
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Spring 1993

MegSDF Mega-system development framework
Tamar Zemel
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
Zemel, Tamar, "MegSDF Mega-system development framework" (1993). Dissertations. 1191.
https://digitalcommons.njit.edu/dissertations/1191

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1191?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfi lms International
A Bell & Howell Information C o m p a n y

3 0 0 North Z e e b R oad . A nn Arbor. Ml 4 8 1 0 6 - 1 3 4 6 U S A
3 1 3 / 7 6 1 - 4 7 0 0 8 0 0 / 5 2 1 - 0 6 0 0

Order N um ber 9401730

M egSDF: M ega-System s development framework

Zemel, Tamar, Ph.D.

New Jersey Institute of Technology, 1993

Copyright © 1993 by Zem el, Tamar. A ll righ ts reserved.

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

MegSDF
MEGA-SYSTEMS DEVELOPMENT FRAMEW ORK

by
Tamar Zemel

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment o f the Requirements for the Degree of

Doctor o f Philosophy

Department of Computer and Information Science

May 1993

ABSTRACT

MegSDF
Mega-Systems Development Framework

by
Tamar Zemel

A framework for developing large, complex software systems, called Mega-Systems, is

specified. The framework incorporates engineering, managerial, and technological aspects

o f development, concentrating on an engineering process. MegSDF proposes developing

Mega-Systems as open distributed systems, pre-planned to be integrated with other

systems, and designed for change.

At the management level, MegSDF divides the development o f a Mega-System

into multiple coordinated projects, distinguishing between a meta-management for the

whole development effort, responsible for long-term, global objectives, and local

managements for the smaller projects, responsible for local, temporary objectives.

At the engineering level, MegSDF defines a process model which specifies the

tasks required for developing Mega-Systems, including their deliverables and

interrelationships. The engineering process emphasizes the coordination required to

develop the constituent systems. The process is active for the life time o f the Mega-System

and compatible with different approaches for performing its tasks.

The engineering process consists o f System, Mega-System, Mega-System

Synthesis, and Meta-Management tasks. System tasks develop constituent systems. Mega-

Systems tasks provide a means for engineering coordination, including Domain Analysis,

Mega-System Architecture Design, and Infrastructure Acquisition tasks. Mega-System

Synthesis tasks assemble Mega-Systems from the constituent systems. The Meta-

M anagement task plans and controls the entire process.

The domain analysis task provides a general, comprehensive, non-constructive

domain model, which is used as a common basis for understanding the domain. MegSDF

builds the domain model by integrating multiple significant perceptions o f the domain. It

recommends using a domain modeling schema to facilitate modeling and integrating the

multiple perceptions.

The Mega-System architecture design task specifies a conceptual architecture and

an application architecture. The conceptual architecture specifies common design and

implementation concepts and is defined using multiple views. The application architecture

maps the domain model into an implementation and defines the overall structure o f the

Mega-System, its boundaries, components, and interfaces.

The infrastructure acquisition task addresses the technological aspects o f

development. It is responsible for choosing, developing or purchasing, validating, and

supporting an infrastructure. The infrastructure integrates the enabling technologies into

a unified platform which is used as a common solution for handling technologies. The

infrastructure facilitates portability o f systems and incorporation o f new technologies. It

is implemented as a set o f services, divided into separate service groups which correspond

to the views identified in the conceptual architecture.

Copyright ® 1993 by Tamar Zemel
ALL RIGHTS RESERVED

APPROVAL PAGE

MegSDF
Mega-Systems Development Framework

Tamar Zemel

Dr. Wilhelm Rossak, Dissertation Advisor 	

Date
Assistant Professor of Computer and Information Science, NJIT

Dr. James A. M. McHugh, Committee Member 	 Date
Professor and Associate Chairerson of Computer and Information Science, NJIT

Dr. Roland T. Mittermeir, Committee Member 	 Date
o.Univ.Prof.Dip.Ing.Dr. of Computer and Information Science, Universitaet Klagenfurt,
Austria

Dr. peter A. Ng, Committee Member 	 Date
Chairperson and Professor of Computer and Information Science, NJIT

Dr. Lonnie R. Welch, Committee Member 	 Date
Assistant Professor of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: Tamar Zemel

Degree: Doctor of Philosophy in Computer Science

Date: May 1993

Undergraduate and Graduate Education

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1993

• Master of Science in Computer Science,
Technion - Israel Institute of Technology (IIT), Haifa, Israel, 1982

• Bachelor of Science in Mathematics,
Technion - Israel Institute of Technology (IIT), Haifa, Israel, 1977

Professional Background

• 1981-1990 RAFAEL Armament Development Authority, Haifa, Israel
1987-1990 Real-Time Software Department

Senior Software Engineer for embedded real-time systems. Designed and
implemented software systems using advanced software engineering methods,
MIL-STD-2167 and related methodologies were introduced to the real-time
software department during these projects.

1981-1987 Management Information Systems Department
Senior Software Engineer for Management Information Systems. Developed
software systems using fourth generation programming languages for human
resource management and project control systems.

• 1980-1981 Israel Electric Company, Haifa, Israel
Software Engineer, developed mechanical engineering management information
systems.

iv

Presentations and Publications

Zemel, Tamar and Rossak, Wilhelm, "A Framework for the Development o f
Complex Computer Based Systems as Mega-Systems," Workshop on Computer
Based Systems Engineering, London, England, December, 1992.

Zemel, Tamar, Rossak, Wilhelm, and Thimm, Heiko, "Domain Analysis as a
M ajor Component o f Integrated Systems Development," in Proceedings o f SERF
’92,1992 Software Engineering Research Forum, Indialantic FL, USA, November
1992, pp. 217-224.

Zemel, Tamar and Rossak, Wilhelm, "Mega-Systems - The Issue o f Advanced
Systems Development," in Proceedings o f IEEE Second International Conference
on Systems Integration, Morristown NJ, USA, June 1992, pp. 548-555.

Zemel, Tamar, "The Organization Subsystem: A Prime Component in Human
Resource MIS in RAFAEL," in Proceedings o f the Israeli Association for
Computerized Systems o f Human Resource Management, Second Annual
Meeting, Tel-Aviv, Israel, 1986.

Rossak, Wilhelm, Zemel, Tamar, and Lawson, Harold W., "A Meta-Process Model
for the Planned Development o f Integrated Systems," International Journal o f
Systems Integration, Kluwer Academic Publ., Dordrecht, Holland, 1993, to appear.

Rossak, Wilhelm and Zemel, Tamar, "Engineering Large and Complex Systems
with Integration Architectures," PD-Vol. 49 - Computer Applications and Design
Abstractions, ETCE ’93, Houston TX, USA, February 1993, pp. 189-195.

Rossak, Wilhelm, Welch, Lonnie, Zemel, Tamar, and Eder, Johann, "A Generic
Systems Integration Framework for Large and Time-Critical Systems," in Halang
W., Stoyenko A. (eds.): NATO Advanced Study Institute (NATO ASI 910698) in
Real-Time Computing, Mullet Bay, Saint Maarten, Springer Verlag, October 1992,
to appear.

Rossak, Wilhelm, Zemel, Tamar, and Ng, Peter A., "Systems Integration - A
Framework," Tutorial on Systems Integration for the IEEE Second International
Conference on Systems Integration, Morristown NJ, USA, June 1992.

More than ten internal reports o f RAFAEL (confidential)

This Dissertation is dedicated to

my husband Michael,

our children Meir, Yael, and Liat Zemel, and

my parents Zipporah and Israel Bregman

whose love, care, and support

made my work possible

ACKNOWLEDGMENT

The author wishes to express her sincere gratitude to her supervisor, Professor

W ilhelm Rossak, for his guidance, friendship, and moral support throughout this research.

Special thanks to the other members o f committee: Professor James McHugh for

contributing his time and valuable insights, to Professor Roland Mittermeir for his

challenging ideas, to Professor Peter A. Ng for his encouragement in all stages o f my

studies, and to Professor Lonnie Welch for his helpful comments and support.

The author is grateful to the State o f New Jersey and Bellcore - Bell

Communication Research, for funding o f those projects in the Systems Integration

Laboratory having direct impact on this dissertation.

The author appreciates the timely help and suggestions form John Mills from

Bellcore, the members o f the System Integration laboratory: Babita Masand, Heiko

Thimm, Vassilka Kirova, Leon Jololian, Yaling Czhou, Amar Mahidadia, Selma

Aganovic, and Harriet Chinque, and Dr. Fortune Mhlanga.

Thanks to Bella Goldbereg for providing timely support on insurance questions,

and to Eugene Weigner, Carole Poth, and Linda Kowalski for providing timely and expert

assistance on editorial questions.

And finally thanks to family and friends for their support and encouragement along

the way.

vii

TABLE OF CONTENTS

Chapter Page

1 PROBLEMS IN DEVELOPMENT OF CURRENT SOFTWARE SYSTEMS . . . 1
2 MEGA-SYSTEMS ..23
3 A FRAMEWORK FOR MEGA-SYSTEM DEVELOPMENT 34
4 MegSDF PROCESS M O D E L ...53
5 DOMAIN ANALYSIS FOR M E G A -SY ST E M S.. 65
6 M EGA-SYSTEM ARCHITECTURE D E S IG N .. 126
7 INFRASTRUCTURE ACQUISITION IN MegSDF .. 221
8 THE M ETA -M A N A G EM EN T, SYSTEM , AND M EG A -SY STEM

SYNTHESIS T A S K S ...254
9 A SCENARIO .. 272
10 CONCLUSIONS AND SUMMARY ... 285
BIBLIOGRAPHY ..305
G L O S S A R Y ..320

TABLE OF CONTENTS

Chapter Page

1 PROBLEMS IN DEVELOPMENT OF CURRENT SOFTWARE SYSTEMS . . . 1
1.1 The Evolution o f Software S y s te m s ... 2
1.2 Analysis o f Problems in the Development o f Software S y s te m s 4

1.2.1 Characteristics o f Large and Complex Software S y s te m s 4
1.2.2 Aspects o f Software D evelopm en t... 10
1.2.3 The Impact o f Software System Characteristics on Aspects o f

Software Development .. 14
1.2.4 Summary o f the Problems ..21

2 MEGA-SYSTEMS ... 23
2.1 Huge Systems ..24

2.2 Systems o f Systems .. 26
2.3 Generic S y s te m s ... 28
2.4 Generic Systems o f S y stem s.. 30
2.5 Relationships among Mega-Systems ..31

3 A FRAMEWORK FOR MEGA-SYSTEM DEVELOPMENT 34
3.1 Existing Models and Frameworks .. 34

3.1.1 The COSMOS Model ... 35
3.1.2 The GenSIF F ram ew ork ...35
3.1.3 The POW DER M eth o d o lo g y ... 36
3.1.4 The SIF F ram ew o rk ..37
3.1.5 System o f Systems Engineering Model ... 38
3.1.6 The Megaprogramming Framework .. 39
3.1.7 Summary o f Existing M eth o d s ...40

3.2 Requirements for a Framework ... 42
3.3 Outline o f MegSDF F ram ew ork ... 43

3.3.1 Development Organization ..44
3.3.2 Engineering Coordination ..47
3.3.3 The Pre-Planned Approach ..48
3.3.4 Development as Open Distributed S y stem 51

4 MegSDF PROCESS M O D E L ..53
4.1 A Method to Describe an Engineering Process .. 53
4.2 Mega-System Development Process M o d e l ..56

4.2.1 P u rp o se ..56
4.2.2 Interfaces ...56
4.2.3 Processing .. 57
4.2.4 Timing ..58
4.2.5 S ub -T asks ...59

4.3 Mega-System Task .. 60
4.3.1 P u rp o se ... 60
4.3.2 Interfaces ...61

TABLE OF CONTENTS (CONTINUED)

Chapter Page

4.3.3 Processing .. 62
4.3.4 Timing ... 63
4.3.5 S ub -T asks...64

5 DOMAIN ANALYSIS FOR M E G A -SY ST E M S ...65
5.1 Requirements for Domain Analysis .. 66

5.1.1 The Role of Domain Analysis ...66
5.1.2 Requirements for M egSDF’s Domain Model 68
5.1.3 Contrast with Domain Analysis in Reusability and System

A n a ly s is ...71
5.2 Domain M o d e lin g ... 72

5.2.1 The Content o f the Model ..73
5.2.2 Structuring the Model ... 77
5.2.3 Definitions o f Domain-Analysis Concepts ... 92

5.3 The Domain Analysis Process ... 96
5.3.1 P u rp o se ... 96
5.3.2 Interfaces ...97
5.3.3 Processing .. 97
5.3.4 Timing ... 98
5.3.5 S ub -T asks...99

5.4 Comparison with Existing Methods ... 103
5.4.1 Comparison with System Analysis Approaches 104
5.4.2 Comparison with other Domain Analysis Approaches 107

5.5 An Example for Domain Analysis in the Insurance Domain 110
5.5.1 The Static D im ension .. I l l
5.5.2 The Functional D im en sio n ... 119

6 MEGA-SYSTEM ARCHITECTURE D E S IG N .. 126
6.1 Requirements for Mega-System Architecture Design 127

6.1.1 The Role of Mega-System A rch itec tu res....................................... 127
6.1.1 Requirements for Mega-System Architectures 133

6.2 The Mega-System Architecture .. 136
6.2.1 Parts o f the Mega-System Architecture 136
6.2.2 The Conceptual A rch ite c tu re .. 137
6.2.3 Application Architectures ... 156

6.3 Mega-System Architecture Design Process .. 159
6.3.1 P u rp o se .. 159
6.3.2 Interfaces .. 160
6.3.3 Processing ... 161
6.3.4 Timing .. 161
6.3.5 S u b -T asks.. 162

6.4 Existing Architectures 168

x

TABLE OF CONTENTS (CONTINUED)

Chapter Page

6.4.1 Systems Architectures .. 168
6.4.1.1 Application M a c h in e .. 168
6.4.1.2 Best’s Architecture .. 173

6.4.2 Mega-System A rch itec tu res .. 178
6.4.2.1 The OSCA Architecture ... 178
6.4.2.2 A Network o f Application Machines 187
6.4.2.3 The CAN-Kingdom .. 191
6.4.2.4 The Advanced Networked Systems Architecture (ANSP0)6

6.4.3 Examples of Projects with Software Architectures 201
6.4.3.1 Ship-2000 ... 201
6.4.3.2 ESF - FSE Reference a rch itec tu re209

6.4.4 Classification and Comparison o f Existing Architectures 217
7 INFRASTRUCTURE ACQUISITION IN MegSDF ... 221

7.1 Requirements for Infrastructure Acquisition ... 222
7.1.1 The Role o f Infrastructure Acquisition ..222
7.1.2 Requirements for an Infrastructure ...226

7.2 An Infrastructure ...228
7.2.1 MegSDF Infrastructure .. 228
7.2.2 An Infrastructure M o d e l.. 231

7.3 The Infrastructure Acquisition P ro cess ...236
7.3.1 P u rp o se ... 237
7.3.2 Interfaces .. 237
7.3.3 Processing .. 238
7.3.4 Timing ... 238

7.4 Examples o f Existing Infrastructures ... 239
7.4.1 The NIST Reference Model ...240
7.4.2 A N S A w are>... 244
7.4.3 IBM ’s Systems Application Architecture (S A A)........................ 249

8 THE M ETA -M A N A G EM EN T, SYSTEM , AND M EG A -SY STEM
SYNTHESIS T A S K S ...254
8.1 The Meta-Management Task ... 254

8.1.1 The Role o f the Meta-Management T a s k ..254
8.1.2 The Process o f the Meta-Management Task 258

8.2 The System T a s k s ...260
8.2.1 The Role o f the System T a s k s .. 260
8.2.2. The System Development Process ... 262

8.3 Mega-System Synthesis in MegSDF ... 266
8.3.1 The Role o f Mega-System S y n th es is ...266
8.3.2 The Process o f Mega-System Synthesis ..268

TABLE OF CONTENTS (CONTINUED)

Chapter Page

9 A SCENARIO .. 272
9.1 Current S ta tu s ..272
9.2 A Solution Based on MegSDF ... 277
9.3 Advantages o f Using MegSDF ...279

10 CONCLUSIONS AND SUMMARY ... 285
10.1 Requirements Verification ..285

10.1.1 Realization o f Framework R equ irem en ts....................................... 285
10.1.2 Quality Attribute Map .. 286

10.2 Prerequisites for Success .. 291
10.3 S um m ary ...292

APPENDIX A MegSDF PROCESS DIAGRAMS .. 295
A .l MegSDF First Level ..295
A .2 Mega-System Task ..296
A.3 Domain Analysis ...297
A.4 Mega-System Architecture Design ..298
A.5 Conceptual Architecture Design .. 299
A.6 Application Architecture D e s ig n .. 300
A .7 Infrastructure Acquisition ... 301
A .8 M eta-M anagem ent...302
A .9 System T a s k .. 303
A. 10 Mega-System S y n th es is ...304

BIBLIOGRAPHY ..305
G L O S S A R Y ..320

xii

LIST OF TABLES

Table Page

1.1 Problems Faced in Development o f Large and Complex Systems 22
2.1 A Comparison o f Mega-Systems .. 33
3.1 Existing Models ...41
5.1 Difficulties and Problems Addressed by MegSDF Domain A n a ly s is67
5.2 A Template for E lem ent-T ypes...81
5.3 An Example o f an Object-Element-type .. 83
5.4 An Example o f a Building-Object-Element .. 85
5.5 Object-Perception-Element-Type .. 87
5.6 Building-Perception-Element ... 87
5.7 A Comparison o f MegSDF Approach with Modeling Approaches 106
5.8 A Comparison o f MegSDF with other Domain Analysis Approaches 109
5.9 Mapping Perceptions’ Objects to Domain Model Objects 116
5.10 Mapping Perceptions’ Relationship .. 118
5.11 Mapping Perceptions’ Processes to Domain Model P ro c e sse s 123
5.12 Mapping Flows, Sources, Terminators, and Data Stores 124
6.1 Difficulties and Problems Addressed by the Mega-System Architecture 130
6.2 An Outline for a Conceptual Architecture .. 155
6.3 An Outline for an Application Architecture ... 159
6.4 Application Machine Structural View Mapping ... 170
6.5 Application Machine Communication View Mapping 170
6.6 Application Machine Control View M ap p in g ... 171
6.7 Application Machine Environment View Mapping ... 172
6.8 Application Machine Application Architecture M a p p in g 172
6.9 Best’s Architecture Structural View Mapping ... 175
6.10 Best’s Architecture Communication View Mapping ... 175
6.11 Best’s Architecture Control View Mapping .. 176
6.12 Best’s Architecture Data View Mapping ... 177
6.13 Best’s Architecture Environment View Mapping .. 177
6.14 Best’s Architecture Application Architecture Mapping 178
6.15 The OSCA Architecture Structural View Mapping ... 181
6.16 The OSCA Architecture Communication View Mapping 182
6.17 The OSCA Architecture Control View Mapping ... 183
6.18 The OSCA Architecture Data View M app ing ... 184
6.19 The OSCA Architecture Environment View M a p p in g .. 186
6.20 Network o f AM Structural View M a p p in g ... 188
6.21 Network o f AM Communication View Mapping ... 188
6.22 Network o f AM Control View M ap p in g .. 189
6.23 Network o f AM Data View M a p p in g ... 190
6.24 Network o f AM Environment View Mapping .. 190

xiii

LIST OF TABLES (CONTINUED)

Table Page

6.25 Network o f AM Application Architecture Mapping .. 191
6.26 CAN-Kingdom Structural View Mapping .. 192
6.27 CAN-Kingdom Communication View Mapping ... 193
6.28 CAN-Kingdom Control View Mapping .. 194
6.29 CAN-Kingdom Application Architecture Mapping ... 195
6.30 ANSA Structural View' Mapping .. 198
6.31 ANSA Communication View Mapping .. 199
6.32 ANSA Control View Mapping ... 200
6.33 ANSA Data View Mapping .. 200
6.34 Ship-2000 Structural View Mapping ..203
6.35 Ship-2000 Communication View M ap p in g .. 205
6.36 Ship-2000 Control View Mapping .. 206
6.37 Ship-2000 Data View M ap p in g ... 207
6.38 Ship-2000 Environment View Mapping ... 208
6.39 Ship-2000 Application Architecture Mapping ... 209
6.40 ESF Structural View Mapping ... 213
6.41 ESF Communication View Mapping ..214
6.42 ESF Control View Mapping .. 215
6.43 ESF Data View Mapping ...215
6.44 ESF Environment V iew M a p p in g .. 216
6.45 Systems A rch itec tu res ..218
6.46 Mega-System Architectures .. 219
6.47 Projects that Use Architectures ... 220
7.1 Difficulties and Problems Addressed by the Infrastructure 223
7.2 Mapping of the Structural View Concepts into Services 232
7.3 Mapping o f the Communication View' Concepts into S erv ices 233
7.4 Mapping o f the Control View Concepts into Services .. 234
7.5 Mapping o f the Data View Concepts into S erv ices ... 235
7.6 Mapping o f the Environment View Concepts to Services 236
7.7 Comparison o f MegSDF Views and NIST Service Groups 243
7.8 Comparison o f MegSDF views and ANSAware services.. 248
7.9 A Comparison o f MegSDF views and SAA Service Groups 253
8.1 Difficulties and Problems Addressed by the Meta-Management T a s k 255
10.1 Impacts o f M egSDF’s Tasks on Q u a lity ...290

xiv

LIST OF FIGURES
Figure Page

1.1 Post-Facto In te g ra tio n .. 3
1.2 Aspects Involved in Development o f Software S y stem s.. 11
2.1 M ega-S ystem s... 24
2.2 A Huge System ... 25
2.3 A System o f Systems ... 27
2.4 A Generic System .. 29
2.5 A Generic System o f S y s tem s...31
2.6 Detailed Classification o f M ega-S ystem .. 32
3.1 The POW DER Model ...37
3.2 Mega-System Development Organization ... 45
3.3 Mega-System ..52
4.1 The Graphical Notation for a Traditional SADT Activity 54
4.2 Graphical Notations for MegSDF A ctiv itie s .. 55
4.3 MegSDF First Level ..58
4.4 A Schedule for Mega-System D evelopm en t... 59
4.5 Process Diagram for the Mega-System T a s k s .. 63
5.1 The Relationship o f the Domain Model .. 68
5.2 A Domain Model as an Integration o f Multiple Percep tions..................................... 76
5.3 The Integration o f Perception-Elements into E lem en ts ... 89
5.4 The Components o f Domain Analysis .. 91
5.5 A Process Diagram for Domain A n a ly s is ..99
5.6 The Static Dimension o f the Insurer Perception .. 112
5.7 The Static Dimension o f the Insured P ercep tio n .. 113
5.8 The Static Dimension o f the Agent P e rcep tio n .. 114
5.9 The Integrated Static D im en sio n ... 119
5.10 The Functional Dimension o f the In s u r e r .. 120
5.11 The Functional Dimension o f the Insured P e rcep tio n ... 121
5.12 The Agent Perception Functional D im e n sio n ... 122
5.13 The Integrated Functional D im ension ... 125
6.1 The Role o f the Mega-System Architecture ... 132
6.2 Architectural Style, Conceptual and Application Architectures 138
6.3 Relationship o f the Application Architecture to Other MegSDF Elements . . 157
6.4 Mega-System Architecture Design Process ... 162
6.5 Conceptual Architecture Design Process .. 165
6.6 Application Architecture D e s ig n ... 167
6.7 Best’s Architecture Process F l o w .. 174
6.8 The OSCA Architecture ... 182
6.9 The Structural View o f the ESF Architecture ..211
7.1 Relation o f Infrastructure to other MegSDF Components 225
7.2 The Infrastructure Acquisition P ro c e ss ..239

xv

LIST OF FIGURES (CONTINUED)
Figure Page

7.3 The NIST Reference Model .. 242
7.4 ANSAware’s Capsule and N u c leu s .. 246
7.5 The Elements o f IBM ’s SAA ..252
8.1 Meta-Management Process Diagram ..259
8.2 Relationship o f System Tasks to other Elements o f MegSDF 261
8.3 System Process D ia g ra m ... 264
8.4 Mega-System Synthesis Process Diagram .. 270
A .l MegSDF First Level Process Diagram ...295
A .2 Mega-System Tasks Process Diagram ... 296
A .3 Domain Analysis Process D ia g ra m .. 297
A.4 Mega-System Architecture Process Diagram ... 298
A .5 Conceptual Architecture Design Process Diagram ..299
A .6 Application Architecture Design Process D ia g ra m ..300
A .7 Infrastructure Acquisition Process Diagram ..301
A .8 M eta-Management Task Process Diagram ..302
A .9 System Task Process Diagram ... 303
A. 10 Mega-System Synthesis Process Diagram ..304

xvi

CHAPTER 1

PROBLEMS IN DEVELOPMENT OF CURRENT SOFTWARE SYSTEMS

The current state o f software development has been described as a crisis [BROO 87],

[PRES 92] symptoms o f which include customers dissatisfied with the quality o f the

systems they acquire, developers who underestimate the efforts required for developing

software systems, and demands for new systems and capabilities far in excess o f the

ability o f software engineers to provide them. Some o f the roots o f this crisis are to be

found in changes in the characteristics o f software systems over the past few decades.

Consequently, the solutions to these problems must consider the impacts o f these changing

characteristics on the various aspects o f software development.

The following sections describe the recent evolution o f software systems, the

characteristics o f current software systems, the various aspects o f software development,

and the impacts o f current systems’ characteristics on these development aspects. Based

on this discussion, we will subsequently propose a framework for the development o f

large, complex software systems.

1.1 The Evolution o f Software Systems

2

Programs, and later on software systems that included several programs, were originally

developed to solve specific problems for specific users or well-defined groups o f users.

These systems operated in homogeneous environments. The traditional software-

engineering approaches were successfully used to develop this kind o f system.

Subsequent reductions in hardware prices, advances in technology, and the

maturity o f customers and developers have led to the development o f systems o f markedly

increased size and complexity [MAYE 89], [CSTB 90], [MOOR 92], More recently, users

have had to rely on multiple independent systems to solve sets o f related problems. These

systems often run on different platforms or in heterogeneous environments. Users have

realized, however, that it is inefficient to use such multiple systems. Instead, they have

come to expect integrated solutions which may even yield additional values that cannot

be achieved by independent solutions.

Two approaches are currently used to meet the demand for integrated solutions.

The first approach is called post-facto integration [POWE 90]. This approach integrates

several systems using ad-hoc, non-systematic methods (Figure 1.1). The systems to be

integrated were developed to solve specific problems in the domain each with a limited

perception o f the domain, without an awareness o f future integration requirements, and

with no relation between the systems. The addition o f a new system, replacement o f an

existing system, or incorporation o f new technology requires extensive effort. The

approach is called post-facto because the integration is designed and performed after the

development o f the constituent systems has been completed. The second approach is to

develop a huge system [YOUR 92], In this approach, a large, complex, interrelated system

is developed. The various components o f the system are tightly coupled and consequently

their maintenance is horrendously difficult.

Application Domain

Problem

System

Host <— >

Problem

System

Host

Problem

System

Host «-

Problem

System

Host

F igure 1.1 Post-Facto Integration

These approaches may both be considered as technology-driven since they use new

technologies in an uncoordinated manner, without the adoption o f improved and suitable

engineering and management models. They are essentially "bottom-up" approaches, based

on traditional development techniques appropriate to smaller problems, single systems,

specific platforms, and shorter life cycles. They do not prepare systems for future

integration and so entail drastic efforts when integration is required [POWE 90].

Moreover, they concentrate primarily on the engineering aspects o f how to develop

4

systems. They do not adequately address the difficulties that exist in the development of

the newer systems.

The evolution o f software systems suggests that a new approach to software

development is required. However, before describing such an approach, it is imperative

to first understand the impact current systems characteristics have on the development

process.

1.2 Analysis of Problems in the Development o f Software Systems

The following sections describe, more precisely, the characteristics o f typical current

software systems, and the impacts o f these characteristics on software systems

development.

1.2.1 Characteristics of Large and Complex Software Systems

Large, complex systems used in various domains generally have more than one o f the

following characteristics [EISN 91], [MITT 91]:

- Consist o f more than one system

- Developed by more than one group o f developers

- Have more than one customer/user

- Operate in a heterogeneous environment

- Have a long life cycle

These characteristics are interdependent and interrelated. Often one characteristic

implies the presence o f others. For example, the presence o f the characteristic "consist o f

more than one system" generally implies that these systems are "developed by more than

one group o f developers" and "operate in a heterogeneous environment". The following

paragraphs describe these characteristics in more detail.

Consist o f More Than One System

Most software development efforts involve "more than one system". These systems often

integrate a number o f smaller systems, which had been developed independently, into a

larger system. Such integration is primarily a response to customer requirements.

Customers insist on the integration o f currently independent systems into larger systems

in order to obtain additional values that cannot be attainable otherwise [CLAR 92],

On the other hand, integration is sometimes the initiative o f the developers.

Software developers tend to cooperate to enlarge their market share. For example, the

developers o f Lotus 1-2-3, a spreadsheet software, decided to cooperate with the

developers o f Ami Pro, a word-processing software, and the developer o f another software

product cc:Mail to provide their customers a "software suite" [MOSE 92]. The developers

believed that customers preferred comprehensive, integrated solutions rather than merely

a set o f independent tools.

Another case where "more than one system" occurs is the program family [PARN

76]. A program family is a group o f systems with similar functionalities. Each system in

the family has a specific configuration and is developed for a different customer.

Configurations may differ in the set o f functionalities, the technical environment in which

the systems operate, or the interfaces o f the systems.

Developed by More Than One Group o f Developers

Systems that are integrated as just described have, typically, been developed by "more

than one group o f developers", at different points in time, and with diverse schedules. The

size and complexity o f such systems often lead to their development as the cooperative

effort o f multiple groups o f developers. An extreme example o f cooperative development

is the space-station Freedom [MOOR 92], however the same phenomenon occurs with

smaller systems too.

Development with more than one group o f developers may reduce some aspects

o f risk (although this way o f development might increase communication problems and

there by increase other aspects of risk). For example, it may be possible to buy parts that

were already developed by other groups o f developers. It is also reasonable to assign

special tasks to specialized groups, thereby gaining from their experience. Moreover,

when there is uncertainty regarding the feasibility o f a system, it may be possible to assign

the same system to different groups. In this case the various groups concurrently develop

different solutions based on different technologies and approaches; this increases the

chance o f obtaining an effective solution.

Finally, when several groups develop different parts o f the system, the dependence

o f the customer on the developers is thereby reduced. Each group develops only a limited

part o f the system and so can be replaced with limited, local effect. Furthermore, when

7

several groups develop the various parts of a system in parallel, the duration o f the

development is usually shorter.

Have More Than One Customer/User

Many software systems are developed to support a large group o f users or customers. The

user groups are often themselves heterogeneous, consisting o f diverse users, each with his

own particular role and his own requirements for the system. Consequently, such systems

have an immense variety o f interrelated functions. These systems additionally tend to

support their user groups as a whole by providing a means o f communication among the

members o f the group. CASE tools, for example, support software development teams

consisting o f system analysts, designers, and project managers. These systems support the

work o f each member o f the group, but also allow the transfer o f information between

members.

The high cost o f software development makes it infeasible to develop "tailor-

made" systems for every customer. It is more reasonable to sell a system with

modifications to several customers, thus sharing the cost o f development efforts. In such

situations, software systems are developed as program families [PARN 76] or as parts o f

product lines.

Another instance o f "more than one customer" is when a system is initially

developed as an in-house solution to some company need, but is subsequently sold as a

product to other companies, becoming a source o f income for the original company.

Copies o f the system can be reproduced with minimal expense, and sold to various

customers. Another situation where "more than one customer" occurs is in the context o f

increasing the effectiveness o f a system. For example, cooperation among several banks,

which are customers o f a system o f Automatic Taller Machines (ATM), might increase

the number o f installed ATMs, thereby improving the regional coverage o f the ATMs,

consequently enhancing the convenience o f the banks’ clients. This improvement might

increase the number o f clients at all banks [CLEM 91].

The presence o f a large number o f customers also characterizes package systems.

Examples o f packages are word-processors, e.g., Word-Perfect [SALK 91] or

spreadsheets, e.g., Lotus [GRIF 91]. These systems are developed for common, general

usage. Given the enormous number o f "unknown" users, it is impossible to have a specific

configuration defined for each user. The heterogeneity o f the user groups increases the

need for flexibility o f the system. One way to provide this flexibility is by allowing users

to customize and adjust their systems according to their own preferences whenever

possible.

It is important to note that the heterogeneous group o f users developers face today

often means dealing with different kinds o f user. For example, the system may be

developed for a known group o f users. On the other hand, it may be developed for

unknown users that might be represented by an "opinion center" [MITT 91] or a "virtual

user", e.g., management, marketing, or sales personal.

Operate in a Heterogeneous Environment

In the past, most software systems were developed to run on homogeneous environments,

i.e., in a specific hardware configuration, one type o f operating system, a single

programming language, a specific database management system, and a single

communication network. However, with constantly changing technologies there is a

variety o f environments in which systems might run.

Current systems operate in heterogeneous environments consisting o f more than

one platform, several operating systems, various databases, and communication tools. This

is often a result o f the integration o f several systems where each system operates in a

different environment. Moreover, many systems have been developed to operate in

heterogeneous environments as a practical requirement. Thus, the presumption o f a

homogeneous environment no longer holds.

Sometimes the same software system is developed to operate in different

environments in order to increase the market share o f its developers. An example o f this

phenomenon is the Word Perfect word-processing software that operates on UNIX, DOS,

and Windows. Another example is the Lotus Suite that operates on Personal Computers

under DOS and Windows. This software suite has now been developed to run on HPs

under UNIX to enhance its effectiveness as a communication tool [JOHN 92]. This type

o f heterogeneity allows users in heterogeneous environments (e.g., an environment that

consists o f several mainframes operating under UNIX and a number o f personal

computers running under DOS and Windows) to use the same software on any machine.

It is important to point out that there are two kinds o f heterogeneity. The first kind

refers to systems that span heterogeneous environments, the second kind refers to systems

where each variation o f the system operates in a single homogeneous environment only.

10

Have a Long-Life Cycle

The life-cycle o f software systems is constantly being lengthened. For example, the Air

Traffic Control (ATC) o f the Federal Aviation Administration system has been used for

twenty years, its successor is designed to operate for twenty to thirty years [HUNT 87].

The complexity and size o f software systems induce both high costs and long development

periods. Because o f economic constraints, customers do not have sufficient resources to

acquire new systems, so they are constrained to use the existing systems for longer periods

o f time. These systems have generally undergone repeated generations o f change and may

be now virtually unmaintainable [PRES 92]. These systems are often called "legacy

systems" [YOUR 92] or "aged systems" [PRES 92] since it is simultaneously excessively

difficult to maintain them and is too expensive to redevelop them, so users are forced to

keep them.

The process o f acquiring the various systems which participate in an integrated

solution is continuous and evolutionary. The constituent systems o f an integrated system

are often developed in non-overlapping time-frames. Thus, once again the development

period o f the final integrated system is much longer than the development period o f

traditional systems.

1.2.2 Aspects of Software Development

Software development involves many interrelated aspects, e.g., engineering, managerial,

technological, psychological, sociological, economic, legal, and political (Figure 1.2). We

11

shall discuss each o f these aspects in the following paragraphs, but as software engineers,

we shall concentrate on the effect o f the various aspects on the development process.

Engineering

Managerial

Technological

Software '
Systems
Development

Psychological

Sociological

Economy

Legal

Political

rigure 1.2 Aspects Involved in Development o f Software Systems

Engineering aspects include processes, methods, techniques, and tools used to

develop software systems. Processes specify the activities required for efficient

development o f high quality software systems. Techniques support implementation o f

distinct activities. Tools enable efficient implementation o f techniques [GEHD 91].

M anagerial aspects include the organization o f development groups, software

metrics, software (cost) estimating methods, configuration management, quality assurance,

and risk analysis. Organization deals with the responsibilities, roles, and structure o f a

development group [BAKE 72], [RETT 90]. Software metrics are the means o f evaluating

12

the quality o f software products as well as the productivity o f the development process

[ARTH 85], [JONE 86]. Software estimating methods are used to estimate the cost and

the required resources for development o f a system [BOEH 82]. Risk analysis deals with

methods for identification, projection assessment, and management o f risks during the

software development [BOEH 89], [CHAR 89], [PRES 92],

Technological aspects deal with the enabling technologies that support the

development and operation o f software systems, e.g., hardware, database management

systems, and communication. There is an immense variety o f technologies developed

without agreed-upon standards. Therefore, the implementation o f a system that requires

the use o f various technologies is difficult. Moreover, new technologies are continually

emerging and must be incorporated in order to ensure the effectiveness o f a system and

the competitiveness o f its users [CLEM 91]. Our work concentrates on the special

requirements that complex and large systems impose on technologies.

Psychological aspects deal with human factors that must be considered in the

design o f a software system [LUND 91], implementation o f methods for solving problems

in software development, and the psychological impact o f group organization.

Broadly speaking, sociological aspects address the impact software systems have

on society and social transformations that result from computerization [KLIN 90]. In

regard to software development point o f view, this aspect deals with the effects o f the

software development process and group organization on developers.

Regarding economic effects, software systems, especially strategic systems, can

have major economic effects on companies that acquire them. Strategic systems may even

13

be critical to the success or failure o f companies [CLEM 91]. Furthermore, cooperation

and partnerships among developers may be motivated by economic constraints and have

significant economic benefits for the various partners.

Legal aspects address privacy of information, property rights o f software

developers, and even "equal opportunity" for companies. New laws to ensure the privacy

rights o f individuals whose data is stored in data repositories, or at least to allow them the

option o f knowing what information is kept about them, have been legislated in various

countries, e.g., [ODSG 78].

Property rights, patents, and copyrights o f software developers must be considered

in using and developing software [ACKE 92]. For example, the case o f Apple against

Microsoft Corp. and Hewlett Packard Co. deals with A pple’s copyrights for the

windowing concepts [DALY 92]. There have also been governmental regulations

designed to ensure equal opportunity to access software functionalities to eliminate unfair

competitive advantages in strategic systems. For example, in the case o f the SABRE

on-line reservation system, American Air Lines, which owned the SABRE system, had

privileges that other customers o f the system did not have [BETT 92].

In the legal/political arena, we find national/international efforts dealing with

standardization o f software products and their development. Examples for these efforts

are the Department o f Defense DoD-STD-2167a [DoD_STD-2167a], IEEE standards, the

ISO Norm 9000, and international regulations concerning quality and safety [BHAN 93],

The previously mentioned aspects are all important, but our framework

concentrates on the engineering, managerial, and technological aspects o f software

14

development. Moreover, we shall consider the managerial and technological aspects only

in respect to their role as means for supporting the engineering process.

1.2.3 The Impact of Software System Characteristics on Aspects o f Software

Development

We contend that the underlying causes of the software "crisis" are rooted in the

characteristics described in the previous section. This section describes how problems in

software development are engendered by these characteristics. Because systems

characteristics and development aspects are interrelated, some problems will be discussed

from several viewpoints.

1.2.3.1 Problems in Engineering

The engineering aspects deal mainly with processes, methods, techniques, and tools used

to develop software systems. We next describe the engineering aspects and the

engineering problems induced by the previously identified characteristics.

M ore Than One System

The integration o f independently developed systems into a coherent larger system is

typically extraordinarily difficult [CSTB 90]. Usually, the systems that have to be

integrated were developed previously and with no awareness o f other systems or future

integration requirements, but it has become necessary to integrate them to gain added

values. Most such systems for integration might be described as "legacy systems," [YOUR

15

92] since they are large, inflexible, and old. They are too large to be redeveloped, and yet

they are very difficult to change or modify.

More Than One Group o f Developers

Often when a system is developed by more than one group o f developers, the various

groups focus primarily on the development o f their own part. They deal with a limited

portion o f the domain and have only a limited knowledge o f the domain [CURT 88].

When a family o f systems is developed by more than one group, the groups may become

tend to enmeshed in incidental environmental features rather than focusing on the

application problem solutions [LAWS 92a], In either case, a global approach is lacking;

the system as a whole is neglected or has less than the requisite priority [NEUM 91].

Another problem occurs when each group o f developers uses its own standards,

procedures, methods, and tools. This leads to non-uniform integrated systems that have

multiple types o f user interfaces, different ways o f error handling, etc. Their non

uniformity makes them difficult to use and hard to maintain.

More Than One Customer/User

When a system is developed for more than one customer, every customer operates his

system in specific circumstances (technical and organizational environment). This implies

that the requirements o f each customer might differ, inducing an increase in complexity.

Often different customers have different configurations o f the system. It is more

difficult to develop and maintain a system with various configurations since any change

has to be evaluated and occasionally incorporated into the various configurations.

16

Heterogeneous Environment

A heterogeneous environment implies use o f various technologies. Occasionally,

additional efforts may be required in order to find engineering solutions to close

technological gaps and bridge technologies [NOTK 88]. Similarly, when a system is

technology-driven and uses an emerging technology, additional efforts are required to

solve immaturity problems, primarily in interfacing with existing technologies.

Long Life Cycle

Generally, a software system is a part o f a larger domain. This domain has a major

influence on the requirements for the system and evolves independently [LEHM 90].

Often the domain is influenced by the system itself. Changes in the domain may imply

changes in the system’s requirements. The possibility o f significant changes in the domain

and, therefore, in the requirements, is increased if the life cycle o f the system is long

[CSTB 90]. Thus, long life cycles o f software systems lead to unstable requirements.

Given the current size and complexity o f systems, it seems more rational for

systems to evolve, rather than be developed at once [TICH 93]. It may be impossible to

replace the whole system at once, but parts can be added, updated, or replaced over time

to adjust the system according to new requirements and emerging technologies.

Summary' of Engineering Aspects

We contend that the reason for most o f the difficulties related to the engineering aspects

is the use o f unsuitable approaches to solve highly complex problems. Complex systems

are currently developed using traditional approaches for software development, e.g., the

waterfall [BOEH 76], prototype [GOMA 90], and the spiral model [BOEH 88], These

17

methods assume the development o f one system with rather stable requirements and are

based on a sequential, phased process [MITT 91]. Therefore, they do not fit the

development o f more than one system with several groups o f developers; nor do they suit

a large domain with unstable requirements; and finally they do not support long-term

development in a dynamic environment.

1.2.3.2 Problems in Management

As the size and complexity o f software system is increased, management tasks become

more difficult. We have to deal with many developers and for a longer period of

development [PRES 92]. Any difficulties in software development, e.g., risk identification

and elimination, communication, and coordination problems, are scaled up [CURT 88].

More Than One System

If more than one system is developed we have to deal with two levels o f objectives: the

overall integrated system’s (general) objectives and the local objectives o f the various

constituent systems. These objectives occasionally contradict each other. There is usually

no clear distinction between management aspects o f the integrated solution and

management aspects o f the various participating systems; consequently local aspects tend

to swamp or preempt general objectives.

More Than One Group o f Developers

Communication and coordination problems that exist in the development o f one system

developed by a single group are scaled up and become critical when a system is developed

by more than one group o f developers [CURT 88]. Often, the different groups belong to

18

different organizations (which occasionally are competitors). These organizations have

different (and occasionally contradictory) goals and aims. Generally, the groups work at

different sites or even in different countries, e.g., the developers o f the space-station

Freedom are from USA, Italy, Japan, and other countries [MOOR 92]. Without effective

coordination and communication, there will be wasted efforts in developing solutions

developed previously by other groups.

Another problem is caused when various groups have different cultures. This leads

to different interpretations o f the domain and o f the system by the various groups. In the

case o f problems, each group may try to blame the other groups [CURT 88], [YOUR 92].

More Than One Customer/User

The fact that a system has more than one customer induces an increase in complexity.

Typically, every customer has his own aims and needs and therefore his own preferences

and priorities. These preferences may be different or contradictory. The various

requirements must be analyzed and an optimized solution and development schedule

determined.

Heterogeneous and Dynamic Environment

A heterogeneous and dynamic environment increases the complexity o f systems. Often

management deals with standardization o f technologies by stabilizing the environment.

In this approach, only elements compatible with the standards may be used. In dynamic

environments, the management has to ensure that services that were provided previously

will still be provided in the future. Moreover, management has to evaluate the various

emerging technologies to keep the developed systems efficient and effective.

19

Long Life Cycle

Often, in the development o f large and complex systems, management deals w ith short

term objectives and neglects long-term objectives [YEH 91]. When the life cycle o f a

system becomes longer it is essential to emphasize long-term objectives and to derive

short term objectives from them.

Summary' of the Managerial Aspects

We contend that the difficulties related to managerial aspects arise because there is

typically no specific management entity that deals principally with general and long-term

objectives in conglomerate projects where the number o f participants is very high.

Without a distinction between the various objectives, the short term and local objectives

overwhelm the global, long term, and more essential problems. There is a need for a

management that will manage and coordinate the various groups and determine policy

and directions for the whole system.

1.2.3.3 Problems in Technology' Handling

In this section we discuss technological aspects o f the development o f software systems.

Technologies enable the implementation o f software systems. There is an immense variety

o f technologies already on the market, and new technologies emerge at such a fast rate that

it is hard to deal with them productively.

M ore Than One System

The integration o f several systems may lead to heterogeneous environments. Moreover,

the current tendency is to "down-size", i.e., to replace a central system running on a

20

mainframe by a network o f smaller systems running on a set o f interconnected, smaller

platforms. Thus, we must address distributed processing technologies and ensure the

consistency o f their operations.

The case o f a family o f systems, where each system operates in a different

environment, requires methods that will improve the portability o f the system, i.e.,

transferring the system to a new environment.

More Than One Developer

Typically, each group o f developers is specialized in a specific set of technologies. This

fact may lead to a heterogeneous environment. Another difficulty is caused if each

developer struggles independently with the problems induced by the heterogeneous and

dynamic environment, leading to redundant efforts and a non-uniform system.

More Than One Customer

Generally, various customers have different technological environments. Thus, typically

systems with more than one customer have to be adjusted to the various environments.

Heterogeneous and Dynamic Environment

When a system is designed to operate in a heterogeneous environment, we have to deal

with a variety o f technologies. Currently, the various technologies are developed without

agreed-upon standards. To enable operation o f systems in heterogeneous environments,

there is a need to first "bridge" the technologies [NEFF 92].

Similar problems are caused by the dynamics o f the environment. Emerging

technologies must be incorporated to ensure the effectiveness o f systems.

21

Long Life Cycle

As the life cycle o f systems becomes longer, the effects o f emerging technologies may

become more critical. It is sometimes not merely optional but essential to incorporate

emerging technologies in order to ensure the competitiveness o f the systems and their

customers [CLEM 91].

The "aging problem" happens when a system becomes ineffective because it uses

"old" technologies and must be updated or replaced. When the life cycle becomes still

longer, the aging problem recurs every time a system incorporates another emerging

technology.

Summary’ of Technological Aspects

We contend that problems in the technological aspect are caused by the need to bridge and

incorporate various technologies. Efforts will be wasted if every group o f developers

independently solve the difficulties induced by these problems, instead o f developing

common, domain-wide solutions that will be used by all the development groups.

1.2.4 Summary’ o f the Problems

The previous sections describe problems in the engineering, managerial, and technological

aspects o f software development. These problems are summarized in Table 1.1.

22

Table 1.1 Problems Faced in Development o f Large and Complex Systems

Aspect Characteristic Difficulties Problems

Engineering More than one system Additional efforts are required
for the integration of systems

Current methods
do not fit

More than one group
of developers

The overall view of the system
is neglected

development of
more than one
system, with
multiple and
unstable
requirements

More Than one
customer

Multiple requirements

Heterogeneous
environment

Engineering solutions are
required to close technology
gap

Long life cycle Unstable requirements

Management More than one system General objectives are
neglected

There is no clear
distinction

More than one
developer

Coordination and
communication problems on a
larger scale

between general,
long-term
objectives and
local, short-term

More than one
customer

Different aims and needs objectives

Heterogeneous
environment

No standardization of tools

Long life cycle Long term objectives are
neglected

Technology More than one system Heterogeneous environment There is a need to

More than one
developer

Each development group has to
struggle independently with
Heterogeneity and dynamic
environments

bridge the various
technologies and
efficiently
incorporate
emerging

Heterogeneous
environment

Bridging different technologies
and incorporation of new
technologies is required

technologies as a
common domain-
wide solution

More than one
customer

Customization to user
environment

Longer life cycle Dynamic environment requires
incorporation of new
technologies

CHAPTER 2

MEGA-SYSTEMS

Chapter 1 describes difficulties in development o f software systems exhibit one or more

o f the following characteristics:

• Consist o f more than one system,

• Developed by more than one group o f developers,

• Have a large and heterogeneous group o f users,

• Have M ore than one customer,

• Operate in a heterogeneous technical environment.

Since the development o f systems with these characteristics is complicated and requires

more effort than the development o f traditional systems, we propose calling these systems:

M ega-System s, because they are "beyond" traditional systems.

We contend that problems in the development o f these systems are caused by the

use o f improper approaches and that it is possible to develop them more efficiently by

using new approaches appropriate to the special characteristics o f these systems. However,

to propose such approaches it is first required to understand the structure o f these systems

and the relation between their components. This chapter defines Mega-Systems and

classifies them. This classification can also be used to identify possible Mega-Systems.

There are several kinds o f Mega-Systems: H uge System s (HS), System s o f

System s (S2), and Generic System s (GS), distinguished by the manner in which their

24

elements are related. The following sections define these kinds o f Mega-Systems. Figure

2.1 illustrates our taxonomy o f Mega-Systems.

Mega-
Systems

IS A

Systems Generic
Systems

Huge
Systems Systems

Figure 2.1 Mega-Systems

2.1 Huge Systems

Huge systems as defined in [YOUR 92] are large and complex software systems with

hundreds o f thousands to millions o f lines o f code, and hundreds o f programs and

modules. They are typically composed o f multiple, large, and interrelated subsystems,

each o f which is designed to operate only as part o f the huge system and in the its

25

environment. Huge systems often intensively process large, complex databases in a

manner that precludes separation into smaller parts. Figure 2.2 illustrates the relationship

o f the parts o f a huge system.

Huge
System Part-of

Sub
System

Sub
System

Sub
System

Figure 2.2 A Huge System

An integrated CASE tool, developed to support the different phases o f a software

development life-cycle which is based on system specific database management system

and user interface tool is an example o f a huge system. Such a system includes many

programs, probably spread over many subsystems, but no part acts as a stand-alone

system.

Huge systems are developed for a particular group o f users, e.g., a specific group

within a large organization. The group usually has a common role and requires a precise

set o f functionalities.

Huge systems are developed and maintained by a large group o f developers. The

developer group may be divided into smaller groups based on either system functions,

26

(where each group develops a specific part o f the system), or the professions o f the

developers, (analysts, designers, and programmers). However, these groups typically

belong to a single company or organization.

While huge systems are developed like traditional systems, their size, complexity,

and length o f life cycle induce development, maintenance, and integration difficulties.

Their development is long and their maintenance is continuous and difficult, because they

evolve over time and undergo generations o f change. The interrelations between the

subsystems make modifications problematic. Due to the usual scaling up effect, the

amount o f management and coordination needed for their development is much greater

than for a traditional system [CSTB 90], [EISN 91], [MITT 91], [YOUR 92],

2.2 Systems of Systems

A second type o f Mega-System is the "system o f systems" (S2) [EISN 91], [ROSS 91a].

Systems o f systems integrate several independently developed systems. Each component

system is a product by itself, but is integrated with other autonomous systems to form a

Mega-System.

An example o f a system o f systems is the FAA’s advanced automation system for

air traffic control [HUNT 87]. This system of systems is composed o f several "large scale"

systems that operate within the context o f the overall, coherent mission o f providing safe,

cost-effective, passenger and freight, air transportation. The "air traffic control system"

27

integrates systems that provide communications, navigation, radar, control, and other

automation capabilities [EISN 91].

S y s t e m
o f

S y s t e m s
XYZ

Integrated-with

System System
Y2

System
Z4

Figure 2.3 A System o f Systems

Systems o f systems, usually, have a large, heterogeneous group o f users. These

users have different roles and require different functionalities. The systems o f systems

may also facilitate the work of these users as a group.

The systems forming the system o f systems are generally developed by separate

groups o f developers, at separate sites, with different schedules. These developer groups

belong to different organizations which have different aims and goals, and often have

different standards, techniques, and methods for developing systems.

In contrast to huge systems, we may not have full knowledge o f the functionality

o f the system o f systems in advance. Each part (system) o f the system o f systems can be

a stand-alone system, so it evolves over time; decentralized growth o f the systems is

typical .

28

Most systems that are integrated into a system o f systems were developed without

planning for future integration and with limited consideration o f other systems. Thus, most

systems o f systems are integrated in a post-facto manner [POWE 90]. However, some

systems o f systems are developed in a pre-facto manner that requires knowing all

components o f the system in advance and developing them from scratch [POWE 90].

2.3 Generic Systems

The third type o f Mega-System is the generic system. A generic system is a specification

o f a set o f interrelated functionalities and the actual systems derived from this

specification. A functionality is specified on an abstract and conceptual level by formal

definitions or natural languages. Different systems are then derived by instantiation or

specialization o f the abstract functionalities.

Instantiation is done by implementing the given set o f functionalities using a

specific programming language, specific hardware environment, etc. Specialization is

done on the level o f specifications by adding new or removing existing functionalities

without changing the essential characteristics. (Although "essence" is a qualitative and

subjective criteria, we suggest using it to avoid cases in which systems are derived by

removal o f all/most the original functionalities and addition o f new functionalities.

Quantitative criteria, e.g., the number o f functionalities, will be useless in this case).

Subsequent to specialization, new systems can be derived by instantiation. The derivation

29

can be done manually or by code or application generators. Figure 2.4 illustrates the

relationship between the components o f a generic system.

Generic
System X

INSTANTIATED-TO/
SPECIALIZED-TO

System
X1

System
X2

System
X3

7igure 2.4 A Generic System

A radar system is an example o f an embedded generic system. Radar systems can

be installed in planes, ships, or ground stations. All systems share common functionalities

such as user-interface, signal-processing, and communication. However, any individual

system has a special configuration instantiated/specialized from the original set o f

functionalities o f the generic radar system and suited to the requirements o f its customer.

Systems derived from a generic set o f functionalities are typically developed for

different customers, so generic systems generally have multiple user groups. Each derived

system is developed by a different group o f developers. Though these groups belong to

the same organization and develop systems with similar functionalities, they not always

work in coordination.

30

Generic systems are developed using traditional methods. Lack o f coordination

between developer groups leads to redundant functionalities and inefficiencies. Unlike

huge systems and system o f systems, the components o f generic systems are similar

systems. Although the basic functionality o f the generic system is specified in advance,

extensive adaptations o f the system are possible.

2.4 Generic Systems of Systems

Difference in types o f user groups and time frames for the use o f systems suggest defining

an additional type o f Mega-Systems, the Generic Systems o f Systems which can be

considered as a subclass o f both systems o f systems and generic systems. Generic Systems

o f Systems solve a problem for a domain, with no precise time frame and without definite

users.

A generic system o f systems has the flexibility o f a generic system and can be

specialized and instantiated into different configurations, but each functionality is

implemented as a system and each configuration as a system o f systems. Figure 2.5

illustrates the relationship between the components o f a generic system o f system.

An example o f a generic system o f systems is a system for insurance agencies. An

instantiation o f the system for a large insurance agency will operate on a mainframe with

multiple terminals. An instantiation for small agencies will use personal computers

connected by a network. These instantiations differ in their environments. It is also

31

possible to specialize the set o f original functionalities by adding or removing systems.

For example, a specialized system for a general agency could include life, vehicular, and

property insurance, and accounting systems. A specialized system for a life insurance

agency might include an accounting and a life insurance system.

f Generic
System of
l Systems X

INSTANTTATED-TO/
SPEC1AUZED-TO

/System oA
(Systems)Xjrj

System ol
SystemB

System of
Systems

INTEGRATED-TOINTEGRATED-TO

S y s te m y , _ /System \ / System
X31 / ' ' “ \ X39

System
X1n ,

S y s te m y System
X11 X3mX12

Figure 2.5 A Generic System o f Systems

2.5 Relationships among Mega-Systems

Figure 2.6 summarizes the relationships among the types o f Mega-Systems. Mega-

Systems are large, complex systems. Huge Systems, System o f Systems, and Generic

32

Systems are different sub-classes o f Mega-Systems. System o f Systems and Generic

Systems (GS) have a common sub-class: Generic System o f Systems (GS2).

AMega-
Systems /

Systems /
Systems

of
Systems

/ Generic
\ Systems

IS A

/Generic \
/ Systems \
\ 01 / \ Systems /

Figure 2.6 Detailed Classification o f Mega-System

Table 2.1 summarizes the characteristics o f traditional systems and Mega-Systems.

It allows us to classify the type o f a system and consequently determine a suitable

approach for its development. For example, a system with stable requirements and a

limited user group, might be developed using traditional approaches. On the other hand,

a system with dynamic requirements, several user groups, and multiple configurations,

each operating in a different environment, should be developed as a generic system o f

systems.

33

Table 2.1 A Comparison o f Mega-Systems

ATTRIBUTE Traditional
Systems

Mega-Systems

Huge
Systems

System
of Systems

Generic
System

Generic
System of
Systems

Requirements Stable,
known in
advance

Stable,
known in
advance

Dynamic Partly stable,
adaptations
are feasible

Dynamic
adaptations
are feasible

Customer Limited
user
group

Large
user
group

Hetero
geneous user
group

Multiple user
groups

Multiple
Hetero
geneous user
groups

Developers One group
within one
organization

Large group
within one
organization

Several
groups that
belong to
different
organizations

Several
groups that
belong to the
same
organization

Several
groups that
belong to
different
organization

Life Cycle Short Long Long Long Long

Components Sub-systems Large
Sub-systems

Independ
ently
developed
systems

Derived
Systems

Independ
ently
developed
systems

Relation of
system and
components

Part-o f Part-of Integrated-to Derived form Instantiated-
to and
integrated

Environment Homo
geneous

Homo
geneous or
Hetero
geneous

Hetero
geneous

Different
environments

Different
hetrogeneous
environments

Configurations
at a given
point of time

One One One Several (each
for a different
customer)

Several (each
for a different
customer)

Management One project One big
project

Several
projects

Several
projects

Several
projects

CHAPTER 3

A FRAMEW ORK FOR MEGA-SYSTEM DEVELOPMENT

This chapter describes the characteristics required o f a framework for the development o f

Mega-Systems. Section 3.1 describes existing models for development o f large and

complex systems. Section 3.2 specifies requirements for a framework. Section 3.3 outlines

the main concepts o f MegSDF.

3.1 Existing Models and Frameworks

Mega-Systems are currently developed using traditional approaches, e.g., the waterfall and

its variations [BOEH 76], Prototyping [GOMA 90], the Spiral Model [BOEH 88], etc.

Several solutions have been suggested for developing large scale systems and for systems

integration which are related to MegSDF. There are basically two approaches. The first

emphasizes development organization aspects: the activities, elements and organization

o f software development, e.g., COSMOS [YEH 91], GenSIF [ROSS 91a, b, c], POW DER

[MITT 91], SIF [GEHD 91], and System o f Systems Engineering [EISN 91]. The second

type emphasizes mega-programming languages that allow interaction o f systems, e.g.,

MPL [WIED 92], and LILEANNA [TRAC 91]. These languages were developed in the

context o f D A RPA 's Megaprogramming projects. MegSDF addresses the development

34

35

process, though megaprogramming tools can be used within the process to improve and

support development.

3.1.1 The COSMOS Model

Yeh etal. [YEH 91] have defined COSMOS, A COmmon Sense management M Odel for

Systems, based on the notion that developers o f large systems must consider long term

o b je c tiv e s . L ong te rm a p p lic a tio n s re q u ire f le x ib il ity and ease o f

maintenance/enhancement, since it is impossible to eliminate changes in the system. In

order to accommodate these changes efficiently, trade-offs should be considered from

three perspectives: Activities, Communication, and Infrastructure. To maintain a balance

between those perspectives COSMOS suggests two process levels: Control and Execution.

These levels apply to any perspective. The tasks o f each level and for each perspective are

defined. The model is applicable to software and non-software systems.

COSMOS proposes developing a system through a series o f small changes. At each

change, the balance among the three perspectives must be maintained and implemented

by the two process levels.

3.1.2 The GenSIF Framework

Rossak [ROSS 91a, b, c] has proposed GenSIF, A Generic Systems Integration

Framework, which divides the development o f a system o f systems into several projects.

GenSIF includes two levels o f management: an upper management level (m eta-level), and

several lower (project level) managements. The meta-level management is responsible for

36

leading the development o f the system o f systems, as well as for communication and

coordination between sub-projects. The lower level project managements are responsible

for developing each system.

GenSIF includes domain analysis, integration architecture, and infrastructure as

main concepts. The framework defines two levels for an integration architecture [ROSS

91c], The first, conceptual level architecture describes guidelines and standards for the

development o f the entire system. The second level is the technical infrastructure. This

level deals with the standardized services that are an essential part o f any system. These

services include communication, data storage, and user interface.

3.1.3 The POWDER Methodology

M ittermeir developed POWDER, a recursive methodology for Prototyping O f Wicked

Development Efforts with Reuse [MITT 91]. POW DER is a methodology for software

development, based on generally applicable techniques used to solve wicked problems.

The methodology divides the development into sub-projects, and divides the process into

control and execution levels. The control level is responsible both for steering the

development and for the integration platform. The execution level is responsible for the

actual work done in the different sub-projects. A large sub-project at the execution level

may require further control and execution sub-levels. Thus, POWDER supports a

recursive organization. The framework includes descriptions o f the responsibilities o f each

level. The method for implementation o f each sub-project is chosen according to the

attributes o f the sub-project. The POWDER model can be used for any system and type

37

o f integration. The framework includes guidelines for choosing a development approach

for various types o f projects. Figure 3.1 describes the organization/task structure o f the

model from our viewpoint.

System XYZ

ProJ ProJ ProJ Pro| Pro]
X Y U V

C-Lavel

E-Level

v
S '

ProJ X C-Level Pro] Z C-Level

ProJ
X1

ProJ
X2

ProJ
X3

ProJ
, X4 E-Level

ProJ
Z1

ProJ
Z2

ProJ
Z3

Pro]
Z4 E-Level

ProJ X4

ProJ ProJ ProJ P ro |
X41 X42 X43 X44

C-Level

E-Levol

C - Control
E - Execution

rigure 3.1 The POWDER Model

3.1.4 The SIF Framework

[GEHD 91] proposed SIF, a Systems Integration Framework. SIF identifies problem

"tracks" including: technology project management, technology change management,

38

technical platform development, custom applications development, testing and

implementation, package selection and implementation, application operation, data

modeling, and software re-engineering. Each track has its own methods, techniques and

tools.

SIF suggests that the first step of each systems integration process should be the

identification o f the track(s) the system belongs to. For each track, deliverables and

milestones, activities and their dependencies, techniques and tools, and appropriate quality

assurance measurements are defined. The interrelation between the tasks are then

addressed. The process is iterative and dynamic. The approach leads to customized

solutions where each system is developed by methods, techniques, and tools tailored to

the special needs of the system. The model is useable for any type o f system development

or systems integration.

3.1.5 System of Systems Engineering Model

Eisner et al. [EISN 91] suggest a model for system o f systems (S2) engineering. They

characterize a system o f systems as a multi-functional system with several independently

acquired, interdependent systems. The local optimization o f a system in a system of

systems does not guarantee global optimization o f the entire system. The combined

operation o f the systems satisfies the overall coherent mission. System o f systems

engineering requires developing autonomously managed systems under an overall

supervising management.

39

System o f systems engineering is based on a meta-system engineering framework

which uses three categories: integration engineering, integration management, and

transition engineering. Integration engineering involves all the engineering necessary to

fully integrate the component systems. Integration management focuses on the

management aspects o f systems o f systems, emphasizing scheduling, budgeting/costing,

configuration management, and documentation. Transition engineering focuses on

assuring an orderly transition from the collection o f stand-alone systems to the integrated

system o f systems.

Eisner et al. contend CASE-tools are critical in engineering systems o f systems.

CASE tools can enhance developers’ productivity, and facilitate impact studies, interface

analysis, performance analysis, scheduling, budgeting, and documentation.

3.1.6 The Megaprogramming Framework

DARPA has encouraged research on the problems o f scaling up software engineering, for

which they introduced the term "megaprogramming". Wiedrehold et al. [WIED 92]

propose a framework and Megaprogramming Language (MPL) for megaprogramming

using software components called megamodules. Megamodules capture the functionality

o f services provided by large organizational units, e.g., banks, airline reservations, or city

transportation systems. Computations spanning more than one megamodule are specified

by megaprograms using a megaprogramming language. Megamodules encapsulate data,

behavior, and knowledge, and support multiple concurrent activities. A megamodule is

40

operated and maintained autonomously and is a potential component o f many

megaprograms. Megamodules can be developed by traditional technologies.

M egamodules require module interaction mechanisms that support their

encapsulation, heterogeneous interfaces, and dynamic evolution. [WIED 92] proposes a

M egaProgramming Language (MPL) to allow flexible composition o f megamodules and

support synchronous and asynchronous coordination schemes, decentralized data transfer,

parallelism and conditional execution. It supports the autonomous operation o f

megamodules and allows asynchronous operations controlled by the megaprograms.

Input/output parameters are presented with database-like schemas.

MPL separates input/output management from the invocation mechanism in CALL

statements. MPL includes operations for megamodule interaction, e.g., inspection o f

interfaces and contents o f megamodules, and examination o f the status o f a megamodule.

A megaprogramming system consists o f a collection o f distributed megamodules

linked by a network. A megaprogramming environment includes a repository and

dictionary that support megamodule execution and maintenance.

3.1.7 Summary of Existing Methods

Table 3.1 compares the approaches just described. Basically, the approaches call either for

two levels o f managements or two levels o f programming. The COSMOS model suggests

developing systems by an evolutionary approach consisting o f a sequence o f small

changes. Other approaches propose dividing the development effort into smaller projects.

The models do not define explicit processes for developing such systems, methods o f

41

partitioning into sub-problems, or methods for assuring engineering coordination o f

projects.

Table 3.1 Existing Models

Model Organization Parts Main concepts

COSMOS Control
Execution

Small Changes Balance activities,
communication, and infra
structure in each change.
Long term objectives should be
considered.
Flexibility and ease of
maintenance are essential.

GenSIF Meta-level
management
and several lower
level management

Projects Domain analysis, integration
architecture, and infrastructure
are main elements.

SIF Not defined Problem Tracks,
e.g., technology
management,
application
development

It is required to determine what
problems tracks characterize the
system and their implications.

POWDER Control and
Execution
with recursive
structure

Projects Each project should use an
appropriate approach for its
development.

System of
Systems
Engineering

Meta management Systems Integration engineering,
integration management, and
transition engineering.
CASE tools are mandatory

MPL Each megamodule
is autonomous
and developed
and maintained
separately

Megaprograms
and
Megamodules

Traditional methods for
development of megamodules.
Megaprogramming language
with separation of I/O
management from invocation.

3.2 Requirements for a Framework

42

The problems in developing large, complex software systems discussed in chapter 1 lead

us to conclude that a new approach for developing Mega-Systems is required. The

complexity and the variety o f problems dictate more than an engineering solution; other

aspects o f development must also be incorporated in the framework for developing Mega-

Systems. In order to address the problems in software systems development (summarized

in table 1.1), a framework for developing Mega-Systems must be:

• General.

• Comprehensive,

• Operative, and

• Open

The framework must be general. That is, it must be useful for different application

domains such as data-processing (banking, insurance, manufacturing) and real-time

applications (naval systems, avionic). It should also suit the different types o f Mega-

Systems.

The complexity o f development and the number of developers involved in Mega-

Systems require a comprehensive framework that incorporates engineering, managerial,

and technological aspects [DAVI 92]. A solution that addresses only the difficulties

involved in engineering aspects will be insufficient.

43

The framework must be operative. That is, it must specify the activities required

to develop a Mega-System, their deliverables, and their interconnection and sequencing,

and integrate them into a coherent, efficient process model.

The framework must also be open and flexible. Developers o f Mega-Systems must

have the option o f selecting an appropriate technique for implementing an activity. The

technique must fit both the characteristics o f the problem and the experience and

knowledge o f the developers. This also applies to the selection o f tools that support a

specific technique. The framework must be adjustable to the actual needs o f the domain.

3.3 Outline of MegSDF Framework

We propose MegSDF - a framework for Mega-Systems development - which satisfies the

general requirements for a framework, and addresses the problems in development

identified in chapter 1 and the limitations o f existing models for development. The main

concepts o f the framework include:

• Two levels o f organization,

• Engineering coordination,

• A pre-planned approach, and

• Development as open, distributed systems.

We will briefly motivate these concepts, then, in the following sections elaborate on them.

44

The complexity o f Mega-Systems development scales up management issues, so

that management aspects must be included in the framework. We propose an organization

with two levels o f management in order to guarantee/enforce the distinction between, and

attention to, overall development and coordination, as opposed to purely local

considerations.

The characteristics o f Mega-Systems also lead us to propose a new engineering

process for their development. The process is specified by a process model which

includes: definitions o f activities, their relations, deliverables, and sequencing. The

process promotes engineering coordination o f all systems developed in the domain by

using (what we call) a domain model, a Mega-System architecture, and an infrastructure,

which are derived in Mega-System tasks.

To facilitate future changes, integration o f new functionalities, and incorporation

o f emerging technologies, we recommend a pre-planned approach. Finally, to realize the

previous concepts we propose developing the Mega-Systems as open, distributed systems.

3.3.1 Development Organization

The size and complexity o f Mega-Systems preclude their development as single systems.

Therefore, Mega-Systems consist o f multiple systems. Naturally, developing their

constituent systems without coordination is ineffective. To provide for the requisite global

coordination, we propose developing a Mega-System as a m ega-project that includes

multiple coordinated projects. Each project develops a smaller constituent system o f the

Mega-System. To ensure that the distinction between general, long term issues as opposed

45

to local, short-term issues is maintained, we define two levels o f management. M eta

m anagem ent controls the mega-project. Projects are controlled by lower level project

m anagem ents. Figure 3.2 illustrates the proposed organization o f systems, management,

and projects. (Though huge systems currently do not include systems as components, we

recommend that in the future huge systems be developed as systems o f systems).

D e v e lo p e d a s M a n a g e d b y

N Includes

System

N Includes

Project

Mega-
System

M sga- Mota-
Project Manage-

m ent
Controls
S.

Project
M anage
m ent

F igure 3.2 Mega-System Development Organization

M eta-M anagem ent

Overall management is essential fo ra mega-project [EISN 91], [MITT 91], [ROSS 91a],

[YEH 91], The meta-level management guides and controls the development o f the whole

system. It determines policies and directions for the system and guarantees communication

and coordination between the different projects. Meta-management communicates with

the customers to guarantee the effectiveness of the trends and directions o f the system. It

maintains a balance among the multiple requirements and divergent needs o f the

46

customers. Meta-management determines global priorities and schedules. M eta

management should include managers o f the smaller projects, as in POW DER [MITT 91];

this promotes efficient communication and coordination. Meta-management decisions

should be based on risk analysis [CHAR 89] to identify the real problems early and

allocate resources appropriate to solve them.

Lower Level Management

Lower level project management controls either development o f a small system or the

customization o f a Mega-System according to customer needs. It is responsible for local

and temporary issues. Each project should be developed as a part o f the whole system and

be coordinated with other projects. Each constituent system should be developed

according to its own attributes as recommended by [MITT 91]. The development approach

should be selected based on the experience and development tools o f the developers.

The relation between meta-level and lower level management should be flexible.

The type o f management - centralized or decentralized - depends on the project attributes.

Risk analysis can be used in determining the relation between management levels. The

degree o f autonomy of project management may vary among different projects. A project

may be so large that its management needs to define sub-tasks to accomplish it. For

example, developing a system using the waterfall model may entail multiple sub-tasks,

where each sub-task corresponds to a phase o f the model. The approach is recursive,

similar to POW DER [MITT 91].

47

3.3.2 Engineering Coordination

The drawbacks of current development models are rooted in the lack o f engineering

coordination. While meta-management balances customer requirements, and determines

an appropriate schedule, there remains a need for concepts and tools to facilitate

engineering coordination o f the projects. The constituent systems should not be developed

as isolated solutions to limited parts o f the problem. Thus, our framework must provide:

an overall, general view o f the problem space, a plan for the system as a whole which

clarifies the role o f each constituent system within the entire Mega-System, and

recommendations for uniform use/handling o f technologies.

In our process, Domain Analysis provides a universal, general, comprehensive

dom ain model. It provides a common understanding o f the problem, and facilitates early

identification o f future requirements.

The M ega-System architecture design defines common design and

implementation concepts in a conceptual architecture and the overall structure o f the

system in an application architecture. The conceptual architecture ensures the

integratability and uniformity o f the constituent systems. These concepts can also enhance

productivity o f development by defining common solutions. The application architecture

maps the application domain to implementation and identifies the interrelation o f the

constituent systems.

In frastructure acquisition provides a unified environment o f enabling

technologies through an infrastructure. The infrastructure is used as a common solution

for technologies handling by the different projects.

48

All these elements promote engineering coordination for the entire development

effort. The next chapters further elaborate on these elements and integrate them into an

engineering process.

3.3.3 The Pre-Planned Approach

Mega-Systems tend to become long-term solutions. Their size and complexity entail

extensive development effort and correspondingly high investment, so it is impossible to

develop a Mega-System over a short period and infeasible to replace it after a short time.

On the other hand, application domains are dynamic and systems themselves influence

these dynamics [LEHM 90]. Changing requirements are unavoidable, and so systems must

be planned for change [CSTB 90], [YEH 91]. Furthermore, the length o f system life

cycles often implies that the technologies in which the systems were originally developed

will become obsolete; obsolete technologies must be replaced to assure systems

effectiveness and user competitiveness [CLEM 91].

In the light o f these characteristics, we must plan for flexible systems with long life

cycles [CSTB 90]. The development o f such systems should be evolutionary; different

parts should be developed, modified, or replaced over time according to the needs o f the

application domain. This type o f development requires a dynamic organization. M eta

management is responsible for defining the various parts, for deciding when to start

developing a part, and for stopping or suspending the development o f a part. While the

meta-management is active during the whole life o f the Mega-System, projects for the

49

development o f the different parts are active according to the progress o f the Mega-

System.

Most existing Mega-Systems were originally designed as regular systems. They

became Mega-Systems that integrate (or incorporate) multiple systems only because their

characteristics changed over time in response to customer needs. Power [POWE 90] has

proposed classifying the process o f systems integration in which systems o f systems are

formed on the basis o f the order o f design and implementation o f the component systems

and the whole system o f systems. This classification includes both post-facto (or a

posteriori) integration and pre-facto (a priori) integration, as well as a mixture o f these

types.

Post-facto Integration refers to the integration o f multiple systems that were

developed before the system of systems was even specified. Post-facto integration is

constrained by its need to integrate existing systems usually developed by separate groups,

with diverse standards and procedures, according to isolated requirements, and not

designed to be integrated. Interfacing such systems requires extensive effort.

Compromises are often required, either in easing requirements to allow reuse o f existing

software, or in redeveloping systems to comply with requirements. Despite its inherent

complexity, post-facto integration may be appropriate in some cases because the use of

existing systems reduces risk and uncertainty.

Pre-facto Integration addresses the integration o f systems that are planned and

developed to work together. All the parts or systems o f such an integration are assumed

to be known in advance. Each part is designed to operate in the context o f the system of

50

systems. The objective o f pre-facto integration is to improve the productivity o f

development and systems quality and flexibility. Since no part o f the final system already

exists, it is possible to design and implement the system and its parts very efficiently. Even

though the constituent systems are designed and developed separately, they are planned

with the knowledge that they must be integrated into a single system. However, despite

its efficiency, the pre-facto approach tends to be inflexible to change. Furthermore,

although pre-facto integration is more desirable from the integrator’s viewpoint,

experience has shown that it is infeasible to use only pre-facto integration: systems must

also integrate components developed before the design o f the system began [POWE 90]

and also adapt to long life cycles with on-going changes.

Power’s classification of systems integration is also applicable to Mega-Systems.

Thus, a pre-facto Mega-System is one designed to be a Mega-System in advance: all the

requirements for its parts and configurations are known prior to design and

implementation. In contrast, a post-facto Mega-System is a set o f systems developed as

traditional systems, which later, due to new requirements, becomes a M ega-System: its

parts and configurations are not known in advance.

Pre-Planning

In reality, it is impossible to foresee w'hat future requirements will be. Hence, the pure pre-

facto approach is infeasible. On the other hand, the post-facto approach is inefficient and

entails excessive integration effort. We recommend using apre-planned approach in order

to overcome these problems.

51

The pre-planned approach advocates defining concepts and tools that will facilitate

future integration, changes in requirements, and incorporation o f new technologies. It

includes elements o f pre-facto and post-facto integration. It specifies an environment that

facilitates integration o f systems, as in the pre-facto approach. However, this environment

is open and does not require knowledge o f all elements o f the system in advance, allowing

the integration o f existing systems, required for post-facto integration. The previously

mentioned means for engineering coordination support these concepts by allowing early

identification o f future needs and facilitating integration o f systems.

3.3.4 Development as Open Distributed System

In order to realize the preceding concepts (two levels o f organization, engineering

coordination, and pre-planning) Mega-Systems should be developed as open, distributed

systems consisting o f multiple interdependent, but self-contained, systems. Open refers

to the fact that the systems include well defined interfaces which facilitate future

integration. Distributed means the Mega-System is composed o f smaller constituent

systems forming a federation o f systems [SHET 90]. Each constituent system is

autonomous but prepared to share functionality, data, etc., with other current (or

prospective) systems o f the Mega-System. The constituent systems are defined following

the domain model and according to the application architecture; their design conforms to

the common design principles o f the conceptual architecture. To accomplish these

characteristics, the Mega-System is implemented using an infrastructure that enables

52

interaction o f constituent systems, bridges underlying technologies, and uniformizes

heterogeneous environments. Refer to figure 3.3 for an overview.

Application Domain

Host HostHost HostHost

SystemSystem SystemSystem

M ega-System

Infrastructure

F igure 3.3 Mega-System

CHAPTER 4

MegSDF PROCESS MODEL

A framework for development of Mega-Systems has to specify the required activities for

development o f a Mega-system and the interrelation between its activities in order to be

operative. The activities are defined in a process model [KOKO 89], [CURT 92], [TAYL

92] which has to be instantiated [PERR 89a] for every Mega-System development.

Research on software development processes has many facets. One approach

evaluates software processes and proposes ways to improve them, e.g., [HUMP 88],

[KRAS 92], [SCHL 92]. Other approaches try to improve the representation o f the process

model to support its control and automation [TULL 88], [PERR 89]. The MegSDF process

model is used to specify the activities required for the development o f a Meg-System.

4.1 A Method to Describe an Engineering Process

The graphical notations o f Structured Analysis (SA) [DeMA 78], [WARD 86] and

Structured Analysis and Design Technique (SADT) [ROSS 77], [DICK 78] have been

used to define the software development process in [FREE 87] (as also suggested by

[FRAN 92], [BLUM 92]). We will use a method that synthesizes both these approaches.

A process is denoted by a process diagram that includes several tasks or sub-processes and

53

54

data and control flows that connect them. A task, together with its inputs and outputs, is

described using the SADT activity primitive (Figure 4.1).

"igure 4.1 The Graphical Notation for a Traditional

ActivityInputs

Mechanism

Controls

Outputs

SADT Activity

We differentiate between management and engineering tasks using W ard-M ellor’s

notation [WARD 86]. An engineering task, e.g., domain analysis, is drawn as a solid box

(Figure 4.2a). A management task, e.g., resource allocation, is drawn as a dashed box

(Figure 4.2b). A flow is drawn as an arrow. A complex task is exploded in further process

diagrams.

The MegSDF engineering process requires execution o f multiple similar tasks

concurrently, e.g., system tasks. Such tasks have the same entries and exits and the same

processing, but are executed on different instantiations of the inputs and outputs and

according to different schedules. These tasks are denoted as multiple boxes, (Figure 4.2c)

similar to the multiple processes in the SA extension o f [BLUM 92],

55

L

a. Engineering-
task

b. Management-
task

c. Multiple-
tasks

Figure 4.2 Graphical Notations for MegSDF Activities

Following [DICK 78]. our synthesized method uses five types o f flows: Inputs,

Outputs, Mechanisms, Circumstance, and Execution controls. Inputs, Outputs,

Mechanisms, and Circumstances flows are drawn as solid arrows. Execution Controls are

draw’n as dashed arrows. To avoid overloading the figures we use shared flows. A shared

flow is connected to all tasks o f the process, but drawn only to the boundary o f the process

diagram. Shared flows can be inputs, outputs, execution control, mechanism, or

circumstance.

We follow the SADT positioning rules for flaws:

- Inputs enter from the left side o f a task,

- Outputs exit from the right side o f a task,

- Mechanisms enter from the lower side o f a task,

- Circumstances enter from the top side o f a task.

- Execution controls enter from the top side o f a task.

- Execution controls exit from the right side o f a management task only,

- Any entry or exit connected to multiple tasks refers to all tasks,

- Shared flows are drawn from/to the boundary o f the process diagram.

56

Just as in structured analysis, the definition a process consists of: name, purpose,

interfaces, processing, process diagram, timing, and description o f tasks (sub-processes)

o f the actual process (if these tasks are not described separately). Process interfaces are

divided into inputs, mechanism, circumstance, execution control, outputs, and task

execution control outputs.

4.2 Mega-System Development Process Model

We define the process for Mega-Systems development according to the concepts o f the

framework discussed in chapter 3 using the notations o f the previous section. This section

focus on the first level o f the process model and discusses the interaction between the

main tasks. Subsequent chapters discuss the tasks o f the process in detail.

4.2.1 Purpose

The purpose o f this process is to develop a Mega-System.

4.2.2 Interfaces

Inputs

• Domain Data - Information regarding the domain in which the Mega-System is intended

to operate.

• Customers/Users requirements - Requirements o f the Customers/Users o f the systems.

57

• Existing and Projected Technologies - Information about technologies that are already

available and projected technologies that will be available in the future.

M echanism s

• Modeling Approaches - Commonly available modeling approaches.

• Architectural Styles - Styles o f conceptual architectures for Mega-Systems.

• Software Engineering Methods - Methods for developing software systems that can be

used to develop systems in the domain.

O u tp u ts

• Mega-System

4.2.3 Processing

The constituent systems are developed, under the supervision o f the m eta-m anagem ent,

in the system tasks. The engineering aspects o f the development are coordinated by the

M ega-System tasks that provide the domain model, a M ega-System architecture, and a

common infrastructure. The Mega-Systems is constructed from the constituent systems

in the M ega-System Synthesis Task. Feedback from the system and synthesis tasks are

used to improve the engineering coordination tools provided by the Mega-Systems task

and the global plans and schedule o f the Meta-management. Figure 4.3 illustrates the

interaction between the tasks.

The process assumes that verification, validation, and quality assurance are done

as part o f every task or sub-task to ensure that an effective and efficient system is provided

to the customers.

58

Management Control

Meta-

ManagemBnt
Customer
Requirements

D om ain
D ata : Domain Modal

System

Existing &
Projected
Technologies

Feedback Software
Modeling'
Approaches

Engineering
Methods

Architectural
Styles

Mega-
System-
Synthesls

SystemMega-
System

Figure 4.3 MegSDF First Level

4.2.4 Timing

The process o f Mega-System development is continuous, persisting as long as systems are

developed and maintained in the domain. Therefore, meta-management tasks and Mega-

Systems tasks should be active for the life of the Mega-System. Mega-System synthesis

should be active according to customers requirements. Systems tasks are active according

to the necessities o f the process. Multiple system or synthesis tasks may operate

concurrently.

59

Figure 4.4 illustrates a possible schedule for development o f a Mega-System. The

tasks are drawn as lines over the time axis. After initialization o f the Mega-System, meta

management and Mega-System tasks are activated and remain active during the life o f the

Mega-System. System and synthesis tasks are activated and deactivated according to the

actual needs. The Mega-System may integrate systems that were developed before its

initialization.

Initialization of
Meta- M ega-S ystem
Managemen-----------
M ega-System
Mega-System
Synthesis
System ------------

Figure 4.4 A Schedule for Mega-System Development

Tim©

4.2.5 Sub-Tasks

The essential tasks o f the MegSDF process are the Mega-System tasks discussed in section

4.3 and further elaborated in chapter 5, 6 and 7. Meta-management, system and Mega-

System tasks are discussed in chapter 8.

4.3 Mega-System Task

60

The Mega-System task performs the engineering coordination for the process, focusing

on general issues and long term objectives. It consists o f domain analysis, Mega-System

architecture design, and infrastructure acquisition sub-tasks.

Domain analysis provides a general, comprehensive domain m odel in order to

improve understanding o f the problem. The domain model is used to facilitate identifying

future requirements, including requirements for integration with other systems. It is also

used to balance multiple and ambiguous requirements.

A M ega-System architecture designs the system in the large. An application

architecture specifies the boundary o f the system within the domain and identifies the

main parts o f the system. The conceptual architecture specifies design and implementation

concepts to ensure uniformity and integratability o f the constituent systems.

The infrastructure acquisition provides a unified environment o f enabling

technologies through an infrastructure, used for all projects that develop systems in the

domain.

The interaction o f the Mega-System tasks is described below.

4.3.1 Purpose

The purpose o f the Mega-Systems tasks is to provide models, concepts, and tools for

engineering coordination o f the entire process.

61

4.3.2 Interfaces

Inputs

• Domain Data - Information regarding the domain in which the Mega-System is intended

to operate.

• Customers/Users requirements - Requirements o f the Customers/Users o f the systems.

• Existing and Projected Technologies - Information about extant and projected

technologies including enabling technologies and infrastructures. Technologies compatible

with the Mega-System attributes are chosen from this input and used to implement the

Mega-System.

• Feedback - Engineering information from the system and Mega-System synthesis tasks.

Mechanisms

• Modeling Approaches - Commonly available modeling approaches.

• Architectural Styles - Styles o f conceptual architectures for Mega-Systems.

Control Inputs

Management Control - The schedule and milestones assigned to the Mega-System tasks

by the meta-management task.

Outputs

• Domain Model - A model o f the application domain, defined in section 5.2

• Mega-System Architecture - The architecture o f the Mega-System, defined in section

6 . 2 .

• Infrastructure - The chosen infrastructure, defined in section 7.2.

62

• Feedback - Status and engineering data required by the meta-management for managing

the whole process.

4.3.3 Processing

A domain analysis task defines a domain model based on the domain information. The

M ega-System architecture design task specifies the architecture o f the Mega-System,

based on the domain model and existing and projected technologies. The infrastructure

acquisition task selects and acquires a common infrastructure based on the concepts of

the conceptual architecture. Feedback from the infrastructure acquisition task is used to

improve the Mega-System architecture. Feedback from the Mega-System architecture is

used to improve the domain model. Feedback from the system and synthesis tasks is used

to improve the engineering coordination tools. All Mega-Systems tasks use

customers/users requirements as essential information. Figure 4.5 illustrates the

interrelation o f the Mega-System tasks.

The process assumes that verification, validation, and quality assurance are done

as part o f every task or sub-task to ensure effective and efficient engineering coordination

tools are provided to the developers o f systems in the domain.

63

Customer\User
Requirements

M anagem ent-C ontrol

■ ■ ► i -

Domain
ModelDomain:

Data Domain

Architecture
A rchitecture

Feedback

Infra
s truc tu re
Acquisition

Enabllrjg Technologies &
Existing Infrastructures

Infrastructure

Feedback
►

Feedback
6

Architectural
Styles

Modeling
Approaches

Figure 4.5 Process Diagram for the Mega-System Tasks

4.3.4 Timing

Mega-System tasks provide engineering coordination for all systems developed in the

domain. Consequently, these tasks are active for the duration o f systems development and

maintenance in the domain. The domain analysis task tracks changes in the domain. The

infrastructure acquisition task must stabilize the interfaces to the ever evolving

technologies. The Mega-System architecture design task translates changes in the domain

reflected in the domain model into implementation changes in the application architecture.

It also stabilizes the implementation environment by providing common design and

implementation concepts.

64

4.3.5 Sub-Tasks

Domain analysis, Mega-System architecture design, and Infrastructure acquisition are the

backbone o f our Framework. Each o f these tasks is discussed in more detail in one o f the

following chapters. Chapter 5 describes domain analysis, chapter 6 describes Mega-

System architecture design, and chapter 7 describes infrastructure acquisition.

CHAPTER 5

DOMAIN ANALYSIS FOR MEGA-SYSTEMS

Domain analysis in MegSDF is intended to provide a general, universal, comprehensive,

non-constructive domain model to be used as a common basis for understanding o f the

domain. The Domain model is used by the various system tasks as an essential input for

requirement specification. It supports the "pre-planned" approach by modeling the entire

domain and not a limited part o f it. The domain model is used to improve the

understanding o f the role of any constituent system and its relationship with its

environment (and not as an isolated system). Furthermore, the domain model is used by

the Mega-System architecture design task for both conceptual and application architecture

design. Unlike domain modeling for software reuse, MegSDF domain model does not

include constructive elements.

An application domain is perceived differently by entities with different

relationships to the domain. The domain model in MegSDF is built as an integration o f

significant perceptions o f the domain by its perceivers. Each significant perception

representing the phenomena of the domain from the viewpoint o f a specific perceiver.

The process o f domain modeling in MegSDF includes two phases. In the first

phase, a dom ain m odeling schem a (domain schema) consisting o f element-types

(modeling primitives) for the domain is defined. In the second phase, the significant

perceptions, built using the domain-schema, are integrated into a common domain model.

65

66

The process o f domain analysis is continuous. Any essential change in the domain,

as well as feedback from other tasks, should be evaluated and reflected in the domain

model as required.

This chapter defines the domain analysis task. Section 5.1 describes the role o f

domain analysis in MegSDF, its required characteristics, and contrasts it with current

methods o f domain and system analysis. Section 5.2 defines M egSDF’s domain modeling

approach and a technique that structures the modeling process. A process based on the

technique is defined in section 5.3. Section 5.4 compares our approach with other methods

o f system and domain analysis. An example illustrating the domain analysis process

concludes the chapter.

5.1 Requirements for Domain Analysis

5.1.1 The Role of Domain Analysis in MegSDF

Domain analysis was identified in chapter 4 as one o f the Mega-System tasks. The

purpose o f domain analysis is to specify a domain model used to support the development

o f software systems in the analyzed domain. The domain model serves as a common basis

for understanding o f the domain. It is used as a reference model, thesaurus, or knowledge

base, which captures the essential information required to understand the application

domain.

67

Domain analysis is intended to address and rectify the following difficulties in

software development: neglect o f overall, long term issues; the need to deal with multiple,

unstable requirements o f customers with different aims and needs; and coordination and

communication problems. Table 1 summarizes these objectives (using an inverted sub

table o f the problem list table 1.1).

Table 5.1 Difficulties and Problems Addressed by MegSDF Domain Analysis

Difficulties Caused By Aspect Problems

The overall view o f the
system is neglected

More than one
group o f
developers

Engineering Current methods
do not fit
development of
more than one
system, with
multiple and
unstable
requirements

Multiple requirements More than one
customer

Unstable requirements Long life cycle

General objectives are
neglected

More than one
system

Management There is no clear
distinction
between general,
long-term
objectives and
local, short-term
objectives

Coordination and
communication
problems on a larger
scale

More than one
developer

Different aims and
needs

More than one
customer

Long term objectives
are neglected

Long life cycle

The domain model serves as a basis for refinement or specialization during the

requirement specification phases o f the various system tasks (projects) which develop

constituent systems. It is an input for the Mega-System architecture design task, to which

68

it represents the domain. Feedback from the system and Mega-System Architecture design

tasks includes recommendations for improvement to and corrections of the domain model.

Figure 5.1 illustrates the relationship o f the domain model to the other elements o f

MegSDF.

Mega-System Tasks System Tasks

Domain Model Requirement
Specification

Design

Infrastructure Implementation

 ► Major
- - Some

* Minimal

Figure 5.1 The Relationship o f the Domain Model

5.1.2 Requirements for M egSDF’s Domain Model

Since MegSDF must be general, i.e., applicable to any domain and any type o f Mega-

System, the process o f domain analysis, as part o f the framework, must be applicable to

69

any application domain and to any type o f Mega-System. Consequently, the process itself

must be both flexible and domain independent.

A domain model is intended to provide a common basis for understanding. To do

so, it must be:

• Universal,

• General,

• Comprehensive,

• Nonconstructive, and

• User-friendly.

Universality is required because the model is used by every project developing any

system in the domain. For example, a university domain model will be used for the

registrar system, the accounting system, as well as the foreign student system.

Furthermore, since we are seeking integratable systems, it is essential to identify the

relationship o f each system to the other parts o f its environment. A universal model o f the

whole application domain will facilitate the development o f such integratable systems.

Generality is required because the model is not intended to be used for a specific

instance (system) o f the domain, but rather as a common model for all systems for the

domain. For example, a university domain model represents all universities, not a specific

university. As a general model, a university domain model includes such concepts as

academic year and terms, but the actual number o f terms, their lengths and schedules, vary

with the university and so are not represented in the model. A model that fit only a specific

instance or a particular system would not provide a common basis for understanding for

70

all systems in the domain. The analysis o f a specific case (instance) is, from this

viewpoint, only traditional system analysis. O f course, we must limit the generality o f the

model to ensure its usability. If the model is too general it will include too many

alternatives and become unmanageable. While if it is too abstract, it will lack adequately

detailed information. For example, an aircraft carrier domain model should represent all

aircraft carriers, not battleships or arbitrary military vessels, but not be restricted to a

specific aircraft carrier, e.g., the Enterprise.

Comprehensiveness is required since the model serves as a common basis for

understanding, and so must include all the essential kinds o f information regarding the

domain. The model should include information about the things in the domain, their

interactions, concepts, and any useful knowledge.

A domain model should be non-constructive, that is, it should not concentrate on

the constructive aspects: design and implementation. A conceptual model for an

application domain without constructive elements provides a broader basis for systems

implementation. It also improves the reusability o f the domain model, because

constructive elements usually belong to the solution domain and tend to restrict a model

to a specific solution, hiding the essential concepts o f the domain. We propose that

constructive aspects be dealt with separately, during Mega-System architecture design and

infrastructure acquisition.

Finally, the domain model must be user-friendly, since it is intended for use by

system analysts, architecture designers, etc., and not only by software systems, e.g.,

71

application generators. Machine readability is required to support the model by CASE

tools, but is not an intrinsic element o f the technique.

5.1.3 Contrast with Domain Analysis in Reusability and System Analysis

The notion o f domain analysis in MegSDF differs from its use in software reusability. The

concept o f domain analysis for software reuse was introduced by [NEIG 81] as "the

activity o f identifying the objects and operations o f a class o f similar systems in a

particular problem domain." Similarly, [PRIE 90] defines domain analysis as "a process

where information used in developing software systems is identified, captured, structured

and organized for further reuse." In both cases, domain analysis is used only to identify

reusable components.

Arango and Prieto-Diaz [ARAN 91] recommend representing the specification and

implementation concepts for reuse in a domain model which includes information on at

least three aspects o f a problem domain:

• Concepts which allow the specification o f systems in the domain,

• Plans which describe how to map specifications to code, and

• Rationales for the specification concepts, their inter-relationships, and their relationship

to implementation plans.

They also recommend dividing domain analysis into conceptual and constructive analyses.

The conceptual analysis identifies the information required to specify systems in the

domain. The constructive analysis identifies information required to implement systems

for the domain. Additionally, they suggest specifying and implementing an infrastructure

72

that facilitates software reuse. Libraries o f programs or software archives ([MITT 87],

[ROSS 87a]) are examples o f such reuse infrastructures.

Domain analysis as described by [ARAN 91], [ISCO 91], [NEIG 81], [PRIE 90],

[PRIE 91a, b, c], [THAY 90] primarily addresses software reuse for families o f similar

systems. In contrast M egSDF’s domain analysis is intended for systems o f systems,

consisting o f dis-similar systems o f different types. Furthermore, it provides a conceptual

model only, which is used primarily as a basis for future integration o f systems in the

domain, and not only to support code or program generation.

Our approach to domain analysis might be considered as a generalization o f system

analysis [BOOC 91], [COAD 91a], [RUMB 91], [YOUR 89] or conceptual analysis [YEH

80], but its scope is much broader. It is intended for systems o f system and for families o f

systems, with long life cycles, not only for instances o f systems.

5.2 Domain Modeling

This section introduces the underlying modeling approach. The model is based on

phenomena, different perceptions o f the domain, and significant aspects o f phenomena as

discussed in section 5.2.1. Section 5.3.2 describes a technique that structures the model.

Section 5.2.3 summarizes the concepts o f domain modeling.

73

5.2.1 The Content of the Model

5.2.1.1 Phenomena

A domain model is a universal, general, comprehensive, non-constructive model o f an

application domain. The domain model abstracts the phenom ena o f the domain, and omits

details about specific instances o f the domain. For example, a domain model for a

university might abstract student, department, registration, enrollment in a course, a policy

for student acceptance, and the difference between Mathematics and the Applied

M athematics departments. We call the abstractions o f the domain phenomena in the

domain model "elem ents." The characteristics o f a phenomenon in the domain are

represented as attributes o f an element in the domain model. For example, the attributes

o f an element representing a student might be: name, address, student-id, and Grade Point

Average (GPA).

Since the domain model must be comprehensive, it must represent phenomena

belonging both to the static structure o f the domain, e.g., objects and relations, as well as

the dynamic interactions o f the domain, e.g., processes and events (c.f. also [RUMB 91]).

The static structure o f a domain includes objects (entities) and their relationships.

In the object oriented approaches, objects o f the domain with similar characteristics are

grouped into object-classes [GELL 91]. Objects relate to other objects in various ways,

e.g., by generalization, specialization, aggregation, or association. We view these

relationships themselves as phenomena belonging to the static structure o f the domain.

74

The dynam ic interactions o f the domain include behavior patterns o f phenomena.

The object-oriented methods specify operations that can be applied to instances o f a given

object-class [GELL 91], but we also want to represent processes that may involve more

than one object, relationship, or activity. Using processes, it is possible to represent the

methods and techniques used to solve problems in the domain.

A process is a set o f activities operating on or executed by various phenomena in

the domain, the results o f these activities, and their sequencing. An example o f a process

in the university domain is registration. In this process, a student selects courses, receives

an approval from his advisor, registers, and is billed. We also propose representing events

and states transitions in the domain model as part o f the dynamic structure. An example

o f an event is a failure in an exam. An example o f a state transition could be a faculty

changing rank from assistant to associate professor.

A general model will also include a variety o f other kinds o f qualitative and

quantitative information and statistical information such as averages and maximums. It

might include rationales and constraints.

5.2.1.2 Different Perceptions

A domain is perceived differently by entities which have different relationships, roles, or

concerns with the domain [THIM 92], For example, a student and a registrar have

different perceptions o f the university domain. These differing perceptions arise from the

different relationships o f the perceivers to the domain and may include: different groups

o f elements; the same elements under different names or with different attributes and

75

roles. To achieve universality and comprehensiveness, we propose building the domain

model by integrating multiple domain perceptions.

First, entities with a significant perception o f the domain are identified. These

entities may influence the domain or be influenced by it. For example, in the university

domain, we might identify faculty, registrar, board o f education, student, and staff, as

entities which have significant perceptions. After identifying these entities, it is necessary

to build a perception for each o f them. Thus, a perception is a representation o f the domain

as perceived by an entity who has a significant role in or concern with the domain.

Phenomena are represented in a perception as perception-elements. For example,

perception-elements for a faculty’s perception o f the university domain might be student,

course, department. All the perception-elements for a specific phenomenon, perceived by

different significant perceivers, will finally be merged into one integrated element in the

domain model. For example, the registrar’s student-perception-element, the faculty’s

student-perception-element, and the student’s student-perception-element are integrated

into the final student-element in the domain model.

Figure 5.2 illustrates the integration of several perceptions into a domain model.

A domain with phenomena X, Y, Z, U is perceived by some significant Perceivers.

Perception-1 ofperceiver-1 includes perception-elements X ’,, Y ’,, Z ’ ,, U ’,. Perception-2

ofperceiver-2 includes perception-elements X ’2, Y ’2, and U ’2. The domain model includes

elements X ’, Y’, Z ’, U ’ where element X ’ integrates both X ’ , and X ’2, element Y ’

integrates both Y ’, and Y’2, etc.

76

DomainPhenomenon

Perceived

Perception \ / y Perception

Perception
Element

Integrated-

' Domain Model

Element

"igure 5.2 A Domain Model as an Integration o f Multiple Perceptions

It is important to note that perceptions as described here generalize the view

concept in database systems [ELMA 89], [SHET 90], [ULLM 88]. Views in databases are

used to specify parts o f a database, to create virtual objects from real objects, and to

restrict the access o f users to different parts o f the system [ULLM 88]. We, however,

define a perception as a representation o f a domain as perceived by an entity with a

significant relationship to the domain.

77

5.2.1.3 Aspects of Phenomena

Any phenomenon has different "aspects": physical, structural, dynamic, static, etc.

Physical aspects refer to the physical properties o f phenomena: dimensions, weight,

composition. Structural aspects pertain to the manner in which a phenomenon is

organized, or related to other phenomena, e.g., the components o f the phenomena, or

membership. Dynamic aspects describe changes o f the phenomenon, e.g., the frequency

o f a change, the originator o f a change, etc. An aspect usually deals with a specific set o f

attributes. Aspects are also discussed in [WIMM 92] who calls an aspect a view.

The significance o f aspects is domain specific. For example, in the CAD domain,

physical aspects are more important than legal aspects, which on the other hand might be

more significant in the banking domain. Since a perceiver is often interested in a subset

o f domain aspects, the significant aspects for different perceivers may be disjoint or they

may overlap. For example, the significant aspects o f a faculty perceiver in the university

domain might be structural, static, and dynamic aspects, while for the physical plant

manager they might be the structural, static, and physical.

5.2.2 Structuring the Model

5.2.2.1 Domain-Schema

The required universality and comprehensiveness o f a domain model implies that the

domain model must be able to handle a large amount o f information. In order to manage

this information, support the modeling technique, and uniformize the various perceptions,

78

we propose using a domain modeling schema. We call this the dom ain-schem a. The

domain-schema is used to define the modeling primitives which will be used later to

represent the phenomena o f the domain as elements. We call the modeling primitives

element-types. A similar idea is suggested in [WIMM 92],

A domain-schema consists o f element-types used as modeling primitives to

represent a group of elements with similar attributes. A group o f elements that might be

represented by using the same element-type is called an element-class. Possible element-

classes are object, relationship, event, process, etc. The object-element-class, for example,

includes all object-classes that belong to the domain, where each object-class represents

a group o f objects in the domain with similar attributes.

In the domain model, all elements that belong to the same element-class are

represented using an element-type that defines a possible set o f attributes for the elements

o f the element-class. The element-type acts as a template that is filled-in with actual

attributes for each element. Since every phenomenon has multiple aspects, we divide the

attributes into groups based on these aspects. We call these groups element-aspects. Thus,

an element-type is a union o f element-aspects, where each element-aspect includes the

attributes o f one aspect for a specific element-class.

The domain-schema can be considered as a meta-schema, and its element-classes

and element-types as meta-classes and meta-types. Element-types are used to describe

classes o f elements, e.g., object-classes, processes, not one element that represents a class

o f instances o f the domain with similar attributes, e.g., student or registration, nor

instances o f the domain, i.e., J. Smith or the CIS department. They do not describe the

79

attributes o f a specific element, e.g., student or faculty; they describe the attributes o f an

element-class, e.g., object-class, relation, event. Beyond the element-types such as objects

and relations, our schema might also include other element-types, e.g., processes,

constraints, or special domain-dependent element-types. The attributes o f the element-

class might be considered as meta-attributes since they are used to describe a set o f

possible attributes o f the elements that belong to the same element-class.

It is important to differentiate the domain schema and schemas o f databases.

Schemas o f databases describe the structure o f the database and represent elements o f the

problem space itself, e.g., student, faculty, department, etc. Domain schemas defines the

modeling primitives to be used for modeling the domain: objects, relationships, events,

etc.

5.2.2.2 Using the Domain-Schema

The domain-schema specifies a set o f modeling primitives. It provides flexible guidelines

and a checklist for domain analysts. The element attributes are optional and attributes can

be added when required. The domain schema simplifies perception integration, since the

element-types, aspects, and attributes provide a structured, organized basis for integration.

5.2.2.3 Dimensions

[RUMB 91] suggests modeling a system from three viewpoints: the object model, the

dynamic model, and the functional model. We also recommend dividing the domain

model and its elements into orthogonal and interrelated parts considering each part as a

80

dimension o f the domain model. In order to implement this idea, we specify domain-

schema dimensions as groups o f inter-related element-types. Each group is used for

modeling a dimension o f the domain model. The number o f dimensions and their content

depend on both the modeling approach and the domain. For example, a model based on

the Entity-Relationship (ER) approach includes only a data dimension with the entities and

relationship as the element-types.

Dimensions, aspects, database views, and perceptions are different. The aspects in

a domain schema deal with attributes o f phenomena and group them into sets. The

dimensions o f the domain model, are groups o f interrelated phenomena used to simplify

modeling by dividing the model into interrelated parts. Views in databases are used to

define virtual objects and restrict user access to parts o f the data; this is close to the

perception concept in our approach. Perceptions are used to model the domain from a

specific point o f view and include a sub-set of the phenomena and aspects o f the domain.

5.2.2.4 Element-Types

An element-type is defined in the schema by a set o f attributes divided into aspects and

represented by a frame-template (see Table 5.2). Each frame includes actual aspects and

their attributes. Composite attributes consisting o f other attributes are also allowed and are

drawn as split cells, e.g., attribute 21. Multi-valued attributes, which may appear more

than once, are designated by a star (*); attributes that appear at least once are designated

by a plus (+).

81

Defining a domain-schema requires identifying element-classes and then defining

their element-types with appropriate sets of attributes. The number and kind o f element-

classes and the content o f their element-types depend on the modeling approach, the

application domain, and the significant aspects. Similar templates, but with a restricted set

o f element-types and no explicit division o f the attributes into aspects appear in [BOOC

91].

T able 5.2 A Template for Element-Types

Element-Type

Aspect 1 Aspect 2 Aspect 3 . . Aspect N

Attr. 11:
Type 11

Composite-
Attribute
21

Attr. 211:
Type 211

Multi-valued
attribute31 *

Type 31

M ulti
valued
Attr. N1
(Not
Empty)
+:
Type N1

Attr. 212:
Type 212

Attr. 213:
Type 213

Attr. 12:
Type 12

Attribute 22:
Type 22

Attr. N2:
Type N2

Attr. 13:
Type 13

Attr. Nk:
Type Nk

Table 5.3 is an example o f an object-element-type. This element-type might be

used for representation o f objects in a domain model. I f the actual aspects in the analyzed

domain are physical, structural, static, dynamic, legal, and logical, the template includes

only attributes o f these aspects. The physical aspect includes physical characteristics o f

82

objects, e.g., "dimension", "weight", "color", etc. The structural aspect includes the

"generalizes", "specializes", "aggregates” attributes to enable inheritance and aggregation

o f objects into composite objects. An object can be a generalization o f several objects and

therefore the "generalizes" attribute is a multi-valued attribute. Objects have their life

cycle. It is possible to describe the objects’ life cycle by state-diagrams [SHLA 92], These

diagrams include the various states an object might have and the transitions between them.

Accordingly, the static aspect might include a state attribute that represents the actual state

o f the object. The dynamic attributes o f an object might include a reference to a state

transition diagram that describes the transitions between the various states in which an

object can be. "Method" is a multiple attribute that represents the methods that can be

applied on instances o f the object class. Similarly, the other aspects include a list of

relevant attributes.

It is important to understand that this is an example only o f an object-element-type.

A process-element-type or another element-type will use other set o f attributes.

Furthermore, since, schemas are domain dependent, it is possible that for other domains

the object-element-types will have different aspects and sets o f attributes. Like the object-

element-type, a domain schema might include relationship-element type, process-element-

type, event-element-type, etc.

Table 5.3 An Example of an Object-Element-type

83

Object

Physical Structural Static Dynamic Legal Logical

Dimension
*: Numeric

Generalizes *:
Object

State:
State

State-
diagram:
Diagram

Status:
Text

ID:
Identifier

Weight:
Numeric

Specializes *:
Object

Method *:
Method

purpose:
Text

Velocity:
Numeric

Aggregates *:
Object

Value:
Numeric

Color:
Text

Part-of *:
Object

Status:
Text

Material:
Text

Role:
Text

Tempera
ture:
Numeric

5.2.2.5 Modeling with Element-Types

The various phenomena o f the domain are represented using the appropriate element-type.

For each aspect, the relevant attributes are specified. Each attribute is now described by

a split cell. The upper part o f each cell includes the element-type’s attribute. The lower

part includes the actual attribute o f the element. For example, the dimension attribute o f

an object-class might include only height and width. Irrelevant or unused attributes are

designated by (--).

Using the object-element-type o f Table 5.3, it is possible to uniformly represent

the various object-classes in a domain. Each object-class in the domain is defined by using

84

the template. A representation o f a Building object-element in a university domain appears

in Table 5.4. In this case, the Weight, Velocity, and Temperature attributes o f the physical

aspect, the Generalizes o f the structural aspects, and other attributes are not used and

therefore are designated by The Method attribute includes the Assign method that

assigns a Building to a Department. The Aggregates attribute includes all the object-class-

elements that are aggregated by a Building: Floor, Hall, Room, and Elevator. Similarly,

other attributes might be examined and specialized according to the actual element.

Table 5.4 A n E xam ple o f a B u ild in g -O b jec t-E lem en t

85

Building

Physical Structural Static Dynamic Legal logical

Dimension *:
Numeric

Generalizes*:
Object

State :
State

State-
Diagram:
state-diagram

Status:
status

ID: Alpha
numeric

Height,Width,
Length

(") (-) (--) (Approved,
Restricted)

Building-ID

Weight:
Numeric

Specializes*:
objects

Method * purpose*:
Enumerate

(--) (-) Assign (Teaching,
Administration,
Sports,Storage,
Utilities)

Velocity:
Numeric

Aggregates*:
object

Value:
Numeric

(--) Floor, Elevator,
Room

(--)

Color:
Enumerate

Part-of *:
object

Status

(--) Campus (--)

Material Role:
Alphanumeric

(Wood,Blocks) (--)

Temperature:
Numeric

(--)

5.2.2.6 The Perception-Schema

The significance o f various domain aspects may vary with each perceiver. It is also

possible that a perceiver is interested only in a limited set o f element-classes. To simplify

modeling we suggest using a perception-schema for each perceiver. A perception-schema

86

is derived from the domain-schema by selecting the perceiver’s actual element-classes and

restricting the schema to the significant aspects for that perceiver. It is, also, possible to

limit the attributes o f an element-aspect to include only a subset o f attributes o f the

element-aspect in the perception-element. Thus, a perception-schema is a sub-schema o f

the domain-schema determined by the set o f element-types, the set o f element-aspects o f

each element-type, and the set o f attributes in an element-aspect.

Table 5.5 includes an example o f perception-object-element-type. This perception-

element-type is derived from the object-element-type that appears in Table 5.3 and fits a

perceiver whose actual aspects are static, structural and physical. Accordingly, Table 5.6

includes an example o f an object-perception-element for a building. The building-

perception-element includes only the attributes o f the significant aspects.

If each domain aspect belongs only to one perceiver, the perception-schemas are

aspect disjoint. However, it is more likely that the same aspect or the same group o f

aspects appears in more than one perception-schema. Perceivers who are interested in the

same aspects and the same set o f element-classes can use the same perception-schema and

yet build different perceptions.

Table 5.5 Object-Perception-Element-Type

Object-Perception-Type

Physical Structural Static

Dimension *: Numeric Generalizes*: Object State: State

Weight : Numeric Specializes*: Object

Velocity: Numeric Aggregates*: Object

Color: Text Part-of *: Object

Material: Text

State: Enumerate

Temperature: Numeric

Table 5.6 Building-Perception-Element

Building-Perception-Element

Physical Structural Static

Dimension*: Numeric Generalizes*: Object State:

Height, Width, Length (--)

Weight Specializes*: Object

(--) (--)

Velocity Aggregates *: Object

(-) Floor, Elevator, Room

Color Part-of *: Object

(--) Campus

Material

(Wood, Blocks)

State

(--)

Temperature

(-)

88

5.2.2.7 The Structured Perception

Using the perception-schema as a guideline, a model o f the domain is built for each

perceiver. We propose that domain experts will build these perceptions supported by

domain analysts.

The relevant phenomena o f the domain for a given perception are identified. Each

phenomenon is classified into one o f the element-classes. Using the appropriate

perception-element-type, the different attributes o f the element are specified. The

processes that build the perceptions can be done concurrently by different groups.

However, since the domain-schema is used for derivation o f all perception-schemas, the

resulting perceptions will be both structured and coordinated.

5.2.2.8 The Integrated Model

The various perceptions are finally integrated into a domain model. We first determine

which perception-elements o f different perceptions represent the same phenomenon.

Later, all the perception-elements for a specific phenomenon are integrated into a unified

element. The perception integration process is based on the element-aspects. When

different perceivers are interested in different sets o f aspects, the final integrated element

is the union o f the various element-aspects. When an aspect is relevant to more than one

perceiver, attributes in the appropriate element-aspect are compared; conflicts in element-

type, names, attributes, roles, etc., are resolved; and a unified element-aspect is derived.

When conflicts cannot be resolved, the conflicting versions are all incorporated into the

element.

89

Figure 5.3 illustrates this integration process. A domain with phenomena P„ P2, ...

, Pm is perceived by N perceivers. A perception for each perceiver is built (Perception 1,

..., Perception N). Each perception consists o f perception elements that represent the

significant phenomena for the perceiver. PEy denotes the perception element o f perceiver

i for phenomenon j. The domain model integrates all the perception-elements for

phenomenon j: {PE^ | i= 1 to n, where phenomenon j is significant to perceiver i} into an

element Ej.

henomena P2 Pm
Perception

Perception 1 PE

Perception 2

Perception 3

PEPerception N Nm

Domain
Model
(Elements)

E3 Em

"igure 5.3 The Integration o f Perception-Elements into Elements

The process is similar to integrating views or schemas o f databases [BATI 86],

[SHET 88], [SHET 90], [GELL 91], [GELL 92]. However, schema integration [SHET

88], [GELL 91], [GELL 92] is done on static structure elements (objects and their

90

relations) only, while here integration is done for elements o f all dimensions o f the model

including processes, events, etc.

Figure 5.4 illustrates the relationship between the concepts o f domain analysis. A

domain-schema consists o f dimensions and element-types (denoted by lower case letters)

and aspects (denoted by numbers). For simplicity only one dimension is drawn, and not

all identifiers are marked. Each element-type (denoted by a dashed ellipse) integrates

several element-aspects. The schema includes three element-types: ET-a, ET-b, and ET-d.

Xy denotes an element-aspect where i identifies the element-type and j the aspect.

Based on the domain-schema, perception-schemas with Perception-Element-Types

(PET) are derived. Perception-schemas include only subsets o f the element-types and

element-aspects. For example, perception-schema-Y includes only two perception-

element-types, PETYaand PETYd corresponding to ET-a and ET-d with element-aspects

X a]. Xa2. Xd], and Xd4 that fit the actual aspects o f the perception, i.e., aspect-1, aspect-2,

and aspect-4. Similarly, Perception-Z includes two perceptions-element-types PETZa and

PETZb that correspond to ET-a and ET-b with Xa), X ^, and Xb4 as element-aspects.

Perceptions with perception-elements (PEs, denoted as filled ellipses) are built

using the perception-schemas. Perception-Y includes three perception-elements o f PETYa

(PEYa.i, PEYa.j, and PE Ya.k) and two perception-elements o f PETYd (PEyd., and PEYd. J .

Perception-Z includes three perception-elements o f PETZa (PEZa.j, PEZa.j, and PEZa.k) and

one perception-element o f PETYb (PEzb.n). These perceptions are finally integrated into a

domain model that consists o f three elements o f ET-a (Ea.,, Ea.j, Ea.k), one element o f ET-b

(Eb.n), and two elements o f ET-d (Ed.„ Ed.m).

91

Element-
Types.

Element-Type"

Dimensions

Perception
Schema Y

i i

kd i
Domain Schema

lement-Aspect

/
y-\.

' '✓ i

x^xS),
P ercep tion .
Elem ent-Type / '

Perception
Y

Perception- \
Element '

>

/
/

/ • • *

* Aspects
i \

i
i

\
' * \

Perception
Schema Z

Perception
Z

N. I
S I

< m n i D l l D i D D D p

Element Dom ain M odel

Mgure 5.4 The Components o f Domain Analysis

92

5.2.3 Definitions of Domain-Analysis Concepts

This section summarizes the main concepts o f M egSDF’s domain modeling. The

definitions are given in a top down fashion for ease o f understanding.

Application Domain

An application domain (domain) D is a comprehensive, internally coherent, relatively self-

contained field or area o f action, business, research, etc., supported by software systems.

An application domain Dconsists ofphenom ena {P,,P2, ...,Pn}. For example, auniversity,

banking, or military vessels could be considered as application domains.

Phenomenon

A phenomenon P in an application domain is a concept that abstractly represents instances

o f a thing, activity, relations, constraints in the domain. For example, students,

registration, or acceptance policy are phenomena in the university domain.

Element

An element E is a representation o f a phenomenon P o f a domain D in a domain model M.

The element represents the characteristics o f the phenomenon as a set o f attributes. For

example, a university domain model might include student, faculty, graduation, and

registration elements.

Domain Model

A domain model M is a universal, general, comprehensive, non-constructive

representation o f an application domain D. The model consists o f a set o f elements {E,,

E2, ..., En} which represents the various phenomena {P,, P2, ..., Pn} o f the domain.

93

Element-Class

An Element-Class C is a set o f elements with certain significant similarities. For example,

the elements student, faculty, and department belong to the object-element-class, while the

elements graduation and registration belong to the process-element-class.

Dimension

A dimension is a group o f interrelated elements, typically belonging to a restricted set o f

element-classes, used to describe the domain from a significant viewpoint. The

dimensions are interdependent because the same element may appear in more than one

dimension. The actual dimensions o f the model depend on the modeling approach used.

For example, a domain model based on the [RUMB 91] approach might include structural,

dynamic, and functional dimensions, while a domain model based on the ER approach

would include only the data dimension.

Attribute

An attribute A is characteristic o f an Element-Class C that defines a mapping A from all

elements o f C into a set o f values V, i.e., A: C -> V where V might be a set o f integers,

real numbers, characters, etc. Each element in C is mapped to either a value or a set o f

values in V. An attribute is defined by its name and type. The type defines the set V into

which the element-class is mapped. Examples o f attributes are name, weight, status,

object, event, method, etc.

94

Aspect

Aspects are used to group and organize the attributes o f elements in a domain model.

Possible aspects are physical, logical, legal and structural. The aspects that are significant

to a domain model depend on the application domain.

Element-Aspect

An element-aspect is a set o f attributes F={A „ A2 .., A,} used to describe the

characteristics o f an element-class with respect to a specific aspect. For example, the

physical-element-aspect o f the object-element-class may include: weight, dimension,

color, position, etc.

Element-Type

An element-type is an organized set o f possible attributes o f an element-class. It is used

to describe elements with similar characteristics. The set is organized into element-aspects.

An element-type is the union o f all element-aspects possible for a specific element-class

in a domain. For example, the element-type for the process-element-class includes static

and dynamic element-aspects.

Domain-Schema-Dimension

A domain-schema-dimension is a set o f element-types used to describe a dimension o f the

domain model. For example, the data dimension o f a domain schema includes object and

relation element-types.

Domain-Schema

A domain-schema S is a set o f element-types used as modeling primitives. It is dependent

on both the domain and the modeling approach, and is organized into domain-schema-

95

dimensions, in order to simplify the modeling process. For example, a domain schema

based on the ER approach includes entity-element-class and relationship-element-class

in the data dimension.

Perceiver

A perceiver is either an entity that has any concern with, essential influence on, or which

is influenced by the domain. A perceiver has a distinct perception o f the domain.

Typically, a perceiver is interested only in a subset o f the domain phenomena and their

aspects.

Perception

A perception is a set o f perception-elements representing a subset o f the phenomena and

the aspects o f a domain D as perceived from the viewpoint o f a given perceiver.

Perception-Element-Type

A Perception-Element-Type (PET) is a set o f element-aspects for a specific element-class

for a specific perception. Thus, a PET is an element-type with a restricted set o f aspects

and attributes. A perception-element-type is derived from an Element-Type (ET)

depending on the actual aspects the perceiver is interested in.

Perception-Schema

A Perception-Schema PS isasetofPerception-E lem ent-Types {PET,, PET,, ..,PET,.} that

addresses the concerns o f a specific perceiver in the domain. A Perception-schema is

derived from the domain-schema by specifying the relevant perception-element-types and

aspects for the perceiver. A perception-schema is used by the perceiver to define a

perception.

96

Perception-Element

A perception-element is a representation o f a phenomenon P in a domain as perceived by

a perceiver V. A perception element is modeled as an instantiation o f a corresponding

Perception-Element-Type PET. PE=Instantiation o f (PET).

Using these definitions, we can now redefine the terms element and domain model.

Domain-M odel

A domain model M integrates perceptions {P,, P2, ..., Pn} into a set o f elements M={E,,

E 2, ..., E,}.

Element

An element E is the representation o f a domain phenomenon P in a domain model M. It

integrates the appropriate element-perceptions o f the phenomenon.

5.3 The Domain Analysis Process

The domain analysis task is defined using the format described in chapter 4.1.

5.3.1 Purpose

The purpose o f the domain analysis process is to provide a universal, general,

comprehensive, non-constructive model o f the domain.

5.3.2 Interfaces

Inputs

• Domain Data - Information regarding the domain in which the Mega-System is intended

to operate.

• Customers/Users requirements - Requirements o f the Customers/Users o f the systems.

• Feedback - Feedback from the system and Mega-System architecture design tasks

including recommendations for improvements and corrections to the domain model.

• Modeling Approaches - Commonly available modeling approaches that might be used

as a basis for the domain modeling.

Control Inputs

• M anagement Control - The schedule and milestones to the domain analysis task assigned

by the meta-management task.

Outputs

• Domain Model - A domain model o f the application domain, defined in section 5.2.

• Feedback - Feedback from the domain analysis task to the meta-management task.

5.3.3 Processing

Based on the domain identification, a domain schema is defined and significant perceivers

are identified. For each perceiver, a perception-schema is derived and then used in

building his perception. All perceptions, finally, are integrated into a domain model.

Figure 5.5 illustrates this process. The following algorithm summarizes the previous

discussion.

98

1. Identify the domain

2. Define a domain-schema

3. Identify significant perceptions o f the domain.

4. For each perceiver

4.1 Derive a perception-schema

4.2 Build a perception o f the domain

5. Integrate the various perceptions.

The algorithm presumes that verification, validation, and quality assurance are

done as part o f every task or sub-task to ensure the model accurately describes the

application domain.

5.3.4 Timing

Since domains evolve, domain analysis must be a continuous activity. To maintain the

effectiveness and usability o f the model, essential changes in the domain as well as

feedback from the various projects should be evaluated and reflected in the domain model,

as required. The process should be active as long as the Mega-System is being developed

and maintained.

99

Management Control
*

Perception
identification

Customer
Requirements

Feedb$ck

Perception
Schema

Domain
Definition

Perception

Domain
Morfef

Domain
Data Domain

Schema

Feedback

Modeling
Approaches

Define
the
Domain

Integrate
Perceptions

Build a
Perception

Derive a
Perception
Schema

Define
a Domain
S ch em a

Identify
Significant
Perceptions

Figure 5.5 A Process Diagram for Domain Analysis

5.3.5 Sub-Tasks

5.3.5.1 Identify the Domain

The first sub-task is to identify the domain to be modeled. Application domains are

interrelated, so it is necessary to specify what domain is being modeled and how general

the model will be. This identification includes preliminary definition o f the domain

boundary, which will then be further refined and detailed by the other tasks o f the process.

100

5.3.5.2 Define a Domain-Schema

This task defines the domain-schema for modeling the domain. After choosing a suitable

modeling approach that fits the needs o f the domain, the dimensions and element-classes

are defined. An element-type is then specified for each element-class.

We do not restrict this process to a specific method or modeling approach.

Schemas and element-types are intended to organize and coordinate the modeling process.

It is possible to define a schema that fits the modeling method and the analyzed domain.

Any approach to modeling, e.g., the ER or the object-oriented approach, can be enhanced

by the domain-schema and be used to model the domain if appropriate. The definition of

the domain schema requires the following activities:

1. Specify relevant aspects for the domain

2. Choose an appropriate modeling approach for the domain

3. Specify dimensions for the modeling

4. For each dimension

4.1 Specify element-classes

4.2 For each element-class define an element-type as follows:

4.2.1 For each relevant aspect

4.2.1.1 Define an element-aspect

5.3.5.3 Identify Significant Perceptions

This task includes identification o f the significant perceptions o f the domain and the

perceivers that might best represent these perceptions. Perceivers are entities, either inside

101

or outside the domain, who have any concern with, influence on, or which are influenced

by the domain. Since a domain might be perceived in many ways, it is essential to identify

the significant perceptions.

5.3.5.4 Derive a Perception-Schema

To simplify the process o f building a perception, a perception-schema is defined for each

perceiver. A perception-schema is a sub-schema o f the domain-schema that includes a

subset o f the element-types and is restricted to a subset o f the significant aspects. If

required, a perception-schema might include only a subset o f the attributes o f the element-

aspects. The perception-schema is later used to build the perception. Deriving a perception

requires:

1. Specify the relevant aspects for the perceiver.

2. Specify relevant element-classes.

2. For each relevant element-class

2.1 Specify relevant element-aspects

2.2 For each relevant element-aspect

2.2.1 Specify relevant attributes

5.3.5.5 Building a Perception

In this task a model of the domain as perceived by the perceiver is built. We propose

building the perception by using the perception-schema and its perception-element-types.

The first step in this process is identification o f relevant phenomena for the perception,

102

i.e., the various objects and their relations, behavior patterns in the domain, and

constraints.

The next step includes classification o f the phenomena to one o f the element-

classes and addition o f more detailed information, i.e., specification o f the various

attributes o f the different element-aspects for the perception-elements. In this step it is

possible to add qualified and quantified information regarding the various attributes.

This process should be iterative and involve domain experts. Verification and

validation to ensure that the perception appropriately describes the application domain

from the viewpoint o f the perceiver are essential.

In summary:

1. Identify and classify perception-elements

2. Represent each perception-element using the appropriate perception-element-type.

5.3,5.6 Integrate Perceptions

A domain model is built as an integration o f the various perceptions. Each perception

consists o f a set o f perception-elements. In order to integrate these sets, we have to

distinguish the various elements that constitute the domain. Then we have to compare the

various perception-elements that represent a specific phenomenon; and resolve

contradictions and differences in names, structures, and semantics. This task includes

detailed definition o f the content and boundaries o f the domain based on coherence and

relationships between elements. Thus, integration o f perceptions requires the following

activities:

103

1. Distinguish the various elements o f the domain

2. Identify perception-elements that represent the same phenomenon

3. For each element

3.1 For each relevant aspect

3.1.1 I f only one element-aspect exists

3.1.1.1 Use it with no change

3.1.2 Else (If more than one element-aspect exists)

3.1.2.1 Compare element-aspects

3.1.2.2 If attributes fit

3.1.2.2.1 Use the element-aspect

3.1.2.3 Else (Attributes do not fit)

3.1.2.3.1 Try to resolve conflicts

3.1.2.3.2 I f conflicts remain unsolved

3.1.2.3.2.1 Include the various versions as different

versions o f the element-aspect.

5.4 Comparison with Existing Methods

Section 5.4.1 compares M egSDF’s approach with modeling approaches used in system

analysis. Section 5.4.2 compares it with existing domain-analysis approaches.

104

5.4.1 Comparison with System Analysis Approaches

M egSDF’s approach can be considered as a generalization o f system analysis approaches.

Existing methods for system analysis, e.g., the object-oriented approaches o f [BOOC 91],

[RUMB 91], [MONA 92], the Dual-Model [GELL 91], [GELL 91a], the Structured

Analysis approach [DeMA 78], and the ER data-modeling approach [ELMA 89], [KIM

90], typically model a single system and a specific instance o f the domain. They capture

only partial knowledge o f the domain, e.g., only its static structure. Domain analysis in

MegSDF, on the other hand, defines a universal, general, and comprehensive model

common to all systems in the domain.

System analysis approaches generally use a restricted set o f predefined modeling

primitives. They do not use a meta-schema to describe the possible attributes o f their

modeling primitives, except for Booch’s approach, which does includes a fixed set o f

predefined templates for element-types but does not divide their attributes into aspect.

[RUMB 91] uses data, dynamics, and functional models to represent different

orthogonal and cross-linked parts (dimensions) o f the model. Booch’s approach includes

a data dimension and part o f a functional dimension but does not explicitly recognize

dimensions or parts. The structured analysis approach [DeMA 78] deals primarily with

the functional part. The dual model [GELL 91] deals with the data dimension and includes

methods applicable to instances o f object-classes only. The dual model divides the data

model into semantic and structural parts. It describes the semantic and structural attributes

o f objects separately in object-class and object-type hierarchies. The ER approach includes

only a data dimension.

105

The MegSDF approach is more open and flexible. It allows defining different

dimensions and modeling primitives with templates that define element-types with their

possible attributes organized by aspects. It is compatible with various modeling

approaches.

None o f the modeling approaches includes integration o f different perceptions as

a means o f providing a comprehensive model. MegSDF domain analysis identifies

significant perceivers and integrates their perceptions.

We recommend using object-oriented modeling for domain analysis. To achieve

a comprehensive model, we need to augment the object-oriented model with information

about the dynamic interactions o f the domain. Table 5.7 summarizes this discussion.

106

Table 5.7 A C om parison o f M egS D F A pproach w ith M odeling A p proaches

Character
istics

MegSDF Object-
Oriented
[RUMB 91]

Object-Oriented
[BOOC 91]

Type of
System

Systems o f systems
and generic systems

System System

M odel Type Universal, general,
comprehensive,
domain model

An instance o f a
domain

An instance o f a
domain

Modeling
Schema

Domain-Schema,
dimensions, aspects,
element-types

No Schema for
the modeling
approach

Element-types

Dimensions Dimensions group
interrelated elements
and divide the model
into manageable,
orthogonal, and
interrelated parts.
Number o f dimensions
depends on the domain
and the modeling
approach.

Uses data,
dynamic, and
functional
dimensions

Data dimension
with some
functionality

Element-
Types

Uses element-types.
No restriction on
number or kind o f
element-types.

None Uses templates
for a restricted
set o f element-
classes.

Aspects Uses aspects to group
attributes o f elements

None None

Perceptions Integrates multiple
perceptions

None None

107

Table 5.7 - A Comparison o f MegSDF Approach with Modeling Approaches (Continued)

Character
istics

Dual-Model
[GELL 91]

Structured
Analysis

ER Modeling

Type of
System

Database Systems
and their
integration

System System

M odel Type A specific instance
o f a domain

A specific instance
for a limited part o f
the domain

A specific instance
for a limited part
o f the domain

M odeling
Schema

No schema for the
modeling approach

No schema for the
modeling approach

No Schema for the
modeling approach

Dimensions Semantic and
structural

Functional only Data only

Element-
Types

None None None

Aspects Each element is
described from
semantic and
structural aspects
only

None None

Perceptions Does not include
multiple
perceptions for
modeling *

Does not include
perceptions for
modeling

Does not include
multiple
perceptions for
modeling *

*Views in the context o f database are used.

5.4.2 Comparison with other Domain Analysis Approaches

Existing domain analysis approaches are primarily intended for software reuse for families

o f systems only [NEIG 81], [PR1E 91a], while domain analysis in MegSDF is intended

108

for developing and integrating Mega-Systems, i.e., both systems o f systems and generic

systems (families o f systems).

[WIMM 92] uses domain analysis to represent domain knowledge. In our approach

and W immer’s, the domain model is used as a common knowledge basis for all projects

developing systems in the domain. [PRIE 91a] uses a domain model only to identify

common objects used in software systems in the domain for further reuse. [ARAN 91]

suggests including conceptual and constructive parts, e.g., plans to transform

specifications to code, in contrast to our approach and W immer’s, which include only

conceptual modeling.

Existing methods for domain analysis rely on knowledge representation and

acquisition methods, requirements specification, object-oriented or hypertext methods

[PRIE 91a]. Our approach, in contrast, is not based on a specific method and is compatible

with different modeling methods. Wimmer’s approach is based on ontological concepts.

We have proposed structuring the model, using domain-schema, element-types,

and aspects, as also suggested by [WIMM 92], However, we additionally allow the use

o f dimensions to organize interrelated elements into groups and model separate parts o f

the domain. To ensure flexibility and generality the domain-schema is not fixed and other

element-classes can be added. Similar domain-schemas are not explicitly used in domain

analysis for reuse.

M egSDF’s domain model is built by integrating different perceptions into a unified

model. This integration is facilitated by the domain-schema. No other approach for

109

domain analysis proposes building different perceptions as a part o f the modeling process.

Table 5.8 summarizes this discussion.

Table 5.8 A Comparison o f MegSDF with other Domain Analysis Approaches

Characteristics Domain Analysis
in MegSDF

Domain Analysis
for Reuse

Domain Analysis
of W im m er

Objective Support
development o f
Mega-System

Reuse Construct domain
knowledge

Applicable to Mega-Systems:
systems of
systems and
generic systems
(families of
systems)

Family o f systems Systems in a
domain

Usage Common
understanding
basis for the
various projects
developing
systems in the
domain

Identification o f
common objects
used in software
systems in the
domain

Tool for modeling
applications

Model Type Conceptual,
non-constructive

Conceptual,
constructive

Conceptual,
non-constructive

Modeling
Approach

Any approach Knowledge
representation,
system analysis or
hypertext

Ontological
concepts

Schema Based on domain-
schema,
dimensions,
aspects, and
element-types

None Schema, aspects
(called views),
and object-
schema

Perceptions Multiple
perceptions are
integrated into one
model

None None

110

5.5 An Example for Domain Analysis

in the Insurance Domain

This section includes a simplified example o f domain analysis for the insurance domain

with an emphasis on MegSDF concepts. An extended example for domain analysis

according to MegSDF can be found in [AGAN 93].

Insurance is a system that enables a person, business, or organization to transfer

loss exposure to an insurance company which indemnifies the insured for covered losses

and provides for the sharing o f the costs o f losses among all insured [SMIT 87].

The objective o f our domain analysis is to build a domain model as an integration

o f significant perceptions o f the domain. This requires the identification o f the significant

perceptions. In the insurance domain, we identify the insurance company (which we call

the insurer), the agent, and the insured as the significant perceivers.

The Insurer is a company or a person that contracts to indemnify another in the

event o f loss or damage. The Insured is a person, business, or organization who purchases

insurance to cover him self against losses. Insurance companies usually market their

products by agents. The agent serves the insured and represents the insurer. Other

significant perceivers o f the domain, e.g., the actuary who computes insurance rates,

government regulators, and claims adjustors are omitted in this simple example.

In the following sections we describe these significant perceptions and their

integration. For simplicity, we identify only elements o f the domain model and avoid the

details o f each element. Each perception is built using multiple dimensions. We select the

I l l

static (object) and the functional dimensions based on the object oriented approach o f

[RUMB 91]. In a real example, the dimensions depend on the chosen modeling approach

and the actual domain. We look first at the static dimension for each perception then the

functional. In practice, each perception, with its multiple dimensions, is built separately;

during the integration phase the appropriate dimensions o f each perception are integrated.

For each dimension, the different perception-elements are mapped into actual

domain phenomena. Resolution of conflicts and definition o f a unified model are then

demonstrated for the selected dimensions and perceptions.

5.5.1 The Static Dimension

The static dimension is illustrated by object diagrams consisting o f objects (drawn as

rectangles) and their relations (drawn as lines or arrows). Generalizations are designated

by the A sign. Perception descriptions are typed using bold italics to denote an object and

underlined bold italics to denote a relationship. A line denotes a one-to-one relation, an

arrow denotes a one-to-many relation, and a double arrow denotes a many-to-many

relation.

112

5.5.1.1 The Static Dimension of the Insurer Perception

The Insurer Issues Policies and is Represented-bv Agents. The Insured Purchase

Policies So ld by Agents. The Insurer specialized to Life, H ealth, Property and Liability.

An Insurer is Reinsured by a Reinsurer. The Insurer Indem nifies a Loss Covered by a

Policy.

R epresented
Reinsure

PurchaseIssue

Indemnify

Cover

InsuredInsurer

Health Property

Reinsurer

Policy

Agent

LossLife

"igure 5.6 T he S tatic D im ension o f the In su rer P ercep tion

113

5.5.1.2 The Static Dimension of the Insured Perception

The Insured buy Policies from an Agent. Policies are Issued by the Insurer. The Insurer

is R epresented-by Agents. Policies Cover Insurance-Item s Owned by the Insured.

Insurance-Iterns can have Losses. Insurance-Item generalizes Car, L ife , and Building. The

Insurer Compensates Losses o f an Insurance-Item.

Represented-by

IssueSell

Compensate
Buy

CoverOwn
Have

Insurance-
Item

Car

Policy

Life

Insurer

Insured

Loss

Agent

Building

f ig u re 5 .7 T he S ta tic D im ension o f the In su red P ercep tion

114

5.5.1.3 The Static Dimension of the Agent Perception

The A gen t Represents the Insurers and serves Clients. Clients buy Policies. The Agent

has Private, Business, and Group Clients. The Agent Sells Policies Issued by an Insurer.

Policies cover Losses Indem nified by the Insurer. Policies specialized to Life , Property,

and H ealth. Property Policies specialized to Building, M otor Vehicle, and Property in

Transmit.

Represents

Issue Indemnify
Sell

Serve
CoverBuy

Group

Building

Life

Property
In Transmit

Business HealthPropertyPrivate

PoiicyClient Loss

Insurer

Agent

f ig u re 5.8 T he S ta tic D im ension o f the A gen t P ercep tion

115

5.5.1.4 The Integrated Static Dimension

We use object and relationship tables to identify which perception-elements belong to the

same phenomenon. The object table (Table 5.9) maps the appropriate perceptions-

elements o f each perception to domain objects.

Upon examining the objects in the different perception, we find:

• Objects that appear in all perceptions with the same name, e.g., Policy, Insurer, and

Loss. These elements will be included in the domain model using the same name.

• Objects having the same role but with different names, e.g., Insured. This is called

Client in the agent perception. We use the insured in the domain model.

• Objects that appear in only one perception, e.g., the Reinsurer in the insurer perception

and the Insurance-item in the insured perception. Both elements are added to the domain

model.

• Specializations that do not appear in every perception. We prefer to see all these

specialized objects in the domain model. Thus, we include the specialized insured types,

i.e., group, private, and business, the specialized insurer types, the specialized insurance

items, and the specialized policies.

Table 5.9 M apping P ercep tio n s' O b jec ts to D om ain M odel O bjec ts

116

Insurer
Perception

Insured
Perception

Agent
Perception

Domain Model
Objects

Insurer
• Life
• Health
• Property
• Liability

Insurer Insurer Insurer
• Life
• Health
• Property
• Liability

Agent Agent Agent Agent

Insured Insured Client
• Private
• Business
• Group

Insured
- Private
• Business
• Group

Policy Policy Policy
• Life
• Property
• Health

Policy
• Life
• Property
• Health

Loss Loss Loss Loss

Reinsurer Reinsurer

Insurance Item
• Car
• Life
• Building

Insurance Item
• Car
• Life
• Building

Upon Examining the relationships in the multiple perceptions, we find that:

• Some relationships appear in all perception with the same names, e.g., Issue and S e ll.

These relationships will be represented in the domain model under the same name.

• Some relationships appear with different names, e.g., Indem nify is also called

Compensate, and Purchase is also called B uy. We select a name for these relationships

and use it in the domain model.

117

• Several relationships do not appear in all perceptions, e.g., Reinsure in the insurer

perception, Serve in the agent perception, Own in the insured perception. These

relationships are all included in the domain model.

• A name o f a relationship is used in different perceptions between different pairs o f

objects, e.g., Cover appears at both the agent and insurer perceptions between policy and

loss and in the insured perception Cover appears between policy and Insured Item. We

choose the insured names. Thus. Cover will represent the relationship between policy and

insurance-item; Have will represent the relationship between insurance item and loss. We

do not use the relationship between policy and loss.

The relationship table (Table 5.10) consists o f pairs o f objects, the perception

names, and the name o f the relationship in domain model.

118

Table 5.10 M apping P ercep tio n s ' R ela tio n sh ip s to D om ain M odel R ela tio n sh ip s

Objects Insurer
Perception

Insured
Perception

Agent
Perception

Domain
Model
Relationship

Insurer-Agent Represented-
by

Represented-
by

Represent Represented-
by

Insurer-Policy Issue Issue Issue Issue

Reinsurer-
Insurer

Reinsure Reinsure

Insurer-Loss Indemnify Compensate Indemnify Indemnify

Policy-Loss Cover Cover

Policy-
Insured

Purchase Buy Buy Purchase

Policy-
Insurance-
Item

Cover Cover

Agent-Policy Sell Sell Sell Sell

Insurance-
Item-Loss

Have Have

Insured-
Insurance-
Item

Own Own

Agent-Insured Serve Serve

119

Figure 5.9 illustrates the integrated static dimension.

Reinsure
Represented-by

Issue

Indemnify

SellServes

Purchase
Have

CoverOwn

Insurance
Item

Car

Reinsurer

Policy

Insurer

Loss

Agent

Life

Liability

Insured

Building

Health

Property
In Transmit

Motor
Vehicle

UfePrivate

Property

Building

PropertyGroup Business

Figure 5.9 The Integrated Static Dimension

5.5.2 The Functional Dimension

The functional dimension includes processes (drawn as bubbles), data and control flows

(drawn as solid and dashed arrows), and data stores (drawn as double lines). Sources or

terminators are drawn as squares. We use the process o f issuing a policy to illustrate the

integration o f the functional dimension.

120

5.5.2.1 The Functional Dimension of the Insurer Perception

In the insurer perception, the Insured Fill-in an Application for insurance o f an insurance-

item, provide Insurance-item and Insured information, and A gree to the insurance terms.

In the Underwrite a Policy a Policy is prepared for approval based on the Insurance-

Rates computed in the Compute Insurance Rates by the actuary. These rates are

computed according to Statistical Tables. After Approving the Policy it is issued to the

insured.

Statistical
Tables

Compute^y
Insurance)
Rates y

Insurance
RatesInsurance

Item
Insured

Approve A
a Policy J Policy

Insured
Information

Agreement
Insured

Policy
for ApprovalFill-in an \AppHcatlon

Application^
Underwrite
a Policy

Figure 5.10 T he F unctional D im ension o f the Insurer

121

5.5.2.2 The Functional Dimension of the Insured Perception

In the insured perception, an insured asks for quotes from different agents. The agents

Prepare Quotes according to the Insured Item information. After several iterations, the

insured agree and Fill-in an Application for insurance. Based on this Application, a

Policy is Underwritten and issued to the insured.

Prepare
a Quote

Request
For Quote

Quote

Insurance-
item Insurance

RatesInci iroHII i w u i VM

Insured
Information

Agreement

Application Policy
Fill-In an
Application,

Underwrite
a Policy

Insured

"igure 5.11 T he F unctional D im ension o f the Insured P ercep tion

122

5.5.2.3 The Functional Dimension of the Agent Perception

According to the agent perception, insured ask fo r quote. The agent Prepares a Quote.

I f the insured Agree to the quote, the agent and the insured Fill-in an Application. A

Policy is Underwritten and is passed for Approval. The approved Policy is issued to the

insured.

Prepare
a QuoteRequest

For Quote
Quote

Insurance-
item i Insurance

Rates
Insured

Approve \
a Policy) p0|!cyInsured

Information

Agreement
Insured

Policy
for ApprovalApplication

Fill-In an
Application

Underwrite
a Policy

Figure 5.12 T he A g en t P ercep tion F unctional D im ension

123

5.5.2.4 The Integrated Functional Dimension

Similar to the integration o f the static dimension, we use tables for mapping the perception

elements into actual domain phenomena.

Table 5.11 lists the process elements. Examining the process elements we find:

• Processes that appear in each perception, e.g., Fill-in an Application . Underwrite a

Policy. These processes are included in the domain model.

• Processes that appear only in some perceptions, e.g., Approve a Policy . Compute

Insurance Rates, and Prepare a Quote. These processes are included in the domain

model, too.

• The Prepare a Quote process appears in one perception as a single process and in

another perception as a multiple process. In this case we decide to represent it as a

multiple process. The difference is caused since the insured can asks different agents to

prepare quotes and only then to select one offer.

Table 5.11 Mapping Perceptions' Processes to Domain Model Processes

Insurer
Perception

Insured
Perception

Agent Perception Domain Model
Processes

Fill-in an
Application

Fill-in an
Application

Fill-in an
Application

Fill-in an
Application

Underwrite a
Policy

Underwrite a
Policy

Underwrite a
Policy

Underwrite a
Policy

Compute
Insurance Rates

Compute
Insurance Rates

Approve a Policy Approve a Policy Approve a Policy

Prepare
a Quote
(multiple process)

Prepare
a Quote

Prepare
a Quote

124

Table 5.12 includes mapping o f the control and data flows, the sources and

terminators and the data stores o f the perceptions into appropriate domain model elements.

Table 5.12 Mapping Flows, Sources, Terminators, and Data Stores

Insurer
Perception

Insured
Perception

Agent
Perception

Domain Model

Insured Insured Insured Insured

Insurance-item Insurance-item Insurance-item Insurance-item

Insured-
Information

Insured-
Information

Insured-
Information

Insured-
Information

Agreement Agreement Agreement Agreement

Application Application Application Application

Policy for
Approval

Policy for
Approval

Policy for
Approval

Statistics Tables Statistics Tables

Insurance Rate Insurance Rate Insurance Rate Insurance Rate

Request for Quote Request for Quote Request for
Quote

Quote Quote Quote

Figure 5.13 represents the integrated functional dimension.

125

Statistical
Tables

Compute^
Insurance
Rates .

Prepare
a QuoteRequest

For Quote
Quote

✓ Insurance-
Item I Insurance'

Rates
Insured

Approve A
a Policy J Policy

Insured
Information

Agreement
InsuredPolicy

for ApprovalApplication
Fill-in an
Applicatioi

Underwrite
a Policy

Figure 5.13 The Integrated Functional Dimension

CHAPTER 6

MEGA-SYSTEM ARCHITECTURE DESIGN

The Mega-System Architecture design task defines the strategy for the development o f the

Mega-System as a whole. It provides concepts to be used in the design and

implementation phases o f the constituent systems, defines requirements for the

infrastructure, and specifies the overall structure o f the Mega-System. The Mega-System

architecture is used as a bridge between the domain model and the implementation and

enabling technologies. We divide the Mega-System Architecture into Conceptual

Architecture and Application architecture.

The Conceptual Architecture defines design and implementation concepts and the

requirements for the infrastructure. It generalizes the ideas o f software system

architectures. However, for Mega-Systems, the conceptual architecture is a necessity to

ensure uniformity o f the system not only over time but also in an environment that

includes multiple developer groups and different projects. It specifies concepts for

implementation and promotes reuse o f components.

For manageability, we suggest dividing the concepts o f the conceptual architecture

into views where each view includes a set of interrelated concepts. Possible views are:

structural, communication, control, data, environment. We discuss concepts for each o f

these views, but we observe that both the views and their contents will be domain

dependent.

126

127

The Application Architecture specifies the system boundaries within the domain,

main components o f the Mega-System, and interfaces. The application architecture is an

instantiation o f the conceptual architecture. Application architecture design is similar to

traditional software design, but works on a larger scale and is based on a conceptual

architecture.

The process o f Mega-System architecture design is continuous. Any change in the

domain model as well in the enabling technologies should be evaluated and reflected in

the architecture.

This chapter discusses the Mega-System architecture design task. Section 6.1

describes the role o f the Mega-System architecture design in MegSDF and its required

characteristics. Section 6.2 describes the underlying concepts for M egSDF’s Mega-System

architecture. A process for Mega-System architecture design is defined in section 6.3.

Section 6.4 describes existing software architectures and relate them to M egSDF’s

concepts.

6.1 Requirements for Mega-System Architecture Design

6.1.1 The Role of Mega-System Architectures

The design o f a Mega-System architecture is one o f the Mega-System tasks. It defines a

global strategy for developing the Mega-System. It includes guidelines for design and

implementation which are to be common to and adhered to by all systems in the domain.

128

It defines the structure, boundaries, constituents, and interfaces o f the M ega-System. It

also maps the domain model to the implementation and enabling technologies.

Mega-System architecture design generalizes and extends traditional system design

in two respects. It is intended for systems o f larger scope and complexity, i.e., systems o f

systems and families o f systems, and it specifies design concepts to be used by the entire

system. The latter feature is either lacking or not thoroughly realized in traditional systems

design.

Related ideas have been suggested previously and even been used in some projects.

For example, Lawson [LAWS 92a] proposes defining a philosophy o f system

development. [SHAW 89] suggests higher levels o f abstractions for software architectures.

Perry et al. [PERR 92] recommend defining software architectures for large scale systems.

Garlan [GARL 93] suggests development of a scientific basis for software architecture to

enable new systems to be built, compared, and analyzed in rigorous ways. Project Ship-

2000 [SS2000a, b] uses an architecture as a fundamental tool. The O SC A 1 architecture

[OSCA 92] defines a conceptual architecture to be used in developing interoperatable

systems for Bellcore Client Companies. We elaborate on these ideas and recommend

Mega-System architecture design as an essential task in the development o f any Mega-

System.

Mega-System architecture supports the "pre-planned" approach. We claim it will

enable efficient integration o f systems. It may be considered as a meta-design, above the

design o f the constituent systems that finally constitute the Mega-System.

1 OSCA is a trademark of Bellcore, inc.

129

Mega-System architecture design addresses difficulties in software development

described in chapter 1, aiming at problems caused by the neglect o f general, long term

objectives; coordination and communication problems; neglect o f the overall view o f the

system; the existence o f multiple and unstable requirements; the existence o f

heterogeneous and non-standardized environments; and the need to bridge various

technologies and to incorporate new technologies over time. These difficulties are listed

in Table 6.1 as an inverted sub-table o f the problem list (Table 1.1).

The Mega-System architecture deals with long-term goals and objectives. The

architecture is a tool for engineering coordination between the various groups developing

constituent systems o f the Mega-System. The Mega-System architecture is intended to

ensure the uniformity and consistency o f the Mega-System. The architecture is also the

specifications or requirements list for the infrastructure. In this respect, it must ensure that

different environments are integrated, that the various enabling technologies are efficiently

bridged, and that emerging technologies can be incorporated with minimal effort.

The common design principles recommended by a Mega-System architecture will

enhance productivity by enabling the reuse of design concepts. Moreover, common design

concepts will improve the traditional reusability o f elements, i.e., programs, modules, etc.,

developed according to these concepts. A Mega-System architecture reduces the

complexity that arises from using different approaches for the design and implementation

o f various components [HERB 89a], [PERR 92], The conceptual uniformity imposed by

a Mega-System architecture also improves the quality o f the system.

130

Table 6.1 Difficulties and Problems Addressed by the Mega-System Architecture

Difficulties Caused By Aspect Problems

Additional efforts are required
for integration o f systems

More than one system Engineering Current methods do
not fit development
o f more than one
system, with
multiple and
unstable
requirements

The overall view o f the system
is neglected

More than one group
of developers

Multiple requirements More than one
customer

Engineering solutions are
required to close technology
gap

Heterogeneous
environment

Unstable requirements Long life cycle

General objectives are
neglected

More than one system Management There is no clear
distinction between
general, long-term
objectives and local,
short-term
objectives

Coordination and
communication problems on a
larger scale

More than one
developer

No standardization of tools Heterogeneous
environment

Long terms objectives are
neglected

Long life cycle

Heterogeneous environment More than one system Technology There is a need to
bridge the various
technologies and
efficiently
incorporate
emerging
technologies as a
common domain-
wide solution

Each development group has to
struggle independently with
Heterogeneity and dynamic
environments

More than one
developer

Bridging different technologies
and incorporation of new
technologies is required

Heterogeneous
environment

Customization to user
environment

More than one
customer

Dynamic environment requires
incorporation o f new
technologies

Longer life cycle

131

A Mega-System based on a Mega-System architecture is intended to be planned

and conceptualized rather than being erratic or random. The architecture conserves the

structure and consistency o f the Mega-System over time and despite the underlying Mega-

Systems characteristics: long life cycles, dynamic requirements, and multiple groups o f

developers, any o f which might destroy the integrity o f the original structure.

The Mega-System architecture is used by all projects in the domain during the

development and maintenance o f a Mega-System. It serves as a guideline in the design

phase o f each project. The architecture is used by the Mega-System synthesis task as a

general structure o f the system. The architecture is influenced by the domain model, and

is used as an essential input for the infrastructure acquisition task. Feedbacks from the

system and the Mega-System synthesis tasks are used to improve the current architecture.

The relationship o f the Mega-System architecture with other parts o f the framework is

illustrated in Figure 6.1.

132

Mega-System Tasks System Tasks

Domain Model

Mega-System
Architecture

Infrastructure

Requirement
Specification

Design

Implementation

7igure 6.1 The Role o f the Mega-System Architecture

Although the Mega-System architecture recommends a guideline and common

design principles for the various constituent systems, this does not mandate a specific

approach for developing a system. The only restriction is that each delivered system must

be compatible with the proposed architecture specification in order to fit into the

framework o f the Mega-System. Moreover, the Mega-System architecture design task

does not deal with the implementation o f tools support for these concepts. Such

implementation elements are dealt with separately in the infrastructure acquisition task

which has to ensure that the concepts o f the architecture are supported by the chosen

infrastructure. From our viewpoint, tools that support software development by integrating

enabling technologies are infrastructures, though they are often called architectures.

133

6.1.1 Requirements for Mega-System Architectures

MegSDF must be general and applicable to any domain or Mega-System. Therefore, the

process o f Mega-System architecture design must be applicable to any application domain.

Consequently, the process must be flexible and domain independent.

To accomplish these goals, a Mega-System architecture has to assure that the

Mega-System it supports is:

• Scalable and integratable,

• Flexible and technology independent,

• Manageable,

• Reliable, and

• Transparent.

The Mega-System architecture must be used for all Mega-Systems developed in

the application domain so the architecture must allow configuration both for small

instances w'ith limited capabilities, as well as large instances that include extensive

capabilities. In the domain o f military vessels, for example, the same architecture may be

used by a small coastal control ship, by a frigate, or by a submarine, although the features

o f every system will be different [SS2000a, b]. Thus, the Mega-System must be scalable,

i.e., it must be possible to add new constituent systems to the Mega-System or to

remove/replace constituent systems with minimal effort. The Mega-System must also be

integratable in the sense that it must be possible to efficiently integrate the Mega-System

with other systems.

134

The characteristics: heterogeneous groups o f users and long life cycles, require

flex ib ility and technology independence. The requirements o f heterogeneous groups o f

users are multiple, not always well defined or known in advance. Moreover, long life

cycles increase the possibilities for changes in requirements. Thus, we must recognize that

there will be unknown and unexpected requirements. Therefore, the systems must be

adaptable and changeable. The heterogeneity o f user groups and their requirements

increase the need for a Mega-System architecture to be as technology independent as

possible. The architecture must fit various hardware configurations, i.e., different

platforms and environments. Situations where systems have longer life cycles than the

technologies they were originally implemented with, reenforce this necessity. The systems

must be prepared for technological evolution.

The Mega-System architecture must ensure the Mega-System is m anageable, that

is. modular, simple, and divided into well defined parts. Each part o f the system must be

highly cohesive and the coupling between the parts must be low. Such modularity supports

developing a Mega-System by multiple coordinated projects. Each project develops a

constituent system by applying an appropriate development approach, but yet complies

with the concepts o f the whole system.

Reliability is the extent to which a system operates without failure. It includes

availability, consistency, security, and fault tolerance [TANE 92]. Availability refers to

the time a system is usable. Availability is often increased in distributed systems by

replication o f servers, data, and resources. These replications enable partial services even

when some part of the distributed system fails. However, replications also introduce

135

consistency and performance degradation problems. Even when some part o f the system

fails, the consistency o f all replicated data is required. Mechanisms to assign appropriate

servers to clients are required too. Security deals with protection o f data and resources

from unauthorized users. Distribution and replication increase the complexity o f security

mechanisms. Fault tolerance means that the failure o f one system should neither degrade

nor stop the other systems.

Though distributed systems are often designed to improve reliability, the

complexity o f these systems may aggravate reliability problems. The various aspects o f

reliability must be considered by the Mega-System Architecture design task to ensure the

overall reliability o f the Mega-System, despite the increased complexity.

Transparency deals with the ability to achieve a single system image. We

distinguish two levels o f transparency: transparency for the developers, and transparency

for the user, as suggested by [TANE 92]. Developers’ transparency means that the

implementation o f distributed systems operating in a heterogeneous environment be done

in the same way as an implementation o f systems operating in a homogeneous

environment. Thus, the distributed system is developed on a virtual uni-processor.

Developers’ transparency includes location, migration, replication, and parallelism

transparency [TANE 92], Developers’ transparency is a mechanism for achieving

technology independence. On the other hand, transparency for the user masks the physical

structure o f the system from the user. The Mega-System appears to the users as a large

single system that offers multiple services in a user-friendly manner, with a uniform user-

interface, and allows efficient interaction between the various parts.

136

A Mega-System must be more than its parts. It must provide at least the same

services as its independent constituent systems, with the same performance and quality.

For example, if sharing o f data is done by replication o f data, this replication should not

degrade the performance o f the system. But beyond accumulation o f services provided by

the constituent systems, the Mega-System also provides added values not achievable

otherwise: a unified view o f all parts o f the system, and efficient inter-system cooperation

that avoids redundant data and functionalities and eliminates manual interfacing.

6.2 The Mega-System Architecture

A Mega-System architecture is the plan and strategy for the development o f the Mega-

System as a whole. It includes the concepts for the design and implementation o f the

system as well as the structure o f the system, its boundaries, its various constituents and

their interfaces.

6.2.1 Parts of the Mega-System Architecture

We divide the Mega-System architecture into conceptual and application architectures.

The conceptual architecture includes definition o f design and implementation concepts,

e.g., the types o f components, the communication approach, etc. The application

architecture uses the concepts defined by the conceptual architecture to map the

137

application domain to an implementation. It includes definitions o f system boundaries,

specification o f the different components o f the Mega-System and their interfaces.

The conceptual architecture is general. It may fit multiple domains, but it must fit

the given application domain. An application architecture is domain dependent. The

application architecture is reused by the systems developed within the domain.

6.2.2 The Conceptual Architecture

A conceptual architecture specifies the concepts to be used in the design and

implementation o f the constituent systems and in defining the application architecture for

the entire Mega-System. It abstracts implementation issues, identifies patterns o f

processing, and provides common conceptual solutions.

We propose existing Mega-System architectures and infrastructures be reused, or

at least evaluated, before selecting a conceptual architecture. Moreover, as suggested by

[PERR 92], there is a need to define architectural styles to facilitate reuse o f architectures.

These styles identify common and general conceptual architectures for major types o f

applications, e.g., real-time systems and data-processing systems. Typically, such

architectural styles would be less restrictive and constrained than an actual conceptual

architecture. When designing a conceptual architecture, the concepts o f the style will be

specialized and refined according to actual domain needs. In the application architecture

design task, the application architecture will be specified as an instantiation o f the

conceptual architecture. The relationships between styles, conceptual architecture, and

application architecture are illustrated in Figure 6.2.

138

The concepts o f a conceptual architecture are interdependent. [PERR 92] suggests

defining software architectures using three views: data, processing, and connection. The

ANSA2 project suggests using several viewpoints to describe distributed systems or

architectures [ANSA 89]. Adopting these ideas, we define a conceptual architecture using

multiple views, but we propose that the number o f views and their content be domain

dependent. Thus, a Mega-System architecture designer is free to decide what views are

required and what level o f details must be included in the architecture. Together, these

view's define the conceptual architecture.

Specialization

Instantiation

Application
Architecture

C onceptual
Architecture

Architectural
Style

Figure 6.2 Architectural Style, Conceptual and
Application Architectures

2 ANSA is a trademark of Architecture Project Management Limited

139

Possible views for a conceptual architecture are:

• Structural view - specification o f component (Building Block) types, relation between

them, and guidelines for decomposition o f the systems

• Communication view -a model for communication in the system

• Control view - a model for system-wide control

• Data view - a model for data handling

• Environment view -a model for interfacing with the environment o f the system (the outer

world) that includes human operators, other systems, and special purpose hardware.

We suggest not specifying a physical view that describes hardware configuration,

i.e., processors and communication channels,and geographical organization, i.e., where

to locate the various systems, as part o f the conceptual architecture design task. These

elements belongs to the Mega-System synthesis task.

The idea behind the conceptual architecture is to identify the appropriate views and

specify the design concepts relating to these views. We suggest adapting existing

international or commercial standards for the concepts o f the views. This will promote

integratability o f the Mega-System with other systems and reduce the effort required for

architecture design.

We recommend building a Mega-System as an open distributed system. This

generalizes the federation o f database systems suggested by Sheth and Larson [SHET 90].

A federation o f systems consists o f several autonomous systems that share data and

control to achieve the required functionality.

140

The following sections describe possible views and discuss some basic concepts

o f these views. In each view we specify what approach and concepts will support our

goals. However, for any Mega-System, we must define the concepts o f each view

according to the needs and characteristics o f the domain.

6.2.2.1 The Structural View

The purpose o f the structural view is to provide a framework for describing the

organization o f the elements of the Mega-System and their interrelation.

The size and complexity o f Mega-Systems preclude their development as huge

systems and suggest dividing them into components. Different architectures use different

names for these components, e.g., systems, Building Blocks, layers, or computational

units. A Mega-System may have components with different sizes and characteristics, e.g.,

Building Blocks, systems, or clusters. The conceptual architecture must specify the types

o f components for the entire system and possible classes o f components based on

processing type or other characteristics. For example, theOSCA architecture distinguishes

between data, processing, and user interface Building Blocks [OSCA 92]. The conceptual

architecture must specify the relationship between component types and constraints on

each class and type o f component. A conceptual architecture should also include a

guideline for hierarchical decomposition o f the system into components and sub

components.

A system is composed o f components that provide its required functionality. The

conceptual architecture only defines the types and classes o f the components o f the Mega-

141

Systems, but does not specify the actual components o f the system. Actual components

are specified by the application architecture. Actual components are instantiations o f the

component types identified by the conceptual architecture and must satisfy the constraints

and rules specified in the structural view.

A typical structural view includes:

• Definitions o f component types,

• Specification o f classes o f elements based on processing type or other characteristics,

• Specification o f constraints on components, and

• Guidelines and rules for decomposition o f an application into components.

We divide a Mega-System into loosely coupled Building Blocks (BB). Building

Blocks provide services (functionalities) to other Building Blocks or to the users o f the

system and have well defined interfaces. However, we do not specify types for Building

Blocks as done by the OSCA architecture. We allow Building Blocks to have any type o f

processing. Architecture designers may define types for Building Blocks according to the

actual domain needs.

Building Blocks are data capsules which hide implementation details. Generally,

Building Blocks are large and can include multiple objects or object hierarchies. Thus,

Building Blocks can be considered as meta-objects. Unlike objects in the object-oriented

approach, these meta-objects do not exhibit inheritance.

Building Blocks are not typical traditional systems. A Building Block is an "open"

version o f a traditional system in the sense that they provide services for authorized users,

142

using well defined interfaces. Building Blocks are designed to enable efficient integration.

A traditional system can be implemented by a single or by multiple Building Blocks.

To ensure modularity, low coupling, and high cohesion, Building Blocks are

developed without rigid assumptions about other Building Blocks or specific

configurations, e.g., implementation aspects or physical addressing. For the same reasons,

the services provided by Building Blocks must be used only via the means defined in the

communication model (see section 6.2.2.2).

We add the concept o f clusters o f Building Blocks to the structural view. Clusters

group together several Building Blocks for communication, control, or managerial

purposes. Clusters enable broadcasting and atomic operations and facilitate organizing

development efforts into projects.

We shall, henceforth, refer to the components o f Mega-Systems as Building

Blocks.

6.2.2.2 The Communication View

The communication view provides a framework for the description o f the interconnection

between Building Blocks. The Building Blocks o f the Mega-System must communicate

to provide the required functionality. The hardware allows processors to send messages

to other processors; the operating system allows sending messages between processes in

different processors. The operating system may also allow virtual circuiting between

processes using protocols ensuring a certain level o f reliability. However, all these

143

communication features are low-level and an abstract level for communication is still

required [JOSE 89].

To enable extendibility and to ensure uniformity, it is necessary to define a

standardized communication model. All the Building Blocks (the components o f the

system) must communicate exclusively using the same communication model.

Manageability requires prohibiting the use of any other possible communication technique

between Building Blocks.

It is important to note that the communication view is a conceptual model only and

must be free from any implementation influence. The implementation details o f the

communication view' will be dealt with separately in the infrastructure task.

The underlying idea behind a communication model is that Building Blocks must

specify interfaces. These interfaces are the "open view" o f the Building Blocks, and

therefore o f the Mega-System as a whole. Communication between Building Blocks must

utilize only these interfaces. This guarantees information hiding and eliminates the need

to know implementation details.

The communication model is a way o f providing developers’ transparency. It

abstracts implementation and physical distribution details. The communication model

supports mechanisms that provide migration, replication and parallelism transparency. It

also supports the uni-processor image: processes operating on different processors

interact like processes operating on a single processor.

M emory sharing and message passing are the common approaches to

communication. In memory sharing, Building Blocks use memory accessible by more than

144

one Building Block to transfer information and/or control. Examples o f shared memory

are common databases, abstract (virtual) global memory, or special hardware memories

that allow access by more than one processor. In message passing, Building Blocks

communicate by means o f a communication channel. Examples o f communication

channels are Remote Procedure Call (RPC), broadcasting, and pipelines.

The communication model must specify communication primitives. It is possible

to define these primitives based on the number o f receivers and senders, and the type o f

links (permanent or temporary). Usually a message is sent from one source to one

destination. This model is called port-to-port. However, it is often necessary to send the

same message to several destinations. This could be done by sending separate messages

for each destination, which is inefficient and increases communication load, or in the

broadcasting approach, by defining groups o f processes and sending a single message to

the whole group. The latter approach requires special hardware and/or software

mechanisms. Similarly, a receiver may receive a message from a specific sender or from

several sources. The connections between the sender and receiver may be permanent,

existing as long as the system is operating, or temporary, for a single message or for a

specific session.

To achieve location transparency, the communication model must define an

addressing method. Physical addresses restrict the use o f the system; inhibit using similar

resources or services in the event o f failure; and prevent migration or reconfiguration for

load balancing purposes. The use o f logical names, on the other hand, requires translation

into physical addresses. Such translation is often done by a server called a "trader". A

145

trader may become a bottleneck for systems with intensive communication. Moreover, a

trader failure may cause system-wide failure.

Communication is an essential element in distributed systems, but may be a source

o f failure. Routing and message correctness problems are usually handled by

communication protocols and the lower levels o f the ISO/OSI protocol [ROSE 89].

Communication failures may be caused by the receiver or the sender. A receiver may fail

or be busy and so unable to accept the message. In this case it is possible to repeat sending

the message a limited number of times or until it is accepted. I f a sender fails before its

message is processed, it is possible to abort the processing o f this message or to continue

with no change. A communication model has to specify the policies for handling such

failures.

A typical communication view' includes definitions for:

• Communication style, e.g., message passing, shared memory,

• Communication primitives, e.g., port to port communication, Broadcasting, etc.,

• Constraints for load balancing, e.g., maximal length o f a message,

• Specification o f legal communication, e.g., what types of Building Blocks are allowed

to communicate, by what primitives, and common message format,

• Specification o f a location transparency mechanism, and

• Communication failure handling policy.

Regardless of the communication style, we recommend that the communication

primitives include both port-to-port and broadcasting communication. Moreover, we

propose that the infrastructure o f the system use the same communication model to ensure

146

integratability o f the various parts o f the infrastructure. Thus, we suggest an "open

infrastructure", in the sense o f communication.

6.2.2.3 The Control View

The control view provides a framework for describing interactions between Building

Blocks. Autonomy is the state in which a Building Block exists and acts as an independent

entity. Building Blocks may be either autonomous or controlled by other Building Blocks.

A controlled Building Block acts according to decisions of the controlling Building Block

and is considered as non-autonomous. The objectives o f systems integration is to

interconnect systems that were originally autonomous. It is often required to sacrifice

autonomy in order to achieve the required functionality and additional values.

Systems with a set o f Building Blocks can be implemented as centralized or fully

distributed. In the centralized approach, one o f the Building Blocks controls the operation

o f all the other Building Blocks. In this approach, it is relatively easy to implement

activities that span more than one Building Block, but the reliability o f the system is

decreased since a failure o f the controlling Building Block may lead to failure o f the entire

system. This problem, can be overcome by duplicating the software o f the controlling

Building Block to allow election o f a new controller in the event o f failure. Centralized

control may also become a bottleneck in systems in which the Building Blocks have many

interconnections.

In the fully distributed approach, every system controls itself and communicates

with other systems to achieve the required functionality. The implementation o f this

147

approach requires special care with consistency control, and a recovery mechanism is

required to assure reliability of the system. A form o f distributed organization, called

federation, which compromises between the fully autonomous and the centralized

approaches for database systems is described by Sheth and Larson [SHET 90].

Sheth and Larson [SHET 90] and Veijalainen et al. [VEIJ 88] define different types

o f autonomy for distributed database systems: design, communication, execution, and

association. A designer o f Building Blocks with design autonomy is free to choose his

own design for any element o f the system, e.g., data content, representation, semantics,

constraints, functionality, association, implementation, etc. A Building Block with

communication autonomy can decide by itself whether to communicate with other

Building Blocks. Execution autonomy allows Building Blocks to execute local operations.

Association autonomy means that a Building Block can decide whether and how much of

its functionality to share. These notions o f autonomy can be generalized to all kinds of

systems. The conceptual architecture has to specify what types o f autonomy there will be

in the system. The meta-management and application architecture design will specify the

appropriate autonomy for the Building Blocks.

The control view must define types o f control units. Beyond processes that operate

as basic primitives, where each process has its own address space and a specific task, it

is possible to define other control units, e.g., threads of control, clusters, or groups of

processes. Threads are parts of a process that share the same address space, but each

thread has its own program counter and status word. Threads are usually designed to

148

cooperate for a specific task. It is also possible to define groups or clusters o f processes

for efficient communication and to simplify recovery mechanisms.

The control view must define an invocation strategy and related primitives. The

activities o f a system may be invoked periodically or be event-driven. In the periodic case,

a set o f operations is done routinely. In the event-driven case, the operations o f the system

are activated according to external or internal events.

The concepts o f synchronous and asynchronous operations also belong to this

view. In a synchronous operation, a Building Block that activates a service in a second

Building Block waits for acknowledgement from the server (receiver) and does not

continue processing during that time. In the asynchronous approach, on the other hand,

the Building Block that activates an operation in another Building Block does not wait for

acknowledgement from the server, but continues processing.

Various kinds o f parallelism are possible in a distributed environment. Parallelism

requires operation ordering primitives, e.g., sequencing, optional, clocked, and parallel

actions [HERB 89c]. Atomic transactions and nested transactions o f database systems can

be extended to atomic operations for any type o f systems or operation. Mechanisms for

atomic transaction and nesting o f transaction and recovery must be adapted to the general

case. The control view must describe the policy and approach to atomic operations.

In summary, a typical control view includes definitions for:

• Control approach (centralized, fully distributed)

• Control units (processes, threads, control clusters)

• Invocation approach (periodic loop, event-driven)

149

• Operation ordering primitives (sequencing, atomic operation, etc.)

We suggest developing Building Blocks with as much autonomy as possible. Since

autonomy may lead to inconsistencies o f data and since the centralized approach tend to

be inefficient, we suggest introducing the concept o f clusters o f Building Blocks. A

cluster behaves like a distributed system with a centralized control that enables efficient

communication, atomic operations, and consistency control. The Mega-System consists

o f several clusters. We recommend identifying clusters o f Building Blocks using the

domain model, and with due attention paid to other views o f the architecture. We also

recommend that the architecture support both synchronous and asynchronous operations,

since using only synchronous operation restricts concurrency.

6.2.2.4 The Data View

The data view provides the framework for describing data elements and data handling in

the Mega-System. Data are an essential part o f every system. Indeed, systems o f systems

are generally formed for efficient sharing o f data. However, systems o f systems that

operate in heterogeneous environments represent data differently, use different database

management systems and modeling approaches, and even different semantics. Therefore,

sharing data in a Mega-System in a heterogeneous environment requires substantial effort.

To ensure integratability, it is necessary to define a meta-data-model for the Mega-

System. The meta-data-model includes definition o f a common data-modeling approach,

e.g., the ER model, relational model, etc., a common data representation approach, e.g.,

data types, accuracy, etc. The meta-data-model specifies categories o f data, e.g., private,

150

shared, or replicated, and rules and constraints for handling these categories, e.g., where

data is stored, who is responsible for its consistency, and what type o f access is allowed

and by whom.

The meta-data-model can be used by newly implemented systems. For systems that

already exist, or for new systems developed with another data-model, the meta-data-model

is used as a connection mechanism. I f a constituent system does not use the meta-data

model, it is required to provide an interface from the meta-data-model to the used data-

model, and vice versa.

The use o f common or canonical data-models for representing federated database

systems is suggested by [SHET 90]. However, it is important to differentiate between the

meta-data-model and a data-model. The meta-data-model includes only specifications for

the common data-modeling approach and the categories o f data which can be used to

represent the domain-wide data model.

Connecting two systems, which use two different data-models, in Mega-Systems

that have a meta-data-model, entails interfacing the first data model to the meta-data-

model and the meta-data-model to the second data-model. In this case, it is possible to

provide a direct interface between the two models, without using the meta-data-model as

intermediary. Though, this solution that might be more efficient in the sense o f

performance, we suggest using a meta-data-model to avoid interfacing any two

data-models. Using this approach, if we have N data models we need to provide only 2N

interfaces (one for interfacing each model to the meta-data-model and one interfacing the

meta-data model to each data-model) instead o f N*(N-1) interfaces (for interfacing each

151

model with the other). Adding a system with a new' data-model requires only 2 interfaces

instead o f 2N interfaces. Similar ideas regarding different approaches for integrating

existing system are discussed in [CLAR 92],

For database systems, the data view must specify the database organization, i.e.,

how data is stored and managed. There are three approaches for organizing databases:

• Common repository,

• Distributed database with centralized control, and

• Distributed database with distributed control.

In the first approach, data is stored in a common repository. All systems use and

even communicate via this database. This approach is restrictive and requires heavy

adaption o f existing systems to the common database. It also eliminates developing a

system using another DBMS that might be more efficient for a specific case.

In the "distributed database with centralized control" approach, data is distributed,

but managed by a centralized transaction handler. The handler is responsible for

replication, consistency control, and atomic transactions (operations). It is easier to

implement this approach than the distributed database with distributed control approach.

But, the centralized transaction handler becomes a bottleneck for systems with

components that are highly connected.

In the "distributed database with distributed control" approach, there is no

centralized transaction handler and therefore all issues o f concurrency control,

redundancy, and transaction handling become more difficult. In this approach, the

constituent systems are highly autonomous.

152

The data view must specify strategies for concurrency control, recovery, security

and replication on the data-level. Minimally, the data view will be used to define data

handling o f domain-wide data-objects (shared information).

A typical data view includes:

• A meta-data-model, i.e., common data modeling approach, data types, data categories,

and policies for handling them,

• Data organization for the database if applicable, i.e., common, distributed with a unique

server, fully distributed,

• Specification o f transactions primitives and mechanisms for atomic and nested

transactions,

• Policy for shared data, and

• Redundancy and consistency control.

We suggest using the fully distributed approach and recommend using a meta-data-

model to "glue" the various parts. This simplifies integrating any system to the Mega-

System, as long as the other systems use the meta-data-model or interfaces from the data-

model o f the systems to the meta-data-model are provided. We also propose that shared

data be handled as a Building Block, as suggested in the OSCA architecture [OSCA 92].

These Building Blocks serve as active data capsules with well defined interfaces and

provide data oriented services for the various Building Blocks o f the Mega-System.

153

6.2.2.5 The Environment View

The environment view includes guidelines and rules for developing interfaces between the

system and its environment. Typically, the environment o f a system includes operators or

users. For real-time embedded systems, one can also define a hardware environment

consisting o f special purpose hardware components that the system interacts with. The

environment might include also other software systems.

To achieve the user transparency described in section 2.1 it is desirable for a Mega-

System to have a consistent user interface. Consistency eliminates the need to remember

unnecessary details and reduces the complexity o f usage o f the system. Adapting the ideas

o f the System Application Architecture’ (SAA) o f IBM [MART 91], we suggest dividing

the user view into two parts: presentation and user interaction. The presentation part

specifies concepts and rules for presentation, i.e., different types o f windows, standard

layouts o f panels and windows, use o f icons, color, emphasis, and voice. The user

interaction part defines types of interaction, e.g., selection, entering information, help

mechanism, and error handling. For each type o f interaction it is necessary to specify

standard methods, e.g., function keys, pointing by mouse, direct commands. Standardizing

these elements increases the productivity o f developers and users.

The specification o f rules and constraints on hardware interfaces is necessary to

ensure flexibility and portability, in the sense that adaptation o f the software to different

hardware configurations, e.g., different sensors, be minimal.

3 SAA is a trademark of IBM, inc.

154

The environment view must also define a strategy for dealing with security

problems. It must suggest mechanisms and concepts to ensure data and resources are used

only by authorized users.

A typical environment view includes:

• Specification o f a common user interface,

• Strategy for special purpose hardware and external systems interfaces, and

• Strategy to ensure security in the system.

The actual domain determines which parts o f this view are relevant. We suggest

including in the user interface both presentation and interaction guidelines and rules.

Strategies for interfacing with hardware or external systems and for security are required

only when applicable.

6.2.2.6 An Outline for a Conceptual Architecture

Table 6.2 summarizes section 6.2.2.1-6.2.2.5 and includes an outline for a conceptual

architecture based on views as discussed in these sections. Both views and their content

are domain specific, so this outline is suggestive. An actual conceptual architecture might

include different views with different concepts.

This outline can be used as a check list for definition o f a conceptual architecture.

Section 6.4 uses this outline together with the outline of the application architecture to

compare and classify existing architectures.

Table 6.2 A n O utline for a C onceptual A rchitecture

155

View Concepts

Structural Definition o f component types

Specifications o f classes o f components

Specifications o f constraints on components

A guideline and rules for decomposition o f an application into
components

Communication Communication style

Communication primitives

Constraints for load balancing

Specification o f legal communication

Specification o f a location transparency mechanism

Communication failure handling policy

Control Control approach

Control units

Invocation approach

Operation ordering primitives

Data A meta-data-model

Organization o f the database (when applicable)

Specifications o f transactions primitives mechanism for
atomic and nesting transactions

Redundancy and consistency control

Environment
Common user interface - Presentation

Common user interface - Interaction

Strategy for special purpose hardware and external systems
interfaces

Strategy to ensure security in the system

156

6.2.3 Application Architectures

The application architecture specifies the structure o f the Mega-System for the actual

domain. It is based on the domain model and maps the domain model into the

implementation model. It is designed according to the concepts defined in the conceptual

architecture and utilizes the infrastructure.

The application architecture is used by the requirements analysis phase o f the

system tasks to specify the boundary o f the actual developed constituent system and its

interfaces. The application architecture is also used by the mega-system synthesis task to

specify the software configuration (see also section 8.3). Feedback from the system and

synthesis tasks is used to improve the application architecture. In turn, feedback from the

application architecture design task is used to improve the domain model and the

conceptual architecture. The role o f the application architecture in the framework and its

relationship with the other components o f the framework are illustrated in Figure 6.3.

The application architecture specifies the boundaries o f the Mega-System within

the domain on the basis o f the domain model and the conceptual architecture. It specifies

which parts will be computerized, which part will not, and the rationale for these

decisions. The application architecture also specifies the building blocks that provide the

required functionalities. In this respect the application architecture is an instantiation or

extension o f the conceptual architecture for a specific application domain. Each element

o f the application architecture is an instantiation o f one o f the component types o f the

conceptual architecture and adheres to the constraints and rules the conceptual architecture

imposes on this type.

157

Mega-System Tasks System Tasks

Domain Model Requirement
Specification

Conceptual
Architecture

Application
Architecture Design

Infrastructure
Implementation

 ► Major
- - -► Some
... Minimal

"igure 6.3 Relationship o f the Application Architecture to Other MegSDF
Elements

Every building block is classified as one o f the building block types (when

applicable). A building block is specified by the set o f services it provides and by their

interfaces. One way to form building blocks is by identifying sets o f domain elements with

high cohesion and low coupling. This reduces the load on the communication channel and

minimizes the possibility that communication will become a bottleneck in the system.

158

In the event that the architecture defines clusters of building blocks, these clusters

are similarly defined on the basis o f the cohesion and coupling o f the building blocks and

the constraints imposed by the conceptual architecture.

The interfaces o f the building blocks (and clusters) are specified according to the

communication and control views. Interfaces with the environment are specified according

to the environment view. Shared data, accessed by more than one building block, if not

handled as a building block by itself, is identified in the application architecture and

designed according to the concepts and constraints o f the data view.

In some approaches that utilize architecture concepts, e.g., the Network of

Application Machines [LAWS 92a, bj, the application architecture includes the

implementation o f building blocks as generic units. This entails developing a Mega-

System by "gluing" these elements, with or without customization.

We recommend a graphical representation to illustrate the building blocks and their

interconnections. We also propose that the designers define a data-distribution map and

service dictionary. A data distribution map specifies shared-data, their replications, and

types o f distribution (vertical, horizontal). The service dictionary maps services to

building blocks and specifies replication o f services.

A typical application architecture includes:

• A list o f building blocks and for each building block its classification, list o f services,

and interface definitions.

• A list o f clusters and for each cluster a list o f participating building blocks.

159

• Building block interaction diagram - a diagram that includes the building blocks and the

interconnections between them.

• Data distribution map - mapping o f shared data into building blocks with definition o f

distribution and replication.

• Service dictionary - a list o f the available services, their interfaces, and their replication

approach.

Table 6.3 includes an outline for an application architecture based on these

elements.

T ab le 6.3 An Outline for an Application Architecture

List o f building blocks

List o f clusters o f building blocks

Building block interaction Diagram

Data distribution map

Service Dictionary

6.3 Mega-System Architecture Design Process

We describe the Mega-System architecture design process following the format defined

in section 4.1.

6.3.1 Purpose

The purpose o f the Mega-System architecture design task is to specify a Mega-System

architecture for the Mega-System.

160

6.3.2 Interfaces

Inputs

• Domain Model - A model o f the domain, defined in section 5.2.

• Users/Customers requirements - Requirements o f the users/customers for the systems.

• Existing infrastructures and projected technologies - To define a feasible architecture,

it is necessary to specify the concepts o f the architecture with relation to existing and

projected technologies.

• The Chosen Infrastructure - The infrastructure o f the domain, defined in chapter 7.

• Feedback - Engineering information from the system tasks (projects) and the Mega-

System synthesis tasks including recommendations for improvement and corrections to

the current Mega-System architecture.

Control Inputs

• M anagement Control - The assigned schedule and milestones to the M ega-System

architecture design task by the meta-management task.

M echanism

• Architectural styles - Styles o f conceptual architectures for Mega-Systems. These styles

are evaluated in order to find the appropriate Mega-System architecture for the domain.

Outputs

• Mega-System Architecture - The architecture o f the Mega-System, defined in section

6 .2 .

• Feedback - Feedback from the Mega-System Architecture design task to the domain

analysis and meta-management tasks.

161

6.3.3 Processing

The Mega-System architecture design task defines a conceptual architecture as a

specialization o f a chosen architectural style and in accordance with the special

characteristics o f the application domain. Guided by this conceptual architecture and the

domain model, the application architecture is then specified. Feedback from the

application architecture is used to improve the conceptual architecture. Feedback from

other tasks o f the process is used to improve both architectures. Figure 6.4 illustrates the

process diagram for the Mega-System Architecture design.

6.3.4 Timing

The Mega-System architecture design is an ongoing process since domains evolve over

time. Any essential change in the domain or in enabling technologies and feedback from

other tasks must be evaluated and reflected in the Mega-System architecture as required.

Although both conceptual and application architecture design are continuous

processes, it is important to observe that the conceptual architecture is more stable than

the application architecture. A change in the conceptual architecture means a change in

a design or implementation concept. It is infeasible to change concepts frequently, though

freezing them is not desirable either. The developers must remain open to new methods

and adapt their concepts as required to ensure the competitiveness o f their systems. The

application architecture, on the other hand, must reflect any essential change in customer

needs. It is more dependent on the dynamics o f the application domain and so changed

more often.

162

Management Control

Customer
Requirements

Existing ;
Infrastructures

T .i
i

Domain Modal

The Chosen Infrastructure
 ►:
Feedback

 ►:

Conceptual
Architecture

Conceptual Architecture
1
i
I
1

Design
Application
Architecture

V

Design

Mega-System
Architecture

 ►

Application Architecture

Feedback

A rch ite c tu ra l
Styles

Feedback

Figure 6.4 Mega-System Architecture Design Process

6.3.5 Sub-Tasks

6.3.5.1 Conceptual Architecture Design

6.3.5.1.1 Purpose

The purpose o f the conceptual architecture design task is to specify the underlying

concepts for the design and implementation o f the whole Mega-System.

163

6.3.5.1.2 Interfaces

Inputs

• Domain Model - A model o f the domain, defined in section 5.2.

• Users/Customers requirements - Requirements o f the users/customers for the systems.

• Existing infrastructures and projected technologies - In order to define a feasible

architecture it is necessary to specify the concepts o f the architecture in relation to existing

technologies and projected technologies.

• The Chosen Infrastructure - The infrastructure o f the domain, specified in chapter 7.

• Feedback - Engineering information from the system tasks (projects) and the Mega-

System synthesis tasks including suggestions for improvement and corrections to the

current conceptual architecture.

Control Inputs

• Management Control - The schedule and milestones for the conceptual architecture

design task assigned by the meta-management task.

M echanism

• Architectural styles - Common styles o f conceptual architectures for Mega-Systems.

These styles are evaluated in order to find the appropriate Mega-System architecture for

the domain.

Outputs

• Conceptual Architecture - The concepts and guideline for the Mega-System, defined in

section 6.2.2.

• Feedback - Feedback from the task to the other tasks.

164

6.3.5.1.3 Processing

The process o f conceptual architecture design specifies the actual views and the concepts

o f each view on the basis o f the chosen architectural style. Figure 6.5 illustrates the

conceptual architecture design process, which is summarized as follows:

1. Choose an appropriate architectural style

2. Define actual views for the architecture

3. For each actual view

3.1 Specialize the actual view

6.3.5.1.4 Timing

The conceptual architecture design is an ongoing process since domains evolve and

change over time. Any essential change in the domain or in enabling technologies, and any

feedback from other tasks, should be evaluated and reflected in the conceptual architecture

as required.

165

Management-Control
i

Arch.
Style

ViewsDomainModal
Infrastructures

The Chosen Infrastructure
F eedbackFeedback

Architectural
Styles

Select
Actual
Views

Specialize
the Actual
View

Choose an
Appropriate
Architectural
Style

Figure 6.5 Conceptual Architecture Design Process

6.3.5.2 Application Architecture Design

6.3.5.2.1 Purpose

The purpose o f the application architecture design task is to specify the application

architecture for the Mega-System.

6.3.5.2.2 Interfaces

Inputs

• Domain Model - A model o f the domain, defined in section 5.2.

166

• Users/Customers requirements - Requirements o f the users/customers for the systems.

• The Chosen Infrastructure - The chosen infrastructure of the domain, specified in chapter

7.

• Feedback - Engineering information from the system and Mega-System synthesis tasks

including recommendations for improvement and corrections to the current application

architecture.

Control Inputs

• Management Control - The schedule and milestones for the application architecture

design task assigned by the meta-management task.

Circumstance

• Conceptual Architecture - The concepts and guidelines for the Mega-System, defined in

section 6.2.2.

Outputs

• Application Architecture - The overall structure o f the Mega-System, defined in section

6.2.3.

• Feedback - Feedback from the conceptual architecture design task to the conceptual

architecture design, domain analysis, and meta-management tasks.

6.3.5.2.3 Processing

The application architecture design task defines an application architecture which is an

instantiation o f the conceptual architecture and based on the domain model. Figure 6.6

illustrates the application architecture design process, which is summarized as follows:

167

1. Specify system boundaries

2. Identify building blocks

3. For each building block

3.1 Define a building block {Specify BB type, role, BB interfaces and its services}

4. Identify clusters o f building blocks (if clusters are defined as part o f the architecture).

Management Control Conceptual Architecture

Customer
Requirements

System
Boundaries Clusters

DomainModal
Tho Chosen Infrastructure
Feedback

Feedback

Identify
Building
Blocks

Define
Mega-
System
Boundaries

Identify
Clusters

Building
Blocks

Define
Building
Block

Figure 6.6 Application Architecture Design

6.3.5.2.4 Timing

The application architecture design is an ongoing process since domains evolve over time.

Any essential change in the domain, the conceptual architecture, or the chosen

infrastructure and any feedback from other tasks should be evaluated and reflected in the

application architecture.

6.4 Existing Architectures

168

Mega-System architecture generalizes systems architectures. This section reviews existing

systems and Mega-System architectures. It also describes Mega-System architectures that

have been used in two large projects, (ESF [ESF 89] and Ship-2000 [SS2000a, b]). These

projects defined a conceptual structure and proposed using a reference model/architecture

as the basis for future implementations.

We discuss these architectures by mapping them into the Mega-System

conceptual/application architecture dichotomy, and using the views suggested in section

6.2. The discussion o f the architecture represents our point o f view.

Incidentally, tools that integrate enabling technologies are often called

architectures, but from our viewpoint are infrastructures and are not discussed here.

6.4.1 Systems Architectures

The Application Machine o f Lawson [LAWS 92a, b] and Best’s architecture [BEST 90]

are systems architectures. They include a conceptual structure for a system which is an

important contribution to system development. Lawson’s approach for systems o f systems

is described separately in section 6.4.2.1.

6.4.1.1 Application Machine

The goal o f the lawson’s Application Machine [LAWS 92a, b, c] approach is to improve

understandability o f systems by focusing on essential properties of the applications.

169

Application Machines can be implemented for any domain. Application Machines have

been used in the domain o f embedded systems for automobiles, e.g., fuel injection system,

brake control, etc.

The idea behind the Application Machines is what we have called conceptual

architecture. Though views are not defined explicitly, one can identify elements o f the

structural, communication, control, and environment views; there is no reference to a data

view.

The Structural View

There are two types o f components in an Application Machine architecture:

• Application Machine, and

• Application Program.

An Application Machine consists o f a set o f declarations and Processing

Operations (POPS) which have no decision making capabilities. An Application Program

consists o f a decision making part and invocations o f POPS. The Application Program and

the Application Machine together provide the required functionality o f the system.

Lawson suggests decomposing into POPs based on objects and operations. There is no

classification o f components or any constraint on building blocks.

170

Table 6.4 Application Machine Structural View Mapping

MegSDF View concept Corresponding AM concept

Components POPs and Application Program

Classes o f components Not defined

Constraints for
components

Not defined

Guidelines and rules for
decomposition

Based on objects and operations

The Communication view

Application Machine components communicate by shared memory. There is no definition

o f other concepts o f the communication view.

Table 6.5 Application Machine Communication View Mapping

MegSDF View Concept Corresponding AM concept

Communication style Shared memory

Communication
primitives

Not defined

Constraints for load
balancing

Not defined

Specification o f legal
communication

Not defined

Location transparency Not defined

Failure handling policy Not defined

171

The Control View

The control o f an Application Machine is done by a loop in the application program that

activates the various POPS. Thus, the Application Machine uses a centralized control

approach with application programs as control units. Lawson suggests using software

circuits that might be considered as operation ordering primitives.

Table 6.6 Application Machine Control View Mapping

M egSDF View Concept Corresponding AM Concept

Communication style Centralized

Control units Application program

Invocation approach Periodic loop

Operation ordering
primitives

Software circuits

The Data View

The Application Machine architecture does not specify data view concepts.

The Environment View

There is no definition o f a common user interface. [LAWS 92c] recommends handling

sensors by "software circuits" built out o f "software components", e.g., sensors (or logical

sensors), processors, and actuators. Each software component may activate several POPs.

This approach standardizes the way the systems handle sensors (special purpose hardware)

in the system environment. No security policy is specified.

Table 6.7 A p p lica tio n M ach ine E nv ironm en t V iew M apping

172

MegSDF View Concept Corresponding AM Concept

Common user interface -
presentation

Not defined

Common user interface -
interaction

Not defined

Special purpose
hardware/ external
systems interfaces

Sensors Circuits

Security in the system Not defined

Application Architecture

Lawson suggests identifying POPs and building a reusable library o f POPs. This can be

considered as an application architecture design. A system is then developed by

implementing an application program and customizing POPs. There are no other elements

o f the MegSDF application architecture.

Table 6.8 Application Machine Application Architecture Mapping

MegSDF Architecture
Element

Corresponding AM Element

List o f Building Blocks Reusable library o f POPs

A list o f clusters o f
building blocks

Not defined

Building blocks
interaction diagram

Not defined

Data distribution map Not defined

Service dictionary Reusable library o f POPs

173

6.4.1.2 Best’s Architecture

This section describes Best’s architecture [BEST 90] which defines a conceptual structure

for large-scale information-processing systems in any application domain. Though Best

calls his architecture an "application architecture", it contains elements o f both the

MegSDF conceptual and application architecture. Best indicates the approach can be used

for systems with either a centralized or a distributed database. He claims that systems that

are developed according to the suggested architecture can be efficiently integrated into

systems o f systems by merging appropriate drivers.

According to Best, every data-processing system must include the following

superstructure functions:

• Batch transaction updating,

• On-line transaction validation and update,

• Sequential processing facilities,

• Output processing,

• On-line inquiry, and

• Exception data changes

The system must also include the following databases:

• Account/item database - the essential elements o f the system,

and two supporting databases:

• Transaction database, and

• Extract database.

174

The basic organization and flow is illustrated in Figure 6.7. Each super-component

is implemented as a driver that provides the super function and routes the processing to

the actual application specific sub-program.

Direct Input
+ On-Line

InformationOn-line
InquiryOn-line

Validation
and

. U p d a t e >

Account/Item
DatabaseTransaction

Database Exception
Data

Changes

Sequential
Processing
Facilities J

Pre-Formatted
Transactions Computer

OutputExtract Database

Batch
Transaction
y Update .

"igure 6.7 Best's Architecture Process Flow
(Copied from [BEST 90])

The Structural View

Best’s approach identifies the super-functions and procedures as main components. Fie

suggests dividing the systems according to processing type, which might be considered

as classes o f components. No other constraints on the components are specified.

Table 6.9 B e s t’s A rch itec tu re S truc tu ra l V iew M apping

175

M egSDF View concept Corresponding Best’s Architecture Concept

Component Super-components, procedures

Classes o f components Processing type, i.e., online, batch, etc.

Constraints for
components

Not defined

Decomposition
guidelines and rules

According to the type o f processing

The Communication view

The communication in best’s architecture is done by sharing databases (sharing memory).

There is no definition o f other concepts o f the communication view.

Table 6.10 Best’s Architecture Communication View Mapping

M egSDF View concept Corresponding Best’s Architecture Concept

Communication style Memory sharing (using databases)

Communication
primitives

Not defined

Constraints for load
balancing

Not defined

Specification o f legal
communication

Not defined

Location transparency
mechanism

Not defined

Failure handling policy Not defined

176

The Control View

The control o f the system is done by the super-functions. Each super function can be

thought as an autonomous component. Batch super functions are invoked periodically.

On-line processing super-functions are event-driven. There is no definition o f operation

ordering primitives.

Table 6.11 Best’s Architecture Control View Mapping

MegSDF View concept Corresponding Best’s Architecture Concept

Control approach Autonomous components

Control units Super functions

Invocation approach Periodic loops and event driven

Operation ordering
primitives

Not defined

The Data View

Best’s architecture neither defines nor uses a meta-data-model. Best claims it is possible

to use the suggested architecture for either distributed or centralized database

organizations. He defines databases that must exist in any application. To some extent it

is possible to consider Best’s suggestions regarding batch, on-line, and exception handlers

as data-processing primitives. Similarly, it is possible to consider the integrity control

programs as mechanisms for consistency control.

Table 6.12 B e s t’s A rch itec tu re D ata V iew M apping

177

MegSDF View Concept Corresponding Best’s Architecture Concept

Meta-data-model Not defined

Database organization Distributed or centralized

Data processing
primitives

Batch, on-line, data-exceptions

Redundancy and
consistency control

Integrity control programs

The Environment View

Best describes only the user part o f the environment view. He suggests using the

"electronic desk" approach. He recommends limiting the details a user sees by showing

summaries. The user can then choose which details to explore. Best also suggests

supporting both on-line and batch transactions by exception overrides, exception data

changes, and efficient help mechanisms and recommends using o f security packages for

on-line systems.

Table 6.13 Best’s Architecture Environment View Mapping

MegSDF View Concept Corresponding Best’s Architecture Concept

Common user interface -
presentation

Electronic desk, windows, menus

Common user interface -
interaction

Both batch and on-line, exception handling, help
mechanisms

Special purpose
hardware and external
systems interfaces

Not defined

Security in the system Use o f security packages to ensure secure and
effective environment

178

Application Architecture

Best’s architecture suggests a kind o f "general application architecture" that fits

applications in various domains. He specifies the main building blocks and databases.

However, these building blocks might be considered as "processing oriented" since they

are based on type o f processing, e.g., on-line update and batch reports, and not on domain

specific objects.

Table 6.14 Best’s Architecture Application Architecture Mapping

Architecture Element Corresponding Best’s Architecture Element

List o f Building Blocks Super-functions and main databases

List o f clusters Not defined

Building blocks
interaction diagram

See Figure 6.7

Data distribution map Not defined

Services’ Dictionary Not defined

6.4.2 Mega-System Architectures

This section describes architectures which have been recommended as the basis for

developing systems o f systems or for system integration, which qualifies them as Mega-

System architectures.

6.4.2.1 The OSCA Architecture

The OSCA architecture [OSCA 92], [MILL 90], [DESA 92] was developed by Bellcore.

It is designed to promote interoperability and operability o f software products systems. It

is intended to provide a framework which will allow the systems o f Bellcore Client

179

Companies (BCC), which are distributed over variety o f computing environments, to

interoperate [OSCA 92].

The OSCA architecture is considered both as a logical and strategic architecture.

It consists o f detailed guidelines for suppliers o f software products, which must be

compatible with these guidelines in order to be used by Bellcore Client Companies.

The architecture is oriented towards business software systems operating in

heterogeneous environments. These systems, typically, use corporate data, so the

architecture is intended to ensure accessibility to this data.

From our viewpoint, the OSCA architecture is a conceptual architecture that can

be used in various domains. It specifies different types o f building blocks as well as the

restrictions and constraints they must adhere to. Though the OSCA architecture is not

specified by terms o f views, we can map the concepts o f the OSCA architecture into the

views we have proposed.

The Structural View

Building blocks are the main components o f the OSCA architecture. A building block

consists o f a set o f "business aware" functions. It can include sets o f computer programs,

data schemas, and other related software which process coherent, business aware functions

with well defined interfaces. A building block can be deployed as a single unit and is

release-independent o f other building blocks. Software products that provide business-

aware functionality may span more than one building block.

Building blocks support a principle called "concern separation", which is used to

separate business-aware functionalities and business independent functionalities. The

180

business-independent functionalities are combined into the infrastructure; while the

business-aware functionalities are subdivided into three layers to ensure "concern

separation", the corporate data management layer, the business processing layer, and the

human user layer. This division facilitates upgrading technologies, such as database

management systems or devices that interact with users, without updating the entire

system. Each layer consists o f several building blocks, but each building block provides

functionality that belongs to one layer only.

A building block provides a set o f services defined by interfaces called "contracts".

The grouping o f contracts into building blocks is for administrative reasons only. A

building block that invokes a contract does not care where the contract is installed or what

other contracts it is grouped with. Contracts separate clients from implementation and

internal details.

The OSCA architecture provides a detailed list o f constraints for every class o f

building blocks. According to [DESA 92], decomposition into building blocks can be

based on the object oriented approach and the three layers o f functionality.

Table 6.15 T he O SC A A rch itec tu re S tructural V iew M app ing

181

M egSDF View Concept Corresponding OSCA Architecture Concept

Component Building Blocks

Classes o f components Data, processing, and user interface

Constraints for
components

A detailed list o f constraints

Guidelines and rules for
decomposition

Classes o f building blocks and object oriented approach

The Communication View

The OSCA architecture building blocks can communicate with any other building block

that provides a required service. The building blocks communicate by message passing

using the services of the infrastructure. The infrastructure consists o f business-independent

products that support business functions. Figure 6.8 illustrates the components o f the

OSCA architecture. The building blocks are location independent and have logical

addresses. Building blocks cannot assume the availability o f other building blocks and

must gracefully accommodate their unavailability.

182

Building
Block

Bound
Infrastructure

Shareable Infrastructure

Communication Network

"igure 6.8 The OSCA Architecture

T able 6.16 The OSCA Architecture Communication View Mapping

M egSDF View Concept C orresponding OSCA A rch itec tu re C oncept

Communication style Message passing

Communication
primitives

Contracts

Constraints for load
balancing

Not defined

Specification o f legal
communication

Every building block might communicate with any
other building block using the contract and the
services o f the infrastructure

Location transparency
mechanism

By means o f the infrastructure

Failure handling policy Gracefully accommodation o f non-availability

183

The Control View

From our viewpoint, the OSCA architecture building blocks form a distributed system in

which each building block controls itself. Each building block must have a recovery

mechanism. For actions that span more than one building block, the OSCA architecture

uses the concept o f a logical building block. A logical building block is composed o f more

than one building block and acts as a recoverable domain.

Table 6.17 The OSCA Architecture Control View Mapping

M egSDF View Concept Corresponding OSCA Architecture

Control approach Fully distributed system
(Autonomous building blocks)

Control units Building Block, logical building block

Invocation approach Event driven, client server

Operation ordering
primitives

Recoverable domain for atomic operations

The Data Model

The OSCA architecture does not specify a meta-data-model for systems that use the

architecture and does not recommend using a common modeling approach or common

representation. However, the OSCA architecture does specify different data categories as

well as rules for their handling. It distinguishes between "corporate" versus "private" data.

Corporate data is used or created by the corporation to conduct its business. It is shared

across business processes and partitioned into portions each o f which is stewarded by a

data layer building block. Corporate data is a corporate resource and is not the sole

property o f any single organization or software product.

184

Private data, on the other hand, is owned by a building block, not available for

general retrieval or updating. It is allowed in any kind o f building block. Private data may

be redundant data or working data.

The OSCA architecture also allows "shared redundant data" in order to meet

performance and availability requirements and to allow alternative views. This data is

housed in a data layer building block and available only for retrieval purposes. A building

block that stewards the data is responsible for supporting all redundant copies.

The OSCA architecture defines cooperative stewardship in cases where corporate

data is stewarded by multiple building blocks. These building blocks form a single logical

building block. The OSCA architecture specifies recoverable domains and transaction

managers that are responsible for consistency control. The steward building block is

responsible for recovery and consistency control for all replications.

Table 6.18 The OSCA Architecture Data View Mapping

M egSDF View Concept Corresponding Concept in the Architecture

A meta-data-model Data categories only

Database organization Fully distributed databases

Data-processing
primitives

Atomic actions by logical building blocks

Redundancy and
consistency control

Recoverable domains, transactions managers.
The steward building blocks are responsible for
consistency of all replications.

185

The Environment View

The OSCA architecture does not explicitly specify an environment view in our sense, but

it does specify a special layer o f building blocks for user-interfacing, as well as a list o f

constraints and rules for this type o f building block. The OSCA architecture also explains

how to interact with systems outside the architecture.

The objectives o f the user-interface layer o f building blocks are to ensure concern

separation and minimize dependency o f the processing building blocks on special user-

interfacing devices. With this organization, technology upgrades effect only the user

interface building blocks.

The OSCA architecture recommends supporting multi-tasking (windowing) in

order to allow users to work on several tasks simultaneously. Moreover, it recommends

specializing building blocks for different users with different roles. A building block is

required to accept the least expected input from the user and respond intelligently. The

OSCA architecture also recommends providing customization features, and, as a

minimum, consistency in presentation, though it does not specify a common user

interface.

Interaction with external systems is bi-directional. I f an external system requires

service from a building block, it must use a building block contract. The external system

must have a contract manager or use a transway (special software that provides building

block and contract capabilities). Similarly, a building block that requires the services o f

an external system must send its request either through a transway or directly to an

external system that has a contract manager.

186

The building blocks must adhere to security constraints. Besides limiting access

to contracts only, the identity o f the invoking user and its building block is passed through

to any other building block. Sensitive data must be appropriately protected and building

blocks might need to re-authenticate the identity o f the invoking user or building block.

T ab le 6.19 The OSCA Architecture Environment View Mapping

MegSDF View Concept Corresponding Concept in the Architecture

Common user interface -
presentation

Consistency is required

Common user interface -
interaction

Multi-tasking, specialized user-interface blocks for
different users

Special purpose
hardware and external
systems interfaces

Policy for integration with external systems based
on additional contract manager or transway

Strategy to ensure
security in the system

Identity o f invoking user and building block should
be transferred.
Sensitive data should be protected appropriately
re-authentication.

Application Architecture in the OSCA Architecture

The OSCA architecture does not explicitly define an application architecture. However,

it does suggest that the division into building blocks be based on low coupling and high

cohesion o f functions. It recommends that stewarding data building blocks (building

blocks that manage the corporate data) be determined based on the information model o f

the Bellcore Client Companies.

187

6.4.2.2 A Network of Application Machines

This section describes the underlying concepts o f a network o f Application Machines as

suggested by Lawson [LAWS 92a, b, c], Just as the Application Machine, the network o f

Application Machines is proposed as a way to improve the understandability o f systems

by focusing upon the essential properties of an application. The network architecture is

intended for problems with a larger scope.

A network o f Application Machines architecture might be used in various domains.

Networks o f Application Machines are mainly used in the domain of embedded systems

for automobiles, e.g., fuel injection system, break control, etc.

The ideas o f a network o f Application Machines can be considered as a conceptual

architecture. The following paragraphs map the ideas o f the network o f Application

Machines to MegSDF views.

The Structural View

The components of the network o f Application Machines are the Application Machines

described in section 6.4.1.1. The decomposition into Application Machine is based on

objects and operations. There is no specification o f classes o f components or o f

constraints.

Table 6.20 N etw o rk o f A M S tructural V iew M app ing

188

MegSDF View Concept Corresponding AM Architecture Concept

Component Application Machines

Classes o f components Not defined

Constraints for
components

Not defined

Guidelines and rules for
decomposition

Based on objects and operations

The Communication View

The communication is handled by the router which sends messages to the various

Application Machines. This model can be implemented by using the client server approach

[LAWS 92a], There is no specification o f the other concepts o f the communication view.

Table 6.21 Network o f AM Communication View Mapping

MegSDF View Concept Corresponding Network o f AM Architecture
Concept

Communication style Message passing

Communication
primitives

Not defined

Constraints for load
balancing

Not defined

Specification o f legal
communication

Not defined

Location transparency
mechanism

Not defined

Communication failure
handling policy

Not defined

189

The Control View

A router synchronizes the various Application Machines and communicates with the

outside world. The router deals with global situations o f the entire system, while the

Application Machines deal with local situations. The router itself can be an Application

Machine. The router acts as a master in a master-slave architecture. The control approach

is, thus, a distributed system with a centralized controller. The router uses periodic

invocation. The software circuits may be considered as operations ordering primitives.

Table 6.22 Network o f AM Control View Mapping

MegSDF View Concept Corresponding Network o f AM Architecture
Concept

Control approach Distributed system with a centralized control

Control units Application programs

Invocation approach Periodic loop

Operation ordering
primitives

Software circuits

The data model

A common database serves the various Application Machines. The router can be

responsible for redundancy and consistency control. There is no specification o f a meta-

data-model or definition o f transaction primitives.

190

Table 6.23 Network of AM Data View Mapping

MegSDF View Concept Corresponding Netw ork of AM Architecture
Concept

A meta-data-model Not defined

Database organization Common database

Transactions primitives Not defined

Redundancy and
consistency control

By the router

The Environment View

The environment view includes specifications only for sensor handling (see section

6.4.1.1).

Table 6.24 Network o f AM Environment View Mapping

MegSDF View Concept Corresponding Network of AM Architecture
Concept

Common user interface -
presentation

Not defined

Common user interface -
interaction

Not defined

Special purpose
hardware and external
systems interfaces

Specification o f concepts for sensor and logical
sensors

Security Not defined

The Application Architecture

According to Lawson, Application Machines are generic systems. They are developed as

part of the application architecture and used by systems developed in the domain as

191

building blocks. The Application Machines do not undergo major change other than

customization or parameterization.

Table 6.25 Network o f AM Application Architecture Mapping

Architecture Element Existence in the AM Architecture

A List o f building blocks Reusable library o f Application Machines

A list o f clusters o f
building blocks

Not defined

Building blocks
interaction diagram

Not defined

Data distribution map Not defined

Services’ dictionary Not defined

6.4.2.3 The CAN-Kingdom Architecture

This section describes the underlying concepts o f the CAN-kingdom Architecture as

suggested by Fredriksson [FRED 92a, b]. The goals o f the CAN-Kingdom approach are:

• T o support a machine development philosophy characterized by understandability,

safety, simplicity, and effectiveness

• To ensure independence for module designers

•T o enable efficient integration o f third party modules

The domain o f this architecture is stationary or mobile machine systems, e.g.,

spinning machines, weaving or knitting machines, saw mills, robots, cranes, excavators.

The architecture fits mainly master-slave control systems and is based on the Controller

Area Network (CAN) - real-time parallel processors systems.

192

Conceptual Architecture

Fredriksson uses the image o f a kingdom to describe his architecture. The architecture

emphasizes communication concepts, using post-offices, letters, envelops, etc., as

reference metaphors. For systems, as with kingdoms, there is a need to specify "governing

rules" and develop systems that operate according to these rules.

The Structural View

The entire system corresponds to kingdom. A kingdom has a Capitol and cities. The

Capitol is the master o f the system. The cites are nodes o f the system and provide its

services. The cities are connected by the CAN bus.

From our viewpoint, the components o f the system are the cities, which provide

the functionality o f the system. Additionally, a system includes a special type o f

component, the Capitol, which controls the entire system.

Table 6.26 CAN-Kingdom Structural View Mapping

M egSDF View Concept Corresponding CAN-Kingdom concept

Component Cities (Nodes)

Classes o f Components Regular cities and a Capitol

Constraints for
components

Not defined

Guidelines and rules for
decomposition

Not defined

The Communication View

The CAN-kingdom architecture is based on a well defined protocol for communication

that supports message passing. Each message is sent to all nodes. Each node identifies and

193

processes its messages. Some messages are used to configure the system at start-up time;

other messages are used to transfer information to nodes. The structure o f the messages

is predefined. Every node receives and transmits messages identically, but different types

o f messages are defined according to the special requirements o f the various nodes. The

protocol defines a detailed message structure.

CAN-kingdom distinguishes between deterministic messages whose sequence and

frequency are known in advance, and stochastic messages, which are event-driven. It also

distinguishes between messages with deadlines and messages that are not time critical.

Fredriksson recommends early processing o f data and transmitting only essential results

to avoid overloading the communication channel. Thus, CAN-Kingdom support

distributed processing with a centralized control.

T ab le 6.27 CAN-Kingdom Communication View Mapping

M egSDF View Concept Corresponding CAN-Kingdom Architecture
Concept

Communication style Message passing

Communication
primitives

Every node receives all messages but processes
only messages sent to itself.
Deterministic/stochastic messages.
Time critical/non-critical messages.

Constraints for load
balancing

Transfer only essential data.
Process data as early as possible and send only
results and processed data.

Specification o f legal
communication

Predefined Protocol

Location transparency
mechanism

Not defined

Failure handling policy Not defined

194

The Control View

The architecture uses the master-slave (distributed system with centralized control)

approach. The Capitol is the system master, the cities are the slaves.

Table 6.28 CAN-Kingdom Control View Mapping

M egSDF View Concept Corresponding CAN-Kingdom Architecture
Concept

Control approach Distributed system with centralized control

Control units Cities

Invocation approach Not defined

Operation ordering
primitives

Not defined

The Data View

There is no definition o f any meta-data-model other than detailed definition o f messages

structure. Fredriksson recommends using different messages (called forms) for interfacing

between different data representation methods.

The Environment View

The CAN-Kingdom architecture does not specify an environment view.

Application Architecture

The kingdom designer defines the functionality o f each city and specifies its actual

parameters by defining the system configuration at start-up. In this approach the same

"city" can be re-used in different ways, depending on the needs o f the kingdom. The

195

allocation o f functionalities to cities can be considered as application architecture design.

Fredriksson recommends using a graphical notation to represent interaction between cities.

T able 6.29 CAN-Kingdom Application Architecture Mapping

Architecture Element Existence in the CAN-Kingdom Architecture

List o f Building Blocks The cities

List o f clusters N ot defined

BB interaction diagram Graphical representation o f city interactions

Data distribution map Not defined

Service dictionary Not defined

196

6.4.2.4 The Advanced Networked Systems Architecture (ANSA)

The Advanced Networked Systems Architecture (ANSA) [HERB 91a, b, c], [ANSA 89]

focuses on Information Technology (IT) that spans several domains. The goals o f the

ANSA project are:

• To propose an architecture for networked computer systems,

• To support distributed applications, and

• To promote the acceptance o f the results o f the project as an industry-wide standard.

ANSA is intended to enable integration o f application systems from multiple

vendors by using a distributed application platform that is independent o f

communications, operating systems, and the computer instructions set. It aims at an

architecture which will provide the simplest set o f concepts necessary to build distributed

systems.

The ANSA architecture identifies five viewpoints for distributed processing: an

enterprise model, an information model, a computational model, an engineering model,

and a technology model. The viewpoints are interrelated but emphasize different aspects

o f the system. ANSA’s viewpoints correspond to the essential elements o f MegSDF, and

not to the views o f M egSDF’s conceptual architecture. The enterprise and the information

model can be mapped to the domain model. The ANSA computational model might be

considered as a partial conceptual architecture. The concepts o f the computational model

are on a lower level and closer to technologies. The engineering and technology views can

be mapped to the infrastructure.

197

The ANSA project concentrates on the computational and engineering viewpoints.

These viewpoints are independent o f both the application domain and the technology

trends. Moreover, these viewpoints provide an environment for the specification o f

interfaces between the applications and the hardware and software that support them. The

ANSA computational model identifies the functions (services) that must be available to

programmers and the constraints on program structure necessary to enable distribution.

A federation o f ANSA systems is built from systems, each running multiple

applications. The individual system applications are linked together by a trader and

configuration manager. Federation is achieved by linking together the traders o f the

various systems. The applications are considered as components that provide or utilize

services. A precise specification o f the interactions between components is necessary to

enable independent development. ANSA suggests using an Interface Definition Language

(IDL) for interface specification. Interface specification requires action, data, and property

specification. An action is invoked only through an interface.

According to ANSA, different applications require different types o f distribution

and therefore different types o f transparency mechanisms. On the basis o f this idea, ANSA

provides selective transparency in which a programmer specifies the required transparency

when declaring an interface between applications. ANSA supports access, location,

concurrence, failure, replication, and migration transparency.

198

The Structural View

The individual ANSA applications and systems can be thought o f as components o f the

architecture. There is no definition o f classes o f components, constraints on components,

or guidelines and rules for decomposition into systems and applications.

Table 6.30 ANSA Structural View Mapping

MegSDF View Concept Corresponding ANSA Concept

Component Applications (components), systems

Classes o f components Not defined

Constraints for
components

Not defined

Guidelines and rules for
decomposition

Not defined

The Communication View

The ANSA architecture uses the client-server approach. A trader supports the interaction

between components and their applications. A service is accessible to other applications

only after its server exports an interface reference to the trader. A client can retrieve

interface references from the trader by import operations. A server can export several

interfaces and a client can import a number o f interfaces. The trader enables late binding

and location transparency.

By using the server group concept (see the control view) ANSA also supports

broadcasting. ANSA recommends retransmission and supports error-codes to handle

communication failures.

T a b le 6.31 A N S A C om m u n ica tio n V iew M apping

199

M egSDF View Concept Corresponding ANSA Concept

Communication style Message passing

Communication
primitives

Port-to-port and broadcasting

Constraints for load
balancing

Not defined

Specification o f legal
communication

By Interface reference only

Location transparency
mechanism

Trader and selective transparency

Failure handling policy Retransmitting, error codes

C ontro l View

The ANSA architecture supports fully distributed processing. The components interact

using the client-server model. ANSA supports both synchronous and asynchronous

interaction to ensure maximum concurrency. It specifies operation ordering primitives as

sequential, parallel, or atomic operation; optional invocation o f operations; and operations

tied to external clocks. The attributes o f the invocations are defined in the interfaces for

the operations.

ANSA supports the concept o f server groups. One can define functionally

distributed, coordinated replica, and parallel replica server groups. In a functionally

distributed group, each server performs some part o f the requested service. In a

coordinated replica one server receives the message and performs the required action

while all other servers stand by. In the parallel replica group, all members perform the

200

same service. Each group has a coordinator which accepts requests from clients and

distributes them to the members o f the group.

Table 6.32 ANSA Control View Mapping

M egSDF View Concept Corresponding ANSA Concept

Control approach Fully distributed

Control units Components, servers groups

Invocation approach Client-server

Operation ordering
primitives

Sequencing, serial, optional, clock based, and
parallel operation

The Data View

ANSA suggests using an Interface Definition Language (IDL) as a tool that overcomes

problems rooted in the heterogeneity o f the environment. IDL can be considered as a

meta-data-model. ANSA supports distributed systems with distributed databases. Data is

stored in objects and accessed via interfaces. ANSA does not specify redundancy or

consistency control mechanisms.

Table 6.33 ANSA Data View Mapping

M egSDF View Concept Corresponding ANSA Concept

Meta-data-model Interface Definition Language

Database organization Distributed systems

Transactions primitives Atomic operations

Redundancy and
consistency control

Not specified

201

The Environment View

The only element o f the environment view that ANSA specifies is the inclusion o f security

attributes in the interfaces.

Application Architecture

ANSA is intended to develop a platform to support systems integration o f information

technologies which spans many application domains; Therefore, it does not and cannot

specify an application architecture, which by definition must be domain specific.

6.4.3 Examples o f Projects with Software Architectures

This section describes two architectures that have been defined and used in projects for

the development o f systems o f systems.

6.4.3.1 Ship-2000

Ship-2000 [SS2000a, b] is a project for the development o f a family o f integrated systems

(a generic system o f systems in M egSDF’s terminology). The application domain o f the

Ship-2000 project are naval vessel systems including Naval Command, Control, and

Communication (C3)/Weapon Control Systems.

Understanding the various problems involved in development o f such systems led

the developers to define an architecture for the system. From our viewpoint, Ship-2000

specifies a Mega-System architecture, but the elements o f the conceptual and application

architecture are intermingled and not always clearly distinguished into views. The

202

following describes the role o f a Mega-System Architecture in the Ship-2000 project and

maps the Ship-2000 architecture into our concepts and views.

Conceptual Architecture

Ship-2000 distinguishes between execution and static views o f the system. These views

correspond to the structural and control views in MegSDF.

The Structural View

Ship-2000 systems are built from Computer Software Components (CSC). The CSCs are

organized into a hierarchy of:

• Functional Areas (FA),

• System Function Groups (SFG), and

• System Functions (SF).

The uppermost layer consists o f components called Functional Areas. Each

Functional Area is divided into a number o f intermediate components, called System

Function Groups. The main role o f a System Function Group is project management. It

is similar to the system task in MegSDF. A System Function Group is divided into System

Functions. There are. usually, one to twenty System Functions in a System Function

Group. A System Function corresponds to one or a few programs (which are described in

the control view).

Ship-2000 also specifies another classification o f System Functions based on the

level o f generality o f the components. It includes the following layers:

• Product dependent - for a specific system o f a customer,

• Customer - for one customer for several systems,

203

• Equipment - a specific hardware,

• Ship Systems - special functions for ships,

• Systems Independent - fits other types o f system, and

• Fundamental/base system - distributed computing environment.

To reduce dependency o f Systems Functions, the architecture allows only

downward dependency, i.e., elements may only use services o f a lower level only. Thus,

a Custom er’s System Function can use services o f an Equipment or Ship System Function.

Table 6.34 Ship-2000 Structural View Mapping

M egSDF View Concept Corresponding Ship-2000 Concept

Component Functional Areas (FA), System function groups,
and System Functions (SF)

Classes o f components Generality classification: Product, Customer,
Equipment, etc.

Constraints for
components

Using the generality classification, only downward
dependency is allowed.

Guidelines and rules for
decomposition

Product or functionality based

The Communication View

The hardware components o f Ship-2000 are connected by a Local Area Network (LAN)

which enables different communication approaches. The programs o f Ship-2000 are

connected by Inter Program Communication (IPC). The IPC is supported by Ada runtime

system. OS, and hardware.

204

Messages are sent by procedure call and stored in a queue. A receiver empties its

queues at its own pace. For efficiency, logical names are exchanged for physical names

by a "name server" using a runtime built database where entries are created when

programs register themselves to the network.

IPC provides the following communication primitives:

• M ulticast - Only one message is sent; all receiving programs receive it in parallel. There

is no indication o f how many processors or nodes read the message. Multicast is used for

high volume and conserves the network bandwidth.

• Singlecast - The sender names the receiver.

• Virtual Channel - A safer version o f singlecast. It can be used for long messages. The

virtual channel performs blocking, sequencing, and deblocking.

A fundamental rule reduces communication flow by requiring messages to be

transferred only once. The architecture does not specify what constitutes legal

communication or a communication failure policy.

Table 6.35 Ship-2000 C o m m u n ica tio n V iew M apping

205

MegSDF View Concept Corresponding Ship-2000 Concept

Communication style Message passing using queues

Communication
primitives

Singlecast, broadcast, virtual channel

Constraints for load
balancing

High rate messages are transferred only once

Legal communication Not defined

Location transparency
mechanism

Name server that uses a runtime built database to
substitute logical names with physical addresses

Failure handling policy Not defined

The Control View

Ship-2000 execution view includes Ada programs that communicate by exchanging

messages. A configuration consists o f several nodes. Each node includes several

processors. Each processor can run programs. Programs not linked to special hardware can

migrate. Multiple instances o f a specific program might be installed in the same

configuration.

Programs behave as free-running entities. Each program performs a single task and

is generally single-threaded. Interfacing with the message passing mechanism is

implemented by an Ada generic task called whenever a message arrives. Other tasks are

used inside programs when parallel processing is appropriate.

The architecture also specifies events for reporting abnormal technical states in the

system. Hardware events indicate malfunctions that require repair by a technician and are

206

generated by background on-line test programs. Software events indicate coding or

configuration errors and are not repaired by customer personnel.

The architecture specifies a specific function that starts and reconfigures the

system. When a node starts, a local agent identifies itself to the controlling program. The

controlling program sends the node a list o f programs which are supposed to run on the

node. The agent then loads all programs not already loaded.

The architecture supports both event-driven and periodic processing.

T ab le 6.36 Ship-2000 Control View Mapping

MegSDF View Concept Corresponding Concept in the Architecture

Control approach Fully distributed

Control units Processes, threads

Invocation approach Event driven and periodic loop

Operation ordering
primitives

events, start-up procedures

The Data View

Ship-2000 defines concepts for data handling but these concepts are more application

oriented than the concepts we recommend for the data-view. The project requires that all

data be time-stamped as early as possible. It defines essential data components and

constraints for handling them. These concepts can be considered as a meta-data-model.

The essential data components in the system includes:

• Sensors (tracking data),

• Altitude,

207

• Own Ship Position and velocity, and

• History Recording.

The architecture does not specify either transaction primitives or redundancy and

consistency mechanisms.

T able 6.37 Ship-2000 Data View Mapping

M egSDF View Concept Corresponding Ship-2000 Concept

A meta-data-model Essential elements definitions and their handling

Data organization Distributed data

Transactions primitives Not defined

Redundancy and
consistency control

Not defined

The E nv ironm ent View

Ship-2000 defines concepts that corresponds to the user-interfacing and special purpose

hardware elements o f M egSDF's environment view. For user interfacing, Ship-2000 uses

a Man Machine Interface (MMI) function to provide maximum flexibility for users,

especially in environments with different customers and varying levels o f expertise. The

MMI manager defines a set o f MMI objects. Operators can define any form o f

representation based on the defined MMI objects. The MMI is used to isolate the

application from representation details.

The architecture specifies the following interfacing primitives:

• Graphics - to draw complex graphical objects.

• Text - to present and accept new values from operators.

• Alerts - to inform operators that something has happened that merits attention.

208

• Softkeys - keys drawn on a touch sensitive display device.

• Menus - to organize softkeys.

Ship-2000 is intended for real-time embedded systems. Accordingly, it specifies

special purpose hardware concepts. The nodes o f the system are synchronized within an

accuracy o f one millisecond ensured by special hardware and software. To minimize

complexity and enable reuse, a common internal representation o f sensor data,

independent o f sensor particulars, is used. The project also specifies rules for handling

sensor data.

Table 6.38 Ship-2000 Environment View Mapping

MegSDF View Concept Corresponding Ship-2000 Concept

Common user interface -
presentation

Softkeys approach, flexible interfaces

Common user interface -
interaction

MMI with set o f interaction primitives

Special purpose
hardware and external
systems interfaces

Sensor handling
Synchronization o f the systems with 1 millisecond
accuracy

Security in the system Not defined

Application Architecture

Ship-2000 does not distinguish between a conceptual and an application architecture, but

it is possible to identify elements o f an application architecture. The project specifies the

actual functional areas (FA), the system function groups (SFG), and System Functions

(SF). The functional areas include:

209

- Command, Control and Communication (C3),

- Weapon/Director,

- Fundamentals, and

- Man Machine Interface (MMI).

These functional areas roughly correspond to the cluster concept o f MegSDF. There are

about 30 SFG’s and 200 SF’s [SS2000a, b]. The documentation o f the project includes

general diagrams for building block interaction. The project does not specify data

distribution or a service dictionary.

Table 6.39 Ship-2000 Application Architecture Mapping

M egSDF Element Corresponding Ship-2000 Element

List o f Building Blocks Systems Functions

Clusters o f BB The list o f the Functional areas

BB interaction Diagram General interaction diagram

Data distribution map Not defined

Service Dictionary Not defined

6.4.3.2 ESF - FSE Reference architecture

The Eureka Software Factory (ESF) [ESF 89], [ESF 90], [SCHA 90], [HUBE 90],

[ADOM 92] is an ongoing project intended for industrial software production using

software factories. In ESF, a Factory Support Environment (FSE) must be able to be

configured for specific industries and to evolve with technological innovation. To enable

such customization and evolution the ESF uses the ESF-FSE reference architecture which

is, in MegSDF terminology, a conceptual architecture for systems o f systems.

210

The goal o f the ESF - FSE architecture is to define requirements that must be met

by every instance o f the ESF. It consists o f the ESF standards and the structure which

inter-relates these standards. The reference model addresses multiple platforms, market

fragmentation, and the need to adapt the systems to various customers. The architecture

is a reference model for Factory Support Environments. The application domain for the

ESF project is Integrated Computer Aided Software Engineering (CASE) Systems.

ESF 's architecture is based on a minimal kernel with "plugable" extensions. It is

a communication-oriented architecture with service-oriented building blocks.

The Conceptual Architecture

The FSE architecture is defined using structural, user, and process views. These

correspond to the structural, environment, and (to some extent) the control view o f the

conceptual architecture recommended by MegSDF.

The Structural View

An FSE consists o f a set o f components connected to a Software Bus (SWB). There are

two types o f components: Service Components (SCs) and User Interface Components

(UIC). Service components, typically, do not have a user interface. Figure 6.9 illustrates

the FSE architecture. An FSE consists o f a set o f tools which are dynamically established

and configured through bindings between user interaction components and sets o f service

components.

The ESF project recommends including a minimal kernel o f services required by

other components. Service Components w'hich implement a functionality o f the minimal

kernel mechanisms are called kernel components. The kernel components can be replaced

211

by other components that provide the same services using different algorithms or

languages.

User
interaction
component

User
interaction
component

User
interaction
component

User
Interaction
component

Software Bus

'ig u re 6.9 The Structural View o f the ESF Architecture
(copied from ESF - Project Overview 1990 [ESF 90])

The components and the tools correspond to the component types o f the MegSDF

structural view. The Service, User Interface, and kernel components correspond to

component classes.

Any component can be decomposed into sub-components, which can be integrated

by such mechanisms as a common database or communication channel. The reference

architecture, however, is not concerned with integration within sub-components.

A service component generally consists o f two parts: functionality and a storage

system. The storage system can be an Object Management System (OMS), file system, or

traditional database. The capabilities o f a service component are defined in its interface.

212

The ESF project proposes specifying a minimal set o f capabilities every component must

provide, e.g., help mechanisms.

A user interaction component presents information to users and provides editing

capabilities. This component also includes code for user interaction logic.

The software bus requires a formal description o f components. These descriptions,

expressed using the a Component Definition Language (ESF-CDL), include the

imported/exported capabilities, transfer syntax, control exchange primitives, and

requirements on the actual technical platform. The use o f kernel services is not specified

in the descriptions.

Conformance criteria for ESF components, corresponding to MegSDF constraints

on components, include:

• Use o f the Softw are Bus (SWB) primitives for all inter-component communication

• Specification o f interfaces using the ESF-CDL.

• Minimal set o f capabilities required to be present in every component.

The ESF does not specify rules for decomposition into components (tools).

213

Table 6.40 E S F S tructu ral V iew M app ing

MegSDF View Concept Corresponding ESF Architecture Concept

Component Components, tools

Classes o f components Service, user interaction, kernel

Constraints for
components

Use SWB primitives, specified by the ESF-CDL;
Have the required minimal capabilities

Guidelines and rules for
decomposition

Not defined

The Communication View

The ESF architecture is communication oriented. Integration o f components is done by

a software bus, not by a common database. The software bus is an abstract communication

channel. It hides distribution aspects and allows the exchange o f data without loss o f

structural and conceptual information. It supports the components with inter-operations

and integration.

The software bus provides two principle services that hide distribution and

heterogeneity:

• The plug-in mechanism - for static or dynamic binding o f clients to services, and

• A communication mechanism - for exchanging control and data

ESF proposes specifying new standardized transfer syntaxes, as well as

standardized means for describing new transfer syntaxes and standardized protocols. ESF

does not specify communication primitives, constraints for load balancing, or failure

handling policy.

Table 6.41 E S F C o m m u n ica tio n V iew M apping

214

MegSDF View Concept Corresponding ESF Architecture Concept

Communication style Message passing by the SoftWare Bus (SWB)

Communication
primitives

Static and dynamic binding

Constraints for load
balancing

Not defined

Specification o f legal
communication

Not defined

Location transparency
mechanism

By the SWB based on the plug-in and the
communication mechanism

Failure handling policy Not defined

The Control View

The process view o f the ESF-FSE architecture includes concepts corresponding to

concepts o f the MegSDF control view. One o f the essential features o f the FSE is the

programmable environment. This is supported by a kernel service component called the

Factory Process Engine (FPE).

The Factory Process Engine uses process models to customize the FSE according

to customer requirements. These models are described as process programs using a special

Process Programming Language (PPL). A process program links organization structures,

development methods, and tools suitable for supporting the various tasks o f the

developers. The Component o f the Factory Process Engine controls the operations o f the

other components within the ESF.

215

Table 6 .42 E SF C ontro l V iew M apping

M egSDF View Concept Corresponding ESF Architecture Concept

Control approach Distributed with a centralized control by the
Factory Process Engine

Control units Components

Invocation approach Not specified

Operation ordering
primitives

The process programs

The Data View

ESF defines a framework that allows different database systems to be accessed through

common Data Definition and Data Access languages. ESF also specifies essential

requirements on database systems for software engineering. The other concepts o f the data

view are not defined.

Table 6.43 ESF Data View Mapping

MegSDF View Concept Corresponding ESF Architecture Concept

A meta-data-model Data Definition language and Data Access language
Essential requirements on database systems for
software engineering

Database organization Not defined

Specifications o f
transactions primitives

Not defined

Redundancy and
consistency control

Not defined

216

The environment view

ESF mainly addresses the user interaction part o f the MegSDF environment view. It

specifies a simple paradigm for describing user interaction in the complex environment

o f a software factory. ESF also developed a prototype for a view server whose task is to

synchronize multiple views on shared structures. ESF does not specify a common user

interface, but it does specify a conceptual model for the user view o f the ESF-FSE

Reference Architecture using ER notation. The model includes organization, role, person,

tasks, tools, etc., as entities, and their relationships. The process engines can be considered

as tools that provide security mechanisms.

Table 6.44 ESF Environment View Mapping

View Concept Corresponding Concept in the Architecture

Common user interface -
presentation

Not defined

Common user interface -
interaction

Conceptual model for user environment;
view server

Special purpose
hardware and external
systems interfaces

Not defined

Security in the system Provided by the process engines

Application Architecture

ESF does not define an application architecture. However it does recommend defining an

instance o f the FSE by using the structural, user, and process views. Tools can be specified

by interconnecting user interaction components with a set o f service components. A

particular user view consists o f all tools and information available to that user.

217

6.4.4 Classification and Comparison of Existing Architectures

This section summarizes the discussion in the previous sections by comparing the various

architectures based on the concepts o f Mega-System Architecture defined in section 6.2.

Table 6.45 compares architectures for systems; Table 6.46 compares architectures for

Mega-systems; Table 6.47 compares architectures for Mega-Systems that have been used

in development efforts.

Each architecture is classified according to its application domain, the kind o f

system it is intended for, and the type o f architecture (conceptual, application, etc). The

tables map the concepts o f each architecture to the views o f the conceptual architecture

and the elements o f the application architecture.

218

Table 6.45 S ystem s A rch itectu res

Application Machine Best’s Architecture

Domain Any domain
used in automobiles systems

Data-Processing

Type o f
systems

Systems Large scale systems

Classification
as an

Architecture

Conceptual Conceptual

Structural
view

POPs Super-structure with drivers
and procedures that provide
specific functionality

Communi
cation View

Memory sharing Memory sharing (databases)

Control View Centralized approach
(Application Program)

Autonomous functions

Data View Not defined Fits both centralized and
distributed databases

Environment
View

Sensors circuits Electronic desks
A security package

Application
Architecture

Reusable library o f POPs A generic architecture

Remarks The architecture is function
or processing oriented

219

T a b le 6 .46 M ega-S ystem A rch itec tu res

The OSCA
architecture

Network of
Application
Machines

CAN-
Kingdom

ANSA

Domain Data-
Processing

Any domain
(used for
vehicle
systems)

Stationary or
mobile machine
systems

Information
technologies

Type of Systems Systems of
systems

Generic
systems of
systems

Systems of
systems

Systems of
Systems

Classification as
an Architecture

Conceptual Conceptual Conceptual Conceptual

Structural view Data,
functional, and
user interface
building blocks

Application
machines are
the building
blocks

Cities with a
Capitol like a
kingdom

Systems and
applications -
components

Communication
View

By contracts
based on infra
structure
services

Client-server is
a possible
implementation

Message
passing

Message
passing and a
trader

Control View Fully
distributed with
Autonomous
building blocks

A router
controls the
global
operation

The Capitol
governs all
cities

Fully
distributed

Data View Specifies how
to handle
corporate data

Common
database

Only detailed
structure for
messages

Interface
Definition
Language

Environment
View

User view +
External
systems

Some
definitions for
hardware

Not defined Not defined

Application
Architecture

No explicit Based on the
POPs concepts

Allocation of
functions to
cities

Not defined

Remarks It is a detailed
conceptual
Architecture

Supports a kind
of application
architecture

Communica
tion based
architecture

Supported by
an infra
structure

220

Table 6.47 P ro jects tha t U se A rch itec tu res

Ship-2000 ESF

Domain Naval - Military vessels Integrated Computer Aided
Software Engineering
(ICASE)

Type of
Systems

Generic System o f systems Generic Systems o f systems

Classification
as an
Architecture

Mega-System architecture
with elements o f conceptual
and application architecture

Conceptual architecture for a
specific application domain

Structural
view

Programs
Functional Areas
System Functions Groups
System Functions

Services and user interaction
components interconnected
by the Software Bus

Communi
cation View

Message passing using
queues based on Inter
Program Communication

Software Bus

Control View Fully distributed Process Engine

Data View Identification o f essential data
components and definition of
their handling

Some standards for databases
for ICASE

Application
Architecture

A list o f the FAs, SFGs and
the various System Functions

No specification o f an
Application Architecture.
Instances are formed by
specifying the components
used in the FSE

Remarks The project does not
explicitly distinguish between
the conceptual and
application architecture

The architecture is
communication oriented
(unlike previous systems in
the same domain that used a
common database)

CHAPTER 7

INFRASTRUCTURE ACQUISITION IN MegSDF

The infrastructure acquisition task is responsible for choosing, developing or purchasing,

validating, and supporting an infrastructure that integrates the enabling technologies into

a unified platform. MegSDF recommends the infrastructure be common to all systems

developed in a domain. The infrastructure must address problems caused by the

heterogeneous environments in which the systems operate and enable the incorporation

o f rapidly evolving technologies into the Mega-System. MegSDF recommends (re)using

existing infrastructures instead o f developing the infrastructure from scratch.

The process o f infrastructure acquisition must specify an infrastructure m odel that

defines the services o f the infrastructure on the basis o f the conceptual architecture. For

manageability, we recommend dividing infrastructure functionalities into service groups

corresponding to the views o f the conceptual architecture and an additional group o f

domain specific services.

Infrastructure acquisition is a continuous task. It must consider both changes in the

conceptual architecture and evolution o f technologies to ensure the effectiveness o f the

system.

This chapter describes the infrastructure acquisition task. Section 7.1 describes the

role o f infrastructure acquisition in MegSDF and its required characteristics. Section 7.2

describes the underlying concepts for an infrastructure. Section 7.3 defines the process o f

221

222

infrastructure acquisition. Examples o f existing infrastructures are described in section

7.4.

7.1 Requirements for Infrastructure Acquisition

7.1.1 The Role o f Infrastructure Acquisition

MegSDF recommends the infrastructure acquisition task as one o f the activities on the

Mega-System level. This task is responsible for providing an effective and operative

environment that integrates all enabling technologies that support the operation and

facilitate the development o f a Mega-System. This section describes the role o f the

infrastructure in the MegSDF framework.

Infrastructure acquisition addresses the difficulties in software development

described in chapter 1, focusing mainly on technology aspects. It addresses: problems

caused by the existence o f different technologies in heterogeneous and not always

standardized environments; the need to bridge different technologies; and the necessity

o f incorporating over time new and emerging technologies into existing systems. These

difficulties are listed below as an inverted sub-table o f the problem list (table 1.1).

Systems operate in environments that consist o f several technologies, e.g.,

communication, database management system, user interface, etc. Mega-Systems,

typically, operate in heterogeneous environments that may include several types o f

communications, a number o f database management-systems, different tools for user

223

interfacing, etc. Thus, the infrastructure must support the coexistence o f various

technologies, and bridge and resolve the differences among them.

Table 7.1 Difficulties and Problems Addressed by the Infrastructure

Difficulties Caused By Aspect Problems

Heterogeneous
environment

More than one
system

Technology There is a need
to bridge the

Each development group
has to struggle
independently with
Heterogeneity and
dynamic environments

More than one
developer

various
technologies and
efficiently
incorporate
emerging
technologies as a
common
domain-wide
solution

Bridging different
technologies and
incorporation o f new
technologies is required

Heterogeneous
environment

Customization to user
environment

More than one
customer

Dynamic environment
requires incorporation o f
new technologies

Longer life cycle

Technologies emerge and evolve rapidly. Since Mega-Systems have long life

cycles, these technologies must be incorporated to ensure effectiveness. Infrastructure

acquisition must evaluate new technologies and efficiently incorporate them into the

existing infrastructure.

An infrastructure standardizes the way in which different technologies are used in

a domain. It is acquired as a common, unique solution for bridging and handling

technologies for the constituent systems. It is intended to provide complex, compound

services and commonly needed functionalities for the domain applications that cannot be

224

found in typical operating systems, communication tools, or database management

systems. The infrastructure also promotes portability o f systems.

The infrastructure is used by the various developers o f systems in the domain. As

a common solution it reduces the effort required to deal with technologies, in contrast to

solutions where every group develops its own limited solution. It enhances the uniformity

and integratability o f the systems.

In MegSDF, the infrastructure serves as a platform o f unified services primarily

during the implementation phases o f the various systems tasks (projects). The

infrastructure acquisition process uses the conceptual architecture as its main input,

implementing the concepts specified in the conceptual architecture and supporting

transparency. The conceptual architecture is the bridge between the infrastructure and the

domain. It represents the domain needs to the infrastructure. Feedback from the

infrastructure acquisition task is used to improve the conceptual architecture. Existing

infrastructures and projected technologies are used as inputs for the Mega-System

Architecture design task and guarantee the conceptual architecture will be feasible. In this

role the infrastructure represents the technology aspects. The relationship o f the

infrastructure to the other elements o f MegSDF is illustrated in Figure 7.1.

It is important to differentiate between M egSDF’s infrastructure and the type o f

infrastructure that is proposed as part o f domain analysis for reuse [ARAN 91]. M egSDF’s

infrastructure integrates enabling technologies that support the operation and facilitate the

implementation o f the Mega-Systems into a common solution used by all developers o f

the Mega-System. It may include communication, database, user interfaces and CASE

225

tools. The infrastructure as recommended in [ARAN 91] is solely to support the reuse

process, i.e., facilitate classification, storage, and retrieval o f reusable components. Thus,

the infrastructure for reuse might be one of the CASE tools integrated into M egSDF’s

infrastructure.

Mega-System Tasks System Tasks

Infrastructure
Im plem entation

Requirem ent
Specification

D esig n

 ► Major
 ♦ Som e
 t Minimal

Figure 7.1 Relation o f Infrastructure to other MegSDF Components

Though MegSDF infrastructure serves as a common basis for implementation o f

Mega-Systems in the domain, we recommend that the infrastructure not be developed by

the developers as part o f MegSDF process itself. An infrastructure really belongs to the

technology aspect and should be developed by technology developers as an integrated set

226

o f tools that can be used for different application domains. The M ega-System’s developers

should focus on developing the application, not developing technology.

7.1.2 Requirements for an Infrastructure

An infrastructure integrates enabling technologies for the development and execution o f

Mega-Systems in a domain. Its goal is to ensure that the systems developed in the

infrastructure environment are open, in the sense that they are integratable, extendable and

scalable.

To provide these characteristics an infrastructure should meet domain needs and

be:

• Open,

• Service preservative,

• Reliable,

• Efficient, and

• Easy to use.

The infrastructure must meet the domain needs. Although using the same

infrastructure in different domains is possible, the infrastructure must support the

necessities o f the domain represented by the conceptual architecture (see also section

6.2.2). The infrastructure should also include domain specific utilities and tools used by

systems in the domain and not supported by an enabling technology. The process engine

o f ESF [ESF 90] for the CASE domain, and special indexing mechanisms in the library

domain, are examples o f such tools and utilities.

227

The infrastructure must also be open in the sense that it can incorporate new

technologies to the infrastructure simply and with minimal effort. It should also be easy

to integrate the infrastructure with other infrastructures or expand the infrastructure to

other hardware platforms.

An infrastructure should be service preservative. This means that new versions o f

the infrastructure must support services that were provided by earlier versions. This is

important since it would be inefficient to modify all systems whenever the infrastructure

wras changed (see also [OSCA 92]).

Since the infrastructure is an active part of the Mega-System and enables the

operation o f the systems in the domain it must be reliable. A failure o f the infrastructure

degrades the operation and limits the availability o f the entire Mega-System. The

infrastructure should provide services that will ensure that the system will remain

consistent and secure, e.g., atomic operations (transactions) and mechanisms for protecting

resources and information.

The infrastructure must execute efficiently to compensate for the negative effects

o f using the infrastructure services instead o f local programming solutions. Thus,

additional execution time and memory space required for using the infrastructure at

operation time should be minimal.

Since the infrastructure is used by developers located in different sites, it should

be easy to use, simple to understand, and well documented. The infrastructure should also

save development efforts in the implementation phases. It must be supported by

development and debugging tools that improve developer’s transparency and productivity.

228

We recommend that the infrastructure be implemented according to the conceptual

architecture and by using the infrastructure services in a bootstrapping fashion. For

example, a distributed database should use the communication channel o f the

infrastructure. The communication channel, on the other hand, will use the concepts o f the

data view. This helps ensure system uniformity and avoids conflicts that would be caused

by implementing multiple solutions.

7.2 An Infrastructure

7.2.1 MegSDF Infrastructure

The infrastructure in MegSDF implements the conceptual architecture specified by the

Mega-System Architecture task. While the conceptual architecture defines strategies and

concepts for implementation and is technology independent, the infrastructure integrates

the various technologies that implement and support these concepts.

We recommend implementing the infrastructure by a service-based approach, that

is. the infrastructure is defined as a set o f services where each service corresponds to a

capability o f the infrastructure that provides common, business independent functionality

(as defined by OSCA [OSCA 92]) for the systems developed in the domain, e.g., message

transfer and window presentation. It is important to distinguish between operating system

services and infrastructure. The functionalities o f the infrastructure services are more

229

sophisticated than those provided by typical operating systems [NIST 91]. An operating

system service is usually seen through the "filter" o f the infrastructure.

A concept of the conceptual architecture might be implemented by several services

and a service might support several concepts. Services will be used by the programmers

and provide the means for implementing systems according to the conceptual architecture.

The services form a layer between programs and actual technologies, abstracting

implementation details. This layer makes it possible to port the systems and to use the

same software with different environments and platforms, provided the services are

supported by the environment. Under a service based approach, the infrastructure can be

extended simply by adding new services. Furthermore, infrastructures can be integrated

by mapping between the services o f the infrastructures and using adaptors when required.

We identify three types o f infrastructure services:

• Application Services - Services that are used by the programmers within the application

to perform required functionality, e.g., message passing, and presentation o f a window.

• Background and Administration services - Services that support the operation o f the

system but are not used by the programmers within their applications. These services

might monitor, control, and be an active part o f the operation o f the system. Examples are

administration services, services that support the consistency and integrity o f the systems,

or services that measure communication load.

• Tools services - Services provided by CASE tools to support the development o f systems

according to the conceptual architecture. Examples o f tool services are compilers that

provide developer's transparency, design tools that suggest design constructs, e.g.,

230

communication primitives, or analysis tools that support a strategy for decomposition o f

systems.

A concept might be supported by all types o f services or be implemented as an

application or background service depending on the implementation strategy and the

relation between the CASE-tools and the infrastructure. For example, a trader might be

implemented as a background service and be used implicitly by all programs for inter

communication; or it could be implemented as an application service where programs

explicitly declare the services they provide or want to use and obtain interface references

from a trader in order to communicate.

The definition o f the infrastructure should include a mapping between the concepts

in the various views o f the conceptual architecture and the services o f the infrastructure.

This mapping can be considered as a model of the infrastructure.

The services themselves are implemented by various technologies. Therefore, we

propose that the infrastructure definition also includes a mapping between services and

enabling technologies. One approach is to realize the services o f the infrastructure as a

library o f subroutines. Programmers invoke these services by subroutine calls within their

programs. An alternative approach is to develop a language that includes all services as

built-in primitives. We recommend using the first approach since it does not restrict the

use o f the infrastructure to one language and is more extendable.

The selection o f an appropriate infrastructure should be based on international or

commercial standards, e.g., ISO/OSI [ROSE 89], SAA [MART 91], etc. The use o f

standards reduces wasted effort in developing solutions that already exist; improves the

231

extendibility o f the system; guarantees the support o f these products; and improves the

competitiveness o f the Mega-System.

7.2.2 An Infrastructure Model

Our model o f an infrastructure is based on the outline for a conceptual architecture in

chapter 6.2. We group related services into service groups corresponding to the views o f

the conceptual architecture: structural, communication, control, data, and environment

service groups. We add a domain dependent service group for services that do not fit any

o f the preceding categories. Our model is limited in scope and provides a check list. The

crucial point is that the infrastructure model should correspond to the conceptual

architecture.

7.2.2.1 The Structural Service Group

The structural view o f the conceptual architecture in section 6.2.2.1 defines component

types and classes, constraints for components, and a guideline for decomposition. The

infrastructure can support these concepts by application, background, and tool services.

Tool services can facilitate defining components using templates and pre-compilers, as

done by ANSA ware4 [ANSA 92a], [ANSA 92b]. The other concepts are design guidelines

and do not require support by application services. However, it is possible to support these

concepts either by tool services that statically enforce constraints for the component, or

by background services that dynamically enforce constraints. The structural service group

4 ANSAware is a trademark o f Architecture Project Management

232

should also include registration and configuration management services for the

components. Table 7.2 maps the structural view concepts into the corresponding services.

T able 7.2 Mapping o f the Structural View Concepts into Services

Concept Service

Definition o f component
types

Support o f the various components, e.g.,
templates and pre-compilers;
Registration and configuration management

Specifications o f classes o f
elements

Design constructs in design tools

Specifications o f constraints
for components

Dynamic or static verification mechanisms in
design tools and background services

Guidelines and rules for
decomposition of an
application into components

Verification mechanisms in design and analysis
tools and background services

7.2.2.2 The Communication Sendee Group

The communication view o f the conceptual architecture, specified in section 6.2.2.2,

defines communication style, communication primitives, constraints for load balancing,

specifications o f legal communication, a location transparency mechanism, and

communication failure handling. The services provided by the communication view

depend on the actual communication style. Different types o f message passing services

will support the communication primitives, enable interconnections o f elements, and

realize the communication failure policy as application services. These services can be

supported by background services, e.g., the trader o f ANSAware [ANSA 92a] that

provides location transparency services. The communication view concepts can also be

233

supported by tools that provide design constructs and static verification mechanisms.

Table 7.3 maps the communication view concepts into the corresponding services.

Table 7.3 Mapping o f the Communication View Concepts into Services

Concept Service

Communication primitives Message passing, e.g., broadcasting, virtual
channels by application and background
services;
design constructs in tools.

Constraints for load
balancing

Policy enforcement;
capacity measurement.

Specification o f legal
communication

Verification services by tools and background
services, e.g., traders

Specification o f a location
transparency mechanism

Location transparency mechanisms, e.g., logical
to physical address trading, etc., by background
services

Communication failure
handling policy

Message passing services that implement
time out, error corrections, etc.

7.2.2.3 The Control Group

The control view o f the conceptual architecture, specified in section 6.2.2.3, defines the

control approach, the control units, the invocation approach, and operation ordering

primitives. The infrastructure should support the control and invocation approaches with

its services. It should support the various types o f control units, e.g., threads, processes,

clusters, and operation ordering primitives, e.g., atomic operations and clocked operations,

by application services. For example, the ANSAware supports processes provides a

special coroutine package for operating systems that do not have multi-processing [ANSA

92a], [ANSA 92b]. These concepts can also be supported by tool services that include

234

threads and processes, synchronous and asynchronous invocation, and events as design

constructs. Table 7.4 maps the control view concepts into their corresponding services.

Table 7.4 Mapping o f the Control View Concepts into Services

Concept Service

Control units Support creation, suspension, termination, etc.
for threads, processes and clusters

Invocation approach Support for synchronous and asynchronous
processing

Operation ordering
primitives

Atomic operations, clocked-operations, etc.

7.2.2.4 The Data Service Group

The data view o f the conceptual architecture, specified in section 6.2.2.4, defines a meta

data-model, specification o f transaction primitives, and redundancy and consistency

control. The infrastructure should support the meta-data model by providing interfaces to

and from the meta-data model by both application and CASE tools services. It should also

support schemas definition. The infrastructure should support the organization o f the data,

i.e.. a common or distributed database, by providing appropriate services, e.g., servers for

distribution, and common database services, e.g., recovery, backups, on-line queries, data

compression, encryption, etc. The infrastructure can support atomic transactions by both

application and background services, e.g., recovery mechanisms. It can also provide

background replication management services. Table 7.5 maps data view concepts into

their corresponding services.

Table 7.5 M apping o f the D ata V iew C oncepts in to Serv ices

235

Concept Service

A meta-data-model Interfacing services, schemas definitions

Organization o f the database Distributed transaction handlers, backup, on-line
query, etc.

Specifications o f
transactions primitives

Atomic transaction

Redundancy and consistency
control

Replication management, recovery mechanisms

7.2.2.5 The Environment Service Group

The environment view o f the conceptual architecture, specified in section 6.2.2.5, defines

a common user interface, special purpose hardware and other systems interfaces, and a

security strategy. Accordingly, the infrastructure must support user interfacing by

providing presentation and interaction services, e.g., multi-windows, pulldowns, soft-keys,

alarms, scroll-bars, emphasis, selection by cursor, typing letters, or mnemonics, mouse,

interaction, etc., as suggested by SAA [MART 91]. Interfacing with hardware and other

software systems might be supported by encapsulating services that translate external

interactions to interactions supported by the system as suggested by [OSCA 92]. The

infrastructure should support the security strategy by providing tools to define security

privileges for users. It must also provide services for security enforcement as suggested

by [NIST 91] and re-authentication o f the user and the invoking building blocks for

restricted services as suggested by [OSCA 92]. Table 7.6 maps the environment concepts

into the corresponding infrastructure services.

Table 7.6 M apping o f the E n v iro n m en t V iew C oncep ts to S erv ices

236

Concept Service

User interfacing presentation
and interaction

Multi-windows, pulldowns, soft-keys, alarms,
scroll-bars, emphasis, selection by cursor, typing
letters, or mnemonics, mouse, interaction, etc

Strategy for special purpose
hardware and external
systems interfaces

Special hardware interfacing services, and
encapsulating services for interaction with
external systems

Strategy to ensure security in
the system

Tools to define security privilege and services
for security enforcement, and re-authentication

7.2.2.6 Domain Specific Service Group

This group does not correspond to a specific view o f the conceptual architecture. We

suggest including in this group services that are domain specific and do not fall into any

o f the categories of the previous groups, e.g., the process engine services o f the ESF [ESF

90] which support the various tools o f the Factory Support Environment. This group might

include application, background, and CASE-tools services.

7.3 The Infrastructure Acquisition Process

The infrastructure acquisition process is defined using the format introduced in section

4.1.

237

7.3.1 Purpose

The purpose o f the infrastructure acquisition process is to choose, develop or purchase,

validate, and maintain an infrastructure for the Mega-System.

7.3.2 Interfaces

Inputs

• Conceptual Architecture - The conceptual architecture, defined in section 6.2.2.

• Existing infrastructures and projected technologies - Infrastructures that integrate extant

enabling technologies and which are expected to facilitate integrating prospective

technologies.

• Customers/users requirements - Requirements o f the customers/users for the systems.

• Feedback - Engineering information from the system tasks (projects) and the Mega-

System synthesis tasks, including recommendations for improvements and corrections to

the current infrastructure.

Control Input

• M anagement Control - The schedule to the task assigned by the meta-management task.

Circumstance Inputs

• In te rn a tio n a l and com m erc ia l s tandards - S tan d ard s d ev e lo p ed by

international/commercial organizations to uniformize systems and tools used for their

implementation.

Outputs

• Infrastructure - The chosen infrastructure o f the domain, described in section 7.2.

238

• Feedback - Feedback from the task to the Mega-System architecture design task and the

meta-management task.

7.3.3 Processing

A model o f the infrastructure, consisting o f groups and the necessary services, based on

the conceptual architecture, is first defined. Existing infrastructures and projected

technologies are then evaluated. I f an appropriate infrastructure is found, it is

recommended as the chosen infrastructure. Otherwise, either an existing infrastructure is

used as a base and additional services are developed and integrated to it, or a new

infrastructure is developed. The chosen infrastructure must be verified and validated

against the model and the conceptual architecture to ensure it provides the required

services. Figure 7.2 illustrates the infrastructure acquisition process.

7.3.4 Timing

Infrastructure acquisition and adaptation is an ongoing process which must be active as

long as the Mega-System is developed and maintained. Domains evolve over time and

new technologies emerge, so, it is necessary to consider both changes in the conceptual

architecture and new' technologies to maintain the effectiveness o f the infrastructure.

Based on these changes, appropriate technologies should be incorporated to the

infrastructure.

239

i Management Control . International &
■ | Commercial standards

Conceptual
Architecture FeedbackInfrastructure Model

Existing
Infrastructuresfi
Projected
Technologies

Customers
Requirements

Infrastructure
Developed
Infrastructure

Feedback

Select an
Infrastructure

Specification
for an
Infrastructure

Verify&
Validate

Purchase/
Modify/
Develop
Infrastructure

Specify
Infrastructure
Model

Figure 7.2 The Infrastructure Acquisition Process

7.4 Examples of Existing Infrastructures

This section discusses an infrastructure model and examples o f existing infrastructures.

M ost the existing infrastructures implement only a limited set o f services, belonging to

some o f the groups we specified in the outline o f an infrastructure model. These

240

infrastructures are general and can be used for different application domains. We discuss

the infrastructures with an emphasis on elements related to MegSDF.

7.4.1 The NIST Reference Model

The Reference Model for Frameworks o f Software Engineering Environments was

developed by the National Institute o f Standards and Technology (NIST) and the

European Computer Manufactures Association (ECMA) [NIST 91]. It is intended to

provide a reference model for describing Software Engineering Environment (SEE) and

for comparing Existing SEEs or components o f SEEs. The model includes only

specifications, not implementations.

7.4.1.1 NIST’s Reference Model Concepts

In the NIST model, a SEE consists o f several tools for developing software and a

framework to support these tools. Tools are used by software engineers in different phases

o f the life cycle o f systems. A framework, according to the NIST model, consists o f a

fixed set o f infrastructure capabilities which provide support for objects, processes, and

user interfaces, and facilitates the developing tools. The framework can also facilitate

porting software development environments across a variety o f hardware configurations

and operating systems. The SEE tools use services o f the framework and other tools.

Framework components can use services provided by other components o f the framework.

The framework is divided into functional elements called services. Interrelated

services are grouped as following:

241

• Object Management includes the definition, storage, maintenance, management and

access o f object entities and the relationships among them, e.g., data transaction, archive

and backup services.

• Process Management supports the definition of a process model for the development life

cycle, enactment of a process, control and resource management, e.g., process definition,

process enactment services.

• Communication Services provide a standard communication mechanism which can be

used for inter-tool and inter-service communication, e.g., message passing.

• User Interface Services support the interaction o f the users with the various tools, e.g.,

sessions, application interfaces, user assistance services.

• Tool services that support tools by additional functionality, e.g., editing, compiling,

testing, analyzing.

• Policy enforcement services that support security, integrity monitoring, and

configuration management.

• Framework administration and configuration management services that support

management o f the SEE and self-configuration-control.

[NIST 91] includes a detailed list o f services. Each service is defined for different

dimensions, e.g., conceptual, operations, rules. Figure 7.3 illustrates the reference

architecture and its various parts and service groups.

242

Tool Slots
Object Management Sendees^ 7

✓ ^Process Managamant Services

X " User Interface Services

+ Policy Enforcem ent Services
+ Framework Administration and

Configuration M anagem ent
Communication Service

Figure 7.3 The NIST Reference Model (Copied from [NIST 91])

7.4.1.2 Mapping NIST’s Reference Model to MegSDF Concepts

Software Engineering Environments (SEE) integrate tools that support the development

life cycle and are used by heterogeneous groups o f users. In MegSDF terminology, SEEs

are Mega-Systems o f the systems o f systems kind. The N IST’s reference model can be

considered as a model for the infrastructure for these Mega-Systems. Thus, from our

viewpoint, the NIST Reference model is a comprehensive model o f an infrastructure that

can be used for various domains. The NIST reference model seems to have been

developed as a post-facto attempt to standardize existing SEEs rather than as a domain

model.

243

The object management and communication service groups correspond to the data

and communication service groups o f MegSDF. The user interface service group

corresponds to the user interface part o f the MegSDF environment service group. The

process management, policy enforcement, and tool service groups are domain dependent.

N IST’s model does not explicitly specify a group o f control services. However, parts o f

the object and process management service groups provide services that belong to the

control group, e.g., atomic transactions and process enactment. The N IST’s Model does

not explicitly specify structural services. However, the Framework Administration does

provide services that can be considered as structural services, e.g., tool and resource

registration. Table 7.7 compares N IST’s Reference Model service groups to MegSDF

groups.

Table 7.7 Comparison o f MegSDF Views and NIST Service Groups

MegSDF Service Group NIST Service Groups

Structure Framework Administration and
Configuration

Communication Communication

Control Parts o f Object Management, e.g., data
transactions and parts o f Process
Management, e.g., process enactment

Data Object Management

Environment User Interface

Domain Specific and development
tools

Process Management
Policy Enforcement
Tool Services

244

7.4.2 ANSAware

This section describes ANSAware [ANSA 92a], [ANSA 92b] which, in MegSDF

terminology, is an infrastructure that implements only part o f the ANSA architecture (see

section 6.4.2.4) focusing on the ANSA engineering and computational views. ANSAware

supports multi-vendor environments.

7.4.2.1 ANSAware Concepts

ANSAw'are operates on UNIX, VMS, and MS-DOS. It provides a uniform view o f a

multi-vendor world, allowing systems builders to link together distributed components

into network-wide applications.

ANSAware consists o f a suite o f software for building open distributed processing

systems providing abasic platform as well as software development support, e.g., program

generators and system management applications. It operates within a host to provide a

unified platform. ANSAware is a service based infrastructure that supports service based

applications. It supports an object-based style using the client/server approach.

ANSAware divides its engineering model into nodes, where a node may be a single

computer, a process or virtual machine, or a network o f computers managed by a

distributed operating system. The resources o f each node are managed by a nucleus which

assigns them to capsules.

The capsule is the unit o f autonomous operation within ANSAware. Each capsule

represents a separate address space. In a multi-tasking environment, a capsule is a process.

A capsule consists of several engineering objects. Each engineering object is composed

245

of several computational objects which are bound together at compile time and interact

via local procedure calls. A computational object may have several interfaces, each

offering the same or different sets o f operations. A compiled computational object is an

engineering object. A service is a program composed o f several computational objects. A

program can be compiled as a single unit or its computational object can be compiled

separately; in either case the result is a set o f engineering objects.

An engineering object is the smallest unit in ANSAware which is distributed,

activated, deactivated, and migrated. The programmer decides how many engineering

objects are merged into one capsule. Engineering objects interact with one another through

the nucleus. Transparency services are added to a capsule. These services manage the

nucleus-provided resources in a capsule and communicate with transparency services in

other capsules to provide the required transparency. An engineering capsule may have

several transparency services, and one transparency service may depend upon another.

Figure 7.4 represents the relationships between ANSAware elements.

The current release o f ANSAware supports access and location transparency

services. Access transparency masks differences in data representation. Location

transparency translates interface reference (logical address) to address resolution (physical

address). Future releases will support other transparencies.

The nucleus includes a service definition for the protocol required for

communication between nuclei. The protocol is based on three service layers: session,

execution, and message passing. The nucleus provides services called tasks, threads,

eventcounts, sequencers, sockets, plugs, channels, sessions, and interface references.

246

Engineering
Objects Com putational

Objects

T2
Transparency
Services

Capsule
T3

Nucleus

Node

rigure 7.4 ANSAware’s Capsule and Nucleus (Copied from [ANSA 92b])

A thread is an independent execution path through a sequence o f operations within

a capsule. Threads share data structures and can synchronize with each other at significant

points. A task is a virtual processor which provides a thread with the resources it requires.

The number o f tasks within a capsule determines the degree o f parallelism in the capsule’s

execution. A thread is bound to a task until the thread terminates. ANSAware includes a

coroutine package to support multi-tasking in operating systems that do not include multi

tasking. Eventcounts and sequencers are used for synchronization between threads.

A socket is the unit o f addressing for inter-capsule invocations. A registration

operation allows a socket to be published, and thus be made accessible to clients outside

the capsule. All communications are targeted to sockets. A plug is the access point for the

247

client o f an interface. Inter-capsule operations are invoked by plugs. Each plug is bound

to a corresponding socket. The path from the plug to the socket is called a channel. A

socket represents the server end o f an interface, whereas a plug is associated with the

client end.

ANSAware specifies the interface reference for identifying interface instances to

connect clients to servers. The interface references are created by the binder service in

each capsule. Before a capsule can obtain an interface reference for any external service,

it must obtain an interface reference to the trader. This interface reference is furnished to

each capsule.

A computational object is transformed into an engineering object by two

compilers. The first compiler provides transparency services. The second compiler

provides interaction services. The interfaces to computational objects are defined by an

Interface Definition Language (IDL).

ANSAware supports traders, factories, and node managers as network-wide

management services. The trading services allow engineering objects to register the

services they provide and to look for services they intend to use. The trading services also

support dynamic binding. Factory services support dynamic creation o f engineering

objects.

7.4.2.2 Mapping of the ANSAware Reference Model to M egSDF’s Concepts

In our terminology ANSAware is an infrastructure that implements only parts o f the

ANSA architecture. Although it does not specify service groups within the infrastructure,

248

it is possible to map the ANSAware services to MegSDF infrastructure service groups.

ANSAware does implement some o f the structural view concepts and supports

components o f different granularity: computational objects, engineering objects, capsules,

and nodes. ANSAware is based on message passing and provides a trader for transparency

services. ANSAware supports various types o f control units, e.g., thread and task, and uses

eventcounts and sequencers for synchronization. The data view includes only an Interface

Definition Language. ANSAware does not support any environment view concepts, but

it does provide development tools that enable access transparency and using ANSAware

services in an embedded format. Table 7.8 summarizes this discussion.

T able 7.8 Comparison o f MegSDF views and ANSAware services.

M egSDF Service G roup ANSA ware Services

Structural Capsule, Nucleus

Communication Within an engineering object - local
communication.
Inter-capsules by the nucleus, traders,
interface references, sockets and plugs
Transparency services by pre
compilers.
Interfaces are defined by IDL.

Control Threads, tasks, eventcounts,
sequencers

Data Interface Definition Language for
interfacing different data types
representation

Environment Not defined

Domain Specific Not defined

249

7.4.3 IBM’s Systems Application Architecture (SAA)

This section describes IBM ’s Systems Application Architecture (SAA) [MART 91]. It

was developed by a vendor and supports a wide range o f products o f this vendor.

7.4.3.1 SAA Concepts

SAA was developed by IBM in an attempt to bring coherence to IBM ’s wide range o f

products. IBM ’s product line includes an assortment o f different and incompatible

hardware, multiple operating systems, and an assortment o f software systems used in

different operating environments. This complexity is a hindrance to IBM and its

customers, who use computing systems ranging from personal computers to large systems.

IBM people decided that developing such an architecture is essential to its corporate

viability.

Support for SAA will be provided across a wide range o f hardware and software

by IBM and other vendors. IBM has committed broad support for SAA across future

offerings operating in the systems software environments, including M ultiple Virtual

Storage (MVS), Virtual Machine (VM), Operating System 400 (OS/400), Operating

System/2 Extended Edition (OS/2 EE), and other environments to be supported in the

future.

An application developed according to SAA specifications must operate

consistently across all SAA-supported environments. This means that it should be possible

to compile and run an SAA application in any supported environment without extensive

reprogramming. An SAA application’s interface should appear the same, regardless o f the

250

environment in which it runs. An SAA application should be able to communicate with

other SAA applications running in any of the environments.

The foundations o f each SAA hardware family and operating system

(environment) is provided by three types of products: application enablers, communication

subsystems, and control programs. Application enablers include programming languages,

CASE tools, application generators, database management systems, and data presentation

and dialog management services. Communication subsystems allow a computing system

to communicate with its own peripheral devices and with other computing systems

attached to a computer network. System control programs include the operating system

(and its extensions) that controls a computing system in a specific hardware environment.

The products that constitute the software foundation vary with each environment.

SAA standardizes three types o f interfaces on top o f each environment:

• Common User Access (CUA) interface provides end users a consistent view o f their

different applications. This promotes user productivity and reduces the time to learn new

applications. The Common User Access (CUA) is a set o f rules and guidelines for

presentation and user interaction, e.g., organization o f panels, windows, use o f colors,

icons and standard actions.

• Common Programming Interface (CPI) defines a set o f languages and services for

application developers consistent across the different environments, both in term s o f how

they are used and in the results they produce. This promotes portability o f the systems.

CPI defines a set o f languages and programming services that application developers can

use in developing SAA applications. These services include communication, database,

251

query, dialog, and presentation interfaces. Though the Common Programming Interface

includes services common to all environments, it does not include features specific to an

environment or an operating system, e.g., job control language.

• Common Communication Support provides consistent methods for exchanging data

across a network. It consist o f a set o f protocols, services, and standardized data stream

formats that can be used to interconnect applications, systems, and networks.

Besides defining the three interfaces and providing system software support for

those interfaces, IBM also intends to develop applications that conform to the SAA

standards and guidelines. These applications will be consistent and usable across all o f

IBM ’s major computing environments. IBM’s OfficeVision5 Product Family, an

integrated set o f applications that provide extensive office automation services, is an

example that conforms to the SAA architecture. Other vendors have announced their

support o f the SAA standard interfaces and their intention to develop applications that will

run on all SAA-supported computing environments. Figure 7.5 illustrates the components

o f the SAA.

Most o f the services defined by the SAA are based on standards, e.g., the ISO/OSI,

the American National Standard Database Language - SQL, etc. SAA also supports both

SNA and ISO protocols to ensure its openness. In response to market demands for UNIX

as the environment o f choice for programmable workstations, IBM developed the AIX,

its version o f UNIX. AIX is compatible with SAA’s communication and programming

interfaces.

5 O fficeV ision is a trademark o f IBM, Inc.

252

Common Applications

Common Programming Interface

Common
User
Access
(CUA)

Application Enablers

Communication

Common
Commun
ication
Support
(CCS)

System Control

Large
System

AS/400 PS/2

rigure 7.5 The Elements o f IBM 's SAA
(copied from [MART 91])

7.4.3.2 Mapping of SAA to M egSDF’s Concepts

SAA is intended to provide a layer between technologies and applications, to promote the

portability o f software systems, and to support communication between processes. The

architecture seems to have been defined in a bottom-up manner, driven by technologies

and not application needs. SAA standardizes the way the technologies are used. In

MegSDF terminology, the SAA concepts can be considered as a model for an

253

infrastructure, since it defines interfaces to technologies, but not a conceptual architecture,

since it does not provide design concepts for the applications, e.g., decomposition

guidelines.

SAA does not explicitly specify any structural concepts. Accordingly, its

infrastructures (support environments) do not explicitly support components o f the

structural view. The Common Communication Support implements concepts o f the

communication view. SAA supports Common User Access and defines communication

with other systems based on SNA and ISO. These elements belong to the environment

view. Parts o f the Common Programming Interfaces can be mapped to the control and data

views. Table 7.9 compares SAA services to M egSDF’s infrastructure service groups.

T able 7.9 A Comparison o f MegSDF views and SAA Service Groups

M egSDF Service G roup SAA Services

Structural Not defined

Communication Common Communication Interface

Control Parts o f the Common Programming
Interface, i.e., operating systems

Data Parts o f the Common Programming
Interface, i.e., database management
systems and the Common
Communication
Support, i.e., objects, data streams

Environment Common User Access for user
interfacing;
Common Communication Support for
interfacing with other systems

Domain Specific Not defined

CHAPTER 8

THE META-MANAGEMENT, SYSTEM, AND

MEGA-SYSTEM SYNTHESIS TASKS

This chapter defines the Meta-Management task, the System task, and the Mega-System

Synthesis task. These are extensions o f existing tasks in traditional systems development.

Our discussion emphasizes how they are incorporated into the MegSDF process model

and how the elements o f these tasks have been adapted.

8.1 The M eta-Management Task

Meta-management is the organizational unit (see also section 3.3.1) responsible for

developing the Mega-System. MegSDF defines the activities o f this unit in a separate task

called the meta-management task. This section describes the role o f the meta-management

task in MegSDF and specifies the meta-management task as a process.

8.1.1 The Role of the Meta-Management Task

The meta-management task is an extension o f traditional software management [DEMA

82], [PAGE 85], [GILB 88]. It addresses the difficulties in software development

described in chapter 1, and particularly problems caused by the neglect o f general, long

254

255

term objectives; problems o f coordination and communication; and multiple customers

needs and objectives. These difficulties are summarized below as an inverted sub-table o f

the problem list (table 1.1).

Table 8.1 Difficulties and Problems Addressed by the M eta-M anagement Task

Difficulties Caused By Aspect Problems

General objectives are
neglected

More than one system Management There is no clear
distinction between

Coordination and More than one
general, long-term
objectives and
local, short-term
objectives

communication problems on a
larger scale

developer

Different aims and needs More than one
customer

No standardization of tools Heterogeneous
environment

Long term objectives are
neglected

Long life cycle

A meta-management with a clear definition o f its tasks and role is the only way to

ensure a distinction between general and long term versus local and temporary issues. It

must coordinate the developer groups, and balance the diverse objectives and needs o f the

customers. To achieve these goals meta-management must conduct two types o f activities:

• Plan development

• Control and coordinate the various tasks

As the responsible agent for general, long term objectives, meta-management

determines the direction and trends that the product and development process will take.

Meta-Management is responsible for definition of strategies, e.g., testing strategies [HETZ

256

88], general procedures for quality assurance [DUNN 90], and configuration management

[BABI 86], Its plan should specify the schedules and estimate the resources required for

the development process.

Planning should consider both customer requirements and feedback from the tasks

o f the process. Meta-management communicates with customers to ensure their

satisfaction and to understand market needs. It balances diverse aims and needs o f the

customers. It also defines global priorities and an optimized schedule that includes all the

tasks o f M egSDF's development process. The meta-management is responsible for

activating, suspending, or deactivating systems and synthesis tasks and for specifying

milestones for the Mega-System tasks according to actual needs. For example, meta

management might suspend an active system task developing a system for a single

customer and use its resources to activate a system task developing a system that can be

used for several customers.

Some MegSDF tasks have lower level management. We must differentiate between

the responsibilities o f lower level and meta-management. The coordination units for meta

management are tasks (projects) as a whole. Meta-Management specifies a global

schedule. Lower-level management activities are those o f traditional management and lie

within the scope o f a single M egSDF’s task. Lower level management must be

coordinated with meta-management. For example, lower level management is responsible

for the local schedule o f a system task (project), but this schedule must be coordinated

with the global schedule which includes other System, Mega-System synthesis, and Mega-

System tasks.

257

The planning activities are similar to software development planning in traditional

software development approaches [PRES 92]. However, these plans have a larger scope

and must also consider the special characteristics o f the Mega-System. For example, the

new tasks suggested by MegSDF must be included in the plans.

We propose that risk analysis be used as an essential tool for decision making at

the meta-management level. Risk analysis can identify potential problem areas, quantify

associated risks, and generate alternatives that reduce risk [CHAR 89], resulting in a more

effective "risk-driven" schedule. Thus, risk analysis enables meta-management to

activate/deactivate System/Synthesis tasks, allocate adequate resources for critical

problems, and solve them expeditiously. Periodic risk analysis and corresponding schedule

revision can help assure the schedule fits the real needs.

Controlling the process means allocating resources, activating tasks, and

monitoring their operations. Meta-management should monitor the global schedule and

resource use, and evaluates both the product as well as the process itself. Like traditional

software management, meta-management has to assure conformance o f tasks to the global

standards and policies, e.g., software quality and configuration management standards.

Meta management must also assure compliance o f the tasks with the domain model, the

M ega-System architecture, and the chosen infrastructure. Meta-management must

coordinate the various tasks and resolve communication problems between them.

8.1.2 The Process of the Meta-Management Task

258

8.1.2.1 Purpose

The purpose o f the meta-management task is to plan and control the development o f the

Mega-System as a whole.

8.1.2.2 Interfaces

Inputs

° Customers requirements - Requirements o f the customers/users o f the systems.

• Feedback - Feedback from the various tasks to the meta-management task.

Outputs

• M anagement Control - The schedule assigned to the tasks by the Meta-Management.

8.1.2.3 Processing

The meta-management is responsible for the development o f the Mega-System. To ensure

an effective development, the meta-management plans the development based on global,

long term objectives and controls the development process. Meta-management controls

the various tasks o f the process on the basis o f these plans. Figure 8.1 illustrates the Meta-

M anagement task.

259

C ustom er
R equirem ents

Plans
Management
Control

Feedback
Internal
Feedback

Control

Figure 8.1 Meta-Management Process Diagram

8.1.2.4 Timing

The Meta-management task is a continuous process. It should be active as long as systems

are developed and maintained in the domain. Since changes in the domain induce changes

in requirements, the meta-management and its activities must continuously adapt

themselves to these ever changing needs.

8.2 The System Tasks

260

This section describes the System tasks in MegSDF. Section 8.2.1 describes the role o f the

system tasks and their relationship to the other MegSDF tasks. A system development

process is defined in section 8.2.2.

8.2.1 The Role of the System Tasks in MegSDF

The MegSDF process model divides the development o f a Mega-System into several

projects called system tasks. System tasks develop the constituent systems o f the Mega-

System. A system task is responsible for development o f a new system or maintenance o f

an existing system. In the first case a system is developed from scratch. In the second case,

an existing system is repaired, improved, or expanded. Several system tasks may be active

concurrently.

Following [MITT 91], we propose that the approach used to develop each system

be determined by the special characteristics o f the system. One can use the waterfall

[BOEH 76], rapid prototyping [GOMA 90], the spiral model [BOEH 88], etc., but

MegSDF requires that each system task use the engineering coordination tools o f the

framework, viz., the domain model, the Mega-System architecture, and the infrastructure.

Systems developed according to MegSDF are "pre-planned". The domain model

serves as a basis for further refinements or specializations during the requirement

specification phase o f each system task (project). The Mega-System architecture provides

concepts to be used in the design phase o f these system tasks, as well as definitions o f the

261

boundary o f the system and its interfaces. An infrastructure that integrates the enabling

technologies and allows for efficient incorporation o f new technologies is used in the

implementation phases. Feedback to the Mega-System task from the system tasks is used

to improve and correct the domain model, the Mega-System architecture, and the

Infrastructure. The relationship o f the system tasks to the other elements o f MegSDF is

illustrated in Figure 8.2.

M ega-System Tasks System Tasks

Major
Moderate

> Minor

Domain Model

M e g a -S y s te m
A rc h ite c tu re _

Infrastructure Implementation

Design

Requirement
Specification

7igure 8.2 Relationship o f System Tasks to other Elements o f MegSDF

262

Traditional approaches are typically intended for developing isolated systems that

are not part o f a system o f systems or family o f systems. Therefore, they do not include

means to ensure coordination and consistency o f the developed system with other systems.

The)' do not use a domain model, a Mega-System architecture, or an infrastructure as

essential tools. Unlike traditional system development, system tasks in MegSDF are

optimized to be part o f the entire effort.

8.2.2. The System Development Process

The process o f system development is defined using the format described in chapter 4.

8.2.2.1 Purpose

The purpose o f the system task is to develop a constituent system.

8.2.2.2 Interfaces

Inputs

• Domain Model - A model o f the domain ,defined in section 5.2.

• Application Architecture - Part o f the Mega-System Architecture, defined in section 6.2.

• Customers requirements - Requirements of the customers/users o f the systems.

• Existing Development Approaches - These approaches will be evaluated in order to

define the appropriate development approach.

• Feedback - feedback from the Mega-System synthesis task for modification.

263

Control

• Management Control - The assigned schedule to the task by the meta-management task.

Circumstance Inputs

• Conceptual Architecture - Part o f the Mega-System architecture that includes concepts

and a design guideline, defined in section 6.2.

Mechanism

• Infrastructure - The chosen infrastructure o f the domain as specified in section 7.2.

Outputs

• System - One o f the constituent systems of the Mega-System.

• Feedback - Feedback from the system task to other tasks o f the process and to the meta

management.

8.2.2.3 Processing

It is possible to identify three major activities in existing approaches for development o f

software systems: analysis, design, and implementation. The relationships between these

activities, and their detailed content vary with the approach. These activities generalize the

prototyping approach [GOMA 90], the spiral model [BOHE 88], and the waterfall model

[BOHE 76]. Figure 8.3 uses these activities to illustrate how these approaches will be used

in M egSDF’s system task (see also section 8.2.5).

Verification, validation, and quality assurance activities are assumed to be part o f

every task and sub-task to ensure the system provides the required functionality. MegSDF

264

does not restrict the system tasks to specific techniques, e.g., structured analysis or object

oriented analysis. System tasks can use techniques appropriate to the given situation.

Management Control Conceptual Architecture

Customer __ * _____
Requirements I Lower
— \- - - - - - - - - - - - ^1 Level

r+ l M anagem ent

Feedback
Schedule

Rsq.
Spec.

Design
Doc.

ApplicationArchitecture

Feedback

Software
Engineering
Methods

Infrastructure

Design
Implem
entation

Require
ment
Analysis

Figure 8.3 System Process Diagram

8.2.2.4 Timing

A system task has a schedule restricted according to the global schedule. Several system

tasks might be active concurrently, each developing a constituent system. We propose the

same steps for maintenance, i.e., analysis, design, and implementation, as for basic

development.

265

8.2.2.5 Sub-tasks

Requirement Analysis

This task specifies the requirements for the system. The analysis is based on the domain

model and the customers’ requirements. The application architecture is used for the

specification o f the system boundary and its interfaces. This task can use structured

analysis [YOUR 89], [WARD 86], object oriented analysis techniques[COAD 91a],

[RUMB 91], etc.

Design

The constituent system is designed in this task. The process is guided by the concepts

defined in the conceptual architecture. This task can use any design technique, e.g.,

structured design [PAGE 80], [ROSS 77], or object-oriented design [COAD 91b].

Implementation

The system is implemented in this task using the infrastructure. The programs are either

directly developed or generated by code generators (when available), debugged, and

integrated. The system as a whole is verified and validated.

Lower-Level Management

This task controls the process o f constituent system development. A development

approach is selected, e.g., the waterfall approach [BOHE 76] or its variations, the spiral

model [BOHE 88], or rapid prototyping [GOMA 90]. Lower level management is also

responsible for coordinating the techniques used in each sub-task. It is also responsible for

planning the development process, scheduling the sub-tasks, and internal quality assurance

266

and configuration management. The management o f the system task is responsible for

communication and coordination with the meta-management and the other system tasks.

8.3 Mega-System Synthesis in MegSDF

This section defines the Mega-System Synthesis task. Section 8.3.1 describes the role o f

Mega-System synthesis in MegSDF. Section 8.3.2 defines a Mega-System synthesis

process.

8.3.1 The Role o f Mega-System Synthesis

This task is responsible for providing an effective and efficient Mega-System to the

customers. It integrates the constituent systems into a coherent Mega-System. As a

framework for the development and integration o f Mega-Systems, one o f M egSDF’s goals

is to simplify the activity o f systems integration by developing constituent systems that

are "pre-planned".

The Mega-System synthesis task is guided by the application architecture which

specifies the systems and the building blocks o f the Mega-System according to the domain

model. After evaluation o f the capacity needs for the system, e.g., number o f users,

frequency o f transactions, number o f data records, etc., a Mega-System configuration is

defined. This configuration specifies the hardware configuration and the allocation o f

building blocks to appropriate hardware components. Scheduleability analysis [HALA91]

can be used as a tool for optimization and verification. The infrastructure enables the

267

linkage o f these systems into a coherent Mega-System. Feedback from the Mega-System

synthesis task is used to improve the Mega-System architecture and the constituent

systems.

The Mega-System must operate efficiently, with reasonable response time.

However, the system must also to be cost-effective. Accordingly, Mega-System synthesis

strives for an optimized configuration which enables effective use o f the system at a

reasonable cost.

Extendibility is an essential requirement for a Mega-System. The long life cycle

o f a Mega-System, with attendant changes in requirements, means the need for additional

resources is to be expected.

The Mega-System Synthesis task is not responsible for developing and

implementing constituent systems. However, feedback from this task may improve the

constituent systems. This task evaluates the Mega-System architecture and verifies the

operability o f the infrastructure.

The Mega-System synthesis task may be considered as a generalization o f the

integration phase o f traditional systems development. However, it deals with

interoperating systems and not with system components. It also includes specification of

a Mega-System configuration that addresses both software and hardware configurations.

Moreover, it uses the Mega-System architecture and the infrastructure as essential tools.

Mega-System synthesis is essentially a customization o f the system according to

the customer needs. This process specifies the parts o f the system that will be used in the

actual Mega-System. It may identify parts that were not yet developed or which need

268

modification. Since the Mega-System architecture identifies elements that need

customization, this task includes specification o f the actual parameters for these elements.

8.3.2 The Process o f Mega-System Synthesis

8.3.2.1 Purpose

The purpose o f the Mega-System synthesis task is to provide a coherent Mega-System to

a customer.

8.3.2.2 Interfaces

Inputs

• Application Architecture - The meta-design o f the Mega-System, defined in section 6.2.

• Customers requirements - Requirements o f the actual customers/user o f the specific

Mega-System.

8 Systems - The constituent systems that were developed by the system tasks (projects).

Control

8 Management Control - The schedule assigned to the task by the meta-management task.

Mechanism

8 Infrastructure - The chosen infrastructure o f the domain, specified in section 7.2.

Outputs

8 Mega-System - A Mega-System that fits the requirements o f the customers.

269

• Feedback - Feedback from the task to the Mega-System architecture design,

infrastructure acquisition, system and meta-management tasks.

8.3.2.3 Processing

This task determines the software configuration on the basis o f the application

architecture, actual user needs, and available systems. It then defines a suitable Mega-

System configuration, including hardware configuration and allocation o f software

systems and building blocks to hardware components. The various components are

customized and linked together. Finally, the usability o f the Mega-System as a whole is

verified. Local management controls the process and communicates with the customers,

the system tasks, and the meta-management. Figure 8.4 illustrates the Mega-System

Synthesis task.

8.3.2.4 Tim ing

Several tasks o f Mega-System synthesis may be active concurrently, each responsible for

providing an appropriate Mega-System to a specific customer. In the case o f generic

system o f systems, each Mega-System synthesis task provides a specific system to a

specific customer. For systems of systems, the Mega-System synthesis tasks may provide

distinct versions o f the Mega-System to a single customer.

270

Management
Control !

_ _ 4 —
i Lower

►! Level

Application
Architecture

{■t -
> Management ' J

Management Control
 T - .

Feedback

Custom er
Requirem ents

Specify
Software
Configuration

Feedback

Systems

Software
Configuration

Specify
M ega-System
Configuration

Mega-jSystem
Configuration

Mega-
System

Link and
Verify

Schedulability
Analysis

infrastructure

Figure 8.4 Mega-System Synthesis Process Diagram

8.3.2.5 Sub-Tasks

Specify Software Configuration

The software configuration is determined based on the actual customer needs and guided

by the application architecture. The software configuration defines the list o f building

blocks and systems with an actual version and release numbers. This task can be

considered as a generalization o f software configuration management [BABI 86].

However, the components are systems o f larger scope than regular software components.

The output o f this task includes a definition o f the software configuration, with the actual

parameters identified for the various systems and building blocks.

271

This task is not responsible for implementing building blocks. Therefore, feedback

from this task might include modification requests, e.g., a requirement to modify an

existing building block/system, or to develop a new one. These modifications are done by

the system tasks. Thus, feedback from this task improves the application architecture and

constituent systems.

Specify Mega-System Configuration

This task specifies the hardware configuration and allocates systems and building blocks

to the hardware components.

Link and Verify

This task links together the hardware and software components. The software is installed

on the hardware components. No actual linkage may be required; the systems may "start"

by beginning to communicate using the infrastructure. In other cases, installation may be

more complicated, involving specification o f parameters and other administrative

activities. The Mega-System as a whole is tested to ensure its usability. The objective o f

MegSDF is that this task be as simple as possible and that the effort required for linkage

and verification be minimal. This task is an extension o f the integration phase o f

traditional software development approaches.

Local M anagement

This task is responsible for planning and controlling the Mega-System synthesis process.

It specifies the schedule for the sub-tasks and local policies and procedures. This task is

also responsible for communicating with the meta-management and systems tasks.

CHAPTER 9

A SCENARIO

This Chapter describes how MegSDF can be used for the development o f Mega-Systems.

Section 9.1 describes the current status o f a hypothetical software house that develops

systems in the insurance domain using traditional software engineering methods. Section

9.2 describes how MegSDF can be used. Section 9.3 discusses the advantages o f applying

MegSDF.

The scenario is based on personal experience and discussions with software

developers. It does not describe a specific software house, and there may o f course be

many cases where only some o f the problems exist. The scenario does not include

development o f the elements o f the framework. It is only used to illustrate the use o f the

framework and the process model.

9.1 Current Status

A software house develops and maintains a number o f large, complex systems in the

insurance domain. The systems consist o f hundreds o f programs. The total amount o f code

is greater than 1M lines o f code. The algorithms implemented within the systems are

272

273

complex and include actuarial and escalation formulas. We describe the current state o f

affairs from the viewpoint o f the customers, the developers, and the systems.

The Customers

The software house has a large number o f customers, including both insurance companies

and large insurance agencies. The customers are located in different states, each state with

its own laws and insurance regulations. The insurance companies and agencies sell

different kinds o f insurance, e.g., life, property, liability, etc. Most sell policies for all

types o f insurance, but several agencies specialize in a specific kind of insurance, e.g., life

insurance. The users must operate different systems to accomplish their jobs.

The Systems

The systems have undergone many generations o f modification. The developers o f these

systems are not available and documentation is poor and out-of-date. They are hard to

maintain, update, or integrate.

The systems operate in environments o f different vendors, varying from

mainframes with hundreds o f terminals, e.g., IBM 3090s or CDCs, to smaller systems with

several terminals, e.g., VAXs and personal computers (IBM compatible and M acintoshs6).

The computers use different operating systems.

Most o f the systems were developed using COBOL. Some old systems include

assembly programs that no one dares to change since the algorithms used in these systems

are not documented. Some new systems were developed using application generators. The

status o f data handling and communication within the systems is similar. Some old

6 Macintosh is a trademark of Apple Computers, Inc.

274

systems use files and indexed files to store information. Other systems use different

database management systems. The mainframes use different and incompatible tools and

communication networks, e.g., SNA for IBM products, Dec Net, etc.

The interaction between the systems is often done either manually or by batch

processing. In the worst case, an operator must type information given as paper reports o f

one system to another system. In other cases, special batch programs must be run in order

to download information from one system onto disk files, which other programs then

upload to other systems. Files are transferred from one system to another by Remote File

Transfer and similar mechanisms. The connection between the systems is, generally, not

transparent, and requires the intervention of human operators, a type o f interaction which

is unreliable and can cause inconsistency and affect the integrity o f the data stored in the

systems.

Different systems with the same functionalities have been developed to operate in

different environments. Over time, their functional commonality disappeared in response

to the requirements o f different users with different needs and objectives. Moreover, there

are redundant functionalities, e.g., every system handles the insurance clients separately;

every system handles policies. Thus, the software house deals with an enormous number

o f modules.

There is redundant and often inconsistent data in the different systems. A change

o f insured address or phone number, for example, requires updates to the life insurance,

property, agent, and vehicle systems. Every system stores different information for the

same entities. There are differences in attribute names, types, even semantics. A

275

modification first requires identifying all affected systems. A specialized solution, fitting

the system data and functionalities, must then be implemented for each system.

There is no standard user interface; every system uses its own layout o f screens and

approach to user interaction. Training new agency employee requires several weeks.

The Developers

The developers are located in several sites. Furthermore, the organization o f the software

house separates the system analysts from the designers and programmers. Even groups

working on the same project are located in different sites.

Each group develops its system using local procedures and standards. Coordination

between the groups is mainly administrative and is inefficient. Technical solutions are

shared on a voluntary basis. There is no real coordination between the developer groups.

Similar functionalities are developed by different groups because o f a lack o f knowledge,

or because o f a lack o f authority that might enable imposition o f some simple restrictions

that would compel the various parties to use an existing solution, or decide to develop a

general solution for all groups, with attendant saving in both development and

maintenance effort.

Developers are usually assigned to specific systems since training new software

engineers is time consuming. The average turnaround time for a software engineer in the

software house is about two years. It is generally impossible to move a programmer from

one system to another one, since mastering application complexity and system-specific

development procedures and standards requires extensive training.

276

CASE tools are used primarily for reverse engineering and documentation. These

tools yield a large amount o f information but it is hard to read, understand, or upgrade.

The Problems

The previous discussion may be summarized by the following problem list:

• The software house has a list o f hundreds o f "urgent" requests for modifications o f

existing systems. These requests/demands are often ambiguous or contradictory. Any

change request requires tremendous effort. The response time to customer needs is

unacceptable.

• The temporary, local problems o f the customers govern the system.

• Customers insist on working with one system that includes all functionalities, rather than

having to use a number o f "independent" systems.

• There is a shortage o f professional programmers and software engineers who are also

experts in the insurance domain.

• Maintenance is the essential part o f the work and new systems are almost not developed,

while competition with other companies is intense. New software houses offer new

systems at cheaper prices. These systems are based on new technologies and offer new

functionalities that do not exist in the systems o f the software house.

9.2 A S o lu tio n B ased o n M eg S D F

277

In view o f current problems, we recommend the company adopt M egSDF’s concepts and

process model.

M eta-M anagement

The company must establish a meta-management team. This team will include all

managers o f the various software developer groups and will be responsible for enforcing

standards and policies for all groups. Meta-management will communicate with customers

and balance their requests. Meta-management will schedule all activities and handle

budgeting. Meta-management will also determine trends and strategy for the entire

system.

Domain Analysis

A special group, consisting o f both computer and insurance experts, will develop a domain

model. This group will be independent o f a specific development project. The group will

provide a general, comprehensive model of the insurance domain. The group will be

responsible for updating the model as a result o f domain dynamics and feedback from

development teams.

M ega-System Architecture Design

A separate group will study existing architectures for software systems. The group will

define a Mega-System architecture which will be used as a reference model and a

guideline for developing systems in the domain. The design and implementation concepts

278

will be used by all development groups. The application architecture will determine the

overall structure, the components, and their interfaces.

Infrastructure Acquisition

Another group will be established to examine existing infrastructures. This group will

choose, on the basis o f the conceptual architecture, an appropriate infrastructure that will

be used as the basis for implementing systems in the domain. The responsibility o f the

group includes verification and validation that the infrastructure supports the concepts

specified in the conceptual architecture. The group must also support the operation o f the

infrastructure as an active part o f the Mega-System, e.g., registration o f services,

installation o f building blocks, allocation o f resources, and measurement o f resource

utilization. This group is responsible for evaluating new technologies and incorporating

them as required into new versions o f the infrastructure.

System Tasks

Using the domain model and the Mega-System architecture, existing systems will be

evaluated for compatibility. As a result, a number o f applications will be modified and

other systems will be developed from scratch. Meta-management will decide the order o f

development. The systems will be developed according to the Mega-System architecture

based on the selected infrastructure. All systems will be developed as independent

projects.

M ega-System Synthesis

A Mega-System synthesizing group will be assigned to every customer. The synthesizers

will integrate a Mega-System in view o f customer requirements. The synthesizers will

279

choose the components, customize the systems, and request modification o f existing

systems or development o f new systems as required.

9.3 Advantages of Using MegSDF

Under MegSDF, the software house develops a Mega-System o f the generic system o f

systems type as a domain-wide solution. We clarify the benefits o f using MegSDF from

the viewpoints o f the customers, developers and systems.

The Customers

The Mega-System consists o f systems for insurance companies, integrated with systems

for agents. These systems handle policies, maintain insured information, and support

computation o f insurance rates, claims adjustment, accounting, and other insurance

functionalities. The systems assume there exists a large number o f customers with diverse

needs and objectives. The Mega-System is scalable and can be configured for insurance

companies, general agencies that offer all types o f insurance, and specialized agencies,

e.g.. life insurance agencies.

The Mega-System is developed with emphasis on user transparency. Users operate

a unified, coherent, large system, with a common user interface, that offers assorted

services, rather than operating multiple systems. All screens o f the Mega-System will have

the same structure and interaction with the system will be based on the same interaction

280

types. The functional keys have the same role in all systems. Thus, training o f a new

insurance company or agency employee will require less time.

The connection between the systems is automatic, requiring minimal human

operator involvement. For example, an agent fills out, using the agent system, the insured

application and issues a temporary policy. The application is automatically transferred to

the insurance company system. In this system, a policy is underwritten based on the

application information, approved, and issued to the customer.

Meta-management balances the multiple, even contradictory requirements o f

customers. It resolves contradiction in requirements, imposes unified, generalized

solutions, and specifies a global schedule, optimizing the demands o f the customers. For

example, all system will use the same attributes for insured identification, policy

identification, etc. I f other representations for insured identification are required,

interfaces will be supplied to translate the exceptional attributes to the common attributes.

The Systems

The systems o f the software house are now developed as a generic system o f systems (a

coordinated set o f federated systems). The common set o f functionalities is specified

based on the common domain model. The constituent systems are developed according

to the conceptual architecture, utilizing the infrastructure.

The systems are developed as general solutions and therefore fit many customers

with different needs and objectives, not for a specific insurance company in a specific

state. The systems will be developed with parameters to enable their efficient

281

customization. For example, it will be possible to adjust the installment plan, the profit

percentage, etc., according to the insurance company policy.

The domain model facilitates specification o f the relationship o f a system with its

environment and enables earlier identification o f integration requirements. For example,

since all information on the different types o f policies o f clients is accessible, the

marketing department could analyze consumer behavior to identify appropriate new

offerings. Similarly, using the claims system information, the actuary will be able to

identify high-risk geographical areas and determine appropriate insurance rates.

The domain model enables the identification of similar functionalities. Data

redundancy is reduced; if redundancy is required to improve availability or efficiency, it

is controlled. This reduces problems with inconsistent data. For example, insured

information is handled by a single system which is open to retrieval request from other

system, so address correction will be done only in a single system.

Developing systems according to common design and implementation concepts

and using a common infrastructure eases development and maintenance o f systems and

simplifies systems integration. Using these concepts, it is possible to maintain the

consistency o f the systems and their structure even after the designer o f the system leaves

the company.

The common infrastructure and architectural concepts promotes the portability o f

the systems. Rather than developing different versions o f systems for different

environments, e.g., claims systems for DOS, IBM mainframe, and CDC, drivers for these

environments are developed. For example, drivers to different types o f databases e.g.,

282

IMS, IDMS, or indexed files, which provide the same data handling functionalities, will

be developed. Thus, it becomes possible to use the same software in different

environments with different operating systems, (IBM 3083, personal computers, VAXs,

etc.) with minimal effort. Porting a system to a new environment primarily requires

mainly developing drivers for the environment.

These improvements reduce the number o f different systems and so also reduce

opportunities for decentralized modification over time. These characteristics

simultaneously improve the processes o f modifications and upgrading, since fewer

programs must be considered and changed per modification. For example, a change o f

attribute for a policy information will be local to the policies system.

The Developers

MegSDF promotes global coordination between the different groups developing

constituent systems and provides a means for improving communication between them.

The domain model provides a basis for common understanding among the different

developer groups. It uniformizes the terms o f the insurance domain for all developers. In

the event o f conflicts between developer groups, the domain model will be used as a

reference.

The Mega-System architecture imposes common design and implementation

concepts, e.g., common user interface and design constructs, to be used in the systems o f

the Mega-System. It requires compatibility o f the constituent systems with these elements,

thus uniformizing the implementation o f the entire system.

283

The infrastructure uniformizes the handling o f technologies for all systems and is

not merely an option. It also enables developers to restrict their attention to domain

problems. Based on existing enabling technologies, it provides standardized tools for data

handling or user-interfacing. Thus, the infrastructure precludes the need to develop

database management systems or user-interfacing tools within projects and restricts the

number o f different technologies used in the domain. The infrastructure provides a means

for interaction and facilitates integrating the constituent systems.

Meta-management is responsible for coordinating developer groups. The domain

model and application architecture are used to reduce the risk that groups replicate

functionalities because o f lack of coordination.

The mobility o f developers among groups is also improved. The knowledge o f a

specialized group is generally specified in the domain model and so is easier to learn.

Since the development o f all constituent systems is based on shared concepts a "new"

developer can easily adjust.

Looking back to the problem list o f section 9.2.1, it is possible to summarize the

new status:

• The list o f hundreds o f "urgent" requests may be shorter and different in nature. Since

the systems are built as general solutions, fewer adaptions are required.The m eta

management balances the demands o f the customers and imposes general, common

solutions.

• Change requests require fewer efforts. There are fewer systems to examine or modify

for each change request. The openness o f the systems improves their integratability.

284

• Meta-management specifies a global schedule and determines directions in consideration

o f customer needs.

• The customers use a unified system (with assorted functionalities) since the systems are

developed according to the common user interface concepts o f the conceptual architecture,

utilizing an infrastructure that facilitates interaction o f systems.

• Mastering the application domain is easier. The domain model provides an effective

basis for understanding the domain. The mobility o f developers is improved since

procedures and implementation concepts are explicitly specified and common to all

systems.

• Developing systems using common design concepts and utilizing a common

infrastructure enables developers to focus on domain related problems. The infrastructure

reduces the effort required to incorporate new technologies. Thus, the developers have

more time to develop new systems and applications.

CHAPTER 10

CONCLUSIONS AND SUMMARY

This chapter includes conclusions and summarizes the thesis. Section 10.1 evaluates

MegSDF according to the characteristics indicated in chapter 3 and identifies the

contribution o f each task to the quality of the Mega-System. Section 10.2 discusses

prerequisites for success in implementing MegSDF. Section 10.3 summarizes the thesis.

10.1 Requirements Verification

10.1.1 Realization of Framework Requirements

Chapter 3 established the following requirements for a framework for developing Mega-

Systems:

• General,

• Comprehensive,

• Operative, and

• Open

MegSDF is general. It is domain independent. It is appropriate for various

application domains, e.g., data-processing and real-time systems, and applicable to

different types o f Mega-Systems.

285

2 86

MegSDF is comprehensive. It incorporates engineering, managerial, and

technological aspects.

MegSDF is operative. It defines an engineering process that specifies the tasks

required to develop Mega-Systems, their deliverables and interconnections. The

framework is coherent: all its parts are interrelated, the results o f tasks are used as inputs

to other tasks, and all the activities are integrated into an engineering process.

MegSDF is open and flexible. Developers can select an appropriate technique to

implement their tasks. Domain analysis, for example, allows various suitable modeling

approaches. System tasks can be implemented by any traditional system development

approach, provided they use the requisite framework elements: the domain model, the

Mega-System architecture, and the infrastructure. The process is adjustable, allowing

activation and deactivation o f systems and synthesis tasks according to actual necessities.

The Mega-System and Meta-management tasks continuously evaluate changes in the

domain, customers requirements, and technologies, as well as feedback from developers,

incorporating them in the Mega-System as required.

10.1.2 Quality Attribute Map

A Mega-System must not only meet the requirements o f the customer but also be:

• Effective,

• Open,

• Efficient,

• User-friendly.

287

• Reliable, and

• Maintainable

Effective

The system should meet the requirements o f the customers. In the case o f Mega-Systems,

requirements are not well defined; they might be ambiguous, and/or contradictory. The

process model addresses this in two ways. First, a domain model provides a

comprehensive, general domain representation, but not one specific to an individual

customer. The Mega-System synthesis tasks tailor the Mega-System to the special needs

o f the customers.

Open

The system should be open, that is integratable, scalable, extendible, and upgradable. It

should be possible to integrate the system with other systems, to define different

configurations for different customers with different set o f functionalities, to extend the

system with new functionalities, and upgrade the system with new technologies.

The Mega-System architecture design and infrastructure acquisition tasks support

the openness o f the Mega-System. The conceptual architecture specifies concepts which

ensure the extendibility, scalability, and integratability o f the system. The infrastructure

supports these concepts and enables efficiently incorporating new technologies, and

upgrading existing technologies.

288

Efficient

The system should be efficient, optimizing hardware price, performance requirements,

development efforts, and quality requirements, with an emphasis on long-term solutions,

not local, temporary ones.

The infrastructure and system tasks facilitate the efficient operation o f both the

constituent systems and the entire Mega-System. The Mega-System synthesis task

provides a balanced optimization over the non-functional requirements o f the customer,

e.g., response time and hardware cost.

Development effort is reduced since all developer groups use the domain model,

common design and implementation concepts, and a common infrastructure. The

infrastructure also enhances the portability o f systems developed using its services.

User-friendly

The system should be user-friendly in the sense o f consistency and adjustability. Users

should have the feeling o f using a single system. They should have a consistent user

interface and interaction types. Since a Mega-System may have a heterogeneous user

group, it should also allow adjustment and customization o f features according to user

preference.

The environment view o f the conceptual architecture includes concepts for a

common user interface. These concepts, supported by the infrastructure, promote

uniformity and consistency over the entire Mega-System.

289

Reliable

The system should be reliable, i.e., highly available, fault-tolerant, and secure. It should

ensure consistency o f data in the event o f failure and protect resources and data from

unauthorized use.

The conceptual architecture specifies mechanisms to ensure the reliability o f the

entire Mega-System and the infrastructure supports these mechanisms. O f course, the

developers o f the constituent systems should develop reliable systems using the methods

o f traditional software engineering and the services o f the infrastructure.

Maintainable

The system should be maintainable. It must be divided into cohesive, minimally coupled

building blocks to ensure its manageability. The constituent systems must be consistent

and use common design and implementation concepts.

The application architecture design task specifies building blocks and clusters on

the basis o f the domain model. The conceptual architecture provides common design and

implementation concepts. The system tasks use these concepts, together with traditional

software engineering methods, to produce a maintainable Mega-System.

290

Table 10.1 identifies the quality attributes each task contributes to the Mega-System.

Table 10.1 Impacts o f M egSDF’s Tasks on Quality

Domain
Analysis

Archi
tecture
Design

Infra
structure
Acquisition

System
Tasks

Synthesis
Tasks

Effective + +

Open + + +

• Extendable + + +

• Scalable + +

• Upgradable +

• Integratable + + +

Efficient + + +

• Performance + + +

• Development
efforts

+ + +

• Hardware price +

• Portable +

User-friendly + +

• Consistent +

• Adjustable +

Reliable + + +

• Available + +

• Fault-tolerant + +

• Secure + +

Maintainable + +

• Modular + +

• Consistent + +

10.2 Prerequisites for Success

291

The implementation o f MegSDF requires an organization with software process maturity

[HUMP 88], [SCHL 92] and a comprehension o f software engineering methods. It cannot

be applied in an organization at the "initial" level, lacking procedures or processes: an

organization that uses ad-hoc solutions can neither develop nor use means for engineering

coordination, e.g., common design and implementation concepts.

On the other hand, for organizations at the appropriate level, the success o f

MegSDF depends on:

• The commitment o f management,

• The development and maintenance o f accurate means for engineering coordination, and

• The adequate use o f the engineering coordination concepts and tools by the developers.

Management commitment is required because MegSDF emphasizes long term

solutions. Developing such solutions requires an initial investment that is often expensive

and time consuming. The benefits o f these solutions are not seen immediately, but only

in the long run. Without management commitment, and allocation o f appropriate

resources, the MegSDF development environment will be infeasible.

MegSDF includes development o f a domain model, a Mega-System architecture,

and acquisition o f an infrastructure. These elements are common and general means for

engineering coordination that transcend the development o f the constituent systems. Since

they are an integral part o f the development process they must be maintained as long as

systems are developed and maintained in the domain. Since domains and technologies

292

change, it is mandatory to update these means to assure their effectiveness. It is also

required to develop them accurately.

In addition to the commitment o f the management and the development o f

appropriate means, the developers themselves must use these means properly as

circumstances and guidelines. The domain model, Mega-System architecture, and

infrastructure must be used by all developers. They must be part o f the engineering

culture, thus requiring changes in methods and working style. Local, temporary solutions

become counter-practical from this viewpoint. It is necessary to understand these means

provide a way o f coping with the complexity o f Mega-Systems and enable the developers

to solve the real problems o f the application domain.

10.3 Summary'

This thesis specifies a framework for developing large, complex software systems which

we call Mega-Systems. MegSDF incorporates the engineering, managerial, and

technological aspects and a process model for coordinating these aspects.

MegSDF proposes developing Mega-Systems as domain wide, long-term systems

following a pre-planned approach. The Mega-Systems are developed as open distributed

systems (federated systems) which share data and functionalities and are planned to be

integrated with other systems and to be changed in the future.

293

MegSDF partitions the development process into multiple coordinated projects,

each developing one o f the constituents systems. Two levels o f managements are proposed

in order to enforce distinction between global, and long-term versus local and short-term

issues. Meta-Management is responsible for the development o f the entire Mega-System,

while lower level managements are responsible for development o f constituent systems.

The MegSDF engineering process model specifies the activities or tasks required

to develop Mega-Systems, including their deliverables and interrelationships. Some o f

these tasks generalize traditional activities, e.g., system or meta-management tasks, while

others substantially extend existing approaches and are specific for MegSDF.

The process model consists o f System, Mega-System Synthesis, Mega-System, and

Meta-Management tasks. System tasks develop constituent systems. Mega-System

Synthesis tasks assemble Mega-Systems from constituent systems according to actual

customer needs. The Meta-Management task plans and controls the entire process. Mega-

Systems tasks provide a means for engineering coordination and include Domain

Analysis, Mega-System Architecture Design, and Infrastructure Acquisition tasks.

MegSDF process is active for the duration of software systems in the domain. The meta

management and the Mega-System tasks are continuous. The systems and synthesis tasks

are activated according to actual domain needs.

Domain analysis provides a general, comprehensive, non-constructive domain

model. The domain model is used by the developers o f the Mega-System as a common

knowledge base. It is built as an integration o f multiple perceptions, each o f which

represents the domain from a significant viewpoint. A domain modeling schema (with

294

modeling primitives) is also proposed to facilitate modeling and integrating multiple

perceptions.

A Mega-System architecture is proposed as a primary means o f engineering

coordination, to assure the uniformity and consistency o f the entire system. The

conceptual architecture defines common design and implementation concepts. The

application architecture specifies the overall structure o f the Mega-System, its

components, and their interfaces. The Mega-System architecture provides an explicit

definition o f common design and implementation concepts for systems in the domain. A

model for a conceptual architecture and an outline for an application architecture are

defined in MegSDF.

An infrastructure is proposed as a common service-based platform that integrates

all enabling technologies. It supports the architecture on the implementation level. It also

promotes portability, simplifies bridging different technologies, and facilitates

incorporating emerging technologies in a unified way. MegSDF partitions the

infrastructure into service groups based on the conceptual architecture. The applicability

o f existing infrastructures to MegSDF is evaluated.

APPENDIX A
MegSDF PROCESS DIAGRAMS

A .l MegSDF First Level

Management Control

Meta-
Management

Customer
Requirements

Domain
Data : Domain Modal

System

Feedback Software
Modeling
Approaches

Engineering
Methods

Architectural
Styles

Mega-
System-
Synthesls

System
Mega-
System

Figure A .l M egS D F F irst L evel P rocess D iagram

295

A.2 Mega-System Tasks

296

Customer\User
Managemant-Control

Requirements

Domain
ModalDomain:

Feedback

Enablirjg Technologies &
Existing Infrastructures

i8tructure

FeedbackFeedback

Modeling
A pproaches

Architectural
Styles

Domain
Analysis

Infra
structure
Acquisition

Mega-
System
Architecture
Design

Figure A.2 M ega-S ystem T asks P rocess D iagram

A.3 Domain Analysis

M anagem ent Control
4

Perception
Identification

C ustom er
R equirem ents
— ►*

Feedback

Perception
Schema

Domain
Definition

Perception

Domain
Mocfe/

Domain
Data

Domain
Schema

F eed b ack

Modeling
Approaches

D e fin e
t h e
D o m a in Build a

P e rc e p tio n

in tegra te
P ercep tions

Derive a
Perception
Schem a

Define
a Domain
Schem a

Identify
Significant
P ercep tio n s

F igure A.3 Domain Analysis Process Diagram

A.4 Mega-System Architecture Design

Management Control

Customer
Requirements

Existing ;
Infrastructures

Domain
M odel

The Chosen Infrastructure
 ►:
Feedback

 ►:

Conceptual Architecture
1

Conceptual
Architecture i

l
1
1

t „
Design

Application
Architecture

\ r
t ,

Design

Feedback

A rch itec tu ra l
Styles

Mega-$ystem
Architecture

Application
Architecture

Feedback

Figure A.4 M eg a-S y stem A rch itectu re P ro cess D iagram

A.5 Conceptual Architecture Design

Management-Control
I

Customer ;-
Requiremente

Arch.
Style

Conceptual
ArchitectureViewsDomainModal

Existing :
Infrastructures

The Chosen Infrastructure
FeedbackFeedback

Architectural
Styles

Select
Actual
Views

Specialize
the Actual
View

Choose an
Appropriate
Architectural
Style

Figure A .5 C oncep tua l A rch itec tu re D esign P rocess D iag ram

A.6 Application Architecture Design

Management Control Conceptual Architecture

Customer
Requirements

System
Boundaries Clusters

DomainModal
The Chosen Infrastructure
Feedback Feedback

Identify
Building
Blocks

Define
Mega-
System
Boundaries

Identify
Clusters

Building
Blocks

Define
Building
Block

Figure A.6 A p p lica tio n A rch itec tu re D esign P rocess D iag ram

A.7 Infrastructure Acquisition

301

Management Control International &
| Commercial standards

Conceptual
Architecture FeedbackInfrastructure Model

Existing
Infrastructuresfi
Projected
Technologies

Specification
for an
Infrastructure

Customers
Requirements

InfrastructureDeveloped
Infrastructure

Feedback

Purchase/
Modify/
Develop
Infrastructure

Specify
Infrastructure
Model

Select an
Infrastructure

Verify&
Validate

Figure A.7 In frastru c tu re A cq u is itio n P rocess D iagram

A.8 Meta-Management

302

Customer
Requirements

F e e d b a c k

Plan

Internal
Feedback

Plans

Control

Management
Control

Figure A.8 M eta-M an ag em en t T ask P rocess D iag ram

A.9 System Task

303

Management Control Conceptual Architecture

Customer __ ♦ _____
R e q u i r e m e n t s ! Lower
— --------------- Level

,-►! Management

F e ed b ac k
Schedule

Req.
Spae.

Design
Doc.

Application
Architecture

F eed b ack

Software
Engineering
Methods

Infrastructure

Design
Implem
entation

Require
ment
Analysis

Figure A.9 S ystem T ask P rocess D iagram

A . 10 M eg a -S y ste m S y n th e s is

304

Application
Architecture

Management
Control !

FeedbackManagement Controli Lower
»] Level
■ Management ■

l _

Software
ConfigurationCustomer

Requirements Mega-jSystem
Configuration

Feedback

Systems

Schedulabiliiy Infrastructure

Link and
Verify

Specify
Mega-System
Configuration

Specify
Software
Configuration

Analysis

F ig u r e A . 10 M ega-S ystem S ynthesis P rocess D iagram

BIBLIOGRAPHY

1 .[ACKE 92] Ackerman, L .F., "After Accolade: Time for New Law?," IEEE Software,
November 1992, p p .100-192.

2.[ADOM 92] Adomeit, R., Deiters, W., Holtkamp, B., Schulke, F., Weber, H., "K/2R:
A Kernel for the ESF Software Factory Support," in Proceedings o f IEEE Second
International Conference on Systems Integration, Morristown NJ, June 1992,
pp.325-336.

3.[AGAN 93] Aganovic, S., Domain Analysis fo r the Insurance Domain, Master Project,
NJIT, 1993.

4 .[ANSA 89] ANSA: An Engineer's Introduction to the Architecture, Release TR.03.02,
Architecture Projects Managments Limited, November 1989.

5 .[ANSA 92a] An Overview o f ANSAware 4.0 , Document RM.099.00, Architecture
Projects Managments Limited, March 1992.

6 .[ANSA 92b] ANSAware 4 .0 Application Program m er’s Manual, Architecture Projects
Managments Limited, Document RM. 102.00, March 1992.

7 .[ANSI/IEEE Standard 729-1983] ANSI/IEEE Standard 729-1983, IEEE Standard
Glossary o f software Engineering Terminology, The Institute o f Electrical and
Electronics Engineering, Inc., NY, Approved by American National Standards
Institute August 9, 1983.

8.[ARAN 91] Arango, G, and Prieto-Diaz, R., "Domain Analysis Concepts and Research,"
in Prieto-Diaz R. and G. Arango (editors), Domain Analysis and Software Systems
Modeling, IEEE Computer Press, Los Almitos CA, 1991, pp. 9-26.

9.[ARTH 85] Arthur, L. J., Measuring Programmer Productivity and Software Quality,
Wiley-Interscience, 1985.

305

306

10.[BABI 86] Babich, W. A., Software Configuration Management , Coordination fo r
Team Productivity, Addison-Wesley, 1986.

ll.[B A T I 86] Batini, C., Lenzerini, M., Navathe, S. B., "A Comparative Analysis o f
Methodologies for Database Schema Integration," ACM Computer Surveys, Vol.
18, No. 4, December, 1986, pp. 323-361.

12.[BAKE 72] Baker, F. T., "Chief Programmer Team Management o f Production
Programming," IBM Systems Journal, Vol. 11, No. 1, 1972, pp. 56-73.

13.[BEST 90] Best, L. J., Application Architecture-Modern, Large-Scale Information
Processing, Wiley & Sons Inc., ISBN 0-471-51089-0, 1990.

14.[BETT 92] Betts, M., "House Bill Restricts Air Reservation Systems," Computerworld,
Vol. 26, No. 33, pp. 1 and 16, August 1992.

15.[BHAN 93] Bhansali, P.V., "Survay o f Software Safety Standards Shows Diversity,"
IEEE Computer, Vol. 26, No. 1, January 1993, pp. 88-89.

16.[BLUM 92] Blum, B. I., Software Engineering a Holistic View, Oxford University
Press, 1992.

17.[BOEH 76] Boehm, Barry W., "Software Engineering," IEEE TR-C, December 1976,
p p .1226-1241.

18.[BOEH 82] Boehm, B. W Software Engineering Economic, Prentice Hall, Englewood
Cliff, N ew Jersey, 1981.

19.[BOEH 88] Boehm, Barry W., "A Spiral Model o f Software Development and
Enhancement," IEEE Computer, Vol. 21, No. 5, May 1988, pp.61-72.

20.[BOEH 89] Boehm, Barry W., Software Risk Management, IEEE Computer Society
Press, 1989.

307

21.[BOOC 91] Booch, G., Object Oriented Design with Application, Benjamin
Cummings, Redwood City, CA, 1991.

22.[BROO 87] Brooks, F. P., Jr., "No Silver Bullet: Essence and Accidents o f Software
engineering," Computer, 20 (4), April 1987, pp. 10-19.

23.[CHAR 89] Charette, R. N., Software Engineering Risk Analysis and Management,
McGraw Hill/Intertext, 1989.

24.[CLAR 92] Clarck, D., Krumm, J. M., Bieleski, S. T., "Broker: A System Integration
Approach, in Proceedings o f IEEE Second International Conference on Systems
Integration, Morristown NJ, June 1992, pp. 162-170.

25.[CLEM 91] Clemons, E. K., "Evaluation o f Strategic Investments in Information
Technology," CACM, Vol. 34, No. 1, January 1991, pp. 20-36.

26.[COAD 91a] Coad, P., and Yourdon, E., Object-Oriented Analysis, second edition,
Yourdon Press Computing Series, Prentice Hall, Englewood Cliffs, NJ , 1991.

27.[COAD 91b] Coad, P., and Yourdon, E., Object-Oriented Design, Yourdon Press
Computing Series, Prentice Hall, Englewood Cliffs, NJ , 1991.

28.[CSTB 90] Scaling Up: A Research Agenda for Software Engineering,
Communication o f the ACM, Vol. 33, No. 3, pp. 281-293, March 1990.

29. [CURT 88] Curtis, B., Krasner, H., and Iscoe, N., "A Field Study o f the Software
Design Process for Large Systems," Communication o f the ACM, Vol. 31, No. 11,
p p .1268-1287, 1988.

30.[CURT 92] Curtis, B., Kellner, M. I., and Over, J., "Process Modeling," in special issue
on "Analysis and Modeling in Software Development," Communication to the
ACM, September, 1992, pp. 75-90.

31.[DAVI 92] Davis, A. M.. "Why Industry Often Says ‘No Thanks’ to Research," IEEE
Software, November, 1992. pp.97-99.

308

32.[DALY 92] Daly, B. and Lindquist, C., "Judge Reaffirms Ruling Against Apple,"
Computer World, Vol, 26, No. 33, pp. 97, 1992.

33.[DEM A 78] De Marco, T., Structured Analysis and System Specification, Yourdon
Press, 1978.

34.[DeMA 82] De Marco, T., Controlling Software Projects, Yourdon Press, 1982.

35.[DESA 92] Desai, S. and Mills, J. A., "Object-Orientedness and Large Scale
Interoperability," Bellcore, 1992.

36.[DICK 78] Dickover, M. E., McGowan, C. L., and Ross, D. T. , "Software Design
Using SADT," in Tutorial: Software design Strategies, second edition, Bergland,
G.D. and Gordon, R.D., (edts), IEEE Computer Society Press, 1981.

37.[DoD-STD-2167a] Defense System Software Development, USA, Department o f
Defense, February 29, 1988.

38.[DUNN 90] Dunn, R., Software Quality Assurance, Prentice Hall, 1990.

39.[EISN 91] Eisner, H., Marciniak, J., and McMillan, R., "Computer Aided Systems o f
Systems (S2) Engineering," in Proceedings o f the 1991 IEEE/SMC International
Conference on Systems, Man, Cybernetices, Charlottesville, VA, IEEE, Computer
Society Press, October 1991, pp. 531-537.

40.[ELM A 89] Elmazri, R., and Navathe, S., Fundamental o f Data-Base Systems,
Benjamin Cummings, 1989.

41.[ESF 89] ESF Technical Reference Guide, Version 1.1, ESF - Eureka Software
Factory, 1989.

42 .[ESF 90] ESF - Project Overview 1990, ESF - Eureka Software Factory, 1990.

309

4 3 .[FRAN 92] France, R. B., Semantically Extended Data Flow Diagrams: A Formal
Specification Tool, IEEE Transactions on Software Engineering, Vol. 18., No. 4,
April 92.

4 4 .[FRED 92a] Fredriksson, L.-B., "A CAN Kingdom," KVASER AB, Sweden, 1992.

4 5 .[FRED 92b] Fredriksson, L.-B., "Some Thoughts About: CAN System Integration,"
KVASER AB, Sweden, 1992.

4 6 .[FREE 87] Freeman, D. P., Software Perspectives, Addison-W esley, Reading, M A,
1987.

47.[GARL 93] Garlan D.. "The Need for A Science o f Software Architecture," in
Summary o f the Dagstuhl Workshop on Future Directions in Software
Engineering, Feb. 1992, Software Engineering Notes, Vol. 18, No. 1, January
1993, pp. 39.

48.[GELL 91] Geller, J. Perel Y., and Neuhold, E., "Structural Schema Integration with
Full and Partial Correspondence using the Dual Model," Technical Report,
Department o f Computer & Information Science, NJIT, 1991.

49.[GELL 91a] Geller, J. Perel Y., and Neuhold, E., "Structure and Semantic in OODB
Class Specification," in Special Issue: Semantic Issues in Multidatabase Systems,
SIGMOND Record, ACM Press, Vol. 20., No. 4, pp. 40-43, December 1991.

50.[GELL 92] Geller, J, Mehta, A., Perl, Y. and Sheth, A., "Algorithms for Structural
Schema Integration," in Proceedings o f IEEE Second International Conference on
Systems Integration, Morristown NJ, June 1992, pp. 604-614, 1992.

51.[GHED 91] Ghedina, J., and Oppenheim, D., "Software Engineering Prespectives,
KPMG Peat Marwick’s System Integration Framework," Software engineering,
Sep/Oct 1991.

52.[GILB 88] Gilb, T., Principles o f Software Engineering Management, Addison-
W esley, 1988.

310

53.[GOM A 90] Gomaa, Hassan, "The Impact o f Prototyping on Software Systems
Engineering," in Tutorial: System and Software Requirements Engineering, R.H.
Thayer and M. Dorfman (eds), IEEE Computer Society Press, 1990, pp.543-552.

54.[GRIF 91] Griffin, M., Lotus 1-2-3 Release 2.3 in Business, SAMS, Carmel, IN, 1991.

55. [HALA 91] Halang, W. A., Stoyenko, A. D., Constructing Predictable Real Time
Systems, Kluwer Academic Publishers, 1991.

5 6 .[HERB 89a] Herbert, A. J., "The ANSA Project and Standards," in Distributed
Systems, Mullender, S. (editor), ACM Press, Frontier Series, 1989, Chapter 17, pp.
391-399.

5 7 .[HERB 89b] Herbert, A. J., "The Advanced Networked Systems Architecture," in
Distributed Systems, Mullender, S. (editor), ACM Press, Frontier Series, 1989,
Chapter 18, pp. 401-415.

5 8 .[HERB 89c] Herbert, A. J., "The Computational Projection o f ANSA," in Distributed
Systems, Mullender, S. (editor), ACM Press, Frontier Series, 1989, Chapter 19, pp
417-437.

59.[HETZ 88] Hetzel, B., The Complete Guide to Software Testing, Second edition, QED
Information Sciences, INC., W ellesley, MA, 1988.

60.[HUBE 90] Hubert, L., and Perdreau, G., "Software Factory: Using Process Modeling
for Integration Process," in Proceedings o f the First International Conference on
Systems Integration, Morristown, NJ, IEEE Computer Society Press, April 1990,
pp. 14-25.

6 1 .[HUMP 88] Humphrey, W. S., "Characterizing the Software Process: A maturity
Framework," IEEE Software, Vol. 5, No. 2, March 1988, pp.73-79.

6 2 .[HUNT 87] Hunt, V., and Zellweger, A., "The FA A ’s Advanced Automation System:
Strategies for Future air Traffic Control Systems," IEEE Computer, Vol. 20, No.
2,pp. 19-23, February 1987.

311

63.[ISCO 91] Iscoe ,N ., Williams, G. B., Arango, G., (eds), in Proceedings o f the Domain
M odeling Workshop, 13th International Conference on Software engineering,
Austin, Texas, May, 1991.

64.[JONE 86] Jones, C., Programming Productivity, MacGraw-Hill, 1986.

6 5 .[JOHN 92] Johnson, M., "Lotus Strikes Suit Deal with HP for Unix Application,"
Computerworld, Vol. 26, No. 33, Aug. 1992, pp. 8.

6 6 .[JOSE 89] Joseph, T. A., and Birman, K. P., "Reliable Broadcast Protocols," in
Distributed Systems, Mullender, S. (editor), ACM Press, Frontier Series, 1989, pp.
293-317.

67. [KIM 90] Kim, W., "Object Oriented Databases: Definition and Research Directions,"
Transactions on Knowledge and Data Engineering, IEEE, Vol. 2, No. 3, Sep. 1990.

6 8 .[KLIN 90] Kling. R., "Information Systems, Social Transformations, and Quality o f
Life." in Proceedings o f the Conference on Computers and Quality o f Life, 1990,
pp. 76-85.

69.[KOKO 89] Kokol, P., "Metamodels for system development," Software Engineering
Notes, Vol. 14, No. 5, July 1989, pp. 118-123.

70. [KRAS 92] Krasner, H., "The ASPIRE Approach to Continuous Software Process
Improvement," in Proceedings o f IEEE Second International Conference on
Systems Integration, Morristown NJ, June 1992, pp. 193-201.

7 1 .[LAWS 92a] Lawson, H. W., "Application Machines: An Approach to Complexity
Reduction," CBSE workshop, March 1992.

72 .[LAWS 92b] Lawson, H. W., "Application Machines: An Approach to Realizing
Understandable Systems," Keynote at the Euromicro Conference, Paris,
September, 1992.

312

73 .[LAWS 92c] Lawson, H. W., "Engineering Predictable Real-Time Systems," Lecture
Notes for the NATO Advanced Study Institute, Real-Time Computing, October,
1992.

74,[LEHM 90] Lehman, M. M., "Software Engineering - The Role O f CASE," in CASE
’90, Irvine, December 1990.

75 .[LUND 91] Lundell, J., Notess, M. "Human Factors in Software Development M odels,
Techniques, and Outcomes," in Proceedings o f Computer Human Interaction CHI’
91 - Human Factors in Computing Systems, 1991, pp. 145-151.

7 6 .[MART 91] Martin, J. with Chapman, K.K., and Leben, J. "Systems Application
Architecture: Common User Accesss," Prentice Hall, Englewood Cliffs, NJ, 1991.

77.[M AYE 89] Mayers, W. "Software Pivotal to Strategic Defense," IEEE Computer, Vol.
22, N o. 1, January, 1989, pp.92-97.

7 8 .[MILL 90] M ills, J.A. "The Operations Systems Computing Architecture: Semantic
Integrity o f Totality o f Corporate Data," in Proceedings o f the First International
Conference on Systems Integration, Morristown, NJ, IEEE Computer Society
Press, April 1990,pp. 482-491.

79 .[MITT 87] Mittermeir R.T. and Rossak, W., "Software Base and Software Archives
- Alternatives to Support Software Reuse," in Proceedings o f the FJCC 87, Dallas,
TX, October, 1987.

80. [MITT 91] Mittermeir R.T, "POWDER - A Recursive M ethodology for Prototyping
o f Wicked Development Efforts with Reuse," Institut f. Informatik, Universitaet
Klagenfurt, Austria, Report for International Software Systems Inc., Austin TX,
April 1991.

81 .[M ONA 92] Monarchi, D. E., and Puhr, G. I., "A Research Typology for Object-
Oriented Analysis and Design," in a special issue on "Analysis and M odeling in
Software Development," Communication to the ACM, September, 1992,pp35-47.

313

8 2 .[MOOR 92] Moorehead, R., Keynote Address, the Second International Conference
on Systems Integration (ICSI ’92), Morristown, NJ, 1992.

83.[M OSE 92] Moser, R., "Working Together," in Output+Micro, Computer &
Communication Osterreich, pp. 16-17, June 1992.

84 .[NEFF 92] N eff R., "American Airlines Software Development Woes," in "Risk to the
Public in Computers and Related Systems," Neumann, P.G. (moderaator),
Software Engineering Notes, Vol. 17, No. 4, 1992, pp. 16-17.

85.[NEIG 81] Neighbors, J., Software Construction Using Components, doctoral
dissertation, Univ. o f California, Irvine, Calif., 1981.

86 .[NIST 91] NIST Special Publication 500-201, Reference Model for Framework o f
Software Engineering Environment, (Technical Report ECMA TR/55, 2nd
Edition), NIST, 1991.

87.[NOTK 88] Notkin, D., Black, A.P., Lazowska, E. D., Levy, H. M., Sanislo, J.,
and Zahorjan, J., "Interconnecting Hetrogeneous Computer Systems," CACM,
Vol. 31, No. 3, pp. 258-273, March 1988.

88.[NEUM 91] Neumann, P. G., "The Not-So-Accidental Holist," Inside Risk,
Communication o f the ACM, Vol. 34, No. 9, Septmber 1991, pp. 122.

89,[ODSG 78] Datenschutzgestz - DSG Bundesgestzblatt fuer die Republik Oesterreich,
Jahrgang 1978, 193, Stueck, 28. November, 1978.

90,[O SCA 92] The Belcore OSCA™ Architecture, Bellcore - Bell Communication
Research, Technical Advisory, TA-STS-000915, ISSUE 3, March 1992.

9 1 .[PAGE 80] Page-Jones, M., The Practical Guide to Structured Systems Design,
Yourdon Press, 1980.

9 2 .[PAGE 85] Page-Jones, M., The Practical Project Management, Dorset House, 1985.

314

93.[PARN 76] Parnas, D. L., "On the Design and Development o f Program Families,"
TR-SE, Vol. SE-2/1, March 1976, pp. 1-9.

94.[PERR 89] Perry, D. E.(editor), "Experience with Software Process Models," in
Proceedings o f the 5th International Software Process Workshop, IEEE Computer
Society Press, October 1989.

95.[PERR 89a] Perry, D. E., "Introduction" in Proceedings o f the 5th International
Software Process Workshop, IEEE Computer Society Press, October, 1989, pp. 3-
5.

96.[PERR 92] Perry, D. E., and W olf, A. L., "Foundation for Study o f Software
Architecture," Software Enginnering Notes, Oct, 1992, pp. 40-52.

97.[POW E 90] Power, L. R., "Post-Facto Integration Technology: N ew Discipline for an
Old Practice," in Proceedings o f the First International Conference on Systems
Integration, Morristown, NJ, IEEE Computer Society Press, April 1990, pp.4-13.

9 8 .[PRES 92] Pressman, R. S., Software Engineering a Practitioner's Approach, third
Edition, McGraw-Hill, Inc., 1992.

99.[PR1E 90] Prieto-Diaz R., "Domain Analysis: An Introduction," Software Engineering
Notes, Vol. 15. No. 2, April 1990, pp.47-54.

100.[PRIE 91a] Prieto-Diaz R. and G. Arango (editors), Domain Analysis and Software
Systems Modeling, IEEE Computer Press, Los Almitos CA, 1991.

101.[PRIE 91b] Prieto-Diaz R., "Making Software Reuse Work: An Implementation
Model," Software Engineering Notes, Vol. 16(3), Jul 1991, pp.61-68.

102.[PRIE 91c] Prieto-Diaz, R., "A Domain Analysis Methodology," in Proceedings
Domain M odeling Workshop, 13th International Conference on Software
Engineering, Austin, Texas, May 1991.

315

103.[RETT 90] Retting, M„ "Software Teams," CACM, Vol. 33, No. 10, pp. 23-27,
October 1990.

104.[RHEI 91] Rheingold, H., Virtual Reality, Summit Books, 1991.

105.[ROSE 89] Rose, M. T., The Open Book A Practical Perspective on OSI, Prentice
Hall, Englewood Cliffs, N ew Jersey, 1989.

106.[ROSS 77] Ross, D. T., "Structured Analysis (SA): A Language for Communicating
Ideas," IEEE Transaction on Software Engineering, January 1977, pp 16-33.

107.[ROSS 87a] Rossak, W., and Mittermeir, R. T., "Structuring Software Archives for
Reusability," Proc. IASTED 5th international Symposium on Applied Informatics,
Grindelwald, Switzerland, 1987.

108.[ROSS 91a] Rossak. W., and Ng, P. A., "Some Thoughts on System Integration - A
Conceptual Framework," International Journal o f Systems Integration, Vol. l ,N o .
1, 1991, pp.97-114.

109.[ROSS 91b] Rossak, W., and Prasad, S., "Integration Architectures - A Framework
for Systems Integration Decisions," Proc. o f the IEEE Internat. Conference on
System s, Man, and Cybernetics, Charlottesville VA, October 1991, pp. 545-550.

110.[ROSS 91c] Rossak, W., "Integration Architectures - A Concept and A Tool to
Support Integrated Systems Development," Technical Report, Department o f
Computer & Information Science, NJIT, 1991.

111.[ROSS 92a] Rossak, W., and Ng, P. A., "System Development with Integration
Architectures," in Proceedings o f IEEE Second International Conference on
System s Integration, Morristown NJ, June 1992, pp. 96-103.

112. [ROSS 92b] Rossak W., Zemel T., Ng. P. A., "Systems Integration - A Framework,"
Tutorial on Systems Integration for the IEEE Second International Conference on
System s Integration, Morristown NJ, USA, June 1992.

316

113. [ROSS 92c] Rossak W., Welch L., Zemel T., and Eder J., " A Generic Systems
Integration Framework for Large and Time-Critical Systems," in Halang W.,
Stoyenko A. (eds.): NATO Advanced Study Institute (NATO ASI 910698) in
Real-Time Computing, Mullet Bay, Saint Martaan, Springer Verlag, October 1992,
to appear.

114.[ROSS 93a] Rossak W., and Zemel, T. "Engineering Large and Complex Systems
with Integration Architectures," PD-Vol. 49 - Computer Applications and Design
Abstractions, ETCE ’93, Houston TX, USA, February 1993, pp. 189-195.

115. [ROSS 93b] Rossak W., Zemel T., and Lawson H., "A Meta-Process Model for the
Planned Development o f Integrated Systems," International Journal o f Systems
Integration, Kluwer Academic Publ., Dordrecht, Holland, 1993, to appear.

116.[RUM B 91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, and F., Lorensen, W.,
"Object-Oriented M odelling and Design," Prentice Hall, 1991.

1 17.[SALK 91] Salkind. N ., WordPerfect 5.1 in Business, SAM S, Carmel, IN, 1991.

118.[SAM U 92] Samuelson, P., "Updating the Copyright Look and Feel Lawsuits," in
Communications o f the ACM, Spetember 1992, pp. 25-31.

119.[SCHA 90] Schafer, W., and Weber, H., "European Software Factory Plan - The ESF
Profile," in Modern Software Engineering, Ng, P.A., and Yeh, R.T., (eds), Van
Nostrand Reinhold, 1990, pp. 613-637.

120.[SCHL 92] Schlemmer, R. A., "Software Process Improvement - Optimizing Your
Process, An instrument for development, Assessment, and Improvement o f
Software Processes," Master Thesis, Universitaet Klagenfurt, 1992.

121.[SHAW 89] Shaw. M., "Larger Scale Systems Require Higher-Level Abstractions,"
in Proceedings Fifth International Workshop on Software Specification and
Design, Pittsburg, PA. May 1989, pp.140-146.

317

122.[SHET 88] Sheth, A. P., Larson, J. A ., Cornellio, A., and Navethe, S., "A Tool for
Integrating Conceptual Schemas and User Views," Proceedings o f the Fourth
International Conference on Data Engineering, Los Angeles, CA, Feb 1988, pp.
176-183.

123.[SHET 90] Sheth, A. P., and Larson, J. A., "Federated Databases Systems for
Managing Distributed, Hetrogeneous, and Autonomous Databases," ACM
computer surveys, Vol. 22, No. 3, September 1990.

124. [SHLA 92] Shlaer, S., Mellor, S. J., Object Lifecycles - M odeling the World in States,
Yourdon Press Computing Series, 1992.

125.[SM IT 87] Smith, B. D., Triechmann, J.S., Wiening, E. A., Property and Liability
Insurance Principles, Insurance Institute o f America, Malvern, Pennsylvania,
1987.

126.[SS2000a] Introduction to Ship System 2000, NobelTech.

127.[SS2000b] Ship System 2000 Operational Concepts, NobelTech.

128.[TAYL 92] Taylor, I., "A Process Reference Model For Large-Scale Software
Development," in Proceedings o f IEEE Second International Conference on
Systems Integration, Morristown NJ, June 1992, pp. 268-274.

129.[TANE 92] Tanenbaum, A. S., Modern Operating Systems, Prentice Hall, Englewood
Cliffs, N ew Jersey, 1992.

130.[THAY 90] Thayer, R. H., and Thayer, M. C., "Glossary," in Thayer, R.H., and
Dorfman, M., (eds.), System and Software Requirements Engineering, IEEE
Computer Society Press Tutorial, 1990, pp. 605-676.

131 .[THIM 92] Thimm, H., "Domain Analysis for Systems Integration," Master’s Thesis,
Department o f Computer and Information Science, NJIT, 1992.

318

132.[TICH 92] Tichy, W. F., Flabermann, N., and Prechelt, L., "Summary o f the Dagstuhl
Workshop on Future Directions in Software Engineering," Feb. 1992, in Software
Engineering Notes, Vol. 18 No. 1, Jan. 1993, pp. 35-39.

133.[TRAC 91] Tracz, W., "A Conceptual Model for Megaprogramming," Software
Engineering Notes, Vol. 16. No. 3, July 1991, pp.36-45.

134.[TULL 88] Tuliy, C., (editor), "Representing and Enacting the Software Process,"
Proceedings o f the 4th International Software Process Workshop, Devon, UK,
ACM Press, May, 1988.

135.[ULLM 88] Ullman, J., D., Principles o f Database and Knowledge-Base Systems,
Vol. 1, Computer Science Press, 1988.

136. [VEIJ 88] Veijalainen, J. and Poescu-Zeletin, R., "Multidatabase systems inlSO /O SI
environment. In Standards in Information technology and Industrial Control,
Malagardis, N ., and Williams, T., (eds), North-Holland, The Netherlands, pp. 83-
97, 1988.

137.[WARD 86] Ward, P. T., and Mellor, S. J., Structure development fo r real-time
systems, , Vol. 1, 2, 3., Yourdon Press, Englewood Cliffs, NJ, 1986.

138.[WEBS 91] Webster’s College Dictionary, Random House, 1991.

139.[W IED 92] Wiederhold, G., Wegner, P., and Ceri, S. "Toward Megaprogramming,"
Communication o f the ACM, Vol. 35, No. 11, Nov. 1992 , pp. 89-99.

140.[W IMM 92] Wimmer, K., and Wimmer, N ., Conceptual M odelling Based on
Ontological Principles, submitted to Knowledge Acquisition, 1992.

141.[YEH 80] Yeh, R. T., and Mittermeir, R. T., "Conceptual Modeling as a Basis for
Deriving Software Requirements," International Computer Symposium, Taepei,
Taiwan. December. 1980. pp. 1-14.

319

142.[YEH 91] Yeh, R. T., Schlemmer, R. A., and Mittermeir, R. T., "A Systematic
Approach to Process Modeling," Journal o f System Integration, Vol. 1, No. 3/4,
pp. 265-282, Nov. 1991.

143.[YOUR 89] Yourdon, E., M odem Structured Analysis, Prentice Hall, 1989.

144.[YOUR 92] Yourdon, E., Decline and Fall o f the American Programmer, Yourdon
Press Computing Series, Prentice Hall, Englewood Cliffs, NJ, 1992.

145. [ZEME 92c] Zemel T., and Rossak, W.,"Mega-Systems - The Issue o f Advanced
Systems Development," in Proceedings o f IEEE Second International Conference
on Systems Integration, Morristown NJ, June 1992, pp. 548-555.

146. [ZEME 92b] Zemel T., Rossak W., and Thimm H., "Domain Analysis as a Major
Component o f Integrated Systems Development," in Proceedings o f SERF ’92,
1992 Software Engineering Research Forum, Indialantic FL, Novem ber 1992, pp.
217-224.

147. [ZEME 92a] Zemel T., and Rossak W., "A Framework for the Development o f
Complex Computer Based Systems as Mega-Systems," Workshop on Computer
Based Systems Engineering, London, England, December, 1992.

GLOSSARY

This glossary includes definitions o f the concepts used in M egSDF. It relies on the

glossary found in the "Systems and Software Requirements Engineering - IEEE Computer

Society Press Tutorial" written by Richard H. Thayer and Mildred C. Thayer; these

definitions are designated by [THAY 90]. The same convention is followed with

definitions drawn from other sources. Concepts new to M egSDF or concepts adapted for

M egSDF are designated by [*]. Other definitions represent standard terminology.

1. Application Domain

An application domain is a comprehensive, internally coherent, relatively self-contained

area or business enterprise supported by software systems. An application domain consists

o f phenomena o f various types, e.g., objects, relations, constraints, activities, and

processes. See chapter 5. [*]

A domain is a separate real, or hypothetical, or abstract world inhabited by a

distinct set o f objects that behave according to rules and policies characteristic o f the

domain. [SHLA 92]

2. Application Architecture [*]

An application architecture defines the boundaries o f the M ega-System within the

application domain, the various systems and components o f the Mega-System, their

320

321

interfaces, and the services provided by each component. It is part o f the M ega-System

architecture, an output o f the Mega-System architecture design task.

The application architecture is used by the M ega-System synthesis and the systems

tasks as a reference model and guideline. It is an instantiation o f the conceptual

architecture. The application architecture is domain specific as opposed to the conceptual

architecture. See chapter 6.2.3.

3. Autonomous System

An autonomous system is a system developed to work on its own, independently o f other

systems. An autonomous system has both self-contained functionality and self-contained

technical environment. The development o f an autonomous system is usually done by a

software team and according to team standards and procedures. See chapter 2 and 3.

4 . Architectural Style

Architectural styles are common software architectures defining general design and

implementation concepts. The architectural styles are used as inputs to the conceptual

architecture design task. See section 6.2.3.

5. Conceptual Architecture [*]

A conceptual architecture defines common design and implementation concepts for the

M ega-System , as well as guidelines for deriving the application architecture o f the Mega-

System. It is a part o f the Mega-System architecture, an output o f the M ega-System

322

architecture design task. MegSDF proposes dividing the concepts o f the conceptual

architecture into interrelated views, e.g., structural, communication, control, data, and

environment. The conceptual architecture is a specialization o f an appropriate architectural

style.

The infrastructure and the domain model have a major influence on the conceptual

architecture since they are used as inputs to the decision process that selects the conceptual

architecture. The conceptual architecture is used as an input for the infrastructure

acquisition and the system tasks developing constituent systems o f the M ega-System. See

section 6.2.2.

6. Derived From [*]

The relationship between a set o f functionalities specified at a conceptual level and a

system developed as an instantiation o f this set o f functionalities, or the specialization o f

such a set o f functionalities followed by their instatiation. See section 2.3.

7. Dim ension [*]

A part o f the domain model, consisting o f interrelated elements representing the

phenomena o f the domain. The number o f dimensions in a domain m odel, and their

content depend on the actual domain and the modeling approach. See section 5.2.

323

8. Domain Analysis [*]

Domain analysis is one o f the M ega-System design tasks. In this task an application

domain is abstractly modeled. Each phenomenon in the domain is represented as an

element and described from various aspects. To achieve a comprehensive model o f the

domain we propose viewing the domain from different perceptions and then integrating

these perceptions into a unified model. Unlike domain analysis methods used fo r

reusability, M egSD F domain analysis does not include constructive issues, e.g, design and

implementation, fo r the domain. See section 5.2.

9. Domain M odel [*]

An output o f domain analysis which describes the phenomena for a specific application

domain from different points o f view (perceptions). Each phenomenon is represented by

an element and is described from various aspects. Possible phenomenon types are objects,

relations, processes, and constraints. The domain model is used by the Mega-System

architecture design task as an input that affects the choice o f M ega-System architecture.

Parts o f the domain model are used by the various systems tasks as inputs for the

requirement analysis phase. See section 5.2.

10. Domain Schema [*]

A set o f m odeling primitives (element-types) to be used for building a domain model. A

domain-schema is defined on the basis o f a suitable modeling approach and the actual

324

domain. M egSDF proposes dividing the schema into domain schema dimensions each

consisting o f interrelated element-types. See section 5.2.

11. Element[*]

An element is a component o f the domain model representing a phenomenon o f the

domain. See section 5.2.

12. Enabling Technology'

An enabling technology is one that makes another technology or technologies possible.

[RHEI 91]

Enabling technologies are the diverse parts o f the infrastructure. Their integration

enables the development and operation o f Mega-Systems. These technologies are the

mechanisms that support the implementation and the integration o f the various systems. [*]

See chapter 7.

13. Environment

An environment is the circumstance under which a software system operates, consisting

o f processors, operating systems, programming languages, and development and

debugging tools. See chapters 1 and 3.

325

14. Framework [*]

A framework is a comprehensive approach or reference model in a domain. It defines a

set o f mutually integrated methods and concepts and is used for the solution o f a complex

problem.

We propose M egSD F as a framework fo r the development o f Mega-Systems. It is

composed o f engineering, management, and technical aspects. It is used as a guideline in

the planning and execution o f a process fo r developing a Mega-Systems. See chapter 3.

15. Generic

Of, pertaining to, or applicable to all the members o f a genus, class, group, or kind. [WEBS

91]. See section 2.3.

16. Generic System

A generic system is a specification o f a set o f interrelated functionalities and the actual

systems derived from this specification. A functionality is specified on an abstract and

conceptual level by natural languages or formal definitions. Different systems are derived

by an instantiation or specialization o f the abstract functionalities.

Generally, a generic system is developed by several software teams belonging to

the same organization. Each software team develops a derived system as an independent

project. See section 2.3.

326

17. Generic System of Systems!*]

Generic Systems o f systems is a subclass o f the system o f systems and generic systems

classes. A Generic system o f systems is developed for a domain without a specific

technical environment, time frame, or customers, and can have multiple configurations

consisting o f several systems at a given point o f time. See section 2.4.

18. Homogeneous Environment

A homogeneous environment is an environment in which a software system operates,

consisting o f one type o f operating system, a specific set o f tools, one language, and a

hom ogeneous hardware configuration. See chapter 1.

19. Heterogeneous Environment

A heterogeneous environment is an environment, in which a software system operates

consisting o f several different operating systems, a mixed set o f tools, various

programming languages, and several hardware configurations. See chapter 1.

20. Heterogeneous User Group

A heterogeneous user group is a group o f users o f a software system characterized by a

large number o f users with diverse roles located in diverse sites such users have no

common user profile or fixed requirements. See chapter 1.

I l l

2 1 . Huge System

A huge system is a large, complex software system developed by a large software team

and/or over a long period. These systems usually solve a particular problem for a well-

defined user group. A huge system is composed o f multiple subsystems, where each

subsystem is designed and developed only as a part o f the whole system. A huge system

operates in homogeneous or heterogeneous environments.

Huge system are generally developed as one large project. However, we propose

developing huge systems as systems o f systems. Huge systems are type o f Mega-System.

See chapter 2.1.

22. Infrastructure [*]

An infrastructure is an environment that integrates all enabling technologies that facilitate

the development and operation o f a Mega-System. It is chosen in the infrastructure

acquisition task. Essential enabling technologies o f an infrastructure include

communication, database management system, and user interface. The infrastructure

forms a stable layer between the various constituent systems o f the M ega-System and the

enabling technologies.

The infrastructure is used as a mechanism fo r the development o f the constituent

systems and fo r their integration in the Mega-System synthesis tasks. It is an input fo r the

Mega-System architecture design task and has a major influence on the architecture o f

the Mega-System. See chapter 7.

328

23. Infrastructure Acquisition [*]

The infrastructure acquisition task includes choosing, developing or purchasing,

validating, and supporting an infrastructure that integrates the enabling technologies into

a unified platform. This process is based on the conceptual architecture o f the Mega-

System and aims at selecting an infrastructure.

Currently, only a fe w infrastructures exist and therefore an infrastructure typically

must be developed. We believe that in the future infrastructures will be standard products,

hence this task will tend to be solely a decision and certification process and will not

involve development. See chapter 7.

24. Instantiation [*]

A system S is an instantiation o f a specification o f a set o f functionalities i f S implements

these functionalities using a specific algorithm, programming language, or hardware

configuration. See section 2.3.

25. Integrate-to [*]

A relation between a constituent system Si and its parent M ega-System P, wherein the

system Si is integrated with other constituent systems {S I, S2, ..., Si-1,, Si+1, ..., Sn} to

form the M ega-System P. A system S that is "integrated to" might be considered as a

stand-alone system. Each constituent system is developed by a separate team, under

different management, procedures and standards, and with its own schedule. However, all

329

the constituent systems operate as a coherent larger system after the integration. See

section 2.2.

26. Integration

The act or instance o f incorporating or combining into a whole. [WEBS 91]

In software development, integration is performed at several phases o f the life

cycle. Different types o f components include lines o f code, modules, subsystems, and the

most sophisticated components - systems. The integration o f components developed by

different individuals is very difficult. It is further complicated when components are

developed by different groups, using different standards and procedures, working at

diverse sites. [*] See section 2.2.

27. Mega-Project[*]

A project for the development o f a Mega-System. It includes multiple projects that

develop the constituent systems o f the Mega-System. The mega-project is managed by a

meta-management. We recommend developing a mega-project in accordance with the

process model o f MegSDF. See section 3.3.

28. Mega-System[*]

M ega-Systems are large, complex software systems with one or more o f the following

characteristics:

330

- Consist o f more than one system,

- Developed by more than one group o f developers,

- Have a large and heterogeneous group o f users,

- Have More than one customer,

- Operate in a heterogeneous technical environment.

We propose development o f a Mega-System using M egSDF as a mega-project

controlled by a meta-level management with multiple projects fo r the development o f the

constituent systems. We identify huge systems, systems o f systems, and generic systems as

subclasses o f the Mega-System class. See chapter 2.

29. Mega-System Architecture Design Task

M ega-system architecture design is one o f the M ega-System tasks. It plans the Mega-

System as a w hole and includes the specification o f common design and implementation

concepts, definition o f Mega-System boundaries, allocation o f domain elements to

systems, and definition o f systems interfaces. The inputs to this task are the domain model

and the chosen infrastructure. The output o f this task is a M ega-System architecture,

including a conceptual and an application architecture. See section 6.2.2.

30. Mega-System Tasks[*]

The M ega-System tasks are a group o f tasks in the engineering process for the

development o f a Mega-System including domain analysis, infrastructure validation, and

the M ega-System architecture design. The tasks in this group are essential fo r Mega-

331

System development and have the role o f engineering coordination o f the various systems

tasks and o f the whole process. See section 3.3.

31. M ega-Systems Synthesis [*]

M ega-System Synthesis is a task for forming a M ega-System from its constituents. It

includes specification o f software and hardware configuration based on analysis o f non

functional customer requirements and the application architecture, and an instantiation and

customization o f the components according to these requirements. See section 8.3.

32.M egSDF [*]

A framework for development o f Mega-Systems. It incorporates engineering, managerial,

and technological aspects and focuses on an engineering process. The engineering process

consist o f the required activities for development o f M ega-Systems and emphasizes the

engineering coordination o f the development o f constituent systems.

33. Meta-Management[*]

The meta-management is the organizational unit responsible for the development o f a

M ega-System. The meta-management plans the development o f the entire M ega-System

and controls the M ega-System tasks and the various systems tasks. It is responsible for

determining policies, directions, and the global schedule, and for allocating resources

based on actual domain needs. See sections 3.3, 8.1.

332

34. M eta-M anagement Task

A group o f tasks performed by the meta-management for controlling the process o f a

M ega-System development. These tasks are considered as scaled up traditional

management tasks and include scheduling, budgeting, quality assurance, and configuration

management. See section 8.1.

35. Method

A detailed approach for solving an engineering problem.[THAY 90]

A procedure, technique, or a planned way o f doing something.[W EBS 91]

36. Methodology

A general approach for solving an engineering method. [THAY 90]

A set or system o f methods, principles, and rules used in a given discipline, as in the arts

or science. [WEBS 91]

37. Module

A program unit that is discrete and identifiable with respect to compiling, linking, and

loading. [THAY 90]

A logically separable part o f a program. [ANSI/IEEE Standard 729-1983]

A module is linked with other modules to form a software subsystem or system.

333

38. Part-of

A relation between a subsystem sf and its parent system S. The subsystem s, is linked with

other subsystems {s,, s2v. , Sj.,,, si+l, sm} to form the system S. Each subsystem o f the

system is planned and developed to work only in the context o f the whole system. See

section 2.1.

39.Perception

A representation o f a domain from the specific point o f view o f a significant perceiver;

modelled using perception-elements that represent relevant phenomena o f the domain. See

section 5.2.

40. Post-facto Integration

Post-facto integration is the process o f systems integration in which the constituent

systems were developed before the design o f the entire system o f systems. Each system

was developed as an autonomous system. This contrasts with pre-facto integration in

which the system o f systems is known in advance and the constituent systems are

developed in the context o f the system o f systems. A synonym for post-facto integration

is a posteriori integration. See section 3.3.6.

41. Pre-facto Integration

Pre-facto integration is a process o f systems integration in which the decision on the

organization o f the system o f systems, as well as all components o f the system are known

334

in advance and the constituent systems are designed to work in the context o f the system

o f systems. A synonym for pre-facto integration is a priori integration. See section 3.3.6.

42. Pre-Planned Approach [*]

A fundamental design principle for development o f software systems. According to this

principle, even though no known requirements exist in advance, each system is designed

to efficiently accommodate the following operations:

- integration with other systems,

- extensions o f the system with new functionalities, and

- customization o f the system with user selected actual parameters.

We propose domain analysis, Mega-System architecture design, and infrastructure

acquisition tasks to support this principle. See Section 3.3.6.

43. Process

A set o f activities (tasks) whose execution is required to achieve a specific goal. A

software development process includes all those activities which are required to build a

software system. See section 4.

44. Process Model

A representation o f a system/software development process activity intended to explain

the behavior o f some its aspects.[THAY 90]

335

We propose an engineering process model fo r the development o f a Mega-System.

This model includes the definition o f the various activities, their relations, and the data

and control flow s between them. See section 4.

45. Project

A project is the set o f activities, functions, tasks, both technical and managerial, required

to satisfy the terms and conditions o f the project agreement. It is a temporary activity,

characterized by having a starting date, specific objectives and constraints, established

responsibilities, a budget and schedule, and a completion date. [THAY 90]

In megSDF, a project is responsible fo r developing a constituent system or

synthesizing a Mega-System to a specific customer. See section 3.3.

46. Risk Analysis

The methodical process o f identifying:

- areas o f potential risks,

- the associated probability o f occurrence, and

- the seriousness o f the consequence o f the occurrence.

[T H A Y 90], See section 8.1.

336

47. Service Group[*]

A service group is a part o f the infrastructure consisting o f a set o f interrelated services

offered by the infrastructure. M egSDF proposes that service groups correspond to the

architectural views. See section 6.2.

48. Software Engineering

1. The practical application o f computer science, management, and other sciences to the

analysis, design, construction, and maintenance o f software and its associated

documentation.

2. The systematic application o f methods, tools, and techniques to achieve a stated

requirement or objective for effective and efficient software systems. [THAY 90]

The application o f methods, tools, and disciplines to produce and maintain an automated

solution to a real-world problem. [BLUM 92]

49. Software Configuration Management (SCM)

The discipline o f identifying the configuration o f a software system at discrete points in

time with the purpose o f systematically controlling changes to the configuration and

maintaining the integrity and traceability o f the configuration throughout the system life

cycle. [THAY 90]

337

50. Software Quality

Software quality is the degree to which software possesses a desired combination o f

attributes.

Attributes o f software that affect its perceived value, for example, correctness, reliability,

maintainability, and portability. [ANSI/IEEE Standard 729-1983]

51. Software Quality Assurance (SQA)

A planned and systematic pattern o f all actions necessary to provide adequate confidence

that the software and the delivered documentation conform to the established technical

requirements. [ANSI/IEEE standard 729-1983]

52. Software System

A software system is a collection o f software modules/subsystems linked together to

accomplish some common objectives.

A software system is developed by a software team. It is designed to work on its

own and fo r a specific purpose. Any subsystem or module in a system is developed to

work as a part o f the entire system.

53. Structured Analysis (SA)

A software analysis technique that uses data flow diagrams (DFDs), data dictionaries, and

process descriptions to analyze and represent software requirements. [THAY 90]

54. Structured Analysis and Design Technique (SADT)

SA DT is a framework for the analysis and design activities o f software system

development. It is based on graphical notations drawn as a hierarchy o f diagrams. It also

defines the various personnel roles in a software project. [THAY 90],

55. Sub-system

A set o f modules, sub-systems, or both, functionally related and with high coupling. Sub

systems are linked together to form a system. Usually, a sub-system is developed by one

software team. See section 2.1.

56. System Architecture

In systems engineering, the structure and relationship among the components o f a system.

The system architecture may also include the system 's interface with its operational

environment. [ANSI/IEEE Standard 729-1983]

57. Systems Integration!*]

System integration is the process o f planning, implementing, and maintaining a system o f

systems. This process might be considered as the most sophisticated level o f integration,

where the components for integration are stand-alone systems.

339

58. System of Systems[*]

A system o f systems integrates several systems to form a larger system. The coupling

between the various systems which form the system o f systems is low. The constituent

systems are developed independently, by various software teams. See section 2.2.

59. System Task[*]

A system task is one o f the engineering sub-processes o f M egSDF. It includes the

development or maintenance o f a constituent o f a M ega-System as a project. There may

be multiple concurrent instances o f a system task. System tasks can apply any traditional

software systems development approach and are controlled by the meta-management task.

See section 8.2.

60. Task [*]

An activity in an engineering process with a specific objective and schedule. Several tasks

performed to achieve a particular purpose constitute a process. A complex task may be

decomposed into several sub-tasks. See chapter 4.

61. Technique

A technique is the body o f specialized procedures and methods used in a specialized field,

especially in an area o f applied science. [WEBS 91]

340

62. Tool

A tool is a step-by-step, formalized, manual, or automated process for solving an

engineering problem. [THAY 90]

Anything used as a mean o f accomplishing a task or a purpose. [WEBS 91]

63. View[*]

A view in M egSDF is a part o f the conceptual architecture, consisting o f a set o f

interrelated design and implementation concepts. The conceptual architecture is divided

into several view s and all views together form a conceptual architecture. M egSDF

proposes dividing the conceptual architecture into structural, communication, control,

data, and environment view’s. See section 6.2.

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 1993

	MegSDF Mega-system development framework
	Tamar Zemel
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Abstract (1 of 2)
	Abstract (2 of 2)

	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 5)
	Table of Contents (2 of 5)
	Table of Contents (3 of 5)
	Table of Contents (4 of 5)
	Table of Contents (5 of 5)
	Chapter 1: Problems in Development of Current Software Systems
	Chapter 2: Mega-Systems
	Chapter 3: A Framework for Mega-System Development
	Chapter 4: MegSDF Process Model
	Chapter 5: Domain Analysis for Mega-Systems
	Chapter 6: Mega-System Architecture Design
	Chapter 7: Infrastructiure Acquisition in MegSDF
	Chapter 8: The Meta-Management, System, and Mega-System Synthesis Tasks
	Chapter 9: A Scenario
	Chapter 10: Conclusions and Summary
	Appendix A: MegSDF Process Diagrams
	Bibliography

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 2)
	List of Figures (2 of 2)

