
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Spring 5-31-1993

Algorithms for generation of path-methods in object-oriented Algorithms for generation of path-methods in object-oriented

databases databases

Ashish Mehta
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mehta, Ashish, "Algorithms for generation of path-methods in object-oriented databases" (1993).
Dissertations. 1179.
https://digitalcommons.njit.edu/dissertations/1179

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1179?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information C om p an y

3 0 0 North Z e e b R oad. Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6 USA
3 1 3 /7 6 1 -4 7 0 0 8 0 0 /5 2 1 -0 6 0 0

Order N u m b er 9401728

A lgorithm s for generation o f path-m ethods in object-oriented
databases

Mehta, Ashish Khandubhai, Ph.D.

New Jersey Institute of Technology, 1993

Copyright © 1993 by M ehta, Ashish Khandubhai. All rights reserved.

U M I
300 N. ZeebRd.
Ann Arbor, MI 48106

ALGO RITH M S FOR G EN ER A TIO N OF

PA T H -M E T H O D S IN O B JE C T -O R IE N T E D DATABASES

by

Ashish M ehta

A D issertation
Subm itted to the Faculty of

N ew Jersey Institu te o f Technology
in Partial Fulfillment of the R equirem ents for the D egree of

D octor of Philosophy

D epartm ent of Com puter and Inform ation Science

M ay 1993

A B ST R A C T

A lgorithm s for G eneration of

Path—M ethods in O bject-O riented Databases

by

Ashish Mehta

A path-method is a mechanism in object-oriented databases (OODBs) to retrieve

or to update information relevant to one class that is not stored with that class

but with some other class. A path-method is a method which traverses from one

class through a chain of connections between classes to access information at another

class. However, it is a difficult task for a user to write path-methods, because it might

require comprehensive knowledge of many classes of the conceptual schema, while a

typical user has often incomplete or even inconsistent knowledge of the schema.

This dissertation proposes an approach to the generation of path-methods in an

OODB to solve this problem. We have developed the Path-Method Generator (PMG)

system, which generates path-methods according to a naive user’s requests. PMG is

based on access weights which reflect the relative frequency of the connections and

precomputed access relevance between every pair of classes of the OODB computed

from access weights of the connections. We present specific rules for access weight

assignment, efficient algorithms to compute access relevance in a single OODB, and

a variety of traversal algorithms based on access weights and precomputed access

relevance. Experiments with a university environment OODB and a sample of path-

methods identify some of these algorithms as very successful in generating most of

the desired path-methods. Thus, the PMG system is an efficient tool for aiding the

user with the difficult task of querying and updating a large OODB.

The path-method generation in an interoperable multi object-oriented database

(IM-OODB) is even more difficult than for a single OODB, since a user has to be

familiar with several OODBs. We use a hierarchical approach for deriving efficient

online algorithms for the computation of access relevance in an IM-OODB, based

on precomputed access relevance for each autonomous OODB. In an IM-OODB the

access relevance is used as guide in generating path-methods between the classes of

different OODBs.

Copyright © 1993 by Ashish Mehta

ALL RIGHTS RESERVED

APPROVAL PAGE

Algorithms for Generation of

Path—Methods in Object—Oriented Databases

Ashish Mehta

Dr. Yehoshua Perl, Dissertation Advisor 	 (date)

Professor, Computer and Information Science Department,
New Jersey Institute of Technology

Dr. James, Geller, Dissertation Co-Advisor 	 (date)
Assistant Professor, Computer and Information Science Department,
New Jersey Institute of Technology

Dr. James A. M. McHugh, Committee Member 	 (date)
Professor, Computer and Information Science Department,
New Jersey Institute of Technology

Dr. Bonnie MacKellar, Outside Reader

	

(date)
Assistant Professor, Mathematics and Computer Science Department,
Western Connecticut State University

r Jason T. L. Wang, Committee Member 	 (date)
sistant Professor, Computer and Information Science Department,

New Jersey Institute of Technology

Dr. Aaron Watters, Committee Member 	 (date)
Assistant Professor, Computer and Information Science Department,
New Jersey Institute of Technology

BIOGRAPHICAL SKETCH

Author: Ashish Khandubhai Mehta

Degree: Doctor of Philosophy in Computer Science

Date: May 1993

Education:

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 1993

• Master of Science in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 1989

• Bachelor of Engineering in Electronics & Communications,

Gujarat University, Ahmedabad, India, 1987

Publications:

• "Computing Access Relevance to Support Path-Method Generation in

Interoperable Multi-OODB", with J. Geller, Y. Perl, and P. Fankhauser, (Full Paper)

In the Proceedings of the RIDE—IMS'93: Third International Workshop on Re-

search Issues on Data Engineering: Interoperability in Multidatabase Systems,

Vienna, Austria, April 18-20, 1993, pp. 144-151.

• "Algorithms for Access Relevance to Support Path-Method Generation in OODBs",

with J. Geller, Y. Perl, and P. Fankhauser, In the Proceedings of the Fourth In-

ternational Hong Kong Computer Society Database Workshop, Shatin, Hong

Kong, Dec. 12-13, 1992, pp. 183-200.

• "Algorithms for Computing Access Relevance in Object-Oriented Databases",

with J. Geller, Y. Perl, and P. Fankhauser, (Extended Abstract) In the Pro-

ceedings of the First International Conference on Information and Knowledge

Management, Maryland, USA, Nov. 8-10, 1992, pp. 657.

iv

“Algorithms for Structural Schema Integration”, with J. Geller, Y. Perl, E.J.
Neuhold, and A. Sheth, In the Proceedings of the Second International Con
ference on Systems Integration, Morristown, NJ, USA, June 15-18, 1992, pp.
604-614.

“Cascading LZW algorithm with Huffman Coding: A Variable to Variable
Length Compression Algorithm”, with Y. Perl, In the Proceedings o f First Great
Lakes Computer Science Conference, Western Michigan University, Kalamazoo,
Michigan, Published as Computing in 90’s, Lecture Notes in Computer Science
Series, vol. 507, Springer Verlag, 1991, pp. 170-178.

T his d issertation is dedicated to

m y loving father, late K handubhai P. M ehta

and

m y loving m other, V asantiben K. M ehta

A C K N O W LED G M EN T

I would like to thank my advisor, Professor Yehoshua Perl, for his invaluable

contributions in this dissertation. I would also like to thank my co-advisor Dr. James

Geller for all good suggestions he made regarding this dissertation. I would also like

to thank all the committee members.

I would like to thank all the members of our research group, particularly those who

have participated in the development of the university database. Namely, Veena Teli,

Hungkway Chao, Christino Wijaya, Munir Ahmedi, Salil Kulkarni, Abhay Bhave,

Nimesh Dixit, Manhar Patel, Himanshu Pandit, Bheeman Lingan, and Madhumathi

Tulsiram. I would also like to thank Prasanna Venkatesh, Aruna Kolia, and Mary

Wang from the graphical knowledge representation project. From the OODINI group,

I would like to thank Mike Halper jand Subrata Chaterjee. I would also like to thank

members of GMD-IPSI, particularly, Wolfgang Klas, Peter Fankhauser, and Gisela

Fischer.

I would also like to thank the department chairperson Dr. Peter Ng for his financial

support and Dr. Erich Neuhold from GMD-IPSI for his suggestions, financial support

and for two trips to GMD-IPSI. I would also like to thank Dr. Amit Sheth from

Bellcore for his suggestions. I also thank Dr. Erole Gelenbe for partially supporting

me for one semester and for a conference trip.

Finally, I would like to thank my family members, and relatives.

TABLE OF C O N T E N T S

C hapter Page

1 IN TR O D U C T IO N 1

1.1 Problem D esc rip tio n ... 1

1.2 Related W o rk .. 3

1.3 Framework of the D issertation ... 7

1.4 User Interaction with the PMG S ystem ... 9

1.5 Outline of the D issertation ... 12

2 O O DB PA TH -M ETH O D S 15

2.1 A General OODB Model ... 15

2.2 Path-M ethods.. 17

3 PA TH -M ETH O D G EN ERA TIO N U SIN G ACCESS W EIG H TS 23

3.1 Access Weights for an OODB Schem a.. 23

3.2 Access Weight Traversal Algorithm s... 33

3.3 A Sample Set of Path-M ethods for a University Database 35

3.4 Experimental Results of Sample Set of P a th -M eth o d s........................ 49

4 PA TH -M ETH O D G EN ER A TIO N U SIN G ACCESS RELEVANCE 55

4.1 Human Traversal in Object-Oriented D a ta b a s e s 55

C hapter Page

4.2 Definition of Access Relevance for an OODB S c h e m a 58

4.3 An Algorithm for Path-M ethod Generation using Precomputed Access

R e lev an ce .. 63

4.4 Results of Experiments for the Sample Set of P a th -M e th o d s 72

4.5 Parameterized Path-M ethod G en e ra tio n .. 77

5 ALGO RITH M S FOR C O M PU TIN G ACCESS RELEVANCE IN

A N OODB 82

5.1 Access Relevance Computation for the PRODUCT Weighting Function 82

5.2 An Algorithm for the MINIMUM Weighting F u n c tio n 89

5.3 An Improved Algorithm for Bidirected Schem as.................................... 92

6 C O M PU TIN G ACCESS RELEVANCE IN A N IN TER O PER A BLE

M U LTI-O O D B 100

6.1 An IM-OODB Containing Only Two O O D B s 103

6.2 An IM-OODB Containing Many O O D B s.. 114

7 A U N IV E R SIT Y EN V IR O N M E N T OODB 123

7.1 Classes of a Subschema of the University Database 124

7.1.1 Student-related Classes .. 124

7.1.2 Course-related C la sse s ... 129

7.1.3 Instructor-related C la s s e s ... 131

C hapter Page

7.1.4 Assistant-related C lasses... 135

7.1.5 University-related C la s se s .. 136

7.1.6 Resume-related Classes ... 139

8 D E SIG N OF A N OODB PA TH -M ETH O D G EN E R A TO R 143

8.1 Interface Classes of the Path-M ethod G enera to r.................................... 146

8.2 Traversal Algorithms of Path-M ethod G enerator.................................... 156

8.3 Computation Algorithms of Path-M ethod G e n e ra to r 167

8.4 How does Path-M ethod Generator W o r k ? ... 169

8.5 Integrating PMG with an OODBMS ... 171

9 IM PL E M E N T IN G PM G FO R V O D A K /V M L O O DB 173

9.1 VODAK/VML OODB P ro to ty p e ... 173

9.2 Other PMG Classes for VODAK/VML O O D B 180

10 C O NCLUSIO NS A N D F U T U R E W ORK 194

R E FER EN C E S 200

x

LIST OF TABLES

Table Page

3.1 Results of Access Weight Traversal A lgorithm s... 50

3.2 Results for a Sample of 50 Path-M ethods ... 54

4.1 Steps of the Algorithm PathM ethodGenerate.. 68

4.2 Results of PathMethodGenerate and Modified PathMethodGenerate . . . 73

4.3 Results of a Larger Sam ple... 76

5.1 Computation of PRODUCT_AR on Graph of Figure 5 . 2 86

5.2 Access Relevance Matrix ARM for Graph of Figure 5 . 2 87

5.3 Computation of MINIMUM-AR on Graph of Figure 5 .2 90

6.1 ARM for Departmental O O D B ... 114

xi

LIST OF FIGURES

Figure Page

1.1 Architecture for Query Processing... 8

2.1 A Subschema of a University D a ta b a se ... 16

3.1 A Subschema of a University Database with Access W e ig h ts 25

3.2 A Larger Subschema of a University D a ta b a se .. 40

5.1 A Subschema of a University D a ta b a se ... 85

5.2 The Subschema as a Directed G r a p h .. 85

5.3 Impossible Special P a t h ... 88

5.4 The Rooted MWST (Rooted at 2) 94

5.5 A Rooted AR Spanning Tree (Rooted at 2) 95

5.6 The Undirected Rooted M W S T .. 97

5.7 The Triangular ARM Matrix ... 98

6.1 An Interoperable Multi-OODBs System ... 101

6.2 Realization of Connections between Two Component O O D B 104

6.3 An IM-OODB Containing the Registration and the Departmental OODB 105

6.4 Registration and Departmental Schemas as a Directed Graph (Rule 2a) . 108

6.5 The Graph Representation of the Schema of Figure 8 using Rule 2b . . . 109

xii

Figure Page

6.6 Computation of Access Relevance.. 113

6.7 Two Graphs G(V, E) and H(U, D) for IM-OODB with Many OODBs . . 117

6.8 An Efficient Computation of Access R elevance... 121

7.1 The Larger Subschema of a University D atab ase .. 125

8.1 The OODB Subsystems Including a Path-Method G en era to r..................... 144

8.2 Classes for Path-M ethod G enerator... 149

8.3 Objects for Path-M ethod G e n e ra to r ... 170

8.4 Connections Between the PMG and an O O D B M S...................................... 171

xiii

C H A PT E R 1

IN T R O D U C T IO N

1.1 Problem D escription

One of the most important components of an object-oriented database (OODB) is

its query language. Generally, query processing in OODBs requires extraction of

information from several classes and possibly combination of the results to form an

answer to a query. While processing a query, we apply a message to an object (an

instance of a class). If the message can be handled by the object, we retrieve the

necessary information from it. If not, we might need to traverse from the object

where we applied the message to other related objects, to retrieve an answer, if this

answer is available at all in the OODB. To perform this traversal we use a path-

method mechanism, which accesses information relevant to a class in an OODB, that

is not stored with that class but with some other class. Informally, a path-method

is defined as a method which traverses from one class through a chain of connections

(user-defined or generic relationships) between classes either to retrieve information

from another class or to update information at another class.

The current object-oriented databases assume that

1. path-methods to support queries either exist or a user needs to write them,

based on his knowledge of the conceptual schema, or

2. a user view has already been created and the user can formulate all his queries

within this limited scope.

But, we observe that

1. for large OODBs writing such path-methods might require knowledge of many

of the classes in the database, even those that will ultimately not be used by a

specific application;

2. in writing these path-methods ahead of time it is necessary to predict what

kind of user requests will be applied to each class in the database, i.e., there

exists a predefined static view;

3. formulating ad hoc queries is a frustrating task, as incomplete queries will be

rejected without helpful hints by the database.

We introduce as a solution to these problems generation of path-methods for

OODBs. The PMG system requires user-interaction to judge, whether the generated

path-m ethod is the one s/he desired. One of the major advantages of automatic pa th -

method generation is that it neither requires any prior knowledge of the conceptual

schema nor the creation of predefined views. It is also not necessary to browse the

schema or write path-methods for all the classes in the system in advance. A (novice)

user can formulate his queries as per his (naive) view of the database. For example,

to find all the courses of an instructor, the user can specify his request as (instructor,

course). In the schema the class instructor does not have a property “courses” but only

3

“sections”. Thus, the generation of a path-m ethod becomes necessary. The system

will generate the necessary path-method and display it to the user for verification.

After this verification the user query will be processed by executing the path-method.

The path-method may then be stored for later reuse.

1.2 R elated Work

Most OODBs such as GemStone [BOS91], ONTOS [M91], ObjectStore [LL0W91],

O2 [D91a], IRIS [F87], ITASCA [B91], and VERSANT [GD91] have introduced SQL-

based query languages. These query languages are not richer than the relational

or the nested relational model for query languages. An improved query model was

developed for ORION [BKK88, K89, K90a], which is consistent with object-oriented

concepts and is inherently richer than relational or nested relational query models.

It has been observed in [JTTW88] that traversal queries dominate set queries

in object-oriented databases and in [G91] that navigational access, is important in

object-oriented databases. [KKS92, BNPS92, LR92] discuss query languages which

supports traversal using path-expressions. The term path-expression was first in

troduced in [MBW80] and has had many incarnations since. In [KKS92] a query

language XSQL is introduced which supports path-expressions to query the OODB

schema. In [BNPS92], OODB methods and OODB views are contrasted. It shows

importance of methods to query an OODB. In [LR92] a query language WS-OSQL

is developed for WS-IRIS prototype which offers a navigational interface. In [KM90]

4

predefined path-expressions and in [OHMS92] system-known path indexes are main

tained for answering queries. Optimization techniques of OODB queries using paths

are discussed in [CD92] and [LVZ92].

In our approach we describe path-expressions as path-methods and discuss semi

automatic generation of such path-methods, which is not found in the literature.

The automatic generation of join sequences in relational databases is an analogous

problem to path-m ethod generation. There are two major approaches to this problem,

the universal schema interface [M83, MU83, MRSS87] and the implicit join [L85].

However, in automatic generation of joins, few usable results have been achieved

so far. There is a fundamental difference between path-methods discussed in this

dissertation and joins in relational databases. Path-m ethods are generated using

connections of the OODB schema and can be stored as methods of a class. Joins

are used to combine data stored in different relations, which may be quite large, and

require a large overhead for deriving query-results. On the other hand, once a path-

method is generated, its execution requires just the fast traversal of the necessary

connections which appear in the definition of the path-method. For example, in a

relational database to find all the sections taken by a student, we might need to join

three relations, student, transcript, and sections, which contain information about

all the students, all the transcripts and all the sections, respectively. Thus the join

operation requires processing a large volume of data. In an OODB, once we find

a student instance we follow the connections from student to transcript and then

from transcript to sections. This traversal does not require any information about

transcripts of other students, or sections taken by other students. Thus, the execution

of such a path-method is significantly more efficient than that of a join sequence in

a relational database.

The process of path-m ethod generation requires traversal of an OODB schema.

In general, OODB schemas contain much richer information compared with relational

schemas. For example, some models permit several kinds of specialization relation

ships (e.g., [NPGT91]). As another example, suppose that a university database

includes information about students of different kinds (e.g., graduate_student, un-

dergrad_student, etc.). In a relational database, there would likely be an attribute

Studenttype having the various student kinds as its possible values. In an OODB,

there would likely be a class s tu d e n t having the various student kinds as subclasses.

Hence, the OODB schema representation shifts the information about student kinds

from the data to the schema [KKS92]. Thus, the user can refer solely to one kind,

say graduate_student, without referring to the other kinds at all. The much richer

information available within OODB schemas promises more success for automatic

generation of path-methods than was achieved by generating join sequences.

In relational and/or semantic data model approaches [BH86, GKG85, KM84,

L86a], it has been noticed that an intelligent schema navigation tool can be help

ful for better query support. For relational databases, query construction using naive

user’s tokens is discussed in [M86]. It has been proposed by [L86b] that shared be

6

havior in OODB systems can be accomplished by message forwarding. A knowledge-

based approach to overcome structural differences in OODB integration is discussed

in [SN88aj. It is also observed in [S88, NS88] that when a query processor fails, an

interactive knowledge navigator, which accesses various thesauri, can help generating

a message forwarding plan. The concept of dynamic message forwarding plan gener

ation for incompletely specified global views of integrated databases is discussed in

[NS88]. Schema independent query formulation, i.e., finding proper terms defined in

the schema from the terms contained in a user-query has been discussed in [KN89].

The PMG system described in this dissertation can be considered as a powerful un

derlying traversal tool for schema independent query formulation [KN89], for dynamic

derivation of personalized views [NS88], and in general as a retrieval/update mecha

nism for OODBs.

There are several techniques to decide semantic relationships between classes

[SK92b, SN88a]. A classification of different techniques used for deciding seman

tic relationships between classes has been discussed in [S91a]. It considers graphical

facilities, query languages, and the use of a thesaurus, a dictionary, or meta-data.

The semantic relationships between classes are defined in [NPGT91, SN88a, I<90b,

KNS88, KNS89]. In [K90b] semantic relationships between classes are realized using

metaclasses. An approach using semantic resemblance between classes is discussed

in [FKN91, FN92]. Another approach which uses the notion of semantic proximity is

discussed in [SK92b]. Later on we will show how our approach using the notion of ac

7

cess relevance differs from the above two approaches. It has been observed in [SG89,

S91a] that, because the system has incomplete, sometimes inconsistent knowledge,

semantic relationships cannot always be determined by the system without human

input. The PMG system requires a human to check, whether the generated path-

method is the desired one or not. Verifying a path-method is certainly easier than

generating one.

1.3 Framework o f th e D issertation

This dissertation is part of a large collaborative research effort of N JIT and IPSI-

GMD1. The Path-M ethod Generator system [MPG92], discussed in this dissertation

is implemented as a module of the VODAK OODB system [KNBD92]. This VO-

DAK system is based on an object-oriented database model called the Dual Model

[NPGT91].

A human traverses an OODB schema by applying his intuitive understanding of

the classes and their connections. The Path-Method Generator (PMG) performs a

similar traversal. As shown in Figure 1.1, an OODB manipulation request will first

be accepted by the translator of the OODBMS. If the query cannot be completed

successfully, the Path-M ethod Generator is called. It will use the object-oriented

schema to generate a path-method needed for completing the query process. Gen-

1 Integrated Information Publications Systems Institute - Gesellschaft fuer Mathematik und

Datenverarbeitung

8

User Query or Update request
PATH METHOD GENERATOR

Path-Method

Completed

Translated

Query Non-usable Terms Usable Terms

Access W eights

■ Access Relevance

Traversal Algorithms

EXECUTION

QUERY

TRANSLATOR

TERM CLASSIFIER

Figure 1.1 Architecture for Query Processing

erated path-methods can be added to the schema or they can be used just for that

specific query. Since the user is not assumed to know the details of the schema s/he

will often use terms that do not occur in the schema, e.g. “employee of department”

instead of “member of department.” Here the Term-Classifier which is based on the

Knowledge Explorer [K91] will provide for the necessary translation.

In this dissertation we shall concentrate only on the mechanisms of the PMG. We

discuss path-method generation using access weights and precomputed access rele

vance [MPGF92, MPGF93]. The definitions and motivation of using access weights

and access relevance for guiding the traversal of the schema and algorithms for the

computation of access relevance are discussed. The traversal algorithms of PMG using

access weights and precomputed access relevance are compared experimentally to one

another and to known uniform traversal algorithms, such as breadth first search and

depth first search. In this dissertation, we discuss computation of access relevance in

an OODB and in an interoperable multi-OODB to support path-method generation.

1.4 User Interaction w ith th e PM G System

Now we will clarify our assumptions about the interaction between the user and

the PMG system introduced in this dissertation. We assume that the user knows the

source and the target of the desired path-method. S/he does not know the exact code

and not even the corresponding traversal path for the path-methods, but perceives

the proper interpretation or “semantics” of the path-m ethod s/he desires and can

give a verbal description of it. We further assume that the user supplies to the PMG

as input only a pair of (source, target). This is due to our observation that even if

the user will supply a verbal description of the path-method it is difficult to utilize

the information contained in the verbal description. One idea of utilizing the verbal

description is mentioned in Chapter 4.5.

Note that for the same pair of source and target there may exist several pos

sible semantics. For example for the pair (student, course) we list several possible

interpretations.

1. The courses already taken by a student.

2. The courses currently taken by a student.

3. The courses a student is registering for, for the next semester.

The above three interpretations of the given pair are quite straightforward.

There might be some interpretations which are less straightforward. E.g.,

4. The courses taught by all current instructors of a student.

10

5. The courses offered by the department of a student.

Thus, there is no sense in talking about a “right” or “wrong” path-m ethod gen

erated for a given pair. Different users may want different path-methods for the

same pair. Therefore, we talk about desired path-m ethod which the user can verify

while inspecting it. Hence, we take the approach that the PMG system does not

try to guarantee that the generated path-m ethod has the desired semantics as this

task seems to be beyond the capabilities of an automatic traversal. Rather, the PMG

system suggests to the user a path-method for verification. It is much easier for a

user to verify that a path-method fits his needs than to traverse the schema and find

it. In case the user is not satisfied with the path-method generated s/he can switch

into an interactive mode of operation where the feedback provided by the PMG’s

unsuccessful trial is utilized by the user to set parameters to better direct subsequent

applications of the traversal algorithm. In Chapter 4.5 we discuss specific options for

the user in the case that the PMG system did not supply the desired path-method

in the first trial.

In our approach we have chosen to generate and present to the user only one path-

method. In case that the path-method is not the desired one, the user can supply

feedback to set parameters for a subsequent traversal until the desired path-method

is obtained. Other possible approaches are to generate and provide the user with all

or the &-“best”(for some given integer k) path-methods, so the user can scan all of

them till s/he finds the desired one. We have not chosen these approaches since we

11

think they will overload the user with too much information. This is clearly true for

the approach of providing all possible path-methods since their number may be large

and, as shown in [P87, PG79, PZ81] in the worst case it may be exponential. For

the approach of providing the k - ubest” path-methods, the problem of overloading

the user with information is less critical. However, in view of the high success ratio

achieved for our most successful algorithms, we believe that a typical user will prefer

only one path-method which is the desired one in most of the cases. He still can

provide feedback for a second try if the result was not satisfactory. We believe that

this is preferable to forcing the user to understand k path-methods and to verify which

of them, if any, is the desired one. Utilizing the parameters provided by the user for

the second try will result in higher chances to find the desired path-method than

the chances that it is included in the fc-“best” path-methods, since the parameters

provide additional constraints to the PMG system.

Hence, we have developed a PMG system which does the following:

1. It supplies the desired path-method in most of the cases; and

2. It enables the user to perform subsequent traversals, incorporating feedback, to

find the desired path-method in almost all cases.

Such a system will serve as an important tool to support queries in an OODB.

12

1.5 O utline o f th e D issertation

Chapter 2 discusses a general OODB model and describes definitions and syntax for

path-methods in this general OODB model. It also describes a graphical representa

tion for this general OODB model.

Chapter 3 introduces the notion of access weights for OODB schema connections.

It motivates using access weights in schema traversal for path-method generation.

Specific rules for access weight assignment to schema connections are explained. Sev

eral access weight traversal algorithms which generate path-methods using access

weights are presented. A sample set of path-methods is defined for our experiments

with these algorithms. These path-methods are selected from a large university

environment object-oriented database schema which was developed as part of this

research. Experimental results using access weight traversal algorithms for path-

method generation on the sample of path-methods are presented. Some deficiencies

of these algorithms are discussed.

Chapter 4 starts by describing human traversal of an OODB schema to find a par

ticular item of information and introduces the notion of access relevance to support

similar automatic traversal and overcome the deficiencies mentioned above. Then,

it describes computation of access relevance for an OODB for path-method genera

tion. An algorithm for path-m ethod generation using precomputed access relevance

is discussed. Experimental results using the algorithm for path-method generation

for the above sample of path-methods are presented. Finally, mechanisms of the

13

Path-M ethod Generator, for the cases when a generated path-method in the first

phase is not the desired one, are presented.

Chapter 5 describes the computation of access relevance in an OODB. Two trian

gular norms (t-norms) PRODUCT and MINIMUM are considered as tools for this

computation. Efficient algorithms for computation of access relevance using PROD

UCT and MINIMUM t-norms in a directed schema graph are presented and their

correctness is proven. Finally, a more efficient algorithm for bidirected schemas for

MINIMUM weighting function is discussed.

Chapter 6 describes the computation of access relevance in an interoperable multi-

OODB (IM-OODB) system. We show how to realize an inter-OODB connection

between two component OODBs of an IM-OODB. We describe first the computation

of access relevance in an IM-OODB containing only two OODBs. Then an algorithm

for the computation of access relevance in an IM-OODB containing many OODBs

is presented using a hierarchical approach. That is, the algorithm assumes the pre-

computation of access relevance for each OODB, but not for the IM-OODB. Then

the IM-OODB is modeled as a relatively small graph to which we can apply the

previously developed algorithms for a single OODB to compute the access relevance

values for the IM-OODB.

Chapter 7 describes the university environment OODB, which was developed dur

ing this research. A large subschema of this university OODB containing 52 classes

has been used as a testbed for our experiments with various schema traversal algo

14

rithms discussed.

Chapter 8 is a design for the Path-M ethod Generator (PMG) as a module of an

object-oriented database. It defines all the classes of PMG using our general OODB

model and describes how the PMG works.

Chapter 9 describes the implementation of the PMG System as a module for the

VODAK/VML OODB system.

Chapter 10 concludes the dissertation with a summary and an outlook on future

research issues.

C H A P T E R 2

O ODB PA T H -M E T H O D S

2.1 A G eneral OODB M odel

In this section we discuss the most important features of an OODB model that are

necessary for understanding path-method generation. We keep this model general

enough to reflect a variety of existing OODB models. In our description we use some

of the terminology of the Dual Model [NPGT91, NPGT90, NPGT89, GPN91b] of the

VML(= VODAK Modeling Language) [KNBD92] system, but we are not referring to

its separation of structural and semantic aspects.

A class can be regarded as a container for objects that are similar in their structure

and their semantics in the application. A class description consists of the following

four kinds of properties: attributes, user-defined relationships, generic relationships

and methods. Attributes specify values of a given datatype while user-defined rela

tionships specify pointers to other classes. Generic relationships are system supported

connections between classes. Methods specify operations which can be applied to in

stances of a class.

Our OODB model contains the generic relationships roleof categoryof, setof and

memberof. Both categoryof and roleof are specialization relationships. The first is

used for cases where the subclass and the superclass are in the same context, while

15

16

CourscRccords
transcript [-person ~]student union

Transcript* course
M embership

| course record
Course

roleof CurrentSections
Chairperson 10

Transcript

^ S tudent
Students Sections

roleofstudent

Members students
S ec tio n s-----

Course

cmployces~~|Workers categoryof
grad student courses

employee

Prereq
Resume Instructor13-----categoryof

categoryof
Instructor-CoursesResume 26

| resume |^ -
faculty mem ber 30

categoryof
professors

Supervisees
Supervisor 29

professor

Figure 2.1 A Subschema of a University Database

the second is used when they are in different contexts. Further details on special

ization relationships appear in Section 3.1. The generic relationships memberof and

setof are connections between a set class and its member class. In the text of this

dissertation the names of classes are printed with lower case bold face letters. The

names for attributes, relationships and methods are written in italics with the first

letter capitalized. The names of generic relationships are written in lower case italic

letters.

To represent an OODB schema graphically, OODINI(= Object-Oriented Dia

grams at New jersey Institute) [HGPN92], a graphical schema representation lan

guage and system, has been developed. A graphical representation of a subschema

17

of an OODB from the university domain appears in Figure 2.1. The same schema

can be considered as a directed graph G(V, E). The classes are represented as nodes

and connections are represented as edges. In OODINI, a rectangle represents a class,

and a double line rectangle represents a set class. A set class representation shares

one corner with the box that represents its member class, see for example, the class

section and the class sections in Figure 2.1. Note that the subschema of Figure 2.1

contains two different set classes for the class section. The class c rsec tions repre

sents a set of sections of the same course while the class sec tions represents a set

of sections not necessarily of the same course, e.g., the current sections a student

is registered for. A thick solid arrow represents specialization generic relationships

categoryof and roleof and a thin arrow represents a relationship between two classes.

Later on we will see that a dotted thick arrow is used for roleof with selective inheri

tance. A path-m ethod is represented by a broken line arrow from the source class to

its target class or target attribute. The actual path of the path-m ethod is sometimes

highlighted by hatching its classes and connections.

2.2 P ath—M ethods

In Smalltalk-80 [GR83, PW88] a method is defined as follows. A method is a pro

cedure describing how to perform one of an object’s operations; it is made up of a

message pattern, a temporary variable declaration, and a sequence of expressions.

A method is executed when a message matching its message pattern is sent to an

18

instance of the class in which the method is defined.

In C + + [S91b, WP88, GOP90] a method is called a “member function”. These

member functions are similar to methods in Smalltalk-80 with some restrictions, and

they are written for a class.

In our OODB model, a method is a program segment with one required parameter

of some class, and any number of optional parameters. We will assume that every

method returns an instance of a class or a value of a data type. A programming lan

guage point of view definition of Path-Methods is given in [NPGT91]. The following

definitions are presented based on the discussion in that paper.

• o p e ra tio n : If a program segment takes only values of data types as arguments,

then we will refer to it as an operation rather than a method, and it will return

a value of a data type.

« c o m p u ta tio n a l m e th o d : A computational method is a program segment with

one required parameter of some class and possibly other optional parameters

that makes use of the functionality of the underlying programming language

(e.g., C + +) but does not modify any stored values outside of its own local

memory and returns an instance of a class.

• p r im itiv e m e th o d : A primitive method is either a computational method, a

relationship, or a generic relationship.

• m e th o d chain: A method chain is either a primitive method or a primitive

19

method composed with a method chain. Here and later in the dissertation

“composed” refers to mathematical composition, i.e, chaining.

• o p e ra tio n chain: An operation chain is either an operation or an operation

composed with an operation chain.

• co m p u ta tio n a l tra n sfo rm er: A computational transformer is program seg

ment that takes as a required argument an instance of a class and returns a

value of a data type. Other than that it behaves like a computational method.

• tra n sfo rm er: A transformer is either a computational transformer or an a t

tribute.

• tra n s fo rm e r chain: A transformer chain is either a transformer or a trans

former composed with an operation chain.

Now a path-method is defined as follows.

• p a th -m e th o d : A path-method is either a method chain, a transformer chain,

or a composition of the two, namely a method chain composed with a trans

former chain.

A BNF format will be helpful to better understand the definition of path-method.

<path-m ethod> ::= <method chain>
| Ctransformer chain>
| <method chain> o <transformer chain>

Ctransformer chain> ::= <transformer>

20

| <transformer> o Coperation chain>

<transformer> ::= <computational transformer>
| <attribute>

<operation chain> ::= <operation>
| <operation> o <operation chain>

<method chain> ::= <primitive method>
| <primitive m ethod> o Cmethod chain>

<primitive method> ::= <computational m ethod>
| <user-defined relationship>
| <generic relationship>

A traversal path-method is a path-method which deals only with the part of

a path-m ethod that traverses an OODB schema. That is, while a path-m ethod in

general may contain, e.g., mathematical operations, a traversal path-method may not,

since mathematical operations are localized and do not rely on paths. In this thesis

we limit ourselves traversal path-methods. Thus, we add the following definitions:

• connection : A connection is either a user-defined relationship or a generic

relationship.

• tra v e rsa l p a th -m e th o d chain: A traversal path-m ethod chain is a connec

tion or a connection composed with a traversal path-method chain.

• tra v e rsa l p a th -m e th o d : A traversal path-m ethod is a traversal path-method

chain or a traversal path-method chain composed with a transformer.

The following BNF format describes these definitions of traversal path-method.

21

<connection> ::= <user-defined relationship>
| <generic relationship >

<traversal path-method chain> ::= <connection>
| <connection> o ctraversal path-method chain>

<traversal path-m ethod> ::= <traversal path-method chain>
| Ctraversal path-method chain> o <transformer>

Now we will discuss the syntax for a traversal path-m ethod in our model. The

empty pair of parentheses following the name of a path-m ethod stands for the class in

which the path-method is defined. These parentheses may contain additional optional

arguments for the path-method. The path-method is described by a list of pairs of

the form property —> result:, where result is either a class or a data type, meaning

that the property applied to the result at the end of the previous pair yields the result

of the current pair. When the result specifies a set, it is enclosed by {}.

When the property is applied to each member of a set it is preceded by the sign

otherwise the property is applied to the set as a whole. The colon is used to separate

between any two pairs. A path-method Instructor-Courses for the class instructor,

shown graphically in Figure 2.1, is defined as follows.

Instructor-Courses():
Sections — > sections: setof — > {section}:
@memberof — > {crsections}: @Course — ► {course}

This path-method finds all the courses being taught by an instructor. First, the

path-m ethod finds all the sections taught by the instructor using the relationship

Sections of the class instructor (Figure 2.1). These sections objects are sets of

sections. Therefore, the generic relationship setof of the class sections replaces the

set object by the set of member objects. As a third step, we get a set of course-sections

{crsections} by applying the generic relationship memberofoi class sec tion to each

instance of {section}. We can get all the courses for an instructor by applying the

relationship Course of the class c rsections to each instance of {crsections} yielding

a set {course} of instances of the class course. Note that if an instructor teaches

several sections of the same course, this course will appear only once in the result

since a set does not allow repetitions.

C H A P T E R 3

PA T H -M E T H O D G E N E R A T IO N U SIN G ACCESS

W EIG H TS

In this chapter we will introduce the notion of access weight and discuss traversal

algorithms for generating path-methods using access weights.

3.1 A ccess W eights for an O O D B Schem a

Following, e.g., VML [KNBD92], GemStone [B0S91], and ORION [K90a, KKS92],

we are modeling an OODB schema as a directed graph. Classes are represented as

nodes. Directly related classes are connected by a directed edge. Note that a directed

graph of a schema may contain cycles. We assign an access weight from the range [0,

1] to each connection in the schema. One possible interpretation of such a weight is

the frequency of traversal of this connection relative to all the other connections of

the class. None of the above OODB models has this enhanced feature of assigning

access weights to schema connections.

Let us describe briefly why the Path-M ethod Generator needs to use access

weights. While traversing the schema to generate a path-m ethod, we start with the

source class s and consider the different outgoing connections of s. Our observation

is that some connections in an OODB schema are more significant than others. In a

23

24

series of initial experiments we observed that giving priority to more significant con

nections, will in many cases produce path-methods more correctly and efficiently than

a uniform traversal such as depth first search which traverses an arbitrary connection.

This was the case even with estimated frequency (significance) values. Although, we

have chosen to measure “significance” by frequency of use. We do not exclude other,

deeper interpretations. However we have found it much more difficult to map such

interpretations into numbers. The access weights associated with the connections

emanating from a class should be accumulated during the operation of the OODB for

a representative period of time.

In the beginning of the operation of an OODB, access frequency information is

not available. Therefore, an application domain expert can suggest initial values

to approximate the access weight of each connection. These initial weights will be

replaced by experimental weights as they become available. Further research and

experiments are needed to determine whether application (view) oriented frequency

adjustments will be needed to improve success ratios for automatic path generation.

I.e., different applications may use different collections of access weights to service

their needs.

The access weight assignments to schema connections are done according to the

following rules. For the two generic relationships setof and memberof and for user-

defined relationships the access weights are assigned using Rule 1.

R u le 1: The sum of the weights on the outgoing connections of a class £<*=1 Wj- =

25

CourseRecords 0.8
transcript [■person I

0.3 Transcript' course records
M em bership

0.1 | course recordroleof 0.4
Course 0.7

CurrentSections
0.9

Transcript
Chairperson

0.9

10
sectiom I crsections^

0.3^ Student 0.3
| sectioi0 .6 Students 0.4 Sections

0.9
student ro leof

(studentsM em bers
0.1

Sections — —
0.5

Course
0.8

| employeescategoryof
grad student

employee
S u p e rv iso r | -----

- 07 j r f F
13----- -------
instructor | |«g-

0.1 Prereq
Instructor
0.7

Resum e
categoryof

categoryof
0.3

14 Instructor-CoursesResum e 0.3 26
resum e \<■

| faculty mem ber
categoryof

Supervisees 0.1 0.9Supervisor
0.5

Figure 3.1 A Subschema of a University Database with Access Weights

0.5*n, where n is the number of outgoing connections. From this sum, each connection

is assigned a weight from [0, 1], reflecting its relative frequency of traversal.

In Figure 3.1, the class t ra n s c r ip t has three relationships, CourseRecords to the

class course_records, CurrentSections to the class sec tio n s and Student to the class

s tu d e n t, with access weights 0.8, 0.4, and 0.3, respectively, based on their estimated

traversal frequencies. Observe that 0.8 + 0.4 + 0.3 = 1.5 = 0.5 * 3, as required by

Rule 1. The justification for Rule 1 is as follows. It is not sufficient to assign access

weights which add up to 1 to all outgoing connections of one class, although this would

appear initially as plausible. This would imply that the connections emanating from

a class with few outgoing connections are more significant than the connections out

26

of a class with many connections. Thus, Rule 1 makes the values of access weights

independent of the number of connections of a class. (Actually, this does not m atter

for access weight algorithms since they decide on the edge to traverse from each

node independently. However, such a situation is not acceptable for access relevance

algorithms considered in Chapter 4, since the definition of access relevance depends

on all access weights of the edges along the path. For uniformity reasons we enforce

Rule 1 for the whole dissertation.)

Rule 1 does not work for specialization relationships, and a more elaborate ap

proach is needed for the specialization generic relationships categoryof and roleof.

This is due to the fact that while other relationships are used for traversal of the

schema these two relationships are used for inheritance. That is, if a class A is a

subclass of a class B then one can traverse from the class A to all the properties of

class B in addition to the properties listed explicitly with class A. Hence, while this

looks like a traversal of the specialization relationship from A to B followed by the

traversal to a property of B, those two traversals are of a different nature. For a

specialization relationship the weight should not reflect its frequency of use but the

fact that the properties of the superclass are immediately available at the subclass

without any change of their weights since this is the desired effect of inheritance. The

first idea which comes to mind is to assign to specialization links a weight of 1.

However, here we need to distinguish between the two specialization relationships.

As mentioned above these two relationships differ in their meanings in terms of mod

27

eling. Class A is categoryof (roleof) of class B if class A is in the same (different)

context of class B. This implies a difference in the inheritance mechanism for these

two relationship. For categoryof there is an automatic inheritance of all properties of

the superclass to the subclass.

This is not always true for roleof. For roleof we may want selective inheritance of

some of the properties of the superclass to the subclass. Inheritance of selected prop

erties can be implemented through a special path-m ethod which utilizes the roleof

connection. For example, the roleof connection from ass is tan t to g rad _ stu d en t can

be used to inherit only the transcript, since some information on the academic stand

ing of a graduate student is used to determine his/her eligibility for assistantship. On

the other hand we are not interested in any further details of the function of a grad

uate student while dealing with his employment capacity as assistant. For the roleof

connection from adm in_app t (which represents administrative appointment) to pro

fessor we need not inherit any specific property, just keep the connection to enable

later coding of methods for the retrieval of information on the formal appointments

of an academic administrator for the case that s/he leaves her/his administrative

appointment, since this administrator does not function at the present as a professor.

Alternatively, we may actually need to inherit all properties of the superclass

through the roleof connection. For example, in the schema of Figure 3.2, we need

full inheritance for the following roleof connections: fo rm er_studen t roleof person ,

em ployee roleof person , dept_chair_person roleof p ro fesso r and p h d .a d v iso r

28

roleof p rofessor. For all these roleof connections we need to inherit all the proper

ties of the superclass inspite of the change of context between the subclass and the

superclass. The reason is that in all these cases in spite of the change of context, the

extra properties of the subclass are additive to the properties of the superclass rather

than replacing them. For example, a student continues also to function as a person

and a chairperson continues to function as a professor.

Thus, for specialization relationships we will have three choices:

1. categoryof (always full inheritance)

2. roleof with selective inheritance

3. roleof with full inheritance

As a m atter of fact, this classification of specialization relationships corresponds

to the classification found in the Dual Model [NPGT91] and the VODAK/VML pro

totype [KNBD92, K90b] and is implied by the separation of structural and semantic

aspects of the OODB in these models. To distinguish graphically between the two

kinds of roleof connections we use a solid heavy arrow for the case of full inheritance

(as for categoryof) and dotted heavy arrow for selective inheritance (see Figure 3.2).

We are now in a position to specify access weight assignments for roleof/categoryof.

R u le 2a: An access weight of 1.0 is assigned to each categoryof connection and to

each roleof connection with full inheritance. An access weight of 0.0 is assigned to

each roleof connection with selective inheritance. To enable selective inheritance, in

29

spite of the 0.0 weight, copy the properties of the superclass, that should be inherited,

to the subclass.

An alternative to Rule 2a would be to assign roleof with selective inheritance a

weight between 0 and 1. However, Rule 2a is better for the following reason. The

fraction weight would weaken the chances of inheritance for all properties, while we

need to keep full strength inheritance for the selected properties and block totally

the inheritance of the rest of the properties. The fraction weight is serving neither of

these needs and thus it is not acceptable.

Rule 2a for full inheritance implies that the properties of the superclass are avail

able at the subclass without decreasing the access weight. However, Rule 2a has the

following disadvantage. It enables the traversal of a specialization connection as a

regular connection rather than an inheritance link. I.e., it enables traversal which

stops at the superclass as a target, rather than continuing to use one of its properties.

But there is no reason for such traversal since it does not lead to any meaningful in

formation not available at the subclass. In fact it leads to a “dilution” of information.

An example of a path which ends with an inheritance link is shown in Chapter 4.4

to yield undesired path-methods. We would like to block traversals which end with

specialization connections, while still enabling the inheritance of properties. But an

access weight of 1.0 enables such a traversal and furthermore gives it high priority.

Thus, we introduce an alternative rule.

R u le 2b: An access weight of 0.0 is assigned to all categoryof and roleof connections.

30

For cases of categoryof and roleof with full inheritance copy all the properties of the

superclass to the subclass in the schema’s underlying graph to achieve the effect

of inheritance. For cases of roleof with selective inheritance copy only the selected

properties of the superclass to the subclass.

Rule 2b allows the traversal of the schema’s underlying graph exactly as discussed

before, but it practically disallows unwanted traversal of specialization connections

(see demonstration in Chapter 4.4). Thus, Rule 2b is considered a better rule for the

traversal of the schema’s underlying graph. One disadvantage of Rule 2b is that the

schema graph becomes more dense. The schema visible to the user, however, does

not change. The changes of a schema graph according to Rule 2a and Rule 2b are

demonstrated in Chapter 6.

Rule 2b raises the question what weights to assign to the inherited properties. One

solution is to copy the weights of properties from the superclass to the subclasses so

the impact will be that of using Rule 2a. This is the approach we used in this

dissertation.

However, this solution ignores the fact that the frequencies of the inherited prop

erties may differ between a subclass and the superclass and among several subclasses

of the same superclass. Furthermore, by copying the weights from the superclass to a

subclass we give up the possibility of balancing the weights of the inherited properties

and of the properties defined at the subclass according to the relative frequencies of

all these connections.

31

Thus, one may take the approach of keeping different weights for the inherited

properties of each subclass according to their frequency of use. It is a m atter of

tradeoff between the effort of computing and maintaining the extra information for

separate weights of the inherited properties and the better modeling capabilities and

their impact on path-method generation. There is a need for further research to

determine the impact of the more accurate representation of the frequencies of the

inherited properties on the success ratio of generating the desired path-methods.

Another issue which was not considered in our treatment is traversing existing

path-m ethod during the effort to generate a new path-method. A schema may al

ready have some path-methods provided by the designers and users of the schema as

well as some already generated by the PMG system and added to the schema. Such

a path method can be used as a connection in the definition of a new path-method.

Using such a path-method rather than the list of its connections will shorten and

simplify the definition of the new path-method and is preferred. In order to use

connections representing path-methods in our traversal algorithms we need to define

weights for these connections. One can accumulate the frequency of use of the ex

isting path-methods in the schema to define the weights of the proper connections

similar to the treatment of the other connections in the schema.

Another alternative with regards to the access weight assigned for a connection of

a path-m ethod is to use the access relevance value for the corresponding path. For

example, for the PRODUCT weighting function it is the product of all the access

weights of the edges of the path. However, we did not choose this option due to some

difficulties with it. One is technical the value assigned to a path-m ethod connection

will be smaller than the value for the other connections emanating from a class for

both weighting function user and specially for the PRODUCT weighting function.

This will give low chance of using the path-m ethod connection while we actually

want to give it a high chance. The other difficulty is conceptual if the choice between

other connections is according to frequency of use than this connection once it is

added to the schema should get the same treatment rather than utilizing a weight

involved in the creation of the path-method.

A few more comments on the issue of using path-methods as connections in other

path-methods. Upto now we considered the accumulation of frequencies to be inde

pendent of whether a connection is used as part of a path-method or not. However,

when a connection is used as part of a path-m ethod one can accumulate information

about the frequency of using a connection depending on the connection used before

it. We call such values dependent frequencies o f use. These dependent frequencies can

be utilized when considering the next connection to be picked, since at this point we

know the previous connection in the path-method being generated. Further research

is needed to determine the impact of such additional information on the success ratio

of generation of path-methods.

33

3.2 A ccess W eight Traversal A lgorithm s

An access weight traversal algorithm is a traversal algorithm which uses access weights

on the connections of an OODB schema for guiding path-method generation. These

traversal algorithms generate desired path-methods by selecting a connection of a

class with maximum access weight at each step of traversal. The connection of a

class with maximum access weight is assumed to be “more significant” and preferred

for generating a desired path-method.

The literature reports two major approaches to traversal of graphs without weights

on their edges. The aggressive approach, represented by depth first search (DFS), goes

forward as quickly as possible without first checking the near vicinity. When necessary

it backtracks as little as possible before rushing forward again. The conservative

approach, represented by breadth first search (BFS), does not proceed forward before

an exhaustive search of the close vicinity. Both these approaches have their advantages

and disadvantages explored in the Artificial Intelligence and Algorithms literature.

Some traversal algorithms are hybrids between these two approaches (see e.g. [RC78]).

A natural idea to utilize the access weights to guide the traversal is to use them

to set priorities in the choice of traversing edges emanating out of a vertex. That is,

these edges will be considered in decreasing order of the access weights. When this

enhancement is added to DFS we obtain the known best first search [CM81] traversal

algorithm. In this algorithm we choose to traverse out of a vertex through the edge

of highest access weight, not traversed yet.

34

The best breadth first search algorithm is a similar enhancement for breadth first

search. The edges emanating out of a vertex are considered in descending order of

their access weights. The advantage of each of these algorithms is that it selects

“more significant” connections first and then “less significant” connections.

Experiments comparing the above four traversal algorithms are reported later in

this chapter. The enhanced versions, preferring more significant connections, will

be shown to perform better than their counterparts which choose to traverse an

emanating edge arbitrarily.

We note that breadth first search and best breadth first search can find only path-

methods with a shortest path from the source to the target, where length is measured

in number of edges in the path. As our experiments will show, these two algorithms

provide the best results. Path-methods with a path from the source to the target

that is longer than the shortest path can only be generated by DFS and Best First

Search. In order to obtain such path-methods we suggest another enhancement which

involves a union operation.

The breadth first search U best first search algorithm calls breadth first search

and also calls best first search and generates two path-methods. When the two

path-methods are different, both are provided to the user for inspection. A user

selects the desired one of these two path-methods. On the other hand when the two

path-methods are equal, only one will be displayed. The advantage of this algorithm

is that it combines results of breadth first search and best first search and is more

35

likely to generate the path-m ethod that will serve the user best.

The best breadth first search U best first search algorithm calls the best breadth

first search algorithm and also the best first search and generates two path-methods.

The treatment is identical to that of breadth first search U best first search.

3.3 A Sam ple Set o f Path—M ethods for a U niversity

D atabase

We have performed a large number of experiments on a subschema of our university

OODB. All the classes of this subschema are discussed in detail in Chapter 7. It

is quite difficult to comprehend this subschema, although it is much smaller than

the total OODB schema. It comprises only about a third of the university database

designed by our group to model part of the university environment [CT90, WA90,

K90c, B90, D91b, P91a, P91b]. It is difficult for a user to traverse such a schema

to find path-methods by himself, or even worse, find them without the graphical

representation of the schema.

Classes related to student, professor, course, employee, resume, and university

are shown in Figure 4. We have experimented with several access weight traversal

algorithms in an effort to generate a sample of 50 path-methods. The requirements

for these path-methods were defined using the schema but independently and before

the design of the algorithms. The first eighteen of the 50 path-methods are shown in

Figure 3.2 as dashed line arrows. The paths of these eighteen path-methods are not

36

highlighted in Figure 3.2. For each path-method we list the source and the target

and use a verbal description of its purpose. This verbal description identifies the

“semantics” of the path-method.

1. The path-m ethod Student-Courses finds all the courses already taken by a student.

source: s tu d e n t target: {course}

Student-Courses ():
Transcript — > transcript: CourseRecords — > course_records:
setof — ► {course_record}: @Course — >{course}

2. The path-m ethod Gradstudent-Instructors finds all the current instructors for a

graduate student.

source: grad.student target: {instructor}

Grad_student-Instructors ():
Transcript — > transcript: CurrentSections — > sections:
setof — ► {section}: ©Instructor — > {instructor}

Note that the relationship Transcript is inherited from student.

3. The path-m ethod Instructor-Courses finds all the courses currently being taught

by an instructor.

source: instructor target: {course}

Instructor-Courses():
Sections — y sections: setof — y {section}:
@memberof — y {crsections}: @Course — y {course}

4. The path-m ethod Instructor-Students finds all the students, in the sections an

instructor is teaching.

source: instructor target: { s tu d e n t}

37

Instructor-Students ():
Sections — > sections: setof — ► {section}:
@Students — * {students}: @setof — ► {{student}}:
union — > {student}

At line 3 the intermediate result is a set of sets, one for each section. Thus if a

student is registered for two sections, s/he will appear twice. In line 4 the operation

union is performed on the set of sets to get one set as an answer to the user request.

In this way a student will appear once even if s/he is registered for two sections

of this instructor. This is not a traversal path-method because of the use of the

union operator. Therefore, the last step cannot be generated automatically. The

set operations in an OODB are discussed in [AR91, RB92]. The object-oriented

knowledge-base model Jasmine [193] supports set oriented access queries.

5. The path-m ethod Instructor-TeachingEvaluation finds the set of teaching evalua

tions of all the instructors who are teaching a given course. Note that this traversal

path-m ethod is terminated by an attribute.

source: course target: {TeachingEvaluation}

Instructor-TeachingEvaluations ():
Sections — > crsections : setof — > {section}:
@Instructor — ► {instructor}: @TeachingEvaluation — ► {REAL}

One could define MaxTeachEval, a path-method which is not a traversal path-

method, by concatenating the above path-method with m ax — > REAL.

6. The path-m ethod Course-Students finds all the students, currently registered for

a given course.

source: course target: { s tu d en t}

38

Course-Students():
Sections — > crsections : setof — > {section}:
@Students — ► {students}: @setof — ► {{student}}:
union — ► {student}

7. The path-m ethod Professor-Refereedjconferencejpapers finds all the refereed con

ference papers of a professor.

source: professor target: {refereed_conference_paper}

Professor-Refereed_conference_papers ():
Resume — > resume: Publications — > publications:
Conferences — > refereed_conference_papers:
setof — > {refereed_conference_paper}

8. The path-m ethod Research.assistant-Bachelor-degrees finds the bachelor degrees

of a research assistant.

source: research.assistant target: {bachelor.degree}

Research_assistant-Bachelor_degrees ():
Resume — > resume: FormalEducations — > formaLeducations:
BachelorDegrees — > bachelor.degrees: setof — > {bachelor-degree}

9. The path-method University-Dept.phd^advisors finds all the Ph.D. Advisors in the

university. (I.e., the directors of the Ph.D. programs of their respective departments.)

source: university target: {dept_phd_advisor}

University-Dept_phd_advisors ():
Colleges — > colleges: setof — > {college}:
©Departments — * {departments}: @setof — > {{department}}:
@DeptPhdAdvisor — > {{dept_phd_advisor}}: union — > {dept_phd_advisor}

10. The path-method University-College-deans finds all the college deans in the

university.

source: university target: {co lleg e .d ea n }

University-College_deans ():
Colleges — ► colleges: setof — ► {college}:
©CollegeDean — ► {college.dean}

11. The path-method College-Research-assistants finds all the research assistants in

a college.

source: college target: {research_assistant}

College-Research_assistants ():
Departments — > departments: setof — ► {department}:
@Professors — ► {professors}: @setof — > {{professor}}:
@ResearchAssistants — ► {{research_assistants}}:
@setof — > {{{research_assistant}}}:
union — ► {{research_assistant}}: union — > {research_assistant}

12. The path-method Course-Refereed-conferencejpapers finds all the refereed con

ference papers of each of the instructors who are teaching a given course.

source: course target: {refereed_conference_paper}

Course-Refereed_conference_papers ():
Sections — ► crsections: setof — > {section}:
©Instructor — > {instructor}: @Resume — ► {resume}:
©Publications — > {publications}: ©Conferences — > {refereed_conference_papers}
@setof — > {{refereed_conference_paper}}:

13. The path-method Undergradstudent-Sections finds all the current sections taken

by a given undergraduate student.

source: undergrad_student target: {section}

Undergrad_student-Sections ():
Transcript — > transcript: CurrentSections — * sections:
setof — ► {section}

14. The path-method Professor-Courses finds all the courses currently being taught

by a professor.

40

Transcript 0.9 CourscRecords
transcript

K 0.3 Transcript course records
roleof

former students
course recordperson

Course 0.7
I ' Members

Membership
former student Currents ections

80.1 ^ roleof 0.9
Transcript

sections crsecuonsChairperson
y Student 0.3

"■ 3
alumni organization roleof O.o Students Course

0.8
section

student
A/tvi JNk

Sections
0.9Chairperson 0.9

students
Membership 0.1

\lt
Secuons 0.5

Students Instructor
student umon

Workers
20 caicgoryof categoryof employees c . ,0.1

G n iloyees
ungrad student student —

employee
051 & :tio iJs j _______ j_j___Supervisor

r
upemsor

Students

Refereefl confererjce papers \ j truc)̂rs|
i----------------------— j \ |_ , Supervisor

Resume 0.3 ^Sections

Resume 0.3 ^
/isees courses

resume
course

lTTMPublications
0.2 42

roleof 0.1 Prereq
categoryof

Supervisor
" ^ ^ ^ ^ “3p?aeh i^ valuatioJi|

Ctji*- - ” ~ ' 1

publication
urses

publications assistant urses
instructors

categoryof
Confere ices

categoryof
 RefeJfeejij^i|fcrence_papers instructor

/ 'te a ch E v a lN
^ A

ci tfigory
1— ------ ^ ---------> | ref conf paper

^ categoryof
caleg iryofw caleg

teaching assistant faculty member
ref conf papers

I Refereed conference
C Coursesresearch assistant

categoryof professors
research assistants

0.8 Professors 1 \special lecturer professor
roleof ̂ roleof 32J 1 0.7

FormalEducations 0.8 I phd advisor
JTR

dept chair person
R search ass istantsT Students JJ L

"l(j.5 Department
formal educauons

Dcpartmen
1 0.3

Phd advisorsBachelorDegrees
0.8

0.4 category
47 \l/ PhDDegrces

formal education PhDAdvisor
Department 0.5

department

~ 0.6 Department
DcptChairPerson 0.6

departments

phd degrees cat goryof
provost

36 ^Incharge U —
phd degree

College
rtmetils

president
I President^

colleges
categoryofBachelor degrees categoryof

CollegeDeah
39 0.4

Incharge
-------------------- > bachelor degree roleof

| admin appt Colleges
bachelor degrees

university
categoryof categoryof college dean -------------,----- - r ------------------

— ----------1 College deans

F igu re 3.2 A Larger S ub sch em a o f a U n iversity D atab ase

41

source: professor target: {course}

Professor-Courses ():
Sections — > sections: setof — ► {section}:
@memberof — v {crsections}: @Course — > {course}

15. The path-m ethod Teaching.assistant-Courses finds all the courses taught by a

teaching_assistant.

source: teaching_assistant target: {course}

Teaching_assistant-Courses ():
Sections — > sections: setof — > {section}:
©memberof — > {crsections}: ©Course — > {course}

16. The path-m ethod Dept-chair-person-Students finds all the students registered in

sections currently being taught by a dept_chair_person.

source: dept_chair_person target: {student}

Dept_chair_person-Students ():
Sections — > sections: setof — > {section}:
@Students — > {students}: @setof — > {{student}}:
union — > {student}

17. The path-m ethod Research^assistant-Sections finds all the sections currently

taken by a given research_assistant.

source: research_assistant target: {section}

Research_assistant-Sections ():
Transcript — > transcript: CurrentSections — > sections:
setof — > {section}

18. The path-m ethod Student-Refereed^conference.papers finds all the refereed con

ference papers of a student.

source: student target: {refereed_conference_paper}

42

Student-Refereed_conference_papers ():
Resume — > resume: Publications — ► publications:
Conferences — > refereed_conference_papers:
setof — > {refereed_conference_paper}

19. The path-m ethod Gradstudent-College„dean finds the dean of the college where

a graduate student is currently enrolled.

source: grad_student target: college_dean

Grad_student-College_dean ():
Supervisor — > professor: Department — ► department:
College — > college: CollegeDean — ► college.dean

20. The path-m ethod Formerstudent-Courses finds all the courses taken by a former

student.

source: form er_student target: {course}

Former_student-Courses ():
Transcript — > transcript: Course_records — ► course_records:
setof — ► {course_record}: @Course — ► {course}

21. The path-m ethod College-Instructors finds all the instructors of a college.

source: college target: {instructor}

College-Instructors ():
Departments — > departments: setof — ► {department}:
©Instructors — ► {instructors}: @setof — > {{instructor}}:
union — > {instructor}

22. The path-m ethod Course-Bachelor-degrees finds bachelor degrees of all the in

structors teaching a given course.

source: course target: {bachelor.degree}

Course-Bachelor.degrees ():
Sections — > crsections: setof — * {section}:

43

©Instructor — > {instructor}: @Resume — ► {resume}:
@FormalEducations — ► {formal.educations}:
@BechelorDegrees — ► { bachelor .degrees }:
@setof — ► {{bachelor.degree}}: union — ► {bachelor.degree}

23. The path-m ethod Research.assistant-College finds the college of a research_assistant.

source: research_assistant target: college

Research_assistant-College ():
Supervisor — > professor: Department — > department:
College — ► college

24. The path-method SpecialJecturer-Bachelor.degrees finds bachelor.degrees of a

special lecturer.

source: specialJecturer target: {bachelor.degree}

SpecialJecturer-Bachelor.degrees ():
Resume — ► resume: FormalEducations — ► formaLeducations:
Bachelor Degrees — ► bachelor.degrees: setof — > {bachelor.degree}

25. The path-m ethod College-Professors finds all the professors of a college.

source: college target: {professor}

College-Professors ():
Departments — > departments: setof — ► {department}:
@Professors — > {professors}: @setof — > {{professor}}:
union — > {professor}

26. The path-method Gradstudent-Bachelor.degrees finds all the bachelor degrees

for a graduate student.

source: grad.student target: {bachelor.degree}

Grad_student-Bachelor_degrees ():
Resume — > resume: FormalEducations — > formaLeducations:
BachelorDegrees — > bachelor.degrees: setof — ► {bachelor.degree}

44

27. The path-m ethod Department-Courses finds all the courses being taught by an

academic department.

source: departm ent target: {course}

Department-Courses ():
Instructors — ► instructors: setof — > {instructor}:
©sections — ► {sections}: @setof — > {{section}}:
@memberof — ► {{crsections}}: @course — ► {{course}}:
union — ► {course}

28. The path-m ethod Gradstudent-DepLchair-person finds the chair person of a

graduate student’s department.

source: grad_student target: dept_chair_person

Grad_student-Dept_chair_person ():
Supervisor — ► professor: Department — * department:
DeptChairPerson — > dept_chair_person

29. The path-m ethod Instructor-College-dean finds the dean of the college of an

instructor.

source: instructor target: college.dean

Instructor-College.dean ():
Department — > department: College — > college:
CollegeDean — > college.dean

30. The path-m ethod University-Departments finds all the departments in a univer

sity.

source: university target: {department}

University-Departments ():
Colleges — ► colleges: setof — ► {college}:
©Departments — > {departments}: @setof — > {{department}}:
union — > {department}

45

31. The path-method President-Phd-degrees finds all the PhD degrees of the presi

dent of the university.

source: president target: {phd_degree}

President-Phd-degrees ():
Resume — > resume: FormalEducations — > formaLeducations:
PhdDegrees — ► phd_degrees: setof — ► {phd_degree}

32. The path-method Provost-Bachelor-degrees finds all the bachelor degrees of the

provost of a university.

source: provost target: {bachelor.degree}

Provost-Bachelor.degrees
Resume — > resume: FormalEducations — > formaLeducations:
PhdDegrees — ► phd.degrees: setof — ► {phd.degree}

33. The path-method Department-Students finds all the students registered in the

courses currently being taught by a department.

source: departm ent target: {student}

Department-Students ():
Instructors — ► instructors: setof — > {instructor}:
©Sections — ► {sections}: @setof — ► {{section}}:
@Students — > {{{student}}}: union — > {{student}}:
union — > {student}

34. The path-method Dept.chair-person-Publications finds all the publications of the

department chairperson.

source: dept.chair.person target: {publication}

Dept_chair_person-Publications ():
Resume — ► resume: Publications — > publications:
setof — > {publication}

46

35. The path-m ethod Ungradstudent-Department finds the department of an under

graduate student.

source: U ngrad.student target: {department}

Ungrad-student-Department ():
Supervisor — ► faculty .member: department — > department

36. The path-m ethod College-dean-FormaLeducations finds the degree programs

successfully terminated by a college dean.

source: college.dean target: {formal_education}

College.dean-Formal.educations ():
Resume — > resume: FormalEducations — > formaLeducations:
setof — > {formaLeducation}

37. The path-m ethod College.dean-Refereed-conference-papers finds refereed confer

ence papers of a college dean.

source: college.dean target: {refereed.conference.paper}

College.dean-Refereed.conference.papers ():
Resume — > resume: Publications — ► publications:
Conferences — > refereed_conference_papers:
se to f > {refereed.conference.paper}

38. The path-m ethod Research-assistant-Course.records finds the course records of

courses taken by a research assistant.

source: research.assistant target: {course.record}

Research_assistant-Course_records ():
Transcript — ► transcript: CourseRecords — ► course_records:
setof — > {course_record}

39. The path-m ethod Adjunct-FormaLeducations finds all the formal educations

47

completed by an adjunct.

source: adjunct target: {formaLeducation}

Adjunct-FormaLeducation ():
Resume — > resume: FormalEducations — ► formaLeducations:
setof — > {formaLeducation}

40. The path-m ethod Teaching^assistant-Sections finds all the sections taught by a

teaching assistant.

source: teaching_assistant target: {section}

Teaching_assistant-Sections ():
Sections — > sections: setof — ► {section}

41. The path-m ethod Teaching-assistant-Course-records finds the course records of

courses taken by a teaching assistant.

source: teaching_assistant target: {course_record}

Teaching_assistant-Course_records ():
Transcript — > transcript: Course_records — > course_records:
setof — > {course_record}

42. The path-m ethod College-Dept.chair-persons finds all the chairpersons of a col

lege.

source: college target: {dept_chair_person}

College-Dept_chair_persons ():
Departments — ► departments: setof — > {department}:
@DeptChairPerson — > {dept_chair_person}

43. The path-m ethod University-Professors finds all the professors in a university.

source: university target: {professor}

U n iv ersity -P ro fesso rs ():

48

Colleges — > colleges: setof — ► {college}:
©Departments — > {departments}: @setof — ► {{department}}:
@professors --- > {{professors}}: @setof > {{{professor}}}:
union — ► {{professor}}: union — ► {professor}:

44. The path-m ethod College-Dept-phd^advisors finds all the phd_advisors of a col

lege.

source: college target: {dept_phd_advisor}

College-Dept_phd_advisors ():
Departments — > departments: setof — > {department}:
DeptPhdAdvisors — > {dept_phd_advisor}

45. The path-m ethod Research-assistant-Dept-phd-advisor finds a research assis

tan t’s phd_advisor.

source: research_assistant target: dept_phd_advisor

Research_assistant-Dept_phd_advisor ():
Supervisor — ► professor: Department — > department:
DeptPhdAdvisor — ► dept_phd_advisor

46. The path-m ethod Teaching-assistant-College finds a teaching assistant’s college.

source: teaching.assistant target: college

Teaching_assistant-College ():
Department — ► department: College — > college

47. The path-m ethod Teaching-assistant-Dept.chair-person finds the chair person of

a teaching assistant’s department.

source: teaching.assistant target: {dept.chair.person}

Teaching_assistant-Dept_chair_person ():
Department — > department: DeptChairPerson — ► dept.chair.person

48. The path-method Department-Sections finds all the sections offered by a depart

ment.

source: departm ent target: {section}

Department-Sections ():
Instructors — > instructors: setof — ► {instructor}:
@Sections — ► {sections}: setof — > {{section}}:
union — > {section}

49. The path-m ethod Teaching^assistant-Dept.phd.advisors finds the Ph.D. advisor

of a teaching assistant’s department.

source: teaching_assistant target: { dept_phd_advisor }

Teaching_assistant-Dept_phd_ad visors ():
Department — ► department: DeptPhdAdvisor — > dept_phd_advisor

50. The path-m ethod Research.assistant-College^dean finds the college.dean of a

research_assistant.

source: research.assistant target: college.dean

Research.assistant-College.dean ():
Supervisor — ► professor: department — ► department:
college — > college: CollegeDean — > college_dean

3.4 E xperim ental R esults o f Sam ple Set o f P ath—M ethods

We compared the results of several access weight traversal algorithms with depth first

search and breadth first search [AHU83, M89]. The results are shown in Table 3.1.

The comparison is based on the path-m ethod generated. We show also the path

length (PL) and the number of visited nodes (NVN). A circle around PL and NVN

in Table 3.1 indicates a case where the path-method obtained is not the desired one.

50

00

co

CO

co co

ON

X

COVO
CO

00 in X

X

X

Ta
bl

e
3.1

R

es
ul

ts
of

A
cc

es
s

W
ei

gh
t

Tr
av

er
sa

l
A

lg
or

ith
m

s

51

In fact, Table 3.1 shows detailed results for the first 25 path-methods.

Depth first search performed very badly. It found only 1 of the 25 path-methods

and this was a case of a unique path in the schema from the source to the target.

This is the only case when depth first search must generate a desired path-m ethod

assuming the necessary information is in the schema at all. Thus, it is obvious that the

arbitrary traversal of depth first search can not be used for path-m ethod generation.

On the other hand, breadth first search performed relatively well, finding 18 out of

25 path-methods. The success in these cases is due to the fact that the corresponding

paths are the only shortest paths (i.e., each has a minimum number of edges) from

the source to the target. Breadth first search always finds such paths. For 5 cases

BFS finds a path shorter than the desired one. In the remaining 2 cases it found a

path of equal length to the desired one. Hence the performance of BFS is dictated

only by its property of finding shortest paths. It is guaranteed to find the desired

path if it is the only shortest path. It is guaranteed to fail, if the desired path is not

a shortest path. In addition, it may fail if there exist more than one shortest paths,

because it does not provide any mechanism which can generate a particular shortest

path. Its success in cases of several shortest paths is a m atter of coincidence.

Now let us turn to access weight traversal algorithms. The best first search al

gorithm found 6 out of 25 path-methods. This is an improvement over DFS, due to

the choice of high access weight edges over choice of arbitrary edges, confirming our

expectation. However, those results are quite disappointing. We can conclude that

52

a path-m ethod containing the significant connections out of each class on the path

often may not be the desired one. It seems that in most cases at least one edge on the

desired path has not the highest access weight out of the edges emanating from its

class. The greedy best first search algorithm fails most of the times due to the lack

of a look-ahead property. An algorithm using a look-ahead property is discussed in

the next chapter. The best breadth first search algorithm found 20 out of 25 path-

methods. It shows just a slight improvement over the corresponding BFS, again due

to the processing of the edges emanating out of each vertex in decreasing order of

their access weights. However, it found all the path-methods with a shortest path,

that is, all the path-methods which such a search can potentially find. Hence, the

impact of the enhancement over BFS is slight only since BFS was itself performing

that well.

We see that the best breadth first search gives the best results out of the four

algorithms. The bottom row in Table 3.1 shows the average path length and average

number of nodes visited for each algorithm. We see that best breadth first search is

also the most efficient of the last three algorithms as measured in terms of the number

of nodes visited until the desired path-method is generated. (DFS is more efficient,

but its very low performance makes this efficiency irrelevant.) However, best breadth

first search misses some of the desired path-methods due to its deficiency to generate

path methods not of shortest path. The following two enhancements were introduced

to generate these missing path-methods which may be generated by best first search.

53

The breadth first search U best first search found 19 desired path-methods out of

25 path-methods. A **’ indicates cases when the two generated path-methods are

equal. It found only one more desired path-methods than the breadth first search.

This path-m ethod has a shortest path. The best breadth first search U best first

search found 2 0 out of 25 path-methods. It did not find any more path-m ethod than

best breadth first search algorithm. The results of the last two enhancements are

disappointing. As a m atter of fact, best breadth first search found one more path-

method than breadth first search U best first search, and it did so much faster. Thus

it is not recommended to use the last algorithm. Different techniques are needed

to generate path-methods without a shortest path. See the next chapter for such

techniques. The best breadth first search U best first search found the same number

as best breadth first search. By looking at results of all the algorithms discussed

above, the overall conclusion is that the algorithm best breadth first search can be

considered a good candidate for developing traversal algorithms.

To explore the path-method generation in more detail we experimented with these

traversal algorithms on the sample of 50 path-methods. Results are shown in Table

3.2. The best breadth first search algorithm found 43 out of 50 path-methods. The

breadth first search U best first search found 42 and best breadth first search U best

first search found 43 out of 50 path-methods. By looking at Table 3.2, we can say

that results for the larger sample correspond to the results for the smaller sample

earlier. We believe that these results are typical for a wide range of schemas and

54

path-methods. However, further experiments are needed to verify this conjecture.

No. Nam e o f the Algorithm
Generated P

(out of
D esired

ath-Methods
50)

U ndesired

1. Depth First Search 5 45

2. Breadth First Search 41 9

3. Best First Search 13 37

4. Best Breadth First Search 43 7

5. Breadth First Search { J Best First Search 42 8

6. Best Breadth First Search { J Best First Search 43 7

Table 3 .2 Results for a Sample o f 50 Path-Methods

C H A P T E R 4

PA T H -M E T H O D G E N E R A T IO N U SIN G A C C ESS

RELEV A N C E

In the previous chapter we have discussed generation of path-m ethods using access

weights. The best algorithm reported did not find 7 out of 50 desired path-methods.

We observe that the traversal using only access weights does not lead to the target

in these seven cases, as access weights are assigned based on frequency of use of

the connections and not based on the path associated with the corresponding path-

method.

In this chapter we discuss path-m ethod generation using precomputed access rel

evance between classes of an OODB schema. As computation of an access relevance

reflects the access weights of all edges along a path in an OODB schema, the path-

method generation using precomputed access relevance is predicted to generate more

desired path-methods.

4.1 H um an Traversal in O bject-O riented D atabases

In this section we will illustrate how a human navigates an OODB schema to find a

particular item of information. This kind of navigation motivates the design of the

following algorithm to generate path-methods. Consider the path-m ethod courses,

55

56

shown before, to find the courses an instructor is teaching (see Figure 2). It is required

to find a path from the class in s tru c to r to the target information {course}(read:

set of courses). We assume that the path-m ethod Courses is not yet available for the

class in s tru c to r in the OODB schema.

A human will first look at all the properties defined in the class in s tru c to r and

decide which one of them will most likely lead him to the required result. First, the

attributes of the class are scanned. If one of them contains the desired information,

then the search is completed. Otherwise, s/he chooses a most likely connection out

of the class. This connection will lead to another class. There s/he looks for a most

likely property again. S/he will continue this process until s/he finds the necessary

information. Of course, a human may need to backtrack. Whenever we refer in this

section to a match of two phrases we refer to a match which is done by a human

(using intuition) and not a match done by a machine which requires strict rules. We

explore now this technique in more detail.

1 . In this example the user compares all the attributes of the class in s tru c to r

with the target information course. (Note that all the properties defined for

person and em ployee are inherited by the class in s tru c to r.) None of the

attributes matches with course, therefore s/he considers the relationships of the

class in s tru c to r . From three relationships Supervisor, Resume and Sections

s/he selects the relationship Sections to sections, because it is the most relevant

to the target information course.

57

2. The class sections has two attributes Numsections and GroupPurpose. As both

of them do not match with course, s/he considers the generic relationship setof

to the class section , which is the only connection defined for the class sections.

The setof generic relationship is one-to-many, thus, we will represent this class

enclosed by {}, as {section}.

3. None of the attributes of the class sec tion matches the target information

course, therefore s/he looks for relationships. The relationship Instructor to

the class in s tru c to r is not considered because the class in s tru c to r was already

visited. The relationship Students to the class s tu d e n ts will not be considered

because it does not match the target information. From the two memberof

generic relationships s/he selects memberof to the class crsec tions because the

class sections was already visited. This generic relationship is applied for each

element of the set {section} yielding a set {crsections}.

4. None of the attributes of the class c rsections are selected as they don’t match

the target information course. The generic relationship setof is not selected be

cause the class sec tio n was already visited. The relationship Course to course

is selected because it matches the target information completing the traversal.

The generated path-m ethod is the same as Instructor-Courses shown in Chapter

2 .2.

58

4.2 D efinition o f A ccess Relevance for an O O DB Schem a

The significance of a path is measured by the access relevance value (ARV). The

A R V of a path is obtained by applying a triangular-norm (t-norm) [FKN91, K92,

Z65, KF8 8] to access weights of all the connections of the path. For example, for the

commonly used t-norm PRODUCT, the access relevance of a path is the product of

the access weights of all its edges. There exist several infinite families of t-norm s

and corresponding conorms [SS61]. However, in [BD8 6] it is empirically shown that

for most practical purposes two to five different t-norms suffice. In [FKN91, K92]

three different t-norms are used. From these we have chosen PRODUCT and the

more optimistic MINIMUM t-norm s to compute access relevance of a path. The

third t-norm was not useful for the path-method generation. We refer to t-norms as

weighting functions.

P R O D U C T w eighting function : The weight of a single path between two classes

is the product of all the access weights of all the edges in the path.

M IN IM U M w eighting function : The weight of a single path between two classes

is the minimum of all access weights of all the edges in the path.

The minimum weight edge of a path is called the bottleneck edge.

Formally, the access relevance value for a path P is defined as the result of applying

a weighting function WF (i.e., PRODUCT or MINIMUM) to a single path P(as, at)

= a s (= Oil)j a «2 5 a t 3 i • • • i a i k a t)•

A R V (P) = W F (1<r<fc) W (a;V,a ,r+1)

59

Note that we are using operator notation for WF, because W F stands for n or min

which are commonly written in operator notation.

The access relevance between non-adjacent classes as and at is a measure of the

significance or strength of the indirect connection from aa to at or the accessibility

from a„ to at. If several paths exist between the source and target classes then we

use the co-norm MAXIMUM to compute a single value. The access relevance from

as to at is defined as the maximum of ARV(P) over all paths from as to at.

A R (ag,a t) = v jfa A R V {P j) = i p a W (a in ° » r+ 1)

Note the difference between two terms access relevance value and access relevance.

The first one is computed for a single path, while the second is computed between

two given classes. A path with the maximum access relevance value is called a most

relevant path. In other words, for the most relevant path the access relevance value

is identical to the access relevance. Maximizing the MINIMUM weighting function

finds a path with the bottleneck edge of highest value. Maximizing the PRODUCT

weighting function finds a path with the highest product of access weights of all its

edges. We note that sometimes the user may be interested in the access relevance

between a class as and an attribute atrat of another class at . Our definition can be

extended to handle this case by representing the connection between a class and its

attributes by an edge with a given access weight.

For a weighting function WF we define AR for attributes as follows:

AR(a3,a trat) = W F (AR (aa,a t) ,W (a t,a tr at))

60

Note that if W (at, atra,) = 1 then for both weighting functions A R(a„ atrat) =

AR(afl, at).

Let us consider the paths from the class p ro fessor to the class cou rse (Refer to

Figure 2 .1). The path pi consists of the class sequence (professor, sections, section,

crsections, course). This class sequence will retrieve all the courses currently being

taught by an instructor. The access relevance value of path pi using the PRODUCT

(MINIMUM) weighting function is (0.5 * 0.5 * 0.3 * 0.8) = 0.06 (0.3). The alterna

tive path P2 consists of the class sequence (professor, students, student, transcript,

sections, section, crsections, course). This class sequence will retrieve all the courses

currently taken by all the students supervised by a professor. The access relevance

value of path p2 using PRODUCT (MINIMUM) weighting function is (0 .1 * 0.5 * 0.9

* 0.4 * 0.5 * 0.3 * 0.8) = 0.00216 (0.1). Because 0.06 > 0.00216 and 0.3 > 0.1, Pi

is a more relevant path and is actually, the most relevant path. This is not surpris

ing, since the interpretation of pi is more starightforward compared to p2. Later on

we will see that the algorithm PathMethodGenerate generates a path-m ethod along

the path with the access relevance value 0.06 rather than the path with the access

relevance value 0.00216. A path does not necessarily maximize both weighting func

tions. For example consider path p3 with the class sequence (grad_student, transcript,

sections, section). This class sequence will retrieve all the sections currently taken

by a graduate student. The access relevance value of path P3 using the PRODUCT

(MINIMUM) weighting function is (0.9 * 0.4 * 0.5) = 0.18 (0.4). The alternative

61

path P4 has the class sequence (gracLstudent, professor, sections, section). This class

sequence will retrieve all the sections currently being taught by the supervisor of a

student. The access relevance value of path p4 using the PRODUCT (MINIMUM)

weighting function is (0.5 * 0.5 * 0.5) = 0.125 (0.5). As 0.18 > 0.125, P3 is a most

relevant path using the PRODUCT weighting function and as 0.5 > 0.4, p4 is a most

relevant path using the MINIMUM weighting function.

Algorithms for efficient computation of access relevance are presented in Chapter

5.

Later on we will need the following property of a most relevant path.

P roperty 1: For every pair of nodes there exists a simple (i.e., no cycles) most

relevant path.

Proof: Let P = ((s =)a j,,a t-2, . . . ,a,-fc(= t)) be a most relevant path from s to t.

Suppose P contains a cycle. That is P can be written as ((s =)a ,j, a,-2, . . . , a^(=

bJi)>bh>bj 0) - N o w le t p i = ■■■,<*.>)» p 2 = (fyn

bj2, bj3, . . . , bjk), P3 = (a:j, . . . , a tfc). Let Q be the path obtained by concatenation

of P x and P3. Since ARV(P2) < 1 for both PRODUCT and MINIMUM weighting

functions

A R V (P) = W F (A R V {P 1),A R V (P 2), A R V (P 3))

> W F (A R V (P 1),A R V (P 3))

= A R V (Q)

Hence Q is also a most relevant path between s and t. If Q has no cycle the proof

62

is completed. Otherwise we continue removing cycles until an acyclic most relevant

path is obtained. □

One may try to use, as an alternative approach, the semantics of the different

connections in the OODB schema rather than the frequencies of the different con

nections. However, one needs to specify a combination rule for the semantics of the

connections along a path in order to derive the semantics of a connection of two classes

which are not directly related. Recent work [FKN91, FN92, SK92a, SK92b, SSR92]

addresses this problem for resemblance between classes either from same database

or from several databases (either integrated or interoperable) using various semantic

measures such as, semantic resemblance, semantic proximity, etc. First we note an

essential difference between resemblance and accessibility. In resemblance we try to

measure similarity or closeness between the concepts represented by two classes. In

accessibility we try to measure the strength of an indirect connection (i.e. path) be

tween two classes not directly related. That is, we are not interested in similarity,

but in the possibility of access from one class to another. Furthermore, the ideas for

combining resemblance are not applicable to measuring the semantics of the connec

tion between two indirectly related classes, that is, measuring the degree to which

the path between two classes in the schema is meaningful. The problem is that while

resemblance [FKN91] can supply a semantic interpretation to the combination of dif

ferent adjacent connections, we do not know of an easy way to generalize this notion

for accessibility. Thus, we take another approach in measuring the significance of the

63

connection between two indirectly related classes by defining access relevance.

4.3 A n A lgorithm for Path—M ethod G eneration using

P recom puted A ccess R elevance

The simplest greedy traversal algorithm is to choose at each node the outgoing con

nection of highest frequency. However, our experiments with the best first search

traversal show that this algorithm, like many greedy algorithms [HS89], lacks the

look-ahead property necessary in many cases to create a desired result, in this case the

desired path-m ethod. Thus, we use a measure that incorporates the access weights of

all connections that make up the path. Our algorithm will decide on the connection

to be traversed from s, based on the access weight of the connection to a neighbor

ing class u and the access relevance from u to the target class t. These choices will

be made for each node in the path traversal. This mechanism adds to the greedy

traversal approach the necessary look-ahead property which dramatically improves

the results as reported later in this chapter.

We will now describe a traversal algorithm, PathMethodGenerate, for generating

path-methods. Access weights are stored in the matrix W and precomputed ac

cess relevance are stored in the matrix ARM. Before presenting this algorithm, some

additional conventions are necessary.

If a class rii has a connection to a class ra2, then the class n 2 is a neighbor of the

class n\. Note that the class ni is not necessarily a neighbor of the class ra2, because

64

connections are directed. Suppose a class has a set of neighbors N. The traversal

algorithms may consider only a subset P of permissible neighbors of N, for reasons to

be explained shortly.

We also need to use a special notation for properties, called pair notation. For

instance, a relationship r from a class a to a class b is written in pair notation as (r,

b). The two components of a pair can be retrieved with the usual functions head and

tail. For readability it is useful to introduce notational variants of head and tail that

express their functionality at a specific point. Thus, we introduce selector = head,

datatype = tail for attributes, and classname = tail for relationships. More generally

we introduce selector = head, and result = tail. For methods, result might be either

a data type or a class name. For instance, the relationship Transcript to the class

tra n s c r ip t would be written as (Transcript, tra n sc r ip t) , and selector((Transcript,

tra n sc r ip t)) = Transcript. The function connection takes two classes as argument

and returns the property that connects them in pair notation. E.g., with a relationship

r from a class a to a class b, connection(a, b) = (r, b).

The algorithm uses a stack stk. Each element of the stack stk is a pair (selector,

result). The algorithm accepts three required parameters, the source s, the target

information t , which may be a class or an attribute in the schema, and the name of

the method m as a string. It also accepts two optional parameters, a set of forbidden

classes F, and an intermediate class c. No class of F may occur in the resulting path-

method, while the class c, if given, must occur in the path-method. The algorithm

65

returns the generated path-method in an array PM. If the Path-M ethod Generator

is unsuccessful, PM remains empty.

The variable U contains at all times the set of all visited nodes. Initially U contains

only the source class s. In each step of the while-loop (step 2), we first check whether

the current node u has an attribute a,- the selector of which is identical to t. In such

a case we set a boolean variable found to true. Otherwise, we find a set of neighbors

of u in step 4. In step 5 a pair (selector(connection(u, u)), v) is pushed onto stk.

For the selection of a most relevant neighbor v of u we apply a t-norm (PRODUCT

or MINIMUM) to the access weight W[u, u] and the access-relevance-matrix entry

ARM[u, t\. We select the neighbor where this value is maximized. If the selected

neighbor v of u is identical to the target message t, we set found to true. If there

is no such neighbor (which can happen if F ^ <j>), the algorithm backtracks, pops

the current node u from stk, and tries to find permissible neighbors of the previous

node in stk. For the successful cases (step 7), the algorithm transfers all the pairs of

a path-m ethod from stk into the array PM, reversing the order. It also creates the

header line of the method, using the name parameter m , and makes cosmetic changes

as follows. A pair (a, 6) is stored in PM as a —> b:. This is called arrow notation of a

pair and was used in previous examples.

PROCEDURE PathMethodGenerate
(IN s: class; t: classNameOrAttributeSelector; m: string;
O U T PM: array; O P T IO N A L IN F: class_set, c: class)

var
stk: stack; found: boolean; u, v, r: class; U, P, N: class_set;

beg in
1 . [Initialization:]

66

found := false; [found is true when the target information is found.]
U := (j>) [Make visited set empty.]
r := t; [the target class is stored in r.]
if not c = nil then begin
[Case when intermediate class is given.]

t := c; [The intermediate class is set temporarily as the target.]
end;
push ((dummy, s), stk); [push the source class into the stack.]

2 . w hile not empty(stk) do
begin

u := result(top(stk));
U := U U {«};

3. if u has an attribute a,- the selector of which is identical to t then
begin

push ((selector (a,), datatype(a,)), stk)
found := true;

end
4. else begin

N := set of neighbors of u;
P := ((N - U) - F); [Remove visited and forbidden classes from N]

5. if not empty(P) then
begin [This is the case when there are permissible neighbors of u.]

choose the element v from P such that
t-norm (W[u, i>], ARM[w, £]) is maximal in P;

6. if v is identical to t then
found := true;

push ((selector(connection(u, w)), u), stk);
end

7. else begin [Case when there is no permissible neighbor of u.]
pop(stk)]

end
end

8 . if found then begin
if not t = r then begin
[This is the case where the first half of the path-m ethod

to intermediate class is found successfully.]
found := false;
t := r;

end
9. else begin

[This is the case when either there is no intermediate class (c = nil)
or the second part of the path-method is found successfully.]

67

Add m(): at the first position of the array;
w hile n o t empty(stk) do

pop(stk) into array PM; [This reverses class order.]
[Pairs are stored in arrow notation.]

Delete the last element of PM which contains a dummy,
end

en d [of if]
en d [of while]

end [of PathMethodGenerate]

Now we will show how the path-m ethod Student-Courses (refer to path-method

1 in the sample set) for the class s tu d e n t is generated using the algorithm Path

MethodGenerate.

The steps of the PathMethodGenerate algorithm are demonstrated in Table 4.1,

making use of Figure 3.2. We start with a class s tu d e n t (2). It has four permissible

neighbors p e rso n (1), t ra n sc r ip t (6), s tu d en tu n io n (7) and s tu d e n ts (3). Now,

W[2, 1] * ARM[1 , 1 1] = 0.0 * 0.0 = 0.0, W[2, 6] * ARM[6 , 11] = 0.9 * 0.28 = 0.252,

W[2 , 7] * ARM[7, 1 1] = 0 .1 * 0.227 = 0.0227, and W[2, 3] * ARM[3, 11] = 0.5 *

0.252 = 0.126. Because 0.252 > 0.126 > 0.0227 > 0.0, the relationship to the class

t ra n s c r ip t is selected, and the corresponding pair (Transcript, transcript) is pushed

on stk.

The class tra n sc r ip t has permissible neighbors sections (8), and course_records

(16). Now, W[6 , 8] * ARM[8 , 11] = 0.4 * 0.12 = 0.048, W[6 , 16] * ARM[16, 11] =

0.8 * 0.35 = 0.280. Thus, in Step 2 class course_records will be selected, and the

pair (CourseRecords, course_records) is pushed on stk. The class course_records

has only one permissible neighbor, course_record. Thus, in step 3 the pair (setof,

68

course_record) is pushed on the stk. The class course_record has only one permis

sible neighbor and that is the target information. Thus, the pair (Course, course) is

added to the stk.

Iteration u P new element of stk
Initial

1

2
3
4

{student}

{transcript}
{course.records}
{course.record}

{person, transcript,
studentunion, students}

{course.records, sections}
{course.record}

{course}

(Courses student)
(Transcript transcript)

(CourseRecords course_records)
(setof course.record)

(Course course)

Table 4.1 Steps of the Algorithm PathMethodGenerate

The complexity of the algorithm in the worst case in O(e), where e is the total

number of connections and attributes in the schema. For the validity proof for the

algorithm for the PRODUCT t-norm we need the following lemma. This Lemma 1

shows that the most relevant path using the PRODUCT t-norm satisfies the principle

of optimality which is the basis for dynamic programming [HS89],

L em m a 1: For the PRODUCT t-norm a subpath of a most relevant path is a most

relevant path.

P roof: Let P = ((s =)a,-1 ,a,-2, . . . t)) be a most relevant path from s to t.

Consider a subpath Q = atj, atj+1, . . . , a,(, 1 < j < I < k, of P. We have to show that

Q is a most relevant path from a tj to a,-,. Suppose to the contrary that there exists

another path R from atj to a,-(R = ((at> = 6 ,-,, &,-2, . . . , 6 ,m(= a,-,)) with higher access

relevance than Q, that is Ai2(6,-,, ft,-2, . . . , 6 ;m) > Aft(atj, a ,->+1, . . . , a,,). Consider the

path U = (a ;j, a,-2, . . . , ai-_,, 6 ,,, 6 ,-2, . . . , 6 ,m, a,-J+1, . . . , For the PRODUCT t-norm

the access relevance AR satisfies

69

AR(U) = PRODUCT (AR(a{l, . . . , ai}), AR{bh , . . . , 6,-J, AR(a i n . . . , a,-J)

> PRODUCT (AR(a il, . . . ,a t>), AR{a{j, . . . , a,-,), AR(a i n . . . , a ,J)

= AR(fli,, . . . , a, J = AR(P)

If the path R is node disjoint with the subpaths (a:i, a,-2, a,-._J and (a,,+1,

. . . , a,fc) then the path f/ is a simple path from s to t with higher access relevance

than the most relevant path P, a contradiction. On the other hand, consider the case

where R has joint nodes with (a,-,, . . . , a,- ._j). Let a,r be the first such joint node, that

is a,r = bix, 1 < r < j — 1, 1 < x < m. Consider the path M = (a,-,, . . . , a,r_ ,, 6tx,

. . . , 6,m, a,-|+1, . . . , a,-*). The weights of the edges deleted from U are in the range [0,

1]. Thus, AR(M) > AR(£/) > A R(P). If (a,-,, . . . , a,r_ ,, 6tl , . . . , 6,m) still has more

joint nodes with (a,-l+1, . . . , a,fc) the removal of joint nodes is done similarly. Thus,

the obtained path M is a simple path from s to 1 with higher access relevance than

the most relevant path P, a contradiction. Thus, there exist no such path R such

that AR(i?) > AR(<5), and Q is a most relevant path from a* , to a,r □

For the MINIMUM t-norm we need a different lemma.

The following Lemma 2 satisfies the principle of optimality.

L em m a 2: For the MINIMUM t-norm a subpath containing all the bottleneck edges

of a most relevant path is a most relevant path.

P ro o f: Let P = ((s =)a,-,, a,-2, . . . , a,-fc (= t)) be a most relevant path from s to

t. Consider a subpath Q = a^, a;-+1, . . . , a,-(, 1 < j < I < k, of P containing all

the bottleneck edges. We have to show that Q is a most relevant path from atj to

70

а,-,. Suppose to the contrary that there exists another path R from to a,-, R =

((at> = b{6, -2, . . . , b{m (= a,-,)) with higher access relevance than Q, that is AR(b{1,

6*2 > •••> * 0 > ARfaij, a,J+1, a,-(). Consider the path f/ = (a,-,, a,-2, a,-,.,,

б,-j, 6»2, . . . , 6,m, a,',+1, . . . , a,fc). For the MINIMUM t-norm the access relevance AR

satisfies

AR(C/) = MINIMUM (A P (a ; a tj), AR(6tl, . . . , 6; m), AR(a,-, , . . . , a,- J)

> MINIMUM (Ai2(atl, . . . , a,y), AR{aij , . . . , a^), AR(a{n . . . , a,-fc))

= AR(atl, . . . , a, fc) = AR(P)

If the path P is node disjoint with the subpaths (atl, a,-2, ajj.!) and (a,,+1,

. . . , a,-fc) then the path U is a simple path from s to 1 with higher access relevance

than the most relevant path P , a contradiction. On the other hand, consider the case

where R has joint nodes with (a,j, . . . , Let a,r be the first such joint node,

that is a,r = b{x, 1 < r < j — 1, 1 < x < m. Consider the path M = (atl, . . . , a,'r_15

bix, . . . , 6,m, a,-I+1, . . . , atfc). The weights of the edges deleted from U are in the range

[0, 1]. Thus, AR(M) > AR(P) > AR(P). If (aXl, . . . , a,p_n 6tl , . . . , 6,m) still has

more joint nodes with (a,-J+1, . . . , dik) the removal of joint nodes is done similarly.

Thus, the obtained path M is a simple path from s to t with higher access relevance

than the most relevant path P , a contradiction. Thus, there exist no such path R

such that AR(P) > AR(<5), and Q is a most relevant path from aXj to a,r □

D efin ition 1: For the MINIMUM t-norm a subpath without any bottleneck edge of

a most relevant path is a non-effective subpath.

71

Note that all the edges of a non-effective subpath have higher access weights than

the access weight of the bottleneck edge (i.e., access relevance of the path). Although

the principle of optimality is not satisfied, the algorithm finds a most relevant path.

This is because of the nature of the MINIMUM t-norm, which selects the minimum

edge access weight of the path and the rest of the edges can have larger access weights

than the minimum edge access weight and not necessarily the largest possible. Hence,

for the MINIMUM t-norm any non-effective subpath of a most relevant path need

not be a most relevant path.

T h e o rem 1: The algorithm PathMethodGenerate generates a path-method corre

sponding to a most relevant path from the source class s to the target class t. (If t is

an attribute then the target class is the class containing t.)

P ro o f: The proof is by induction on the sequence of nodes of a most relevant path.

Basis o f the induction: We need to show that the first connection of the path-method

generated corresponds to the first edge of a most relevant path. In the first iteration

of step 5, u = s and the algorithm selects a neighbor v of u such that t-norm (W[u, u],

ARM[w, 2]) is maximum. But ARM[v, t] is the access relevance of the most relevant

path from v to t and W[it, v\ is the access weight from it to u. As u = s, then by

the definition ARMjs, t] = max„(t-norm (W[s, u], ARM[i>, <])). Hence, the selected

neighbor v will be the first node on a most relevant path from s to t.

Induction Step: Suppose the path from s to it which corresponds to a subsequence

of the path-m ethod generated by the algorithm is a subpath of a most relevant path

72

from s to t. We need to show that the edge which corresponds to the next connection

of the generated path-method is on a most relevant path from s to f. By Lemma 1

for the PRODUCT t-norm, the subpath from u to t of a most relevant path from s to

t , is a most relevant path from u to t. For the MINIMUM t-norm , the subpath from

u to t of a most relevant path from s to t, is either a most relevant path (Lemma 2)

or a non-effective subpath, from u to t.

The algorithm picks in step 5 a neighbor v of u such that t-norm (W \u , u], ARM[u,

2]) is maximized. By the definition of the ARM, ARM(u, t) = max„(t-norm (W [i i ,

u], ARM[u, ;£])). Hence the selected neighbor v is a first node on a most relevant path

from u to t for the first two cases. For the third case of a non-effective subpath it is

not required to be on a most relevant path from u to /. Hence, the selected node v

and edge (u, v) are on a most relevant path from s to t. □

4.4 R esults o f E xperim ents for th e Sam ple Set of

Path—M ethods

The results of path-method generation using the algorithm PathMethodGenerate are

shown in Table 4.2. In this section we report applying the algorithm with an empty

forbidden set F and no required intermediate class c. These two parameters are

utilized in the next section.

From the Table 4.2, we observe the following conclusions. The results for Path

MethodGenerate for the PRODUCT t-norm (using Rule 2a as well as Rule 2b) are

73

e
M

in
im

um

Ru
le

2b i

Os ©9 8 00 9 rH 9 8 00
rH 9 8 t) 8 9 1) o

rH 8 SOCO 9 8 so
rH rH rH

25
.4

8

& 9 9 9 't 9 9 9 SO 9 9 9 9 9 9 9 9 CO 3
SO

P
at

hM
et

ho
dG

en
er

at
M

in
im

um

.
Ru

le

2a
|

1
co
rH 8 9 ©P* 9 9 rH 9 9 00

rH I)8 9 8 9 1)9 o*N SOCO 9 8 8 rH 9 s

t! 9 9 9 9 9 9 9 so 9 9 9 9 9 9 9 9 0 9 1̂* 9 N
P̂

M
od

if
ie

d
1

P
ro

du
ct

■

Ru
le

2b

|

|
Os § Os Os 00 P co

rH
tH
rH

N 9 SO
rH 9 9 9 9 9 o a 0\ 9 9 Os

rH
rH
rH OS

00
N
rH

& © 't 't >n CO 9 P 9 9 9 9 9 9 0 CO
SO
rH

4

Pr
od

uc
t

1
R

ul
e

2a
|

1
Os § Os Os

rH p* P co
1-H

rH N
rH P 8 SO

rH 9 9 9 9 9 o
rH a os 9 9 Os

rH rH 9 o
rH

9 't 10 (0 9 P 9 9 9 9 9 't 9 0 CO 9 NCO

M
in

im
um

Ru

le

2b

| § 8 9 9 p 9 so
rH 8 8 SO

rH 9 9 9 9 9 9 9 CON os 9 9 s 9 Os

N

»

9 9 9 9 rt S)9 't 9 9 SO 9 9 r H / 9 9 9 9 9 9 CO 9 't
OOoo
SO

lo
dG

en
er

at
e

M
in

im
um

■

R
ul

e
2a

|

i Os 9 9 CO
rH P*1) q)

CO
rH 9 q) SO

rH
SO
rH 9 q) 9 q) 9 9 CON

rH
rH 9 Ss\C/ 9 9

NCO
CO
N

i 9 9 * 9 9 9 9 VO 9 9 9 9 9 9 't 9 9 CO 9 9 00o
soV

V

i« *5 o
ft 5 -a£ ft

1 Os co
rH Os Os p* p co

|H
rH
tH

PJ
rH p 9 SO

rH
o
rH

rH
N 9 CO

rH H
o
H a 0s (N

rH
P*
rH

Os
rH

rH
rH Os a

c s
rH

b !
* 't * so (0 9 CO 9 CO 't x f P CO

SO
rH

Pr
od

uc
t

I
Ru

le

2a
j

i OS 9 Os Os p* p
rH
rH

o
rH

N
rH p 9 rH

CO rH
N 9 p*

rH
VO
H

o
rH

CON 0s 9 P
rH

OS
rH

rH
rH ©SO

CO

i 9 SO CO 9 CO 9 't CO 9 P CO 9 N
rH

't

% rH Oi co w SO P oo 0s o
rH

H
rH

N
rH

CO
rH rH

SO
rH

SO
rH

p
rH

00
H

0s
rH 8

rH
N NN

CO
N a

000
§

T
ab

le

4.
2

R
es

u
lt

s
of

P

at
h
M

et
h
o
d
G

en
er

at
e

an
d

M
o
di

fi
ed

P

a
th

M
e
th

o
d

G
e
n

e
ra

te

very good. For the PRODUCT t-norm using Rule 2b, only two of the 25 path-

methods generated for the sample were not the desired ones. Furthermore, the number

of nodes visited during this algorithm is in general lower than for any of the other

algorithms, showing the efficiency of the algorithm. The cases where the generated

path-methods are not the desired ones will be analyzed in the next section. The

results for the MINIMUM t-norm (using Rule 2a as well as Rule 2b) are disappointing.

The conclusion is that the MINIMUM t-norm appears not fit for the calculation of

access relevance for guiding path-m ethod generation. We conjecture that the reason

is that the MINIMUM t-norm does not reflect all the weights of the edges of the

path, as does the PRODUCT t-norm .

Now, we compare these results with results obtained by a new algorithm, Mod

ified PathMethodGenerate. The Modified PathMethodGenerate algorithm selects a

neighbor whose access relevance to the target is maximal. Unlike the PathMethod

Generate algorithm, the Modified PathMethodGenerate ignores the access weight

from the current node to a neighbor. The results for the Modified PathMethodGen

erate are disappointing. Only 16 of 25 path-methods generated are desired ones for

the PRODUCT t-norm and 11 of 25 are desired ones for MINIMUM t-norm. The

conclusion is that the access weight from a node to a neighbor has a major impact

on the generated path-method. This phenomenon is not so obvious, intuitively, since

one may just want to choose a neighbour most relevant to the target without looking

at the properties of the edge to that neighbour. However this phenomenon can be

75

better understood when one realizes that the Modified PathMethodGenerate algo

rithm is not guaranteed to generate path-methods with most relevant path as does

the PathMethodGenerate algorithm as proven in Theorem 1 above. Note that for the

PRODUCT t-norm using Rule 2a we get undesired results for path-methods 2, 21,

and 25 in Table 4.2, in addition to three undesired results common to both rules.

Now, we will demonstrate why Rule 2a gives an undesired result for the pa th -

method 2. The generated path-method is shown below.

Instructors ():
Supervisor — ► professor: categoryof — > faculty .member:
categoryof — > instructor

Note that the class g ra d .s tu d e n t has a relationship Supervisor to the class p ro

fessor. Being an indirect subclass of the class in s tru c to r (i.e., the target informa

tion), the class professor inherits all the properties of the class in s tru c to r . Thus,

once we reach to the class professor, the most relevant path (using Rule 2a) to the

class in s tru c to r requires traversal of two categoryof generic relationships through

facu lty .m e m b e r without utilizing inheritance, which does not make sense. For

Rule 2b the same path is not a most relevant path, as we assign an access weight 0.0

to the generic relationship categoryof.

We have compared results of different traversal algorithms in Chapter 3. There,

the best access weight traversal algorithm best breadth first search found 20 of 25

path-methods. Here, the algorithm PathMethodGenerate using Rule 2b and PROD

UCT t-norm found 23 of 25 path-methods. Obviously, basing the traversal on access

relevance yields much better results, since it adds the feature of lookahead which

was missing in the previous algorithms. In particular this algorithm generated four

path-m ethods without a shortest path not obtainable by best breadth first search.

By looking at results of all the algorithms discussed above, the overall conclusion is

that the algorithm PathMethodGenerate using Rule 2b and PRODUCT t-norm is

the best of all traversal algorithms.

No. Name o f the Algorithm
Generated Pa

(out
Desired

th-Methods
of 50)
Undesired

1. Depth First Search 5 45

2. Breadth First Search 41 9

3. Best First Search 13 37

4. Best Breadth First Search 43 7

5. Breadth First Search { J Best First Search 42 8

6. Best Breadth First Search Best First Search 43 7

7. PathMethodGenerate (PRODUCT (Rule 2b)) 46 4

8. PathMethodGenerate (PRODUCT (Rule 2a)) 37 13

9. PathMethodGenerate (MINIMUM (Rule 2b)) 16 34

10 ModifiedPathMethodGenerate (PRODUCT (Rule 2b)) 31 19

11 ModifiedPathMethodGenerate (MINIMUM (Rule 2a)) 21 29

Table 4.3 Results for a Larger Sample

To investigate the problem of path-method generation more thoroughly, we ap

plied these algorithms to a sample set of 50 path-methods to be generated for the

77

classes of the subschema of Figure 3.2 (including the 25 path-methods discussed

previously). The results are shown in Table 4.3.

In general, the results for the larger sample correspond to the results for the smaller

sample recorded earlier. Our results show that the algorithm PathMethodGenerate

(PRODUCT (Rule 2b)) is the best of all. It found 46 desired path-methods out of

50 given path-methods. Thus, whenever the access relevance is already computed we

should apply this algorithm. There are four undesired path-methods: two from the

small sample set and the other two from the 25 path-methods of the larger sample.

These four cases are discussed in the next section.

4.5 Param eterized Path—M ethod G eneration

In this section we explore techniques to improve the results of the traversal algorithm

in the cases where it failed to provide the desired results. While the techniques are

general enough to be applied to different traversal algorithms, we illustrate them here

only with the most successful algorithm of the PMG system, namely PathMethod

Generate (PRODUCT (Rule 2b)).

In the previous section we reported two cases where the desired path-method was

not found by the PathMethodGenerate algorithm for the PRODUCT t-norm.

In the first case (path-m ethod 11) the path-m ethod generated by the algorithm

is

Research_assistants ():

78

Departments — > departments: setof — > {department}:
@DeptChairPerson — ► {dept_chair.person}:
@ Research Assistants — > {{research_assistants}}:
@setof — * {{{researchuassistant}}}: union — ► {{research_assistant}}:
un ion — ► {research_assistant}

This path-method finds all the research assistants of the department chair_persons

of a college rather than all the research assistants of all the professors of the depart

ments of a college, the desired path-method. This path-m ethod was obtained since

the class subpath (department, dept_chair_person, research_assistants [last relation

ship inherited from professor]) has higher access relevance than (department, profes

sors, professor, research_assistants) mainly due to the use of inheritance. The path-

method generated does not make sense since its inclusion of the dept_chair_person

class limits unnecessarily the range of the query.

In the second case our algorithm generates the following path-method:

Teaching_Assistant-Courses ():
Transcript — ► transcript: CourseRecords — > course_records:
setof — ► {course_record}: @Course — ^{course}

This path-method finds the classes a teaching_assistant is currently registered for,

rather than those s/he is teaching. In this case both path-methods make sense, but

the desired one is the straightforward interpretation of the source teach ing_assistan t

and the target {course}, since a teaching.assisting exists in a capacity of teaching

rather than studying. Other interpretation is actually inherited from g rad_studen t.

We have no way to prevent the algorithm to produce such path-methods due to

the access weights in the schema reflecting roleof inheritance (full or selective) which

79

is required for other purposes. Thus, our approach is that it is the responsibility of

the user to screen the path-m ethod obtained and judge if this is the desired one.

Our experiments indicate that the desired path-method will be generated with high

probability.

We will now show how the user can apply the algorithm again in case of an

unsatisfactory result, using the information contained in the unwanted path-method,

to obtain his desired path-method. The user can constrain the generation of the

desired path-method by specifying the optional parameters for the algorithm. For

example the user can pick classes in the generated path-m ethod to be in the set F of

forbidden classes which are in a different context than the desired path-method. As a

result the repeated application must generate a different path-m ethod which does not

contain these classes. For the first undesired path-method we can add to F the class

dept_chair_person , and for the second one we can add to F the class tra n sc r ip t.

Our experiments show that with this modification the algorithm produces the other

possible path-method successfully.

Another option is to identify a class c which does not appear in the path-method

generated but its participation in the path-method appears to improve the chances

for successful generation. Such a class has to be chosen as an intermediate class

parameter. The subsequent application of the algorithm with the intermediate pa

rameter set to this class will force the newly generated path-method to contain the

desired class. For the first path-method we can pick c = professors. For the second

80

one we can pick c = in s tru c to r (i.e., using the inheritance from in s tru c to r) . This

mechanism is based on the Lemma 1 from Section 4.3. Each of these options will

increase the chances of generating the desired path-m ethod in the second trial. The

user may even set both parameters simultaneously for the second trial, increasing

further the chances for generating the desired path-m ethod.

We examine these two mechanisms with the two undesired path-methods which

occur in the large sample. For the first case (path-m ethod 27) the undesired path-

method generated is shown below. This undesired path-m ethod is generated because

of traversal of relationship DeptChairPerson from the class d e p a r tm e n t similar to

the case of the first undesired path-m ethod above. Note that the relationship Sections

is inherited from class in s tru c to r through class p rofessor.

Department-Courses ():
DeptChairPerson — ► dept_chair_person: Sections — > sections:
setof — > {section}: @memberof — > {crsections}:
@Course — ► {course}

Our experiments show that if we select the class dep t_chair_person as forbidden

node for the first parameter or pick the intermediate class c = in s tru c to rs for the

second parameter, then the desired path-m ethod is obtained.

For the second case (path-m ethod 33) the undesired path-m ethod generated is

shown below. This undesired path-m ethod is generated because of traversal of rela

tionship DeptChairPerson from the class D e p a r tm e n t, again similar to the case of

the first undesired path-m ethod above.

D e p a r tm e n t-S tu d e n ts ():

81

DeptChairPerson — ► dept_chair_person: Sections — ► sections:
setof — ► {section}: @Students — ► {students}:
@setof — ► {{student}}: un ion — ► {student}

Our experiments show that if we select the class dep t_chair_person as forbidden

node for the first parameter and or pick the intermediate class c — in s tru c to rs for

the second parameter, then the desired path-method is obtained.

As we see, these two mechanisms for dealing with cases of generated undesired

path-methods work for the four such cases in our larger sample. More experiments

are necessary to judge the success ratio of these two mechanisms.

C H A P T E R 5

ALG O RITH M S FO R C O M PU T IN G ACCESS

RELEVANCE IN A N OO DB

In Chapter 3 we have discussed motivations for using access weights and rules for

access weight assignment. In Chapter 4 we discussed the definition of access relevance.

In this chapter we describe efficient algorithms for computing access relevance.

5.1 A ccess R elevance C om putation for th e PR O D U C T

W eighting Function

We propose an algorithm PRODUCT-AR for the PRODUCT weighting function

which computes access relevance from a source class to all the classes in the schema.

This algorithm is a variation of the well-known nearest neighbor greedy algorithm of

Dijkstra (e.g., [AHU83]). The algorithm of Dijkstra solves the single source shortest

path problem to all the targets in the graph. The shortest path is defined as the path

with the minimum sum of weights. In order to find the access relevance for all pairs

of classes in a schema of n classes we need to apply the algorithm, PRODUCT-AR ,

n times, once for each class as a source class.

The PRODUCT-AR algorithm finds the access relevance AR[u] from a source class

represented by node s to every other class v. The algorithm is described in terms

82

83

of the graph representation of the schema. It assumes, without loss of generality,

that vertices are labeled by consecutive natural numbers, V = {1, 2, . . . , n}. The

algorithm works by maintaining a set S of nodes whose maximum access relevance

from the source is already computed. Initially, S contains only the source node {s}.

At each step, we add to S a node u £ V-S of maximum access relevance. A path

from s to a node v is called special if all its nodes (except possibly v itself) belong to

S. At each step of the algorithm, we use an array AR to record the maximum access

relevance value of a special path to each node. W is a two-dimensional array, where

W[«, j] is the access weight of the edge (*, j) . If there is no edge (i, j) , then we assume

W[z, j] = 0. In each step, after u is chosen to be inserted into S, a new special path to

w, v £ V - S - {u}, containing u, may result, that has a larger ARV than until now.

Hence, we update AR[u] for each node v £ V-S as follows. AR[u] is the maximum of

two values: (1) The old AR[t>] containing the access relevance of a special path not

containing u\ and (2) AR[u] * W[u, u] representing the access relevance of a special

path containing u as the last node before v. Once S includes all nodes, all paths are

“special,” so AR[t>] will hold the maximum access relevance from the source to each

node v £ V.

P ro c e d u re PRODUCT_AR (IN s : node, O U T AR: array[l..n] of REAL)
beg in

(1) S := {s};
(2) for each node v other than s do
(3) AR[u] := W[s, v]-
(4) for i := 1 to n-1 do beg in
(5) choose a node u in V - S such that

AR[u] is a maximum;
(6) S : = S U { « } ;

84

(7) for each node v in V - S do
(8) AR[v] := max (AR[v], AR[u] * W[u, v])

end
end;

The described algorithm differs from Dijkstra’s algorithm by using the weighting

function “*” in line (8) instead of the usual operator. We will argue below

why this change results in a correct algorithm that preserves the essential features of

Dijkstra’s algorithm. This algorithm will work for an undirected graph as well.

We will consider the schema shown in Figure 5.1, which is not directly a sub

schema of a university OODB but a variation of it. We have chosen this schema

such that the same schema is used as one of two schemas to illustrate computation of

access relevance in an interoperable multi-OODB. The corresponding directed graph

representation is shown in Figure 5.2.

Let us apply PRODUCT-AR to the directed graph of Figure 5.2 assuming Rule

2b for specialization relationships. The source is 12 (professor). In steps (2)-(3), S

= {12}, AR[3] = 0.3, AR[l] = 0.0, AR[7] = 0.7, and for the rest of the entries of the

array, AR = 0. In the first iteration of the for-loop of lines (4)-(8), u = 7 is selected

as the node with the maximum ARV. Then we set AR[8] = max(0, 0.7 * 0.5) = 0.35.

Other values of the array AR do not change. The sequence of the AR values after

each iteration of the for-loop is shown in Table 5.1.

The results of this application of PRODUCT-AR appear in row 5 in the matrix

ARM (Access Relevance Matrix) of Table 5.2, showing the access relevance for each

pair of nodes. Note that each diagonal value ARM[i, i] is set to 1.0. We will now

85

course records

course record

CourseRecords
Transcript 0.7

Supervisor
0.3

roleof ro leof

student

Transcript
students

S tudent
0.3

transcrip t

Students
0.6

Course 0.5 course
0.1 Prereq

sections Sections 0.9

section

Figure 5.1 A Subschema of a University Database

0 .0 ,

0.0
0 .3

0 .5

0 .3
0 .3

0 .3
12

0 .9
0.6

0.7 ,
0 .7

0.8

0 .7
0 .5

,0 .5
0 .5

0.1

10
0.2 0 .5

0 .5 ,

0 .3
0 .3 0 .7

F igure 5 .2 T h e Sub sch em a as a D irected G raph

86

prove the validity of the PRODUCT-AR algorithm.

Iteration S u new value of AR
Initial {12} — AR[3] = 0.3, AR[1] = 0.0,

AR[7] = 0.7
1 {12, 7} 7 AR[8] = 0.35
2 {12, 7, 8} 8 AR[9] = 0.175
3 {12, 7, 8, 3} 3 AR[2] = 0.150
4 {12, 7, 8, 3, 9} 9 AR[10] = 0.088
5 {12, 7, 8, 3, 9, 2} 2 AR[4] = 0.135
6 {12, 7, 8, 3, 9, 2, 4} 4 AR[6] = 0.108
7 {12, 7, 8, 3, 9, 2, 4, 6} 6 AR[5] = 0.032
8 {12, 7, 8, 3, 9, 2, 4, 6, 10} 10 AR[11] = 0.044
9 {12, 7, 8, 3, 9, 2, 4, 6, 10, 11} 11 -
10 {12, 7, 8, 3, 9, 2, 4, 6, 10, 11, 5 } 5 -
11 {12, 7, 8, 3, 9, 2, 4, 6, 10, 11, 5, 1} 1 -
Table 5.1 Computation of PRODUCT_AR on Graph of Figure 5.2

T h e o rem 2: In the PRODUCT-AR algorithm, AR[u] contains at all times the high

est access relevance of a special path from node s to node v, for every node v G

V.

P roo f: The proof is by induction on the iterations of the algorithm. Initially, the

theorem is true following lines (2) and (3) of the algorithm, since S = {s} and the

only existing special path contains just s and v. Suppose the theorem is true before a

node u is added to S, and prove it is true after u is added to S. By the induction, the

theorem is true for the nodes of S for special paths not containing u. We now show

that a special path containing u can not increase AR[u], for v G S. By the order of

selecting nodes for S, AR[w] > AR[u], since whenever AR[m] is increased by update

(step (8)) through a node x selected for S after u, AR[i] < AR[u] and AR[uj < AR[i]

(since W[x, u] < 1). The theorem is true for u itself by its choice. Then, it is left to

prove the theorem for all nodes of V - S.

To support the argument observe that when we add a new node u to S at line

(6), lines (7) and (8) adjust AR to take account of the possibility that there is now

a special path to v going through u. If that path goes through the old S to u and

then immediately to v, its access relevance, AR[it] * W[u, u], will be compared with

AR[u] at line (8), and AR[v] will be increased if the new special path has higher access

relevance.

2 3 4 5 6 7 8 9 10 11 12

1 1.0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0

2 0 .0 1 .0 0 .3 0 .9 0 .2 1 6 0 .7 2 0 .3 6 0 .1 8 0 .1 3 6 0 .1 5 1 0 .0 7 6 0 .3

3 0 .0 0 .5 1 .0 0 .4 5 0 .1 0 8 0 .3 6 0.1B 0 .0 9 0 .0 6 8 0 .0 7 6 0 .0 3 8 0 .1 5

4 0 .0 0 .3 0 .1 2 1.0 0 .2 4 0 .8 0 .4 0 .2 0 .1 5 1 0 .1 6 8 0 .0 8 4 0 .1 4

5 0 .0 0 .0 9 5 0 .1 8 9 0 .21 1 .0 0 .3 0 .1 5 4 0 .3 1 5 0 .6 3 0 .7 0 .3 5 0 .2 2 1

6 0 .0 0 .21 0 .0 8 4 0 .7 0 .3 1.0 0 .2 8 0 .1 4 0 .1 8 9 0 .21 0 .1 0 5 0 .0 9 8

r 0 .0 0 .1 5 0 .3 0 .1 3 5 0 .0 3 2 0 .1 0 8 1.0 0 .5 0 .2 5 0 .1 2 5 0 .0 6 3 0 .3 5

8 0 .0 0 .3 0 .6 0 .2 7 0 .0 6 5 0 .2 1 6 0 .4 9 1 .0 0 .5 0 .2 5 0 .1 2 5 0 .7

9 0 .0 0 .1 5 0 .3 0 .1 3 5 0 .0 3 2 0 .1 0 8 0 .2 4 5 0 .5 1 .0 0 .5 0 .2 5 0 .3 5

10 0 .0 0 .1 3 5 0 .2 7 0 .1 2 2 0 .0 2 9 0 .0 9 7 0 .2 2 1 0 .4 5 0 .9 1 .0 0 .5 0 .3 1 5

11 0 .0 0 .0 6 8 0 .1 3 5 0 .061 0 .0 1 5 0 .0 4 9 0 .1 1 0 .2 2 5 0 .4 5 0 .5 1 .0 0 .1 5 8

12 0 .0 0 .15 0 .3 0 .1 3 5 0 .0 3 2 0 .1 0 8 0 .7 0 .3 5 0 .1 7 5 0 .0 8 8 0 .0 4 4 1.0

Table 5.2 Access Relevance Matrix ARM for Graph of Figure 5.2

The only possibility for a special path with higher access relevance is shown in

Figure 5.3, where the path travels to u, and then back into the old S, to node x of

the old S, then possibly through other nodes of S to v. But as we now show, such a

path cannot exist. Since x was placed in S before u, AR[a;] > AR[u] (first paragraph

of proof). Thus, there exists a special path with the highest access relevance from

F igure 5.3 Im p ossib le S pecia l P ath

the source to x which runs only through nodes of the old S. Therefore, the path to

x through u as shown in Figure 5.3 is of no higher access relevance than the path

directly to x through S, since the PRODUCT weighting function cannot increase

access relevance along the path. Thus, AR[u] cannot be increased by a path through

u and x as in Figure 5.3, and we need not consider the corresponding update of the

access relevance of such paths. □

When the operation of the algorithm is complete S = V, i.e., all paths are special

paths. Hence, Theorem 2 implies that AR[u] is the highest access relevance of a

general path to v when the algorithm is completed.

The running time of PRODUCT-AR algorithm is 0(rc2). If e = \E\ is much less

than n2, we might do better by using an adjacency list representation of the directed

graph and using a priority queue implemented as a heap [AHU83] to organize the

nodes in V-S. Choosing and deleting a maximum access relevance node from S in

lines (5) and (6) takes 0(lg n) time. This operation is repeated n times yielding O(n

lg n) time. The loop of lines (7) and (8) can then be implemented by going down

89

the adjacency list for u and updating the access relevance in the priority queue. At

most a total of e updates will be made, each at a cost of 0(lg n), so the total time is

now 0(e lg n), rather than 0 (n 2). Thus, running time of PRODUCT-AR algorithm

is 0 (e lg n). This running time is considerably better than 0 (n 2) if e < < n 2, as it is

for a typical OODB schema whose graph representation is a sparse graph.

5.2 A n A lgorithm for th e M IN IM U M W eighting Function

We now present an algorithm MINIMUM-AR for the MINIMUM weighting function

which computes access relevance from a source s to all other classes in the schema.

This algorithm is similar to the previous algorithm PRODUCT-AR.

The algorithm begins with a set S initialized to source {s}. At each step the

algorithm chooses a node uG V - S maximizing AR[u]. The main difference from the

previous algorithm is in the mechanism for updating AR[v] for all v G V - S. For each

neighbor u of u, after u is added to S, we compare the value of the access relevance

of u with the access weight of the edge (u, v). The minimum of these two values

is compared to the current access relevance of v. If this minimum value is higher

than the current AR[u], then AR[u] is set to this value. As for the PRODUCT-AR

algorithm if there is no edge («, j) G E then we define W[z, j] = 0.

Procedure MINIMUM.AR (IN s : node, O U T AR: array[l..n] of REAL)
begin

(1) S := {s};
(2) for each node v other than s do
(3) AR[»] := W[s, i>];
(4) for i := 1 to n-1 do begin

90

(5) choose a node u in V - S such that
AR[u] is a maximum;

(6) S := S U m;
(7) for each node v in V - S do
(8) AR[u] := max (AR[v], min(AR[u], W[u, u]))

end
end;

Let us apply MINIMUM-AR algorithm to the graph shown in the Figure 5.2. The

results for this algorithm, for source node 12, are shown in Table 5.3. Note that in

Step 2 the access relevance value of 3, AR[3] is updated from 0.3 to 0.6. By applying

this algorithm to each node in the schema, we compute all-pair access relevance

(similar to Table 5.2 for PRODUCT_AR).

Iteration S u new value of AR
Initial {12} — AR[3] = 0.3, AR[1] = 0.0,

AR[7] = 0.7
1 {12, 7} 7 AR[8] = 0.5
2 {12, 7, 8} 8 AR[9] = 0.5
3 {12, 7, 8, 3} 3 AR[2] = 0.5
4 {12, 7, 8, 3, 9} 9 AR[10] = 0.5
5 {12, 7, 8, 3, 9, 2} 2 AR[4] = 0.5
6 {12, 7, 8, 3, 9, 2, 10} 10 AR[11] = 0.5
7 {12, 7, 8, 3, 9, 2, 1 0 ,4 } 4 AR[6] = 0.5
8 {12, 7, 8, 3, 9, 2, 10, 4, 11} 11 -
9 {12, 7, 8, 3, 9, 2, 10, 4, 11, 6} 6 AR[5] = 0.3
10 {12, 7, 8, 3, 9, 2, 10, 4, 11, 6, 5} 5 -
11 {12, 7, 8, 3, 9, 2, 10, 4, 11, 6, 5, 1} 1 -

Table 5.3 Computation of MINIMUM_AR on Graph of Figure 5.2

For validity proof of MINIMUM-AR Theorem 3 is given below.

T h eo rem 3: In the MINIMUM-AR algorithm, AR[u] contains at all times the highest

access relevance of a special path from node s to node u, for every node v £ V.

P roof: The proof is by induction on the iterations of the algorithm. Initially, the

theorem is true following lines (2) and (3) of the algorithm, since S = {s} and the

91

only existing special path contains just 3 and v. Suppose the theorem is true before a

node u is added to S, and prove it is true after u is added to S. By the induction, the

theorem is true for the nodes of S for special paths not containing We now show

that a special path containing u can not increase AR[v], for v € S. By the order of

selecting nodes for S, AR[w] > AR[u], since whenever AR[u] is increased by update

(step (8)) through a node x selected for S after v, AR[x] < AR[u] and AR[u] < AR[z]

(since W[x, u] < 1). The theorem is true for u itself by its choice. Then, it is left to

prove the theorem for all nodes of V - S.

To support the argument observe that when we add a new node u to S at line

(6), lines (7) and (8) adjust AR to take account of the possibility that there is now

a special path to v going through u. If that path goes through the old S to u and

then immediately to v, its access relevance, min (AR[m], W[u, u]), will be compared

with AR[v] at line (8), and AR[u] will be increased if the new special path has higher

access relevance.

The only possibility for a special path with higher access relevance is shown in

Figure 5.3, where the path travels to u, and then back into the old S, to node x of

the old S, then possibly through other nodes of S to v. But as we now show, such a

path cannot exist. Since x was placed in S before u, AR[i] > AR[m] (first paragraph

of proof). Thus, there exists a special path with the highest access relevance from

the source to x which runs only through nodes of the old S. Therefore, the path to

x through u as shown in Figure 5.3 is of no higher access relevance than the path

92

directly to x through S, since the MINIMUM weighting function cannot increase

access relevance along the path. Thus, AR[u] cannot be increased by a path through

u and x as in Figure 5.3, and we need not consider the corresponding update of the

access relevance of such paths. □

When the operation of the algorithm is complete S = V, i.e., all paths are special

paths. Hence, Theorem 3 implies that AR[u] is the highest access relevance of a

general path to v when the algorithm is completed.

The running time of MINIMUM-AR algorithm is similar to the running time of

PRODUCT-AR.

5.3 A n Im proved A lgorithm for B idirected Schem as

The graph representation of an OODINI OODB schema is a general directed graph.

Examples of other OODB systems with directed relationships are VML [KNBD92],

GemStone [BOS91], and ORION [K90]. By “directed relationships” we mean that a

connection does not guarantee an inverse connection. In addition, if a relationship

has an inverse relationship it may have a different access weight (see, e.g., Figure 5.1).

The reason is that the weight of a relationship is determined by its relative traversal

frequency for the class for which it is defined. Thus, two directed opposite relation

ships may have different access weights due to the different relative frequencies of

traversal of the connections for each of the classes. However, several object-oriented

database systems, e.g., ObjectStore [OHMS92] and ONTOS [M91], model each con

93

nection as bidirectional. Such bidirectional schemas can be represented as undirected

graphs.

The PRODUCT-AR and the MINIMUM-AR algorithms are applicable to bidi

rectional schemas. By applying these algorithms to all nodes as source nodes, we can

compute the access relevance for all pairs of nodes in min(0(re3), O (nelogn)) time.

However, we shall present a more efficient algorithm for the MINIMUM weighting

function for bidirectional schemas requiring only 0 (n 2) time.

A spanning tree of a graph is a subgraph which is a tree that connects all the nodes

of the graph [AHU83]. A maximum-weight spanning tree (MWST) is a spanning tree

maximizing the sum of the weights of the edges in the tree compared to that sum of

all other possible spanning trees. Our algorithm for bidirectional schemas is based on

the following theorem.

T h eo rem 4: Let T be an MWST of an undirected graph G = (V, E). The unique

path P in T between a node s and a node t is a most relevant path between s and t

in G.

P roof: By contradiction. Let P be the path in T between s and t with access

relevance AR(P). There is an edge (u \ v') E P such that W (u1, v') = AR(P). Assume

that there exists another path Q E G between s and t, which is not necessarily in T,

with access relevance AR(Q), such that AR(Q) > AR(P). Now, deleting («', v') from

T will result in two disconnected subtrees Ti and T 2. There exists an edge (ti, i>) E Q

which connects two nodes u E Ti and v E T2. It is also true that W(u, v) > W(u', v')

94

0 .0 ,

0 .9
0.6 12

0 .7
0 .7 .

0.6

0 .5

10
0 .5

0 .3

0 .7

Figure 5.4 The Rooted MWST (Rooted at 2)

because each edge G Q has access weight higher than AR(P) = W (u', v') (MINIMUM

weighting function). Now let T ’ = (T - {(?/, n')}) U {(u, u)}. Obviously, the weight

of T ’ is larger than the weight of T. This contradicts our assumption that T is an

MWST. Hence P is a most relevant path between s and t. □

Our algorithm is based on first finding an MWST of the bidirectional schema.

There are famous algorithms of Prim and of Kruskal [AHU83] for this purpose. The

Prim algorithm, which requires 0 (n 2) time can be obtained from our MINIMUM-AR

algorithm by replacing min(AR[u], W[u, v]) by W[u, t>] in line (8).

Theorem 4 shows that a MWST yields the maximum access relevance paths for a

bidirectional schema. However, we shall show that for a directional schema an MWST,

rooted at s, does not necessarily yield the maximum access relevance values. Hence,

95

0 .0 ,

0.6 12

0 .7

0.8
0 .5

0 .5
0 .5

0 .5
0 .3

Figure 5.5 A Rooted AR Spanning Tree (Rooted at 2)

this approach is not applicable for directed schemas. See Figure 5.4 and Figure 5.5

showing a rooted MWST and a rooted AR spanning tree maximizing the ARVs from

2 to all nodes, respectively. The sum of access weights for the MWST rooted at 2 is

6.6, while for the AR spanning tree rooted at 2 it is 5.7. The ARV for the nodes 7, 8,

9, 10, 11, 12, and 3 are all equal to 0.4 for the AR spanning tree. The ARVs (i.e., the

MINIMUM values) for these nodes in the MWST are 0.3. Thus, the MINIMUM-AR

algorithm of the previous section cannot be applied to a rooted MWST of a directed

graph.

By Theorem 4, the weights of the n-1 edges of the MWST enable us to compute

the access relevance for each pair of nodes as the minimum weight along the unique

path connecting the pair. The following algorithm computes the access relevance for

96

all pairs of nodes for a bidirected graph. It stores the access relevance in a matrix

ARM[z, j] for each pair (i, j) , i < j , requiring only 0 (n 2) time for calculating these

n(n — l) /2 values. Since Prim ’s algorithm requires 0 (n 2) too, this is the complexity

of finding all-pair access relevance for a bidirectional schema.

The algorithm COMPUTE-ARM first initializes all elements of the matrix ARM

to 1. This is different compared to the previous algorithms because in line (8) of

COMPUTE-ARM we select a minimum value while in PRODUCT-AR and MINI

MUM-AR we needed a maximum. Therefore, we initialize with the largest possible

weight, which is 1. It then begins with a set U of nodes initialized to {1}. In each

iteration it calculates ARM between all nodes i £ U and a new node v E V-U, adja

cent to a node u E U, using ARM[:r, u]. For this, the algorithm chooses an edge (u, v)

such that u E U and v E V-U. Then it computes the access relevance from each node

x E U to v, by choosing the minimum of W[u, w] and ARM[», w]. This is because

the bottleneck edge on the path between x and v in T is either the new edge (u , v)

or the bottleneck edge of the path between x and u in T. Then the algorithm adds

the node v to U, finishing the iteration. It terminates when U = V. W ithout loss of

generality, we assume that the nodes are renumbered in the order of their traversal.

Thus, we compute ARM[z, j] only for i < j .

P ro c e d u re COMPUTE.ARM (IN T: tree; O U T ARM: matrix)
var

U: set of nodes;
u, v, x: node;

begin
(1) for i 1 to n do
(2) for j := i + 1 to n do

97

0 .9

0 .7
0 .7 .

0.8

0 .5

10
0 .5

0 .3

0 .7

Figure 5.6 The Undirected Rooted MWST

(3) ARM[z, j] := 1;
(4) U := {1};
(5) w hile U ^ V do begin
(6) let (it, v) be an edge in T such that

u is in U and v is in V-U;
(7) for each node x € U do
(8) ARM[d, x] := min(W[v, u], ARM[it, a;])
(9) U : = U U {u};

end

To demonstrate the operation of the algorithm COMPUTE-ARM we shall use

the bidirected MWST of Figure 5.6. This MWST is actually the bidirected version

of the MWST of Figure 5.4. We shall demonstrate the iteration when nodes 11, 10,

9, and 8 are in U and the next edge to be added is (8, 3). The triangular matrix

of Figure 5.7 shows access relevance calculated by the algorithm COMPUTE-ARM.

98

1 2 3 4 5 6 7 8 9 XO XX X2

1 0 0 0 0 0 0 0 0 0 0 0

1 0 .3 0 .9 0.8 0 .3 0 .3 0 .3 0 .3 0 .3 0 .3 0 .3

1 0 .3 0.5 0 .3 0 .6 (o ? (a ? 0 .6

1 0 .3 0 .8 0 .3 0 .3 0 .3 0 .3 0 .3 0 .3

1 0 .3 0 .5 0 .5 0 .7 0 .7 0.5 0.5

X 0 .3 0 .3 0 .3 0.3 0 .3 0 .3

1 0 .7 0 .5 0.5 0.5 0 .7

X 0 .5 0.5 0.5 0 .7

X 0 .9 0.5 0.5

X 0.5 0.5

X 0.5

X

Figure 5.7 The Triangular ARM Matrix

It is clear from this triangular matrix that we need to store only (n2/ 2) values for

bidirectional schemas. All the encircled values of Figure 5.7 show the ARVs calculated

in this iteration from all nodes in U to node 3. Note that the access relevance of paths

between the pairs (9, 3), (10, 3), and (11, 3) is 0.5, due to the values of ARM[9, 3],

ARM[10, 3], and ARM[11, 3] which are 0.5. The access relevance of the path between

the pair (8, 3) is 0.6 due to the access weight of the edge (8, 3).

For the validity proof of COMPUTE-ARM algorithm Theorem 5 is given below.

T h eo rem 5: In the COMPUTE-ARM algorithm, ARM[rc, u] contains the access

relevance from x £ U to v 6 U.

P roof: The proof is by induction of the algorithm. Initially, the theorem is true

following line (4) of the algorithm, since U = {1}, there is only one node in U.

99

Suppose the theorem is true before a node v is added to U, and prove it is true after

v is added to S. When v is added to U, in line (8) of the algorithm ARM[u, a;], x 6

U, is decreased using min (W[w, u], ARM[u, a:]). Since COMPUTE-ARM algorithm

is applied to a tree T, there exists only one path between any two nodes in T. Thus,

every path from v to x € U, contains edge (u, u). As ARM[u, x] contains the access

relevance from u to x, the only way ARM[u, a:] can be lower than ARM[u, a;] is if

W[u, u] < ARM[u, x], as considered in the algorithm.

In T there are n - 1 edges, where n is the number of nodes in T. The algorithm

considers all the edges, i.e., all the nodes in T. When the algorithm is complete U =

V, ARM contains access relevance all-pair access relevance. □

C H A P T E R 6

C O M PU T IN G ACCESS RELEVANCE IN A N

IN T E R O PE R A B L E M U L T I-O O D B

For large scale interoperable databases the path-method mechanism for supporting

schema independent query formulation is even more important, as it is unrealistic

to maintain a completely integrated schema which equally serves all users’ needs.

Rather, only a loosely coupled form of interoperable multi-database [SL90] can be

achieved by specifying simple cross-database relationships. In such interconnected

schemas it is particularly difficult for individual users to combine information from

multiple resources, i.e., to choose the most adequate cross-database relationship for

navigating between the different schemas and further navigate in a different schema.

We will discuss efficient algorithms to compute access relevance in an IM-OODB.

We assume an IM-OODB system, i.e., each autonomous database is an OODB.

However, the different OODBs may use different object-oriented database models.

For communication between different OODBs few classes of each component OODB

need connections to classes in other component OODBs. We will describe an approach

how to realize such connections based on an object-oriented approach for partial-

integration of database systems discussed in [CT91a, CT91b]. Other approaches using

object-oriented data models for integration of heterogeneous databases are, e.g., [B89,

100

101

registration OODB

finance OODB

departmental OODB

library OODBadmissions OODB

Figure 6.1 An Interoperable Multi-OODBs System

KDN90]. In [GMPN92, GPN91a, GPNS92, GPCS92] a new integration technique

“structural integration” has been developed using an object-oriented approach.

Let us consider, for example, a university environment which typically contains

several academic units. Each unit has its own autonomous OODB which contains

necessary information for its day-to-day operations. In addition, these OODBs are

interoperable, because it is necessary for one unit to access information from other

units. An IM-OODB for a university environment, which consists of five OODBs, is

shown in Figure 6.1. The admissions OODB contains information regarding stu

102

dent_applicants, admission requirements, degree programs, etc. The registration

OODB contains information regarding students, courses, transcripts, etc. This is

the subschema discussed in the previous chapter. The departmental OODB con

tains information for an academic department regarding professors, chair_person, etc.

The finance OODB contains information regarding student-fees, employee-salaries,

tuition-remission, budgets, etc. The library OODB contains information regarding

books, journals, proceedings, periodicals, lending, etc.

In an IM-OODB one component OODB can retrieve information from another

component OODB. For example, the registration OODB retrieves information from

the departmental OODB about every professors’s teaching sections. It retrieves in

formation from the admissions OODB about the admission status for new students,

from the library OODB about overdue books before a student may graduate, and from

the finance OODB about overdue payments of fees before a student may register each

semester.

We have shown only a few classes of each component OODB in Figure 6.1, but

in reality the number of classes in each OODB is large. Let us assume that each

component has n classes. All-pair computation of access relevance for each component

OODB requires computation of n2 values. As we have k component OODBs it is

necessary to compute kn2 values. If these component OODBs are interoperable,

there are totally kn classes which require computation of (kn)2 values, a number much

larger than kn2. Even if we subtract the kn2 values that were already computed, the

103

combination into a Multi-OODB still requires to compute and store k(k — l)n 2 values,

a number that is large compared to the number of values stored for all individual

databases. Therefore, it is not practical to simply extend our approach from Chapter

5 to IM-OODBs. Thus, we apply a hierarchical approach. While the internal values

for each component OODB are precomputed, the values between pairs of classes

from two different OODB components will be computed on the fly, based on the

precomputed access relevance of each component OODB and the access weights of

the relatively few connections between pairs of classes from different OODBs. For

this purpose we model in the next sections the whole IM-OODB as a relatively small

graph for which we apply the algorithms of Chapter 5. Using this model we present

efficient algorithms for the required online computations in the next sections.

6.1 A n IM —O ODB Containing O nly Two O O D Bs

In this section we discuss the computation of access relevance in an IM-OODB con

taining only two databases. For this special case we present an algorithm which

is more efficient than in the general case. Furthermore, this case will serve as an

introduction to the more complex general case in Section 6.2.

To explain how to realize a connection between two component OODBs, we follow

ideas from [CT91a]. The problem is that a class in an autonomous OODB cannot

have pointers to a class in another OODB. The solution of [CT91a] selects two classes,

one in each OODB, that represent the same real world objects. In their example the

104

IM -OODB Schem a

Q dgpt n a m J

RIO

D epartm en t 0.5
> d ep artm en t

D 8 U
d ep artm en t

reg is tra tio n OO D B d ep a rtm en ta l O O D B

Figure 6.2 Realization of Connections between Two Component OODB

two classes represent social security numbers, one with dashes and one as integers.

For both of these classes they define a class in the IM-OODB schema. Then a cor

respondence is defined between the two IM-OODB schema classes and implemented

as a mathematical transformation capable of transforming an instance of one class to

an instance of the other class. This way, we avoid need for pointers for all instances,

which cannot exist between IM-OODB schema classes. The connection between the

two classes of the two OODBs is realized by a path-m ethod (in our terminology)

from one class to its IM-OODB schema class and on through the transformation to

the IM-OODB schema class of the other class and then to the other class.

In [CT91a] every item of information is represented as a class. However, in our

abstract model as well as in many other models (e.g., VML [KNBD92], ONTOS [M91],

ObjectStore [OHMS92]), most items of information which are stored with a class are

represented as attributes. For example, the social security number of a person will

be an attribute of the class person. Thus, we have to modify the solution of [CT91a]

for our model as follows. We pick two classes, one in each OODB, representing the

105

person

CourscRecords ' '

0.3 Transcript
roleof

Student 0.3transcript

roleof
Transcript

studentCurrentSections
I Supervisor 0.3
R12

students

Students ^ Supervisees 0.3
professor

Instructor ^ 0.7

sections

R7 R8

crsccUons

R9

Sections
0.7

R l l

lyi Sections
0.9

Course

RIO
0.5

V 0.7

0.1 JT
Course

0.5
Prereq Department

person

5

roleof

Supervisor
employee «£

categoryof
categoryof

Reg prof

Secretary 'p
0.4

professor

professors

Dep prof
roleof

Professors
Department 0.4

ChairPerson
0.5 D 8 J ________ j fchairPerson

department n
Courses I

Department 0.6

registration OODB departmental OODB

Figure 6.3 An IM-OODB Containing the Registration and the Departmental OODB

same real world object, e.g., in our upcoming example dep.professor and reg.professor

to be represented in the IM-OODB schema. The dot notation is used to distinguish

classes of different OODBs. The mathematical transformation between these two

classes in the IM-OODB schema is based on the correspondence of their appropriate

attributes, e.g., an attribute representing the name or the social security number of

the professor.

However, in our model we can have a connection between two classes, one in each

OODB, even if they do not represent the same real world object. If both classes have

corresponding attributes representing the same real world information, the correspon-

106

dence can be realized based on the mathematical transformation of the attributes of

the two classes, eventhough the classes do not represent the same real world object.

This enables more flexibility in establishing connections between different OODBs,

as seen in the following example.

In Figure 6.2 the class co u rse of the registration OODB has an attribute dept^name

which represents the departm ent that offers this course. The class d e p a r tm e n t in

the departmental OODB has an attribute name. Presumably the department names

used in these two databases are identical. Thus, we can have a path-m ethod with the

class sequence (course, im-course, im -departm ent, departm ent), where classes im —

co u rse and im -d e p a r tm e n t are defined in the IM-OODB schema. An a ttribu te-

pair (dept.name, name) can be used for implementing the transformation in the IM -

OODB schema.

Two small subschemas of the registration OODB (Figure 5.1 of Chapter 5) and

the departmental OODB are shown in Figure 6.3 using OODINI. The corresponding

graph representations appear in Figure 6.4. Both the OODBs have a class p ro fes

sor. Two path-methods between these two classes, Depjprof and Regjprof, consist of

the class sequences (reg.professor, im-reg.professor, im-dep.professor, dep.professor)

and (dep.professor, im-dep.professor, im-reg.professor, reg.professor), respectively.

An attribute-pair {name, name) can be used for establishing the correspondence be

tween instances. The path-m ethod Department for the class co u rse is described in

Figure 6.2. There is a path-m ethod Courses defined from the class d e p a r tm e n t

to the class courses (Figure 6.3). The attribute dept^name, is also defined for the

class courses and has a non-nil value only for instances of a set of courses of the

same department. Thus, the same attribute-pair (dept-name, name) can be used

for correspondence between such instances of the class cou rses and instances of the

class d e p a r tm e n t. There may be instances of the class courses representing a set of

courses which have several department names. Those instances are created for other

purposes, for example, prerequisites of a course can be a set of courses of different

departments. Such instances are not considered for correspondence with the class

d e p a r tm e n t.

Let us consider another example for an IM-OODB for the case where Rule 2a

(discussed in Chapter 3) causes unwanted traversal in an IM-OODB. Consider the

access relevance from the class cou rse (RIO) to d ep .p ro fesso r (D5). One path

is pi, which represents the class sequence (course (RIO), crsections (R9), section

(R8), reg.professor (R12), dep.professor (D5)). This class sequence can be inter

preted to find all the professors which teach the sections of a given course. Another

path, p2, represents the class sequence: (course (RIO), department (D8), chair.person

(D7), dep.professor (D5)). This path can be interpreted to find the instance of the

c h a ir .p e rso n , of the department of the given course, as a professor. That is, it

finds the internal ID of the chair-person in the class p rofessor. This path, which

is enabled by traversing the roleof connection from c h a ir .p e rso n to professor as

its last connection, is inacceptable since its last connection provides no additional

108

R6 D1
R5 R1

0.3
0.8

0.70.3 D21.0

R4 0.3
'1.0 1.00.3 1.0

0.9
R20.3

0.4
H I 20.5 0.5

R3
0.3

0.5
0.7 0.5 D5 D4

0.6
D6

0.50.6
.0.4

R7 1.0 D3
0.2

0.5 0.7
R9R8 0.4.

0.5
0.5

D 7 0.6
0.5 0.3

0.5 D80.5
,R10

0.5
.R l l 0.5

registration OODB departmental OODB

Figure 6.4 Registration and Departmental Schemas as a Directed Graph (Rule 2a)

information to the user. There is no meaning to traversing the roleof connection un

less it is utilized to inherit a property of a professor to the chair.person such as the

sections s/he teaches, in which case the traversal does not stop at the superclass. By

the PRODUCT weighting function pi has an ARV = 0.158 and p2 has an ARV =

0.25. However, p2 is possible only due to the traversal of the roleof connection. Thus,

we would like to block traversals through specialization connections while still having

the inheritance properties. But an access weight of 1.0 enables such a traversal and

furthermore gives it high priority.

To overcome such unwanted traversals we introduced Rule 2b (in Chapter 3)

which avoids such traversal. The graph representation of the schema of Figure 6.3

109

0.5

0.5

0.5

D7

0.0

D5

0.5

0.5

0.6

0.0

0.5

0.5

D1

0.5,

D8

D6

0.5

0.7

D2

0.4

0.3

0.0

0.5 ' !

D4

D3

0.5

0.5

0.4

R4

0.8

R7

0.9

0.5

R3

0.2

0.3

0.3

R6

0.3

0.5

,0.6

R8

R l l

0.3

0.5

0.3

0.7

0.5

R2

0.5

R5

0.5

0.7

R9

0.5

0.3

0.0

,R12

RIO

R1

registration OODB departmental OODB

Figure 6.5 The Graph Representation of the Schema of Figure 8 using Rule 2b

according to Rule 2b appears in Figure 6.5. Note the extra edges of D4, D5, and D7

when compared to Figure 6.4. In the worst case the increase in edges could lead to

0 (n 2) for a complete graph. In practice, the number of additionally introduced edges

will be much smaller.

We will now define the problem of computing access relevance in an IM-OODB. In

a typical IM-OODB, a component OODB is developed first, and later on it is added

to the IM-OODB. We assume that all-pairs access relevance for each OODB are

precomputed with the algorithms discussed in Chapter 5. In the following discussion

we will define several terms needed to compute access relevance in an IM-OODB.

Denote by ap a class of OODB,- and by bg a class of OODBj, where i ^ j.

110

D efin ition 2: A connection from a class ap E OODB,- to another class a, E OODB,-

is called an intra-OODB connection.

D efin ition 3: A connection from a class a,, E OODB; to another class bg E OODBj,

i ^ j, is called an inter-OODB connection.

As discussed earlier, such inter-OODB connections are realized as path-methods.

Their weights are determined by Rule 3 since they should not interfere with weights

of intra-OODB connections.

R u le 3: The sum of the weights on the outgoing inter-OODB connections of a class

= 0-5 * n, where, n is the number of outgoing inter-OODB connections from

this class. From this sum, each connection is assigned a weight from [0, 1], reflecting

its relative frequency of traversal.

D efin ition 4: For each component OODB,, a class ap E OODB,-, which has an in ter-

OODB connection or is referred to by an inter-OODB connection is called a contact

class.

We will assume that there are relatively few inter-OODB connections and contact

classes in IM-OODBs. Considering the difficulties in defining such classes [CT91a]

this is a realistic assumption. In Figure 6.3, the relationship Transcript of the class

s tu d e n t to the class tra n s c r ip t is an intra-OODB connection. The path-method

Department of the class course to the class d e p a r tm e n t is an inter-OODB connec

tion. The classes course and d e p a r tm e n t are contact classes.

Let as and at be classes in OODB,-. A path P(a«, at) = as(= a^), a,-2, . . . , a,-fc(= at)

I l l

using only intermediate classes of OODB,- is called an intra-OODB path. Theoreti

cally, there may exist a most relevant path between two classes of the same OODB

going through classes of another OODB. But we will not consider such paths since it

contradicts the autonomy assumption of the OODBs. This limitation will be relaxed

in Section 6.2. Let ap and b9 be classes of OODB,- and OODBj, i ^ j , respectively,

then a path P(ap, b9), is called an inter-OODB path. In Figure 6.3, the path of

the class sequence: (student, transcript, sections) is an intra-OODB path, while the

path of the class sequence: (section, reg.professor, dep.professor, department) is an

inter-OODB path.

D efin ition 5: Let P(ap, b9) be an inter-OODB path from class ap £ OODB,- to

class bg £ OODBj, i ^ j . In general, such a path may contain several inter-OODB

connections. An inter-OODB path containing only one inter-OODB connection is

called a direct inter-OODB path.

Note that in an IM-OODB containing only two OODBs we shall assume first that

an inter-OODB path is a direct inter-OODB path since other kinds of paths travers

ing back and forth between the two OODBs are very unlikely to have a reasonable

interpretation. However, such paths will also be considered in Section 6.2.

A direct inter-OODB path P has the form a p (= a , j) , a ,-2 , . . . , a,-k , bj1, bj2, . . . , bj,(=

bq) where a,m, 1 < m < k are classes of OODB,- and bjn, 1 < n < I are classes of

OODBj. Hence, (a,-r , a,-r+1), 1 < r < k and (bjr, bjr+1), 1 < r < I are intra-OODB

connections and (a,-k , b̂) is the only inter-OODB connection in P(ap, bg). The access

112

relevance value (ARV) of P for a weighting function WF is defined as

A R V (P) = W F

The access relevance from ap to bg is defined by maximizing the access relevance

ARV(P) over all paths P(a?J, bg), that is, over all the paths P(ap, â k) and all the paths

P(bj,, bg), for all inter-OODB connections (aIJfe, b^) between all possible contact

classes atJ. £ OODB,- and all possible contact classes bj, £ OODBj.

AR(ap, bq) = maxp A R V (P)

m a X („ / / in te i— O O D B c o n n e c t io n s (a ik *bjk)) f V ^ (A R (c t p , G tj^),

W (aih,bj1),AR(bJ1,bq))

We assume that using the efficient algorithms of Chapter 5, access relevances for each

component OODB are already computed and stored. All-pair access relevances for

OODB,- (OODBj) are stored in a matrix ARM,- (ARMj). Thus we have a simple

algorithm to compute AR(ap, bg) as follows (see Figure 6.6):

p ro ced u re Compute_AR_IM_OODB (IN ap, bg : class) ;
begin
(1) AR[ap, bg] := 0;
(2) fo r each inter-OODB connection (a,-*, b j,) such that
(3) ajk £ OODB, and bj, £ OODBj do

AR[ap, bq] := m&x(AR[ap,bq],WF (ARMi[ap,a ik], W[aik,bh \, ARMj[bh ,bq]))

end

Suppose we want to find the access relevance between s tu d e n t and d e p a r t

m en t. In step 1, AR[ap, 6g] is set to zero. In the for-loop of step 2, for each

inter-OODB connection we try to find the maximum access relevance value. Two

113

OODBi OODBj

Figure 6.6 Computation of Access Relevance

access relevance matrices for registration OODB and departmental OODB are shown

in Table 5.2 (Chapter 5) and Table 6.1, respectively. The steps of algorithm Com-

pute-AR-IM-OODB for computing AR (for W F = PRODUCT) from s tu d e n t to

d e p a r tm e n t using two alternative inter-OODB connections (R12, D5), and (RIO,

D8) are shown below.

1. AR[R2, D8] := 0

2. AR[R2, D8] := max (AR[R2, D8], WF (AR[R2, R12], W[R12, D5], AR[D5, D8]))

:= max (0.0, WF (0.3, 0.5, 0.4)) := max (0.0, 0.06) := 0.06

3. AR[R2, D8] := max (AR[R2, D8], WF (AR[R2, R10], W[R10, D8], AR[D8, D8])

:= max (0.06, WF (0.151, 0.5, 1.0)) := max (0.06, 0.0755) := 0.0755

The complexity of this algorithm is O(c) where c is the number of inter-OODB

connections from OODB,- to OODBj. Typically in IM-OODBs, c is a constant or a

sublinear function of n, such as lg n or y/n. Hence, this is a very efficient algorithm,

which is appropriate for online computation.

114

1 2 3 4 5 6 7 8
1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.25 1.0 0.5 0.0 0.0 0.0 0.0
4 0.0 0.5 0.5 1.0 0.0 0.0 0.0 0.0
5 0.0 0.5 0.12 0.06 1.0 0.6 0.0 0.4
6 0.0 0.25 0.06 0.03 0.5 1.0 0.0 0.2
7 0.0 0.5 0.2 0.4 0.25 0.5 1.0 0.6
8 0.0 0.18 0.3 0.15 0.35 0.7 0.0 1.0

Table 6.1 ARM for Departmental OODB

6.2 A n IM —O O DB Containing M any O O D Bs

Consider, for example, an IM-OODB with 5 OODBs: OODB^j, OODB#, OODBc,

OODBd , OODBE. Denote a class of OODB^ (OODBfi, OODBc , OODBd , OODB*;)

by a,- (bm, c/, dk, ej), respectively. Consider an inter-OODB path-m ethod from ap

to bg which involves classes of all 5 OODBs. This is an indirect inter-OODB path-

method. The corresponding path P in G can have, for example, the form

(flp(a«2) •••) j Cj2, ■ • • i dfcj , dk2, . . . , dkx, C/j, C/2, . . . , Cjy,

^7712 7 • • • 7 ^ 7712 (= bg)).

This path involves 4 inter-OODB connections: (a,„,), (eJu,, dkl), (c?^, c/J, and

(c/y, 6m,). Others are intra-OODB connections. The access relevance value (ARV)

of P for a weighting function WF is

A R V (P) = W F (A R (a fl, aiv), W (a iv, eh),AR{eh , ejw), W (ejw, dkl), AR(dkl,dkx),

W (dkx, c/j), Af?(c/j, c /J , 6mi), AR(bmi, bmz))

The access relevance from ap to bg is defined by maximizing access relevance values

115

ARV(P) over all paths P(ap, bq). Suppose for the moment that all those paths actually

traverse these 5 OODBs in the same order of the above mentioned P, i.e., (A, E, D,

C, B), Then we obtain

AR(ap, bg) = maxp AR V (P)

— max W F (A/2(gp, f l i „) ,), AR^e^, ejw), (̂ &jw, dkl),

AR(dkl, dkx), V^(dkx, c/j), AU(cij, c/y), TF(cja, 6mi), AR(bmi^bq))

where max is taken over all possible inter-OODB connections of the form (att),ejJ ,

(ejwi dkl), (dkx,ci J , (c;y, bm,). The pair (a,„, e^) stands for any pair of contact classes,

such that aiv is in OODB^, is in OODB# and there exists an edge between a,u and

ejj. There might be several such edges, and maximization is done by selecting the

one edge that leads to the largest overall access relevance value. The same applies to

the other pairs of OODBs. The ARVs are precomputed for each OODB. The access

weights of the inter-OODB connections are known to the IM-OODB system only.

If the number of such connections between every two OODBs is c then our opti

mization has to select from c4 possibilities. Furthermore there are many more possible

patterns of paths from OODB^ to OODBb using different subsets (whose number is

an exponential function of the number of OODBs) and different orders (whose number

is a factorial function of the number of OODBs). Thus, it is not practical to extend

the computation of the previous section to the case of many OODBs. Furthermore,

paths may return to an OODB several times, using each time different classes. Al

though most of such paths would not have reasonable interpretations, a few of them

116

may be desired by a user and should be taken into account.

Thus, we shall look for a solution which involves modeling the graph representation

G(V, E) of the IM-OODB as another small graph H(U, D). For each OODB, U

will contain a node for each contact node of the OODB and an extra center node

representing a variable node of the OODB. This variable node will at each time

represent another node of the OODB. However, the graph H contains only one such

node for each OODB, keeping the number of nodes of H relatively small. Each OODB

is represented by a clique of its contact classes and a star with its variable class as

center and its contact classes as end points. That is, for each OODB, D will contain

“clique” edges connecting each pair of contact nodes and “star” edges connecting

the variable node to each one of the contact nodes. In addition, D contains an edge

for each inter-OODB connection of the IM-OODB. See Figure 6.7, for an example.

The inter-OODB edges have given access weights. For clique edges we define the

access weight as the access relevance in G between the two nodes of the edge, which

are precomputed for each OODB, e.g., W /^ej,, ejw) = AR(eyn ejw). While H is

described in Figure 6.7 as a bidirectional graph, since in general we can have a path

from every node to every other node, the access weights are usually different for both

directions unless the original OODBs’ schemas are bidirectional. The access weight

of a star edge varies. Whenever the center node a,- represents a specific node e.g., a,-,,

then the access weight of a star edge (a,-, a,„) is defined as the access relevance AR(a,-,

aiv) in G, i.e., W//(a,-, a . J = AR (a,-, a,-,).

117

OODB OODB

O O

OODB

o o

n ft n n r i nOODB

OODB,

G (V , E) H(U, D)
Figure 6.7 Two Graphs G(V, E) and H(U, D) for IM-OODB with Many OODBs

D efin ition 6: A path P between two center nodes in H is called proper if (1) all the

rest of the nodes are contact nodes, (2) the sequence of edges except for the two end

edges (which are star edges) consists of inter-OODB edges and clique edges such that

no two clique edges are consecutive.

In general, the path will have inter-OODB edges and clique edges in alternating

order, but a proper path may sometimes use only one contact node of an OODB

rather than two, in the case that this is the only node of the path which belongs to

this OODB.

L em m a 3: For every path Q between two center nodes in H there exists a proper

path R such that AR(R) > AR(Q).

Proof: Let Q be a non-proper path between the center nodes and bm in H. If Q

118

contains a center node, say ca of OODBc, then, by the definition of H, the two nodes

adjacent to ca in Q are contact nodes c/. and c/ ■. But ca can be omitted from Q since

H has a clique edge (c/,., c^) and by the definition of access relevance in G, AR(c/;, c^)

> W F (AR(ci{, cs), AR(ca,)). Thus, W / / ^ , cq) > W F (W / /^ , cs), W nic^c^)) .

If Q contains two consecutive clique edges say (c/t, c^) and (c/>? cik) then we

can replace them by the clique edge (c/,, c/fc) since by the definition of the access

relevance in G, AR(c/t, c/fc) > W F (A/2(cj,., tfy), AR(cij,cik)). Thus W//(c/(, c/fc) >

W F W„(ci3,clk)). The proper path R obtained from Q by performing

these two kinds of transformations satisfies AR(R) > AR(Q). □

L em m a 4: For every most relevant path P from a node op to a node bq in G there

exists a corresponding proper path Q in H from the center node a,- to the center node

bm, such that AR(P) = AR(Q).

P ro o f: Consider, for example, the most relevant path P from ap to bq

P (®p(—)? ®»2 1 • • • > i e j i) ®j 2 5 • • • i ®i u i) dkl) d k 2 i • - • , dkx, C (j , c / 2 , . . . , c ; w, ,

• • • 2 bmz(— &g)).

This path is represented in the graph H by a path

(® p (= ®»l)» e i l 5 e jtD? ^ A l)) C/j , Cly , bm J , bm z [— 6 g)) .

Obviously Q is a proper path in H.

A R h (Q) = VFF(JF//(atl, a. J , WH(aiv, eh), WH(ej,, eJu)), W / / ^ , 4 ,) ,
WH(dkl,dkx), WH(dkx,ci,), Wff(C/l,c,,), IF7/(c/y, 6mi), WH(bmi,bmz))

Since P is a most relevant path, B'7/(a,1,a ,ll) = ARaia^^aiJ) and similarly for all

clique edges. For the inter-OODB edges IF// = W.

119

A R h (Q) = W F { A R G{ail, a , J , W (aiv, eh), A R a (eh , ejw), W (ejw, dkl),
ARaidki , dkx), ^^{dkx , c/j), i4/2(5(c/j, c\v), , 6fm) j AR@(bmi,))

= A R g (P) . d

Lem m a 5: For every proper path Q from center node a,- representing ap to center

node 6m representing bq in H there exists a pair of nodes ap G OODB^ and bq G

OODB# and a corresponding path P from ap to bq in G such tha t AR(Q) = AR(P).

The om itted proof is based on the definition of H and works in reverse order to

the previous proof.

T heorem 6: A most relevant path Q connecting a pair of center nodes a,- and bm

in H which represent nodes ap and bq in different OODBs in G has a corresponding

most relevant path P in G from ap to bq such that AR(P) = AR(Q).

Proof: By Lemma 3 there exists in H a proper path R connecting a,- and bm which

corresponds to the given path Q in H such that AR(R) > AR(Q). By Lemma 5, there

exists a path P in G from node ap to node bq such that AR(P) = AR(R). Now suppose

P is not a most relevant path in G. Thus, there exists a most relevant path P* from

ap to bq in G such that AR(P;) > AR(P). By Lemma 4 there exists a proper path

Q; from a,- to bm in H such that AR(Q') = AR(P') > AR(P) = AR(R) > AR(Q)

a contradiction to the fact that Q is a most relevant path in H. Hence, P is a most

relevant path in G. □

The theorem implies that for calculating the access relevance from node ap in

OODByi to node bq in OODB# we take the nodes a,- and bm in H to represent ap and

bq, respectively, and calculate the access relevance in H from a; to bm. Note that we

120

use the center node a,- to represent ap even if ap is a contact node. In this way, for

each pair of classes of different OODBs, e.g., ap G OODB4 and bq G OODBa, we

can find the access relevance by applying for H=(U, D) the single source algorithm

from Chapter 5 (i.e. PRODUCT-AR or MINIMUM-AR) of complexity m in (0 (|f/|2,

0 (|D | log |D |)) which uses the precomputed access relevance of the given OODBs.

Clearly \U\ « |F | holds here.

This computation of access relevance makes no assumptions at all about the order

of traversing component OODBs and about the number of times each component

OODB is traversed. Intuitively, we have replaced the graph G by the much smaller

graph H and can apply to H exactly the same techniques that we used within a single

OODB (Chapter 5). Theorem 5 guarantees that an access relevance computed in H

will be identical to the corresponding AR in G.

Specifically, the above calculation takes into account even the possibility of travers

ing through an OODB more than once. One such case is when there exists a most

relevant path in H between two contact nodes of one OODB using at least one node

from another OODB. To see this, refer back to Graph H in Figure 6.7. Assume that

we are looking for a most relevant path from Ni to N 5 . It is possible that such a

path consists of (N1? N2, N3, N4, N5). When the access relevance between N2 and

N4 was computed in OODB^ alone, the “shortcut” through N3 was not available (see

Figure 6.7). However such a path is considered when modeling with H. Another such

case is when a most relevant path in H contains two clique edges of the same OODB,

121

o o d b a o o d b b

Figure 6.8 An Efficient Computation of Access Relevance

which are not consecutive in the path. Note that in such a case it may happen that

the two intra-OODB paths corresponding to two clique edges of the same OODB

share a non-contact node. But then the most relevant path contains a cycle which

can be removed without decreasing the access relevance, as explained in the proof of

property 1 in Chapter 4.

We can further improve the efficiency as follows. We realize that a most relevant

path from ap to bq starts and ends with a center node in H but contains no other center

nodes. Furthermore, the access weights of the star edges in an OODB change with

the choice of the source and target classes in the OODBs, but the rest of the access

weights of D are independent of this choice. Thus, we define a subgraph I = (Ui, Di)

of H where the star subgraphs are omitted, i.e., each OODB is represented in I only

by the clique of its contact classes. Now, we can precompute the access relevance

for all pairs of nodes in I by applying the single source algorithm of Chapter 5 \U\\

times, resulting in a complexity of m in(0(|{/i|3, 0 (|f /i ||D i|lo g |D i|)) . The result is

stored in an access relevance matrix AR/ for I. Now a most relevant path between

arbitrary classes ap £ OODB^ and b9 G OODBs is represented as a concatenation of

three paths P i(ap,a ,), -P2(a;, bm), and Pz(bm, bq) where a; and bm are contact classes

122

of OODB^ and OODB#, respectively. The path Pi(P3) is a most relevant path of

OODB4 (OODBb) and P2 is a most relevant path of I (Figure 6 .8). Thus,

AR(ap, bq) = aizooDBA,bmzooDBB) W F (A R (aP’ «0. bm),AR(bm, bq))

Now all these access relevances are precomputed and AR(ap, bq) is found with com

plexity 0 (cacb), where ca and cb are the numbers of contact classes of OODB^

and OODBb, respectively. As conjectured previously, these numbers are typically

constants or sublinear functions of the number of classes in the OODBs. Thus, we

achieve a very fast online algorithm for computing access relevance between classes

of different OODBs.

C H A P T E R 7

A U N IV E R SIT Y E N V IR O N M E N T O ODB

A university environment object-oriented database schema was developed at NJIT

during the last several years under my guidance and supervision. This was a multi

phase project which involved 9 masters students doing their theses and projects

[CT90, WA90, K90c, B90, D91b, P91a, P91b]. The major purpose of this devel

opment was to gain experience with the complex problems involved in real-world

modeling especially modeling with our Dual Model and to serve as a realistic testbed

for path-m ethod generation. This database schema contains information about all

the aspects of a university.

The development of the database was divided into two phases. In the first part the

academic organizational aspects were modeled, including classes related to students,

professors, courses, employees, schools, colleges, departments, committees, resumes,

etc. The second part dealt with student oriented information including classes related

to students, courses, admissions, registrations, and financial aid. Of course there

are some common classes. The third part containing the administrative aspects of a

university environment is in planning. The first phase of this database which contains

around 180 classes was implemented twice using VODAK/VML prototypes 1 &; 2

based on Smalltalk and C + + respectively, including necessary interfaces. In this way

the project was also the first major application of VML in a site outside of GMD.

123

124

7.1 C lasses o f a Subschem a o f th e U niversity D atabase

Throughout the dissertation we have used a large subschema of this university database

containing 52 classes. We have described 50 sample path-m ethods used for path-

method generation. In this chapter we will show the code of the class definitions of

these 52 classes and show a graphical schema representation of the parts of the uni

versity database. For ease of discussion we divided these classes into several groups.

The schema with these groups of classes shown as overlaid boxes can be found in

Figure 7.1. Each group is labeled with the subsection in which classes of that group

are discussed. These class definitions are in our general OODB model, and not in the

Dual Model, as in our actual university OODB.

7.1.1 S tudent—related C lasses

We will start with student-related classes. First we define the class p erso n , which

has four attributes. In the following class definitions, we will use different datatypes

to make class definitions more readable. For example PerDataType, AddressType,

etc. These datatypes are complex datatypes such as tuple, nested tuple, etc. We list

the datatypes used at the end of this chapter.

class person
attributes:

PerData : PerDataType;
Address : AddressType;
Telephones : TelephonesType;
VisaStatus : String;

125

ranscnpt 0.9 CourseRecords
transcnpt

K 03 Transcript course recordsroleof
former students F• x •

course recordperson
Course 0.7'I' Members

Membership
former student Currents ections

80.1 A roleof ^ 0.9Transcnpt
sections

f 0.8 Chairperson
Student 0.3

alumni organization Students sectionstudent
MTM

Sections
0.9Chairperson 0.9

students
Membership 0.1 Sections 0.5

I ^ Students
h-J

Instructor
student union

Workers
20 calcgoryof categoryor employees

ungrad student
0.5' Se

student — — — ̂
employee

Supervisor upervisor

Students
Instructors i -Referee ij^nfereijce papers \ j

T _ . Resume 0.3 \ Secti Supervu ir
0.1

Supervisees
ections

courses
Resume 0.3resume

Publications
0.2 42

0.1 Frereqcj tegory

categoryof

Supervisor
publication

ses
publications assistant urses0.5

categoryof
conference papers

instructorscategoryof
Confers nces

instructor
I p leach HvafNj
■ v n f s , ‘* — ■—*‘* 1ref conf paper

^ categoryof
i/ ealeg

teachmg assistant faculty member
ref conf papers

Refereed conference p
Coursesresearch assistant

professors
research assistants categoryof /

0.8 Professors ^special lecturer professor
Kesea}chAssistatii

roleof roleof 32
FormalEducations 0.8 phd advisor

Q
dept chair personearch ass istants mnMformal educations

*0.5 Departmentors Departmen
Phd advisors
Department 0.5

BachelorDegrees
0.8

0.4 category
47 \J/ PhDDegrees

formal education PhDAdvisor
department

0.6
Department

DeptChairPerson 0.6
departments

phd degrees
provost

36 ^ In charge QU ^ - j
phd degree

College
rtmdits

president
colleges

President ̂categoryof
Bachelor degrees categoryof

CollegeDeaJi
39 0.4

Incharge
bachelor degree

College
0 5

admin appt

t
Colleges

bachelor degrees
40 university

categoiyof college dean
CoHegedauis

caiegor)

F igu re 7.1 T h e Larger S ub sch em a o f a U n iversity D a ta b a se

126

class student
roleof: person
m em berof: students
attributes:

Studentld : Integer;
LocalAddress : AddressType;
GradYear : YearType;
LastEducation : String;

relationships:
Transcript : transcript;
Membership : student.union;
Resume : resume;

class former_student
rolof: person
memberof: former_students;
attributes:

Studentld : Integer;
Address : AddressType;
GradYear : YearType;
Degree : String;

relationships:
Transcript : transcript;
Membership : alumnLorganization;

class students
setof: student
attributes:

NumStudents : Integer;
Purpose : String;

class formerjstudents
setof: former_student

127

a ttr ib u te s :
NumFormerStudents : Integer;
Purpose : String;

class student.union
a ttr ib u te s :

NumMembers : Integer;
Address : CompanyAddressType;

re la tio n sh ip s:
ChairPerson : student;
Members : students;
Workers : employees;

class alumni .organization
a ttr ib u te s :

NumMembers : Integer;
Address : CompanyAddressType;

re la tio n sh ip s:
ChairPerson : formerjstudent;
Members : former_students;

class grad_student
categoryof: student
a t tr ib u te s :

StartDate : DateType;
Degree : DegreeType;
PreviousSchool : String;
Project : String;

re la tio n sh ip s:
Supervisor : professor;

class ungrad_student
categoryof: student
a t tr ib u te s :

128

Year : YearType;
Major : MajMinType;
Minor : MajMinType;
Project : String;

re la tio n sh ip s:
Supervisor : faculty .member;

We define two similar classes, s tu d e n t, which represents students currently reg

istered in the university, and fo rm er_studen t, which represent students graduated

from the university. Both the classes have relationship to the class t ra n sc r ip t . On the

other hand the class s tu d e n t has relationship to the class s tu d e n t.u n io n , the class

fo rm er_ stu d en t has relationship to the class a lu m n i.o rg an iza tio n . This is because

members of a student.union are only students, and members of an alumnLorganization

are only former_students. In [NPGT91] we show that these two classes are struc

turally similar (except for the relationship Resume) in terms of the Dual Model.

Two classes s tu d e n ts and fo rm e rjs tu d e n ts are set classes for the classes s tu d e n t

and fo rm er_ stu d en t, respectively. We define two classes g ra d .s tu d e n t and un-

g rad _ stu d en t as categoryof of the class s tu d e n t. Note that the class g rad _ stu d en t

has a relationship Supervisor to the class p ro fesso r because only a professor can be

an advisor for a graduate student. On the other hand the class u n g ra d .s tu d e n t has

a relationship Supervisor to the class facu lty .m e m b e r, as any faculty member can

be a supervisor for an undergraduate student.

129

7.1.2 Course—related C lasses

Now we define classes related to courses and sections. The class transcript has a

relationship to the class course_records, which contains information about all the

courses which are already completed by a student. For example, grade point average of

a student. It has a relationship to the class sec tio n s where information about current

sections of a student is found. For example, registered credit hours of a student for the

current semester are stored there. The class sec tio n is memberof the class sec tio n s

and describes a singular section. Two classes, sec tio n s and c rsec tio n s , have the

generic relationship setof to the class section . There is a basic difference between

them. The class c rsec tio n s describes the set of all sections offered for a given course.

On the other hand the class sec tio n s describes a set of sections, not necessarily of the

same course. We need such a set to describe the set of sections a student is registering

for or that an instructor is teaching. It is necessary to define the class co u rses to

describe a set of courses e.g., the set of courses a student already took. Notice that

class course has two connections to class courses, the generic relationship memberof

and a relationship Prereq, giving prerequisite courses required for a given course.

class transcript
a t t r ib u te s :

Date : DateType;
re la tio n sh ip s:

Student : student;
CurrentSections : sections;
CourseRecords : course_records;

class course_record
m em berof: course_records
a t tr ib u te s :

SemesterTaken : String;
Grade : Real;

re la tio n sh ip s:
Course : course

class course_records
setof: course_record
a ttr ib u te s :

Purpose : String;
NumCourseRecords: Integer

re la tio n sh ip s:
Transcript : transcript;

class section
m em berof: crsections
m em berof: sections
a ttr ib u te s :

SectionNo : Integer;
NumStudents : Integer;
Room : RoomType;

re la tio n sh ip s:
Instructor : instructor;
Students : students;

class sections
setof: section
a ttr ib u te s :

NumSections : Integer;
GroupPurpose : String;

class crsections

131

setof: section
a ttr ib u te s :
NumSections : Integer;
re la tio n sh ip s
Course : course;

class course
m em berof: courses
a ttr ib u te s :

Name : String;
DepartmentName : String;
CreditHour : Integer;
Number : Natural;

re la tionsh ips:
Prereq : courses;
Sections : crsections;

class courses
setof: course

a t tr ib u te s :
NumCourses : Integer;
Purpose : String;

7.1.3 Instructor—related C lasses

Now we will discuss classes related to instructors. The class em ployee is a roleof

person. The corresponding set class is em ployees. We define the class in s tru c to r

as categoryof employee. It has relationship to the class sections, which can be used

to find information about all the sections s/he teaches. Then we define three classes

132

facu lty_m em ber, ad ju n c t, and s p e c ia lJ e c tu re r as categoryof the class in s tru c

to r. We also define the class p ro fessor as categoryof of the class faculty_m em ber.

The class p ro fessor has a relationships to classes s tu d en ts , research_assistan ts,

and d e p a r tm e n t. The relationship Sections to the class sections, inherited from the

class in s tru c to r can be useful to find all the sections currently being taught by him.

Finally, we define three classes phd_advisor, dept_chair_person , and adm in_appt

(for which code is listed later) as roleof of the class professor. A dept_chair_person

and a phd_advisor are in charge of a department and its phd.program, respectively.

class employee
roleof: person
m em berof: employees
a t tr ib u te s :

SocialSecurityNr: Integer;
Employeeld: Integer;
OfficeAddress: CompanyAddressType;
OfficePhone: TelephonesType;
Position : String;
Salary Rate : Real;

re la tionsh ips:
Supervisor : employee;
Resume : resume;

class employees
setof: employee
a ttr ib u te s :

Purpose: String;
NumOfEmployees : Integer;

c la s s instructor

categoryof: employee;
m em b ero f: instructors;
a t t r ib u te s :

TeachingEvaluation : Real;
re la tio n sh ip s:

Sections : sections;
Department : department;

class instructors
setof: instructor
a t t r ib u te s :

Purpose : String;
NumOflnstructors : Integer;

class faculty .member
categoryof: instructor
a t tr ib u te s :

InsPolNum : String;
OfficeHour : String;

class adjunct
ca tegoryof: instructor
a t t r ib u te s :

CompanyAddress : CompanyAddressType;
CompanyPhone : TelephonesType;
Company Name : String;

class specialJecturer
categoryof: instructor
a t t r ib u te s :
StudiesStatus : String;

ContractPeriod : YearType;

c la s s professor

categoryof: faculty .member
m em berof: professors
a t tr ib u te s :

Rank : RankType;
TenureStatus : String;
SpecialArea : String;

re la tio n sh ip s:
Supervisees : students;
ResearchAssistants: research_assistants
Department : department;

class professors
setof: professor
a ttr ib u te s :

Purpose : String;
NumOfProfessors: Integer;

class phd.advisor
roleof: professor
a ttr ib u te s :

NumPhDStudents: Integer;
ReleaseTime: PercentType;

re la tio n sh ip s:
Department : department;

class dept .chair .person
roleof: professor
a t tr ib u te s :

YearsAsgndChair : Integer;
re la tio n sh ip s:

Incharge : department;

135

7.1.4 A ssistant—related C lasses

In the university environment a graduate student can also be an assistant. The

class a ss is tan t is roleof the class g rad _ stu d en t since it is specialized in the context

of employment rather than the studying context. The classes research_assistan t

and te ac h in g .a ss is tan t axe categoryof the class assistant, since it is specialized in

the same context. We do not want the class a ss is tan t to inherit all the properties

of s tu d e n t and g rad _ stu d en t, since they are not relevant to the function of an

individual as an assistant, in spite of the condition that every assistant is a graduate

student. We just want to inherit the transcript relationship of student since some

information stored there is needed for determining the eligibility for an assistantship.

Note that the supervisors for a graduate student that is an assistant can be two

different professors or can be two different professors or can be the same professor.

class assistant
roleof: grad_student
categoryof: employee
a ttr ib u te s :

Stipend : Real;
re la tio n sh ip s:

Supervisor : professor;

class research_assistant
categoryof: assistant;
m em berof: research_assistants;
a t tr ib u te s :

PositionPercent : Real;
Research : String;

136

class research_assistants
setof: research_assistant
a t tr ib u te s :

Purpose : String;
NumResearchAssistants : Integer

class teaching_assistant
categoryof: assistant
categoryof: instructor
a ttr ib u te s :

NumOfCourses : Integer;
PositionPercent : Real;

7.1.5 U n iversity-related C lasses

Now we will define classes related to university administration. The class u n iv e rsity

has relationships to the classes p resid en t, p rovost, and colleges. A president is in

charge of the university, and a provost is in charge of all the colleges. The class college

has a relationship to the class college.dean . A college dean is in charge of a college.

The class college has a relationship to the class d e p a r tm e n ts , because a college

will include several academic departments. We have defined a class adm in_app t,

which represents administrative appointments, as categoryof of the class em ployee.

As president, provost, and college dean are administrators in a university we define

these classes as categoryof of the class adm in_appt. As explained in Chapter 3, and

mentioned in Section 7.1.3 the class adm in_appt is roleof of the class professor.

137

class university
a t tr ib u te s :

UniversityName : String;
Office : CompanyAddressType;
Telephones : TelephonesType;

re la tio n sh ip s:
President : president;
Colleges : colleges;
Provost : provost;
Employees : employees;

class admin_appt
ca teg o ry o f employee
ro leof professor
a ttr ib u te s :

Responsibilities: String;
Degree: DegreeType;
Office: CompanyAddressType;

class president
categoryof: admin-appt
a t tr ib u te s :

YearsInCharge : Integer;
re la tio n sh ip s:

InCharge : university;

class provost
categoryof: admin_appt
a t tr ib u te s :

YearsInCharge : Integer;
re la tio n sh ip s:

University : university;
InCharge : colleges;

138

class college_dean
categoryof: admin-appt
a ttr ib u te s :

AdditionalResp : String;
re la tio n sh ip s:

College : college;

class college
m em berof: colleges
a ttr ib u te s :

Telephones : TelephonesType;
Office : CompanyAddressType;

re la tio n sh ip s:
CollegeDean : college.dean;
Departments : departments;

class colleges
setof: college
a ttr ib u te s :

NumOfColleges : Integer;
Purpose : String;

class department
m em berof: departments
a ttr ib u te s :

DeptName : String;
re la tio n sh ip s:

DeptChairPerson : dept_chair_person;
PhDAdvisor : phd_advisor;
Instructors : instructors;
Professors : professors;

c la ss departments

setof: department

139

a t t r ib u te s :
NumOfDepartments : Integer;
Purpose : String;

7.1.6 R esum e—related C lasses

Now we define classes related to resume. We describe here only a sample of few

elements regarding the resume while a full description appears in the university

OODB. We define class resu m e, which refers to two classes, p u b lica tio n s , and

fo rm al_educations. The class p u b lica tio n s refers to the class reflconfL papers.

We define the class ref_conf_paper as categoryof of the class p u b lica tio n . The class

fo rm aL ed u ca tio n s refers to two classes, bachelo r_degrees and phd_degrees. We

define classes bachelo r_degree and phd_degree as categoryof of the class for-

m al_education .

class resume
a t tr ib u te s :

JobTitle : String;
re la tio n sh ip s:

Publications : publications;
FormalEducations : formaLeducations;

class publication
m em b ero f: publications
a t t r ib u te s :

Year : Integer;
Title : String;
Authors : {String};

140

class publications
setof: publication
a ttr ib u te s :

NumPublications : Integer;
Purpose : String;

re la tio n sh ip s:
Conferences : ref_conf_papers;

class ref_conf_paper
m em berof: ref_conf_papers
a t tr ib u te s :

PageNum : Integer;
Location : CityAddrType;
TypeOfReview : String;
Volume : Integer;
Conference : String;

class ref_conf_papers
setof: ref_conf_paper
a t tr ib u te s :

NumRefConfPapers : Integer;
Purpose : String;

class formaLeducation
m em berof: formal.educations
a t tr ib u te s :

Degree : DegreeType;
UniversityName : String;
YearGranted : YearType;
Area : MajorType;

class formaLeducations
setof: formaLeducation

141

a ttr ib u te s :
NumFormalEducations : Integer;
Purpose : String;

re la tio n sh ip s:
BachelorDegrees : bachelor_degrees;
PhDDegrees : phd.degrees;

class phd_degree
m em berof: phd_degrees
a t tr ib u te s :

DissertationTitle : String;
Purpose : String;

class phd.degrees
setof: phd.degree
a ttr ib u te s :

NumPhDDegrees : Integer;
Purpose : String;

class bachelor_degree
m em berof: bachelor_degrees
a t tr ib u te s :

ProjectTitle : String;

class bachelor.degrees
setof: bachelor.degree
a t tr ib u te s :

NumBachelorDegree : Integer;
Purpose : String;

Finally, we will define all the datatypes used in the above class definitions.

DATATYPE StreetAddressType = [number: Integer, street: String, unit: String];

142

DATATYPE CityAddressType = [city: String, state: String, zip: String];
DATATYPE AddressType = [streetaddress: StreetAddressType,

cityaddress: CityAddressType];
DATATYPE NameType = [first: String, middle: String,

last: String, extra: String];
DATATYPE SexType = (Male, Female);
DATATYPE StatusType = (Single, Married, Divorced, Widow);
DATATYPE DayType = SUBRANGE 1..31;
DATATYPE MonthType = (Jan, Feb, Mar, Apr, May, Jun, Jul,

Aug, Sep, Oct, Nov, Dec);
DATATYPE YearType = SUBRANGE 1800..2100;
DATATYPE DateType = [day: DayType, month: MonthType, year: YearType];
DATATYPE PerDataType = [name: NameType, sex: SexType,

maritalstatus: StatusType, birthday: DateType];
DATATYPE TelephoneType = [area: Integer, number: Integer];
DATATYPE TelephonesType = TelephoneType;
DATATYPE Department Type = [dept: String, companyname: String];
DATATYPE Company AddressType = [department: DepartmentType,

streetaddress: StreetAddressType,
cityaddress: CityAddressType];

DATATYPE DegreeType = (BS, MS, PhD, NonMat);
DATATYPE MajMinType = String;
DATATYPE RoomType = [buildname: String, roomnumber: Integer];
DATATYPE MajorType = String;
DATATYPE RankType = (Assistant, Associate, Full, Distinguish, Visiting);
DATATYPE PercentType = A Real Number between 1 . . . 100;

C H A P T E R 8
D E SIG N OF A N O O D B PA T H -M E T H O D G E N ER A TO R

In this chapter we will discuss the design of the Path-M ethod Generator module

for an OODB. The database subsystems including the Path-M ethod Generator are

shown in Figure 8.1. We will define all the necessary classes using the general OODB

model discussed in this dissertation. Later on, we will explain how the PMG works

and how the PMG module can be incorporated in an OODBMS.

Initially, the user request is accepted by the query translator. If the user request

is not written in the host query language, then the query translator fails to process

it. This unprocessed user request is forwarded to the Path-M ethod Generator. The

Path-M ethod Generator contains two major components: (1) Path-Method Editor,

(2) Path-Method Navigator. The Path-Method Navigator contains a collection of

algorithms for Path-M ethod Generation. The PMG has two modes (1) navigation

mode, and (2) editing mode. The PMG generates a path-m ethod from the source

class to the target information, if possible. As discussed earlier, navigation of PMG

is done by traversal algorithms. These traversal algorithms uses access weights and

access relevance for traversal of an OODB schema. The generated path-method will

be returned in the path-method editor to the user for verification. The user can

either accept or modify this resultant path-method as per his requirements. The

user can also set more parameters and request a second traversal. After verification,

143

144

TERM
CLASSIFIER

Non-usable
Terms

USER INTERFACE

User Query or
Update Request

QUERY TELANSLATOR

Schema-defined
Terms

User
Request Path-Method

Path-M ethod Editor

PATH-METHOD GENERATOR

to Path-Method Navigator

!"" Access Weights
L w w m J

^ Access Relevance

Traversal Algorithms

OODB Schema

Completed
Translated
Query

QUERY EXECUTOR

OODB

Figure 8.1 The OODB Subsystems Including a Path-Method Generator

145

the generated path-m ethod is sent to the Query Executor. The Query Executor

now applies this completed, translated query to the OODB to retrieve the target

information.

A user generally has very little knowledge about the classes defined in the OODB

schema. S/he will use his naive view of the database to formulate his/her query and

may use terms which are not defined in the schema. The Term Classifier, which is

based on the Knowledge Explorer [K91], finds schema-defined terms from the terms

defined by the users.

In the next several sections we will define internal classes for the Path-M ethod

Generator module. In the class definitions we have tried to pick self-explanatory

names for attributes, relationships, methods. The formal parameter names of m eth

ods and datatype names of attributes are also self-explanatory. In addition, we will

explain each method defined for a class. We have used several data types in the class

definitions. Before discussing class definitions we will show definitions of these data

types.

DATATYPE PairType = [property: String, result: String];

DATATYPE AllPairType = ARRAY [1 .. NoNodes] OF PairType;

DATATYPE WeightMatrixType = ARRAY[1..NoNodes, 1..NoNodes] OF Real;

DATATYPE RelevanceMatrixType = ARRAY[1..NoNodes, 1..NoNodes] OF Real;

DATATYPE PathM ethodType = [pathlength: Integer, pmpairs: AllPairType];

DATATYPE UserRequestType = [source: String, targetinformation: String];

146

DATATYPE AttributeType = [property: String, result: String];

DATATYPE StringPairType = [parametername : String, parametertype: String];

DATATYPE ConnectionType = [property: String, result: String, weight: Real];

DATATYPE NodeType = [node_num : Integer, class_name : String,

attributes:{AttributeType}, connections: {ConnectionType}];

Three datatypes StackType, QueueType, and HeapType can be implemented as

abstract datatypes based on discussions in algorithms and data structures text, e.g.,

[AHU83].

8.1 Interface C lasses o f th e P ath—M ethod G enerator

We start by defining the class path_m ethod_genera to r. There are three rela

tionships from class p a th _ m eth o d _ g en era to r to classes, path_m ethod_ed ito r,

path _ m eth o d _ n av ig a to r, and q u e ry tra n s la to r . The relationship to the class

q u e ry _ tra n s la to r is used to return the generated path-method.

class path_method_generator
a ttr ib u te s :

NumEditors : Integer;
NumTravAlgorithms: Integer;

re la tionsh ips:
PathMethodEditor: path_method_editor;
PathMethodNavigator: path_method_navigator;
Query Translator: query .translator;

m eth o d s:
InitializePMG ();

147

InvokePathMethodEditor ();
InvokePathMethodNavigator ();
GeneratePathMethod (user_request: UserRequestType);
ReturnPathMethod (path_method: PathMethodType);

Now we will explain each method of the class path_m ethod_generator.

1. InitializePMG () . . . This method initializes the PMG. It checks all the necessary

components such as Path-M ethod Editor and Path-M ethod Navigator.

2. InvokePathMethodEditor () . . . This method invokes a Path-M ethod Editor,

which is available with the Path-M ethod Generator.

3. InvokePathMethodNavigator () . . . This method invokes a Path-M ethod Navi

gator, which is available with the Path-M ethod Generator.

4. GeneratePathMethod (user-request: UserRequestType) . . . This is the main method

of the class path_method_generator which calls other methods for path-

method generation.

5. ReturnPathMethod (path-method: PathMethodType) . . . This method returns

the generated path-method to the Query Translator using the relationship

QueryTranslator.

When the path-method navigator generates a path-m ethod, it will be displayed

in the path-m ethod editor, where it can be changed by a user. It also allows a user

148

to formulate queries if s/he wants, without using the path-m ethod navigator. The

class p a th _ m eth o d _ ed ito r is defined below. The attributes NumVisitedNode and

PathLength contain the number of visited nodes and the length of the generated path-

method, respectively. The relationship OmlCompiler is used to call om L com piler

to include a generated path-method as a method of a source class. Here the Oml

Compiler is a general Object-Manipulation Language compiler that must be sup

ported by the OODBMS.

class path_method_editor
a t tr ib u te s :

SourceClass: String;
Target Information: String;
NumVisitedNodes: Integer;
PathLength: Integer;

re la tio n sh ip s:
PathMethodGenerator: path_method_generator;
PathMethodNavigator: path_method_navigator;
OmlCompiler: omLcompiler;
TermClassifier: term_classifier

m e th o d s:
DisplayOneMethod (path_meth: PathMethodType);
DisplayErrorMessage (message: MessageType);
ReadUserRequest (source: String; target: String);
GeneratePathMethod (source: String; target: String):

PathMethodType;
CheckUserRequest (source: String; target: String):

UserRequestType;
CheckClassName (classname: String) : Boolean;
AcceptPathMethod (pathmethod: PathMethodType);
UpdatePathMethod (pathmethod: PathMethodType):

PathMethodType;

149

term classifier

I
TermClassifier

Path Method Editor

OmlCompiler

I I
oml compiler

-> path method editor

query translator

QueryTranslator
PathMethodGenerator

PathMethodEditor DispatchTable

PathMethodGenerator dispatch table

path method generator

PathMethodNavigator
Path Method N avigator

oodb schema

OodbSchema
PathMethodGenerator

PathMethodEditor

Dispatc liTable

OodbClasses

oodb class

path method navigator
“1 T ~

oodb classes
SchemaGraph

PathMethodN avigator
TraversalAlgorithms

schema graph
~J f f "

Computation ALgorithms

algorithm SchemaGraph
computation algorithms

categoryo
PathMethodNavigator computation algorithm

categoryof
categoryoftraversal algorithms

SchemaGraph

traversal algorithm product ar

categoryof categoryof categoryof

bfs based algorithm access weight algorithm categoryof

access relevance algorithmcategoryof
categoryof categoryof

breadth first search best first search categoryof

categoryof categoryof

dfs based algorithm

categoryof
f

depth first search

best breadth first search product path method general s

F igu re 8 .2 C lasses for P a th -M e th o d G enerator

150

Now we will explain the methods for the class path_m ethod_editor.

1. DisplayOneMethod (pathjmeth: PathMethodType) . . . Displays one path-m ethod

on the path-method editor.

2. DisplayErrorMessages(message: MessageType) . . . Displays an error message or

a warning.

3. ReadUserRequest(source: String, target: String) . . . This method reads a user

request in two strings, a source and a target, either from the Query Translator

or from a user.

4. GeneratePathMethod (source: String, target: String): PathMethodType . . . This

method accepts two strings, a source and a target and returns a path-method.

It calls Path-M ethod Navigator to perform traversal.

5. CheckUserRequest (source: String, target: String): UserRequestType... This

method accepts two strings, a source and a target and then calls the Term

Classifier to check whether these terms are defined in the schema or not. The

Term-Classifier returns two schema-defined terms.

6. CheckClassName(classname: String): Bool . . . This method checks whether a

class is defined in the schema or not. This is done by using the Term-Classifier.

7. AcceptPathMethod (pathmethod: PathMethodType) . . . This method sends the

generated path-m ethod to the dispatch table of the source class, using the

151

relationship to the class om L com piler. The dispatch table contains all the

methods defined for a class.

8. UpdatePathMethod(pathmethod: PathMethodType): PathMethodType . . . This

method allows a user to update the generated path-m ethod if s/he wants to.

Then the modified path-m ethod will be the resultant method.

The path-m ethod navigator performs traversal of the schema. It refers to a col

lection of traversal algorithms. Computation of access relevance is done by compu

tational algorithms. The definition for the class p a th _ m eth o d _ n av ig a to r is given

below. The relationship SchemaGraph is used to access any information about the

OODB schema.

class path_method_navigator
a t tr ib u te s :

Source: String;
Target: String;
NumAlgorithms: Integer;
NumVisitedNodes: Integer;
PathLength: Integer;

re la tio n sh ip s:
PathMethodGenerator: path_method_generator;
PathMethodEditor: path_method_editor;
SchemaGraph: schema_graph;
ComputationalAlgorithms: computationaLalgorithms;
TraversalAlgorithms: traversal^algorithms;

m e th o d s:
Select Traversal Algorithm (): Integer;
CallTraversalAlgorithm (choice: Integer);
ReportUnsuccessfulSearch (message: MessageType);

152

GeneratePathMethod (source: String; target: String):
PathMethodType;

RunPathMethodNavigator ();
ComputeAccessRelevance (relevance_mat: RelavanceMatrixType);

Now we will explain all the methods defined for the class path_m ethod_navigator.

A description of each method is given below.

1. SelectTraversalAlgorithm (): Integer . . . Display various traversal algorithms to

user so s/he can choose one of it.

2. CallTraversalAlgorithm (choice: Integer) . . . Run the selected traversal algo

rithm .

3. ReportUnsuccessfulSearch (message: MessageType) . . . Return an error message

or a warning to the Path-M ethod Editor.

4. GeneratePathMethod (source: String; target: String): PathMethodType . . . This

method accepts two strings, a source and a target, and returns a path-method.

It calls Path-M ethod Navigator to perform traversal.

5. RunPathMethodNavigator () . . . This method calls different methods based on

the behavior of the path-m ethod generation.

6. ComputeAccessRelevance (relevance-mat: RelavanceMatrixType)... This method

calls a computational method to compute access relevance.

153

The class schem a_graph is a directed graph representation of an OODB schema.

The Path-M ethod Generator requires that an OODB schema should be converted

into a schema graph. Once the schema-graph is initialized, traversal algorithms can

access necessary information from it to traverse it. The relationship Oodbschema is

used to create a Schema-Graph from an OODB schema.

The attribute AccessWeightMatrix is a matrix, where each pair (=(row, column))

contains the corresponding access weight of the edge in the schema graph from the

row class to the column class. The attribute AccessRelevanceMatrix is a matrix

computed by a computation algorithm, where each pair (=(row, column)) contains

corresponding access relevance of the most relevant path in the schema graph from

row class to the column class. The attribute AdjacencyList is the adjacency list

representation of the schema graph, which is used for efficient computation of all

pair access relevance in the schema graph.

The definition of the class schem a_graph is shown below.

class schema_graph
a t tr ib u te s :

Nodes: {NodeType};
Connections: {ConnectionType};
NoNodes: Integer;
AccessWeightMatrix: WeightMatrixType;
AccessRelevanceMatrix: RelevanceMatrixType;
AdjacencyList: AdjacencyListType;

re la tio n sh ip s:
PathMethodNavigator: path_method_navigator;
OodbSchema: oodb_schema;

m e th o d s:

154

CreateSchemaGraph ();
NodeNumber (classname: String) : Integer;
AccessWeight (class_one: String; class_two: String) : Real;
ConnectionAccessWeight (connection: ConnectionType) : Real;
AccessRelevance (class_one: String; class_two: String) : Real;
Neighbors (classname: String) : {ConnectionType};
NeighborClassNames (classname: String) : {String};
PermissibleNeighbors (classname: String; targetinfo: String;

visited: {String}): {ConnectionType};
PermissibleNeighborClassNames (classname: String;

targetinfo: String; visited: {String}): {String};
Attributes (classname: String) : {AttributeType};

Now we will explain each method of the class schema_graph.

1. CreateSchemaGraph () . . . creates a Schema-Graph from an OODB schema.

If the OODB schema does not have any information regarding access weights,

then access weights should be added to the OODB schema.

2. NodeNumber (classname: String): Integer . . . returns a node number in a

Schema-Graph of a class.

3. AccessWeight (class-one : String, class-two: String): Real . . . returns access

weight between two classes if there exists a direct connection between the two

classes. Otherwise it returns zero(O).

4. ConnectionAccessWeight (connection: ConnectionType): Real . . . returns ac

cess weight of a connection, which is available in the AccessWeightMatrix.

155

5. AccessRelevance (class.one : String, class.two: String): Real . .. returns access

relevance between two given classes, which is available in the AccessRelevance

Matrix.

6. Neighbors (classname: String): {String} . . . returns a set of connections of a

class in the Schema Graph.

7. NeighborClassNames (classname: String): {ConnectionType} . . . returns a set

containing class names of all the adjacent nodes of a class in the Schema Graph.

8. PermissibleNeighbors (classname: String; targetinfo: String; visited: {String}):

{ ConnectionType } . . . finds a set of connections of a class in the Schema

Graph. Then, it returns only the ones which do not lead to classes which

appear in the set visited.

9. PermissibleNeighborClassNames (classname: String; targetinfo: String; visited:

{String}): {String} . . . finds a set containing class names of all the adjacent

nodes of a class in the Schema Graph. Then it returns only the ones which do

not which appear in the set visited.

10. Attributes (classname: String) : {AttributeType} . . . returns a set of attributes

of a given class.

156

8.2 Traversal A lgorithm s o f P ath —M ethod G enerator

In this section we will discuss different classes that are defined for traversal algo

rithms. All the classes for PMG are shown in Figure 8.2. We assume that classes

oodb_schem a, q u e ry _ tran s la to r, term _classifier, oodb_class, oodb_classes,

and o m L co m p ile r are already defined for an OODB. Although they are shown in the

Figure 8.2, we will not discuss their definitions here as they are not classes of the Path-

Method Generator module. We have discussed the algorithm PathMethodGenerate

in Chapter 4. If one wants to implement other methods for example, BestBreadth-

FirstSearch, then PathMethodGenerate can be modified rather than writing such a

method from scratch.

We first define the class a lg o rith m . Then we define class tra v e rsa l_ a lg o rith m

as categoryof of the class a lg o rith m . Then we define classes dfs_based_algorithm ,

b fs_based_algorithm , access_w eight_algorithm , access_relevance_algorithm

as categoryof of the class tra v e rsaL a lg o rith m . The class d fs_based_algorithm

represents depth-based algorithms, while the class bfs_based_algorithm represents

breadth-based algorithms. The class access_w eight_algorithm represents algo

rithms which use access weights and the class access_relevance_algorithm rep

resents algorithms which use access relevance for path-m ethod generation.

We define class dep th_first_search as categoryof the class dfs_based_algorithm ,

and class b read th_ first_ search as categoryof of the class b fs_based_algorithm . We

also define class best_first_search as categoryof of the classes dep th_first_search

157

and access_weight_algorithm. The class best_breadth_first_search as categoryof

of two classes breadth_first_search and access_weight_algorithm.

Finally, we define the class product_path_m ethod_generate as categoryof of

the class access_relevance_algorithm. Note that in the development of PMG we

model different algorithms as classes. This is a novel approach. So far we have found

only one approach [S92] which discusses modeling of methods in their knowledge-

based system.

class algorithm
attributes:

AlgorithmName: String;
Parameters: {StringPairType};
Purpose: String;

m ethods:
DisplayAlgorithmName ();
DisplayAlgorithmCode ();
DisplayAlgorithmSignature ();

A description of each method is given below.

1. DisplayAlgorithmName () . . . displays the name of the algorithm.

2. DisplayAlgorithmCode () . .. displays code of the algorithm.

3. DisplayAlgorithmSignature () . . . displays signature (header) of the method, i.e.,

name of the method, all the parameters enclosed in (), followed by a return type.

class traversal-algorithm
categoryof: algorithm
memberof: traversaLalgorithms

158

a t tr ib u te s :
SourceNode: String;
TargetNode: String;
PathLength: Integer;
NumVisitedNodes: Integer;
Successful: Boolean;

re la tio n sh ip s:
SchemaGraph: schema_graph;

m e th o d s:
CheckAttributes (source-class: String; target.class: String): Boolean;
Get Attributes (classname: String): {StringPairType};
GetRelationships (classname: String): {StringPairType};
GetUserDefinedRelationships (classname: String):

{StringPairType};
GetGenericRelationships (classname: String): {StringPairType};
GetAttributeSelectors (classname: String) : {String};
GetRelationshipSelectors (classname: String): {String};
GetUserDefinedRelationshipSelectors (classname: String): {String};
GetUserDefinedRelationshipResults (classname: String): {String};
GetGenericRelationshipSelectors (classname: String): {String};
AddToPathMethod (pair: {StringPairType};

pathmethod: PathMethodType): PathMethodType;

A description of each method is given below.

1. CheckAttributes (source.class: String, target-class: String): Boolean . . . This

method checks all the attributes of the source class against the target informa

tion.

2. GetAttributes (classname: String) : {StringPairType} . . . This method returns

all the attributes of a given class.

159

3. GetRelationships (classname: String): {StringPairType} . . . This method re

turns all the relationships of a given class.

4. GetUserDefinedRelationships (classname: String): {StringPairType} . . .T h is

method returns all the user-defined relationships of a given class.

5. GetGenericRelationships (classname: String): {StringPairType} . . . This method

returns all the generic relationships between classes.

6. Get Attributes electors (classname: String): {String} . . . This method returns

selectors of all the attributes of a class.

7. GetRelationshipSelectors (classname: String): {String} . . . This method returns

selectors of all the relationships of a class.

8. GetUserDefinedRelationshipSelectors (classname: String): {String} . . . This

method returns selectors of all the user-defined relationships of a class.

9. GetUserDefinedRelationshipResults (classname: String): {String} . . . This

method returns results of all the user-defined relationships of a class.

10. GetGenericRelationshipSelectors (classname: String): {String} . . . This method

returns selectors of all the generic relationships of a class.

11. AddToPathMethod(pair: {StringPairType}, pathmethod: PathMethodType): Path

MethodType . . . This method adds a property-type pair to the given path

method and returns the path-method containing this new pair.

160

class traversal_algorithms
setof: traversal_algorithm
a t tr ib u te s :

NumAgorithms: String;
re la tio n sh ip s:

PathMethodNavigator: path_method_navigator;
m e th o d s:

DisplayAlgortithmSignatures ();
DisplayAlgorithmChoices ();

A description of each method is given below.

1. DisplayAlgorithmSignatures () . . . displays headers of all the traversal algo

rithms.

2. DisplayAlgorithmChoices () . . . displays names and characteristics of each algo

rithm to the user. Then the user can select one based on his/her needs. These

characteristics are parameters, breadth restriction, depth restriction, etc,.

class dfs_based_algorithm
categoryof: traversaLalgorithm
a t tr ib u te s :

GroupName: String;
PredeterminedDepth: Integer;
DfsStack: StackType;

m e th o d s:
Display Characteristics ();
Display Stack ();

The attribute GroupName is a group name. For example: “Algorithms which are

variations of depth first search” . The attribute PredeterminedDepth is used when

161

a user wants to specify a depth restriction for traversal. Note that depth-based

algorithms use a stack.

A description of each method is given below.

1. DisplayCharacteristics () . . . This method displays the characteristics of a depth

based algorithm.

2. DisplayStack () . . . This method displays the current content of the stack.

class bfs_based_algorithm
categoryof: traversaLalgorithm
a ttr ib u te s :

GroupName: String;
PredeterminedBreadth: Integer;
BfsQueue: QueueType;

m ethods:
Display Characteristic ();
DisplayQueue ();

The attribute PredeterminedBreadth is used when a user wants to specify a breadth

restriction for traversal. Note that breadth-based algorithms use a queue.

A description of each method is given below.

1. DisplayCharacteristics () . . . This method displays characteristics of a breadth

based algorithm.

2. DisplayQueue () . . . This method displays the current content of the queue.

class access_weight_algorithm
categoryof: traversaLalgorithm

PLEASE NOTE

Page(s) not included with original material
and unavailable from author or university.

Filmed a s received.

162

University Microfilms International

163

The attribute WeightingFunctionName could be either PRODUCT or MINIMUM.

A description of methods are given below.

1. DisplayRelevanceMatrix () ■ ■ ■ This method displays the access relevance matrix.

2. GetAccessRelevance (row: Integer, column: Integer): Real . . . This method

reads an access relevance from the access relevance m atrix of the schema graph.

3. SetAccessRelevance (row: Integer, column: Integer) . . . This method sets an

access relevance.

class depth_first_search
categoryof: dfs_based_algorithm
attributes:

Characteristic: String;
m ethods:

DepthFirstSearch(source: String; target: String): PathMethodType;
FindNextNeighborForDfs(classname: String) : String;
FindUnvisitedNeighborForDfs(classname: String,

visitedNodes: {String}): String;

A description of each method is given below.

1 . DepthFirstSearch(source: String; target: String): PathMethodType . . . This

method accepts two strings, a source and a target, and generates a path-m ethod

using the depth first search algorithm.

2. FindNextNeighborForDfs(classname: String) : String . . . This method finds the

next neighbor for a current node for the depth first search algorithm.

164

3. FindUnvisitedNeighborForDfs(classname: String, visitedNodes: {String}) : String

. . . This method finds the next unvisited neighbor for a current node for the

depth first search algorithm.

class breadth_first_search
categoryof: bfs_based_algorithm
a ttr ib u te s :

Characteristic: String;
m e th o d s:

BreadthFirstSearch(source: String; target: String): PathMethodType;
FindNextNeighborForBfs(classname: String): String;
FindUnvisitedNeighborForBfs(classname: String,

visitedNodes: {String}): String;

A description of each method is given below.

1. BreadthFirstSearch(source: String; target: String): PathMethodType . . . This

method accepts two strings, a source and a target, and generates a path-method

using the breadth first search algorithm.

2. FindNextNeighborForBfs(classname: String) : String . . . This method finds

the next neighbor for a current node for the breadth first algorithm.

3. FindUnvisitedNeighborForBfs(classname: String, visitedNodes: {String}) : String

. . . This method finds the next unvisited neighbor for a current node for the

breadth first algorithm.

class best_first_search
categoryof: access_weight_algorithm
categoryof: depth_first_search

165

a t tr ib u te s :
Characteristic: String;

m e th o d s:
BestFirstSearch(source: String; target: String): PathMethodType;
FindNextNeighborForBestFirst (classname: String): String;
FindUnvisitedNeighborForBestFirst (classname: String,

visitedNodes: {String}): String;

A description of each method is given below.

1. BestFirstSearch(source: String; target: String): PathMethodType . . . This

method accepts two strings, a source and a target and generates a path-method

using best first search algorithm.

2. FindNextNeighborForBestFirst(classname: String) : String . . . This method

finds the next neighbor for a current node for the best first algorithm.

3. FindUnvisitedNeighborForBestFirst(classname: String, visitedNodes: {String})

: String . . . This method finds the next unvisited neighbor for a curreni, node

for the best first algorithm.

class best_breadth_first_search
categoryof: breadth_first_search
categoryof: access_weight_algorithm
a t tr ib u te s :

Characteristic: String;
m e th o d s:

BestBreadthFirstSearch(source: String; target: String):
PathMethodType;

FindNextNeighborForBestBreadth (classname: String): String;

166

FindUnvisitedNeighborForBestBreadth (classname: String,
visitedNodes: {String}): String;

A description of each method is given below.

1. BestBreadthFirstSearch(source: String; target: String): PathMethodType . . .

This method accepts two strings a source and a target and generates a path-

method using the best breadth first search algorithm.

2. FindNextNeighborForBestBreadth(classname: String) : String . . . This method

finds the next neighbor for a current node for the best breadth first algorithm.

3. FindUnvisitedNeighborForBestBreadth(classname: String, visitedNodes: {String})

: String . . . This method finds the next unvisited neighbor for a current node

for the best breadth first algorithm.

class product_path_method_generate
categoryof: access_relevance_algorithm
a ttr ib u te s :

Characteristic: String;
m eth o d s:

ProductPathMethodGenerate (source: String; target: String):
PathMethodType ;

FindNextNeighborForProductPmg (classname: String): String;
FindNextNeighborForProductPmgVisited (classname: String,

targetname: String,
visitedNodes: {String}): String;

A d escr ip tion o f each m eth o d is g iven below.

167

1. ProductPathMethodGenerate(source: String; target: String): PathMethodType

. . . generates a path-m ethod using product_path_method_generate algorithm

from a source to the target.

2. FindNextNeighborForProductPmg(classname: String) : String . . . This method

finds the next neighbor for a current node for the product_path_method_generate

algorithm.

3. FindUnvisitedNeighborForProductPmg(classname: String, visitedNodes:

{String}) : String This method finds the next unvisited neighbor for a current

node for the product_method_generate algorithm.

8.3 C om putation A lgorithm s o f P ath—M ethod G enerator

We have discussed computational algorithms such as PRODUCT-AR, MINIMUM-AR,

and COM PUTE.ARM in Chapter 5.

class computational_algorithm
categoryof: algorithm
m em berof: computationaLalgorithms
re la tio n sh ip s:

SchemaGraph: schema_graph;
m eth o d s:

CheckStatus (matrix: MatrixType): Boolean;

A d escrip tion o f each m eth o d is g iven below .

168

1. CheckStatus (matrix: WeightMatrixType): Boolean . . . This method checks

whether a weight matrix is updated or not. It is good to check whether we need

re-computation or not.

class computational_algorithms
setof: computational_algorithm
a ttr ib u te s :

NumAlgorithms: String;
Purpose: String;

re la tio n sh ip s:
PathMethodNavigator: path_method_navigator;

m e th o d s:
Display Selectors ();
DisplayChoices ();

A description of each method is given below.

1. DisplaySelectors () . . . displays signatures of all the computation algorithms.

2. DisplayChoices () . . . displays names and characteristics of each algorithm to
the user. Then the user can select one, based on his/her needs.

class product_ar
categoryof: computation_algorithm
a ttr ib u te s :

Characteristic: String;
EfRciencyDescription: String;
ProductHeap: HeapType;
AccessRelevanceMatrix: RelevanceMatrixType;
AccessWeightMatrix: WeightMatrixType;

m e th o d s:
ComputeProductAccessRelevanceQ: RelevanceMatrixType;

A d escr ip tion o f each m eth od is g iven below .

169

1. ComputeProductAccessRelevance(): RelevanceMatrixType . . . This method ac

cesses a Schema Graph and computes an access relevance matrix using the

PRODUCT weighting function.

8.4 How does P ath—M ethod G enerator Work?

The path_method_generator,- (PMG) is an instance of path _ m eth o d _ g en era to r.

Similarly, query .translator,- is an instance of class query . t r a n s la to r I t is similar for

other components of the Path-M ethod Generator such as Path-M ethod Navigator,

Traversal Algorithms, etc.

Figure 8.3 shows instances for the Path-M ethod Generator. First, the user query

or update request is given to the path_method_generator,-. It calls path_method_editor;.

The path_method_editor,- calls term.classifier,- to check the terms used in the user-

request. Then the schema-defined terms, as a pair (source, target), are passed

to path_method_navigator,-. The path_method_navigator,- calls traversaLalgorithms,-,

which is a set of algorithms with a variety of characteristics. One of these algorithms

is selected for execution, and returns a generated path-method. This generated path-

method is returned to path_method_navigator,-. Then path_method_navigator,- returns

this path-method to path_method_editor,-. The path_method_editor; allows the user

to modify the path-method if s/he wants to. Then, the path-m ethod is returned to

the query .translator,-.

The Figure 8.3 traversaLalgorithmsj contains four different Traversal Algorithms,

170

query
translator.

user query or

update request

path method
path method

generator.

update request
generated path method

update request
(defined or undefined terms)

path method
editor.

source, target
source, target

(defined terms)

generated path method

term
classifier .

I path method
\n a v ig a to r .

source, target generated path method

traversal
algorithms .

source, target
(one of these algorithms is executec) generated path method

/ access relevance \depth first
search .

breadth first
search .

access weight
algorithm . \. algorithm J

F igure 8 .3 O b jects for P a th -M eth o d G enerator

171

PMG OODBMS

path method editor term classifier

schema graph OODB schema

Oml Compiler

path method generator query translator

Figure 8.4 Connections Between the PMG and an OODBMS

depth_based_algorithm,-, breadth_based_algorithm,-, access_weight_algorithm,-, and ac-

cess_relevance_algorithm,-.

8.5 Integrating PM G w ith an O O DBM S

Now we will explain how the PMG can be incorporated into an OODBMS. As is shown

in Figure 8.4, only four classes of an OODBMS that are involved in this integration

process. In the next chapter we will discuss the specification of the Path-M ethod

Generator module for VODAK/VML OODB.

Actually, the Path-M ethod Generator module can be incorporated into any OODB

with little effort. Initially, the OODB schema should be converted into a schema

graph. If the OODBMS supports a Term Classifier than Path-M ethod Editor can

172

use it to correct terms specified in the user queries. Traversal algorithm will traverse

the schema graph without interacting with any of the classes of the OODBMS. The

Path-M ethod Generator will generate a path-method using the syntax discussed in

Chapter 2. The Query Translator of the OODBMS should be modified in such a

way that it sends all the incomplete queries to the Path-M ethod Generator, rather

than reporting error messages. If we want to store generated path-methods then they

must be converted into the Object Modeling Language used by the OODB. Later on

it can be added to the dispatch table of the source class of the path-method by the

Oml-Compiler.

As shown earlier, the class schem a_graph has a method CreateSchemaGraph (),

which can be modified based on the OODB model. The class p a th _ m eth o d _ ed ito r

has a method CheckUserRequestQ. This method can be modified based on the Term-

Classifier of the OODBMS. The class p a th _ m eth o d _ g en era to r has a method Re-

turnPathMethodQ. It has to be modified in such a way that it can return the gen

erated path-m ethod in the syntax of the Object Modeling Language supported by

the OODB. These changes are necessary in PMG, not in the existing OODBMS. The

only change in the existing OODBMS needed is that the Query-Translator should

direct all incompleted queries to the Path-M ethod Generator.

C H A PT E R 9

IM PL E M E N T IN G PM G FO R V O D A K /V M L OODB

In the previous chapter we have discussed the design of the PMG for our general

OODB model. For practical research we use the VODAK/VML OODB prototype.

In this chapter we will discuss the implementation of PMG using the VODAK/VML

prototype. A more detailed discussion on the specification of the PMG system for VO

DAK/VML OODB prototype can be found in [MPG92]. A detailed implementation

of the PMG system is discussed in ‘PMG User and Reference Manual’ [MPG93].

9.1 V O D A K /V M L O O DB P rototype

The VODAK/VML system is an OODB prototype developed at GMD-IPSI, Darm

stadt, Germany. ‘VODAK’ is an object-oriented data model and ‘VML’ is an acronym

for Vodak Modeling Language. The implementation language of the system is in

C + + . There are two distinguishing features of the VODAK/VML prototype, com

pared to most existing OODB models.

1. Use of the Dual Model

2. A sophisticated system of Metaclasses

The VODAK/VML prototype is based on the Dual Model [NPGT91, GPN91,

NPGT90, NPGT89] for OODBs. The Dual Model separates structural and semantic

173

174

aspects of a class definitions. The structural aspects are specified by an object type

and the semantic aspects are specified as a class. Thus, each class has an object

type attached to it, which describes its structure. Generally, all the object types

are defined first and then all the classes are defined. The advantage is that there

may be several classes which share the same object type. A more detailed discussion

and examples of classes which share the same object type are given in [NPGT91].

Note that in this dissertation model we have not considered such a separation in the

class definition. A more detailed discussion of the VODAK/VML system is given in

[KNBD92].

To implement the PMG system using VODAK/VML, one can use the approach

discussed in the previous chapter, where only a few classes need to be changed. But as

this research is done in close co-operation with GMD-IPSI, where the VODAK/VML

prototype has been developed, we will now show all the classes of the path-method

generator using the VML formalism. This is done, because the PMG system will

become a module of the VODAK/VML OODB system.

We will explain only a class definitions and rest of the class definitions here are

shown in the Section 9.3. In a VML object type definition both attributes, and user

defined relationships are considered as properties. As setof, and memberof are not

supported by VML, we have considered them as user-defined relationships. We define

the object type PATH-METHOD-GENERATOR as follows.

OBJECTTYPE PATH_METHOD_GENERATOR
[path_meth_ed: PATH_METHOD_EDITOR;

175

path_meth_nav: PATH_METHOD_NAVIGATOR;
query _trans: VML_QUERY_TRANSLATOR]

PROPERTIES
NoOfEditors: INT;
NoOfTravAlgorithms: INT;
PathMethodEditor: path_meth_ed;
PathMethodNavigator: path_meth_nav;
QueryTranslator: query_trans;

INTERFACE
METHODS

InitializeJPMG () READONLY;
Invoke_path_meth_editor () READONLY;
Invoke_path_method_navigator () READONLY;
Generate_path_method () READONLY;
Return_path_method (path_method: Path_method_type) READONLY;

END;

CLASS path_method_generator
INSTTYPE PATH_METHOD_GENERATOR

[path_method_editor
path_method_navigator
vmLquery-translator]

END;

It has two attributes NoOfEditors and NoOfTravAlgorithms and three relation

ships PathMethodEditor, PathMethodNavigator, and QueryTranslator. For each user-

defined relationship we need to pass a formal class parameter. The formal class pa

rameter for the relationship PathMethodEditor is path-meth-ed. The object type of

path-meth-ed is PATH-METHOD.EDITOR. Similarly, the formal class parameters

176

for relationships PathMethodNavigator and QueryTranslator are pathjmeth-nav and

query-trans, respectively. The object types for the relationships PathMethodNavigator

and QueryTranslator are PA TH M ETH O D N AVIG ATO R and QUERY-TRANSLAT-

OR, respectively.

The purpose of class parameters is to handle cases when more than one class shares

the same object type. For example, the relationship PathMethodEditor refers to a

class, which has an object type PA TH-ME THOD .EDITOR. There can be more than

one class that can have the same object type PATH-METHOD-EDITOR. Actually,

for PMG classes, there are no such cases. Each class has its own object type.

After specifying properties, methods are defined. We need a keyword ‘INTER

FACE’ for the public methods. VML requires ‘READONLY’ in the method header

to indicate that the method is side-effect free. From VML, C + + functions can also

be called. Here, we will not discuss the complete implementation of each method.

For more detailed discussion see [MPG92, MPG93].

The above is a definition of the class pa th_m eth o d _ g en era to r. VML used the

keyword ‘INSTTYPE’ followed by PATH-METHOD-GENERATOR specifies that the

class p a th _ m eth o d _ g en era to r has the object type PATH-METHOD-GENERATOR.

Three following parameters in [. . .], are classes which have the corresponding object

types specified in the object type definition. As an another example, the follow

ing is a definition for the object type PATH-METHOD-NAVIGATOR and the class

path-method-navigator.

177

OBJECTTYPE PATH_METHOD_NAVIGATOR
[path_meth_gen: PATH_METHOD_GENERATOR;
path_meth_ed: PATH_METHOD_EDITOR;
schema_graph: SCHEMA_GRAPH;
compute-algs: COMPUTE-ALGORITHMS;
traversaljilgs: TRAVERSAL_ALGORITHMS];

PROPERTIES
Source: STRING;
Target: STRING;
NoOfAlgorithms: INT;
NoOfVisitedNodes: INT;
PathLength: INT;
PathMethodGenerator: path_meth_gen;
PathMethodEditor: path_meth_ed;
SchemaGraph: schema_graph;
Computational Algorithms: compute_algos;
Traversal Algorithms: traversaLalgos;

INTERFACE
METHODS

Select_traversal_algorithm (): INT READONLY;
CalLtraversaLalgorithm (choice: INT) READONLY;
Report_unsuccessful_search(message: Message-type) READONLY;
Generate_path_method(source: STRING; target: STRING):

Path_method_type READONLY;
Run_path_method_navigator () READONLY;
Compute_access_relevance (relevance_mat: RelevanceMatrixType)

READONLY;
END;

CLASS path_method_navigator
INSTTYPE PATH_METHOD_NAVIGATOR

[path_method_generator,

178

path_method_editor,
schema_graph,
compute_algorithms,
traversaLalgorithms]

END;

The second important feature of the VODAK/VML system is the extensive use of

metaclasses. A more detailed discussion of metaclasses is given in [K90b, KNBD92].

Each objecttype is a SUBTYPEOF of Metaclass-InstType, a system defined object

type. Each class is an instance of the metaclass VML-CLASS, a system defined

metaclass.

In addition, two semantic generic relationships categoryof and roleof are realized

using metaclasses, i.e., metaclasses are defined to implement the behavior of such

semantic relationships. The following is the definition for the class a lg o rith m . We

define the class tra v e rsaL a lg o rith m as a categoryof the class a lg o rith m . The

line M ETACLASS CATEGORY-SPECIALIZATION-CLASS in the following class

tra v e rsa L a lg o rith m specifies that a class is an instance of the metaclass CA TE-

G O R Y _SPEC IA LIZA TIO N _C LA SS. The class C A TEG O R Y _SPE C IA LIZA -

TIOISLCLASS contains necessary attributes and methods to support the behav

ior of the relationship categoryof.

Note that the object type TRAVERSAL-ALGORITHM is a subtype of the object

type ALGORITHM. This is necessitated by the Dual Model [NPGT91]. There, it is

explained that when class a is a categoryof of class 6, then the corresponding object

type A of a, is a SUBTYPEO F of the object type B of b.

179

OBJECTTYPE ALGORITHM

PROPERTIES
Algorithm_name: STRING;
Parameters: || STRING -> STRING ||;
Purpose: STRING;

INTERFACE
METHODS

Display .name () READONLY;
Display _code () READONLY;
Display .signature () READONLY;

END;

CLASS algorithm
INSTTYPE ALGORITHM

END;

In the following discussion || <key> —>• < data> || specifies a dictionary datatype.

The object types VML-PROPDESL, VML-CLASSDECL, are defined in VML. A

more detailed discussion of all the datatypes supported by VML is given in [KNBD92].

OBJECTTYPE TRAVERSALALGORITHM
[trav_algs: TRAVERSAL-ALGORITHM;
schema_gr: SCHEMA_GRAPH];

SUBTYPEOF ALGORITHM;

PROPERTIES
SourceNode: STRING;
TargetNode: STRING;
PathLength: INT;
NumVisitedNodes: INT;
Successful: BOOL;

180

SchemaGraph: schema_gr;
memberof: trav_algs;

INTERFACE
METHODS

Check_attributes (source.class: STRING; fcarget_class: STRING):
BOOL READONLY;

Get_attributes (classname: STRING):
|| STRING -> VML_PROPDESC || READONLY;

Get_relationships (classname: STRING):
|| STRING -► VML.CLASSDECL || READONLY;

Get_user_defined_rels (classname: STRING):
|| STRING - 4 VML.CLASSDECL || READONLY;

Get_generic_relationships (classname: STRING):
|| STRING -> VML.CLASSDECL || READONLY;

Get_attribute_selectors (classname: STRING) : {STRING};
Get_relationship_selectors (classname: STRING): {STRING};
Get_user_defined_rel_selectors (classname: STRING): {STRING};
Get_generic_relationship_selectors (classname: STRING): {STRING};
Add_to_path_method(pair: || STRING -> VML.CLASSDECL ||;

pathmethod: Path_method_type): Path.m ethod.type READONLY;
END;

CLASS traversal_algorithm METACLASS CATEGORY.SPECIALIZATION.CLASS
INSTTYPE TRAVERSAL.ALGORITHM

[schema_gr : SCHEMA.GRAPH,
traversaLalgos : TRAVERSAL.ALGORITHMS]

END;

9.2 O ther PM G Classes for V O D A K /V M L O ODB

In this section we will give definitions for rest of the classes, of the PMG implemen
tation of VODAK/VML.

181

OBJECTTYPE PATH_METHOD_EDITOR
[path_meth^gen: PATH_METHOD_GENERATOR;
path_meth_nav: PATH_METHOD_NAVIGATOR;
term_claasifier: VML_TERM_CLASSIFIER;
vml-schema: VML.SCHEMA];

PROPERTIES
Source: STRING;
Target: STRING;
NoOfVisitedNodes: INT;
PathLength: INT;
PathMethodGenerator: path_meth_gen;
PathMethodNavigator: path_meth_nav;
TermClassifier: vmLterm.classifier
VmlSchema: vmljschema;

INTERFACE
METHODS

Display_one_method(path_meth: Path_method_type) READONLY;
Display_error_message(message: Message_type) READONLY;
Read_user_request(source: STRING; target: STRING) READONLY;
Generate_path_method(source: STRING; target: STRING):

Path_method_type READONLY;
Check_user_request(source: STRING; target: STRING):

User_request_type READONLY;
Check_class_name(classname: STRING) : BOOL READONLY;
Check_object_type(objecttype: STRING) : BOOL READONLY;
Accept_path_method(pathmethod: Path_method_type) READONLY;
Update_path_method(pathmethod: Path_method_type) READONLY;

END;

CLASS path_method_editor
INSTTYPE PATH_METHOD_EDITOR

[path_method_generator,

182

path_method_navigator,
term.classifier,
vml_schema]

END;

OBJECTTYPE SCHEMA.GRAPH
[path_meth_nav: PATH_METHOD_NAVIGATOR;
vml_schema: VML_SCHEMA;]

PROPERTIES
Nodes: {Node_type};
Connections: {Connection-type};
NoOfNodes: INT;
AccessWeightMatrix: Weight_matrix_type;
AccessRelevanceMatrix: Relevance_matrix_type;
Adjacency List: Adjacency Jist_type;
PathMethodNavigator: path_meth_nav;
VmlSchema: vml_schema;

INTERFACE
METHODS

Create_schema_graph () READONLY;
Node_number (classname: STRING) : INT READONLY;
Access_weight(class_one: STRING; class-two: STRING) :

REAL READONLY;
Connection_access_weight(connection: Connection_type) :

REAL READONLY;
Access_relevance(class_one: STRING; class_two: STRING) :

REAL READONLY;
NeighborClassNames(classname: STRING) : {STRING} READONLY;
Neighbors(classname: STRING) : {ConnectionType} READONLY;
Permissiblejneighbor_class_names(classname: STRING; visited: {STRING}):

{STRING};
Permissible_neighbors(classname: STRING; visited: {STRING}):

183

{ConnectionType}; END;

CLASS schema_graph
INSTTYPE SCHEMA.GRAPH

[path_method_navigator,
vml_schema]

END;

OBJECTTYPE TRAVERSAL.ALGORITHMS
[trav_alg: TRAVERSAL_ALGORITHM;
path_meth_nav: PATHJVIETHOD_NAVIGATOR]

PROPERTIES
NoOfAgorithms: STRING;
Purpose: STRING;
setof: {trav_alg};
PathMethodNavigator: path_meth_nav;

INTERFACE
METHODS

Display signatures () READONLY;
Display .choices () READONLY;

END;

CLASS traversal_algorithms
INSTTYPE TRAVERSAL.ALGORITHMS

[traversal_algorithms,
path_method_navigator]

END;

OBJECTTYPE DFS_BASED_ALGORITHM
[trav_algs: TRAVERSAL.ALGORITHM;
schema^gr: SCHEMA.GRAPH]

SUBTYPEOF TRAVERSAL-ALGORITHM
[trav_algs

184

schema_gr];

PROPERTIES
GroupName: STRING;
PredeterminedDepth: INT;
DfsStack: Stack_type;

INTERFACE
METHODS

Display .characteristics () READONLY;
Display .stack () READONLY;

END;

CLASS dfs_based_algorithm
METACLASS CATEGORY.SPECIALIZATION.CLASS

INSTTYPE DFS.BASED.ALGORITHM
[traversal_algorithms,
schema_graph]

END;

OBJECTTYPE BFS_BASED_ALGORITHM
[trav_algs: TRAVERSALJ^LGORITHM;
schema_gr: SCHEMA.GRAPH]

SUBTYPEOF TRAVERSAL.ALGORITHM
[trav_algs
schema_gr];

PROPERTIES
GroupName: STRING;
PredeterminedWidth: INT;
BfsQueue: Queue.type;

INTERFACE

185

METHODS
Display .characteristic () READONLY;
Display .queue () READONLY;

END;

CLASS bfs_based_algorithm
METACLASS CATEGORY_SPECIALIZATION_CLASS

INSTTYPE BFS.BASED.ALGORITHM
[traversal^algorithms,
schema_graph]

END;

OBJECTTYPE ACCESS.WEIGHT.ALGORITHM
[trav_algs: TRAVERS AL_ALGORITHM;
schema.gr: SCHEMA.GRAPH]

SUBTYPEOF TRAVERSAL.ALGORITHM
[trav_algs
schema_gr];

PROPERTIES
GroupName: STRING;
AccessWeightMatrix: W eightjnatrix.type;
DfsStack: Stack.type;
BfsQueue: Queue.type;

INTERFACE
METHODS

Display .weight .matrix () READONLY;
Get_access_weight (row: INT, column: INT): REAL READONLY;
Set_access_weight (row: INT, column: INT) READONLY;

END;

CLASS access_weight_algorithm

186

METACLASS CATEGORY_SPECIALIZATION_CLASS
INSTTYPE ACCESS_WEIGHT_ALGORITHM

[traversal^algorithms,
schema_graph]

END;

O BJECTTYPE ACCESS_RELEVANCE_ALGORITHM
[trav_algs: TRAVERSAL_ALGORITHM;
schema.gr: SCHEMA.GRAPH]

SUBTYPEOF TRAVERSAL.ALGORITHM
[trav_algs
schema_gr];

PROPERTIES
GroupName: STRING;
AccessRelevanceMatrix: Relevance_matrix_type;
DfsStack: Stack-type;
BfsStack: Queue.type;
WeightingFunctionName: STRING;

INTERFACE
METHODS

Display_relevance_matrix () READONLY;
Get_access_weight (row: INT, column: INT): REAL READONLY;
Set_access_weight (row: INT, column: INT) READONLY;

END;

CLASS access_relevance^algorithm
METACLASS CATEGORY_SPECIALIZATION_CLASS

INSTTYPE ACCESS_RELEVANCE_ALGORITHM
[traversal-algorithms,
schema_graph]

E N D ;

187

OBJECTTYPE DEPTH_FIRST_SEARCH
[trav_algs: TRAVERSAL-ALGORITHM;
schema^gr: SCHEMA.GRAPH]

SUBTYPEOF DFS_BASED_ALGORITHM;
[trav_algs
schema_gr];

PROPERTIES
Characteristic: STRING;

INTERFACE
METHODS

Depth_first_search(source: STRING; target: STRING):
Path.m ethod.type READONLY;

Find_next_neighbor_for_dfs(classname: STRING) :
STRING READONLY;

Find_next_neighbor_for_dfs(classname: STRING,
visitedNodes: {STRING}):

STRING READONLY;
END;

CLASS depthJirst_search
METACLASS CATEGORY.SPECIALIZATION.CLASS

INSTTYPE DEPTH.FIRST.SEARCH
[traversal_algorithms,
schema_graph]

END;

OBJECTTYPE BREADTHJIRST.SEARCH
[trav_algs: TRAVERSAL_ALGORITHM;
schema_gr: SCHEMA.GRAPH]

SUBTYPEOF BFS.BASED.ALGORITHM;

188

[trav_algs
schema_gr];

PROPERTIES
Characteristic: STRING;

INTERFACE
METHODS

Breadth_first_search(source: STRING; target: STRING):
Path_method_type READONLY;

Find_next_neighbor_for_bfs(classname: STRING):
STRING READONLY;

Find_next_neighbor_for_bfs(classname: STRING,
visitedNodes: {STRING}): STRING READONLY;

END;

CLASS breadth_first_search
METACLASS CATEGORY.SPECIALIZATION.CLASS

INSTTYPE BREADTH_FIRST_SEARCH
[traversal_algorithms,
schema_graph]

END;

OBJECTTYPE BEST_FIRST_SEARCH
[trav_algs: TRAVERSAL_ALGORITHM;
schema_gr: SCHEMA.GRAPH]

SUBTYPEOF ACCESS_WEIGHT_ALGORITHM,
DEPTH_FIRST_SEARCH;
[trav_algs
schema.gr];

PROPERTIES
Characteristic: STRING;

INTERFACE
METHODS

Best_first_search(source: STRING; target: STRING):
Path_method_type READONLY;

Find_next_neighbor_for_best_first(classname: STRING):
STRING READONLY;

Find_next_neighbor_for_best_first(classname: STRING,
visitedNodes: {STRING}): STRING READONLY;

END;

CLASS best_first_search
METACLASS CATEGORY_SPECIALIZATION_CLASS

INSTTYPE BEST_FIRST_SEARCH
[traversal_algorithms,
schema_graph]

END;

OBJECTTYPE BEST_BREADTH_FIRST_SEARCH
[trav_algs: TRAVERSAL_ALGORITHM;
schema_gr: SCHEMA.GRAPH]

SUBTYPEOF BREADTH_FIRST_SEARCH,
ACCESS_WEIGHT_ALGORITHM;
[trav_algs
schema_gr];

PROPERTIES
Characteristic: STRING;

INTERFACE
METHODS

Best_breadth_first_search(source: STRING; target: STRING)
Path_method_type READONLY;

190

Find_next_neighbor_for_best_breadth(classname: STRING):
STRING READONLY;

Find_next_neighbor_for_best_breadth(classname: STRING,
visitedNodes: {STRING}): STRING READONLY;

END;

CLASS best_breadth_first_search
METACLASS CATEGORY_SPECIALIZATION_CLASS

INSTTYPE BEST_BREADTH_FIRST_SEARCH
[traversal^algorithms,
schema_graph]

END;

OBJECTTYPE PRODUCT_PATH_METHOD_GENERATE
[trav_algs: TRAVERSAL_ALGORITHM;
schema_gr: SCHEMA.GRAPH]

SUBTYPEOF ACCESS_RELEVANCE_ALGORITHM;
[trav_algs
schema_gr];

PROPERTIES
Characteristic: STRING;

INTERFACE
METHODS

Product_path_method_generate(source: STRING; target: STRING):
Path_method_type READONLY;

Find_next_neighborTor_product_pmg(classname: STRING):
STRING READONLY;

Find_next_neighbor_for_product_pmg(classname: STRING,
visitedNodes: {STRING}): STRING READONLY;

E N D ;

191

CLASS path_method_generate
METACLASS CATEGORY_SPECIALIZATION_CLASS

INSTTYPE PRODUCT_PATH_METHOD_GENERATE
[traversal_algorithms,
schema_graph]

END;

OBJECTTYPE COMPUTATIONAL_ALGORITHMS
[compute_alg: COMPUTATIONAL_ALGORITHM;
path_meth_nav: PATH_METHOD_NAVIGATOR]

PROPERTIES
NumAlgorithms: STRING;
Purpose: STRING;
setof: {comp-alg};
PathMethodNavigator: path_meth_nav;

INTERFACE
METHODS

Display .selectors () READONLY;
Display .choices () READONLY;

END;

CLASS computational.algorithms
INSTTYPE COMPUTATIONAL_ALGQRITHMS

END;

OBJECTTYPE COMPUTATIONAL.ALGORITHM
[comp^lgs: COMPUTATIONAL_ALGS;
schema_graph: SCHEMA.GRAPH;
vml_schema: VML.SCHEMA]

SUBTYPEOF ALGORITHM;

192

PROPERTIES
SchemaGraph: schema-graph;
VmlSchema: vml_schema;
memberof: comp_algs;

INTERFACE
METHODS

Check_status (matrix: Matrix.type): BOOL READONLY;
END;

CLASS computation_algorithm
METACLASS CATEGORY_SPECIALIZATION_CLASS

INSTTYPE COMPUTATIONAL_ALGORITHM
END;

OBJECTTYPE PRODUCT_AR
[comp_algs: COMPUTATIONAL_ALGS;
schema_graph: SCHEMA-GRAPH;
vml_schema: VML-SCHEMA]

SUBTYPEOF COMPUTATIONALJVLGORITHM
[comp_algs,
schema_graph,
vml-schema];

PROPERTIES
Characteristic: STRING;
Efficiency_description: STRING;
Product_heap: Heap.type;
Access_relevance_matrix: Relevance_matrix_type;
Access_weight_matrix: Weight_matrix_type;

INTERFACE
METHODS

193

Compute_product_access_relevance(schema: schema_graph):
Relevance_matrix_type READONLY;

END;

CLASS product_ar
METACLASS CATEGORY_SPECIALIZATION_CLASS

INSTTYPE PRODUCT_AR
[computation^algorithm,
schema_graph,
vml-schema];

END;

C H A P T E R 10

CO NCLUSIO NS A N D F U T U R E W O R K

In this dissertation we have investigated the problem of automatic generation of path-

methods in object-oriented databases. A path-method, defined as a method which

traverses from a class through a chain of connections between classes, is a mechanism

to retrieve or to update information relevant to a source class that is not stored with

that class but with some other class.

The state-of-the-art in the object-oriented database technology does not support

automatic generation of path-methods. It is assumed that path-methods to support

queries are already written. However, it is a difficult task for a user to write such

path-methods. It may require knowledge of many of the classes in the schema, while

a typical user has incomplete, inconsistent, or even incorrect knowledge of the schema.

In writing path-methods ahead of time it is necessary to predict what kind of

user requests will be applied to each class in the schema. To write ad hoc queries is

a frustrating task, as incorrect queries will be rejected without proper guidance by

the database. We have developed the Path-M ethod Generator (PMG), a System for

semi-automatic generation of path-methods in an object-oriented database, based

on a naive user’s requests. The Path-M ethod Generator allows a user to formulate his

request according to his understanding of the conceptual schema. It does not require

any predefined views or prior knowledge of the conceptual schema. The path-methods

194

195

will be generated dynamically rather than written in advance for all the classes in the

schema.

To support the generation of path-methods in OODBs we introduced the notion

of access weights. We enhance an OODB by assigning access weights to all the

connections of an OODB schema according to the frequency of their use during the

operation of the OODB. Assigning weights to the connections of the schema is a novel

apporach, which is not supported by any existing OODB models. We discussed several

access weight traversal algorithms. From the large university environment OODB

that we designed to be used as a testbed, we have selected a subschema containing 52

classes. We defined 50 sample problems for the Path-M ethod Generator, using this

schema. This was done independently of the development of the traversal algorithms.

We generated 50 path-methods for these problems, using various access-weight-based

traversal algorithms. Our experiments show that the best of these algorithms, best

breadth first search, performed relatively well, but not well enough. This algorithm

generated 86% of the desired path-methods. Surprisingly, the breadth first search

found 82% of the desired path-methods.

To find a particular item of information, a human traverses an OODB schema

by using his intuitive understanding of the schema and the target information. To

perform a similar traversal we have introduced the notion of access relevance of a path,

which can be computed from access weights of all the connections of a path-method.

This is a better measure than access weight as it incorporates access weights of all the

196

connections that make up the path. The access relevance from class A to another class

B is defined as the maximum access relevance over all paths from the class A to the

class B. We have designed efficient algorithms for computing access relevance for all

pairs of classes of a schema for one OODB. For directed schemas we have developed

two algorithms for the two t-norm s used each of complexity O (nelgn) or 0 (n 3)

(depending on the implementation) to compute 0 (n 2) values. For bidirected schema,

to compute access relevance using MINIMUM weighting function, we designed a very

efficient algorithm of complexity 0 (n 2) to compute 0 {n 2) values.

We described an algorithm PathMethodGenerate which uses precomputed access

relevance to guide path-method generation. At each step of traversal this algorithm

considers the access weight from the current class to a neighbor class, and the access

relevance from the neighbor class to the target information. This technique improved

the results considerably. We have performed experiments with the same schema and

sample set of problems. The algorithm PathMethodGenerate (PRODUCT (Rule 2b))

found 92% of the desired path-methods. The algorithm PathMethodGenerate (MIN

IMUM (Rule 2b)) found 32% of the desired path-methods. These results show that

access relevance should be computed using the PRODUCT t-norm which reflects all

the access weights along the path rather than the MINIMUM t-norm . The algo

rithm PathMethodGenerate (PRODUCT (Rule 2a)) found 74% of the desired path-

methods. This shows that the Rule 2b is better than the Rule 2a. The results for

the PRODUCT t-norm are better than those of best_breadth_first_search . Note

197

that even for this algorithm, there are a few cases when the generated path-methods

are not the desired ones. For such cases we introduced two mechanisms which were

helpful for finding the desired path-m ethod at the second try. These mechanisms

utilize parameters of forbidden classes and intermediate classes, respectively, which

are supplied by the user based on the feedback obtained from the undesired pa th -

method. These mechanisms were very helpful in generating desired path-methods for

such cases.

Path-m ethod generation in an interoperable multi-OODB is more difficult than

for a single OODB. We have introduced a novel hierarchical approach to model an

IM-OODB schema by a smaller schema. Then, we discussed efficient algorithms

for computation of access relevance for an IM-OODB schema. This algorithm is of

complexity 0 (c a * c g) , where c a is a number of contact classes of OODByi and e g is a

number of contact classes of OODBg, respectively. We have also shown an enhanced

technique for realization of inter-OODB connections, using path-m ethods through

the IM-OODB schema classes.

We discussed techniques incorporating the PMG in an existing OODBMS. We

also implemented such a PMG into the VML system.

The following issues are topics of future research.

1. So far in this dissertation we have discussed path-m ethod generation of path-

methods from the source class to the target class. However, many queries

require a more complex structure. Our approach can be extended to generate

198

branching methods, which have a tree structure rather than a path structure.

One can also extend this approach to generate more complex methods of an

acyclic graph structure.

2. The automatic generation of views in an OODB is also an important problem.

An interesting approach is to define a view from one or more queries utilizing

path-m ethods or methods with more complex structure as discussed in (1).

3. In this dissertation we have discussed computation of access relevance in an

interoperable multi-OODB. One can develop traversal algorithms to generate

path-m ethods to retrieve information in an interoperable multi-OODB.

4. In this dissertation, while discussing realization of inter-OODB connections,

we have used similar attributes of different classes to correspond two classes in

different databases. One can extend the approach to use attributes which are not

defined in the classes needed to correspond, but in other classes in the respective

databases. Such a realization can be achieved by using path-methods.

5. In Chapter 3 we have discussed the case that all the properties of the superclass

are inherited to the subclasses. We also inherit the frequencies of the connections

inherited from the superclass. One can extend this approach by only using

each connection, inherited from the superclass, as they are traversed from the

subclass rather than inheriting frequencies from the superclass. Then one can

study the impact of such an refinement on the performance of PMG.

199

6. Suppose there already exist path-methods for a given class. How can the PMG

use them as connections? W hat access weights should we associate with path-

methods?

7. We have mentioned the notion of semantic resemblance between classes. If a

system which assigns semantic resemblance to all the pairs of classes of a schema

will be created, one can check the impact of utilizing semantic resemblance

rather than access relevance on the performance of the traversal algorithms of

the PMG.

8. Different applications might require independent sets of weights. An extension

of the model that accomodates such weight vectors is possible.

R EFE R E N C E S

[AHU83]

[AR91]

[B89]

[B90]

[B91]

[BD86]

[BH86]

[BKK88]

Aho, A., Hopcroft, J., Ullman, J.D., “Data Structures and Algorithms” ,

Addison-Wesley Publishing Company, Reading, MA, 1983.

Andersen, J., Reenskaug, T., “Operations on Sets in OODB”, OOPS

Messenger, vol. 2, no. 4, Oct. 1991, pp. 26-39.

Bertino, E., et al., “Integration of Heterogeneous Database Applications

through an Object-Oriented Interface” , Information Systems, vol. 14,

1989.

A. Bhave, “Implementation of University Database using the VML -

The Object-Oriented Database System (Release 1)”, Master’s Thesis,

CIS-Dept, NJIT, Newark, NJ, 1990.

Barry, D., “ITASCA Overview”, In the Proceedings of the Executive

Briefing on Object-Oriented Database Management, San Francisco, Sep.

1991.

Bonissone, P.P., Decker, K.S., “Selecting Uncertainty Calculi and

Granularity: An Experiment in Trading-off Precision and Complexity”,

Machine Intelligence Pattern Recognition, vol. 4, 1986, pp. 217-247.

Bruce, H., Hull, R., “SNAP : A Graphics-based Schema Manager”, In

the Proceedings o f IEEE Computer and Data Engineering Conference,

1986, pp. 151-165.

Banerjee, J., Kim, W., Kim, K., “Queries in Object-Oriented

databases”, In the Proceedings of the Fourth International Conference

on Data Engineering, Los Angelos, CA, 1988, pp. 31-38.

200

201

[BNPS92]

[BOS91]

[CD92]

[CM81]

[CT90]

[CT91a]

[CT91b]

[D91a]

Bertino, E., Negri, M., Pelagatti, G., Sbattella, L., “Object-Oriented

Query Languages: The Notion and the Issues”, IEEE Transactions on

Knowledge and Data Engineering, vol. 4, June 1992, pp. 223-237.

Butterworth, P., Otis, A., and Stein, J., “The GemStone Object

Database Management System”, Communications of the ACM, vol. 20,

Oct. 1991, pp. 64-77.

Cluet, S., Delobel, C .,“The General Framework for the Optimization of

Object-Oriented Queries”, In the Proceedings o f 1992 ACM SIGMOD

International Conference on Management o f Data, San Diego, Califor

nia, June 2-5, 1992, pp. 383-392.

Clocksin, W.F., Mellish, C.S., “Programming in Prolog” Springer

Verlag, 1981.

Chao, H., Teli, V., “Development of a University Database using the

Dual Model of Object-Oriented Knowledge Bases”, M aster’s Thesis,

CIS Department, NJIT, Newark, NJ, 1990.

Czejdo, B., Taylor, M., “Integration of Database Systems using an

Object-Oriented Approach”, in Proc. First International Workshop on

Interoperability in Multi-Database Systems, Kyoto, Japan, 1991, pp.

30-37.

B. Czejdo, M. Taylor, “Integration of Database Systems and Smalltalk” ,

in In the Proceedings of the Symposium on Applied Computing, Kansas

City, April 1991.

O. Deux et. al., “The O2 System”, Communications o f the ACM, vol.

34, no. 10, October 1991, pp. 34-48.

202

[D91b]

[F87]

[FKN91]

[FN92]

[G91]

[GD91]

[GKG85]

[GMPN92]

Dixit, N., “Implementation of University Database using the VML -

The Object-oriented Database System (Release 2)”, M aster’s Project,

CIS-Dept, NJIT, Newark, NJ, 1991.

Fishman, D., et al., “IRIS: an object-oriented database management

system” , ACM Transaction on Office Information Systems, vol. 5, no.,

1, Jan. 1987, pp. 48-69.

Fankhauser P., Kracker, M., Neuhold, E.J., “Semantic vs. Structural

Resemblance of Classes”, SIGMOD Record, Special Issue on ‘Semantic

Issues in Multidatabase Systems’, vol. 3f, Dec. 1991, pp. 59-63.

Fankhauser, P., Neuhold, E. J., “Knowledged-Based Integration of

Heterogeneous Databases”, In the Proceedings of the IFIP TC2/W G2.6

Conference on Semantics o f Interoperable Database Systems, DS-5,

Lome, Victoria, Australia, November 1992.

------------- , “Gemstone Product Overview”, Servio Corporation, 1991.

Gomsi, J., DeSanti, M., “VERSANT Overview”, In the Proceedings of

the Executive Briefing on Object-Oriented Database Management, San

Fransisco, Sep. 1991.

Goldman, K. J., Kannellakis, P. C., Goldman, S. A., Zdonik, S. B.,

“ISIS : Interface for a Semantic Information System”, In the Proceedings

o f the 1985 ACM SIGMOD International Conference on Management

o f Data, 1985, pp. 328-342.

Geller, J., Mehta, A., Perl, Y., Neuhold, E.J., Sheth, A., “Algorithms

for Structural Schema Integration” , In the Proceedings o f the Second

International Conference on Systems Integration, Morristown, NJ, June

1992, pp. 604-614.

203

[GOP90]

[GPCS92]

[GPN91a]

[GPN91b]

[GPNS92]

[GR83]

[HGPN92]

[HS89]

K. Gorlen, S. Orlow, P. Plexico, “Data Abstraction and Object-

Oriented Programming C + + ” , John Wiley & Sons, 1990.

Geller, J., Perl, Y., Cannata, P., Sheth, A., Neuhold, E .J., “Struc

tural Integration: A Case Study”, In the Proceedings of the First In

ternational Conference on Information and Knowledge Management,

CIKM-92, Maryland, Nov. 1992, pp. 102-111.

Geller, J., Perl, Y., Neuhold, E .J., “Structural Schema Integration in

Heterogeneous M ulti-Database Systems using the Dual Model”, In the

Proceedings of the First International Workshop on Interoperability in

Multidatabase Systems, Kyoto, Japan, 1991, pp. 200-203.

Geller, J., Perl, Y., and Neuhold, E.J., “Structure and Semantics in

OODB class Specifications” , SIGMOD Record, Special Issue on

‘Semantic Issues in Multidatabase System s’, vol. 34, Dec. 1991, pp.

40-43.

Geller, J., Perl, Y., Neuhold, E. J., Sheth, A., “Structural

Schema Integration with Full and Partial Correspondence using the

Dual Model”, Information Systems, vol. 17, no. 6, 1992.

A. Goldberg, D. Robson, “Smalltalk-80, The Language and Its Imple

m entation”, Addison Wesley, 1983.

Halper, M., Geller J., Perl, Y., Neuhold, E. J., “A Graphical Schema

Representation for Object-Oriented Databases”, In the Proceedings of

IDS92, International Workshop on Interfaces to Database Systems,

Glasgow, July 1992.

Horowitz, E., Sahni, S., “Fundamentals of Computer Algorithms”,

Computer Science Press, Reading, MA, 1989.

204

[193]

[JTTW 88]

[K89]

[K90a]

[K90b]

[K90c]

[K91]

[K92]

[KDN90]

Ishikawa, H., et. al., “The Model, Language, and Implementation of an

Object-oriented Multimedia Knowledge Base Management System”,

ACM Transactions on Database Systems, \iol. 18, no. 1, March 1993,

pp. 1-50.

Joseph, J., Thatte, S., Thompson, C., Wells, D., “Report on the

Object-Oriented Database Workshop Held in Conjunction with the

OOPSLA’88” , San Diego, California, U.S.A., 1988.

Kim, W., “A Model of Queries for Object-Oriented Databases”,

Proceedings o f the Fifteenth International Conference on Very Large

Databases, 1989, pp. 423-432.

Kim, W., “Introduction to Object-Oriented Databases”, The M IT

Press, Reading, MA, 1990.

Klas, W., “A Metaclass System for Open Object-Oriented Databases”,

Ph.D. Dissertation, Technical University, Vienna, 1990.

S. Kulkarni, “Implementation of University Database using the VML

- The Object-Oriented Database System” ,M aster’s Project, CIS-Dept,

NJIT, Newark, NJ, 1990.

Kracker, M., “Fuzzy Associative Concept Knowledge for Supporting

the Formulation of Database Queries” , Ph.D-dissertation, Technical

University of Vienna, 1991.

Kracker, M., “A Fuzzy Concept Network Model and Its Applications”,

Proceedings o f FUZZ-IEEE ’92, San Diego, 1992, pp. 761-768

Kaul, M., Drosten, K., Neuhold, E.J., “ViewSystem: Integrating

Heterogeneous Information Bases by Object-Oriented Views”, In the

205

[KF88]

[KKS92]

[KM84]

[KM90]

[KN89]

[KNBD92]

[KNS88]

Proceedings o f the IEEE International Conference on Data Engineering,

1990.

Klir, G.L., Folger, T.A., “Fuzzy Sets, Uncertainty and Information” ,

Prentice Hall, 1988.

Kifer, M., Kim, W., Sagiv, Y., “Querying Object-Oriented Databases” ,

Proceedings of the 1992 AC M SIGMOD International Conference on

Management o f Data, San Diego, California, June 2-5, 1992, pp. 393-

402.

King, R., Melville, S., “Ski: A Semantic Knowledge Interface” , In

the Proceedings o f the Second International Conference on Entity-

Relationship Approach, North-Holand, 1983.

Kemper, A., Moerkotte, G., “Advanced Query Processing in Object

Bases using Access Support Relations” , In the Proceedings o f the 16th

International Conference on Very Large Databases, VLDB ’90, 1990,

pp. 290-301.

Kracker, M., Neuhold, E. J., “Schema Independent Query Formula

tion”, In F. H. Lochovsky (Ed.), editor, In the Proceedings o f the 8th

International Conference on Entity-Relationships Approach, Toronto,

Canada, 1989, pp. 233-247.

Klas W., Neuhold E. J., Bahlke, R., Drosten K., Fankhauser P., Kaul

M., Muth P., Oheimer M., Rakow T., Turau V., “VML Design

Specification Document” , Tech Report, GMD-IPSI, Germany, 1992.

Klas, W., Neuhold, E.J., Schrefl, M., “On an Object-Oriented Data

Model for a Knowledge Base”, In the Proceedings o f Research into

Networks and Distributed Applications, EUTECO 88, North-Holland,

1988.

206

[KNS89]

[L85]

[L86a]

[L86b]

[LLOW91]

[LR92]

[LVZ92]

[M83]

Klas, W., Neuhold, E.J., Schrefl, M., “Tailoring Object-Oriented Data

Models through Metaclasses”, In the Proceedings of Advanced Database

System Symposium ’89, Kyoto, 1989, pp. 169-178.

Litwin, W., “Implicit Joins in the Multidatabase System MRDSM”,

IEEE-COMPSAC, 1985, pp. 495-504.

Larson, J. A., “A Visual Approach to Browsing in a Database Environ

ment”, IEEE Computer, vol. 19, no. 6, 1986, pp. 62-71.

Lieberman H., “Using Prototypical Objects to Implement Shared

Behavior in Object-Oriented Systems”, In the Proceedings of OOPSLA

’86, SIGPLAN Notices, vol. 21, no. 9, 1986, pp. 214-223.

Lamb, C., Landis, G., Orenstein, J., Weinreb, D., “The Objectstore

Database System”, Communications of the ACM, vol. 20, Oct. 1991,

pp. 50-63.

Litwin, W., Risch, T., “Main Memory Oriented Optimization of 0 0

Queries Using Typed Datalog with Foreign Predicates”, IEEE Trans

actions on Knowledge and Data Engineering, vol. 4, no. 6, December

1992, pp. 517-528.

Lanzelotte, R.S.G., Valduriez, P., Zait, M., “Optimization of Object-

Oriented Recursive Queries using Cost-Controlled Strategies”, In the

Proceedings of the 1992 ACM SIGMOD International Conference on

Management o f Data, San Diego, California, June 2-5, 1992, pp. 256-

265.

Maier, D., “The Theory of Relational Databases”, Computer Science

Press, Reading, MA, 1983.

207

[M86]

[M89]

[M91]

[MBW 80]

[MGPF92]

[MGPF93]

[MPG92]

Motro, A., “Constructing Queries from Tokens”, In the Proceedings of

the 1986 ACM SIGMOD International Conference on Management of

Data, 1986, pp.120-131.

McHugh, J.A., “Algorithmic Graph Theory” , Prentice Hall, 1989.

Martin, R., “ONTOS Overview”, In the Proceedings o f Executive

Briefing on Object-Oriented Database Management, San Fransisco,

1991.

Mylopoulos, J., Bernstein, P.A., Wong, H.K.T., “A Language Facility

for Designing Database-Intensive Applications”, ACM Transactions on

Database Systems, vol. 5, no. 2, 1980, 185-207.

Mehta, A., Geller, J., Perl, Y., Fankhauser, P., “Algorithms for Access

Relevance to Support Path-M ethod Generation in OODBs”, In the

Proceedings of the Fourth International Hong Kong Computer

Society Database Workshop, Shatin, Hong Kong, Dec. 12-13, 1992, pp.

183-200. Extended Abstract In the Proceedings o f the First Interna

tional Conference on Information and Knowledge Management, CIKM-

92, Maryland, USA, Nov. 8-10, 1992, pp. 657.

Mehta, A., Geller, J., Perl, Y., Fankhauser, P., “Computing Access

Relevance to Support Path-Method Generation in Interoperable Multi-

OODB”, (Full Paper) In the Proceedings o f the R ID E -IM S’93: Third

International Workshop on Research Issues on Data Engineering:

Interoperability in Multidatabase Systems, Vienna, Austria, April 18-

20, 1993, pp. 144-151.

Mehta, A., Geller, J., Perl, Y., “Path-M ethod Generator (PMG),

Design Specification Document”, Internal Document, CIS Department,

NJIT, 1992.

208

[MPG93]

[MRSS87]

[MU83]

[NPG T89]

[NPG T90]

[NPG T91]

[NS88]

[OHMS92]

Mehta, A., Geller, J., Perl, Y., “PMG User and Reference Manual”,

Internal Document, CIS Department, NJIT, In Preparation.

Maier, D., Rozenshtein, D., Salvater, S., Stein, J., Warren, D., “PIQUE:

A Relational Query Language without Relations,” Information

Systems, vol. 12, no. 3, 1987, pp. 317-335.

Maier, D., Ullman, J. D., “Maximal Objects and the Seman

tic of Universal Relation Databases,”AC M Transactions on Database

Systems, vol. 8., no. 1, 1983, pp. 1-14

Neuhold, E.J., Perl, Y., Geller, J., Turau, V., “Separating Structural

and Semantic Elements in Object-Oriented Knowledge Bases”,

Advanced Database System Symposium , Kyoto, Japan, 1989, pp. 67-74.

Neuhold, E.J., Perl, Y., Geller, J., Turau, V., “A Theoretical Underly

ing Dual Model for Knowledge Based Systems” , In the Proceedings of

the First International Conference on Systems Integration, Morristown,

NJ, 1990, pp. 96-103.

Neuhold, E.J., Perl, Y., Geller, J., Turau, V., “The Dual Model for

Object-Oriented Databases”, Research Report 91-30, CIS Department,

NJIT, 1991, Submitted for Publication.

Neuhold, E. J., Schrefl, M .,“Dynamic Derivation of Personalized Views”,

In the Proceedings of the lJt th International Conference on Very Large

Databases - VLDB ’88, 1988, pp. 183-194.

Orenstein, J., Haradhwala, S., Margulies, B., Sakahara, D., “Query

Processing in the ObjectStore Database System” , In the Proceedings of

the 1992 ACM SIGMOD International Conference on Management o f

Data, San Diego, California, June 2-5, 1992, pp. 403-412.

209

[P87]

[P91a]

[P91b]

[PG79]

[PW88]

[PZ81]

[RB92]

[RC78]

[S88]

[S91a]

Perl, Y., “Diagraphs with Maximum Number of Paths and Cycles”,

Discrete Applied Mathematics, vol. 25, 1987, pp. 257-271.

Pandit, H .,“Implementation of University Database using the C + +

Programming Language”, Master’s Project, CIS-Dept, NJIT, Newark,

NJ, 1991.

Patel, M., “Implementation of University Database using the VML -

The Object-Oriented Database System (Release-3)”, M aster’s Project,

CIS-Dept, NJIT, Newark, NJ, 1991.

Perl, Y., Golumbic, M.C., “Generalized Fibonacci Maximum Path

Graphs”, Discrete Mathematics, vol. 28, 1979, pp. 237-245.

Pinson, L., Wiener, R., “An Introduction to Object-Oriented Program

ming and Smalltalk”, Addison Wesley, 1988.

Perl, Y., Zaks, S., “Deficient generalized Fibonacci Maximum Path

Graphs”, Discrete Mathematics, vol. 34, 1981, pp. 153-164.

Rundernsteiner, E.A., Lubomir, B., “Set Operations in Object-based

Data Models”, IEEE Transactions on Knowledge and Data Engineer

ing, vol. 4, no. 3, June 1992, pp. 382-398.

Reghbati, E., Corneil, D.G., “Parallel Computations in Graph Theory”,

SIAM Journal Computing, vol. 7, 1978, pp. 230-237.

Schrefl, M., “Object-oriented Database Integration”, Ph.D. Disserta

tion, Technical University Vienna, 1988.

Sheth, A., “Semantic Issues in Multidatabase Systems”, SIGMOD

Record, Special Issue on ‘Semantic Issues in Multidatabase Systems’,

vol. 34, Dec. 1991, pp. 5-9.

210

[S91b]

[S92]

[SG89]

[SK92a]

[SK92b]

[SL90]

[SN88a]

[SN88b]

B. Stroustrup, “The C + + Programming Language”, Second Edition,

Addison Wesley Publishing Company, 1991.

Su, Stanley, “Modeling Methods in a Knowledge-Based System”,

Presented at the Workshop on Current Issues in Databases and

Applications, Rut. Univ., Newark, NJ, October 22-23, 1992.

Sheth, A., Gala, S., “Attribute Relationships : An Impediment to

Automating Schema Integration”, In the Proceedings o f the Workshop

on Heterogeneous Database Systems, Chicago, Dec. 1989.

Sheth, A., Kalinichenko, L., “ Information Modeling in Multidatabase

Systems: Beyond Data Modeling”, In the Proceedings o f the First

International Conference on Information and Knowledge Management,

Baltimore, MD, USA, Nov. 1992, pp. 8-16.

Sheth, A., Kashyap, V., “So Far (Schematically) Yet So Near (Seman

tically)”, In the Proceedings o f the IFIP TC 2/W G 2.6 Conference on

Semantics of Interoperable Database Systems, DS-5 , Lorne, Victoria,

Australia.

Sheth, A.P., Larson, J.A., “Federated Database Systems for Managing

Distributed, Heterogeneous, and Autonomous Databases” , ACM

Computing Surveys, vol. 22, no. 3, Sep. 1990, pp. 183-236.

Schrefl, M., Neuhold, E.J., “Object Class Definition by Generalization

using Upward Inheritance”, In the Proceedings o f the Fourth Interna

tional Conference on Data Engineering, Los Angeles, CA, Feb. 1-5,

1988, pp. 4-12.

Schrefl, M., Neuhold, E. J., “A Knowledge-Based Approach to Over

come Structural Differences in Object-Oriented Database Integration”,

211

[SS61]

[SSR92]

[WA90]

[WP88]

[Z65]

In the Proceedings of the Role of Artificial Intelligence in Database and

Information Systems, IFIP Working Conference, Canton, China, July

1988.

Schweizler, B., Sklar, A., “Associative Functions and Statistical Trian

gle Inequalities”, Publicationes Mathematicae Debercen, vol. 8, 1961,

pp. 169-186.

Sciore, E., Siegel, M., Rosenthal, A., “Using Semantic Values to Facil

itate Interoperability Among Heterogeneous Information Systems” , In

Submission to Transaction on Database Systems.

Wijaya, C., Ahmedi, M., “Development of a University Database

(Registration and Admission) using the Dual Model of Object-Oriented

Knowledge Bases”, M aster’s Thesis, CIS Department, NJIT, 1990.

Wiener, R., Pinson, L., “An Introduction to Object-Oriented Program

ming and C+-}-”, Addison Wesley Publishing Company, 1988.

Zadeh, L .A ./‘Fuzzy Sets”, Information and Control, vol. 8, 1965, pp.

228-353.

	Algorithms for generation of path-methods in object-oriented databases
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Abstract (1 of 2)
	Abstract (2 of 2)

	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication Page
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: OODB Path-Models
	Chapter 3: Path-Method Generation Using Access Weights
	Chapter 4: Path-Method Generation Using Access Relevance
	Chapter 5: Algorithms for Computing Access Relevance in an OODB
	Chapter 6: Computing Access Relevance in an Interoperable Multi-OODB
	Chapter 7: A University Environment OODB
	Chapter 8: Design of an OODB Path-Method Generator
	Chapter 9: Implementing PMG for VODAK/VML OODB
	Chapter 10: Conclusions and Future Work
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

