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ABSTRACT

Minimum Redundancy Array Structure 

for

Interference Cancellation

by

Wan-Ling Chen

Adaptive antenna arrays are widely used in many advanced radar, sonar, and 

communication systems because of their effectiveness in cancelling intentional or un

intentional interferers. A uniformly spaced linear array, referred to as a Uniform 

Regular Array (URA), is the usual structure used for interference cancellation. The 

Minimum Redundancy Array (MRA) structure proposed in this work is a special 

kind of thinned array whose application was limited in the past to direction finding. 

MRAs with the same number of array elements can resolve directions of much more 

closely spaced signals than URAs.

The URA structure is customarily utilized for interference cancellation, and the 

Minimum Noise Variance (MNV) criterion is a common performance measure for de

riving optimum weights, provided that the desired signal is absent during adaptation. 

The MNV criterion is to minimize the combined sum of the interference and back

ground noise power.

Another approach to interference cancellation using the URA structure is the 

eigencanceling method. This method, which is based on the eigenstructure of the 

spatial autocorrelation matrix, when compared to the conventional beamforming 

method, has the following advantages: 1) deeper interference cancellation 2) inde-
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pendence of the interfere’ power, and 3) faster optimum weight convergence. In this 

work, both the conventional beamforming and eigencanceling methods were applied 

to the MRA structure and investigated analytically. Performance of the MRAs were 

studied and compared to that of the URAs.

For uncorrelated interferers, the cancellation depth of the MRA in the main 

beam region was almost the same as that of the URA with the same aperture and 

many more elements. When the eigencanceling technique was applied, it was found 

that the convergence rate of the MRA was about four times faster than that of the 

URA.

This work also contains other topics, such as the relation between the eigenspaces 

of the MRA structure and its corresponding URA. Preliminary results on planar 

MRA structures are also included. For an array application with a large aperture 

requirement in terms of the number of array elements, the MRA proved to be a much 

better choice than the URA in achieving interference cancellation.
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CHAPTER 1 

INTRODUCTION

Adaptive linear arrays are widely used in advanced radar, sonar and communica

tion systems because of their effectiveness in cancelling strong interferers in sidelobe 

beams [1]. In an adaptive linear antenna system, it is customary to assume that 

the array is composed of equally spaced elements. This reduces the so-called alias

ing or grating lobes in the antenna pattern. The spaces between the elements are 

assumed to be of half wave length A/2. This array structure is referred to as the 

Uniform Regular Array (URA). The operation of an adaptive URA can be qualita

tively understood by visualizing a main-beam pattern that is modified by subtracting 

an auxiliary beam pattern centered on the interferer. If all the array elements are 

used to form the auxiliary beam then the adapted antenna contains a well formed 

notch at the interference direction of arrival with no spurious lobes or attenuation 

of the desired signal. However, the cost and complexity of a fully adaptive URA is 

prohibitive for some applications which require a large number of array elements.

The main objective in this study is to investigate the interference cancella

tion capability of a class of adaptive arrays whose element locations are selected by 

a particular non-uniform thinning technique. It achieves better cancellation beam 

resolution than the URA, but with fewer array elements. Haimovich used an eige

nanalysis technique (referred in this work as the eigencanceling technique) for the 

URA to achieve superior interference cancellation [2, 3]. The same technique will 

also be applied to this class of arrays.

It is known that for a given number of array elements, there is a class of arrays 

called “Minimum Redundancy Arrays” (MRAs) which achieve the highest possible

1
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2

resolution by reducing the number of redundant spacings. By minimum redundancy 

we mean the array autocorrelation matrix R contains the minimum possible num

ber of repeatable entries [4]. For example, with a three-element array, instead of 

locating the elements at (0, A/2,2A/2) to form a URA, we locate these elements at 

(0, A/2,3A/2) to form the corresponding MRA. We refer to such an array as having 

an aperture of 3 instead of 3A/2. Notice that the MRA has an aperture of 3 instead of 

2 for the corresponding three-element URA, which is advantageous when considering 

resolution. For a four-element MRA we locate the elements at (0, A/2,4A/2,6A/2) 

with aperture of 6 instead of 3 for the four-element URA. The autocorrelation ma

trices of these two examples are

R-m r a - 3  = R U R A - 3 =

r(0) r( l)  r(4) r( 6)
r*(l) r(0) r(3) r(5)
r*(4) r*(3) r(0) t (  2)
r*(6) r*(5) r*(2) r(0) .

Note that these matrices are Hermitian but not Toeplitz (A Toeplitz matrix is

r(0) r ( l)  r(3)
r*(l) r(0) r(2)

_ r*(3) r*(2) r(0)

one for which all the elements along the same subdiagonal take on the same value.). 

These matrices have no redundancy in the upper triangle part of the autocorrelation 

matrix except for the repeatable r(0) in the main diagonal, and there is only one 

off-diagonal term for each correlation lag. For arrays with more than four elements, a 

suitable structure can be found, but with some redundancy. The problem of finding 

the array configuration with the lowest possible redundancy was examined by Leech 

[5]. He gave a single configuration of each MRA for the number of array elements 

less than 12. Through an exhaustive search program, the locations of the elements 

giving maximum aperture and minimum redundancy can be found. Table 1 depicts 

the results of such a search for all possible array configurations. In this table, N  

is the number of elements and L  — 1 is the corresponding array aperture. Much 

research has been devoted to finding the relation between N and L [6,7,8]. Clearly 

for a URA, the aperture is always N  — 1. The column entitled “MRA configuration”
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3

shows the locations of elements from the left most referenced element in units of A/2. 

The column marked “Redundancy” shows the correlation lags which are repeated (in 

the parenthesis). Notice that for some N  we can have different configurations. This 

means that for a given number of array elements, different configurations with differ

ent correlation lag repetitions are possible. In this table, the “mirror image” of each 

array location is not listed. For example, the three-element MRA configuration was 

listed as (0,1,3) and its “mirror image” has the configuration of (0,2,3). It can be seen 

that the mirror image will only result in the relocation of the autocorrelation matrix 

entries but the number of redundant correlation lags is the same. Pearson [9] devel

oped a constructive procedure that creates a restrictive difference base. Furthermore 

he has shown that for N>3, it is always possible to choose an MRA configuration 

such that N 2/(L  — 1) < 3.

Table 1 The MRA configuration with a given number of array elements.

N L-l MRA configuration Redundancy
3 3 0 1 3 None
4 6 0 1 4  6 None
5 9 0 12  6 9 2r(l)

0 14  7 9 2r(3)
6 13 0 1 2 6 10 13 2r(l,4)

0 1 4 5 11 13 2r(l,4)
0 1 6 9 11 13 2r(2,5)

7 17 0 1 2 3 8 13 17 2r(2,5), 3r(l)
0 1 2 6 10 14 17 2r(l,8), 3r(4)
0 1 2 8 12 14 17 2r(l,2,6,12)
0 1 2 8 12 15 17 2r(l ,2,7,15)
0 1 8 11 13 15 17 2r(4,7), 3r(2)

8 23 0 1 2 11 15 18 21 23 2r(l,2,3,10,21)
0 1 4 10 16 18 21 23 2r(2,3,5,6,17)

9 29 0 1 2 14 18 21 24 27 29 2r(l,2,6,13,27), 3r(3)
0 1 3 6 13 20 24 28 29 2r(l,3,4,5,7,23,28)
0 1 4 10 16 22 24 27 29 2r(2,3,5,12,23,28)

10 36 0 1 3 6 13 20 27 31 35 36 2r(l ,3,4,5,14,30,35)
11 43 0 1 3 6 13 20 27 34 38 42 43 2r(l,3,4,5,21,37,42),3r(14), 4r(7)
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The idea of exploiting the advantages of the MRA structure was first proposed 

for direction finding to increase the number of signals that could be resolved with a 

given number of array elements [10,11]. In this approach the autocorrelation matrix 

was augmented to a Toeplitz matrix by repeating the different correlation lags along 

the corresponding subdiagonals [12]. By doing so, we get a 4 x 4 Toeplitz matrix for 

the three-element MRA structure instead o f a 3 x 3 .  A 7 x 7 Toeplitz matrix would 

be obtained for the four-element MRA structure while its original autocorrelation 

matrix is only 4 x 4 .  Therefore the three-element MRA can resolve three directions 

as apposed to two directions with a URA. The second MRA structure, with four 

elements, can resolve six directions instead of only three. The MRA principle and 

its application for direction finding using the MUSIC algorithm was reported in [13]. 

Some other variations of the MUSIC algorithm were also applied to the MRA struc

ture for direction finding, and are cited in [14,15,16,17].

In this work, we discuss using the MRA structure for interference cancellation. 

Different optimization criteria are customarily used in the literature to derive the 

adaptive optimal weights which control the array response. Our attention will be 

concentrated on the noise variance performance of the MRAs operating in a multiple 

narrow-band interference environment. This is the most suitable approach for radar 

applications where the desired signal is assumed absent or has been previously re

moved. The term “Minimum Noise Variance value” (MNVV) is referred as the value 

of the noise variance when the optimum weight vector is obtained from the Minimum 

Noise Variance (MNV) criterion optimization problem. To gain an understanding 

of the interference cacellation ability of the MRA structure without becoming over

whelmed by the numerical results, most of the attention is focused on the single- and 

dual-interferer problems. It is assumed in this study that a suitable constraint was 

employed to prevent main beam cancellation [18], so that efforts can be concentrated
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on sidelobe interferers. The MNV criterion, to be used in our study, is first defined 

and then analytical solutions are derived for the optimal weights. Conditions on the 

direction of interferers for which the MRA performs better or worse than the URA 

will also be derived.

For bearing estimation problems, eigenanalysis techniques are shown to pro

vide an asymptotically unbiased solution [19]. A comparison between superresolution 

methods can be found in [20]. The eigenspace of the autocorrelation matrix can be 

decomposed into two orthogonal subspaces one corresponding to the interference 

signal and the other to the noise of the process [21]. The main objective of the 

eigencanceler is to construct the optimum weight vector to be in the noise subspace 

which results in the total cancellation of the interference [22], Besides offering total 

interference cancellation, the eigencanceler has a remarkable convergence rate to the 

optimum weight vector. It is also immune to the interference-to-noise power ratio 

but does suffer from higher sidelobes and sensitivity to a change in the interference 

angle. The same constraint for the weight to lie in the noise subspace was also posed 

for the MRA cases. We present a comparison between the URA and the MRA using 

conventional beamforming and the eigencanceling technique using the MNVV as a 

performance measurement. The MRA was compared to the URA with the same 

number of elements and to the URA with the same aperture.

The planar sparse array with the structure similar to the linear MRA will be 

discussed in this research. In the past, the planar sparse array was used only for 

direction finding [23]. Bucker found that a sparse planar array with a structure 

similar to the MRA has higher resolution due to its large aperture [24]. The ability 

of the MRA planar array structure for interference cancellation will be formulated 

and briefly examined.
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CHAPTER 2 

SYSTEM MODEL AND FORMULATION

This chapter describes the system model and the assumptions used for the process. 

The optimization problem and its solution for the cases of conventional beamform

ing and eigencanceling techniques are presented. The treatment of the augmented 

autocorrelation matrix for the MRA structure and the constraint for processing the 

MRA signals are also discussed. The non-augmented autocorrelation matrix used to 

reduce the processing dimension of the MRA is also provided. A recursive formula 

for calculating the inverse of the autocorrelation matrix is employed, and the single- 

and dual-interferer cases are given as examples.

2.1 System M odel of Linear Array

Let r be the number of interferers in the form of planar waves impinging at the array 

from different directions 0/(1 =  1,2, . . . , r )  relative to broadside. The interferers, 

si (I = 1,2, . . .  , r)  are assumed zero-mean uncorrelated narrow-band processes. Let 

the number of array elements be N  and define the array output vector by x  =  

[®i, X2 , . . . ,  xn]T- Uncorrelated white Gaussian noise with zero mean and variance 

a2 is added at the array output. The signal received at the n-th element is given by

r

xn =  'Yhsie3Xn- 1Wi -f vn n =  1,2, . . .  ,1V i0 =  0 (2.1)
j=i

where vn is the added noise and w/ is related to the direction angle 6i by

loi = d^  sin (8i) (2.2)

and iuq is the center frequency of the signal. The spacing between array elements is d 

and the wave speed is c. For the URA, the integers in take the values i0 — 0,*i =  1 ,...,

6
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ijv-i =  N  — 1, while for MRA structures, they are chosen according to Table 1.

Equation (2.1) can be written in a vector form as follows:

x  =  D rs +  v (2.3)

where

D r =  [di,d2, . . . , d r], (2.4)

is an N  x r  matrix, and for each interferer, its correspoonding direction vector is:

d, = [1, . . . ,  rrjiN~ ^ ] T. (2.5)

The signal power vector is

s =  [s1,s 2, . . . , s r]r

and the noise vector is

=  [ v u v 2 , .  • - , v n ] T -

The array autocorrelation matrix R  is easily computed from Eq. (2.3) as follows:

R  =  £[xxff]

=  B tE[ s s h ] D ?  +  E [ v v h ]

=  D rSD ? +  <j 2In  (2.6)

where S =  ^[ss^] is a diagonal matrix. If s/ is written as s; =  6/(^)e-J^ 0<+̂ d where 

bi(t) and <j>i are the amplitude and phase functions of these signals, then the elements 

of the diagonal matrix S are given by pi =  i?[| bi(t) |2], the power of these signals.

It is easy to see that the autocorrelation matrix R  is Hermitian and, for the URA

structure, it is also Toeplitz.
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2.2 Properties of the Autocorrelation Matrix

In this section various properties of the autocorrelation matrix are presented. These 

properties are applicable to both the URA and the MRA structures.

For an N  element array with r  interferers:

• There are (N  — r) eigenvalues with value of cr2.

Discussion : From Eq. (2.6),

R  =  D rSD ? +  a21TV

D r is an N  x r  matrix, the rank of D rSD ^ is r. R  is of full rank N,  which 

implies that there are (N —r ) eigenvectors of R  corresponding to the eigenvalue

u 2.

• The interference and noise subspaces of R  are orthogonal.

Discussion : The noise subspace G„ is the span of all the eigenvectors of R  

corresponding to the eigenvalue a 2. The collection of all these eigenvectors as 

bases of G„ formed a matrix Ey. The interference subspace Gr is the span of 

all the eigenvectors of R  with eigenvalues greater than a2. The collection of all 

these eigenvectors as bases of Gr form a matrix Er. In the Jordan form (for 

repeated roots case), not all bases of G„ are orthogonal to each other, but any 

basis in Gr is orthogonal to any basis in Gy.

• The smallest eigenvalue of R  is a2.

Proof : Assume that e,- is an eigenvector of R , from the previous property we 

have the following fact: for an eigenvector e,- C Gy, is orthogonal to any vectors 

in the interference subspace Gr which can also be spanned by the interference 

signal vectors di,d2,...dr. It leads to

D f  e; =  0
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for e* C Gy. From the definition of R  in Eq.(2.6) and the fact that

x e ? R  a
* ”  H  ’efe,*

= e f  (DrSD^ + a2Iiv)ej,

> <x2.

The equality sign holds when e,- C G y.

•  For the single interferer case (r= l), the autocorrelation matrix of the URA and 

the MRA are similar  ( i.e. they have the same eigenvalues).

Proo f  : From reference [22],

N
trace[R] =  ^  A,- =  N  (trace[S] -f- <r2̂  =  N(pi  +  cr2).

i=i

Thus, there are N-l eigenvalues with the value of cr2. The eigenvalue corre

sponding to the interferer is Np\ + (N — 1 )<j2 for both the URA and the MRA. 

W ith all the eigenvalues the same, the two matrices are similar (the eigenvec

tors are in general different).

2.3 Formulation of the Optimization Problem

Minimum Mean Square Error (MMSE), Maximum Signal to Noise Ratio (MSNR) 

and Minimum Noise Variance (MNV) are some of the common performance mea

sures which have been proposed to evaluate the adaptive process [23]. The optimum 

weight vector obtained by these different criteria differs only by a scaling factor for 

the narrow band signal case. For radar applications where the desired signal is ab

sent, the MNV criterion is the most suitable approach. In a linearly constrained 

minimum output power array, the main lobe constraint only affects the beam pat

tern. The influence of the constraint decreases rapidly as distance from the look
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direction increases [27, 28]. The absence of the main lobe constraint allows the null 

to form exactly in the direction of the desired signal. This may have the disastrous 

consequence of canceling both the desired and interference signals [29, 30, 31]. In 

this section, the formulation of the optimization problem using both the conventional 

beamformer and the eigencanceling techniques will be discussed.

2.3.1 Conventional Beamforming Formulation

We concentrate now on the MNV criterion with constraints on the array pattern that 

it have prescribed gain in certain directions. Note that concentrating on the MNV 

criterion is not restrictive since the optimal weight vectors obtained for different 

criteria differ from one another by only a scale factor. Thus, we are interested in 

finding the optimal weights (or weight vector) which satisfy:

min wffRw  

subject to w HA p = gH

where Ap =  [aPl, aP2, . . . ,  aPp]; aPi, i = 1,2, . . . , p  are the preassigned directions and

gH = \j9i j92, ■ ■ ■ ,9p\', 9ii f = 1,2,. . .  ,p  are the required gains in the direction of aPi.

Using a Lagrange multiplier vector A, we have the following unconstrained 

optimization problem:

min J  -  wffRw +  AT(A^w -  g) + (wHAp -  gff)A.

Taking the gradient of J with respect to w we get

Vw<7 =  2Rw 2APA. (2-7)

Equating Eq. (2.7) to zero we then have,

wop = —R-1APA. (2.8)
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But from the constraint,

gH =  w jA p =  -A T(A fR - 1Ap)

=> AT =  - g //( A f R - 1A p)-1.

Finally substituting in Eq. (2.8), we find the optimum weight to be

w op =  R - 1A p(A ^R - 1Ap)-1g (2.9)

where we used the fact that R , and hence R " 1, is Hermitian.

For the case of a single desired direction A p =  ap and assuming the array gain 

in that direction to be unity, i.e. g =  1 , then

R _1ap 
Wop “  a ^ R - V

2.3.2 Formulation using Eigencanceling Technique

Recall that the eigenvectors of the autocorrelation matrix can be divided into two 

sets, the set E„ corresponding to the noise eigenvector and the set E r corresponding 

to the interference eigenvectors [32, 33, 34]. When using the eigencanceling tech

nique, the weight vector is restricted to the noise subspace. The eigenvalues fi and 

eigenvectors e are related by

R e =  fie. (2.10)

Clearly D r defined in Eq. (2.4) is the interference subspace spanned by the 

r interferers’ position vectors. Let E r =  [e/, / =  1,2, . . . , r ]  be the matrix of r  

eigenvectors corresponding to the r dominant (largest) eigenvalues of R . Then one 

can show that

span (ei, e2, ...er) =  span (dj, d2, ..., dr). (2 .1 1 )
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If E„ =  [e/, I =  r  +  1 , . . . ,  N] are the N  — r eigenvectors corresponding to the 

smallest eigenvalues a 2, then

span (er+i, er+2, . . . ,  ejv)± span (da, d 2, . . . ,  d r). (2 .1 2 )

To obtain total cancellation of the interferers we must confine the weight vector 

to lie in the noise subspace G„. Equivalently we choose the optimal weight to be 

orthogonal to vectors in the interference subspace G r

w jE r =  0. (2.13)

Therefore from Eq. (2.13), we get w ^ b  =  0 ; for any vector b in the span of 

the interference subspace G r and, in particular, for all the direction vectors of the 

interferers. This means that such weight vectors will totally cancel all interferers 

regardless of their signal to background power ratios. This is, what is termed a 

superresolution estimator or eigencanceler. The optimization problem will be as 

follows:

min w 7/Rw

subject to w h A p = gH

w HE r = 0 . (2.14)

Define Ap =  [Ap | E r] and gH = [gw | 0 ] then the optimum weight vector in this 

case will have the solution form given in Eq. (2.9) for a conventional beamformer:

wop =  R - 1Ap(A ^R _1Ap)_1g. (2.15)

2.3.3 The MRA Weight Constraint

Traditionally the MRA output correlation lags were arranged in a Toeplitz matrix 

fashion to resemble a URA output structure. This involved choosing the right con

straints to properly reflect the MRA structure.
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When using the augmented matrix in defining the optimization problem for an 

MRA, the dimension of the weight vecccr is that of the augmented matrix. However, 

fewer outputs (when compared to the URA with the same aperture) are available for 

processing. Therefore, one might impose a constraint on the optimal weight vector 

to have zero entries at locations where there is no corresponding element in the MRA 

structure [36]. In our previous examples; the three-element MRA requires that the 

third entry of the four dimensional weight vector be zero while the four-element MRA 

requires tha t the second, the third and the fifth entries be zeroes. These zero entries 

can be obtained using the following second or first order constraint on the extended 

weight vector w:

1 . Second order weight constraint: 

w HC w  =  0

where C=diagonal(0,0,ki, 0, k2, . . . ,  Um )-

2 . First order weight constraint: 

wHc*t. =  0

where cki = e £ }x

In the above constraints, eki is the unit vector. We pick k{ to represent the locations 

where the entries of the weight vector must be suppressed i = 1 , 2 , . . . ,  M.  The value 

of M  is given by L — N.

With the augmented autocorrelation matrix, the reformulation of the opti

mization problem will be discussed here. The MNV criterion is still used and the 

array pattern is constrained to be constant at certain directions. The constrained 

optimization problem for an MRA structure with second-order weight constraint 

becomes:
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min w J/R w

subject to w HA p = gH

w ^ C w  =  0 . (2 .16)

With the first order weight constraint, the optimization problem became:

m in  w h R w

subject to w^Ap =  gH

w H C  =  0  (2 .17)

where C =  [c^, c^2, . . . ,  c^M]. Thus, the cost function corresponding to the two 

different weight constraints will be given by

1- / i ( w ) = wHRw + aw HCw  +  AT(A^w -  g) + (wHAp — gH)A

2- / 2 (w) =  w h R w  +  AT(A^w -  g) +  (wffAp -  gT)A

where Ap =  [aPl,a P2, . . . ,  aPp], g=[gu g2, • • • ,9 d] and Ap =  [Ap | C] with C=[cfcl, 

Cfc2, . . . ,  c ^ ]  and g =  [g | 0 ]. Here a  and A are Lagrange multipliers.

The optimal weight vector for these two different cases is given by:

1. w0p = (R +  o C ) " 1 AP[A "(R  +  a C ) " 1 Ap]g 

where a  can be eliminated using w ^ C w op =  0

2 . w 0p =  R - 1A p(A ^R -1Ap)_1g

In fact, one can show that eliminating a  makes these two solutions equivalent.

That is C =  CC. To simplify the analytical calculation, we consider the case of a
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three-element array, then C =  Cfc, =  [0,0,1,0]T =  c. Also we impose a constraint 

that the broadside gain be unity, i.e. g =  1. For this case:

R - 1[(cHR~1c)ap -  (cHR - 1ap)c] 
op (cJ¥R - 1c )(a ^ R - 1ap)— | a " R - iC |*

and the corresponding Minimum Noise Variance value is:

H cffR -1c
W°p °p =  (c* R -ic )(a tfR -ia p)— | a"R~*c f  (2J9)

The Minimum Noise Variance value (MNVV) is the value obtained from w ^ R w op 

using the MNV criterion. For the URA with three-element one can show that

R - 1ap ,
=  (2.20)

and

<2-21)

where R  is the 3 x 3  upper left corner of the augmented autocorrelation matrix R  

and ap is the corresponding constraint vector. Similarly for a four-element URA

R - 1ap . .
w-  =  S p F s  (2'22)

and its noise variance is

K R *oP = (2.23)

where ap and R  are the same as in Eq. (2.18) and Eq. (2.19).

The optimum weight vector found using either first or second order weight con

straints is the same since the constraints are equivalent. Furthermore the optimum 

weight vector obtained using the augmented autocorrelation matrix for the MRA 

will produce zeros for the entries which correspond to “missing” array elements. The 

result is the same as performing row and column reduction on the augmented au

tocorrelation matrix at the corresponding zero weight position. The autocorrelation
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matrix of the MRA will yield exactly the same MNVV as when the non-augmented 

autocorrelation matrix is used. This finding allows one to greatly reduces the size 

of the matrix for the MRA case. It is especially beneficial when searching for the 

eigenvectors or calculating the inverse of the autocorrelation matrix. That is to say 

the augmentation is not necessary for obtaining the optimum weight vector for the 

MNV criteria. All the autocorrelation matrix properties derived before can be di

rectly applied to the non-augmented MRA case. One must bear in mind that when 

the augmented matrix is no longer needed for the interference cancellation appli

cation, the number of interferers that can be cancelled by the MRA structure is 

the same as the URA with the same number of array elements. However, due to the 

larger aperture of the MRA structure, the resolution for cancelling the closely spaced 

interferers is improved.

2.4 The Recursive Formula for the Inverse of the
Autocorrelation Matrix

In order to find the MNVV, the inverse of the autocorrelation matrix is needed. One 

can simply avoid the direct computation of the matrix inverse. In the following we 

obtain a recursive formula for computing the inverse of the URA autocorrelation 

matrix.

From Eq. (2.6) and the definition of D r we can write

T

R r =  a2 IN + Y  P/d/d/7 (2.24)
i=i

or

R r =  R r_i +  prdrd f , (2.25)

where R r_i is the array output autocorrelation matrix when r — 1 interfering plane

waves impinge on the array. Similarly R r is the autocorrelation matrix when another
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interferer is added. That is,
T  —  1

R r_i =  <72Iat +  p id id f . (2.26)
1=1

To simplify Eq. (2.25) using the inversion lemma [29] given by

(A - 1  +  C B - 1C h ) - 1  =  A -  A C (B  +  Ch AC )~ 1Ch A ,  (2.27)

with

R r_i =  A 1, 

d r = C, 

and pr =  B -1 ,

then

R 7 1 =  ( R r ^ + p r d r d ? ) - 1

R 7- i  -  K h M -  +  d f  R ^ d ^ - M f R ^ .
P r

Therefore, in general,

R - (2-28) 

This is a recursion formula with which we can obtain the inverse of R r 1 from 

R “_\ and the power and the direction vector of the added interferer. Certain alge

braic manipulation performed in appendix [A-l] lead to

R r 1 =  RrA
(2 + p:-df R rVO Rr-i -  R,

1 -f p;d f  Riijd.;
R r 'i ,  (2.29)

with

R o  =  c r 2 I ^ .

One may note that this is a generalized form for computing the inverse of the auto

correlation matrix for both the URA and the MRA structures [39]. It can be applied 

to any matrix with the properties of Eq. (2.25).
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2.5 Examples of the Recursive Inversion Formula

In the next two subsections, the recursive form for finding the inverse of the auto

correlation matrix is applied. Note that the mirror image and other configurations 

of an MRA with the same number of array elements require no special treatment. 

They have been embedded in the incoming interference signal vector d,-.

2.5.1 The Single-Interferer Case

For this case equation (2.29) becomes

( 2  -f p1d ? R 0 1d i)R 0 1 — R i
R f 1 =  Rq 1

1 +  p id ?  R 0 xdx
R o 1

with

R0 = <r2l ■ N  •

Again, certain algebraic manipulations performed in Appendix [A-2] give

R _1  =  (^7i +  N)Ipj — R i/p i 
1 cr2( 7i +  N)

where 7 x =  cr2/pi is the noise-to-interference ratio.

(2.30)

(2.31)

(2.32)

Also, directly from Eq. (2.28) we can write for the single interferer case, after 

substituting for R 0,

R r d id ?  1

7i + N
(2.33)

2.5.2 The Dual-Interferer Case

From Eq. (2.28), for interferers coming from the direction of d i and d 2, we have

p2R r 1d 2d ? R r 1 

~ R ' ~  f + r f B T ’d ,-  (2'34>
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Following the derivation in Appendix [A-3]

R-2 1 =  cr~ 2 [i — a id id f  — a ^ d ^  +  2 a i 2i2e{/9d 1d f  }] (2.35)

where

jV 4- 70
a i =  (2.36)

N  + 7i
“ 2 =  (2.37)

N  , ,
o:i2 =  -jjj' (2.38)

P = 7i72 +  AT(7 i +  7 2 ) +  iV2( l — | p |2), (2.39)

1 d f d 2 . ,
and P = ~~N~- (2,4°)

The quantity p is the complex correlation coefficient of the interferer direction vec

tors di and d2. The quantities 71 and 72  constitute the noise-to-interference ratio of 

the respective interferers.

2.6 System Model of Planar Square Array

Consider a square-shaped planar array, the inter-element spacings are dx and 

dy for the x and y axis respectively as shown in Figure 1. We take dx = dy to avoid 

grating lobes.

The field at a distant point P in the free space contributed by the column 

coincident with the x axis is [37]

N

Eo = fid,  cj>) J2  5 TO0 eJ'(mM*8taflco8*+“»), (2.41)
7H=1

where f ( 0 , <j>) is the element pattern function, sm0 is the amplitude excitation of 

the m th element in the column y = 0 , ax is the associated phase excitation, and 

k = 27t/A.
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z
P{r, 9, <f>)

array
elements

Projection of 
P(r, 9, <f>) onto the 

x-y plane

F ig u re  1 The URA square array element arrangement.

It is seen that the output signal depends on both the projected azimuth angle 

4> and the elevation angle 9. Only the pattern in the xz plane has an expression 

comparable to the linear array. When the amplitude excitations for elements in 

other columns are proportional to those for corresponding elements on the x axis,

S-rnn — Sm()Son. (2.42)

The total phaser sum of signal contributions from all array elements is given

E(9,<f>) = J 2 E n
71=1

=  f(9,  <f))SxSy, (2.43)
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where

N x
Sx = Y ,  S™oej{mkdlSin8 cos^+Ql) (2<44)

771=1
Ny

Sy =  ^ S n Oei(nWlsin0sin^ ) .  (2.45)
n—1

The quantities and ax +  a y may be considered as the total amplitude and 

phase excitations of the (m,n)th element in the array. From Eq. (2.43), the pattern 

of the square array is the product of array factors of two linear arrays, one along the 

x axis and the other along the y axis [38].

The quantities ax and a y can be arbitrarily adjusted so that the position of 

the main beam of Sx is different from Sy [26], Assuming that the main beams do 

point to the same position (#o, (j)o) and that the elements are progressively phased, 

we can determine the required ax and a y as follows:

atx = — mkdx sin 0q cos <f>0 (2.46)

a y = —mkdy sin 0O sin (f>0. (2-47)

Since sin0 =  sin(7T — 0), we can see from Eq. (2.44) and Eq. (2.45) that both 

Sx and Sy are generally bidirectional in any vertical plane given by <ji=constant. This 

represents two pencil beams, with one above and one below the array plane. The one 

below the array plane can be eliminated by a proper choice of the element pattern 

function f ( 0 , <j>) or it can be reflected by the use of a ground plane.

When smo, sno, Nx, N y, dx, dy, 0O and (j)0 are all specified, the characteristics such 

as the beamwidth, sidelobe levels, and positions can be analyzed in the same manner 

as that for linear arrays.
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With the above formulation, the output of the (m,n)th element is given by

* m , n  =  £  S m n e * ”' - ' kd* s ! n e si nf l s i n0)  +  ^

1=1

where r is the number of interferers, vm<n is the added noise assumed uncorrelated 

from sensor to sensor, and im and in are integers representing the location of the 

elements. For the URA case, im—m  and in=n for m, n = 0 , 1,...,N-1. For the MRA 

case, im and in are chosen according to Table 1 as before.

Using an arrangement similar to that of the linear array case, the output was written 

in the vector form

®1,2> •••> ®2,1) ®2,2? ■) •>

+  [*/ l , l »  Vl,2i  • " )  v l , N t  ^2,1) ^2 ,2 ,  •••, ^ N , m ]n 2x 1- ( 2 . 4 9 )

In this arrangement, the autocorrelation matrix is still in the form of Eq. (2.6)

Rs =  E [ x x h ].  ( 2 . 5 0 )

The eigenvalues and eigenvectors of this autocorrelation matrix can be parti

tioned into two subsets, as in the linear array case. There are r eigenvectors corre

sponding to the interference subspace with eigenvalues larger than a 2 and N 2 — r 

eigenvectors corresponding to the noise subspace with the eigenvalue of cr2. All the 

properties of the autocorrelation matrix for the linear array case can be applied to 

the planar array cases. Conventional beamforming and eigencanceling methods can 

both be used for the planar array case with a different autocorrelation matrix for 

interference cancellation purposes. The optimum weight vector for the planar array 

using the conventional beamforming method has exactly the same form as Eq. (2.9):

wop = R ;1Ap(A fR ;1Ap)-1g (2.51)

where Ap and g are the preassigned directions and their respective gains.

For the planar array using the eigencanceling method, the optimum weight is in
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exactly the same form as Eq. (2.15):

wop = R ^A plA fR ^A p)-1!! (2.52)

with A„ =  [Ap | E Jr] and gH =  (g^ j 0 ]. where E Sr is the collection of all eigenvec

tors spanning the interference subspace. Ap is the matrix of preassigned directions, 

with gain gH.

Note that just as in the linear array case, the reference point chosen for the 

square array structure does not affect the autocorrelation matrix. According to Ta

ble 1 . with a given number of linear array elements N, there exist M configurations 

(not counting the mirror images). In the case of the MRA square array, there exist 

4M'2 possible configurations for these N2 elements. The possible nine-element MRA 

square array configurations are shown in Figure 2.

® § o 9 9 9 o 9

o o o O 9 9 o ©
9 9 o 9 O O o O
9 © o 9 9 9 o 9

9 o m 9 9 O 9 9

O o o O 9 O 9 9

9 o ® 9 O o o O
© o 9 9 9 o 9 9

F igure  2  All the possible MRA-3 square array configurations.
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CHAPTER 3 

PERFORMANCE EVALUATION

In this chapter, the linear Minimum Redundancy Array (MRA) structure and Uni

form Regular Array (URA) structure are compared using the Minimum Noise Vari

ance (MNV) criteria as the performance measure. The Minimum Noise Variance 

Value (MNVV) is the value of w ^ R w op. First the conventional beamforming tech

nique is applied to both the URA and the MRA structures. The formulas for calculat

ing the MNVV of single- and dual-interferer are derived. The performance compar

ison follows. The second part of this chapter carries out the performance evaluation 

for both the URAs and the MRAs using the eigencanceling technique. Since the 

extra constraint imposed on the original optimization problem for the eigencanceling 

technique requires the calculation of the eigenvectors of the autocorrelation matrix, 

the reformulation of the problem is presented. A similar situation for calculating an 

inverse matrix of the modified optimization problem exists, but a recursive formula 

is derived for solving the dual-interferer case here. The explicit results of the single- 

and dual-interferer cases followed by the performance comparison between the URA 

and the MRA are also included. Since the eigenvalue spread plays an important role 

in the convergence rate of the optimization process, it is investigated at the end of 

this chapter.

With the preassigned directional gain constraint w ^ a p =  1 imposed, the result 

of the MNVV obtained is equivalent to assuming zero dB desired signal power. Fur

thermore, since with this criterion we use the fact that the desired signal has been 

previously removed, then w ^R w op gives the total interference plus noise power at 

the output of the array. Therefore l /w ^ R w op is the signal-to-interference plus noise 

ratio (SINR) for a zero dB desired signal power.

24
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3.1 Conventional Beamforming Technique

Following the optimization problem formulation from the previous chapter for the 

conventional beamforming, with the optimum weight vector obtained from Eq. (2.9) 

the MNVV becomes

w j R w op =  g H(A ^ R “1Ap)"1A j/R _1A p( A f  R _1 A p)_1g. (3.1)

For the case of a single desired direction Ap =  ap with gain of unity, g =  1, 

the Eq. (3.1) becomes,

a ^ R - 1 _  R - 1a„
w gR W 0p a / R - 1apR a ^ R - 1ap

a " R - V
(3.2)

Using Eq. (2.28) we have

aHR -1a -  aHR -1 a P‘  ̂ 1 (o on
p — p «-i p i + w a ? R r_ii a i - (3’3)

This shows that the SINR decreases as a result of an added interference signal.

Without loss of generality, we will take the direction of the desired signal to be 

at broadside [39], i.e.

ap =  [ l , l , . . . , l ] T. (3.4)

In this case the MNVV from Eq. (3.2) becomes

=  j A -  k  p L _  (3.5)

where for any matrix A, ||A||t denotes the sum of all elements.
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3.1.1 The Single-Interferer Case

For an N element array with noise-to-interference ratio of 71 =  a2/pi  and the inter

ferer direction given by di, from Eq. (2.33)

lldidflkl
liar'll*  =

But

N -
71  + N (3.6)

l |d id f ||,  =  ff  +  f ;  £  7« (3.7)
*=1 j=i

where 7 ;j ; i ^  j  are the off diagonal entries of the matrix d i d f . Since d id (7 is Her- 

mitian, the off diagonal terms are complex conjugate pairs. Therefore,

l|d1d » ||l =  jv +  2 & ( f ;  £  7jd .  (3 .8 )
( i=1 j=i+i J

Substituting Eqs. (3.8) and (3.6) into Eq. (3.5) the MNVV is now

w / / R w   __________________ + _71)____________
Wop- ^Wop ( N  N  V  ' '

N (N  + 7i — 1) — 2i?e < ^2  £ 7o-l
( : = 1  j = i + l  J

where the summation is over the off diagonal terms of d j d f .

P erfo rm ance  C om parison  for th e  U R A  and  th e  M RA

For the URA,

di =  [1 , e~jui, e~j2ui, . . . ,

The matrix F =  di d f ,  besides being Hermitian, is also Toeplitz. In particularly, the 

matrix F has elements 7 with

7 i,i+n = eJ”“\  n — 1 , 2 , . . . ,  A -  1 .
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Each of these subdiagonals has N  — n elements, n = 1,2, . . .  , N  — 1. Using Eq. (3.9), 

for the URA

-------------------- . (3.io)
N ( N  +  71  — 1) — 2 ^ 2  {N ~  n) cos(nwi)

n = l

For the MRA, the matrix djd(* is Hermitian, but not Toeplitz. In fact, for the 

zero redundancy cases, all the entries above the main diagonal are different and are 

given by n = 1,2, . . . , £  — 1 where L is the dimension of the augmented matrix, 

L — 1 =  N ( N  — l ) / 2 . This is the case for three-element and for four-element arrays 

(see Table 1). In other cases,

(3 ,1 )

For example, when N  = 5, L —1 = 9 <  N ( N  —1)/2 =  1 0 . In these cases the elements 

above the main diagonal are not all different; some of them are repeated. Therefore 

using these facts in Eq. (3.9), for the MRA structure

w ^ R w op = -------------- a  (~iV + 2!]--------------- , (3.12)
N ( N  +  7 i — 1) -  2 ^ e n cos(na;i)

71=1

where en is the number of times of ejnw' appears in the off diagonal terms of d x d f . 

From Eqs. (3.10) and (3.12) we have

N - 1

N ( N  +  71  — 1 ) — 2]P(1V — 7i)cos(nwi)
-------------- , (3.13)

(S IN R  ) U R A _____________________ n=1
(S IN R )M p .1MRA.  +  7 i  _  j j  _

n = l
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where as mentioned before SINR stands for signal-to-interference plus noise ratio 

and 71 is the noise-to-interference ratio.

Therefore, for the MRA to perform better we must have

N —l  L - 1

Y  (N -  n)cos(nu;i) > ^  en cos(no;i). (3.14)
n = l  n = l

Clearly the MNVV of both the URA and the MRA using the conventional beam- 

forming technique is a function of the noise-to-interference ratio.

E quivalen t R ela tions

We now derive equivalent relations of Eqs. (3.10) and (3.12) for the URA and the 

MRA respectively. By definition

iid ,d?i|s =  ( i Td a) ( d f i )

=  H Td i | !

where again d i =  [1 , . . . ,  e-Jtw- lWl]T.

• The URA case:

N - 1

l Tdi =  Y  ejnui
71=0

=  e . \  L  , (3.15)sm(a;1/ 2 )

iij jffn _  sinH N ^ / 2 )  / o i ^
l|d‘d ,l l ‘ -  7 i ? ( Wl/2 j"  (3-16)

J

where

0

9 n{w i) =  sin(Awi/2 )/sin(u;i/2 ). (3.17)
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Substituting Eqs. (3.16) and (3.6) into Eq. (3.5), the resulting MNVV is

W« R W = ___________ a (W +  7i)  , .
op op N ( N  +  7 x) — sin2 (iVa;1/2 )/ sin2 (u;1/ 2 ) ' [ }

• The MRA case:

In cases where all en =  1, by using Eq. (A.17) of Appendix [A-5] in Eq. (3.12), we get

w ^-r w   __________________ <T2(iV +  7 1)___________________
°p op jV(Af +  7 i) +  (1 — N)  — sin(^Y^u;i)/sin(tJi/2)

Comparing this result to Eqs. (3.6), (3.9) and (3.12) we can easily see that if all

en =  1 , then

<3-20>
Obviously, if not all en =  1 then

||d id f  \\b = N  -  1 +  . , 2 . * + X] (e„ -  1) cos nux. (3.21)
sm(w1/ 2 ) ^

The extra term in the above equation should be subtracted from the denomi

nator of Eq. (3.21) when not all e„ =  1 .

3.1.2 The Dual-interferer Case

From Eq. (2.35)

llR 2 %  =  <7- 2  [N -  a iH d id f ||* -  a 2 ||d2d f  | | 6 +  2 a 12Re {/>||didf ||6}] (3.22)

where HdfdJ |̂| =  l Td ,d ^  1 and a x, 0 :2 , a X2 and p are previously defined in Eqs. (2.36- 

2.40).
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From the last section we have:
3 0

l l d x f t  =

N - 1

N  +  2  (N  — n) cos nu>x for URA
71=1

L - 1
N  +  2 ^ e „  cosnwi

n = 1
for MRA all en =  1.

Or, equivalently, from Eq. (3.16) or Eq. (3.20)

lld .d f  ||t =

sin2 (Au;i/2 ) 
sin2(o;i/2 )

IV — 1 +
sin(cui/2 )

for URA

for MRA all en =  1 .

Similar equations are obtained for ||d2d^ ||.

From Eq. (2.40) and the definition of d,- in Eq. (2.5),

1 N - l
— _ V  z,J*n(wi-W2)

N n=0

For the URA case in =  n, we get

=  1 -fa»a)/2)
N  s i n ( ( w i  —  u ; 2 ) / 2 )

2 1 sin2 (Ar(u;i -  w2) /2)
l/M JV2 sin2((c^1 -W 2) / 2 ) ‘

For the MRA case we have from Eq. (A. 18) of Appendix [A-6 ],

P Jp  + 2 -̂j C" C0S ~ U2̂ )
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or, equivalently, when using Eq. (A. 17) of Appendix [A-5]
31

r2L-l

sin((o;i -  w2) / 2 )
(3.27)

if all e„ =  1 .

Finally from Eq. (3.22) together with Eqs. (2.36-2.40) for the URA with two

interferers, we write,

Hjy  ____________ fr2[7 i 72 +  JV(7i +  72 ) +  N 2 -  g j j f a  -  u>2)]_____________
W°p W°P N  — ( N  +  72)<7v(^i) ~ ( N  +  +  ‘ZgN(u1)gN{u:2)gN{oj\ -  w2) ’

(3.28)

where
. . sin(ATw/2 ) /n

= sin(U/2) ' (3'29)
For the MRA case with all e„ =  1

 __________ 0-2[7172 +  AT(7 l +  72) +  iV2 -  -  Ofr)]_________
*■ J V - ( W  +  72)srI (w1) - ( J V  +  7 i ) 5 l ,M  +  2 & { d f d 2)||d1d |' | |4} 1 ;

where

f e H  =  A r - l  +  ” ° (^ " 1“ ) . (3.31)
sin(w/2 )

Performance Comparison of the URA and the MRA

To compare the performance of these two arrays we must deal with equation (3.28) 

and (3.30). It is almost impossible to do this analytically for every condition. How

ever, the contour plots obtained numerically are given for the dual-interferer case in 

Chapter 5.

3.1.3 Numerical Examples

In the following example it will be shown that there is an angle uit which marks 

the region where the MRA performs better than the URA when the interferers are
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closer to broadside (the direction vector of the desired signal). Even though the 

URA performs better than the MRA for 0 7  > 0 7 , improved performance only occurs 

in directions where both arrays already have sufficient cancellation. The degraded 

performance of the MRA in some directions is very small when compared to the 

cancellation depth at those directions.

Example 1. Three-element array (N =3)

From Eq. (3.10) for the URA,

____________ * 2(3 + 7i)_ ^
°p °p 3 (7 1  +  2 ) — 2 ( 2  cos 0 7 -f cos 2 0 7 )

For the MRA with N=3 and L=4, each element above the diagonal of d jd ^  appears

only once i.e., e\ — 62 =  =  1. Therefore from Eq. (3.12)

w tfr>w _______________ °~2 ( 3  +  7i)_____________
op °p 3 (7 1  +  2) — 2(cos 0 7  +  cos 2 0 7  +  cos 3u>i) ’

The SINR can now be written as

( S I N R ) ^  _  3(2 +  7 1 ) -  2(2 cos o)i + cos 2ux) 3 4

(SINR) MHj4 3(2 +  7 1 ) — 2(coso)i +  cos 2o»i +  cosSo;!) ’

From Eq. (3.14) for the MRA to perform better than the URA, we must have, 

cos o;i +  cos 2 u)i +  cos 3o;i < 2  cos 0 7  +  cos 2 o;i

cos3o;i < cos 0 7 . (3.35)

We show in Appendix [A-4] that the condition in Eq. (3.35) is satisfied for 0 7  <

7t / 2 . To relate this to physical direction 9\, we note from Eq. (2 .2 ) by substituting

c =  A/o and letting d = A/ 2

0)1 =  — - r j^ s in ^ i  =  ns'mOi. (3.36)
2 A/o

Thus, when 0 7  =  7r / 2 ,6t =  30°
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Example 2. Four-element array (N =4)

From Eq. (3.10) for the URA

c 2( 4 +  7i ) (3.37)
op 4(3 +  7 1 ) — 2(3 cos Wi +  2 cos 2u>i +  cos 3oji)

For the MRA, N=4, L=7, again en =  1 , for n =  1,2, . . . ,  6

(3.38)
4(3 +  7 i) -  2 ^  cos(nwi)

71=1

From Eqs. (3.10) and (3.12)

(S IN R )^^ _  4(3 +  7 1 ) — 2(3 cos wj +  2 cos 2wi +  cos 3 ^ )
(SINR) Mfl>1 6

4(3 +  7 1 ) -  2 ]T cos(na;i)
71=1

and from Eq. (3.14), for the MRA to perform no worse than the URA, we must have

Equality in the above equation occurs when ui = ojt, the limiting posit ion vec

tor angle. For lo\ smaller than the angle u t, the MRA performs better than the URA.

3.2 Eigencanceling Technique

In this section, attention will remain focussed on the MNV performance of the MRA 

structure operating in a multiple narrow-band interference environment. This is the 

most suitable approach for radar applications where the desired signal is assumed not 

to exist during adaptation. In order to evaluate the performance of the eigencanceler 

using the MRA structure without being overwhelmed with numerical results, most 

of the attention will be focussed on the single- and dual-interferer problems. These
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cases are sufficient to illustrate the interaction of multiple interferers and, at the 

same time, give insight into more complex cases. We have published earlier results 

in references [40, 41]. When using the eigencanceling technique, the optimization 

problem will be as follows:

min w hR w (3-41)

subject to w HAp =  gH, (3.42)

and wHE r =  0  (3.43)

where Ap =  [aPl, aP2, . . . ,  aPp]; aPi, i — 1 , 2 ,p are the predefined directions and 

gH = [<h,<?2 > • • • , 5 P]; gii i =  1 , 2 , . . .  ,p are the preassigned gains in the direction aPi 

as described in the previous chapter for the conventional beamforming case. The 

column span of E r is the interference subspace.

The optimization problem in Eqs. (3.41-3.43) is equivalent to

min w ffRw 

subject to w^Ap =  gH,

and w = E^c. (3-44)

In fact, the condition in Eq. (3.44) reflects the requirement that the optimal 

weight be in the noise subspace G„ which is orthogonal to the interference subspace 

G r . By substituting Eq. (3.44) in Eqs. (3.41) and (3.42) we are able to remove the 

added constraint and obtain an equivalent form of the optimization problem

min cwE ^R E „c, (3.45)

subject to  cHE ^ A p = gH. (3.46)

From Eqs. (2.6) and (2.10) we have

RE* =  a 2E„. (3.47)
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Equation (3.47) also reflects the fact that e;, l=r+1 , . . N are the eigenvectors of 

R  corresponding to the eigenvalue a2. Substituting Eq. (3.47) in Eq. (3.45) our 

optimization problem becomes that of finding the vector c that minimizes

<t2ch E ^E „c, (3.48)

subject to ch 1Sî A p =  gH. (3.49)

Using a Lagrange multiplier vector A we have the following unconstrained op

timization problem as solved in section 2.3.1,

min J  = a2cHUc + Ar (A ^c  -  g) +  (cHA pp -  gH)X (3.50)

where

U =  E ?E „ (3.51)

and App =  E ^ A P. (3.52)

Taking the gradient of J with respect to c we get

V CJ =  2ct2U c +  2APpA,

and equating this to zero we then have

Cop =  —cr-2U -1APpA. (3.53)

But

g "  =  C? A *  =  —

Finally substituting in Eq. (3.54), we get

cop =  U -1App(ApHpU - 1App)"1g (3.54)
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where we used the fact that U , and hence U *, is Hermitian.
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For the case of a single desired direction App =  a =  E ^ap. Without loss of 

generality, we set g =  1 and get

Using the MNV as an optimization criterion leads to the following conclusions:

1. The constraint Eq. (3.43) restricts the optimal weight to be in the span of the 

noise eigenvectors, enabling the array to do eigencanceling in the direction of 

interference.

2. Due to constraint Eq. (3.42), with g = l, our result is equivalent to assuming 

tha t the desired signal power at the output of the array is zero dB.

Since with such criterion we use the fact that the desired signal has been previ

ously removed or is absent, then cr2c ^ U c op gives the optimal total interference plus 

noise at the output of the array. Therefore (<72c^U cop)-1 is the SINR for a zero dB 

desired signal power.

Using Eq. (3.48) with Eq. (3.55) for cop, after normalization to the quiescent 

noise cr2, we get tbr- '‘Normalized Minimum Noise Variance” value (NMNVV)

U ^ a
(3.55)

Cop aHU -1a

where

a =  E f a  p.

min
a2 CopUCop a H u _l a (3.56)
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where again, a  =  ap. To simplify our analysis, the direction of the desired signal 

ap will be taken at broadside from now on. That is,

aP =  [1 ,1 ,..., 1]T. (3.57)

In the next subsection we will discuss the performance of the MRA canceler. 

The elements are located at inX/2, where in are integers, not necessarily consecutive.

3.2.1 The Single-Interferer Case

Since the matrix U is Hermitian and positive definite, its inverse can be expressed 

in terms of the following expansion

U "1 =  £  (3.58)
71=1

where An’s and u ^ ’s; n = l,2 ,..., N-l are the eigenvalues and eigenvectors of the ma

trix U  respectively. Substituting Eq. (3.58) in Eq. (3.56), the normalized minimum 

noise variance can be expressed as follows:

Jj$ -  -   ■ (3.59)
£ V | u < * > « a P
71=1

We will determine the matrix U  and find its eigenvalues and eigenvectors an

alytically. From Eq. (2.4) for D r =  dr = [ 1, e-J’*1Wl, e- -7'2"1, . . ., e“J-,JV-lWl], the

correlation matrix takes the form

R  = p id rd ^  +  or2!^ . (3.60)

Since there is only one interferer, the eigenvector of R  corresponding to the in

terference subspace is in the direction of dr. Without loss of generality we simply take 

ei = dr. Its corresponding eigenvalue can be easily determined from R ei =  /<iej
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as [i\ = Npi +  c 2. Let =  [ e2 , e3, ...,e jv ] be the matrix of N-l eigenvectors 

corresponding to the N-l smallest eigenvalues of R. These vectors span the noise 

subspace. Since the noise subspace is orthogonal to the interference subspace, then 

e„_Lei, for n=2, 3, N, and these N-dimensional eigenvectors can be determined 

systematically as follows:

‘ - 1  ' 
e-jiiwi 0

- 1

1

O 
O 

__
_1

0

e2 = ,e3 = 0 • • •, ew =
0

- 1

0 N x l
0 N x l

g-j(>N-l-»N-2)wi

( 3 .6 1 )

N x  1

Note that these eigenvectors are orthogonal to ei, but not orthogonal to each 

other. The eigenvalues ^ 3 , . . . ,  h n-, corresponding to these eigenvectors, are simply 

/j,n =  o'2 for n=2, ..., N.

Finally, the matrix U  can be formed from U =  E^E,,, where E„ =  [ e2, e3, . . . ,  e^]. 

The result is

U  =

2 0
_g-J‘lWi 2

0 2
0 0 -e-iCis-ia)" 1 ...

_ g i ( i w - 3 - > A r _ 4 ) a ) i  q

2 _ g j ( ‘ w - 2 - > w - 3 ) w i
_g-j(«AT-2-»N-3)wi 2

( 3 .6 2 )

In Appendices [B-l] and [B-2 ], the eigenvalues An, and eigenvector n = l ,2 ,..., 

N-l, respectively, are derived analytically as

\  0/1 A ■ 2 /  h  1 0  \Xn = 2 ( 1  - c o s — ) =  4 sin (— ) ( 3 .6 3 )
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\
N - l
£  sin2(7rnk/N )
n= 1

(3.64)

As mentioned earlier, the value ik-i are integers chosen appropriately for different 

array structures, and uij is related to the directional angle Qi of the single interferer 

by Eq. (3.36) as u>i =  7rsin0i.

Using Eq. (B.15) in Appendix [B-3] together with Eq. (3.59) we obtain

£  | UWHa |2=  £ * Pn | £  Q n u { e ^  -  |2 (3.65)
n = 1  n = 1 k = 1

where

n _ 1 yo _  sm(irnk/N )
ti =  ~  • 2 /  7Tn \  > t y n k  —  , Q k =  \4sm2(_^) qk y

*1-? . 9 / 7tn k x
£ sm ( - r }-  ̂ ^71=1

Expanding the above equation, we prove in Appendix [B-4] (see Eq. (B.16)) that 

Eq. (3.65) is equivalent to

N - l  N - l  N - l

£  Pn { £  £  [QniQnk(ejitWl -  -  e* '*-^)
n= 1 /=1 k=l+ 1

+ complex conjugate] -f QniQni | -  e™ - 1" 1 |2}.

Using Eq. (3.65) in Eq. (3.59) we get the final form for the NMNVV

T N- 1"mm 1 I c a V ' n • \
— r  = l  /  {4 £ pu sm (— ^— wi)

° /=i z
N - l  N - l

+  2  E E  P/,Jb[cos(i; -  ik)u 1 +  COs(i/_! -
i= i fc>;

-  cos(i/ -  *fc_i)wi -  cos(ii_1 -  zfcjctq]} (3.67)

where
N - l

Pl.k =  Y PnQnkQnl-
71=1
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For the special case of the URA, we substitute io = 0, ii =  1, i2 =  2 ,.. .,ijv-i =  N  — 1 

and get the following

' T  ̂ /- • \ w-iJ m
U R A

1 /  {4sin

N - l  N - l
+  2 ]P  ^ P ; , fc[2 cO s(/- 

1=1 k>l

— cos(/ — & — l)wi — cos(/ — k +  l)wi]}.

3.2.2 The Dual-Interferer Case

Let the two interference direction vectors be defined as

(3.68)

1 1
g - i u w i g —j h v 2

d i  =
g - j ‘ 2^1

d 2 =
g —j l ' 2W 2

N x l
g - J ' W - 1^2

(3.69)

N x l

We can then determine the eigenvalues and eigenvectors of the correlation matrix 

R =  D rS D ^ +  <r2I/v. Let the vectors e3, e.j,. . . ,  ejv span the noise subspace of R . It 

is then clear that the corresponding eigenvalues are

H3 = fi4 = . . .  = /j,N = cr2.

Since the noise and interference subspaces are orthogonal, we have e^Tdi and e/;± d 2, 

for every k=3, 4, ..., N. Thus the noise eigenvectors can be chosen systematically as 

follows,
'  - 1  ' '  0  ■ '  0  ■

Po - 1 0

g o P i
0 , 6 4  — f t , . . . , e N  = 0
0 0 - 1
; '• P N - 3
0  . N x l 0 N x l .  f t V - 3  .
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These vectors are linearly independent, but not orthogonal. In order for these vectors 

to be orthogonal to d i and d2, pn and qn must satisfy the equations:

or in matrix form

-e? inUl + p nejin+lU1 + qnejin+2U'1 = 0 

- e jinUJ2 + pnejin+1“2 + qnejin+20J2 = 0

(3.71)

(3.72)

P n 2 l ( ? n + l ) Z \ { l n + 2 )
- 1

*1 ( * » )
q n  . . « 2 ( * n + l ) Z 2 { i n +2 ) . * 2 ( i n )

with

Z i ( i n ) =  eJ*nW‘ i =  l,2 , n = 0 , 1 , 2 , N  — 3 io  =  0.

Taking the inverse of the above matrix and solving for pn and qn, we have

  Zl(in) £2( ^ + 2) ^2{^n)^l{^n+2)
P n  ~  ’

Qn

W i t h  A „  =  Z l ( i n + l ) z 2 ( i n + 2 )  ~  « l ( * n + 2 ) « 2 ( * n + l ) -

(3.73)

(3.74)

(3.75)

(3.76)

Note tha t for the case of the URA, substituting i„=n, into Eqs. (3.74) and 

(3.75) yields

pn = e~juJl +  e~juJ2 and qn = -e ~ M e~jui2. (3.77)

Finally, the U  matrix defined by U =  E^E,, where E„= [ e3, e4, ..., e/y ] can be 

formed from Eq. (3.70) together with Eqs. (3.74-3.76) as follows

U  =

7o o0 bo 0 0 0 0 . . . 0
a*0 7 i bx 0 0 0 . . . 0
h*°o a i 72 02 &2 0 0 . . . 0
0 K «2 73 03 bz 0 0

0 0 0 0 / . . O T V - 6 7N-5 O A T - 5 bN-5
0 0 h*°N - 6 a*N-5 1N-A o n - 4
0 0 0 1 cn aN-4 lN -3

(3 .7 8 )

( J V —2 ) x ( J V — 2 )
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where one can show

I n  =  1+  \ P n  |2 +  | Qn |2, «  =  0, 1, . . . , N  -  3 (3.79)

a n  =  ~ P n  +  q*n P n + 1, ** =  0, 1, . . . , N  -  4 (3.80)

bn =  -q*, n = 0 , l , . . . , i V - 5 .  (3.81)

If Eqs. (3.73) and (3.74) is substituted in Eq. (3.79) we obtain

, 4 : - 2 R e { Z n}
7 n =  1 +  ' | A n | 2 (3.82)

where Zn =  z l ( i n)z2(in)[z2 (in+2 )zi(in+2 ) +  z*2{inJrl)zx{in+l)).

Substituting z\(in) =  eJU,1,n and z2(in) =  e ^ 2ln into Eq. (3.82), yields

2 -  cos[Ao;(fn + 2 -  in)} -  cos[Acu(zn+1 -  »„)] 
l-c o s [A w (in+2 - i n+1)] ’

where Au; =  ui\ — u>2. For the special case of the URA i.e. i0 =  0, in = n, Eq. (3.83) 

reduces to

7 n =  4 +  2 cos( Aw). (3.84)

Substituting Eqs. (3.74-3.76) in equation (3.80) we obtain in Appendix [B-5], Eq. 

(B.19) and analytical expression for an

q  __ j- [zi(*7i+l in) Z2(in-i-l *71)]
[z\{in+3 — *71+2) — Z2(in+3 — in+2)]

^  lAl(*7i+3 *7t+l) z2(*7i+3 ~  *7i+l)] j
[z l(*n + 2  — *71+1) ~  ^2(^+2  *71+1 )]

~1 (*71-}-2 *71) '2'2(*7i+2 *ti)
[Zl (*7i+2 — *71+1) — Z2(in+2 — in+1 )]

For the case of the URA (see Eq. (B.20))

(3.85)

a 71 =  ~2(e jwi +  eJ“2). (3.86)
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From Eq. (3.81) together with Eqs. (3.75), (3.76), and Eq. (B.21) derived in 

Appendix [B-6 ], the analytical expression for bn is found to be

^2 (̂ 71+1 in) x in)bn — 2l(*7i+2 ^n+l)^2(*'n+2 fre+l)" /. . ■, . >,
Z l ( l n+2 ~  *n+1 ) — Z 2 \ ln+2 ~  *7i+l)

and for the case of the URA. putting L  — n yields____________________

(3.87)

bn = - e ^ V " 2. (3.88)

Finally, by taking the inverse of the matrix U  defined by Eq. (3.78) and sub

stituting the result in Eq. (3.56), the NMNVV can be evaluated as a function of the 

interferer directions.

R ecursive  F orm ula  for C alculating  U  1

Let us first define the U  matrix iteratively as follows. From Eq. (3.78), it is clear 

that the (n + l)x (n + l)  matrix U n+i can be expressed in terms of the (nxn) matrix 

U„ as

U n+1 = 'U B

1----s>

v»

---
1

V tt =

0

0

bn-2
7̂1 — 1

(3.89)

raxl
where 7 „ ,a n_ i ,6n _ 2 are given in Eqs. (3.79), (3.85) and (3.87) respectively. 

Also for every n, we have

U„ =

7o do bo 0 0 0 0 0
a*0 7i a i bi 0 0 0 0

K a i 72 d2 62 0 0 0
0 b*i a*2 73 d3 b3 0 0

0 0 0 0 (In —4 7n—3 «n -3 bn- 3
0 0 b’n- 4 < - 3 7n —2 a n - 2
0 0 0 b n -3 < - 2 7 n - l

(3.90)
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The term aHU  1a  in the denominator of Eq. (3.56) can be computed as fol

lows. Note that from Eqs. (3.57) and (3.70)

a  =  E7/l  =

PS +  7o*-l 
Pi +  9 ? -  1

.  P n - 3  +  9 j v - 3  —  1  .

(3.91)

( J V — 2 ) x l

Using the matrix inversion lemma for the matrix U n+i in Eq. (3.89), we have,

1
U ^ !  =

[ U - 1 0  '

+
r ~ U " iv„

0 0 J 1 In -  V^U-Wn
. (3.92)

Multiplying both sides of the above equation from left and right by a77+1 and an+1, 

and noticing that an+i can be written in terms of an as

p*o +  q*o - 1
p\ +  - 1

L p ; + - 1 J
K  +  C - i

(3.93)

( n + l ) x l

we get, after some algebra, the following recursive expression for a /7 U _1a

a n + i U ^ a ^ !  = a ^ U _1an +  { [ a ^ U ^ v ^ U ^

-  \Pn +  qn -  l)v ^ U ^ a „

-  ( P n  +  < l n ~  l ) a n  U~* V „ +  | p n  +  qn -  1 |2]

/  b n -V ^ U ^ V n ]} . (3.94)

Defining Tn =  a^U ~ : an, and =  U ^ v * , the above expression can be rewritten as

r„+i — r„  +

n = 1 ,2 , . . . ,  A7 — 3

a n £ n \ \ 2 — 2 Re |(p* +  <7* — l)a^£ n|  +  | pn +  qn — 1

7 n - e u „ { „
(3.95)
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and

Tj =  a f  U ^ a i  =  70_1 | p0 +  9o -  1 | 2 • (3.96)

The iterative Eq. (3.95) enables us to compute the NMNVV obtained from the 

eigencanceling for an N-element nonuniform array structure. The final expression for 

the NMNVV obtained from Eqs. (3.56) and (3.95) is

( 3 -9 7 )

3.3 Examples of the MRA Eigencanceler

As mentioned earlier, for the MRA structure, we choose in in such a way that the 

integer differences im — in for n, m =  0, 1 , ... ,N-1  span the integer set (1 , 2, 3, 

..., L). In previous work, it was shown that for each array with a given number of 

elements N, there corresponds an L, with L < N (N-l)/2 (but L > >  N-l). For N=3 

or N=4, L=N(N-l)/2, and there is only one MRA structure which has no redundant 

correlation lag. That is, the off-diagonal entries of the autocorrelation matrix are all 

different. For N> 5, L <  N (N -l)/2 , there exist several MRA structures with some 

redundant elements in the autocorrelation matrix but with the redundant elements 

in different position. However, the number of these equal entries by definition is 

minimal for the MRA. In this section, the examples of three- and four-element URA 

and MRA using the eigencanceling technique are demonstrated. Both single- and 

dual-interferer cases are considered.
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3.3.1 Three-Element Minimum Redundancy Array (MRA-
3)

For this array structure i0 =  0, i\ = 1 and i2 =  3.

The Single-Interferer case

When only a single interferer impinges on the array from the direction u>i, we get 

from Eq. (3.67)

T  2  * *

Jm in  1 I r . n  • ~  \
— r  = 1 /  t 4 . L p , 'sm (— ^

a  ;=i z
+ 2 jPjt2 [cos(z"i -  i2)wi +  cos(z0 -  ii)ui 

— COs(ii — *1)0;! — cos(io — *2)^ 1]}

=  1 /  2[(Plii +  P2)2 -  Pi,2 ) +  {Pi,2 — Pl,l) COSWi

+ (Pi,2 -  -̂ 2,2) COS 2wi -  P i ,2 cos 3wi]. (3.98)
2

But since P/,fc =  ^2,P„QnkQni and by using Eq. (3.66) we get
n = l

a* = E sin(7rnA;/3 ) sin(7rn l/3 )
^ 4 sin2 (n7r / 6 )

y )  sin2 (7rn&/3 )
71=1 \

(3.99)

y  sin2(7rn //3 )
71=1

In the Appendix [B-7], we show that Pltl =  P2j2 =  P1)2 =  | .  Hence, upon 

substituting these values in Eq. (3.98), we get for the MRA-3 with a single interferer:

%  =  P " 3 /4 o • (3.100)er2 1 — cos 3wi
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For comparison, the result for the URA-3 NMNVV with a single interferer can be 

obtained from Eq. (3.68) as:

J m in    1

a 2 4(Pi,i +  p 2,2) sin2 ^  +  2 P ii2 (2 coso;i — cos 2 ^  — 1 )

3/4
=  7 — Z—  3 -1 0 11 — cos 2a?i v

The Dual-Interferer Case

For the dual-interferer case, there is only one noise eigenvector eT =  [—l,po5?o] and 

by using Eq. (3.91)

ax =  E ?  • 1 =  eH • 1 =  p* + q*0 -  1. (3.102)

Also for the MRA-3, Ux= [7 0 ] and thus, Ujf1 =  7 7 1, where from Eq. (3.79),

70 =  1 +  | Po | 2 +  | qo |2. Therefore, the NMNVV for this case can be written from

Eq. (3.97) as

(~^)m .r.4 -3  =  -j— 7  rT2~-" - 1~- (3.103)
| Po +  qo ~  1 |2 7o

Expanding Eq. (3.103) and substituting for 70  from Eq. (3.79) yields

(~ !Iy l) m r a - 3  =  7 y n ~ ?—  r  (3.104)a2 2Re{p0q l - p 0 - q 0)
I P o  |2 +  | q o  |2 +1

Using Eqs. (3.74-3.76) for po and q0 respectively, we derive in Appendix [B-8 ] the 

relevant terms for Eq. (3.104). Then by using equations (B.24) and (B.25) in Eq. 

(3.104) with i0 =  0, * i= l, *2 =  3, we finally obtain
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( ^ IY l)mra - 3 =  1 /  {1 +  [ -  5Z(C0S 7wi +  cos 7 ^ )( j £  #
7 = 1

+  cos(3 u;2 — wi) +  cos(3wi — u  2) +  cos(3 u;2 — 2wi)

-t- cos(3u;i — 2 ^ 2 ) 4" cos(2u?2 4" wi) cos(2u>i -f- W2)]

/  [3 — cos(Au>) — cos(2Atu) — cos(3Aa;)]}. (3.105)

For comparison, the URA-3 performance with two interferers can be obtained

by substituting equations (B.24) and (B.25) with io = 0 , * ! = 1  and z2=2 into Eq.

(3.104);

( ^ i )  URA_3 =  1 /  { 1  +  [—5^(3 — 7 ) (cos 7 0 ^ +  COS7 W2)
0  7 = 1

+  2 cos(2 o;i — W2 ) +  2 cos(2 u;2 — tui)

+  2 cos(wi +  ^ 2 )]

/  [3 — 2 cos(Au;) — cos(2 Acu)]}. (3.106)

3.3.2 Four-Element Minimum Redundancy Array (MRA-
4)

For this array structure i0 =  0 , ii = l , i 2 = 4 and i3 =  6

The Single-Interferer Case

When a single interferer impinges on the array from the direction 0 7 , we get from 

Eq. (3.67),
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• 2 tl—i
Wl)

;=i
+  2_Pii2 [cos(ii -  i2)wi +  cos(?0 -  *i)wi

— cos(ii — i\)uj\ — cos(z’o — *2) ^ 1]

+  2 Pi,3 [cos(ii -  i3)wx +  cos(20 -  *2 )^ 1

— COs(2 i -  22)wi — COS(20 -  23)wi]

+  2P 2,3[cOs(22 -  23)wi +  COs(2i -  22)wi

— COs(22 — i2)u\ -  COS(21  -  23)wi]

=  1 /  2 [(P iii +  P 2)2 +  P 3>3 — P lt2 — P 2)3)

+  (Pi ,2 — -P t.l)  c o s  W1 +  (P2,3 “  -^3 ,3 ) COS 2 w i

+  (Pi,2 +  P2,3 — Pi ,3 _  P2&) COS 3Wi

+  ( P i , 3 ~  P i , 2)  COS A b )\ +  (P l,3 — P 2 ,? ) COS 5u2j

— Pi i3 cos 6 cui].

2

£
71=1

But Pltk = Y^PnQnkQni- Then by using Eq. (3.66)

sin(7rnfc/4 ) sin(7rn //4 )
Pi* = £

1

4sin (ri7r/8)

\ \
y :  sin2(7rn i/4 )
71=1

(3.107)

(3.108)

y ;  sin2 (7rnfc/4 )
71=1

In the Appendix [B-9] we show that Pu  = f ,P 2,2 =  1, P3,3 =  | ,P li2  =  ±,P lf3  =  

j ,  P2,3 =  \ • Hence, upon substituting these values in Eq. (3.107), we get 1he NM

NVV of the MRA-4 with single interferer as

Jn

6  — y  cos mu 1
71=1

(3.109)

For comparison, the URA-4 performance can be obtained from Eq. (3.68)
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'm m
~,t~2 = 1 / [4(Fl,l + P 2,2 + D \ • 2F3,3)sm —

+ 2Pi]2(2cos — cos 2a;! — 1)

+ 2Pi>3(2 cos 2wi ■-  cos 3wi — cos ui\)

+ 2P2,3(2 coswi - COS 2Uly — 1)]

= 1 / 2[(Fl,l + 2̂,2 + F3)3 — P i,2 —P2,3)

+ (2F2)3 + 2 P \t2 - ■ P i ,3  ~  P i ,1 ~ P 2 ,2 ~  P3,3 ) COS UJX

+ (2Pl,3 — P\,2 —P 2 ,3) cos 2ux

— Pi,3 COS 3]u>i

(3.110)
6  — ^2  (4 — n) cos null

n = 1

T h e  D u a l-in te rfe re r Case

For this case there are two noise eigenvectors from Eq. (3.70) given by

E„ =

- 1  0  

Po - 1  
qo pi 
0  qi

Therefore, it is clear that 

a 2 =  E "  • 1  = Po +  ? o - l
p * i + q * i - i

and Uo — 7o ao
«S 7 i

Using Eq. (3.97) Jmin/cr2 =  1 /T 2 , where r 2 can be computed from the recursion 

in Eq. (3.95), with n = l. From Eq. (3.89), Vi =  a0 and from Eq. (3.91), ai =  pS +  9o'

1. Also, Uj-1 =  7 q 1 implies £1 =  7(71ao) so that

6  =  (po + <7o — l)7o lflo- (3.111)

Substituting in Eq. (3.95) we get

r 2 = Ti +  [ | 70 1ao(po + qo — 1) |2
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-  2i2e{(p^ +  9 1* - l ) a 07 o“1(po +  9o - l ) }

+  I Pi +  ?i -  1 I2]/(7i -  «S7^a«o) (3.112)

and

Ti =  xai =  70 1 | Po +  9o — 1 |2 • (3.113)

After some algebraic manipulation we get

r 2 =  [71 Ipo +  9o - 1 12

-  2 i?e{(p0 +  qQ -  l ) a 0(pj +  ql -  1 )}

+  7o I Pi +  9i -  1 |2]/(7o7i~  I ao |2)

=  [7o 1 I Po +  9o ~  1 I2

"  0 +  qo -  l)ao(pI +  <£ -  !)}

+  7i- 1  | Pi +  9i -  1 |2]/(1 -  7o"17 r 1 I °o I2) (3.114)

where from Eqs. (3.74-3.76)

g J ln + 2 ^ 2  gJi'nW i _  g J t„u /2  g j« n + 2 ‘*'l

P n  =  - - - - - - - - - - - - - - - -
A 7l

gj*nW 2 g j in + lW l  _  g jin + 1  W2 g jin W l

qn =  ----------------- £ ------------------- ,
t-i n

^  =  gi'n+2^2 giin+l^l _  gjin+1̂ 2 gjin+2̂ 1

Also

7 ; =  1+ | pt- |2 +  | qi | 2 i =  0,1 

and a0 = -Po + qoPi- (3.115)

Again recall that for the MRA-4, i0 =  0 , z‘i= l ,  i2=4 and i3= 6 . Finally from Eq. 

(3.97) Jminla 2 = l / r 2.
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For the URA-4 structure, 2o=0 , i \= l,  22= 2  and 23= 3 . From equations (3.77), 

(3.84) and (3.86) we obtain the following, independent of the n parameter,

Po -  Pi = e~30Jl +  e~3W2, 

qo = qi = - e - ™ e - iu>,

7 o =  71  =  4 +  2 cos(Au>), 

and a0 = —2 (eJU'1 +  eJ“2).

Substituting these values in Eq. (3.114) and after some algebra, we get

Jmm\   ____________ 2  +  2  cos( Ao;) +  cos2( Aa?)____________
cr2 J u r a - a  4[2 +  cos(Aa;) +  coswj +  cosw2](l — coswi)(l — cosu>2) ’

T h e  G enera l Case

The eigencanceling technique for nonuniform arrays with two interferers having more 

than four array elements is more involved and it becomes impractical to obtain an 

exact analytical expression. However, in this case, the iterative formula given by 

Eqs. (3.89),(3.95-3.96) can be used to calculate the NMNVV for the performance 

evaluation. If there are more than two interferers, it becomes very difficult to obtain 

an explicit analytical expression for the inverse of the matrix U. In this case, the 

performance analysis may be carried out numerically by computer.

3.4 Eigenvalue Spread Comparison

With two interferers, the autocorrelation matrix R 2 given by Eq. (2.24) has two 

eigenvalues greater than cr2 which are [44],

Ai,A2 =  <j2 + y (p !  + p 2 ±^J(pi - p 2) 2 +  4pip2 | p |2) (3.117)
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where p is defined as p = d(/ d 2/Ar from equation (2.40). The quantities p\ and p2 

are the power of the interferers.

The ratio C =  Amax/ A m,n plays an important role in the rate of solution conver

gence. For example, in the implementation of a sampled-data adaptive array system, 

the response time, which is measured in sample periods, is given by r  < C/2 [45].

From the exact expression of | p |2 in Eqs. (3.25) and (3.27), for the URA and 

the MRA respectively, it is clear that

0 < | P u r a  |2<  1 and ^ — ^  + e < \ p M R A  |2< 1, (3.118)

where

£ =  V 0
min sin(ĝ -1 a;o)

iV2( s i n w o / 2 ) '

It can be shown that e has a negative value that occurs at points v Q and that satisfies 

the equation
L  sin Luj0

(3.119)
L  — 1 sin(L — l)u;o 

The eigenvalue spreads for the URA and the MRA can be easily determined from

Eq. (3.117) as

; < c w , < 1 + * ( 1 + 1 )
1 +  iv /m ax(7 i, 72) 7 i 72

< C M r a < 1  +  N ( -  +  — )

(3.120)

where as before 7 * = cr2/ p k ,  k  = 1 , 2 .

It can also be shown numerically that the lower bound of C m r a  is greater than 

the lower bound of C u r a • For example, if (<T2 , p i , p 2) = (1 , 1 0 0 , 1 0 ), then for N=3 ,
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which implies L=4, we get,

9.71 <  C u r a  < 331 

1 0 .2 0  <  C m r a  < 331.

We can also compare directly the eigenvalue spreads of the URA and the MRA. Since 

from Eq. (3.117),

r  _  A max Ax 1 +  f  +  j  +  y /(±  ~  ^ ) 2+  | p [2 ^ ) "
Am:n x2 i + E ( i .  + x - . f r r z r i ^ T ^ w z r ^ -

2 V71. 72 V'Tfl TS' 1 1  'Yl'YJ'

It is easy to notice that for a given <r2, p1? p2, the resulting ratio C is larger if and

only if | p | 2 is larger and therefore,

C u r a  < C m r a  <=> | Pu r a  |2< | Pm r a  | 2 (3.122)

where | p u r a  | 2 and | p m r a  |2 are obtained from Eqs. (3.25) and (3.27). For N=4, 

I P u r a  |2 and | p m r a  |2 are plotted in Figure 3, from which we conclude that for 

Aw = wi — w2 less than 58°, the MRA has a smaller eigenvalue spread.

T h e  G enera l Case : r-in terfe rers  (r > 2)

In the presence of r interferers, with direction vectors

d fc =  [ l ,e - j^ , e- ji2a\ . . .  fc =  1 ,2 , . . .  , r

the term ||R “ 1 [|6 in Eq. (3.5) can be computed recursively by means of Eq. (2.28), 

as follows:

|IT>-1|| ||T>—1 II Pi 1 1  12 _  1 9
I' ' 1,6 " l + p i d f R ^ d ;

llRo1!^ =  <t-2PII b = *2N

with the MNVV expression given by Eq. (3.5).
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The key conclusion of this eigenvalue spread comparison is that with the same 

number of array elements used, the MRA will not degrade the eigenvalue spread of 

the correspondence URA structure. For the dual-interferer case, the eigenvectors 

corresponding to the interference subspace were obtained explicitly in terms of the 

interferers’ power and the direction vector of the interferers in Appendix C.

N = 4, L=7
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0 20 40 60 18080 160100 120 140
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□ URA 4 + MRA 4

F igu re  3 Magnitude of | p | 2 as a function of the angle difference between two 

interferers (Aw =  wj — w2 =  27r sin (3) for the URA-4 and the MRA-4.
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CHAPTER 4

EIGENSPACE TRANSFORMATION BETW EEN THE 
URA AND THE MRA STRUCTURES

In this chapter an attem pt is made to relate the eigenspaces of the URA and the MRA 

structures. This analysis provides another approach to gain further understanding of 

the operation of the MRA eigencanceler. The analysis of the MRA performance in 

the previous chapter was quite tedious even for the dual-interferer case. The idea of 

performing the eigenspace transformation started when considering that the vector 

space spanned by the eigenvectors of the URA and the MRA structures is exactly 

the same. Thus, the URA results obtained should be able to be transformed to 

the respective MRA vector space through some kind of transformation matrix. In 

this chapter, this idea is examined and the results are presented. In order not to

be confused by all the manipulations, the simplest case is studied as an example.

The single-interferer case for the URA with the eigencanceling technique is used as 

a basis for all analyses. The optimization problem is still the same as formulated in 

equation (2.14):

min w ^R w

subject to Ap =  gH

w HE r = 0 . (4.1)

The constraint in Eq. (4.1) which restricts the optimum weight to be orthogonal to 

the interference subspace E,. =  0 is equivalent to requiring that the weight vector 

lies in the noise subspace. In this case, as mentioned in section 3.2, the optimum 

weight vector can be written as a linear combination of the noise subspace vectors. 

From Eq. (3.44), it will take the form of

w =  E^c. (4.2)

56
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Rewriting the optimization problem as in Eqs. (3.45) and (3.46), we obtain

min a2 cHUc  

subject to c h A pp =  g H

(4.3)

where U  =  E ^ E y, A pp = E ^ A P, and E„ is the noise subspace of R.

The optimum solution for the above problem is as given in Eq. (3.54):

cop =  U - ^ A ^ U ^ A j ^ g .  (4.4)

When constraining the signal to come from broadside i.e. ap =  1  and with unity 

gain g = l, define a =  E ^ a p,

„2

Cop “  a ffU - 1a ’ (4-6)

4.1 Analytical Formula for the Matrix Inverse

The inverse of the aforementioned matrix U for the single-interferer URA structure 

using the eigencanceling technique can be calculated explicitly. The procedure is as 

follows. Define an N  x (N  — 1) matrix E„ as a collection of the noise eigenvectors 

of the autocorrelation matrix for a URA with N array elements and a single interferer:

- 1  0 
e-M  —1

E„ = 0 - 1

0

0

0 (4 .7 )
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Note that the eigenvectors are not orthogonal to each other but E„ satisfies 

REy =  cr2Ey. Restricting the signal coming from broadside yields ap =  1 . The cost 

function for the new optimization problem becomes:

7 . -  -
a»U -'a

a 2
( E " l )* U - i(E * l)

a2
(e-M  -  l) (eM  -  1 )1 HU - 1 1  

a 2
(e-M  — l)(eJ’t,;i — 1)||U—1 ||t 

where again || • ||& denotes for the sum of all the matrix elements.

Now take a look at the form of the U  matrix before finding its inverse.

From Eq. (3.62) with i,i=n for n=0, 1, ..., N-2

U =  E "E „

' - 1 ejui 0 . . .  0 - 1 0 . . .  . 0

0 - 1  ejui . . .  0 e- M - 1  . . .  . . 0

— 0 0  - 1 . . .  0 0 e~jui - 1  . . 0

0 0  . . . - 1  ejui 0 0  . . .  .

2 _ eM 0 0  ‘
_ e-M 2

31 0

= 0 — e-jwi 2 0

0 0 • . • 2

Through the process of induction in Appendix D, the general form for U 1 becomes:
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u -1 = —
N

N  — 1 (N -  2)ejaJl (N -  3)e2j'“1 . 2e(N~3^ Wl

3■*->c"’1%s-i

(N -  2 ) e ~ i u ' 2(N -  2) 2(N -  3) ejWi  . 4 e(^-4)jw i 2e(N-3)jwi

(N -  3 ) e ~ 2jwi 2(N -  3)e-JWl 2{N -  2) 3e(w-4);u)i

2e' ge -(JV-5)iW! 2(N -  2) (N  -  2)eJU'1
e~•(JV-2)jWi 2 e-(.N-3)jwi 3 e - ( W - 4 ) ; o > i .. (N — 2)e-J“'1 N -  1

(4.10)

Also

1 N - 2
||XJ-xt| =  — X) [2 (iV -  1 -  Jfc) +  2(N  -  2  -  Jfe)(JV -  3 -  k)]co8{ku!). (4.11)

k=0
The explicit expression for the MNVV of the URA using the eigencanceling method 

is

J m i n  — (e-M  _  i) (eiwi _  l) ||U _1( (4.12)

N a 2
N - 2

(2  — 2  cost^i) ^2  [2 (./V — 1 — k) + 2(N — 2 — k)(N  — 3 — ft)] cos^wx)
fc= 0

where N is the number of array elements.

4.2 Transformation between the Eigenspaces of the URA
and the MRA

The following notation is used in this section. We write E u =  [EUr | E u„] and 

Em =  [Emr I E mv] where

• E u and Em denote the eigenvectors of the URA and the MRA autocorrelation 

matrices with the same number of array elements N.

• EUr and E mr denote the eigenvectors corresponding to the bases of the inter

ference subspace for the URA and the MRA respectively.
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® Eu„ and Em„ denote the eigenvectors corresponding to the bases of the noise 

subspace for the URA and the MRA.

4.2.1 Transformation between the Noise Subspaces
Since the noise subspace plays a major role in the eigencanceling technique, a direct 

transformation between the URA and the MRA noise subspace bases is most desir

able. Unfortunately it does not exist.

Proof : Assume that there exists Ti such that Em„ =  TiEUt,. In order to find Tj, 

the pseudoinverse [35] of Eu„ is needed, where

  XT' T7\ H /"ci -ip H \—l
1 —  & m v E 'u u )

Note that E ^ E , ^  is an N  x N  matrix with rank r, where r  is the number of in

terferes. Its inverse does not exist, because r < N . Therefore, the transformation 

matrix between Eu„ and Em„ does not exist.

4.2.2 Transformation between the Eigenspaces
Even though the previous result is disappointing, one may still hope a transformation 

exists between the URA and the MRA eigenspaces. A direct matrix transformation 

does exist between Eu and Em for the single-interferer case due to the fact that all 

eigenvalues of the URA and the MRA autocorrelation matrices are the same. The 

matrices Eu and Em are thus similar as shown in Chapter 2  (autocorrelation matrix 

properties). That is, there exists a matrix transformation T2 such that Em = T2E„. 

The matrix Eu has the following special structure:

1 - 1 0  . . .  0

e_1» e - M - 1  . . .  0

E„ = g —2 j u > i 0 e~jwi . . .  0

e - ( N - l ) j w i 0 0 .. e~jui
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Through a recursive calculation similar to that given for finding U -1, the E " 1 can 

be written as follows:

1 eM e 2j Ul e ( N - 2 ) j u i e ( J V —

1 - N e-7"1 e 2ju>i e ( W - 2 ) M e ; ( W - l ) w ,

( 2  -  N)e~ju' 2 — N 2ejui 2e(N~3')}Ul 2 e ( 7V- 2 W w i
(3 -  N)e~iu' (3 -  N)e~i“ ' 3 — N 3e(7v-4)jui 3e(Jv-3)i“’i

—2e~(N~3tiUl —2e~(N- 2)iUl - 2  ( N  -  2)eiWl (N  -  2 ) e 2 j W l
_ e - ( N - 2 ) j u i _ e - ( J V - 3 ) j w a - l ( N  -  l ) e 7Wl

(4.14)

Let the distance between two adjacent array elements be a sequence denoted as di, 

d.2 ,. •., Let the distance between the i-th element and the reference element be

ii, *2 ) , . . . i / v - i . e . ,  do =  to =  0* Also

n
in = 53d,- n =  1 , 2 , , . . .  jV -  1 . (4-15)

j = i

The collection of the eigenvectors of the MRA becomes:

1 - 1 0 0
e - ' i « e — d l j w . - 1 0

E ™*-*771 --
e - « 2 i w i 0 e ~ d 2j w  1 0

0 0 e - d / v r _ i j w i

The transformation matrix T 2 can be found through

  T p  T p  — 12 — jiimt i u

where both E„ and E m have full rank N.

4.2.3 Diagonalized Transformation Matrix

The transformation matrix found above does not have a diagonal structure. The fol

lowing procedure defines a diagonalized transformation matrix between the eigenspaces, 

E u of the URA and E m of the MRA.
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Let in, n = 1 ,2 , . . . ,  iV — 1 be defined as in Eq. (4.15) and consider a,n N  x  N  

transformation matrix T,

T  =

0

0

0 (4.17)

W ith E = R E U, the matrix of eigenvectors of the MRA becomes:

l - 1  0 0
e - s i i w i e - ( s i - l ) j w i  _ e - ( s i - l ) i u ; i 0

T r m e i i /  _ e - S 2 j w  1 0  e - ( s2 - i ) M 0

e - S N - l  j u i 0  0 e - ( < W - i - ( N - 2 ) ) j a < i

Notice that the only difference between E m and E ”e,u is that besides the 

first two columns, all the new eigenvectors are scaled by the factor for

n =  4 , 5 , . . . ,  N  — 1 . The reason the first two columns remain unchanged is because 

fo =  0  and *x =  d\.

4.3 Formulation of the MRA using the Eigenspace
Transformation Matrix

We next discuss the optimization problem of an MRA with the eigencanceling tech

nique using the diagonalized eigenspace transformation matrix.

Recall that for the single-interferer case

R-m =  P i d i d f  +  a 2IN,
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where

df = [l, g—5i ja»i e~s2]uii e-sjv-lJ“l

The noise variance for an MRA has an identical expression as that for a URA. The 

MRA autocorrelation matrix uses the subscript m  to distinguish it from the URA 

one. We obtain

min wwR raW  

subject to w HA p =  gH

w HE mr =  0. (4.19)

Using Eq. (4.2),

wHR mW  = <t2c " (E "  E mJ c

= cr2cHUmc, (4.20)

w Hap = cHE ” ap

= cHA m = g. (4.21)

Using the transformation matrix T  found in the previous section, we can write

Em„ = T E u„.

From the definition of T  in Eq. (4.17),

T h T  =  I N-

We then calculate U m and A m as follows:

Urn — EmvE mi/

=  (E ^ T //)T EU|/
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(4.22)

— E ^ a p

=  ( T E ^ V (4.23)

W ith ap =  1  for the desired signal coming from broadside with unit gain, the 

MNVV for the MRA using the eigencanceling technique becomes:

The U  matrix for the MRA is the same as the matrix for the URA. This means

equations are slightly modified.

4.4 Performance Comparison

This section compares the performance of the URA and the MRA using the eigen

canceling technique with the eigenspace transformation matrix.

The noise variance is used as a measure to compare the performance of the 

URA and the MRA. For the single-interferer case, the general expressions of the 

MNVV for the URA and the MRA using the conventional beamforming technique 

from Eqs. (3.10) and (3.12) are:

m m (4.24)

there is no need to derive a separate U  1 for the MRA structure. But the constraint

u2(N  +  7 1 )
(4 .2 5 )N - l

N (N  +  7 a — 1 ) — 2  ^2  (N  — n) 0 0 3 (710;!)
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JMRA =  ----------------------------- . (4 .2 6 )
N ( N  + 71  — 1 ) — 2 ^ e n cos(na;i)

n = l

Here en is some number related to the redundant correlation lag in the MRA struc

ture, as mentioned in Eq. (3.12).

The MNVV of the URA and the MRA using the eigencanceling method are:

a2N
j u r a e =  - - - - - - - - - - - - - - - - - - - - - - - - - J fZ l - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  (4.27)

N ( N  — 1) — 2  (N  — n) cos(mui)
n = 1

J m r a e  —  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   (4.28)
N ( N  -  1) -  2YLen cos(nu;i)

71=1

where N is the number of array elements and L-l is the aperture of the MRA with

N elements. The equivalent relation of Eq. (4.12) and Eq. (4.27) is derived in Ap

pendix D.

A simple three-element array using the above equations, equations (4.25) through 

(4.28), was chosen to demonstrate the effect of the eigencanceling technique. The 

noise variance is selected as a measure of the difference between a URA and an MRA 

with both conventional beamforming and the eigencanceling technique.

o With the conventional beamforming from Eqs. (4.25) and (4.26):

<t2(3 -f 7 i)
J U R A  = q /  — A T  ’ - - - - - - - - - - - - - - - - - - - - - - - - - - 5 - T  (4.29)

3 (7 1  +  2 ) — 2 (2 cosa;i -f cos2 aq)

7 =   ^ 2(3 +  7 i )________________  , m
MRA 3 (7 1  +  2 ) — 2 (cos ui\ +  cos 2wi +  cos 3wi)'
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• With the eigencanceling method from Eqs. (4.27) and (4.28):

JuRAe
3<t2

(4.31)
6 — 2(2 cos wi +  cos 2u>i)

3cr2
(4.32)

6 — 2(cos ui i -f cos 2wi + cos 3wx) ’

Note that the condition for the MRA to outperform the URA, with either conven

tional beamforming or eigencanceling technique is the same. The following inequality 

has to be satisfied:

Thus the region for an MRA to perform better than a URA using either conventional 

beamforming or eigencanceling will be exactly the same. Another important prop

erty is when comparing Eqs. (4.29) through (4.32), the noise variance of the array 

using the eigencanceling will not be affected by the noise-to-interference power ratio 

7 i . The noise variance using the eigencanceling technique can be obtained by bring

ing the noise-to-interference ratio 7 x to zero from the conventional beamforming case.

A key point emerges from this discussion: after calculating the NMNVV for 

the URA structure using the conventional beamforming technique, the NMNVV of 

the corresponding MRA with the same number of array elements can be obtained 

through the transformation matrix found in Eq. (4.17). To obtain the minimum 

noise variance of the optimization problem using the eigencanceling technique, we

2 cos uj\ +  cos 2u>i > cos u>\ +  cos 2u?x +  cos 3u7, (4.33)

which leads to
7r

W l < 2'

Using the relationship
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only have to set 7 1 , the noise-to-interference ratio, to zero in the conventional beam- 

forming problem.

When the number of interferers is larger than one, the analysis is not so straight 

forward. The eigenvectors derived in Appendix C for the dual-interferer case will help 

in finding the transformation matrix. The remaining steps will be similar to those 

developed in section 3.2.2.
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CHAPTER 5 

NUMERICAL RESULTS

In this chapter, the performance of the URAs and the MRAs is studied through a 

computer program using the formulas obtained in Chapter 3. The performance using 

the MNVV as a measurement is compared between the MRA and the URA with the 

same number of array elements. The URA and the MRA with the same aperture 

is also evaluated. The conventional beamforming and the eigencanceling techniques 

are applied to both the single- and dual-interferer cases.

Recall that due to the constraint imposed on the MNV criterion, w Hap =  1, 

the preassigned array pattern gain at broadside is chosen to be unity. The result ob

tained is equivalent to assuming zero dB desired signal power. Therefore, the noise 

variance w ^,Rw op can be interpreted as the interference plus noise-to-signal ratio 

(1/SINR) for a zero dB desired signal power. At 6*1=0, the interference direction is 

the same as that of the desired signal. When using conventional beamforming, the 

array has no cancellation effect in the desired signal direction. Applying Eq. (3.18) 

for the single-interferer case we find the MNVV to be R w op=  pi +  cr2/N  in the 

desired signal direction. For the dual-interference case from Eq. (3.28) the MNVV 

is pi +  P2 +  <?2/N  for 9\ =  02 = 0.

In all figures listed, the terminology URA-N refers to the Uniform Regular Ar

ray with N elements and with aperture N-l. The terminology of MRA-N refers to 

a Minimum Redundancy Array with N elements and aperture L-l, where N and L 

are related by Table 1 in Chapter 1. The MNVV comparison for the single-interferer 

cases was done between the URA and the MRA with the same number of elements, 

and the URA and the MRA with the same aperture. For the dual-interferer cases,

68
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the MNVV comparison was made between a URA and an MRA with the same num

ber of array elements. The configuration of the MRA used for the calculation is 

listed as the second title of each figure.

5.1 Conventional Beamforming

5.1.1 The Single-interferer Case

In Figure 4, the MRA-3 (with 3 elements and aperture 3) was compared to the URA- 

3 (with the same number of array elements as the MRA-3) and to the URA-4 (with 

aperture 3) as a function of the arriving angle of a single interferer. The interference- 

to-noise ratio (INR) is taken as 10 dB. Notice that the crossover point is at 0 =  30° 

as given in Eq. (3.35). Therefore the MRA-3 performs better than the URA-3 for 

0 < 30°, and almost as well as the URA-4 for 0 < 15°. For 0 > 30°, the URA-3 

performs better than the MRA-3. The performance ratio between the URA-3 to the 

MRA-3 and the MRA-3 to the URA-4 are depicted in Figure 5. The maximum gain 

in the main beam region for the MRA-3 is 3 dB higher than the URA-3, while the 

maximum loss of almost 2 dB occurred at around 0 = 44°. The effect of varying the 

INR for the same array is plotted in Figure 6 and 7. The increase of INR does not 

change the crossover point of the MNVV curves. Instead it increases the gain for the 

MRA-3 over the URA-3 in the main beam region is increased, while the performance 

beyond the main beam remains unchanged.

Figure 8 depicts the noise variance performance of the MRA-4 when compared 

to the URA-4 and the URA-7. The characteristics seen in the three elements array 

case become even more distinct now. The gain for the MRA-4 over the URA-4 as 

revealed in Figure 9 becomes almost 5.5 dB while the maximum degradation is only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

about 1.5dB. Figures 10 and 11 show the effect of differently configurated MRAs 

with the same INR. The crossover point is slightly different, as can be seen in Figure 

12, for different configurations. The MRA-5 gained more than 6dB in the main beam 

region when compared to the URA-5 and the degradation was bounded within 1.5dB. 

To ensure that the observation was not unique for the five-element array case, the 

six-element cases were also investigated. The MRA-6 structure has three different 

configurations. With INR equal to lOdB, the MNVV is compared to the URA-6 

and the URA-14 in Figure 13, 14 and 15. The gain in the main beam for the MRA 

structure is now well over 7 dB while the degradation is reduced to almost within 

ldB, as shown in Figure 16.

The difference in performance between the MRA-4 and the URA-4 with the 

INR as a parameter is shown in Figure 17. The interference power was taken to be 

unity. The MNVV ratio between the URA-4 and the MRA-4 with different values 

of the INR is depicted in Figure 18. The INR seemed to affect only the cancellation 

depth in the main beam region for the single-interferer case. It had no effect on 

the position of the crossover point nor the noise variance beyond the crossover point 

when the conventional beamforming technique was applied.

5.1.2 The Dual-interferer Case

The performance of an MRA in comparison to a URA with more than one interferer 

was also studied. Figures 19 and 20 show the performance of a URA and an MRA 

with five elements and two interferers. The same procedure of taking the ratio be

tween the URA-5 and the MRA-5 was performed, and the result is shown in Figure 

21. In order to visualize the three dimensional plots better, their contours are shown 

in Figures 22, 23 and 24 respectively. Interference-to-noise ratios of 20 dB and lOdB

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

were used in the computation, i.e. (<r2, p1? p2) =  (1,100,10). One should pay special 

attention to the zero dB line in Figure 24, which bounds the shaded region where 

the MRA outperforms the URA. As before in the single-interferer case, the MRA 

structure has a deeper cancellation ability in the main beam region.

We check the sensitivity of the MNVV in terms of the angle separation between 

two interferers. Figures 25 and 26 illustrate the results of the URA-4 and the MRA-4 

structure. The first interferer is used as a reference and the second interferer is 2°, 

5° and 10° apart from the first one. In these two figures, the MNVV at 0i =  0° will 

not be equal to p\ +  p2 +  v 2/N ,  as mentioned before, since 02 ^  0 at this point.

5.2 Eigencanceling Technique

5.2.1 The Single-interferer Case

Only a three-element array was used in the calculation carried out in the last section 

of Chapter 4. Figure 27 shows that the crossover point of the URA-3 and the MRA-3 

did not change despite the difference of the optimization problem formulation. The 

additional constraint that the optimum weight vector lies in the noise subspace which 

was used in the eigencanceling technique causes a reduction of the feasible solution 

domain. The performance in terms of the MNVV is therefore expected to degrade. 

In Figure 27, the eigencanceling technique did not degrade the performance of the 

system much except in the look direction region. The extremely poor interference 

cancellation in the desired signal direction is due to the conflict between the two 

constraints posed in the optimization problem.

Recall that from Eqs. (3.41) through (3.43), the formulation for the eigen-
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canceling technique for either the URA or the MRA case was,

min w ffR w  (5.1)

subject to w h A p = gH (5.2)

and w Ii'Er =  0. (5-3)

In the calculation, A p was assigned to be from the broadside which meant

9i =  0. The gain in this direction was constrained to be unity, i.e. g=  1. When the

interference was exactly from the broadside where the desired signal was located, the 

following equality held:

Ep — a(Ap),

where a  is a scalar while g /  0. When applying the eigencanceling technique, the 

optimum weight vector was always a linear combination of the noise space vectors, 

as shown in Eq. (3.44). The MNVV in the look direction can also be seen directly 

from Eq. (3.100) for the MRA-3 and Eq. (3.101) for the URA-3 cases,

MRA-3 %  =  ------ ^ ----- ,
<72 1 — COS 3 ^ 1

URA-3 ^  =  ------ ?!*----- .
cr2 1 — cos 2wi

When o>i approaches zero, the NMNVV approaches infinity.

Depending on the requirement of the particular application, some adjustment 

should be made. One way to avoid the overshoot of the NMNVV is to “turn off” 

the eigencanceling process when the interference is too close to the desired signal, 

and switch to a conventional beamformer or some other eigen-based technique. The 

“turn off” point should be determined by the inner product of the matrices A^Er. 

The MRA structure will have the advantage of a lower angle of “turn off” point than
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the URA with a given number of array elements and a given noise variance value.

Haimovich [22] has concluded that for the URA case, the eigencanceling tech

nique converges faster than the conventional beamforming method. For the case 

of the MRA, Pillai [46] has suggested that for the augmented autocorrelation ma

trix of an MRA, the convergence rate is roughly half that of a URA with the same 

number of array elements. The numerical result for the transient response of an 

eight-element array with three interferers is given in Figure 28. The eigencanceling 

method for both the URA and the MRA did converge faster than the same array us

ing conventional beamforming. The convergence rate for a URA and an MRA using 

conventional beamforming is about the same when the non-augmented autocorrela

tion matrix was employed for the MRA. The most striking fact is that the MRA 

using the eigencanceling method converges to its steady state value in an extremely 

small number of snapshots.

5.2.2 The Dual-interferer Case

The three-dimensional plots for the five-element array with dual interferers are shown 

in Figures 29 and 30 for the URA and the MRA structures respectively. The noise 

variance ratio is depicted in Figure 31. Contour plots are shown in Figures 32, 33 

and 34. In Figure 34, the shaded region, which is closer to the main beam, shows 

where the MRA outperforms the URA. It is clearly visible that the region where 

the MRA outperforms the URA has shifted from the one obtained using the conven

tional beamforming method. This is a different behavior from what was seen in the 

single-interferer case.
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Using the formulation derived in Chapter 2, the nine-element square array is 

examined here. Since the interference signal had to be specified in two dimensions 

(elevation 0 and azimuth angle <j>), only the single-interferer case can be examined 

here graphically. There exists only one configuration (plus its mirror image) for the 

linear MRA-3 structure. For the square array case, there are four configurations, as 

sketched in Figure 2. Note that the MRA-3 square array referred in Figure 2 actually 

consists of 32 =  9 elements. For the MRA structure with a given number of linear 

configurations M, there exists 4M2 square array configurations.

Since the three-dimensional image will only cause confusion in visualizing the 

actual implication of the noise variance value, only the contour plots are shown. 

Figures 35 and 36 show the contours of MNVV for the nine-element the URA-3 and 

the MRA-3 square array using conventional beamforming technique. The ratio of the 

noise variance of the two structures is depicted in Figure 37. The zero dB line again 

marks the shaded region closer to the main beam in which the MRA outperforms 

the URA. Again, the contour plots for the URA-3 and the MRA-3 square arrays 

using the eigencanceling method are shown in Figures 38 and 39. Figure 40 depicts 

the NMNVV ratio for the square array of the URA-3 and the MRA-3 using the 

eigencanceling technique. As in the linear array case, the zero dB line is unchanged 

for the single-interferer case regardless of either the conventional beamforming or the 

eigencanceling technique used.
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N = 3, 1 interf. with INR = 10dB
u _  MRA configuration is 0 1 3

w j R w op
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- 1 0
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- 1 4

- 1 5

- 1 6

70

- 1 7
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9\ (degrees)
□ URA 3 + MRA 3 0 URA 4

F igu re  4 The MNVV comparison between the MRA-3, the URA-3, and the URA-4. 

Note that the URA-3 and the MRA-3 have the same number of elements while the 

MRA-4 and the URA-4 have the same aperture. The location for the MRA-3 is (0, 

1, 3). The noise and the interferer power were taken as (a2,pi)=(0.1,l).
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dB
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(degrees)

□ URA 3/MRA 3 + MRA 3/URA 4

Figure 5 The MNVV ratio as a function of the interferer’s direction of the URA-3 

to the MRA-3, and of the MRA-3 to the URA-4. Note that the URA-3 and the 

MRA-3 have the same number of elements while the MRA-3 and the URA-4 have 

the same aperture. The locations for the MRA-3 is (0, 1, 3). The noise and the 

interferer power were taken as (cr2,p1)=(0.1, 1) for all arrays.
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N = 3, 1 interf. with INR = 20 dB
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F ig u re  6 The MNVV comparison between the MRA-3, the URA-3, and the URA-4. 

Note that the URA-3 and the MRA-3 have the same number of elements while the 

MRA-4 and the URA-4 have the same aperture. The locations for the MRA-3 is (0, 

1, 3). The noise and the interferer power were taken as (cr2,p1)=(0.01,l).

MRA configuration is 0_1_3
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□ URA 3/MRA 2 + MRA 3/URA 4

F igu re  7 The MNVV ratio as a function of the interferer’s direction of the URA-3 

to the MRA-3, and of the MRA-3 to the URA-4. Note that the URA-3 and the 

MRA-3 have the same number of elements while the MRA-3 and the URA-4 have 

the same aperture. The locations for the MRA-3 elements is (0, 1, 3). The noise and 

the interferer power were taken as (cr2,p 1)=(0.01, 1) for all arrays.
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N = 4, 1 interf. with INR = 10 dB
w ^ R w o p  MRA configuration is 0 _ 1 _ 4 _ 6

dB 0
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F igure  8 The MNVV comparison between the MRA-4, the URA-4, and the URA-7. 

Note that the URA-4 and the MRA-4 have the same number of elements while the 

MRA-4 and the URA-7 have the same aperture. The location for the MRA-4 is (0, 

1, 4, 6). The noise and the interferer power were taken as (cr2,pi)=(0.1,l).
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F igure  9 The MNVV ratio as a function of the interferer’s direction of the URA-4 

to the MRA-4, and of the MRA-4 to the URA-7. Note that the URA-4 and the 

MRA-4 have the same number of elements while the MRA-4 and the URA-7 have 

the same aperture. The location for the MRA-4 is (0, 1, 4, 6). The noise and the 

interferer power were taken as (a2,pi)=(0.1, 1) for all arrays.
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w jR w ,op

N =  5, 1 interf. with INR = 10 dB
MRA configuration is 0 _ 1 _ 2 _ 6 _ 9

dB 0 -9

- 2 0  -

10 20 30 40 50 50 70

□ URA 5 + MRA 5 O URA 10

30 90

0i (degrees)

F igu re  10 The MNVV comparison between the MRA-5, the URA-5, and the URA- 

10. Note that the URA-5 and the MRA-5 have the same number of elements while 

the MRA-5 and the URA-10 have the same aperture. The location for the MRA-5 

is (0, 1, 2, 6, 9). The noise and the interferer power were taken as (<r2,pi)=(0.1, 1).
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N = 5, 1 interf. with INR = 10 dB
W ^ R W o p  MRA configuration is 0 _ 1 _ 4 _ 7 _ 9

dB « ■ -
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□ ura 5 + mra 5 o ura 10 ( d e g r e e s )

F igure  11 As in Figure 10, The MNVV of the MRA-5, the URA-5 and the URA-10. 

The location for the MRA-5 is (0, 1, 4, 7, 9).
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F igu re  12 The MNVV ratio as a function of the interferer’s direction of the URA-5 

to the MRA-5. Two configurations of the MRA-5 were used. The locations for the 

MRA-5 are (0, 1, 2, 6, 9) and (0, 1, 4, 7, 9). The noise and interference power were 

taken as (cr2,pi)=(0.1, 1) for all arrays.
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N = 6, 1 interf. with INR = 10 dB
MRA configuration is 0 _ 1 _ 2 _ 6 _ 1 0 _ 1 3
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F igure  13 The MNYV comparison between the MRA-6, the URA-6, and the URA- 

14. Note that the URA-6 and the MRA-6 have the same number of elements while 

the MRA-6 and the URA-14 have the same aperture. The location for the MRA-6 

is (0, 1, 2, 6, 10, 13). The noise and interference power were taken as (cr2,p1)=(0.1, 

!)•
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N = 6, 1 interf. with INR = 10 dB
MRA configuration is 0 _ 1 _ 4 _ 5 _ 1  1 _  13
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F ig u re  14 As in Figure 13, The MNVV of the MRA-6 is compared to the URA-6 

and the URA-14. The location for the MRA-6 is (0, 1, 4, 5, 11, 13).
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N = 6, 1 interf. with INR = 10 dB
MRA configuration is 0_1 _ 6 _ 9  11 _ 13

w jR w  op

dB 0

- 2

—4

- 6

- 8

- 1 0

- 1 2

- 1 4

- 1 6

- 1 8

- 2 0

- 2 2 woooeo(x̂CKDOoeooc'Ooocooooooe>cocKX)oooocooooooo<x)oeoooeoooc)oooooooo<)ooooooo« >
- 2 4

200 10 30 6040 50 70 80 90

□ u ra  6 + mra 6 o u ra  14  (degrees)

F igure  15 As in Figure 13, The MNVV of the MRA-6 is compared to the URA-6 

and the URA-14. The location for the MRA-6 is (0, 1, 6, 9, 11, 13).
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F ig u re  16 The MNVV ratio as a function of the interferer’s direction for the URA-6 

to the MRA-6. Two configurations of MRA-6 were used. The location for the MRA- 

6 is (0, 1, 2, 6, 10, 13) which has two repeated correlation lags at r(4) and r( l) . The 

configuration of (0,1,6,9,11,13) has two repeated correlation lags at r(2) and r(5). 

The noise and the interferer power were taken as (<r2,pi)=(0.1, 1) for all arrays.
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F igure  17 The effect of different interference-to-noise ratio (INR) on the MNVV of 

the MRA-4. The interferer power was taken as 1.
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F igure  18 The effect of different interference-to-noise ratio (INR) on the MNVV 

ratio between the URA-4 and the MRA-4. The interferer power was taken as 1.
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Figure 19 The N M N V V  for the URA * • l
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F igure  2 0  The NMNVV for the MR A
, f MRA' 5 Wltb two “ terferers using conventional

earn orming method and (<r2,p , ,p2) =(1,100,10).
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F igure  21 The NMNVV ratio of the URA-5 to the MRA-5 with two interferers 

using conventional beamforming method and (<j2,p i,p 2) =  (15 100, 10).
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F igure  22 Contour plot (in dB) of the NMNVV for the URA-5 with two interferers 

using conventional beamforming method and (<T2,p1,p2) =(1, 100, 10). The x axis 

is the first interferer angle, and the y axis is the second interferer angle.
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Figure 23 Contour plot (in dB) of the NMNVV for the MRA-5 with two interferers 

using conventional beamforming method and (a2,pi ,p2) =(1, 100, 10). The x axis 

is the first interferer angle, and the y axis is the second interferer angle.
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F igure  24 Contour plot (in dB) of the NMNVV ratio of the URA-5 to the MRA- 

5 with two interferers using conventional beamforming method and (cr2,pi ,p2) =(1, 

100, 10). The x axis is the first interferer angle, and the y axis is the second interferer 

angle. The shaded region indicates where the MRA-5 outperforms the URA-5.
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URA 4 for 2 interf. with INR=10dB
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F igure  25 The MNVV for the URA-4 with two interferers. The angle between the 

interferers is taken to be 2°, 5° and 10° apart to test the sensitivity of the MNVV. 

The noise and the interferers’ power were taken as (cr2,p1,p2) =(0.1, 1, 1). Note that 

away from the main beam region, the URA is less sensitive to the angle difference 

between the two interferers.
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F igu re  26 The MNVV for the MRA-4 with two interferers. The angle between the 

interferers is taken to be 2°, 5° and 10° apart to test the sensitivity of the MNVV. 

The noise and the interferers’ power were taken as (cr2,p i,p2)= (0.1, 1,1). Note that 

in the main beam region, the MRA seems to be less sensitive to the angle difference 

between the two interferers.
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Three element array with INR=10dB
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F igu re  27 The MNVV comparison for three-element arrays the URA-3 and the 

MRA-3 using both conventional beamforming and eigencanceling methods. The sub

script ‘e’ stands for eigencanceling method. Here (<r2,pi)=(0.1, 1), i.e. INR=10dB.
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Noise Power Comparison for N=8
Interference from 20, 23 and 35 degrees
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F igure  28 Convergence rate comparison for optimum weight using conventional 

beamforming and eigencanceling methods. Each point of data represents the 500 

run average result. The subscript ‘e’ stands for eigencanceling method. The-eight 

element array with three interferers chosen at 20°, 23° and 35°. All the interferers’ 

power were taken to be 1 and the noise power was 0.1.
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Figure 29 The NMNVV for the URA-5 with two interferers using eigencanceling 

method and (<72,p i,p 2) =(1,100,10).
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F ig u re  30 The NMNVV for the MRA-5 with two interferers using eigencanceling 

method and (cr2,p1,p2) =(1,100,10).
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Figure 31 The NMNVV ratio of the URA-5 and the MRA-5 with two interferers 

using eigencanceling method and (o-2,p1,p2) =(1,100,10).

R ep ro d u ced  with p erm issio n  o f  th e  cop yrigh t ow ner. Further reproduction  prohibited w ithout p erm issio n .



1 03

0 .0 0  7 .5 0  1 5 .0 0  2 2 .5 0  5 0 .0 0  5 7 .5 0  4 5 .0 0  5 2 .5 0  6 0 .0 0  6 7 .5 0  7 5 .0 0  8 2 .5 0  9 0 .0 0
9 0 .0 0

8 2 .5 0

7 5 .0 0

6 7 .5 0

6 0 .0 0

02
5 2 .5 0

4 5 .0 0

5 7 .5 0

5 0 .0 0

2 2 .5 0

1 5 .0 0  

7 .5 0

0.00     -----
0 .0 0  7 .5 0  1 5 .0 0  2 2 .5 0  5 0 .0 0  3 7 .5 0  4 5 .0 0  5 2 .5 0  6 0 .0 0  6 7 .5 0  7 5 .0 0  8 2 .5 0  9 0 .0 0

Q\ (degrees)

F ig u re  32 Contour plot of the NMNVV for the URA-5 with two interferers using 

eigencanceling method and (a2,pi ,p2) =(1,100,10). The x axis is the first interferer 

angle, and the y axis is the second interferer angle.
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F ig u re  33 Contour plot of the NMNVV for the MRA-5 with two interferers using 

eigencanceling method and (a2,p i ,p2) =(1,100,10). The x axis is the first interferer 

angle, and the y axis is the second interferer angle.
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F igure  34 Contour plot of the NMNVV ratio of the URA-5 and the MRA-5 with two 

interferers using eigencanceling method and (cr2,p!,p2) =(1,100,10). The x axis is the 

first interferer angle, and the y axis is the second interferer angle. The shaded region 

indicates where the MRA-5 outperforms the URA-5 with eigencanceling method.
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F igure  35 Contour plot of the MNVV for the URA-3 square array with single 

interferer using the conventional beamforming method and (<r2,pi) =(1,10). The x 

axis is bearing angle 9i, and the y axis is the elevation angle tf>\.
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F ig u re  36 Contour plot of the MNVV for the MRA-3 square array with single 

interferer using the conventional beamforming method and (a2,Pi) =(1,10). The x 

axis is bearing angle 9\, and the y axis is the elevation angle <j>i.
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F ig u re  37 Contour plot of the MNVV ratio for the URA-3 and the MRA-3 square 

array with single interferer using the conventional beamforming method and (a2, pi )=  

(1,10). The x axis is bearing angle and the y axis is the elevation angle <f>\. The 

zero dB line marks the shaded region for the MRA to outperform the URA.
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F ig u re  38 Contour plot of the MNVV for the URA-3 square array with single 

interferer using eigencanceling method and (cr2,pi) =(1,10). The x axis is bearing 

angle 0l5 and the y axis is the elevation angle fa.
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F igure  39 Contour plot of the MNVV for the MRA-3 square array with single 

interferer using eigencanceling method and (cr2, ^ )  =(1,10). The x axis is bearing 

angle $i, and the y axis is the elevation angle cpi.
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F igu re  40 Contour plot of the MNVV ratio for the URA-3 and the MRA-3 square 

array with single interferer using eigencanceling method and (cr2,pi) =(1,10). The x 

axis is bearing angle 01: and the y axis is the elevation angle <f>i. If this figure was 

overlaid on Figure 37, one can see that the zero dB line marks the region for the 

MRA to outperform the URA are exactly the same.
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CHAPTER 6 

CONCLUSIONS

The assessment of the Minimum Redundancy Array (MRA) structure for interfer

ence cancellation is the goal of this work. Chapter 1 described the special structure 

of the MRA and listed all the configurations for a given number of array (dements 

(up to 11) to achieve maximum aperture with consecutive correlation lags. Previous 

applications using MRAs were mainly limited to direction finding. We expanded it 

to interference cancellation for the linear and planar array cases. The eigencanceling 

technique was applied to the Uniform Regular Array (URA) structure for interference 

cancellation before, and the results were quite remarkable — it had total interference 

cancellation ability, fast convergence rate, and immunity to the interference-to-noise 

power ratio. The MRA structure for interference cancellation is evaluated using both 

the conventional beamforming and the eigencanceling methods.

In Chapter 2, the system model was defined with the assumption that the 

desired signal was previously removed, as in many radar applications, the interfer- 

ers were narrow-band and uncorrelated. In this case, the Minimum Noise Variance 

(MNV) criterion was chosen as the performance measure. Directional constraints 

were imposed on the array pattern to prevent the array from creating nulls in the 

directions of the desired signals. Due to the structure of the MRAs, the traditionally 

used augmented autocorrelation matrix for direction finding was considered first. It 

was found that only the original nonaugmented autocorrelation matrix was necessary 

for the interference cancellation application. With this discovery, the actual amount 

of data being processed and the dimension of the autocorrelation matrix that was 

required for the eigenvector finding and inversion was greatly reduced. The ground 

work for the formulation of the optimization problem for conventional beamforming

112
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and eigencanceling methods was presented. An efficient recursive formula for the 

inverse of the autocorrelation matrix was derived to compute the Minimum Noise 

Variance value (MNVV). The MNVV was obtained when the optimum weight was 

applied to the process using the MNV criterion. Notice that the number of detectable 

interferers could be increased by using the augmented autocorrelation matrix for the 

MRA. However, the number of interferers that can be cancelled is identical to that 

of the URA with the same number of array elements.

Both the conventional beamforming and eigencanceling methods were applied 

in Chapter 3 to evaluate the noise variance performance of the MRA structure. The 

performance was compared to the URA structure with the same number of elements 

and the URA with the same aperture. Closed-form expressions for the optimal weight 

vector and noise variance were obtained for both array structures as a function of the 

number of array elements, the direction of the interferers, and their power-to-noise 

ratio. The three- and four-element array examples were given to gain a basic under

standing of the MRA structure using different interference cancellation techniques. 

In the last section of Chapter 3, the eigenvalue spread for the dual-interferers case 

was discussed to explore the effect of the MRA structure when compared to the URA 

structure with the same number of array elements. The numerical example of the 

three-element array indicated that spreading the URA elements to the MRA loca

tions does not increase the eigenvalue spread. That is, when the MRA structure was 

exposed to the same environment as the URA with the same number of array ele

ments, the convergence rate to the optimum weight vector remained about the same. 

This is a great advantage when compared to the MRA augmented autocorrelation 

matrix. However, the MRA structure does require twice as many samples to achieve 

the same result as the URA structure. The case of more than two interferers using 

the eigencanceling technique is quite difficult in terms of analysis. Nevertheless, a

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



114

recursive formula for the inverse of the correlation matrix was described in Chapter 3.

Chapter 4 presented a special approach to analyze the performance of the 

MRA structure. There exists a matrix to transform the eigenspace of the URA to 

the eigenspace of the MRA. This transformation matrix was quite valuable when 

calculating the MNVV for the MRA with the eigencanceling technique. It provided 

a computational shortcut by enabling us to use the existing URA noise subspace 

structure to obtain the MNVV of the MRA when using the eigencanceling method. 

It was also discovered that in order to obtain the MNVVs of both the URA and 

MRA structures when using the eigencanceling method, one could set the noise- 

to-interference power to zero in the conventional beamforming method. This again 

confirmed that the eigencanceling method is independent of the interference-to-noise 

power ratio.

In Chapter 5 the numerical results of all the formulas derived in Chapter 2 were 

evaluated and discussed. The MRA structure performed better than the URA struc

ture for interferers very close to the direction of arrival of the desired signal, deep into 

the main beam region. This was shown both in applying conventional beamforming 

and eigencanceling techniques. This result was expected since the MRA structure 

has a much larger aperture when compared to the URA with the same number of 

array elements. In the main beam region, (close to the direction of arrival of the 

desired signal), the depth of interference cancellation was almost equal to that ob

tained from the URA with the same aperture, whose number of elements is much 

larger. For an interferer impinging on the array in the sidelobe region (away from the 

direction of the desired signal), the depth of cancellation for the MRA is slightly less 

than that of the URA with the same number of array elements. But the difference 

in cancellation depth of the two structures is very small when compared to their
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The numerical results of the dual-interferer cases were also included in Chap

ter 5 for the conventional beamforming and eigencanceling methods. A performance 

comparison was done numerically by computer. Three-dimensional plots and their 

contours also provided better insight about the dual-interferer case. The region for 

an MRA to perform better than a URA was changed when different cancellation 

techniques were applied. The numerical results of the square array structure were 

also included in the last section of Chapter 5. For the single interferer case, the 

boundary for an MRA to perform better than a URA remains unchanged regardless 

of the cancellation method used.

Only conventional beamforming and eigencanceling techniques were examined 

to gain an understanding of the interference cancellation ability of the MRA struc

ture. There are different eigen-based interference cancellation techniques that could 

be tested on the MRA structure. The transformation matrix between the URA and 

the MRA eigenspaces for the multiple-interferer case is another problem to look into. 

The reaction of the MRA to correlated interferers also needs to be addressed. The 

effect of array element dislocation or element malfunction can be analyzed in terms 

of performance degradation. An adaptive algorithm may be developed for on-line 

processing purposes. The potential of the MRA square planar array structure for 

interference cancellation or is worthy of future investigation. The ability of resolving 

closely spaced interferers using the MRA structure should be of special interest in 

the future.

In conclusion, the MRA structure performs better as an interference canceler 

than the URA for almost all conditions of uncorrelated interference scenarios. Es
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pecially in the main beam region (due to its large aperture), the performance of an 

MRA follows closely that of a URA with the same aperture. The convergence rate is 

the same for an MRA and a URA with the same number of array elements using the 

conventional beamforming. When the eigencanceling technique is applied, the MRA 

seems to converge even faster than the URA structure experimentally. Another ad

vantage of the MRA structure is that it provides more flexibility in placing the array 

elements. For a given number of array elements, the MRA structure achieves better 

interference cancellation than the URA structure.
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APPENDIX A 

C A LC U LA TIO N S R ELA T ED  TO T H E  B E A M FO R M IN G

T E C H N IQ U E

[A-l] Derivation of Equation (2.29)

From Eq. (2.28) we can write

p,d,dfRr_\
R r1 = Rr-\

=  R r-\

= R.7-\

=  R r-\

where in the last step we used

IjV 1 +  p .d fR -^ d ;
( i + Pl-d f  Rr_\d,-)iN -  Pid ,d " R - y  

l + M ^ R ^ d ,
'(! +  p .d fR ^ d .Q R ,,!  -  p .d .d f'

1 +  p .d fR .ijd ,

(2 + p1dfRr_11dt- )R i- i -R i

R r-\

1 +  p ,d f  R ^ d , Rt7\ , ( A . l )

R{ =  R,--i +  Pidjd (A.2)

[A-2] Derivation of Equation (2.33)

Substituting for R 0 from Eq. (2.31) into Eq. (2.30) we get

where

Therefore,

Rr1

pi

(2 +  (Pi At2)AQ<72Lv - R 1
l +  (Pl/<72)iV

(2 +  N /  — R i/p i

Pi

1 +  NJ 7i

_  j_

7 i '

R r
-i (2 7 ! +  iV )L v — R i / p i  

Pi7 i { l i +N)

(A.3)

(A.4)
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[A-3] Derivation of Equation (2.35)

From Eq. (2.33)

R r 1 =  a - 2

therefore,

Thus,

t d .d f
l i  + N

d^Rr1̂  = d "
I - dxdf

=  a

7 i  +  N  
I d f d i  |21

=  a - 2

7 i + N  
iV (7 l +  A T )-  1 d ^ d g  I2] 

h  + N

1 + p2 d f  Rj xd2 {li + N)(i2 + N ) -  |d fd x 
7 2 ( 7 1  +  N )

where 7 2  — c 2/p2. 

Also by Eq. (A.5)

(A.5)

(A.6 )

(A.7)

R - M 2 =  (T—2 d2 —
(d fd 2)da

R ^ d a d f R ^ 1 —4 d2 - (d fd2)da

=  a- 4

71 + N  
h , I d^di |2 H

7 i + N

H _  (d fd Q d fl
2 11 + N

(A.8 )

d2d» +

p2R11d2d^R11 =
72a*

. An9dad f  -  2Re ( - ^ % d j d ^  
(7 i +  iV )2 1 1  \ l i  + N  / .

d fd
2 (7 l+ iV )2

(A.9)

Combining Eqs. (A.7) and (A.9) we get

p2R r1d2d^Rr1 _  (7i +  N)  [d2d f  +  j ^ f d r d ?  -  2Re { ^ d j d " }

1 + p 2R 11d2d fR 11 c 2[(72 +  N ) { h  + N )~  I d ^ d i I2]
(A.10)
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But

RJ"1 =  &- 2 I - d i d f  '

7i + N
(A .ll)

therefore together with Eq. (A.10) we get,

R r 1 -
p2R 1- 1d 2d ^ R r 1 

1 + p 2Rj"1d 2d2fR^"1

=  a - 2 d , d f  (7 i +  jV)d2d f  +  ]f g £ d 1d ?  -  2Re  { ( d f  d 2)d 1d ^ '} '

7 i +  N  (72 +  A0 (7 i +  N ) -  | d f  d i |2

= a -2 I -
(71 +  N) d 2d f  +  (72 +  N ) d j d f  -  2R e { ( d f  d 2)d 1d f }  

(72 +  iV)(7 l +  J V ) - | d f d 1 |2
. (A .12)

[A -4 ] F in d in g  t h e  C r o sso v e r  P o in t  o f  U R A -3  a n d  M R A -3

From Eq. (3.35)

cos 3u>! < cos u;j. (A .13)

It can easily be shown that this is equivalent to

4coso;i(cosa;1 -f l)(cosa;i — 1) <  0. (A .14)

For 0 < a;i < 7t/2,

COSCUi > 0,

costui +  1 > 0,

cosa;i — 1 < 0,

and the condition of Eq. (A.14) is satisfied.
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For 7r/2 < uji < 7r,

cos oji < 0,

costal +  1 > 0,

COS LO\ — 1 <  0 ,

and the reverse inequality of Eq. (A.13) is satisfied.

[A-5] The M N V s of the M R A  with Single Interferer 

By definition,
L—1 L- 1

2 Y l en cos nuji = XI e"(e'Jn“1 +  e~jnwi) -  2.
n = l  n =0

But

S  «n(« i/2 ) •

Therefore if e„ =  1 for all n =  0 ,1 , . . . ,  L — 1, then

L-l
2 cos nu)i =

71=1

+ 0 .c ,
sin(wi/2)

- 2

sm(Lu>i/2) .L — 1  .

Now, using some trigonometric identities yields,

^  sin(2fc=V) ,

2 2^ cos nwi =  . , . . -  1.^  sm(a;1/2)

[A-6] Derivation of Eqution (3.26)

From Eq. (2.40)

d"d2 '2
P I2 =  |UlU2N 2 

d fd 2d fd a
N 2

trace [d1d(fd 2d^] 
N 2

(A.15)

(A.16)

(A.17)
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Let A  be the matrix with the ones along the main diagonal replaced by

zero, similarly B  for d 2d ^ . Define A i  and B l to be the lower triangle of A  and B, 

respectively, while A u and B u to be the corresponding upper triangle. Therefore

trace [d id f  d 2d f]  =  trace [(Au +  A L +  £ ) { B U + B L +  27)]

=  trace [AuB l] + trace [AlB u] +  trace £ 2

where £  is diagonal of ones. Since did(^ and d 2d ^  are Hermitian, A u =  A^  and 

B u = B ^ .  Also trace[AuS u] =trace[A£,5x,]=0. Hence,

trace [d id fd 2d^] =  trace [AuB ^ j  +  trace [A^BU] +  N

=  trace [AUB%] +  trace [BUA%] +  N

=  trace [AUB^ \ +  complex conjugate +  N.

Therefore,

I P  |2=  (^V +  2 e n  cos n ( u J x  -  wj) j  . (A.18)

[A-7] Derivation for Equation (3.28)

By definition,

H |d id f || =  /K lrd i) (d ? l) .  (A.19)

From Eqs. (3.24) and (3.15)

=  1 ,-”?i(u,1- ^ ) sin(Af(tu1 - cj2)/2)
' N  sin((w i-w a)/2) ’

l r d t =
sm(o;i/2)

d f  1 -  ’

sin(./Vu;2/2)
sin(o;2/2)

Therefore,

II j  a h II _  1 sin(JV^/2)sin(AftJ2/2)sin(jV(fa;i - u ;2)/2) 
1 2 N  sin(cui/2) sin(cu2/2) sin(u;i — w2)/2

R ep ro d u ced  with p erm issio n  o f  th e  cop yrigh t ow ner. Further reproduction  prohibited w ithout p erm issio n .



APPENDIX B 

CALCULATIONS RELATED TO EIGENCANCELING TECHNIQUE  

[B -l] D eterm ination of the Eigenvalues o f U

Let us first determine the determinant of the matrix Ajv-i(A) =| U  — AI |. 

Ayv-i(A) =

2 - A 0 ... 0 0
-g-jfiu.! 2 - A _ o 0

0 _ e-j(i3-iiVi 2 - A . . .  0 0
0  o _ _ _ o 0

0 0 0 ... _ ei('w-3-»N-<)wi o
0 0 0 ... 2 -  A _ ej'(»N-2-iw-3)Wl
0 0 0 ... 2 -  A

Expanding this determinant we obtain the following recursion relation:

A n(A) =  (2 — A)Are_i(A) — A n_2(A), n = 1 ,2 , . . . , JV - 1 (B.l)

with initial conditions A0 =  1, A i =  2 — A. Let

A —2 =  —2 cos x, (B.2)

A n(—2 cos x +  2) =  2A„_i(—2 cos x +  2) cos x — An_2( - 2 cos x  +  2).

The equation p2 =  2p cos x — 1 has the roots e ^ x so that

A n(-2  cos x + 2) =  Aejnx +  Be~jnx (B.3)

122

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



123

where the constants A and B determined from n=0 and n = l can be shown to equal

A  =  ejx/ {e jx -  e~jx) B  =  - e ~ jx/ ( e jx -  e~jx).

Substituting in equation (B.3) we get,

a / ^  sinfn +  l)x  ,A n(—2 cos x +  2) = ----- :--------- =  0, (B.4)
sin a:

the roots are found to be

7r Jc
x — ----- -  for k = l ,2 , . . . ,n .  (B.5)

n + 1

Therefore, the resulting eigenvalues of the matrix U can be determined from 

Eqs. (B.2) and (B.3) with n=N -l,

Afc =  2(1 - c o s ^ )  =  4sin2( | ^ ) ,  k =  1 ,2 , . . . ,  N  -  1 (B.6)

This result can also be cited in [48]

[B-2] D e te rm in a tio n  of th e  E igenvectors of U

Let be the k-th eigenvector of U corresponding to the k-th eigenvalue A*,. 

That is

Ux<fc> =  A,tx(fc\  k = 1 ,2 , . . . ,  N  -  1 (B.7)

where x ^  =  [ x[k\ x 2k\  . . . ,  ]T.

Omitting the index k for simplicity, Eq. (B.7) can be expanded as follows: 

z\Xi =  (2 -  A)a:i
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Z2x  3 =  (2 — A )x 2 — Z*XX\

ZnXn+l =  (2 A)xn Zn_ jS n_ i ,  n =  1 ,2,. . . , N  1 (B.8)

where zn = e7(In-ln- 1)“', i0 =  0. Clearly from the first equation x0 =  0 and from the

last equation xjy = 0. Let,

x n = e~i,n- lWan (B.9)

then the Eq. (A.8) can be written in the form

=  (2 -  Xk)an-i  -  a„_2. (B.10)

For n=  2, 3, ..., N-l with boundary conditions, ao=0 and a^= 0. The solution 

of Eq. (A.10) has the form of Eq. (B.3):

For n=0

For n=N

a[k\ - 2 c o s v k + 2) =  A ^ e jnVk+ B w ejnVk 

where 2 — A* =  2 cos vk-

al0k) = a W + J3W = 0

> B (k) = - A {k)

a{nk) = A (k\ e jnvk -  e~inVk).

= A(ejNvk -  e~jNvk) = 0

we must require N v k =  fa =>■ vk =  wl/N, where I is any integer. We can normalize 

our vectors by requiring their first component is one,i.e.,
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<4fc) =  A {k\ e jnvk - e ~ jnVk) = 1,

=>A(k) =
1

e j n v k _  g~ j n v k

Therefore
{k) sin nvk ... 7rl

®n =  —--------  with n =  —
sin JV

or by substituting the integer k for I in the different vectors we finally obtain

sin(mrk/N) 
n sm(irk/N)al*) = , n =  1 , 2 , . . . , A T -  1 k =  1 ,2 , . . . ,  iV — 1. (B.12)

Substituting in Eq. (A.9) we find the n-th component of the k-th eigenvector to be

4 t) =  e- i' n  =  1 * =  1, 2........JV-  1. (B.13)

The magnitude of these vectors is given by

x (*)  I -  ^

J V - l
y ;  sm2(irnk/N)
71=1

sin(7rfc/iV)

After normalization by the magnitude we obtain

u(fc) = e-jin-iun sm(mrk/N) 
Ji-i -
y  sm2( im k /N )
71=1

(B.14)
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[B-3] D e te rm in a tio n  of u ^ ^ a
126

From Eqs. (3.55) and (3.57) together with Eq. (3.61) we get

aT =  [(-1  +  eiilWl), ( -1  +  eJ(,2-*1)“'1) , . . . ,  ( -1  + 

and with Eq. (3.64)

u ^ ^ a  =  (—1 +  sm(mrk/N )
k=1 N - 1

Y .  sin2(7rnk/N )
7 1 = 1

= Sin(n7rfc/Af) 
a=i J V - 1

y  sin2(7rnk/N)
7 1 = 1

[B-4] D erivation  for E quation  (3.67)

From Eq. (3.65) we can write
N - l

E f t
71=1 /= 1

N - l

r y  Q„*(eii*Wl -  eJ,fc_1“1) 
L*=l

=  E l p « { E  Q n i ( e j i lUl -  e * - w )
71=1 /= 1

i - 1[ E Q n k ( e j ikUl - e j i k - ' U l ) 
k=1 
N - l

+ E  Qnk(ejikUl-e ? * "-™ )  
k=l+1

But
N - l  l - l

E E Q m Q n k ( e j i lwl  -  e j i l ~ ^ ) { e j i k “ '  -
l=i  k=i

N - l  N - l

=  E E Q n i Q n k ( e j h m  -  e j i ‘- ^ ) { e j{k^  -  e j i k ~ ^ ) .
k=1 l=k+1
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By exchanging indices k and /, we get 

N - l  N - l

£  £  QnkQni(ejikWl -  
1=1 k=i+1

Notice that this is the complex conjugate of the second term. Hence equation 

(3.56) is equivalent to

N - l  N - l  N - l

£  Pn { £  £  [QnlQnk{ejilUl -  e * ' - ^ ) ( e ^  -
n = l 1=1 lc=l+1

+  complex conjugate] +  QniQni \ ejnwi -  |2}. (B.16)

[B-5] D e term in a tio n  of an

From Eqs. (3.80) and (3.85)

=  ~ P n  +  Q nP n+ l ~  " T  1 T J ?
A „ + i A n

where from Eq. (3.76) we get

An-flAn [ 2 1 ( ^ 7 1 + 2 ) 2 2 ( ^ 7 1 + 3 )  z l{in+3)z2(i"n-\-2)]

X  [Z 1 ( * n + l ) 2 2  (*71+2) — z l { i n + 2 ) z 2 ( i n + l ) ] i

Using the fact that zi(in) =  eJ'Wl*n and z2(in) =  e ^ 2*", this can be arranged in the 

form;

A f t - i - iA y j  [21(271+3 2 ^ 2 )  2 2 (2 ,1 ^3  2*71+2)][21 ( 2 ^ 2  *71+1) 22(2*71+2 2*71+1)]. ( B . 17 ) 

Also by using Eqs. (3.75) and (3.74)

£ =  -  {[2 4 (2,1+2)2 2 (271+3 ) -  zi (2,1+3 )2 2 (271+2)]

X  [21 (J"n)z2(* 7 i+ 2 )  -  2 ; ( 2 n ) 2 1*(2*7i+2 ) ] }

+ {[-^ (* ,1)2 2 (271+1) +  2;(2n)21*(2*7i+l)]

X  [ 2 1 ( 2 * 7 1 + 1 ) 2 2 ( 2 ,1 + 3 )  ~  2 2 ( 2 * 7 1 + 1 ) 2 1 ( 2 * 7 1 + 3 ) ] }
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=  ^ 1  ( * n + 2 ) 2 2 ( ^ 7 1 + 3 ) 2 1  ( 2 7 1 ) 2 2  ( * 7 1 + 2 )  4" 2 1 ( 2 7 1 + 2 ) 2 2 ( 2 7 1 + 3 ) 2 2 ( 2 7 1 ) 2 1  ( * 7 1 + 2 )

4 "  2 1 ( 271̂ .3 ) ^ 2 ( 277+ 2 ) 2 ^ (* 71) 2 2 ( 271+ 2 )  2 i ( 2 n + 3 ) Z 2 ( 271+ 2 )2 2  ( ^ 7 i ) 2 j  ( 2n + 2 )

2i (271)^2 (*71+1)2 1  (271+1)^2( 7̂1+3 ) "f" 2̂  (271)^2 (*71+1)2 2 (271+1)2 1 (271+3)

4" 22(2,1)2̂ 2,1+1)21(271+1)2:2(2,1+3) — 22(2n)2j (271+1)22(2,1+1)21(2̂ +3).

Again due to the definition of z i ( i n) and 22(2,1) we can change the second, third, 

sixth and seventh terms above and get

£ =  21(271+2)22(271+3)21 (271)22(2,1+2) 4~ 22(271+1)22(2,1+3)22(271)22(271+1)

4* 2 1 ( 2 ,1 + 3 ) 2 1 ( 2 7 1 + 1 ) 2 1  ( 2 ,1 ) 2 ^ ( 2 ,1 + 1 )  2 1 ( 2 7 1 + 3 ) 2 2 ( 2 , 1 + 2 ) 2 2 ( 2 , 1 ) 2 ^ ( 2 , 1 + 2 )

2 1 ( 2 , 1 ) 2 2 ( 2 7 1 + 1 ) 2 1 ( 2 , 1 + 1 ) 2 2 ( 2 , 1 + 3 )  4" 2^ ( 2 7 1 ) 2 1  ( 2n + 2) 2j  ( 2 7 1 + 2 ) 2 1 ( 2 , 1 + 3 )

4 " 22 (2n)22(27i+2 ) 22(27,+2 ) 22(27i+3) 22(2ti)2i { in+l )z 2{^n+l)^l(}n+3 )-

Combining the second, third, fifth and eighth terms together, with the rest of the 

terms, we get

£ =  {[21(271+1 2,i) 22 (2,1+1 2ti )]

X  [21(2,1+3 2, i + i )  22(2,1+3 2 7 1 + 1 ) ] }

4- {[21(2,1+3 — 2„+2) — 2 2 (2,1+3 — 2n+2)]

x  [21 ( 2,1+2 2,1)  2 2 ( 2,1+2 *71) ] } .  ( B . 1 8 )

Finally we get from Eqs. (B.17 ) and (B.18 )

[2l(2n+l *71) 22(271+1 2n)]
£2ti =  “  { [2 1 (2,1+3 2,1+2) 2 2 (2*71+3 2,1+2 )]

' l ( * 7i + 3  * n + l )  2 2 ( 271+3 2n + i ) ]  j

1̂(271+2 2,i+i) ^2 (271+2 2,i+i)]
2 1 (271+2 *71) 2 2 (2,1+2 2,i)

2 1 (271+2 271+1 ) 2 2 (2,1+2 2n+i)

For the special case of a URA in =  n, using 2,(22) =  eJ'n“', we have

, 2 i ( 2 ) - 2 2(2)

( B . 1 9 )

2 2l(l) -  Z2(l)

=  - 2 [* i( l)4- 22(l)] (B.2 0 )
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[B-6] D e te rm in a tio n  of bn
12 9

From Eqs. (3.81), (3.75) and (3.76) we have

z \ i}n)z2{}n+l) "f" ■̂ l(̂ n+l)'2;2(*n)bn —
z \  ( * n + l  ) z 2 ( * 'n + 2 )  ^1 ( * n +2  )  ^2  ( * n + l )

  Z1 (} n + l ) z 2 ( 27 i- f  1 )  z \  { } n ) z \  ( ^ n + l )  ~ F  Z 2 ( in + l ') z 2 { ^ n )

■22(*'n+2)'2:l (*n+2) (*n+l)2:l(*n+2) z2(in+l)z2(in+2)

= -  i .+1)z2(*»« -  * ,+ i) -7 r(--n+1 . ‘"I ^ i ’^ 1 9  , <B.21)
Z\\}n-\-2 7̂i+l j ^2(^n+2 &n+1J

[B-7] C alcu la ting  jP/,* for M R A  3 w ith  Single In te rfe r

p _  ______ 1_______- X  sin2(n7r/3)

1,1 ~  i f  ' 2/ /ox sin2(n7i-/6)4 > , sin [mr/3)
71=1

_  2 1 — cos2(n7r/3)
1 — cos2(n7r/3)

4V, sin2(n7r/3)
l

2

5^1 +  cos(n7r/3)

77=1
2

^ ___71=1_____________________

2 ’ 2
2 j l  — cos(n7r/3)
71=1

1 2  +  c o s (7t/ 3 )  H- c o s ( 2 tt/ 3 )

2 2 — cos2 (x /3) — cos2(27r/3) 
1 2 2
2 ‘ 2 - 1 / 2  “  3

D 1 sin2(2n7r/3)
•P2’2 =  “ 2-----------------

4^3 sin2(2n7r/3) 77=1 sin*'(mr/6)

71=1

 1 v  1 -  cos2(^n7r/^)
v-v 2/ 1 — cos2(n7r/6 )

4 ^ [ 1  — cos (2n7r/3)] V 7 7
71=1

1 .1  — c o s 2 ( 2 7 r /3 )  1 — c o s2 (47t/ 3 )  .

4 ( 2  — 1 / 4  — 1 / 4 )  1 — c o s 2 ( 7 r /6 )  1 — c o s2 (27t/ 6 )

(B.22)
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P i,2 =

4-1.5  1 -  3/4 1 - 1 / 4
J _  _  2 
1.5 ~  3

1

13 0

(B.23)

2 2

4 ^l

£ s i n 2(n7r/3).
n = l  \

y  ] sin2(2n7r/3)
71=1

sin(n7r/3)sin(2n7r/3)

71=1 sin2(Ti7r/6 )

1 . \/3 /2  • \/3 /2  V 5/2-V 5/2  2
4(3/4 +  3/4) 1/4 +  3/4 ) _ 3

[B-8] D eriv a tio n  of 2Re{pnq* — pn — qn} 

From Eqs. (3.74-3.76),

Pn =

qn =

gJ‘n+2̂ 2 _  gJ*nU)2 gJln+2̂ 1

gjin^gjj'n+l^l _  gjin+l^ gJltiWl

A n

where

Now

/\  =  gii'n+2̂ 2 gjin+l^i _  gjl'n+1̂ 2 gj*n+2Wi

Pn

qn | =

1 -  COs(Afa;(»n+2  ~  tn))
1 -  cos(Aw(z'n+2 -  *n+i)) ’ 
1 -  cos( Acu(in+1 -  tn))

1 -  cos(Aw(in+2 -  i„+i))’

1+ I Pn |2 +  | qn |2=  {3 -  cos[Aw(in+2 -  *n+1)] -  cos[Ao;(iB+2 -  *„)]

COs[Aa;(2„+1 n̂)]}

/  {1 -  cos[Au7(*n+2 -  *„+l)]}- (B.24)

Also

R e iPnq*n} =  {cOs[(in+2 -  in)uj2 -  (in+l “  tB)wl]

"h COs[(iB-j.2 1 (̂ 'n+1 7̂1)^ 2]
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-  co s[(zn+2 -  *„+i)w 2] -  co s[(i„ +2 -  i n+1)w i]}

/  { 2 [ l  -  c o s (A w ( in+ 2 -  *B+ i ) ) ] } ,

R e { P n }  =  {co s [(zn+i -  in)L0 X) +  co s [( in+i -  z„)w2]

COs[(zn+ 2 *7i)k*l (*71+2 *71+ 1 )^ 2 ]

-  COs[(zn+2 -  i n)w2 -  (*n+2 ~  *n+l)w l] }

/  {2[1  -  cos(A u>(zn+2 -  *„+ i)]}

and

=  { c o s [( i„ +2 -  i B)wa] +  co s[(tB+2 -  *B)wi]

-  COs[(z'n + 2 -  *n+l)w 2 +  (*n + l  ~  *n)^l]

-  C0s[(*'n+2 -  *n+l V l  +  (*„+l -  *71)^ 2 ]}

/  {2[1  -  COs ( A w (*b+2 -  * n + l))]} ,

2 i? e {p Jl̂ * -  P n -  q „ }  =  {co s[(zn+2 -  *'n)w2 -  (*n+i -  Q^i]

4" COs[(zn+2 in Û>i (*71+1 *71)^ 2 ]

4" COs[(zn+2 *71)^  1 (*'n+2 *71+1 )***2]

+  C 0s[(in+2 — *tj)w2 ~  (*ti+ 2 _  *7i+l)k*l]

4* COs[(zn .̂2 *71+1 )k*2 4" (*'71+1 *7i)^*l]

4- c o s [ ( « n + 2 — z„+i)u;i 4- (*n+i — *71)^ 2 ]

-  c o s [ ( in+1 -  i„ )w i] -  c o s [( in+i -  z'Jc^]

-  COs[(in+2 -  *n+ l)w i]  -  COs[(z„ + 2 -  *n+l)w2]

-  COS[ ( ? „ - ) .2  -  *7i)wi] ~  C0 s[(z' n + 2  -  *n)w2)]}

/  {1  -  c o s [A w (iB+2 -  * „ + i)]} . (B .2 5 )
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[B-9] Calculating P/,* for M RA-4 with Single Interferer
1 32

From Eqs. (3.68) and (3.66), we have

= r  7 -£ 5  4sin2(n)r/8)
sin(7rn//4) sin(7rnA:/4 )

Y  sin2(7rnZ/4)
n = l

Y  sm2(xnk/4)
n = l

Therefore,

Phi
1

3

E
71=1

4y~] sin2(n7r/4) 

2

sin2(n7r/4)
~^sin2(n7r/8 )

4 ^  sin2(n7r/4)
71=1

3
Y A  +  cos(nx/4)

1  n = 1

yk 1 — cos2(n7r/4) 
1 — cos2(nx/4)71=1

2 3
^ 1  — cos(nx/4)
71=1

_  1 3 +  c o s (7t/ 4 )  +  cos(7r/2) +  c o s (37t/ 4 )

2 3 — cos2(7r/4) — cos2(7r/2) — c o s2 (37t/ 4 )

1 3 _  3
2 ‘ 2 “  4 (B.26)

p2,2 =
4 E l  sin2(ra7r/2)

n = l

y-, sin2(n7r/2) 
n = i  sin2(7i7r/8 )

2 sin2(7r/2)
> \ ' + sin2 7r

+ sin2(37r/2)
4 x 2 1 — c o s(7t/ 4 )  1 — c o s (7t/ 2 )  1 -  cos(3x/4)
1 ( 2  n 2 \

+ 0  +  7 —— 7= ) =  1

)

4 V2 - V 2 2 +  \/2 i
(B.27)

Pi,3 =
1

3

4 ^  sin2(3nx/4)
n = l

y^ sin2(3nx/4) 
^  sin2(nx/8)
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1 3 3

_  2 ^  sin2(3n7r/4)
4(1/2 +  1 +  1/2) “  1 — cos(mr/4)
1. 1 1 1 
4 ( 2 - ^ + l +  2 +  ^

=  3/4 (B.28)

Pi,2 =
3

ky  sin2(7i7r/4)
3

ky  sin2(3ra7r/4)

^  sin(wr/4)sm(n7r/2) 
h i  1 -  cos(n7r/4)

h h * l l ±  +  L °  +  V 5 /M - 1 )
4 1 — \/2 /2  1 l + y/2/2 ;

=  — ( — ---------------  — )
4 2 — \/2  2 +  ^ '

=  1/2 (B.29)

A ,3 =
3

Iy~; sin2(n7r/4) ^  sin2(3n7r/4)

^  sin(n7r/4) sin(3n7r/4) 
1 -  cos(7Mr/4)

71=1

=  l f ( l / v ^ ) ( l / v ^ )  l - ( - l )  ( 1/ V 2) ( 1/ V 2)
4 l - y / 2 / 2  1 l + y/2/2

1
=  I (

4 2 — \/2 
= 1/4

- 1  +
2 + y/2 )

(B.30)

p 2 ,3  =

‘\
y  sin2(2n7r/4)
n=l

y-  ̂ sin(n7r/2) sin(3n7r/4)

y :  sin2(3n7r/4)
71=1

71=1

=  l - l / x / 2  0 ' ( ~ 1) ( - l - ( ! A / 2 )
l - y / 2 / 2  1 l  +  y /2 /2  J

y/2, 1
4 2 — -\/2 2 +  a/2

=  1/2

)

1 — COs(7Z7r/4)

(B.31)
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APPENDIX C 
E IG EN V A LU ES A N D  E IG E N V E C T O R S O F SIN G LE- A N D

D U A L -IN T E R F E R E R  CASES 

[C -l] T he  S ing le-In te rfe rer Case

Eigenvalue

Consider a matrix with the form of

R  =  p id xd f  +  <t 21n

where pi and cr are positive real numbers and di is an N x 1 matrix. The largest 

eigenvalue of the matrix R  is cr2 +  p iN  and the rest of the N-l eigenvalues are equal 

to cr2.

Proof: In order to find the eigenvalues of the matrix R, the following equation must 

be satisfied:

det(AI — R) =  0. (C.l)

Therefore,

det(AI — pididf^ — cr2Lv) =  det [(A — <r2)IN — d id f  j

=  (A — cr^^det
P id id f
A — (72

=  (A -  a2)N 

= (A — cr2)N 1 p i \ \M
A — <T2

J 2 \7 V -1=  (A -  -  (A -  cx2) ^ - 1||d1||2

=  (A — cr2) ^ - 1 (a — (cr2 +  Pi ||di II2)) 

=  0.

Ai — cr2 -f pi 11dx ||2

A2 — A3 — 

134

A;v =  cr2

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)

(C.7)

(C.8)

(C.9)

(C.10)
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where ||d i||2 is the Euclidean length of the vector d i. From the fact that the inter

ference vector di has length N, ||d i||2 =  N.

Eigenvector of R  Corresponding to the Largest Eigenvalue

di is the eigenvector of R  with corresponding eigenvalue of a2 +  Pi 11dj ||2.

Proof  :

R-dx =  (p id id f  -1- cr2I)dj (C .ll)

=  d i ||d i ||2 +  o-2di (C.12)

=  (||d i|| +  cr2)d1 (C.13)

,,2 1 '= >  di is the eigenvector of R corresponding to the eigenvalue a2 +  pi||d 

[C-2] The Dual-Interferer Case

Eigenvalues

Use the relation [47]

det [I„ -  AB] =  det [Im -  BA] (C.14)

where I„ is an n  x n identity matrix and A is an n x m matrix, while B is a m x n

matrix.

The autocorrelation matrix of the dual interferers case is

R  =  pididi  +  p2 d2d f  +  cr21N. (C.15)

Let A =  j^^/pTdi, v/̂ 2 (̂ 2]iVx2 and B =  A H and d i is a N  x 1 vector. The eigenvalues

of R  can be obtained through the following calculation:

R  =  <72I n +  A A " (C.16)
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d e t(A Ijv -R ) =  det [(A -  a 2)lN -  A A H]
136

(C.17)

=  (A — cr2)Afdet A h A  1
A -  cr2

(C.18)

2 \N
=  (A-<T2)

1 X-<72
x/piP2d^d2

A -< t2

l|d2||2

2\JV
=  ( A - O '/) _  M M ! )  n  _  M M ! )  _

(C.19)

(A -  <r2)2

(A -  <72)[(A -  <r2 ) 2 -  (A -  a 2)(P l||d a | | 2 +  ||d2||2) 

+(PiP2 | |d i | | 2 • ||d2||2— | d f d 2 |2)]

0

(C.20)

(C.21)

A1)2 =  (T2 +  

and A3 =  A4 =  . . .  =  Aat =  cr2

(Pilld il | 2 +  P2 l|d2 | | 2 ±  Hd i | | 2 — p2||d2||2)2 +  4p^p2 [ d f d 2 \2
2

(C.22)

Eigenvectors of R  Corresponding to the Two Largest Eigenvalues

The eigenvectors corresponding the largest eigenvalue of R  should lie in the span of 

vectors d x and d 2. We seek scalar a and b be some scalar so that adx +  &d2 is the 

eigenvector which corresponding to the largest eigenvalue of R. Then the following 

equation must be satisfied:

R (adx +  6d2) =  Ax (adx +  &d2) (C.23)

=  (a ||d 2 +  6d f d 2 +  a<r2) d x +  (&||d2 | | 2 +  a d f d a +  &<72) d 2 

=  =  Axadx +  Ax6d2. (C.24)
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Equating the coefficient of d i and d 2, we have the following equations:

a ||d i ||2 +  6 d f d 2 +  aa2 =  \a
=¥ <

6||d2||2 +  ad ^d i +  bcr2 =  A b.

It can be rearranged in the form of:

a (||d2 +  a2 -  Ai) +  &dfd2 == 0
=?■ <

. ad”d 1 + b(\\d2\\2 + a2 - \ 1) = 0.

Solving the above equations, we have

d ? d 2 , _  ( ||d2||2 +  o-2 - A x) t
a _  ||d i||2 +  <r2 -  Ai °r G _  d f d i  (C 5)

A2 and its corresponding eigenvector can be found in the similar way. Since the 

number a is only a scaling factor, we can set it to 1. The corresponding eigenvectors 

of the largest eigenvalues will be di +  &d2 where

d"dxb =

or

b =

A - < 72 - | | d 2||2

2 d fd j
(C.26)

( | |d i ||2 -  ||d 2||2) ±  ^ /(p i ||d i ||2 — p2||d 2||2)2 -f 4pip2 | d f d 2 |2 

Note that the above derivation can be applied to any matrix with the form of 

R  =  p id id f  +  p2d 2d ^  +  cr2! ^  where p i,p 2 and a2 are positive numbers and di and 

d 2 are vectors of equal dimension.
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APPENDIX D 
M A T R IX  IN V E R S E  F O R  S IN G L E -IN T E R F E R E R  U SIN G  

E IG E N C A N C E L IN G  T E C H N IQ U E

From Eq. (4.8), the minimum noise variance for single interference using eige- 

nanalysis method is:

J -  -

(D.l)
( e - M  - l ) ( eM  _ i ) | | u - i | | 6

where || • ||t demotes for the sum of all the matrix elements. From equation (4.9) the 

U  has the following form:

U  =  E ? E If

2 0 0
-jto 1 2 - e ju) 0
0 ~ e - M 2 . . .  0

0 0
*

-e ~ iwi 2

(D.2)

(JV—1) X (TV—1)

Using the block inversion formula [47]:

where

' A D - l ‘ A "1 +  E A ~ lF - E A - 1 '

C B
- A -1F A "1

A =  B — C A -1D, 

E  =  A _1D,

F  =  C A "1

(D.3)

(0.4)

(0.5)

(0 .6)

only the ||U  ||f, was interested here,

C B 1 1,6 =  I|A-1||e,-1-||EA-1F ||6+ | | - ^ - 1F ||6+ | |- E Z \ - 1|[6+ ||A -1||6. (D.7)

138
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Let

A =

2 - e 1Wl 0
,-jw i 2 —eiw
0 2

0 0 . . .  —i

B = K ix i ’

C = [o,o,.. . , 0 , - e “

D = o II fo,o.......

J ( J V - 2) x ( J V - 2)

l x ( J V - 2 )  ’

-eiwi]T
J 1X(JV—2) ’

and A =  (B -  CA-1D)lx l.

Since A  is a scalar, so is |J A - 1 (({,, and

Hull,'1 = || A"1 ||t + A-^HEPIIt +  || -  F||t + || -  E||t + 1). (D.8)

Observing the form of matrix A, we see that it’s in the exact form of U with 

order of (N  — 2) X  (N  — 2) instead of (N  — 1) x (N  — 1). A recursive formula can be 

derived using induction to find ||U -1 ||.

Define

A „ 

U n

A n

Un-1
U n_i D n

c„ Bn 
B -  C A -1D

A n — 2

2 -  A nl t with A t =  2 
n — 1

n

Then

a : 1 =

U nl i + E „ A n1F„ —E uA n

2 n 
n + 1

(D.9)

(D.10)

(D .ll)

(D.12)

(D.13)

(D.14)

- A -1F  A -1n  x  n

-1

for n > 3 (D.15)
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where

E„

F n

En A^Fn = (2 ----- T~r)_1 * [last column of U"^] * [last row of U “̂ j]
71 I X

E xam ples

=  — eJWl * [last column of U n^1] 

C n U ;^  =  e~jwi * [last row of U "^ ]

(D.16)

(D.17)

U x

^ u r 1

[2]
1

L2J

Uo =

Ur1 = ;

with A 31

U J1

u 3 =

2 —eiwi ' 

2

2 eM  • 
2

2
- e-M

0

_ eM
2

-e ~ jwi

0 ‘
_ eM

2

3

CO 
1II

3
2e~jwi
e-2jwi

2ejwi
4

2e~iwi

e2M  ■ 
2ejwi 

3

By induction, the general form for U ni x becomes:

u - 1 = ——
"  71+1

n (n  — l ) e 3Wl (n — 2 )e2jul1
(n -  l ) e - j a ' 1 2(n -  1) 2(n -  2)ejui
{n -  2)e~2ju)l 2(n -  2)e ~ J^ i 2 ( n  -  l )

2  e- ( n -2 ) j u 1 4 e-(n -3)ja;i Qe-(n-4) jw,

e -(n- l ) jui i  2e- (n -2 h " 1 3e - ( n_3h’“ >

2e(n-2)ju

4e(n-3)jwi 2e(n-2hwi 
3 e ( n - 3)jw i

2(n — 1) (n — l)e- 
(n — l ) e -JWl

(D.18)
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and,

HUn1 Hi =  ~ T  -  0  +  2(^ ~  1 “  l)(n ~  2 -  0] cos(Zwi). (D.19)
n  1 /= o

For URA with single interferer case, the dimension of the U matrix is (N —1) x ( N —1). 

The MNVV then become

N a 2
min — N_2

2(1 — coswi) ^2  [2(iV — 1 — k) +  2(N  — 2 — k)(N  — 3 — k ))]cos(&u>i)
k= 0

(D.20)

In the following, Eq. (D.20) will be simplified to

N v 2
Jmin = ------------------ Jf~l-----------------------• (D.21)

N (N  — 1) — 2 (N  — n) cos(nwi)
11=1

Notice the only difference between Eqs. (D.20) and (D.21) is in the denominator. 

Let

N - 2
f i (N )  =  2(1 — coso^) ^ 2  [%{N — 1 — k) +  2(N  — 2 — k)(N  — 3 — &))] cos kw\

k= 0

f 2(N) = N ( N - l ) - 2 j 2 ( N - n ) c o S(nu:1),
71=1

For N=3,

2
/ 2(3) = 3 - 2 - 2 ^ ( 3 -  to) cos(tou>i) =  6 — 2(2 cos Wi +  cos 2u>i)

71=1

=  6 — 4 cos u>i — 2 cos 2uji
l

/i(3) =  2(1 — cosoji) ^  2(2 — k) cos kwi
k= o

=  2(1 — cosa;i)(4 +  2coso;i) =  2(4 — 2cosu>i — 2 cos2u>i 

=  8 — 4cosa;i — 2(1 +  cos2u;i) =  6 — 4cosu;i — 2cos2wi

=  S i(  3)-

Assume for a given N, /i(iV) =  M ^ ) i

N

M N  + 1) =  (iV +  1 )N  — 2 + 1 — to) cosnuji
71=1
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TV

= TV(TV — 1) +  2TV — 2 ^2  [(TV — n) cos nui  +  cosnuii]
71=1

=  T V (T V -l)-
TV

H- 2N  — 2 ^  cos nw\
71=1

‘ N - 1

2 ^2  (TV — n) cos(mui)
. 71=1

=  f 2 (N) + 2g2(N)
T V - 1

f i ( N  +  1) =  2(1 — coswi) [2(TV — fc) +  2(TV — 1 — k)(N — 2 — k)] cos fcuji
k=0 
TV-1

(D.22)

=  2(1 — cosu>i) { ^ 2  [2(TV — 1 — k) +  2(TV — 2 — k)(N  — 3 — &))]coskoji
k=o

TV-1

+ ^ 2  [2 +  4(TV — 2 — k)] cos ku>i}
k=o

=  / i ( T V )  +  2 (1  -  c o s w i )  

=  / i ( T V )  +  2 ^ i  (TV).

T V - 1
4 cos(TV — ^2  2(2TV — 3 — 2k) cos ku i

k=o
(D.23)

For /i(TV +  1) =  / 2(TV + 1), provided that /i(TV) =  / 2(TV), from Eqs. (D.22) and 

(D.23), only <ft(TV) =  g2(TV) is needed.
TV

£f2 (TV) =  TV — cos na;i
71=1

flfi(TV) =  (1 -c o sw i)
TV-1

4cos(TV — 1 )0;! +  ^  2(2TV — 3 — 2k) cos koji
k=0

T V - 1
=  4cos(TV — l)wi +  ^2  2(2TV — 3 — 2k)coskuji — 4cos(TV — l ) ^  coswi

*=0
TV-1

— ^2  2(2TV — 3 — 2k) cos coswi
k=0

TV-1

4 cos (TV — l)wi +  ^  2(2TV — 3 — 2&) cos
k=0

+
TV-1

—2 cos TVwi — 2cos(TV — 2)u;i — ^  (2TV — 3 — 2&) cos(fc — l)wi

TV-1

— ^  (2TV — 3 — 2&) cos(& +  l)wi
k=0

TV

=  TV — cos nu\ =  ff2(TV)
71=1

By induction,the above derivation concluded that Eq. (4.12) and Eq. (4.27) are 

equivalent.
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