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A BSTR A C T

On Generalized A daptive  
N eural Filters 

by 
Zhiqiang Zhang

Linear filters have historically been used in the past as the most useful tools 

for suppressing noise in signal processing. It has been shown that the optimal filter 

which minimizes the mean square error (MSE) between the filter output and the 

desired output is a linear filter provided that the noise is additive white Gaussian 

noise (AWGN). However, in most signal processing applications, the noise in the 

channel through which a signal is transmitted is not AWGN; it is not stationary, and 

it may have unknown characteristics.

To overcome the shortcomings of linear filters, nonlinear filters ranging from 

the median filters to stack filters have been developed. They have been successfully 

used in a number of applications, such as enhancing the signal-to-noise ratio of the 

telecommunication receivers, modeling the human vocal tract to synthesize speech 

in speech processing, and separating out the maternal and fetal electrocardiogram 

signals to diagnose prenatal ailments. In particular, stack filters have been shown 

to provide robust noise suppression, and are easily implementable in hardware, but 

configuring an optimal stack filter remains a challenge. This dissertation takes on 

this challenge by extending stack filters to a new class of nonlinear adaptive filters 

called generalized adaptive neural filters (GANFs). The objective of this work is 

to investigate their performance in terms of the mean absolute error criterion, to 

evaluate and predict the generalization of various discriminant functions employed 

for GANFs, and to address issues regarding their applications and implementation. 

It is shown that GANFs not only extend the class of stack filters, but also have better 

performance in terms of suppressing non-additive white Gaussian noise.



Several results are drawn from the theoretical and experimental work: stack 

filters can be adaptively configured by neural networks; GANFs encompass a large 

class of nonlinear sliding-window filters which include stack filters; the mean absolute 

error (MAE) of the optimal GANF is upper-bounded by that of the optimal stack 

filter; a suitable class of discriminant functions can be determined before a training 

scheme is executed; VC dimension (VCdim) theory can be applied to determine 

the number of training samples; the algorithm presented in configuring GANFs is 

effective and robust.
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C H A P T E R  1 

IN T R O D U C T IO N

Linear filters have been historically used as the most useful tools for suppressing noise 

in corrupted signals. It has been shown [21] that the optimal linear filter minimizes 

the mean square error (MSE) between the filtered output and the desired output of 

the filter, and that the optimal filter, among all kinds of filters, can be found in linear 

filters if the noise is additive white Gaussian. This assumption, however, restricts 

the applications of linear filters.

In order to overcome the shortcomings of linear filters, nonlinear filters ranging 

from the median filters introduced by Tukey [43], to stack filters introduced by 

Wendt, Coyle and Gallagher [47], have been developed. Nonlinear adaptive filters 

have been used widely in a number of applications, such as increasing the signal- 

to-noise ratio of the receiver in telecommunications, modeling the human vocal 

tract to synthesize speech in speech processing, and separating out the maternal 

and fetal electrocardiogram signals to diagnose prenatal ailments, because in these 

applications, the noise in corrupted signals is usually not white Gaussian.

There are a number of classes of nonlinear filters. One large class is that of 

stack filters which includes median filters, weighted rank-order filters (WOS), and 

morphological filters. Stack filters have been shown to be easily implemented in 

hardware, but the problem for configuring an optimal stack filter remains a challenge. 

This dissertation takes on this challenge by introducing a new class of nonlinear 

adaptive filters-generalized adaptive neural filters.

1.1 M otivation

In most signal processing applications, the noise in the channel through which a signal 

is transm itted is not additive white Gaussian noise (AWGN); it is not stationary,

1



and it may have unknown characteristics. It is known that linear filters are optimal 

for AWGN channels, but they cause a blurring effect on edges (sharp transitional 

parts) of signals. Recently nonlinear filters have received much attention. However, 

designing a nonlinear operator remains largely an ad hoc process since tools of linear 

operators are not applicable. Nonlinear filters, such as stack filters, are known to 

be quite robust for suppressing non-AWGN noise, and thus, they play an important 

role in the non-AWGN environment. Stack filters belong to a large class of nonlinear 

filters that are uniquely determined by positive Boolean functions. There are a 

large number of possible configurations for a stack filter with a given window size. 

Recently, several adaptive methods [1] [2] [10] [26] have been proposed to configure 

stack filters. Researchers are still actively seeking effective methods for configuring an 

optimal stack filter. For this reason, generalized adaptive neural filters are introduced 

to generalize stack filters to a larger class of nonlinear filters and to outperform stack 

filters.

This dissertation deals with the development of a new class of nonlinear 

adaptive filters called generalized adaptive neural filters (GANFs). The theoretical 

implications are based on the theories of stack filters and neural networks. GANFs 

add to a large class of easily implementable nonlinear filters which include stack 

filters and morphological filters. However, GANFs have better noise suppression 

performance than stack filters. It will be shown that the optimal GANF performs 

better under the mean absolute error (MAE) criterion than stack filters, and that 

the upper-bound of its MAE can be mathematically derived.

In brief, the objective of this dissertation is to develop a new class of 

nonlinear adaptive filters called generalized adaptive neural filters; to investigate 

their performance in terms of the MAE and other error criteria; to evaluate and 

predict the generalization of various discriminant functions; and to address some 

issues regarding their application and implementation. Throughout the dissertation,
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some theories and the performance regarding the structure of GANFs are discussed, 

and implementation by neural networks and hardware are addressed. These are 

presented to show that GANFs not only extend the class of stack filters, but they 

are also easy to implement using neural networks.

1.2 Previous Work

In order to overcome the shortcomings of linear filters, nonlinear filters ranging 

from the median filters to stack filters, which have been reported to suppress non- 

AWGN noise, have been developed. Among these filters, stack filters [4] [6] [12] 

[14] [16] [47] [49] possess two important properties: the threshold decomposition 

property and the stacking property, both of which can be represented by a certain 

Boolean operation on each binary level. These properties allow stack filters to be 

easily implementable by very-large-scale-integrated (VLSI) design.

Because there are a large number of positive Boolean functions to choose 

from, finding the optimal stack filter that yields the minimum MAE can be difficult. 

Methods [25] [26] have been proposed to find the optimal stack filter under the 

least mean absolute error criterion. In practice, these methods are computationally 

expensive if the window size and the signal value are large [49]. Their applications 

are, therefore, very limited. In addition, the optimal stack filter is able to minimize 

the MAE of the filtering output only under some restrictions on the signal, noise and 

window processes. Ansari et al. [2] and Yin et al. [50] developed a neural network 

based approach in configuring stack filters. Instead of searching for the best positive 

Boolean function directly from all positive Boolean functions, the (sub)optimal 

positive Boolean function is determined through training. This improvement 

simplified the algorithm for optimization under some of the assumptions made 

in stack filtering theory. In their works, however, several problems such as how good 

the performance and generalization of a specific neural network were not addressed.



Also, the number of training samples required for good generalization has not been 

determined.

In configuring GANFs, the investigation of the separation probability of a 

specific neural network for a given pattern classification is required, such that 

one can decide what network size is reasonable and economically feasible, while 

achieving good filtering results. Cover’s theory [11] on separation probability of 

a neural network is invaluable for implementing the GANF. In this dissertation, 

several theorems are derived based on Cover’s theory.

Generalization is a measure of performance of a neural network on the actual 

problem after training is complete. That is, it is the measure of the difference between 

the results attained from the training set and the testing set. VC dimensional theory 

developed by Vapnik and Chervonenkis [44] is a useful tool to determine how many 

training samples are required for good generalization.

1.3 O utline

This dissertation is organized as follows:

Following this introduction, Chapter 2 provides a brief review of stack filters 

and some optimization algorithms for configuring stack filters. From the analysis of 

the error estimate in this chapter, one can find the relationship between the mean 

square error and the mean absolute error, as well as the advantages for using MAE 

as the criterion in configuring stack filters.

Chapter 3 introduces the structure of GANFs and provides their mathematical 

descriptions. The further simplification and modification of the structure of the 

GANF is discussed. Using probability theory, one can find that the GANF is more 

generalized, and the stack filter is a special case of the GANF under some specific 

assumption. Therefore, we can conclude that: (a) GANFs form a large class of



nonlinear filters which includes stack filters, and (b) if the GANF were optimized, it 

would be superior to an optimal stack filter.

In Chapter 4, we derive the MAE of GANFs similar to the way the MAE of 

stack filters is derived in Chapter 2. Comparing the MAE of GANFs to that of stack 

filters, one can find that the MAE of the GANFs is upper-bounded by that of stack 

filters. From the theoretical analysis of the MAE of GANFs, a more generalized and 

simplified structure of GANFs is deduced. It is easier to implement this structure 

and it is more flexible in the sense that it can vary with different signal, noise and 

window processes.

Another problem dealt with in this chapter is the implementation of neural 

networks for GANFs. A quadratic discriminant function is adopted as an example 

to explain the neural network implementation of GANFs. Two training schemes, the 

Least Mean Square (LMS) and Perceptron, are introduced to optimize the neural 

network in configuring the GANF. An experimental comparison is given to show the 

performance of both LMS and Perceptron in minimizing the MAE of the GANF.

Chapter 5 deals with the separation probabilities of various discriminant 

functions. This is the basis for determining the type of discriminant functions to be 

adopted for solving the specific application economically in terms of computation 

and hardware implementation. The other problem solved in this chapter is how 

to determine the number of training samples necessary for good generalization of 

the neural network. The VC dimensional (VCdim) is adopted for determining the 

number of training samples needed for training the neural operators of GANFs.

Chapter 6 presents some experimental results of GANFs in one-dimensional 

signal processing, image processing, and applications to enhance EKG signals in 

bioengineering. Through experimentation and comparison of various filters, the 

advantages of GANFs are verified.



In Chapter 7, we discuss the implementation issues of GANFs by VLSI 

technology. The advantages of VLSI technology are small size, ease of use, low cost 

and very high speed. Because of the parallel structure of GANFs and the parallel 

nature of neural network algorithms, GANFs can be implemented for hardware 

fabrication using VLSI technology, in accordance with the recent literature.

Finally, our conclusions are presented in Chapter 8, and some suggestions of 

further research are also proposed, also proposed.



C H A PTER  2 

STACK FILTERS A N D  ER R O R  ESTIM ATE

2.1 Introduction

The median filter as applied to time series analysis [43] has been an important 

tool in signal processing [37]. The primary advantages of the median filter are its 

ease of implementation, edge preserving and impulse removing properties, and its 

robustness [52]. Since the inception of median filters, many nonlinear filters have 

been developed to provide extensive, flexible, and powerful processing approaches to 

meet a wide range of requirements for various environments. Stack filters [47] form 

a large class of nonlinear filters which includes median filters and rank-order filters. 

The proposed GANFs enlarge this class of nonlinear filters, which includes stack 

filters, weighted-order statistic filters (WOS), and many other “window” operators.

This chapter provides a brief overview of stack filters, and reviews some 

optimization algorithms for configuring stack filters. From the analysis of the error 

estimate, one can find the relationship between the mean square error (MSE) and 

the mean absolute error (MAE) criteria, as well as the advantages for using MAE 

as the criterion in configuring stack filters.

2.2 Stack Filters

The median and other rank-order operators possess two important properties: the 

threshold decomposition property and the stacking property. The first is a limited 

superposition property which leads to a new architecture for filters; the second is an 

ordering property which allows efficient VLSI implementation of filters.

Any filter which possesses both the threshold decomposition property and the 

stacking property is known as a stack filter. Thus, they are constructed as a “stack”

7
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F ig u re  2.1 A median filter with window width of 3.

of positive Boolean functions [18] [20] based on the threshold decomposition property 

and the stacking property. Stack filters form a large class of easily implementable 

filters with the two important properties described above. This class of filters includes 

the rank-order operators as well as all compositions of morphological operators.

2.2.1 T h resh o ld  D ecom position  and  S tacking  P ro p e rtie s

Since the threshold decomposition and stacking properties are the defining properties 

of stack filters, a review of these two properties is necessary.

The threshold decomposition property, also called the weak superposition 

property, can generally be illustrated by a rank-order filter such as the median filter 

with a window width of 3, as shown in Fig. 2.1.

Filtering an M-valued digital signal through a median filter, is equivalent to 

the following procedure:
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1. D ecom posing the M -valued Input Signal into a Set o f M  — 1 Binary  

Signals: The binary signal on level i, where i is an integer in {1,2, • • •, M  — 1}, 

is obtained by thresholding the input signal at value i. The output takes on 

the value 1 whenever the input signal is greater than or equal to i , otherwise it 

is zero. Note that the summation of the M  — 1 binary signals always provides 

the original input signal, as illustrated in Fig. 2.1.

2. Passing Each Binary Signal Independently Through Its Own Rank- 

order Filter: These binary operations may be performed in parallel, as shown 

in Fig. 2.1. During the filtering process, each rank-order filter simply adds the 

number of bits in the window and compares the result to an integer r, the 

desired rank of the filter. If the summation is greater than or equal to r, the 

binary output is 1, otherwise it is zero. For example, if r is equal to — 1) 

for a window width of 6, the rank-order filter is a median filter.

3. A dding the O utputs o f the Binary Rank-order F ilter One Sam ple at 

a Time: It has been found that the output of the rank-order filter formed by 

adding the output on each binary level possesses the stacking property.

Briefly, the stacking property [26] states that whenever the output of the rank- 

order filter on level A: is 1, all the outputs of the operators on levels below k must 

also be l ’s. It has been found that the output of the rank-order filter possesses the 

stacking property. Thus, the binary output signals are piled on top of each other 

according to their threshold levels. It can be seen from Fig. 2.1 that a column of l ’s 

always has a column of 0’s above it. The desired output value is simply the value of 

the threshold level where the transition from 1 to 0 takes place.

2.2.2 M athem atical Description

Definition 2.1 Two binary sequences of length n, X  = (xi ,X2 , • • •, xn) and Y = 

{Vii 2/2, '  •' 5 Vn), are said to be equal, X  =  Y, if and only if X{ =  ?/,• for all i 6
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{1,2, • • •, M}.  If X{ = 1 implies y,• =  1 for all z, X  <  Y. In addition, if X  < Y , and 

X  ^  Y, we say X  < Y  [26].

Consider an M-valued input sequence r(n). The binary threshold decompo

sition signals T\(n), T2(n), • • •, Tjvf-i(n) of the sequence r(n) are defined by

=  f 2 J l
{ 0 ,  otherwise,

where n stands for the n th  sample of the input sequence.

Note that these threshold sequences possess the stacking property:

T\{n) > T2(n) > > TM^ { n ) .  (2.2)

Let X  and Y  be two binary sequences. A filter [47] defined by a function F(-) 

is said to have the stacking property if and only if

F (X ) <  F ( Y )  whenever X  < Y. (2.3)

Based on Eqs. (2.1), (2.2), and (2.3), the output of a filter F(-) with stacking 

properties possesses the following relation:

F(TM- a) < F(TM-2) < ■ < F(Ti),  (2.4)

where Tj is the binary sequence decomposed on level i from the Af-valued sequence r(n).

All rank-order filters can, in fact, be implemented by a class of Boolean 

functions known as positive Boolean functions. Here, a Boolean function which 

satisfies the stacking property defined by Eq. (2.3) is called a “positive Boolean

function,” and a filter in which the binary operator in the threshold decomposition

structure is defined by a positive Boolean function is called a stack filter.

There are 20 possible positive Boolean functions of 3 variables, 7581 of 5 

variables, and an unknown but very large number for functions of 7 or more

variables [12]. Owing to the large number of possibilities, it is very difficult to
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determine the optimal positive Boolean function for a specific requirement. This is 

the major drawback of stack filters, and thus it is necessary and desirable to have 

an efficient scheme in configuring a stack filter.

2.2.3 O ptim al Stack Filtering

The theory of optimal stack filtering has been developed in [25] and [26] to minimize 

the mean absolute error (MAE) between the stack filter output and the desired 

output with a given noise distribution. However the following disadvantages of the 

proposed methods need to be overcome:

1. It has been assumed that the corrupted process and the desired process are 

jointly stationary. This assumption is not generally guaranteed in most signal 

processing applications.

2. It requires some knowledge or estimation of the coefficients in the cost 

function [50].

3. Another disadvantage is that the computational expense increases exponen

tially with the window size of the filter. As a result, the optimization procedure 

cannot be practically implemented when using a large window size.

To overcome some of the above disadvantages, adaptive stack filters have been 

developed. It has been shown that the adaptive filtering approach for stack filters 

performs the noise suppression task well [2].

2.3 T he Structure of an A daptive Stack Filter

A neural network consists of a set of highly interconnected processing elements called 

neurons. A possible model for a single neuron is shown in Fig. 2.2. The weights 

associated with a neural network can be determined by means of a certain learning 

algorithm.
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1

X l

X2

Xu
F igure  2.2 A single neuron.

Consider a linear discriminant function:

#[X(re)] =  a0 +  aiXi(n) + a2x 2(n) -| h abxb(n), (2.5)

where a{ for i =  0,1, • • •, b are the weights, and x\,  x 2, • • •, xb are the components of 

the input vector X( n)  of the neuron at n th  time unit. The structure of an adaptive 

stack filter [1] is illustrated in Fig. 2.3. Here, the linear discriminant function gftC) 

along with the hardlimiter serves as a threshold logic or Boolean function. The 

weights of the discriminant function can be updated by applying a specific training 

scheme. Note that when all the weights of g(X.) are constrained to be non-negative 

real numbers, the neuron emulates a positive Boolean function [1] [51], thus resulting 

in a stack filter.
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Adaptive Stack Filter

Neuron

T m-2 Neuron
A
SM-2

Neuron Si

Figure 2.3 An adaptive stack filter.
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2.4 A d ap tiv e  S tack  F ilte rin g  A lgorithm s

The procedure for configuring stack filters, hence, that of determining positive 

Boolean functions, is illustrated in Fig. 2.4, and the procedure for optimization 

involves minimizing a certain criterion function, i.e. C(s(n), s(n)), where s(n) and 

s(n ) are the desired output and the output of the stack filter, respectively. The 

criterion function C(s(n), s(n)) can be the measurement of the mean absolute error 

or mean square error, which will be discussed later in the chapter. Essentially, two 

approaches have been proposed for implementing adaptive stack filtering: linear 

programming and neural learning.

2.4.1 T h e  L inear P ro g ram m in g  A lgorithm

Denote Pp(a:|wj) G {0,1} as the output of a stack filter F(-) at time n, when the 

binary vector Wj with window width b is the input to F(-), where x = 0 or 1. This 

decision function, P p (l|w j), indicates the probability that the output of F(-) is a 1 

when the input vector of F(-) is w j. Clearly, the positive Boolean function, F(-), 

has 2b possible outputs. W ith these definitions, one of the cost functions based on 

the mean absolute error can be formulated as follows:

Cost =  E W K ) ,  
j=i

(2 .6)

s(n) r(n) s(n)
N(r (n))

F igure  2.4 The model for optimizing a stack filter.
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where Cj can be interpreted as the cost incurred by F(-) for deciding a 1 when vector 

w j  appears.

Clearly, the stacking constraints of the stack filters can be represented as a set 

of inequalities in terms of P p (l|w j), i.e.,

F f(1 |w .) <  PF(l|w i ) if w , < w j. (2.7)

By exploiting the structure of the constraint matrix, this zero-one integer linear 

program can be expressed as the following program [15]:

2 b

m in ^ C jP F (l |W j) , (2.8)
3=1

which is subject to the constraints of

P f(1 |w ;) <  P f(1 |w j) if w , < w j (2.9)

and

0 < P f ( 1 K ) < 1  Vj. (2.10)

The linear programming formulation of the above optimization problem has a 

very nice interpretation in terms of the behavior of the positive Boolean function F(-). 

The quantity P p ( l |wj) is the probability that the filter will put out a 1 whenever 

the binary vector w j is fed into it. However, knowledge of the joint threshold- 

crossing statistics of the signal and noise process is required. Such knowledge is 

rarely available in most practical applications. Furthermore, the computation of the 

optimization procedure increases greatly as the window width increases, because the 

number of weights to be fixed in the linear programming increases rapidly. The stack 

filter is configured under the constraint that each binary operator, by definition, is 

a positive Boolean function. In later chapters, we will show that the new class 

of nonlinear adaptive filters proposed in this dissertation—the generalized adaptive 

neural filters—can achieve better results under the MAE criteria than stack filters 

do.
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2.4.2 T he N eural Learning A lgorithm

Another adaptive algorithm for configuring stack filters has been developed in [2] 

and [50]. It has been shown that the algorithm performs the noise suppression task 

well.

Since stack filters possess threshold decomposition and stacking properties, 

configuring a stack filter involves converting the input signal sequence into a sequence 

of binary signals by threshold decomposition, and then finding the appropriate 

positive Boolean function used for all levels. As mentioned earlier in this chapter, an 

M -valued sequence r(n) can be decomposed into threshold binary sequences denoted 

by r M-i(n ), Tm-2, • ■ •, 7i(n), where

Ti (n) > T2(n) >  > TM-i(n ) (2.11)

and

-  { 0, f f i " ’

for m  =  1,2, • • •, M  — 1.

Recall the properties of stack filters. At each threshold level, the input is a 

binary sequence and the output is a binary number. In other words, the input- 

output relationship can be realized by a Boolean function. As mentioned earlier, 

some Boolean functions can be realized by a single neuron. Thus, neural networks 

can be used to configure stack filters.

The general single neuron structure for configuring stack filters is shown in 

Fig. 2.5. The input r(n) is first converted to a binary sequence, Tm-i(ti),  Tm - 2, , Ti(n).

For each window sample of width b of the input sequence r(n), there are M  — 1 

window samples of width b of the threshold binary sequence; that is, M  — 1 binary 

input patterns are presented to the single neuron. Thus, the weights of the neuron 

are updated by the M  — I binary input patterns M  — 1 times for each sample of r(n).

The serial binary outputs of neurons are then stacked back into M  — 1 levels. Finally,
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Tm-i

Tm-2r(n) single
neuronsequence

parallel sequence

parallel

threshold
into

M -l

levels

F ig u re  2.5 The single neuron structure for configuring stack filter.

the M-valued filtered output signal is reconstructed, by the stacking property, from 

binary outputs, by a search for the level at which the transition from 1 to 0 occurs.

2.5 Error E stim ate

As mentioned earlier in this dissertation, an optimal stack filter is one that achieves 

the minimum value of a certain criteria function under specific signal and noise 

processes. The most frequently used criteria functions in signal processing are mean 

square error (MSE) and mean absolute error (MAE).

2.5.1 Least M ean Square Error

Let r(n) be the process at the input of a stack filter and s(n) be the desired output of 

the stack filter. A window of width 6, where b is some odd integer, slides across the 

input process r(n). Let r;,(n) be the vector containing the b samples in the window 

of the filter, in which case

r6(n) =  [r(n -  ' • • r{n) ■ ■ • r(n  +  ~ ^ ) } -  (2.13)

At each time instant n, the stack filter F(-) maps rt,(n) E Qb to some integer in Q,

where Q stands for the set of natural numbers, such that the output of the stack

filter with the input vector r *,(«) is defined as:
M - 1

s(n) = F(rb(n)) = J2  f[Tk(n(n))}, (2.14)
k=i
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where /(•) is a positive Boolean function operating on each threshold binary level, 

and

n - M n ) )  =  p i ( r ( „  -  ■ ■ ■ J i ( r W )  • • ■ T„(r(n +  L l i ) ) ] ,  (2.15)

in which

^  =  {  J; o th irw ii* ’ <2-16>

for k =  1,2, ■ • •, M  — 1.

The goal of optimization is to pick a stack filter from the class of window width

b stack filters such that the mean square error between the filter’s output s(n) and

the desired signal is minimized. Thus, the optimization problem becomes

minMSE =  minE[s(n) — s(re)]2, (2.17)

where

MSE =  E[s{n) -  s(n)]2 (2.18)

is the mean square error.

If we define

e(n) =  s(n) — s(n) (2.19)

and

e*(n) =  sk(n) -  sk(n), (2.20)

where Sfc(n) is the output of the positive Boolean function and s ^ n )  is the desired

output on kth. binary level,

then
M—1

e(n ) =  e*(n )- (2.21)
k= 1

Thus Eq. (2.17) becomes

M- 1
minMSE =  minEJ[ ^  e)t(n)]2. (2.22)

k=l
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Note that error ejt(n) has the following property:

• Because both the output of the positive Boolean function, Sk(n), and the 

desired output, Sk(n), are binary numbers, e\(n) is also binary. This means 

that e |(n ) is equivalent to its absolute value |efc(n)|. Whence,
M - l

MSE =  £ [ £ e fc(n)]2
k—1 

M - l
< E \ Y , W { n ) \ ?

k=1

=  MASE. (2.23)

M - l
Here, MASE is defined as the mean absolute square error, E\  ^  |efc(n)|]2.

k= i
Note that, it is difficult to find a closed form expression for the MSE of stack 

filters, and from the following analysis, one can find that the MAE criteria is easier 

and more practical to deal with.

2.5.2 M ean A bsolute Error

Given a window width of b, the mean absolute error of a stack filter F(-) at time j  

between the output of the stack filter s(j)  on an input window process rb(j) 6 Qb 

and a desired signal s ( j)  is defined as:

MAE =  £ [ | s ( j ) - F ( r fc(j))|]

=  ^ [ls ( i) - - s ( i) |] .  (2.24)

Because of the threshold decomposition property,
M - l

MAE =  i ' f l E l a W - i M I ) ,
k=l
M - l

= (2-25)
fc= 1

M - l
As we know, the variance, <r2, of the process |e*| can be expressed as

k= 1

M - l  M - l

°-2 = E [ J 2  M ] 2 - ( £ [ £  M ])2 >  o. (2.26)
A:=l k= 1
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Thus,

A/—1 M - l

( £ [ £ h l ] ) 2 < - E [ £ M 1 2
fc=i fc=l

=  MASE. (2.27)

Hence, the squared MAE has the same upper bound as the MSE, shown in Eq. (2.23).

According to the stacking property

M - l

MAE =  £  E[\sk(j) -  sk(j)\], (2 -2 8 )
fc=i

where

h ( j )  = f[Tk(rb(j))], (2.29)

and /(•) is a positive Boolean function operating on each threshold binary sequence.

Knowing the probability model of the signal, noise and input window processes, 

and considering the fact that there is a total of 2b different patterns W j, for j  = 

1,2, • • •, 2b in the 6-dimensional binary domain [52]: Eq. (2.28) can be expressed as:

M - l  2b

MAE =  J 2  !C[p / ( 0K ) 7rfc(1’wj) +  P/ ( 1K ') 7r*=(0>wj)]- (2.30)
fc=i j=i

Here, P /(0 |w j) and P /(l |w j)  correspond to the output of the positive Boolean 

function /(•) for w j. Note that the output of the positive Boolean function /(•) is a 

binary number. Therefore, according to the total probability theorem [33], they are 

complementary to each other in the sense that their sum is 1, i.e.,

P/(°Iwj ) +  ^ /( l |w j)  =  1. (2.31)

7Tjt(l,Wj) or 7Tfc(0, Wj) is the joint probability that the binary pattern wj is 

observed in the threshold decomposed input window process on level k and the 

desired value is 1 or not, respectively.

In terms of the threshold decomposition property, the mean absolute error of 

the stack filter can be expressed in the following way:

MAE = £ [K j')-*0 ')I]
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M - l

= D  E [ M )  -  h(j)\]
k=1 

Af-1
= £ £ [ ( « « ) - 4 0  ))2]. (2.32)

k=l

A Least Mean Absolute Algorithm (LMA) has been developed in [50]. In

the LMA, a nonlinear function is used instead of a Boolean function. With this

replacement, the optimization problem becomes finding the weight vector A, such 

that
M - l

min J(A ) =  min E[sk(j) -  AV(i**(j))]2, (2.33)

where

A =  [Al5 A2, • • •, Am+1]‘ (2.34)

is a set of weight vectors, and

<KX) =  [<MX)> <MX)> • • •, <̂m( x ) , - i f  (2.35)

is a set of m  nonlinear functions.

By expanding the square in Eq. (2.33) and obtaining the expected value, (a 

procedure somewhat similar to the procedure of Wiener filter theory [21]), we can 

rewrite LMA as:

MAE =  2{-A*RA -  A tR s +  - s 2(j)]}, (2.36)
2 2

where
M - l

R =  £  EMntimnUm, (2.37)
k=1

and
M - l

« * =  E  ^[Bfc0')^(r*(i))]- (2.38)
k—1

With the stacking property, the optimization problem can be written as follows:

mm J(A ) =  m in2{|A *R A  -  A ‘P S +  ^ s20')]}, (2.39)

where 5  is the set of all vectors in m-dimensional space.



22

The following items should be kept in mind:

1. Eq. (2.39) is derived under the assumption that the signal process and the noise 

process are jointly stationary with zero mean. That is, 7r/(l, w,) =  7^(1, w,) 

for all k, I £ {1,2, • • •, M  — 1}. This assumption is hardly satisfied in most of 

the signal processing applications.

2. The stacking property still remains in the LMA, which, according to Eq. (2.30), 

implies the following:

P /(l |w .)  >  P f(l|w j) if w i > w j. (2.40)

This condition is not guaranteed in practice.

2.6 S u m m ary

In this chapter, stack filters and the adaptive stack filtering algorithm have been 

reviewed. The stacking and threshold decomposition properties are depicted in detail. 

Based on these two important properties, stack filters encompass a large class of 

nonlinear filters including weighted-order statistic filters (WOS) and morphological 

filters. Their main advantage is ease of implementation in VLSI since they operate 

on each binary level individually.

If used with a neural network for training the weights, the adaptive stack 

filtering algorithm is an effective tool for configuring a stack filter.

By analyzing the error estimate, one can conclude that the mean absolute 

error is a good criterion in stack filtering optimization. Since MAE and MSE have a 

common upper-bound, minimizing MAE is as effective as minimizing MSE, but the 

MAE criterion is more mathematically tractable.

Because of the computational expense and the assumption of having the signal 

and noise jointly stationary, a more generalized structure of nonlinear adaptive filters
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needs to be developed, and a more efficient method for finding the optimal neural 

structure needs to be explored.



C H A P T E R  3 

G ENERALIZED A D A P T IV E  N EU R A L FILTERS

3.1 Introduction

To overcome the disadvantages of stack filters reviewed in the last chapter, a new class 

of nonlinear filters called generalized adaptive neural filters (GANFs) is introduced. 

GANFs encompass a large class of nonlinear digital filters which includes generalized 

stack filters. It has been demonstrated that they are more effective than the stack 

filters for non-AWGN noise suppression [3] [22] [53] [54].

As shown in Chapter 2, there are two assumptions which guarantee that the 

resulting optimal filter is a stack filter. The stationarity assumption mentioned in 

Chapter 2 implies that the binary input processes on all binary levels are identical,

i.e. 7T/(1, w,) =  7rjfc(l, w,-) for all k, I € {1, 2, • • •, M  — 1}, i = 1,2, • • • ,2b, where b is the 

window width, and 7 r / ( l, wt) denotes the joint probability of the event that binary 

pa ttern w,- is observed on level I and at the same time the desired signal level is greater 

than i. The other is the stacking assumption, 7T|(l,Wj) >  7Tf(l,Wj) for W; >  wj. 

However, these assumptions are not practical, in general. The theory presented for 

the proposed GANF in this chapter does not make the above assumptions. Hence, 

the resulting optimal GANF would not have the restrictions of stacking and identical 

distribution on the binary levels for the input signal and noise processes.

In this chapter, we present the structure of GANFs and their mathematical 

description. From theoretical analysis, one can show that GANFs enlarge the class 

of stack filters, and the stack filter becomes a special case of GANFs under some 

specific conditions. Therefore, we can conclude that if the GANF is optimized it 

would be superior to an optimal stack filter in suppressing non-AWGN noises. Some 

additional properties of GANFs are also discussed in this chapter.
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3.2 T h e  D efin ition  and  S tru c tu re  of G A N F s

3.2.1 D efin itions

Let the input sequence to a GANF be r(n), where r(n) G {0,1,. . .,M  — 1}. A 

window of width b slides across r{n) forming an input vector r b(n) to the GANF, 

which produces s(n), an estimation of the desired signal s(n). Thus, r;,(n) =  [r(n — 

. ., r ( n ) , . . . , r(n  +  ^±i)].

D efin itio n  3.1 The vector rt(n) can be represented by threshold decomposition as 

follows:
M-l

r b{n) =  ^ 2  Tm[rb(ra)],
m =l

where Tm(.) is the thresholding function.

When Tm(.) is applied to a scalar, it is defined as

T  W1 =  J ! ’ if * -  m ’
{ 0, otherwise,

for m = 1, 2, . . ., M  — 1.

When operated on the vector r;,(n),

Tm[rt(n)\ =  {T„[r(n -  • • • ,T„[r(n)], • • •, r m[r(n +  h = i ) ] } .

The new class of adaptive filters, GANFs, are defined as follows:

(3.1) 

□

(3.2)

(3.3)

D efin itio n  3.2 A GANF denoted mathematically by F/^fXfn)] is defined below.
M - l

s(n) =  -F ^ M n )] t  Y ,  N t{X l - \n%  (3.4)
1 = 1

where the subscript I  defines the number of adjacent levels above and below the

current level that are included for computing the filter output.
Ti+/[r6(n)]



is a (21 + 1) x b input binary array obtained from r&(n). Here, N{(.) is a neural 

operator. □

By extending the stacking property to an array, we have the following definition:

D efin ition  3.3 Let A  and B  be n x  m  binary arrays with components a(i , j )  and 

b(i,j), respectively. A is said to stack on B, whence A < B,  if and only if a(i, j )  < 

b(i, j) for all i and j; i.e., a( i, j )  =  1 implies b(i,j) =  1. □

It is obvious that the threshold decomposition operator applied to the vector 

rb(n), possesses the stacking property:

Tm[r6(ra)] >  2}[r(,(n)] for m < I. (3.6)

Likewise, the binary threshold array X f 'b(n) also exhibits the stacking property, as 

in

xl*(n) > xl*(n) > . . . >  xll,(n). (3.7)

In the definitions described above, the concepts of stacking and threshold 

decomposition properties are extended to array operations. Instead of the positive 

Boolean function, a neural operator is adopted on each binary level. Some important 

properties and advantages in such extensions will be discussed later.

3.2.2 T h e  S tru c tu re  o f G A N Fs

Fig. 3.1 shows an example of a GANF with a window width of 3 using 3 adjacent 

levels. Here, for simplicity, the output of each neural operator is binarized by a 

hardlimiter. From the definitions described in Subsection 3.2.1, feeding an M-valued 

signal sequence through a GANF is equivalent to the following procedure:
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1. D ecom posing  th e  M - valued  In p u t Signal in to  a  S e t o f M  — 1 B in a ry  

S ignals. The binary signal on level i, where i is an integer in {1,2, • ■ •, M — 1}, 

is obtained by thresholding the input signal at value i, as in stack filtering.

2. A ssign ing  B in a ry  Sequences for Levels O ut o f th e  R an g e  of 1 to  M —1.

The binary sequences which are above the range (>  M ) are assigned “0,” and 

those below the range (<  M )  assigned “1,” as shown in Fig. 3.1.

3. Feed ing  Each B in a ry  S equence and  C o rresp o n d in g  S equence in 

A d jacen t Levels above an d  below  th e  C u rre n t Level to  th e  N eu ra l 

O p e ra to r. The output value of each neural operator, s £ [0,1], is continuous.

4. A d d in g  th e  O u tp u ts  of th e  N eu ra l O p e ra to r  on Each B in a ry  Level.

Unlike stack filtering, the stacking property may not be retained at the output 

of the GANF.

3.3 W h y  a re  G A N F s G eneralized?

For convenience, we briefly define the MAE of a stack filter that was discussed in 

Chapter 2, again. The MAE at time n between the output of the stack filter F(-) on 

an input window process rt(n ) € fi6 and a desired signal s(n), for a window width 

of b, can be expressed as [52]:

MAE =  E [ | s ( i ) - F ( r 6(i))|]
2b M - l

= 5Z +  ^/(iK O TTfc^w j)]. (3.8)
j=i *:=i

In the above equation, w j denotes a binary pattern of 6-dimensions. P /( l |w j)  and 

P /(0 |w j) are denoted as the respective binary outputs of the Boolean function /(•) 

operating on w j at level k. Each output takes on either 1 or 0, and each complements 

the other, i.e.,

^ / ( ° K )  +  ^ /( l |w j)  =  1. (3.9)
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Here, 7r,(0, Wj) or 7T,(1, Wj ) denotes, respectively, the joint probability of the event 

that the binary pattern Wj is observed in the threshold decomposed input window 

process on level i and the true signal value is or is not less than i, respectively.

By Bayes’ rule, 7T,(1, Wj) and 7r,(0,Wj) can be factored into two terms:

*■<(!> wj) =  (3.10)

and

7Ti(0, Wy) =  7Tt(0|Wj)7rt(Wj), (3.11)

where 7r,(wj) is the limiting probability of the event that the binary pattern Wj is 

observed at level i, and

7T«(0|wj) =  1 -7r,(l|W j)

=  Prob{desired signal value is less than z|wj

is observed at level i}. (3.12)

According to the threshold decomposition property of the stack filter, the MAE

of the stack filter defined by Eq. (3.8) can be represented by the sum of the MAE of

the positive Boolean function /(•) at each of the binary levels. Thus,

M
m a e  =  ]T;m a e ,-, (3-13)

t=i

where
26

MAE,- =  +  -p/ ( 1lwi)7r<(°lwi)]jr«,(wj)- (3-14)
j=i

Therefore, minimizing the MAE of a stack filter is equivalent to minimizing 

the MAE at the output of the binary operator at each level. Since the MAE at each 

binary level is non-negative, i.e., MAE,- > 0 for all i,

M
min MAE =  min ̂  MAE;

i=i
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M
— ^ 2  min MAE,-. (3.15)

t=i

In general,

7r;(0|wfc) ±  7rj(0|wjt) and 7rt( l|w fc) ±  7T/(l|w/.) for i ^  j  (3.16)

and

7rt(0,Wfc) ^  Xj(0, Wfc) and tt;(1, w fc) ^  tt/(1, w fc) for i ±  j .  (3.17)

Therefore, Eq. (3.14) becomes

2b

MAE; =  ^ [P /^ O K O tt̂ IIw j) +  E/t. (1 |w/ )7r,(0|wj )]7T;(w/), (3.18)
i=i

where E /.^ lw /) , x — 0 or 1, is the decision rule to determine the output of the 

Boolean function on level i to be either 1 or 0 when the input is Wj. Note that in 

this case

E/,(0|wj) ^  E/(0|w /). (3.19)

Thus,

2 b

minMAE; =  m in^tE /.^O K ^T r^llw /) +  P/^IIw /Jtt^O Iw /^tt^w /) (3.20) 
j=i 

2b

¥= mi 11 [^Z (° I Wi )7ri (11WJ ) +  E/(l|Wj)7Tt(0|w/)]7r,(Wj).
j=1

The positive Boolean function E /(l|w /)  is formulated under the assumption that 

7Tj(.T,Wfc) =  7Tj(x, Wfc) for all i and j .  Here x is either 1 or 0. Therefore, an optimal 

stack filter can be achieved by minimizing the MAE; for each binary level under the 

condition E /( l |w /)  >  E/(l|wfc), for wj  >  Wfc. The optimal stack filter is obtained 

by minimizing the MAE value of Eq. (3.13).

If the following conditions hold, the optimal GANF is an optimal stack filter:

1.

7T;(l, w,) >  7T/(l,W/) whenever wt- > w/; (3.21)
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2.

7r/(l,w,) >  7rm(l,w ,) for m >  I. (3.22)

In practice, both Eqs. (3.21) and (3.22) are hardly guaranteed. Therefore, a

better performance for the GANF is expected if the MAE at each binary level can

be minimized without the above constraints. Thus,
2b

minMAE,- =  m in ^ [ P /t.(0|wj )7r,(l|wJ) +  / ,/1(l|w J)7rt(0|wJ)]7rt(wi ). (3.23)
j=1

Note that the stacking property may not be possessed in minimizing the MAE on 

each binary level according to Eq. (3.23). We shall prove in Chapter 4 that the 

GANF developed in this dissertation has the MAE which is upper-bounded by the 

MAE of the stack filter shown in Eq. (3.13). Thus, the MAE of the GANF is less 

than or equal to that obtained from Eqs. (3.13) and (3.14), and the MAE of the 

GANFs is equal to that obtained from Eqs. (3.13) and (3.14), if and only if the 

conditions defined by Eqs. (3.21) and (3.22) are satisfied.

In conclusion, for an M-valued input signal, a GANF can be configured by 

finding the M  — 1 Boolean functions for M  — 1 threshold decomposing binary levels 

such that the mean absolute error on each level is minimized.

3.4 Properties o f G ANFs

In this section, the relationship between GANFs and stack filters is studied, and

some interesting properties of GANFs are investigated.

As stated in Definition 3.2, the output of a GANF is denoted by
M - l

i(n ) =  F„[r»(n)] =  £  «[*/•*(»)]• (3.24)
«'=1

Here, A,(-) is a neural operator on the zth binary level. It has been shown in Eq. (3.13)

that the MAE of a stack filter on the ith  binary level is equivalent to
26

MAE,- =  /(0|wj)7r,(l|wj) +  ^ ( I I wjOtt̂ OIw j^ tt̂ Wj ). (3.25)
j=i
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Note that P/(a:|w j) is a positive Boolean function which produces either 1 or 0, 

and in GANFs, Pfi(x\wj) is replaced by JV,(wj). In this case, we have the following 

observations:

O bservation 3.1 If the neural operator on each binary level is a linear discriminant 

function defined as follows.

a^ )  =  4  +  I > } 4  (3-26)
j=i

Then, the output of the GANFs becomes

M - l  M - l  b

E  = E 14 + E  4 4 1 . <3-27)
i=i i=l j=l

where a*- and x* for i =  1,2, • • •, M  — 1 and j  = 1,2, • • •, b are the weights and the 

components of the input vector X * with window width of b on the binary level i. 

GANFs become a summation of linear functions on all binary levels. That is, the 

optimal GANF with Ni(-) =  linear discriminant function is equivalent to a sum of 

the optimal finite impulse response (FIR) filter on each binary level. Here, X 1 is the 

6-dimensional input vector of a GANF on ith  level. □

O bservation 3.2 If we use a hard limiter to threshold the output of the linear 

discriminator to have binary values, we have

b
Ni(X') = Pji{x\wj) = U[a0 +  aJxi]’ (3-28)

j=i

where x  is either 1 or 0, and U[-\ is a hard-limiting function. In this case, GANFs 

are nonlinear filters. □

O bservation 3.3 If all the weights a,j > 0 for j  =  0,1, ■ ■ •, b on all binary levels, 

the GANFs become generalized adaptive stack filters (GASFs). □

Therefore,the output of the GANF may not necessarily possess the stacking 

property. It will be proven in Chapter 4 that without the stacking property, the
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MAE of the optimal GANF is less than that of the optimal stack filter. According to 

Observation 3.3, the optimal GANF would be equivalent to an optimal generalized 

adaptive stack filter, if the following assumption

7T/(1, w,-) >  7T/(l,Wj) whenever w ,• > w j (3.29)

is true. Therefore, the optimal GASF is a special case of the optimal GANF.

At the input side, more adjacent levels can be fed to the neural operator on 

each binary level. Therefore, this feeding of adjacent levels generalizes the input 

architecture of stack filters.

In brief, the differences between GANFs and stack filters are:

1. GANFs are able to generate an output with a continuous real valueE {0,1}, 

instead of a binary value generated by a positive Boolean function. However, 

in this dissertation, we only consider binary neural operators.

2. Generally, the output of an optimal GANF may not possess the stacking 

property.

3. Adjacent levels can be fed to the neural operator on each level.

4. A GANF is configured by defining the neural operators on each individual level, 

while a stack filter is configured by determining the positive Boolean functions 

on each level.

Except for the above differences, there are some common properties. Both 

possess the threshold decomposition structure, and both convert an M-valued 

operator into M  binary valued operators, resulting in easy VLSI implementation.

3.5 S um m ary

In this chapter, we have developed a new class of nonlinear adaptive filters called 

generalized adaptive neural filters. This class of filters, which unifies linear and



nonlinear filters (such as FIR filters, stack filters, and GASFs), is defined with the 

use of neural networks and threshold decomposition architecture. Some interesting 

properties show that GANFs are more generalized and less restricted than stack 

filters.

From the properties of GANFs, it can be concluded that GANFs encompass 

a larger class of nonlinear digital filters which include stack filters and GASFs. We 

shall show in the next chapter that the MAE of the optimal GANF is upper-bounded 

by that of the optimal stack filter.



C H A PTER  4 

OPTIM IZATION OF GANFS

4.1 Introduction

As shown in Chapter 2, the most frequently used criteria for optimizing nonlinear 

filters are the mean square error (MSE) and the mean absolute error (MAE). From 

the theoretical derivation of the MAE of GANFs, the structure can be further 

simplified. This simplification depends on the applied signal, noise and window 

processes, and it can lead to an easier implementation.

In this chapter, we derive the MAE of the GANFs similar to that of the stack 

filters derived in Chapter 2. In comparing the MAE of GANFs to that of stack 

filters, one can find that the MAE of GANFs is upper-bounded by that of stack 

filters. Thus, the MAE of the GANFs is always less than or equal to that of the 

stack filers. From the theoretical analysis of the MAE of GANFs, a more generalized 

structure of the GANFs is presented, which can be configured according to different 

signal, noise and window processes. In addition, this modified structure is easier to 

implement.

Another problem dealt with in this chapter is the implementation of neural 

networks for GANFs. A quadratic discriminant function is adopted as an example 

which explains the neural network implementation for GANFs. Generally, many 

kinds of neural networks can be implemented, such as multi-layer networks and 

radial basis function networks.

Two training schemes—Least Mean Square (LMS) algorithm and Perceptron 

learning—are used in the neural network for configuring the GANF. An experimental 

comparison between the performances of LMS and Perceptron in minimizing the 

MAE of the GANF is also presented.

35



4.2 T h e  M A E  C rite rio n  of G A N F s

4.2.1 T h e  M A E  of G A N F s

Denote the mean absolute error criterion function of a stack filter by R[F(-)]. 

According to the stacking property,

B[F(-)} ±  E[\s(n) -  s(n)\]
M - 1

fc=l 
M—1

= i 'E ,  E [ \ s k ( n ) - s k(n)\]}, (4.1)
k~  1

where

sk(n) = F[X*(n)] (4.2)

is the output of the positive Boolean function with 6-dimensional input vector X k 

on the &th binary level and

sk(n) = Tfc[s(n)] (4.3)

is the desired binary value on the kth. binary level.

We can similarly define the MAE of a GANF as follows.

D efin ition  4.1 The mean absolute error criterion function of a GANF denoted by 

C[F/)6(')] is defined as,

C W ,4(-)] =  £ [K » )  -  l(n)|], (4.4)

where s(n) is, in this case, the output of the GANF. □

Note that GANFs do not necessarily possess the stacking property, i.e.,

M-1
<?[/«(•)] J4 { E  £ [M » ) -  4b(n)l]}> (4-5)

fc=l

where in this case, Sk(n) is the output of the neural operator, Nk[Xl’b(n)].

It can be shown that the MAE of a GANF is always less than or equal to that 

of the stack filter. Thus, GANFs are superior to stack filters in suppressing noise in 

terms of being able to achieve a smaller MAE.
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4.2.2 T he U pper Bound of the M AE of a G A N F

D efinition 4.2 If the MAE criterion function denoted by is always less

than or equal to a constant B, B  is said to be an upper-bound of C'[F/i6(-)j. □

Denote Gj[i7/ ii,(-)] =  E[|s,(n) — s;(ra)|], as the MAE of the GANF for level i
M - 1

and C[FItb(-)\ = E \Y <  M « )  -  **(»)] I as the MAE of the GANF.
fc=i

P roposition  4.1 The sum of the MAE on each level of the GANF, G[f'7it(-)], is an 

upper-bound of the MAE of the GANF,C[Fjtb(-)]. That is,

M —l
C [F„(-)] <  £  Gf[F,,.(•)] =  G{F, ,»(•)]. (4.6)

k= 1

Proof:

M —1

C[F,,((•)] =  F | E [ » ‘ ( » ) - « ( » ) ] I
k= 1 

M —l

< E  ^2  -  5fc(n)|
k= 1 

M —l

=  2  ^ [l5*(n )

=  G > /l6(.)]. (4.7)

Hence, the MAE of the GANF, C[F/i(,(-)], is upper-bounded by G[F/it(-)]. □

An optimal GANF is one in which G[F/i6(-)] is minimized. However, it is 

difficult to minimize G[F/,6(-)j directly in the threshold decomposition structure 

of GANFs. Instead of minimizing G[F/,6(-)], we minimize the MAE of the neural 

operator on each individual binary level.

P ro p o s itio n  4.2 Assuming that the statistics of the signal, the noise and the 

window processes are known, and noting that there are 2̂ 2/+1 x̂6 different states in 

the domain fif2/+1)><6, where D £ {0,1}, the sum of the MAE of each neural operator
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can be written as follows:

M —l

G[Fi,b{')} = Y ,  E [\sk{n) -«*(w)|]
k= 1 

M —l

/:=1 wJ€Q̂ 2̂ '̂1)xb
+ ^/*(0lWj M l | w i )7Tfc(wj )]}. (4-8)

7rA:(«|wj) denotes the probability that the true signal is i under the condition that 

w j is observed from the input on level k, and TTfc(wj) is the limiting probability of 

having the input state w j observed on level k. Pfk(x\v?j) is equivalent to the decision 

rule of the neural operator operating on w j for generating a binary output x  at level 

k.

Proof:

The proof can be found in [52]. □

For a given input pattern Wj, the neuron output takes on either 1 or 0, and 

hence P /fc(a:|wj) is either 1 or 0 for x £ {0,1}. Thus,

+  Pf k (0 \wj )  =  1 Vj. (4.9)

Therefore, based on probability theory, the MAE on level i of a GANF denoted as 

G,[F/i(,(-)] can be expressed as follows:

G.iF/.&O)] =  J 2  [PA(Mwj K ( 0[WjW.(w,)
wJeQ(2/+1)x6
+ ^ A ( ° l w i ) 7rf c ( l | w j )7ri:( w j ) ] .  (4.10)

Thus,
M - i

mm {G[F,,*(■)]} =  £  m i n ^ F , , ,(■)]}. (4.11)
k=l

In general,

’TJb(wj) ^  iri(wj) (4.12)
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and

7r*(l|Wj) 7  ̂ 7T/(l|wj) for k I, (4.13)

so that

7^(1, Wj) /  ?r/(l,Wj-) for k ^ l .  (4.14)

Therefore, the neural operator Pfk(x\wj) used to minimize the MAE on each binary 

level should be different from one level to another. Whence,

Pfk(x \w j) ¥= Pfi(x \™j) for k ^  I. (4.15)

L em m a 4.1 The MAE of the optimal GANF is less than or equal to that of the

optimal stack filter for any given signal, noise and window process.

Proof:

According to the triangle inequality,

la +  b\ < |a| +  |6|, (4-lb)

then, from Definition 4.1 and Proposition 4.2,
M —l

c V b ( .) ]  =  F | E W " ) - ^ ( » ) ] I
k=l

M —l

< J2  E \sk(n) -  «fc(»)|
k=i
M - l

=  £ {  E  [ ^ ( o K M i K - W K )
k=l  w j 6Q(2/+i )x6

+ - 5 J 11w , ) ( rj I ( w , ) I },

=  GIF, ,„(.)]. (4.17)

We have proved that

p fk{l\wj) ±  ^ /( l |w i)  (4.18)

and

minMAE,- =  min[P/fc(0|wj)7rfc(l|wj)

T Pfk (11 wi ) TTfc (01 Wj)] (Wj), (4.19)
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such that,

m inC [P /)i(-)] <  m inJB[P(-)], (4.20)

where P[F(-)] is defined as the MAE of the stack filter. □

P roposition  4.3 If 7Tfc(l|wj) > 7Tfc(l|wt), and the MAE is minimized, P/*(l|wj) > 

p /fc( ! |w i)-

Proof:

min Gi[FItb(-)] = min £  [^/k(0lwj)7r*(1lwi) 7r4 wj)
Wjg Q(21+1)xb 

+ P / M I W j )7Tfc ( 0 1 Wj- )7Tk ( Wj )]

E  min{[-P/fc(°lWi)7rfc(1!Wi)7rA:(Wj)
WjGQ(2^+1)xb

+^/*(l|w j)7rfc(0|wj)7rfc(wj)]}. (4.21)

Note that P /k(0|wj) is either 1 or 0. If 70t(l|wj) >  7rfc(l|w,), and 7TA;(0|wj) <

7Tfc(0|wj), P /fc(l|w,-) =  1 in minimizing Gfc[P/i6(-)j. In this case, if 7Tfc(l|wj) >

7Tfc(l|w,), clearly, P /t (l|w j) must be 1 in minimizing Gjt[E/ifc(-)]. Similarly, in the 

other case, Pfk (l|w,-) must be 0. Hence, P /^ llw j)  >  P/fc(l|w ,), if 7Tfc(l|wj) >  

7rfc( l |w f). □

Note that the positive Boolean function of a stack filter has the property, 

^ /(l|W j) >  P/(l|W j), whenever wj > w,. Thus, the following proposition can be 

concluded.

Proposition  4.4

m inC [P/i6(-)] < m inG[F/)f>(.)] < mini?[.F(-)]. (4.22)

Proof:

M —l
m inG[F/t6(.)] =  min ^  [^/*(°|wj)7rfc(l|wj)7rfc(wj)

k=l  Wj6Q(2/+1)xb
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+ ^ / fc( l |W j M 0 |w j )7Tfc(w i )]}
M - l

< m i n £ {  E  [^ /(O k jM ik iM w j)
*=1 wJeQ(2/+1)x6 

+ p J ( 1 1'Wj )*k  ( 0  [W j  )irk( w j ) ] }

=  m inP[P(-)] (4.23)

whenever 7Tjt(l|wj) > 7r*;(l|w:), if wj <  w,. (4.24)

Hence, the MAE of the optimal GANF is upper-bounded by that of the optimal 

stack filter. □

L em m a 4.2 A GANF, F /^r^rc)], does not necessarily possess the stacking 

property.

Proof:

According to Eqs. (3.21) and (3.23),

M —l
m inG [F/tfc(-)] =  m m G k(Nk)

k=z 1 
M —l

= E min E  [pf M wj)*i(l \wj)
w JeQ(2i+i)xf>

+ ^ / i (1lw j ) 7r .(0 |w j)]7rt(w j), (4.25)

such that,

•Pft(l|wj) ^  P /.( l |w t) whenever 7T;(l|w.,) > 7r,(l|wi). (4.26)

Hence a GANF does not necessarily possess the stacking property. □

This lemma states that neuron N k on level k can be determined independently 

from the other levels in minimizing the Mean Absolute Error of level k.

L em m a 4.3 If a GANF, F ^ i^ ra ) ] ,  is optimized, and wj >  w ,• implies 7rt(l|w j) > 

7Tfc(l|w,), the operator N k(.) on each level must be a positive Boolean function.



42

Proof:

When Gk(Fifi(-)) is minimized under the condition that Wj > w, implies

7Tfc(l|w j) >  7rjb(l|wt-), then

(4.27)

i.e., N k(wj) > iVfc(w,) for wj >  w,. (4.28)

Thus, iVfc(.) is a positive Boolean function. □

Lemmas 4.2 and 4.3 imply that if the upper-bound of the mean absolute error 

is minimized, the GANF is realized by a positive Boolean function on each level, but 

the overall GANF does not necessarily possess the stacking property.

4.2.3 Sim plifying th e G A N Fs

The Mean Absolute Errors on different threshold levels are not identical. It is 

reasonable to assume, however, that the statistics among the adjacent binary levels 

are similar, such that a further simplification or generalization of the structure of 

GANFs become feasible to reduce the computational complexity and to simplify the 

structure for hardware implementation.

To reduce the computation, we assume that within a range of adjacent levels, 

the probabilities ir(i, Wj) are approximately the same. That is,

7r*(i,Wj) «  TTk+i(i, Wj) for I < L, (4.29)

where i =  0 or 1, and L € {0, 1, 2, • • • , M-l} is a non-negative integer. L represents 

the number of adjacent threshold levels whose probabilities, 7Tjt(f,Wj), are assumed 

to be approximately the same.

Hence,

~  ^ / t+l(*|wj) for / <  L. (4.30)
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Equivalently,

N k(wj) w N k+i(wj) for I < L. (4.31)

Thus, the neural operators within the binary levels from fcth to k +  /th are identical. 

Therefore, the MAEs between the fcth and k +  /th levels are approximately equal, 

i.e.,

Gk(Fitb) ~  Gk+i(Fitb) for I < L (4.32)

and the total MAE of the GANF becomes
M ' - l

G(Fi,b)t tM ' Y2 Gk'N(Nk'N) +  ^ ' G m - i (Fm -\) ,  (4.33)
k '= i

where M ' = , is the number of distinct neural operators on all binary levels,

and m' is the remainder of M̂ '1.

Three facts follow immediately from the above discussion:

1 . When L =  M  — l, then Ni =  N2 = • • • =  Nm - i- In this case, the GANF,

Fi,b(-), is said to be homogeneous. If the GANF is homogeneous and the neural 

operator is a positive Boolean function, this GANF is a stack filter.

2. When L  =  0 , the neuron on one level may not be the same as that on any 

other level. In this case, we say F/,6(-) is an inhomogeneous GANF.

3. More generally, if L is a constant which represents the adjacent levels assumed 

to have approximately equal a priori probabilities, and 1 < L < M  — 1, then

N\  =  N 2 = ••• =  N l 'jN l+i =  Nl+2 =  ■•• =  N iL i" ' \N k L +i =  N kL+ 2 =  

■ ■ • =  N m -  1, where M  — L < kL < M  — 1 . In this case, neurons within 

L  adjacent threshold levels are locally identical and the GANF is said to be 

semi-homogeneous.

Note that the homogeneous GANF is a stack filter if the condition 7r^(l|w t) > 

7Tfc(l|wj) whenever w, > wj is satisfied. The structure of the simplified GANF is 

shown in Fig. 4.1. Determining the number L of adjacent levels is still an open 

question, but it generally depends on the corrupted signal.
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Level M-l  n

Level kL+1

Level 2L

Level L+l 

Level L

Level 1

Nt

N2

F ig u re  4.1 The simplified GANF.
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Xi
X2

Xb

Figure 4.2 An artificial neuron using quadratic criterion function.

4.3 Im plem enting the G A N F with Artificial Neuron Networks

4.3.1 Single Neural Structure

The operator on each level of a GANF can generally be implemented by a much

larger neural network. Here, for simplicity, a quadratic neuron as shown in Fig. 4.2

is adopted. It is called a quadratic neuron because it is mathematically equivalent 

to a quadratic discriminant criterion function which has a higher separable capacity 

of pattern classification [31] than the linear discriminant function.

Denote X(n) as the input matrix fed into the neuron at the nth window sample 

with width of 6 for the input sequence r(n). The quadratic discriminant criterion 

function is defined by

6 6 - 1 6  6

flf[X(n)] =  ^ 2  ajjx] +  Y i  J2  ajkXjXk -f- ^  ) QjX-j fij.f.1, (4.34)
i= i  j = 1 k=j + 1 j= i

where b is the number of elements in X(n).

If we let fi  =  XjXh where i = j  +  k, for j  E {0,1, • • ■, b}, and j  +  1 <  k < b,

and x0 =  1, Eq. (4.34) can be written as follows:

5r[X(n)] =  a0 + ai fi  + 0 2 /2  +  . . . +  o /c-i/k '-i

=  A 'F(n), (4.35)
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where

F(n) =  [ l , / 1, . / 2l. . . J k - i Y- (4.36)

Here, Xj E {0,1} for j  = 1,2,. . ., b, and thus xj = Xj. Therefore, for a window of 

width b and (21 +  1) x b input matrix X (n), the number of weights required for the 

quadratic discriminant function for the binary case is

K  =  K2 /  +  1) x 6 H ( n + l ) x < H - 3 ]  +  ^  (4 37)
2

where I  is the number of adjacent levels above or below the current level. Note that 

f i E {x j , x jx m} for * =  1,2, . . ., K  — 1 and j , m  = 1,2, . . .,b, as shown in Fig. 4.2.

There are various methods to adjust the weights adaptively. In this dissertation, 

we shall primarily consider the LMS and Perceptron Learning Rule [1], both of which 

are based on gradient descent.

4.3.2 Supervised Learning-LM S

Denote the adjustable weights in a discriminant function,

£r[X(n)] =  a0 +  aixi  +  a2x 2 H h aKxK, (4.38)

at the nth iteration during the training as ao (n ),a i(n ),. . .,Oft-(n), and thus A(n) =  

[ao(7i ) ,a i ( n ) , . . .,aK(n)]4. X(n) =  [1 , xi(n),  x 2(n) , . . . ^ ^ ( n )]4 is defined as the 

binary input vector, where K  is determined by Eq. (4.37).

During the filtering process, an additional signal, s(n), called the desired 

response, is supplied along with the usual tap input. In fact, the desired signal 

response provides a  frame of reference for adjusting the tap weights of the filter. 

ei(n)  is defined as the estimation error produced during LMS learning. Thus, as 

shown in Fig. 4.2,

e i(n ) =  s(n) -  A 4(n)X (n), (4.39)

where the term A 4(n)X (n) is the inner product of the tap weight vector A (n) and the 

tap input vector X (n), and the superscript t stands for vector or matrix transpose.
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If the tap input vector X(n) and the desired response s(n) are jointly stationary, 

then the MSE, J(n ), as the criterion function at time n is a quadratic function of 

the tap weight vector. We may write

J(n ) =  E[(s(n) — At(n)X(n))(s(n) — X <(n)A(n))]

=  crj — A 4(n)P  — P 4A(n) +  A‘(n)RA(re), (4.40)

where is the variance of the desired response s(n), P  is the cross-correlation

vector between the tap-input vector X(n) and the desired response s(n), and R  is

the autocorrelation matrix of the tap-input vector X(rc).

The gradient V J  of the criterion function is simply the derivative of the MSE 

J  with respect to the tap-weight vector A:

V J  = =  - 2 P  +  2RA(n). (4.41)
CL A

By setting V J  =  0, an optimal weight vector such that J(n ) is minimized is obtained.

From the above descriptions, P , the cross-correlation vector between the tap- 

input vector X(n) and the desired response s(n), and R , the correlation matrix of 

the tap-input vector X(re), can be written as follows:

P  =  £[X (n)s(n)], (4.42)

R = F [X (n )X i(n)]. (4.43)

The simplest choice of estimators for R  and P  are the instantaneous estimates 

based on sample values of the tap-input and desired response, as defined by,

R  =  X (n)X 4(n), (4.44)

P  =  X(n)a(n), (4.45)

respectively.

The instantaneous estimate of the gradient vector is thus:

V J  =  -2X (n)a(n) +  2X(n)X<(n)A(n). (4.4G)
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According to the method of steepest descent [1], the updated values of the

weight vector at the (n +  l) th  iteration can be determined by using the following

simple recursive relation:

A (n +  1) =  A (n) +  I tt[ -V J(n )] , (4.47)

where a  is a positive real-valued constant. Thus the updating rule using the LMS 

algorithm becomes:

A (n + 1) =  A(n) -f aX (n)[s(n) — X <(n)A(n)]

=  A(n) +  aX (n)e£(n), (4.48)

where

eL(n) = s(n) -  y(n),

=  s(n) — A  i(n)X(n) (4.49)

is the LMS estimation error.

4.3.3 Supervised Learning—Perceptron Learning

In Fig. 4.2, the error, ep(n), is generated after passing the output y(n) through the 

hardlimiting function f j j .  Thus, the output y0 is

Vo(n) = /tf(X 4(n)A(rc)). (4.50)

Similarly,

eP =  s(n) -  y0(n), (4.51)

Similarly, by gradient descent, the following Perceptron learning rule is obtained:

A(n +  1) =  A(n) +  aX (n)ep(n), (4.52)

where,

eP =  s (n ) -  y0(n)

-  s(n) -  /H (X 4(n)A(n)) (4.53)
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is the Perceptron learning estimation error.

Based on the concept of the discriminant function, the hardlimiting threshold 

level should be chosen as follows:

/  ̂ J 1 if V(n) > I a *a\ifo(«) -  |  o if < o (4.54)

The single layer Perceptron can be used with both continuous valued neural

output and binary output. This simple neuron generated much interest when it was

initially developed because of its ability to recognize simple patterns. It can be shown 

that the Perceptron with quadratic discriminant function can be trained to correctly 

classify samples which are separable by a second order manifold.

4.3.4 Com parison Betw een LMS and Perceptron

There is not much difference between LMS and Perceptron training procedure. Both 

perform weight adaptation based on the estimation error using the gradient descent 

method. However, the estimation error might be different from LMS to Perceptron 

learning. Fig. 4.3 shows the MAEs of the GANFs trained by LMS and Perceptron 

versus the number of neural operators applied in the GANF. The experimental results 

show that, after enough training, the weight vector obtained by the Perceptron 

learning rule converges relatively faster than those adapted by the LMS, but the LMS 

converges to a smaller error. Note that other learning paradigms can be applied to 

configure the GANF.

According to the experimental result shown in Fig. 4.3, we can conclude that the 

MAEs both resulted from LMS and Perceptron learning decrease with increasing the 

number of neural operators in the GANF. The difference of the MAEs between LMS 

and Perceptron learning also decrease in a similar manner. For a GANF structure 

with fewer distinct neural operators, LMS leads to smaller MAE but requires a longer 

convergence period.
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F ig u re  4.3 The MAE versus the number of neural operators.

4.4 Sum m ary

Having introduced the structure of GANFs in Chapter 2, it is proven in this chapter 

that the MAE of the optimal GANF is upper-bounded by that of the optimal stack 

filter. Thus, the optimal GANF is expected to suppress noise better. Furthermore, 

the implementation of two learning schemes is discussed to configure the GANFs. 

Experimental results in the comparison of LMS and Perceptron learning showed that 

Perceptron learning scheme may converge faster with a relatively larger error than 

LMS. However, by increasing the number of neural operators in simplified GANFs, 

the performance of the LMS and Perceptron learning becomes compatible.



C H A PTER  5

T H E  C A PA C IT Y  A N D  G E N E R A L IZ A T IO N  O F N E U R A L  
O P E R A T O R S  O F G A N FS

5.1 In tro d u c tio n

In considering the implementation of GANFs by neural networks, questions on how 

to select the discriminant function /(X ), and how to evaluate the classification 

performance of /(X )  are raised. In some cases, increasing the window size and 

the number of neurons may not significantly improve the performance of the filter, 

but will rapidly increase the computational expense. In this chapter, we deal with 

the separation probabilities of various discriminant functions. These form the basis 

upon which a choice of discriminant function can be made. In Section 5.2, we derive 

the separation probabilities of linear, quadratic and more general $  functions. We 

conclude with some interesting characteristics of these probabilities.

Another problem solved in this chapter is how to determine the number 

of training samples required for good generalization of the neural network. VC- 

dimension (VCdim) is adopted in determining the number of training samples 

needed for the neural operators. Detailed theoretical work is presented to show how 

to apply VCdim theory in the implementation of GANFs.

5.2 How to  Select th e  N eu ra l N etw orks

Each neural operator of a GANF can be implemented by a rth-order polynomial 

discriminant function, /(X ), where X is a n-dimensional vector fed to a GANF 

with window width n. The task of selecting a neural network for use in a pattern 

classification, that is, selecting a polynomial discriminant function, is simplified by 

limiting the class of functions from which the selection is to be made, and by limiting

51
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the dimension of the input vector. For example, the polynomial discriminant function 

is limited to a  rth-order polynomial function and a certain number of variables.

How to select the order of a polynomial discriminant function /(X ), and how 

to evaluate the classification performance of /(X )  are questions raised for designing 

the GANF. Note that beyond a certain point, increasing the window size and the 

number of neurons may not significantly improve the performance of the filter, but 

will increase the computational expense. Therefore, it becomes necessary to inves

tigate the relation between the polynomial discriminant function and the window 

width. Because the pattern separation capacity of a polynomial discriminant function 

is determined by the number of variables and the number of weights of the function, 

one can determine how to choose a  polynomial discriminant function from a given 

window width to obtain good performance in both pattern separation and computa

tional efficiency.

In the following, we use machine capacity theory to find the relation between 

the order of the polynomial discriminant functions and the number of the patterns 

which can be classified by different polynomial functions.

5.2.1 L in ea r D isc rim in an t F unctions

5 .2 .1.1 M a th e m a tic a l d e sc rip tio n  The simplest neural operator can be 

described by a linear discriminant function which is expressed as follows and 

illustrated in Fig. 5.1.

/(X )  =  A 4X

— unx n +  T * ■ ■ T o<iX\ -j- Go* (^*^)

This is a linear function of the components of the input vector X.

For binary operation, a linear discriminant function is equivalent to a particular 

class of Boolean functions, known as linearly separable Boolean functions [27]. A
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F igu re  5.1 A linear machine.

complete specification of any linear discriminant function is uniquely determined by 

the weights.

D efin ition  5.1 [31] If a set of n-dimensional patterns, 5, can be classified into 2 

classes by a linear discriminant function /(X ): R n —> R , S  is said to be linearly 

separable. In other words, 5, is linearly separable, if and only if the following 

condition is satisfied:

/(X ) > 0 for all X  E class A,

/(X )  < 0 for all X  6  class B.

□

5.2.1.2 L in ea r sep a rab le  analysis  Consider a finite set of patterns, { X i , X 2 , • • •, X/v}, 

in general position in n-space1, where X,-, for all i =  1,2, • • ■, AT, are n-dimensional 

vectors. We would like to know the probability that the given patterns can be linearly 

separated into two classes. In other words, given N  patterns in general position

lA set of N  points is in general position in the n-space, if and only if no subset of n + 1 
points lies on a (n — 1) dimensional hyperplane.
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in Euclidean n-space, the probability corresponds to the ratio of the number of all 

possible linearly separable dichotomies to 2 n, where 2 " is the number of all possible 

dichotomies [11]. Because of the properties of the GANFs, we are more concerned 

with the linear separation probabilities in the binary domain than in other domains.

T h e o rem  5.1 The probability that a set of binary patterns S  E {pi,P2 j • • • , P n }  in 

n-space is linearly separable, is upper-bounded by the following

Pn ,u <  21-JV E  (
i=0 \

r - N ^ (  N - l  
i

where
( N -  l \  ( N - l ) !

(5.2)

(5.3)
V i J

Clearly, in a binary domain, the number of patterns cannot be greater than 2 n, and 

all the patterns may not be in general position.

Proof:

According to the Function-Counting Theorem [9] [48], there are C(N,n)  

linearly separable dichotomies of N  patterns in general position in Euclidean n- 

space, where

C(JV,n) =  2 £ j (  " T 1 (5.4)

The number of all possible dichotomies is 2N. Since in the binary domain, all the 

patterns are not guaranteed to be in general position, and thus the probability Pn,u 

that a given set of binary patterns S  E {pi,P2, "  - ,Pn} at random can be linearly 

separated, is upper-bounded by C(N,n) .  That is

fl»,. <  2~NC (N t n)

= 2 l_" E ( W ” 1 ) .  for N  > n. (5.5)

For N  < n, P/v,n < 1 - □
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F ig u re  5.2 An example for the case of linearly nonseparable.

For example, 4 patterns in general position in 2-dimensional space are shown 

in Fig. 5.2. There are totally 16 possible classifications. One can easily find that 

there are 2 classifications out of 16 that are not linearly separable as shown in 

Fig. 5.2. Therefore, the probability of the patterns in this example that can be 

linearly separable is

P -  14 -  '4,2 — —  —  r -16 8  <5'6> 

In the other case, if only 2 patterns are given as shown in Fig 5.3, clearly, all 4 

possible classifications are linearly separable. Hence, the probability of the patterns 

that can be linearly separable is 1 .

This interesting theorem tells us that one can predict the performance of a 

linear discriminant function chosen for a given pattern classification task in n-space, 

according to the linearly separable probability obtained by the theorem presented 

above. For example, given a set of four binary patterns S E {(0 , 0 ), (0 , 1), (1 , 0 ), (1 , 1 )} 

in 2 dimensional Euclidean space, there are altogether 24 possible dichotomies. The 

probability that S  is linearly separable is less than or equal to | .  In other words, 

it implies that an optimal discriminant function can be found in the family of
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Figure 5.3 An example for the case of linearly separable.

linear functions with probability less than or equal to | .  In this case, therefore, a 

linear discriminant function may be preferred over other polynomial discriminant 

functions, because the higher order polynomial functions increase computation, but 

may not improve the performance of the classification accordingly.

As another example, eight binary patterns in 3 dimensional Euclidean space 

can be linearly separated with probability less than or equal to | .  In this case, more 

than half of the possible dichotomies cannot be separated by a linear discriminant 

function. Thus higher order polynomial discriminant functions may be more desirable 

in solving this pattern classification problem.

5.2.2 Q uadratic D iscrim inant Function

A quadratic discriminant function has the form

/(X )  =  X ‘A X -f-X ‘a +  a0, (5.7)

or
n n—1 n n

/ ( X ) = 2  a 3 i X j  +  o XI X) a j k x j x h + X  a 3x i  +  ° 0 -  (5-8)
j = 1 j = l  fc=7+1 j = l

Here X  is a n-dimensional input vector to the quadratic neural operator. Components

of the m atrix and vector of Eq. (5.7) are related to the coefficient of the function

defined by Eq. (5.8) as follows:

The i j th  component of A  is A,-j for i , j  =  1,2, • • •, n,

Aij — djj j  — 1 , 2 , • • •, n. (b-9)
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F igure  5.4 A quadratic discriminator.

The structure of a quadratic discriminant function is illustrated in Fig. 5.4. 

Similar to Theorem 5.1, an upper-bound on the probability that a given set of 

patterns 5  £ {nq, £2, ■ • •, xjy} in n-space is separable by a quadratic discriminant 

function can be derived as follows.

T h eo rem  5.2 Given a set of patterns S  £ {pi,/>2, * ■ • , P n }  in general position in 

n-space at random, the probability that S  is separable by a quadratic discriminant 

function is

M  /  

i= 0  \

N -  1
i for N  > M ,

and

Pyv.n =  1 , for N  <  M,

where

is the number of weights of the neural operators.

Proof:

The proof can be found in [31], p.37.

(5.10)

(5.11)

(5.12)

□
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Note that with binary inputs, {0,1}, x f  = Xi, and not all possible patterns 

N  = 2n may be in general position. As a result, an upper-bound for the separability 

of binary patterns can be deduced.

C o ro lla ry  5.1 Given a set of N  binary patterns S  in n-space randomly, the proba

bility that S  is separable by a quadratic discriminant function is upper-bounded

by
M - n  /  ivr _  I \

P„„leq2'-N E  ( ; )  ■ for N  > M, (5.13)

and

Proof:

Set

Pn ,u =  1, for N  < M.  (5-14)

I

=  M  — n. (5.15)

Then

=  V  for i V > M ,  (5.16)

-P/V.n <

M - n
{

t=0

□

From the above theorems, one can tell that quadratic discriminant function 

increases the separation capacity of a set of N  patterns in n-space and the amount 

of computations simultaneously.

5.2.3 $  F u n c tio n  D ichotom ies

D efin ition  5.2 [31] A ^-function with weights A* € {ao>ai>‘ ■ • ,om} is a  function 

denoted by <̂ >(X; A) which depends linearly on the weights A. Thus, a ^-function
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Figure 5.5 A $  function discriminator.

can be written in the following form:

<^(X; A ) =  o m J m  +  g - m - i / m - i  +  • • • +  a i / i  +  ao, (5.17)

where s, for i = 1,2, ■ • •, M,  are linearly independent, real, single-valued functions 

of X  and independent of the weights. □

Clearly, a ^-function is a linear combination of functions of a large family of X. 

The linear and quadratic discriminant functions are some specific examples of the $  

function family. Furthermore, some most frequently used classes of $  functions are

1 . Linear functions: /fc(X) =  X{.

2. Quadratic functions: /i(X ) is x^Xj  for m ,j  E {1,2, • • • ,n} and k, l  E {0,1).

3. rth-order polynomial function function: /,(X ) is of the form, x ^ x ^  ■ • • xfc, for 

*’i, *2, , i r £ {1,2, ■ • • ,n} and &!, k2, • • •, kr E {0,1}.

The structure of the ^-function discriminator is shown in Fig. 5.5.

A useful theorem regarding the pattern separation probability by ^-function is 

described below.
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T h e o re m  5.3 If a given set of patterns S  €  { p i , P 2 , • ■ ■ , P n }  is in general position in 

n-dimensional Euclidean space, the probability that S  is separable by a ^-function 

with M  +  1 weights is

^M=2- E ( jvr 1)- <s-i8>
Proof:

The proof can be found in [31] p.37-38. □

In a binary domain, which is applied to the GANFs, the given patterns may 

not in general position. For example, in 3-dimensional space, the four binary points, 

(0 ,0 ,0 ), (0 ,0 ,1 ), (0 ,1 ,0 ) and (0 ,1 ,1), are in a 2-dimensional hyperplane. Thus, these 

points are not in general position. In this case, Eq. (5.18) is an upper-bound of 

the probability that S  is separable by a $  function with M  +  1 weights. Thus, the 

following corollary is obtained.

C o ro lla ry  5.2 Given a set of N  binary patterns in n-dimensional Euclidean space, 

the probability that the N  patterns are separable by a $  function with M  + 1 weights 

is upper-bounded by

(519)

Proof:

It is obtained by the above argument. □

Note that, the probability in Eq. (5.18) is determined only by the number 

of weights and the number of given patterns. Hence, we can conclude that the 

separation probability for N  patterns by any discriminant function is a ^-function, 

and is determined only by the number of weights.

5.2.4 Separation Capacity

The significance of Theorems 5.1, 5.2 and 5.3, and Corollaries 5.1 and 5.2 is that 

one can determine at least an upper-bound on the probability that a given set of
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patterns can be separable by a specific discriminant function. Thus, one may choose 

a discriminant function over the other based on the trade-off between the separation 

probability and the computation expense. For instance, for a given set of patterns, 

if the separation probability using quadratic functions is 0.85, and that using the 

4th-order polynomial functions is 0.91, one may prefer the quadratic function as 

the discriminator because the 4th-order polynomial function requires a tremendous 

computation but the gain in separation probability is minute.

How much separation probability for a class of discriminant functions is 

considered acceptable for a given set of patterns? In Eq. (5.18), the separation 

probability Pn ,m  of the discriminant function with M  +  1 adjustable weights for 

7V-pattern classification, has some interesting characteristics. A plot of the function 

Pq(m +i ),m  vs- oc =  for various values of M  is shown in Fig. 5.6. The plot shows 

the relationship between M  and N  regarding the separation probability Pn ,m - Note 

that, from Eq. (5.18),

P2(M+1),M =  (5.20)

Nilson [31] defined the machine capacity C of a $  discriminator as

C = 2(M +  1). (5.21)

The following properties of the capacity are readily found in [31]:

lim P N im  =  0 , if #  > 1 (5.22)
M—► oo u

and

lim P n ,m  =  1, if ^  < 1 . (5.23)M—KX> °

That is, for large M,  we can be almost certain of being able to obtain a discriminant 

function with M  + 1  adjustable weights to separate all given patterns as long as there 

are less than C patterns.
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F ig u re  5.6 The separation probabilities with values of M  =  1,3,5,10,15 and 25, 
respectively.
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5.3 H ow M any Training Sam ples Are Required for Generalization?

5.3.1 G eneralization

Generalization is a measure of the performance of a neural network on an actual 

problem after training is completed. That is, a measure of the difference between 

the results achieved from the training set and the testing set. The generalization of 

a neural system is primarily influenced by the following factors [23]:

1. The number of training samples;

2 . The number of adjustable weights of the neural network; i.e., the complexity

of the neural network;

3. The complexity of the pattern models, or the positions of the patterns in multi

dimensional Euclidean space.

Generalization is generally used for two purposes. For the first purpose, the 

structure of the neural network is fixed and we want to know the adequate number 

of training samples required to achieve good generalization. In the second case, 

when the number of training samples is given, the issue is to determine the size of 

network required to achieve a good performance in terms of generalization. In this 

dissertation, we address the first issue because the number of training samples is 

rarely limited in signal processing, but the structure of the neural system can greatly 

affect the speed, the computation, and the complexity for hardware implementation.

5.3.2 VC  D im ension

When using GANFs for various signal processing applications, it is important to 

estimate the number of training samples needed for good generalization. One of the 

popular approaches for studying the relationship between generalization error and 

the number of training samples was developed by Vapnik and Chervonenkis [44]. 

The generalization error is defined to be the difference between the generalization on
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the training samples and the generalization on the testing set [23]. In GANFs, the 

upper-bound of the difference between the estimate and the actual generalization 

can be found. Such a bound can be computed when the number of training samples 

exceeds a parameter called the VC dimension (VCdim). The VCdim is formally 

defined as follows:

D efin ition  5.3 [5] Let F  be a class of binary valued functions on R n and let S' be a 

set of |S | samples in R ". The VCdim of F  is the largest cardinality of S € R n that 

can be dichotomized by F,  i.e., the largest |S| such that, all possible 2 ^  dichotomies 

on S can be dichotomized by F.  Here, |S| is adopted to denote the cardinality of S,

i.e., the number of samples in S. □

If the VCdim of a neural network is known, it is possible to determine the 

length of training samples required for good generalization. Some exact expressions 

relating the VCdim and the length of training samples have been derived in [5] [30] 

for various neural network models. In practice, if the number of training samples is 

approximately ten times larger than the VCdim, fairly good generalization results 

can be achieved.

It has been shown in [5] that the VCdim of any multilayer network is upper- 

bounded by

VCdim < 2I/Flog2(e7V), (5.24)

where W  is the number of total adjustable weights, N  is the number of nodes in the 

network, and e is the base of the natural logarithm.

Similarly, the VCdim of the radial basis function (RBF) network can also be 

shown [5] [24] to be bounded by

VCdim < 2Wlog2(eN). (5.25)

Note that, in the training procedure, the number of training samples of patterns 

required for generalization does not guarantee that the weights of the neural network
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will converge well. The convergence speed of training a neural network depends 

largely on the training scheme and the complexity of the system adopted. In most 

cases, during training, we would probably have to cycle the set of training samples 

determined by VCdim many times before the weights would converge to a steady 

state. In other words, VC dimension theory does not affect the convergence of the 

system, but it implies how good the generalization would be for a given number of 

training samples.

5.3.3 Training Sam ple Length of G A N Fs

Training samples allow us to find a function that best approximates the true function, 

if the neural network does include the true function. If it does include the true 

function, then training samples would allow us to reject all functions which are not 

consistent with the clues, and find the true function as the final solution. Generally, 

the more training data are used, the more likely the correct function can be found.

According to Eq (5.24), the following results have been obtained by Baum and 

Haussler [5]:

Given a fixed network with W  weights and N  linear threshold units, one can find 

that the minimum training samples, ra, required for at least a (1 — e) fraction of the 

examples correctly classified is

^ 32 W ,  32N
m  >   In  . (5.26)

e e

Note that, in implementing GANFs, we may adopt many kinds of neural 

networks, and Inequality (5.26) can be used to determine the least number of training 

samples required for good generalization. In our experiment of 1-dimensional signal 

processing, we used a window width of 11 and a quadratic discriminant function 

which is equivalent to a neural network with 67 adjustable weights with one single 

neuron. The VCdim for a single neuron is equal to the number of weight plus 1 . 

Thus, in this case, VCdim = 6 8 .
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In practice, we usually use ten times the VCdim as the number of training 

samples. That is, for the above example, 680 training samples are required to have 

good generalization.

5.4 Investigation o f the G eneralization o f G A N Fs

Training a neural network for classification normally involves minimizing an error 

criterion such as the MSE and MAE criteria over a set of sample inputs and target 

vectors [46]. During actual classification in GANFs, the outputs of the neural 

operators are used to determine the class (binary valued) of the desired output. In 

the following, we propose an algorithm to evaluate the robustness in the classification 

of GANFs.

Robustness is simply concerned with how well a network performs with 

inputs that it has not been previously trained on. A comprehensive theory of 

robustness must deal with such issues as network complexity, learning dynamics, 

and the consistency of the training data as being representative of the actual 

environment [42]. The most common way to “measure” the robustness of a filter 

(classifier) is to compare the decision errors in the training set to the decision errors 

in the test data outside the training set.

By observing how well the network performs on the test data, one can predict 

how well the classifier will actually perform on classifying unknown data [45]. While 

this method is very simple to use, it only provides information about the expected 

performance of the filter relative to the performance on the training set. Note that 

this method does not provide any information about the expected performance of 

the filter relative to the optimal filter.

The errors defined in the training set are MSE<ra,„, MAEtra;n and SNRtra,n, 

which correspond to the mean square error, the mean absolute error, and the signal- 

to-noise ratio. Similarly, the errors in the test range are MSE<es*, MAE(est and
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digital image 
vs. 3 x 3  window size

digital image 
vs. 5 X 5 window size

EKG signal 
vs. 11 window size

M SEirain 664.61 545.74 5.52

MSEiest 668.98 547.41 5.69

M A EW n 16.44 14.12 1.15

MAEtest 16.47 14.12 1.18

SNRtrain (dB) 10.98 11.83 25.76

SNRtesi (dB) 10.95 11.82 25.62

T able 5.1 Error comparison between training and testing sets.

SNRfesi. This investigation has been conducted, and the results applied for image 

processing and EKG signal enhancement are illustrated in Table 5.1. Table 5.1 

shows that all errors investigated in the training set and the testing set are very 

close, implying that the GANFs proposed in this dissertation can achieve robust 

results in non-white Gaussian noise suppression.

5.5 S um m ary

The theoretical analysis of the capacity of various discriminant functions configured 

by neural networks provides an avenue for selecting appropriate discriminant 

functions for implementing GANFs. The conclusions deduced from Section 5.2 

are applicable to all $  functions including the multilayer neural networks. The 

significance of separation probabilities derived in Section 5.2 is that a suitable class 

of the discriminant functions can be selected before executing the training scheme. 

Thus one can predict the training results and make the design of GANFs economical 

for the specific application.
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The generalization study can be viewed from two aspects through our 

theoretical analysis. First and of most concern to us, if the structure (the class 

of discriminant functions) of a GANF is fixed in accordance with the capacity 

theory, one can decide how many training samples are required to achieve good 

generalization. Usually, the number of training samples required in practice is ten 

times larger than the VCdim. Second, if the number of training samples is fixed, one 

may choose a proper network size for good generalization. Note that, the training 

samples may be used repeatedly during the training procedure.

In brief, the problems addressed in this chapter are:

1 . Selecting a suitable class of discriminant functions before training in order to 

have an economical design;

2. Finding the number of training samples such that the neural network can be 

trained for good generalization.

Experimental results illustrated in Table 5.1 show that the GANFs proposed 

in the dissertation have fairly good generalization, and are effective in suppressing

various noises.



C H A P T E R  6 

E X PER IM E N TS

6.1 G A N Fs in O ne-dim ensional Signal Processing

In this chapter, some experimental results in one-dimensional signal processing are 

presented to illustrate the performance of the optimal or suboptimal GANF. More 

experimental results in image processing are shown in Section 6 .2 , and applications 

to enhance EKG signals are shown in Section 6.3.

Fig. 6 .1 (a) shows the original waveform, called the Mexican hat signal. 

Fig. 6 .1 (b) shows the noisy signal which resulted from adding the e-mixture of 

Gaussian noise to the original signal. Here, the e-mixture of Gaussian noise is 

defined as a linear combination of a number of Gaussian processes with different 

means and variances. The output signals obtained from a GANF with a window 

width of 1 1 , and 20 different neurons are shown in Fig. 6 .1 (c).

Note that in the experimental result presented in Fig. 6 .1 (c), the initial half of 

the signal sequence is adopted as the training set, and the last half is used as the 

test range. From the result, we may notice that the output of the GANF between 

the test range and the training range is similar. This phenomenon implies that the 

GANF is robust for the specific signal and noise process once the neural network of 

the GANF is well trained . Further theoretical and experimental analyses regarding 

the robustness of GANFs have been discussed in Section 5.4.
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(a)

F ig u re  6 .1  Experimental results of a GANF filter on a one-dimensional signal: (a) 
The original Mexican hat signal; (b) The noisy signal; (c) The output signal recovered 
by the GANF.
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Figure 6.1 Continued.
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Figure 6.1 Continued.
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6.2 G A N Fs in Im age Processing

GANFs can also be utilized for image enhancement [3], as shown in Fig. 6.2. 

Fig. 6.2(a) shows the original girl image. Fig. 6.2(b) shows the corrupted girl image 

by adding a e-mixture of Gaussian noise to the original image. Fig. 6.2(c) shows 

the corrupted image by adding Gaussian noise to the original image. The girl image 

with a mixture of Gaussian noise was filtered by the GANF using a window width 

of 3 x 3 with 50 and 255 different neurons. The results are shown in Fig. 6.2(d) and 

6.2(e), respectively. Fig. 6.2(f) and Fig. 6.2(g) show the output results using a 5 x 5 

window size with 10 and 255 different neurons, respectively. For comparison, images 

which resulted from median filtering and mean smoothing with window sizes of 3 x 3 

and 5 x 5  are shown in Fig. 6.2(h) through Fig. 6.2(k) and images which resulted 

from Wiener filtering with window sizes of 3 x 3 and 5 x 5  are shown in Fig. 6.2(1) 

and in Fig. 6.2(m). The girl image with Gaussian noise was filtered by the GANF 

using a window width of 3 x 3 with 255 different neurons as shown in Fig. 6.2(n); 

Fig. 6.2(o) shows the result using 3 x 3  window mean smoothing; Fig. 6.2(p) and 

Fig. 6.2(q) are the filtering results using 5 x 5  GANF with 255 neuron functions 

and 5 x 5  window mean smoothing, respectively. For comparison, images which 

resulted from median filtering and Wiener filtering with window sizes of 3 x 3 are 

illustrated in Fig. 6.2(r) and Fig. 6.2(s), and images which resulted from median 

filtering and Wiener filtering with window sizes of 5 x 5 are also shown in Fig. 6.2(t) 

and Fig. 6.2(u), respectively.

From Table 6.1 and Table 6.2, one can tell that the GANFs proposed in 

this dissertation suppress non-AWGN better than the other traditional nonlinear 

methods both for Gaussian and non Gaussian noises.1

xThe estimation of the conventional MSE (MAE) is the result of the cumulative square 
errors (absolute errors) divided by the number of samples, but in this dissertation we used 
the cumulative square errors (absolute errors) only. However, this does not affect the 
conclusion made from the results.
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In the experiments presented in this section, each neural operator is imple

mented by a second-order discriminant function [13]. The figures of merit adopted 

here are the MSE, MAE and SNR, defined as follows:

MSE =  - l f > ( i ) - S ( 0 ] 2. (6.1)
-‘ V 1 = 1

MAE =  ^ X > ( . ) - * ( 0 I  (6-2)
i V  1 = 1

and

SNR =  (6.3)
1 = 1

Here, N  is the number of samples used for error estimation; s(i) is the desired signal;

and s(i) is the final output of the GANF.



Figure 6.2 Experimental results on an image:

(a) The original girl image; (b) The image with mixture of Gaussian noise ; (c) the 
image with Gaussian noise, (d)-(m): Filtering results for mixture of Gaussian noise, 
where, (d) 3 x 3  GANF with 50 neuron functions; (e) 3 x 3 GANF with 255 neuron 
functions; (f) 5 X 5 GANF with 10 neuron functions; (g) 5 x 5 GANF with 255 neuron 
functions; (h) 3 x 3  median filtering; (i) 3 x 3 mean smoothing; (j) 5 x 5 median 
filtering; (k) 5 x 5 mean smoothing; (1) 3 x 3 Wiener Filtering; (m) 5 x 5  Wiener 
Filtering, (n)-(s): Filtering results with Gaussian noise, where, (n) 3 x 3 GANF with 
255 neuron functions; (o) 3 x 3 mean smoothing; (p) 5 x 5 GANF with 255 neuron 
functions; (q) 5 x 5 mean smoothing; (r) 3 x 3 median filtering; (s) 3 x 3 Wiener 
Filtering; (t) 5 x 5 median filtering; (u) 5 x 5 Wiener Filtering.



Figure 6.2 Continued.
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Figure 6.2 Continued.
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Figure 6.2 Continued.
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MSE MAE SNR (dB)

Noisy Signal 5093.87 44.57 1.52
3 x 3
Mean Smoothing 1785.89 31.35 6.07
3 x 3
Wiener Filtering 1185.75 26.44 7.85
3 x 3
Median Filtering 1126.07 20.07 8.08
3 x 3
GANF Filtering 744.04 18.01 9.87
5 x 5
Mean Smoothing 1645.35 30.67 6.42
5 x 5
Wiener Filtering 1063.30 25.58 8.33
5 x 5
Median Filtering 739.29 17.00 9.90
5 x 5
GANF Filtering 552.08 13.64 11.17

T ab le  6.1 Comparison among various filters in image processing for the girl image 
with mixture of Gaussian noise.
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MSE MAE SNR (dB)

Noisy Signal 5218.42 48.23 1.94
3 x 3
Mean Smoothing 1315.60 23.42 7.40
3 x 3
Wiener Filtering 969.71 21.89 8.72
3 x 3
Median Filtering 969.71 17.56 8.72
3 x 3
GANF Filtering 804.89 19.38 9.53
5 x 5
Mean Smoothing 1240.63 23.00 7.65
5 x 5
Wiener Filtering 887.17 21.03 9.11
5 x 5
Median Filtering 708.45 15.23 10.09
5 x 5
GANF Filtering 635.65 17.15 10.56

Table 6.2 Comparison among various filters in image processing for the girl image 
with Gaussian noise.
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6.3 A pplying G A N Fs to Enhancing EKG Signals

In many signal processing applications in biomedical engineering, the noise in the 

channel through which a signal is transmitted is not additive white Gaussian noise 

(AWGN), nor is it stationary, and it may have unknown characteristics. It is known 

that linear filters are optimal for AWGN channels, but they cause a blurring effect 

on the edges (sharp transitional parts) of signals [53]. In the following section, 

experimental results are presented to demonstrate the effectiveness of GANFs in 

suppressing non-white Gaussian noise in EKG signals.

Fig. 6.3(a) shows the original simulated EKG waveform. Fig. 6.3(b) is the 

noisy signal which resulted from adding a e-mixture of Gaussian noise to the original 

signal. For comparison, the median filtering result is illustrated in Fig. 6.3(c), and 

the output signal obtained by a GANF with a window width of 11 is shown in 

Fig. 6.3(d). A summary of the signal-to-noise measurements of linear, median and 

GANF filtering results is listed in Table 6.3. From Table 6.3, one can infer that the 

proposed GANFs suppress non-AWGN better than other traditional methods.

From the experimental results, it is demonstrated that a GANF can be a useful 

tool in biomedical engineering. Note that the stack filter is a subclass of the GANFs. 

In general, other kinds of neurons (i.e., multi-layer, higher order neurons) can be 

used and better results can be expected at the expense of higher complexity.
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(a)

F ig u re  6.3 Experimental results on an EKG signal using a window width of 11:
(a) The original EKG signal; (b) The Noisy EKG signal corrupted by a mixture of 
Gaussian noise; (c) median filtering result of (b); (d) GANF filtering result of (b).
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SNR (dB) MSE MAE

Noisy EKG 6.17 502.96 16.30

Median Filtering 23.55 9.19 1.50

GANF Filtering 25.99 5.24 1.12

Table 6.3 Comparison among various filters for enhancing EKG signals.



C H A P T E R  7 

IM P L E M E N T A T IO N  ISSU ES O F G A N FS

7.1 In tro d u c tio n

The parallel structure of GANFs and the parallel nature of neural network 

algorithms make GANFs implementable for hardware fabrication using very-large- 

scale-integrated (VLSI) technology. The advantages of VLSI technology are small 

size, ease of use, low cost and very high speed.

The following issues are of primary concerned in the VLSI implementation of 

neural networks [19].

1. S um  of p ro d u c ts  co m p u ta tio n . It involves multiplying each element of the 

data vector by a corresponding weight and then summing the products.

2 . D a ta  rep re sen ta tio n . Generally, neural networks have low-precision requirements 

depending on the specific algorithm and application.

3. O u tp u t co m p u ta tio n . The most common form of neural networks at the 

output is a smooth nonlinear function such as the sigmoidal function. However, 

in our GANF configuration, a hardlimiter is considered to be sufficient.

4. L earn in g  com plexity . The computational requirements of each learning 

algorithm relies on the use of local computation for making modifications to 

the neural networks.

5. W eight s to rage. The weight storage requires storing the updated values of 

the weights.

6 . Im p lem en ta tio n  costs. The factors to be accounted for in the total system 

costs include the following:

89
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(a) Power consumption.

(b) Flexible use and range of applications.

(c) Use of analog versus digital technology.

A systolic array for nonlinear adaptive filtering has been proposed by W hirter 

et al. [28]. Typically, one form of neural networks adopted in GANFs, the multi

layer Perceptron (MLP) [40] employs layers of simple nonlinear processors. Unfor

tunately, on some of the weights, the associated learning algorithm sometimes tends 

to converge slowly and the high degree of nonlocal connectivity between processing 

cells of the MLP renders it less suitable for VLSI than a regular, mesh-connected 

processor. Recently, an alternative technique has been proposed by Broomhead and 

Lowe [8]. In their algorithm, the discriminant function is modelled by a limited set 

of radial basis functions. This algorithm has been found to give very good results 

over a wide range of practical pattern recognition problems as well as to be suitable 

in VLSI implementation.

7.2 V L SI Im p lem en ta tio n s  of N eu ra l N etw orks

Hybrid schemes of analog and digital technology are potentially useful in imple

menting GANFs. The use of analog computation is attractive for neural VLSI for 

reasons of compactness, potential speed, and absence of quantization effects. The 

use of digital techniques, on the other hand, is used for dealing with digital inputs 

and outputs. Therefore, the use of a hybrid approach for the VLSI implementation 

of GANFs builds on the merits of both analog and digital technology [29].

Many neural VLSI chips are now available, especially, some mixed analog- 

digital neural network chips for high-speed character recognition. One of these 

reconfigurable chips is called the ANNA  chip [41]. Essentially, the chip evaluates 

eight inner products of a state vector X  and eight synaptic weight vectors A; in
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parallel. The state vector is loaded into a barrel shifter and the eight weight vectors 

are selected from a large (4096) on-chip weight memory by means of a multiplexer. 

The resulting scalar values of A-X, for i =  1,2, • • • , 8 , are then passed through a 

sigmoidal function (note that a threshold function in GANF is a special case of the 

sigmoidal function) denoted by £/(•), yielding a corresponding set of scalar neural 

outputs

yi = U (A \X ), * =  1,2, ••■,8 . (7.1)

It has been reported [41] that the whole neuron-function evaluation process takes 

200 ns. The chip can be reconfigured for synaptic weight and input state vectors of 

varying dimension, namely, 64, 128, and 256. Hence, the neural network structure 

and the input window width are easily reselected.

The input state vector X  is supplied by a shift register that can be shifted by 

one, two, three, or four positions in 100 ns. Correspondingly, one, two, three, or four 

new data values are read into the input end of the shift register. Thus, this barrel 

shifter serves a useful purpose: It permits the use of sequential loading.

Note that, the shift register in ANNA can be modified to several shift registers, 

such that, one chip can operate on many binary levels in parallel.

Comparing with a SUN SPARC 1 +  workstation, the execution time of the 

ANNA chip is reduced by about 500 times. Whence, if we process a 256 x 256 

image by a GANF with window width of 5 x 5 (including a quarter of the training 

set and the whole frame of a testing set), the execution time of the ANNA chip is 

approximately 20 second, instead of 3 hours.

7.3 A Systo lic  A rray  for A d ap tiv e  F ilte rin g

If the GANFs are implemented by a multi-layer Perceptron, the associated learning 

algorithm tends to converge slowly and may arrive at an unsatisfactory local 

minimum in the error surface. Furthermore, the high degree of nonlocal connectivity
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between processing cells of the multi-layer Perceptron renders it less suitable for 

VLSI than a regular, mesh-connected processor.

Recently, a fully pipelined, mesh-connected network, which combines the 

nonlinear radial basis function (RBF) processor with a well known systolic array for 

linear square estimation, has been proposed [7]. The RBF processor may be used 

in conjunction with a more general systolic array designed for linearly constrained 

least squares optimization. The resulting network may be used for implementing a 

highly efficient GANF.

7.3.1 R ad ia l B asis Functions

Instead of a multi-layer Perceptron, consider a network which takes as its input a 

n-dimensional vector X  and produces the corresponding scalar output /(X ), where 

/  is the function to simulate an unknown nonlinear response function. Whence,

/(X ) =  -  £ ;  a (S(|| X  -  II), (7.2)
1 = 1

where =  1 ,2  , ••• ,n} is a given set of center vectors in the data space and

{a,ji =  1 , 2 , is a corresponding set of weights to be determined. <7(1*) is

a given nonlinear scalar function whose argument is the n-dimensional Euclidean 

distance between the input vector X  and the corresponding center vector //,. It is 

therefore referred to as a radial basis function. The Gaussian function

flr(r ) =  e' " 2 (7.3)

is one of the most frequently used radial basis functions. Several reviews are available 

for further information regarding RBF [23] [35] [36].

7.3.2 R ad ia l B asis F unction  Systolic  A rray

A schematic of a combined RBF least squares processor array is illustrated in

Fig. 7.1 [28]. The operation of this array is well explained in the literature [17] [28].
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The systolic array [28] for rapid and efficient fitting and interpolation using RBF 

may be used as a neural operator in GANFs. It is capable of learning from a set of 

training data vectors in its adaptive mode and subsequently applying that knowledge 

to a set of test data vectors in its frozen mode.

Several authors have reported on the comparison between the RBF fitting 

technique and the MLP or other approaches to pattern recognition. For example, 

Renals et al. [38] have applied both methods to speech processing. In summary, 

the systolic array for nonlinear fitting and interpolation using radial basis function is 

capable of performing a wide variety of complex pattern recognition tasks, and can be 

compared in many aspects to an artificial neural network based on the feed-forward 

MLP model. The RBF fitting technique compares very favorably in terms of recog

nition performance but, even on a sequential computer, the underlying algorithm 

converges orders of magnitude faster. The highly parallel and pipeline architecture 

proposed in [28] offers the potential for extremely fast computation and furthermore, 

since it takes the form of a regular mesh-connected array, the RBF processor is much 

more suitable for design and fabrication than MLP.

7.4 Summ ary

From the above analysis, it can be concluded that present VLSI technology is well 

suited to implementing parallel algorithms; especially, several VLSI chips used to 

configure neural networks have been reported to be available for various applications. 

The parallel structure of GANFs presented in this dissertation are potentially imple- 

mentable by VLSI technology. Finally, a new neural network using radial basis 

function is also shown to be potentially implementable in VLSI fabrication, and may 

be much more suitable for design and fabrication than MLP.
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F ig u re  7.1 Combined RBF least squares processor array.

A is a delay of N  +  n +  1 clock cycles. The array works on adaptive mode during 
training, and will be switched on frozen mode after training.



Since the main focus of this dissertation is on the theoretical development of 

GANFs, rather than the implementation in hardware, this chapter only justifies the 

feasibility of VLSI implementation of GANFs.



C H A P T E R  8 

CO NCLUSIO N

In this dissertation, a new class of nonlinear adaptive filters called GANFs has 

been developed. The MAE and the training schemes of GANFs were studied. 

The optimization and generalization problems of GANFs have been investigated 

to evaluate or estimate the performance of GANFs configured by various neural 

networks. In accordance with both theoretical and experimental works, we have the 

following conclusions:

1. Stack filters can be adaptively configured by neural networks. Through the 

analysis of the error estimate, one can conclude that the mean absolute error 

is an effective criterion in configuring stack filters.

2. GANFs encompass a large class of nonlinear sliding-window filters which 

include stack filters.

3. The MAE of the optimal GANF is upper-bounded by that of the optimal 

stack filter. Thus, the optimal GANF is expected to perform better in noise 

suppression than stack filters.

4. A suitable class of discriminant functions can be determined before a training 

scheme is executed by using the separation theorems which is presented in 

Chapter 5.

5. VC dimensional (VCdim) theory can be applied to determine the number of 

training samples needed for training the various neural operators of GANFs in 

order to achieve a good emulation of the true function.

6. The algorithms presented in this dissertation in configuring GANFs are effective 

and robust in both one-dimensional signal processing and image processing.
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7. In comparison with various filters, GANFs do suppress noise in signal 

processing better.

8. GANFs can be configured to minimize the filter output error in different noisy 

characteristics.

Finally, further research in reducing the complexity of GANFs is necessary 

because GANFs may require a long training period when the window size is large 

and more complex neural operations are used. Also, further theoretical work is 

needed to advance the theory regarding ways to estimate the similarity between 

certain adjacent binary levels in order to simplify the structure of GANFs. Although 

some current literature shows that parallel algorithms are implementable by VLSI 

technology, and the possibility of the implementation of GANFs by using VLSI is 

discussed, some further study and investigation needs to be undertaken.
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