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ABSTRACT

MegSDF
Mega-Systems Development Framework  

by
Tamar Zemel

A framework for developing large, complex software systems, called Mega-Systems, is 

specified. The framework incorporates engineering, managerial, and technological aspects 

o f  development, concentrating on an engineering process. MegSDF proposes developing 

Mega-Systems as open distributed systems, pre-planned to be integrated with other 

systems, and designed for change.

At the management level, MegSDF divides the development o f a Mega-System 

into multiple coordinated projects, distinguishing between a meta-management for the 

whole development effort, responsible for long-term, global objectives, and local 

managements for the smaller projects, responsible for local, temporary objectives.

At the engineering level, MegSDF defines a process model which specifies the 

tasks required for developing Mega-Systems, including their deliverables and 

interrelationships. The engineering process emphasizes the coordination required to 

develop the constituent systems. The process is active for the life time o f the Mega-System 

and compatible with different approaches for performing its tasks.

The engineering process consists o f System, Mega-System, Mega-System 

Synthesis, and Meta-Management tasks. System tasks develop constituent systems. Mega- 

Systems tasks provide a means for engineering coordination, including Domain Analysis, 

Mega-System Architecture Design, and Infrastructure Acquisition tasks. Mega-System



Synthesis tasks assemble Mega-Systems from the constituent systems. The Meta- 

M anagement task plans and controls the entire process.

The domain analysis task provides a general, comprehensive, non-constructive 

domain model, which is used as a common basis for understanding the domain. MegSDF 

builds the domain model by integrating multiple significant perceptions o f  the domain. It 

recommends using a domain modeling schema to facilitate modeling and integrating the 

multiple perceptions.

The Mega-System architecture design task specifies a conceptual architecture and 

an application architecture. The conceptual architecture specifies common design and 

implementation concepts and is defined using multiple views. The application architecture 

maps the domain model into an implementation and defines the overall structure o f  the 

Mega-System, its boundaries, components, and interfaces.

The infrastructure acquisition task addresses the technological aspects o f  

development. It is responsible for choosing, developing or purchasing, validating, and 

supporting an infrastructure. The infrastructure integrates the enabling technologies into 

a unified platform which is used as a common solution for handling technologies. The 

infrastructure facilitates portability o f systems and incorporation o f new technologies. It 

is implemented as a set o f services, divided into separate service groups which correspond 

to the views identified in the conceptual architecture.
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CHAPTER 1

PROBLEMS IN DEVELOPMENT OF CURRENT SOFTWARE SYSTEMS

The current state o f  software development has been described as a crisis [BROO 87], 

[PRES 92] symptoms o f which include customers dissatisfied with the quality o f  the 

systems they acquire, developers who underestimate the efforts required for developing 

software systems, and demands for new systems and capabilities far in excess o f  the 

ability o f software engineers to provide them. Some o f the roots o f this crisis are to be 

found in changes in the characteristics o f software systems over the past few decades. 

Consequently, the solutions to these problems must consider the impacts o f these changing 

characteristics on the various aspects o f software development.

The following sections describe the recent evolution o f software systems, the 

characteristics o f current software systems, the various aspects o f software development, 

and the impacts o f current systems’ characteristics on these development aspects. Based 

on this discussion, we will subsequently propose a framework for the development o f 

large, complex software systems.



1.1 The Evolution o f Software Systems

2

Programs, and later on software systems that included several programs, were originally 

developed to solve specific problems for specific users or well-defined groups o f  users. 

These systems operated in homogeneous environments. The traditional software- 

engineering approaches were successfully used to develop this kind o f system.

Subsequent reductions in hardware prices, advances in technology, and the 

maturity o f  customers and developers have led to the development o f systems o f  markedly 

increased size and complexity [MAYE 89], [CSTB 90], [MOOR 92], More recently, users 

have had to rely on multiple independent systems to solve sets o f related problems. These 

systems often run on different platforms or in heterogeneous environments. Users have 

realized, however, that it is inefficient to use such multiple systems. Instead, they have 

come to expect integrated solutions which may even yield additional values that cannot 

be achieved by independent solutions.

Two approaches are currently used to meet the demand for integrated solutions. 

The first approach is called post-facto integration [POWE 90]. This approach integrates 

several systems using ad-hoc, non-systematic methods (Figure 1.1). The systems to be 

integrated were developed to solve specific problems in the domain each with a limited 

perception o f the domain, without an awareness o f future integration requirements, and 

with no relation between the systems. The addition o f a new system, replacement o f  an 

existing system, or incorporation o f new technology requires extensive effort. The 

approach is called post-facto because the integration is designed and performed after the



development o f the constituent systems has been completed. The second approach is to 

develop a huge system [YOUR 92], In this approach, a large, complex, interrelated system 

is developed. The various components o f the system are tightly coupled and consequently 

their maintenance is horrendously difficult.

Application Domain
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Host <— >

Problem

System

Host

Problem

System

Host «-

Problem

System

Host

F igure 1.1 Post-Facto Integration

These approaches may both be considered as technology-driven since they use new 

technologies in an uncoordinated manner, without the adoption o f improved and suitable 

engineering and management models. They are essentially "bottom-up" approaches, based 

on traditional development techniques appropriate to smaller problems, single systems, 

specific platforms, and shorter life cycles. They do not prepare systems for future 

integration and so entail drastic efforts when integration is required [POWE 90]. 

Moreover, they concentrate primarily on the engineering aspects o f how to develop
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systems. They do not adequately address the difficulties that exist in the development of 

the newer systems.

The evolution o f software systems suggests that a new approach to software 

development is required. However, before describing such an approach, it is imperative 

to first understand the impact current systems characteristics have on the development 

process.

1.2 Analysis of Problems in the Development o f Software Systems

The following sections describe, more precisely, the characteristics o f typical current 

software systems, and the impacts o f these characteristics on software systems 

development.

1.2.1 Characteristics of Large and Complex Software Systems

Large, complex systems used in various domains generally have more than one o f the 

following characteristics [EISN 91], [MITT 91]:

- Consist o f more than one system

- Developed by more than one group o f developers

- Have more than one customer/user

- Operate in a heterogeneous environment

- Have a long life cycle



These characteristics are interdependent and interrelated. Often one characteristic 

implies the presence o f others. For example, the presence o f the characteristic "consist o f 

more than one system" generally implies that these systems are "developed by more than 

one group o f developers" and "operate in a heterogeneous environment". The following 

paragraphs describe these characteristics in more detail.

Consist o f More Than One System

Most software development efforts involve "more than one system". These systems often 

integrate a number o f smaller systems, which had been developed independently, into a 

larger system. Such integration is primarily a response to customer requirements. 

Customers insist on the integration o f  currently independent systems into larger systems 

in order to obtain additional values that cannot be attainable otherwise [CLAR 92],

On the other hand, integration is sometimes the initiative o f the developers. 

Software developers tend to cooperate to enlarge their market share. For example, the 

developers o f Lotus 1-2-3, a spreadsheet software, decided to cooperate with the 

developers o f Ami Pro, a word-processing software, and the developer o f another software 

product cc:Mail to provide their customers a "software suite" [MOSE 92]. The developers 

believed that customers preferred comprehensive, integrated solutions rather than merely 

a set o f independent tools.

Another case where "more than one system" occurs is the program family [PARN 

76]. A program family is a group o f systems with similar functionalities. Each system in 

the family has a specific configuration and is developed for a different customer.



Configurations may differ in the set o f functionalities, the technical environment in which 

the systems operate, or the interfaces o f the systems.

Developed by More Than One Group o f Developers

Systems that are integrated as just described have, typically, been developed by "more 

than one group o f developers", at different points in time, and with diverse schedules. The 

size and complexity o f such systems often lead to their development as the cooperative 

effort o f multiple groups o f  developers. An extreme example o f cooperative development 

is the space-station Freedom [MOOR 92], however the same phenomenon occurs with 

smaller systems too.

Development with more than one group o f developers may reduce some aspects 

o f risk (although this way o f development might increase communication problems and 

there by increase other aspects of risk). For example, it may be possible to buy parts that 

were already developed by other groups o f developers. It is also reasonable to assign

special tasks to specialized groups, thereby gaining from their experience. Moreover,

when there is uncertainty regarding the feasibility o f  a system, it may be possible to assign 

the same system to different groups. In this case the various groups concurrently develop 

different solutions based on different technologies and approaches; this increases the 

chance o f obtaining an effective solution.

Finally, when several groups develop different parts o f the system, the dependence 

o f the customer on the developers is thereby reduced. Each group develops only a limited 

part o f the system and so can be replaced with limited, local effect. Furthermore, when
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several groups develop the various parts of a system in parallel, the duration o f the 

development is usually shorter.

Have More Than One Customer/User

Many software systems are developed to support a large group o f users or customers. The 

user groups are often themselves heterogeneous, consisting o f  diverse users, each with his 

own particular role and his own requirements for the system. Consequently, such systems 

have an immense variety o f interrelated functions. These systems additionally tend to 

support their user groups as a whole by providing a means o f communication among the 

members o f the group. CASE tools, for example, support software development teams 

consisting o f system analysts, designers, and project managers. These systems support the 

work o f each member o f the group, but also allow the transfer o f information between 

members.

The high cost o f software development makes it infeasible to develop "tailor- 

made" systems for every customer. It is more reasonable to sell a system with 

modifications to several customers, thus sharing the cost o f development efforts. In such 

situations, software systems are developed as program families [PARN 76] or as parts o f 

product lines.

Another instance o f  "more than one customer" is when a system is initially 

developed as an in-house solution to some company need, but is subsequently sold as a 

product to other companies, becoming a source o f income for the original company. 

Copies o f the system can be reproduced with minimal expense, and sold to various 

customers. Another situation where "more than one customer" occurs is in the context o f



increasing the effectiveness o f a system. For example, cooperation among several banks, 

which are customers o f a system o f Automatic Taller Machines (ATM), might increase 

the number o f installed ATMs, thereby improving the regional coverage o f  the ATMs, 

consequently enhancing the convenience o f the banks’ clients. This improvement might 

increase the number o f  clients at all banks [CLEM 91].

The presence o f a large number o f  customers also characterizes package systems. 

Examples o f packages are word-processors, e.g., Word-Perfect [SALK 91] or 

spreadsheets, e.g., Lotus [GRIF 91]. These systems are developed for common, general 

usage. Given the enormous number o f "unknown" users, it is impossible to have a specific 

configuration defined for each user. The heterogeneity o f the user groups increases the 

need for flexibility o f  the system. One way to provide this flexibility is by allowing users 

to customize and adjust their systems according to their own preferences whenever 

possible.

It is important to note that the heterogeneous group o f users developers face today 

often means dealing with different kinds o f user. For example, the system may be 

developed for a known group o f users. On the other hand, it may be developed for 

unknown users that might be represented by an "opinion center" [MITT 91] or a "virtual 

user", e.g., management, marketing, or sales personal.

Operate in a Heterogeneous Environment

In the past, most software systems were developed to run on homogeneous environments,

i.e., in a specific hardware configuration, one type o f operating system, a single 

programming language, a specific database management system, and a single



communication network. However, with constantly changing technologies there is a 

variety o f environments in which systems might run.

Current systems operate in heterogeneous environments consisting o f  more than 

one platform, several operating systems, various databases, and communication tools. This 

is often a result o f  the integration o f  several systems where each system operates in a 

different environment. Moreover, many systems have been developed to operate in 

heterogeneous environments as a practical requirement. Thus, the presumption o f  a 

homogeneous environment no longer holds.

Sometimes the same software system is developed to operate in different 

environments in order to increase the market share o f its developers. An example o f  this 

phenomenon is the Word Perfect word-processing software that operates on UNIX, DOS, 

and Windows. Another example is the Lotus Suite that operates on Personal Computers 

under DOS and Windows. This software suite has now been developed to run on HPs 

under UNIX to enhance its effectiveness as a communication tool [JOHN 92]. This type 

o f heterogeneity allows users in heterogeneous environments (e.g., an environment that 

consists o f several mainframes operating under UNIX and a number o f  personal 

computers running under DOS and Windows) to use the same software on any machine.

It is important to point out that there are two kinds o f heterogeneity. The first kind 

refers to systems that span heterogeneous environments, the second kind refers to systems 

where each variation o f the system operates in a single homogeneous environment only.
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Have a Long-Life Cycle

The life-cycle o f software systems is constantly being lengthened. For example, the Air 

Traffic Control (ATC) o f the Federal Aviation Administration system has been used for 

twenty years, its successor is designed to operate for twenty to thirty years [HUNT 87]. 

The complexity and size o f software systems induce both high costs and long development 

periods. Because o f economic constraints, customers do not have sufficient resources to 

acquire new systems, so they are constrained to use the existing systems for longer periods 

o f time. These systems have generally undergone repeated generations o f change and may 

be now virtually unmaintainable [PRES 92]. These systems are often called "legacy 

systems" [YOUR 92] or "aged systems" [PRES 92] since it is simultaneously excessively 

difficult to maintain them and is too expensive to redevelop them, so users are forced to 

keep them.

The process o f acquiring the various systems which participate in an integrated 

solution is continuous and evolutionary. The constituent systems o f an integrated system 

are often developed in non-overlapping time-frames. Thus, once again the development 

period o f the final integrated system is much longer than the development period o f 

traditional systems.

1.2.2 Aspects of Software Development

Software development involves many interrelated aspects, e.g., engineering, managerial, 

technological, psychological, sociological, economic, legal, and political (Figure 1.2). We
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shall discuss each o f these aspects in the following paragraphs, but as software engineers, 

we shall concentrate on the effect o f the various aspects on the development process.

Engineering

Managerial

Technological

Software '
Systems
Development

Psychological

Sociological

Economy

Legal

Political

rigure 1.2 Aspects Involved in Development o f Software Systems

Engineering  aspects include processes, methods, techniques, and tools used to 

develop software systems. Processes specify the activities required for efficient 

development o f high quality software systems. Techniques support implementation o f  

distinct activities. Tools enable efficient implementation o f techniques [GEHD 91].

M anagerial aspects include the organization o f development groups, software 

metrics, software (cost) estimating methods, configuration management, quality assurance, 

and risk analysis. Organization deals with the responsibilities, roles, and structure o f  a 

development group [BAKE 72], [RETT 90]. Software metrics are the means o f evaluating
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the quality o f software products as well as the productivity o f the development process 

[ARTH 85], [JONE 86]. Software estimating methods are used to estimate the cost and 

the required resources for development o f a system [BOEH 82]. Risk analysis deals with 

methods for identification, projection assessment, and management o f  risks during the 

software development [BOEH 89], [CHAR 89], [PRES 92],

Technological aspects deal with the enabling technologies that support the 

development and operation o f  software systems, e.g., hardware, database management 

systems, and communication. There is an immense variety o f  technologies developed 

without agreed-upon standards. Therefore, the implementation o f  a system that requires 

the use o f  various technologies is difficult. Moreover, new technologies are continually 

emerging and must be incorporated in order to ensure the effectiveness o f  a system and 

the competitiveness o f its users [CLEM 91]. Our work concentrates on the special 

requirements that complex and large systems impose on technologies.

Psychological aspects deal with human factors that must be considered in the 

design o f a software system [LUND 91], implementation o f methods for solving problems 

in software development, and the psychological impact o f group organization.

Broadly speaking, sociological aspects address the impact software systems have 

on society and social transformations that result from computerization [KLIN 90]. In 

regard to software development point o f view, this aspect deals with the effects o f  the 

software development process and group organization on developers.

Regarding economic effects, software systems, especially strategic systems, can 

have major economic effects on companies that acquire them. Strategic systems may even
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be critical to the success or failure o f companies [CLEM 91]. Furthermore, cooperation 

and partnerships among developers may be motivated by economic constraints and have 

significant economic benefits for the various partners.

Legal aspects address privacy of information, property rights o f  software 

developers, and even "equal opportunity" for companies. New laws to ensure the privacy 

rights o f  individuals whose data is stored in data repositories, or at least to allow them the 

option o f  knowing what information is kept about them, have been legislated in various 

countries, e.g., [ODSG 78].

Property rights, patents, and copyrights o f software developers must be considered 

in using and developing software [ACKE 92]. For example, the case o f  Apple against 

Microsoft Corp. and Hewlett Packard Co. deals with A pple’s copyrights for the 

windowing concepts [DALY 92]. There have also been governmental regulations 

designed to ensure equal opportunity to access software functionalities to eliminate unfair 

competitive advantages in strategic systems. For example, in the case o f the SABRE 

on-line reservation system, American Air Lines, which owned the SABRE system, had 

privileges that other customers o f the system did not have [BETT 92].

In the legal/political arena, we find national/international efforts dealing with 

standardization o f software products and their development. Examples for these efforts 

are the Department o f Defense DoD-STD-2167a [DoD_STD-2167a], IEEE standards, the 

ISO Norm 9000, and international regulations concerning quality and safety [BHAN 93], 

The previously mentioned aspects are all important, but our framework 

concentrates on the engineering, managerial, and technological aspects o f software
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development. Moreover, we shall consider the managerial and technological aspects only 

in respect to their role as means for supporting the engineering process.

1.2.3 The Impact of Software System Characteristics on Aspects o f Software 

Development

We contend that the underlying causes of the software "crisis" are rooted in the 

characteristics described in the previous section. This section describes how problems in 

software development are engendered by these characteristics. Because systems 

characteristics and development aspects are interrelated, some problems will be discussed 

from several viewpoints.

1.2.3.1 Problems in Engineering

The engineering aspects deal mainly with processes, methods, techniques, and tools used 

to develop software systems. We next describe the engineering aspects and the 

engineering problems induced by the previously identified characteristics.

M ore Than One System

The integration o f independently developed systems into a coherent larger system is 

typically extraordinarily difficult [CSTB 90]. Usually, the systems that have to be 

integrated were developed previously and with no awareness o f other systems or future 

integration requirements, but it has become necessary to integrate them to gain added 

values. Most such systems for integration might be described as "legacy systems," [YOUR
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92] since they are large, inflexible, and old. They are too large to be redeveloped, and yet 

they are very difficult to change or modify.

More Than One Group o f Developers

Often when a system is developed by more than one group o f developers, the various 

groups focus primarily on the development o f their own part. They deal with a limited 

portion o f the domain and have only a limited knowledge o f  the domain [CURT 88]. 

When a family o f systems is developed by more than one group, the groups may become 

tend to enmeshed in incidental environmental features rather than focusing on the 

application problem solutions [LAWS 92a], In either case, a global approach is lacking; 

the system as a whole is neglected or has less than the requisite priority [NEUM 91].

Another problem occurs when each group o f developers uses its own standards, 

procedures, methods, and tools. This leads to non-uniform integrated systems that have 

multiple types o f user interfaces, different ways o f error handling, etc. Their non

uniformity makes them difficult to use and hard to maintain.

More Than One Customer/User

When a system is developed for more than one customer, every customer operates his 

system in specific circumstances (technical and organizational environment). This implies 

that the requirements o f  each customer might differ, inducing an increase in complexity.

Often different customers have different configurations o f  the system. It is more 

difficult to develop and maintain a system with various configurations since any change 

has to be evaluated and occasionally incorporated into the various configurations.
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Heterogeneous Environment

A heterogeneous environment implies use o f  various technologies. Occasionally, 

additional efforts may be required in order to find engineering solutions to close 

technological gaps and bridge technologies [NOTK 88]. Similarly, when a system is 

technology-driven and uses an emerging technology, additional efforts are required to 

solve immaturity problems, primarily in interfacing with existing technologies.

Long Life Cycle

Generally, a software system is a part o f a larger domain. This domain has a major 

influence on the requirements for the system and evolves independently [LEHM 90]. 

Often the domain is influenced by the system itself. Changes in the domain may imply 

changes in the system’s requirements. The possibility o f significant changes in the domain 

and, therefore, in the requirements, is increased if  the life cycle o f the system is long 

[CSTB 90]. Thus, long life cycles o f software systems lead to unstable requirements.

Given the current size and complexity o f systems, it seems more rational for 

systems to evolve, rather than be developed at once [TICH 93]. It may be impossible to 

replace the whole system at once, but parts can be added, updated, or replaced over time 

to adjust the system according to new requirements and emerging technologies. 

Summary' of Engineering Aspects

We contend that the reason for most o f the difficulties related to the engineering aspects 

is the use o f unsuitable approaches to solve highly complex problems. Complex systems 

are currently developed using traditional approaches for software development, e.g., the 

waterfall [BOEH 76], prototype [GOMA 90], and the spiral model [BOEH 88], These



17

methods assume the development o f one system with rather stable requirements and are 

based on a sequential, phased process [MITT 91]. Therefore, they do not fit the 

development o f  more than one system with several groups o f developers; nor do they suit 

a large domain with unstable requirements; and finally they do not support long-term 

development in a dynamic environment.

1.2.3.2 Problems in Management

As the size and complexity o f software system is increased, management tasks become 

more difficult. We have to deal with many developers and for a longer period of 

development [PRES 92]. Any difficulties in software development, e.g., risk identification 

and elimination, communication, and coordination problems, are scaled up [CURT 88]. 

More Than One System

If  more than one system is developed we have to deal with two levels o f  objectives: the 

overall integrated system’s (general) objectives and the local objectives o f  the various 

constituent systems. These objectives occasionally contradict each other. There is usually 

no clear distinction between management aspects o f the integrated solution and 

management aspects o f the various participating systems; consequently local aspects tend 

to swamp or preempt general objectives.

More Than One Group o f Developers

Communication and coordination problems that exist in the development o f  one system 

developed by a single group are scaled up and become critical when a system is developed 

by more than one group o f developers [CURT 88]. Often, the different groups belong to
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different organizations (which occasionally are competitors). These organizations have 

different (and occasionally contradictory) goals and aims. Generally, the groups work at 

different sites or even in different countries, e.g., the developers o f the space-station 

Freedom are from USA, Italy, Japan, and other countries [MOOR 92]. Without effective 

coordination and communication, there will be wasted efforts in developing solutions 

developed previously by other groups.

Another problem is caused when various groups have different cultures. This leads 

to different interpretations o f the domain and o f the system by the various groups. In the 

case o f problems, each group may try to blame the other groups [CURT 88], [YOUR 92]. 

More Than One Customer/User

The fact that a system has more than one customer induces an increase in complexity. 

Typically, every customer has his own aims and needs and therefore his own preferences 

and priorities. These preferences may be different or contradictory. The various 

requirements must be analyzed and an optimized solution and development schedule 

determined.

Heterogeneous and Dynamic Environment

A heterogeneous and dynamic environment increases the complexity o f systems. Often 

management deals with standardization o f technologies by stabilizing the environment. 

In this approach, only elements compatible with the standards may be used. In dynamic 

environments, the management has to ensure that services that were provided previously 

will still be provided in the future. Moreover, management has to evaluate the various 

emerging technologies to keep the developed systems efficient and effective.
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Long Life Cycle

Often, in the development o f large and complex systems, management deals w ith short

term objectives and neglects long-term objectives [YEH 91]. When the life cycle o f  a 

system becomes longer it is essential to emphasize long-term objectives and to derive 

short term objectives from them.

Summary' of the Managerial Aspects

We contend that the difficulties related to managerial aspects arise because there is 

typically no specific management entity that deals principally with general and long-term 

objectives in conglomerate projects where the number o f participants is very high. 

Without a distinction between the various objectives, the short term and local objectives 

overwhelm the global, long term, and more essential problems. There is a need for a 

management that will manage and coordinate the various groups and determine policy 

and directions for the whole system.

1.2.3.3 Problems in Technology' Handling

In this section we discuss technological aspects o f the development o f software systems. 

Technologies enable the implementation o f  software systems. There is an immense variety 

o f  technologies already on the market, and new technologies emerge at such a fast rate that 

it is hard to deal with them productively.

M ore Than One System

The integration o f several systems may lead to heterogeneous environments. Moreover, 

the current tendency is to "down-size", i.e., to replace a central system running on a
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mainframe by a network o f  smaller systems running on a set o f interconnected, smaller 

platforms. Thus, we must address distributed processing technologies and ensure the 

consistency o f their operations.

The case o f a family o f systems, where each system operates in a different 

environment, requires methods that will improve the portability o f  the system, i.e., 

transferring the system to a new environment.

More Than One Developer

Typically, each group o f developers is specialized in a specific set of technologies. This 

fact may lead to a heterogeneous environment. Another difficulty is caused if  each 

developer struggles independently with the problems induced by the heterogeneous and 

dynamic environment, leading to redundant efforts and a non-uniform system.

More Than One Customer

Generally, various customers have different technological environments. Thus, typically 

systems with more than one customer have to be adjusted to the various environments. 

Heterogeneous and Dynamic Environment

When a system is designed to operate in a heterogeneous environment, we have to deal 

with a variety o f technologies. Currently, the various technologies are developed without 

agreed-upon standards. To enable operation o f systems in heterogeneous environments, 

there is a need to first "bridge" the technologies [NEFF 92].

Similar problems are caused by the dynamics o f the environment. Emerging 

technologies must be incorporated to ensure the effectiveness o f systems.
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Long Life Cycle

As the life cycle o f systems becomes longer, the effects o f emerging technologies may 

become more critical. It is sometimes not merely optional but essential to incorporate 

emerging technologies in order to ensure the competitiveness o f the systems and their 

customers [CLEM 91].

The "aging problem" happens when a system becomes ineffective because it uses 

"old" technologies and must be updated or replaced. When the life cycle becomes still 

longer, the aging problem recurs every time a system incorporates another emerging 

technology.

Summary’ of Technological Aspects

We contend that problems in the technological aspect are caused by the need to bridge and 

incorporate various technologies. Efforts will be wasted if  every group o f  developers 

independently solve the difficulties induced by these problems, instead o f developing 

common, domain-wide solutions that will be used by all the development groups.

1.2.4 Summary’ o f the Problems

The previous sections describe problems in the engineering, managerial, and technological 

aspects o f software development. These problems are summarized in Table 1.1.
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Table 1.1 Problems Faced in Development o f Large and Complex Systems

Aspect Characteristic Difficulties Problems

Engineering More than one system Additional efforts are required 
for the integration of systems

Current methods 
do not fit

More than one group 
of developers

The overall view of the system 
is neglected

development of 
more than one 
system, with 
multiple and 
unstable 
requirements

More Than one 
customer

Multiple requirements

Heterogeneous
environment

Engineering solutions are 
required to close technology 
gap

Long life cycle Unstable requirements

Management More than one system General objectives are 
neglected

There is no clear 
distinction

More than one 
developer

Coordination and 
communication problems on a 
larger scale

between general, 
long-term 
objectives and 
local, short-term

More than one 
customer

Different aims and needs objectives

Heterogeneous
environment

No standardization of tools

Long life cycle Long term objectives are 
neglected

Technology More than one system Heterogeneous environment There is a need to

More than one 
developer

Each development group has to 
struggle independently with 
Heterogeneity and dynamic 
environments

bridge the various 
technologies and 
efficiently 
incorporate 
emerging

Heterogeneous
environment

Bridging different technologies 
and incorporation of new 
technologies is required

technologies as a 
common domain- 
wide solution

More than one 
customer

Customization to user 
environment

Longer life cycle Dynamic environment requires 
incorporation of new 
technologies



CHAPTER 2

MEGA-SYSTEMS

Chapter 1 describes difficulties in development o f software systems exhibit one or more 

o f the following characteristics:

• Consist o f  more than one system,

• Developed by more than one group o f developers,

• Have a large and heterogeneous group o f users,

• Have M ore than one customer,

• Operate in a heterogeneous technical environment.

Since the development o f systems with these characteristics is complicated and requires 

more effort than the development o f traditional systems, we propose calling these systems: 

M ega-System s, because they are "beyond" traditional systems.

We contend that problems in the development o f these systems are caused by the 

use o f improper approaches and that it is possible to develop them more efficiently by 

using new approaches appropriate to the special characteristics o f these systems. However, 

to propose such approaches it is first required to understand the structure o f  these systems 

and the relation between their components. This chapter defines Mega-Systems and 

classifies them. This classification can also be used to identify possible Mega-Systems.

There are several kinds o f Mega-Systems: H uge System s  (HS), System s o f  

System s (S2), and Generic System s (GS), distinguished by the manner in which their
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elements are related. The following sections define these kinds o f Mega-Systems. Figure

2.1 illustrates our taxonomy o f Mega-Systems.

Mega-
Systems

IS A

Systems Generic
Systems

Huge
Systems Systems

Figure 2.1 Mega-Systems

2.1 Huge Systems

Huge systems as defined in [YOUR 92] are large and complex software systems with 

hundreds o f  thousands to millions o f lines o f code, and hundreds o f  programs and 

modules. They are typically composed o f multiple, large, and interrelated subsystems, 

each o f which is designed to operate only as part o f  the huge system and in the its
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environment. Huge systems often intensively process large, complex databases in a 

manner that precludes separation into smaller parts. Figure 2.2 illustrates the relationship 

o f  the parts o f a huge system.

Huge
System Part-of

Sub
System

Sub
System

Sub
System

Figure 2.2 A Huge System

An integrated CASE tool, developed to support the different phases o f a software 

development life-cycle which is based on system specific database management system 

and user interface tool is an example o f a huge system. Such a system includes many 

programs, probably spread over many subsystems, but no part acts as a stand-alone 

system.

Huge systems are developed for a particular group o f  users, e.g., a specific group 

within a large organization. The group usually has a common role and requires a precise 

set o f  functionalities.

Huge systems are developed and maintained by a large group o f developers. The 

developer group may be divided into smaller groups based on either system functions,
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(where each group develops a specific part o f the system), or the professions o f  the 

developers, (analysts, designers, and programmers). However, these groups typically 

belong to a single company or organization.

While huge systems are developed like traditional systems, their size, complexity, 

and length o f life cycle induce development, maintenance, and integration difficulties. 

Their development is long and their maintenance is continuous and difficult, because they 

evolve over time and undergo generations o f change. The interrelations between the 

subsystems make modifications problematic. Due to the usual scaling up effect, the 

amount o f  management and coordination needed for their development is much greater 

than for a traditional system [CSTB 90], [EISN 91], [MITT 91], [YOUR 92],

2.2 Systems of Systems

A second type o f Mega-System is the "system o f systems" (S2) [EISN 91], [ROSS 91a]. 

Systems o f systems integrate several independently developed systems. Each component 

system is a product by itself, but is integrated with other autonomous systems to form a 

Mega-System.

An example o f a system o f systems is the FAA’s advanced automation system for 

air traffic control [HUNT 87]. This system of systems is composed o f  several "large scale" 

systems that operate within the context o f the overall, coherent mission o f  providing safe, 

cost-effective, passenger and freight, air transportation. The "air traffic control system"
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integrates systems that provide communications, navigation, radar, control, and other 

automation capabilities [EISN 91].

S y s t e m
o f

S y s t e m s
XYZ

Integrated-with

System System
Y2

System
Z4

Figure 2.3 A System o f Systems

Systems o f systems, usually, have a large, heterogeneous group o f  users. These

users have different roles and require different functionalities. The systems o f systems

may also facilitate the work of these users as a group.

The systems forming the system o f systems are generally developed by separate

groups o f  developers, at separate sites, with different schedules. These developer groups

belong to different organizations which have different aims and goals, and often have

different standards, techniques, and methods for developing systems.

In contrast to huge systems, we may not have full knowledge o f the functionality

o f the system o f systems in advance. Each part (system) o f the system o f systems can be

a stand-alone system, so it evolves over time; decentralized growth o f  the systems is

typical .
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Most systems that are integrated into a system o f systems were developed without 

planning for future integration and with limited consideration o f other systems. Thus, most 

systems o f  systems are integrated in a post-facto manner [POWE 90]. However, some 

systems o f systems are developed in a pre-facto manner that requires knowing all 

components o f the system in advance and developing them from scratch [POWE 90].

2.3 Generic Systems

The third type o f  Mega-System is the generic system. A generic system is a specification 

o f a set o f interrelated functionalities and the actual systems derived from this 

specification. A functionality is specified on an abstract and conceptual level by formal 

definitions or natural languages. Different systems are then derived by instantiation or 

specialization o f  the abstract functionalities.

Instantiation  is done by implementing the given set o f functionalities using a 

specific programming language, specific hardware environment, etc. Specialization  is 

done on the level o f  specifications by adding new or removing existing functionalities 

without changing the essential characteristics. (Although "essence" is a qualitative and 

subjective criteria, we suggest using it to avoid cases in which systems are derived by 

removal o f all/most the original functionalities and addition o f new functionalities. 

Quantitative criteria, e.g., the number o f functionalities, will be useless in this case). 

Subsequent to specialization, new systems can be derived by instantiation. The derivation
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can be done manually or by code or application generators. Figure 2.4 illustrates the 

relationship between the components o f a generic system.

Generic 
System X

INSTANTIATED-TO/
SPECIALIZED-TO

System
X1

System
X2

System
X3

7igure 2.4 A Generic System

A radar system is an example o f an embedded generic system. Radar systems can 

be installed in planes, ships, or ground stations. All systems share common functionalities 

such as user-interface, signal-processing, and communication. However, any individual 

system has a special configuration instantiated/specialized from the original set o f 

functionalities o f the generic radar system and suited to the requirements o f  its customer.

Systems derived from a generic set o f functionalities are typically developed for 

different customers, so generic systems generally have multiple user groups. Each derived 

system is developed by a different group o f developers. Though these groups belong to 

the same organization and develop systems with similar functionalities, they not always 

work in coordination.
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Generic systems are developed using traditional methods. Lack o f  coordination 

between developer groups leads to redundant functionalities and inefficiencies. Unlike 

huge systems and system o f systems, the components o f generic systems are similar 

systems. Although the basic functionality o f the generic system is specified in advance, 

extensive adaptations o f the system are possible.

2.4 Generic Systems of Systems

Difference in types o f user groups and time frames for the use o f systems suggest defining 

an additional type o f Mega-Systems, the Generic Systems o f  Systems which can be 

considered as a subclass o f  both systems o f systems and generic systems. Generic Systems 

o f Systems solve a problem for a domain, with no precise time frame and without definite 

users.

A generic system o f systems has the flexibility o f a generic system and can be 

specialized and instantiated into different configurations, but each functionality is 

implemented as a system and each configuration as a system o f systems. Figure 2.5 

illustrates the relationship between the components o f a generic system o f system.

An example o f a generic system o f systems is a system for insurance agencies. An 

instantiation o f  the system for a large insurance agency will operate on a mainframe with 

multiple terminals. An instantiation for small agencies will use personal computers 

connected by a network. These instantiations differ in their environments. It is also
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possible to specialize the set o f original functionalities by adding or removing systems. 

For example, a specialized system for a general agency could include life, vehicular, and 

property insurance, and accounting systems. A specialized system for a life insurance 

agency might include an accounting and a life insurance system.

f  Generic 
System of 
l Systems X

INSTANTTATED-TO/
SPEC1AUZED-TO

/System oA 
(  Systems )Xjrj

System ol 
SystemB

System of 
Systems

INTEGRATED-TOINTEGRATED-TO

S y s te m y  , _ /System  \  /  System 
X31 /  '  '  “ \  X39

System 
X1n ,

S y s te m y  System 
X11 X3mX12

Figure 2.5 A Generic System o f Systems

2.5 Relationships among Mega-Systems

Figure 2.6 summarizes the relationships among the types o f  Mega-Systems. Mega- 

Systems are large, complex systems. Huge Systems, System o f Systems, and Generic
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Systems are different sub-classes o f  Mega-Systems. System o f Systems and Generic 

Systems (GS) have a common sub-class: Generic System o f Systems (GS2).

AMega- 
Systems /

Systems /
Systems 

of
Systems

/  Generic 
\  Systems

IS A

/Generic \  
/  Systems \
\  01 /  \  Systems /

Figure 2.6 Detailed Classification o f Mega-System

Table 2.1 summarizes the characteristics o f traditional systems and Mega-Systems. 

It allows us to classify the type o f a system and consequently determine a suitable 

approach for its development. For example, a system with stable requirements and a 

limited user group, might be developed using traditional approaches. On the other hand, 

a system with dynamic requirements, several user groups, and multiple configurations, 

each operating in a different environment, should be developed as a generic system o f 

systems.
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Table 2.1 A Comparison o f Mega-Systems

ATTRIBUTE Traditional
Systems

Mega-Systems

Huge
Systems

System 
of Systems

Generic
System

Generic 
System of 
Systems

Requirements Stable, 
known in 
advance

Stable, 
known in 
advance

Dynamic Partly stable, 
adaptations 
are feasible

Dynamic 
adaptations 
are feasible

Customer Limited
user
group

Large
user
group

Hetero
geneous user 
group

Multiple user 
groups

Multiple 
Hetero
geneous user 
groups

Developers One group 
within one 
organization

Large group 
within one 
organization

Several 
groups that 
belong to 
different 
organizations

Several 
groups that 
belong to the 
same
organization

Several 
groups that 
belong to 
different 
organization

Life Cycle Short Long Long Long Long

Components Sub-systems Large
Sub-systems

Independ
ently
developed
systems

Derived
Systems

Independ
ently
developed
systems

Relation of 
system and 
components

Part-o f Part-of Integrated-to Derived form Instantiated- 
to and 
integrated

Environment Homo
geneous

Homo
geneous or 
Hetero
geneous

Hetero
geneous

Different
environments

Different
hetrogeneous
environments

Configurations 
at a given 
point of time

One One One Several (each 
for a different 
customer)

Several (each 
for a different 
customer)

Management One project One big 
project

Several
projects

Several
projects

Several
projects



CHAPTER 3

A FRAMEW ORK FOR MEGA-SYSTEM DEVELOPMENT

This chapter describes the characteristics required o f a framework for the development o f 

Mega-Systems. Section 3.1 describes existing models for development o f  large and 

complex systems. Section 3.2 specifies requirements for a framework. Section 3.3 outlines 

the main concepts o f MegSDF.

3.1 Existing Models and Frameworks

Mega-Systems are currently developed using traditional approaches, e.g., the waterfall and 

its variations [BOEH 76], Prototyping [GOMA 90], the Spiral Model [BOEH 88], etc. 

Several solutions have been suggested for developing large scale systems and for systems 

integration which are related to MegSDF. There are basically two approaches. The first 

emphasizes development organization aspects: the activities, elements and organization 

o f  software development, e.g., COSMOS [YEH 91], GenSIF [ROSS 91a, b, c], POW DER 

[MITT 91], SIF [GEHD 91], and System o f Systems Engineering [EISN 91]. The second 

type emphasizes mega-programming languages that allow interaction o f  systems, e.g., 

MPL [WIED 92], and LILEANNA [TRAC 91]. These languages were developed in the 

context o f D A RPA 's Megaprogramming projects. MegSDF addresses the development

34
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process, though megaprogramming tools can be used within the process to improve and 

support development.

3.1.1 The COSMOS Model

Yeh etal. [YEH 91] have defined COSMOS, A COmmon Sense management M Odel for 

Systems, based on the notion that developers o f large systems must consider long term 

o b je c tiv e s . L ong  te rm  a p p lic a tio n s  re q u ire  f le x ib il ity  and  ease  o f  

maintenance/enhancement, since it is impossible to eliminate changes in the system. In 

order to accommodate these changes efficiently, trade-offs should be considered from 

three perspectives: Activities, Communication, and Infrastructure. To maintain a balance 

between those perspectives COSMOS suggests two process levels: Control and Execution. 

These levels apply to any perspective. The tasks o f each level and for each perspective are 

defined. The model is applicable to software and non-software systems.

COSMOS proposes developing a system through a series o f small changes. At each 

change, the balance among the three perspectives must be maintained and implemented 

by the two process levels.

3.1.2 The GenSIF Framework

Rossak [ROSS 91a, b, c] has proposed GenSIF, A Generic Systems Integration 

Framework, which divides the development o f  a system o f systems into several projects. 

GenSIF includes two levels o f management: an upper management level (m eta-level), and 

several lower (project level) managements. The meta-level management is responsible for
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leading the development o f the system o f systems, as well as for communication and 

coordination between sub-projects. The lower level project managements are responsible 

for developing each system.

GenSIF includes domain analysis, integration architecture, and infrastructure as 

main concepts. The framework defines two levels for an integration architecture [ROSS 

91c], The first, conceptual level architecture describes guidelines and standards for the 

development o f the entire system. The second level is the technical infrastructure. This 

level deals with the standardized services that are an essential part o f any system. These 

services include communication, data storage, and user interface.

3.1.3 The POWDER Methodology

M ittermeir developed POWDER, a recursive methodology for Prototyping O f Wicked 

Development Efforts with Reuse [MITT 91]. POW DER is a methodology for software 

development, based on generally applicable techniques used to solve wicked problems. 

The methodology divides the development into sub-projects, and divides the process into 

control and execution levels. The control level is responsible both for steering the 

development and for the integration platform. The execution level is responsible for the 

actual work done in the different sub-projects. A large sub-project at the execution level 

may require further control and execution sub-levels. Thus, POWDER supports a 

recursive organization. The framework includes descriptions o f  the responsibilities o f  each 

level. The method for implementation o f each sub-project is chosen according to the 

attributes o f the sub-project. The POWDER model can be used for any system and type
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o f integration. The framework includes guidelines for choosing a development approach 

for various types o f projects. Figure 3.1 describes the organization/task structure o f the 

model from our viewpoint.
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rigure 3.1 The POWDER Model

3.1.4 The SIF Framework

[GEHD 91] proposed SIF, a Systems Integration Framework. SIF identifies problem 

"tracks" including: technology project management, technology change management,
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technical platform development, custom applications development, testing and 

implementation, package selection and implementation, application operation, data 

modeling, and software re-engineering. Each track has its own methods, techniques and 

tools.

SIF suggests that the first step of each systems integration process should be the 

identification o f the track(s) the system belongs to. For each track, deliverables and 

milestones, activities and their dependencies, techniques and tools, and appropriate quality 

assurance measurements are defined. The interrelation between the tasks are then 

addressed. The process is iterative and dynamic. The approach leads to customized 

solutions where each system is developed by methods, techniques, and tools tailored to 

the special needs of the system. The model is useable for any type o f system development 

or systems integration.

3.1.5 System of Systems Engineering Model

Eisner et al. [EISN 91] suggest a model for system o f systems (S2) engineering. They 

characterize a system o f systems as a multi-functional system with several independently 

acquired, interdependent systems. The local optimization o f a system in a system of 

systems does not guarantee global optimization o f  the entire system. The combined 

operation o f the systems satisfies the overall coherent mission. System o f systems 

engineering requires developing autonomously managed systems under an overall 

supervising management.
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System o f systems engineering is based on a meta-system engineering framework 

which uses three categories: integration engineering, integration management, and 

transition engineering. Integration engineering involves all the engineering necessary to 

fully integrate the component systems. Integration management focuses on the 

management aspects o f systems o f systems, emphasizing scheduling, budgeting/costing, 

configuration management, and documentation. Transition engineering focuses on 

assuring an orderly transition from the collection o f stand-alone systems to the integrated 

system o f systems.

Eisner et al. contend CASE-tools are critical in engineering systems o f systems. 

CASE tools can enhance developers’ productivity, and facilitate impact studies, interface 

analysis, performance analysis, scheduling, budgeting, and documentation.

3.1.6 The Megaprogramming Framework

DARPA has encouraged research on the problems o f  scaling up software engineering, for 

which they introduced the term "megaprogramming". Wiedrehold et al. [WIED 92] 

propose a framework and Megaprogramming Language (MPL) for megaprogramming 

using software components called megamodules. Megamodules capture the functionality 

o f services provided by large organizational units, e.g., banks, airline reservations, or city 

transportation systems. Computations spanning more than one megamodule are specified 

by megaprograms using a megaprogramming language. Megamodules encapsulate data, 

behavior, and knowledge, and support multiple concurrent activities. A megamodule is
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operated and maintained autonomously and is a potential component o f many 

megaprograms. Megamodules can be developed by traditional technologies.

M egamodules require module interaction mechanisms that support their 

encapsulation, heterogeneous interfaces, and dynamic evolution. [WIED 92] proposes a 

M egaProgramming Language (MPL) to allow flexible composition o f megamodules and 

support synchronous and asynchronous coordination schemes, decentralized data transfer, 

parallelism and conditional execution. It supports the autonomous operation o f 

megamodules and allows asynchronous operations controlled by the megaprograms. 

Input/output parameters are presented with database-like schemas.

MPL separates input/output management from the invocation mechanism in CALL 

statements. MPL includes operations for megamodule interaction, e.g., inspection o f 

interfaces and contents o f megamodules, and examination o f the status o f  a megamodule.

A megaprogramming system consists o f a collection o f distributed megamodules 

linked by a network. A megaprogramming environment includes a repository and 

dictionary that support megamodule execution and maintenance.

3.1.7 Summary of Existing Methods

Table 3.1 compares the approaches just described. Basically, the approaches call either for 

two levels o f managements or two levels o f programming. The COSMOS model suggests 

developing systems by an evolutionary approach consisting o f a sequence o f small 

changes. Other approaches propose dividing the development effort into smaller projects. 

The models do not define explicit processes for developing such systems, methods o f
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partitioning into sub-problems, or methods for assuring engineering coordination o f 

projects.

Table 3.1 Existing Models

Model Organization Parts Main concepts

COSMOS Control
Execution

Small Changes Balance activities, 
communication, and infra
structure in each change.
Long term objectives should be 
considered.
Flexibility and ease of 
maintenance are essential.

GenSIF Meta-level 
management 
and several lower 
level management

Projects Domain analysis, integration 
architecture, and infrastructure 
are main elements.

SIF Not defined Problem Tracks, 
e.g., technology 
management, 
application 
development

It is required to determine what 
problems tracks characterize the 
system and their implications.

POWDER Control and 
Execution 
with recursive 
structure

Projects Each project should use an 
appropriate approach for its 
development.

System of
Systems
Engineering

Meta management Systems Integration engineering, 
integration management, and 
transition engineering.
CASE tools are mandatory

MPL Each megamodule 
is autonomous 
and developed 
and maintained 
separately

Megaprograms
and
Megamodules

Traditional methods for 
development of megamodules. 
Megaprogramming language 
with separation of I/O 
management from invocation.
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The problems in developing large, complex software systems discussed in chapter 1 lead 

us to conclude that a new approach for developing Mega-Systems is required. The 

complexity and the variety o f problems dictate more than an engineering solution; other 

aspects o f development must also be incorporated in the framework for developing Mega- 

Systems. In order to address the problems in software systems development (summarized 

in table 1.1), a framework for developing Mega-Systems must be:

• General.

• Comprehensive,

• Operative, and

• Open

The framework must be general. That is, it must be useful for different application 

domains such as data-processing (banking, insurance, manufacturing) and real-time 

applications (naval systems, avionic). It should also suit the different types o f Mega- 

Systems.

The complexity o f development and the number of developers involved in Mega- 

Systems require a comprehensive framework that incorporates engineering, managerial, 

and technological aspects [DAVI 92]. A solution that addresses only the difficulties 

involved in engineering aspects will be insufficient.
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The framework must be operative. That is, it must specify the activities required 

to develop a Mega-System, their deliverables, and their interconnection and sequencing, 

and integrate them into a coherent, efficient process model.

The framework must also be open and flexible. Developers o f  Mega-Systems must 

have the option o f selecting an appropriate technique for implementing an activity. The 

technique must fit both the characteristics o f the problem and the experience and 

knowledge o f the developers. This also applies to the selection o f  tools that support a 

specific technique. The framework must be adjustable to the actual needs o f  the domain.

3.3 Outline of MegSDF Framework

We propose MegSDF - a framework for Mega-Systems development - which satisfies the 

general requirements for a framework, and addresses the problems in development 

identified in chapter 1 and the limitations o f existing models for development. The main 

concepts o f the framework include:

• Two levels o f organization,

• Engineering coordination,

• A pre-planned approach, and

• Development as open, distributed systems.

We will briefly motivate these concepts, then, in the following sections elaborate on them.
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The complexity o f Mega-Systems development scales up management issues, so 

that management aspects must be included in the framework. We propose an organization 

with two levels o f management in order to guarantee/enforce the distinction between, and 

attention to, overall development and coordination, as opposed to purely local 

considerations.

The characteristics o f Mega-Systems also lead us to propose a new engineering 

process for their development. The process is specified by a process model which 

includes: definitions o f activities, their relations, deliverables, and sequencing. The 

process promotes engineering coordination o f all systems developed in the domain by 

using (what we call) a domain model, a Mega-System architecture, and an infrastructure, 

which are derived in Mega-System tasks.

To facilitate future changes, integration o f new functionalities, and incorporation 

o f emerging technologies, we recommend a pre-planned approach. Finally, to realize the 

previous concepts we propose developing the Mega-Systems as open, distributed systems.

3.3.1 Development Organization

The size and complexity o f Mega-Systems preclude their development as single systems. 

Therefore, Mega-Systems consist o f multiple systems. Naturally, developing their 

constituent systems without coordination is ineffective. To provide for the requisite global 

coordination, we propose developing a Mega-System as a m ega-project that includes 

multiple coordinated projects. Each project develops a smaller constituent system o f the 

Mega-System. To ensure that the distinction between general, long term issues as opposed
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to local, short-term issues is maintained, we define two levels o f management. M eta

m anagem ent controls the mega-project. Projects are controlled by lower level project 

m anagem ents. Figure 3.2 illustrates the proposed organization o f  systems, management, 

and projects. (Though huge systems currently do not include systems as components, we 

recommend that in the future huge systems be developed as systems o f systems).

D e v e lo p e d  a s  M a n a g e d  b y

N Includes

System

N Includes

Project

Mega-
System

M sga- Mota-
Project Manage-

m ent
Controls
S.

Project
M anage
m ent

F igure 3.2 Mega-System Development Organization 

M eta-M anagem ent

Overall management is essential fo ra  mega-project [EISN 91], [MITT 91], [ROSS 91a], 

[YEH 91], The meta-level management guides and controls the development o f the whole 

system. It determines policies and directions for the system and guarantees communication 

and coordination between the different projects. Meta-management communicates with 

the customers to guarantee the effectiveness of the trends and directions o f the system. It 

maintains a balance among the multiple requirements and divergent needs o f the
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customers. Meta-management determines global priorities and schedules. M eta

management should include managers o f the smaller projects, as in POW DER [MITT 91 ]; 

this promotes efficient communication and coordination. Meta-management decisions 

should be based on risk analysis [CHAR 89] to identify the real problems early and 

allocate resources appropriate to solve them.

Lower Level Management

Lower level project management controls either development o f  a small system or the 

customization o f  a Mega-System according to customer needs. It is responsible for local 

and temporary issues. Each project should be developed as a part o f the whole system and 

be coordinated with other projects. Each constituent system should be developed 

according to its own attributes as recommended by [MITT 91 ]. The development approach 

should be selected based on the experience and development tools o f the developers.

The relation between meta-level and lower level management should be flexible. 

The type o f  management - centralized or decentralized - depends on the project attributes. 

Risk analysis can be used in determining the relation between management levels. The 

degree o f autonomy of project management may vary among different projects. A project 

may be so large that its management needs to define sub-tasks to accomplish it. For 

example, developing a system using the waterfall model may entail multiple sub-tasks, 

where each sub-task corresponds to a phase o f the model. The approach is recursive, 

similar to POW DER [MITT 91].
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3.3.2 Engineering Coordination

The drawbacks of current development models are rooted in the lack o f engineering 

coordination. While meta-management balances customer requirements, and determines 

an appropriate schedule, there remains a need for concepts and tools to facilitate 

engineering coordination o f the projects. The constituent systems should not be developed 

as isolated solutions to limited parts o f the problem. Thus, our framework must provide: 

an overall, general view o f the problem space, a plan for the system as a whole which 

clarifies the role o f each constituent system within the entire Mega-System, and 

recommendations for uniform use/handling o f technologies.

In our process, Domain Analysis provides a universal, general, comprehensive 

dom ain model. It provides a common understanding o f  the problem, and facilitates early 

identification o f future requirements.

The M ega-System  architecture design defines common design and 

implementation concepts in a conceptual architecture and the overall structure o f the 

system in an application architecture. The conceptual architecture ensures the 

integratability and uniformity o f the constituent systems. These concepts can also enhance 

productivity o f development by defining common solutions. The application architecture 

maps the application domain to implementation and identifies the interrelation o f  the 

constituent systems.

In frastructure acquisition  provides a unified environment o f enabling 

technologies through an infrastructure. The infrastructure is used as a common solution 

for technologies handling by the different projects.
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All these elements promote engineering coordination for the entire development 

effort. The next chapters further elaborate on these elements and integrate them into an 

engineering process.

3.3.3 The Pre-Planned Approach

Mega-Systems tend to become long-term solutions. Their size and complexity entail 

extensive development effort and correspondingly high investment, so it is impossible to 

develop a Mega-System over a short period and infeasible to replace it after a short time. 

On the other hand, application domains are dynamic and systems themselves influence 

these dynamics [LEHM 90]. Changing requirements are unavoidable, and so systems must 

be planned for change [CSTB 90], [YEH 91]. Furthermore, the length o f  system life 

cycles often implies that the technologies in which the systems were originally developed 

will become obsolete; obsolete technologies must be replaced to assure systems 

effectiveness and user competitiveness [CLEM 91].

In the light o f these characteristics, we must plan for flexible systems with long life 

cycles [CSTB 90]. The development o f such systems should be evolutionary; different 

parts should be developed, modified, or replaced over time according to the needs o f the 

application domain. This type o f development requires a dynamic organization. M eta

management is responsible for defining the various parts, for deciding when to start 

developing a part, and for stopping or suspending the development o f a part. While the 

meta-management is active during the whole life o f the Mega-System, projects for the
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development o f the different parts are active according to the progress o f the Mega- 

System.

Most existing Mega-Systems were originally designed as regular systems. They 

became Mega-Systems that integrate (or incorporate) multiple systems only because their 

characteristics changed over time in response to customer needs. Power [POWE 90] has 

proposed classifying the process o f systems integration in which systems o f systems are 

formed on the basis o f the order o f design and implementation o f  the component systems 

and the whole system o f systems. This classification includes both post-facto (or a 

posteriori) integration and pre-facto (a priori) integration, as well as a mixture o f these 

types.

Post-facto Integration  refers to the integration o f multiple systems that were 

developed before the system of systems was even specified. Post-facto integration is 

constrained by its need to integrate existing systems usually developed by separate groups, 

with diverse standards and procedures, according to isolated requirements, and not 

designed to be integrated. Interfacing such systems requires extensive effort. 

Compromises are often required, either in easing requirements to allow reuse o f  existing 

software, or in redeveloping systems to comply with requirements. Despite its inherent 

complexity, post-facto integration may be appropriate in some cases because the use of 

existing systems reduces risk and uncertainty.

Pre-facto Integration  addresses the integration o f systems that are planned and 

developed to work together. All the parts or systems o f such an integration are assumed 

to be known in advance. Each part is designed to operate in the context o f the system of
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systems. The objective o f pre-facto integration is to improve the productivity o f 

development and systems quality and flexibility. Since no part o f the final system already 

exists, it is possible to design and implement the system and its parts very efficiently. Even 

though the constituent systems are designed and developed separately, they are planned 

with the knowledge that they must be integrated into a single system. However, despite 

its efficiency, the pre-facto approach tends to be inflexible to change. Furthermore, 

although pre-facto integration is more desirable from the integrator’s viewpoint, 

experience has shown that it is infeasible to use only pre-facto integration: systems must 

also integrate components developed before the design o f the system began [POWE 90] 

and also adapt to long life cycles with on-going changes.

Power’s classification of systems integration is also applicable to Mega-Systems. 

Thus, a pre-facto Mega-System is one designed to be a Mega-System in advance: all the 

requirements for its parts and configurations are known prior to design and 

implementation. In contrast, a post-facto Mega-System is a set o f systems developed as 

traditional systems, which later, due to new requirements, becomes a M ega-System: its 

parts and configurations are not known in advance.

Pre-Planning

In reality, it is impossible to foresee w'hat future requirements will be. Hence, the pure pre- 

facto approach is infeasible. On the other hand, the post-facto approach is inefficient and 

entails excessive integration effort. We recommend using apre-planned  approach in order 

to overcome these problems.
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The pre-planned approach advocates defining concepts and tools that will facilitate 

future integration, changes in requirements, and incorporation o f new technologies. It 

includes elements o f pre-facto and post-facto integration. It specifies an environment that 

facilitates integration o f systems, as in the pre-facto approach. However, this environment 

is open and does not require knowledge o f all elements o f the system in advance, allowing 

the integration o f existing systems, required for post-facto integration. The previously 

mentioned means for engineering coordination support these concepts by allowing early 

identification o f future needs and facilitating integration o f systems.

3.3.4 Development as Open Distributed System

In order to realize the preceding concepts (two levels o f organization, engineering 

coordination, and pre-planning) Mega-Systems should be developed as open, distributed 

systems consisting o f multiple interdependent, but self-contained, systems. Open  refers 

to the fact that the systems include well defined interfaces which facilitate future 

integration. Distributed  means the Mega-System is composed o f smaller constituent 

systems forming a federation o f systems [SHET 90]. Each constituent system is 

autonomous but prepared to share functionality, data, etc., with other current (or 

prospective) systems o f the Mega-System. The constituent systems are defined following 

the domain model and according to the application architecture; their design conforms to 

the common design principles o f the conceptual architecture. To accomplish these 

characteristics, the Mega-System is implemented using an infrastructure that enables
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interaction o f constituent systems, bridges underlying technologies, and uniformizes 

heterogeneous environments. Refer to figure 3.3 for an overview.

Application Domain

Host HostHost HostHost

SystemSystem SystemSystem

M ega-System

Infrastructure

F igure  3.3 Mega-System



CHAPTER 4

MegSDF PROCESS MODEL

A framework for development of Mega-Systems has to specify the required activities for 

development o f a Mega-system and the interrelation between its activities in order to be 

operative. The activities are defined in a process model [KOKO 89], [CURT 92], [TAYL 

92] which has to be instantiated [PERR 89a] for every Mega-System development.

Research on software development processes has many facets. One approach 

evaluates software processes and proposes ways to improve them, e.g., [HUMP 88], 

[KRAS 92], [SCHL 92]. Other approaches try to improve the representation o f the process 

model to support its control and automation [TULL 88], [PERR 89]. The MegSDF process 

model is used to specify the activities required for the development o f a Meg-System.

4.1 A Method to Describe an Engineering Process

The graphical notations o f  Structured Analysis (SA) [DeMA 78], [WARD 86] and 

Structured Analysis and Design Technique (SADT) [ROSS 77], [DICK 78] have been 

used to define the software development process in [FREE 87] (as also suggested by 

[FRAN 92], [BLUM 92]). We will use a method that synthesizes both these approaches. 

A process is denoted by a process diagram that includes several tasks or sub-processes and

53
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data and control flows that connect them. A task, together with its inputs and outputs, is 

described using the SADT activity primitive (Figure 4.1).

"igure 4.1 The Graphical Notation for a Traditional

ActivityInputs

Mechanism

Controls

Outputs

SADT Activity

We differentiate between management and engineering tasks using W ard-M ellor’s 

notation [WARD 86]. An engineering task, e.g., domain analysis, is drawn as a solid box 

(Figure 4.2a). A management task, e.g., resource allocation, is drawn as a dashed box 

(Figure 4.2b). A flow is drawn as an arrow. A complex task is exploded in further process 

diagrams.

The MegSDF engineering process requires execution o f multiple similar tasks 

concurrently, e.g., system tasks. Such tasks have the same entries and exits and the same 

processing, but are executed on different instantiations of the inputs and outputs and 

according to different schedules. These tasks are denoted as multiple boxes, (Figure 4.2c) 

similar to the multiple processes in the SA extension o f  [BLUM 92],
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L

a. Engineering- 
task

b. Management- 
task

c. Multiple- 
tasks

Figure 4.2 Graphical Notations for MegSDF Activities

Following [DICK 78]. our synthesized method uses five types o f flows: Inputs,

Outputs, Mechanisms, Circumstance, and Execution controls. Inputs, Outputs,

Mechanisms, and Circumstances flows are drawn as solid arrows. Execution Controls are

draw’n as dashed arrows. To avoid overloading the figures we use shared flows. A shared

flow is connected to all tasks o f the process, but drawn only to the boundary o f  the process

diagram. Shared flows can be inputs, outputs, execution control, mechanism, or

circumstance.

We follow the SADT positioning rules for flaws:

- Inputs enter from the left side o f a task,

- Outputs exit from the right side o f a task,

- Mechanisms enter from the lower side o f a task,

- Circumstances enter from the top side o f a task.

- Execution controls enter from the top side o f a task.

- Execution controls exit from the right side o f a management task only,

- Any entry or exit connected to multiple tasks refers to all tasks,

- Shared flows are drawn from/to the boundary o f the process diagram.
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Just as in structured analysis, the definition a process consists of: name, purpose, 

interfaces, processing, process diagram, timing, and description o f  tasks (sub-processes) 

o f the actual process (if  these tasks are not described separately). Process interfaces are 

divided into inputs, mechanism, circumstance, execution control, outputs, and task 

execution control outputs.

4.2 Mega-System Development Process Model

We define the process for Mega-Systems development according to the concepts o f the 

framework discussed in chapter 3 using the notations o f the previous section. This section 

focus on the first level o f the process model and discusses the interaction between the 

main tasks. Subsequent chapters discuss the tasks o f the process in detail.

4.2.1 Purpose

The purpose o f  this process is to develop a Mega-System.

4.2.2 Interfaces 

Inputs

• Domain Data - Information regarding the domain in which the Mega-System is intended 

to operate.

• Customers/Users requirements - Requirements o f the Customers/Users o f the systems.
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• Existing and Projected Technologies - Information about technologies that are already 

available and projected technologies that will be available in the future.

M echanism s

• Modeling Approaches - Commonly available modeling approaches.

• Architectural Styles - Styles o f conceptual architectures for Mega-Systems.

• Software Engineering Methods - Methods for developing software systems that can be 

used to develop systems in the domain.

O u tp u ts

• Mega-System

4.2.3 Processing

The constituent systems are developed, under the supervision o f the m eta-m anagem ent, 

in the system tasks. The engineering aspects o f the development are coordinated by the 

M ega-System  tasks that provide the domain model, a M ega-System  architecture, and a 

common infrastructure. The Mega-Systems is constructed from the constituent systems 

in the M ega-System  Synthesis Task. Feedback from the system and synthesis tasks are 

used to improve the engineering coordination tools provided by the Mega-Systems task 

and the global plans and schedule o f the Meta-management. Figure 4.3 illustrates the 

interaction between the tasks.

The process assumes that verification, validation, and quality assurance are done 

as part o f every task or sub-task to ensure that an effective and efficient system is provided 

to the customers.
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Figure 4.3 MegSDF First Level

4.2.4 Timing

The process o f Mega-System development is continuous, persisting as long as systems are 

developed and maintained in the domain. Therefore, meta-management tasks and Mega- 

Systems tasks should be active for the life of the Mega-System. Mega-System synthesis 

should be active according to customers requirements. Systems tasks are active according 

to the necessities o f the process. Multiple system or synthesis tasks may operate 

concurrently.
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Figure 4.4 illustrates a possible schedule for development o f  a Mega-System. The 

tasks are drawn as lines over the time axis. After initialization o f the Mega-System, meta

management and Mega-System tasks are activated and remain active during the life o f the 

Mega-System. System and synthesis tasks are activated and deactivated according to the 

actual needs. The Mega-System may integrate systems that were developed before its 

initialization.

Initialization of 
Meta- M ega-S ystem
Managemen-----------
M ega-System  ..............
Mega-System
Synthesis
System ------------

Figure 4.4 A Schedule for Mega-System Development

Tim©

4.2.5 Sub-Tasks

The essential tasks o f the MegSDF process are the Mega-System tasks discussed in section

4.3 and further elaborated in chapter 5, 6 and 7. Meta-management, system and Mega- 

System tasks are discussed in chapter 8.
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The Mega-System task performs the engineering coordination for the process, focusing 

on general issues and long term objectives. It consists o f domain analysis, Mega-System 

architecture design, and infrastructure acquisition sub-tasks.

Domain analysis provides a general, comprehensive domain m odel in order to 

improve understanding o f the problem. The domain model is used to facilitate identifying 

future requirements, including requirements for integration with other systems. It is also 

used to balance multiple and ambiguous requirements.

A M ega-System  architecture designs the system in the large. An application 

architecture  specifies the boundary o f the system within the domain and identifies the 

main parts o f the system. The conceptual architecture specifies design and implementation 

concepts to ensure uniformity and integratability o f the constituent systems.

The infrastructure acquisition provides a unified environment o f  enabling 

technologies through an infrastructure, used for all projects that develop systems in the 

domain.

The interaction o f the Mega-System tasks is described below.

4.3.1 Purpose

The purpose o f the Mega-Systems tasks is to provide models, concepts, and tools for 

engineering coordination o f the entire process.
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4.3.2 Interfaces 

Inputs

• Domain Data - Information regarding the domain in which the Mega-System is intended 

to operate.

• Customers/Users requirements - Requirements o f  the Customers/Users o f  the systems.

• Existing and Projected Technologies - Information about extant and projected 

technologies including enabling technologies and infrastructures. Technologies compatible 

with the Mega-System attributes are chosen from this input and used to implement the 

Mega-System.

• Feedback - Engineering information from the system and Mega-System synthesis tasks. 

Mechanisms

• Modeling Approaches - Commonly available modeling approaches.

• Architectural Styles - Styles o f conceptual architectures for Mega-Systems.

Control Inputs

Management Control - The schedule and milestones assigned to the Mega-System tasks 

by the meta-management task.

Outputs

• Domain Model - A model o f the application domain, defined in section 5.2

• Mega-System Architecture - The architecture o f the Mega-System, defined in section

6 . 2 .

• Infrastructure - The chosen infrastructure, defined in section 7.2.
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• Feedback - Status and engineering data required by the meta-management for managing 

the whole process.

4.3.3 Processing

A domain analysis task defines a domain model based on the domain information. The 

M ega-System  architecture design task specifies the architecture o f the Mega-System, 

based on the domain model and existing and projected technologies. The infrastructure 

acquisition task selects and acquires a common infrastructure based on the concepts of 

the conceptual architecture. Feedback from the infrastructure acquisition task is used to 

improve the Mega-System architecture. Feedback from the Mega-System architecture is 

used to improve the domain model. Feedback from the system and synthesis tasks is used 

to improve the engineering coordination tools. All Mega-Systems tasks use 

customers/users requirements as essential information. Figure 4.5 illustrates the 

interrelation o f the Mega-System tasks.

The process assumes that verification, validation, and quality assurance are done 

as part o f  every task or sub-task to ensure effective and efficient engineering coordination 

tools are provided to the developers o f systems in the domain.
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Figure 4.5 Process Diagram for the Mega-System Tasks 

4.3.4 Timing

Mega-System tasks provide engineering coordination for all systems developed in the 

domain. Consequently, these tasks are active for the duration o f  systems development and 

maintenance in the domain. The domain analysis task tracks changes in the domain. The 

infrastructure acquisition task must stabilize the interfaces to the ever evolving 

technologies. The Mega-System architecture design task translates changes in the domain 

reflected in the domain model into implementation changes in the application architecture. 

It also stabilizes the implementation environment by providing common design and 

implementation concepts.
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4.3.5 Sub-Tasks

Domain analysis, Mega-System architecture design, and Infrastructure acquisition are the 

backbone o f  our Framework. Each o f these tasks is discussed in more detail in one o f the 

following chapters. Chapter 5 describes domain analysis, chapter 6 describes Mega- 

System architecture design, and chapter 7 describes infrastructure acquisition.



CHAPTER 5 

DOMAIN ANALYSIS FOR MEGA-SYSTEMS

Domain analysis in MegSDF is intended to provide a general, universal, comprehensive, 

non-constructive domain model to be used as a common basis for understanding o f the 

domain. The Domain model is used by the various system tasks as an essential input for 

requirement specification. It supports the "pre-planned" approach by modeling the entire 

domain and not a limited part o f it. The domain model is used to improve the 

understanding o f  the role of any constituent system and its relationship with its 

environment (and not as an isolated system). Furthermore, the domain model is used by 

the Mega-System architecture design task for both conceptual and application architecture 

design. Unlike domain modeling for software reuse, MegSDF domain model does not 

include constructive elements.

An application domain is perceived differently by entities with different 

relationships to the domain. The domain model in MegSDF is built as an integration o f 

significant perceptions o f the domain by its perceivers. Each significant perception 

representing the phenomena of the domain from the viewpoint o f  a specific perceiver.

The process o f domain modeling in MegSDF includes two phases. In the first 

phase, a dom ain m odeling schem a  (domain schema) consisting o f element-types 

(modeling primitives) for the domain is defined. In the second phase, the significant 

perceptions, built using the domain-schema, are integrated into a common domain model.

65
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The process o f domain analysis is continuous. Any essential change in the domain, 

as well as feedback from other tasks, should be evaluated and reflected in the domain 

model as required.

This chapter defines the domain analysis task. Section 5.1 describes the role o f 

domain analysis in MegSDF, its required characteristics, and contrasts it with current 

methods o f domain and system analysis. Section 5.2 defines M egSDF’s domain modeling 

approach and a technique that structures the modeling process. A process based on the 

technique is defined in section 5.3. Section 5.4 compares our approach with other methods 

o f system and domain analysis. An example illustrating the domain analysis process 

concludes the chapter.

5.1 Requirements for Domain Analysis

5.1.1 The Role of Domain Analysis in MegSDF

Domain analysis was identified in chapter 4 as one o f the Mega-System tasks. The 

purpose o f domain analysis is to specify a domain model used to support the development 

o f software systems in the analyzed domain. The domain model serves as a common basis 

for understanding o f the domain. It is used as a reference model, thesaurus, or knowledge 

base, which captures the essential information required to understand the application 

domain.
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Domain analysis is intended to address and rectify the following difficulties in 

software development: neglect o f overall, long term issues; the need to deal with multiple, 

unstable requirements o f customers with different aims and needs; and coordination and 

communication problems. Table 1 summarizes these objectives (using an inverted sub

table o f  the problem list table 1.1).

Table 5.1 Difficulties and Problems Addressed by MegSDF Domain Analysis

Difficulties Caused By Aspect Problems

The overall view o f the 
system is neglected

More than one 
group o f 
developers

Engineering Current methods 
do not fit 
development of 
more than one 
system, with 
multiple and 
unstable 
requirements

Multiple requirements More than one 
customer

Unstable requirements Long life cycle

General objectives are 
neglected

More than one 
system

Management There is no clear 
distinction 
between general, 
long-term 
objectives and 
local, short-term 
objectives

Coordination and 
communication 
problems on a larger 
scale

More than one 
developer

Different aims and 
needs

More than one 
customer

Long term objectives 
are neglected

Long life cycle

The domain model serves as a basis for refinement or specialization during the 

requirement specification phases o f the various system tasks (projects) which develop 

constituent systems. It is an input for the Mega-System architecture design task, to which
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it represents the domain. Feedback from the system and Mega-System Architecture design 

tasks includes recommendations for improvement to and corrections of the domain model. 

Figure 5.1 illustrates the relationship o f the domain model to the other elements o f 

MegSDF.

Mega-System Tasks System Tasks

Domain Model Requirement
Specification

Design

Infrastructure Implementation

 ► Major
-  -  Some

* Minimal

Figure 5.1 The Relationship o f the Domain Model 

5.1.2 Requirements for M egSDF’s Domain Model

Since MegSDF must be general, i.e., applicable to any domain and any type o f  Mega- 

System, the process o f domain analysis, as part o f the framework, must be applicable to
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any application domain and to any type o f Mega-System. Consequently, the process itself 

must be both flexible and domain independent.

A domain model is intended to provide a common basis for understanding. To do 

so, it must be:

• Universal,

• General,

• Comprehensive,

• Nonconstructive, and

• User-friendly.

Universality is required because the model is used by every project developing any 

system in the domain. For example, a university domain model will be used for the 

registrar system, the accounting system, as well as the foreign student system. 

Furthermore, since we are seeking integratable systems, it is essential to identify the 

relationship o f each system to the other parts o f its environment. A universal model o f  the 

whole application domain will facilitate the development o f such integratable systems.

Generality is required because the model is not intended to be used for a specific 

instance (system) o f the domain, but rather as a common model for all systems for the 

domain. For example, a university domain model represents all universities, not a specific 

university. As a general model, a university domain model includes such concepts as 

academic year and terms, but the actual number o f terms, their lengths and schedules, vary 

with the university and so are not represented in the model. A model that fit only a specific 

instance or a particular system would not provide a common basis for understanding for
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all systems in the domain. The analysis o f a specific case (instance) is, from this 

viewpoint, only traditional system analysis. O f course, we must limit the generality o f  the 

model to ensure its usability. If  the model is too general it will include too many 

alternatives and become unmanageable. While if  it is too abstract, it will lack adequately 

detailed information. For example, an aircraft carrier domain model should represent all 

aircraft carriers, not battleships or arbitrary military vessels, but not be restricted to a 

specific aircraft carrier, e.g., the Enterprise.

Comprehensiveness is required since the model serves as a common basis for 

understanding, and so must include all the essential kinds o f information regarding the 

domain. The model should include information about the things in the domain, their 

interactions, concepts, and any useful knowledge.

A domain model should be non-constructive, that is, it should not concentrate on 

the constructive aspects: design and implementation. A conceptual model for an

application domain without constructive elements provides a broader basis for systems 

implementation. It also improves the reusability o f the domain model, because 

constructive elements usually belong to the solution domain and tend to restrict a model 

to a specific solution, hiding the essential concepts o f the domain. We propose that 

constructive aspects be dealt with separately, during Mega-System architecture design and 

infrastructure acquisition.

Finally, the domain model must be user-friendly, since it is intended for use by 

system analysts, architecture designers, etc., and not only by software systems, e.g.,
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application generators. Machine readability is required to support the model by CASE 

tools, but is not an intrinsic element o f the technique.

5.1.3 Contrast with Domain Analysis in Reusability and System Analysis

The notion o f domain analysis in MegSDF differs from its use in software reusability. The 

concept o f domain analysis for software reuse was introduced by [NEIG 81] as "the 

activity o f identifying the objects and operations o f  a class o f similar systems in a 

particular problem domain." Similarly, [PRIE 90] defines domain analysis as "a process 

where information used in developing software systems is identified, captured, structured 

and organized for further reuse." In both cases, domain analysis is used only to identify 

reusable components.

Arango and Prieto-Diaz [ARAN 91] recommend representing the specification and 

implementation concepts for reuse in a domain model which includes information on at 

least three aspects o f a problem domain:

• Concepts which allow the specification o f systems in the domain,

• Plans which describe how to map specifications to code, and

• Rationales for the specification concepts, their inter-relationships, and their relationship 

to implementation plans.

They also recommend dividing domain analysis into conceptual and constructive analyses. 

The conceptual analysis identifies the information required to specify systems in the 

domain. The constructive analysis identifies information required to implement systems 

for the domain. Additionally, they suggest specifying and implementing an infrastructure
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that facilitates software reuse. Libraries o f programs or software archives ([MITT 87], 

[ROSS 87a]) are examples o f such reuse infrastructures.

Domain analysis as described by [ARAN 91], [ISCO 91], [NEIG 81], [PRIE 90], 

[PRIE 91a, b, c], [THAY 90] primarily addresses software reuse for families o f  similar 

systems. In contrast M egSDF’s domain analysis is intended for systems o f systems, 

consisting o f dis-similar systems o f different types. Furthermore, it provides a conceptual 

model only, which is used primarily as a basis for future integration o f  systems in the 

domain, and not only to support code or program generation.

Our approach to domain analysis might be considered as a generalization o f  system 

analysis [BOOC 91], [COAD 91a], [RUMB 91], [YOUR 89] or conceptual analysis [YEH 

80], but its scope is much broader. It is intended for systems o f system and for families o f 

systems, with long life cycles, not only for instances o f systems.

5.2 Domain Modeling

This section introduces the underlying modeling approach. The model is based on 

phenomena, different perceptions o f the domain, and significant aspects o f  phenomena as 

discussed in section 5.2.1. Section 5.3.2 describes a technique that structures the model. 

Section 5.2.3 summarizes the concepts o f  domain modeling.
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5.2.1 The Content of the Model

5.2.1.1 Phenomena

A domain model is a universal, general, comprehensive, non-constructive model o f an 

application domain. The domain model abstracts the phenom ena  o f the domain, and omits 

details about specific instances o f the domain. For example, a domain model for a 

university might abstract student, department, registration, enrollment in a course, a policy 

for student acceptance, and the difference between Mathematics and the Applied 

M athematics departments. We call the abstractions o f  the domain phenomena in the 

domain model "elem ents." The characteristics o f a phenomenon in the domain are 

represented as attributes o f an element in the domain model. For example, the attributes 

o f an element representing a student might be: name, address, student-id, and Grade Point 

Average (GPA).

Since the domain model must be comprehensive, it must represent phenomena 

belonging both to the static structure o f the domain, e.g., objects and relations, as well as 

the dynamic interactions o f the domain, e.g., processes and events (c.f. also [RUMB 91]).

The static structure o f a domain includes objects (entities) and their relationships. 

In the object oriented approaches, objects o f the domain with similar characteristics are 

grouped into object-classes [GELL 91]. Objects relate to other objects in various ways, 

e.g., by generalization, specialization, aggregation, or association. We view these 

relationships themselves as phenomena belonging to the static structure o f the domain.
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The dynam ic interactions o f the domain include behavior patterns o f  phenomena. 

The object-oriented methods specify operations that can be applied to instances o f  a given 

object-class [GELL 91], but we also want to represent processes that may involve more 

than one object, relationship, or activity. Using processes, it is possible to represent the 

methods and techniques used to solve problems in the domain.

A process is a set o f  activities operating on or executed by various phenomena in 

the domain, the results o f  these activities, and their sequencing. An example o f a process 

in the university domain is registration. In this process, a student selects courses, receives 

an approval from his advisor, registers, and is billed. We also propose representing events 

and states transitions in the domain model as part o f the dynamic structure. An example 

o f  an event is a failure in an exam. An example o f a state transition could be a faculty 

changing rank from assistant to associate professor.

A general model will also include a variety o f  other kinds o f qualitative and 

quantitative information and statistical information such as averages and maximums. It 

might include rationales and constraints.

5.2.1.2 Different Perceptions

A domain is perceived differently by entities which have different relationships, roles, or 

concerns with the domain [THIM 92], For example, a student and a registrar have 

different perceptions o f the university domain. These differing perceptions arise from the 

different relationships o f the perceivers to the domain and may include: different groups 

o f elements; the same elements under different names or with different attributes and
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roles. To achieve universality and comprehensiveness, we propose building the domain 

model by integrating multiple domain perceptions.

First, entities with a significant perception o f the domain are identified. These 

entities may influence the domain or be influenced by it. For example, in the university 

domain, we might identify faculty, registrar, board o f education, student, and staff, as 

entities which have significant perceptions. After identifying these entities, it is necessary 

to build a perception for each o f them. Thus, a perception is a representation o f  the domain 

as perceived by an entity who has a significant role in or concern with the domain. 

Phenomena are represented in a perception as perception-elements. For example, 

perception-elements for a faculty’s perception o f the university domain might be student, 

course, department. All the perception-elements for a specific phenomenon, perceived by 

different significant perceivers, will finally be merged into one integrated element in the 

domain model. For example, the registrar’s student-perception-element, the faculty’s 

student-perception-element, and the student’s student-perception-element are integrated 

into the final student-element in the domain model.

Figure 5.2 illustrates the integration of several perceptions into a domain model. 

A domain with phenomena X, Y, Z, U is perceived by some significant Perceivers. 

Perception-1 ofperceiver-1 includes perception-elements X ’,, Y ’,, Z ’ ,, U ’,. Perception-2 

ofperceiver-2 includes perception-elements X ’2, Y ’2, and U ’2. The domain model includes 

elements X ’, Y’, Z ’, U ’ where element X ’ integrates both X ’ , and X ’2, element Y ’ 

integrates both Y ’, and Y’2, etc.
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DomainPhenomenon

Perceived

Perception \  / y Perception

Perception
Element

Integrated-

' Domain Model

Element

"igure 5.2 A Domain Model as an Integration o f Multiple Perceptions

It is important to note that perceptions as described here generalize the view 

concept in database systems [ELMA 89], [SHET 90], [ULLM 88]. Views in databases are 

used to specify parts o f a database, to create virtual objects from real objects, and to 

restrict the access o f users to different parts o f the system [ULLM 88]. We, however, 

define a perception as a representation o f  a domain as perceived by an entity with a 

significant relationship to the domain.
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5.2.1.3 Aspects of Phenomena

Any phenomenon has different "aspects": physical, structural, dynamic, static, etc.

Physical aspects refer to the physical properties o f phenomena: dimensions, weight, 

composition. Structural aspects pertain to the manner in which a phenomenon is 

organized, or related to other phenomena, e.g., the components o f  the phenomena, or 

membership. Dynamic aspects describe changes o f the phenomenon, e.g., the frequency 

o f a change, the originator o f a change, etc. An aspect usually deals with a specific set o f 

attributes. Aspects are also discussed in [WIMM 92] who calls an aspect a view.

The significance o f aspects is domain specific. For example, in the CAD domain, 

physical aspects are more important than legal aspects, which on the other hand might be 

more significant in the banking domain. Since a perceiver is often interested in a subset 

o f domain aspects, the significant aspects for different perceivers may be disjoint or they 

may overlap. For example, the significant aspects o f a faculty perceiver in the university 

domain might be structural, static, and dynamic aspects, while for the physical plant 

manager they might be the structural, static, and physical.

5.2.2 Structuring the Model

5.2.2.1 Domain-Schema

The required universality and comprehensiveness o f a domain model implies that the 

domain model must be able to handle a large amount o f information. In order to manage 

this information, support the modeling technique, and uniformize the various perceptions,
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we propose using a domain modeling schema. We call this the dom ain-schem a. The 

domain-schema is used to define the modeling primitives which will be used later to 

represent the phenomena o f the domain as elements. We call the modeling primitives 

element-types. A similar idea is suggested in [WIMM 92],

A domain-schema consists o f  element-types used as modeling primitives to 

represent a group of elements with similar attributes. A group o f elements that might be 

represented by using the same element-type is called an element-class. Possible element- 

classes are object, relationship, event, process, etc. The object-element-class, for example, 

includes all object-classes that belong to the domain, where each object-class represents 

a group o f  objects in the domain with similar attributes.

In the domain model, all elements that belong to the same element-class are 

represented using an element-type that defines a possible set o f attributes for the elements 

o f  the element-class. The element-type acts as a template that is filled-in with actual 

attributes for each element. Since every phenomenon has multiple aspects, we divide the 

attributes into groups based on these aspects. We call these groups element-aspects. Thus, 

an element-type is a union o f element-aspects, where each element-aspect includes the 

attributes o f  one aspect for a specific element-class.

The domain-schema can be considered as a meta-schema, and its element-classes 

and element-types as meta-classes and meta-types. Element-types are used to describe 

classes o f  elements, e.g., object-classes, processes, not one element that represents a class 

o f instances o f  the domain with similar attributes, e.g., student or registration, nor 

instances o f the domain, i.e., J. Smith or the CIS department. They do not describe the
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attributes o f a specific element, e.g., student or faculty; they describe the attributes o f an 

element-class, e.g., object-class, relation, event. Beyond the element-types such as objects 

and relations, our schema might also include other element-types, e.g., processes, 

constraints, or special domain-dependent element-types. The attributes o f the element- 

class might be considered as meta-attributes since they are used to describe a set o f 

possible attributes o f the elements that belong to the same element-class.

It is important to differentiate the domain schema and schemas o f  databases. 

Schemas o f databases describe the structure o f the database and represent elements o f  the 

problem space itself, e.g., student, faculty, department, etc. Domain schemas defines the 

modeling primitives to be used for modeling the domain: objects, relationships, events, 

etc.

5.2.2.2 Using the Domain-Schema

The domain-schema specifies a set o f modeling primitives. It provides flexible guidelines 

and a checklist for domain analysts. The element attributes are optional and attributes can 

be added when required. The domain schema simplifies perception integration, since the 

element-types, aspects, and attributes provide a structured, organized basis for integration.

5.2.2.3 Dimensions

[RUMB 91] suggests modeling a system from three viewpoints: the object model, the 

dynamic model, and the functional model. We also recommend dividing the domain 

model and its elements into orthogonal and interrelated parts considering each part as a
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dimension o f the domain model. In order to implement this idea, we specify domain- 

schema dimensions as groups o f inter-related element-types. Each group is used for 

modeling a dimension o f the domain model. The number o f  dimensions and their content 

depend on both the modeling approach and the domain. For example, a model based on 

the Entity-Relationship (ER) approach includes only a data dimension with the entities and 

relationship as the element-types.

Dimensions, aspects, database views, and perceptions are different. The aspects in 

a domain schema deal with attributes o f phenomena and group them into sets. The 

dimensions o f the domain model, are groups o f interrelated phenomena used to simplify 

modeling by dividing the model into interrelated parts. Views in databases are used to 

define virtual objects and restrict user access to parts o f the data; this is close to the 

perception concept in our approach. Perceptions are used to model the domain from a 

specific point o f view and include a sub-set of the phenomena and aspects o f  the domain.

5.2.2.4 Element-Types

An element-type is defined in the schema by a set o f attributes divided into aspects and 

represented by a frame-template (see Table 5.2). Each frame includes actual aspects and 

their attributes. Composite attributes consisting o f other attributes are also allowed and are 

drawn as split cells, e.g., attribute 21. Multi-valued attributes, which may appear more 

than once, are designated by a star (*); attributes that appear at least once are designated 

by a plus (+).
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Defining a domain-schema requires identifying element-classes and then defining 

their element-types with appropriate sets of attributes. The number and kind o f  element- 

classes and the content o f their element-types depend on the modeling approach, the 

application domain, and the significant aspects. Similar templates, but with a restricted set 

o f element-types and no explicit division o f the attributes into aspects appear in [BOOC 

91].

T able 5.2 A Template for Element-Types

Element-Type

Aspect 1 Aspect 2 Aspect 3 . . Aspect N

Attr. 11: 
Type 11

Composite-
Attribute
21

Attr. 211: 
Type 211

Multi-valued 
attribute31 *

Type 31

M ulti
valued 
Attr. N1 
(Not 
Empty) 
+:
Type N1

Attr. 212: 
Type 212

Attr. 213: 
Type 213

Attr. 12: 
Type 12

Attribute 22: 
Type 22

Attr. N2: 
Type N2

Attr. 13: 
Type 13

Attr. Nk: 
Type Nk

Table 5.3 is an example o f an object-element-type. This element-type might be 

used for representation o f objects in a domain model. I f  the actual aspects in the analyzed 

domain are physical, structural, static, dynamic, legal, and logical, the template includes 

only attributes o f these aspects. The physical aspect includes physical characteristics o f
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objects, e.g., "dimension", "weight", "color", etc. The structural aspect includes the 

"generalizes", "specializes", "aggregates” attributes to enable inheritance and aggregation 

o f  objects into composite objects. An object can be a generalization o f several objects and 

therefore the "generalizes" attribute is a multi-valued attribute. Objects have their life 

cycle. It is possible to describe the objects’ life cycle by state-diagrams [SHLA 92], These 

diagrams include the various states an object might have and the transitions between them. 

Accordingly, the static aspect might include a state attribute that represents the actual state 

o f  the object. The dynamic attributes o f an object might include a reference to a state 

transition diagram that describes the transitions between the various states in which an 

object can be. "Method" is a multiple attribute that represents the methods that can be 

applied on instances o f the object class. Similarly, the other aspects include a list of 

relevant attributes.

It is important to understand that this is an example only o f an object-element-type. 

A process-element-type or another element-type will use other set o f  attributes. 

Furthermore, since, schemas are domain dependent, it is possible that for other domains 

the object-element-types will have different aspects and sets o f attributes. Like the object- 

element-type, a domain schema might include relationship-element type, process-element- 

type, event-element-type, etc.
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Object

Physical Structural Static Dynamic Legal Logical

Dimension 
*: Numeric

Generalizes *: 
Object

State:
State

State-
diagram:
Diagram

Status:
Text

ID:
Identifier

Weight:
Numeric

Specializes *: 
Object

Method *: 
Method

purpose:
Text

Velocity:
Numeric

Aggregates *: 
Object

Value:
Numeric

Color:
Text

Part-of *: 
Object

Status:
Text

Material:
Text

Role:
Text

Tempera
ture:
Numeric

5.2.2.5 Modeling with Element-Types

The various phenomena o f the domain are represented using the appropriate element-type. 

For each aspect, the relevant attributes are specified. Each attribute is now described by 

a split cell. The upper part o f each cell includes the element-type’s attribute. The lower 

part includes the actual attribute o f the element. For example, the dimension attribute o f 

an object-class might include only height and width. Irrelevant or unused attributes are 

designated by (--).

Using the object-element-type o f Table 5.3, it is possible to uniformly represent 

the various object-classes in a domain. Each object-class in the domain is defined by using
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the template. A representation o f a Building object-element in a university domain appears 

in Table 5.4. In this case, the Weight, Velocity, and Temperature attributes o f the physical 

aspect, the Generalizes o f the structural aspects, and other attributes are not used and 

therefore are designated by The Method attribute includes the Assign method that 

assigns a Building to a Department. The Aggregates attribute includes all the object-class- 

elements that are aggregated by a Building: Floor, Hall, Room, and Elevator. Similarly, 

other attributes might be examined and specialized according to the actual element.
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Building

Physical Structural Static Dynamic Legal logical

Dimension *: 
Numeric

Generalizes*:
Object

State : 
State

State-
Diagram:
state-diagram

Status:
status

ID: Alpha
numeric

Height,Width, 
Length

(") ( - ) (--) (Approved,
Restricted)

Building-ID

Weight:
Numeric

Specializes*:
objects

Method * purpose*:
Enumerate

(--) ( - ) Assign (Teaching, 
Administration, 
Sports,Storage, 
Utilities)

Velocity:
Numeric

Aggregates*:
object

Value:
Numeric

(--) Floor, Elevator, 
Room

(--)

Color:
Enumerate

Part-of *: 
object

Status

(--) Campus (--)

Material Role:
Alphanumeric

(Wood,Blocks) (--)

Temperature:
Numeric

(--)

5.2.2.6 The Perception-Schema

The significance o f various domain aspects may vary with each perceiver. It is also 

possible that a perceiver is interested only in a limited set o f element-classes. To simplify 

modeling we suggest using a perception-schema for each perceiver. A perception-schema
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is derived from the domain-schema by selecting the perceiver’s actual element-classes and 

restricting the schema to the significant aspects for that perceiver. It is, also, possible to 

limit the attributes o f  an element-aspect to include only a subset o f attributes o f the 

element-aspect in the perception-element. Thus, a perception-schema is a sub-schema o f 

the domain-schema determined by the set o f element-types, the set o f element-aspects o f 

each element-type, and the set o f attributes in an element-aspect.

Table 5.5 includes an example o f perception-object-element-type. This perception- 

element-type is derived from the object-element-type that appears in Table 5.3 and fits a 

perceiver whose actual aspects are static, structural and physical. Accordingly, Table 5.6 

includes an example o f an object-perception-element for a building. The building- 

perception-element includes only the attributes o f the significant aspects.

If  each domain aspect belongs only to one perceiver, the perception-schemas are 

aspect disjoint. However, it is more likely that the same aspect or the same group o f 

aspects appears in more than one perception-schema. Perceivers who are interested in the 

same aspects and the same set o f element-classes can use the same perception-schema and 

yet build different perceptions.



Table 5.5 Object-Perception-Element-Type

Object-Perception-Type

Physical Structural Static

Dimension *: Numeric Generalizes*: Object State: State

Weight : Numeric Specializes*: Object

Velocity: Numeric Aggregates*: Object

Color: Text Part-of *: Object

Material: Text

State: Enumerate

Temperature: Numeric

Table 5.6 Building-Perception-Element

Building-Perception-Element

Physical Structural Static

Dimension*: Numeric Generalizes*: Object State:

Height, Width, Length (--)

Weight Specializes*: Object

(--) (--)

Velocity Aggregates *: Object

( - ) Floor, Elevator, Room

Color Part-of *: Object

(--) Campus

Material

(Wood, Blocks)

State

(--)

Temperature

( - )
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5.2.2.7 The Structured Perception

Using the perception-schema as a guideline, a model o f the domain is built for each 

perceiver. We propose that domain experts will build these perceptions supported by 

domain analysts.

The relevant phenomena o f the domain for a given perception are identified. Each 

phenomenon is classified into one o f  the element-classes. Using the appropriate 

perception-element-type, the different attributes o f the element are specified. The 

processes that build the perceptions can be done concurrently by different groups. 

However, since the domain-schema is used for derivation o f all perception-schemas, the 

resulting perceptions will be both structured and coordinated.

5.2.2.8 The Integrated Model

The various perceptions are finally integrated into a domain model. We first determine 

which perception-elements o f different perceptions represent the same phenomenon. 

Later, all the perception-elements for a specific phenomenon are integrated into a unified 

element. The perception integration process is based on the element-aspects. When 

different perceivers are interested in different sets o f aspects, the final integrated element 

is the union o f the various element-aspects. When an aspect is relevant to more than one 

perceiver, attributes in the appropriate element-aspect are compared; conflicts in element- 

type, names, attributes, roles, etc., are resolved; and a unified element-aspect is derived. 

When conflicts cannot be resolved, the conflicting versions are all incorporated into the 

element.
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Figure 5.3 illustrates this integration process. A domain with phenomena P„ P2, ... 

, Pm is perceived by N perceivers. A perception for each perceiver is built (Perception 1, 

..., Perception N). Each perception consists o f  perception elements that represent the 

significant phenomena for the perceiver. PEy denotes the perception element o f perceiver 

i for phenomenon j. The domain model integrates all the perception-elements for 

phenomenon j: {PE^ | i= 1 to n, where phenomenon j is significant to perceiver i} into an 

element Ej.

henomena P2 Pm
Perception

Perception 1 PE

Perception 2

Perception 3

PEPerception N Nm

Domain
Model
(Elements)

E3 Em

"igure 5.3 The Integration o f Perception-Elements into Elements

The process is similar to integrating views or schemas o f databases [BATI 86], 

[SHET 88], [SHET 90], [GELL 91], [GELL 92]. However, schema integration [SHET 

88], [GELL 91], [GELL 92] is done on static structure elements (objects and their
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relations) only, while here integration is done for elements o f all dimensions o f  the model 

including processes, events, etc.

Figure 5.4 illustrates the relationship between the concepts o f domain analysis. A 

domain-schema consists o f dimensions and element-types (denoted by lower case letters) 

and aspects (denoted by numbers). For simplicity only one dimension is drawn, and not 

all identifiers are marked. Each element-type (denoted by a dashed ellipse) integrates 

several element-aspects. The schema includes three element-types: ET-a, ET-b, and ET-d. 

Xy denotes an element-aspect where i identifies the element-type and j the aspect.

Based on the domain-schema, perception-schemas with Perception-Element-Types 

(PET) are derived. Perception-schemas include only subsets o f the element-types and 

element-aspects. For example, perception-schema-Y includes only two perception- 

element-types, PETYaand PETYd corresponding to ET-a and ET-d with element-aspects 

X a]. Xa2. Xd], and Xd4 that fit the actual aspects o f the perception, i.e., aspect-1, aspect-2, 

and aspect-4. Similarly, Perception-Z includes two perceptions-element-types PETZa and 

PETZb that correspond to ET-a and ET-b with Xa), X ^, and Xb4 as element-aspects.

Perceptions with perception-elements (PEs, denoted as filled ellipses) are built 

using the perception-schemas. Perception-Y includes three perception-elements o f PETYa 

(PEYa.i, PEYa.j, and PE Ya.k) and two perception-elements o f PETYd (PEyd., and PEYd. J .  

Perception-Z includes three perception-elements o f PETZa (PEZa.j, PEZa.j, and PEZa.k) and 

one perception-element o f PETYb (PEzb.n). These perceptions are finally integrated into a 

domain model that consists o f three elements o f ET-a (Ea.,, Ea.j, Ea.k), one element o f ET-b 

(Eb.n), and two elements o f ET-d (Ed.„ Ed.m).
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5.2.3 Definitions of Domain-Analysis Concepts

This section summarizes the main concepts o f M egSDF’s domain modeling. The 

definitions are given in a top down fashion for ease o f understanding.

Application Domain

An application domain (domain) D is a comprehensive, internally coherent, relatively self- 

contained field or area o f action, business, research, etc., supported by software systems. 

An application domain Dconsists ofphenom ena {P,,P2, ...,Pn}. For example, auniversity, 

banking, or military vessels could be considered as application domains.

Phenomenon

A phenomenon P in an application domain is a concept that abstractly represents instances 

o f a thing, activity, relations, constraints in the domain. For example, students, 

registration, or acceptance policy are phenomena in the university domain.

Element

An element E is a representation o f a phenomenon P o f a domain D in a domain model M. 

The element represents the characteristics o f the phenomenon as a set o f attributes. For 

example, a university domain model might include student, faculty, graduation, and 

registration elements.

Domain Model

A domain model M is a universal, general, comprehensive, non-constructive 

representation o f  an application domain D. The model consists o f a set o f elements {E,, 

E2, ..., En} which represents the various phenomena {P,, P2, ..., Pn} o f the domain.
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Element-Class

An Element-Class C is a set o f  elements with certain significant similarities. For example, 

the elements student, faculty, and department belong to the object-element-class, while the 

elements graduation and registration belong to the process-element-class.

Dimension

A dimension is a group o f interrelated elements, typically belonging to a restricted set o f 

element-classes, used to describe the domain from a significant viewpoint. The 

dimensions are interdependent because the same element may appear in more than one 

dimension. The actual dimensions o f  the model depend on the modeling approach used. 

For example, a domain model based on the [RUMB 91] approach might include structural, 

dynamic, and functional dimensions, while a domain model based on the ER approach 

would include only the data dimension.

Attribute

An attribute A is characteristic o f  an Element-Class C that defines a mapping A from all 

elements o f C into a set o f values V, i.e., A: C -> V where V might be a set o f  integers, 

real numbers, characters, etc. Each element in C is mapped to either a value or a set o f 

values in V. An attribute is defined by its name and type. The type defines the set V into 

which the element-class is mapped. Examples o f  attributes are name, weight, status, 

object, event, method, etc.
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Aspect

Aspects are used to group and organize the attributes o f elements in a domain model. 

Possible aspects are physical, logical, legal and structural. The aspects that are significant 

to a domain model depend on the application domain.

Element-Aspect

An element-aspect is a set o f attributes F={A „ A2 .., A,} used to describe the 

characteristics o f an element-class with respect to a specific aspect. For example, the 

physical-element-aspect o f the object-element-class may include: weight, dimension, 

color, position, etc.

Element-Type

An element-type is an organized set o f possible attributes o f an element-class. It is used 

to describe elements with similar characteristics. The set is organized into element-aspects. 

An element-type is the union o f all element-aspects possible for a specific element-class 

in a domain. For example, the element-type for the process-element-class includes static 

and dynamic element-aspects.

Domain-Schema-Dimension

A domain-schema-dimension is a set o f element-types used to describe a dimension o f  the 

domain model. For example, the data dimension o f a domain schema includes object and 

relation element-types.

Domain-Schema

A domain-schema S is a set o f element-types used as modeling primitives. It is dependent 

on both the domain and the modeling approach, and is organized into domain-schema-
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dimensions, in order to simplify the modeling process. For example, a domain schema 

based on the ER approach includes entity-element-class and relationship-element-class 

in the data dimension.

Perceiver

A perceiver is either an entity that has any concern with, essential influence on, or which 

is influenced by the domain. A perceiver has a distinct perception o f  the domain. 

Typically, a perceiver is interested only in a subset o f the domain phenomena and their 

aspects.

Perception

A perception is a set o f perception-elements representing a subset o f the phenomena and 

the aspects o f a domain D as perceived from the viewpoint o f a given perceiver. 

Perception-Element-Type

A Perception-Element-Type (PET) is a set o f element-aspects for a specific element-class 

for a specific perception. Thus, a PET is an element-type with a restricted set o f  aspects 

and attributes. A perception-element-type is derived from an Element-Type (ET) 

depending on the actual aspects the perceiver is interested in.

Perception-Schema

A Perception-Schema PS isasetofPerception-E lem ent-Types {PET,, PET,, ..,PET,.} that 

addresses the concerns o f  a specific perceiver in the domain. A Perception-schema is 

derived from the domain-schema by specifying the relevant perception-element-types and 

aspects for the perceiver. A perception-schema is used by the perceiver to define a 

perception.
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Perception-Element

A perception-element is a representation o f a phenomenon P in a domain as perceived by 

a perceiver V. A perception element is modeled as an instantiation o f  a corresponding 

Perception-Element-Type PET. PE=Instantiation o f (PET).

Using these definitions, we can now redefine the terms element and domain model. 

Domain-M odel

A domain model M integrates perceptions {P,, P2, ..., Pn} into a set o f elements M={E,, 

E 2, ..., E,}.

Element

An element E is the representation o f a domain phenomenon P in a domain model M. It 

integrates the appropriate element-perceptions o f  the phenomenon.

5.3 The Domain Analysis Process

The domain analysis task is defined using the format described in chapter 4.1.

5.3.1 Purpose

The purpose o f the domain analysis process is to provide a universal, general, 

comprehensive, non-constructive model o f the domain.



5.3.2 Interfaces 

Inputs

• Domain Data - Information regarding the domain in which the Mega-System is intended 

to operate.

• Customers/Users requirements - Requirements o f  the Customers/Users o f the systems.

• Feedback - Feedback from the system and Mega-System architecture design tasks 

including recommendations for improvements and corrections to the domain model.

• Modeling Approaches - Commonly available modeling approaches that might be used 

as a basis for the domain modeling.

Control Inputs

• M anagement Control - The schedule and milestones to the domain analysis task assigned 

by the meta-management task.

Outputs

• Domain Model - A domain model o f the application domain, defined in section 5.2.

• Feedback - Feedback from the domain analysis task to the meta-management task.

5.3.3 Processing

Based on the domain identification, a domain schema is defined and significant perceivers 

are identified. For each perceiver, a perception-schema is derived and then used in 

building his perception. All perceptions, finally, are integrated into a domain model. 

Figure 5.5 illustrates this process. The following algorithm summarizes the previous 

discussion.
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1. Identify the domain

2. Define a domain-schema

3. Identify significant perceptions o f the domain.

4. For each perceiver

4.1 Derive a perception-schema

4.2 Build a perception o f the domain

5. Integrate the various perceptions.

The algorithm presumes that verification, validation, and quality assurance are 

done as part o f every task or sub-task to ensure the model accurately describes the 

application domain.

5.3.4 Timing

Since domains evolve, domain analysis must be a continuous activity. To maintain the 

effectiveness and usability o f the model, essential changes in the domain as well as 

feedback from the various projects should be evaluated and reflected in the domain model, 

as required. The process should be active as long as the Mega-System is being developed 

and maintained.
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Figure 5.5 A Process Diagram for Domain Analysis

5.3.5 Sub-Tasks

5.3.5.1 Identify the Domain

The first sub-task is to identify the domain to be modeled. Application domains are 

interrelated, so it is necessary to specify what domain is being modeled and how  general 

the model will be. This identification includes preliminary definition o f  the domain 

boundary, which will then be further refined and detailed by the other tasks o f  the process.
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5.3.5.2 Define a Domain-Schema

This task defines the domain-schema for modeling the domain. After choosing a suitable 

modeling approach that fits the needs o f the domain, the dimensions and element-classes 

are defined. An element-type is then specified for each element-class.

We do not restrict this process to a specific method or modeling approach. 

Schemas and element-types are intended to organize and coordinate the modeling process. 

It is possible to define a schema that fits the modeling method and the analyzed domain. 

Any approach to modeling, e.g., the ER or the object-oriented approach, can be enhanced 

by the domain-schema and be used to model the domain if  appropriate. The definition of 

the domain schema requires the following activities:

1. Specify relevant aspects for the domain

2. Choose an appropriate modeling approach for the domain

3. Specify dimensions for the modeling

4. For each dimension

4.1 Specify element-classes

4.2 For each element-class define an element-type as follows:

4.2.1 For each relevant aspect

4.2.1.1 Define an element-aspect

5.3.5.3 Identify Significant Perceptions

This task includes identification o f the significant perceptions o f the domain and the 

perceivers that might best represent these perceptions. Perceivers are entities, either inside
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or outside the domain, who have any concern with, influence on, or which are influenced 

by the domain. Since a domain might be perceived in many ways, it is essential to identify 

the significant perceptions.

5.3.5.4 Derive a Perception-Schema

To simplify the process o f building a perception, a perception-schema is defined for each 

perceiver. A perception-schema is a sub-schema o f the domain-schema that includes a 

subset o f the element-types and is restricted to a subset o f  the significant aspects. If  

required, a perception-schema might include only a subset o f the attributes o f the element- 

aspects. The perception-schema is later used to build the perception. Deriving a perception 

requires:

1. Specify the relevant aspects for the perceiver.

2. Specify relevant element-classes.

2. For each relevant element-class

2.1 Specify relevant element-aspects

2.2 For each relevant element-aspect

2.2.1 Specify relevant attributes

5.3.5.5 Building a Perception

In this task a model of the domain as perceived by the perceiver is built. We propose 

building the perception by using the perception-schema and its perception-element-types. 

The first step in this process is identification o f relevant phenomena for the perception,
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i.e., the various objects and their relations, behavior patterns in the domain, and 

constraints.

The next step includes classification o f the phenomena to one o f  the element- 

classes and addition o f  more detailed information, i.e., specification o f the various 

attributes o f the different element-aspects for the perception-elements. In this step it is 

possible to add qualified and quantified information regarding the various attributes.

This process should be iterative and involve domain experts. Verification and 

validation to ensure that the perception appropriately describes the application domain 

from the viewpoint o f the perceiver are essential.

In summary:

1. Identify and classify perception-elements

2. Represent each perception-element using the appropriate perception-element-type.

5.3,5.6 Integrate Perceptions

A domain model is built as an integration o f the various perceptions. Each perception 

consists o f  a set o f perception-elements. In order to integrate these sets, we have to 

distinguish the various elements that constitute the domain. Then we have to compare the 

various perception-elements that represent a specific phenomenon; and resolve 

contradictions and differences in names, structures, and semantics. This task includes 

detailed definition o f  the content and boundaries o f  the domain based on coherence and 

relationships between elements. Thus, integration o f perceptions requires the following 

activities:
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1. Distinguish the various elements o f the domain

2. Identify perception-elements that represent the same phenomenon

3. For each element

3.1 For each relevant aspect

3.1.1 I f  only one element-aspect exists

3.1.1.1 Use it with no change

3.1.2 Else (If more than one element-aspect exists)

3.1.2.1 Compare element-aspects

3.1.2.2 If attributes fit

3.1.2.2.1 Use the element-aspect

3.1.2.3 Else (Attributes do not fit)

3.1.2.3.1 Try to resolve conflicts

3.1.2.3.2 I f  conflicts remain unsolved

3.1.2.3.2.1 Include the various versions as different 

versions o f the element-aspect.

5.4 Comparison with Existing Methods

Section 5.4.1 compares M egSDF’s approach with modeling approaches used in system 

analysis. Section 5.4.2 compares it with existing domain-analysis approaches.
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5.4.1 Comparison with System Analysis Approaches

M egSDF’s approach can be considered as a generalization o f system analysis approaches. 

Existing methods for system analysis, e.g., the object-oriented approaches o f [BOOC 91], 

[RUMB 91], [MONA 92], the Dual-Model [GELL 91], [GELL 91a], the Structured 

Analysis approach [DeMA 78], and the ER data-modeling approach [ELMA 89], [KIM 

90], typically model a single system and a specific instance o f the domain. They capture 

only partial knowledge o f  the domain, e.g., only its static structure. Domain analysis in 

MegSDF, on the other hand, defines a universal, general, and comprehensive model 

common to all systems in the domain.

System analysis approaches generally use a restricted set o f  predefined modeling 

primitives. They do not use a meta-schema to describe the possible attributes o f their 

modeling primitives, except for Booch’s approach, which does includes a fixed set o f 

predefined templates for element-types but does not divide their attributes into aspect.

[RUMB 91] uses data, dynamics, and functional models to represent different 

orthogonal and cross-linked parts (dimensions) o f the model. Booch’s approach includes 

a data dimension and part o f a functional dimension but does not explicitly recognize 

dimensions or parts. The structured analysis approach [DeMA 78] deals primarily with 

the functional part. The dual model [GELL 91] deals with the data dimension and includes 

methods applicable to instances o f object-classes only. The dual model divides the data 

model into semantic and structural parts. It describes the semantic and structural attributes 

o f  objects separately in object-class and object-type hierarchies. The ER approach includes 

only a data dimension.
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The MegSDF approach is more open and flexible. It allows defining different 

dimensions and modeling primitives with templates that define element-types with their 

possible attributes organized by aspects. It is compatible with various modeling 

approaches.

None o f the modeling approaches includes integration o f different perceptions as 

a means o f providing a comprehensive model. MegSDF domain analysis identifies 

significant perceivers and integrates their perceptions.

We recommend using object-oriented modeling for domain analysis. To achieve 

a comprehensive model, we need to augment the object-oriented model with information 

about the dynamic interactions o f the domain. Table 5.7 summarizes this discussion.



106

Table 5.7 A  C om parison  o f  M egS D F  A pproach  w ith  M odeling  A p proaches

Character
istics

MegSDF Object- 
Oriented 
[RUMB 91]

Object-Oriented 
[BOOC 91]

Type of 
System

Systems o f systems 
and generic systems

System System

M odel Type Universal, general, 
comprehensive, 
domain model

An instance o f  a 
domain

An instance o f a 
domain

Modeling
Schema

Domain-Schema, 
dimensions, aspects, 
element-types

No Schema for 
the modeling 
approach

Element-types

Dimensions Dimensions group 
interrelated elements 
and divide the model 
into manageable, 
orthogonal, and 
interrelated parts. 
Number o f dimensions 
depends on the domain 
and the modeling 
approach.

Uses data, 
dynamic, and 
functional 
dimensions

Data dimension 
with some 
functionality

Element-
Types

Uses element-types. 
No restriction on 
number or kind o f 
element-types.

None Uses templates 
for a restricted 
set o f element- 
classes.

Aspects Uses aspects to group 
attributes o f elements

None None

Perceptions Integrates multiple 
perceptions

None None
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Table 5.7 - A Comparison o f  MegSDF Approach with Modeling Approaches (Continued)

Character
istics

Dual-Model 
[GELL 91]

Structured
Analysis

ER Modeling

Type of 
System

Database Systems 
and their 
integration

System System

M odel Type A specific instance 
o f a domain

A specific instance 
for a limited part o f 
the domain

A specific instance 
for a limited part 
o f  the domain

M odeling
Schema

No schema for the 
modeling approach

No schema for the 
modeling approach

No Schema for the 
modeling approach

Dimensions Semantic and 
structural

Functional only Data only

Element-
Types

None None None

Aspects Each element is 
described from 
semantic and 
structural aspects 
only

None None

Perceptions Does not include 
multiple 
perceptions for 
modeling *

Does not include 
perceptions for 
modeling

Does not include 
multiple 
perceptions for 
modeling *

*Views in the context o f database are used.

5.4.2 Comparison with other Domain Analysis Approaches

Existing domain analysis approaches are primarily intended for software reuse for families 

o f systems only [NEIG 81], [PR1E 91a], while domain analysis in MegSDF is intended
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for developing and integrating Mega-Systems, i.e., both systems o f systems and generic 

systems (families o f systems).

[ WIMM 92] uses domain analysis to represent domain knowledge. In our approach 

and W immer’s, the domain model is used as a common knowledge basis for all projects 

developing systems in the domain. [PRIE 91a] uses a domain model only to identify 

common objects used in software systems in the domain for further reuse. [ARAN 91] 

suggests including conceptual and constructive parts, e.g., plans to transform 

specifications to code, in contrast to our approach and W immer’s, which include only 

conceptual modeling.

Existing methods for domain analysis rely on knowledge representation and 

acquisition methods, requirements specification, object-oriented or hypertext methods 

[PRIE 91a]. Our approach, in contrast, is not based on a specific method and is compatible 

with different modeling methods. Wimmer’s approach is based on ontological concepts.

We have proposed structuring the model, using domain-schema, element-types, 

and aspects, as also suggested by [WIMM 92], However, we additionally allow the use 

o f  dimensions to organize interrelated elements into groups and model separate parts o f 

the domain. To ensure flexibility and generality the domain-schema is not fixed and other 

element-classes can be added. Similar domain-schemas are not explicitly used in domain 

analysis for reuse.

M egSDF’s domain model is built by integrating different perceptions into a unified 

model. This integration is facilitated by the domain-schema. No other approach for
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domain analysis proposes building different perceptions as a part o f the modeling process. 

Table 5.8 summarizes this discussion.

Table 5.8 A Comparison o f MegSDF with other Domain Analysis Approaches

Characteristics Domain Analysis 
in MegSDF

Domain Analysis 
for Reuse

Domain Analysis 
of W im m er

Objective Support
development o f 
Mega-System

Reuse Construct domain 
knowledge

Applicable to Mega-Systems: 
systems of 
systems and 
generic systems 
(families of 
systems)

Family o f systems Systems in a 
domain

Usage Common 
understanding 
basis for the 
various projects 
developing 
systems in the 
domain

Identification o f 
common objects 
used in software 
systems in the 
domain

Tool for modeling 
applications

Model Type Conceptual,
non-constructive

Conceptual,
constructive

Conceptual,
non-constructive

Modeling
Approach

Any approach Knowledge 
representation, 
system analysis or 
hypertext

Ontological
concepts

Schema Based on domain- 
schema, 
dimensions, 
aspects, and 
element-types

None Schema, aspects 
(called views), 
and object- 
schema

Perceptions Multiple 
perceptions are 
integrated into one 
model

None None
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5.5 An Example for Domain Analysis 

in the Insurance Domain

This section includes a simplified example o f domain analysis for the insurance domain 

with an emphasis on MegSDF concepts. An extended example for domain analysis 

according to MegSDF can be found in [AGAN 93].

Insurance  is a system that enables a person, business, or organization to transfer 

loss exposure to an insurance company which indemnifies the insured for covered losses 

and provides for the sharing o f the costs o f losses among all insured [SMIT 87].

The objective o f our domain analysis is to build a domain model as an integration 

o f  significant perceptions o f  the domain. This requires the identification o f the significant 

perceptions. In the insurance domain, we identify the insurance company (which we call 

the insurer), the agent, and the insured as the significant perceivers.

The Insurer  is a company or a person that contracts to indemnify another in the 

event o f loss or damage. The Insured  is a person, business, or organization who purchases 

insurance to cover him self against losses. Insurance companies usually market their 

products by agents. The agent serves the insured and represents the insurer. Other 

significant perceivers o f the domain, e.g., the actuary who computes insurance rates, 

government regulators, and claims adjustors are omitted in this simple example.

In the following sections we describe these significant perceptions and their 

integration. For simplicity, we identify only elements o f the domain model and avoid the 

details o f  each element. Each perception is built using multiple dimensions. We select the



I l l

static (object) and the functional dimensions based on the object oriented approach o f 

[RUMB 91]. In a real example, the dimensions depend on the chosen modeling approach 

and the actual domain. We look first at the static dimension for each perception then the 

functional. In practice, each perception, with its multiple dimensions, is built separately; 

during the integration phase the appropriate dimensions o f each perception are integrated.

For each dimension, the different perception-elements are mapped into actual 

domain phenomena. Resolution of conflicts and definition o f a unified model are then 

demonstrated for the selected dimensions and perceptions.

5.5.1 The Static Dimension

The static dimension is illustrated by object diagrams consisting o f objects (drawn as 

rectangles) and their relations (drawn as lines or arrows). Generalizations are designated 

by the A sign. Perception descriptions are typed using bold italics to denote an object and 

underlined bold italics to denote a relationship. A line denotes a one-to-one relation, an 

arrow denotes a one-to-many relation, and a double arrow denotes a many-to-many 

relation.
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5.5.1.1 The Static Dimension of the Insurer Perception

The Insurer Issues Policies and is Represented-bv Agents. The Insured Purchase 

Policies So ld  by Agents. The Insurer specialized to Life, H ealth, Property and Liability. 

An Insurer is Reinsured  by a Reinsurer. The Insurer Indem nifies  a Loss Covered by a 

Policy.

R epresented
Reinsure

PurchaseIssue

Indemnify

Cover

InsuredInsurer

Health Property

Reinsurer

Policy

Agent

LossLife

"igure 5.6 T he S tatic D im ension  o f  the In su rer P ercep tion
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5.5.1.2 The Static Dimension of the Insured Perception

The Insured  buy Policies from an Agent. Policies are Issued  by the Insurer. The Insurer 

is R epresented-by Agents. Policies Cover Insurance-Item s Owned by the Insured. 

Insurance-Iterns can have Losses. Insurance-Item generalizes Car, L ife , and Building. The 

Insurer Compensates Losses o f an Insurance-Item.

Represented-by

IssueSell

Compensate
Buy

CoverOwn
Have

Insurance-
Item

Car

Policy

Life

Insurer

Insured

Loss

Agent

Building

f ig u re  5 .7  T he S ta tic  D im ension  o f  the  In su red  P ercep tion
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5.5.1.3 The Static Dimension of the Agent Perception

The A gen t Represents the Insurers and serves Clients. Clients buy Policies. The Agent 

has Private, Business, and Group Clients. The Agent Sells Policies Issued  by an Insurer. 

Policies cover Losses Indem nified  by the Insurer. Policies specialized to Life , Property, 

and H ealth. Property Policies specialized to Building, M otor Vehicle, and Property in 

Transmit.

Represents

Issue Indemnify
Sell

Serve
CoverBuy

Group

Building

Life

Property 
In Transmit

Business HealthPropertyPrivate

PoiicyClient Loss

Insurer

Agent

f ig u re  5.8 T he S ta tic  D im ension  o f  the A gen t P ercep tion
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5.5.1.4 The Integrated Static Dimension

We use object and relationship tables to identify which perception-elements belong to the 

same phenomenon. The object table (Table 5.9) maps the appropriate perceptions- 

elements o f each perception to domain objects.

Upon examining the objects in the different perception, we find:

• Objects that appear in all perceptions with the same name, e.g., Policy, Insurer, and 

Loss. These elements will be included in the domain model using the same name.

• Objects having the same role but with different names, e.g., Insured. This is called 

Client in the agent perception. We use the insured in the domain model.

• Objects that appear in only one perception, e.g., the Reinsurer in the insurer perception 

and the Insurance-item  in the insured perception. Both elements are added to the domain 

model.

• Specializations that do not appear in every perception. We prefer to see all these 

specialized objects in the domain model. Thus, we include the specialized insured types, 

i.e., group, private, and business, the specialized insurer types, the specialized insurance 

items, and the specialized policies.
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Insurer
Perception

Insured
Perception

Agent
Perception

Domain Model 
Objects

Insurer
• Life
• Health
• Property
• Liability

Insurer Insurer Insurer
• Life
• Health
• Property
• Liability

Agent Agent Agent Agent

Insured Insured Client
• Private
• Business
• Group

Insured 
- Private
• Business
• Group

Policy Policy Policy
• Life
• Property
• Health

Policy
• Life
• Property
• Health

Loss Loss Loss Loss

Reinsurer Reinsurer

Insurance Item
• Car
• Life
• Building

Insurance Item
• Car
• Life
• Building

Upon Examining the relationships in the multiple perceptions, we find that:

• Some relationships appear in all perception with the same names, e.g., Issue  and S e ll. 

These relationships will be represented in the domain model under the same name.

• Some relationships appear with different names, e.g., Indem nify  is also called 

Compensate, and Purchase is also called B uy. We select a name for these relationships 

and use it in the domain model.
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• Several relationships do not appear in all perceptions, e.g., Reinsure  in the insurer 

perception, Serve  in the agent perception, Own in the insured perception. These 

relationships are all included in the domain model.

• A name o f  a relationship is used in different perceptions between different pairs o f 

objects, e.g., Cover appears at both the agent and insurer perceptions between policy and 

loss and in the insured perception Cover appears between policy and Insured Item. We 

choose the insured names. Thus. Cover will represent the relationship between policy and 

insurance-item; Have will represent the relationship between insurance item and loss. We 

do not use the relationship between policy and loss.

The relationship table (Table 5.10) consists o f pairs o f  objects, the perception 

names, and the name o f the relationship in domain model.
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Table 5.10 M apping  P ercep tio n s ' R ela tio n sh ip s to D om ain  M odel R ela tio n sh ip s

Objects Insurer
Perception

Insured
Perception

Agent
Perception

Domain
Model
Relationship

Insurer-Agent Represented-
by

Represented-
by

Represent Represented-
by

Insurer-Policy Issue Issue Issue Issue

Reinsurer-
Insurer

Reinsure Reinsure

Insurer-Loss Indemnify Compensate Indemnify Indemnify

Policy-Loss Cover Cover

Policy-
Insured

Purchase Buy Buy Purchase

Policy-
Insurance-
Item

Cover Cover

Agent-Policy Sell Sell Sell Sell

Insurance-
Item-Loss

Have Have

Insured-
Insurance-
Item

Own Own

Agent-Insured Serve Serve
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Figure 5.9 illustrates the integrated static dimension.

Reinsure
Represented-by

Issue

Indemnify

SellServes

Purchase
Have

CoverOwn

Insurance
Item

Car

Reinsurer

Policy

Insurer

Loss

Agent

Life

Liability

Insured

Building

Health

Property 
In Transmit

Motor
Vehicle

UfePrivate

Property

Building

PropertyGroup Business

Figure 5.9 The Integrated Static Dimension 

5.5.2 The Functional Dimension

The functional dimension includes processes (drawn as bubbles), data and control flows 

(drawn as solid and dashed arrows), and data stores (drawn as double lines). Sources or 

terminators are drawn as squares. We use the process o f issuing a policy to illustrate the 

integration o f the functional dimension.
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5.5.2.1 The Functional Dimension of the Insurer Perception

In the insurer perception, the Insured Fill-in an Application  for insurance o f an insurance- 

item, provide Insurance-item  and Insured  information, and A gree  to the insurance terms. 

In the Underwrite a Policy a Policy is prepared for approval based on the Insurance- 

Rates  computed in the Compute Insurance Rates by the actuary. These rates are 

computed according to Statistical Tables. After Approving the Policy it is issued to the 

insured.

Statistical
Tables

Compute^y 
Insurance ) 
Rates y

Insurance
RatesInsurance

Item
Insured

Approve A 
a Policy J Policy

Insured
Information

Agreement
Insured

Policy
for ApprovalFill-in an \AppHcatlon 

Application^
Underwrite 
a Policy

Figure 5.10 T he F unctional D im ension  o f  the Insurer
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5.5.2.2 The Functional Dimension of the Insured Perception

In the insured perception, an insured asks for quotes from different agents. The agents 

Prepare Quotes according to the Insured  Item  information. After several iterations, the 

insured agree and Fill-in an Application  for insurance. Based on this Application, a 

Policy is Underwritten and issued to the insured.

Prepare 
a Quote

Request 
For Quote

Quote

Insurance-
item Insurance

RatesInci iroHII i w u i  VM

Insured
Information

Agreement

Application Policy
Fill-In an 
Application,

Underwrite 
a  Policy

Insured

"igure 5.11 T he F unctional D im ension  o f  the Insured P ercep tion
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5.5.2.3 The Functional Dimension of the Agent Perception

According to the agent perception, insured ask fo r  quote. The agent Prepares a Quote. 

I f  the insured Agree  to the quote, the agent and the insured Fill-in an Application. A 

Policy is Underwritten and is passed for Approval. The approved Policy is issued to the 

insured.

Prepare 
a QuoteRequest 

For Quote
Quote

Insurance- 
item i Insurance

Rates
Insured

Approve \  
a Policy ) p0|!cyInsured

Information

Agreement
Insured

Policy
for ApprovalApplication

Fill-In an 
Application

Underwrite 
a Policy

Figure 5.12 T he A g en t P ercep tion  F unctional D im ension
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5.5.2.4 The Integrated Functional Dimension

Similar to the integration o f the static dimension, we use tables for mapping the perception 

elements into actual domain phenomena.

Table 5.11 lists the process elements. Examining the process elements we find:

• Processes that appear in each perception, e.g., Fill-in an Application . Underwrite a 

Policy. These processes are included in the domain model.

• Processes that appear only in some perceptions, e.g., Approve a Policy . Compute 

Insurance Rates, and Prepare a Quote. These processes are included in the domain 

model, too.

• The Prepare a Quote process appears in one perception as a single process and in 

another perception as a multiple process. In this case we decide to represent it as a 

multiple process. The difference is caused since the insured can asks different agents to 

prepare quotes and only then to select one offer.

Table 5.11 Mapping Perceptions' Processes to Domain Model Processes

Insurer
Perception

Insured
Perception

Agent Perception Domain Model 
Processes

Fill-in an 
Application

Fill-in an 
Application

Fill-in an 
Application

Fill-in an 
Application

Underwrite a 
Policy

Underwrite a 
Policy

Underwrite a 
Policy

Underwrite a 
Policy

Compute 
Insurance Rates

Compute 
Insurance Rates

Approve a Policy Approve a Policy Approve a Policy

Prepare 
a Quote
(multiple process)

Prepare 
a Quote

Prepare 
a Quote
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Table 5.12 includes mapping o f the control and data flows, the sources and 

terminators and the data stores o f the perceptions into appropriate domain model elements.

Table 5.12 Mapping Flows, Sources, Terminators, and Data Stores

Insurer
Perception

Insured
Perception

Agent
Perception

Domain Model

Insured Insured Insured Insured

Insurance-item Insurance-item Insurance-item Insurance-item

Insured-
Information

Insured-
Information

Insured-
Information

Insured-
Information

Agreement Agreement Agreement Agreement

Application Application Application Application

Policy for 
Approval

Policy for 
Approval

Policy for 
Approval

Statistics Tables Statistics Tables

Insurance Rate Insurance Rate Insurance Rate Insurance Rate

Request for Quote Request for Quote Request for 
Quote

Quote Quote Quote
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Statistical
Tables

Compute^ 
Insurance 
Rates .

Prepare 
a QuoteRequest 

For Quote
Quote

✓ Insurance- 
Item I Insurance'

Rates
Insured

Approve A 
a  Policy J Policy

Insured
Information

Agreement
InsuredPolicy

for ApprovalApplication
Fill-in an 
Applicatioi

Underwrite 
a Policy

Figure 5.13 The Integrated Functional Dimension



CHAPTER 6

MEGA-SYSTEM ARCHITECTURE DESIGN

The Mega-System Architecture design task defines the strategy for the development o f  the 

Mega-System as a whole. It provides concepts to be used in the design and 

implementation phases o f the constituent systems, defines requirements for the 

infrastructure, and specifies the overall structure o f the Mega-System. The Mega-System 

architecture is used as a bridge between the domain model and the implementation and 

enabling technologies. We divide the Mega-System Architecture into Conceptual 

Architecture  and Application architecture.

The Conceptual Architecture defines design and implementation concepts and the 

requirements for the infrastructure. It generalizes the ideas o f software system 

architectures. However, for Mega-Systems, the conceptual architecture is a necessity to 

ensure uniformity o f the system not only over time but also in an environment that 

includes multiple developer groups and different projects. It specifies concepts for 

implementation and promotes reuse o f components.

For manageability, we suggest dividing the concepts o f  the conceptual architecture 

into views where each view includes a set of interrelated concepts. Possible views are: 

structural, communication, control, data, environment. We discuss concepts for each o f 

these views, but we observe that both the views and their contents will be domain 

dependent.

126
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The Application Architecture specifies the system boundaries within the domain, 

main components o f the Mega-System, and interfaces. The application architecture is an 

instantiation o f the conceptual architecture. Application architecture design is similar to 

traditional software design, but works on a larger scale and is based on a conceptual 

architecture.

The process o f Mega-System architecture design is continuous. Any change in the 

domain model as well in the enabling technologies should be evaluated and reflected in 

the architecture.

This chapter discusses the Mega-System architecture design task. Section 6.1 

describes the role o f the Mega-System architecture design in MegSDF and its required 

characteristics. Section 6.2 describes the underlying concepts for M egSDF’s Mega-System 

architecture. A process for Mega-System architecture design is defined in section 6.3. 

Section 6.4 describes existing software architectures and relate them to M egSDF’s 

concepts.

6.1 Requirements for Mega-System Architecture Design

6.1.1 The Role of Mega-System Architectures

The design o f a Mega-System architecture is one o f the Mega-System tasks. It defines a 

global strategy for developing the Mega-System. It includes guidelines for design and 

implementation which are to be common to and adhered to by all systems in the domain.
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It defines the structure, boundaries, constituents, and interfaces o f  the M ega-System. It 

also maps the domain model to the implementation and enabling technologies.

Mega-System architecture design generalizes and extends traditional system design 

in two respects. It is intended for systems o f larger scope and complexity, i.e., systems o f 

systems and families o f systems, and it specifies design concepts to be used by the entire 

system. The latter feature is either lacking or not thoroughly realized in traditional systems 

design.

Related ideas have been suggested previously and even been used in some projects. 

For example, Lawson [LAWS 92a] proposes defining a philosophy o f system 

development. [SHAW 89] suggests higher levels o f abstractions for software architectures. 

Perry et al. [PERR 92] recommend defining software architectures for large scale systems. 

Garlan [GARL 93] suggests development of a scientific basis for software architecture to 

enable new systems to be built, compared, and analyzed in rigorous ways. Project Ship- 

2000 [SS2000a, b] uses an architecture as a fundamental tool. The O SC A 1 architecture 

[OSCA 92] defines a conceptual architecture to be used in developing interoperatable 

systems for Bellcore Client Companies. We elaborate on these ideas and recommend 

Mega-System architecture design as an essential task in the development o f  any Mega- 

System.

Mega-System architecture supports the "pre-planned" approach. We claim it will 

enable efficient integration o f systems. It may be considered as a meta-design, above the 

design o f  the constituent systems that finally constitute the Mega-System.

1 OSCA is a trademark of Bellcore, inc.
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Mega-System architecture design addresses difficulties in software development 

described in chapter 1, aiming at problems caused by the neglect o f general, long term 

objectives; coordination and communication problems; neglect o f the overall view o f the 

system; the existence o f multiple and unstable requirements; the existence o f 

heterogeneous and non-standardized environments; and the need to bridge various 

technologies and to incorporate new technologies over time. These difficulties are listed 

in Table 6.1 as an inverted sub-table o f the problem list (Table 1.1).

The Mega-System architecture deals with long-term goals and objectives. The 

architecture is a tool for engineering coordination between the various groups developing 

constituent systems o f the Mega-System. The Mega-System architecture is intended to 

ensure the uniformity and consistency o f  the Mega-System. The architecture is also the 

specifications or requirements list for the infrastructure. In this respect, it must ensure that 

different environments are integrated, that the various enabling technologies are efficiently 

bridged, and that emerging technologies can be incorporated with minimal effort.

The common design principles recommended by a Mega-System architecture will 

enhance productivity by enabling the reuse of design concepts. Moreover, common design 

concepts will improve the traditional reusability o f elements, i.e., programs, modules, etc., 

developed according to these concepts. A Mega-System architecture reduces the 

complexity that arises from using different approaches for the design and implementation 

o f  various components [HERB 89a], [PERR 92], The conceptual uniformity imposed by 

a Mega-System architecture also improves the quality o f the system.
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Table 6.1 Difficulties and Problems Addressed by the Mega-System Architecture

Difficulties Caused By Aspect Problems

Additional efforts are required 
for integration o f systems

More than one system Engineering Current methods do 
not fit development 
o f more than one 
system, with 
multiple and 
unstable 
requirements

The overall view o f the system 
is neglected

More than one group 
of developers

Multiple requirements More than one 
customer

Engineering solutions are 
required to close technology 
gap

Heterogeneous
environment

Unstable requirements Long life cycle

General objectives are 
neglected

More than one system Management There is no clear 
distinction between 
general, long-term 
objectives and local, 
short-term 
objectives

Coordination and 
communication problems on a 
larger scale

More than one 
developer

No standardization of tools Heterogeneous
environment

Long terms objectives are 
neglected

Long life cycle

Heterogeneous environment More than one system Technology There is a need to 
bridge the various 
technologies and 
efficiently 
incorporate 
emerging 
technologies as a 
common domain- 
wide solution

Each development group has to 
struggle independently with 
Heterogeneity and dynamic 
environments

More than one 
developer

Bridging different technologies 
and incorporation of new 
technologies is required

Heterogeneous
environment

Customization to user 
environment

More than one 
customer

Dynamic environment requires 
incorporation o f new 
technologies

Longer life cycle
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A Mega-System based on a Mega-System architecture is intended to be planned 

and conceptualized rather than being erratic or random. The architecture conserves the 

structure and consistency o f the Mega-System over time and despite the underlying Mega- 

Systems characteristics: long life cycles, dynamic requirements, and multiple groups o f 

developers, any o f which might destroy the integrity o f  the original structure.

The Mega-System architecture is used by all projects in the domain during the 

development and maintenance o f a Mega-System. It serves as a guideline in the design 

phase o f each project. The architecture is used by the Mega-System synthesis task as a 

general structure o f the system. The architecture is influenced by the domain model, and 

is used as an essential input for the infrastructure acquisition task. Feedbacks from the 

system and the Mega-System synthesis tasks are used to improve the current architecture. 

The relationship o f  the Mega-System architecture with other parts o f the framework is 

illustrated in Figure 6.1.
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Mega-System Tasks System Tasks

Domain Model

Mega-System
Architecture

Infrastructure

Requirement
Specification

Design

Implementation

7igure 6.1 The Role o f the Mega-System Architecture

Although the Mega-System architecture recommends a guideline and common 

design principles for the various constituent systems, this does not mandate a specific 

approach for developing a system. The only restriction is that each delivered system must 

be compatible with the proposed architecture specification in order to fit into the 

framework o f  the Mega-System. Moreover, the Mega-System architecture design task 

does not deal with the implementation o f tools support for these concepts. Such 

implementation elements are dealt with separately in the infrastructure acquisition task 

which has to ensure that the concepts o f the architecture are supported by the chosen 

infrastructure. From our viewpoint, tools that support software development by integrating 

enabling technologies are infrastructures, though they are often called architectures.
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6.1.1 Requirements for Mega-System Architectures

MegSDF must be general and applicable to any domain or Mega-System. Therefore, the 

process o f Mega-System architecture design must be applicable to any application domain. 

Consequently, the process must be flexible and domain independent.

To accomplish these goals, a Mega-System architecture has to assure that the 

Mega-System it supports is:

• Scalable and integratable,

• Flexible and technology independent,

• Manageable,

• Reliable, and

• Transparent.

The Mega-System architecture must be used for all Mega-Systems developed in 

the application domain so the architecture must allow configuration both for small 

instances w'ith limited capabilities, as well as large instances that include extensive 

capabilities. In the domain o f military vessels, for example, the same architecture may be 

used by a small coastal control ship, by a frigate, or by a submarine, although the features 

o f every system will be different [SS2000a, b]. Thus, the Mega-System must be scalable, 

i.e., it must be possible to add new constituent systems to the Mega-System or to 

remove/replace constituent systems with minimal effort. The Mega-System must also be 

integratable in the sense that it must be possible to efficiently integrate the Mega-System 

with other systems.



134

The characteristics: heterogeneous groups o f  users and long life cycles, require 

flex ib ility  and technology independence. The requirements o f heterogeneous groups o f 

users are multiple, not always well defined or known in advance. Moreover, long life 

cycles increase the possibilities for changes in requirements. Thus, we must recognize that 

there will be unknown and unexpected requirements. Therefore, the systems must be 

adaptable and changeable. The heterogeneity o f user groups and their requirements 

increase the need for a Mega-System architecture to be as technology independent as 

possible. The architecture must fit various hardware configurations, i.e., different 

platforms and environments. Situations where systems have longer life cycles than the 

technologies they were originally implemented with, reenforce this necessity. The systems 

must be prepared for technological evolution.

The Mega-System architecture must ensure the Mega-System is m anageable, that 

is. modular, simple, and divided into well defined parts. Each part o f  the system must be 

highly cohesive and the coupling between the parts must be low. Such modularity supports 

developing a Mega-System by multiple coordinated projects. Each project develops a 

constituent system by applying an appropriate development approach, but yet complies 

with the concepts o f the whole system.

Reliability  is the extent to which a system operates without failure. It includes 

availability, consistency, security, and fault tolerance [TANE 92]. Availability refers to 

the time a system is usable. Availability is often increased in distributed systems by 

replication o f servers, data, and resources. These replications enable partial services even 

when some part of the distributed system fails. However, replications also introduce
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consistency and performance degradation problems. Even when some part o f  the system 

fails, the consistency o f all replicated data is required. Mechanisms to assign appropriate 

servers to clients are required too. Security deals with protection o f data and resources 

from unauthorized users. Distribution and replication increase the complexity o f  security 

mechanisms. Fault tolerance means that the failure o f one system should neither degrade 

nor stop the other systems.

Though distributed systems are often designed to improve reliability, the 

complexity o f these systems may aggravate reliability problems. The various aspects o f 

reliability must be considered by the Mega-System Architecture design task to ensure the 

overall reliability o f the Mega-System, despite the increased complexity.

Transparency deals with the ability to achieve a single system image. We 

distinguish two levels o f transparency: transparency for the developers, and transparency 

for the user, as suggested by [TANE 92]. Developers’ transparency means that the 

implementation o f distributed systems operating in a heterogeneous environment be done 

in the same way as an implementation o f systems operating in a homogeneous 

environment. Thus, the distributed system is developed on a virtual uni-processor. 

Developers’ transparency includes location, migration, replication, and parallelism 

transparency [TANE 92], Developers’ transparency is a mechanism for achieving 

technology independence. On the other hand, transparency for the user masks the physical 

structure o f the system from the user. The Mega-System appears to the users as a large 

single system that offers multiple services in a user-friendly manner, with a uniform user- 

interface, and allows efficient interaction between the various parts.
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A Mega-System must be more than its parts. It must provide at least the same 

services as its independent constituent systems, with the same performance and quality. 

For example, if  sharing o f data is done by replication o f data, this replication should not 

degrade the performance o f the system. But beyond accumulation o f services provided by 

the constituent systems, the Mega-System also provides added values not achievable 

otherwise: a unified view o f all parts o f the system, and efficient inter-system cooperation 

that avoids redundant data and functionalities and eliminates manual interfacing.

6.2 The Mega-System Architecture

A Mega-System architecture is the plan and strategy for the development o f the Mega- 

System as a whole. It includes the concepts for the design and implementation o f the 

system as well as the structure o f the system, its boundaries, its various constituents and 

their interfaces.

6.2.1 Parts of the Mega-System Architecture

We divide the Mega-System architecture into conceptual and application architectures. 

The conceptual architecture includes definition o f design and implementation concepts, 

e.g., the types o f components, the communication approach, etc. The application 

architecture uses the concepts defined by the conceptual architecture to map the
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application domain to an implementation. It includes definitions o f  system boundaries, 

specification o f the different components o f the Mega-System and their interfaces.

The conceptual architecture is general. It may fit multiple domains, but it must fit 

the given application domain. An application architecture is domain dependent. The 

application architecture is reused by the systems developed within the domain.

6.2.2 The Conceptual Architecture

A conceptual architecture specifies the concepts to be used in the design and 

implementation o f the constituent systems and in defining the application architecture for 

the entire Mega-System. It abstracts implementation issues, identifies patterns o f 

processing, and provides common conceptual solutions.

We propose existing Mega-System architectures and infrastructures be reused, or 

at least evaluated, before selecting a conceptual architecture. Moreover, as suggested by 

[PERR 92], there is a need to define architectural styles to facilitate reuse o f architectures. 

These styles identify common and general conceptual architectures for major types o f 

applications, e.g., real-time systems and data-processing systems. Typically, such 

architectural styles would be less restrictive and constrained than an actual conceptual 

architecture. When designing a conceptual architecture, the concepts o f the style will be 

specialized and refined according to actual domain needs. In the application architecture 

design task, the application architecture will be specified as an instantiation o f the 

conceptual architecture. The relationships between styles, conceptual architecture, and 

application architecture are illustrated in Figure 6.2.
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The concepts o f a conceptual architecture are interdependent. [PERR 92] suggests 

defining software architectures using three views: data, processing, and connection. The 

ANSA2 project suggests using several viewpoints to describe distributed systems or 

architectures [ANSA 89]. Adopting these ideas, we define a conceptual architecture using 

multiple views, but we propose that the number o f views and their content be domain 

dependent. Thus, a Mega-System architecture designer is free to decide what views are 

required and what level o f details must be included in the architecture. Together, these 

view's define the conceptual architecture.

Specialization

Instantiation

Application
Architecture

C onceptual
Architecture

Architectural
Style

Figure 6.2 Architectural Style, Conceptual and 
Application Architectures

2 ANSA is a trademark of Architecture Project Management Limited
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Possible views for a conceptual architecture are:

• Structural view - specification o f component (Building Block) types, relation between 

them, and guidelines for decomposition o f  the systems

• Communication view -a model for communication in the system

• Control view - a model for system-wide control

• Data view - a model for data handling

• Environment view -a model for interfacing with the environment o f the system (the outer 

world) that includes human operators, other systems, and special purpose hardware.

We suggest not specifying a physical view that describes hardware configuration, 

i.e., processors and communication channels,and geographical organization, i.e., where 

to locate the various systems, as part o f the conceptual architecture design task. These 

elements belongs to the Mega-System synthesis task.

The idea behind the conceptual architecture is to identify the appropriate views and 

specify the design concepts relating to these views. We suggest adapting existing 

international or commercial standards for the concepts o f the views. This will promote 

integratability o f  the Mega-System with other systems and reduce the effort required for 

architecture design.

We recommend building a Mega-System as an open distributed system. This 

generalizes the federation o f database systems suggested by Sheth and Larson [SHET 90]. 

A federation o f systems consists o f  several autonomous systems that share data and 

control to achieve the required functionality.
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The following sections describe possible views and discuss some basic concepts 

o f these views. In each view we specify what approach and concepts will support our 

goals. However, for any Mega-System, we must define the concepts o f  each view 

according to the needs and characteristics o f the domain.

6.2.2.1 The Structural View

The purpose o f the structural view is to provide a framework for describing the 

organization o f the elements of the Mega-System and their interrelation.

The size and complexity o f Mega-Systems preclude their development as huge 

systems and suggest dividing them into components. Different architectures use different 

names for these components, e.g., systems, Building Blocks, layers, or computational 

units. A Mega-System may have components with different sizes and characteristics, e.g., 

Building Blocks, systems, or clusters. The conceptual architecture must specify the types 

o f components for the entire system and possible classes o f components based on 

processing type or other characteristics. For example, theOSCA  architecture distinguishes 

between data, processing, and user interface Building Blocks [OSCA 92]. The conceptual 

architecture must specify the relationship between component types and constraints on 

each class and type o f  component. A conceptual architecture should also include a 

guideline for hierarchical decomposition o f the system into components and sub

components.

A system is composed o f components that provide its required functionality. The 

conceptual architecture only defines the types and classes o f the components o f  the Mega-
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Systems, but does not specify the actual components o f the system. Actual components 

are specified by the application architecture. Actual components are instantiations o f the 

component types identified by the conceptual architecture and must satisfy the constraints 

and rules specified in the structural view.

A typical structural view includes:

• Definitions o f component types,

• Specification o f classes o f elements based on processing type or other characteristics,

• Specification o f constraints on components, and

• Guidelines and rules for decomposition o f an application into components.

We divide a Mega-System into loosely coupled Building Blocks (BB). Building 

Blocks provide services (functionalities) to other Building Blocks or to the users o f the 

system and have well defined interfaces. However, we do not specify types for Building 

Blocks as done by the OSCA architecture. We allow Building Blocks to have any type o f 

processing. Architecture designers may define types for Building Blocks according to the 

actual domain needs.

Building Blocks are data capsules which hide implementation details. Generally, 

Building Blocks are large and can include multiple objects or object hierarchies. Thus, 

Building Blocks can be considered as meta-objects. Unlike objects in the object-oriented 

approach, these meta-objects do not exhibit inheritance.

Building Blocks are not typical traditional systems. A Building Block is an "open" 

version o f a traditional system in the sense that they provide services for authorized users,
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using well defined interfaces. Building Blocks are designed to enable efficient integration. 

A traditional system can be implemented by a single or by multiple Building Blocks.

To ensure modularity, low coupling, and high cohesion, Building Blocks are 

developed without rigid assumptions about other Building Blocks or specific 

configurations, e.g., implementation aspects or physical addressing. For the same reasons, 

the services provided by Building Blocks must be used only via the means defined in the 

communication model (see section 6.2.2.2).

We add the concept o f clusters o f Building Blocks to the structural view. Clusters 

group together several Building Blocks for communication, control, or managerial 

purposes. Clusters enable broadcasting and atomic operations and facilitate organizing 

development efforts into projects.

We shall, henceforth, refer to the components o f  Mega-Systems as Building

Blocks.

6.2.2.2 The Communication View

The communication view provides a framework for the description o f the interconnection 

between Building Blocks. The Building Blocks o f the Mega-System must communicate 

to provide the required functionality. The hardware allows processors to send messages 

to other processors; the operating system allows sending messages between processes in 

different processors. The operating system may also allow virtual circuiting between 

processes using protocols ensuring a certain level o f  reliability. However, all these
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communication features are low-level and an abstract level for communication is still 

required [JOSE 89].

To enable extendibility and to ensure uniformity, it is necessary to define a 

standardized communication model. All the Building Blocks (the components o f the 

system) must communicate exclusively using the same communication model. 

Manageability requires prohibiting the use of any other possible communication technique 

between Building Blocks.

It is important to note that the communication view is a conceptual model only and 

must be free from any implementation influence. The implementation details o f  the 

communication view' will be dealt with separately in the infrastructure task.

The underlying idea behind a communication model is that Building Blocks must 

specify interfaces. These interfaces are the "open view" o f  the Building Blocks, and 

therefore o f  the Mega-System as a whole. Communication between Building Blocks must 

utilize only these interfaces. This guarantees information hiding and eliminates the need 

to know implementation details.

The communication model is a way o f providing developers’ transparency. It 

abstracts implementation and physical distribution details. The communication model 

supports mechanisms that provide migration, replication and parallelism transparency. It 

also supports the uni-processor image: processes operating on different processors

interact like processes operating on a single processor.

M emory sharing and message passing are the common approaches to 

communication. In memory sharing, Building Blocks use memory accessible by more than
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one Building Block to transfer information and/or control. Examples o f  shared memory 

are common databases, abstract (virtual) global memory, or special hardware memories 

that allow access by more than one processor. In message passing, Building Blocks 

communicate by means o f a communication channel. Examples o f  communication 

channels are Remote Procedure Call (RPC), broadcasting, and pipelines.

The communication model must specify communication primitives. It is possible 

to define these primitives based on the number o f receivers and senders, and the type o f 

links (permanent or temporary). Usually a message is sent from one source to one 

destination. This model is called port-to-port. However, it is often necessary to send the 

same message to several destinations. This could be done by sending separate messages 

for each destination, which is inefficient and increases communication load, or in the 

broadcasting approach, by defining groups o f processes and sending a single message to 

the whole group. The latter approach requires special hardware and/or software 

mechanisms. Similarly, a receiver may receive a message from a specific sender or from 

several sources. The connections between the sender and receiver may be permanent, 

existing as long as the system is operating, or temporary, for a single message or for a 

specific session.

To achieve location transparency, the communication model must define an 

addressing method. Physical addresses restrict the use o f the system; inhibit using similar 

resources or services in the event o f  failure; and prevent migration or reconfiguration for 

load balancing purposes. The use o f  logical names, on the other hand, requires translation 

into physical addresses. Such translation is often done by a server called a "trader". A
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trader may become a bottleneck for systems with intensive communication. Moreover, a 

trader failure may cause system-wide failure.

Communication is an essential element in distributed systems, but may be a source 

o f failure. Routing and message correctness problems are usually handled by 

communication protocols and the lower levels o f  the ISO/OSI protocol [ROSE 89]. 

Communication failures may be caused by the receiver or the sender. A receiver may fail 

or be busy and so unable to accept the message. In this case it is possible to repeat sending 

the message a limited number of times or until it is accepted. I f  a sender fails before its 

message is processed, it is possible to abort the processing o f this message or to continue 

with no change. A communication model has to specify the policies for handling such 

failures.

A typical communication view' includes definitions for:

• Communication style, e.g., message passing, shared memory,

• Communication primitives, e.g., port to port communication, Broadcasting, etc.,

• Constraints for load balancing, e.g., maximal length o f a message,

• Specification o f legal communication, e.g., what types of Building Blocks are allowed 

to communicate, by what primitives, and common message format,

• Specification o f a location transparency mechanism, and

• Communication failure handling policy.

Regardless of the communication style, we recommend that the communication 

primitives include both port-to-port and broadcasting communication. Moreover, we 

propose that the infrastructure o f the system use the same communication model to ensure
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integratability o f the various parts o f the infrastructure. Thus, we suggest an "open 

infrastructure", in the sense o f communication.

6.2.2.3 The Control View

The control view provides a framework for describing interactions between Building 

Blocks. Autonomy is the state in which a Building Block exists and acts as an independent 

entity. Building Blocks may be either autonomous or controlled by other Building Blocks. 

A controlled Building Block acts according to decisions of the controlling Building Block 

and is considered as non-autonomous. The objectives o f systems integration is to 

interconnect systems that were originally autonomous. It is often required to sacrifice 

autonomy in order to achieve the required functionality and additional values.

Systems with a set o f Building Blocks can be implemented as centralized or fully 

distributed. In the centralized approach, one o f the Building Blocks controls the operation 

o f all the other Building Blocks. In this approach, it is relatively easy to implement 

activities that span more than one Building Block, but the reliability o f  the system is 

decreased since a failure o f the controlling Building Block may lead to failure o f the entire 

system. This problem, can be overcome by duplicating the software o f  the controlling 

Building Block to allow election o f a new controller in the event o f failure. Centralized 

control may also become a bottleneck in systems in which the Building Blocks have many 

interconnections.

In the fully distributed approach, every system controls itself and communicates 

with other systems to achieve the required functionality. The implementation o f this
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approach requires special care with consistency control, and a recovery mechanism is 

required to assure reliability of the system. A form o f distributed organization, called 

federation, which compromises between the fully autonomous and the centralized 

approaches for database systems is described by Sheth and Larson [SHET 90].

Sheth and Larson [SHET 90] and Veijalainen et al. [VEIJ 88] define different types 

o f autonomy for distributed database systems: design, communication, execution, and 

association. A designer o f Building Blocks with design autonomy is free to choose his 

own design for any element o f the system, e.g., data content, representation, semantics, 

constraints, functionality, association, implementation, etc. A Building Block with 

communication autonomy can decide by itself whether to communicate with other 

Building Blocks. Execution autonomy allows Building Blocks to execute local operations. 

Association autonomy means that a Building Block can decide whether and how much of 

its functionality to share. These notions o f  autonomy can be generalized to all kinds of 

systems. The conceptual architecture has to specify what types o f  autonomy there will be 

in the system. The meta-management and application architecture design will specify the 

appropriate autonomy for the Building Blocks.

The control view must define types o f control units. Beyond processes that operate 

as basic primitives, where each process has its own address space and a specific task, it 

is possible to define other control units, e.g., threads of control, clusters, or groups of 

processes. Threads are parts of a process that share the same address space, but each 

thread has its own program counter and status word. Threads are usually designed to
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cooperate for a specific task. It is also possible to define groups or clusters o f processes 

for efficient communication and to simplify recovery mechanisms.

The control view must define an invocation strategy and related primitives. The 

activities o f  a system may be invoked periodically or be event-driven. In the periodic case, 

a set o f operations is done routinely. In the event-driven case, the operations o f  the system 

are activated according to external or internal events.

The concepts o f synchronous and asynchronous operations also belong to this 

view. In a synchronous operation, a Building Block that activates a service in a second 

Building Block waits for acknowledgement from the server (receiver) and does not 

continue processing during that time. In the asynchronous approach, on the other hand, 

the Building Block that activates an operation in another Building Block does not wait for 

acknowledgement from the server, but continues processing.

Various kinds o f parallelism are possible in a distributed environment. Parallelism 

requires operation ordering primitives, e.g., sequencing, optional, clocked, and parallel 

actions [HERB 89c]. Atomic transactions and nested transactions o f  database systems can 

be extended to atomic operations for any type o f systems or operation. Mechanisms for 

atomic transaction and nesting o f transaction and recovery must be adapted to the general 

case. The control view must describe the policy and approach to atomic operations.

In summary, a typical control view includes definitions for:

• Control approach (centralized, fully distributed)

• Control units (processes, threads, control clusters)

• Invocation approach (periodic loop, event-driven)
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• Operation ordering primitives (sequencing, atomic operation, etc.)

We suggest developing Building Blocks with as much autonomy as possible. Since 

autonomy may lead to inconsistencies o f data and since the centralized approach tend to 

be inefficient, we suggest introducing the concept o f clusters o f  Building Blocks. A 

cluster behaves like a distributed system with a centralized control that enables efficient 

communication, atomic operations, and consistency control. The Mega-System consists 

o f several clusters. We recommend identifying clusters o f Building Blocks using the 

domain model, and with due attention paid to other views o f the architecture. We also 

recommend that the architecture support both synchronous and asynchronous operations, 

since using only synchronous operation restricts concurrency.

6.2.2.4 The Data View

The data view provides the framework for describing data elements and data handling in 

the Mega-System. Data are an essential part o f every system. Indeed, systems o f systems 

are generally formed for efficient sharing o f data. However, systems o f systems that 

operate in heterogeneous environments represent data differently, use different database 

management systems and modeling approaches, and even different semantics. Therefore, 

sharing data in a Mega-System in a heterogeneous environment requires substantial effort.

To ensure integratability, it is necessary to define a meta-data-model for the Mega- 

System. The meta-data-model includes definition o f a common data-modeling approach, 

e.g., the ER model, relational model, etc., a common data representation approach, e.g., 

data types, accuracy, etc. The meta-data-model specifies categories o f data, e.g., private,
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shared, or replicated, and rules and constraints for handling these categories, e.g., where 

data is stored, who is responsible for its consistency, and what type o f access is allowed 

and by whom.

The meta-data-model can be used by newly implemented systems. For systems that 

already exist, or for new systems developed with another data-model, the meta-data-model 

is used as a connection mechanism. I f  a constituent system does not use the meta-data 

model, it is required to provide an interface from the meta-data-model to the used data- 

model, and vice versa.

The use o f  common or canonical data-models for representing federated database 

systems is suggested by [SHET 90]. However, it is important to differentiate between the 

meta-data-model and a data-model. The meta-data-model includes only specifications for 

the common data-modeling approach and the categories o f data which can be used to 

represent the domain-wide data model.

Connecting two systems, which use two different data-models, in Mega-Systems 

that have a meta-data-model, entails interfacing the first data model to the meta-data- 

model and the meta-data-model to the second data-model. In this case, it is possible to 

provide a direct interface between the two models, without using the meta-data-model as 

intermediary. Though, this solution that might be more efficient in the sense o f 

performance, we suggest using a meta-data-model to avoid interfacing any two 

data-models. Using this approach, if  we have N data models we need to provide only 2N 

interfaces (one for interfacing each model to the meta-data-model and one interfacing the 

meta-data model to each data-model) instead o f N*(N-1) interfaces (for interfacing each
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model with the other). Adding a system with a new' data-model requires only 2 interfaces 

instead o f 2N interfaces. Similar ideas regarding different approaches for integrating 

existing system are discussed in [CLAR 92],

For database systems, the data view must specify the database organization, i.e., 

how data is stored and managed. There are three approaches for organizing databases:

• Common repository,

• Distributed database with centralized control, and

• Distributed database with distributed control.

In the first approach, data is stored in a common repository. All systems use and 

even communicate via this database. This approach is restrictive and requires heavy 

adaption o f  existing systems to the common database. It also eliminates developing a 

system using another DBMS that might be more efficient for a specific case.

In the "distributed database with centralized control" approach, data is distributed, 

but managed by a centralized transaction handler. The handler is responsible for 

replication, consistency control, and atomic transactions (operations). It is easier to 

implement this approach than the distributed database with distributed control approach. 

But, the centralized transaction handler becomes a bottleneck for systems with 

components that are highly connected.

In the "distributed database with distributed control" approach, there is no 

centralized transaction handler and therefore all issues o f concurrency control, 

redundancy, and transaction handling become more difficult. In this approach, the 

constituent systems are highly autonomous.
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The data view must specify strategies for concurrency control, recovery, security 

and replication on the data-level. Minimally, the data view will be used to define data 

handling o f  domain-wide data-objects (shared information).

A typical data view includes:

• A meta-data-model, i.e., common data modeling approach, data types, data categories, 

and policies for handling them,

• Data organization for the database if  applicable, i.e., common, distributed with a unique 

server, fully distributed,

• Specification o f transactions primitives and mechanisms for atomic and nested 

transactions,

• Policy for shared data, and

• Redundancy and consistency control.

We suggest using the fully distributed approach and recommend using a meta-data- 

model to "glue" the various parts. This simplifies integrating any system to the Mega- 

System, as long as the other systems use the meta-data-model or interfaces from the data- 

model o f the systems to the meta-data-model are provided. We also propose that shared 

data be handled as a Building Block, as suggested in the OSCA architecture [OSCA 92]. 

These Building Blocks serve as active data capsules with well defined interfaces and 

provide data oriented services for the various Building Blocks o f the Mega-System.
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6.2.2.5 The Environment View

The environment view includes guidelines and rules for developing interfaces between the 

system and its environment. Typically, the environment o f a system includes operators or 

users. For real-time embedded systems, one can also define a hardware environment 

consisting o f  special purpose hardware components that the system interacts with. The 

environment might include also other software systems.

To achieve the user transparency described in section 2.1 it is desirable for a Mega- 

System to have a consistent user interface. Consistency eliminates the need to remember 

unnecessary details and reduces the complexity o f  usage o f the system. Adapting the ideas 

o f the System Application Architecture’ (SAA) o f IBM [MART 91], we suggest dividing 

the user view into two parts: presentation and user interaction. The presentation part 

specifies concepts and rules for presentation, i.e., different types o f windows, standard 

layouts o f panels and windows, use o f  icons, color, emphasis, and voice. The user 

interaction part defines types of interaction, e.g., selection, entering information, help 

mechanism, and error handling. For each type o f interaction it is necessary to specify 

standard methods, e.g., function keys, pointing by mouse, direct commands. Standardizing 

these elements increases the productivity o f  developers and users.

The specification o f rules and constraints on hardware interfaces is necessary to 

ensure flexibility and portability, in the sense that adaptation o f the software to different 

hardware configurations, e.g., different sensors, be minimal.

3 SAA is a trademark of IBM, inc.
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The environment view must also define a strategy for dealing with security 

problems. It must suggest mechanisms and concepts to ensure data and resources are used 

only by authorized users.

A typical environment view includes:

• Specification o f a common user interface,

• Strategy for special purpose hardware and external systems interfaces, and

• Strategy to ensure security in the system.

The actual domain determines which parts o f  this view are relevant. We suggest 

including in the user interface both presentation and interaction guidelines and rules. 

Strategies for interfacing with hardware or external systems and for security are required 

only when applicable.

6.2.2.6 An Outline for a Conceptual Architecture

Table 6.2 summarizes section 6.2.2.1-6.2.2.5 and includes an outline for a conceptual 

architecture based on views as discussed in these sections. Both views and their content 

are domain specific, so this outline is suggestive. An actual conceptual architecture might 

include different views with different concepts.

This outline can be used as a check list for definition o f a conceptual architecture. 

Section 6.4 uses this outline together with the outline of the application architecture to 

compare and classify existing architectures.
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View Concepts

Structural Definition o f component types

Specifications o f classes o f components

Specifications o f constraints on components

A guideline and rules for decomposition o f an application into 
components

Communication Communication style

Communication primitives

Constraints for load balancing

Specification o f legal communication

Specification o f a location transparency mechanism

Communication failure handling policy

Control Control approach

Control units

Invocation approach

Operation ordering primitives

Data A meta-data-model

Organization o f the database (when applicable)

Specifications o f  transactions primitives mechanism for 
atomic and nesting transactions

Redundancy and consistency control

Environment
Common user interface - Presentation

Common user interface - Interaction

Strategy for special purpose hardware and external systems 
interfaces

Strategy to ensure security in the system
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6.2.3 Application Architectures

The application architecture specifies the structure o f the Mega-System for the actual 

domain. It is based on the domain model and maps the domain model into the 

implementation model. It is designed according to the concepts defined in the conceptual 

architecture and utilizes the infrastructure.

The application architecture is used by the requirements analysis phase o f  the 

system tasks to specify the boundary o f the actual developed constituent system and its 

interfaces. The application architecture is also used by the mega-system synthesis task to 

specify the software configuration (see also section 8.3). Feedback from the system and 

synthesis tasks is used to improve the application architecture. In turn, feedback from the 

application architecture design task is used to improve the domain model and the 

conceptual architecture. The role o f the application architecture in the framework and its 

relationship with the other components o f the framework are illustrated in Figure 6.3.

The application architecture specifies the boundaries o f  the Mega-System within 

the domain on the basis o f the domain model and the conceptual architecture. It specifies 

which parts will be computerized, which part will not, and the rationale for these 

decisions. The application architecture also specifies the building blocks that provide the 

required functionalities. In this respect the application architecture is an instantiation or 

extension o f the conceptual architecture for a specific application domain. Each element 

o f the application architecture is an instantiation o f  one o f the component types o f the 

conceptual architecture and adheres to the constraints and rules the conceptual architecture 

imposes on this type.
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Mega-System Tasks System Tasks

Domain Model Requirement
Specification

Conceptual
Architecture

Application
Architecture Design

Infrastructure
Implementation

 ► Major
- - -► Some 
... Minimal

"igure 6.3 Relationship o f the Application Architecture to Other MegSDF
Elements

Every building block is classified as one o f  the building block types (when 

applicable). A building block is specified by the set o f services it provides and by their 

interfaces. One way to form building blocks is by identifying sets o f domain elements with 

high cohesion and low coupling. This reduces the load on the communication channel and 

minimizes the possibility that communication will become a bottleneck in the system.
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In the event that the architecture defines clusters of building blocks, these clusters 

are similarly defined on the basis o f the cohesion and coupling o f the building blocks and 

the constraints imposed by the conceptual architecture.

The interfaces o f  the building blocks (and clusters) are specified according to the 

communication and control views. Interfaces with the environment are specified according 

to the environment view. Shared data, accessed by more than one building block, if  not 

handled as a building block by itself, is identified in the application architecture and 

designed according to the concepts and constraints o f the data view.

In some approaches that utilize architecture concepts, e.g., the Network of 

Application Machines [LAWS 92a, bj, the application architecture includes the 

implementation o f building blocks as generic units. This entails developing a Mega- 

System by "gluing" these elements, with or without customization.

We recommend a graphical representation to illustrate the building blocks and their 

interconnections. We also propose that the designers define a data-distribution map and 

service dictionary. A data distribution map specifies shared-data, their replications, and 

types o f  distribution (vertical, horizontal). The service dictionary maps services to 

building blocks and specifies replication o f services.

A typical application architecture includes:

• A list o f building blocks and for each building block its classification, list o f  services, 

and interface definitions.

• A list o f clusters and for each cluster a list o f participating building blocks.
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• Building block interaction diagram - a diagram that includes the building blocks and the 

interconnections between them.

• Data distribution map - mapping o f shared data into building blocks with definition o f 

distribution and replication.

• Service dictionary - a list o f the available services, their interfaces, and their replication 

approach.

Table 6.3 includes an outline for an application architecture based on these 

elements.

T ab le  6.3 An Outline for an Application Architecture

List o f building blocks

List o f clusters o f building blocks

Building block interaction Diagram

Data distribution map

Service Dictionary

6.3 Mega-System Architecture Design Process

We describe the Mega-System architecture design process following the format defined 

in section 4.1.

6.3.1 Purpose

The purpose o f the Mega-System architecture design task is to specify a Mega-System 

architecture for the Mega-System.
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6.3.2 Interfaces 

Inputs

• Domain Model - A model o f  the domain, defined in section 5.2.

• Users/Customers requirements - Requirements o f  the users/customers for the systems.

• Existing infrastructures and projected technologies - To define a feasible architecture, 

it is necessary to specify the concepts o f the architecture with relation to existing and 

projected technologies.

• The Chosen Infrastructure - The infrastructure o f the domain, defined in chapter 7.

• Feedback - Engineering information from the system tasks (projects) and the Mega- 

System synthesis tasks including recommendations for improvement and corrections to 

the current Mega-System architecture.

Control Inputs

• M anagement Control - The assigned schedule and milestones to the M ega-System 

architecture design task by the meta-management task.

M echanism

• Architectural styles - Styles o f conceptual architectures for Mega-Systems. These styles 

are evaluated in order to find the appropriate Mega-System architecture for the domain. 

Outputs

• Mega-System Architecture - The architecture o f the Mega-System, defined in section 

6 .2 .

• Feedback - Feedback from the Mega-System Architecture design task to the domain 

analysis and meta-management tasks.
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6.3.3 Processing

The Mega-System architecture design task defines a conceptual architecture as a 

specialization o f a chosen architectural style and in accordance with the special 

characteristics o f the application domain. Guided by this conceptual architecture and the 

domain model, the application architecture is then specified. Feedback from the 

application architecture is used to improve the conceptual architecture. Feedback from 

other tasks o f the process is used to improve both architectures. Figure 6.4 illustrates the 

process diagram for the Mega-System Architecture design.

6.3.4 Timing

The Mega-System architecture design is an ongoing process since domains evolve over 

time. Any essential change in the domain or in enabling technologies and feedback from 

other tasks must be evaluated and reflected in the Mega-System architecture as required.

Although both conceptual and application architecture design are continuous 

processes, it is important to observe that the conceptual architecture is more stable than 

the application architecture. A change in the conceptual architecture means a change in 

a design or implementation concept. It is infeasible to change concepts frequently, though 

freezing them is not desirable either. The developers must remain open to new methods 

and adapt their concepts as required to ensure the competitiveness o f  their systems. The 

application architecture, on the other hand, must reflect any essential change in customer 

needs. It is more dependent on the dynamics o f the application domain and so changed 

more often.
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Figure 6.4 Mega-System Architecture Design Process

6.3.5 Sub-Tasks

6.3.5.1 Conceptual Architecture Design

6.3.5.1.1 Purpose

The purpose o f the conceptual architecture design task is to specify the underlying 

concepts for the design and implementation o f the whole Mega-System.
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6.3.5.1.2 Interfaces 

Inputs

• Domain Model - A model o f the domain, defined in section 5.2.

• Users/Customers requirements - Requirements o f the users/customers for the systems.

• Existing infrastructures and projected technologies - In order to define a feasible 

architecture it is necessary to specify the concepts o f the architecture in relation to existing 

technologies and projected technologies.

• The Chosen Infrastructure - The infrastructure o f the domain, specified in chapter 7.

• Feedback - Engineering information from the system tasks (projects) and the Mega- 

System synthesis tasks including suggestions for improvement and corrections to the 

current conceptual architecture.

Control Inputs

• Management Control - The schedule and milestones for the conceptual architecture 

design task assigned by the meta-management task.

M echanism

• Architectural styles - Common styles o f conceptual architectures for Mega-Systems. 

These styles are evaluated in order to find the appropriate Mega-System architecture for 

the domain.

Outputs

• Conceptual Architecture - The concepts and guideline for the Mega-System, defined in 

section 6.2.2.

• Feedback - Feedback from the task to the other tasks.
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6.3.5.1.3 Processing

The process o f conceptual architecture design specifies the actual views and the concepts 

o f each view on the basis o f the chosen architectural style. Figure 6.5 illustrates the 

conceptual architecture design process, which is summarized as follows:

1. Choose an appropriate architectural style

2. Define actual views for the architecture

3. For each actual view

3.1 Specialize the actual view

6.3.5.1.4 Timing

The conceptual architecture design is an ongoing process since domains evolve and 

change over time. Any essential change in the domain or in enabling technologies, and any 

feedback from other tasks, should be evaluated and reflected in the conceptual architecture 

as required.
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Figure 6.5 Conceptual Architecture Design Process

6.3.5.2 Application Architecture Design

6.3.5.2.1 Purpose

The purpose o f  the application architecture design task is to specify the application 

architecture for the Mega-System.

6.3.5.2.2 Interfaces 

Inputs

• Domain Model - A model o f the domain, defined in section 5.2.
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• Users/Customers requirements - Requirements o f the users/customers for the systems.

• The Chosen Infrastructure - The chosen infrastructure of the domain, specified in chapter 

7.

• Feedback - Engineering information from the system and Mega-System synthesis tasks 

including recommendations for improvement and corrections to the current application 

architecture.

Control Inputs

• Management Control - The schedule and milestones for the application architecture 

design task assigned by the meta-management task.

Circumstance

• Conceptual Architecture - The concepts and guidelines for the Mega-System, defined in 

section 6.2.2.

Outputs

• Application Architecture - The overall structure o f the Mega-System, defined in section

6.2.3.

• Feedback - Feedback from the conceptual architecture design task to the conceptual 

architecture design, domain analysis, and meta-management tasks.

6.3.5.2.3 Processing

The application architecture design task defines an application architecture which is an 

instantiation o f the conceptual architecture and based on the domain model. Figure 6.6 

illustrates the application architecture design process, which is summarized as follows:
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1. Specify system boundaries

2. Identify building blocks

3. For each building block

3.1 Define a building block {Specify BB type, role, BB interfaces and its services}

4. Identify clusters o f building blocks (if  clusters are defined as part o f the architecture).

Management Control Conceptual Architecture

Customer
Requirements

System
Boundaries Clusters

DomainModal
Tho Chosen Infrastructure
Feedback

Feedback

Identify
Building
Blocks

Define
Mega-
System
Boundaries

Identify
Clusters

Building
Blocks

Define
Building
Block

Figure 6.6 Application Architecture Design

6.3.5.2.4 Timing

The application architecture design is an ongoing process since domains evolve over time. 

Any essential change in the domain, the conceptual architecture, or the chosen 

infrastructure and any feedback from other tasks should be evaluated and reflected in the 

application architecture.
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Mega-System architecture generalizes systems architectures. This section reviews existing 

systems and Mega-System architectures. It also describes Mega-System architectures that 

have been used in two large projects, (ESF [ESF 89] and Ship-2000 [SS2000a, b]). These 

projects defined a conceptual structure and proposed using a reference model/architecture 

as the basis for future implementations.

We discuss these architectures by mapping them into the Mega-System 

conceptual/application architecture dichotomy, and using the views suggested in section 

6.2. The discussion o f  the architecture represents our point o f view.

Incidentally, tools that integrate enabling technologies are often called 

architectures, but from our viewpoint are infrastructures and are not discussed here.

6.4.1 Systems Architectures

The Application Machine o f Lawson [LAWS 92a, b] and Best’s architecture [BEST 90] 

are systems architectures. They include a conceptual structure for a system which is an 

important contribution to system development. Lawson’s approach for systems o f systems 

is described separately in section 6.4.2.1.

6.4.1.1 Application Machine

The goal o f the lawson’s Application Machine [LAWS 92a, b, c] approach is to improve 

understandability o f systems by focusing on essential properties of the applications.
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Application Machines can be implemented for any domain. Application Machines have 

been used in the domain o f embedded systems for automobiles, e.g., fuel injection system, 

brake control, etc.

The idea behind the Application Machines is what we have called conceptual 

architecture. Though views are not defined explicitly, one can identify elements o f the 

structural, communication, control, and environment views; there is no reference to a data 

view.

The Structural View

There are two types o f components in an Application Machine architecture:

• Application Machine, and

• Application Program.

An Application Machine consists o f  a set o f declarations and Processing 

Operations (POPS) which have no decision making capabilities. An Application Program 

consists o f a decision making part and invocations o f POPS. The Application Program and 

the Application Machine together provide the required functionality o f the system. 

Lawson suggests decomposing into POPs based on objects and operations. There is no 

classification o f  components or any constraint on building blocks.
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Table 6.4 Application Machine Structural View Mapping

MegSDF View concept Corresponding AM concept

Components POPs and Application Program

Classes o f  components Not defined

Constraints for 
components

Not defined

Guidelines and rules for 
decomposition

Based on objects and operations

The Communication view

Application Machine components communicate by shared memory. There is no definition 

o f  other concepts o f the communication view.

Table 6.5 Application Machine Communication View Mapping

MegSDF View Concept Corresponding AM concept

Communication style Shared memory

Communication
primitives

Not defined

Constraints for load 
balancing

Not defined

Specification o f  legal 
communication

Not defined

Location transparency Not defined

Failure handling policy Not defined
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The Control View

The control o f an Application Machine is done by a loop in the application program that 

activates the various POPS. Thus, the Application Machine uses a centralized control 

approach with application programs as control units. Lawson suggests using software 

circuits that might be considered as operation ordering primitives.

Table 6.6 Application Machine Control View Mapping

M egSDF View Concept Corresponding AM Concept

Communication style Centralized

Control units Application program

Invocation approach Periodic loop

Operation ordering 
primitives

Software circuits

The Data View

The Application Machine architecture does not specify data view concepts.

The Environment View

There is no definition o f a common user interface. [LAWS 92c] recommends handling 

sensors by "software circuits" built out o f "software components", e.g., sensors (or logical 

sensors), processors, and actuators. Each software component may activate several POPs. 

This approach standardizes the way the systems handle sensors (special purpose hardware) 

in the system environment. No security policy is specified.
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MegSDF View Concept Corresponding AM Concept

Common user interface - 
presentation

Not defined

Common user interface - 
interaction

Not defined

Special purpose 
hardware/ external 
systems interfaces

Sensors Circuits

Security in the system Not defined

Application Architecture

Lawson suggests identifying POPs and building a reusable library o f POPs. This can be 

considered as an application architecture design. A system is then developed by 

implementing an application program and customizing POPs. There are no other elements 

o f the MegSDF application architecture.

Table 6.8 Application Machine Application Architecture Mapping

MegSDF Architecture 
Element

Corresponding AM Element

List o f Building Blocks Reusable library o f POPs

A list o f  clusters o f 
building blocks

Not defined

Building blocks 
interaction diagram

Not defined

Data distribution map Not defined

Service dictionary Reusable library o f POPs
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6.4.1.2 Best’s Architecture

This section describes Best’s architecture [BEST 90] which defines a conceptual structure 

for large-scale information-processing systems in any application domain. Though Best 

calls his architecture an "application architecture", it contains elements o f both the 

MegSDF conceptual and application architecture. Best indicates the approach can be used 

for systems with either a centralized or a distributed database. He claims that systems that 

are developed according to the suggested architecture can be efficiently integrated into 

systems o f systems by merging appropriate drivers.

According to Best, every data-processing system must include the following 

superstructure functions:

• Batch transaction updating,

• On-line transaction validation and update,

• Sequential processing facilities,

• Output processing,

• On-line inquiry, and

• Exception data changes

The system must also include the following databases:

• Account/item database - the essential elements o f the system, 

and two supporting databases:

• Transaction database, and

• Extract database.
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The basic organization and flow is illustrated in Figure 6.7. Each super-component 

is implemented as a driver that provides the super function and routes the processing to 

the actual application specific sub-program.
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Account/Item
DatabaseTransaction

Database Exception
Data

Changes

Sequential 
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Batch 
Transaction 
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"igure 6.7 Best's Architecture Process Flow 
(Copied from [BEST 90])

The Structural View

Best’s approach identifies the super-functions and procedures as main components. Fie 

suggests dividing the systems according to processing type, which might be considered 

as classes o f  components. No other constraints on the components are specified.
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M egSDF View concept Corresponding Best’s Architecture Concept

Component Super-components, procedures

Classes o f  components Processing type, i.e., online, batch, etc.

Constraints for 
components

Not defined

Decomposition 
guidelines and rules

According to the type o f processing

The Communication view

The communication in best’s architecture is done by sharing databases (sharing memory). 

There is no definition o f other concepts o f the communication view.

Table 6.10 Best’s Architecture Communication View Mapping

M egSDF View concept Corresponding Best’s Architecture Concept

Communication style Memory sharing (using databases)

Communication
primitives

Not defined

Constraints for load 
balancing

Not defined

Specification o f legal 
communication

Not defined

Location transparency 
mechanism

Not defined

Failure handling policy Not defined
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The Control View

The control o f the system is done by the super-functions. Each super function can be 

thought as an autonomous component. Batch super functions are invoked periodically. 

On-line processing super-functions are event-driven. There is no definition o f  operation 

ordering primitives.

Table 6.11 Best’s Architecture Control View Mapping

MegSDF View concept Corresponding Best’s Architecture Concept

Control approach Autonomous components

Control units Super functions

Invocation approach Periodic loops and event driven

Operation ordering 
primitives

Not defined

The Data View

Best’s architecture neither defines nor uses a meta-data-model. Best claims it is possible 

to use the suggested architecture for either distributed or centralized database 

organizations. He defines databases that must exist in any application. To some extent it 

is possible to consider Best’s suggestions regarding batch, on-line, and exception handlers 

as data-processing primitives. Similarly, it is possible to consider the integrity control 

programs as mechanisms for consistency control.
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MegSDF View Concept Corresponding Best’s Architecture Concept

Meta-data-model Not defined

Database organization Distributed or centralized

Data processing 
primitives

Batch, on-line, data-exceptions

Redundancy and 
consistency control

Integrity control programs

The Environment View

Best describes only the user part o f the environment view. He suggests using the 

"electronic desk" approach. He recommends limiting the details a user sees by showing 

summaries. The user can then choose which details to explore. Best also suggests 

supporting both on-line and batch transactions by exception overrides, exception data 

changes, and efficient help mechanisms and recommends using o f  security packages for 

on-line systems.

Table 6.13 Best’s Architecture Environment View Mapping

MegSDF View Concept Corresponding Best’s Architecture Concept

Common user interface - 
presentation

Electronic desk, windows, menus

Common user interface - 
interaction

Both batch and on-line, exception handling, help 
mechanisms

Special purpose 
hardware and external 
systems interfaces

Not defined

Security in the system Use o f  security packages to ensure secure and 
effective environment
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Application Architecture

Best’s architecture suggests a kind o f "general application architecture" that fits 

applications in various domains. He specifies the main building blocks and databases. 

However, these building blocks might be considered as "processing oriented" since they 

are based on type o f processing, e.g., on-line update and batch reports, and not on domain 

specific objects.

Table 6.14 Best’s Architecture Application Architecture Mapping

Architecture Element Corresponding Best’s Architecture Element

List o f Building Blocks Super-functions and main databases

List o f  clusters Not defined

Building blocks 
interaction diagram

See Figure 6.7

Data distribution map Not defined

Services’ Dictionary Not defined

6.4.2 Mega-System Architectures

This section describes architectures which have been recommended as the basis for 

developing systems o f systems or for system integration, which qualifies them as Mega- 

System architectures.

6.4.2.1 The OSCA Architecture

The OSCA architecture [OSCA 92], [MILL 90], [DESA 92] was developed by Bellcore. 

It is designed to promote interoperability and operability o f software products systems. It 

is intended to provide a framework which will allow the systems o f Bellcore Client
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Companies (BCC), which are distributed over variety o f computing environments, to 

interoperate [OSCA 92].

The OSCA architecture is considered both as a logical and strategic architecture. 

It consists o f detailed guidelines for suppliers o f software products, which must be 

compatible with these guidelines in order to be used by Bellcore Client Companies.

The architecture is oriented towards business software systems operating in 

heterogeneous environments. These systems, typically, use corporate data, so the 

architecture is intended to ensure accessibility to this data.

From our viewpoint, the OSCA architecture is a conceptual architecture that can 

be used in various domains. It specifies different types o f building blocks as well as the 

restrictions and constraints they must adhere to. Though the OSCA architecture is not 

specified by terms o f views, we can map the concepts o f the OSCA architecture into the 

views we have proposed.

The Structural View

Building blocks are the main components o f the OSCA architecture. A building block 

consists o f  a set o f "business aware" functions. It can include sets o f  computer programs, 

data schemas, and other related software which process coherent, business aware functions 

with well defined interfaces. A building block can be deployed as a single unit and is 

release-independent o f other building blocks. Software products that provide business- 

aware functionality may span more than one building block.

Building blocks support a principle called "concern separation", which is used to 

separate business-aware functionalities and business independent functionalities. The
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business-independent functionalities are combined into the infrastructure; while the 

business-aware functionalities are subdivided into three layers to ensure "concern 

separation", the corporate data management layer, the business processing layer, and the 

human user layer. This division facilitates upgrading technologies, such as database 

management systems or devices that interact with users, without updating the entire 

system. Each layer consists o f several building blocks, but each building block provides 

functionality that belongs to one layer only.

A building block provides a set o f services defined by interfaces called "contracts". 

The grouping o f contracts into building blocks is for administrative reasons only. A 

building block that invokes a contract does not care where the contract is installed or what 

other contracts it is grouped with. Contracts separate clients from implementation and 

internal details.

The OSCA architecture provides a detailed list o f constraints for every class o f 

building blocks. According to [DESA 92], decomposition into building blocks can be 

based on the object oriented approach and the three layers o f  functionality.
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M egSDF View Concept Corresponding OSCA Architecture Concept

Component Building Blocks

Classes o f  components Data, processing, and user interface

Constraints for 
components

A detailed list o f constraints

Guidelines and rules for 
decomposition

Classes o f building blocks and object oriented approach

The Communication View

The OSCA architecture building blocks can communicate with any other building block 

that provides a required service. The building blocks communicate by message passing 

using the services of the infrastructure. The infrastructure consists o f business-independent 

products that support business functions. Figure 6.8 illustrates the components o f  the 

OSCA architecture. The building blocks are location independent and have logical 

addresses. Building blocks cannot assume the availability o f other building blocks and 

must gracefully accommodate their unavailability.
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Building
Block

Bound
Infrastructure

Shareable Infrastructure

Communication Network

"igure 6.8 The OSCA Architecture

T able 6.16 The OSCA Architecture Communication View Mapping

M egSDF View Concept C orresponding  OSCA A rch itec tu re  C oncept

Communication style Message passing

Communication
primitives

Contracts

Constraints for load 
balancing

Not defined

Specification o f legal 
communication

Every building block might communicate with any 
other building block using the contract and the 
services o f the infrastructure

Location transparency 
mechanism

By means o f the infrastructure

Failure handling policy Gracefully accommodation o f non-availability
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The Control View

From our viewpoint, the OSCA architecture building blocks form a distributed system in 

which each building block controls itself. Each building block must have a recovery 

mechanism. For actions that span more than one building block, the OSCA architecture 

uses the concept o f a logical building block. A logical building block is composed o f more 

than one building block and acts as a recoverable domain.

Table 6.17 The OSCA Architecture Control View Mapping

M egSDF View Concept Corresponding OSCA Architecture

Control approach Fully distributed system 
(Autonomous building blocks)

Control units Building Block, logical building block

Invocation approach Event driven, client server

Operation ordering 
primitives

Recoverable domain for atomic operations

The Data Model

The OSCA architecture does not specify a meta-data-model for systems that use the 

architecture and does not recommend using a common modeling approach or common 

representation. However, the OSCA architecture does specify different data categories as 

well as rules for their handling. It distinguishes between "corporate" versus "private" data. 

Corporate data is used or created by the corporation to conduct its business. It is shared 

across business processes and partitioned into portions each o f which is stewarded by a 

data layer building block. Corporate data is a corporate resource and is not the sole 

property o f any single organization or software product.
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Private data, on the other hand, is owned by a building block, not available for 

general retrieval or updating. It is allowed in any kind o f building block. Private data may 

be redundant data or working data.

The OSCA architecture also allows "shared redundant data" in order to meet 

performance and availability requirements and to allow alternative views. This data is 

housed in a data layer building block and available only for retrieval purposes. A building 

block that stewards the data is responsible for supporting all redundant copies.

The OSCA architecture defines cooperative stewardship in cases where corporate 

data is stewarded by multiple building blocks. These building blocks form a single logical 

building block. The OSCA architecture specifies recoverable domains and transaction 

managers that are responsible for consistency control. The steward building block is 

responsible for recovery and consistency control for all replications.

Table 6.18 The OSCA Architecture Data View Mapping

M egSDF View Concept Corresponding Concept in the Architecture

A meta-data-model Data categories only

Database organization Fully distributed databases

Data-processing
primitives

Atomic actions by logical building blocks

Redundancy and 
consistency control

Recoverable domains, transactions managers. 
The steward building blocks are responsible for 
consistency of all replications.
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The Environment View

The OSCA architecture does not explicitly specify an environment view in our sense, but 

it does specify a special layer o f building blocks for user-interfacing, as well as a list o f 

constraints and rules for this type o f building block. The OSCA architecture also explains 

how to interact with systems outside the architecture.

The objectives o f the user-interface layer o f building blocks are to ensure concern 

separation and minimize dependency o f the processing building blocks on special user- 

interfacing devices. With this organization, technology upgrades effect only the user 

interface building blocks.

The OSCA architecture recommends supporting multi-tasking (windowing) in 

order to allow users to work on several tasks simultaneously. Moreover, it recommends 

specializing building blocks for different users with different roles. A building block is 

required to accept the least expected input from the user and respond intelligently. The 

OSCA architecture also recommends providing customization features, and, as a 

minimum, consistency in presentation, though it does not specify a common user 

interface.

Interaction with external systems is bi-directional. I f  an external system requires 

service from a building block, it must use a building block contract. The external system 

must have a contract manager or use a transway (special software that provides building 

block and contract capabilities). Similarly, a building block that requires the services o f 

an external system must send its request either through a transway or directly to an 

external system that has a contract manager.
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The building blocks must adhere to security constraints. Besides limiting access 

to contracts only, the identity o f the invoking user and its building block is passed through 

to any other building block. Sensitive data must be appropriately protected and building 

blocks might need to re-authenticate the identity o f the invoking user or building block.

T ab le 6.19 The OSCA Architecture Environment View Mapping

MegSDF View Concept Corresponding Concept in the Architecture

Common user interface - 
presentation

Consistency is required

Common user interface - 
interaction

Multi-tasking, specialized user-interface blocks for 
different users

Special purpose 
hardware and external 
systems interfaces

Policy for integration with external systems based 
on additional contract manager or transway

Strategy to ensure 
security in the system

Identity o f invoking user and building block should 
be transferred.
Sensitive data should be protected appropriately 
re-authentication.

Application Architecture in the OSCA Architecture

The OSCA architecture does not explicitly define an application architecture. However, 

it does suggest that the division into building blocks be based on low coupling and high 

cohesion o f functions. It recommends that stewarding data building blocks (building 

blocks that manage the corporate data) be determined based on the information model o f 

the Bellcore Client Companies.
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6.4.2.2 A Network of Application Machines

This section describes the underlying concepts o f a network o f Application Machines as 

suggested by Lawson [LAWS 92a, b, c], Just as the Application Machine, the network o f 

Application Machines is proposed as a way to improve the understandability o f  systems 

by focusing upon the essential properties of an application. The network architecture is 

intended for problems with a larger scope.

A network o f Application Machines architecture might be used in various domains. 

Networks o f Application Machines are mainly used in the domain of embedded systems 

for automobiles, e.g., fuel injection system, break control, etc.

The ideas o f a network o f Application Machines can be considered as a conceptual 

architecture. The following paragraphs map the ideas o f  the network o f Application 

Machines to MegSDF views.

The Structural View

The components of the network o f Application Machines are the Application Machines 

described in section 6.4.1.1. The decomposition into Application Machine is based on 

objects and operations. There is no specification o f classes o f components or o f 

constraints.
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MegSDF View Concept Corresponding AM Architecture Concept

Component Application Machines

Classes o f components Not defined

Constraints for 
components

Not defined

Guidelines and rules for 
decomposition

Based on objects and operations

The Communication View

The communication is handled by the router which sends messages to the various 

Application Machines. This model can be implemented by using the client server approach 

[LAWS 92a], There is no specification o f the other concepts o f  the communication view.

Table 6.21 Network o f AM Communication View Mapping

MegSDF View Concept Corresponding Network o f AM Architecture 
Concept

Communication style Message passing

Communication
primitives

Not defined

Constraints for load 
balancing

Not defined

Specification o f legal 
communication

Not defined

Location transparency 
mechanism

Not defined

Communication failure 
handling policy

Not defined
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The Control View

A router synchronizes the various Application Machines and communicates with the 

outside world. The router deals with global situations o f  the entire system, while the 

Application Machines deal with local situations. The router itself can be an Application 

Machine. The router acts as a master in a master-slave architecture. The control approach 

is, thus, a distributed system with a centralized controller. The router uses periodic 

invocation. The software circuits may be considered as operations ordering primitives.

Table 6.22 Network o f AM Control View Mapping

MegSDF View Concept Corresponding Network o f AM Architecture 
Concept

Control approach Distributed system with a centralized control

Control units Application programs

Invocation approach Periodic loop

Operation ordering 
primitives

Software circuits

The data model

A common database serves the various Application Machines. The router can be 

responsible for redundancy and consistency control. There is no specification o f  a meta- 

data-model or definition o f transaction primitives.
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Table 6.23 Network of AM Data View Mapping

MegSDF View Concept Corresponding Netw ork of AM Architecture 
Concept

A meta-data-model Not defined

Database organization Common database

Transactions primitives Not defined

Redundancy and 
consistency control

By the router

The Environment View

The environment view includes specifications only for sensor handling (see section 

6.4.1.1).

Table 6.24 Network o f AM Environment View Mapping

MegSDF View Concept Corresponding Network of AM Architecture 
Concept

Common user interface - 
presentation

Not defined

Common user interface - 
interaction

Not defined

Special purpose 
hardware and external 
systems interfaces

Specification o f concepts for sensor and logical 
sensors

Security Not defined

The Application Architecture

According to Lawson, Application Machines are generic systems. They are developed as 

part of the application architecture and used by systems developed in the domain as
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building blocks. The Application Machines do not undergo major change other than 

customization or parameterization.

Table 6.25 Network o f  AM Application Architecture Mapping

Architecture Element Existence in the AM Architecture

A List o f  building blocks Reusable library o f Application Machines

A list o f clusters o f 
building blocks

Not defined

Building blocks 
interaction diagram

Not defined

Data distribution map Not defined

Services’ dictionary Not defined

6.4.2.3 The CAN-Kingdom Architecture

This section describes the underlying concepts o f  the CAN-kingdom Architecture as

suggested by Fredriksson [FRED 92a, b]. The goals o f the CAN-Kingdom approach are:

• T o  support a machine development philosophy characterized by understandability,

safety, simplicity, and effectiveness

• To ensure independence for module designers

•T o  enable efficient integration o f third party modules

The domain o f  this architecture is stationary or mobile machine systems, e.g., 

spinning machines, weaving or knitting machines, saw mills, robots, cranes, excavators. 

The architecture fits mainly master-slave control systems and is based on the Controller 

Area Network (CAN) - real-time parallel processors systems.



192

Conceptual Architecture

Fredriksson uses the image o f a kingdom to describe his architecture. The architecture 

emphasizes communication concepts, using post-offices, letters, envelops, etc., as 

reference metaphors. For systems, as with kingdoms, there is a need to specify "governing 

rules" and develop systems that operate according to these rules.

The Structural View

The entire system corresponds to kingdom. A kingdom has a Capitol and cities. The 

Capitol is the master o f the system. The cites are nodes o f the system and provide its 

services. The cities are connected by the CAN bus.

From our viewpoint, the components o f the system are the cities, which provide 

the functionality o f the system. Additionally, a system includes a special type o f 

component, the Capitol, which controls the entire system.

Table 6.26 CAN-Kingdom Structural View Mapping

M egSDF View Concept Corresponding CAN-Kingdom concept

Component Cities (Nodes)

Classes o f Components Regular cities and a Capitol

Constraints for 
components

Not defined

Guidelines and rules for 
decomposition

Not defined

The Communication View

The CAN-kingdom architecture is based on a well defined protocol for communication 

that supports message passing. Each message is sent to all nodes. Each node identifies and
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processes its messages. Some messages are used to configure the system at start-up time; 

other messages are used to transfer information to nodes. The structure o f  the messages 

is predefined. Every node receives and transmits messages identically, but different types 

o f  messages are defined according to the special requirements o f  the various nodes. The 

protocol defines a detailed message structure.

CAN-kingdom distinguishes between deterministic messages whose sequence and 

frequency are known in advance, and stochastic messages, which are event-driven. It also 

distinguishes between messages with deadlines and messages that are not time critical. 

Fredriksson recommends early processing o f data and transmitting only essential results 

to avoid overloading the communication channel. Thus, CAN-Kingdom support 

distributed processing with a centralized control.

T ab le 6.27 CAN-Kingdom Communication View Mapping

M egSDF View Concept Corresponding CAN-Kingdom Architecture 
Concept

Communication style Message passing

Communication
primitives

Every node receives all messages but processes 
only messages sent to itself. 
Deterministic/stochastic messages.
Time critical/non-critical messages.

Constraints for load 
balancing

Transfer only essential data.
Process data as early as possible and send only 
results and processed data.

Specification o f legal 
communication

Predefined Protocol

Location transparency 
mechanism

Not defined

Failure handling policy Not defined
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The Control View

The architecture uses the master-slave (distributed system with centralized control) 

approach. The Capitol is the system master, the cities are the slaves.

Table 6.28 CAN-Kingdom Control View Mapping

M egSDF View Concept Corresponding CAN-Kingdom Architecture 
Concept

Control approach Distributed system with centralized control

Control units Cities

Invocation approach Not defined

Operation ordering 
primitives

Not defined

The Data View

There is no definition o f any meta-data-model other than detailed definition o f  messages 

structure. Fredriksson recommends using different messages (called forms) for interfacing 

between different data representation methods.

The Environment View

The CAN-Kingdom architecture does not specify an environment view.

Application Architecture

The kingdom designer defines the functionality o f each city and specifies its actual 

parameters by defining the system configuration at start-up. In this approach the same 

"city" can be re-used in different ways, depending on the needs o f the kingdom. The
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allocation o f functionalities to cities can be considered as application architecture design. 

Fredriksson recommends using a graphical notation to represent interaction between cities.

T able 6.29 CAN-Kingdom Application Architecture Mapping

Architecture Element Existence in the CAN-Kingdom Architecture

List o f  Building Blocks The cities

List o f  clusters N ot defined

BB interaction diagram Graphical representation o f city interactions

Data distribution map Not defined

Service dictionary Not defined
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6.4.2.4 The Advanced Networked Systems Architecture (ANSA)

The Advanced Networked Systems Architecture (ANSA) [HERB 91a, b, c], [ANSA 89] 

focuses on Information Technology (IT) that spans several domains. The goals o f the 

ANSA project are:

• To propose an architecture for networked computer systems,

• To support distributed applications, and

• To promote the acceptance o f the results o f the project as an industry-wide standard.

ANSA is intended to enable integration o f application systems from multiple 

vendors by using a distributed application platform that is independent o f 

communications, operating systems, and the computer instructions set. It aims at an 

architecture which will provide the simplest set o f  concepts necessary to build distributed 

systems.

The ANSA architecture identifies five viewpoints for distributed processing: an 

enterprise model, an information model, a computational model, an engineering model, 

and a technology model. The viewpoints are interrelated but emphasize different aspects 

o f the system. ANSA’s viewpoints correspond to the essential elements o f MegSDF, and 

not to the views o f M egSDF’s conceptual architecture. The enterprise and the information 

model can be mapped to the domain model. The ANSA computational model might be 

considered as a partial conceptual architecture. The concepts o f the computational model 

are on a lower level and closer to technologies. The engineering and technology views can 

be mapped to the infrastructure.
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The ANSA project concentrates on the computational and engineering viewpoints. 

These viewpoints are independent o f  both the application domain and the technology 

trends. Moreover, these viewpoints provide an environment for the specification o f 

interfaces between the applications and the hardware and software that support them. The 

ANSA computational model identifies the functions (services) that must be available to 

programmers and the constraints on program structure necessary to enable distribution.

A federation o f ANSA systems is built from systems, each running multiple 

applications. The individual system applications are linked together by a trader and 

configuration manager. Federation is achieved by linking together the traders o f the 

various systems. The applications are considered as components that provide or utilize 

services. A precise specification o f the interactions between components is necessary to 

enable independent development. ANSA suggests using an Interface Definition Language 

(IDL) for interface specification. Interface specification requires action, data, and property 

specification. An action is invoked only through an interface.

According to ANSA, different applications require different types o f  distribution 

and therefore different types o f transparency mechanisms. On the basis o f this idea, ANSA 

provides selective transparency in which a programmer specifies the required transparency 

when declaring an interface between applications. ANSA supports access, location, 

concurrence, failure, replication, and migration transparency.
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The Structural View

The individual ANSA applications and systems can be thought o f as components o f the 

architecture. There is no definition o f classes o f components, constraints on components, 

or guidelines and rules for decomposition into systems and applications.

Table 6.30 ANSA Structural View Mapping

MegSDF View Concept Corresponding ANSA Concept

Component Applications (components), systems

Classes o f components Not defined

Constraints for 
components

Not defined

Guidelines and rules for 
decomposition

Not defined

The Communication View

The ANSA architecture uses the client-server approach. A trader supports the interaction 

between components and their applications. A service is accessible to other applications 

only after its server exports an interface reference to the trader. A client can retrieve 

interface references from the trader by import operations. A server can export several 

interfaces and a client can import a number o f interfaces. The trader enables late binding 

and location transparency.

By using the server group concept (see the control view) ANSA also supports 

broadcasting. ANSA recommends retransmission and supports error-codes to handle 

communication failures.
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M egSDF View Concept Corresponding ANSA Concept

Communication style Message passing

Communication
primitives

Port-to-port and broadcasting

Constraints for load 
balancing

Not defined

Specification o f  legal 
communication

By Interface reference only

Location transparency 
mechanism

Trader and selective transparency

Failure handling policy Retransmitting, error codes

C ontro l View

The ANSA architecture supports fully distributed processing. The components interact 

using the client-server model. ANSA supports both synchronous and asynchronous 

interaction to ensure maximum concurrency. It specifies operation ordering primitives as 

sequential, parallel, or atomic operation; optional invocation o f operations; and operations 

tied to external clocks. The attributes o f the invocations are defined in the interfaces for 

the operations.

ANSA supports the concept o f server groups. One can define functionally 

distributed, coordinated replica, and parallel replica server groups. In a functionally 

distributed group, each server performs some part o f the requested service. In a 

coordinated replica one server receives the message and performs the required action 

while all other servers stand by. In the parallel replica group, all members perform the
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same service. Each group has a coordinator which accepts requests from clients and 

distributes them to the members o f the group.

Table 6.32 ANSA Control View Mapping

M egSDF View Concept Corresponding ANSA Concept

Control approach Fully distributed

Control units Components, servers groups

Invocation approach Client-server

Operation ordering 
primitives

Sequencing, serial, optional, clock based, and 
parallel operation

The Data View

ANSA suggests using an Interface Definition Language (IDL) as a tool that overcomes 

problems rooted in the heterogeneity o f the environment. IDL can be considered as a 

meta-data-model. ANSA supports distributed systems with distributed databases. Data is 

stored in objects and accessed via interfaces. ANSA does not specify redundancy or 

consistency control mechanisms.

Table 6.33 ANSA Data View Mapping

M egSDF View Concept Corresponding ANSA Concept

Meta-data-model Interface Definition Language

Database organization Distributed systems

Transactions primitives Atomic operations

Redundancy and 
consistency control

Not specified
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The Environment View

The only element o f the environment view that ANSA specifies is the inclusion o f  security 

attributes in the interfaces.

Application Architecture

ANSA is intended to develop a platform to support systems integration o f  information 

technologies which spans many application domains; Therefore, it does not and cannot 

specify an application architecture, which by definition must be domain specific.

6.4.3 Examples o f Projects with Software Architectures

This section describes two architectures that have been defined and used in projects for 

the development o f systems o f systems.

6.4.3.1 Ship-2000

Ship-2000 [SS2000a, b] is a project for the development o f a family o f integrated systems 

(a generic system o f systems in M egSDF’s terminology). The application domain o f the 

Ship-2000 project are naval vessel systems including Naval Command, Control, and 

Communication (C3)/Weapon Control Systems.

Understanding the various problems involved in development o f such systems led 

the developers to define an architecture for the system. From our viewpoint, Ship-2000 

specifies a Mega-System architecture, but the elements o f the conceptual and application 

architecture are intermingled and not always clearly distinguished into views. The
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following describes the role o f a Mega-System Architecture in the Ship-2000 project and 

maps the Ship-2000 architecture into our concepts and views.

Conceptual Architecture

Ship-2000 distinguishes between execution and static views o f the system. These views 

correspond to the structural and control views in MegSDF.

The Structural View

Ship-2000 systems are built from Computer Software Components (CSC). The CSCs are 

organized into a hierarchy of:

• Functional Areas (FA),

• System Function Groups (SFG), and

• System Functions (SF).

The uppermost layer consists o f components called Functional Areas. Each 

Functional Area is divided into a number o f  intermediate components, called System 

Function Groups. The main role o f a System Function Group is project management. It 

is similar to the system task in MegSDF. A System Function Group is divided into System 

Functions. There are. usually, one to twenty System Functions in a System Function 

Group. A System Function corresponds to one or a few programs (which are described in 

the control view).

Ship-2000 also specifies another classification o f System Functions based on the 

level o f generality o f the components. It includes the following layers:

• Product dependent - for a specific system o f a customer,

• Customer - for one customer for several systems,
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• Equipment - a specific hardware,

• Ship Systems - special functions for ships,

• Systems Independent - fits other types o f system, and

• Fundamental/base system - distributed computing environment.

To reduce dependency o f  Systems Functions, the architecture allows only 

downward dependency, i.e., elements may only use services o f a lower level only. Thus, 

a Custom er’s System Function can use services o f an Equipment or Ship System Function.

Table 6.34 Ship-2000 Structural View Mapping

M egSDF View Concept Corresponding Ship-2000 Concept

Component Functional Areas (FA), System function groups, 
and System Functions (SF)

Classes o f components Generality classification: Product, Customer, 
Equipment, etc.

Constraints for 
components

Using the generality classification, only downward 
dependency is allowed.

Guidelines and rules for 
decomposition

Product or functionality based

The Communication View

The hardware components o f Ship-2000 are connected by a Local Area Network (LAN) 

which enables different communication approaches. The programs o f Ship-2000 are 

connected by Inter Program Communication (IPC). The IPC is supported by Ada runtime 

system. OS, and hardware.
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Messages are sent by procedure call and stored in a queue. A receiver empties its 

queues at its own pace. For efficiency, logical names are exchanged for physical names 

by a "name server" using a runtime built database where entries are created when 

programs register themselves to the network.

IPC provides the following communication primitives:

• M ulticast - Only one message is sent; all receiving programs receive it in parallel. There 

is no indication o f how many processors or nodes read the message. Multicast is used for 

high volume and conserves the network bandwidth.

• Singlecast - The sender names the receiver.

• Virtual Channel - A safer version o f singlecast. It can be used for long messages. The 

virtual channel performs blocking, sequencing, and deblocking.

A fundamental rule reduces communication flow by requiring messages to be 

transferred only once. The architecture does not specify what constitutes legal 

communication or a communication failure policy.
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MegSDF View Concept Corresponding Ship-2000 Concept

Communication style Message passing using queues

Communication
primitives

Singlecast, broadcast, virtual channel

Constraints for load 
balancing

High rate messages are transferred only once

Legal communication Not defined

Location transparency 
mechanism

Name server that uses a runtime built database to 
substitute logical names with physical addresses

Failure handling policy Not defined

The Control View

Ship-2000 execution view includes Ada programs that communicate by exchanging 

messages. A configuration consists o f several nodes. Each node includes several 

processors. Each processor can run programs. Programs not linked to special hardware can 

migrate. Multiple instances o f a specific program might be installed in the same 

configuration.

Programs behave as free-running entities. Each program performs a single task and 

is generally single-threaded. Interfacing with the message passing mechanism is 

implemented by an Ada generic task called whenever a message arrives. Other tasks are 

used inside programs when parallel processing is appropriate.

The architecture also specifies events for reporting abnormal technical states in the 

system. Hardware events indicate malfunctions that require repair by a technician and are
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generated by background on-line test programs. Software events indicate coding or 

configuration errors and are not repaired by customer personnel.

The architecture specifies a specific function that starts and reconfigures the 

system. When a node starts, a local agent identifies itself to the controlling program. The 

controlling program sends the node a list o f programs which are supposed to run on the 

node. The agent then loads all programs not already loaded.

The architecture supports both event-driven and periodic processing.

T ab le 6.36 Ship-2000 Control View Mapping

MegSDF View Concept Corresponding Concept in the Architecture

Control approach Fully distributed

Control units Processes, threads

Invocation approach Event driven and periodic loop

Operation ordering 
primitives

events, start-up procedures

The Data View

Ship-2000 defines concepts for data handling but these concepts are more application 

oriented than the concepts we recommend for the data-view. The project requires that all 

data be time-stamped as early as possible. It defines essential data components and 

constraints for handling them. These concepts can be considered as a meta-data-model. 

The essential data components in the system includes:

• Sensors (tracking data),

• Altitude,
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• Own Ship Position and velocity, and

• History Recording.

The architecture does not specify either transaction primitives or redundancy and 

consistency mechanisms.

T able 6.37 Ship-2000 Data View Mapping

M egSDF View Concept Corresponding Ship-2000 Concept

A meta-data-model Essential elements definitions and their handling

Data organization Distributed data

Transactions primitives Not defined

Redundancy and 
consistency control

Not defined

The E nv ironm ent View

Ship-2000 defines concepts that corresponds to the user-interfacing and special purpose 

hardware elements o f  M egSDF's environment view. For user interfacing, Ship-2000 uses 

a Man Machine Interface (MMI) function to provide maximum flexibility for users, 

especially in environments with different customers and varying levels o f expertise. The 

MMI manager defines a set o f MMI objects. Operators can define any form o f 

representation based on the defined MMI objects. The MMI is used to isolate the 

application from representation details.

The architecture specifies the following interfacing primitives:

• Graphics - to draw complex graphical objects.

• Text - to present and accept new values from operators.

• Alerts - to inform operators that something has happened that merits attention.
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• Softkeys - keys drawn on a touch sensitive display device.

• Menus - to organize softkeys.

Ship-2000 is intended for real-time embedded systems. Accordingly, it specifies 

special purpose hardware concepts. The nodes o f the system are synchronized within an 

accuracy o f one millisecond ensured by special hardware and software. To minimize 

complexity and enable reuse, a common internal representation o f sensor data, 

independent o f sensor particulars, is used. The project also specifies rules for handling 

sensor data.

Table 6.38 Ship-2000 Environment View Mapping

MegSDF View Concept Corresponding Ship-2000 Concept

Common user interface - 
presentation

Softkeys approach, flexible interfaces

Common user interface - 
interaction

MMI with set o f interaction primitives

Special purpose 
hardware and external 
systems interfaces

Sensor handling
Synchronization o f  the systems with 1 millisecond 
accuracy

Security in the system Not defined

Application Architecture

Ship-2000 does not distinguish between a conceptual and an application architecture, but 

it is possible to identify elements o f  an application architecture. The project specifies the 

actual functional areas (FA), the system function groups (SFG), and System Functions 

(SF). The functional areas include:
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- Command, Control and Communication (C3),

- Weapon/Director,

- Fundamentals, and

- Man Machine Interface (MMI).

These functional areas roughly correspond to the cluster concept o f  MegSDF. There are 

about 30 SFG’s and 200 SF’s [SS2000a, b]. The documentation o f  the project includes 

general diagrams for building block interaction. The project does not specify data 

distribution or a service dictionary.

Table 6.39 Ship-2000 Application Architecture Mapping

M egSDF Element Corresponding Ship-2000 Element

List o f  Building Blocks Systems Functions

Clusters o f BB The list o f the Functional areas

BB interaction Diagram General interaction diagram

Data distribution map Not defined

Service Dictionary Not defined

6.4.3.2 ESF - FSE Reference architecture

The Eureka Software Factory (ESF) [ESF 89], [ESF 90], [SCHA 90], [HUBE 90], 

[ADOM 92] is an ongoing project intended for industrial software production using 

software factories. In ESF, a Factory Support Environment (FSE) must be able to be 

configured for specific industries and to evolve with technological innovation. To enable 

such customization and evolution the ESF uses the ESF-FSE reference architecture which 

is, in MegSDF terminology, a conceptual architecture for systems o f systems.
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The goal o f  the ESF - FSE architecture is to define requirements that must be met 

by every instance o f the ESF. It consists o f the ESF standards and the structure which 

inter-relates these standards. The reference model addresses multiple platforms, market 

fragmentation, and the need to adapt the systems to various customers. The architecture 

is a reference model for Factory Support Environments. The application domain for the 

ESF project is Integrated Computer Aided Software Engineering (CASE) Systems.

ESF 's architecture is based on a minimal kernel with "plugable" extensions. It is 

a communication-oriented architecture with service-oriented building blocks.

The Conceptual Architecture

The FSE architecture is defined using structural, user, and process views. These 

correspond to the structural, environment, and (to some extent) the control view o f the 

conceptual architecture recommended by MegSDF.

The Structural View

An FSE consists o f a set o f components connected to a Software Bus (SWB). There are 

two types o f components: Service Components (SCs) and User Interface Components 

(UIC). Service components, typically, do not have a user interface. Figure 6.9 illustrates 

the FSE architecture. An FSE consists o f a set o f tools which are dynamically established 

and configured through bindings between user interaction components and sets o f service 

components.

The ESF project recommends including a minimal kernel o f services required by 

other components. Service Components w'hich implement a functionality o f the minimal 

kernel mechanisms are called kernel components. The kernel components can be replaced
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by other components that provide the same services using different algorithms or 

languages.

User
interaction
component

User
interaction
component

User
interaction
component

User
Interaction
component

Software Bus

'ig u re  6.9 The Structural View o f the ESF Architecture
(copied from ESF - Project Overview 1990 [ESF 90])

The components and the tools correspond to the component types o f the MegSDF

structural view. The Service, User Interface, and kernel components correspond to

component classes.

Any component can be decomposed into sub-components, which can be integrated 

by such mechanisms as a common database or communication channel. The reference 

architecture, however, is not concerned with integration within sub-components.

A service component generally consists o f two parts: functionality and a storage 

system. The storage system can be an Object Management System (OMS), file system, or 

traditional database. The capabilities o f a service component are defined in its interface.
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The ESF project proposes specifying a minimal set o f capabilities every component must 

provide, e.g., help mechanisms.

A user interaction component presents information to users and provides editing 

capabilities. This component also includes code for user interaction logic.

The software bus requires a formal description o f components. These descriptions, 

expressed using the a Component Definition Language (ESF-CDL), include the 

imported/exported capabilities, transfer syntax, control exchange primitives, and 

requirements on the actual technical platform. The use o f kernel services is not specified 

in the descriptions.

Conformance criteria for ESF components, corresponding to MegSDF constraints 

on components, include:

• Use o f the Softw are Bus (SWB) primitives for all inter-component communication

• Specification o f  interfaces using the ESF-CDL.

• Minimal set o f capabilities required to be present in every component.

The ESF does not specify rules for decomposition into components (tools).
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Table 6.40 E S F  S tructu ral V iew  M app ing

MegSDF View Concept Corresponding ESF Architecture Concept

Component Components, tools

Classes o f  components Service, user interaction, kernel

Constraints for 
components

Use SWB primitives, specified by the ESF-CDL; 
Have the required minimal capabilities

Guidelines and rules for 
decomposition

Not defined

The Communication View

The ESF architecture is communication oriented. Integration o f components is done by 

a software bus, not by a common database. The software bus is an abstract communication 

channel. It hides distribution aspects and allows the exchange o f data without loss o f 

structural and conceptual information. It supports the components with inter-operations 

and integration.

The software bus provides two principle services that hide distribution and 

heterogeneity:

• The plug-in mechanism - for static or dynamic binding o f clients to services, and

• A communication mechanism - for exchanging control and data

ESF proposes specifying new standardized transfer syntaxes, as well as 

standardized means for describing new transfer syntaxes and standardized protocols. ESF 

does not specify communication primitives, constraints for load balancing, or failure 

handling policy.
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MegSDF View Concept Corresponding ESF Architecture Concept

Communication style Message passing by the SoftWare Bus (SWB)

Communication
primitives

Static and dynamic binding

Constraints for load 
balancing

Not defined

Specification o f legal 
communication

Not defined

Location transparency 
mechanism

By the SWB based on the plug-in and the 
communication mechanism

Failure handling policy Not defined

The Control View

The process view o f the ESF-FSE architecture includes concepts corresponding to 

concepts o f the MegSDF control view. One o f  the essential features o f  the FSE is the 

programmable environment. This is supported by a kernel service component called the 

Factory Process Engine (FPE).

The Factory Process Engine uses process models to customize the FSE according 

to customer requirements. These models are described as process programs using a special 

Process Programming Language (PPL). A process program links organization structures, 

development methods, and tools suitable for supporting the various tasks o f the 

developers. The Component o f the Factory Process Engine controls the operations o f  the 

other components within the ESF.



215

Table 6 .42  E SF  C ontro l V iew  M apping

M egSDF View Concept Corresponding ESF Architecture Concept

Control approach Distributed with a centralized control by the 
Factory Process Engine

Control units Components

Invocation approach Not specified

Operation ordering 
primitives

The process programs

The Data View

ESF defines a framework that allows different database systems to be accessed through 

common Data Definition and Data Access languages. ESF also specifies essential 

requirements on database systems for software engineering. The other concepts o f the data 

view are not defined.

Table 6.43 ESF Data View Mapping

MegSDF View Concept Corresponding ESF Architecture Concept

A meta-data-model Data Definition language and Data Access language 
Essential requirements on database systems for 
software engineering

Database organization Not defined

Specifications o f 
transactions primitives

Not defined

Redundancy and 
consistency control

Not defined
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The environment view

ESF mainly addresses the user interaction part o f the MegSDF environment view. It 

specifies a simple paradigm for describing user interaction in the complex environment 

o f  a software factory. ESF also developed a prototype for a view server whose task is to 

synchronize multiple views on shared structures. ESF does not specify a common user 

interface, but it does specify a conceptual model for the user view o f the ESF-FSE 

Reference Architecture using ER notation. The model includes organization, role, person, 

tasks, tools, etc., as entities, and their relationships. The process engines can be considered 

as tools that provide security mechanisms.

Table 6.44 ESF Environment View Mapping

View Concept Corresponding Concept in the Architecture

Common user interface - 
presentation

Not defined

Common user interface - 
interaction

Conceptual model for user environment; 
view server

Special purpose 
hardware and external 
systems interfaces

Not defined

Security in the system Provided by the process engines

Application Architecture

ESF does not define an application architecture. However it does recommend defining an 

instance o f  the FSE by using the structural, user, and process views. Tools can be specified 

by interconnecting user interaction components with a set o f  service components. A 

particular user view consists o f all tools and information available to that user.
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6.4.4 Classification and Comparison of Existing Architectures

This section summarizes the discussion in the previous sections by comparing the various 

architectures based on the concepts o f Mega-System Architecture defined in section 6.2. 

Table 6.45 compares architectures for systems; Table 6.46 compares architectures for 

Mega-systems; Table 6.47 compares architectures for Mega-Systems that have been used 

in development efforts.

Each architecture is classified according to its application domain, the kind o f 

system it is intended for, and the type o f architecture (conceptual, application, etc). The 

tables map the concepts o f each architecture to the views o f the conceptual architecture 

and the elements o f the application architecture.
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Table 6.45 S ystem s A rch itectu res

Application Machine Best’s Architecture

Domain Any domain
used in automobiles systems

Data-Processing

Type o f  
systems

Systems Large scale systems

Classification 
as an

Architecture

Conceptual Conceptual

Structural
view

POPs Super-structure with drivers 
and procedures that provide 
specific functionality

Communi
cation View

Memory sharing Memory sharing (databases)

Control View Centralized approach 
(Application Program)

Autonomous functions

Data View Not defined Fits both centralized and 
distributed databases

Environment
View

Sensors circuits Electronic desks 
A security package

Application
Architecture

Reusable library o f POPs A generic architecture

Remarks The architecture is function 
or processing oriented
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T a b le  6 .46  M ega-S ystem  A rch itec tu res

The OSCA 
architecture

Network of 
Application 
Machines

CAN-
Kingdom

ANSA

Domain Data-
Processing

Any domain 
(used for 
vehicle 
systems)

Stationary or 
mobile machine 
systems

Information
technologies

Type of Systems Systems of 
systems

Generic 
systems of 
systems

Systems of 
systems

Systems of 
Systems

Classification as 
an Architecture

Conceptual Conceptual Conceptual Conceptual

Structural view Data,
functional, and 
user interface 
building blocks

Application 
machines are 
the building 
blocks

Cities with a 
Capitol like a 
kingdom

Systems and 
applications - 
components

Communication
View

By contracts 
based on infra
structure 
services

Client-server is 
a possible 
implementation

Message
passing

Message 
passing and a 
trader

Control View Fully
distributed with 
Autonomous 
building blocks

A router 
controls the 
global 
operation

The Capitol 
governs all 
cities

Fully
distributed

Data View Specifies how 
to handle 
corporate data

Common
database

Only detailed 
structure for 
messages

Interface
Definition
Language

Environment
View

User view +
External
systems

Some
definitions for 
hardware

Not defined Not defined

Application
Architecture

No explicit Based on the 
POPs concepts

Allocation of 
functions to 
cities

Not defined

Remarks It is a detailed
conceptual
Architecture

Supports a kind 
of application 
architecture

Communica
tion based 
architecture

Supported by 
an infra
structure
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Table 6.47 P ro jects tha t U se A rch itec tu res

Ship-2000 ESF

Domain Naval - Military vessels Integrated Computer Aided 
Software Engineering 
(ICASE)

Type of 
Systems

Generic System o f systems Generic Systems o f systems

Classification 
as an
Architecture

Mega-System architecture 
with elements o f conceptual 
and application architecture

Conceptual architecture for a 
specific application domain

Structural
view

Programs 
Functional Areas 
System Functions Groups 
System Functions

Services and user interaction 
components interconnected 
by the Software Bus

Communi
cation View

Message passing using 
queues based on Inter 
Program Communication

Software Bus

Control View Fully distributed Process Engine

Data View Identification o f essential data 
components and definition of 
their handling

Some standards for databases 
for ICASE

Application
Architecture

A list o f the FAs, SFGs and 
the various System Functions

No specification o f an 
Application Architecture. 
Instances are formed by 
specifying the components 
used in the FSE

Remarks The project does not 
explicitly distinguish between 
the conceptual and 
application architecture

The architecture is 
communication oriented 
(unlike previous systems in 
the same domain that used a 
common database)



CHAPTER 7

INFRASTRUCTURE ACQUISITION IN MegSDF

The infrastructure acquisition task is responsible for choosing, developing or purchasing, 

validating, and supporting an infrastructure that integrates the enabling technologies into 

a unified platform. MegSDF recommends the infrastructure be common to all systems 

developed in a domain. The infrastructure must address problems caused by the 

heterogeneous environments in which the systems operate and enable the incorporation 

o f  rapidly evolving technologies into the Mega-System. MegSDF recommends (re)using 

existing infrastructures instead o f developing the infrastructure from scratch.

The process o f infrastructure acquisition must specify an infrastructure m odel that 

defines the services o f the infrastructure on the basis o f the conceptual architecture. For 

manageability, we recommend dividing infrastructure functionalities into service groups 

corresponding to the views o f the conceptual architecture and an additional group o f 

domain specific services.

Infrastructure acquisition is a continuous task. It must consider both changes in the 

conceptual architecture and evolution o f technologies to ensure the effectiveness o f the 

system.

This chapter describes the infrastructure acquisition task. Section 7.1 describes the 

role o f infrastructure acquisition in MegSDF and its required characteristics. Section 7.2 

describes the underlying concepts for an infrastructure. Section 7.3 defines the process o f

221
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infrastructure acquisition. Examples o f existing infrastructures are described in section 

7.4.

7.1 Requirements for Infrastructure Acquisition

7.1.1 The Role o f Infrastructure Acquisition

MegSDF recommends the infrastructure acquisition task as one o f the activities on the 

Mega-System level. This task is responsible for providing an effective and operative 

environment that integrates all enabling technologies that support the operation and 

facilitate the development o f a Mega-System. This section describes the role o f the 

infrastructure in the MegSDF framework.

Infrastructure acquisition addresses the difficulties in software development 

described in chapter 1, focusing mainly on technology aspects. It addresses: problems 

caused by the existence o f different technologies in heterogeneous and not always 

standardized environments; the need to bridge different technologies; and the necessity 

o f incorporating over time new and emerging technologies into existing systems. These 

difficulties are listed below as an inverted sub-table o f the problem list (table 1.1).

Systems operate in environments that consist o f several technologies, e.g., 

communication, database management system, user interface, etc. Mega-Systems, 

typically, operate in heterogeneous environments that may include several types o f 

communications, a number o f database management-systems, different tools for user
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interfacing, etc. Thus, the infrastructure must support the coexistence o f various 

technologies, and bridge and resolve the differences among them.

Table 7.1 Difficulties and Problems Addressed by the Infrastructure

Difficulties Caused By Aspect Problems

Heterogeneous
environment

More than one 
system

Technology There is a need 
to bridge the

Each development group 
has to struggle 
independently with 
Heterogeneity and 
dynamic environments

More than one 
developer

various
technologies and
efficiently
incorporate
emerging
technologies as a
common
domain-wide
solution

Bridging different 
technologies and 
incorporation o f new 
technologies is required

Heterogeneous
environment

Customization to user 
environment

More than one 
customer

Dynamic environment 
requires incorporation o f 
new technologies

Longer life cycle

Technologies emerge and evolve rapidly. Since Mega-Systems have long life 

cycles, these technologies must be incorporated to ensure effectiveness. Infrastructure 

acquisition must evaluate new technologies and efficiently incorporate them into the 

existing infrastructure.

An infrastructure standardizes the way in which different technologies are used in 

a domain. It is acquired as a common, unique solution for bridging and handling 

technologies for the constituent systems. It is intended to provide complex, compound 

services and commonly needed functionalities for the domain applications that cannot be
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found in typical operating systems, communication tools, or database management 

systems. The infrastructure also promotes portability o f systems.

The infrastructure is used by the various developers o f systems in the domain. As 

a common solution it reduces the effort required to deal with technologies, in contrast to 

solutions where every group develops its own limited solution. It enhances the uniformity 

and integratability o f  the systems.

In MegSDF, the infrastructure serves as a platform o f unified services primarily 

during the implementation phases o f the various systems tasks (projects). The 

infrastructure acquisition process uses the conceptual architecture as its main input, 

implementing the concepts specified in the conceptual architecture and supporting 

transparency. The conceptual architecture is the bridge between the infrastructure and the 

domain. It represents the domain needs to the infrastructure. Feedback from the 

infrastructure acquisition task is used to improve the conceptual architecture. Existing 

infrastructures and projected technologies are used as inputs for the Mega-System 

Architecture design task and guarantee the conceptual architecture will be feasible. In this 

role the infrastructure represents the technology aspects. The relationship o f the 

infrastructure to the other elements o f MegSDF is illustrated in Figure 7.1.

It is important to differentiate between M egSDF’s infrastructure and the type o f 

infrastructure that is proposed as part o f domain analysis for reuse [ARAN 91 ]. M egSDF’s 

infrastructure integrates enabling technologies that support the operation and facilitate the 

implementation o f the Mega-Systems into a common solution used by all developers o f 

the Mega-System. It may include communication, database, user interfaces and CASE
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tools. The infrastructure as recommended in [ARAN 91] is solely to support the reuse 

process, i.e., facilitate classification, storage, and retrieval o f reusable components. Thus, 

the infrastructure for reuse might be one of the CASE tools integrated into M egSDF’s 

infrastructure.

Mega-System Tasks System Tasks

Infrastructure
Im plem entation

Requirem ent
Specification

D esig n

 ► Major
 ♦ Som e
 t  Minimal

Figure 7.1 Relation o f Infrastructure to other MegSDF Components

Though MegSDF infrastructure serves as a common basis for implementation o f 

Mega-Systems in the domain, we recommend that the infrastructure not be developed by 

the developers as part o f MegSDF process itself. An infrastructure really belongs to the 

technology aspect and should be developed by technology developers as an integrated set
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o f tools that can be used for different application domains. The M ega-System’s developers 

should focus on developing the application, not developing technology.

7.1.2 Requirements for an Infrastructure

An infrastructure integrates enabling technologies for the development and execution o f 

Mega-Systems in a domain. Its goal is to ensure that the systems developed in the 

infrastructure environment are open, in the sense that they are integratable, extendable and 

scalable.

To provide these characteristics an infrastructure should meet domain needs and

be:

• Open,

• Service preservative,

• Reliable,

• Efficient, and

• Easy to use.

The infrastructure must meet the domain needs. Although using the same 

infrastructure in different domains is possible, the infrastructure must support the 

necessities o f the domain represented by the conceptual architecture (see also section 

6.2.2). The infrastructure should also include domain specific utilities and tools used by 

systems in the domain and not supported by an enabling technology. The process engine 

o f ESF [ESF 90] for the CASE domain, and special indexing mechanisms in the library 

domain, are examples o f  such tools and utilities.
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The infrastructure must also be open in the sense that it can incorporate new 

technologies to the infrastructure simply and with minimal effort. It should also be easy 

to integrate the infrastructure with other infrastructures or expand the infrastructure to 

other hardware platforms.

An infrastructure should be service preservative. This means that new versions o f 

the infrastructure must support services that were provided by earlier versions. This is 

important since it would be inefficient to modify all systems whenever the infrastructure 

wras changed (see also [OSCA 92]).

Since the infrastructure is an active part of the Mega-System and enables the 

operation o f the systems in the domain it must be reliable. A failure o f the infrastructure 

degrades the operation and limits the availability o f the entire Mega-System. The 

infrastructure should provide services that will ensure that the system will remain 

consistent and secure, e.g., atomic operations (transactions) and mechanisms for protecting 

resources and information.

The infrastructure must execute efficiently to compensate for the negative effects 

o f using the infrastructure services instead o f local programming solutions. Thus, 

additional execution time and memory space required for using the infrastructure at 

operation time should be minimal.

Since the infrastructure is used by developers located in different sites, it should 

be easy to use, simple to understand, and well documented. The infrastructure should also 

save development efforts in the implementation phases. It must be supported by 

development and debugging tools that improve developer’s transparency and productivity.
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We recommend that the infrastructure be implemented according to the conceptual 

architecture and by using the infrastructure services in a bootstrapping fashion. For 

example, a distributed database should use the communication channel o f the 

infrastructure. The communication channel, on the other hand, will use the concepts o f the 

data view. This helps ensure system uniformity and avoids conflicts that would be caused 

by implementing multiple solutions.

7.2 An Infrastructure

7.2.1 MegSDF Infrastructure

The infrastructure in MegSDF implements the conceptual architecture specified by the 

Mega-System Architecture task. While the conceptual architecture defines strategies and 

concepts for implementation and is technology independent, the infrastructure integrates 

the various technologies that implement and support these concepts.

We recommend implementing the infrastructure by a service-based approach, that 

is. the infrastructure is defined as a set o f services where each service corresponds to a 

capability o f the infrastructure that provides common, business independent functionality 

(as defined by OSCA [OSCA 92]) for the systems developed in the domain, e.g., message 

transfer and window presentation. It is important to distinguish between operating system 

services and infrastructure. The functionalities o f the infrastructure services are more
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sophisticated than those provided by typical operating systems [NIST 91]. An operating 

system service is usually seen through the "filter" o f  the infrastructure.

A concept of the conceptual architecture might be implemented by several services 

and a service might support several concepts. Services will be used by the programmers 

and provide the means for implementing systems according to the conceptual architecture.

The services form a layer between programs and actual technologies, abstracting 

implementation details. This layer makes it possible to port the systems and to use the 

same software with different environments and platforms, provided the services are 

supported by the environment. Under a service based approach, the infrastructure can be 

extended simply by adding new services. Furthermore, infrastructures can be integrated 

by mapping between the services o f the infrastructures and using adaptors when required. 

We identify three types o f infrastructure services:

• Application Services - Services that are used by the programmers within the application 

to perform required functionality, e.g., message passing, and presentation o f a window.

• Background and Administration services - Services that support the operation o f the 

system but are not used by the programmers within their applications. These services 

might monitor, control, and be an active part o f the operation o f  the system. Examples are 

administration services, services that support the consistency and integrity o f the systems, 

or services that measure communication load.

• Tools services - Services provided by CASE tools to support the development o f  systems 

according to the conceptual architecture. Examples o f tool services are compilers that 

provide developer's transparency, design tools that suggest design constructs, e.g.,
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communication primitives, or analysis tools that support a strategy for decomposition o f 

systems.

A concept might be supported by all types o f  services or be implemented as an 

application or background service depending on the implementation strategy and the 

relation between the CASE-tools and the infrastructure. For example, a trader might be 

implemented as a background service and be used implicitly by all programs for inter

communication; or it could be implemented as an application service where programs 

explicitly declare the services they provide or want to use and obtain interface references 

from a trader in order to communicate.

The definition o f the infrastructure should include a mapping between the concepts 

in the various views o f the conceptual architecture and the services o f the infrastructure. 

This mapping can be considered as a model of the infrastructure.

The services themselves are implemented by various technologies. Therefore, we 

propose that the infrastructure definition also includes a mapping between services and 

enabling technologies. One approach is to realize the services o f the infrastructure as a 

library o f subroutines. Programmers invoke these services by subroutine calls within their 

programs. An alternative approach is to develop a language that includes all services as 

built-in primitives. We recommend using the first approach since it does not restrict the 

use o f the infrastructure to one language and is more extendable.

The selection o f an appropriate infrastructure should be based on international or 

commercial standards, e.g., ISO/OSI [ROSE 89], SAA [MART 91], etc. The use o f 

standards reduces wasted effort in developing solutions that already exist; improves the
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extendibility o f the system; guarantees the support o f these products; and improves the 

competitiveness o f the Mega-System.

7.2.2 An Infrastructure Model

Our model o f an infrastructure is based on the outline for a conceptual architecture in 

chapter 6.2. We group related services into service groups corresponding to the views o f 

the conceptual architecture: structural, communication, control, data, and environment 

service groups. We add a domain dependent service group for services that do not fit any 

o f the preceding categories. Our model is limited in scope and provides a check list. The 

crucial point is that the infrastructure model should correspond to the conceptual 

architecture.

7.2.2.1 The Structural Service Group

The structural view o f the conceptual architecture in section 6.2.2.1 defines component 

types and classes, constraints for components, and a guideline for decomposition. The 

infrastructure can support these concepts by application, background, and tool services. 

Tool services can facilitate defining components using templates and pre-compilers, as 

done by ANSA ware4 [ANSA 92a], [ANSA 92b]. The other concepts are design guidelines 

and do not require support by application services. However, it is possible to support these 

concepts either by tool services that statically enforce constraints for the component, or 

by background services that dynamically enforce constraints. The structural service group

4 ANSAware is a trademark o f Architecture Project Management
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should also include registration and configuration management services for the 

components. Table 7.2 maps the structural view concepts into the corresponding services. 

T able 7.2 Mapping o f the Structural View Concepts into Services

Concept Service

Definition o f component 
types

Support o f the various components, e.g., 
templates and pre-compilers;
Registration and configuration management

Specifications o f classes o f 
elements

Design constructs in design tools

Specifications o f constraints 
for components

Dynamic or static verification mechanisms in 
design tools and background services

Guidelines and rules for 
decomposition of an 
application into components

Verification mechanisms in design and analysis 
tools and background services

7.2.2.2 The Communication Sendee Group

The communication view o f the conceptual architecture, specified in section 6.2.2.2, 

defines communication style, communication primitives, constraints for load balancing, 

specifications o f legal communication, a location transparency mechanism, and 

communication failure handling. The services provided by the communication view 

depend on the actual communication style. Different types o f  message passing services 

will support the communication primitives, enable interconnections o f elements, and 

realize the communication failure policy as application services. These services can be 

supported by background services, e.g., the trader o f ANSAware [ANSA 92a] that 

provides location transparency services. The communication view concepts can also be
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supported by tools that provide design constructs and static verification mechanisms. 

Table 7.3 maps the communication view concepts into the corresponding services. 

Table 7.3 Mapping o f  the Communication View Concepts into Services

Concept Service

Communication primitives Message passing, e.g., broadcasting, virtual 
channels by application and background 
services;
design constructs in tools.

Constraints for load 
balancing

Policy enforcement; 
capacity measurement.

Specification o f legal 
communication

Verification services by tools and background 
services, e.g., traders

Specification o f a location 
transparency mechanism

Location transparency mechanisms, e.g., logical 
to physical address trading, etc., by background 
services

Communication failure 
handling policy

Message passing services that implement 
time out, error corrections, etc.

7.2.2.3 The Control Group

The control view o f the conceptual architecture, specified in section 6.2.2.3, defines the 

control approach, the control units, the invocation approach, and operation ordering 

primitives. The infrastructure should support the control and invocation approaches with 

its services. It should support the various types o f  control units, e.g., threads, processes, 

clusters, and operation ordering primitives, e.g., atomic operations and clocked operations, 

by application services. For example, the ANSAware supports processes provides a 

special coroutine package for operating systems that do not have multi-processing [ANSA 

92a], [ANSA 92b]. These concepts can also be supported by tool services that include
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threads and processes, synchronous and asynchronous invocation, and events as design 

constructs. Table 7.4 maps the control view concepts into their corresponding services.

Table 7.4 Mapping o f the Control View Concepts into Services

Concept Service

Control units Support creation, suspension, termination, etc. 
for threads, processes and clusters

Invocation approach Support for synchronous and asynchronous 
processing

Operation ordering 
primitives

Atomic operations, clocked-operations, etc.

7.2.2.4 The Data Service Group

The data view o f the conceptual architecture, specified in section 6.2.2.4, defines a meta

data-model, specification o f transaction primitives, and redundancy and consistency 

control. The infrastructure should support the meta-data model by providing interfaces to 

and from the meta-data model by both application and CASE tools services. It should also 

support schemas definition. The infrastructure should support the organization o f the data, 

i.e.. a common or distributed database, by providing appropriate services, e.g., servers for 

distribution, and common database services, e.g., recovery, backups, on-line queries, data 

compression, encryption, etc. The infrastructure can support atomic transactions by both 

application and background services, e.g., recovery mechanisms. It can also provide 

background replication management services. Table 7.5 maps data view concepts into 

their corresponding services.
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Concept Service

A meta-data-model Interfacing services, schemas definitions

Organization o f the database Distributed transaction handlers, backup, on-line 
query, etc.

Specifications o f 
transactions primitives

Atomic transaction

Redundancy and consistency 
control

Replication management, recovery mechanisms

7.2.2.5 The Environment Service Group

The environment view o f the conceptual architecture, specified in section 6.2.2.5, defines 

a common user interface, special purpose hardware and other systems interfaces, and a 

security strategy. Accordingly, the infrastructure must support user interfacing by 

providing presentation and interaction services, e.g., multi-windows, pulldowns, soft-keys, 

alarms, scroll-bars, emphasis, selection by cursor, typing letters, or mnemonics, mouse, 

interaction, etc., as suggested by SAA [MART 91]. Interfacing with hardware and other 

software systems might be supported by encapsulating services that translate external 

interactions to interactions supported by the system as suggested by [OSCA 92]. The 

infrastructure should support the security strategy by providing tools to define security 

privileges for users. It must also provide services for security enforcement as suggested 

by [NIST 91] and re-authentication o f the user and the invoking building blocks for 

restricted services as suggested by [OSCA 92]. Table 7.6 maps the environment concepts 

into the corresponding infrastructure services.
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Concept Service

User interfacing presentation 
and interaction

Multi-windows, pulldowns, soft-keys, alarms, 
scroll-bars, emphasis, selection by cursor, typing 
letters, or mnemonics, mouse, interaction, etc

Strategy for special purpose 
hardware and external 
systems interfaces

Special hardware interfacing services, and 
encapsulating services for interaction with 
external systems

Strategy to ensure security in 
the system

Tools to define security privilege and services 
for security enforcement, and re-authentication

7.2.2.6 Domain Specific Service Group

This group does not correspond to a specific view o f the conceptual architecture. We 

suggest including in this group services that are domain specific and do not fall into any 

o f  the categories of the previous groups, e.g., the process engine services o f the ESF [ESF 

90] which support the various tools o f the Factory Support Environment. This group might 

include application, background, and CASE-tools services.

7.3 The Infrastructure Acquisition Process

The infrastructure acquisition process is defined using the format introduced in section 

4.1.
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7.3.1 Purpose

The purpose o f the infrastructure acquisition process is to choose, develop or purchase, 

validate, and maintain an infrastructure for the Mega-System.

7.3.2 Interfaces 

Inputs

• Conceptual Architecture - The conceptual architecture, defined in section 6.2.2.

• Existing infrastructures and projected technologies - Infrastructures that integrate extant 

enabling technologies and which are expected to facilitate integrating prospective 

technologies.

• Customers/users requirements - Requirements o f the customers/users for the systems.

• Feedback - Engineering information from the system tasks (projects) and the Mega- 

System synthesis tasks, including recommendations for improvements and corrections to 

the current infrastructure.

Control Input

• M anagement Control - The schedule to the task assigned by the meta-management task. 

Circumstance Inputs

• In te rn a tio n a l and com m erc ia l s tandards - S tan d ard s  d ev e lo p ed  by 

international/commercial organizations to uniformize systems and tools used for their 

implementation.

Outputs

• Infrastructure - The chosen infrastructure o f the domain, described in section 7.2.
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• Feedback - Feedback from the task to the Mega-System architecture design task and the 

meta-management task.

7.3.3 Processing

A model o f  the infrastructure, consisting o f groups and the necessary services, based on 

the conceptual architecture, is first defined. Existing infrastructures and projected 

technologies are then evaluated. I f  an appropriate infrastructure is found, it is 

recommended as the chosen infrastructure. Otherwise, either an existing infrastructure is 

used as a base and additional services are developed and integrated to it, or a new 

infrastructure is developed. The chosen infrastructure must be verified and validated 

against the model and the conceptual architecture to ensure it provides the required 

services. Figure 7.2 illustrates the infrastructure acquisition process.

7.3.4 Timing

Infrastructure acquisition and adaptation is an ongoing process which must be active as 

long as the Mega-System is developed and maintained. Domains evolve over time and 

new technologies emerge, so, it is necessary to consider both changes in the conceptual 

architecture and new' technologies to maintain the effectiveness o f the infrastructure. 

Based on these changes, appropriate technologies should be incorporated to the 

infrastructure.
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Figure 7.2 The Infrastructure Acquisition Process

7.4 Examples of Existing Infrastructures

This section discusses an infrastructure model and examples o f existing infrastructures. 

M ost the existing infrastructures implement only a limited set o f  services, belonging to 

some o f the groups we specified in the outline o f an infrastructure model. These
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infrastructures are general and can be used for different application domains. We discuss 

the infrastructures with an emphasis on elements related to MegSDF.

7.4.1 The NIST Reference Model

The Reference Model for Frameworks o f Software Engineering Environments was 

developed by the National Institute o f Standards and Technology (NIST) and the 

European Computer Manufactures Association (ECMA) [NIST 91]. It is intended to 

provide a reference model for describing Software Engineering Environment (SEE) and 

for comparing Existing SEEs or components o f SEEs. The model includes only 

specifications, not implementations.

7.4.1.1 NIST’s Reference Model Concepts

In the NIST model, a SEE consists o f several tools for developing software and a 

framework to support these tools. Tools are used by software engineers in different phases 

o f the life cycle o f systems. A framework, according to the NIST model, consists o f  a 

fixed set o f infrastructure capabilities which provide support for objects, processes, and 

user interfaces, and facilitates the developing tools. The framework can also facilitate 

porting software development environments across a variety o f  hardware configurations 

and operating systems. The SEE tools use services o f the framework and other tools. 

Framework components can use services provided by other components o f the framework.

The framework is divided into functional elements called services. Interrelated 

services are grouped as following:
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• Object Management includes the definition, storage, maintenance, management and 

access o f  object entities and the relationships among them, e.g., data transaction, archive 

and backup services.

• Process Management supports the definition of a process model for the development life 

cycle, enactment of a process, control and resource management, e.g., process definition, 

process enactment services.

• Communication Services provide a standard communication mechanism which can be 

used for inter-tool and inter-service communication, e.g., message passing.

• User Interface Services support the interaction o f the users with the various tools, e.g., 

sessions, application interfaces, user assistance services.

• Tool services that support tools by additional functionality, e.g., editing, compiling, 

testing, analyzing.

• Policy enforcement services that support security, integrity monitoring, and 

configuration management.

• Framework administration and configuration management services that support 

management o f the SEE and self-configuration-control.

[NIST 91] includes a detailed list o f services. Each service is defined for different 

dimensions, e.g., conceptual, operations, rules. Figure 7.3 illustrates the reference 

architecture and its various parts and service groups.



242

Tool Slots
Object Management Sendees^ 7

✓ ^Process Managamant Services

X "  User Interface Services

+  Policy Enforcem ent Services 
+  Framework Administration and  

Configuration M anagem ent
Communication Service

Figure 7.3 The NIST Reference Model (Copied from [NIST 91])

7.4.1.2 Mapping NIST’s Reference Model to MegSDF Concepts

Software Engineering Environments (SEE) integrate tools that support the development 

life cycle and are used by heterogeneous groups o f  users. In MegSDF terminology, SEEs 

are Mega-Systems o f the systems o f systems kind. The N IST’s reference model can be 

considered as a model for the infrastructure for these Mega-Systems. Thus, from our 

viewpoint, the NIST Reference model is a comprehensive model o f an infrastructure that 

can be used for various domains. The NIST reference model seems to have been 

developed as a post-facto attempt to standardize existing SEEs rather than as a domain 

model.
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The object management and communication service groups correspond to the data 

and communication service groups o f MegSDF. The user interface service group 

corresponds to the user interface part o f the MegSDF environment service group. The 

process management, policy enforcement, and tool service groups are domain dependent. 

N IST’s model does not explicitly specify a group o f control services. However, parts o f 

the object and process management service groups provide services that belong to the 

control group, e.g., atomic transactions and process enactment. The N IST’s Model does 

not explicitly specify structural services. However, the Framework Administration does 

provide services that can be considered as structural services, e.g., tool and resource 

registration. Table 7.7 compares N IST’s Reference Model service groups to MegSDF 

groups.

Table 7.7 Comparison o f MegSDF Views and NIST Service Groups

MegSDF Service Group NIST Service Groups

Structure Framework Administration and 
Configuration

Communication Communication

Control Parts o f Object Management, e.g., data 
transactions and parts o f Process 
Management, e.g., process enactment

Data Object Management

Environment User Interface

Domain Specific and development 
tools

Process Management 
Policy Enforcement 
Tool Services
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7.4.2 ANSAware

This section describes ANSAware [ANSA 92a], [ANSA 92b] which, in MegSDF 

terminology, is an infrastructure that implements only part o f the ANSA architecture (see 

section 6.4.2.4) focusing on the ANSA engineering and computational views. ANSAware 

supports multi-vendor environments.

7.4.2.1 ANSAware Concepts

ANSAw'are operates on UNIX, VMS, and MS-DOS. It provides a uniform view o f a 

multi-vendor world, allowing systems builders to link together distributed components 

into network-wide applications.

ANSAware consists o f a suite o f software for building open distributed processing 

systems providing abasic platform as well as software development support, e.g., program 

generators and system management applications. It operates within a host to provide a 

unified platform. ANSAware is a service based infrastructure that supports service based 

applications. It supports an object-based style using the client/server approach.

ANSAware divides its engineering model into nodes, where a node may be a single 

computer, a process or virtual machine, or a network o f computers managed by a 

distributed operating system. The resources o f each node are managed by a nucleus which 

assigns them to capsules.

The capsule is the unit o f autonomous operation within ANSAware. Each capsule 

represents a separate address space. In a multi-tasking environment, a capsule is a process. 

A capsule consists of several engineering objects. Each engineering object is composed
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of several computational objects which are bound together at compile time and interact 

via local procedure calls. A computational object may have several interfaces, each 

offering the same or different sets o f operations. A compiled computational object is an 

engineering object. A service is a program composed o f  several computational objects. A 

program can be compiled as a single unit or its computational object can be compiled 

separately; in either case the result is a set o f engineering objects.

An engineering object is the smallest unit in ANSAware which is distributed, 

activated, deactivated, and migrated. The programmer decides how many engineering 

objects are merged into one capsule. Engineering objects interact with one another through 

the nucleus. Transparency services are added to a capsule. These services manage the 

nucleus-provided resources in a capsule and communicate with transparency services in 

other capsules to provide the required transparency. An engineering capsule may have 

several transparency services, and one transparency service may depend upon another. 

Figure 7.4 represents the relationships between ANSAware elements.

The current release o f ANSAware supports access and location transparency 

services. Access transparency masks differences in data representation. Location 

transparency translates interface reference (logical address) to address resolution (physical 

address). Future releases will support other transparencies.

The nucleus includes a service definition for the protocol required for 

communication between nuclei. The protocol is based on three service layers: session, 

execution, and message passing. The nucleus provides services called tasks, threads, 

eventcounts, sequencers, sockets, plugs, channels, sessions, and interface references.
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A thread is an independent execution path through a sequence o f operations within 

a capsule. Threads share data structures and can synchronize with each other at significant 

points. A task is a virtual processor which provides a thread with the resources it requires. 

The number o f  tasks within a capsule determines the degree o f  parallelism in the capsule’s 

execution. A thread is bound to a task until the thread terminates. ANSAware includes a 

coroutine package to support multi-tasking in operating systems that do not include multi

tasking. Eventcounts and sequencers are used for synchronization between threads.

A socket is the unit o f addressing for inter-capsule invocations. A registration 

operation allows a socket to be published, and thus be made accessible to clients outside 

the capsule. All communications are targeted to sockets. A plug is the access point for the
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client o f an interface. Inter-capsule operations are invoked by plugs. Each plug is bound 

to a corresponding socket. The path from the plug to the socket is called a channel. A 

socket represents the server end o f an interface, whereas a plug is associated with the 

client end.

ANSAware specifies the interface reference for identifying interface instances to 

connect clients to servers. The interface references are created by the binder service in 

each capsule. Before a capsule can obtain an interface reference for any external service, 

it must obtain an interface reference to the trader. This interface reference is furnished to 

each capsule.

A computational object is transformed into an engineering object by two 

compilers. The first compiler provides transparency services. The second compiler 

provides interaction services. The interfaces to computational objects are defined by an 

Interface Definition Language (IDL).

ANSAware supports traders, factories, and node managers as network-wide 

management services. The trading services allow engineering objects to register the 

services they provide and to look for services they intend to use. The trading services also 

support dynamic binding. Factory services support dynamic creation o f  engineering 

objects.

7.4.2.2 Mapping of the ANSAware Reference Model to M egSDF’s Concepts

In our terminology ANSAware is an infrastructure that implements only parts o f the 

ANSA architecture. Although it does not specify service groups within the infrastructure,
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it is possible to map the ANSAware services to MegSDF infrastructure service groups. 

ANSAware does implement some o f the structural view concepts and supports 

components o f different granularity: computational objects, engineering objects, capsules, 

and nodes. ANSAware is based on message passing and provides a trader for transparency 

services. ANSAware supports various types o f control units, e.g., thread and task, and uses 

eventcounts and sequencers for synchronization. The data view includes only an Interface 

Definition Language. ANSAware does not support any environment view concepts, but 

it does provide development tools that enable access transparency and using ANSAware 

services in an embedded format. Table 7.8 summarizes this discussion.

T able 7.8 Comparison o f MegSDF views and ANSAware services.

M egSDF Service G roup ANSA ware Services

Structural Capsule, Nucleus

Communication Within an engineering object - local 
communication.
Inter-capsules by the nucleus, traders, 
interface references, sockets and plugs 
Transparency services by pre
compilers.
Interfaces are defined by IDL.

Control Threads, tasks, eventcounts, 
sequencers

Data Interface Definition Language for 
interfacing different data types 
representation

Environment Not defined

Domain Specific Not defined
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7.4.3 IBM’s Systems Application Architecture (SAA)

This section describes IBM ’s Systems Application Architecture (SAA) [MART 91]. It 

was developed by a vendor and supports a wide range o f products o f this vendor.

7.4.3.1 SAA Concepts

SAA was developed by IBM in an attempt to bring coherence to IBM ’s wide range o f 

products. IBM ’s product line includes an assortment o f different and incompatible 

hardware, multiple operating systems, and an assortment o f software systems used in 

different operating environments. This complexity is a hindrance to IBM and its 

customers, who use computing systems ranging from personal computers to large systems. 

IBM people decided that developing such an architecture is essential to its corporate 

viability.

Support for SAA will be provided across a wide range o f hardware and software 

by IBM and other vendors. IBM has committed broad support for SAA across future 

offerings operating in the systems software environments, including M ultiple Virtual 

Storage (MVS), Virtual Machine (VM), Operating System 400 (OS/400), Operating 

System/2 Extended Edition (OS/2 EE), and other environments to be supported in the 

future.

An application developed according to SAA specifications must operate 

consistently across all SAA-supported environments. This means that it should be possible 

to compile and run an SAA application in any supported environment without extensive 

reprogramming. An SAA application’s interface should appear the same, regardless o f  the



250

environment in which it runs. An SAA application should be able to communicate with 

other SAA applications running in any of the environments.

The foundations o f each SAA hardware family and operating system 

(environment) is provided by three types of products: application enablers, communication 

subsystems, and control programs. Application enablers include programming languages, 

CASE tools, application generators, database management systems, and data presentation 

and dialog management services. Communication subsystems allow a computing system 

to communicate with its own peripheral devices and with other computing systems 

attached to a computer network. System control programs include the operating system 

(and its extensions) that controls a computing system in a specific hardware environment. 

The products that constitute the software foundation vary with each environment.

SAA standardizes three types o f interfaces on top o f each environment:

• Common User Access (CUA) interface provides end users a consistent view o f their 

different applications. This promotes user productivity and reduces the time to learn new 

applications. The Common User Access (CUA) is a set o f rules and guidelines for 

presentation and user interaction, e.g., organization o f panels, windows, use o f  colors, 

icons and standard actions.

• Common Programming Interface (CPI) defines a set o f languages and services for 

application developers consistent across the different environments, both in term s o f how 

they are used and in the results they produce. This promotes portability o f the systems. 

CPI defines a set o f languages and programming services that application developers can 

use in developing SAA applications. These services include communication, database,
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query, dialog, and presentation interfaces. Though the Common Programming Interface 

includes services common to all environments, it does not include features specific to an 

environment or an operating system, e.g., job control language.

• Common Communication Support provides consistent methods for exchanging data 

across a network. It consist o f  a set o f  protocols, services, and standardized data stream 

formats that can be used to interconnect applications, systems, and networks.

Besides defining the three interfaces and providing system software support for 

those interfaces, IBM also intends to develop applications that conform to the SAA 

standards and guidelines. These applications will be consistent and usable across all o f 

IBM ’s major computing environments. IBM’s OfficeVision5 Product Family, an 

integrated set o f applications that provide extensive office automation services, is an 

example that conforms to the SAA architecture. Other vendors have announced their 

support o f the SAA standard interfaces and their intention to develop applications that will 

run on all SAA-supported computing environments. Figure 7.5 illustrates the components 

o f  the SAA.

Most o f the services defined by the SAA are based on standards, e.g., the ISO/OSI, 

the American National Standard Database Language - SQL, etc. SAA also supports both 

SNA and ISO protocols to ensure its openness. In response to market demands for UNIX 

as the environment o f choice for programmable workstations, IBM developed the AIX, 

its version o f UNIX. AIX is compatible with SAA’s communication and programming 

interfaces.

5 O fficeV ision  is a trademark o f  IBM, Inc.
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7.4.3.2 Mapping of SAA to M egSDF’s Concepts

SAA is intended to provide a layer between technologies and applications, to promote the 

portability o f software systems, and to support communication between processes. The 

architecture seems to have been defined in a bottom-up manner, driven by technologies 

and not application needs. SAA standardizes the way the technologies are used. In 

MegSDF terminology, the SAA concepts can be considered as a model for an
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infrastructure, since it defines interfaces to technologies, but not a conceptual architecture, 

since it does not provide design concepts for the applications, e.g., decomposition 

guidelines.

SAA does not explicitly specify any structural concepts. Accordingly, its 

infrastructures (support environments) do not explicitly support components o f the 

structural view. The Common Communication Support implements concepts o f the 

communication view. SAA supports Common User Access and defines communication 

with other systems based on SNA and ISO. These elements belong to the environment 

view. Parts o f the Common Programming Interfaces can be mapped to the control and data 

views. Table 7.9 compares SAA services to M egSDF’s infrastructure service groups. 

T able 7.9 A Comparison o f MegSDF views and SAA Service Groups

M egSDF Service G roup SAA Services

Structural Not defined

Communication Common Communication Interface

Control Parts o f the Common Programming 
Interface, i.e., operating systems

Data Parts o f  the Common Programming 
Interface, i.e., database management 
systems and the Common 
Communication
Support, i.e., objects, data streams

Environment Common User Access for user 
interfacing;
Common Communication Support for 
interfacing with other systems

Domain Specific Not defined



CHAPTER 8 

THE META-MANAGEMENT, SYSTEM, AND 

MEGA-SYSTEM SYNTHESIS TASKS

This chapter defines the Meta-Management task, the System task, and the Mega-System 

Synthesis task. These are extensions o f existing tasks in traditional systems development. 

Our discussion emphasizes how they are incorporated into the MegSDF process model 

and how the elements o f  these tasks have been adapted.

8.1 The M eta-Management Task

Meta-management is the organizational unit (see also section 3.3.1) responsible for 

developing the Mega-System. MegSDF defines the activities o f this unit in a separate task 

called the meta-management task. This section describes the role o f the meta-management 

task in MegSDF and specifies the meta-management task as a process.

8.1.1 The Role of the Meta-Management Task

The meta-management task is an extension o f traditional software management [DEMA 

82], [PAGE 85], [GILB 88]. It addresses the difficulties in software development 

described in chapter 1, and particularly problems caused by the neglect o f  general, long

254
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term objectives; problems o f coordination and communication; and multiple customers 

needs and objectives. These difficulties are summarized below as an inverted sub-table o f 

the problem list (table 1.1).

Table 8.1 Difficulties and Problems Addressed by the M eta-M anagement Task

Difficulties Caused By Aspect Problems

General objectives are 
neglected

More than one system Management There is no clear 
distinction between

Coordination and More than one
general, long-term 
objectives and 
local, short-term 
objectives

communication problems on a 
larger scale

developer

Different aims and needs More than one 
customer

No standardization of tools Heterogeneous
environment

Long term objectives are 
neglected

Long life cycle

A meta-management with a clear definition o f its tasks and role is the only way to 

ensure a distinction between general and long term versus local and temporary issues. It 

must coordinate the developer groups, and balance the diverse objectives and needs o f the 

customers. To achieve these goals meta-management must conduct two types o f activities:

• Plan development

• Control and coordinate the various tasks

As the responsible agent for general, long term objectives, meta-management 

determines the direction and trends that the product and development process will take. 

Meta-Management is responsible for definition of strategies, e.g., testing strategies [HETZ
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88], general procedures for quality assurance [DUNN 90], and configuration management 

[BABI 86], Its plan should specify the schedules and estimate the resources required for 

the development process.

Planning should consider both customer requirements and feedback from the tasks 

o f the process. Meta-management communicates with customers to ensure their 

satisfaction and to understand market needs. It balances diverse aims and needs o f  the 

customers. It also defines global priorities and an optimized schedule that includes all the 

tasks o f M egSDF's development process. The meta-management is responsible for 

activating, suspending, or deactivating systems and synthesis tasks and for specifying 

milestones for the Mega-System tasks according to actual needs. For example, meta

management might suspend an active system task developing a system for a single 

customer and use its resources to activate a system task developing a system that can be 

used for several customers.

Some MegSDF tasks have lower level management. We must differentiate between 

the responsibilities o f lower level and meta-management. The coordination units for meta

management are tasks (projects) as a whole. Meta-Management specifies a global 

schedule. Lower-level management activities are those o f traditional management and lie 

within the scope o f a single M egSDF’s task. Lower level management must be 

coordinated with meta-management. For example, lower level management is responsible 

for the local schedule o f a system task (project), but this schedule must be coordinated 

with the global schedule which includes other System, Mega-System synthesis, and Mega- 

System tasks.
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The planning activities are similar to software development planning in traditional 

software development approaches [PRES 92]. However, these plans have a larger scope 

and must also consider the special characteristics o f the Mega-System. For example, the 

new tasks suggested by MegSDF must be included in the plans.

We propose that risk analysis be used as an essential tool for decision making at 

the meta-management level. Risk analysis can identify potential problem areas, quantify 

associated risks, and generate alternatives that reduce risk [CHAR 89], resulting in a more 

effective "risk-driven" schedule. Thus, risk analysis enables meta-management to 

activate/deactivate System/Synthesis tasks, allocate adequate resources for critical 

problems, and solve them expeditiously. Periodic risk analysis and corresponding schedule 

revision can help assure the schedule fits the real needs.

Controlling the process means allocating resources, activating tasks, and 

monitoring their operations. Meta-management should monitor the global schedule and 

resource use, and evaluates both the product as well as the process itself. Like traditional 

software management, meta-management has to assure conformance o f tasks to the global 

standards and policies, e.g., software quality and configuration management standards. 

Meta management must also assure compliance o f the tasks with the domain model, the 

M ega-System architecture, and the chosen infrastructure. Meta-management must 

coordinate the various tasks and resolve communication problems between them.
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8.1.2.1 Purpose

The purpose o f  the meta-management task is to plan and control the development o f  the 

Mega-System as a whole.

8.1.2.2 Interfaces 

Inputs

° Customers requirements - Requirements o f the customers/users o f the systems.

• Feedback - Feedback from the various tasks to the meta-management task.

Outputs

• M anagement Control - The schedule assigned to the tasks by the Meta-Management.

8.1.2.3 Processing

The meta-management is responsible for the development o f the Mega-System. To ensure 

an effective development, the meta-management plans the development based on global, 

long term objectives and controls the development process. Meta-management controls 

the various tasks o f the process on the basis o f these plans. Figure 8.1 illustrates the Meta- 

M anagement task.
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Figure 8.1 Meta-Management Process Diagram

8.1.2.4 Timing

The Meta-management task is a continuous process. It should be active as long as systems 

are developed and maintained in the domain. Since changes in the domain induce changes 

in requirements, the meta-management and its activities must continuously adapt 

themselves to these ever changing needs.
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This section describes the System tasks in MegSDF. Section 8.2.1 describes the role o f  the 

system tasks and their relationship to the other MegSDF tasks. A system development 

process is defined in section 8.2.2.

8.2.1 The Role of the System Tasks in MegSDF

The MegSDF process model divides the development o f a Mega-System into several 

projects called system tasks. System tasks develop the constituent systems o f the Mega- 

System. A system task is responsible for development o f a new system or maintenance o f 

an existing system. In the first case a system is developed from scratch. In the second case, 

an existing system is repaired, improved, or expanded. Several system tasks may be active 

concurrently.

Following [MITT 91], we propose that the approach used to develop each system 

be determined by the special characteristics o f the system. One can use the waterfall 

[BOEH 76], rapid prototyping [GOMA 90], the spiral model [BOEH 88], etc., but 

MegSDF requires that each system task use the engineering coordination tools o f the 

framework, viz., the domain model, the Mega-System architecture, and the infrastructure.

Systems developed according to MegSDF are "pre-planned". The domain model 

serves as a basis for further refinements or specializations during the requirement 

specification phase o f each system task (project). The Mega-System architecture provides 

concepts to be used in the design phase o f these system tasks, as well as definitions o f the
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boundary o f  the system and its interfaces. An infrastructure that integrates the enabling 

technologies and allows for efficient incorporation o f new technologies is used in the 

implementation phases. Feedback to the Mega-System task from the system tasks is used 

to improve and correct the domain model, the Mega-System architecture, and the 

Infrastructure. The relationship o f the system tasks to the other elements o f  MegSDF is 

illustrated in Figure 8.2.

M ega-System  Tasks System  Tasks

Major 
Moderate 

> Minor

Domain Model

M e g a -S y s te m  
A rc h ite c tu re  _

Infrastructure Implementation

Design

Requirement
Specification

7igure 8.2 Relationship o f System Tasks to other Elements o f MegSDF
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Traditional approaches are typically intended for developing isolated systems that 

are not part o f a system o f systems or family o f systems. Therefore, they do not include 

means to ensure coordination and consistency o f the developed system with other systems. 

The)' do not use a domain model, a Mega-System architecture, or an infrastructure as 

essential tools. Unlike traditional system development, system tasks in MegSDF are 

optimized to be part o f the entire effort.

8.2.2. The System Development Process

The process o f  system development is defined using the format described in chapter 4.

8.2.2.1 Purpose

The purpose o f the system task is to develop a constituent system.

8.2.2.2 Interfaces 

Inputs

• Domain Model - A model o f the domain ,defined in section 5.2.

• Application Architecture - Part o f the Mega-System Architecture, defined in section 6.2.

• Customers requirements - Requirements of the customers/users o f the systems.

• Existing Development Approaches - These approaches will be evaluated in order to 

define the appropriate development approach.

• Feedback - feedback from the Mega-System synthesis task for modification.
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Control

• Management Control - The assigned schedule to the task by the meta-management task. 

Circumstance Inputs

• Conceptual Architecture - Part o f the Mega-System architecture that includes concepts 

and a design guideline, defined in section 6.2.

Mechanism

• Infrastructure - The chosen infrastructure o f the domain as specified in section 7.2. 

Outputs

• System - One o f the constituent systems of the Mega-System.

• Feedback - Feedback from the system task to other tasks o f  the process and to the meta

management.

8.2.2.3 Processing

It is possible to identify three major activities in existing approaches for development o f 

software systems: analysis, design, and implementation. The relationships between these 

activities, and their detailed content vary with the approach. These activities generalize the 

prototyping approach [GOMA 90], the spiral model [BOHE 88], and the waterfall model 

[BOHE 76]. Figure 8.3 uses these activities to illustrate how these approaches will be used 

in M egSDF’s system task (see also section 8.2.5).

Verification, validation, and quality assurance activities are assumed to be part o f 

every task and sub-task to ensure the system provides the required functionality. MegSDF
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does not restrict the system tasks to specific techniques, e.g., structured analysis or object 

oriented analysis. System tasks can use techniques appropriate to the given situation.
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Requirements I Lower
— \- - - - - - - - - - - - ^1  Level
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Feedback
Schedule
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Design
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Design
Implem
entation

Require
ment
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Figure 8.3 System Process Diagram

8.2.2.4 Timing

A system task has a schedule restricted according to the global schedule. Several system 

tasks might be active concurrently, each developing a constituent system. We propose the 

same steps for maintenance, i.e., analysis, design, and implementation, as for basic 

development.
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8.2.2.5 Sub-tasks 

Requirement Analysis

This task specifies the requirements for the system. The analysis is based on the domain 

model and the customers’ requirements. The application architecture is used for the 

specification o f the system boundary and its interfaces. This task can use structured 

analysis [YOUR 89], [WARD 86], object oriented analysis techniques[COAD 91a], 

[RUMB 91], etc.

Design

The constituent system is designed in this task. The process is guided by the concepts 

defined in the conceptual architecture. This task can use any design technique, e.g., 

structured design [PAGE 80], [ROSS 77], or object-oriented design [COAD 91b]. 

Implementation

The system is implemented in this task using the infrastructure. The programs are either 

directly developed or generated by code generators (when available), debugged, and 

integrated. The system as a whole is verified and validated.

Lower-Level Management

This task controls the process o f constituent system development. A development 

approach is selected, e.g., the waterfall approach [BOHE 76] or its variations, the spiral 

model [BOHE 88], or rapid prototyping [GOMA 90]. Lower level management is also 

responsible for coordinating the techniques used in each sub-task. It is also responsible for 

planning the development process, scheduling the sub-tasks, and internal quality assurance
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and configuration management. The management o f the system task is responsible for 

communication and coordination with the meta-management and the other system tasks.

8.3 Mega-System Synthesis in MegSDF

This section defines the Mega-System Synthesis task. Section 8.3.1 describes the role o f 

Mega-System synthesis in MegSDF. Section 8.3.2 defines a Mega-System synthesis 

process.

8.3.1 The Role o f Mega-System Synthesis

This task is responsible for providing an effective and efficient Mega-System to the 

customers. It integrates the constituent systems into a coherent Mega-System. As a 

framework for the development and integration o f Mega-Systems, one o f M egSDF’s goals 

is to simplify the activity o f systems integration by developing constituent systems that 

are "pre-planned".

The Mega-System synthesis task is guided by the application architecture which 

specifies the systems and the building blocks o f the Mega-System according to the domain 

model. After evaluation o f the capacity needs for the system, e.g., number o f users, 

frequency o f transactions, number o f data records, etc., a Mega-System configuration is 

defined. This configuration specifies the hardware configuration and the allocation o f 

building blocks to appropriate hardware components. Scheduleability analysis [HALA91] 

can be used as a tool for optimization and verification. The infrastructure enables the
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linkage o f these systems into a coherent Mega-System. Feedback from the Mega-System 

synthesis task is used to improve the Mega-System architecture and the constituent 

systems.

The Mega-System must operate efficiently, with reasonable response time. 

However, the system must also to be cost-effective. Accordingly, Mega-System synthesis 

strives for an optimized configuration which enables effective use o f the system at a 

reasonable cost.

Extendibility is an essential requirement for a Mega-System. The long life cycle 

o f  a Mega-System, with attendant changes in requirements, means the need for additional 

resources is to be expected.

The Mega-System Synthesis task is not responsible for developing and 

implementing constituent systems. However, feedback from this task may improve the 

constituent systems. This task evaluates the Mega-System architecture and verifies the 

operability o f the infrastructure.

The Mega-System synthesis task may be considered as a generalization o f the 

integration phase o f  traditional systems development. However, it deals with 

interoperating systems and not with system components. It also includes specification of 

a Mega-System configuration that addresses both software and hardware configurations. 

Moreover, it uses the Mega-System architecture and the infrastructure as essential tools.

Mega-System synthesis is essentially a customization o f the system according to 

the customer needs. This process specifies the parts o f the system that will be used in the 

actual Mega-System. It may identify parts that were not yet developed or which need
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modification. Since the Mega-System architecture identifies elements that need 

customization, this task includes specification o f the actual parameters for these elements.

8.3.2 The Process o f Mega-System Synthesis

8.3.2.1 Purpose

The purpose o f  the Mega-System synthesis task is to provide a coherent Mega-System to 

a customer.

8.3.2.2 Interfaces 

Inputs

• Application Architecture - The meta-design o f the Mega-System, defined in section 6.2.

• Customers requirements - Requirements o f the actual customers/user o f the specific 

Mega-System.

8 Systems - The constituent systems that were developed by the system tasks (projects). 

Control

8 Management Control - The schedule assigned to the task by the meta-management task. 

Mechanism

8 Infrastructure - The chosen infrastructure o f the domain, specified in section 7.2. 

Outputs

8 Mega-System - A Mega-System that fits the requirements o f the customers.
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• Feedback - Feedback from the task to the Mega-System architecture design, 

infrastructure acquisition, system and meta-management tasks.

8.3.2.3 Processing

This task determines the software configuration on the basis o f the application 

architecture, actual user needs, and available systems. It then defines a suitable Mega- 

System configuration, including hardware configuration and allocation o f software 

systems and building blocks to hardware components. The various components are 

customized and linked together. Finally, the usability o f the Mega-System as a whole is 

verified. Local management controls the process and communicates with the customers, 

the system tasks, and the meta-management. Figure 8.4 illustrates the Mega-System 

Synthesis task.

8.3.2.4 Tim ing

Several tasks o f Mega-System synthesis may be active concurrently, each responsible for 

providing an appropriate Mega-System to a specific customer. In the case o f generic 

system o f systems, each Mega-System synthesis task provides a specific system to a 

specific customer. For systems of systems, the Mega-System synthesis tasks may provide 

distinct versions o f the Mega-System to a single customer.
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8.3.2.5 Sub-Tasks

Specify Software Configuration

The software configuration is determined based on the actual customer needs and guided 

by the application architecture. The software configuration defines the list o f building 

blocks and systems with an actual version and release numbers. This task can be 

considered as a generalization o f  software configuration management [BABI 86]. 

However, the components are systems o f larger scope than regular software components. 

The output o f this task includes a definition o f the software configuration, with the actual 

parameters identified for the various systems and building blocks.
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This task is not responsible for implementing building blocks. Therefore, feedback 

from this task might include modification requests, e.g., a requirement to modify an 

existing building block/system, or to develop a new one. These modifications are done by 

the system tasks. Thus, feedback from this task improves the application architecture and 

constituent systems.

Specify Mega-System Configuration

This task specifies the hardware configuration and allocates systems and building blocks 

to the hardware components.

Link and Verify

This task links together the hardware and software components. The software is installed 

on the hardware components. No actual linkage may be required; the systems may "start" 

by beginning to communicate using the infrastructure. In other cases, installation may be 

more complicated, involving specification o f parameters and other administrative 

activities. The Mega-System as a whole is tested to ensure its usability. The objective o f 

MegSDF is that this task be as simple as possible and that the effort required for linkage 

and verification be minimal. This task is an extension o f the integration phase o f 

traditional software development approaches.

Local M anagement

This task is responsible for planning and controlling the Mega-System synthesis process. 

It specifies the schedule for the sub-tasks and local policies and procedures. This task is 

also responsible for communicating with the meta-management and systems tasks.



CHAPTER 9

A SCENARIO

This Chapter describes how MegSDF can be used for the development o f Mega-Systems. 

Section 9.1 describes the current status o f a hypothetical software house that develops 

systems in the insurance domain using traditional software engineering methods. Section

9.2 describes how MegSDF can be used. Section 9.3 discusses the advantages o f  applying 

MegSDF.

The scenario is based on personal experience and discussions with software 

developers. It does not describe a specific software house, and there may o f course be 

many cases where only some o f the problems exist. The scenario does not include 

development o f the elements o f the framework. It is only used to illustrate the use o f  the 

framework and the process model.

9.1 Current Status

A software house develops and maintains a number o f large, complex systems in the 

insurance domain. The systems consist o f hundreds o f programs. The total amount o f  code 

is greater than 1M lines o f code. The algorithms implemented within the systems are

272



273

complex and include actuarial and escalation formulas. We describe the current state o f 

affairs from the viewpoint o f  the customers, the developers, and the systems.

The Customers

The software house has a large number o f customers, including both insurance companies 

and large insurance agencies. The customers are located in different states, each state with 

its own laws and insurance regulations. The insurance companies and agencies sell 

different kinds o f insurance, e.g., life, property, liability, etc. Most sell policies for all 

types o f insurance, but several agencies specialize in a specific kind of insurance, e.g., life 

insurance. The users must operate different systems to accomplish their jobs.

The Systems

The systems have undergone many generations o f modification. The developers o f  these 

systems are not available and documentation is poor and out-of-date. They are hard to 

maintain, update, or integrate.

The systems operate in environments o f different vendors, varying from 

mainframes with hundreds o f terminals, e.g., IBM 3090s or CDCs, to smaller systems with 

several terminals, e.g., VAXs and personal computers (IBM compatible and M acintoshs6). 

The computers use different operating systems.

Most o f the systems were developed using COBOL. Some old systems include 

assembly programs that no one dares to change since the algorithms used in these systems 

are not documented. Some new systems were developed using application generators. The 

status o f data handling and communication within the systems is similar. Some old

6 Macintosh is a trademark of Apple Computers, Inc.
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systems use files and indexed files to store information. Other systems use different 

database management systems. The mainframes use different and incompatible tools and 

communication networks, e.g., SNA for IBM products, Dec Net, etc.

The interaction between the systems is often done either manually or by batch 

processing. In the worst case, an operator must type information given as paper reports o f 

one system to another system. In other cases, special batch programs must be run in order 

to download information from one system onto disk files, which other programs then 

upload to other systems. Files are transferred from one system to another by Remote File 

Transfer and similar mechanisms. The connection between the systems is, generally, not 

transparent, and requires the intervention of human operators, a type o f interaction which 

is unreliable and can cause inconsistency and affect the integrity o f the data stored in the 

systems.

Different systems with the same functionalities have been developed to operate in 

different environments. Over time, their functional commonality disappeared in response 

to the requirements o f different users with different needs and objectives. Moreover, there 

are redundant functionalities, e.g., every system handles the insurance clients separately; 

every system handles policies. Thus, the software house deals with an enormous number 

o f modules.

There is redundant and often inconsistent data in the different systems. A change 

o f insured address or phone number, for example, requires updates to the life insurance, 

property, agent, and vehicle systems. Every system stores different information for the 

same entities. There are differences in attribute names, types, even semantics. A
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modification first requires identifying all affected systems. A specialized solution, fitting 

the system data and functionalities, must then be implemented for each system.

There is no standard user interface; every system uses its own layout o f screens and 

approach to user interaction. Training new agency employee requires several weeks. 

The Developers

The developers are located in several sites. Furthermore, the organization o f the software 

house separates the system analysts from the designers and programmers. Even groups 

working on the same project are located in different sites.

Each group develops its system using local procedures and standards. Coordination 

between the groups is mainly administrative and is inefficient. Technical solutions are 

shared on a voluntary basis. There is no real coordination between the developer groups. 

Similar functionalities are developed by different groups because o f  a lack  o f knowledge, 

or because o f  a lack o f authority that might enable imposition o f some simple restrictions 

that would compel the various parties to use an existing solution, or decide to develop a 

general solution for all groups, with attendant saving in both development and 

maintenance effort.

Developers are usually assigned to specific systems since training new software 

engineers is time consuming. The average turnaround time for a software engineer in the 

software house is about two years. It is generally impossible to move a programmer from 

one system to another one, since mastering application complexity and system-specific 

development procedures and standards requires extensive training.
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CASE tools are used primarily for reverse engineering and documentation. These 

tools yield a large amount o f information but it is hard to read, understand, or upgrade. 

The Problems

The previous discussion may be summarized by the following problem list:

• The software house has a list o f hundreds o f "urgent" requests for modifications o f 

existing systems. These requests/demands are often ambiguous or contradictory. Any 

change request requires tremendous effort. The response time to customer needs is 

unacceptable.

• The temporary, local problems o f the customers govern the system.

• Customers insist on working with one system that includes all functionalities, rather than 

having to use a number o f "independent" systems.

• There is a shortage o f professional programmers and software engineers who are also 

experts in the insurance domain.

• Maintenance is the essential part o f  the work and new systems are almost not developed, 

while competition with other companies is intense. New software houses offer new 

systems at cheaper prices. These systems are based on new technologies and offer new 

functionalities that do not exist in the systems o f the software house.
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In view o f current problems, we recommend the company adopt M egSDF’s concepts and 

process model.

M eta-M anagement

The company must establish a meta-management team. This team will include all 

managers o f the various software developer groups and will be responsible for enforcing 

standards and policies for all groups. Meta-management will communicate with customers 

and balance their requests. Meta-management will schedule all activities and handle 

budgeting. Meta-management will also determine trends and strategy for the entire 

system.

Domain Analysis

A special group, consisting o f both computer and insurance experts, will develop a domain 

model. This group will be independent o f a specific development project. The group will 

provide a general, comprehensive model of the insurance domain. The group will be 

responsible for updating the model as a result o f  domain dynamics and feedback from 

development teams.

M ega-System Architecture Design

A separate group will study existing architectures for software systems. The group will 

define a Mega-System architecture which will be used as a reference model and a 

guideline for developing systems in the domain. The design and implementation concepts
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will be used by all development groups. The application architecture will determine the 

overall structure, the components, and their interfaces.

Infrastructure Acquisition

Another group will be established to examine existing infrastructures. This group will 

choose, on the basis o f  the conceptual architecture, an appropriate infrastructure that will 

be used as the basis for implementing systems in the domain. The responsibility o f  the 

group includes verification and validation that the infrastructure supports the concepts 

specified in the conceptual architecture. The group must also support the operation o f  the 

infrastructure as an active part o f  the Mega-System, e.g., registration o f  services, 

installation o f building blocks, allocation o f resources, and measurement o f  resource 

utilization. This group is responsible for evaluating new technologies and incorporating 

them as required into new versions o f the infrastructure.

System Tasks

Using the domain model and the Mega-System architecture, existing systems will be 

evaluated for compatibility. As a result, a number o f applications will be modified and 

other systems will be developed from scratch. Meta-management will decide the order o f 

development. The systems will be developed according to the Mega-System architecture 

based on the selected infrastructure. All systems will be developed as independent 

projects.

M ega-System Synthesis

A Mega-System synthesizing group will be assigned to every customer. The synthesizers 

will integrate a Mega-System in view o f customer requirements. The synthesizers will
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choose the components, customize the systems, and request modification o f  existing 

systems or development o f  new systems as required.

9.3 Advantages of Using MegSDF

Under MegSDF, the software house develops a Mega-System o f the generic system o f 

systems type as a domain-wide solution. We clarify the benefits o f using MegSDF from 

the viewpoints o f the customers, developers and systems.

The Customers

The Mega-System consists o f systems for insurance companies, integrated with systems 

for agents. These systems handle policies, maintain insured information, and support 

computation o f insurance rates, claims adjustment, accounting, and other insurance 

functionalities. The systems assume there exists a large number o f customers with diverse 

needs and objectives. The Mega-System is scalable and can be configured for insurance 

companies, general agencies that offer all types o f insurance, and specialized agencies, 

e.g.. life insurance agencies.

The Mega-System is developed with emphasis on user transparency. Users operate 

a unified, coherent, large system, with a common user interface, that offers assorted 

services, rather than operating multiple systems. All screens o f the Mega-System will have 

the same structure and interaction with the system will be based on the same interaction
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types. The functional keys have the same role in all systems. Thus, training o f a new 

insurance company or agency employee will require less time.

The connection between the systems is automatic, requiring minimal human 

operator involvement. For example, an agent fills out, using the agent system, the insured 

application and issues a temporary policy. The application is automatically transferred to 

the insurance company system. In this system, a policy is underwritten based on the 

application information, approved, and issued to the customer.

Meta-management balances the multiple, even contradictory requirements o f 

customers. It resolves contradiction in requirements, imposes unified, generalized 

solutions, and specifies a global schedule, optimizing the demands o f the customers. For 

example, all system will use the same attributes for insured identification, policy 

identification, etc. I f  other representations for insured identification are required, 

interfaces will be supplied to translate the exceptional attributes to the common attributes. 

The Systems

The systems o f the software house are now developed as a generic system o f systems (a 

coordinated set o f federated systems). The common set o f  functionalities is specified 

based on the common domain model. The constituent systems are developed according 

to the conceptual architecture, utilizing the infrastructure.

The systems are developed as general solutions and therefore fit many customers 

with different needs and objectives, not for a specific insurance company in a specific 

state. The systems will be developed with parameters to enable their efficient
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customization. For example, it will be possible to adjust the installment plan, the profit 

percentage, etc., according to the insurance company policy.

The domain model facilitates specification o f  the relationship o f  a system with its 

environment and enables earlier identification o f integration requirements. For example, 

since all information on the different types o f policies o f  clients is accessible, the 

marketing department could analyze consumer behavior to identify appropriate new 

offerings. Similarly, using the claims system information, the actuary will be able to 

identify high-risk geographical areas and determine appropriate insurance rates.

The domain model enables the identification of similar functionalities. Data 

redundancy is reduced; if  redundancy is required to improve availability or efficiency, it 

is controlled. This reduces problems with inconsistent data. For example, insured 

information is handled by a single system which is open to retrieval request from other 

system, so address correction will be done only in a single system.

Developing systems according to common design and implementation concepts 

and using a common infrastructure eases development and maintenance o f systems and 

simplifies systems integration. Using these concepts, it is possible to maintain the 

consistency o f the systems and their structure even after the designer o f the system leaves 

the company.

The common infrastructure and architectural concepts promotes the portability o f 

the systems. Rather than developing different versions o f systems for different 

environments, e.g., claims systems for DOS, IBM mainframe, and CDC, drivers for these 

environments are developed. For example, drivers to different types o f databases e.g.,
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IMS, IDMS, or indexed files, which provide the same data handling functionalities, will 

be developed. Thus, it becomes possible to use the same software in different 

environments with different operating systems, (IBM 3083, personal computers, VAXs, 

etc.) with minimal effort. Porting a system to a new environment primarily requires 

mainly developing drivers for the environment.

These improvements reduce the number o f different systems and so also reduce 

opportunities for decentralized modification over time. These characteristics 

simultaneously improve the processes o f modifications and upgrading, since fewer 

programs must be considered and changed per modification. For example, a change o f 

attribute for a policy information will be local to the policies system.

The Developers

MegSDF promotes global coordination between the different groups developing 

constituent systems and provides a means for improving communication between them. 

The domain model provides a basis for common understanding among the different 

developer groups. It uniformizes the terms o f the insurance domain for all developers. In 

the event o f  conflicts between developer groups, the domain model will be used as a 

reference.

The Mega-System architecture imposes common design and implementation 

concepts, e.g., common user interface and design constructs, to be used in the systems o f 

the Mega-System. It requires compatibility o f the constituent systems with these elements, 

thus uniformizing the implementation o f the entire system.
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The infrastructure uniformizes the handling o f technologies for all systems and is 

not merely an option. It also enables developers to restrict their attention to domain 

problems. Based on existing enabling technologies, it provides standardized tools for data 

handling or user-interfacing. Thus, the infrastructure precludes the need to develop 

database management systems or user-interfacing tools within projects and restricts the 

number o f different technologies used in the domain. The infrastructure provides a means 

for interaction and facilitates integrating the constituent systems.

Meta-management is responsible for coordinating developer groups. The domain 

model and application architecture are used to reduce the risk that groups replicate 

functionalities because o f lack of coordination.

The mobility o f developers among groups is also improved. The knowledge o f a 

specialized group is generally specified in the domain model and so is easier to learn. 

Since the development o f  all constituent systems is based on shared concepts a "new" 

developer can easily adjust.

Looking back to the problem list o f section 9.2.1, it is possible to summarize the 

new status:

• The list o f  hundreds o f "urgent" requests may be shorter and different in nature. Since 

the systems are built as general solutions, fewer adaptions are required.The m eta

management balances the demands o f the customers and imposes general, common 

solutions.

• Change requests require fewer efforts. There are fewer systems to examine or modify 

for each change request. The openness o f the systems improves their integratability.
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• Meta-management specifies a global schedule and determines directions in consideration 

o f  customer needs.

• The customers use a unified system (with assorted functionalities) since the systems are 

developed according to the common user interface concepts o f  the conceptual architecture, 

utilizing an infrastructure that facilitates interaction o f systems.

• Mastering the application domain is easier. The domain model provides an effective 

basis for understanding the domain. The mobility o f developers is improved since 

procedures and implementation concepts are explicitly specified and common to all 

systems.

• Developing systems using common design concepts and utilizing a common 

infrastructure enables developers to focus on domain related problems. The infrastructure 

reduces the effort required to incorporate new technologies. Thus, the developers have 

more time to develop new systems and applications.



CHAPTER 10

CONCLUSIONS AND SUMMARY

This chapter includes conclusions and summarizes the thesis. Section 10.1 evaluates 

MegSDF according to the characteristics indicated in chapter 3 and identifies the 

contribution o f  each task to the quality of the Mega-System. Section 10.2 discusses 

prerequisites for success in implementing MegSDF. Section 10.3 summarizes the thesis.

10.1 Requirements Verification

10.1.1 Realization of Framework Requirements

Chapter 3 established the following requirements for a framework for developing Mega- 

Systems:

• General,

• Comprehensive,

• Operative, and

• Open

MegSDF is general. It is domain independent. It is appropriate for various 

application domains, e.g., data-processing and real-time systems, and applicable to 

different types o f Mega-Systems.
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MegSDF is comprehensive. It incorporates engineering, managerial, and 

technological aspects.

MegSDF is operative. It defines an engineering process that specifies the tasks 

required to develop Mega-Systems, their deliverables and interconnections. The 

framework is coherent: all its parts are interrelated, the results o f  tasks are used as inputs 

to other tasks, and all the activities are integrated into an engineering process.

MegSDF is open and flexible. Developers can select an appropriate technique to 

implement their tasks. Domain analysis, for example, allows various suitable modeling 

approaches. System tasks can be implemented by any traditional system development 

approach, provided they use the requisite framework elements: the domain model, the 

Mega-System architecture, and the infrastructure. The process is adjustable, allowing 

activation and deactivation o f systems and synthesis tasks according to actual necessities. 

The Mega-System and Meta-management tasks continuously evaluate changes in the 

domain, customers requirements, and technologies, as well as feedback from developers, 

incorporating them in the Mega-System as required.

10.1.2 Quality Attribute Map

A Mega-System must not only meet the requirements o f the customer but also be:

• Effective,

• Open,

• Efficient,

• User-friendly.
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• Reliable, and

• Maintainable 

Effective

The system should meet the requirements o f the customers. In the case o f Mega-Systems, 

requirements are not well defined; they might be ambiguous, and/or contradictory. The 

process model addresses this in two ways. First, a domain model provides a 

comprehensive, general domain representation, but not one specific to an individual 

customer. The Mega-System synthesis tasks tailor the Mega-System to the special needs 

o f  the customers.

Open

The system should be open, that is integratable, scalable, extendible, and upgradable. It 

should be possible to integrate the system with other systems, to define different 

configurations for different customers with different set o f  functionalities, to extend the 

system with new functionalities, and upgrade the system with new technologies.

The Mega-System architecture design and infrastructure acquisition tasks support 

the openness o f  the Mega-System. The conceptual architecture specifies concepts which 

ensure the extendibility, scalability, and integratability o f the system. The infrastructure 

supports these concepts and enables efficiently incorporating new technologies, and 

upgrading existing technologies.
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Efficient

The system should be efficient, optimizing hardware price, performance requirements, 

development efforts, and quality requirements, with an emphasis on long-term solutions, 

not local, temporary ones.

The infrastructure and system tasks facilitate the efficient operation o f both the 

constituent systems and the entire Mega-System. The Mega-System synthesis task 

provides a balanced optimization over the non-functional requirements o f the customer, 

e.g., response time and hardware cost.

Development effort is reduced since all developer groups use the domain model, 

common design and implementation concepts, and a common infrastructure. The 

infrastructure also enhances the portability o f systems developed using its services. 

User-friendly

The system should be user-friendly in the sense o f consistency and adjustability. Users 

should have the feeling o f using a single system. They should have a consistent user 

interface and interaction types. Since a Mega-System may have a heterogeneous user 

group, it should also allow adjustment and customization o f features according to user 

preference.

The environment view o f the conceptual architecture includes concepts for a 

common user interface. These concepts, supported by the infrastructure, promote 

uniformity and consistency over the entire Mega-System.
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Reliable

The system should be reliable, i.e., highly available, fault-tolerant, and secure. It should 

ensure consistency o f data in the event o f failure and protect resources and data from 

unauthorized use.

The conceptual architecture specifies mechanisms to ensure the reliability o f the 

entire Mega-System and the infrastructure supports these mechanisms. O f course, the 

developers o f the constituent systems should develop reliable systems using the methods 

o f traditional software engineering and the services o f the infrastructure.

Maintainable

The system should be maintainable. It must be divided into cohesive, minimally coupled 

building blocks to ensure its manageability. The constituent systems must be consistent 

and use common design and implementation concepts.

The application architecture design task specifies building blocks and clusters on 

the basis o f the domain model. The conceptual architecture provides common design and 

implementation concepts. The system tasks use these concepts, together with traditional 

software engineering methods, to produce a maintainable Mega-System.
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Table 10.1 identifies the quality attributes each task contributes to the Mega-System. 

Table 10.1 Impacts o f M egSDF’s Tasks on Quality

Domain
Analysis

Archi
tecture
Design

Infra
structure
Acquisition

System
Tasks

Synthesis
Tasks

Effective + +

Open + + +

• Extendable + + +

• Scalable + +

• Upgradable +

• Integratable + + +

Efficient + + +

• Performance + + +

• Development 
efforts

+ + +

• Hardware price +

• Portable +

User-friendly + +

• Consistent +

• Adjustable +

Reliable + + +

• Available + +

• Fault-tolerant + +

• Secure + +

Maintainable + +

• Modular + +

• Consistent + +
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The implementation o f MegSDF requires an organization with software process maturity 

[HUMP 88], [SCHL 92] and a comprehension o f software engineering methods. It cannot 

be applied in an organization at the "initial" level, lacking procedures or processes: an 

organization that uses ad-hoc solutions can neither develop nor use means for engineering 

coordination, e.g., common design and implementation concepts.

On the other hand, for organizations at the appropriate level, the success o f 

MegSDF depends on:

• The commitment o f management,

• The development and maintenance o f accurate means for engineering coordination, and

• The adequate use o f the engineering coordination concepts and tools by the developers.

Management commitment is required because MegSDF emphasizes long term 

solutions. Developing such solutions requires an initial investment that is often expensive 

and time consuming. The benefits o f these solutions are not seen immediately, but only 

in the long run. Without management commitment, and allocation o f appropriate 

resources, the MegSDF development environment will be infeasible.

MegSDF includes development o f a domain model, a Mega-System architecture, 

and acquisition o f an infrastructure. These elements are common and general means for 

engineering coordination that transcend the development o f  the constituent systems. Since 

they are an integral part o f the development process they must be maintained as long as 

systems are developed and maintained in the domain. Since domains and technologies
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change, it is mandatory to update these means to assure their effectiveness. It is also 

required to develop them accurately.

In addition to the commitment o f the management and the development o f 

appropriate means, the developers themselves must use these means properly as 

circumstances and guidelines. The domain model, Mega-System architecture, and 

infrastructure must be used by all developers. They must be part o f the engineering 

culture, thus requiring changes in methods and working style. Local, temporary solutions 

become counter-practical from this viewpoint. It is necessary to understand these means 

provide a way o f coping with the complexity o f Mega-Systems and enable the developers 

to solve the real problems o f the application domain.

10.3 Summary'

This thesis specifies a framework for developing large, complex software systems which 

we call Mega-Systems. MegSDF incorporates the engineering, managerial, and 

technological aspects and a process model for coordinating these aspects.

MegSDF proposes developing Mega-Systems as domain wide, long-term systems 

following a pre-planned approach. The Mega-Systems are developed as open distributed 

systems (federated systems) which share data and functionalities and are planned to be 

integrated with other systems and to be changed in the future.
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MegSDF partitions the development process into multiple coordinated projects, 

each developing one o f the constituents systems. Two levels o f managements are proposed 

in order to enforce distinction between global, and long-term versus local and short-term 

issues. Meta-Management is responsible for the development o f the entire Mega-System, 

while lower level managements are responsible for development o f constituent systems.

The MegSDF engineering process model specifies the activities or tasks required 

to develop Mega-Systems, including their deliverables and interrelationships. Some o f 

these tasks generalize traditional activities, e.g., system or meta-management tasks, while 

others substantially extend existing approaches and are specific for MegSDF.

The process model consists o f System, Mega-System Synthesis, Mega-System, and 

Meta-Management tasks. System tasks develop constituent systems. Mega-System 

Synthesis tasks assemble Mega-Systems from constituent systems according to actual 

customer needs. The Meta-Management task plans and controls the entire process. Mega- 

Systems tasks provide a means for engineering coordination and include Domain 

Analysis, Mega-System Architecture Design, and Infrastructure Acquisition tasks. 

MegSDF process is active for the duration of software systems in the domain. The meta

management and the Mega-System tasks are continuous. The systems and synthesis tasks 

are activated according to actual domain needs.

Domain analysis provides a general, comprehensive, non-constructive domain 

model. The domain model is used by the developers o f the Mega-System as a common 

knowledge base. It is built as an integration o f multiple perceptions, each o f which 

represents the domain from a significant viewpoint. A domain modeling schema (with
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modeling primitives) is also proposed to facilitate modeling and integrating multiple 

perceptions.

A Mega-System architecture is proposed as a primary means o f engineering 

coordination, to assure the uniformity and consistency o f the entire system. The 

conceptual architecture defines common design and implementation concepts. The 

application architecture specifies the overall structure o f the Mega-System, its 

components, and their interfaces. The Mega-System architecture provides an explicit 

definition o f common design and implementation concepts for systems in the domain. A 

model for a conceptual architecture and an outline for an application architecture are 

defined in MegSDF.

An infrastructure is proposed as a common service-based platform that integrates 

all enabling technologies. It supports the architecture on the implementation level. It also 

promotes portability, simplifies bridging different technologies, and facilitates 

incorporating emerging technologies in a unified way. MegSDF partitions the 

infrastructure into service groups based on the conceptual architecture. The applicability 

o f  existing infrastructures to MegSDF is evaluated.
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GLOSSARY

This glossary includes definitions o f  the concepts used in M egSDF. It relies on the 

glossary found in the "Systems and Software Requirements Engineering - IEEE Computer 

Society Press Tutorial" written by Richard H. Thayer and Mildred C. Thayer; these 

definitions are designated by [THAY 90]. The same convention is followed with 

definitions drawn from other sources. Concepts new to M egSDF or concepts adapted for 

M egSDF are designated by [*]. Other definitions represent standard terminology.

1. Application Domain

An application domain is a comprehensive, internally coherent, relatively self-contained 

area or business enterprise supported by software systems. An application domain consists 

o f  phenomena o f  various types, e.g., objects, relations, constraints, activities, and 

processes. See chapter 5. [*]

A domain is a separate real, or hypothetical, or abstract world inhabited by a 

distinct set o f  objects that behave according to rules and policies characteristic o f  the 

domain. [SHLA 92]

2. Application Architecture [*]

An application architecture defines the boundaries o f  the M ega-System  within the 

application domain, the various systems and components o f  the Mega-System, their

320
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interfaces, and the services provided by each component. It is part o f  the M ega-System  

architecture, an output o f  the Mega-System architecture design task.

The application architecture is used by the M ega-System synthesis and the systems 

tasks as a reference model and guideline. It is an instantiation o f  the conceptual 

architecture. The application architecture is domain specific as opposed to the conceptual 

architecture. See chapter 6.2.3.

3. Autonomous System

An autonomous system is a system developed to work on its own, independently o f  other 

systems. An autonomous system has both self-contained functionality and self-contained 

technical environment. The development o f an autonomous system is usually done by a 

software team and according to team standards and procedures. See chapter 2 and 3.

4 . Architectural Style

Architectural styles are common software architectures defining general design and 

implementation concepts. The architectural styles are used as inputs to the conceptual 

architecture design task. See section 6.2.3.

5. Conceptual Architecture [*]

A conceptual architecture defines common design and implementation concepts for the 

M ega-System , as well as guidelines for deriving the application architecture o f  the Mega- 

System. It is a part o f  the Mega-System architecture, an output o f  the M ega-System
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architecture design task. MegSDF proposes dividing the concepts o f  the conceptual 

architecture into interrelated views, e.g., structural, communication, control, data, and 

environment. The conceptual architecture is a specialization o f  an appropriate architectural 

style.

The infrastructure and the domain model have a major influence on the conceptual 

architecture since they are used as inputs to the decision process that selects the conceptual 

architecture. The conceptual architecture is used as an input for the infrastructure 

acquisition and the system tasks developing constituent systems o f  the M ega-System. See 

section 6.2.2.

6. Derived From [*]

The relationship between a set o f  functionalities specified at a conceptual level and a 

system developed as an instantiation o f  this set o f  functionalities, or the specialization o f  

such a set o f  functionalities followed by their instatiation. See section 2.3.

7. Dim ension [*]

A part o f  the domain model, consisting o f  interrelated elements representing the 

phenomena o f  the domain. The number o f  dimensions in a domain m odel, and their 

content depend on the actual domain and the modeling approach. See section 5.2.
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8. Domain Analysis [*]

Domain analysis is one o f  the M ega-System design tasks. In this task an application 

domain is abstractly modeled. Each phenomenon in the domain is represented as an 

element and described from various aspects. To achieve a comprehensive model o f  the 

domain we propose viewing the domain from  different perceptions and then integrating 

these perceptions into a unified model. Unlike domain analysis methods used fo r  

reusability, M egSD F domain analysis does not include constructive issues, e.g, design and  

implementation, fo r  the domain. See section 5.2.

9. Domain M odel [*]

An output o f  domain analysis which describes the phenomena for a specific application 

domain from different points o f view  (perceptions). Each phenomenon is represented by 

an element and is described from various aspects. Possible phenomenon types are objects, 

relations, processes, and constraints. The domain model is used by the Mega-System  

architecture design task as an input that affects the choice o f  M ega-System architecture. 

Parts o f  the domain model are used by the various systems tasks as inputs for the 

requirement analysis phase. See section 5.2.

10. Domain Schema [*]

A set o f  m odeling primitives (element-types) to be used for building a domain model. A 

domain-schema is defined on the basis o f  a suitable modeling approach and the actual
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domain. M egSDF proposes dividing the schema into domain schema dimensions each 

consisting o f  interrelated element-types. See section 5.2.

11. Element[*]

An element is a component o f  the domain model representing a phenomenon o f  the 

domain. See section 5.2.

12. Enabling Technology'

An enabling technology is one that makes another technology or technologies possible. 

[RHEI 91]

Enabling technologies are the diverse parts o f  the infrastructure. Their integration 

enables the development and operation o f  Mega-Systems. These technologies are the 

mechanisms that support the implementation and the integration o f  the various systems. [*] 

See chapter 7.

13. Environment

An environment is the circumstance under which a software system operates, consisting 

o f  processors, operating systems, programming languages, and development and 

debugging tools. See chapters 1 and 3.
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14. Framework [*]

A framework is a comprehensive approach or reference model in a domain. It defines a 

set o f  mutually integrated methods and concepts and is used for the solution o f  a complex 

problem.

We propose M egSD F as a framework fo r  the development o f  Mega-Systems. It is 

composed o f  engineering, management, and technical aspects. It is used as a guideline in 

the planning and execution o f  a process fo r  developing a Mega-Systems. See chapter 3.

15. Generic

Of, pertaining to, or applicable to all the members o f  a genus, class, group, or kind. [WEBS 

91]. See section 2.3.

16. Generic System

A generic system is a specification o f  a set o f  interrelated functionalities and the actual 

systems derived from this specification. A functionality is specified on an abstract and 

conceptual level by natural languages or formal definitions. Different systems are derived 

by an instantiation or specialization o f  the abstract functionalities.

Generally, a generic system is developed by several software teams belonging to 

the same organization. Each software team develops a derived system as an independent 

project. See section 2.3.
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17. Generic System of Systems!*]

Generic Systems o f  systems is a subclass o f  the system o f  systems and generic systems 

classes. A  Generic system o f  systems is developed for a domain without a specific 

technical environment, time frame, or customers, and can have multiple configurations 

consisting o f  several systems at a given point o f  time. See section 2.4.

18. Homogeneous Environment

A homogeneous environment is an environment in which a software system operates, 

consisting o f  one type o f  operating system, a specific set o f  tools, one language, and a 

hom ogeneous hardware configuration. See chapter 1.

19. Heterogeneous Environment

A heterogeneous environment is an environment, in which a software system operates 

consisting o f  several different operating systems, a mixed set o f  tools, various 

programming languages, and several hardware configurations. See chapter 1.

20. Heterogeneous User Group

A heterogeneous user group is a group o f  users o f  a software system characterized by a 

large number o f  users with diverse roles located in diverse sites such users have no 

common user profile or fixed requirements. See chapter 1.
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2 1 . Huge System

A huge system is a large, complex software system developed by a large software team 

and/or over a long period. These systems usually solve a particular problem for a well- 

defined user group. A  huge system is composed o f  multiple subsystems, where each 

subsystem is designed and developed only as a part o f  the whole system. A huge system  

operates in homogeneous or heterogeneous environments.

Huge system are generally developed as one large project. However, we propose 

developing huge systems as systems o f  systems. Huge systems are type o f  Mega-System. 

See chapter 2.1.

22. Infrastructure [*]

An infrastructure is an environment that integrates all enabling technologies that facilitate 

the development and operation o f  a Mega-System. It is chosen in the infrastructure 

acquisition task. Essential enabling technologies o f  an infrastructure include 

communication, database management system, and user interface. The infrastructure 

forms a stable layer between the various constituent systems o f  the M ega-System and the 

enabling technologies.

The infrastructure is used as a mechanism fo r  the development o f  the constituent 

systems and fo r  their integration in the Mega-System synthesis tasks. It is an input fo r  the 

Mega-System architecture design task and has a major influence on the architecture o f  

the Mega-System. See chapter 7.
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23. Infrastructure Acquisition [*]

The infrastructure acquisition task includes choosing, developing or purchasing, 

validating, and supporting an infrastructure that integrates the enabling technologies into 

a unified platform. This process is based on the conceptual architecture o f  the Mega- 

System and aims at selecting an infrastructure.

Currently, only a fe w  infrastructures exist and therefore an infrastructure typically 

must be developed. We believe that in the future infrastructures will be standard products, 

hence this task will tend to be solely a decision and certification process and will not 

involve development. See chapter 7.

24. Instantiation [*]

A system S is an instantiation o f a specification o f  a set o f  functionalities i f  S implements 

these functionalities using a specific algorithm, programming language, or hardware 

configuration. See section 2.3.

25. Integrate-to [*]

A relation between a constituent system Si and its parent M ega-System P, wherein the 

system Si is integrated with other constituent systems {S I, S2, ..., Si-1,, Si+1, ..., Sn} to 

form the M ega-System P. A system S that is "integrated to" might be considered as a 

stand-alone system. Each constituent system is developed by a separate team, under 

different management, procedures and standards, and with its own schedule. However, all
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the constituent systems operate as a coherent larger system after the integration. See 

section 2.2.

26. Integration

The act or instance o f  incorporating or combining into a whole. [WEBS 91]

In software development, integration is performed at several phases o f  the life 

cycle. Different types o f  components include lines o f  code, modules, subsystems, and the 

most sophisticated components - systems. The integration o f  components developed by 

different individuals is very difficult. It is further complicated when components are 

developed by different groups, using different standards and procedures, working at 

diverse sites. [*] See section 2.2.

27. Mega-Project[*]

A project for the development o f  a Mega-System. It includes multiple projects that 

develop the constituent systems o f  the Mega-System. The mega-project is managed by a 

meta-management. We recommend developing a mega-project in accordance with the 

process model o f  MegSDF. See section 3.3.

28. Mega-System[*]

M ega-Systems are large, complex software systems with one or more o f  the following  

characteristics:
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- Consist o f  more than one system,

- Developed by more than one group o f  developers,

- Have a large and heterogeneous group o f  users,

- Have More than one customer,

- Operate in a heterogeneous technical environment.

We propose development o f  a Mega-System using M egSDF as a mega-project 

controlled by a meta-level management with multiple projects fo r  the development o f  the 

constituent systems. We identify huge systems, systems o f  systems, and generic systems as 

subclasses o f  the Mega-System class. See chapter 2.

29. Mega-System Architecture Design Task

M ega-system architecture design is one o f  the M ega-System tasks. It plans the Mega- 

System as a w hole and includes the specification o f  common design and implementation 

concepts, definition o f  Mega-System boundaries, allocation o f  domain elements to 

systems, and definition o f  systems interfaces. The inputs to this task are the domain model 

and the chosen infrastructure. The output o f  this task is a M ega-System architecture, 

including a conceptual and an application architecture. See section 6.2.2.

30. Mega-System Tasks[*]

The M ega-System tasks are a group o f  tasks in the engineering process for the 

development o f  a Mega-System including domain analysis, infrastructure validation, and 

the M ega-System architecture design. The tasks in this group are essential fo r  Mega-
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System development and have the role o f  engineering coordination o f  the various systems 

tasks and o f  the whole process. See section 3.3.

31. M ega-Systems Synthesis [*]

M ega-System  Synthesis is a task for forming a M ega-System from its constituents. It 

includes specification o f  software and hardware configuration based on analysis o f  non

functional customer requirements and the application architecture, and an instantiation and 

customization o f  the components according to these requirements. See section 8.3.

32.M egSDF [*]

A framework for development o f  Mega-Systems. It incorporates engineering, managerial, 

and technological aspects and focuses on an engineering process. The engineering process 

consist o f  the required activities for development o f  M ega-Systems and emphasizes the 

engineering coordination o f  the development o f  constituent systems.

33. Meta-Management[*]

The meta-management is the organizational unit responsible for the development o f  a 

M ega-System. The meta-management plans the development o f  the entire M ega-System  

and controls the M ega-System tasks and the various systems tasks. It is responsible for 

determining policies, directions, and the global schedule, and for allocating resources 

based on actual domain needs. See sections 3.3, 8.1.
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34. M eta-M anagement Task

A group o f  tasks performed by the meta-management for controlling the process o f  a 

M ega-System development. These tasks are considered as scaled up traditional 

management tasks and include scheduling, budgeting, quality assurance, and configuration 

management. See section 8.1.

35. Method

A detailed approach for solving an engineering problem.[THAY 90]

A procedure, technique, or a planned way o f  doing something.[W EBS 91]

36. Methodology

A general approach for solving an engineering method. [THAY 90]

A set or system o f  methods, principles, and rules used in a given discipline, as in the arts 

or science. [WEBS 91]

37. Module

A program unit that is discrete and identifiable with respect to compiling, linking, and 

loading. [THAY 90]

A logically separable part o f  a program. [ANSI/IEEE Standard 729-1983]

A module is linked with other modules to form  a software subsystem or system.
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38. Part-of

A relation between a subsystem sf and its parent system S. The subsystem s, is linked with 

other subsystems {s,, s2v. , Sj.,,, si+l, sm} to form the system S. Each subsystem o f  the 

system is planned and developed to work only in the context o f  the whole system. See 

section 2.1.

39.Perception

A representation o f  a domain from the specific point o f  view  o f  a significant perceiver; 

modelled using perception-elements that represent relevant phenomena o f  the domain. See 

section 5.2.

40. Post-facto Integration

Post-facto integration is the process o f  systems integration in which the constituent 

systems were developed before the design o f  the entire system o f  systems. Each system  

was developed as an autonomous system. This contrasts with pre-facto integration in 

which the system o f  systems is known in advance and the constituent systems are 

developed in the context o f  the system o f  systems. A synonym for post-facto integration 

is a posteriori integration. See section 3.3.6.

41. Pre-facto Integration

Pre-facto integration is a process o f  systems integration in which the decision on the 

organization o f  the system o f  systems, as well as all components o f  the system are known
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in advance and the constituent systems are designed to work in the context o f  the system  

o f  systems. A synonym for pre-facto integration is a priori integration. See section 3.3.6.

42. Pre-Planned Approach [*]

A fundamental design principle for development o f  software systems. According to this 

principle, even though no known requirements exist in advance, each system is designed 

to efficiently accommodate the following operations:

- integration with other systems,

- extensions o f  the system with new functionalities, and

- customization o f the system with user selected actual parameters.

We propose domain analysis, Mega-System architecture design, and infrastructure 

acquisition tasks to support this principle. See Section 3.3.6.

43. Process

A set o f  activities (tasks) whose execution is required to achieve a specific goal. A 

software development process includes all those activities which are required to build a 

software system. See section 4.

44. Process Model

A representation o f  a system/software development process activity intended to explain 

the behavior o f  some its aspects.[THAY 90]
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We propose an engineering process model fo r  the development o f  a Mega-System. 

This model includes the definition o f  the various activities, their relations, and the data 

and control flow s between them. See section 4.

45. Project

A project is the set o f  activities, functions, tasks, both technical and managerial, required 

to satisfy the terms and conditions o f  the project agreement. It is a temporary activity, 

characterized by having a starting date, specific objectives and constraints, established 

responsibilities, a budget and schedule, and a completion date. [THAY 90]

In megSDF, a project is responsible fo r  developing a constituent system or 

synthesizing a Mega-System to a specific customer. See section 3.3.

46. Risk Analysis

The methodical process o f  identifying:

- areas o f  potential risks,

- the associated probability o f  occurrence, and

- the seriousness o f  the consequence o f  the occurrence.

[T H A Y  90], See section 8.1.
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47. Service Group[*]

A service group is a part o f  the infrastructure consisting o f  a set o f  interrelated services 

offered by the infrastructure. M egSDF proposes that service groups correspond to the 

architectural views. See section 6.2.

48. Software Engineering

1. The practical application o f  computer science, management, and other sciences to the 

analysis, design, construction, and maintenance o f  software and its associated 

documentation.

2. The systematic application o f  methods, tools, and techniques to achieve a stated 

requirement or objective for effective and efficient software systems. [THAY 90]

The application o f  methods, tools, and disciplines to produce and maintain an automated 

solution to a real-world problem. [BLUM 92]

49. Software Configuration Management (SCM)

The discipline o f  identifying the configuration o f  a software system at discrete points in 

time with the purpose o f  systematically controlling changes to the configuration and 

maintaining the integrity and traceability o f  the configuration throughout the system life

cycle. [THAY 90]
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50. Software Quality

Software quality is the degree to which software possesses a desired combination o f  

attributes.

Attributes o f  software that affect its perceived value, for example, correctness, reliability, 

maintainability, and portability. [ANSI/IEEE Standard 729-1983]

51. Software Quality Assurance (SQA)

A planned and systematic pattern o f  all actions necessary to provide adequate confidence 

that the software and the delivered documentation conform to the established technical 

requirements. [ANSI/IEEE standard 729-1983]

52. Software System

A software system is a collection o f  software modules/subsystems linked together to 

accomplish some common objectives.

A software system is developed by a software team. It is designed to work on its 

own and fo r  a specific purpose. Any subsystem or module in a system is developed to 

work as a part o f  the entire system.

53. Structured Analysis (SA)

A software analysis technique that uses data flow  diagrams (DFDs), data dictionaries, and 

process descriptions to analyze and represent software requirements. [THAY 90]



54. Structured Analysis and Design Technique (SADT)

SA DT is a framework for the analysis and design activities o f  software system  

development. It is based on graphical notations drawn as a hierarchy o f  diagrams. It also 

defines the various personnel roles in a software project. [THAY 90],

55. Sub-system

A set o f  modules, sub-systems, or both, functionally related and with high coupling. Sub

systems are linked together to form a system. Usually, a sub-system is developed by one 

software team. See section 2.1.

56. System Architecture

In systems engineering, the structure and relationship among the components o f  a system. 

The system architecture may also include the system 's interface with its operational 

environment. [ANSI/IEEE Standard 729-1983]

57. Systems Integration!*]

System integration is the process o f  planning, implementing, and maintaining a system o f  

systems. This process might be considered as the most sophisticated level o f  integration, 

where the components for integration are stand-alone systems.
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58. System of Systems[*]

A system o f  systems integrates several systems to form a larger system. The coupling 

between the various systems which form the system o f  systems is low. The constituent 

systems are developed independently, by various software teams. See section 2.2.

59. System Task[*]

A system task is one o f  the engineering sub-processes o f  M egSDF. It includes the 

development or maintenance o f  a constituent o f  a M ega-System as a project. There may 

be multiple concurrent instances o f  a system task. System tasks can apply any traditional 

software systems development approach and are controlled by the meta-management task. 

See section 8.2.

60. Task [*]

An activity in an engineering process with a specific objective and schedule. Several tasks 

performed to achieve a particular purpose constitute a process. A complex task may be 

decomposed into several sub-tasks. See chapter 4.

61. Technique

A technique is the body o f  specialized procedures and methods used in a specialized field, 

especially in an area o f  applied science. [WEBS 91]



340

62. Tool

A tool is a step-by-step, formalized, manual, or automated process for solving an 

engineering problem. [THAY 90]

Anything used as a mean o f  accomplishing a task or a purpose. [WEBS 91]

63. View[*]

A view  in M egSDF is a part o f  the conceptual architecture, consisting o f  a set o f  

interrelated design and implementation concepts. The conceptual architecture is divided 

into several view s and all views together form a conceptual architecture. M egSDF  

proposes dividing the conceptual architecture into structural, communication, control, 

data, and environment view’s. See section 6.2.
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