87 & 2.35 before 4/30/98). Table 3.8 and Figure 3.14 also revealed that healthier

subjects agd (1.44), and sk(1.33 after 6/20/98) had beta averages clearly closer to 1.0 than

less healthier subjects sk (1.66 before 2/18/98) and mm(1.54).



Table 3.8 Non-linear dynamics: 1/2h(36Opts).
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Figure 3.13 Variability measurement: standard deviation(1/2h)
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Figure 3.14 Fractal measurement: beta(1/2h)

For both the lh and 1/2h data, the results were consistent with the findings in literature

[17,18]. The results seemed indicate that the non-linear dynamic measure (beta) with the

linear dynamic measure (standard deviation) can separate the healthy subjects from the

sick subjects and the result also seemed to indicate that these measure can separate the

same subject during healthier state from a less healthy state.



CHAPTER 4

CONCLUSIONS AND FUTURE STUDIES

In conclusion, the goal of this project was to analyze long-term heart rate

variability (HRV). We have reached our goal of learning and applying the techniques

cited in the literature. In study 1, our results showed that 1/f was present from the

frequency range of 0.0001 to 0.1Hz in a normal subject at rest. 1/f noise has been found

in other biological systems, such as the alpha component of the EEG, and neuronal

axons. Some proposed mechanisms for the physical origin of 1/f noise have involved the

number and mobility of charged particles in the system, and this could be applied to the

receptors, central neural integrators and effectors (autonomic nerves and SA node)

involved in the control of heart rate [15]. The 1/f noise may be a fundamental feature of

normal cardiovacular regulation. To find out the origin of 1/f noise in heart rate, studies

would include isolated SA node, neuronal conduction, and the effects of physical activity.

Since the 1/f investigation was a pilot study in our lab, a future study for our lab would be

to investigate 1/f with a bigger population with variety in age and sex, and a more

controlled study such as using paced breathing and at rest.

In study 2, our results didn't show the 24h circadian rhythm, but the 2h rhythm

was present. Ichimaru [13] found that circadian rhythmicity was found in comatose

patients. Circadian changes of HR were observed in the brain dead patient. This showed

that the HR rhythm must be generated in the central nervous system b the central rhythm

generator. This finding is important because it showed that long term changes of HRV

might be modified by the central nervous system and clinically may be useful in the

assessment in patients with coma. Our results also proved to be useful. The possibilities

54
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of using this technique to see long-term trends and the circadian changes of HR is very

exciting. Since this investigation about the circadian rhythm was a pilot study in our lab,

it would be very interesting to see a bigger study with more subjects, and more controls.

In study 3, we confirmed the findings of the fractal nature (non-linear dynamics)

of HRV. By using the linear measure (standard deviation) and non-linear measure(Beta),

we can differentiate the healthy subjects from the cardiac patients. By using the two

measures, we were able to differentiate the healthier subjects from the sick subjects.

Future studies are needed to understand the physiological mechanisms responsible for the

origin of fractal HRV. Yamamoto et .al. [17,18] found the importance of the

parasympathetic nervous system in mediating the fractal component of HRV in humans.

They also found that normal human HRV has H near 0, indicating an inverse correlation

in resting HRV signal. Physiologically, this inverse correlation may be thought of as

being compatible with a well-regulated state (through negative feedback), since an

increase in HRV is likely followed by a decrease. Further, when stress was applied in the

resting state by physical exercise, the correlation seemed to be lost, with increase in H

and Beta. An interesting study would be to investigate the relationship between fractal

properties of HRV and cardiovascular regulation. Also recently, it has been proposed

that there is another family of parameters or complexity in data called the approximate

entropy. It would be interesting to apply this measure to the non-linear dynamics of HRV

[17,18]. Again, since this investigation was a pilot study in our lab, it would be

interesting to see what the results would be to apply the Beta measure and the standard

deviation measure to a bigger population study.
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These three studies confirmed that long-term HRV recording and analysis are

important in understanding the activities of the autonomic nervous system (the

sympathetic and the parasympathetic nervous systems) because the autonomic nervous

system that controls the rhythm generator is the same as that affects the HRV. Moreover,

by breaking down the power spectrum into LF and HF we were able to see the activities

of the PSN in the HF region and the combination of PNS and SNS in the LF region.

Furthermore, by breaking the HRV analysis into the non-linear dynamics and linear

dynamics, we were able to separate the healthier subjects from the cardiac patients.
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Table A.1 Polar watch disease results
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Figure B.t Polar Vantage NR chest electrode and watch-computer interface system[6] 

Watch Settings 

~ Time of day r12/24h Disp.-

o 12h J:!]: 149 1: 00 

~Date 

I 

@24h 

§]. §] .1 1997 I 
( System Time ) 
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(Set Receiuer) 
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~ , J:!!J: §] : 00 Cancel 

Figure B.2 Polar watch settings [ 6] 
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Figure B.3 Polar watch measure settings[6]

Figure B.4 Polar watch special options[6]
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Figure B.5 Polar watch memory transfering

Heart Rate Monitoring Functions

• wireless heart rate monitoring with ECG accurate continuous measurement
• coded, digital transmission of HR
• maximum, average and minimum HR for the recording
• two range of heart rate reception distance

Recording Functions

• can record up to 134 hours
• file identification (date, time, etc.)
• automatic recording with RR(beat to beat)-intervals and every 5, 15, 60s
• ability to receive/transmit both analog and digital HR signal
• ability to record at 1000 Hz

Data Transfer Functions with the Interface (Figure B.6)

• ability to download performance data into a computer for detailed analysis



• ability to upload setting for watch and HRM from PC 
• ability to show user's ID on the display of the receiver 

Figure B.6 Watch-interface system 

Wearing the Polar Vantage NV HRM 

1. Attach the elastic strap to the Polar Transmitter. 
2. Wet the grooved electrode areas on the backside of the Polar Transmitter. 
3. Adjust the strap length and secure the Polar transmitter around your chest to fit 

comfortably. Lock the buckle. 
4. Check that the grooved and wet electrode areas are against your skin and the Polar 

logo is in the central upright position (Figure B.7). 
5. Put on the Receiver as you would put on an ordinary watch. 
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Figure B.7 Wearing the heart rate monitor (HRM)

Setting the HR Limits 1&2

1. Press SET/START/STOP (lower left button in Figure 2.2).
HR Limits 1 is the third block of the graphic bar on the right.
The HR Limit 1 starts to flash.
The upper reading is the Upper Limit 1, starts to flash.

2. Press SIGNAL/LIGHT to select the value.
The range is 10 — 240.

3. Press STORE/LAP/RECOVERY to lock selection.
4. Repeat step 1 to set Limit 2.

The HR Limits 2 is the fourth block of the graphic bar.

Changing the Recording Interval

1. Press SELECT (upper right button in Figure 2.2) to enter the FILE mode, where you
can recall the results recorded during the exercise period.
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FILE starts flashing.
LEFT and FILES start scanning on the display.
INT starts flashing on the display.

2. Press SIGNAL/LIGHT (lower right button in Figure 2.2) to change the recording
interval.

INT and the symbol of the current selection for the recording is flashing on the
lower right corner of the display.

'Takla Recording  Air s interrval alternatives

The R-R-recording indicates the HRV and measures the time in milliseconds between

two successive heart beats. R-R-recording is suitable for measuring HRV in non-exercise

and at resting situations. It's recommended to use Contact Gel (ECG gel) to ensure good

contact between skin and transmitter. It's suggested to minimized the use of lap times,

timers and backlight functions to avoid disturbance during R-R-recording.

Starting the heart rate measurement

1. Wear the Transmitter and the Receiver.
2. In the Time of Day mode, press the STORE/LAP/RECOVERY(red button).

HRM starts.
The search for transmission code starts.
The HR reading starts to appear on the button line
Stopwatch starts running.

Automatic recording of heart rate information starts.



APPENDIX C
Curve
	 ctoyrigitg by POLAR. ELECTRO

Note

Figure Cl. Circadian Rhythm morning #1 raw heart rate data



APPENDIX C
(Continued)

Figure C.2 Morning #2 raw heart rate data
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Figure C.3 Morning #2 continued
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Figure CA Day #2 raw heart rate data
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Figure C.5 Morning #3 raw heart rate data
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Figure C.6 Morning #3 continued
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Figure C.7 Day #3 raw heart rate data
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Figure C.8 Morning #4 raw heart rate data
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Figure C.9 Morning #4 continued
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Figure C.10 Circadian rhythm morning 111 cleaned non-zero heart rate data
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Figure D.1 LabVIEW program hierarchy window
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Figure D.2 The Heart Rate & Respiration Power Spectrum program in Labview
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Figure D.5 Modified front panel of program
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Figure D.6 Modified program showing left side of diagram
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Figure D.7 Modified program showing right side of diagram
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Figure E.1 file 5sec_1.
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Figure E.8 Circadian rhythm day #2, LF & HF vs. time

Figure E.9 Circadian rhythm morning #2, LF & HF vs. time



APPENDIX E
(Continued)

87

Figure E.10 Circadian rhythm evening #3, LF & HF vs. time

Figure E.11 Circadian rhythm morning #3, LF & HF vs. time
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Figure E.12 Circadian rhythm morning #4, LF & HF vs. time
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