Improving the throughput of plasticating extruders : manufacture of non-circular pellets, measurement of their interparticulate friction coefficient, and implications for screw design

Chia-Ying Liu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations
Part of the Mechanical Engineering Commons

Recommended Citation

Liu, Chia-Ying, "Improving the throughput of plasticating extruders : manufacture of non-circular pellets, measurement of their interparticulate friction coefficient, and implications for screw design" (1991). Dissertations. 1160.
https://digitalcommons.njit.edu/dissertations/1160

Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

[^0]Improving the throughput of plasticating extruders: Manufacture of non-circular pellets, measurement of their interparticulate friction coefficient, and implications for screw design

Liu, Chia-Ying, Ph.D.

New Jersey Institute of Technology, 1992

IMPROVING THE THROUGHPUT OF PLASTICATING EXTRUDERS: MANUFACTURE OF NON-CIRCULAR PELLETS, MEASUREMENT OF THEIR INTERPARTICULATE FRICTION COEFFICIENT, AND IMPLICATIONS FOR SCREW DESIGN

by

Chia-Ying Liu

> A Dissertation
> Submitted to the Faculty of the Graduate Division of the
> New Jersey Institute of Technology
> in Partial Fulfillment of the Requirements for the Degree of
> Doctor of Philosophy
> Department of Mechanical and Industrial Engineering
> January 1992

APPROVAL SHEET

Abstract

Title of Dissertation : Improving the Throughput of Plasticating Extruders: Manufacture of Non Circular Pellets, Measurement of their Interparticulate Friction Coefficient, and Implications for Screw Design. Chia-Ying Liu : Doctor of Philosophy in Mechanical Engineering, 1992

Dissertation Directed by: Dr. Keith T. O’Brien Kurict T. OBrmi Professor of Mechanical Engineering. Department of Mechanical and Industrial Engineering.

This dissertation addresses the hypothesis that the interparticulate friction coefficient of a bed of polymeric particulates is a function of the cross-section of the pellets. Most pellets have a circular cross-section especially those that are strand cut. But when such pellets constitute a particulate bed there are few restrictions to adjacent pellets turning with respect to each other, or of the beds rupturing under shear load. This rupture can occur in plasticating extrusion, and it results in a poorly mixed melt with an inhomogeneous temperature distribution. The temperature fluctuations cause viscosity fluctuations which in turn cause pressure fluctuations. The pressure fluctuations cause throughput variations which lead to thickness variations in the product. That results in poor quality product. This sequence of events is termed surging. If the rupture of the solid bed can be prevented then surging can be curtailed.

An increase in the interparticulate friction coefficient is expected to reduce solid bed rupturing. And the interparticulate friction coefficient can be increased if pellets with non-circular cross-section constitute it. Due to the fact that trilobal fibers
are used to provide interlocking in the textile industry, the trilobal cross-section was first tested. This led to tests on bilobal and quadrilobal cross-sections as well.

However, prior to testing the pellets required manufacture. Since bilobal, trilobal and quadrilobal cross-sections are different profile cross-sections, it was first necessary to design and build a series of profile extrusion dies. Each die was capable of producing a variety of pellet cross-sections if the material was changed, or if the throughput rate was varied. So many pellet geometries could be readily produced. Each variation of material and geometry was tested independently in a direct shear cell to measure the interparticulate friction coefficient. It was clearly found that the highest interparticulate friction coefficients occurred with pellets of bilobal crosssection, a 31% to 81% increase over pellets with circular cross-section. In addition pellets with trilobal and quadrilobal cross-section exhibited an improved interparticulate friction coefficient, a 20% to 34% increase compared to pellets with circular cross-sections. Consolidation pressure and time had minimal effects whereas agitation caused interparticulate friction coefficient increases from 51% to 89%. The effect of additives in the particulate continuum on the interparticulate friction coefficient was also studied.

Since production runs could not be made to test if surging could in fact be reduced, due to the vast amounts of feedstock required, resort was made to numerical experimentation. An existing software package was modified to allow study of the transport of a portion of the solid bed. In this way rupture could be predicted based on the value of the interparticulate friction coefficient. Thus it could be inferred that surging would be reduced.

VITA

Name : Chia-Ying Liu

Degree and Date to be Conferred : Doctor of Philosophy, 1992.

Education:

College	Dates	Degree	Date of Degree
New Jersey Institute of Technology $1987-1992$ Ph.D. January, 1992 Newark, New Jersey, U.S.A.			
New Jersey Institute of Technology Newark, New Jersey, U.S.A.	$1985-1987$	M.S.M.E.	January, 1987
National Chung Hsing University Taichung, Taiwan, R.O.C.	$1976-1980$	B.S.M.E	June, 1980

Major: Mechanical Engineering.
Positions held : Teaching Assistant, N.J.I.T., Newark, New Jersey, 1987-1989.

Research Assistant, N.J.I.T., Newark, New Jersey, 1989-1991.

This dissertation is dedicated to my beloved parents
Ning-Ming Liu and Yang Yin-Dien Liu
my wife
Chiu-Hui Tu
and
my son
Kevin Liu

ACKNOWLEDGMENTS

I would like to express my sincere gratitude and thanks to my thesis advisor Dr. Keith T. O'Brien, for his wisdom, criticism, and help throughout the period of this study. I would also like to thank the members of the dissertation committee Dr. Rong-Yaw Chen, Dr. Ernest S. Geskin, Dr. Avraham Harnoy, Dr. Satish B. Baliga, for their constructive encouragement and suggestions.

I would like to express my gratitude to Hoechst Celanese Corporation, the Center for Manufacturing Systems and the AT\&T Foundation for their financial support of this work, I would further like to express my gratitude to the Department of Mechanical and Industrial Engineering at New Jersey Institute of Technology for financial support, and to the Department of Civil and Environmental Engineering for use of their facilities.

I am indebted to my parents for their encouragement throughout the period of my studying abroad. A special appreciation is extended to my wife, Chiu-Hui, for all her patience and understanding during this study.

TABLE OF CONTENTS

Page
LIST OF TABLES x
LIST OF FIGURES xii
LIST OF SYMBOLS xxvii
Chapter

1. INTRODUCTION 1
1.1 Introductory Comments 1
1.2 Previous Studies 3
1.3 Scope of the Present Work 4
2. THE BASIS FOR ENHANCING THE INTERPARTICULATE FRICTION COEFFICIENT IN PLASTICATING EXTRUSION 10
2.1 Fundamentals of Single Screw Extruders 10
2.2 Solids Conveying Zone 11
2.3 Melting Zone 12
2.4 Melt Conveying Zone 14
2.5 Extrudate Quality 15
3. DESIGN OF EXTRUSION PROFILE DIES FOR THE MANUFACTURE OF PELLETS WITH PROFILED CROSS-SECTIONS 19
3.1 Aspects of Die Design 19
3.1.1 Die Swell 20
3.1.2 Die Land Length 22
3.1.3 Die Entry Geometry 23
3.2 Specific Die Design 24
3.3 Profile Die Inserts. 25
4. MANUFACTURE OF PELLETS OF NON-CIRCULAR CROSS-SECTIONS 33
4.1 Preparation of the Polymer Feedstock 33
4.1.1 Acetal Copolymer 33
4.1.2 Nylon 6 34
4.1.3 Polyethylene 35
4.1.4 Polypropylene 35
4.1.5 Polystyrene 35
4.1.6 Acrylonitrile-Butadiene-Styrene 36
4.2 Procedure for Operating the Extruder 36
4.3 The Operating Conditions for Profile Extrusion 38
5. MECHANISM OF INTERPARTICULATE FRICTION IN POLYMERIC PARTICULATE CONTINUA 56
5.1 Mechanics of Friction 56
5.2 Agglomeration 57
5.3 Interparticulate Strength 58
6. TEST APPARATUS AND TEST PROCEDURE FOR THE MEASUREMENT OF THE INTERPARTICULATE FRICTION COEFFICIENT 62
6.1 Test Apparatus 62
6.2 Test Procedure 63
6.3 V-Blender 63
6.4 Method of Calculation for IPFC 64
6.5 Validation of the Test Results 65
7. EXPERIMENTAL RESULTS FOR THE INTERPARTICULATE FRICTION COEFFICIENT 72
7.1 Pellets with Circular Cross-Sections 72
7.2 Pellets with Bilobal Cross-Sections 73
7.3 Pellets with Trilobal Cross-Sections 78
7.4 Pellets with Quadrilobal Cross-Sections 80
7.5 Pellets with Consolidation Pressure and Consolidation Time 81
7.6 Pellets with Surface Lubricant and Additive 81
8. DISCUSSION - THE INTERPARTICULATE FRICTION COEFFICIENT 121
8.1 Comparison of the IPFC for Pellets with Circular and Bilobal Cross-Sections 121
8.2 Comparison of the IPFC for Pellets with Circular and Trilobal Cross-Sections 135
8.3 Comparison of the IPFC for Pellets with Circular and Quadrilobal Cross-Sections 139
8.4 Pellets with Bilobal, Trilobal and Quadrilobal Cross-Sections 142
8.4.1 Effect of Normal Pressure 142
8.4.2 Effect of Extruder Screw Speed 142
8.4.3 Effect of Molecular Weight 143
8.4.4 Effect of Extrusion Die Geometry 143
8.4.5 Effect of Agitation of the Particulate Bed 143
8.4.6 Effect of Consolidation Pressure of the Particulate Bed. 149
8.4.7 Effect of Consolidation Time of the Particulate Bed 150
8.4.8 Effect of Particulate Powders 150
8.4.9 Effect of Surface Lubricants 151
8.5 Comparison of the IPFC for Pellets with Bilobal, Trilobal and Quadrilobal Cross-Sections 151
8.6 Effect of the IPFC Increases on the Performance of Plastics Solid Conveying Equipment 152
9. THE SIMULATION OF THE PLASTICATING EXTRUSION PROCESS WITH EMPHASIS ON THE CONVEYING OF POLYMERIC PARTICULATES 222
9.1 Summary of the Simulation Procedure 222
9.2 Geometry of the Screw 227
9.3 Operating Variables 228
9.4 Simulation Input 229
9.5 Description of the Simulation Printout 231
9.6 Simulation Results 233
9.6.1 Varying the Screw Speed 240
9.6.2 Varying the Flow Rate. 241
9.6.3 Varying the IPFC 242
9.7 Simulation Discussion 244
9.7.1 Effect of Screw Speed 244
9.7.2 Effect of Flow Rate 244
9.7.3 Effect of IPFC 245
10. POSTLUDE 256
10.1 Conclusions 256
10.2 Future Work 258
10.2.1 Additional Profile Shapes 258
10.2.2 Additional Resin 258
10.2.3 Additional Resin Grades 258
10.2.4 Field Trials 259
BIBLIOGRAPHY 263
APPENDIX A 268
APPENDIX B 301

LIST OF TABLES

Table Page
3.1 Specification of the Profile Die Inserts 25
4.1 Drying Conditions of the Polymer Feedstocks for Acetal Copolymer, Polyethylene, Polypropylene, Polystyrene, Nylon 6 and ABS 38
4.2 Material Resin \& Codes 38
4.3 Material Mechanical Properties. 39
4.4 Operating Conditions of Profile Die A211 for Acetal Copolymer 40
4.5 Operating Conditions of Profile Die A212 for Acetal Copolymer. 41
4.6 Operating Conditions of Profile Die A221 for Acetal Copolymer. 42
4.7 Operating Conditions of Profile Die A231 for Acetal Copolymer 43
4.8 Operating Conditions of Profile Die A241 for Acetal Copolymer 44
4.9 Operating Conditions of Profile Die A311 for Acetal Copolymer 45
4.10 Operating Conditions of Profile Die A411 for Acetal Copolymer. 46
4.11 Operating Conditions of Profile Die A. 211 for PE, PP, PA 6, ABS and PS 47
4.12 Operating Conditions of Profile Die A212 for PE, PP, PA 6, ABS and PS 48
4.13 Operating Conditions of Profile Die A221 for PE, PP, PA 6, ABS and PS 49
4.14 Operating Conditions of Profile Die A231 for PE, PP, PA 6, ABS and PS 50
4.15 Operating Conditions of Profile Die A241 for PE, PP, PS, PA 6 and ABS 51
4.16 Operating Conditions of Profile Die A311 for PE, PP, PA 6 and PS 52
4.17 Operating Conditions of Profile Die A411 for PE and PP. 53
6.1 The Friction Coefficients of the Polymer for Acetal Copolymer, Polyethylene, Polypropylene, Polystyrene, Nylon 6, and ABS on Steel Surface 66
8.1 Effect of Normal Pressure on the Average IPFC for Acetal Copolymer. 141
8.2 Effect of Normal Pressure on the Average IPFC for PE, PP, PS, PA 6 and ABS 141
8.3 Effect of Extruder Screw Speed on the Average IPFC for Acetal Copolymer 142
8.4 Effect of Extruder Screw Speed on the Average IPFC for PE, PP, PS, PA 6 and ABS 142
8.5 Effect of Molecular Weight on the Average IPFC for Acetal Copolymer 143
8.6 Effect of Die Geometry on the Average IPFC for Acetal Copolymer 143
8.7 Effect of Die Geometry on the Average IPFC for PE, PP, PS, PA 6 and ABS 144
8.8 The Average IPFC values for Pellets with Bilobal, Trilobal and Quadrilobal Cross-Section for Acetal Copolymer, PE, PP, PS, PA 6 and ABS 144

LIST OF FIGURES

Figure Page
1.1 Solids Bed in Plasticating Screws, (a) Solids Conveying Zone, (b) Melting Zone 6
1.2 The Fracture Plane on Solid Bed 7
1.3 Forces Acting on a Portion of the Solids Bed 8
1.4 Non-Circular Pellet Cross-Sections, (a) Possible Geometries, (b) Possible Interlocking Mechanisms, (c) Multi-Lobals 9
2.1 Typical Single Screw Extruder with Three Zones (a) Solid Conveying Zone, (b) Melting Zone, (c) Melt Conveying Zone 18
3.1 Plate Type Profile Extrusion Die 27
3.2 Streamlined Profile Extrusion 27
3.3 Effect of Entrance Flow Channel and Die Length on Extrudate Swelling 28
3.4 Typical Curves Showing Effect of Capacity Entry Angle on Critical Shear Rate for Three Different Resin 28
3.5 Diagram of Entry Geometry 29
3.6 Original Die in Test Extruder 30
3.7 Modified Die in Test Extruder 31
3.8 Profile Die A211, A212, A221, A231, A241, A311 and A411-Details 32
4.1 Drying Oven Manufactured by Blue M. Electric, Co 55
4.2 Extruder Manufactured by Wayne Tool and Die, Co 55
5.1 The Yield Locus of Cohesive System 61
5.2 The Yield Locus of Noncohesive System 61
6.1 Direct Shear Cell Apparatus 68
6.2 Schematic Diagram of the Shear Cell for the Measurement of the Interparticulate Friction Coefficient 69
6.3 V-Blender 70
6.4 Acting Force on Shear Cell 71
7.1 IPFC of Cylindrical for Pellets With Circular Cross-Sections (a) U-10, (b) M-25, (c) M-90, (d) M-270, (e) M-450 83
7.2 IPFC of Cylindrical for Pellets With Circular Cross-Sections (a) PE, (b) PP,(c) PS, (d) PA 6, (e) ABS 83
7.3 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM1 84
7.4 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM1 84
7.5 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM1 85
7.6 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM1 85
7.7 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM1 86
7.8 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM2 86
7.9 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM2 87
7.10 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM2 87
7.11 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM2 88
7.12 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM2 88
7.13 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM3 89
7.14 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM3 89
7.15 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM3 90
7.16 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM3 90
7.17 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM3 91
7.18 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM4 91
7.19 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM4 92
7.20 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM4 92
7.21 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM4 93
7.22 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM4 93
7.23 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM5 94
7.24 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM5 94
7.25 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM5 95
7.26 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM5 95
7.27 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM5 96
7.28 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for PE 96
7.29 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for PE 97
7.30 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for PE 97
7.31 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for PE 98
7.32 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for PE 98
7.33 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for PP 99
7.34 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for PP 99
7.35 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for PP 100
7.36 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for PP 100
7.37 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for PP 101
7.38 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for PS 101
7.39 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for PS 102
7.40 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for PS 102
7.41 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for PS 103
7.42 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for PS 103
7.43 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for PA 6 104
7.44 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for PA 6 104
7.45 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for PA 6 105
7.46 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for PA 6 105
7.47 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for PA 6 106
7.48 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for ABS 106
7.49 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for ABS 107
7.50 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for ABS 107
7.51 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for ABS 108
7.52 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM1 108
7.53 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM2 109
7.54 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM3 109
7.55 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM4 110
7.56 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM5 110
7.57 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for PE 111
7.58 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for PP 111
7.59 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for PS 112
7.60 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for PA 6 112
7.61 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM1 113
7.62 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM2 113
7.63 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM3 114
7.64 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM4 114
7.65 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM5 115
7.66 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for PE 115
7.67 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for PP 116
7.68 IPFC for the Pellets Manufactured Using Die A211 with Consolidation Pressure as a Function of Normal Pressure for PE 116
7.69 IPFC for the Pellets Manufactured Using Die A211 with Consolidation Time as a Function of Normal Pressure for PE 117
7.70 IPFC for Pellets with Circular Cross-Sections with Zinc Stearate as a Function of Normal Pressure for POM3 117
7.71 IPFC for Pellets Manufactured Using Die A211 with Zinc Stearate as a Function of Normal Pressure for POM3 118
7.72 IPFC for Pellets Manufactured Using Die A212 with Zinc Stearate as a Function of Normal Pressure for POM3. 118
7.73 IPFC for Pellets with Circular Cross-Section with Mica Clay as a Function of Normal Pressure for PA 6 119
7.74 IPFC for Pellets Manufactured Using Die A241 with Mica Clay at Extruder Screw Speed 20rpm as a Function of Normal Pressure for PA 6 119
7.75 IPFC for Pellets with Circular Cross-Section with PBT Powder as a Function of Normal Pressure for POM3 120
7.76 IPFC for Pellets Manufactured Using Die A212 with PBT Powder at Extruder Screw Speed 15 rpm as a Function of Normal Pressure• for POM3 120
8.1 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for POM1 157
8.2 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for POM1 157
8.3 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for POM1 158
8.4 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20rpm for POM1 158
8.5 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for POM2 159
8.6 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for POM2 159
8.7 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for POM2 160
8.8 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20rpm for POM2 160
8.9 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for POM3 161
8.10 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for POM3 161
8.11 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for POM3 162
8.12 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20rpm for POM3 162
8.13 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for POM4 163
8.14 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for POM4 163
8.15 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for POM4 164
8.16 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20rpm for POM4 164
8.17 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for POM5 165
8.18 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for POM5 165
8.19 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for POM5 166
8.20 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20rpm for POM5 166
8.21 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for PE 167
8.22 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for PE 167
8.23 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for PE 168
8.24 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20rpm for PE 168
8.25 \%a Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for PP 169
8.26 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for PP 169
8.27 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15 rpm for PP 170
8.28 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20rpm for PP 170
8.29 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for PS 171
8.30 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for PS 171
8.31 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for PS 172
8.32 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20rpm for PS 172
8.33 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for PA 6 173
8.34 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for PA 6 173
8.35 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for PA 6 174
8.36 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20rpm for PA 6 174
8.37 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for ABS 175
8.38 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for ABS 175
8.39 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for ABS 176
8.40 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20rpm for ABS 176
8.41 \% Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM 1 177
8.42 \% Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM 2 177
8.43 \% Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM 3 178
8.44 \%Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM 4 178
8.45 \% Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM 5 179
8.46 \% Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for PE 179
8.47 \% Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for PP 180
8.48 \% Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for PS 180
8.49 \% Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for PA 6 181
8.50 \% Increase for Quadrilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM 1 181
8.51 \% Increase for Quadrilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM 2 182
8.52 \% Increase for Quadrilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM 3 182
8.53 \% Increase for Quadrilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM 4 183
8.54 \% Increase for Quadrilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM 5 183
8.55 \% Increase for Quadrilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for PE 184
8.56 \% Increase for Quadrilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for PP 184
8.57 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM1 with Agitation 185
8.58 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM2 with Agitation 185
8.59 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM3 with Agitation 186
8.60 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM4 with Agitation 186
8.61 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM5 with Agitation 187
8.62 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM1 with Agitation 187
8.63 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM2 with Agitation 188
8.64 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM3 with Agitation 188
8.65 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM4 with Agitation 189
8.66 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM5 with Agitation 189
8.67 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM1 with Agitation 190
8.68 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM2 with Agitation 190
8.69 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM3 with Agitation 191
8.70 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM4 with Agitation 191
8.71 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM5 with Agitation 192
8.72 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM1 with Agitation 192
8.73 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM2 with Agitation 193
8.74 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM3 with Agitation 193
8.75 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM4 with Agitation 194
8.76 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM5 with Agitation 194
8.77 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM1 with Agitation 195
8.78 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM2 with Agitation 195
8.79 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM3 with Agitation 196
8.80 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM4 with Agitation 196
8.81 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM5 with Agitation 197
8.82 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for PE with Agitation 197
8.83 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for PP with Agitation 198
8.84 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for PS with Agitation 198
8.85 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for PA 6 with Agitation 199
8.86 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for ABS with Agitation 199
8.87 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for PE with Agitation 200
8.88 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for PP with Agitation 200
8.89 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for PS with Agitation 201
8.90 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for PA 6 with Agitation 201
8.91 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for PE with Agitation 202
8.92 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for PP with Agitation 202
8.93 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for PS with Agitation 203
8.94 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for PA 6 with Agitation 203
8.95 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for ABS with Agitation 204
8.96 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for PE with Agitation 204
8.97 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for PP with Agitation 205
8.98 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for PS with Agitation 205
8.99 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for PA 6 with Agitation 206
8.100 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for ABS with Agitation 206
8.101 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for PE with Agitation 207
8.102 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for PP with Agitation 207
8.103 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for PS with Agitation 208
8.104 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for PA 6 with Agitation 208
8.105 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for ABS with Agitation 209
8.106 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM1 with Agitation 209
8.107 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM2 with Agitation 210
8.108 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM3 with Agitation 210
8.109 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM4 with Agitation 211
8.110 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM5 with Agitation 211
8.111 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM1 with Agitation 212
8.112 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM2 with Agitation 212
8.113 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM3 with Agitation 213
8.114 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM4 with Agitation 213
8.115 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM5 with Agitation 214
8.116 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for PE with Agitation 214
8.117 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for PP with Agitation 215
8.118 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for PS with Agitation 215
8.119 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for PA 6 with Agitation 216
8.120 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for PE with Agitation 216
8.121 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for PP with Agitation 217
8.122 Effect of Consolidation Pressure on IPFC for Pellets Manufactured Using Die A211 of PE 217
8.123 Effect of Consolidation Time on IPFC for Pellets Manufactured Using Die A211 of PE at Consolidation Pressure 126.3 kPa 218
8.124 \% Increase for Pellets with Circular Cross-Sections of PA 6 with Mica Clay 218
8.125 \% Increase for Pellets Manufactured Using A241 of PA 6 with Mica Clay at Extruder Screw Speed 20rpm 219
8.126 \% Increase for Pellets with Circular Cross-Sections of POM3 with PBT Powder 219
8.127 \% Decrease for Pellets Manufactured Using Die A212 of POM3 with PBT Powder at Extruder Screw Speed 15rpm 220
8.128 \% Decrease for Pellets with Circular Cross-Sections of POM3 with Zinc Stearate 220
8.129 \% Decrease for Pellets Manufactured Using A211 of POM3 with Zinc Stearate 221
8.130 \% Decrease for Pellets Manufactured Using A212 of POM3 with Zinc Stearate 221
9.1 Force Balances on a Differential Element of Particulate Bed, (a) Stationary Solids, $\mathrm{F}_{\mathrm{o}}>\mathrm{F}_{\mathrm{L}}$, (b) Stationary Solids, $\mathrm{F}_{\mathrm{o}}>\mathrm{F}_{\mathrm{L}}$, (c) Solids Move at Constant Velocity in the Position X-Direction, (d) Solids Move at Constant Velocity in the Negative X-Direction 246
9.2 Idealized Channel Cross-Section Perpendicular to the Flights Compared to Real Cross-Sections in the Melting Zone 247
9.3 Extruder Manufactured by Prodex Co 248
9.4 Screw Manufactured by Prodex Co 249
9.5 Details of Prodex Screw 250
9.6 The Pressure as a Function of Axial Screw Position for Different Screw Speeds for Acetal Copolymer Grade M90 251
9.7 The Solid Bed Ratio as a Function of Axial Screw Position for Different Screw Speeds for Acetal Copolymer Grade M90 252
9.8 The Pressure as a Function of Axial Screw Position for Different Flow Rates for Acetal Copolymer Grade M90 253
9.9 The Solid Bed Ratio as a Function of Axial Screw Position for Different Flow Rates for Acetal Copolymer Grade M90 254
9.10 The IPFC as a Function of Axial Screw Position at Same Channel Depth for Acetal Copolymer Grade M90 255
10.1 Additional Pellet Cross-Sections, (a) Rectangular, (b) Square, (c) Triangular, (d) Crescent, (e) Star 262

LIST OF SYMBOLS

A area, in^{2}
B bound limit
C_{f} channel flight width, in
C_{c} channel flight clearance, in
$\mathrm{C}_{\mathrm{ps}} \quad$ specific heat of the solid, $\mathrm{Btu} / \mathrm{lb}{ }^{\circ} \mathrm{F}$
$\mathrm{C}_{\mathrm{pm}} \quad$ specific heat of the melt, $\mathrm{Btu} / \mathrm{lb}^{\circ} \mathrm{F}$
$D_{B} \quad$ barrel Diameter, in
$D_{c} \quad$ channel depth, in
$F_{c} \quad$ channel flight clearance, in
$\mathrm{F}_{\mathrm{h}} \quad$ horizontal friction force, N
$\mathrm{F}_{\mathrm{v}} \quad$ vertical contact force, N
G mass flow rate through the extruder, $\mathrm{lb} / \mathrm{hr}$
K stress factor dependent on the particle shape
$\mathrm{F}_{\mathrm{d}} \quad$ screw flight diameter, in
L length of the extruder, in
L_{f} length of feed zone, in
$L_{s} \quad$ length of each geometrical section, in
N normal force, N
$\mathrm{N}_{\mathrm{s}} \quad$ frequency of screw rotation, rpm
$\mathrm{N}_{\mathrm{c}} \quad$ packing coordination
N_{t} number of channels (threads) in parallel
$P_{o} \quad$ pressure at entrance of feed zone, psi
$\mathrm{P}_{\mathrm{s}} \quad$ pressure at solid conveying zone, psi
S shear force, \mathbf{N}
$\mathrm{S}_{1} \quad$ screw lead, in
$S_{n} \quad$ number of geometries sections on the screw
T total externally applied hirizontal force, N
$\mathrm{T}_{\mathrm{b}} \quad$ barrel temperature of the polymer, ${ }^{0} \mathrm{~F}$
$\mathrm{T}_{\mathrm{m}} \quad$ melting temperature of the polymer, ${ }^{\circ} \mathrm{F}$
$\mathrm{T}_{\mathrm{av}} \quad$ average temperature of the polymer in the film, ${ }^{\circ} \mathrm{F}$
V velocity, ft/sec
$\mathrm{V}_{\mathrm{bx}} \quad$ velocitycomponent in the x direction of the inner surface of the barrel relative to screw, in/sec
$W_{r} \quad$ vertical force due to weight of ring, N
$\mathrm{W}_{\mathrm{r}} \quad$ friction force between ring and material, N
X solid bed width, in
$X_{i} \quad$ solid bed width at the entrance of each axial increment, in
$X_{o} \quad$ solid bed width at the exit of each axial increment, in
$\mathrm{Z}_{\mathrm{F}} \quad$ power for feed zone, HP
a constant
f fractional density
$f_{s} \quad$ screw friction,
$\mathrm{f}_{\mathrm{b}} \quad$ barrel friction,
$\mathrm{k}_{\mathrm{m}} \quad$ thermal conductivity of the melt, $\mathrm{Btu} / \mathrm{hr}$
m mean value,
n parameter in the "power law" model
r radius of orifice,
$\mathrm{x}, \mathrm{y}, \mathrm{z} \quad$ co-ordinate directionns
$\Phi \quad$ dimensionless constant
δ thickness of the melt film, in
$\dot{\gamma} \quad$ shear rate, s^{-1}
$\lambda \quad$ heat of fusion, Btu/lb
$\mu \quad$ interparticulate friction coefficient
$\psi \quad$ angle of internal friction
θ angle of movement of the outer surface of the solid plug, radians
$\rho_{m} \quad$ density of melt, $\mathrm{lb} / \mathrm{ft}^{3}$
$\sigma_{\mathrm{c}} \quad$ tensile strength, psi
$\tau \quad$ characteristic relaxation time, sec
$\phi_{\mathrm{S}} \quad$ helix angle at the screw root, degrees
ϕ_{a} helix angle of screw at the average depth of the screw channel, degrees

CHAPTER 1

INTRODUCTION

1.1 Introductory Comments

The classical solids conveying and melting mechanism models for plasticating extrusion, reciprocating-screw injection molding, and extrusion blow molding assume that the solids bed remains intact. During solids conveying the particulates, are initially loosely packed and then, as the pressure is generated by the rotation of the plasticating screw, the particulates pack tightly into a solid bed. This mechanism of conveying was first presented by Darnell and Mol [16], and expanded upon by Tadmor and Klein [49].

The melting mechanism which occurs in plasticating extrusion, reciprocatingscrew injection molding and extrusion blow molding, was first explained by Maddock [27] and was also expanded upon by Tadmor, Duvdevani and Klein [47]. Crosssections of the polymer in the extruder channel are shown in Figure 1.1 in schematic form, for the solids conveying and the melting situations. In the solids conveying zone the solids become tightly packed into a solid bed continuum. As it melts from the surface in contact with the barrel, a melt film forms. The melt film grows until it is thick enough to be scraped from the barrel surface by the rotating screw flight. Then it collects in a recirculating melt pool in front of the screw flight. At this time the solids bed starts to melt from this second solid-melt interface, and consequentially develops a non-rigid side. This allows the possibility of solid bed fracture, since the bed is no longer contained by metallic walls. Gradually, all of the solids melt and the melting process is completed.

Most often this is exactly what happens in single screw plasticating extrusion. However, it is also known that the solid bed can fracture, and a discontinuity in the
continuum will result. When fracture of the solid bed, or solid bed break-up, occurs it is frequently accompanied by surging of the output. The melting discontinuity resulting from the fracture precipitates a temperature non-homogeneity, which leads to a pressure variation at the die, and subsequently throughput variations, or surges. Tadmor and Klein [49] reported that for many materials, under various operating conditions, solid bed break-up can be observed. They also related solid bed breakup to the temperature fluctuations observed by Marshall, Klein and Uh1 [30]. Under certain conditions, the solid bed break-up so that it fills up the channel with solids leaving no room for the melt to pass. When this happens the melt accumulating behind the solid plug occasionally breaks through causing a sudden increase in production rate and associated drop in pressure. Such a fluctuation in production rate and pressure is called surging. When surging occurs, the manufacturing system can become unstable, and low quality product can be produced. The product can even fail quality specifications and be rejected altogether. Therefore, surging is considered undesirable, and manufacturing units are frequently slowed down, or stabilized, until the surging is arrested. The causes and effects of surging have been reported by Tadmor and Klein [49]. The plane of fracture is clearly the weakest plane in the solid bed as shown in Figure 1.2. If the forces involved in the fracture are tensile, then the only methods available to maintain the integrity of the solid bed are to eliminate the tensile forces or increase the agglomeration forces of the polymer. However, tensile forces should not occur in a well designed plasticating screw since the solid bed is compressed and shear. If, however, the solid bed fractures as a result of shear loading, then an increase in the resistance of the solid bed to shear will clearly reduce, or eliminate, the solid bed break-up. Although not proven, it seems likely that the curvature of the channel may be responsible for the solid bed break-up since it may place the solid bed in a bending mode. This is illustrated in Figure 1.3. In this circumstance, tensile fracture near the barrel is possible. However, the positive
pressure gradient in the screw channel should inhibit this action. Although not proven, it seems more likely that fracture would occur by the action of shear forces since the external loading is by torsional shear. Thus, if the resistance to the shear forces can be increased, then, solid bed break-up will be reduced. If the solid bed remains intact cold spots due to solids broken up on the melt cannot cause temperature variations in the melt at the die and so viscosity will not occur, therefore pressure variations and output variations will not occur. Clearly, the resistance to any applied shear force will be increased in proportion to the interparticulate friction coefficient. Hence, the onset off surging may be postponed.

1.2 Previous Studies

Although the interparticulate friction coefficient has not been extensively studied, the friction coefficient between polymeric particulates and various metals has received extensive attention. This is due to its importance in solids conveying calculations for the design of plasticating screws for extrusion, injection molding and blow molding, and the need to accurately know the friction coefficients between the metal surfaces and the polymeric particulates. The interparticulate friction coefficient, by contrast, is not measured, but is assumed to be great enough to maintain the integrity of the solid bed.

Schneider [41] was the first to measure the coefficients of friction between metal surfaces and polymeric particulates, noting its dependence on temperature, normal load and relative sliding velocity. Evans [18] confirmed the findings of Schneider in a more sophisticated apparatus. Finally, Huxtable, Cogswell and Wriggles [23] developed an apparatus which accounted for the above effects, as well as channel depth and particulate location. These authors provided extremely accurate, and extensive, results for several polymers. However, no additional results have been reported for the interparticulate friction coefficient since Jenike [25].

Thus, the assumption has always been made that the solid bed remains intact, and that the metal-polymer friction coefficients dominate the solids conveying in plasticating extruders, reciprocating-screw injection molding machines, and extrusion blow molding machines.

Subsequently the development of the barrier screws by Maillefer [29], where the solid and melt fractions are separated, and the many derivatives which followed [4], have provided a way to maintain the integrity of the solid bed, as well as to hasten melting. However, the designs are more complex, the screws more costly, and output is not necessarily increased. In addition, these designs have not penetrated the reciprocating-screw injection molding machine market, or the extrusion blow molding machine market. Yet, solid bed break-up can cause severe aberrations in these processes.

Clearly there is a strong motivation to maintain the production unit close to surging conditions in order to maximize the throughput, but it is taken at the risk of quality diminution. If the throughput could be increased, without the occurrence of surging, the resultant cost benefits would be significant. In fact, only a 5% increase in extruder throughputs would result in billion dollar savings to the industry.

1.3 Scope of the Present Work

In this work, the hypothesis that increasing the interparticulate friction coefficients reduces the likelihood of solid bed fracture is tested. The resistance of the solid bed under shear loading is increased if the interparticulate friction coefficient is increased. The increases of interparticulate friction coefficient are expected if the polymeric particulates can be made to interlock. This action is further hypothesized if the traditional pellets of circular cross-section are replaced by pellets with more complex geometries which allow interlocking to occur. Some examples of pellet geometries which allow interlocking are shown in Figure 1.4 (a) and the
methods by which they may interlock are shown in Figure 1.4 (b). There are many ways that pellets can rest against adjacent pellets, and the real system will involve a statistical combination of all of them. The manner in which they touch directly affects the interparticulate friction coefficient of the particulate continuum, and this coefficient will be utilized as a measure of the behavior of the particulate continuum without studying the explicit details of the situation. Although the interparticulate friction coefficient has not been extensively studied, the friction coefficient between polymeric particulates and various metals has received extensive attention. This is due to its importance in solids conveying.

In this study, the concentration has been placed upon pellets with multi-lobal cross-sections such as the bilobal, the trilobal and the quadrilobal as shown in figure 1.4 (c). The fabrication of pellets with multi-lobal cross-sections is presented in chapter three and four, including the task of designing, constructing and operating a profile die which produces consistently shaped pellets, during extrusion. The measurement of the interparticulate friction coefficient was first presented by Jenike [25], in his classic work on soil mechanics. For polymers, however, scant data is available [48]. The experimental apparatus, known as a direct shear cell, used for these measurements is described in chapter six and the experimental results are presented in chapter seven.

The simulation for the plasticating extrusion process is illustrated in chapter nine, in order to justify the performance of the screw extruder, to accomplish the optimum conditions for the extrusion process.

(a) Solids Conveying Zone

(b) Melting Zone

Figure 1.1 Solids Bed in Plasticating Screws, (a) Solids Conveying Zone, (b) Melting Zone.

Figure 1.2 The Fracture Plane on Solid Bed.

Figure 1.3 Forces Acting on a Portion of the Solids Bed.

(c)

Figure 1.4 Non-Circular Pellet Cross-Sections, (a) Possible Geometries, (b) Possible Interlocking Mechanisms, (c) Multi-Lobals.

CHAPTER 2

THE BASIS FOR ENHANCING THE INTERPARTICULATE FRICTION COEFFICIENT IN PLASTICATING EXTRUSION

2.1 Fundamentals of Single Screw Extruders

The single screw extruder is the most important equipment used in the polymer processing field. All polymers pass through an extruder at least once in the production path from the polymerization reactor to the finished product. The single screw extruder is in fact the central component of a whole group of processing machines, such as the melt extruder, the injection and blow molding machines.

The single screw extruder is shown in Figure 2.1. The plasticating process is divided into three zone. These are,
a. solid conveying zone
b. melting zone
c. melt conveying zone

The solid conveying zone transfers the granules, or pellets, from the hopper at the input of the extruder, and conveys the solid to the melting zone. Its conveying capacity must be at least equal to the metering capacity on a weight basis. In the feed section the solid plastic particles, generally in the form of cylindrical pellets, are pushed along the channel by the rotating screw. The solids conveying zone is considered to end where the solids begin melting. The melting and compression zone starts at that transition point. After all the solids is totally melt, it enters the melt conveying zone.

The variables which control the solid delivery are discussed by Decker [17]. These are the shape and dimensions of the channel, surface temperature, back
pressure. and the coefficient of friction between the plastic and the metal of both the screw and the barrel surface.

2.2 Solids Conveying Zone

The solids conveying mode was proposed by Decker [17]. Though, the conclusions given by Decker correlate qualitatively with experience, the formulas given do not relate well to actual behavior. In 1947 Weber [54] treated the plastic plug as a solid continuum but neglected the forces acting between the barrel and the material.

A much more realistic approach for the conveying of solids in the screw extruder is given by Pawlowski [35]. He proposed a balance of forces on the screw channel. The analysis of this balance is based on the estimation of the mechanical forces acting upon the solid plug of plastic from the barrel and screw. All forces result in either pressures normal to the flight surface or shearing forces due to friction parallel to the contacting surfaces.

Maillefer [28] also discussed the solids conveying section, but his analysis was not made in curved channels where torques are involved, and therefore, did not include all forces acting on the solid plug. Simonds, et al. [44] stressed the importance of friction on solids transport and introduced the balance of torques, but this treatment can predict only whether or not solids will be conveyed. Jackson, et al. [24] performed a similar analysis to that of Maillefer but included the normal force that the pushing flight exerts on the plastic plug. However, because they did not perform the essential balance of torques, the equations have little value.

The most thorough analysis for the conveying of solids in the single screw extruder was performed by Darnell and Mol [16], who also reviewed previous work in this area. The analysis presented by Darnell and Mol [16], will be followed with some modifications. Among these, the width of the flights will be incorporated into
the derivation, and different friction coefficients will be assumed on the barrel and screw surfaces. Since friction forces between the solid polymer and barrel and screw surfaces play a decisive role in the solids conveying mechanism.

2.3 Melting Zone

The melting zone, or phase transition zone, is defined as that portion of the screw in which solid polymer and melt coexist. The melting mechanism in screw extruders was first investigated by Maddock [27] and by Street [46]. They developed the experimental techniques which led to the development of a qualitative mechanism for melting through visual observation, and then enabled the development of a theoretical model for melting through quantitative analysis by Tadmor [48], and by Tadmor, Duvdevani and Klein [47].

Furthermore, a good understanding of the melting mechanism is of paramount importance for the understanding of plasticating screw extruders. The solid pellets which are fed into the hopper start moving toward the die, at a certain point the barrel starts heating, the solid pellets which touch the hot barrel surface. They melt and form a thin film of melted polymer on the barrel surface. When the pellets reach this point, they are no longer loosely packed, since considerable pressure is developed. It tends to compact the pellets into a sturdy solid bed. The bed has the shape of the helical channel and slides in it. In spite of the compacting, the pellets retain their individuality, and the boundaries between the individual pellets are clearly visible in the solid bed way down the channel. The barrel surface is moving relative to the solid bed and the screw. Due to this relative movement, a velocity profile develops in the melt film between the solids bed and surface of the barrel. Thus, the melt in the film starts to flow toward the advancing flight, and as it meets the flight, the latter scrapes the melt off the barrel. The melt collects in the pool of melt in the rear of the channel in front of the advancing flight. As the solid bed slides
down the channel, more and more melt is carried into the pool of melt, the size of which consequently increases, while that of the solid bed decreases. Thus, in spite of the fact that most of the melting occurs at the barrel surface, or rather at the interface of the melt film and the solid bed, the height of the solid bed does not decrease and the solid bed is continuously rearranged while maintaining a constant height. In effect this rearrangement causes the solid bed to continuously move into the interface where it melts. Consequently, the width of the solid bed gradually decreases as it moves down the channel. The total length from the onset of melting to the point where the solid bed width drops to zero is termed length of melting zone. It must be realized that there are two sources of heat in the melting mechanism. One is the heat which comes from the heaters on the barrel. This heat conducted from the hot barrel surface through the film into the interface. Another is the heat that originates from viscous dissipation due to the relative velocity of the barrel and screw shearing the thin film. The ratio of these two heat sources depends entirely on the operating conditions and the polymer properties. The solid bed is composed of compacted solid particles. If the solid bed can not resist the shear force, it will usually break up at some point in the channel. The gap created by the breaking up of the solid bed is quickly filled with melt. This breaking up process, if it occurs, is not accidental or random. The solid bed is dragged forward by the barrel. In addition, large pressure gradients exist in the channel, and the solid bed has a different velocity from that of the neighboring melt. Meanwhile, the rest of the solid bed will move forward until once more external forces overcome the resisting forces. This second and sequent breaking of the solid bed usually occurs at approximately the same point in the extruder as the previous one. Obviously there seems to be an inherent instability in the melting process. The solid bed break up occurs, accompanied by surging of the output. The solid bed fractures as a result of shear loading, then increases in the resistance of the solid bed to shear will clearly reduce, or eliminate,
the solid bed break up. Clearly, the resistance to any applied shear force will be increased in proportion to the interparticulate friction coefficient. Therefore, the surging phenomena may be inhibited or postponed.

2.4 Melt Conveying Zone

The melt conveying zone is the last section of the screw preceding the die. It produces the die pressure which controls the flow rate of the extruder. It acts as a metering pump from which the molten plastics material is delivered to the die system at constant volume and pressure. There are two distinct melt conveying mechanisms. One is downstream the melting zone after the completion of melting, Another melt conveying mechanism occurs in the melt pool, which extents side by side with the solid bed profile, in the melting zone the width of the melt pool changes in the flow direction. Where the model for the melt conveying zone of a plasticating screw extruder discussed by Tadmor and Klein [49] stipulates the equations for calculating the flow rate, pressure, temperature, and velocity distributions across the channel as well as down the channel. In order to solve the basic flow equations, there are two different theoretical models proposed. One is a simplified flow theory where the nature of the polymer melt and the temperature conditions in the channel is based on isothermal Newtonian flow, which was proposed by Rowell and Finlayson [38] and later by Carley, Mallouk and McKelvey [9]. Another is non-Newtonian flow by using the "power law" fluid model, which was proposed by Ostwald [34] and Glyde and Holmes-Walker [20]. Here the melt conveying model is used to calculate local pressure gradients and temperature changes over small finite axial increments using the mean local flow rate and melt pool size. It also provides additional information relevant to extruder design and operation, specifically the power input required for this zone.

2.5 Extrudate Quality

The object of melt extrusion of thermoplastics is the continuous production of useful products of given, uniform cross section, and quality. The appearance of rough extrudates and those whose shapes do not conform to the cross section of the openings of the extrusion dies may result from any of the following causes, such as the presence of volatile material and gel particles in the polymer, extrudate swelling, poor die finish, and melt fracture.

It is well known that volatile constituents such as water may cause crater-like depressions from burst surface bubbles and that gel particles may cause small bumps. Elimination of such defects obviously requires elimination of the volatiles and gels.

The dimensions of the cross section of extrudates always tend to be larger than the corresponding dimensions of the extrusion dies. The extrusion swelling does not usually cause roughness. However, it may result in considerable distortion of the extrudate shape relative to that of the die. The amount of extrudate swelling may be reduced by any of the following - drawing the melt, raising the temperature, lengthening the die, and lowering the throughout.

Rough interior surfaces on extrusion dies may result in rough extrudate surfaces. Tool marks or scratches in a die land in the direction of flow tend to cause marks or streaks along the length of the product. However, a mirror finish on die lands may not be necessary. Sand blasted surfaces and those on which the tool marks are transverse to the flow direction appear to have little effect on the finish of the extrudate surface.

At low extrusion pressures or shear stresses, extrudates are smooth and regular, and the flow rates low. As the pressure is increased, the flow rate and the diameter of the extrudate increases. At and above a critical pressure the extrudates become increasingly irregular. Melt fracture initiates and propagates in die inlets at and above critical pressures described by Tordella [51]. The irregular shapes of the
extrudates result from "elastic memory". After emerging from the die, the extrudates tend to regain the configuration they had before extrusion. Melt fracture, which is an irreversible process, makes the recovered shape asymmetric, Spirals and segments result.

Since melt fracture occurs at and above a critical stress, it may be avoided by suitable manipulation of the extrusion variables to keep the stress below the critical level. Any combination of the following methods may be used to reduce the shear stress to eliminate melt fracture,

1. Lower the viscosity by raising the temperature,
2. Use a streamlined ar gradually tapered inlet,
3. Lower the throughput by reducing the pressure.

Of the above expedients by which melt fracture may be avoided, use of streamlined inlets is the most effective. No other change in the operation may be required.

Melt fracture sometimes occurs when operating an extruder at a high throughput rate. The extrudate takes on a rough irregular appearance which cannot be attributed to any other cause than the physical breakdown of the melt or 'melt fracture'. This phenomenon occurs when the shear stress of the melt exceeds its shear strength such as for example in an extrusion die where, due to a substantial reduction in channel width, a sudden increase occurs in the shear rate. Original investigations by Tordella [51] showed that melt fracture occurred at a critical pressure which varied with the viscosity of the melt, the die pressure and the die geometry. As the last fracture was the only one which could be modified without causing a loss of output, the effect of the inlet geometry, and land length of the dies was considered. The theoretical aspects of melt fracture have also been studied by Schulken and Boy [42] and applied to the development of a method of calculating the die entrance geometry. What Tordella [51] called a critical pressure, Schulken
and Boy [42] call a critical shear rate which is dependent principally on the die entry geometry and viscosity.

Figure 2.1 Typical Single Screw Extruder with Three Zones (a) Solid Conveying Zone, (b) Melting Zone, (c) Melt Conveying Zone.
(From "Petrothene ${ }^{\circledR}$ Polyolefins: Aprocessing Guide," 3d ed., U.S. Industrial Chemicals Co., New York, 1965)

CHAPTER 3

DESIGN OF EXTRUSION PROFILE DIES FOR THE MANUFACTURE OF PELLETS WITH PROFILED CROSS-SECTIONS

3.1 Aspects of Die Design

Extrusion dies can be designed to produce special shapes for different end products. The specific dies are classified into several kinds, such as for sheet, for film, for pipe and tube, for wire covering, and for profiles. The quality of an extruded product, however, depends not only on the extruder and the material used, but also on the efficiency of the die and other pieces of equipment which are part of the process.

The function of an extrusion die is to form the molten material delivered by a screw into a required cross-section. The die is, therefore, a channel whose profile changes from that of the extruder bore to an orifice which produces the required form. The behavior of a thermoplastics melt over the required range of shear rates and temperature and to be able to relate this viscosity with the flow of the melt under pressure through the different sections of which the channel is composed, must be predicted.

Basically, Corbett [14] and Weeks [55] described that the following must be taken into account in designing profile dies: 1 . The flow channel must not have any " dead spots" (stagnation points), 2. From the time that it enters the die until it leaves, the melt must be accelerated as constantly as possible until the desired exit velocity of the melt is reached in the die land, 3. The construction of the die should be keep simple and the die should be easily dismountable for cleaning and possible corrections to the flow channel.

There are plate dies and streamline entry dies. The first is illustrated in Figure 3.1 and shows that the shaping orifice is in a flat plate attached to a die holder. It is evident that there is a great deal of stagnation in the region behind the die. For some materials, such as the polyolefins, which are thermally stable, that is not a serious problem. On the other hand, thermally sensitive materials, such as rigid PVC, cannot be run for a significant length of time in plate dies. The degraded material which forms in the stagnation regions will start to release stained and decomposed resin and the result will be an unstable product. Figure 3.2 illustrates a streamlined die which has a transition section that matches the flow from the extruder head diameter to the product shape. This type of tool construction is used to prevent stagnation of material in the die.

3.1.1 Die Swell

The die swell is a characteristic of the material which results as it exits from the die orifice. The visible swelling of the material at the die exit has its cause in the reversible deformations, which are stored in the material as it leaves the die and are a function of the prior deformation and relaxation history investigated by Graessley, Glasscock, and Crawley [21], as well as the rearrangement of the velocity profile at the die orifice to a block profile, which results in local extensions in the cross-section. The two phenomena cannot be separated from each other. Rothermeyer [37] reported that the effect of the prior history on the achievable cross-section was shown in Figure 3.3. It demonstrated that star-shaped and circular inlet regions were selected in the square outer die ring of length $L ; R_{\text {eff }}=\left(2 A_{\text {die }} /\right.$ perimeter of die $)$, corresponding to a comparison radius in the region similar to half the "hydraulic diameter". The influence of the inlet zone decreases as the length of the outer die ring and therefore the residence time increases. Figure 3.3 also illustrated that a star-
shaped die would be required in the exit region in order to produce an exactly square profile.

This strictly phenomenological finding can also be quantified by calculating the reversible elastic deformations at the outer die ring; for this purpose, experimental data for the material under consideration is required in order to establish a correlation between the calculated values and the swell. It must be noted that these analyses and calculations were carried out one dimensionally, that is, only over the height of the flow channel. The results are therefore directly applicable only to simple profiles such as round, strand, pipe, plane, and sheet. A calculation of the distribution of reversible deformations over a complicated profile of any crosssection is still pending. The already referred to rearrangement of the velocity profile for any profile has also not yet been calculated. However, it is expected that the calculations for both problems will be carried out by the "method of finite elements" in the future.

The swell potential, that is, the reversible deformation, can be decreased in a parallel die land. If the effect of the prior history, in the pre-zone and the inlet zone, on the geometry of the emerging profile cross-section is to be avoided a length, L must be chosen for the die land described by Tanner [50] shown as below,

$$
\begin{equation*}
\mathrm{L}>\tau_{\text {relax }} \frac{\mathrm{V}}{\mathrm{~A}} \tag{3.1}
\end{equation*}
$$

Here $\tau_{\text {relax }}$ is a characteristic relaxation time, which can be obtained from experimental, rheological investigations of the flow. Deformations, which are introduced in the die land, also be regarded as providing only an estimate in the case of geometrically complicated profile cross-sections.

The difficulties associated with calculating the swell and the unawareness of the order of magnitude of the velocity profile rearrangement, which also contributes macroscopically to the deformation of the profile emerging from the die orifice, have contributed to the fact that empirical values are used in practice for correcting the die exit cross-section for swell.

3.1.2 Die Land Length

Practical experience has to some extent determined this parameter. In the form of the rule of thumb the land length/orifice thickness ratios which are widely used an about $10: 1$ for materials of high viscosity such as unplasticised PVC and up to a ratio of $30: 1$ may be used for low density polyethylene.

Although it is instructive to calculate the approximate flow through an extrusion die using the foregoing formula, it must be pointed out that the usefulness of this exercise is confined to comparison values only. There are usually far too many imponderables to allow the accurate calculation of die dimensions from theoretical considerations alone and practical experience must, be the guide at least in the early design stages. The die land/orifice thickness ratios referred to above for example take into account the experience of the designer, for surface finish, compound lubrication, filler loading, the construction of the die upstream of the land and the system of product sizing to be used. It is obviously difficulty to describe such factors in mathematical terms so that in the final analysis the die land/orifice thickness and other ratios established over the years by trial and error usually form the basis of most practical die designs.

The calculations are, however, often of great value when changes or modifications are required. It has been inferred above that the pressure drop across the lands of a die is proportional to the cube of the thickness. Thus if the wall thickness of a tube is changed to produce a product of different dimensions, the land
must be changed by the cube of this difference to maintain the same pressure gradient at the same melt temperature, or viscosity.

In applying the cubic relationship, it is also important to realize that with dies of very small wall thickness such as used for the production of polyethylene film, the shear rates encountered in the narrow annulus may be quite high. Besides causing a considerable local decrease in viscosity and thus of pressure drop these high rates of shear can also cause a considerable departure from Newtonian flow on which the cubic relationship is based. Moreover, the rigorous application of the cubic relationship to the design of dies for very heavy sections would result in very long dies which could tend to become prohibitive as the thickness increased. However, provided these two extreme conditions are dealt with in an intelligent manner, the cubic expression for land length/annulus width relationship can form a very useful guide in die design.

3.1.3 Die Entry Geometry

By testing each resin with a standard set of capillaries having different entrance angles and plotting the critical shear rate against the half angle of entry was presented by Levy [26], Figure 3.4, a curve for each resin is obtained, which can be used as a reference for calculating entrance geometry from,

$$
\begin{equation*}
\dot{\gamma}=\frac{4 \mathrm{Q}}{\pi \mathrm{r}^{3}} \tag{3.2}
\end{equation*}
$$

where,
Q is the desired rate of flow, r is the capillary radius, $\dot{\gamma}$ is the shear rate.

If the desired output and shear rate are determined, the orifice radius can be calculated from Eq. (3.2),

$$
\begin{equation*}
r=\sqrt[3]{\frac{\dot{\dot{\gamma} \pi}}{4 \mathrm{Q}}} \tag{3.3}
\end{equation*}
$$

The influence on extrudate quality of die entry length has also been given by White and Kondo [56]. The die entry geometry is shown in Figure 3.5. The importance of entry geometry is not confined to melt fracture problems. Melt expression caused by elastic recovery of the melt as it leaves the die is important in establishing die design.

3.2 Specific Die Design

The original die is schematically shown in Figure 3.6. It is composed of two parts, one part, A , is a flanged type connector, the other part, B , is a long channel profile die. This kind of die design is suitable for simple shapes of profile. If the shape of profile is complicated, due to the long channel, it is hard to fabricate all of part B. Therefore, in order to manufacture different shapes of pellet, the original die has been changed into a four parts assembly, which is schematically shown in Figure 3.7. It is composed of four parts, A, B, C , and D. The part A is the same as in Figure 3.6. It is more convenient to change the different profile dies for the manufacturing process for different shapes of pellets. Only part D is changed. This process can be performed within ten minutes, while the whole body of the profile is unaffected.

Moreover, the new die design, eliminates the disadvantage of the original one. It not only saves the cost of remaking the whole of B for the original die, but also saves the time for replacing the flanged type connector, in order to insert the
different shapes of profile die. It is apparent that the channel of the profile is shorter and easier to fabricate than the original die.

3.3 Profile Die Inserts

In order to manufacture the different shape of pellets, seven profile die inserts were used. Each was fabricated in the work shop of the M.E. Department. The specification of the profile die inserts is categoried in Table 3.1. The first digit represent the number of orifice in the profile die insert, and the second the radius of the orifice. The last indicates the die land length of the die insert.

In Figure 3.8, it contains seven die inserts. The profile die inserts A211 (A201-01) and A212 (A201-02) have the same radius of orifice, but the die land length is different. The profile die inserts A221 (A202-01) and A231 (A203-01) have the same radius of orifice, but the distance between the orifice is different. The profile die inserts A241 (A204-01) has the largest diameter of orifice for the bilobal profile die. The profile die insert A311 (A301-01) has three orifice in profile die for manufacturing the trilobal pellet. The profile die insert A411 (A401-01) is a quadrilobal die for producing the quadrilobal pellet.

Table 3.1 Specification of the Profile Die Inserts.

No	Profile Die	(1th digit) Orifice Number	(2nd digit) Orifice Diameter (in)	(3rd digit) Orifice Die Length (in)
1.	A211	2	$5 / 64$	1.0
2.	A 212	2	$5 / 64$	1.5
3.	A 221	2	$1 / 16$	1.0
4.	A 231	2	$1 / 16$	1.0
5.	A 241	2	$3 / 32$	1.0
6.	A 311	3	$5 / 64$	1.0
7.	A 411	4	$5 / 64$	1.0

Figure 3.1 Plate Type Profile Extrusion Die.

Figure 3.2 Streamlined Profile Extrusion.

Figure 3.3 Effect of Entrance Flow Channel and Die Length on Extrudate Swelling. (From F. Rothemeyer, Kunststoffe, 59, 333 1969)

Figure 3.4 Typical Curves Showing Effect of Capacity Entry Angle on Critical Shear Rate for Three Different Resin.
(From E. G. Fisher, "Extrusion of Plastics," New York, 1976)

Figure 3.5 Diagram of Entry Geometry.

Figure 3.6 Original Die in Test Extruder.

Unit: Millimeter

Figure 3.7 Modified Die in Test Extruder.

Figure 3.8 Profile Die A211, A212, A221, A231, A241, A311 and A411 - Details

CHAPTER 4

MANUFACTURE OF PELLETS OF NON-CIRCULAR CROSS-SECTIONS

4.1 Preparation of the Polymer Feedstock

Most of the materials is used in the manufacturing the multi-lobal pellets, must be put into the drying oven manufactured by Blue M . Electric, Co. A photograph is shown in Figure 4.1. The feedstocks were dried according to the recommended drying conditions of the feedstock manufacturer. These are shown in Table 4.1.

The extrusion conditions observed in actual processing vary considerably. Extruders differ, for example, in the way in which they run on different materials. Base resins differ from maker to maker. The type of granule, and the class of product will also have an effects on the conditions of extrusion. The following materials were used in this study.

4.1.1 Acetal Copolymer

Acetal copolymer is an engineering thermoplastic offering a unique combination of properties and predictable performance. Because of its highly crystalline structure, it offers a balance of high tensile strength, fatigue resistance, stiffness and toughness. These properties, coupled with excellent creep resistance, resilience, abrasion resistance, low moisture absorption and dimensional stability. Acetal copolymer resins are divided into a number of grades, made by varying the molecular weight [39]. Molecular weight has a direct influence on both certain mechanical properties and on melt viscosity. The various grades of Acetal copolymer resins are classified in terms of their melt viscosity (1.0-45.0). These grades are explained below noting their important characteristics and typical applications.

Polyacetal has have been successfully extruded on both conventional and metering type screws of L/D ratio 15:1 and above. It is important that both the extruder and the profile die used for processing these materials should be free of dead spots where the material could stagnate, leading to discoloration and depolymerization. U10-01 (POM1), with a melt index of $1.0(\mathrm{mg} / \mathrm{min})$, provides excellent processability in extrusion blow, injection blow molding and extrusion. The applications of U10-01 include aerosols, containers, industrial articles, rod, tube, slab, profiles and gas tank floats. M25 (POM2), with a melt index is 2.5 ($\mathrm{mg} / \mathrm{min}$), it has good processability for injection blow and injection molding. It also provides increased toughness, elongation and impact strength, and it can be extruded into tubing, profiles and sheet. M90 is a general purpose resin for injection molding, offering an excellent balance of moldability and excellent stability in processing. It also provides parts with high surface gloss and good dimensional and property stability. The melt index of M90 (POM3) is $9.0(\mathrm{mg} / \mathrm{min})$. The applications of M90 include gears, cams, bearings, housings, alternating drive train assemblies, pump impellers, and gasoline pump parts. M270 (POM4), with a melt index is $27.0(\mathrm{mg} / \mathrm{min}$), offers high flow and hence, fast molding cycles. It also has high surface gloss and good dimensional stability. The applications of M270 include thin walled parts or complex multi-cavity parts, such as pens, pencils, and cassette components. The melt index of M450 (POM5) is 45.0 ($\mathrm{mg} / \mathrm{min}$), It offers the highest flow and fastest molding cycles. The applications of M450 include injection molding with complex geometries.

4.1.2 Nylon 6

Nylon 6 (PA 6), or polyamide, is melt processable material available to the extruder, characterized by its processing temperature. it has rapid transition from solid to fluid within a narrow temperature range, and also has a tendency to absorb moisture. The extrusion equipment and its operation must, therefore, be arranged to
cope with these characteristics. A minimum screw length of 20D is recommended with short transition and shallow channel depth. Heater capacity must be sufficient to cope with the high melting point and low shear rate. The applications of nylon 6 include gears, bearings, paint oven, engine fans and wheels.

4.1.3 Polyethylene

Generally speaking the polyethylene (PE) is the easiest material to extrude and the good results which can be obtained on any reasonable machine are reflected in the vast quantity of extruded polyethylene products currently available. In order to obtain optimum output and quality with the higher density materials, however, a long metering type screw with an L/D ratio not less than $20: 1$ is recommended, with a compression ratio between 2.5 and $3.5: 1$ depending upon the final extrudate form. The applications of polyethylene in extrusion include cable, fuel tank, water pipe and profiles.

4.1.4 Polypropylene

Polypropylene (PP), like polyethylene, is also a member of the polyolefin family of thermoplastic materials. The processing of polypropylene is very similar to that of the polyethylene and the same recommendations are applicable. Polypropylene however, develops less frictional heat in the extruder screw and consequently more external heat must generally be supplied by the barrel heaters. The applications of polypropylene in extrusion include textile fibers and filaments.

4.1.5 Polystyrene

Polystyrene (PS) is greatly used at the present time for packaging products (containers, lids, bottles), disposable medical ware, tape reels, and storm windows because of its clarity and fabrication ease. This material gives few problems in extrusion on modern equipment with long screws, but generally the long metering
type of screw is preferred. There are many foam applications for polystyrene include egg cartons, meat packaging trays and cushioning material.

4.1.6 Acrylonitrile-Butadiene-Styrene

Acrylonitrile-butadiene-styrene (ABS), terpolymer, is with a uniform molecular structure and therefore differs from other modified polystyrenes which may be blends of polymers. For best results drying of the material is recommended, or the use of a vented extruder. Extrusion temperature has been found somewhat critical within the range $347^{\circ} \mathrm{F}-446^{\circ} \mathrm{F}$. Variations in processing temperatures outside this band have a noticeable effect on surface finish. Metering type screws give a satisfactory extrudate. A point to be noted with the extrusion of these materials is that they are subject to rapid freeze. The applications of Acrylonitrile-butadienestyrene include radiator grilles, computer housing and consoles.

The material listed in Table 4.2. were those used in this study. Some, such as polystyrene (PS) and acetal copolymers have high modulus and others, such as polyethylene (PE), polypropylene (PP), and nylon 6 (PA 6) have low modulus. Acrylonitrile-butadiene-styrene (ABS) is normal. According to the Modern Plastics Encyclopedia [40], the modulus is taken to mean the tensile modulus as defined by the slope of the initial linear portion of the load extension response (stress-strain curve) of a specimen deform temperature. The mechanical properties of those materials is listed in Table 4.3.

4.2 Procedure for Operating the Extruder

The extruder used to manufacture the multi-lobal pellets was a 1 inch diameter unit manufactured by Wayne Tool and Die, Co. A photograph is shown in Figure 4.2. The unit conveys the feedstock, melts it and pumps it to the die where it is shaped into a multi-lobal strand, which is cooled in a water bath and then pelletized by a Wayne pelletizer. The speed of the plasticating screw, and the pelletizer speed can
be adjusted to control the size, and shape of the pellets from the die, to some extent. Thus, for each die, a range of pellet geometries for friction testing can be produced, by varying the extruder screw speed.

The material is divided into two categories for manufacturing the pellet. Acetal copolymer is chosen as one group, since the melting points of POM1, POM2, POM3, POM4 and POM5 is roughly at the same temperature. The other group includes polyethylene (PE), polypropylene (PP), polystyrene (PS), nylon 6 (PA 6) and acrylonitrile-butadiene-styrene (ABS). The operating conditions is dramatically change depending on the melting points of the materials.

In the development stage of the manufacturing system, several die orifice geometries were constructed and tested. To minimize cost, the die was designed such that only a small die insert had to be changed, and the same die body was used throughout. The design of the die body and inserts is illustrated in chapter three. The dies are readily interchangeable and changeover including temperature stabilization took only ten minutes. However, profile dies are not easy to design and in industry are made by trial and error. Rothemeyer [37] has explained some of the difficulties, the most significant being the difference in shape of the die and the extrudate cross-section due to die swelling. The die swelling is different at different points in the face of the die orifice due to the different local shear rates. The result is that the pellet has not only a different size than the die orifice, as is the case with pellets of circular cross-section, but also a different shape. This was extensively reported by Rothemeyer [37]. After many hours of trial and error, trying to make pellets with a multi-lobal cross-sections from die orifices with multi-lobal cross-sections, it was discovered that the easiest die orifice geometry with which to make multi-lobal pellets was multiple orifices. The pellets were then formed outside of the die, as in tube-on cable coating.

The pellets were manufactured on the Wayne extrusion compounding line, dried according to the manufacturer's recommended drying conditions, and stored in moisture-proof bags ready for testing in the shear cell. Each sample was clearly labelled with the pertinent information relevant to manufacture, the die used, the output rate and the extruder speed.

4.3 The Operating Conditions for Profile Extrusion

The operating conditions for the acetal copolymer are shown in Tables 4.4-10. According to the different profile die inserts, operating temperature varied for the acetal copolymer. The operating conditions for polyethylene (PE), polystyrene (PS) polypropylene (PP), nylon 6 (PA 6), and acrylonitrile-butadiene-styrene (ABS) are shown in Tables 4.11-17, respectively.

Table 4.1 Drying Conditions of the Polymer Feedstocks for Acetal Copolymer, Polyethylene, Polypropylene, Polystyrene, Nylon 6 and ABS.

No	Polymer Material	Temperature $\left({ }^{\circ} \mathrm{F}\right)$
1.	Acetal Copolymer	
	U10-01 (POM1)	220
	M25 (POM2)	220
	M90 (POM3)	220
	M270 (POM4)	220
	M450 (POM5)	220
2.	Polyethylene (PE)	180
3.	Polypropylene (PP)	N/A
4.	Polystyrene (PS)	180
5.	Nylon 6(PA 6)	180
6.	Acrylonitrile-butadiene-	N/A
	styrene (ABS)	

Table 4.2 Material Resin \& Codes.

No	Material	Abbreviation	Material Supplier	Trade name	Code
1.	Polyethylene	PE	Soltex	Portiflex	PE
2.	Polypropylene	PP	Soltex	P4D 0326-61	PP
3.	Polystyrene	PS	Dow	484-27W	PS
4.	Nylon 6	PA	Allied Chemical	(XPN,917 CLEAR)	PA 6
5.	Acrylonitrile- butadiene- styrene	ABS	Monsanto	248	ABS
6.	Acetal Copolymer	Celcon	Hoechst Celanese	U10-01 M25 M90 M270 M450	POM1 POM2 POM3 POM4 POM5

Table 4.3 Material Mechanical Properties.

No	Material	Density $\left(\mathrm{Kg} / \mathrm{m}^{3}\right)$	Tensile Modulus $\left(\mathrm{GN} / \mathrm{m}^{2}\right)$
1.	Polyethylene(PE)	950	0.8
2.	Polypropylene(PP)	905	1.3
3.	Polystyrene(PS)	1050	2.9
4.	Nylon 6(PA 6)	1140	0.7
5.	Acrylonitrile-butadiene- styrene (ABS)	1040	2.4
6.	Acetal Copolymer		
	(Celcon)		
	U10-01	1190	3.6
	M25	1087	3.6
	M90	1042	3.6
	M270	1239	3.6
	M450	1265	3.6

Table 4.4 Operating Conditions of Profile Die A211 for Acetal Copolymer.

	Profile Die A211	Temperature			$\begin{gathered} \text { Mass } \\ \text { flow } \\ \text { rate } \\ (\mathrm{g} / \mathrm{min}) \end{gathered}$	Shear rate (1/s)	Pelletizerspeed(rpm)	DCMotorCurrent(amperes)
		Front (${ }^{\circ} \mathrm{F}$)	Middle (${ }^{\circ} \mathrm{F}$)	Die (${ }^{\circ} \mathrm{F}$)				
Material$\mathrm{U} 10-01$	5rpm	440	450	280	11.7	105.3	3	6.0
	10 mpm	440	450	280	30.0	269.9	6	8.0
	15 rpm	435	450	280	44.8	403.1	8	10.0
	20rpm	430	450	280	60.9	548.0	11	11.0
MaterialM25	5 rpm	440	450	290	9.4	93.4	7	1.0
	10 rpm	440	450	285	18.8	162.7	11	2.0
	15 rpm	440	450	280	28.6	265.1	14	2.5
	20 rpm	440	450	280	40.6	353.5	16	3.0
$\begin{aligned} & \text { Material } \\ & \text { M90 } \end{aligned}$	5rpm	440	450	280	16.1	112.1	13	2.0
	10 rpm	440	455	280	32.1	301.7	17	3.5
	15 rpm	440	455	280	43.0	414.8	20	4.5
	20 rpm	440	455	280	61.1	564.6	24	6.0
Material M270	5 rpm	440	460	260	9.9	135.7	13	0.2
	10 rpm	440	460	260	27.0	215.0	18	1.0
	15 rpm	440	460	270	38.5	298.6	23	1.5
	20 rpm	435	460	270	47.5	392.9	26	2.0
MaterialM450	5 rpm	440	460	260	15.5	81.1	26	0.2
	10 rpm	440	460	255	26.5	226.1	31	0.5
	15 rpm	435	460	250	34.8	289.9	38	1.2

Table 4.5 Operating Conditions of Profile Die A212 for Acetal Copolymer.

	Profile Die A212	Temperature			Mass flow rate (g/min)	Shear rate (1/s)	Pelletizer speed (rpm)	DCMotorCurrent(amperes)
		Front $\left.{ }^{0} \mathrm{~F}\right)$	Middle ${ }^{\circ} \mathrm{F}$)	Die (F)				
Material U10-01	5rpm	430	455	285	15.6	142.4	3	4.0
	10 rpm	430	450	285	31.7	289.4	6	8.0
	15 rpm	440	450	290	45.3	413.5	8	10.5
	20rpm	440	450	290	55.4	505.7	10	12.0
Material M25	5 rpm	440	450	285	9.3	92.9	6	0.5
	10 rpm	440	450	290	16.2	161.9	10	1.0
	15 rpm	440	450	290	26.4	263.8	13	2.0
	20 rpm	440	450	290	35.2	351.8	15	2.5
$\begin{aligned} & \text { Material } \\ & \text { M90 } \end{aligned}$	5 rpm	445	450	290	10.7	111.5	12	2.0
	10 rpm	440	450	290	28.8	300.2	16	3.0
	15 rpm	440	450	290	39.6	412.8	19	4.0
	20 rpm	440	460	290	53.9	561.9	22	5.0
Material M270	5 rpm	450	445	295	15.4	135.0	14	0.2
	10 rpm	445	450	290	24.4	213.9	18	0.5
	15 rpm	440	450	285	33.9	297.2	22	1.0
	20 rpm	440	460	285	44.6	391.0	25	2.0
Material M450	5 rpm	440	450	290	9.4	80.7	26	0.1
	10rpm	440	455	295	26.2	225.0	31	0.3
	15 rpm	440	455	290	33.6	288.5	35	1.0
	20 rpm	440	460	290	44.2	379.6	38	1.5

Table 4.6 Operating Conditions of Profile Die A221 for Acetal Copolymer.

	Profile Die A221	Temperature			Mass flow rate (g/min)	Shear rate (1/s)	Pelletizer speed (rpm)	DC Motor Current (amperes)
		Front (F)	Middle (F)	Die (${ }^{\circ} \mathrm{F}$)				
Material U10-01	5rpm	440	460	290	12.7	226.4	3	4.0
	10rpm	445	460	295	31.6	563.4	5	6.0
	15 rpm	450	460	300	42.3	754.2	7	8.0
	20 rpm	450	460	300	51.5	918.2	9	10.0
Material M25	5 rpm	425	450	280	7.8	152.2	4	1.0
	10 rpm	430	450	285	15.9	310.3	6	2.0
	15 rpm	435	455	290	23.1	450.9	7	2.5
	20 rpm	440	460	295	34.1	665.6	9	3.5
Material M90	5 rpm	440	450	280	15.9	323.7	7	1.0
	10 rpm	440	460	290	30.3	617.0	13	3.0
	15 rpm	450	460	290	40.1	816.5	18	4.0
	20 rpm	450	460	300	60.3	1127.8	24	6.0
Material M270	5 rpm	440	450	285	10.3	176.4	12	0.2
	10 rpm	445	450	290	25.9	443.5	18	0.5
	15 rpm	450	460	295	36.4	623.3	24	0.8
	20 rpm	450	460	295	47.6	815.1	27	1.0
Material M450	5 rpm	440	460	290	14.1	236.5	18	0.1
	10 rpm	440	460	290	24.8	416.0	23	0.4
	15 rpm	440	460	290	33.9	568.6	27	0.6
	20 rpm	450	460	295	46.4	778.2	32	0.8

Table 4.7 Operating Conditions of Profile Die A231 for Acetal Copolymer.

	Profile Die A231	Temperature			Mass flow rate (g/min)	Shear rate (1/s)	Pelletizer speed (rpm)	DCMotorCurrent(amperes)
		Front (${ }^{\circ} \mathrm{F}$)	Middle (${ }^{\mathrm{F}} \mathrm{F}$)	$\begin{aligned} & \text { Die } \\ & \left.{ }^{\circ} \mathrm{F}\right) \end{aligned}$				
$\begin{aligned} & \text { Material } \\ & \text { U10-01 } \end{aligned}$	5rpm	440	450	290	13.7	244.3	5	2.5
	10 rpm	440	450	290	29.3	522.4	7	5.0
	15 rpm	440	455	300	38.9	693.6	12	7.0
	20rpm	440	460	300	54.0	962.8	15	9.0
Material M25	5 rpm	435	440	285	6.0	117.1	8	1.0
	10 rpm	440	445	285	15.1	294.7	13	2.0
	15 rpm	440	445	290	24.0	468.4	17	2.5
	20 rpm	440	450	290	32.1	626.5	20	3.0
Material M90	5 rpm	430	440	285	14.7	299.3	12	2.0
	10 rpm	435	450	285	27.1	551.8	15	3.0
	15 rpm	440	450	285	40.3	820.6	20	4.0
	20 rpm	440	450	290	53.7	1093.4	25	5.0
MaterialM270	5 rpm	440	450	290	10.3	176.4	14	0.2
	10 rpm	440	450	290	23.4	400.7	20	1.2
	15 rpm	440	450	300	33.5	573.7	26	1.5
	20 rpm	440	450	300	44.3	758.6	36	2.0
Material M450	5 rpm	440	450	300	8.3	139.2	17	0.1
	10 rpm	440	450	300	19.9	333.8	25	0.3
	15 rpm	440	450	300	28.9	484.7	32	1.0
	20 rpm	440	460	300	37.4	627.3	38	1.5

Table 4.8 Operating Conditions of Profile Die A241 for Acetal Copolymer.

	Profile Die A241	Temperature			Mass flow rate ($\mathrm{g} / \mathrm{min}$)	Shear rate (1/s)	Pelletizer speed (pm m$)$	DC Motor Current (amperes)
		Front $\left.{ }^{\circ} \mathrm{F}\right)$	Middle (F)	Die (F)				
Material U10-01	5rpm	440	450	290	14.8	78.2	4	4.0
	10rpm	440	450	290	33.6	177.5	6	6.0
	15 rpm	450	460	295	45.8	241.9	8	8.0
	20rpm	450	460	300	63.3	334.4	10	10.0
Material M25	5rpm	430	440	290	8.1	46.8	4	1.0
	10 rpm	430	450	295	22.5	130.1	6	2.5
	15 rpm	430	450	300	32.2	186.2	10	3.0
	20 rpm	440	460	300	43.2	249.8	13	4.0
MaterialM90	5rpm	435	450	290	16.5	99.5	5	1.0
	10 rpm	440	455	290	31.9	192.5	10	2.0
	15 rpm	440	455	295	46.3	279.3	14	3.5
	20 rpm	440	460	300	60.9	367.4	16	4.5
Material M270	5rpm	435	450	300	16.8	85.2	6	0.5
	10 rpm	440	450	300	38.3	194.3	10	2.0
	15 rpm	440	450	300	46.4	235.4	14	3.0
	20 rpm	440	460	300	63.6	322.7	20	3.5
Material M450	5 rpm	440	460	300	12.8	63.6	10	0.2
	10 rpm	440	460	300	25.5	126.7	18	0.4
	15 rpm	440	460	300	43.4	215.7	22	0.6
	20 rpm	440	460	305	50.1	249.0	26	0.8

Table 4.9 Operating Conditions of Profile Die A311 for Acetal Copolymer.

	Profile Die A311	Temperature			$\begin{array}{\|l\|} \text { Mass } \\ \text { flow } \\ \text { rate } \\ (\mathrm{g} / \mathrm{min}) \end{array}$	Shear rate (1/s)	Pelletizer speed (ppm)	DCMotorCurrent(amperes)
		Front (F)	Middle (${ }^{\circ} \mathrm{F}$)	Die (${ }^{\circ} \mathrm{F}$)				
Material U10-01	5rpm	430	450	285	11.4	135.5	3	2.5
	10 rpm	440	450	285	25.8	306.7	5	4.5
	15 rpm	440	450	285	37.9	450.5	7	6.0
	20rpm	440	455	285	54.8	651.4	9	8.0
Material M25	5 rpm	440	450	290	7.8	101.5	7	1.0
	10 mpm	440	455	290	15.1	1996.5	9	1.5
	15 rpm	440	460	290	23.2	301.9	11	2.5
	20 mpm	440	460	290	33.3	433.3	13	3.5
Material M90	5 rpm	440	460	290	16.8	228.0	12	1.5
	10 rpm	440	460	290	26.8	363.8	15	3.0
	15 rpm	440	460	290	40.3	547.0	18	4.0
	20 rpm	440	460	290	55.0	746.6	21	5.0
Material M270	5 rpm	440	460	290	13.2	150.7	15	0.5
	10 rpm	440	460	290	24.1	275.1	20	1.5
	15 rpm	440	460	290	35.4	404.1	25	2.0
	20 rpm	440	460	290	47.2	538.8	28	2.5
Material M450	5 rpm	440	460	290	10.1	112.9	20	0.2
	10rpm	440	460	290	22.6	252.7	26	0.5
	15 rpm	445	460	295	32.9	367.9	32	1.5
	20 rpm	445	460	295	41.5	464.0	36	2.0

Table 4.10 Operating Conditions of Profile Die A411 for Acetal Copolymer.

	Profile Die A411	Temperature			$\left\lvert\, \begin{aligned} & \text { Mass } \\ & \text { flow } \\ & \text { rate } \\ & (\mathrm{g} / \mathrm{min}) \end{aligned}\right.$	Shear rate (1/s)	Pelletizer speed (pm)	DCMotorCurrent(amperes)
		Front (${ }^{\circ}$ F)	Middle (F)	Die (F)				
Material U10-01	5rpm	430	460	280	14.3	127.5	3	6.0
	10rpm	440	460	285	25.9	230.9	5	9.5
	15rpm	440	460	285	38.3	341.4	7	10.5
	20rpm	440	460	285	55.8	494.4	9	12.0
Material M25	5rpm	440	460	290	10.6	103.4	4	0.5
	10 rpm	440	460	290	15.7	153.2	6	1.5
	15 rpm	440	460	290	24.3	237.2	8	2.0
	20 rpm	440	460	290	34.0	331.8	10	2.5
$\begin{aligned} & \text { Material } \\ & \text { M90 } \end{aligned}$	5 rpm	430	450	295	17.0	173.1	16	2.0
	10rpm	435	450	295	30.2	307.5	20	3.0
	15 rpm	440	455	295	40.6	433.7	25	4.0
	20 mpm	445	460	295	55.6	566.0	28	6.0
Material M270	5 rpm	435	450	300	13.4	114.7	20	0.4
	10rpm	435	455	300	24.3	208.1	24	1.0
	15 rpm	440	455	300	35.8	306.5	28	2.0
	20 rpm	440	460	300	47.4	405.8	34	2.5
Material M450	5 rpm	440	460	295	10.5	88.1	28	0.2
	10 rpm	440	460	295	23.0	192.9	32	0.5
	15 rpm	440	460	295	33.5	280.9	36	0.8
	20 rpm	440	460	300	41.8	350.5	40	1.5

Table 4.11 Operating Conditions of Profile Die A211 for PE, PP, PA 6, ABS and PS.

	Profile Die A211	Temperature			Mass flow rate (g/min)	Shear rate (1/s)	Pelletizer speed (rpm)	DC Motor Current (amperes)
		Front (${ }^{\circ} \mathrm{F}$)	Middle (${ }^{\mathrm{F}} \mathrm{F}$)	Die ($\left.{ }^{\circ} \mathrm{F}\right)$				
Material PE	5 rpm	490	500	300	10.2	115.0	12	3.0
	10 rpm	490	510	300	24.5	276.2	15	4.5
	15 mpm	490	510	300	38.5	434.0	18	6.0
	20 mpm	490	510	300	53.0	597.4	21	6.5
Material PP	5 rpm	480	500	280	12.2	144.4	17	0.5
	10 rpm	480	500	280	21.8	257.9	20	1.5
	15 rpm	480	500	280	31.6	373.9	23	2.0
	20rpm	480	500	280	40.9	483.9	26	3.0
Material Nylon 6	5rpm	520	535	320	14.3	134.3	16	3.0
	10rpm	520	535	320	23.5	220.7	20	6.0
	15 rpm	520	540	320	35.2	330.6	23	8.0
	20 rpm	525	540	320	47.2	443.3	25	10.0
Material ABS	5 rpm	485	495	365	13.1	134.9	15	1.0
	10 rpm	485	495	365	30.7	316.1	20	2.0
	15 rpm	485	495	365	40.6	418.0	28	3.0
	20 rpm	485	495	365	55.8	574.5	32	4.0
Material PS	5rpm	530	540	375	13.0	132.6	22	1.0
	10 rpm	530	540	375	24.8	252.9	25	3.0
	15 rpm	530	540	375	36.0	367.1	28	3.5
	20 rpm	535	540	375	49.8	507.9	31	4.0

Table 4.12 Operating Conditions of Profile Die A212 for PE, PP, PA 6, ABS and PS.

	Profile Die A212	Temperature			Mass flow rate $(\mathrm{g} / \mathrm{min})$	Shear rate (1/s)	Pelletizer speed (rpm)	DCMotorCurrent(amperes)
		Front (${ }^{\circ} \mathrm{F}$)	Middle $\left({ }^{\circ} \mathrm{F}\right)$	Die (${ }^{\circ} \mathrm{F}$)				
Material PE	5rpm	490	500	300	10.4	117.2	10	4.0
	10 rpm	500	500	300	23.5	264.9	14	6.0
	15 rpm	500	500	300	34.3	386.6	19	7.0
	20 rpm	500	510	300	50.7	571.5	23	7.5
Material PP	5rpm	480	500	280	10.8	127.8	13	0.5
	10rpm	480	500	280	20.2	236.6	19	2.0
	15 rpm	480	500	280	29.2	345.5	24	2.5
	20 rpm	480	500	280	39.8	470.9	29	3.5
Material PS	5 rpm	510	540	320	14.4	135.3	15	3.0
	10 mpm	520	540	320	23.0	216.0	21	6.0
	15 mpm	520	540	320	35.5	333.5	23	10.0
	20 rpm	520	540	320	42.5	399.2	25	11.0
Material Nylon 6	5 rpm	530	540	340	13.0	109.1	16	2.0
	10 rpm	530	540	345	24.8	214.2	20	3.5
	15 rpm	530	540	345	36.0	326.3	24	4.0
	20 rpm	535	540	345	49.8	453.8	28	5.5

Table 4.13 Operating Conditions of Profile Die A221 for PE, PP, PA 6, ABS and PS.

	Profile Die A221	Temperature			Mass flow rate (g/min)	Shear rate (1/s)	Pelletizer speed (rpm)	DCMotorCurrent(amperes)
		Front (${ }^{0} \mathrm{~F}$)	Middle $\left({ }^{\circ} \mathrm{F}\right)$	Die (${ }^{\circ} \mathrm{F}$)				
Material PE	5rpm	490	500	295	12.5	279.2	14	4.0
	10 rpm	490	500	295	23.9	533.8	17	5.5
	15 rpm	490	500	295	32.7	730.3	21	6.5
	20rpm	490	500	295	44.9	1022.8	24	7.5
Material PP	5 rpm	480	490	280	9.8	229.7	14	1.0
	10 rpm	480	490	280	17.4	407.9	22	1.5
	15 rpm	480	490	280	26.3	616.6	27	2.0
	20 rpm	480	490	280	36.6	858.0	32	3.0
Material Nylon 6	5 rpm	525	540	350	9.8	182.4	11	4.0
	10 rpm	530	540	350	20.0	372.2	13	7.0
	15 rpm	530	540	350	29.6	550.9	15	9.0
	20 rpm	530	540	350	38.0	707.2	17	11.0
Material ABS	5 rpm	480	490	360	11.0	242.8	21	2.0
	10 rpm	480	490	360	27.8	567.1	25	3.0
	15 rpm	480	490	360	40.4	824.2	27	4.0
	20 rpm	480	490	360	53.7	1095.5	32	5.0
Material PS	5 rpm	540	550	370	12.9	242.5	14	2.0
	10 rpm	540	550	370	24.8	493.0	26	3.0
	15 rpm	540	550	370	34.5	697.1	32	4.0
	20 rpm	540	550	370	46.4	937.6	41	5.0

Table 4.14 Operating Conditions of Profile Die A231 for PE, PP, PA 6, ABS and PS.

	Pofile Die A231	Temperature			Mass flow rate (g/min)	Shear rate (1/s)	Pelletizer speed (rpm)	DCMotorCurrent(amperes)
		Front (${ }^{\circ} \mathrm{F}$)	Middle (${ }^{\circ} \mathrm{F}$)	Die $\left.{ }^{\circ}{ }^{\circ} \mathrm{F}\right)$				
$\begin{gathered} \text { Material } \\ \text { PE } \end{gathered}$	5rpm	490	500	300	14.2	317.1	15	4.0
	10 rpm	490	500	300	26.1	582.9	18	6.0
	15 rpm	490	500	300	38.1	850.9	21	7.0
	20rpm	490	500	300	51.2	1143.5	24	8.0
Material PP	5 rpm	480	490	280	9.2	215.7	19	0.5
	10 rpm	480	490	280	20.7	485.3	24	2.0
	15 rpm	480	490	280	29.1	682.2	28	2.5
	20 rpm	480	490	280	38.9	912.0	34	3.5
Materia] Nylon 6	5 rpm	520	530	320	11.4	212.2	12	5.0
	10 rpm	520	530	320	24.6	457.8	14	7.0
	15 rpm	520	530	320	35.3	657.0	16	8.0
	20 rpm	520	530	320	47.4	882.2	20	9.0
Material ABS	5 rpm	480	490	355	12.2	248.9	17	1.5
	10 rpm	480	490	355	26.6	542.7	25	2.5
	15 rpm	480	490	355	38.7	789.5	32	3.5
	20 rpm	480	490	355	53.2	1085.3	40	4.5
Material PS	5 rpm	535	545	360	9.0	181.9	21	2.0
	10 rpm	535	545	360	22.8	460.7	24	3.5
	15 mpm	535	550	360	33.1	668.8	29	4.5
	20rpm	535	550	360	46.8	945.7	37	6.0

Table 4.15 Operating Conditions of Profile Die A241 for PE, PP, PS, PA 6 and ABS.

	Pofile Die A241	Temperature			$\begin{aligned} & \text { Mass } \\ & \text { flow } \\ & \text { rate } \\ & (\mathrm{g} / \mathrm{min}) \end{aligned}$	Shear rate (1/s)	Pelletizer speed (pm m)	DCMotorCurrent(amperes)
		Front (${ }^{\circ} \mathrm{F}$)	Middle $\left.{ }^{\circ} \mathrm{F}\right)$	$\begin{aligned} & \text { Die } \\ & \left.{ }^{\circ} \mathrm{F}\right) \end{aligned}$				
Material PE	5rpm	500	510	310	11.1	73.5	11	2.0
	10 rpm	500	510	310	26.3	174.0	14	3.0
	15 rpm	500	510	300	40.5	268.0	17	3.5
	20 rpm	500	510	300	52.9	350.1	20	4.0
Material PP	5rpm	485	495	280	10.1	70.2	20	0.5
	10 rpm	480	495	280	20.5	140.4	23	2.0
	15 rpm	480	495	280	30.6	212.6	25	2.5
	20 rpm	480	495	280	41.1	285.5	27	3.5
Material PS	5 rpm	520	540	320	12.6	69.5	8	4.0
	10rpm	520	540	320	29.7	163.8	11	6.0
	15 rpm	520	540	330	41.6	229.4	14	9.0
	20 rpm	520	540	330	50.3	277.4	18	10.0
Material Nylon 6	5 rpm	485	495	370	9.8	59.2	12	1.0
	10 rpm	485	495	370	27.5	166.2	15	2.0
	15 rpm	485	495	370	40.1	242.4	18	3.0
	20 rpm	485	495	370	56.6	342.1	21	3.5
$\begin{gathered} \text { Material } \\ \text { ABS } \end{gathered}$	5 rpm	535	545	365	14.7	88.0	12	2.0
	10 rpm	535	545	365	23.3	139.5	15	3.0
	15 rpm	535	545	370	33.9	203.0	20	4.0
	20 rpm	535	545	370	46.5	278.4	24	5.0

Table 4.16 Operating Conditions of Profile Die A311 for PE, PP, PA 6 and PS.

	Pofile Die A311	Temperature			$\begin{aligned} & \text { Mass } \\ & \text { flow } \\ & \text { rate } \\ & (\mathrm{g} / \mathrm{min}) \end{aligned}$	Shear rate (1/s)	Pelletizer speed (rpm)	DC Motor Current (amperes)
		Front ${ }^{\circ} \mathrm{F}$)	Middle (${ }^{\circ} \mathrm{F}$)	$\begin{aligned} & \mathrm{Die} \\ & { }^{\circ} \mathrm{F} \text {) } \end{aligned}$				
$\begin{gathered} \text { Material } \\ \text { PE } \end{gathered}$	5rpm	500	510	300	12.6	187.6	14	3.0
	10 rpm	500	510	300	23.9	355.8	17	4.0
	15 rpm	500	510	300	34.8	518.1	20	5.5
	20 rpm	500	510	300	47.4	705.7	23	6.5
Material PP	5rpm	485	490	270	10.8	168.8	21	1.0
	10 rpm	485	490	270	18.5	289.1	25	2.0
	15 rpm	480	490	270	29.3	457.9	29	3.0
	20 rpm	480	490	270	39.0	609.5	33	4.0
Material Nylon 6	5 rpm	535	550	330	13.2	163.8	18	4.0
	10 rpm	535	550	330	23.7	294.1	21	7.0
	15 rpm	535	550	330	32.0	397.0	23	9.0
	20 rpm	530	550	330	43.3	537.2	25	11.5
Material PS	5 rpm	535	545	365	11.5	154.9	16	2.0
	10 rpm	535	545	365	19.4	261.3	20	3.5
	15 rpm	535	545	365	33.5	451.3	24	4.5
	20 rpm	535	545	365	44.4	598.1	28	5.5

Table 4.17 Operating Conditions of Profile Die A411 for PE and PP.

	Pofile Die A411	Temperature			Mass flow rate ($\mathrm{g} / \mathrm{min}$)	Shear rate (1/s)	Pelletizer speed (rpm)	DCMotorCurrent(amperes)
		Front (${ }^{\circ}$ F)	Middle (${ }^{\circ} \mathrm{F}$)	Die ${ }^{\circ} \mathrm{F}$)				
Material PE	5rpm	490	500	310	12.4	138.5	8	3.0
	10 rpm	490	500	310	26.8	299.3	11	4.0
	15 rpm	490	500	310	36.9	412.0	13	5.0
	20 rpm	490	500	310	49.1	548.3	16	6.0
Material PP	5 rpm	485	495	280	91	106.7	16	1.0
	10 rpm	485	495	280	21.0	246.2	18	2.0
	15 rpm	485	495	280	30.1	352.8	21	2.5
	20 rpm	485	495	280	38.9	456.0	24	3.5

Figure 4.1 Drying Oven Manufactured by Blue M. Electric, Co.

Figure 4.2 Extruder Manufactured by Wayne Tool and Die, Co.

CHAPTER 5

MECHANISM OF INTERPARTICULATE FRICTION IN POLYMERIC PARTICULATE CONTINUA

5.1 Mechanics of Friction

The interparticular friction between solid and solid is of great importance in polymer processing. Friction is the tangential resistance offered to the sliding of one solid over another. The values of the friction coefficients are in general determined empirically. The interparticulate friction coefficients of particulate materials may be measured in a number of ways. The most common method is the use of a "shear cell", or "shear tester". The principles of operation of these devices are described in great detail by Jenike [25], Carr and Walker [10], Schwedes [43], Roberts [36]. Jenike [25] developed an experimental apparatus, known as a shear cell for measuring the shear properties of particulate solids. It consists of a stationary base and a moving ring. Loads are applied to the ring causing shear in the particulate continuum. The limiting friction coefficient is the interparticulate friction coefficient. The theoretical development of statics of particulate solids commences with the work of Coulomb [15]. There are some concepts in elementary statics that are essential for the understanding of the behavior of particulate solid. It shall be dealing with a condition of static equilibrium that also holds at the limiting condition of incipient flow, that is, The interparticulate friction coefficient μ is defined as:

$$
\begin{equation*}
\mu=\frac{\mathrm{S}}{\mathrm{~N}} \tag{5.1}
\end{equation*}
$$

where,
S = the mean tangential frictional force and N =the normal force applied perpendicular to the plane of shear

The Eq. (5.1) is known as Amonton's law [1]. It indicates that frictional resistance is proportional to the normal force.

5.2 Agglomeration

The term agglomeration may vary in meaning between different industries and different fields of research. In this work, it describes the forming of an aggregate from the individual particles, such as, the building up clusters from polymeric pellets during conveying. Agglomeration is undesirable when it happens in a free flowing system, but it is desirable for pelleting, and similar processes. In either case, it is important to understand the physical mechanisms involved [33]. Agglomeration occurs because of the binding forces exceed the disruptive or break-up forces between the particles [52]. Bowden and Tabor [6] proposed that solid-solid forces are significantly amplified by increases in pressure and temperature, which induce simultaneously an increase in contact area. Agglomeration greatly depends on the particulate material. There are two different kinds of material, which display different relationship among the processes.

The first kind of material is referred to as cohesive. If the intrinsic shear strength under zero consolidation load is large. Using Amonton's friction law given by Eq. (5.1), the yield locus at incipient failure can be written as,

$$
\begin{equation*}
\tau=(\tan \phi) \sigma+\mathrm{c} \tag{5.2}
\end{equation*}
$$

where c is the coefficient of cohesion. It is simply the intercept of the internal yield locus on the shear axis as shown on Figure 5.1. A cohesive particulate system gains strength when pressure is applied. Consequently, the relation between the normal
stress and the shear stress is a function of the consolidation pressure and consolidation time.

Another kind of material, termed cohesionless is used to described those granular materials whose intrinsic shear strength under zero consolidation load ($\sigma=0$) is negligible. In this case the yield locus shown in Figure 5.2 for plastic failure given by,

$$
\begin{equation*}
\tau=(\tan \phi) \sigma \tag{5.3}
\end{equation*}
$$

where,
$\tau \quad=$ shear stress
$\phi \quad=$ the angle of internal friction
and $\sigma=$ normal stress
In plasticating processes, including extrusion, particulate pellets are agglomerated and compacted prior to melting. The mechanical properties of agglomerates control the deformation and rupture of the particulate system. The interparticulate friction coefficient plays an important role in the behavior of the particulate system.

5.3 Interparticulate Strength

The strength of the packed particles is dominated by the fractional density. The variation in tensile strength with fractional density and particle size can be approximated from [2,3,8,11,19]. It is formulated as below:

$$
\begin{equation*}
\sigma_{t}=\frac{\mathrm{Cf}^{n} \mathrm{P}_{\mathrm{c}} \mathrm{~F}_{\mathrm{c}}}{\mathrm{D}^{2}} \tag{5.4}
\end{equation*}
$$

where,
$\sigma_{\mathrm{t}} \quad=$ tensile strength
C =factor dependent on the particle shape
f $=$ the fractional density
$P_{c}=$ the packing coordination
$n \quad=a n$ exponent typically near unity
$F_{c} \quad=$ the cohesive bond strength between particle
and $\mathrm{D}=$ the particle diameter

The packing density is important because it controls the number of contacts per unit volume. Beyond these factors, the strength is also sensitive to the particle shape and size distribution. The more irregular the particle shape, the higher the strength at a given fractional density. Various relations have been proposed between the shear strength τ and the normal stress σ, such as, derived from [13,31,32,45]. that is,

$$
\begin{equation*}
\tau^{\mathrm{n}}=\mathrm{F}_{\mathrm{c}}\left(1+\frac{\sigma}{\sigma_{\mathrm{t}}}\right) \tag{5.5}
\end{equation*}
$$

where,
n =the shear index
and $F_{c}=$ the cohesive strength of the pellets
The cohesive strength is approximately twice the interparticle tensile strength. The shear index, n, ranges between one and two. For large spherical particles it approaches two. It can be approximated as follows,

$$
\begin{equation*}
\mathrm{n}=1+\frac{0.5}{\mathrm{D}^{2 / 3}} \tag{5.6}
\end{equation*}
$$

where,
D =the particle diameter in millimeters
Particle compaction creates bonding planes and increases the interlocking at the interfaces, greatly increasing the interparticulate strength. The process of
compaction initially causes local deformation by flattening surface. With continued pressurization, there occurs a transition from a loose particle mass to a higher packing density, with a high volumetric population of interparticulate contacts, resulting in greater strength. The effect of the particle shape is mixed in the degree of mechanical interlocking. Mechanical interlocking of the particles increases for the non-circular, irregular particle shapes. Therefore, the pellets with multi-lobal crosssections had a tendency to lock each other more tightly than the pellets with circular cross-sections under the same pressure conditions.

Figure 5.1 The Yield Locus of Cohesive System.

Figure 5.2 The Yield Locus of Noncohesive System.

CHAPTER 6

TEST APPARATUS AND TEST PROCEDURE FOR THE MEASUREMENT OF THE INTERPARTICULATE FRICTION COEFFICIENT

6.1 Test Apparatus

The original experimental test apparatus used for the measurement of the IPFC was developed by Chen [12]. The system is similar to the Jenike shear cell [25]. It is composed of five pieces with an upper ring, a low ring, a cover, a pulley, and a connecting cable. Due to the limitations of the design, it was not possible to measure the exact value of the IPFC. This can be remedied by using a direct shear cell apparatus. A photograph is shown in Figure 6.1. The test shear cell is mounted on a table, it contains the shear box housing, the upper moving ring, the cover and the load cell on one side. On the other side, it contains the gear box with a hand wheel for controlling the pushing rod, which connects to the strain gages for detection of the horizontal force at the shear plane. The direct shear cell arrangement is schematically shown in Figure 6.2. The shear box housing is fixed on the base of shear cell frame. The moving ring is placed on the top of the ring in the shear box housing. The cover holds the sample in the shear box during shear testing. The applied shear force is derived from the pushing stud by rotating the hand wheel. A strain gage is placed on the compressive ring to detect the applied shear force. In performing the test, the sample is loaded in the shear cell, and then the normal force is applied on the cover. The pushing stud applies the shear force to the moving ring, and when motion begins the induced strain is measured using a strain gage, recorded, and converted to a shear force.

6.2 Test Procedure

The direct shear cell arrangement is described as above. It is a static test, but is valid in its application to plasticating extrusion since the break-up of the solid bed is with respect to a static co-ordinate reference frame convected in the solid bed.

The polymeric pellets are packed into the shear cell and then sheared under the chosen normal force, which is applied to the top of the shear cell. The shear force is then applied to the moving ring, and when motion begins the induced strain is measured by using a strain gage. It records the scale indicator shown on the strain gage, which is then converted to a shear force. The interparticulate friction coefficient, μ, is defined as the ratio of the shear force to the normal force, as motion commences, that is,

$$
\begin{equation*}
\mu=\frac{S}{N} \tag{6.1}
\end{equation*}
$$

where,
S is the shear force which causes motion,
and N is the normal force applied.
The behavior of the polymeric pellets can be investigated at other chosen stress conditions, by increasing the normal stress to the desired value and then reshearing. Each test was repeated five times to ensure accuracy. The material can readily be returned to the original prepared state by increasing the normal load from 20.5 kPa to 45.2 kPa .

6.3 V-Blender

A tumbler mixer is used to mix the pellets of non-circular cross-sections with surfactants in weight percentage from 0.25% to 2%. The mixer, a totally enclosed vessel rotating about an axis, causes the particles within the mixer to tumble over each other on the mixer surface. Rotation can be effected by placing the cylinder on
driving rollers. In most other cases, the vessel is attached to a drive shaft and supported on one or two bearings. The vessel is shaped like the V as shown in Figure 6.3.

6.4 Method of Calculation for IPFC

The acting force on the shear force is shown in Figure 6.4, where a contact is assumed between the ring and the base. Some of the forces work around the whole circumference of the ring. The horizontal friction force F_{h} in this situation originates from two sources,

1. The weight of the ring W_{r}
2. The silo effect in the upper ring, which causes a part of the vertical force N on the cover to be transmitted by friction to the wall W_{f}.

The force balance of the system is,

$$
\begin{align*}
& T-F_{h}=S \tag{6.2}\\
& F_{h}=\mu_{2} F_{v} \tag{6.3}\\
& F_{v}=W_{r}+W_{f} \tag{6.4}\\
& W_{f}=\mu_{1} N \tag{6.5}\\
& F_{h}=\mu_{2}\left(W_{r}+N \mu_{1}\right) \tag{6.6}\\
& T-\mu_{2}\left(W_{r}+N \mu_{1}\right)=S \tag{6.7}
\end{align*}
$$

where,
$\mu_{1}=$ friction coefficient between polymer and steel,
$\mu_{2}=$ friction coefficient between ring and base,
$\mathrm{F}_{\mathrm{h}}=$ horizontal friction force between ring and base, N ,
$\mathrm{F}_{\mathrm{v}}=$ vertical contact force between ring and base, N ,
$\mathrm{N}=$ total vertical force on the cover, N,
$\mathrm{S}=$ real shearing force at shearing plane, N ,
$\mathrm{T}=$ total externally applied horizontal force, N ,
$\mathrm{W}_{\mathrm{r}}=$ vertical force due to weight of ring, N ,
$\mathrm{W}_{\mathrm{f}}=$ vertical friction force between ring and material inside, due to silo effect, N .
The friction coefficient, μ_{1}, between the polymer and steel is dependent on the material. The friction coefficient, μ_{1}, data of acetal copolymer is found from the typical properties of acetal copolymer [53]. The friction coefficient, μ_{1}, data of polyethylene, polypropylene, polystyrene, nylon 6 and ABS are found from Egan Machinery Co. [22]. The values, μ_{1}, are listed in Table 6.1.

The friction coefficient, μ_{2}, between the ring and base is dependent on the material of shear cell. It can be calibrated by pushing the upper shear cell by measuring the scale indicated on the strain gage, and then converting to the value μ_{2}

6.5 Validation of the Test Results

In order to confirm the satisfactory operation of the shear cell some statistical tests were conducted. The cell was set up forty times for the same feedstock, and the friction force was measured. The mean and standard deviation for the forty data points were calculated, and based on these values the minimum number of sample tests required to determine a true average was determined from Blank [5]. The procedure is as follow.

Consider the ($1-\alpha$) 100 percent confidence interval for a population mean m , as given,

$$
\begin{equation*}
\mathrm{m}=\mathrm{X}+\mathrm{Z}_{\alpha / 2} \frac{\sigma}{\sqrt{\mathrm{n}}} \tag{6.8}
\end{equation*}
$$

The term $\mathrm{Z} \alpha / 2 \frac{\sigma}{\sqrt{\mathrm{n}}}$ is bound on the estimation error that is achieved with probability ($1-\alpha$), planning the sample size to estimate m , There are a number of
reasons for trying to keep the sample size small. The reasons for sampling in the first place, the cost of data collection and processing, and the time needed to acquire data. On the other hand, the sample must be large enough to achieve the goals, the desire for reliable and accurate estimation, the need to meet contractual obligations, and to satisfy industry and government test standards.

Consider the problem of choosing the sample size for estimating a population mean m, using the mean X of a random sample, the probability is (1- α) that the estimation error will not exceed $Z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$. Suppose the decision maker determines that this bound should not exceed a value B. Then it is easy to determine the minimum sample size needed to achieve this accuracy. The $\mathrm{Z} \alpha / 2=\mathrm{Z}_{0.025}=1.96$, $\mathrm{B}=0.05, \sigma=0.053$.

$$
\begin{align*}
& \mathrm{Z} \alpha / 2 \frac{\sigma}{\sqrt{\mathrm{n}}} \leq \mathrm{B} \tag{6.9}\\
& \mathrm{n} \geq\left(\mathrm{Z} \alpha / 2 \frac{\sigma}{\mathrm{~B}}\right)^{2} \tag{6.10}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{n} \geq\left(1.96 \frac{0.053}{0.05}\right)^{2} \tag{6.11}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{n} \geq 4.32 \tag{6.12}
\end{equation*}
$$

It was determined that five tests were required to make an accurate estimation of the interparticulate friction coefficient in the direct shear cell. This procedure was therefore carried out in all of the test results taken. Namely, the values of the interparticulate friction coefficients were averaged from the five results.

Table 6.1 The Friction Coefficients of the Polymer for Acetal Copolymer, Polyethylene, Polypropylene, Polystyrene, Nylon 6, and ABS on Steel Surface.

No	Polymer Material	Friction Coefficient μ_{2}
1.	Acetal Copolymer	0.15
	U10-01(POM1)	0.15
	M25(POM2)	0.15
	M90(POM3)	0.15
	M270(POM4)	0.15
	M450(POM5)	0.24
2.	Polyethylene(PE)	0.32
3.	Polypropylene(PP)	0.25
4.	Polystyrene(PS)	0.28
5.	Nylon 6(PA 6)	0.36
6.	Acrylonitrile-butadiene-	

Figure 6.1 Direct Shear Cell Apparatus.

Figure 6.2 Schematic Diagram of the Shear Cell for the Measurement of the Interparticulate Friction Coefficient.

Figure 6.3V-Blender.

Figure 6.4 Acting Force on Shear Cell.

CHAPTER 7

EXPERIMENTAL RESULTS FOR THE INTERPARTICULATE FRICTION COEFFICIENT

In order to obtain a control datum, pellets with a circular cross-section. manufactured from the materials listed in Table 4.3 were first tested. The results for the measurement of the interparticulate friction coefficients, using the procedure described in chapter six are presented here. The pellets used in the tests with different profiled cross-sections were all manufactured using the specific die inserts, and designate by the code for the die inserts. For example, the bilobal pellets of polyethylene was manufactured by using the die insert A211 (A201-01). The pellet is classified as A211 of PE bilobal pellets.

The of X -axis is the normal pressure (Pascal) obtained by dividing the normal load (N) by the cross-sectional area of the shear cell $\left(\mathrm{m}^{2}\right)$, and the Y -axis is the IPFC obtained as in chapter six. Therefore, IPFC as a function of pressure for circular, bilobal, trilobal and quadrilobal cross-sections was plotted for each test. The results are described in the following sections.

7.1 Pellets with Circular Cross-Sections

The pellets with a circular cross-section for all five acetal copolymer samples were first tested. The results are presented in Figure 7.1. The only variables introduced were the pressure, the extruder screw speed, and the melt indices of the polymers from which the pellets were manufactured. Interparticulate friction coefficients for U10-01 (POM1) from 0.25 to 0.31 were recorded. Interparticulate friction coefficients for M25 (POM2) from 0.15 to 0.19 were recorded.

Interparticulate friction coefficients for M90 (POM3) from 0.17 to 0.24 were recorded. Interparticulate friction coefficients for M270 (POM4) from 0.16 to 0.185 were recorded. Interparticulate friction coefficients for M450 (POM5) from 0.15 to 0.17 were recorded. These values are very similar to the published data by [53]. Each result is based on an average of five measurements in accordance with the statistical determinations made in the chapter six.

The pellets with a circular cross-section of materials for polyethylene (PE), polypropylene (PP), polystyrene (PS), nylon 6 (PA 6), and acrylonitrile-butadienestyrene (ABS) were also tested. The results are presented in Figure 7.2. Interparticulate friction coefficients for polyethylene from 0.25 to 0.275 were recorded. Interparticulate friction coefficients for polypropylene from 0.22 to 0.24 were recorded. Interparticulate friction coefficients for polystyrene from 0.23 to 0.29 were recorded. Interparticulate friction coefficients for nylon 6 from 0.265 to 0.29 were recorded. Interparticulate friction coefficients for acrylonitrile-butadienestyrene from 0.16 to 0.19 were recorded. Each result is based on an average of five measurements in accordance with the statistical determinations made in the chapter six.

7.2 Pellets with Bilobal Cross-Sections

First, the die, A211 (A201-01), was installed on the extruder and pellets were manufactured at different extruder screw speeds ranging from 5 rpm to 20 rpm for each of the five samples of acetal copolymer. Samples of the pellets were collected for later testing, in accordance with the procedure described in chapter four. Then, this procedure was repeated for dies A212 (A201-02), A221 (A202-01), A231 (A20301), A241 (A204-01), A311 (A301-01) and A411 (A401-01). Each of the samples was then placed in the shear cell and the interparticulate friction coefficient was measured as a function of normal pressure.

Figures 7.3-7.7 show the IPFC as a function of pressure of all bilobal dies for acetal copolymer grade U10-01 (POM1). The value of the IPFC is presented as described here. Figure 7.3 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A211. The value of the IPFC is approximate 0.382 to 0.459. Figure 7.4 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A212. The value of the IPFC is approximate 0.355 to 0.448 . Figure 7.5 shows the IPFC as a function of pressure for pellets with bilobal crosssections of die A221 for. The value of the IPFC is approximate 0.398 to 0.0 .480 . Figure 7.6 shows the IPFC as a function of pressure for pellets with bilobal crosssections of die A231 for. The value of the IPFC is approximate 0.32 to 0.45 . Figure 7.7 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A241. The value of the IPFC is approximate 0.33 to 0.485 .

Figures 7.8-7.12 show the IPFC as a function of pressure of all bilobal die for acetal copolymer grade M25 (POM2). The value of the IPFC is presented as described here. Figure 7.8 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A211. The value of the IPFC is approximate 0.35 to 0.42 . Figure 7.9 shows the IPFC as a function of pressure for pellets with bilobal crosssections of die A212. The value of the IPFC is approximate 0.31 to 0.43 . Figure 7.10 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A221. The value of the IPFC is approximate 0.32 to 0.395 . Figure 7.11 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A231. The value of the IPFC is approximate 0.22 to 0.34 . Figure 7.12 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A241. The value of the IPFC is approximate 0.34 to 0.52 .

Figures 7.13-7.17 show the IPFC as a function of pressure of all bilobal die for acetal copolymer grade M90 (POM3). The value of the IPFC is presented as described here. Figure 7.13 shows the IPFC as a function of pressure for pellets with
bilobal cross-sections of die A211. The value of the IPFC is approximate 0.34 to 0.42 . Figure 7.14 shows the IPFC as a function of pressure for pellets with bilobal crosssections of die A212. The value of the IPFC is approximate 0.33 to 0.43 . Figure 7.15 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A221. The value of the IPFC is approximate 0.375 to 0.445 . Figure 7.16 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A231. The value of the IPFC is approximate 0.245 to 0.32 . Figure 7.17 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A241. The value of the IPFC is approximate 0.34 to 0.42 .

Figures 7.18-7.22 show the IPFC as a function of pressure of all bilobal die for acetal copolymer grade M270 (POM4). The value of the IPFC is presented as described here. Figure 7.18 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A211. The value of the IPFC is approximate 0.31 to 0.40 . Figure 7.19 shows the IPFC as a function of pressure for pellets with bilobal crosssections of die A212. The value of the IPFC is approximate 0.30 to 0.45 . Figure 7.20 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A221. The value of the IPFC is approximate 0.36 to 0.46 . Figure 7.21 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A231. The value of the IPFC is approximate 0.17 to 0.25 . Figure 7.22 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A241. The value of the IPFC is approximate 0.23 to 0.42 .

Figures 7.23-7.27 show the IPFC as a function of pressure of all bilobal die for acetal copolymer grade M450 (POM5). The value of the IPFC is presented as described here. Figure 7.23 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A211. The value of the IPFC is approximate 0.33 to 0.43 . Figure 7.24 shows the IPFC as a function of pressure for pellets with bilobal crosssections of die A212. The value of the IPFC is approximate 0.33 to 0.43 . Figure 7.25
shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A221. The value of the IPFC is approximate 0.385 to 0.455 . Figure 7.26 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A231. The value of the IPFC is approximate 0.17 to 0.235 . Figure 7.27 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A241. The value of the IPFC is approximate 0.35 to 0.44 .

Second, with the same procedure described as above, the die, A201-01, was installed on the extruder and pellets were manufactured at different extruder screw speeds ranging from 5 rpm to 20 rpm for polyethylene (PE), polypropylene (PP), polystyrene (PS), nylon 6 (PA 6), and acrylonitrile-butadiene-styrene (ABS). Samples of the pellets were collected for later testing, in accordance with the procedure described in chapter four. Then, this procedure was repeated for dies A201-02, A202-01, A203-01, A204-01, A301-01, and A401-01. Each of the samples was then placed in the shear cell and the interparticulate friction coefficient was measured as a function of normal pressure.

Figures 7.28-7.32 show the IPFC as a function of pressure of all bilobal die for polyethylene (PE). The value of the IPFC is presented as described here. Figure 7.28 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A211. The value of the IPFC is approximate 0.26 to 0.345 . Figure 7.29 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A212. The value of the IPFC is approximate 0.29 to 0.35 . Figure 7.30 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A221. The value of the IPFC is approximate 0.31 to 0.37 . Figure 7.31 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A231. The value of the IPFC is approximate 0.295 to 0.36 . Figure 7.32 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A241. The value of the IPFC is approximate 0.32 to 0.395 .

Figures 7.33-7.37 show the IPFC as a function of pressure of all bilobal die for polypropylene (PP). The value of the IPFC is presented as described here. Figure 7.33 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A211. The value of the IPFC is approximate 0.275 to 0.32 . Figure 7.34 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A212. The value of the IPFC is approximate 0.24 to 0.285 . Figure 7.35 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A221. The value of the IPFC is approximate 0.28 to 0.33 . Figure 7.36 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A231. The value of the IPFC is approximate 0.26 to 0.315 . Figure 7.37 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A241. The value of the IPFC is approximate 0.325 to 0.395 .

Figures 7.38-7.42 show the IPFC as a function of pressure of all bilobal die for polystyrene (PS). The value of the IPFC is presented as described here. Figure 7.38 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A211. The value of the IPFC is approximate 0.278 to 0.37 . Figure 7.39 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A212. The value of the IPFC is approximate 0.27 to 0.35 . Figure 7.40 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A221. The value of the IPFC is approximate 0.39 to 0.475 . Figure 7.41 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A231. The value of the IPFC is approximate 0.28 to 0.36 . Figure 7.42 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A241. The value of the IPFC is approximate 0.32 to 0.395 .

Figures $7.43-7.47$ show the IPFC as a function of pressure of all bilobal die for nylon 6 (PA 6). The value of the IPFC is presented as described here. Figure 7.43 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die

A211. The value of the IPFC is approximate 0.29 to 0.37 . Figure 7.44 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A212. The value of the IPFC is approximate 0.29 to 0.335 . Figure 7.45 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A221. The value of the IPFC is approximate 0.295 to 0.375 . Figure 7.46 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A231. The value of the IPFC is approximate 0.28 to 0.355 . Figure 7.47 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A241. The value of the IPFC is approximate 0.325 to 0.390 .

Figures $7.48-7.51$ show the IPFC as a function of pressure of all bilobal die except A212 for acrylonitrile-butadiene-styrene (ABS). The value of the IPFC is presented as described here. Figure 7.48 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A211. The value of the IPFC is approximate 0.25 to 0.31 . Figure 7.49 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A221. The value of the IPFC is approximate 0.21 to 0.28 . Figure 7.50 shows the IPFC as a function of pressure for pellets with bilobal crosssections of die A231. The value of the IPFC is approximate 0.18 to 0.245 . Figure 7.51 shows the IPFC as a function of pressure for pellets with bilobal cross-sections of die A241. The value of the IPFC is approximate 0.205 to 0.31 .

7.3 Pellets with Trilobal Cross-Sections

Next, pellets with trilobal cross-sections were manufactured using the profile die A301-01 as described in Table 3.1 and tested in the direct shear cell.

Figures 7.52-7.56 show the IPFC as a function of pressure of trilobal die at four different extruder screw speeds ranging from 5 rpm to 20 rpm for each of the five samples of acetal copolymer. The value of the IPFC is presented as described here. Figure 7.52 shows the IPFC as a function of pressure for pellets with trilobal
cross-sections of die A311 for acetal copolymer grade U10-01 (POM1). The value of the IPFC is approximate 0.33 to 0.45 . Figure 7.53 shows the IPFC as a function of pressure for pellets with trilobal cross-sections of die A311 for acetal copolymer grade M25 (POM2). The value of the IPFC is approximate 0.205 to 0.28 . Figure 7.54 shows the IPFC as a function of pressure for pellets with trilobal cross-sections of die A311 for acetal copolymer grade M90 (POM3). The value of the IPFC is approximate 0.22 to 0.29 . Figure 7.55 shows the IPFC as a function of pressure for pellets with trilobal cross-sections of die A311 for acetal copolymer grade M270 (POM4). The value of the IPFC is approximate 0.205 to 0.255 . Figure 7.56 shows the IPFC as a function of pressure for pellets with trilobal cross-sections of die A311 for acetal copolymer grade M450 (POM5). The value of the IPFC is approximate 0.18 to 0.275 .

Figures $7.57-7.60$ show the IPFC as a function of pressure of trilobal die at four different extruder screw speeds ranging from 5 rpm to 20 rpm for polyethylene, polypropylene, polystyrene and nylon 6.. The value of the IPFC is presented as described here. Figure 7.57 shows the IPFC as a function of pressure for pellets with trilobal cross-sections of die A311 for polyethylene. The value of the IPFC is approximate 0.30 to 0.345 . Figure 7.58 shows the IPFC as a function of pressure for pellets with trilobal cross-sections of die A311 for polypropylene. The value of the IPFC is approximate 0.25 to 0.295 . Figure 7.59 shows the IPFC as a function of pressure for pellets with trilobal cross-sections of die A311 for polystyrene. The value of the IPFC is approximate 0.25 to 0.295 . Figure 7.60 shows the IPFC as a function of pressure for pellets with trilobal cross-sections of die A311 for nylon 6. The value of the IPFC is approximate 0.315 to 0.38 .

7.4 Pellets with Quadrilobal Cross-Sections

Next, pellets with quadrilobal cross-sections were manufactured using the profile die A401-01 as described in Table 3.1 and tested in the direct shear cell.

Figures 7.61-7.65 show the IPFC as a function of pressure of quadrilobal die at four different extruder screw speeds ranging from 5 rpm to 20 rpm for each of the five samples of acetal copolymer. The value of the IPFC is presented as described here. Figure 7.61 shows the IPFC as a function of pressure for pellets with quadrilobal cross-sections of die A411 for acetal copolymer grade U10-01 (POM1). The value of the IPFC is approximate 0.334 to 363 . Figure 7.62 shows the IPFC as a function of pressure for pellets with quadrilobal cross-sections of die A411 for acetal copolymer grade M25 (POM2). The value of the IPFC is approximate 0.195 to 0.235 . Figure 7.63 shows the IPFC as a function of pressure for pellets with quadrilobal cross-sections of die A411 for acetal copolymer grade M90 (POM3). The value of the IPFC is approximate 0.255 to 0.29 . Figure 7.64 shows the IPFC as a function of pressure for pellets with quadrilobal cross-sections of die A411 for acetal copolymer grade M270 (POM4). The value of the IPFC is approximate 0.20 to 0.275 . Figure 7.65 shows the IPFC as a function of pressure for pellets with quadrilobal crosssections of die A411 for acetal copolymer grade M450 (POM5). The value of the IPFC is approximate 0.20 to 0.225 .

Figures $7.66-7.67$ show the IPFC as a function of pressure of quadrilobal die at four different extruder screw speeds ranging from 5 rpm to 20 rpm for polyethylene (PE), polypropylene (PP). The value of the IPFC is presented as described here. Figure 7.66 shows the IPFC as a function of pressure for pellets with quadrilobal cross-sections of die A411 for polyethylene. The value of the IPFC is approximate 0.335 to 0.365 . Figure 7.67 shows the IPFC as a function of pressure for pellets with quadrilobal cross-sections of die A411 for polypropylene. The value of the IPFC is approximate 0.305 to 0.345 .

7.5 Pellets with Consolidation Pressure and Consolidation Time

Using the apparatus and procedure described in chapter six, results for the IPFC were measured over extensive pressure ranges. The pellets consolidated at 126.3 kPa prior to testing. Figure 7.68 shows the IPFC as a function of pressure for pellets were manufactured from polyethylene using die A211. The value of the IPFC is 0.238 to 0.323 .

The pellets also consolidated at 126.3 kPa for several different time periods. Figure 7.69 shows the IPFC as a function of consolidation time for pellets manufactured using die A211. The value of the IPFC is 0.32 to 0.36 .

7.6 Pellets with Surface Lubricant and Additive

The zinc stearate, mica clay, and polyester powder (PBT) were added into the pellets with circular cross-sections and bilobal cross-sections.

Figure 7.70 shows the IPFC as a function of pressure for pellets with circular cross-sections of acetal copolymer grade M90 (POM3) by adding zinc stearate in weight percentage from 0.25% to 1.0%. The value of the IPFC is 0.119 to 0.233 . Figure 7.71 shows the IPFC as a function of pressure for pellets with bilobal crosssections manufactured using die A211 from acetal copolymer grade M90 (POM3) by adding zinc stearate in weight percentage from 0.25% to 1.0%. The value of the IPFC is 0.128 to 0.218 . Figure 7.72 shows the IPFC as a function of pressure for the pellets manufactured using die A212 from acetal copolymer grade M90 (POM3) by adding zinc stearate in weight percentage from 0.25% to 1.0%. The value of the IPFC is 0.18 to 0.236 .

Figure 7.73 shows the IPFC as a function of pressure for pellets with circular cross-sections of nylon 6 (PA 6) by adding mica clay in weight percentage from 0.5% to 2.0%. The value of the IPFC is 0.304 to 0.368 . Figure 7.74 shows the IPFC as a function of pressure for pellets with bilobal cross-sections manufactured using die

A241 from nylon 6 (PA 6) by adding mica clay in weight percentage from 0.25% to 1.0%. The value of the IPFC is 0.35 to 0.43 .

Figure 7.75 shows the IPFC as a function of pressure for pellets with circular cross-sections of acetal copolymer grade M90 (POM3) by adding polyester (PBT) powder in weight percentage from 0.5% to 2.0%. The value of the IPFC is 0.257 to 0.313 . Figure 7.76 shows the IPFC as a function of pressure for pellets with bilobal cross-sections manufactured using die A212 from acetal copolymer grade M90 (POM3) by adding polyester (PBT) powder in weight percentage from 0.5% to 2.0%. The value of the IPFC is 0.248 to 0.383 .

Figure 7.1 IPFC of Cylindrical for Pellets With Circular Cross-Sections (a) U-10, (b) M-25, (c) M-90, (d) M-270, (e) M-450.

Normal Pressure (kPa)
Figure 7.2 IPFC of Cylindrical for Pellets With Circular Cross-Sections (a) PE, (b) PP, (c) PS, (d) PA 6, (e) ABS.

Figure 7.3 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM1.

Figure 7.4 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM1

Figure 7.5 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM1.

Normal Pressure (kPa)
Figure 7.6 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM1.

Normal Pressure (kPa)
Figure 7.7 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM1.

Figure 7.8 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM2

Normal Pressure (kPa)
Figure 7.9 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM2.

Normal Pressure (kPa)
Figure 7.10 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM2.

Normal Pressure (kPa)

Figure 7.11 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM2.

Figure 7.12 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM2.

Normal Pressure (kPa)
Figure 7.13 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM3.

Figure 7.14 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM3.

Figure 7.15 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM3.

Figure 7.16 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM3.

Figure 7.17 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM3.

Figure 7.18 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM4.

Normal Pressure (kPa)
Figure 7.19 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM4.

Figure 7.20 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM4.

Figure 7.21 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM4.

Figure 7.22 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM4.

Figure 7.23 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM5.

Figure 7.24 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM5.

Normal Pressure (kPa)
Figure 7.25 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM5.

Figure 7.26 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM5.

Figure 7.27 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM5.

Figure 7.28 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for PE.

Normal Pressure (kPa)
Figure 7.29 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for PE.

Figure 7.30 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for PE.

Figure 7.31 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for PE.

Normal Pressure (kPa)
Figure 7.32 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for PE.

Normal Pressure (kPa)
Figure 7.33 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for PP.

Figure 7.34 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for PP.

Normal Pressure (kPa)
Figure 7.35 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for PP.

Figure 7.36 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for PP.

Figure 7.37 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for PP.

Normal Pressure (kPa)
Figure 7.38 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for PS.

Figure 7.39 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for PS.

Normal Pressure (kPa)
Figure 7.40 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for PS.

Normal Pressure (kPa)
Figure 7.41 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for PS.

Figure 7.42 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for PS.

Figure 7.43 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for PA 6.

Normal Pressure (kPa)
Figure 7.44 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for PA 6.

Normal Pressure (kPa)
Figure 7.45 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for PA 6.

Normal Pressure (kPa)
Figure 7.46 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for PA 6.

Normal Pressure (kPa)
Figure 7.47 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for PA 6.

Figure 7.48 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for ABS .

Figure 7.49 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for ABS .

Normal Pressure (kPa)
Figure 7.50 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for ABS .

Figure 7.51 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for ABS .

Figure 7.52 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM1.

Normal Pressure (kPa)
Figure 7.53 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM2.

Figure 7.54 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM3.

Normal Pressure (kPa)
Figure 7.55 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM4.

Normal Pressure (kPa)
Figure 7.56 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM5.

Normal Pressure (kPa)
Figure 7.57 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for PE.

Normal Pressure (kPa)
Figure 7.58 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for PP.

Normal Pressure (kPa)
Figure 7.59 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for PS.

Figure 7.60 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for PA 6.

Figure 7.61 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM1.

Figure 7.62 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM2.

Figure 7.63 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM3.

Normal Pressure (kPa)
Figure 7.64 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM4.

Figure 7.65 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM5.

Normal Pressure (kPa)
Figure 7.66 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for PE.

Normal Pressure (kPa)
Figure 7.67 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for PP.

Figure 7.68 IPFC for the Pellets Manufactured Using Die A211 with Consolidation Pressure as a Function of Normal Pressure for PE.

Figure 7.69 IPFC for the Pellets Manufactured Using Die A211 with Consolidation Time as a Function of Normal Pressure for PE.

Figure 7.70 IPFC for Pellets with Circular Cross-Sections with Zinc Stearate as a Function of Normal Pressure for POM3.

Figure 7.71 IPFC for Pellets Manufactured Using Die A211 with Zinc Stearate as a Function of Normal Pressure for POM3.

Figure 7.72 IPFC for Pellets Manufactured Using Die A212 with Zinc Stearate as a Function of Normal Pressure for POM3.

Normal Pressure (kPa)
Figure 7.73 IPFC for Pellets with Circular Cross-Section with Mica Clay as a Function of Normal Pressure for PA 6.

Figure 7.74 IPFC for Pellets Manufactured Using Die A241 with Mica Clay at Extruder Screw Speed 20rpm as a Function of Normal Pressure for PA 6.

Figure 7.75 IPFC for Pellets with Circular Cross-Section with PBT Powder as a Function of Normal Pressure for POM3.

Figure 7.76 IPFC for Pellets Manufactured Using Die A212 with PBT Powder at Extruder Screw Speed 15rpm as a Function of Normal Pressure for POM3.

CHAPTER 8

DISCUSSION - THE INTERPARTICULATE FRICTION COEFFICIENT

8.1 Comparison of the IFPC for Pellets with Circular and Bilobal Cross-Sections

The results presented in Figure 7.1 indicate that the high molecular weight material, U10-01 (POM1), has a markedly greater interparticulate friction coefficient compared to the remaining materials. The medium molecular weight material, M90 (POM3), exhibits a somewhat greater coefficient than the remaining three materials. Thus, there is no real trend which can be isolated with regard to molecular weight. In addition, although the coefficient varies as a function of normal load, there is no single, discernible trend.

The results presented in Figure 7.2 indicate that the material, PE, has a markedly greater interparticulate friction coefficient compared to the remaining materials. The material, PS exhibits a somewhat greater coefficient than the remaining three materials. In addition, although the coefficient varies as a function of normal load, there is no single, discernible trend.

The results presented in Figure 7.3 to Figure 7.51 present the IPFC for the pellets with bilobal cross-section for all test materials for all different dies. The comparison of IPFC between the circular cross-section pellet and bilobal crosssection pellet for all test material with different dies are plotted in Figures 8.1 to 8.40.

In addition to the variation of the normal force and the molecular weight that was measured with the pellets of circular cross-section for acetal copolymer, the multi-lobal pellets also exhibit a variation with extruder screw speed and the die
used. These two variables combine to create variations in the size and shape of the pellets.

In Figure 8.1 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 5 rpm is compared to those with a circular cross-section for acetal copolymer grade $\mathrm{U} 10-01$. The $\%$ increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is $52 \%-75 \%$ compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $8 \%-41 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.2 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 10 rpm is compared to those with a circular cross-section for acetal copolymer grade U10-01. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A221 is $32 \%-87 \%$ compared to cylindrical pellets. The pellets manufactured with die A221 have the largest \% increase among the bilobal pellets. On the other hand, the $\%$ increase for pellets manufactured with die A231 is $18 \%-62 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.3 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 15 rpm is compared to those with a circular cross-section for acetal copolymer grade U10-01. The $\%$ increase is dependent on the profile die used in their manufacture. The $\%$ increase in IPFC for bilobal pellets manufactured with die A221 is $45 \%-75 \%$ compared to cylindrical pellets. The pellets manufactured with die A221 have the largest \% increase among the bilobal pellets. On the other hand, the $\%$ increase for pellets manufactured with die A212 is $20 \%-55 \%$ compared to
cylindrical pellets. The pellets manufactured with die A212 have the lowest \% increase among the bilobal pellets.

In Figure 8.4 the IPFC $\%$ increase for all bilobal pellet cross-sections at an extruder screw speed of 20 rpm is compared to those with a circular cross-section for acetal copolymer grade $\mathrm{U} 10-01$. The $\%$ increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is $35 \%-87 \%$ compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the $\%$ increase for pellets manufactured with die A231 is $22 \%-62 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.5 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 5 rpm is compared to those with a circular cross-section for acetal copolymer grade M25. .The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is $88 \%-167 \%$ compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $70 \%-111 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.6 the IPFC $\%$ increase for all bilobal pellet cross-sections at an extruder screw speed of 10 rpm is compared to those with a circular cross-section for acetal copolymer grade M25. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is $165 \%-185 \%$ compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the $\%$ increase for pellets manufactured with die A231 is $35 \%-65 \%$ compared to
cylindrical pellets. The pellets marufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.7 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 15 rpm is compared to those with a circular cross-section for acetal copolymer grade M25. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is $165 \%-186 \%$ compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $23 \%-46 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.8 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 20 rpm is compared to those with a circular cross-section for acetal copolymer grade M25. The \% increase is dependent on the profile die used in their manufacture. The $\%$ increase in IPFC for bilobal pellets manufactured with die A241 is $142 \%-176 \%$ compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $41 \%-71 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.9 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 5 rpm is compared to those with a circular cross-section for acetal copolymer grade M90. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is $48 \%-106 \%$ compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $10 \%-44 \%$ compared to
cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.10 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 10 rpm is compared to those with a circular cross-section for acetal copolymer grade M90. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A221 is $66 \%-150 \%$ compared to cylindrical pellets. The pellets manufactured with die A221 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $17 \%-62 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.11 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 15 rpm is compared to those with a circular cross-section for acetal copolymer grade M90. The $\%$ increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A221 is $85 \%-144 \%$ compared to cylindrical pellets. The pellets manufactured with die A221 have the largest \% increase among the bilobal pellets. On the other hand, the $\%$ increase for pellets manufactured with die A231 is $17 \%-62 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.12 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 20 rpm is compared to those with a circular cross-section for acetal copolymer grade M90. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A221 is $77 \%-144 \%$ compared to cylindrical pellets. The pellets manufactured with die A221 have the largest \% increase among the bilobal pellets. On the other hand, the $\%$ increase for pellets manufactured with die A231 is $25 \%-87 \%$ compared to
cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.13 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 5 rpm is compared to those with a circular cross-section for acetal copolymer grade M270. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A221 is $99 \%-141 \%$ compared to cylindrical pellets. The pellets manufactured with die A221 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $4 \%-10 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.14 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 10 rpm is compared to those with a circular cross-section for acetal copolymer grade M270. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A221 is $146 \%-158 \%$ compared to cylindrical pellets. The pellets manufactured with die A221 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $11 \%-51 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.15 the IPFC $\%$ increase for all bilobal pellet cross-sections at an extruder screw speed of 15 rpm is compared to those with a circular cross-section for acetal copolymer grade M270. The \% increase is dependent on the profile die used in their manufacture. The $\%$ increase in IPFC for bilobal pellets manufactured with die A221 is $135 \%-173 \%$ compared to cylindrical pellets. The pellets manufactured with die A221 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $24 \%-51 \%$ compared
to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.16 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 20 rpm is compared to those with a circular cross-section for acetal copolymer grade M270. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A221 is $135 \%-152 \%$ compared to cylindrical pellets. The pellets manufactured with die A221 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $29 \%-51 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.17 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 5 rpm is compared to those with a circular cross-section for acetal copolymer grade M450. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is $106 \%-143 \%$ compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $6 \%-32 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.18 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 10 rpm is compared to those with a circular cross-section for acetal copolymer grade M450. The \% increase is dependent on the profile die used in their manufacture. The $\%$ increase in IPFC for bilobal pellets manufactured with die A241 is $147 \%-159 \%$ compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the $\%$ increase for pellets manufactured with die A231 is $5 \%-16 \%$ compared
to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.19 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 15 rpm is compared to those with a circular cross-section for acetal copolymer grade M450. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is $143 \%-173 \%$ compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $19 \%-48 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.20 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 20 rpm is compared to those with a circular cross-section for acetal copolymer grade M450. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A211 is $137 \%-166 \%$ compared to cylindrical pellets. The pellets manufactured with die A211 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $25 \%-54 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.21 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 5 rpm is compared to those with a circular cross-section for PE. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is 20\%-42\% compared to cylindrical pellets. The pellets manufactured with die A241 have the largest $\%$ increase among the bilobal pellets. On the other hand, the $\%$ increase for pellets manufactured with die A 211 is $3 \%-16 \%$ compared to cylindrical pellets. The
pellets manufactured with die A211 have the lowest \% increase among the bilobal pellets.

In Figure 8.22 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 10 rpm is compared to those with a circular cross-section for PE. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is 32\%-45\% compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A212 is $12 \%-23 \%$ compared to cylindrical pellets. The pellets manufactured with die A212 have the lowest \% increase among the bilobal pellets.

In Figure 8.23 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 15 rpm is compared to those with a circular cross-section for PE. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is 36\%-52\% compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A211 is $16 \%-29 \%$ compared to cylindrical pellets. The pellets manufactured with die A211 have the lowest \% increase among the bilobal pellets.

In Figure 8.24 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 20 rpm is compared to those with a circular cross-section for PE. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is $40 \%-55 \%$ compared to cylindrical pellets. The pellets manufactured with die A241 have the largest $\%$ increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A211 is $19 \%-36 \%$ compared to cylindrical pellets. The
pellets manufactured with die A211 have the lowest \% increase among the bilobal pellets.

In Figure 8.25 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 5 rpm is compared to those with a circular cross-section for PP. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is 22\%-30\% compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A212 is 8\%-20\% compared to cylindrical pellets. The pellets manufactured with die A212 have the lowest \% increase among the bilobal pellets.

In Figure 8.26 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 10 rpm is compared to those with a circular cross-section for PP. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is $25 \%-34 \%$ compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A212 is $11 \%-22 \%$ compared to cylindrical pellets. The pellets manufactured with die A212 have the lowest \% increase among the bilobal pellets.

In Figure 8.27 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 15 rpm is compared to those with a circular cross-section for PP. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is $32 \%-44 \%$ compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A212 is $14 \%-24 \%$ compared to cylindrical pellets. The
pellets manufactured with die A212 have the lowest \% increase among the bilobal pellets.

In Figure 8.28 the IPFC $\%$ increase for all bilobal pellet cross-sections at an extruder screw speed of 20 rpm is compared to those with a circular cross-section for PP. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is 34\%-49\% compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A212 is $17 \%-26 \%$ compared to cylindrical pellets. The pellets manufactured with die A212 have the lowest \% increase among the bilobal pellets.

In Figure 8.29 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 5 rpm is compared to those with a circular cross-section for PS. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A221 is $52 \%-68 \%$ compared to cylindrical pellets. The pellets manufactured with die A221 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is 4\%-23\% compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.30 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 10 rpm is compared to those with a circular cross-section for PS. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A221 is $49 \%-73 \%$ compared to cylindrical pellets. The pellets manufactured with die A221 have the largest $\%$ increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $8 \%-32 \%$ compared to cylindrical pellets. The
pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.31 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 15 rpm is compared to those with a circular cross-section for PS. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A221 is $52 \%-81 \%$ compared to cylindrical pellets. The pellets manufactured with die A221 have the largest $\%$ increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $12 \%-46 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.32 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 20 rpm is compared to those with a circular cross-section for PS. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A221 is $52 \%-82 \%$ compared to cylindrical pellets. The pellets manufactured with die A221 have the largest $\%$ increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $14 \%-50 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.33 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 5 rpm is compared to those with a circular cross-section for Nylon 6. The $\%$ increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is 20\%-27\% compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $5 \%-7 \%$ compared to cylindrical pellets. The
pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.34 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 10 rpm is compared to those with a circular cross-section for Nylon 6. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is 21\%-35\% compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $11 \%-15 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.35 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 15 rpm is compared to those with a circular cross-section for Nylon 6. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is $25 \%-39 \%$ compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A212 is $12 \%-23 \%$ compared to cylindrical pellets. The pellets manufactured with die A212 have the lowest \% increase among the bilobal pellets.

In Figure 8.36 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 20 rpm is compared to those with a circular cross-section for Nylon 6. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A241 is $26 \%-44 \%$ compared to cylindrical pellets. The pellets manufactured with die A241 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A212 is $14 \%-24 \%$ compared to cylindrical pellets. The
pellets manufactured with die A212 have the lowest \% increase among the bilobal pellets.

In Figure 8.37 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 5 rpm is compared to those with a circular cross-section for ABS. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A211 is 32\%-74\% compared to cylindrical pellets. The pellets manufactured with die A211 have the largest $\%$ increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $9 \%-24 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.38 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 10 rpm is compared to those with a circular cross-section for ABS . The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A211 is $40 \%-81 \%$ compared to cylindrical pellets. The pellets manufactured with die A211 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $13 \%-27 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.39 the IPFC $\%$ increase for all bilobal pellet cross-sections at an extruder screw speed of 15 rpm is compared to those with a circular cross-section for ABS. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A211 is $49 \%-87 \%$ compared to cylindrical pellets. The pellets manufactured with die A211 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $22 \%-33 \%$ compared to cylindrical pellets. The
pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

In Figure 8.40 the IPFC \% increase for all bilobal pellet cross-sections at an extruder screw speed of 20 rpm is compared to those with a circular cross-section for ABS. The \% increase is dependent on the profile die used in their manufacture. The \% increase in IPFC for bilobal pellets manufactured with die A211 is $56 \%-94 \%$ compared to cylindrical pellets. The pellets manufactured with die A211 have the largest \% increase among the bilobal pellets. On the other hand, the \% increase for pellets manufactured with die A231 is $28 \%-53 \%$ compared to cylindrical pellets. The pellets manufactured with die A231 have the lowest \% increase among the bilobal pellets.

However, it must be noted that the interparticulate friction coefficient of the pellets with bilobal cross-sections was always greater those for the pellets with circular cross-section. This fact is clearly illustrated in above figures.

8.2 Comparison of the IPFC for Pellets with Circular and Trilobal Cross-Sections

The pellets with trilobal cross-sections were all manufactured using the same die, A301-01 (A311) as described in Table 3.1. The effects of molecular weight, normal pressure, and extruder screw speed were determined as shown in Figures 8.41-49. From these graphical results it is difficult to discern any trends. Analysis using Box, Hunter and Hunter techniques [7] produces contradictory conclusions, depending upon the level of the factorial analysis. Enough results were not available to calculate the combined averages data, as was performed with the pellets of bilobal cross-sections. However, it is clear that the interparticulate friction coefficients for pellets with trilobal cross-sections exceeds those for pellets with circular cross-sections as presented in Figures 8.41-49, but are less than those for pellets with bilobal cross-sections.

In Figure 8.41 the IPFC \% increase for trilobal pellet cross-sections at four different extruder screw speeds is compared to those with a circular cross-section for acetal copolymer grade U10-01. The \% increase is dependent on the screw speed used in their manufacture. The \% increase in IPFC for pellets manufactured with a screw speed of 20 rpm is $40 \%-67 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 20 rpm have the highest \% increase among the four different screw speeds. On the other hand, the $\%$ increase for pellets manufactured with a screw speed of 5 rpm is $10 \%-38 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 5 rpm have the lowest $\%$ increase among the four different screw speeds.

In Figure 8.42 the IPFC \% increase for trilobal pellet cross-sections at four different extruder screw speeds is compared to those with a circular cross-section for acetal copolymer grade M25. The \% increase is dependent on the screw speed used in their manufacture. The \% increase in IPFC for pellets manufactured with a screw speed of 20 rpm is $44 \%-62 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 20 rpm have the highest $\%$ increase among the four different screw speeds. On the other hand, the $\%$ increase for pellets manufactured with a screw speed of 5 rpm is $18 \%-30 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 5 rpm have the lowest $\%$ increase among the four different screw speeds.

In Figure 8.43 the IPFC \% increase for trilobal pellet cross-sections at four different extruder screw speeds is compared to those with a circular cross-section for acetal copolymer grade M90. The $\%$ increase is dependent on the screw speed used in their manufacture. The \% increase in IPFC for pellets manufactured with a screw speed of 20 rpm is $20 \%-68 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 20 rpm have the highest \% increase among the four different screw speeds. On the other hand, the $\%$ increase for pellets
manufactured with a screw speed of 10 rpm is $3 \%-31 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 10 rpm have the lowest \% increase among the four different screw speeds.

In Figure 8.44 the IPFC \% increase for trilobal pellet cross-sections at four different extruder screw speeds is compared to those with a circular cross-section for acetal copolymer grade M270. The \% increase is dependent on the screw speed used in their manufacture. The \% increase in IPFC for pellets manufactured with a screw speed of 15 rpm is $27 \%-51 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 15 rpm have the highest $\%$ increase among the four different screw speeds. On the other hand, the $\%$ increase for pellets manufactured with a screw speed of 10 rpm is $12 \%-28 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 10 rpm have the lowest $\%$ increase among the four different screw speeds.

In Figure 8.45 the IPFC \% increase for trilobal pellet cross-sections at four different extruder screw speeds is compared to those with a circular cross-section for acetal copolymer grade M450. The \% increase is dependent on the screw speed used in their manufacture. The $\%$ increase in IPFC for pellets manufactured with a screw speed of 10 rpm is $50 \%-68 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 10 rpm have the highest $\%$ increase among the four different screw speeds. On the other hand, the $\%$ increase for pellets manufactured with a screw speed of 15 rpm is $7 \%-19 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 15 rpm have the lowest $\%$ increase among the four different screw speeds.

In Figure 8.46 the IPFC \% increase for trilobal pellet cross-sections at four different extruder screw speeds is compared to those with a circular cross-section for PE. The \% increase is dependent on the screw speed used in their manufacture. The \% increase in IPFC for pellets manufactured with a screw speed of 20 rpm is 28% -
36% compared to cylindrical pellets. The pellets manufactured with a screw speed of 20 rpm have the highest \% increase among the four different screw speeds. On the other hand, the $\%$ increase for pellets manufactured with a screw speed of 5 rpm is $11 \%-19 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 5 rpm have the lowest $\%$ increase among the four different screw speeds.

In Figure 8.47 the IPFC \% increase for trilobal pellet cross-sections at four different extruder screw speeds is compared to those with a circular cross-section for PP. The $\%$ increase is dependent on the screw speed used in their manufacture. The \% increase in IPFC for pellets manufactured with a screw speed of 20 rpm is 24% 28% compared to cylindrical pellets. The pellets manufactured with a screw speed of 20 rpm have the highest \% increase among the four different screw speeds. On the other hand, the $\%$ increase for pellets manufactured with a screw speed of 5 rpm is $14 \%-24 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 5 rpm have the lowest $\%$ increase among the four different screw speeds.

In Figure 8.48 the IPFC \% increase for trilobal pellet cross-sections at four different extruder screw speeds is compared to those with a circular cross-section for PS. The $\%$ increase is dependent on the screw speed used in their manufacture. The \% increase in IPFC for pellets manufactured with a screw speed of 20 rpm is (5\%5%) compared to cylindrical pellets. The pellets manufactured with a screw speed of 20 rpm have the highest \% increase among the four different screw speeds. On the other hand, the $\%$ increase for pellets manufactured with a screw speed of 5 rpm is ($5 \%-5 \%$) compared to cylindrical pellets. The pellets manufactured with a screw speed of 5 rpm have the lowest $\%$ increase among the four different screw speeds.

In Figure 8.49 the IPFC \% increase for trilobal pellet cross-sections at four different extruder screw speeds is compared to those with a circular cross-section for PA 6. The \% increase is dependent on the screw speed used in their manufacture. The \% increase in IPFC for pellets manufactured with a screw speed of 20 rpm is
$24 \%-39 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 20 rpm have the highest \% increase among the four different screw speeds. On the other hand, the $\%$ increase for pellets manufactured with a screw speed of 10 rpm is $17 \%-27 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 10 rpm have the lowest $\%$ increase among the four different screw speeds.

8.3 Comparison of the IFPC for Pellets with Circular and Quadrilobal Cross-Sections

The pellets with quadrilobal cross-sections were all manufactured using the same die, A401-01 (A411) as described in Table 3.1. The effects of molecular weight, normal pressure, and extruder screw speed were determined as shown in Figures 8.50-56. From these graphical results it is difficult to discern any trends. Analysis using Box, Hunter and Hunter techniques [7] produces contradictory conclusions, depending upon the level of the factorial analysis. Sufficient results were not available to calculate the combined averages data, as was performed with the pellets of bilobal cross-section. However, it is clear that the interparticulate friction coefficients for pellets with quadrilobal cross-sections exceeds those for pellets with circular cross-section as presented in Figures $8.50-56$, but are less than those for pellets with bilobal cross-sections.

In Figure 8.50 the IPFC $\%$ increase for quadrilobal pellet cross-sections at four different extruder screw speeds is compared to those with a circular crosssection for acetal copolymer grade U10-01. The \% increase is dependent on the screw speed used in their manufacture. The \% increase in IPFC for pellets manufactured with a screw speed of 15 rpm is $19 \%-42 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 15 rpm have the highest $\%$ increase among the four different screw speeds. On the other hand, the \% increase
for pellets manufactured with a screw speed of 5 rpm is $14 \%-34 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 5 rpm have the lowest \% increase among the four different screw speeds.

In Figure 8.51 the IPFC \% increase for quadrilobal pellet cross-sections at four different extruder screw speeds is compared to those with a circular crosssection for acetal copolymer grade M25. The \% increase is dependent on the screw speed used in their manufacture. The \% increase in IPFC for pellets manufactured with a screw speed of 20 rpm is $22 \%-37 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 20 rpm have the highest \% increase among the four different screw speeds. On the other hand, the $\%$ increase for pellets manufactured with a screw speed of 5 rpm is $12 \%-24 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 5 rpm have the lowest $\%$ increase among the four different screw speeds.

In Figure 8.52 the IPFC \% increase for quadrilobal pellet cross-sections at four different extruder screw speeds is compared to those with a circular crosssection for acetal copolymer grade M90. The \% increase is dependent on the screw speed used in their manufacture. The \% increase in IPFC for pellets manufactured with a screw speed of 20 rpm is $15 \%-56 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 20 rpm have the highest $\%$ increase among the four different screw speeds. On the other hand, the $\%$ increase for pellets manufactured with a screw speed of 5 rpm is $10 \%-50 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 5 rpm have the lowest $\%$ increase among the four different screw speeds.

In Figure 8.53 the IPFC $\%$ increase for quadrilobal pellet cross-sections at four different extruder screw speeds is compared to those with a circular crosssection for acetal copolymer grade M270. The \% increase is dependent on the screw speed used in their manufacture. The \% increase in IPFC for pellets manufactured
with a screw speed of 20 rpm is $41 \%-63 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 20 rpm have the highest \% increase among the four different screw speeds. On the other hand, the $\%$ increase for pellets manufactured with a screw speed of 5 rpm is $14 \%-50 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 5 rpm have the lowest $\%$ increase among the four different screw speeds.

In Figure 8.54 the IPFC $\%$ increase for quadrilobal pellet cross-sections at four different extruder screw speeds is compared to those with a circular crosssection for acetal copolymer grade M450. The \% increase is dependent on the screw speed used in their manufacture. The $\%$ increase in IPFC for pellets manufactured with a screw speed of 20 rpm is $25 \%-42 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 20 rpm have the highest \% increase among the four different screw speeds. On the other hand, the $\%$ increase for pellets manufactured with a screw speed of 15 rpm is $18 \%-32 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 15 rpm have the lowest $\%$ increase among the four different screw speeds.

In Figure 8.56 the IPFC $\%$ increase for quadrilobal pellet cross-sections at four different extruder screw speeds is compared to those with a circular crosssection for PP. The \% increase is dependent on the screw speed used in their manufacture. The \% increase in IPFC for pellets manufactured with a screw speed of 20 rpm is $45 \%-54 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 20 rpm have the highest $\%$ increase among the four different screw speeds. On the other hand, the $\%$ increase for pellets manufactured with a screw speed of 5 rpm is $32 \%-41 \%$ compared to cylindrical pellets. The pellets manufactured with a screw speed of 5 rpm have the lowest $\%$ increase among the four different screw speeds.

8.4 Pellets with Bilobal, Trilobal and Quadrilobal Cross-Sections

8.4.1 Effect of Normal Pressure

The normal pressure was found to have only a weak influence on the interparticulate friction coefficient. As seen in Figures 7.1-7.67, the effect is somewhat random. The two level and three level factorial results produced conflicting conclusions which confirms the randomness of the results. So, the results were averaged at fixed values of the normal pressure to dampen the scatter. The averages for acetal copolymer are presented in Table 8.1. The averages for PE, PP, PS, PA 6, and ABS are presented in Table 8.2. As the normal pressure increases, the average IPFC decreases for the pellets with bilobal, trilobal and quadrilobal crosssections. However, the decrease is only gradual.

8.4.2 Effect of Extruder Screw Speed

The extruder screw speed used in the manufacture of the pellets also has a weak influence the interparticulate friction coefficient. As seen in Figures 8.1-8.56 the effect is somewhat random. In addition, the two level and three level factorial results produced conflicting conclusions which confirms the randomness of the results. So again, the results were averaged to dampen the scatter, but this time with respect to the extruder screw speed. The averages IPFC for acetal copolymer are presented in Table 8.3. The averages IPFC for PE, PP, PS, PA 6, and ABS are presented in Table 8.4. As the extruder screw speed increases, the average IPFC increases for the pellets with bilobal, trilobal, quadrilobal cross-sections. However the increase is slight.

8.4.3 Effect of Molecular Weight

The molecular weight, as represented by the melt index, was found to have a weak influence on the interparticulate friction coefficient. This can be seen from Figures 8.1-8.56. The conflicting conclusions from the two level and three level factorials, and the randomness of the averages for the IPFC of acetal copolymer are presented in Table 8.5 for the pellets with bilobal, trilobal and quadrilobal crosssections support this statement.

8.4.4 Effect of Extrusion Die Geometry

The extrusion die geometry has a distinct effect on the interparticulate friction coefficient. The average IPFC values for acetal copolymer using each die are presented in Table 8.6. The averages for PE, PP, PS, PA 6, and ABS using each die are presented in Table 8.7. It is apparent that die A202-01 produces pellets with superior interparticulate friction coefficients for acetal copolymer, due to the shape of the pellet that it produces.

8.4.5 Effect of Agitation of the Particulate Bed

The interparticulate friction coefficient was found to increase for all noncircular pellet geometries after agitation. The increases are clearly seen in Figures 8.57-8.121.

Figures 8.57-8.61 show the IPFC as a function of pressure for the bilobal pellets manufactured using die 211 for all five samples of acetal copolymer with agitation. Figure 8.57 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade U10-01. The value of the IPFC is 0.434 to 0.51 . Figure 8.58 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M25. The value of the IPFC is 0.393 to 0.54 . Figure 8.59 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M90. The value of the IPFC is 0.408 to
0.534 . Figure 8.60 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M270. The value of the IPFC is 0.398 to 0.502. Figure 8.61 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer M450. The value of the IPFC is 0.382 to 0.536 .

Figures 8.62-8.66 show the IPFC as a function of pressure for the bilobal pellets manufactured using die 212 for all five samples of acetal copolymer with agitation. Figure 8.62 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade U10-01. The value of the IPFC is 0.438 to 0.642 . Figure 8.63 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M25. The value of the IPFC is 0.46 to 0.568 . Figure 8.64 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M90. The value of the IPFC is 0.416 to 0.517 . Figure 8.65 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M270. The value of the IPFC is 0.54 to 0.6. Figure 8.62 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M450. The value of the IPFC is 0.48 to 0.588 .

Figures 8.67-8.71 show the IPFC as a function of pressure for the bilobal pellets manufactured using die 212 for all five samples of acetal copolymer with agitation. Figure 8.67 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade U10-01. The value of the IPFC is 0.474 to 0.562 . Figure 8.68 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M25. The value of the IPFC is 0.384 to 0.459. Figure 8.69 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M90. The value of the IPFC is 0.445 to 0.517 . Figure 8.70 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M270. The value of the IPFC is 0.428 to
0.512. Figure 8.71 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M450. The value of the IPFC is 0.476 to 0.588 .

Figures 8.72-8.77 show the IPFC as a function of pressure for the bilobal pellets manufactured using die 231 for all five samples of acetal copolymer with agitation. Figure 8.72 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade U10-01. The value of the IPFC is 0.408 to 0.546 . Figure 8.73 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M25. The value of the IPFC is 0.298 to 0.434. Figure 8.74 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M90. The value of the IPFC is 0.309 to 0.386. Figure 8.75 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M270. The value of the IPFC is 0.224 to 0.332. Figure 8.76 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer M450. The value of the IPFC is 0.274 to 0.362 .

Figures $8.77-8.81$ show the IPFC as a function of pressure for the bilobal pellets manufactured using die 241 for all five samples of acetal copolymer with agitation. Figure 8.77 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade U10-01. The value of the IPFC is 0.534 to 0.616 . Figure 8.78 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M25. The value of the IPFC is 0.445 to 0.565. Figure 8.79 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M90. The value of the IPFC is 0.408 to 0.501 . Figure 8.80 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M270. The value of the IPFC is 0.386 to 0.514. Figure 8.81 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer M450. The value of the IPFC is 0.438 to 0.598 .

Figures 8.82-8.86 show the IPFC as a function of pressure for the bilobal pellets manufactured using die 211 for all five samples of polyethylene, polypropylene, polystyrene, nylon $6, \mathrm{ABS}$ with agitation. The value of the IPFC is presented as described here. Figure 8.82 shows the IPFC as a function of pressure for bilobal pellets manufactured from PE. The value of the IPFC is 0.398 to 0.493 . Figure 8.83 shows the IPFC as a function of pressure for bilobal pellets manufactured from PP. The value of the IPFC is 0.28 to 0.37 . Figure 8.84 shows the IPFC as a function of pressure for bilobal pellets manufactured from PS. The value of the IPFC is 0.352 to 0.448 . Figure 8.85 shows the IPFC as a function of pressure for bilobal pellets manufactured from PA 6. The value of the IPFC is 0.322 to 0.442 . Figure 8.86 shows the IPFC as a function of pressure for bilobal pellets manufactured from ABS. The value of the IPFC is 0.306 to 0.392 .

Figures $8.87-8.90$ show the IPFC as a function of pressure for the bilobal pellets manufactured using die 212 for all five samples of polyethylene, polypropylene, polystyrene, and nylon 6 with agitation. The value of the IPFC is presented as described here. Figure 8.87 shows the IPFC as a function of pressure for bilobal pellets manufactured from PE. The value of the IPFC is 0.388 to 0.472 . Figure 8.88 shows the IPFC as a function of pressure for bilobal pellets manufactured from PP. The value of the IPFC is 0.28 to 0.36 . Figure 8.89 shows the IPFC as a function of pressure for bilobal pellets manufactured from PS. The value of the IPFC is 0.344 to 0.406 . Figure 8.90 shows the IPFC as a function of pressure for bilobal pellets manufactured from PA 6. The value of the IPFC is 0.313 to 0.41 .

Figures 8.91-8.95 show the IPFC as a function of pressure for the bilobal pellets manufactured using die 221 for all five samples of polyethylene, polypropylene, polystyrene, nylon 6 , ABS with agitation. The value of the IPFC is presented as described here. Figure 8.91 shows the IPFC as a function of pressure for bilobal pellets manufactured from PE. The value of the IPFC is 0.408 to 0.492 . Figure 8.92
shows the IPFC as a function of pressure for bilobal pellets manufactured from PP. The value of the IPFC is 0.324 to 0.412 . Figure 8.93 shows the IPFC as a function of pressure for bilobal pellets manufactured from PS. The value of the IPFC is 0.479 to 0.565 . Figure 8.94 shows the IPFC as a function of pressure for bilobal pellets manufactured from PA 6. The value of the IPFC is 0.35 to 0.483 . Figure 8.95 shows the IPFC as a function of pressure for bilobal pellets manufactured from ABS. The value of the IPFC is 0.258 to 0.372 .

Figures 8.96-8.100 show the IPFC as a function of pressure for the bilobal pellets manufactured using die 231 for all five samples of polyethylene, polypropylene, polystyrene, nylon 6 , and $A B S$ with agitation. The value of the IPFC is presented as described here. Figure 8.96 shows the IPFC as a function of pressure for bilobal pellets manufactured from PE. The value of the IPFC is 0.4 to 0.45 . Figure 8.97 shows the IPFC as a function of pressure for bilobal pellets manufactured from PP. The value of the IPFC is 0.319 to 0.438 . Figure 8.98 shows the IPFC as a function of pressure for bilobal pellets manufactured from PS. The value of the IPFC is 0.344 to 0.448 . Figure 8.99 shows the IPFC as a function of pressure for bilobal pellets manufactured from PA 6. The value of the IPFC is 0.336 to 0.452 . Figure 8.100 shows the IPFC as a function of pressure for bilobal pellets manufactured from ABS. The value of the IPFC is 0.234 to 0.329 .

Figures 8.101-8.105 show the IPFC as a function of pressure for the bilobal pellets manufactured using die 241 for all five samples of polyethylene, polypropylene, polystyrene, nylon 6, and ABS with agitation. The value of the IPFC is presented as described here. Figure 8.101 shows the IPFC as a function of pressure for bilobal pellets manufactured from PE. The value of the IPFC is 0.394 to 0.492 . Figure 8.102 shows the IPFC as a function of pressure for bilobal pellets manufactured from PP. The value of the IPFC is 0.324 to 0.391 . Figure 8.103 shows the IPFC as a function of pressure for bilobal pellets manufactured from PS. The
value of the IPFC is 0.350 to 0.62 . Figure 8.104 shows the IPFC as a function of pressure for bilobal pellets manufactured from PA 6. The value of the IPFC is 0.35 to 0.474 . Figure 8.105 shows the IPFC as a function of pressure for bilobal pellets manufactured from ABS. The value of the IPFC is 0.242 to 0.414 .

Figures 8.106-8.110 show the IPFC as a function of pressure for the bilobal pellets manufactured using die 311 for all five samples of acetal copolymer with agitation. The value of the IPFC is presented as described here. Figure 8.106 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grades U10-01. The value of the IPFC is 0.35 to 0.48 . Figure 8.107 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grades M25. The value of the IPFC is 0.242 to 0.309 . Figure 8.108 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grades M90. The value of the IPFC is 0.238 to 0.31 . Figure 8.109 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grades M270.. The value of the IPFC is 0.24 to 0.309 . Figure 8.110 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grades M450. The value of the IPFC is 0.195 to 0.288 .

Figures 8.111-8.115 show the IPFC as a function of pressure for the bilobal pellets manufactured using die 411 for all five samples of acetal copolymer with agitation. The value of the IPFC is presented as described here. Figure 8.111 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade U10-01. The value of the IPFC is 0.383 to 0.556 . Figure 8.112 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M25. The value of the IPFC is 0.245 to 0.332 . Figure 8.113 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer grade M90. The value of the IPFC is 0.31 to 0.385 . Figure 8.114 shows the IPFC as a function of pressure for bilobal pellets manufactured from PA 6.

The value of the IPFC is 0.28 to 0.363 . Figure 8.115 shows the IPFC as a function of pressure for bilobal pellets manufactured from acetal copolymer. The value of the IPFC is 0.255 to 0.286 .

Figures 116-119 show the IPFC as a function of pressure for the bilobal pellets manufactured using die 311 for polyethylene, polypropylene, polystyrene, nylon 6, and ABS with agitation. The value of the IPFC is presented as described here. Figure 8.116 shows the IPFC as a function of pressure for pellets manufactured from PE. The value of the IPFC is 0.375 to 0.462 . Figure 8.117 shows the IPFC as a function of pressure for pellets manufactured from PP. The value of the IPFC is 0.298 to 0.36 . Figure 8.118 shows the IPFC as a function of pressure for pellets manufactured from PS. The value of the IPFC is 0.348 to 0.422 . Figure 8.119 shows the IPFC as a function of pressure for pellets manufactured from PA 6. The value of the IPFC is 0.375 to 0.465 .

Figures 120-121 show the IPFC as a function of pressure for the bilobal pellets manufactured using die 411 for polyethylene, polypropylene,polystyrene, nylon 6, and ABS with agitation. The value of the IPFC is presented as described here. Figure 8.120 shows the IPFC as a function of pressure for pellets manufactured from PE. The value of the IPFC is 0.4 to 0.472 . Figure 8.121 shows the IPFC as a function of pressure for pellets manufactured from PP. The value of the IPFC is 0.343 to 0.402 .

8.4.6 Effect of Consolidation Pressure of the Particulate Bed

The pellets manufactured using die A211 from polyethylene were consolidated with a consolidation pressure of 126.3 kPa . In the tests, the static load is applied on the cap of the shear cell. The effect of consolidation pressure on the IPFC is illustrated in Figure 8.122. The consolidation pressure has only a weak, but positive, influence on the IPFC. while the consolidation pressure put on the particulate bed.

8.4.7 Effect of Consolidation Time of the Particulate Bed

The specimen of particulates was consolidated at a pressure 126.3 kPa for different time periods. No shear force is applied on the shear cell with a normal force of $N=A \sigma$, where A is the cross-sectional area of the cell and σ is the consolidation pressure. After the lapse of the prescribed interval of time, one at a time, the cell is placed on the shear apparatus and the IPFC is measured as described in chapter six. The effect on IPFC for bilobal pellets manufactured using die A211 from polyethylene is shown in Figure 8.123. The consolidation time has a weak, influence on the IPFC values for polyethylene.

8.4.8 Effect of Particulate Powders

The influence of additive for cylindrical pellets and bilobal pellets is measured by adding the mica clay into the material nylon 6 as additive in weight percentage from 0.5% to 2%. Both the pellets with circular cross-sections and bilobal crosssections with adding mica clay is performed. The \% increase of IPFC for the pellets with circular cross-sections with mica clay is presented in Figure 8.124. The \% increase of IPFC for the pellets with bilobal cross-sections with mica clay is presented in Figure 8.125. The increase is more noteable with the pellets of circular crosssections than with the pellets of bilobal cross-sections. The fact that an increase in the value of the IPFC occurred at all was surprising. The mica clay powder was expected to destabilize the solid bed by providing rolling contacts with low friction coefficients. In fact, it appears to have acted in an adhesive manner.

In addition, the effect of additive for cylindrical pellets and bilobal pellets are also measured adding PBT powder into the acetal copolymer grade M90 (POM3) in weight percentage from 0.5% to 2%. The $\%$ increase for IPFC by adding polyester powder (PBT) into cylindrical pellet are shown in Figure 8.126. The \% decrease for IPFC by adding PBT powder into bilobal pellet are shown in Figure 8.127, Here the
expected increase in IPFC value was observed with pellets of cylindrical crosssection, especially at low pressure. The addition of polymer powder to polymer pellets is known to improve solids conveying in extrusion, and this effect is expected if the IPFC increases as measured. However, the consistent decrease in the IPFC value for pellets with bilobal cross-sections was unexpected. The PBT powder appears to reverse its role as the pellet geometry changes.

8.4.9 Effect of Surface Lubricants

The influence of surface lubricants on the IPFC for cylindrical pellets and bilobal pellets is also measured by adding zinc stearate into the material M90 (POM3) in weight percentage from 0.25% to 1%. However, solid lubricants are frequently added to polymeric pellets among manufacturing. The $\%$ decrease of IPFC for the pellets with circular cross-sections by adding zinc stearate are shown in Figure 8.128. The \% decrease of IPFC pellets with bilobal cross-sections with zinc stearate are presented in Figures 8.129 and 8.130 respectively for pellets manufactured with different dies and hence possessing different shapes. For all three geometries the IPFC values are significantly reduced, although the decrease with pellets of circular cross-section is significantly loss. Even small amounts of zinc stearate (0.25%) reduce the IPFC over 40%. The measurements are very significant, and explain why materials with external lubricant present convey poorly and cause surging in injection molding, blow molding and extrusion operations.

8.5 Comparison of the IPFC for Pellets with Bilobal, Trilobal and Quadrilobal Cross-Sections

Of course the initial hypothesis in this work was those bilobal, trilobal, and quadrilobal pellets would increase the interparticulate friction coefficient. This was found to be the case for all comparable situations. This finding is shown in Figure 8.1 to Figure 8.57 for acetal copolymer, polyethylene, polypropylene, polystyrene, nylon

6 and ABS. These figures indicate the percentage increase in the value of the interparticulate friction coefficient as a function of normal pressure for each of the profile dies used, and all of the extruder screw speeds used. Each and every point in these figures indicates that the interparticulate friction coefficient is improved by the sole action of profiling the pellets. The average IPFC values of bilobal, trilobal, and quadrilobal for all ten samples are presented in Table 8.8.

8.6 Effect of the IPFC Increases on the Performance of Plastics Solid Conveying Equipment

The results clearly indicate that the interparticulate friction coefficient is increased with profiled pellets as compared to cylindrical pellets. The hypothesis can readily be drawn that solids beds of profiled pellets will exhibit greater integrity, and not break up readily. However, the profiled pellets must also be conveyed in mechanical systems other than plasticating screws, and in these instances the flexibility is required to be high, and the increased interparticulate friction coefficients may be disadvantageous. It will cause an increase in the coefficient, which reflects the magnitude of the cohesive forces in the solid bed, which must be exceeded if flow is to occur. This, in turn, could lead to arching and piping in bins and hoppers. The solution to these flow anomalies is known to be the use of live bottoms, or hopper stirrers, but this entails an increased cost for the processor, and may limit the use of profiled pellets.

Table 8.1 Effect of Normal Pressure on the Average IPFC for Acetal Copolymer.

Normal Pressure kPa	Average IPFC Bilobal	Average IPFC Trilobal	Average IPFC Quadrilobal
20.46	0.364	0.275	0.253
26.64	0.372	0.270	0.283
32.82	0.369	0.269	0.259
39.00	0.367	0.267	0.258
45.18	0.358	0.260	0.254

Table 8.2 Effect of Normal Pressure on the Average IPFC for PE, PP, PS, PA6 and ABS.

Normal Pressure kPa	Average IPFC Bilobal	Average IPFC Trilobal	Average IPFC Quadrilobal
20.46	0.309	0.304	0.340
26.64	0.312	0.315	0.342
32.82	0.313	0.314	0.343
39.00	0.311	0.310	0.338
45.18	0.309	0.307	0.332

Table 8.3 Effect of Extruder Screw Speed on the Average IPFC for Acetal Copolymer.

Extruder screw speed rev/min	Average IPFC Bilobal	Average IPFC Trilobal	Average IPFC Quadrilobal
5	0.339	0.247	0.259
10	0.360	0.267	0.264
15	0.367	0.271	0.262
20	0.375	0.288	0.270

Table 8.4 Effect of Extruder Screw Speed on the Average IPFC for PE, PP, PS, PA6 and $A B S$.

Extruder screw speed rev/min	Average IPFC Bilobal	Average IPFC Trilobal	Average IPFC Quadrilobal
5	0.289	0.299	0.330
10	0.300	0.312	0.340
15	0.313	0.313	0.344
20	0.328	0.324	0.348

Table 8.5 Effect of Molecular Weight on the Average IPFC for Acetal Copolymer.

Melt Index	Average IPFC Bilobal	Average IPFC Trilobal	Average IPFC Quadrilobal
1.0	0.409	0.411	0.346
2.5	0.371	0.234	0.235
9.0	0.366	0.254	0.272
27.0	0.342	0.226	0.242
45.0	0.341	0.225	0.211

Table 8.6 Effect of Die Geometry on the Average IPFC for Acetal Copolymer.

Profile Die No	Average IPFC
A201-01	0.381
A201-02	0.383
A202-01	0.413
A203-01	0.274
A204-01	0.397
A301-01	0.270
A401-01	0.261

Table 8.7 Effect of Die Geometry on the Average IPFC for PE, PP, PS, PA 6 and ABS.

Profile Die No	Average IPFC
A201-01	0.310
A201-02	0.304
A202-01	0.332
A203-01	0.278
A204-01	0.323
A301-01	0.310
A401-01	0.339

Table 8.8 The Average IPFC values for Pellets with Bilobal, Trilobal and Quadrilobal Cross-Section for Acetal Copolymer, PE, PP, PS, PA 6 and ABS.

Material	Average IPFC Bilobal	Average IPFC Trilobal	Average IPFC Quadrilobal
U10-01	0.409	0.411	0.346
M25	0.371	0.234	0.235
M90	0.366	0.254	0.272
M270	0.342	0.226	0.242
M450	0.341	0.225	0.211
PE	0.337	0.317	0.352
PP	0.289	0.280	0.327
PS	0.351	0.308	N/A
PA 6	0.329	0.338	N/A
ABS	0.250	N/A	N/A

Figure 8.1 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for POM1.

Figure 8.2 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for POM1.

Figure 8.3 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for POM1.

Figure 8.4 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20 rpm for POM1.

Figure 8.5 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for POM2.

Figure 8.6 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpma for POM2.

Figure 8.7 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for POM2.

Figure 8.8 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20rpm for POM2.

Figure 8.9 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for POM3.

Figure 8.10 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for POM3.

Figure 8.11 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for POM3.

Figure 8.12 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20rpm for POM3.

Figure 8.13 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for POM4.

Figure 8.14 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for POM4.

Figure 8.15 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for POM4.

Figure 8.16 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20rpm for POM4.

Figure 8.17 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for POM5.

Figure 8.18 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for POM5.

Figure 8.19 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for POM5.

Figure 8.20 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20rpm for POM5.

Figure 8.21 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for PE.

Figure 8.22 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for PE.

Figure 8.23 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15 rpm for PE.

Figure 8.24 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20 rpm for PE.

Figure 8.25% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for PP.

Figure 8.26 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for PP.

Figure 8.27 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for PP.

Figure 8.28 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20rpm for PP.

Figure 8.29 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for PS.

Figure 8.30 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for PS.

Figure 8.31 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for PS.

Figure 8.32 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20rpm for PS.

Figure 8.33 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for PA 6.

Figure 8.34 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for PA 6.

Figure 8.35 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for PA 6.

Figure 8.36 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20 rpm for PA 6.

Figure 8.37 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 5rpm for ABS.

Figure 8.38 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 10rpm for ABS.

Figure 8.39 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 15rpm for ABS.

Figure 8.40 \% Increase for all Bilobal Pellets Compared to Circular Pellets at an Extruder Screw Speed 20rpm for ABS.

Figure 8.41 \% Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM1.

Figure 8.42 \% Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM2.

Figure 8.43 \% Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM3.

Figure 8.44 \% Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM4.

Figure 8.45 \% Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM5.

Figure 8.46 \% Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for PE.

Figure 8.47 \% Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for PP.

Figure 8.48 \% Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for PS.

Figure 8.49 \% Increase for Trilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for PA 6.

Figure 8.50 \% Increase for Quadrilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM1.

Figure 8.51 \% Increase for Quadrilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM2.

Figure 8.52 \% Increase for Quadrilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM3.

Figure 8.53 \% Increase for Quadrilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM4.

Figure 8.54 \% Increase for Quadrilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for POM5.

Figure 8.55 \% Increase for Quadrilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for PE.

Figure 8.56 \% Increase for Quadrilobal Pellets Compared to Circular Pellets at Four Different Extruder Screw Speed for PP.

Figure 8.57 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM1 with Agitation.

Figure 8.58 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM2 with Agitation.

Figure 8.59 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM3 with Agitation.

Figure 8.60 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM4 with Agitation.

Normal Pressure (kPa)
Figure 8.61 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for POM5 with Agitation.

Normal Pressure (kPa)
Figure 8.62 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM1 with Agitation.

Figure 8.63 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM2 with Agitation.

Normal Pressure (kPa)
Figure 8.64 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM3 with Agitation.

Figure 8.65 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM4 with Agitation.

Normal Pressure (kPa)
Figure 8.66 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for POM5 with Agitation.

Figure 8.67 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM1 with Agitation.

Figure 8.68 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM2 with Agitation.

Figure 8.69 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM3 with Agitation.

Figure 8.70 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM4 with Agitation.

Figure 8.71 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for POM5 with Agitation.

Normal Pressure (kPa)
Figure 8.72 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM1 with Agitation.

Figure 8.73 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM2 with Agitation.

Normal Pressure (kPa)
Figure 8.74 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM3 with Agitation.

Figure 8.75 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM4 with Agitation.

Figure 8.76 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for POM5 with Agitation.

Figure 8.77 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM1 with Agitation.

Normal Pressure (kPa)
Figure 8.78 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM2 with Agitation..

Figure 8.79 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM3 with Agitation.

Normal Pressure (kPa)
Figure 8.80 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM4 with Agitation.

Figure 8.81 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for POM5 with Agitation.

Figure 8.82 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for PE with Agitation.

Normal Pressure (kPa)
Figure 8.83 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for PP with Agitation.

Figure 8.84 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for PS with Agitation.

Figure 8.85 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for PA 6 with Agitation.

Figure 8.86 IPFC for Pellets Manufactured Using Die A211 as a Function of Normal Pressure for ABS with Agitation.

Figure 8.87 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for PE with Agitation.

Figure 8.88 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for PP with Agitation.

Normal Pressure (kPa)
Figure 8.89 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for PS with Agitation.

Normal Pressure (kPa)
Figure 8.90 IPFC for Pellets Manufactured Using Die A212 as a Function of Normal Pressure for PA 6 with Agitation.

Figure 8.91 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for PE with Agitation.

Figure 8.92 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for PP with Agitation.

Figure 8.93 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for PS with Agitation.

Normal Pressure (kPa)
Figure 8.94 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for PA 6 with Agitation.

Figure 8.95 IPFC for Pellets Manufactured Using Die A221 as a Function of Normal Pressure for ABS with Agitation.

Figure 8.96 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for PE with Agitation.

Figure 8.97 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for PP with Agitation.

Figure 8.98 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for PS with Agitation.

Figure 8.99 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for PA 6 with Agitation.

Figure 8.100 IPFC for Pellets Manufactured Using Die A231 as a Function of Normal Pressure for ABS with Agitation.

Figure 8.101 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for PE with Agitation.

Figure 8.102 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for PP with Agitation.

Figure 8.103 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for PS with Agitation.

Figure 8.104 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for PA 6 with Agitation.

Normal Pressure (kPa)
Figure 8.105 IPFC for Pellets Manufactured Using Die A241 as a Function of Normal Pressure for ABS with Agitation.

Normal Pressure (kPa)
Figure 8.106 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM1 with Agitation.

Normal Pressure (kPa)
Figure 8.107 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM2 with Agitation.

Normal Pressure (kPa)
Figure 8.108 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM3 with Agitation.

Normal Pressure (kPa)
Figure 8.109 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM4 with Agitation.

Figure 8.110 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for POM5 with Agitation.

Figure 8.111 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM1 with Agitation.

Normal Pressure (kPa)
Figure 8.112 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM2 with Agitation.

Normal Pressure (kPa)
Figure 8.113 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM3 with Agitation.

Normal Pressure (kPa)
Figure 8.114 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM4 with Agitation.

Normal Pressure (kPa)
Figure 8.115 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for POM5 with Agitation.

Figure 8.116 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for PE with Agitation.

Figure 8.117 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for PP with Agitation.

Figure 8.118 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for PS with Agitation.

Normal Pressure (kPa)
Figure 8.119 IPFC for Pellets Manufactured Using Die A311 as a Function of Normal Pressure for PA 6 with Agitation.

Figure 8.120 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for PE with Agitation.

Normal Pressure (kPa)
Figure 8.121 IPFC for Pellets Manufactured Using Die A411 as a Function of Normal Pressure for PP with Agitation.

Figure 8.122 Effect of Consolidation Pressure on IPFC for Pellets Manufactured Using Die A211 of PE.

Figure 8.123 Effect of Consolidation Time for Pellets Manufactured Using Die A211 of PE at Consolidation Pressure 126.3 kPa .

Figure 8.124 \% Increase for Pellets with Circular Cross-Sections of PA 6 with Mica Clay.

Figure 8.125 \% Increase for Pellets Manufactured Using Die A241 of PA 6 with Mica Clay at Extruder Screw Speed 20 rpm.

Figure 8.126 \% Increase for Pellets with Circular Cross-Sections of POM3 with PBT Powder.

Figure 8.127 \% Decrease for Pellets Manufactured Using Die A212 of POM3 with PBT Powder at Extruder Screw Speed 15rpm.

Normal Pressure (kPa)
Figure 8.128 \% Decrease for Pellets with Circular Cross-Sections of POM3 with Zinc Stearate.

Figure 8.129 \% Decrease for Pellets Manufactured Using A211 of POM3 with Zinc Stearate.

Normal Pressure (kPa)
Figure 8.130 \% Decrease for Pellets Manufactured Using A212 of POM3 with Zinc Stearate.

CHAPTER 9

THE SIMULATION OF THE PLASTICATING EXTRUSION PROCESS WITH EMPHASIS ON THE CONVEYING OF POLYMERIC PARTICULATES

9.1 Summary of the Simulation Procedure

The simulation computes the pressure rise in the solids conveying zone of a plasticating extruder from force and torque balances created by the motion of the plasticating screw in the extruder barrel. The integrity of the solid bed is then analyzed by studying the solid bed as a continuum and determining if rupture conditions exist.

The solids conveying zone extends from the hopper to the point where a melt film is formed on the barrel surface. The mathematical model of the solids conveying zone was developed by Darnel and Mol [16] and modified by Duvdevani et al. [47]. The pressure rise across the solid conveying zone is computed from,

$$
\begin{equation*}
\Delta \mathrm{P}_{\mathrm{s}}=\mathrm{P}_{\mathrm{o}}\left[\exp \left(\Phi \mathrm{~L}_{\mathrm{f}}\right)-1\right] \tag{9.1}
\end{equation*}
$$

where,

$$
\begin{gather*}
\Phi=\left\{\cos \theta-\mathrm{K} \sin \theta-\mathrm{C} \frac{\mathrm{f}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{b}}}\left(\mathrm{~K} \sin \phi_{\mathrm{S}}+\mathrm{C} \cos \phi_{\mathrm{S}}\right)-\frac{2 \mathrm{D}_{\mathrm{c}}}{\mathrm{~S}_{\mathrm{l}}} \cdot \frac{\mathrm{f}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{b}}}\left(\mathrm{KCtan} \phi_{\mathrm{S}}+\mathrm{H}^{2}\right)\right\} \\
\frac{\mathrm{f}_{\mathrm{b}}}{\mathrm{D}_{\mathrm{c}} H \sin \phi_{\mathrm{a}}\left(\mathrm{H} \cos \phi_{\mathrm{a}}+\mathrm{K} \sin \phi_{\mathrm{a}}\right)} \tag{9.2}\\
\theta=\arctan \left[\frac{\mathrm{Q} \mathrm{~S}_{\mathrm{l}}}{\mathrm{~N}_{\mathrm{s}} \pi \mathrm{D}_{\mathrm{B}}} \cdot \frac{1}{\pi \mathrm{~S}_{\mathrm{l}} \mathrm{D}_{\mathrm{c}}\left(\mathrm{D}_{\mathrm{B}}-\mathrm{D}_{\mathrm{c}}\right)-\frac{\mathrm{Q}}{\mathrm{~N}}}\right] \tag{9.3}
\end{gather*}
$$

$$
\begin{equation*}
H=\frac{D_{B}-D_{c}}{D_{B}} \tag{9.4}
\end{equation*}
$$

$$
\begin{equation*}
C=\frac{D_{B}-2 D_{c}}{D_{B}} \tag{9.5}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{K}=\frac{\mathrm{H}\left(\tan \phi_{\mathrm{a}}+\mathrm{f}_{\mathrm{s}}\right)}{1-\mathrm{f}_{\mathrm{s}} \tan \phi_{\mathrm{a}}} \tag{9.6}
\end{equation*}
$$

$$
\begin{equation*}
\tan \phi_{S}=\frac{S_{1}}{\pi\left(D_{B}-2 D_{c}\right)} \tag{9.7}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \quad \tan \phi_{\mathrm{a}}=\frac{\mathrm{S}_{1}}{\pi\left(\mathrm{D}_{\mathrm{B}}-\mathrm{H}\right)} \tag{9.8}
\end{equation*}
$$

where,
$\mathrm{P}_{\mathrm{o}} \quad=$ pressure at feed zone entrance, psi
$\mathrm{L}_{\mathrm{f}} \quad=$ feed zone length, in
$\mathrm{D}_{\mathrm{c}} \quad=$ channel depth, in
$S_{1} \quad=$ screw lead, in
Q $\quad=$ volumetric extruder output in feed zone, in $3 / \mathrm{min}$
$\mathrm{N}_{\mathrm{s}} \quad=$ frequency of screw rotation, rpm
$D_{B} \quad=$ barrel diameter, in
$\theta \quad=$ angle of movement of the outer surface of the solid plug, radians
$\phi_{\mathrm{S}} \quad=$ helix angle at the screw root, degrees
and $\quad \phi_{\mathrm{a}} \quad=$ helix angle of screw at the screw channel, degrees
Eq. 9.2 contains the coefficients of friction between the barrel and the particulate beds, f_{b}, and the screw and the particulate bed, f_{s}. It is clear that f_{b} causes motion, whereas, f_{s}, retards motion. Four possible motion situations exist [48] as shown in Figure 9.1. For the force balance on a differential element of the particulate bed.

Case 1

$\mathrm{F}_{\mathrm{L}}<\mathrm{F}_{\mathrm{O}} ;$ Stationary Plug; Friction Mobilized,

$$
\begin{equation*}
\frac{\mathrm{F}_{\mathrm{L}}}{\mathrm{~F}_{\mathrm{o}}}=\exp \left[\left(\mathrm{C}_{1} \mathrm{f}_{\mathrm{w}_{1}}-\mathrm{C}_{2} \mathrm{f}_{\mathrm{w}}\right) \frac{\mathrm{KL}}{\mathrm{~A}}\right. \tag{9.9}
\end{equation*}
$$

Case 2
$\mathrm{F}_{\mathrm{L}}>\mathrm{F}_{\mathrm{O}}$; Stationary Plug; Friction Mobilized,

$$
\begin{equation*}
\frac{\mathrm{F}_{\mathrm{L}}}{\mathrm{~F}_{\mathrm{o}}}=\exp \left[\left(\mathrm{C}_{1} \mathrm{f}_{\mathrm{w}_{1}}+\mathrm{C}_{2} \mathrm{f}_{\mathrm{w}}\right) \frac{\mathrm{KL}}{\mathrm{~A}}\right. \tag{9.10}
\end{equation*}
$$

Case 3
Plug moves in the direction of the upper plate,

$$
\begin{equation*}
\frac{\mathrm{F}_{\mathrm{L}}}{\mathrm{~F}_{\mathrm{o}}}=\exp \left[\left(\mathrm{C}_{1} \mathrm{f}_{\mathrm{w}_{1}}-\mathrm{C}_{2} \mathrm{f}_{\mathrm{w}_{2}}\right) \frac{\mathrm{KL}}{\mathrm{~A}}\right. \tag{9.11}
\end{equation*}
$$

Case 4
Plug moves in the direction opposite of the upper plate,

$$
\begin{equation*}
\frac{\mathrm{F}_{\mathrm{L}}}{\mathrm{~F}_{\mathrm{o}}}=\exp \left[\left(\mathrm{C}_{1} \mathrm{f}_{\mathrm{w}_{1}}+\mathrm{C}_{2} \mathrm{f}_{\mathrm{w}_{2}}\right) \frac{\mathrm{KL}}{\mathrm{~A}}\right. \tag{9.12}
\end{equation*}
$$

In the foregoing, different kinematic coefficients of frictions on the moving plate $f_{w_{1}}$ and the stationary walls $f_{w_{2}}$ exist. The moving plate exerts a force of $C_{1} f_{w_{1}} K\left(\frac{F}{A}\right)$ in all cases, where C_{1} is the portion of the "wetted" perimeter of the moving plate and $f_{w_{1}}$ is the kinematic coefficient of friction. The stationary channel walls in cases 1 and 2 exert a force $C_{2} f_{w} K\left(\frac{F}{A}\right)$, where f_{w} is the static coefficient of friction and C_{2} is the portion of the "wetted" perimeter of the lower plate and side walls that is stationary. This force acts in the direction of increasing force. Thus it acts to the left in case 1 and to the right in case 2 . Finally in cases 3 and 4 the stationary walls exert a force
$C_{2} f_{w_{2}} K\left(\frac{F}{A}\right)$, where $f_{w_{2}}$ is the kinematic coefficient of friction. This force acts in the direction opposite to the direction of motion of the plug. Case 3 is similar to the mechanism acting on the particulate bed. Hence, one can assume f_{b} equals $f_{w_{1}}$, and f_{s} equals $f_{w_{2}}$.

The torque at the barrel surface is calculated from,

$$
\begin{equation*}
\mathrm{T}_{\mathrm{B}} \quad=\frac{1}{2} \pi \mathrm{D}_{\mathrm{B}}^{2} \mathrm{f}_{\mathrm{b}} \mathrm{P}_{\mathrm{o}} \frac{\cos \theta}{\Phi}\left[\exp \left(\Phi \mathrm{~L}_{\mathrm{f}}\right)-1\right] \tag{9.13}
\end{equation*}
$$

The power required to pump the solid pellets through the feed zone is computed from,

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{F}}=\left(6.6606 \times 10^{-5}\right) \pi \mathrm{T}_{\mathrm{B}} \mathrm{~N}_{\mathrm{S}} \tag{9.14}
\end{equation*}
$$

Figure 9.2 shows typical cross-sections in the melting zone of a plasticating extruder [47] as compared to an idealized cross-section upon which the theoretical model is based, and it demonstrates the features of the melting mechanism. The width of the solid bed usually decreases along the extruder. The rate of decrease is highest when the channel depth does not decrease, but remains constant as is the case in the feed and metering sections of a standard metering type single screw. The reduced solid bed width in the down channel direction, for a parallel-constant depth channel is given by,

$$
\begin{equation*}
\frac{\mathrm{X}_{\mathrm{o}}}{\mathrm{~W}}=\frac{\mathrm{X}_{\mathrm{i}}}{\mathrm{~W}}\left(1-\frac{\varphi \Delta \mathrm{z}}{2 \mathrm{D}_{\mathrm{c}}}\right)^{2} \tag{9.15}
\end{equation*}
$$

where $\mathrm{X}_{\mathrm{i}} / \mathrm{W}$ is the value at the entrance to the melting zone, W is the channel width, Δz an increment in the down channel distance, $D_{c}, D_{c i n}$, and $D_{\text {cout }}$ are the channel depths of a parallel channel and of a tapered channel at the entrance and exit of the
increment, respectively, and Ψ is a dimensionless group which is a measure of the rate of melting defined by,

$$
\begin{equation*}
\Psi=\frac{\varphi W^{1 / 2}}{\left(\frac{X_{i}}{W}\right)^{1 / 2} \frac{G}{D \operatorname{cin}}} \tag{9.16}
\end{equation*}
$$

Eq. 9.16 contains the term φ a function of the physical properties and operating conditions. It is defined as,

$$
\begin{equation*}
\varphi=\left\{\frac{\mathrm{V}_{\mathrm{bx}} \mathrm{U}_{2} \rho_{\mathrm{m}}\left[\mathrm{k}_{\mathrm{m}}\left(\mathrm{~T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{m}}\right)+\frac{\mathrm{U}_{1}}{2}\right]}{2\left[\mathrm{C}_{\mathrm{ps}}\left(\mathrm{~T}_{\mathrm{m}}-\mathrm{T}_{\mathrm{r}}\right)+\lambda^{*}\right]}\right\}^{1 / 2} \tag{9.17}
\end{equation*}
$$

The thickness of the melt film above the solid bed on the barrel surface is calculated from,

$$
\begin{align*}
& \delta=\left\{\frac{2 k_{\mathrm{m}}\left[\mathrm{k}_{\mathrm{m}}\left(\mathrm{~T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{m}}\right)+\mathrm{U}_{1}\right] \mathrm{X}}{\left[\mathrm{~V}_{\mathrm{bx}} \mathrm{U}_{2} \rho_{\mathrm{m}} \mathrm{C}_{\mathrm{ps}}\left(\mathrm{~T}_{\mathrm{m}}-\mathrm{T}_{\mathrm{r}}\right)+\lambda^{*}\right]}\right\}^{1 / 2} \tag{9.18}\\
& \lambda^{*}=\lambda+\mathrm{C}_{\mathrm{pm}}\left(\mathrm{~T}_{\mathrm{av}}-\mathrm{T}_{\mathrm{m}}\right) \tag{9.19}
\end{align*}
$$

where U_{1} and U_{2}, are defined as,

$$
\begin{align*}
& \mathrm{U}_{1}=\frac{2 \mathrm{~K}_{3}}{\mathrm{~A}_{4}^{2}}\left(\mathrm{~A}_{4}+\mathrm{e}^{\left.-\mathrm{A}_{4}-1\right)}\right. \tag{9.20}\\
& \mathrm{U}_{2}=2\left(\frac{1}{1-\mathrm{e}^{-\mathrm{A}_{4}}}-\frac{1}{\mathrm{~A}_{4}}\right) \tag{9.21}\\
& \mathrm{A}_{4}=\mathrm{a} \frac{\mathrm{~T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{m}}}{\mathrm{n}} \tag{9.22}
\end{align*}
$$

$\mathrm{C}_{\mathrm{ps}}=$ specific heat of the solid, BTU/b ${ }^{\circ} \mathrm{F}$
$\mathrm{C}_{\mathrm{pm}}=$ specific heat of the melt, $\mathrm{BTU} / \mathrm{b}{ }^{\circ} \mathrm{F}$
$\mathrm{T}_{\mathrm{b}} \quad=$ barrel temperature, ${ }^{\circ} \mathrm{F}$
$\mathrm{T}_{\mathrm{m}} \quad=$ melting temperature of the polymer, ${ }^{\circ} \mathrm{F}$
$\mathrm{T}_{\mathrm{av}}=$ average temperature of the polymer in the film, O F
$\mathrm{V}_{\mathrm{bx}}=$ velocity component in the x direction of the inner surface of the barrel relative to screw, in/sec

X =solid bed width, in
$\mathrm{X}_{\mathrm{i}} \quad=$ solid bed width at the entrance of axial increment, in
$\mathrm{X}_{\mathrm{o}}=$ solid bed width at the exit of axial increment, in
a $=$ constant
$\mathrm{k}_{\mathrm{m}} \quad=$ thermal conductivity of the melt, $\mathrm{BTU} / \mathrm{hr}{ }^{\circ} \mathrm{F}$
n =parameter in the "power law" model
$\rho_{\mathrm{m}} \quad=$ density of the melt, $\mathrm{lb} / \mathrm{ft}^{3}$
and
$\lambda \quad=$ heat of fusion, BTU/b
The term U_{1} relates to the heat generated by viscous dissipation in the film, and the term U_{2} is a measure of decrease in flow rate due to the modified velocity profile. From these, the width of the solid bed , the temperature of plastic melt beside it, and then the melt pressure are computed.

9.2 Geometry of the Screw

The objectives of PC EXTRUD ${ }^{\circledR}$ is either to quantitatively evaluate the performance characteristics of an existing screw or to design a new screw to an existing set of quantitative specifications. The Prodex extruder is a 2.5 inch diameter extruder. A photograph is shown in Figure 9.3. The specification of this Prodex
extruder may be described as follows. The maximum screw speed is 200 rpm . The mass flow rates range from $50 \mathrm{lb} / \mathrm{hr}$ to $300 \mathrm{lb} / \mathrm{hr}$ depending on the screw speed. There are six heating zones in the barrel. The entire screw is shown in Figure 9.4. The details of the screw geometry are shown in Figure 9.5. It has eight section zones. The screw may be defined geometrically as follows,

L =total length of the extruder, in
$S_{n}=$ number of sections with different geometries in the plasticating extruder to be simulated
$L_{s}=$ length of each geometrical section, in
Dcn =channel depth at the end of each geometrical section, in
$N_{t}=$ number of channels (threads) in parallel
$S_{\mathrm{I}}=$ screw lead, in
$\mathrm{C}_{\mathrm{f}}=$ channel flight width, in
and $\quad C_{c}=$ channel flight clearance, in
These geometric parameters determine the performance of the screw; and are varied depending upon the material being extruded and the operating requirements. The software can be used effectively to predict the performance of screw pump, in terms of pressure generation, temperature rise or mixing. The EXTRUD ${ }^{\circledR}$ can calculate and plot complete axial plastic melt pressure and temperature profiles, the relative width of the solid bed along the extruder, the power required to run the extruder and the cumulative heat transfer through the whole length of the extruder barrel.

9.3 Operating Variables

In addition, PC EXTRUD ${ }^{\circledR}$ also can be used to predict the effects of the following operating variables on the production rate and product quality.

1. changing flow rate,
2. changing screw speed,
3. changing barrel temperature,

It can evaluate these and other changes, quicker, faster and more accurately than with conventional methods. By utilizing the friction factor on both the barrel and the screw surfaces, it can compute the pressure rise across the solids conveying zone of the extruder. From the point where melting commences the extruder is subdivided into short axial increments in each of which constant conditions are assumed. An iterative approach is used to calculate steady-state conditions in each of these increments. In the melting section the thickness and temperature of the melt film above the solid bed on the barrel surface are calculated. In addition, the width of the solid bed, the temperature of the plastic melt beside it, and the plastic melt pressure are computed.

9.4 Simulation Input

The input data for PC EXTRUD ${ }^{\circledR}$ can be created by following the format of the input data as described in the Appendix A [57]. The material data bank developed from experimental work from the DATA BANK software [58] of Scientific Process \& Research (SPR). It contains the physical processing properties and frictional properties. The input data for the simulation of the performance of plasticating extruders can be classified into three categories. The first is screw geometry, the second is material properties, and the last is the operating conditions. The input data is listed in Appendix B. There are eight geometrical section zones and six heating zones. The screw geometry is input to the computer as follows,
$\mathrm{L}=112.14$ inches, total length of the extruder
$\mathrm{D}_{\mathrm{B}}=2.5$ inches, barrel inside diameter
$S_{n}=8$, section number of screw
$\mathrm{L}_{\mathrm{s} 1}=19.8$ inches, length for first section of the screw
$S_{11}=2.475$ inches, screw lead for first section
$D_{c 1}=0.437$ inch, channel depth at the end of first geometrical section
$\mathrm{L}_{\mathrm{s} 2}=27.55$ inches, length for second section of the screw
$S_{12}=2.475$ inches, screw lead for second section
$D_{c 2}=0.15$ inch, channel depth at the end of second geometrical section
$L_{s 3}=16.6$ inches, length for third section of the screw
$S_{13}=3.45$ inches, screw lead for third section
$D_{c 3}=0.450$ inch, channel depth at the end of third geometrical section
$L_{s 4}=2.475$ inches, length for fourth section of the screw
$S_{14}=2.475$ in, screw lead for fourth section
$D_{c 4}=0.387$ inch, channel depth at the end of fourth geometrical section
$\mathrm{L}_{\mathrm{s} 5}=9.9$ inches, length for fifth section of the screw
$S_{15}=2.475 \mathrm{in}$, screw lead for fifth section
$D_{c 5}=0.437$ inch, channel depth at the end of fifth geometrical section
$L_{\mathrm{s} 6}=3.125$ inches, length for sixth section of the screw
$S_{16}=3.125$ in, screw lead for sixth section
$D_{c 6}=0.237$ inch, channel depth at the end of sixth geometrical section
$L_{s 7}=16.6$ inches, length for seventh section of the screw
$S_{17}=3.45 \mathrm{in}$, screw lead for seventh section
$D_{c 7}=0.213$ inch, channel depth at the end of seventh geometrical section
$L_{s 8}=4.95$ inches, length for eighth section of the screw
$S_{18}=2.475$ in, screw lead for eighth section
$D_{c 8}=0.213$ inch, channel depth at the end of eighth geometrical section
$N_{t}=1$, number of channels (threads) in parallel
$\mathrm{C}_{\mathrm{f}}=0.30$ inch, channel flight width for whole screw
and $\quad C_{c}=0.0125$ inch, channel flight clearance for whole screw
The operating conditions for the simulations, except as stated, were,
$\mathrm{N}_{\mathrm{s}}=50 \mathrm{rpm}$, screw speed
$G=100 \mathrm{lb} / \mathrm{hr}$, flow rate
$\mathrm{T}_{\mathrm{b} 1}=390^{\circ} \mathrm{F}$, barrel temperature for first heating zone
$\mathrm{T}_{\mathrm{b} 2}=400^{\circ} \mathrm{F}$, barrel temperature for second heating zone
$\mathrm{T}_{\mathrm{b} 3}=410{ }^{\circ} \mathrm{F}$, barrel temperature for third heating zone
$\mathrm{T}_{\mathrm{b} 4}=420^{\circ} \mathrm{F}$, barrel temperature for fourth heating zone
$\mathrm{T}_{\mathrm{b} 5}=430^{\circ} \mathrm{F}$, barrel temperature for fifth heating zone
and $\quad \mathrm{T}_{\mathrm{b} 6}=440^{\circ} \mathrm{F}$, barrel temperature for six heating zone
The material properties and frictional coefficients for acetal copolymer grade M90 were taken from the DATA BANK described as above. The input data for each simulation is shown in Appendix B.

9.5 Description of the Simulation Printout

After, the prepared data file is run by EXTRUD ${ }^{\circledR}$. The resulting output of the computer is grouped sequentially as follows [57],

1. Printout of the input data. It includes physical properties, screw and hopper geometry and operating conditions.
2. Hopper, basically computes the pressure under the hopper and the height of the solid column above which there will be no further substantial increase in base pressure.
3. Solid conveying zone. Providing the following tabular information:
(a) LOCATION axial location along screw, in
(b) PHI
angle of advancement of solid plug, degrees
(c) ROBP
bulk density of solid, $\mathrm{lb} / \mathrm{ft}^{3}$
(d) FRIB
coefficient of friction on barrel surface
(e) FRIS coefficient of friction on screw surface
(f) TEMPERATURE inner surface temperature of barrel, ${ }^{\circ} \mathrm{F}$

BARREL
(g) TEMPERATURE screw surface temperature, ${ }^{\circ} \mathrm{F}$ SCREW
(h) POWER cumulative power consumption, HP
(i) PRESSURE pressure at location L , psi
4. Delay, melting and melt pumping zones. Provides the following tabular information:
(a) L
(b) TOUT
(c) X / W
(d) $\mathrm{X} / \mathrm{W}-\mathrm{INJ}$
(e) GRATIO
(f) PRESSURE REAL pressure at axial location L, psi
(h) POWER
(i) HOUT
(j) TBAR
(k) TVISC
(l) DHEAT
(m) FILM TEMP
(n) TSCREW
(o) DELTA
(p) SOBVEF
(q) VMELTP
(g) PRESSURE FULL pressure assuming solids conveying is not limiting performance, psi
axial location, in
melt pool temperature at location $\mathrm{L},{ }^{\circ} \mathrm{F}$
solid bed width
solid bed width at the start of screw rotation in injection molding
fraction of output still unmelted
cumulative power consumed from hopper to axial location L, HP
pressure at location L, psi melt pool velocity, in/min

5 Additional printout:
(a) Minimum temperature - due to the presence of unmelted plastic, ${ }^{\circ} \mathrm{F}$
(b) Temperature fluctuation - due to the presence of unmelted plastic, ${ }^{\circ} \mathrm{F}$
(c) Flow index (N) representing the non-Newtonian character of the melt that is the shear rate dependence of shear stress as $\tau=\mathrm{m}_{\mathrm{o}} \gamma^{\mathrm{N}}$
(d) Residence time: melt pool, HRS
(e) Pressure fluctuation - at tip of screw due to flight, psi/cycle
(f) Strength analysis of screw determines the maximum permissible channel depth an cooling hole diameter with the existing channel depth
(g) Break down of power consumption according to its occurrence for solids conveying, melting, mixing, flight clearance, pressurization an mixing devices
(h) Heat conduction through barrel in each header zone, BTU/min
(i) Heat conduction over the whole barrel, BTU/min
(j) Effect of regearing or gear changes on available power
(k) Report on viscosity computation - average and maximum shear rate as well as average and maximum temperature at which viscosity was computed
(l) Pressure rise or drop as well as temperature rise or drop through mixing section

9.6 Simulation Results

The purpose of using PC EXTRUD ${ }^{\circledR}$ for the simulation of plasticating extrusion enables the extruder designer and extrusion engineers to simulate the extruder, thereby reducing or eliminating the need for conducting costly experiments. The utilization of the mathematical model [49] involves the simulation of the performance of different size extruders with various screws and operating conditions to determine their relative performance in the desired application. This procedure will yield an optimized design and valuable information on the performance of the extruder under a variety of operating conditions.

In addition to the use of the PC EXTRUD ${ }^{\circledR}$ for the design of extruders, one can simulate the performance of an extruder and study the effect of changing one
variable at a time. Thus a great deal of insight may be gained on the process. It has been pointed out before that in the laboratory quite often it is impossible to change one variable without affecting others. The experimental separation of variables is almost impossible. Simulations with the aid of the mathematical model provide a means for separating the variables, allow the derivation of meaningful conclusions on the importance of each individual variable. It is the purpose of this work to discuss the effect of operating conditions and polymer properties on plasticating extrusion by performing simulations using the PC EXTRUD ${ }^{\circledR}$.

The prepared data files in appendix B are ready for input to PC EXTRUD ${ }^{\circledR}$. All simulation results are included in appendix B. An example of the printout is as follows,

| EXPERIMENT NUMBER | 1.00 | 12.00 | SCIENTIFIC PROCESS \& RESEARCH, INC. |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{N}=50.0 \mathrm{RPM}$ | OUTPUT $=$ | $100.00 \mathrm{LB} / \mathrm{HR} \quad$ SOAK TIME $=0.0 \mathrm{SECONDS}$ | |

After this the screw geometry is typed out:

SECTION	LENGTH	CH.DEPTH		WIDTH		LEAD	BAR.	FLT.	NO OF	HOLE
\#	(IN)	SOLID	MELT	SOLID	MELT		DIAM	WIDTH	HOLES	AREA
		(IN)		(SQIN)						
1	19.800	0.437	0.000	2.061	0.000	2.475	2.500	0.300		
2	27.550	0.150	0.000	2.061	0.000	2.475	2.500	0.300		
3	16.600	0.150	0.450	1.354	1.354	3.450	2.500	0.300		
4	2.475	0.387	0.000	2.061	0.000	2.475	2.500	0.300		
5	9.900	0.437	0.000	2.061	0.000	2.475	2.500	0.300		
6	3.125	0.237	0.000	2.604	0.000	3.125	2.500	0.300		
7	16.600	0.213	0.000	2.859	0.000	3.450	2.500	0.300	1.000	0.914
8	4.950	0.213	0.000	2.061	0.000	2.475	2.500	0.300		

This is followed by portion of the input data related to the hopper and solids conveying. Following this EXTRUD ${ }^{\circledR}$ performs a hopper analysis:

INCREASE HEIGHT TO $=186.01$ IN. MAXIMUM PRESSURE $=0.75$ PSI
The hopper analysis reveals that with the hopper geometry used the resin being processed requires a 186.01 inch high column in the hopper. A lower column of solids will effect solids conveying and with it the production rate of the extruder. Under these conditions the variation in column height can cause surging. On the other hand a higher column of solids will not affect the extruder performance. The hopper analysis is followed by the solids conveying zone analysis. It yields the angle of advancement of the solid bed along the solids conveying zone (PHI), the bulk density at points along the solids conveying zone of the extruder as effected by pressure and surface temperature (ROBP), the coefficient of friction on the barrel surface (FRIB) and on the screw surface (FRIS) as affected by the surface temperatures, pressure and resulting bulk density, the barrel and screw surface temperatures, cumulative power consumption from the downstream end of the hopper (POWER) and pressure buildup (PRESSURE). This is shown as follows,

SOLIDS CONVEYING ZONE ANALYSIS

OPTIUM SURFACE TEMPERATURES FOR SOLIDS CONVEYING:

BARREL $=$		67.00 DEG.F	AND	SCREW $=$	207.00 DEG.F			
LOCATION	PHI	ROBP	FRIB	FRIS	TEMPERATURE	.DEG F	POWER	PRESSURE
IN	DEG	LB/CU. FT			BARREL	SCREW	HP	PSI
1.00	13.7	21.13	0.059	0.003	67.0	207.0	0.00	0.51
2.00	13.6	21.22	0.065	0.008	67.0	207.0	0.00	0.79
3.00	13.5	21.33	0.072	0.014	67.0	207.0	0.00	1.25
4.00	13.3	21.53	0.084	0.025	67.0	207.0	0.00	2.00

5.00	12.9	21.92	0.101	0.044	75.0	207.0	0.00	3.28
6.00	12.7	22.12	0.072	0.054	67.0	207.0	0.01	4.03
7.00	12.5	22.39	0.083	0.067	67.0	207.0	0.01	4.94
8.00	12.2	22.66	0.093	0.078	67.0	207.0	0.01	5.89
9.00	12.0	22.96	0.105	0.091	67.0	207.0	0.01	6.98
10.00	11.7	23.31	0.117	0.104	67.0	207.0	0.02	8.23
10.90	11.4	23.66	0.129	0.117	330.0	207.0	0.03	9.53

The solid conveying zone is followed by the delay zone which contains no melt pool only the melt film on the barrel surface which develops to its full thickness along this zone. The delay zone is followed by the melting zone.

The following table yields the melt temperature in the melt pool (TOUT) along the extruder at every location (L), the relative width of the solid bed (X / W) along the extruder, its value in noncontinuous extrusion that is injection molding (X/W INJ), solids content at every point (GRATIO), REALPRESSURE in the case of possible solids conveying problems, FULL PRESSURE when solids conveying problems are eliminated. The cumulative power consumption by the rotating screw (POWER), channel depth (HOUT), barrel temperature (TBAR), viscosity of the melt pool along the extruder (TVISC), the incremental heat transferred through the barrel (D.HEAT) and the maximum melt film temperature at the barrel surface (FILM TEMP). D.HEAT is positive during barrel cooling that is when heat is flowing out through the barrel and negative during barrel heating when heat is flowing into the extruder:

1	Tout	X/W X/w	GRATIO	PRESSURE		POWER	hout	TBAR	TVISC	D.hEAT	FILM
IN	DEG F	SOLID		PSI		HP	[\mathbf{N}	DEG F	LB.SEC	BUT/IN	TEMP
				REAL	FULL				/SQ. IN	. MIN	DEG F
13.10	342.5			471.	471.		0.437	349.0	0.0811		
15.10	364.4			837.	837.		0.437	380.8	0.0389		
17.10	371.3			1071.	1071.		0.437	390.6	0.0903		

| 18.10 | 359.9 | .879 | .879 | .732 | 1111. | 1111. | 0.2 | 0.437 | 390.6 | 0.1863 | -32.5 | 391. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 19.80 | 361.7 | .830 | .830 | .691 | 1179. | 1179. | 0.4 | 0.437 | 390.6 | 0.1851 | -2.2 | 391. |
| 24.80 | 373.3 | .763 | .763 | .655 | 1379. | 1379. | 1.1 | 0.385 | 394.7 | 0.1522 | 2.8 | 394. |
| 26.10 | 378.0 | .746 | .746 | .645 | 1431. | 1431. | 1.2 | 0.372 | 395.5 | 0.1232 | 3.5 | 395. |
| 31.10 | 391.2 | .674 | .674 | .601 | 1646. | 1646. | 1.9 | 0.320 | 398.6 | 0.1098 | 2.1 | 398. |
| 36.10 | 398.9 | .596 | .596 | .546 | 1899. | 1899. | 2.5 | 0.267 | 401.5 | 0.1027 | 1.0 | 401. |
| 41.10 | 403.6 | .508 | .508 | .478 | 2200. | 2200. | 3.1 | 0.215 | 404.4 | 0.0985 | -0.5 | 404. |
| 46.10 | 406.3 | .402 | .402 | .390 | 2527. | 2527. | 3.7 | 0.163 | 407.2 | 0.0964 | -2.6 | 407. |
| 47.35 | 406.7 | .373 | .373 | .363 | 2599. | 2599. | 3.8 | 0.150 | 408.1 | 0.0960 | -4.0 | 408. |

52.35	404.0	.185	.374	.185	2953.	2953.	4.3	0.150	410.6	0.1020	-8.2	410.
57.35	408.0	.077	.188	.077	3282.	3282.	4.6	0.150	413.5	0.1001	-2.7	413.
62.35	413.1	.003	.010	.003	3520.	3520.	506	0.150	416.3	0.0959	3.4	416.
63.95	415.3	.000	.000	.000	3576.	3576.	5.6	0.150	417.4	0.0944	1.8	417.

SECONDARY CHANNEL ENDS

65.19	417.6	.000	.000	.000	3644.	3644.	5.7	0.269	418.2	0.0876	2.2	417.
66.42	419.1	.000	.000	.000	3687.	3687.	5.8	0.387	418.2	0.0932	1.7	417.
71.37	422.9	.000	.000	.000	3820.	3820.	6.0	0.412	421.6	0.0925	1.6	417.
76.32	426.1	.000	.000	.000	3939.	3939.	6.1	0.437	424.4	0.0915	1.5	417.
77.89	427.2	.000	.000	.000	3981.	3981.	6.2	0.338	425.4	0.0862	1.7	417.
79.45	428.7	.000	.000	.000	4040.	4040.	6.3	0.238	426.3	0.0815	2.1	417.

FLUTED SECTION WITH 1. PAIRS OF FLUTES
$\begin{array}{llllllllllllll} & 96.05 & 428.7 & .000 & .000 & .000 & \text { 4039. } & 4039 . & 6.3 & 0.213 & 431.1 & 0.0815 & 2.1 & 417 .\end{array}$
$\begin{array}{llllllllllllll} & 101.00 & 437.9 & .000 & .000 & .000 & 4288 . & 4288 . & 6.6 & 0.213 & 438.3 & 0.0803 & 2.1 & 417 .\end{array}$ MINIMUM TEMPERATURE $=437.908$ DEG F

TEMP FLUCTUATION $=$	0.000 DEG F
FLOW INDEX $(\mathbb{N})=$	0.763
GRATIO INJ. $=$	0.000
RESIDENCE TIME:	
MELT POOL	$=0.050008345 \mathrm{HRS}$
TORQUE	$=8303.5 \mathrm{INCH}$. POUNDS

The simulation also reveals that due to the presence of unmelted pellets in the extrudate a $0.000^{\circ} \mathrm{F}$ temperature fluctuation will be experienced. Without the solids conveying problem the solid totally melt downs. The torque and the break down in power consumption is printed out as follows,

POWER BREAK-DOWN:

SOLIDS CONV	$=$	0.027 HP
MELTING	$=3.545 \mathrm{HP}$	
MIXING	$=1.463 \mathrm{HP}$	
FLIGHT CLEAR	$=1.303 \mathrm{HP}$	
COMPRESSION	$=0.195 \mathrm{HP}$	
MLXING DEVICE	0.060 HP	
PRESSURE FLUCTUATION $=$	$170.41 \mathrm{PSI} / \mathrm{CYCLE}$	
TOTAL CONDUCTED HEAT THROUGH BARREL $=$	-89.1 TO $-21.0 \mathrm{BTU} / \mathrm{MIN} \mathrm{OR}$	

The above gives the heat conduction through the barrel. Positive values for heat represent heat conducted out through the barrel that is cooling while negative values represent heat conducted into the extruder from the barrel that is heating the polymer. It shows that between 0.49 and 2.1 HP were supplied through the barrel in addition to the 5.1 HP used by the motor to rotate the screw.

MAXIMUM SCREW SPEED, RPM:	50.0	75.0	100.0	125.0	150.0	175.0	200.0
POWER CONSUMPTION, \mathscr{F} OF AVAILABLE:	6.6	9.9	13.2	16.5	19.8	23.1	36.3

The above yields the effect of regearing the extruder. It shows that since the extruder has a 100 rpm maximum screw speed its full power rating can not be obtained except
by regearing to have a maximum speed of 50 rpm . The effect of intermediate gear ratios is also given. The above table assumes a DC drive the power of which linearly increases with rotational speed.

STRENGTH ANALYSIS OF YOUR SCREW (4140STEE) :
MAXIMUM PERMITTED COOLING HOLES DIAMETER IS 1.100 INCHES MAXIMUM PERMITTED CHANNEL DEPTH WITHOUT CORING SCREW IS 0.641 INCHES

The strength analysis of the screw with the material used to construct the screw (4140 steel) reveals that processing the resin in question with the above barrel temperature profile and operating conditions the screw can be deepened from the present 0.4370 inches to 0.641 inches without endangering the integrity of the screw. It also reveals that without deepening the channel the screw can be cored to a 1.10 inch diameter with the additional strength of the screw into which the 0.4370 inch deep channel has been cut. This however is valid only for the resin grade in question and for the barrel temperatures used. Should the barrel temperature be lowered, power consumption will rise lowering the permitted channel depth accordingly.

Next statistical information is provided on the viscosity data used by the simulation. It yields the shear rate and temperature ranges at which viscosity had to be computed in the simulation.

VISCOSITY WAS CALCULATED IN THE FOLLOWING SHEAR RATE RANGE		
SHEAR RATE	TEMP.	VISCOSITY
1/SEC	DEG.F	LB.SEC/SQ.IN
770.55	342.5	0.0588104
8.18	390.6	0.1541261
VISCOSITY WAS CALCULATED IN THE FOLLOWING TEMPERATURE RANGE		
SHEAR RATE	TEMP.	VISCOSITY
1/SEC	DEG.F	LB.SEC/SQ.IN
14.32	441.3	0.1012381
230.69	329.0	0.1049526

AT 50.00 RPM \& $100.00 \mathrm{LB} / \mathrm{HR}$ PRODUCTION RATE HEAD PRESSURE IS 4288. PSI.

9.6.1 Varying the Screw Speed

The screw speed is the single most important variable, because it can be controlled best and is also the most often varied.

The screw speed was ranged from 30 rpm to 70 rpm for acetal copolymer grade M90 at the same barrel temperature, flow rate, material properties, and frictional coefficient. Appendix B represents the operating conditions for acetal copolymer grade M90 with screw speeds from 30 rpm to 70 rpm . Appendix B shows the operating conditions for acetal copolymer grade M90 with a screw speed of 30rpm. The solids bed has some fraction unmelt at the end of the extruder. The screw is good enough to endure the strength under this operating conditions. The power consumed 3.4 HP for the plasticating extrusion process. Appendix B shows the operating conditions for acetal copolymer grade M90 with a screw speed of 40 rpm . The solids bed melt down occurs at an axial screw position of 67 inches. The screw is good enough to endure the strength under this operating conditions. The power consumed 4.85 HP for the plasticating extrusion process. Appendix B shows the operating conditions for acetal copolymer grade M90 with a screw speed of 50 rpm . The solids bed melt down occurs at an axial screw position of 63.95 inches. The head pressure at the exit of the extruder is 4288 psi . The screw is good enough to endure the strength under this operating conditions. The power consumed 8.4 HP for the plasticating extrusion process. Appendix B shows the operating conditions for acetal copolymer grade M90 with a screw speed of 60 rpm . The solids bed melt down occurs at an axial screw position of 57.5 inches. The head pressure at the exit of the extruder is 5297 psi. The screw is good enough to endure the strength under this operating conditions. The power consumed 9.0 HP for the plasticating extrusion process. Appendix B shows the operating conditions for acetal copolymer grade M90 with a screw speed of 70 rpm . The solids bed melt down occurs at an axial screw position of 52.5 inches. The head pressure at the exit of the extruder is 6158 psi. The screw is
good enough to endure the strength under this operating conditions. consumed 7HP for the plasticating extrusion process.

9.6.2 Varying the Flow Rate

The flow rates was ranged from $80 \mathrm{lb} / \mathrm{hr}$ to $120 \mathrm{lb} / \mathrm{hr}$ for acetal copolymer grade M90 at the same barrel temperature, screw speed, material properties, and frictional coefficient. Appendix B represents the operating conditions for acetal copolymer grade M90 with flow rates from $80 \mathrm{lb} / \mathrm{hr}$ to $120 \mathrm{lb} / \mathrm{hr}$. Appendix B shows the operating conditions for acetal copolymer grade M90 with flow rates at $80 \mathrm{lb} / \mathrm{hr}$. The solids bed melt down occurs at an axial screw position of 57.5 inches. The extrudate discharge pressure is 4707 psi . The screw is good enough to endure the strength under this operating conditions. The power consumed 6.3 HP for the plasticating extrusion process. Appendix B shows the operating conditions for acetal copolymer grade M90 with flow rates at $90 \mathrm{lb} / \mathrm{hr}$. The solids bed melt down occurs at an axial screw position of 62.4 inches. The extrudate discharge pressure is 4501 psi . The screw is good enough to endure the strength under this operating conditions. The power consumed 6.4 HP for the plasticating extrusion process. Appendix B shows the operating conditions for acetal copolymer grade M90 with flow rates at $100 \mathrm{lb} / \mathrm{hr}$. The solids bed melt down occurs at an axial screw position of 64 inches. The extrudate discharge pressure is 4288 psi. The screw is good enough to endure the strength under this operating conditions. The power consumed 6.6 HP for the plasticating extrusion process. Appendix B shows the operating conditions for acetal copolymer grade M90 with flow rates at $110 \mathrm{lb} / \mathrm{hr}$. The solids bed melt down occurs at an axial screw position of 76.3 inches. The extrudate discharge pressure is 4024 psi . The screw is good enough to endure the strength under this operating conditions. consumed 7.2 HP for the plasticating extrusion process. Appendix B shows the operating conditions for acetal copolymer grade M90 with flow rates at $120 \mathrm{lb} / \mathrm{hr}$. The solids bed melt
down occurs at an axial screw position of 101 inches. The screw is good enough to endure the strength under this operating conditions. The power consumed 8.4 HP for the plasticating extrusion process.

9.6.3 Varying the IPFC

By inputting the IPFC instead of the barrel friction in simulation and systematically reducing the barrel diameter from 2.5 inches to 1.75 inches. The effect of the IPFC on the conveying capacity of the solids can be determined.

The IPFC instead of barrel friction was ranged from 0.05 to $0.25 \mathrm{lb} / \mathrm{hr}$ for acetal copolymer grade M90 at the same barrel temperature, screw speed, flow rate, and material properties. Appendix B represents the operating conditions for acetal copolymer grade M90 with IPFC from 0.05 to 0.25 . Appendix B shows the IPFC is 0.05 for acetal copolymer grade M90 at barrel diameter 2.5 inches. The solid conveying capacity seems to rupture. Appendix B shows the IPFC is 0.10 for acetal copolymer grade M90 at barrel diameter 2.5 inches. The solid conveying capacity is free from rupture. Appendix B shows the barrel friction is 0.15 for acetal copolymer grade M90 at barrel diameter 2.5 inches. The solid conveying capacity is free from rupture. Appendix B shows the barrel friction is 0.20 for acetal copolymer grade M90 at barrel diameter 2.5 inches. The solid conveying capacity is free from rupture. Appendix B shows the barrel friction is 0.25 for acetal copolymer grade M90 at barrel diameter 2.5 inches. The solid conveying capacity is free from rupture.

The IPFC instead of barrel friction was ranged from 0.05 to 0.25 for acetal copolymer grade M90 at the same barrel temperature, screw speed, flow rate, and material properties. Appendix B represents the operating conditions for acetal copolymer grade M90 with IPFC from 0.05 to 0.25 . Appendix B shows the IPFC is 0.05 for acetal copolymer grade M90 at barrel diameter 2.25 inches. The solid conveying capacity seems to rupture. Appendix B shows the IPFC is 0.1 for acetal
copolymer grade M90 at barrel diameter 2.25 inches. The solid conveying capacity is free from rupture.Appendix B shows the barrel friction is 0.15 for acetal copolymer grade M90 at barrel diameter 2.25 inches. The solid conveying capacity is free from rupture. Appendix B shows the barrel friction is 0.20 for acetal copolymer grade M90 at barrel diameter 2.25 inches. The solid conveying capacity is free from rupture. Appendix B shows the barrel friction is 0.25 for acetal copolymer grade M90 at barrel diameter 2.25 inches. The solid conveying capacity is free from rupture.

The IPFC instead of barrel friction was ranged from 0.05 to 0.25 for acetal copolymer grade M90 at the same barrel temperature, screw speed, flow rate, and material properties. Appendix B represents the operating conditions for acetal copolymer grade M90 with IPFC from 0.05 to 0.25 . Appendix B shows the IPFC is 0.05 for acetal copolymer grade M90 at barrel diameter 2.0 inches. The solid conveying capacity seems to rupture at this moment. Appendix B shows the IPFC is 0.1 for acetal copolymer grade M90 at barrel diameter 2.0 inches. The solid conveying capacity is free from rupture. Appendix B shows the barrel friction is 0.15 for acetal copolymer grade M90 at barrel diameter 2.0 inches. The solid conveying capacity is free from rupture. Appendix B shows the IPFC is 0.20 for acetal copolymer grade M90 at barrel diameter 2.0 inches. The solid conveying capacity is free from rupture. Appendix B shows the barrel friction is 0.25 for acetal copolymer grade M90 at barrel diameter 2.0 inches. The solid conveying capacity is free from rupture.

The IPFC instead of barrel friction was ranged from 0.05 to 0.25 for acetal copolymer grade M90 at the same barrel temperature, screw speed, flow rate, and material properties. Appendix B represents the operating conditions for acetal copolymer grade M90 with IPFC from 0.05 to 0.25 . Appendix B shows the IPFC is 0.05 for acetal copolymer grade M90 at barrel diameter 1.75 inches. The solid conveying capacity seems to rupture. Appendix B shows the IPFC is 0.1 for acetal
copolymer grade M90 at barrel diameter 1.75 inches. The solid conveying capacity is also to rupture. Appendix B shows the barrel friction is 0.15 for acetal copolymer grade M90 at barrel diameter 1.75 inches. The solid conveying capacity is free from rupture. Appendix B shows the barrel friction is 0.20 for acetal copolymer grade M90 at barrel diameter 1.75 inches. The solid conveying capacity is free from rupture. Appendix B shows the barrel friction is 0.25 for acetal copolymer grade M90 at barrel diameter 1.75 inches. The solid conveying capacity is free from rupture.

9.7 Simulation Discussion

9.7.1 Effect of Screw Speed

In Figure 9.6 the pressure is presented as a function of axial screw position for different screw speeds for acetal copolymer grade M90. At a high frequency of screw rotation, the axial pressure profiles exhibit a maximum. The relative width of the solid bed (X / W) along the extruder as a function of axial screw position is presented in Figure 9.7 for acetal copolymer grade M90. The relative width of solid bed is decreasing while increasing the screw speed.

9.7.2 Effect of Flow Rate

In plasticating extrusion the effect of flow rate on the melting behavior, pressure, temperature, temperature fluctuation of the extrudate, and power consumption is of considerable interest. Running the simulation at various flow rates while keeping all other variables, such like frequency of screw rotation, screw geometry, and flight clearance constant enables information to be obtained on the ratio of width of the solid bed to the width of the screw channel, its thermal and pressure history while traveling through the extruder, as well as on the extrudate discharge pressure, representing the pressure drop requirements from the die.

Figure 9.8 the pressure is presented as a function of axial screw position for different flow rates for Acetal copolymer grade M90 at $415^{\circ} \mathrm{F}$ barrel temperature
with constant screw speed. These pressure profiles increase a monotonically at low flow rates. Figure 9.9 represents the relative width of solid bed as a function of axial screw distance for acetal copolymer grade M90 at various flow rates with constant screw speed. It can be seen that at low flow rates the relative width of solid bed decreases rapidly. At low flow rates a considerable amount of heat is generated, which soon increases the melt temperature in the extruder to above the barrel temperature.

9.7.3 Effect of IPFC

By inputting the IPFC instead of the barrel friction in the simulation and systematically reducing the barrel diameter, the effect of the IPFC on the conveying capacity of the solids can be determined.

Figure 9.10 presented the IPFC as a function of axial screw position for acetal copolymer grade M90 at same channel depths. It is clear that solid bed is inhibited rupture by increasing the IPFC value.

From the results presented in Figures 9.10, where full conveying conditions exist the solid bed will convey as a continuum. However, when no conveying conditions exist the solid bed may partially convey, that is, it may rupture. Clearly rupture of the solids bed is most likely to occur near the screw surface. It is also clear that solid bed rupture may be inhibited by increasing the IPFC value, which has been the focus of this dissertation.

Figure 9.1 Force Balances on a Differential Element of Particulate Bed, (a) Stationary Solids, $\mathrm{F}_{\mathrm{o}}>\mathrm{F}_{\mathrm{L}}$, (b) Stationary Solids, $\mathrm{F}_{\mathrm{o}}>\mathrm{F}_{\mathrm{L}}$, (c) Solids Move at Constant Velocity in the Position X-Direction, (d) Solids Move at Constant Velocity in the Negative X-Direction. (From Tadmor, Z., and Gogos, C. G. [48])

Figure 9.2 Idealized Channel Cross-Section Perpendicular to the Flights Compared to Real Cross-Sections in the Melting Zone.
(From Tadmor, Z., Duvdevani, I. J., and Klein, I, 7, 198, 1967)

Figure 9.3 Extruder Manufactured by Prodex Co.

Figure 9.4 Screw Manufactured by Prodex Co.

Figure 9.5 Details of Prodex Screw

Barrel Diameter $=2.5$ inches
 Flow Rate $=100 \mathrm{lb} / \mathrm{hr}$
 Material: M90

Figure 9.6 The Pressure as a Function of Axial Screw Position for Different Screw Speeds for Acetal Copolymer Grade M90.

Barrel Diameter $=2.5$ inches
 Flow Rate $=100 \mathbf{l b} / \mathrm{hr}$ Material: M90

Figure 9.7 The Solid Bed Ratio as a Function of Axial Screw Position for Different Screw Speeds for Acetal Copolymer Grade M90.

Barrel Diameter $=2.5$ inches Screw Speed $=50 \mathrm{rpm}$ Material: M90

Figure 9.8 The Pressure as a Function of Axial Screw Position for Different Flow Rates for Acetal Copolymer Grade M90.

Barrel Diameter $=2.5$ inches Screw Speed $=50 \mathrm{rpm}$ Material: M90

Figure 9.9 The Solid Bed Ratio as a Function of Axial Screw Position for Different Flow Rates for Acetal Copolymer Grade M90.

Figure 9.10 The IPFC as a Function of Axial Screw Position at Same Channel Depth for Acetal Copolymer Grade M90

CHAPTER10

POSTLUDE

10.1 Conclusions

1. Increasing the IPFC ensures that solid bed rupture will be reduced under given operating conditions. This has been shown by numerical simulation and experimental operation of a plasticating extruder. This conclusion was found to be true under all conditions of operation tested. Thus the use of profiled pellets may be expected to reduce the propensity to surge of plasticating extruders.
2. The IPFC has been shown to increase if pellets with profiled cross-sections constitute the feedstock, rather than pellets with circular cross-sections. The highest IPFCs were obtained with pellets of a bilobal cross-sections. The average IPFC of pellets with bilobal cross-sections is 56% increase than pellets with circular crosssections. Pellets with trilobal and quadrilobal cross-sections exhibited IPFCs greater than those obtained with pellets of circular cross-sections. The average IPFC of pellets with trilobal and quadrilobal cross-sections is 20% and 34% increase than pellets with circular cross-sections, respectively. Thus pellets with bilobal crosssections have been isolated as the most likely to obtain surging.
3. Agitation of the particulate continuum prior to measurement of the IPFC ensured closer packing of the particulates and caused an increase in the IPFC. The average IPFC of bilobal pellets with agitation is 89% greater than the pellets with circular cross-sections. The average IPFC of trilobal and quadrilobal pellets with agitation is 51% and 62% increase than the pellets with circular cross-sections. Thus vibration in the feed this at area of the extruder would be expected to improve the conveying capacity and to remove some causes of surging.
4. Consolidation of the particulate continua prior to measurement of the IPFC for specified times at specified pressures did not significantly change the value of the IPFC measured. The consolidation time had a weak influence on the IPFC, increasing only 13% after 30 hours. This implies that profiled pellets will not cause bridging in hoppers and silos to any greater degree than pellets with circular crosssections.
5. The presence of external lubricants on the surface of the pellets has a significant effect on the IPFC, which is reduced up to 45%. It is clear that the function of external lubricants promote slippage. However, the IPFC of the pellets with bilobal cross-sections is still greater than that of pellets with circular crosssections. So, greater conveying capacity and a reduction in surging propensity are to be expected.
6. The presence of mineral powder in the form of mica clay intermixed with the pellets cause an increase in IPFC value up to 35%. This implies that during the compounding of mica clay into PBT improved conveying is to be expected. It also implies that the addition of small quantities of mica clay powder could eliminate nonblesome surging.
7. The presence of polymeric powder, PBT powder, intermixed with the pellets cause an increase in the IPFC value up to 20%. This implies that when extruding polymers some feedstock should be in the form of powder if surging occurs. Its addition will minimize surging and improve operation variability.

10.2 Future Work

10.2.1 Additional Profile Shapes

Although bilobal, trilobal and quadrilobal pellet cross-sections have been developed and tested to date, a host of others are possible. Some additional crosssections for profiled pellets are presented in Figure 10.1. They could be rectangular, square, triangular, crescent or star. The most important consideration for choosing the shape is the ability to interlock, from any adjacent partition.

10.2.2 Additional Resin

To date, the IPFCs of acetal copolymer, high density polyethylene, polypropylene, polystyrene, nylon 6 and acrylonitrile-butadiene-styrene have been measured in the tests. Additional polymers of interest are low density polyethylene, linear low density polyethylene, ethylene-vinyl acetate, ionomer, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinylacetate, styrene acrylonitrile, polymethylmethacrylene, polyethylene terephthalate, polybutylene terephthalate, polyarylate, polycarbonate, polyethersulfone, polyphenylene oxide, polyvinylidene fluoride, nylon 6/6, polyphenylene sulfide, and polyethorioide. So, their behavior is also of high importance. The benefits in terms of an increase in the interparticulate friction coefficient are expected to be as great, since it is the shape and the material which determines the IPFC. A full range of materials, with varying moduli, both filled and unfilled, need to be evaluated to determine the full advantages of profiled pellets.

10.2.3 Additional Resin Grades

To date only one grade of each of the test resins has been evaluated. Many grades exist in use however. Extensive testing of all grades needs to be performed. For example, for nylon 6 over one hundred grades are in common use and require
testing. However, since it is the pellet cross section and nor the ingredients which most influence the IPFC increases are to be anticipated.

10.2.4 Field Trials

To date most of the work performed has been in the laboratory, and not in production extruders. Although all of the results have validated the initial hypothesis that the interparticulate friction coefficient will increase, it has not been demonstrated comprehensively that there are benefits to the extrusion process. Work must be performed to complete the overall objective, which was to enhance the output of extruders by delaying the onset of surging. Thus field trials must be extensively conducted, for a variety of pellet cross-sections, and a variety of generic resin types with different kinds of extruders. The procedures for field trial can be summarized as the following.

1. The pellets with a circular cross-section for all test samples including acetal copolymer, polyethylene, polypropylene, polystyrene, nylon 6 and ABS must be extruded on the Prodex extruder, which should be operated for specified time period to determine the throughput rate.
2. The pellets with higher IPFC values, such as the pellets with bilobal, trilobal, quadrilobal cross-sections for all test materials must be extruded on the Prodex extruder, which should be operated for the same time period as step 1 to determine the throughput rate, then compared to the equivalent results in step 1.
3. Since the grooved feed sections increase initial compression and increase conveying, outputs are improved greatly. The pellets with circular cross-sections for all materials should be extruded using helical grooved feed throats extruder and the extruder should be operated for a specified time period to determine the throughput rate, then compared to the equivalent results in step 1.
4. The pellets with bilobal, trilobal, quadrilobal cross-sections, and those pellets with new cross-sections for all test materials should be extruded with a helical grooved feed throat extruder and this extruder should be operated for specified time period to determine the throughput rate, then compared to equivalent results in step 2.
5. Since the barrier screws are designed to separate the solid bed from the melt pool, they inhibit solid bed breakup. The pellets with circular cross-section should be extruded for all test materials on barrier screw extruders, including the Hartig MC-3 screw, Maxmelt screw, the Barr-2 screw, the "Efficient" screw, and the VPB screw and the extruders operated for specified time period to determine the throughput rate, Then these results should be compared to the equivalent results in step 1.
6. The pellets with bilobal, trilobal, quadrilobal cross-sections, and those pellets with new shape on the barrier screw extruders, including the Hartig MC-3 screw, Maxmeit screw, the Barr-2 screw, the "Efficient" screw, and the VPB screw, and then operated those extruders for specified time period to determine the throughput rate, then compared to the equivalent results in step 2.
7. The pellets with circular cross-section should be extruded for all test materials in the barrier screws with grooved feed throats extruders and the extruders operated for a specified time period to determine the throughput rate. These results should then be compared to the equivalent results step 1.

The pellets with bilobal, trilobal, quadrilobal cross-sections, and those pellets with new shapes should be extruded on the barrier screws with grooved feed throats extruders and the extruders operated for a specified time period to determine the throughput rate. These results should then be compared to the equivalent results in step 2.

Completing the experiments above, a detailed comparison under various operating condition can be made to determine how the IPFC effects the throughput of different kinds of extruders.

(a)

(c)

(b)

(d)

(e)

Figure 10.1 Additional Pellet Cross-Sections, (a) Rectangular, (b) Square, (c) Triangular, (d) Crescent, (e) Star.

BIBLIOGRAPHY

[1] Amontons, G., "De la resistance causee dans les machines," Memoires de l'Academie Royale, A Chez Gerard Kuyper, Amsterdam, pp. 257-282, (1706).
[2] Aoki, R., and Susuki, M., " Effect of Particle Shape on the Flow and Packing Properties of Non-Cohesive Granular Materials," Powder Technol., 42, pp. 113-121, (1985).
[3] Ashton, M. D., Cheng, D. C. H., Farley, R., and Valentin, F. H. H., "Some Investigations into strength and Flow Properties of Powders," Rheological Acta, 4, pp. 206-218, (1965).
[4] Barr, R., Plast. Eng., 58, (1981).
[5] Blank, L. T., Statistical procedures for engineering management and science, pp. 306-309, McGraw-Hill, New York, (1980).
[6] Bowden, F. P., and Tabor, D., The Friction and Lubrication of Solids, Oxford University Press, London, (1950).
[7] Box, G. E. P., Hunter, W. G., and Hunter, J. S. Statistics for experimenters, pp. 306-351, Wiley Interscience, New York, (1978).
[8] Brown, R. L., and Richards, J. C., Principles of Powder Mechanics, Pergamon Press, Oxford, UK, (1970).
[9] Carley, J. F., Mallouk, R. S., and McKelvey, J. M., Ind. Eng. Chem., 45, 974, (1953).
[10] Carr, J. F., and Walker, D. M. "An Annular Shear Cell for Granular Shear Materials," Powder Technol., 1, 370, (1968).
[11] Carstensen, J. T. and Chan, P. C., "Relation Between Particle Size and Repose Angle of Powders," Powder Technol., 15, pp. 129-131. (1976).
[12] Chen, A., Master Thesis, N.J.I.T., Newark, N.J., (1990).
[13] Cheng, D. C. H., "The Tensile Strength of Powders," Chem. Eng. Sci., 23, pp. 1405-1420, (1968).
[14] Corbett, H. O., "Extrusion Die Design," Soc. Plast. Eng. J. 10, 15, (1954).
[15] Coulomb, C. A., "Theorie des machines simples, en ayant egard an frottement de leurs parties, et a la roideur des cordages," Mem. Math. Phys., x, Paris, pp.161-342, (1785).
[16] Darnell, W. H., and Mol, E. A. J., "Solids Conveying in Extruders," Soc. Plast. Eng. J.,12, pp. 20-29, (1956).
[17] Decker, H., " Die Spritzmaschine," The Extruder, P. Troester, Hanover, Germany (1941).
[18] Evans, R. E., "The Measurement of Coefficient of Friction of Polymer Pellets Under Extruder Conditions," J. Test. Eval., Vol. 3, No 2, pp. 133-136, (1975).
[19] Farley, R., and Valentin, H. H., "Effect of Particle Size Upon the Strength of Powder," Powder Technol., 1, pp. 344-354, (1967).
[20] Glyde, B. S., and Holmes-Walker, W. A., Intern. Plast. Eng., 2, 338, (1962).
[21] Graesseley, W. W., Glasscock, S. D., and Crawley R. L., "Die Swell in Molten Polymers," Tran. Soc. Rheol., 14, 519, (1970).
[22] Gregory, R. B., "How Friction Affects Extruder Operation,"Soc. Plast. Eng. J., 25, pp.57-59, (1969).
[23] Huxtable, J., Cogswell, F. N., and Wriggles, J. D., "Polymer-Metal Friction as Relevant to Processing," Plast. Rub. Proc. App., Vol. 1, No 1, pp. 87-93, (1981).
[24] Jackson, M. L., Lavacot, F. J., and Richards, H. R., Ind Eng. Chem., 50, 1569, (1958).
[25] Jenike, A. W., "Gravity Flow of Bulk Solids," Bulletin No. 108 of the Utah Engineering Experimental Station, Univ. of Utah, Salt Lake City, (1961).
[26] Levy, S., "Melt Rheology: Its Effect on Profile Extrusion Dies," Plast. Machinery \& Equipment, 7, 9, (1978).
[27] Maddock, B. H., "A Visual Analysis of Flow and Mixing in Extruder Screws", Soc. Plast. Eng. J., 15, pp. 383-389, (1959).
[28] Maillefer, C., Doctoral Thesis, University of Lausanne, (1952).
[29] Maillefer, C., Mod. Plast., 40, 132, (1963).
[30] Marshall, D. I., Klein, I., and Uhl, R. H., "Measurement of Screw and Plastic Temperature Profiles in Extruders," Soc. Plast. Eng. J., 20, 329, (1964).
[31] Mirota, H., and Oshima, T., "Shear Properties of Uniaxially Preconsolidated Power Bed - Nonuniformity of the Shear Stress Acting on the Shear Plane," Powder Technol., 53, pp. 49-53, (1987).
[32] Nedderman, R. M., "Permissible Values of the Shear index," Powder Technol., 19, 287, (1978).
[33] Orr, Jr. C., Particulate Technol., Macmillan, New York, (1966).
[34] Ostwald, W., Kolloid-Z., 36, 99 (1925).
[35] Pawlowski, J., Dormagen, Germany, Farbenfabriken Bayer, (1949).
[36] Roberts, A. W., Vibration of Fine Powders and its Application, Chapter six, Handbook of Powder Science and Technology ed Fayed, M. E., and Otten, L., New York, (1984).
[37] Rothemeyer, F., Kunststoffe, 59, 333, (1969).
[38] Rowell, H. S., and Finlayson, D., Engineering, 114, 606, (1922).
[39] Rubin, I. I., Injection Molding Theory and Practice, pp. 204-209, John Wiley \& Sons,New York, (1972).
\qquad ."Mod. Plast. Encyclopedia", McGraw-Hill, New York, (1990).
[41] Schneider, K., Aachen, "Frictional Behaviour of Plastic Granules," kunststoffe, Vol. 59, (1969).
[42] Schulken, R. M., and Boy, R. E., "Cause of Melt Fracture and its Relation to Extrusion Behaviour," Soc. Plast. Eng. J., 6, (1960).
[43] Schwedes, J., Vergleichende betrachtungen zum einsatz von schergeraten zur messung von schuttguteigenschaften Inst. fur Mechanische (1979).
[44] Simonds, H. R., Weith, A. J., and Schack, W.,Extrusion of Plastics, Rubber and Metals, Reinhold, New York, (1952).
[45] Stanley-Wood, N. G., and Abel Karim, A. M., "Relationship Between Compact Strength and Functions of the Shear-Normal Stress Curve obtained from Uniaxial Compression," Powder Metallurgy International, 14, pp. 135-138, (1982).
[46] Street, L. F., "Studying Extrusion Flow Lines," Plast. Technol., pp.27-31, (1959).
[47] Tadmor, Z., Duvdevani, I. J., and Klein, I., "Melting in Plasticating Extruders Theory and Experiments," Polym. Eng. Sci., (1967).
[48] Tadmor, Z., and Gogos, C. G., Principles of Polymer Processing, p. 253, John Wiley \& Sons, New York, (1979).
[49] Tadmor, Z., and Klein, I., Engineering Principles of Plasticating Extrusion, pp. 107-111, Robert E. Krieger, Huntington, New York, (1978).
[50] Tanner, R. I., "A Theory of Die Swell," J. Polym. Sci., A-28, 2067, (1970).
[51] Tordella, J. P., "Meli Fracture - Extrudate Roughness in Plastics Extrusion," Soc. Plast. Eng. J., pp. 36-40, (1956).
[52] Train, D., and Lewis, C. J., "Agglomeration of Solids by Compaction," Paper presented at the Third Congress of the European Federation of Chem. Eng., London, (1962).
\qquad ."Celcon Acetal Copolymer Typical Properties," Celanese Engineering Resins Bulletin C3A, Summit, N.J., (1983): 44.
[54] Weber, F. Technik 2, 456 (1947).
[55] Weeks, D. J. "Some Aids to the Design of Dies for Plastic Extrusion," Br. Plast., 31, pp. 156-201, (1958).
[56] White, J. L., Kondo, A. " Rheological Properties of Polymer Melts and Flow Patterns During Extrusion Through a Die Entry Region," J. Appl. Polym. Sci.,(1979).
[57] ___."Computer Aided Engineering Tools for Extrusion," Vol. 1 \& 2, Scientific Process \& Research, Inc. Somerset, New Jersey, (1990).
[58] ___. ."DATA BANK of Processing Properties includes: 1. Frictional Properties 2. Processing Properties," Scientific Process \& Research, Inc. Somerset, New Jersey, (1989) :14-19.

APPENDIX A

The structure of the data file is described as below. It consists of data lines. Each line consists of one or more data fields. Each field can contain one of 3 possible data types:

1. A Fixed Point variable which must not contain a decimal point, (I).
2. A Floating Point variable which does contain a decimal point. If decimal point is absent it is assumed to be at the right hand end of the number, (F).
3. A Character String, (A).

The data file starts with 3-SPEC lines which specify the data file in generalities, and 27 line to describe the screw geometry, barrel temperature, plastic physical properties, frictional coefficient between barrel and screw, and operating condition for running the simulation by using the EXTRUD ${ }^{1}{ }^{\circledR}$.

The 1st spec line describes the mode of running the simulations. This can be either Batch (B) or Conversational (C). The line, therefore, consists of a single field containing at least a single character.

The 2nd spec line includes 11 field. Each field is described as below.
1st field Output device number : 6 (for PC) is the user terminal designation. For batch use number: 7 (for PC). OUTDEV

2nd field Input device number: 5 (for PC) is the user terminal designation; The device refers only to individual changes to be made at the end of the run in the input option. For batch mode use number: 18 (for PC). The list of variables that can be changed follows this section describing the input data file. INDEV

3rd field 0 for viscosity function in English units; viscosity (LB.SEC/IN2) \& temperature (${ }^{\circ} \mathrm{F}$).
1 for viscosity function in poise and temperature in (${ }^{\circ} \mathrm{C}$).
2 for all input and output in metric units, except resin properties which remain in English units. POISE

[^1]3 resin properties in metric unit as well.
4th field 0 if melting does not continue in plugged channel (usually the case for harder solids).
1 if melting to continue in a plugged channel(for soft solids). IPLUG
5th field 0 if positive pressures only are to be printed
1 if negative pressures to be printed also. IFRES
6th field 0 if X / W for plugged channel $=.99$ otherwise, insert maximum X / W permitted. XTST

7th field line number at which reading of data will stop. A diagnostic tool. SCARD

8th field $0 \quad$ for mixing in relief section.
1 for no mixing (for hard solids). MIXREL
9th field 1 for SDS ${ }^{\circledR}$ Screw ${ }^{2}$. IFRECS
10th field Number of sections with dual channel for melt and solids.(Must be used for barrier type screws) MLTCHL

11th field Code number for material of which screw is constructed. ITAU
The 3rd spec line indicated that if user wish to make changes of individual input variables in list form and then put YES, if user do not and then put NO.

The 27th lines of the input data must according to the format described as follows, respectively.

[^2]1st LINE
FORMAT(I,6F,10I)
(Mandatory)
1st field 1 for complete printout of every increment computed.
0 for shortened printout with every 5th increment printed.
-n for short printout with suppressed heading, every n-th axial increment printed out; n, must be an integer. IPLOT

2nd field Run identification number, can be any positive number. ID
3rd field Number of parallel flights. NFLT
4th field Screw lead at entrance to first geometric section (inches), (mm). SLEAD

5th field Barrel diameter (inches), (mm). DBAR
6th field Flight width (inches), (mm). FLWD
7th field Radial flight clearance (inches), (mm). FLCL
8th field Number of geometric sections.
9th field 1 for delay in melting start to be computed.
0 if calculation suppressed. DLY
10th field 1 for injection molding to be computed.
-1 if Cp vs T has no maximum, e.g. ABS, Polystyrene for injection molding.
0 for continuous extrusion. INJ
11th field 0 if both barrel heating and efficient cooling available.
1 if no efficient barrel cooling available - only heating.
2 adiabatic in melt pool, not in melt film.
3-7 approaches adiabatic in melt film. COOL
12th field 0 if barrel and screw temperature in data file to be used.
1 if barrel temperature profile to be optimized with respect to maximum melting rate in the melting zone.
2 if screw and barrel temperature to be optimized to maximize solid conveying. OPT

13th field 0 for single viscosity function with resin data supplied by user.
1 if polymer exhibits melt fracture with discontinuity between 2 viscosity functions.

2 for 2 viscosity ranges to be used for better representation of flow property data without melt fracture, for example to describe the low shear rate Newtonian viscosity range.
-n for resin data from SPR list of physical properties other than friction. MLFR
14th field 0 in case of plasticating extrusion.
1 in case of melt extrusion.
-1 in case of semi-melted feed. MLTX
15th field This field used only for the computation of delay in melting start.
0 for no target and no die specification (rate mode).
1 if series of statistically distributed simulations to be generated from a single set of data.
-1 for extruder-die combination with production rate to be computed by the computer \& die characteristic equation given in 11th line.
-2 for extruder-die combination with die characteristic given as a single point: output-temperature-pressure drop in 11th line.
-3 for extruder-die combination using cylindrical die. SERIES
16th field 0 in the absence of mixing devices.
1 if mixing rings are present.
2 if torpedo (unflighted section) is present.
3 if fluted section is present-simple computation. Can also be simulated by more accurate method using melt channel.
-n if more than one type of mixing device is present($n=$ number of mixing devices in the screw). RGN
17th field 0 for low density Polyethylene.
1 for high density Polyethylene.
2 for Polypropylene and Nylon.
3 for rigid PVC, Polystyrene, Polycarbonate, Polymethylmethacrylate, Polyacrylonitrile.
4 for 50% longer delay zone than for 3 .
5 for 100% longer than for 3 .
6 for 150% longer than for 3 .
-1 for 50% shorter than for 0 .
100 no melting starts at all. IDL
1st field Length of 1st geometrical section from downstream or exit end of hopper. SECTION(1)
2nd field Channel depth at the end of 1st geometrical section from flight tip to screw root. HSEC(1)
3rd field Length of 2nd geometrical section. SECTION(2)
4th field Channel depth at the end of 2nd geometrical section. HSEC(2)
5th field Length of 3rd geometrical section. SECTION(3)
6th field Channel depth at the end of 3rd geometrical section. HSEC(3)
7th field Length of 4th geometrical section. SECTION(4)
8th field Channel depth at the end of 4th geometrical section. HSEC(4)
9th field Length of 5th geometrical section. SECTION(5)
10th field Channel depth at the end of 5th geometrical section. HSEC(5)
1st field on the next line continued as above for 6th through 10th geometrical section.

LINE 2A
FORMAT (15F)
(Optional)
(Replaces 2nd LINE when screw lead is not constant)
(May consist of more than one line if the number of Geometrical Sections is more than 5.)

All dimensions on this line are in inches or millimeters.
1st field Length of 1st geometrical section from downstream or exit end of hopper. SECLEN (1)

2nd field Channel depth at the end of 1st geometrical section from flight tip to screw root (flight clearance not included). HSEC (1)

3rd field \quad Screw lead at end of 1st geometrical section. SLD (1)
4th field Length of 2nd geometrical section. SECLEN (2)
5th field Depth at the end of 2nd geometrical section. HSEC (2)
6th field Screw lead at end of 2nd geometrical section. SLD (2)
7th field Length of 3rd geometrical section. SECLEN (3)
8th field Depth at the end of 3rd geometrical section. HSEC (3)
9th field Screw lead at end of 3rd geometrical section. SLD (3)
Etc. up to 5 geometrical sections per line.
The only limitation of the data supplied by this line is that the first geometrical section must always be a constant depth section. If compression actually starts at the beginning of the screw. an imaginary constant depth section of zero length has to be introduced.

1st LINE, 4h field (SLEAD) represents screw lead at start of 1st section.

LINE 2B
FORMAT(10F)
(Optional)
Used only together with LINE 2C and only when MLTCHL 2nd spec LINE, 10th field is non-zero.

1st field \quad Width of melt channel at end of 1st geometric section at which it is
present, (Fraction of Total) WM (1)
2nd field Depth of melt channel at end of 1st geometric section at which it is present, (in.), (mm.) HM (1)

3rd field Width of melt channel at end of 2nd geometric section at which it is
present, (Fraction of Total) WM (2) present, (Fraction of Total) WM (2)

4th field Depth of melt channel at end of 2nd geometric section at which it is present, (in.), (mm.) HM (2)

9th field Width of melt channel at end of 5th geometric section at which it is present, (Fraction of Total) WM (5)

10th field Depth of melt channel at end of 5th geometric section at which it is present, (in.), (mm.) HM (5)
up to 5 geometric sections per line.

LINE 2C

FORMAT(2I, 4F)
(Optional)
1st field Section number where melt channel starts, JJM0
2nd field Section number where melt channel ends, JJMEND

3rd field Width of melt channel at start of JJM0-th geometric section (fraction of total), WM0

4th field Depth of melt channel at start of JJM0-th geometric section (in.), (mm.), FWMLT

5th field Flight Width of auxiliary flight (in), (mm), FWMLT
6th field Radial clearance of auxiliary flight (in), (mm), FCLMLT

LINE 2D
 FORMAT (15F)
 (Optional)

(Replaces 2nd LINE when flight width is not constant) (May consist of more than one line if the number of geometrical sections is more than 5.)

All dimensions on this line are in inches or millimeters.

1st field Length of 1st geometrical section from downstream or exit end of hopper. SECTION (1)

2nd field Channel Depth at the end of 1st geometrical section from flight tip to screw root. (flight clearance not included). HSEC (1)
3rd field Flight width at end of 1st geometrical section. FLT (1)
4th field Length of 2nd geometrical section. SECLEN (2)
5th field Depth at the end of 2nd geometrical section. HSEC (2)
6th field Flight width at end of 2nd geometrical section. FLT (2)
7th field Length of 3rd geometrical section. SECLEN (3)
8th field Depth at the end of 3rd geometrical section. HSEC (3)
9th field Flight width at end of 3rd geometrical section. FLT(3)
Etc. up to 5 geometrical sections per line.

The only limitation of the data supplied by this line is that the first geometrical section must always be a constant depth section. If compression actually starts at the beginning of the screw. an imaginary constant depth section of zero length has to be introduced.

1st LINE, 6th field (FLTWID) represents regative of FLT (0), ie. flight width at start of 1 st section under the hopper.

3rd LINE
FORMAT
(Mandatory)
The 3rd line consists of the material properties, it includes thermal conductivity of melt, density of solid bed, heat capacity of melt, heat capacity of solid polymer, heat of fusion, temperature of polymer fed to the extruder and shear rate. This line is mandatory, and the format $(7 \mathrm{~F})$ of line presented as below,

1st field
Thermal conductivity of melt (Btu/hr. $\left.\mathrm{ft}{ }^{\circ} \mathrm{F}\right),\left(\mathrm{W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right)$. THCONO
2nd field
Density of solid bed ($\mathrm{lb} / \mathrm{ft}^{3}$), (g/cm $\left.{ }^{3}\right)$. RHOSOL
3rd field
Heat capacity of melt ((Btu/lbo or $\left.\mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}\right),\left(\mathrm{J} / \mathrm{Kg} .{ }^{\circ} \mathrm{K}\right)$. HETCAM
4th field
Heat capacity of solid polymer ($\left(\mathrm{Btu} / \mathrm{lb}^{\circ} \mathrm{F}\right.$ or $\left.\mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}\right),\left(\mathrm{J} / \mathrm{Kg} .{ }^{\circ} \mathrm{K}\right)$. HETCAS

5th field
Heat of fusion ((Btu/lb),(J/Kg). HETFUS
6th field
Temperature of polymer fed to the extruder $\left({ }^{\circ} \mathrm{F}\right),\left({ }^{\circ} \mathrm{C}\right)$. TSOLID
7th field
0 if shear rate for start of second Newtonian region is 100,000 per sec. Otherwise insert known value for shear rate. GAMAX

4th LINE
FORMAT(9F)
(Mandatory)
The 4th line describes the melting point for polymer, This line is mandatory, and the format $(7 \mathrm{~F})$ of line presented as below,
1st field $\quad \mathbf{R}_{\mathbf{O}}$

2nd field $\quad T_{M O}$
3rd field $\quad R_{1}$
4th field $\quad \mathbf{R}_{\mathbf{2}}$
5th field $\quad \mathrm{R}_{12}$
6th field $\quad T_{M 1}$
7th field $\quad \mathrm{T}_{\mathrm{M} 2}$
Defined as:

$$
\begin{aligned}
& \mathrm{RHO}=\mathrm{R}_{\mathrm{o}}+\mathrm{R}_{1}{ }^{*} \mathrm{P}+\mathrm{R}_{2} * \mathrm{~T}+\mathrm{R}_{12}{ }^{*} \mathrm{P} * \mathrm{~T} \\
& \mathrm{~T}_{\mathrm{M}}=\mathrm{T}_{\mathrm{MO}}+\mathrm{T}_{\mathrm{M} 1} * \mathrm{P}+\mathrm{T}_{\mathrm{M} 2} * \mathrm{P}^{2} \\
& \text { where: } \mathrm{P}=\text { pressure (lb./sq. in.),(bar) } \\
& \left.\qquad \mathrm{T}=\text { melt temperature (}{ }^{\circ} \mathrm{F}\right),\left({ }^{\circ} \mathrm{C}\right) \\
& \quad \mathrm{RHO}=\text { melt density }\left(\mathrm{lb} . / \mathrm{ft}^{3}\right),\left(\mathrm{g} / \mathrm{cm}^{3}\right) \\
& \quad \mathrm{T}_{\mathrm{M}}=\text { melting point }\left({ }^{\circ} \mathrm{F}\right),\left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
$$

5th LINE

FORMAT (9F)
(Mandatory)
The 5th line describes the coefficients of flow equation and shown as below,
1st field $\quad A(i)$
2nd field $\quad A_{1}(i)$
3rd field $\quad \mathrm{A}_{2}(\mathrm{i})$
4th field $\quad A_{11}(\mathrm{i})$
5th field $\quad A_{22}(i)$
6th field $\quad A_{12}(\mathrm{i})$
7th field $\quad \mathrm{A}_{14}(\mathrm{i})$
8th field ATD(i) coefficient of temperature degradation
9th field ASD -coefficient of shear degradation
where, coefficients of viscosity equation are defined as:

$$
\begin{aligned}
\ln \text { VISC }= & \mathrm{A}(\mathrm{i})+\mathrm{A}(\mathrm{i})^{*} \ln +\mathrm{A}_{11}(\mathrm{i})^{*} \ln 2+\mathrm{A}_{2}(\mathrm{i})^{*} \mathrm{~T}+\mathrm{A}_{22}(\mathrm{i})^{*} \mathrm{~T}^{2}+\mathrm{A}_{12}(\mathrm{i})^{*} \mathrm{~T}^{*} \ln \\
& +\mathrm{A}_{14}(\mathrm{i})^{*} \mathrm{~T}^{*} \ln +\mathrm{A}_{14}(\mathrm{i})^{*} \ln { }^{*} \mathrm{P}+\mathrm{A}_{\mathrm{TD}}{ }^{*} \mathrm{Theta}^{*}+\mathrm{ASD}^{*} \text { Theta*TAU }
\end{aligned}
$$

where,
VISC $=$ Viscosity (lb.sec./in ${ }^{2}$), (Poise)
$\gamma \quad=$ true (Rabinowitsch corrected) shear rate (sec^{-1})
$\mathrm{T}=$ melt temperature (F), (C)
P = Pressure (psi), (bar)
Theta $=$ Residence Time in melt pool (hr)
TAU = shear stress (psi), (bar)

LINE 5A
FORMAT(I,5(I,F))
(Optional)
It described mixed feed and shown as below,
1st field Number of components in resin feed, MATS
2nd field \quad Resin number of first component in resin feed, INGRID(1)
3rd field Fraction of first component in feed, FRA(1)
4th field \quad Resin number of second component in feed, INGRID(2)
5th field Fraction of second component in feed, FRA(2)
6th field Resin number of 3rd component in feed, INGRID(3)
7th field Fraction of 3rd component in feed, FRA(3)
8th field Resin number of 4th component in feed, INGRID(4)
9th field Fraction of 4th component in feed, FRA(4)
10th field Resin number of 5th component in feed, INGRID(5)
11th field Fraction of 5th component in feed, FRA(5)

6th LINE
FORMAT (4F, 4I)
Mandatory
For a general case
1st field \quad C0 (F), (C)
2nd field $\quad \mathrm{C} 1$
3rd field $\quad \mathrm{C} 2 \quad(1 / \mathrm{in}),(1 / \mathrm{mm})$
For $\mathrm{T}_{\mathrm{bar}}$ defined by equation: $\mathrm{T}_{\mathrm{bar}}=\mathrm{C} 0\left[1-\mathrm{C} 1^{*} \exp \left(-\mathrm{C} 2^{*} \mathrm{x}\right)\right]$
For a special case with constant barrel temperature profile set:
$\mathrm{C} 0=\mathrm{T}_{\mathrm{bar}} ; \mathrm{C} 1$ and $\mathrm{C} 2=0$.
If you wish to enter barrel temperatures as point values, $\mathrm{C} 0, \mathrm{C} 1$ and C 2 will be disregarded by the program. See 5 th field of this 6th LINE.
where:
$\mathrm{T}_{\text {bar }}=$ barrel temperature at each axial location (F), (C).
$\mathrm{x} \quad=$ axial distance from the beginning of first Geometrical Section to the middle of increment (inches).

4th field P0 Pressure at entrance to extruder (psi), (bar) or at any arbitrary point where $x=0$. This can be used in describing the operation of a partial extruder. Cramer feeder primarily effects bulk density and not entrance pressure.

5th field $0 \quad$ if Tbar equation above is used for barrel temperature.
n for barrel temperature profile to be supplied as point value with EXTRUD ${ }^{\circledR}$ computing Tbar at each axial location through linear interpolation. $(\mathrm{n}=$ number of points at which barrel temperature is supplied, n must be bigger than 2,20 maximum). Barrel temperatures and locations are supplied on 7th LINE. IPOE

Note: For temperature given as point values use 7th LINE.
For heater zones use special instructions for 6th and 7th LINES following description of 7th LINE.

6th field	0	for normal printout with highest accuracy.
	1	for solids conveying computed at lower accuracy.
	2	computed viscosities not printed out either.
	3	melting also computed at lower accuracy.
	4	temperature also computed at lower accuracy. ITOL
7th field	0	when no friction coefficients for solids are available and solids conveying computations are not desired.
	1	when any friction coefficients for solids on screw and barrel surfaces are supplied and the temperature of solid plug surface is calculated by the program. ISOL
8th field	n	for frictional property material number of data from SPR friction data file on barrel surface if surfaces are different, below 2 psi if 2 pressure ranges are used. NFRICB
9th field	n	for frictional property material number of data from SPR friction data file on screw surface if surfaces are different, below 2 psi if 2 pressure ranges are used. NFRICS
10th field	n	for frictional property material number of data from SPR friction data file on barrel surface above 2 psi pressure. NFRCBH
11th field	n	for frictional property material number of data from SPR friction data file on screw surface above 2 psi pressure. NFRCSH

Line 6A
FORMAT (8F)
(Optional)
To maintain constant temperatures over each heater zone, the 1st and 5th field on this line must be set as follows:

1st Field C0 Insert -1 for constant temperature zones.
5th field IPOE Number of constant temperature zones.
(Read-in only if 5th field in 6TH LINE (IPOE) was other than 0)
1st field Barrel temperature (${ }^{\circ} \mathrm{F}$) at zero axial location. Replaced in the hopper area by cooling water temperature as defined by AXDTM in 9th LINE 5th field. TBR(1).

2nd field Axial location (in.), (mm.) (0.0). AXD(1)
3rd field Barrel temperature at a point down-channel from 1st point $\left({ }^{\circ} \mathrm{F}\right),\left({ }^{\circ} \mathrm{C}\right)$. TBR (2)

4th field Axial location of 2nd point (in.), (mm.). AXD(2)
5th field Barrel temperature at 3rd point ($\left.{ }^{\circ} \mathrm{F}\right),\left({ }^{\circ} \mathrm{C}\right) . \operatorname{TBR}(3)$
6th field Axial location of 3rd point (in.), (mm.). AXD(3)
7th field Barrel temperature at 4th point $\left({ }^{\circ} \mathrm{F}\right),\left({ }^{\circ} \mathrm{C}\right) . \operatorname{TBR}(4)$
8th field Axial location of 4th point (in.), (mm.). AXD (4)
Coolant temperature along AXDTM-9th LINE, 5th field representing length of cooled hopper zone of barrel downstream of hopper will take precedence over high barrel temperatures supplied in this line, i.e., high barrel temperature will be disregarded in Solids Conveying Zone.

LINE 7A
FORMAT (8F)
(Optional)
1st field Barrel temperature of first zone ($\left.{ }^{\circ} \mathrm{F}\right),\left({ }^{\circ} \mathrm{C}\right) . \operatorname{TBR}(1)$
2nd field Axial location of downstream end of first zone (in.), (mm.). AXD(1)

3rd field Barrel temperature of second zone (${ }^{\circ} \mathrm{F}$), (${ }^{\circ} \mathrm{C}$). TBR(2)
4th field Axial location of downstream end of second zone (in.), (mm.). AXD(2)
etc. up to 4 temperature zones per line.

8th LINE
FORMAT (11F)
(Mandatory)

1st field	F_{0}	-1000 when screw temperature profile not controlled, neutral screw - 2000 when controlled in solids conveying zone only -3000 when screw temperature profile is given. F0
2nd field	F_{1}	represents screw surface temperature if $\mathrm{FO}=-2000$ represents no. of screw temperatures if $\mathrm{F} 0=-3000$ must be at least 3 and in this case must be followed by LINE 8A identical in format to LINE 7A. F1
3rd field	F_{2}	F2
Note: For the general case: F0, F1 and F2 are coefficients of equation expressing screw surface temperature as a function of axial location, x :		
$\mathrm{T}_{\text {screw }}=\mathrm{F}_{0}+\mathrm{F}_{1}{ }^{*} \mathrm{x}+\mathrm{F}_{2}{ }^{*} \mathrm{x}^{2}\left({ }^{\circ} \mathrm{F}\right),\left({ }^{\circ} \mathrm{C}\right)$		
x	$=$ axial location (in.), (mm.)	
4th field	Number of parallel holes or flute pairs in mixing device. PARHOL	
5th field	Area of each hole (in. ${ }^{2}$), (mm ${ }^{2}$.) Radial flight clearance for torpedo (in.), (mm.). HLAREA	
6th field	Axial location of Solid Bed Break-up if EXPNO is negative (in.), (mm.). BREAK	
7th field*	Desired Head Pressure for starve-fed screws (psi), (bar). HEADPR	
8th field*	Axial Location of Vent (in.), (mm.). ACDISV	
9th field	Axial Location (in.), (mm.) where simulation is to be interrupted for changes. STOP	
10th field	Maximum Screw Speed with present gear ratio (rpm), RPMMAX	
11th field		um HP rating of extruder (HP), (KW), HPMAX

[^3]9th LINE
FORMAT (10F)
(Mandatory)

1st field	Screw Speed (rpm). RPM
2nd field	Output (Production Rate) (lb./hr.), (Kg/hr.) (disregarded if run in extruder-die combination mode). OUTPUT

3 3rd field	0	for most materials;
	1	for rigid materials in pellet form.

4th field Soak Time per cycle for injection molding (sec.). SOKTIM
5th field Axial length of cooled barrel from start of first geometrical section (in.), (mm.).
AXDTM.
Overrides Barrel Temperature given in LINE 6 or 7.
6th field Reciprocating Length for injection molding (in.), (mm.). RECLEN

7th field Injection Pressure (psi), (bar). PRESIN
8th field Flight Width at barrel surface (in.), (mm.). FLTWB
9th field Radial Length of tapered flight width (in.), (mm.). HFTPR
10th field Flight Wear, radial (in.), (mm.) WEAR

10th LINE
FORMAT (30A2)
(Mandatory)
Columns 2 through 60: Any text identifying run, the material or the extruder such as:
MARLEX 6002 FOR LINE 3.

Pressure Mode
11th LINE
FORMAT (7F)
(Optional)
Need only if the output of the extruder is to be computed as an extruder-die combination, and if the 15 th field on the 1st LINE is -1 , the coefficients of the die characteristics are described by the following equation:

PDROP $=\left(\mathrm{a}_{1}+\mathrm{a}_{2}{ }^{*} \mathrm{~T}+\mathrm{a}_{3} \mathrm{~T}^{2}\right)^{*}(\text { OUTPUT })^{\left(\mathrm{b}_{1}+\mathrm{b}_{2}{ }^{*} \mathrm{~T}+\mathrm{b}_{3}{ }^{*} \mathrm{~T}_{2}\right) * \exp \left(\mathrm{c} / \mathrm{T}_{\mathrm{abs}}\right)}$			
where: P		$=$ pressure drop across die (psi), (bar)	
T		$=$ extrudate temperature (${ }^{\circ} \mathrm{F}$), (${ }^{\circ} \mathrm{C}$)	
	PUT	$=$ output lb. $/ \mathrm{hr}.),(\mathrm{Kg} / \mathrm{hr})$	
		$=\mathrm{absolute}$ temperature ($\left.{ }^{\mathrm{O}} \mathrm{R}\right),\left({ }^{\circ} \mathrm{K}\right)$	
1st field	a_{1}	(psi), (bar)	DIECOE (1)
2nd field	a_{2}	(psi/ ${ }^{\circ} \mathrm{F}$), (bar/ $/{ }^{\circ} \mathrm{C}$)	DIECOE (2)
3 rd field	${ }^{3} 3$	$\left(\mathrm{psi} / \circ \mathrm{F}^{2}\right),\left(\mathrm{bar} / \mathrm{oc}^{2}\right)$	DIECOE (3)
4th field	b_{1}	---	DIECOE (4)
5th field	b_{2}	$\left({ }^{\circ} \mathrm{F}^{-1}\right),\left({ }^{\circ} \mathrm{C}^{-1}\right)$	DIECOE (5)
6th field	b3	$\left({ }^{\circ} \mathrm{F}^{-2}\right),\left({ }^{(0} \mathrm{C}^{-2}\right)$	DIECOE (6)
7th field	c	$\left({ }^{\circ} \mathrm{F}\right),\left({ }^{\circ} \mathrm{C}\right)$	DIECOE (7)

For Single Point Die Performance (15th field of 1st LINE $=-2$) (Optional)

When the performance of the extruder with a die at one set of operating conditions is known, EXTRUD ${ }^{\circledR}$ must be supplied with the Production Rate (OUTPUT), Melt Temperature (TOUT), and Pressure Drop along the die.

$$
\text { 1st field } \quad \text { Output (lb./hr.), (Kg/hr.). } \quad \text { DIECOE (1) }
$$

2nd field Melt Temperature (${ }^{\circ} \mathrm{F}$), (${ }^{\circ} \mathrm{C}$). DIECOE (2)
3rd field \quad Pressure drop along die (psi), (bar). DIECOE (3)
For Die with One or More Cylindrical Holes
(15th field of 1st LINE $=-3$)
(Optional)
1st field Discharge Pressure of Die (psi), (bar). DIECOE (1)
2nd field Die Radius (in.), (mm). DIECOE (2)
3rd field Die Length (in.), (mm). DIECOE (3)
4th field Melt Temperature in Die ($\left.{ }^{\circ} \mathrm{F}\right),\left({ }^{\circ} \mathrm{C}\right)$. DIECOE (4)
5th field Number of cylindrical holes. DIECOE (5)

MIxing Devices
12th LINE
FORMAT (10I)
(Optional)
Need only if Mixing Devices are present and if 16th
field on LINE 1 (IRING) is $1,2,3$ or -N .
The location of each mixing device has to be listed by its section number in increasing order.

1st field Section number of 1st mixing device. KRING (1)
2nd field Section number of 2nd mixing device. KRING (2)
3rd field Section number of 3rd mixing device. KRING (3)
Etc. up to 10 per line.
Each mixing device counts as a Geometrical Section and its length has to be given on the 2nd LINE. The channel depth at the end of the mixing section must be equal to the depth at the beginning of the next Geometrical Section. For the simulation of the performance of a screw with mixing devices, information on the number of parallel holes and on the size of each hole must also be given on the 8th LINE if 16 th field on LINE 1 is 1,2 or 3.

```
13th LINE
FORMAT (5 [2F,I])
(Optional)
```

Needed only if the 16 th field on LINE 1 (IRING) is - N. The 12 th LINE must be followed by one or more lines describing: number of parallel holes PH (i), hole area HA (i), and type (1,2 or 3) KR (i) for each mixing device sequentially, up to five mixing devices per line.

PH (1) HA (1) KR (1) ----------------------------- PH (5) HA (5) KR (5)

Needed only for FLUTED MIXING SECTIONS
1st field KROS1 - Indicator of inlet channel (flute) geometry.
2nd field WMAD1 - Width of inlet channel at barrel surface (in), (mm)
Use maximum value if changing.
3rd field HMAD1 - Depth of inlet channel (in), (mm)
Use maximum value if changing.
4th field KROS2 - Indicator of outlet channel geometry.
5th field WMAD2 - Width of outlet channel at barrel surface (in), (mm)
Use maximum value if changing.
6th field HMAD2 - Depth of outlet channel (in), (mm)
Use maximum value if changing.
7th field FCLE1 - Radial clearance of barrier from inlet to outlet channel (in), (mm).

8th field FCLE2 - Radial clearance of flight separating pairs of flutes (in), (mm). usually: FCLE2 < FCLE1

9th field FWI1 - Width of barrier from inlet to outlet channel (in), (mm).

10th field FWI2 - Flight separting flute pairs (in), (mm).

11th field ANGMAD - Angle between screw axis and flute (degrees)
All the above variables are also included in the INPUT list and can be changed when EXTRUD ${ }^{\circledR}$ says: TYPE IN INPUT.

On the PC in graphical/conversational mode detailed explanation can be obtained on the meaning of the above variables.

Values for KROS1 \& KROS2
Cross Section is ellipse 1
Cross Section is rectangle with
circular bottom
HMADx < WMADx 2
HMADx > WMADx 3
Cross Section is rectangle 4
Note: The number of parallel inlet flutes must be given as PARHOL on 8th LINE, 4th field if IRING $=3$ (RNG $=3$) (1st LINE, 16th field) or as PH(1) on 13 th LINE if more than one type of mixing device is present in the screw (IRING $=$ negative), where I refers to 1 st , 2 nd etc. mixing device from the hopper to he end of Screw.

Entrance pressure to the fluted section must always be positive. If this is not the case, operating conditions must be changed until entrance pressure becomes positive, e.g. RPM increased, OUTPUT decreased etc.

14th LINE
FORMAT (3F)
(Optional)
Needed only for the case of partially melted feed, this line must be inserted giving X / W, GRATIO, and melt input temperature (${ }^{\circ} \mathrm{F}$), (${ }^{\circ} \mathrm{C}$) for the feed.

1st field $\quad \mathrm{X} / \mathrm{W}$ at inlet.
2nd field GRATIO fraction of solids at inlet.

3rd field \quad TIN melt inlet temperatures ($\left.{ }^{\circ} \mathrm{F}\right),\left({ }^{\circ} \mathrm{C}\right)$.

Target
15th LINE
FORMAT (1)
(Optional)
Needed only if the Target option is used that is a series of simulations is to be generated automatically and only if the 15 th field on the 1st LINE is 1.

1st field Number of variables to be varied simultaneously in the series.

16th LINE
FORMAT (11I)
(Optional)
Needed only with 15 th LINE. (1 line for each variable)

1st field \quad Code number defining variable.
2nd field $\quad n$ - the subscript number* defining the location of variable.
3rd to 11th Section no. of up to 9 additional sections whose depth (HSEC), length (SECLEN) or lead (SLD) varies together with that of the reference section in 2nd field or mixing ring no. whose number of holes vary (PH), or heater number whose barrel temperature varies (TBR) together with that of the reference section in 2nd field.

* $\quad 0$ if not applicable.

17th LINE
 FORMAT (6F)

(Optional)
May consist of several lines.
Needed only with 15th \& 16th LINEs.
1st field The center point around which the first variable will be varied.
2nd field Step size for the first variable.
3rd field Center point for second variable.
4th field Step size for second variable.
Etc. Up to 3 variable per LINE.

LINE 17A
FORMAT (1)
(Optional)
1st field Number of Responses to be collected simultaneously in the series.

LINE 17B
FORMAT (20I)
(Optional)
Needed only with 15 th line and when the value in LINE 17A is not 0 .

1st field Code number defining 1st response to be collected in a summary table. See next page for definition of codes.

2nd field Axial Location*, (in), (mm) at which 1st response is to be collected
3rd field Code number defining 2nd response.
4th field Axial location*, (in), (mm) at which 2nd response is to be collected
Etc. Up to 10 responses per line.

Solids Conveying Data
18th LINE
FORMAT (8F)
(Mandatory)
1st field Maximum diameter of hopper (in.), (mm).
If hopper is not circular, take hydraulic diameter (4 x cross-sectional area of the hopper, divided by its perimeter). DHOP

2nd field \quad Bulk density ($\mathrm{lb} . / \mathrm{ft.}^{3}$), ($\mathrm{g} / \mathrm{cm}^{3}$). ROB
3rd field Constant term in coefficient of friction function on barrel surface, FRIB0. Must be 0 if friction data to be used from SPR list. If FRIB0 is other than 0 in this field, this value will replace the value given in the SPR list. All other coefficients in the friction equation will remain as given in the data base.

4th field	Constant term in coefficient of friction function on screw surface, FRIS0. Equation defining the Coefficient of Friction on the Barrel also defines the Coefficient of Friction on the screw. If friction data to be taken from SPR list, FRIS0 must be 0 . If other than 0 this value will replace that given in the data base. All other coefficients will be taken from the SPR data base.
5th field \quadStatic coefficient of friction of solid feed on the hopper surface. (0 if not available).	
6th field \quadThickness of barrel wall in cooled hopper section (in), (mm.). WBAR	
7th field \quadAverage temperature of cooling medium for hopper ($\left.{ }^{\circ} \mathrm{F}\right),\left({ }^{\circ} \mathrm{C}\right)$ Important for Solid Conveying computation. TBW	
8th field \quadPellet diameter (in), (mm.). DPEL	

19th LINE
FORMAT (8F)
(Mandatory)
1st field Thermal conductivity of barrel metal (Btu/hr.ft. $\left.{ }^{\circ} \mathrm{F}\right),\left(\mathrm{W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right.$). (Typical for steel 25 BTU/hr.ft. ${ }^{\circ}$ For $14.457 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$). TCONB

2nd field Thermal conductivity of solid plastic at feed temperature (Btu/hr.ft. ${ }^{\circ} \mathrm{F}$), (W/m. ${ }^{\circ} \mathrm{C}$). TCONS.

3rd field Angle of repose of the feed (degrees). ANGREP (0 if not available).

4th field Height of the solids in the hopper* (in.), (mm.). HSH
5th field Height of the tapered portion hopper (in.), (mm.). (0 if not available). HOPT

6th field Hopper Diameter adjacent to barrel (in.), (mm.). DHOPX
7th field Barrel wall thickness from controller sensor to inner surface of barrel following the cooled hopper section (in.), (mm). If set to 0 , program assumes that inner barrel surface temperature equals the barrel temperature given. WBAR1

8th field Height of lower portion of hopper with constant small diameter (in.), (mm.). HOPST

* If height of solids in hopper is set to zero (left blank), the critical solids level is computed and the corresponding maximum hopper base pressure is used. If height is supplied for the solids in the hopper, the corresponding pressure at the base of the hopper is computed.
20th LINE
FORMAT (7F)
(Mandatory)
1st field Coefficient Rb 1 in the bulk density expression: (use 0 if Rb 1 not available)
$\mathrm{RHO}_{\mathrm{bp}}=\mathrm{RHO}_{\text {sol }}-\left(\mathrm{RHO}_{\mathrm{sol}}-\mathrm{RHO}_{\mathrm{b} 0}\right)^{*} \exp \left(-\mathrm{R}_{\mathrm{b} 1} * \mathrm{P}\right)$

$$
\text { Where: } \mathrm{RHO}_{\mathrm{bp}} \quad=\text { Bulk density at pressure } \mathrm{P}\left(\mathrm{lb} . / \mathrm{ft}^{3}\right),\left(\mathrm{g} / \mathrm{cm}^{3}\right)
$$

$$
\mathrm{RHO}_{\text {sol }} \quad=\text { Density of sol plastic at room temperature }\left(\mathrm{lb} . / \mathrm{ft}^{3}\right)
$$

$$
\left(\mathrm{g} / \mathrm{cm}^{3}\right)
$$

$$
\mathrm{RHO}_{\mathrm{b} 0} \quad=\text { Bulk density when } \mathrm{P}=0\left(\mathrm{lb} . / \mathrm{ft}^{3}\right),\left(\mathrm{g} / \mathrm{cm}^{3}\right)
$$

$$
\mathrm{P} \quad=\text { Pressure (psi), (bar) }
$$

Followed by 6 fields defining the first 6 terms of the coefficient of friction equation on the barrel surface (optional, remains zero if properties from SPR data file).

(Optional)

2nd field FRIB1
3rd field FRIB11
4th field FRIB12
5th field FRIB13
6th field FRIB2
7th field FRIB22
where the coefficients of friction are defined 18-th LINE.

21st LINE

FORMAT (6F)
(Optional)
Defining the 7th through 12th term of the coefficient Friction equation on the Barrel surface.

1st field	FRIB23
2nd field	FRIB3
3rd field	FRIB33
4th field	FRB111
5th field	FRB333
6th field	FRB112
22nd LINE FORMAT (6F) (Optional)	
Defining the 13 th through 18 th term of the coefficient of Friction equation on the Barrel surface.	
1st field	FRB113
2nd field	FRB123
3rd field	FRB223
4th field	FRB221
5th field	FRB331
6th field	FRB332

23rd LINE
 FORMAT (6F)
 (Optional)

Defining the 1st through 6th term of the coefficient of Friction equation on the Screw surface.
1st field FRIS1
2nd field FRIS11
3rd field FRIS12
4th field FRIS13
5th field FRIS2
6th field FRIS22
24th LINE
FORMAT (6F) (Optional)Defining the 7th through 12th term of the coefficient of Friction equation onthe Screw surface.
1st field FRIS23
2nd field FRIS3
3rd field FRIS33
4th field FRS111
5th field FRS333
6th field FRS112

25th LINE

FORMAT (6F)
(Optional)
Defining the 13th through 18th term of the coefficient of Friction equation on the Screw surface.

1st field \quad FRS113

2nd field FRS123
3rd field FRS223

4th field FRS221

5th field FRS331

6th field FRS332

Injection Molding
26th LINE
FORMAT (8F)
(Optional)
Needed only for injection molding and only if SHOT size, CYCLE time, and Screw Rotation Time (EXTIM) are to be supplied.
1st field Shot size (oz.), (g). SHOT

2nd field Total Cycle time (sec/cycle). CYCLE
3rd field Screw Rotation Time (sec/cycle). EXTIM
When this 26th line is non-zero, the values given for OUTPUT (9th LINE, 2nd field) and for Soak Time (9th LINE, 4th field) are disregarded. Both variables are now internally computed by EXTRUD from the molding data given in this line. If this 26th line is zero, then the OUTPUTand SOAK TIME values are taken from the 9th line.

Namelist
27th LINE

Needed only if 3rd SPEC LINE was YES.

This LINE starts in column 2 with $\$$ followed by the word "INPUT", a space, and the list of variables to be varied separated by a comma. The list can contain as many sublines as needed but should end with a space followed by\$ (DOLLAR SIGN < not ESC mode). Every subline must start in column 2. Each line except the last must end with a comma.

Column: 123456789 $\$$ INPUT RPM $=60 .$, OUTPUT $=189$ (space) $\$$

If no more changes are requested, instead of a list of Input Variables, BEND $=-1$ should be entered.

APPENDIX B

INPUT DATA

(I) Varying Screw Speed

```
*****************************************************************************
* Barrel Diameter :
* Material :
* Screw Speed :
*
Screw Speed : }30\textrm{rpm
Flow Rate : }\quad100\textrm{lb}/\textrm{hr
```



```
C
    650110.99900011
Y
    -5 1.01.02.4752.50 0.300.0125-81002-70003
    19.8 0.4375 2.475 27.55 0.150 2.475 16.6 0.15 3.45 2.475 0.3875 2.475 9.9 0.4375 2.475
    3.1250.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.475
    0.50.450.50.30
    3 0.50.150.150.1625
0.00.00.00.00.070.0 0.0 0.0
    0.00.00.00.00.00.00.0
    0.00.00.00.00.00.00.00.00.0
    415.00.00.00.0601368368368368
    390.0 15.2400.0 32.855410.0 50.51420.0 68.165
430.085.82440.0103.475
-2000.0120.00.010.9140.00.00.00.0 200100
    30.0 100.010.04.60 0.0 0.00.30
    M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER
    7
21.1528400.00.000.4575
25.00.20 0.036.0 24.0 3.68330.05 8.0
0.0
*********** Screw Speed : 40 rpm **********
C
    650110.99900011
Y
-5 1.01.02.475 2.50 0.300.0125-81002-70003
19.8 0.4375 2.475 27.55 0.150 2.475 16.6 0.15 3.45 2.475 0.3875 2.475 9.9 0.4375 2.475
3.1250.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.475
0.50.450.50.30
30.50.150.150.1625
0.00.0 0.00.00.070.0 0.0 0.0
0.00.00.00.00.00.00.0
0.00.00.00.00.00.00.00.00.0
415.00.00.00.0601368368368368
390.0 15.2400.0 32.855410.050.51420.068.165
430.085.82440.0103.475
-2000.0 120.00.01 0.914 0.0 0.0 0.00.0 200 100
40.0100.010.04.60 0.0 0.00.30
M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.00.000.4575
25.00.200.036.024.0 3.68330.05 8.0
0.0
```

```
***********
                    Screw Speed :
                            50 rpm
                                    ************
C
    650110.99900011
Y
-5 1.01.02.475 2.50 0.30 0.0125-81002-70003
19.80.4375 2.475 27.55 0.150 2.475 16.6 0.15 3.45 2.475 0.3875 2.475 9.9 0.4375 2.475
3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.475
0.50.45 0.5 0.30
3 30.50.150.150.1625
0.00.00.00.00.070.0 0.00.0
0.0 0.00.00.00.00.00.0
0.00.00.00.00.00.00.00.00.0
415.0 0.00.00.0601368368368368
390.0 15.2400.0 32.855 410.050.51 420.0 68.165
430.0 85.82440.0 103.475
-2000.0120.00.010.9140.0 0.0 0.00.0 200 100
50.0100.01 0.04.60 0.00.00.30
M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER
    7
21.1528400.00.000.4575
25.0 0.20 0.0 36.0 24.0 3.6833 0.05 8.0
0.0
```

```
**********
```

C
C
650110.99900011
650110.99900011
Y
Y
-51.01.02.4752.50 0.300.0125-81002-70003
-51.01.02.4752.50 0.300.0125-81002-70003
19.8 0.4375 2.475 27.55 0.150 2.475 16.6 0.15 3.45 2.475 0.3875 2.475 9.9 0.4375 2.475
19.8 0.4375 2.475 27.55 0.150 2.475 16.6 0.15 3.45 2.475 0.3875 2.475 9.9 0.4375 2.475
3.1250.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.475
3.1250.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.475
0.50.450.50.30
0.50.450.50.30
3 0.50.150.150.1625
3 0.50.150.150.1625
0.00.00.0 0.00.070.0 0.0 0.0
0.00.00.0 0.00.070.0 0.0 0.0
0.00.00.00.00.00.00.0
0.00.00.00.00.00.00.0
0.00.00.0 0.00.00.0 0.0 0.00.0
0.00.00.0 0.00.00.0 0.0 0.00.0
415.00.00.00.0601 368 368 368 368
415.00.00.00.0601 368 368 368 368
390.0 15.2400.0 32.855 410.0 50.51 420.0 68.165
390.0 15.2400.0 32.855 410.0 50.51 420.0 68.165
430.085.82440.0103.475
430.085.82440.0103.475
-2000.0 120.00.010.9140.0 0.00.00.0 200 100
-2000.0 120.00.010.9140.0 0.00.00.0 200 100
60.0100.010.04.60 0.0 0.00.30
60.0100.010.04.60 0.0 0.00.30
M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER
M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER
7
7
21.1528400.00.000.4575
21.1528400.00.000.4575
25.0 0.20 0.0 36.0 24.0 3.6833 0.058.0
25.0 0.20 0.0 36.0 24.0 3.6833 0.058.0
0.0

```
0.0
```Screw Speed :70 rpm**********
C
650110.99900011
Y
\(-51.01 .02 .4752 .500 .300 .0125-81002-70003\)
19.80 .43752 .47527 .550 .1502 .47516 .60 .153 .452 .4750 .38752 .4759 .90 .43752 .475
3.1250 .23753 .12516 .60 .21253 .454 .950 .21252 .475
0.50 .450 .50 .30
330.50 .150 .150 .1625
0.00 .00 .00 .00 .070 .00 .00 .0
0.00 .00 .00 .00 .00 .00 .0
0.00 .00 .00 .00 .00 .00 .00 .00 .0
415.00 .00 .00 .0601368368368368
390.015 .2400 .032 .855410 .050 .51420 .068 .165
430.085 .82440 .0103 .475
\(-2000.0120 .00 .010 .9140 .00 .00 .00 .0200100\)
70.0100 .010 .04 .600 .00 .00 .30
M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER7
21.1528400 .00 .000 .4575
25.00 .200 .036 .024 .03 .68330 .058 .00.0

\section*{INPUT DATA}

\section*{(II) Varying Flow Rate}
```

|*************************************************************************

* Bargel Diameter : 2.5 inches |
* Material : Acetal copolymer grade M90 *
* Screw Speed : 50 rpm
* Flow Rate : 80 lb/hr *
|*****************************************************************************
C
650110.99900011
Y
-5 1.01.02.475 2.500.30 0.0125-81002-70003
19.80.4375 2.475 27.55 0.150 2.475 16.6 0.15 3.45 2.475 0.3875 2.475 9.9 0.4375 2.475
3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.475
0.50.450.50.30
30.50.150.150.1625
0.00.00.00.00.070.00.00.0
0.00.00.00.00.00.00.0
0.00.00.00.00.00.00.00.00.0
415.00.00.00.0601368368368368
390.0 15.2400.0 32.855 410.0 50.51 420.0 68.165
430.0 85.82440.0 103.475
-2000.0120.00.010.9140.00.00.00.0 200 100
50.080.010.04.60 0.0 0.0 0.30
M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.00.000.4575
25.0 0.20 0.0 36.0 24.0 3.6833 0.05 8.0
0.0
*********** Flow Rate : 90 lb/hr **********
C
650110.99900011
Y
-5 1.01.02.475 2.50 0.30 0.0125-81002 -7000 3
19.80.4375 2.475 27.55 0.150 2.475 16.6 0.15 3.45 2.475 0.3875 2.475 9.9 0.4375 2.475
3.1250.2375 3.125 16.6 0.2125 3.45 4.950.2125 2.475
0.50.450.50.30
330.50.150.150.1625
0.0 0.0 0.00.0 0.070.0 0.0 0.0
0.00.00.00.00.00.00.0
0.00.0 0.00.0 0.00.00.0 0.00.0
415.00.00.00.0601 368 368 368 368
390.0 15.2400.0 32.855410.050.51420.068.165
430.085.82440.0103.475
-2000.0120.00.01 0.9140.00.00.00.0 200100
50.090.010.04.60 0.0 0.00.30
M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.00.000.4575
25.0 0.200.036.0 24.0 3.68330.05 8.0
0.0

```
```

************ Flow Rate : 100 lb/hr
C
650110.99900011
Y
-5 1.01.02.475 2.50 0.30 0.0125-81002 -7000 3
19.80.4375 2.475 27.55 0.150 2.475 16.6 0.15 3.45 2.475 0.3875 2.475 9.9 0.4375 2.475
3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.475
0.50.450.50.30
300.50.150.150.1625
0.00.0 0.00.00.070.0 0.00.0
0.00.00.00.0 0.00.0 0.0
0.0 0.00.00.00.00.00.00.00.0
415.00.00.00.0601368368368368
390.015.2400.0 32.855 410.0 50.51 420.0 68.165
430.085.82440.0103.475
-2000.0120.00.01 0.914 0.0 0.00.0 0.0 200 100
50.0100.01 0.04.60 0.0 0.00.30
M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.00.000.4575
25.00.200.0 36.024.0 3.6833 0.05 8.0
0.0

```
```

**********

```

650110.99900011
650110.99900011
Y
Y
-5 1.01.02.475 2.50 0.300.0125-81002 -70003
-5 1.01.02.475 2.50 0.300.0125-81002 -70003
19.80.4375 2.475 27.55 0.150 2.475 16.6 0.15 3.45 2.475 0.3875 2.475 9.9 0.4375 2.475
19.80.4375 2.475 27.55 0.150 2.475 16.6 0.15 3.45 2.475 0.3875 2.475 9.9 0.4375 2.475
3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.475
3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.475
 0.50.450.50.30
 0.50.450.50.30
 300.50.150.150.1625
 300.50.150.150.1625
0.0 0.0 0.0 0.0 0.070.0 0.0 0.0
0.0 0.0 0.0 0.0 0.070.0 0.0 0.0
0.0 0.0 0.0 0.0 0.00.0 0.0
0.0 0.0 0.0 0.0 0.00.0 0.0
0.00.00.00.00.00.00.00.00.0
0.00.00.00.00.00.00.00.00.0
415.00.00.00.0601368368368368
415.00.00.00.0601368368368368
390.0 15.2400.0 32.855410.0 50.51420.0 68.165
390.0 15.2400.0 32.855410.0 50.51420.0 68.165
430.085.82440.0 103.475
430.085.82440.0 103.475
-2000.0 120.00.010.914 0.00.0 0.00.0 200 100
-2000.0 120.00.010.914 0.00.0 0.00.0 200 100
50.0110.010.04.600.00.00.30
50.0110.010.04.600.00.00.30
M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER
M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER
7
7
21.1528400.00.000.4575
21.1528400.00.000.4575
25.0 0.20 0.0 36.0 24.0 3.68330.05 8.0
25.0 0.20 0.0 36.0 24.0 3.68330.05 8.0
0.0
```

0.0

```
```

************ Flow Rate : 120 lb/hr ***********
C
650110.99900011
Y
-51.01.02.4752.50 0.300.0125-81002-70003
19.8 0.4375 2.475 27.55 0.150 2.475 16.6 0.15 3.45 2.475 0.3875 2.475 9.9 0.4375 2.475
3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.475
0.50.450.50.30
30.50.150.150.1625
0.00.00.00.00.070.00.00.0
0.00.00.00.00.00.00.0
0.00.00.00.00.00.00.00.00.0
415.00.00.00.0601368368368368
390.0 15.2400.0 32.855 410.0 50.51 420.0 68.165
430.0 85.82440.0103.475
-2000.0120.00.01 0.9140.00.00.00.0 200 100
50.0120.01 0.04.60 0.0 0.00.30
M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.00.000.4575
25.00.200.0 36.0 24.0 3.6833 0.05 8.0
0.0

```

\section*{INPUT DATA}
(III) Varying IPFC
```

***********************************************************************************

* Barrel Diameter : 2.5 inches *
* Material : Acetal copolymer grade M90 *
* Screw Speed : 50 rpm *
* Flow Rate : 100 lb/hr *
* IPFC : 0.05 *
C
650110.99900011
Y
-5 1.01.02.475 2.50 0.300.0125-81002-70003
19.80.4375 2.475 27.55 0.150 2.475 16.6 0.15 3.45 2.475 0.3875 2.475 9.9 0.4375 2.475
3.1250.2375 3.125 16.6 0.2125 3.45 4.950.2125 2.475
0.50.450.50.30
3 0.50.150.150.1625
0.00.00.00.00.070.0 0.00.0
0.00.00.0 0.0 0.0 0.00.0
0.00.00.00.00.00.0 0.0 0.00.0
415.00.00.00.0601 368 368 368 368
390.0 15.2400.0 32.855410.0 50.51 420.068.165
430.085.82440.0103.475
-2000.0120.00.010.914 0.00.00.00.0 200 100
50.0100.010.044.60 0.0 0.00.30
M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.050.1000.4575
25.0 0.20 0.0 36.0 24.0 3.6833 0.05 8.0
0.0
*********** IPFC : 0.10 **********
C
650110.99900011
Y
-51.01.02.4752.50 0.300.0125-81002-70003
19.80.4375 2.475 27.55 0.150 2.475 16.6 0.15 3.45 2.475 0.3875 2.475 9.9 0.4375 2.475
3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.475
0.50.450.50.30
3 0.50.150.150.1625
0.00.00.00.00.070.0 0.00.0
0.00.00.00.00.0 0.0 0.0
0.0 0.0 0.00.00.00.0 0.00.00.0
415.00.00.00.0601368368368368
390.0 15.2400.0 32.855410.0 50.51420.068.165
430.085.82440.0 103.475
-2000.0120.00.01 0.9140.00.00.00.0200100
50.0100.010.04.60 0.00.00.30
M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.100.1000.4575
25.0 0.20 0.0 36.024.03.68330.05 8.0
0.0

```
```

********* IPFC
0.15
C
650110.99900011
Y
-51.01.02.475 2.500.300.0125-81002-70003
19.8 0.4375 2.475 27.55 0.150 2.475 16.6 0.15 3.45 2.475 0.3875 2.475 9.9 0.4375 2.475
3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.475
0.50.450.50.30
30.50.150.150.1625
0.00.0 0.00.0 0.070.0 0.00.0
0.00.0 0.00.0 0.0 0.0 0.0
0.00.0 0.0 0.0 0.00.00.0 0.00.0
415.00.00.00.0601368368368368
390.0 15.2400.0 32.855 410.0 50.51 420.0 68.165
430.085.82440.0103.475
-2000.0120.00.010.9140.00.00.00.0200100
50.0100.01 0.04.60 0.0 0.00.30
M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.150.1000.4575
25.00.20 0.0 36.0 24.0 3.6833 0.05 8.0
0.0

```
```

C

```
C
 650110.99900011
 650110.99900011
Y
Y
 -5 1.01.02.475 2.50 0.30 0.0125-8100 2-7000 3
 -5 1.01.02.475 2.50 0.30 0.0125-8100 2-7000 3
 19.8 0.4375 2.475 27.55 0.150 2.475 16.6 0.15 3.45 2.475 0.3875 2.475 9.9 0.4375 2.475
 19.8 0.4375 2.475 27.55 0.150 2.475 16.6 0.15 3.45 2.475 0.3875 2.475 9.9 0.4375 2.475
 3.1250.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.475
 3.1250.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.475
 0.50.450.50.30
 0.50.450.50.30
 3 30.50.150.150.1625
 3 30.50.150.150.1625
0.00.00.00.00.070.0 0.0 0.0
0.00.00.00.00.070.0 0.0 0.0
 0.00.0 0.0 0.0 0.00.00.0
 0.00.0 0.0 0.0 0.00.00.0
 0.00.00.00.00.0 0.0 0.00.00.0
 0.00.00.00.00.0 0.0 0.00.00.0
 415.00.00.00.0601368368368368
 415.00.00.00.0601368368368368
 390.0 15.2400.0 32.855 410.050.51 420.068.165
 390.0 15.2400.0 32.855 410.050.51 420.068.165
430.085.82440.0103.475
430.085.82440.0103.475
-2000.0120.00.01 0.9140.00.00.00.0 200 100
-2000.0120.00.01 0.9140.00.00.00.0 200 100
 50.0100.010.04.60 0.00.00.30
 50.0100.010.04.60 0.00.00.30
 M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER
 M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER
 7
 7
21.1528400.200.1000.4575
21.1528400.200.1000.4575
25.0 0.20 0.0 36.0 24.0 3.6833 0.05 8.0
25.0 0.20 0.0 36.0 24.0 3.6833 0.05 8.0
0.0
```

0.0

```
```

                IPFC:
                            0.25
                                    ************
    C
650110.99900011
Y
-51.01.02.475 2.50 0.300.0125-81002-70003
19.8 0.4375 2.475 27.55 0.150 2.475 16.6 0.15 3.45 2.475 0.3875 2.475 9.9 0.4375 2.475
3.1250.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.475
0.50.450.50.30
300.50.150.150.1625
0.00.00.00.00.070.0 0.0 0.0
0.00.00.00.00.00.00.0
0.00.00.00.00.00.00.00.00.0
415.00.00.00.0601368368368368
390.0 15.2400.0 32.855 410.0 50.51420.0 68.165
430.085.82440.0103.475
-2000.0120.00.01 0.9140.00.00.0 0.0200100
50.0100.01 0.04.60 0.0 0.0 0.30
M90 SIMULATE IN 2.5 INCHES OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.250.1000.4575
25.0 0.20 0.0 36.0 24.0 3.6833 0.05 8.0
0.0
**************************************************************************

* Barrel Diameter : 2.25 inches *
* Material : Acetal copolymer grade M90 *
* Screw Speed : 50 rpm *
* Flow Rate : 87.8 lb/hr *
* IPFC : 0.05 *

```

```

C
650110.99900011
Y
-5 1.01.02.225 2.250 0.300.0125-8100 2-70003
19.8 0.4375 2.225 27.55 0.15 2.225 16.6 0.15 3.45 2.225 0.3875 2.225 9.9 0.4375 2.225
3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.225
0.50.450.50.30
3 30.50.150.150.1625
0.00.00.00.00.070.0 0.00.0
0.00.00.00.00.00.00.0
0.00.00.00.00.00.00.00.00.0
415.00.00.00.0601 368 368 368 368
390.0 15.2400.0 32.855 410.0 50.51 420.068.165
430.0 85.82440.0 103.475
-2000.0120.00.010.914 0.00.00.00.0200100
50.087.81 0.04.60 0.0 0.0 0.30
M90 SIMULATE IN 2.25 INCHES OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.050.1000.4575
25.0 0.20 0.0 36.0 24.0 3.68330.05 8.0
0.0

```
```

************ IPFC : 0.10
C
650110.99900011
Y
-51.01.02.225 2.250 0.300.0125-81002-70003
19.80.4375 2.225 27.55 0.15 2.225 16.6 0.15 3.45 2.225 0.3875 2.225 9.9 0.4375 2.225
3.1250.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.225
0.50.45 0.5 0.30
300.50.150.150.1625
0.0 0.0 0.0 0.00.070.0 0.0 0.0
0.0 0.00.0 0.0 0.0 0.0 0.0
0.00.0 0.00.00.00.0 0.0 0.00.0
415.00.00.00.0601368368368368
390.015.2400.0 32.855410.0 50.51 420.0 68.165
430.085.82440.0 103.475
-2000.0120.00.01 0.9140.00.00.00.0200 100
50.087.810.04.60 0.0 0.00.30
M90 SIMULATE IN 2.25 INCHES OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.100.1000.4575
25.00.200.036.024.03.6833 0.05 8.0
0.0

```
```

*********** IPFC :

```
*********** IPFC :
 0.15
 0.15
C
C
650110.99900011
650110.99900011
Y
Y
-5 1.01.02.225 2.250 0.300.0125-8100 2-70003
-5 1.01.02.225 2.250 0.300.0125-8100 2-70003
19.80.4375 2.225 27.55 0.15 2.225 16.6 0.15 3.45 2.225 0.3875 2.225 9.9 0.4375 2.225
19.80.4375 2.225 27.55 0.15 2.225 16.6 0.15 3.45 2.225 0.3875 2.225 9.9 0.4375 2.225
3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.225
3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.225
 0.50.450.50.30
 0.50.450.50.30
 3 }30.50.150.150.162
 3 }30.50.150.150.162
0.0 0.00.0 0.00.070.0 0.0 0.0
0.0 0.00.0 0.00.070.0 0.0 0.0
 0.00.00.00.00.00.00.0
 0.00.00.00.00.00.00.0
0.00.0 0.00.00.00.0 0.00.00.0
0.00.0 0.00.00.00.0 0.00.00.0
415.00.00.00.0601 }36836836836
415.00.00.00.0601 }36836836836
390.0 15.2400.0 32.855410.0 50.51420.068.165
390.0 15.2400.0 32.855410.0 50.51420.068.165
430.085.82440.0103.475
430.085.82440.0103.475
-2000.0120.00.01 0.914 0.00.0 0.00.0200100
-2000.0120.00.01 0.914 0.00.0 0.00.0200100
50.087.810.04.60 0.0 0.0 0.30
50.087.810.04.60 0.0 0.0 0.30
M90 SIMULATE IN 2.25 INCHES OF TWO-STAGE SCREW EXTRUDER
M90 SIMULATE IN 2.25 INCHES OF TWO-STAGE SCREW EXTRUDER
7
7
21.1528400.150.1000.4575
21.1528400.150.1000.4575
25.0 0.200.036.024.0 3.6833 0.05 8.0
25.0 0.200.036.024.0 3.6833 0.05 8.0
0.0
```

0.0

```
```

*********** IPFC : 0.20
C
650110.99900011
Y
-5 1.01.0 2.225 2.250 0.300.0125-8100 2-70003
19.8 0.4375 2.225 27.55 0.15 2.225 16.6 0.15 3.45 2.225 0.3875 2.225 9.9 0.4375 2.225
3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.225
0.50.450.50.30
30.50.150.150.1625
0.00.0 0.00.00.070.0 0.00.0
0.0 0.00.0 0.0 0.0 0.00.0
0.00.00.00.00.00.00.00.00.0
415.00.00.00.0601 368 368 368 368
390.0 15.2400.0 32.855410.050.51 420.0 68.165
430.085.82440.0103.475
-2000.0120.0 0.010.9140.0 0.00.00.0 200 100
50.087.810.04.60 0.0 0.0 0.30
M90 SIMULATE IN 2.25 INCHES OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.200.1000.4575
25.00.20 0.036.024.0 3.6833 0.05 8.0
0.0
************ IPFC : 0.25
C
650110.99900011
Y
-5 1.01.02.225 2.250 0.300.0125-81002-70003
19.80.4375 2.225 27.55 0.15 2.225 16.6 0.15 3.45 2.225 0.3875 2.225 9.9 0.4375 2.225
3.1250.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 2.225
0.50.450.50.30
3 30.50.150.150.1625
0.00.00.00.00.070.0 0.0 0.0
0.00.00.00.00.00.0 0.0
0.00.00.00.00.00.00.00.00.0
415.00.00.00.0601368368368368
390.0 15.2400.0 32.855 410.0 50.51 420.068.165
430.085.82440.0103.475
-2000.0120.00.010.914 0.0 0.00.00.0 200 100
50.087.810.04.60 0.0 0.0 0.30
M90 SIMULATE IN 2.25 INCHES OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.250.1000.4575
25.00.20 0.036.0 24.0 3.6833 0.05 8.0
0.0

```
```

**********************************************************************************

* Barrel Diameter : 2.0 inches *
* Material : Acetal copolymer grade M90 *
* Screw Speed : 50 rpm
* Flow Rate : 75.6 lb/hr *
* IPFC : 0.05 *

```

```

C
650110.99900011
Y
-5 1.01.01.975 2.00.30 0.0125-81002 -70003
19.80.4375 1.975 27.55 0.15 1.975 16.6 0.15 3.45 1.975 0.3875 1.975 9.9 0.4375 1.975
3.1250.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 1.975
0.50.450.50.30
3 30.50.150.150.1625
0.0 0.0 0.00.0 0.070.0 0.00.0
0.00.00.00.00.0 0.00.0
0.00.00.00.00.00.00.00.0 0.0
415.00.00.00.0601 368 368 368 368
390.015.2400.0 32.855410.050.51420.068.165
430.085.82440.0 103.475
-2000.0120.00.010.9140.00.00.00.0200 100
50.075.6 1 0.04.60 0.0 0.0 0.30
M90 SIMULATE IN 2.0 INCHES OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.050.1000.4575
25.0 0.200.036.024.03.68330.058.0
0.0

```
```

********** IPFC: 0.10

```
********** IPFC: 0.10
C
C
 650110.99900011
 650110.99900011
Y
Y
 -5 1.01.01.975 2.00.30 0.0125-81002 -70003
 -5 1.01.01.975 2.00.30 0.0125-81002 -70003
 19.80.4375 1.975 27.55 0.15 1.975 16.6 0.15 3.45 1.975 0.3875 1.975 9.9 0.4375 1.975
 19.80.4375 1.975 27.55 0.15 1.975 16.6 0.15 3.45 1.975 0.3875 1.975 9.9 0.4375 1.975
 3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 1.975
 3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 1.975
 0.50.450.50.30
 0.50.450.50.30
 300.50.150.150.1625
 300.50.150.150.1625
0.00.00.00.00.070.0 0.0 0.0
0.00.00.00.00.070.0 0.0 0.0
 0.00.00.00.00.00.00.0
 0.00.00.00.00.00.00.0
 0.00.00.00.00.00.00.00.00.0
 0.00.00.00.00.00.00.00.00.0
 415.00.00.00.0601368368368368
 415.00.00.00.0601368368368368
 390.0 15.2400.0 32.855410.050.51420.068.165
 390.0 15.2400.0 32.855410.050.51420.068.165
430.085.82440.0103.475
430.085.82440.0103.475
-2000.0120.00.010.914 0.00.00.00.0200100
-2000.0120.00.010.914 0.00.00.00.0200100
50.075.610.04.60 0.0 0.0 0.30
50.075.610.04.60 0.0 0.0 0.30
M90 SIMULATE IN 2.0 INCHES OF TWO-STAGE SCREW EXTRUDER
M90 SIMULATE IN 2.0 INCHES OF TWO-STAGE SCREW EXTRUDER
7
7
21.1528400.100.1000.4575
21.1528400.100.1000.4575
25.00.200.036.024.03.68330.058.0
25.00.200.036.024.03.68330.058.0
0.0
```

0.0

```
```

********** IPFC :
0.15
C
650110.99900011
Y
-51.01.01.975 2.00.30 0.0125-81002-70003
19.80.4375 1.975 27.55 0.15 1.975 16.6 0.15 3.45 1.975 0.3875 1.975 9.9 0.4375 1.975
3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 1.975
0.50.450.50.30
330.50.150.150.1625
0.00.00.0 0.0 0.070.0 0.00.0
0.00.00.00.00.00.00.0
0.00.0 0.0 0.0 0.00.0 0.0 0.00.0
415.00.00.00.0601 368368368368
390.0 15.2400.0 32.855410.050.51 420.0 68.165
430.0 85.82440.0 103.475
-2000.0120.00.010.9140.0 0.00.00.0200100
50.075.610.04.60 0.0 0.0 0.30
M90 SIMULATE IN 2.0 INCHES OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.150.1000.4575
25.00.200.036.024.0 3.6833 0.05 8.0
0.0
************ IPFC :
0.20
C
650110.99900011
Y
-5 1.01.01.975 2.00.300.0125-81002-70003
19.80.43751.975 27.550.15 1.975 16.6 0.15 3.45 1.975 0.3875 1.975 9.9 0.4375 1.975
3.1250.2375 3.125 16.6 0.2125 3.454.95 0.2125 1.975
0.50.450.50.30
30.50.150.150.1625
0.00.00.00.00.070.0 0.00.0
0.00.00.00.0 0.00.00.0
0.00.00.0 0.00.00.00.0 0.00.0
415.00.00.00.0601 368 368 368 368
390.0 15.2400.0 32.855410.050.51420.068.165
430.085.82440.0103.475
-2000.0120.00.010.9140.00.00.00.0200100
50.075.610.04.60 0.0 0.0 0.30
M90 SIMULATE IN 2.0 INCHES OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.200.1000.4575
25.0 0.200.036.024.0 3.68330.05 8.0
0.0

```
```

************ IPFC
0.25
************
C
650110.99900011
Y
-51.01.01.975 2.00.300.0125-81002-70003
19.80.4375 1.975 27.55 0.15 1.975 16.6 0.15 3.45 1.975 0.3875 1.975 9.9 0.4375 1.975
3.1250.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 1.975
0.50.450.50.30
30.50.150.150.1625
0.00.00.00.00.070.0 0.0 0.0
0.00.0 0.00.0 0.00.00.0
0.00.0 0.0 0.0 0.00.0 0.0 0.00.0
415.00.00.00.0601 368 368 368 368
390.0 15.2400.0 32.855 410.0 50.51 420.0 68.165
430.0 85.82440.0 103.475
-2000.0120.00.01 0.914 0.0 0.00.00.0 200 100
50.075.610.04.60 0.0 0.00.30
M90 SIMULATE IN 2.0 INCHES OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.250.1000.4575
25.00.200.036.0 24.03.68330.05 8.0
0.0

```
\begin{tabular}{lll}
*** \\
* & Barrel Diameter : & 1.75 inches \\
\(*\) & Material : & Acetal copolymer grade M90
\end{tabular}

C
650110.99900011
Y
-5 \(1.01 .01 .7251 .750 .300 .0125-81002-70003\)
19.80 .43751 .7527 .550 .151 .7516 .60 .153 .451 .750 .38751 .759 .90 .43751 .75
3.1250 .23753 .12516 .60 .21253 .454 .950 .21251 .75
 0.50 .450 .50 .30
 330.50 .150 .150 .1625
0.00 .00 .00 .00 .070 .00 .00 .0
 0.00 .00 .00 .00 .00 .00 .0
0.00 .00 .00 .00 .00 .00 .00 .00 .0
415.00 .00 .00 .0601368368368368
390.015 .2400 .032 .855410 .050 .51420 .068 .165
430.085 .82440 .0103 .475
-2000.0120.0 0.010 .9140 .00 .00 .00 .0200100
50.063 .510 .04 .600 .00 .00 .30
M90 SIMULATE IN 1.75 INCH OF TWO-STAGE SCREW EXTRUDER
 7
21.1528400 .050 .1000 .4575
25.00 .200 .036 .024 .03 .68330 .058 .0
0.0
********中** IPFC : 0.10
C
650110.99900011

Y
 -5 \(1.01 .01 .7251 .750 .300 .0125-81002-70003\)
 19.80 .43751 .7527 .550 .151 .7516 .60 .153 .451 .750 .38751 .759 .90 .43751 .75
 3.1250 .23753 .12516 .60 .21253 .454 .950 .21251 .75
 0.50 .450 .50 .30
 330.50 .150 .150 .1625
0.00 .00 .00 .00 .070 .00 .00 .0
 0.00 .00 .00 .00 .00 .00 .0
 0.00 .00 .00 .00 .00 .00 .00 .00 .0
 415.00 .00 .00 .0601368368368368
 390.015 .2400 .032 .855410 .050 .51420 .068 .165
430.085 .82440 .0103 .475
\(-2000.0120 .00 .010 .9140 .00 .00 .00 .0200100\)
50.063 .510 .04 .600 .00 .00 .30
M90 SIMULATE IN 1.75 INCH OF TWO-STAGE SCREW EXTRUDER
 7
21.1528400 .100 .1000 .4575
25.00 .200 .036 .024 .03 .68330 .058 .0
0.0
```

*********** IPFC :
0.15
**********
C
650110.99900011
Y
-51.01.01.7251.750.300.0125-81002-70003
19.80.4375 1.75 27.55 0.15 1.75 16.6 0.15 3.45 1.75 0.3875 1.75 9.9 0.4375 1.75
3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 1.75
0.50.45 0.50.30
30.50.150.150.1625
0.00.00.00.00.070.0 0.0 0.0
0.00.00.00.00.00.00.0
0.00.00.00.00.00.00.00.00.0
415.00.00.00.0601 368 368 368 368
390.0 15.2400.0 32.855 410.0 50.51 420.0 68.165
430.085.82440.0103.475
-2000.0120.00.01 0.914 0.0 0.00.00.0 200100
50.063.510.04.60 0.0 0.00.30
M90 SIMULATE IN 1.75 INCH OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.150.1000.4575
25.00.200.036.024.03.68330.058.0
0.0

```
```

********** IPFC : 0.20
C
650110.99900011
Y
-5 1.01.01.7251.750.300.0125-8100 2-70003
19.80.4375 1.75 27.55 0.15 1.75 16.6 0.15 3.45 1.75 0.3875 1.75 9.9 0.4375 1.75
3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 1.75
0.50.450.50.30
30.50.150.150.1625
0.0 0.0 0.0 0.0 0.070.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0
415.00.00.00.0601368368368368
390.0 15.2 400.0 32.855 410.0 50.51 420.0 68.165
430.0 85.82440.0 103.475
-2000.0120.00.010.9140.00.00.00.0200100
50.063.510.04.600.00.00.30
M90 SIMULATE IN 1.75 INCH OF TWO-STAGE SCREW EXTRUDER
7
21.1528400.200.1000.4575
25.0 0.20 0.0 36.0 24.0 3.6833 0.05 8.0
0.0

```
```

********** IPFC :

```
********** IPFC :
0.25
0.25

C
C
650110.99900011
650110.99900011
Y
Y
-5 1.01.01.7251.75 0.300.0125-8100 2-70003
-5 1.01.01.7251.75 0.300.0125-8100 2-70003
19.80.4375 1.75 27.55 0.15 1.75 16.6 0.15 3.45 1.75 0.3875 1.75 9.9 0.4375 1.75
19.80.4375 1.75 27.55 0.15 1.75 16.6 0.15 3.45 1.75 0.3875 1.75 9.9 0.4375 1.75
3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 1.75
3.125 0.2375 3.125 16.6 0.2125 3.45 4.95 0.2125 1.75
 0.50.450.50.30
 0.50.450.50.30
 30.50.150.150.1625
 30.50.150.150.1625
0.0 0.0 0.00.00.070.0 0.0 0.0
0.0 0.0 0.00.00.070.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.00.00.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.00.00.0 0.0 0.0 0.0 0.0 0.0 0.0
 415.00.00.00.0601368368368368
 415.00.00.00.0601368368368368
 390.0 15.2400.0 32.855 410.0 50.51 420.0 68.165
 390.0 15.2400.0 32.855 410.0 50.51 420.0 68.165
430.0 85.82440.0 103.475
430.0 85.82440.0 103.475
-2000.0120.00.01 0.914 0.00.0 0.00.0 200100
-2000.0120.00.01 0.914 0.00.0 0.00.0 200100
50.063.510.04.60 0.0 0.0 0.30
50.063.510.04.60 0.0 0.0 0.30
M90 SIMULATE IN 1.75 INCH OF TWO-STAGE SCREW EXTRUDER
M90 SIMULATE IN 1.75 INCH OF TWO-STAGE SCREW EXTRUDER
 7
 7
21.1528400.250.1000.4575
21.1528400.250.1000.4575
25.0 0.200.0 36.0 24.0 3.6833 0.05 8.0
25.0 0.200.0 36.0 24.0 3.6833 0.05 8.0
0 . 0
```

0 . 0

```

\section*{OUTPUT OF SIMULATION}

\section*{(I) Varying Screw Speed}

24530
SCIENTIFIC PROCESS \& RESEARCH, INC.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline EXPERIME & ENT NUMB & \multicolumn{2}{|l|}{R 1.01} & \multicolumn{6}{|r|}{SCIENTIFIC PROCESS \& RESEARCH, INC.} & \\
\hline No 30.0 & RPM & \multicolumn{2}{|l|}{OUTPUT= 1} & 0.00 LB & / \(/\) RR & SOAR & TIME* & 0.00 s & SECONDS & \\
\hline SECTION & LENGTH & \multicolumn{2}{|l|}{CH. DEPTH} & \multicolumn{2}{|r|}{WIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { BAR. } \\
& \text { DIAM }
\end{aligned}
\]} & \multirow[t]{2}{*}{FLT. WIDTH} & \multirow[t]{3}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { HOLE } \\
\text { AREA } \\
\text { (SQIN) }
\end{gathered}
\]} \\
\hline & (IN) & SOLID & MELT & SOLID & MELT & & & & & \\
\hline & & (IN) & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 2 & 27.550 & 0.250 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.354 & 1.354 & 3.450 & 2.500 & 0.300 & & \\
\hline 4 & 2.475 & 0.387 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 6 & 3.125 & 0.237 & 0.000 & 2.604 & 0.000 & 3.125 & 2.500 & 0.300 & & \\
\hline 7 & 16.600 & 0.213 & 0.000 & 2.859 & 0.000 & 3.450 & 2.500 & 0.300 & 1.000 & 0.914 \\
\hline B & 4.950 & 0.213 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline
\end{tabular}

ATTENTION - SOLIDS HEIGHT IN HOPPER IS LOW !

SOLIDS CONVEYING ZONE ANALYSIS

```

65.19	400.9	. 096	. 096	. 095		0. 1662.	2.3	0.269	418.0	0.2227	0.4	418
66.42	403.3	. 102	. 102	. 092		0. 1685.	2.3	0.387	418.7	0.1273	0.3	419.
71.37	408.9	. 063	. 063	. 056		0. 1758.	2.4	0.412	421.3	0.1242	-0.2	421.
76.32	413.9	. 034	. 034	. 030		0. 2823.	2.8	0.437	424.	0.1208	1.	424.
	FILM	THIC	CKNESS	150		TBARm 0	0.4247 E	+03				
	FILM	THIC	croness	IS 0	T	TEAR $=0$	0.4247E	+03				
77.89	415.8	. 028	. 028	. 028		O. 1846.	2.9	0.338	425.3	0.2145	2.3	425.
79.45	417.7	. 025	. 025	025		0. 2875.	3.0	0.238	426.2	0.1091	2.4	426.


| 96.05 | 438.8 | .025 .025 .018 | 0.1874. | 3.0 | 0.213431 .0 | 0.1091 | 2.4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```

```

TORQUE 7106.8 INCH.POUNDS
POWER BREAK-DOWN:
SOLIDS CONV. = 0.000 HP
MELTING = 2.286 HP
MIXING = 0.452 HP
FLIGHT CLEAR = 0.589 HP
COMPRESSION = 0.052 HP
MIXING DEVICE= 0.024 HP
MIXING DEVICE* FSSURE FLUCTUATION* HP 63.72 PSI/CYCLE

```

```

MAXIMMM SCREN SPEED,RPM: NOM, 30.0 58.3 86.7 115.0 143.3 171.7 200.0

```

```

STRENGTH ANALYSIS OF YOUR SCREF (4140STEE):
MAXIMUM PERMITTED COOLING HOLE DIAMETER IS 2.100 INCHES
MAXIMUS: PERMITTED CHANNEL DEPTH WITHOUT CORING SCREW IS 0.672 INCHES
VISCOSITY WAS CALCULATED IN THE FOLLONING SHEAR RATE RANGE
SHEAF RATE TEHF. VISCOSITY
2/5EC DEG.F LB.SEC/SO.IN
403.44 376.9 0.0611026
1.27 380.8 0.1945229
VISCOSITY WAS CALCULATED IN THE FOLLONING TEMPERATURE RANGE
SHEAR RATE TEMP. VISCOSITY
1/SEC DEG.F LB.SEC/SQ.IN
22.82 439.0 0.0947747
125.59 329.0 0.1295692
SELECT ONE OF THE FOLLOWING:

```
```

1 - Date Analysis

```
1 - Date Analysis
2 - Run Now Simulation
2 - Run Now Simulation
- EXIT
```

- EXIT

```

1MS40 EXPERIMENT NUMBER 1.00 SCIENTIFIC PROCESS \& RESEARCH, INC.
N= 40.0 RPM OUTPUT= \(100.00 \mathrm{LB} / H R\) SOAK TIME= 0.00 SECONDS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{SECTION} & \multirow[t]{3}{*}{\begin{tabular}{l}
LENGTH \\
(IN)
\end{tabular}} & \multicolumn{2}{|r|}{CH. DEPTH} & \multicolumn{2}{|r|}{KIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { BAR. } \\
& \text { DIAM }
\end{aligned}
\]} & \multirow[t]{3}{*}{FLT. WIDTH (IN)} & \multirow[t]{3}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { HOLE } \\
\text { AREA } \\
\text { (SOIN) }
\end{gathered}
\]} \\
\hline & & SOLID & MELT & SOLID & MELT & & & & & \\
\hline & & (IN) & (IN) & (IN) & (IN) & (IN) & (IN) & & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 2 & 27.550 & 0.150 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.354 & 1.354 & 3.450 & 2.500 & 0.300 & & \\
\hline 4 & 2.475 & 0.387 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 6 & 3.125 & 0.237 & 0.000 & 2.604 & 0.000 & 3.125 & 2.500 & 0.300 & & \\
\hline 7 & 16.600 & 0.213 & 0.000 & 2.859 & 0.000 & 3.450 & 2.500 & 0.300 & 1.000 & 0.914 \\
\hline 8 & 4.950 & 0.213 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline
\end{tabular}

HOPPER ANALYSIS
ATTENTION - SOLIDS HEIGHT IN HOPPER IS LOW:

SOLIDS CONXEYING 2ONE ANALYSIS

```

        FILM THICNNESS IS 0 - TBAR= 0.4175E+03
        FIZM THICKNESS IS 0 - TBAR= 0.4175E+03
    65.19 412.4.004 .004 .004 0. 0. 2666. 4.2 0.269 418.1 0.1014 3.7 418.
        66.42 413.0.002.002 .002 0. 2700. 4.3 0.387 418.8 0.1069 0.7 419.
            FILM THICKNESS IS O - TBAR= 0.4192E+03
        FILM THICKNESS IS O - TBAP= 0.4192E+03
    71.37418.3.000.000.000 0. 2805. 4.4 0.412 421.5 0.1049 1.1 419.
    lllllllllll
    75.45 425.2.000.000.000 000 0. 2975. 4.6 0.238 426.3 0.0924 1.4 (%)
    FLUTED SECTION WITH 1. PAIRS OF FLUTES
    96.05 425.2 .000.000.000 (0. 2974. 4.7 0.213 431.1 0.0924 1.4 1.4 4,
    101.00 433.7 .000.000.000 0. 3145. 4.8 0.213 438.2 0.0910 1.4 419.

MINIMUN TEMPERATURE $=$	433.725	DEG
TEMP FLUCTUATION $=$	0.000	DEG
FLON INDEX (N)	0.789	
GRATIO INJ.	0.000	
RESIDENCE TIME:		
MELT POOLE	0.052126914 HRS	


TORQUE	7634.1
PONER BREAK:-DO	
SOLIDS CON'.	0.002 HP
MELTING	2.803 HP
MIXING	0.932 HP
FLIGHT CLEAR	0.946 HP
COMPRESSION	0.132 HP
MIXING DEVICEE	0.041

```

```

MAXIMUM SCREF SPEED,RPM: 40.0 66.7 93.3 120.0 146.7 173.3 200.0
POHER CONSUMPTION, F OT AVAILABLE: }4.
STRENGTH ANRLYSIS OF YOUR SCREW (4140STEE):
MAXIMUM PERMITIED COOLING HOLE DIAMETER IS 1.100 INCHES
MAXIMUM, PEPMITTED CHAMMEL DEPTH WITHOUT CORING SCREK IS 0.658 INCHES
VISCOSITY WAS CALCULATED IN THE FOLLONING SHEAR RATE RANGE

SHEAF. RATE	TEMP.	VISCOSITY
$2 / S E C$	DEG.F	LB.SEC/SQ.IN
686.10	374.1	0.0502803

VISCOSITY WAS CALCULATED IN THE FOLLOWING TEMPERATURE RANGE
SHEAR RATE TEMF. VISCOSITY
1/SEC DEG.F LB.SEC/SQ.IN
33.41 438.2 0.0882818
343.05 329.0 0.0903600
SELECT ONE OF THE FOLLOWING:

```
```

1 - Data Analysis

```
1 - Data Analysis
2 - Run New Simulation
2 - Run New Simulation
3 - EXIT
```

3 - EXIT

```

IMS50
EXPERIMENT NUMBER 1.00 SCIENTIFIC PROCESS RESEARCH, INC.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{N}=50.0\) & RPM & \multicolumn{2}{|l|}{OUTPUTE 10} & \multicolumn{2}{|l|}{00.00 LB/HR} & SOAR & TIME= & 0.005 & SECONDS & \\
\hline \multirow[t]{3}{*}{SECTION} & \multirow[t]{3}{*}{LENGTH (IN)} & \multicolumn{2}{|l|}{CH. DEPTH} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\text { WIDTH } \\
\text { SOLID MELT }
\end{gathered}
\]}} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{3}{*}{BAR. DIAM (IN)} & \multirow[t]{3}{*}{FLT. WIDTH (IN)} & \multirow[t]{3}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { HOLE } \\
& \text { AREA } \\
& \text { (SQIN) }
\end{aligned}
\]} \\
\hline & & SOLID & MELT & & & & & & & \\
\hline & & (IN) & (IN) & (IN) & (IN) & (IN) & & & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 2 & 27.550 & 0.150 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.354 & 1.354 & 3.450 & 2.500 & 0.300 & & \\
\hline 4 & 2.475 & 0.387 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 6 & 3.125 & 0.237 & 0.000 & 2.604 & 0.000 & 3.125 & 2.500 & 0.300 & & \\
\hline 7 & 16.600 & 0.213 & 0.000 & 2.859 & 0.000 & 3.450 & 2.500 & 0.300 & 1.000 & 0.914 \\
\hline 8 & 4.950 & 0.213 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline
\end{tabular}

SOLIDS CONVEYING ZONE ANALYSIS

OPTIMUM SURFACE TEMPERATURES FOR SOLIDS CONVEYING:
BARREL = 67.00 DEG.F AND SCREW = 207.00 DEG.F
\begin{tabular}{ccccccccc}
LOCATION: PHI & ROBP & FRIB & FRIS TEMPERATURE, DEG F & POWER & PRESSURE \\
IN & DEG & LB/CU.FT & & & BARREL & SCREW & HF & FSI \\
1.00 & 13.7 & 21.13 & 0.059 & 0.003 & 67.0 & 207.0 & 0.00 & 0.51 \\
2.00 & 13.6 & 21.22 & 0.065 & 0.008 & 67.0 & 207.0 & 0.00 & 0.79 \\
3.00 & 13.5 & 21.33 & 0.072 & 0.014 & 67.0 & 207.0 & 0.00 & 1.25 \\
4.00 & 13.3 & 21.53 & 0.084 & 0.025 & 67.0 & 207.0 & 0.00 & 2.00 \\
5.00 & 12.9 & 21.92 & 0.101 & 0.044 & 75.0 & 207.0 & 0.00 & 3.28 \\
6.00 & 12.7 & 22.12 & 0.072 & 0.054 & 67.0 & 207.0 & 0.01 & 4.03 \\
7.00 & 12.5 & 22.39 & 0.083 & 0.067 & 67.0 & 207.0 & 0.01 & 4.94 \\
8.00 & 12.2 & 22.66 & 0.093 & 0.078 & 67.0 & 207.0 & 0.01 & 5.09 \\
9.00 & 12.0 & 22.96 & 0.105 & 0.091 & 67.0 & 207.0 & 0.01 & 6.98 \\
10.00 & 11.7 & 23.31 & 0.117 & 0.104 & 67.0 & 207.0 & 0.02 & 8.23 \\
10.90 & 11.4 & 23.66 & 0.129 & 0.117 & 330.0 & 207.0 & 0.03 & 9.53
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\underline{1}\) & TOUT & X/6 & X/W GR & Gratio & PRESS & URE P & POWER & HOUT & TBAR & IVISC & D. HEAT & TILM \\
\hline IN & DEG F & & SOLID & & PS & & HP & IN & DEG F & LB.SEC & BTU/IN & TEMP \\
\hline & & & & & REAL & FULL & & & & /50.IN & . MIN & DEG \\
\hline 13.10 & 342.5 & & & & 471. & 471. & & 0.437 & 349.0 & 0.0811 & & \\
\hline 15.10 & 364.4 & & & & 837. & 837. & & 0.437 & 380.8 & 0.0839 & & \\
\hline 17.10 & 371.3 & & & & 1071. & 1071. & & 0.437 & 390.6 & 0.0903 & & \\
\hline 18.10 & 359.9 & . 879 & . 879 & . 732 & 1112. & 1111. & . 0.2 & 0.437 & 390.6 & 0.1863 & -32.5 & 391. \\
\hline 19.80 & 361.7 & . 830 & - . 830 & . 692 & 1179. & 1179. & . 0.4 & 0.437 & 390.6 & 0.1851 & -2.2 & 391. \\
\hline 24.80 & 373.3 & . 763 & . 763 & . 655 & 1379. & 1379. & . 1.1 & 0.385 & 394.7 & 0.1522 & 2.8 & 394. \\
\hline 26.20 & 378.0 & . 746 & . 746 & . 645 & 1431. & 1431. & . 1.2 & 0.372 & 395.5 & 0.1232 & 3.5 & 395. \\
\hline 31.10 & 391.2 & . 674 & 4.674 & . 601 & 1646. & 1646. & 1.9 & 0.320 & 398.6 & 0.1098 & 2.1 & 398. \\
\hline 36.10 & 398.9 & . 596 & 6.596 & . 546 & 2899. & 1899. & . 2.5 & 0.267 & 401.5 & 0.1027 & 1.0 & 401. \\
\hline 41.10 & 403.6 & . 508 & . 508 & . 478 & 2200. & 2200. & - 3.1 & 0.215 & 404.4 & 0.0985 & -0.5 & 404. \\
\hline 46.10 & 406.3 & . 402 & . 402 & . 390 & 2527. & 2527. & . 3.7 & 0.263 & 407.2 & 0.0964 & -2.6 & 407. \\
\hline 47.35 & 406.7 & . 373 & . 373 & . 363 & 2599. & 2599. & . 3.8 & 0.150 & 408.1 & 0.0960 & -4.0 & 408. \\
\hline & & & & S & CONDAR & CHAN & NNEL BE & EINS & & & & \\
\hline 52.35 & 404.0 & . 185 & . 374 & . 185 & 2953. & 2953. & . 4.3 & 0.150 & 410.6 & 0.1020 & -8.2 & 410. \\
\hline 57.35 & 408.0 & . 077 & . 188 & . 077 & 3282. & 3282. & 4.6 & 0.150 & 413.5 & 0.1001 & -2.7 & 413. \\
\hline 62.35 & 413.1 & . 003 & . 010 & . 003 & 3520. & 3520. & 5.6 & 0.150 & 416.3 & 0.0959 & 3.4 & 416. \\
\hline 63.95 & 415.3 & . 000 & . 000 & . 000 & 3576. & 3576. & 5.6 & 0.150 & 417.4 & 0.0944 & 1.8 & 417. \\
\hline
\end{tabular}
```

65.19	417.6	. 000	. 000	. 000	3644	3644	5.7	0.269	418.2	0.0876	2.2	417.
66.42	419.1	. 000	. 000	. 000	3687.	3687.	5.8	0.387	418.9	0.0932	1.7	417.
71.37	422.9	. 000	. 000	. 000	3820.	3820.	6.0	0.412	421.6	0.0925	1.6	417.
76.32	426.1	. 000	. 000	. 000	3939.	3939.	6.1	0.437	424.4	0.0915	1.5	417.
77.89	427.2	. 000	. 000	. 000	3981.	3981.	6.2	0.338	425.4	0.0862	2.7	417.
79.45	428.7	. 000	. 000	. 000	4040.	4040.	6.3	0.238	426.3	0.0815	2.1	417.
FLUTED SECTION WITH 1. PAIRS OF FLUTES												
96.05	428.7	000	. 000	. 000	4039	4039.	6.3	0.213	431.1	0.0825	2.1	417
01						28	6.6	2	38	. 0803	2.	417

MINIMUM TEMPERATURE= 437.908 DEG F
TEMP FLUCTUATION= 0.000 DEG F
FLOW INDEX (N)= 0.763
GRATIO INJ.= 0.000
RESIDENCE TIME:
MELT POOL= 0.050008345 HRS
TORQUE = 8303.5 INCH.POUNDS
POWER BREAK:-DOWN:
SOLIDS CONV. = 0.027 HP
MELTING = 3.545 HP
MIXING = 2.463 HP
FLIGHT CLEAR = 1.313 HP
COHPRESSION = 0.195 HP
MIXING DEVICE= 0.060 HP
PRESSURE FLUCTUATION= 170.41 PSI/CYCLE

```

```

MAN:IMUM SCREK SPEED,RPM:

```

```

STRENGTH ANALYSIS OF YOUR SCREW (4140STEE):
MA:IMUS PERYITTED COOLING HOLE DIAMETEF IS 1.100 INCHES
MAXIMUM PERMITTED CHANNEL DEPTH KITHOUT CORING SCREW IS 0.641 INCHES
viscosity was CALCULATED IN THE FOLLOWING SHEAR RATE RANGE
SHEAP RATE TEMP. VISCOSITY
1/SEC DEG.F LB.SEC/SQ.IN
770.55 342.5 0.0588104
8.18 390.6 0.1541261
VISCOSITY WAS CALCULATED IN THE FOLLOWING TEMPERATURE RANGE
SHEAR RATE TEMP. VISCOSITY
1/SEC DEG.F LB.SEC/SQ.IN
14.32 441.3 0.1012381
230.69 329.0 0.1049526
AT 50.00 RPM \& 100.00 LB/HR PRODUCTION RATE
HEAD PRESSURE IS 42B8. PSI.
FOR MORE DETAIL
SELECT ONE OF THE FOLLOWING:
1 - Data Analysig
2 - Run New Simulation
3 - EXIT

```

1MS60
EXPERIMENT NUMBER 1.00 SCIENTIFIC PROCESS \& RESEARCH, INC.
\(N=60.0\) RPM OUTPUT= \(100.00 \mathrm{LB} / \mathrm{HR}\) SOAK TIME 0.00 SECONDS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{SECTION} & \multirow[t]{3}{*}{\begin{tabular}{l}
LENGTH \\
(IN)
\end{tabular}} & \multicolumn{2}{|l|}{CH. DEPTH} & \multicolumn{2}{|r|}{WIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{3}{*}{BAR. DIAM (IN)} & \multirow[t]{3}{*}{FLT. WIDTH (IN)} & \multirow[t]{3}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\begin{tabular}{l}
HOLE \\
AREA \\
(SOIN)
\end{tabular}} \\
\hline & & SOLID & MELT & SOLID & HELT & & & & & \\
\hline & & (IN) & (IN) & (IN) & (IN) & (IN) & & & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 2 & 27.550 & 0.250 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.354 & 1.354 & 3.450 & 2.500 & 0.300 & & \\
\hline 4 & 2.475 & 0.387 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 6 & 3.125 & 0.237 & 0.000 & 2.604 & 0.000 & 3.125 & 2.500 & 0.300 & & \\
\hline 7 & 26.600 & 0.213 & 0.000 & 2.859 & 0.000 & 3.450 & 2.500 & 0.300 & 1.000 & 0.914 \\
\hline 8 & 4.950 & 0.213 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline
\end{tabular}

ATTENTION - SOLIDS HEIGHT IN HOPPER IS LOK :
SOLIDS HEIGHT \(=36.00\) IN. BASE PRESSURE \(=0.33\) PSI INCREASE HEIGHT TO = 186.01 IN. HAXIMUM PRESSURE \(=0.33\) PSI 0.75 PSI

SOLIDS CONVEYING ZONE ANALYSIS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline OFTIMUH SUR BARREL = & RFAC & CE TEMPER
63.50 DEG & TURES & \[
\begin{aligned}
& \text { FOR } \\
& \text { AND }
\end{aligned}
\] & SOLIDS CON SCREF & EYING:
\[
207 .
\] & O DEG & \\
\hline LOCATION & PHI & ROBP & FRIB & \multirow[t]{2}{*}{FRIS} & \multicolumn{2}{|l|}{TEMPERATURE, DEG F} & POWER & PRESSURE \\
\hline IN & DEG & LB/CU.FT & & & BARREL & SCREF & HP & PSI \\
\hline 1.00 & 10.2 & 21.15 & 0.068 & 0.004 & 63.5 & 207.0 & 0.00 & 0.55 \\
\hline 2.00 & 10.1 & 21.26 & 0.075 & 0.010 & 63.5 & 207.0 & 0.00 & 0.93 \\
\hline 3.00 & 10.0 & 21.45 & 0.087 & 0.020 & 63.5 & 207.0 & 0.00 & 1.61 \\
\hline 4.00 & 5.7 & 21.80 & 0.109 & 0.038 & 63.5 & 207.0 & 0.00 & 2.88 \\
\hline 5.00 & 9.3 & 22.50 & 0.142 & 0.071 & 73.0 & 207.0 & 0.01 & 5.44 \\
\hline 6.00 & 9.0 & 23.06 & 0.221 & 0.095 & 63.5 & 207.0 & 0.01 & 7.38 \\
\hline 7.00 & B. 6 & 23.76 & 0.146 & 0.120 & 63.5 & 207.0 & 0.02 & 9.95 \\
\hline 8.00 & 8.1 & 24.71 & 0.173 & 0.147 & 63.5 & 207.0 & 0.04 & 13.48 \\
\hline 9.00 & 7.5 & 26.00 & 0.197 & 0.170 & 63.5 & 207.0 & 0.06 & 18.36 \\
\hline 9.30 & 7.3 & 26.53 & 0.229 & 0.175 & 330.0 & 207.0 & 0.07 & 20.59 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 L & TOUT & X/h & X/b G & GRATIO & PRESS & URE P & POWER & hout & tand & TVISE & D. HEAT & FILM \\
\hline IN: & DEG F & & SOLID & & PS & & HP & IN & DEG F & LB. SEC & BTU/IN & TEMP \\
\hline & & & & & REAL & FULL & & & & /SO.IN & .MIN & DEG \\
\hline 11.68 & 342.5 & & & & 546. & 546. & & 0.437 & 349.0 & 0.0826 & & \\
\hline 13.60 & 342.5 & & & & 920. & 920. & & 0.437 & 349.0 & 0.0960 & & \\
\hline 16.10 & 356.2 & . 871 & 1.871 & 1.723 & 1183. & 1183 & 0.3 & 0.437 & 380.8 & 0.1806 & -29.7 & 381. \\
\hline 19.80 & 362.8 & . 757 & 7.757 & 7.627 & 1351. & 1351. & 1.0 & 0.437 & 391. 8 & 0.1583 & -0.6 & 9 \\
\hline 24.10 & 377.4 & 684 & . 684 & 4.581 & 1546. & 1546. & 1.7 & 0.393 & 394.4 & 0.1138 & 4.4 & 94 \\
\hline 29.10 & 391.9 & . 595 & 5.595 & 5.522 & 1789. & 1789. & 2.6 & 0.340 & 397.5 & 0.2004 & 2.6 & 397 \\
\hline 34.10 & 400.1 & . 501 & 1.501 & 1.453 & 2075. & 2075. & 3.4 & 0.288 & 400.4 & 0.0934 & 1.3 & 400 \\
\hline 39.10 & 405.3 & . 400 & - 400 & 0.372 & 2422. & 2422. & 4.2 & 0.236 & 403.3 & 0.0893 & -0.1 & 403. \\
\hline 44.10 & 409.2 & . 290 & - 290 & - . 277 & 2845. & 2845. & 4.9 & 0.284 & 406.2 & 0.0865 & -1.6 & 406. \\
\hline 47.35 & 411.4 & . 215 & 5.215 & 5.209 & 3140. & 3140. & 5.3 & 0.150 & 408.2 & 0.0851 & -3.1 & 408. \\
\hline \multicolumn{13}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{\multirow[t]{2}{*}{tBAR WAS CHANGED AT AXIA IN ORDEP TO CONVERGE.}} \\
\hline & & & & & & & & & & & & \\
\hline 57.35 & 417.7 & . 000 & . 000 & . 000 & 4073. & 4073. & 7.3 & 0.150 & 413.7 & 0.0857 & 3.1 & 434. \\
\hline 62.35 & 422.9 & . 000 & . 000 & . 000 & 4358. & 4358. & 7.6 & 0.150 & 416.5 & 0.0823 & 2.5 & 434. \\
\hline 63.95 & 424.0 & . 000 & . 000 & . 000 & 4423 & 4423. & 7.7 & 0.150 & 417.6 & 0.0817 & 2.3 & 434. \\
\hline
\end{tabular}
```

| 65.19 | 425.8 | .000 | .000 | .000 | 4507. | 4507. | 7.8 | 0.269 | 418.4 | 0.0758 | 2.9 | 434. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 66.42 | 426.4 | .000 | .000 | .000 | 4559. | 4559. | 7.8 | 0.387 | 419.1 | 0.0815 | 2.3 | 434. |
| 71.37 | 428.1 | .000 | .000 | .000 | 4717. | 4717. | 8.1 | 0.412 | 421.7 | 0.0821 | 2.2 | 434. |
| 76.32 | 429.9 | .000 | .000 | .000 | 4860. | 4860. | 8.4 | 0.437 | 424.4 | 0.0820 | 2.1 | 134. |
| 77.89 | 430.8 | .000 | .000 | .000 | 4910. | 4910. | 8.4 | 0.338 | 425.5 | 0.0771 | 2.3 | 434. |
| 79.45 | 432.3 | .000 | .000 | .000 | 4983. | 4983. | 8.5 | 0.238 | 426.4 | 0.0725 | 2.9 | 434. |

                FLUTED SECTION WITH 1. PAIRS OF FLUTES
    96.05 432.3 .000.000.000 4982. 4982. 8.6 0.213 431.2 0.0725 2.9 434.
101.00442.1 .000.000.000 5297. 5297. 9.0 0.213 438.4 0.0717 3.0 434.

HINIMUT TEMPERATURE	442.133 DEG
TEMF FLUCTUATION=	0.000 DEG
FLOW INDEX ( N ) =	0.742
GRATIO INJ.	0.000
RESIDENCE TIME:	
MELT POOL= 0.0	399963 HRS

TORQUE = 9414.4 INCH.POUNDS
POWER BREAK-DOWN:
SOLIDS CONV. = 0.070 HP
MELTING = 4.513 HP
MIXING = 2.214 HP
FLIGHT CLEAP = 1.822 HP
COMPRESSION = 0.283 HP
MIXING DEVICEE 0.081 HP
PRESSURE FLUCTUATION= 210.67 PSI/CYCLE
TOTAL CONDUCTED HEAT THROUGH BARREL=
MAXIMUM SCREW SPEED,RPM:
POWER CONSUMPTION, OF AVAILABLE: }\begin{array}{lllllll}{(0.0}\&{12.4}\&{15.9}\&{19.4}\&{22.9}\&{26.4}\&{29.9}
STRENGTH ANALYSIS OF YOUR SCREW (4140STEE):
MAXIMUM PERMITTED COOLING HOLE DIAHETER IS 1.100 INCHES
MAXIMUT PERMITTED CHANNEL DEPTH WITHOUT CORING SCREW IS 0.616 INCHES

| VISCOSITY WAS CALCULATED IN THE FOLLOWING SHEAR RATE RANGE |  |  |
| :---: | :---: | :---: | :---: |
| SHEAK RATE | TEMF. | VISCOSITY |
| $1 / S E C$ | DEG.F | LB.SEC/SQ.IN |
| 1160.66 | 331.2 | 0.0529186 |
| 12.62 | 380.8 | 0.1544832 |

VISCOSITY WAS CALCULATED IN THE FOLLOWING TEMPERATURE RANGE
SHEAR RATE TEMF. VISCOSITY
1/SEC DEG.F LB.SEC/SQ.IN
17.19 447.5 0.0948087
1260.66 319.0 0.0576891
AT 60.00 RPM \& 100.00 LB/HR PRODUCTION RATE
HEAD PRESSURE IS 5297. PSI.
FOR MORE DETAIL
SELECT ONE OF THE FOLLOWING:

- Data Analygis
- Run New Simulation
3- EXIT

```

1 M570

ATTENTION - SOLIDS HEIGHT IN HOPPER IS LOW !
SOLIDS HEIGHT \(\approx ~\)
INCREASE HEIGHT TO \(=0.00\) IN. BASE PRESSURE \(=186.01\) IN. HAXIMUN PRESSURE \(=0.33\) PSI 0.75 PSI

SOLIDS CONVEYING ZONE ANALYSIS
OPTIMUM SURFACE TEMPERATURES FOR SOLIDS CONVEIING:
BARREL \(=\quad 60.50\) DEG.F \(\quad\) AND \(\quad\) SCREW \(=107.00\) DEG.F
\begin{tabular}{ccccccccc}
LOCATION & PHI & ROBP & FRIB & FRIS TEMPERATURE,DEG F & POWER & PRESSURE \\
IN & DEG LB/CU.FT & & \multicolumn{3}{c}{ BARREL } & SCREW & HP & PSI \\
1.00 & 8.1 & 21.26 & 0.076 & 0.004 & 60.5 & 207.0 & 0.00 & 0.59 \\
2.00 & 8.0 & 21.28 & 0.084 & 0.011 & 60.5 & 207.0 & 0.00 & 1.08 \\
3.00 & 7.9 & 21.56 & 0.102 & 0.026 & 60.5 & 207.0 & 0.00 & 2.02 \\
4.00 & 7.6 & 22.10 & 0.236 & 0.053 & 60.5 & 207.0 & 0.01 & 4.00 \\
5.00 & 7.2 & 23.39 & 0.193 & 0.107 & 71.5 & 207.0 & 0.01 & 8.76 \\
6.00 & 6.6 & 24.66 & 0.183 & 0.146 & 60.5 & 207.0 & 0.03 & 13.36 \\
7.00 & 6.0 & 26.48 & 0.213 & 0.175 & 60.5 & 207.0 & 0.06 & 20.32 \\
7.70 & 5.4 & 28.38 & 0.210 & 0.172 & 60.5 & 207.0 & 0.10 & 27.49 \\
7.85 & 5.3 & 28.85 & 0.210 & 0.172 & 329.5 & 207.0 & 0.10 & 29.35
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & TOUT & X/W & \(X / \%\) GR & GRATIO & PRES & URE P & POWER & HOUT & TBAR & TVISC & D.HEAT & FILM \\
\hline If: & DEG \(F\) & \multicolumn{3}{|c|}{SOLID} & \multicolumn{2}{|c|}{PSI} & HP & IN & DEG F & LB. SEC & BTU/In & TEHP \\
\hline & & & & & REAL & FULL & & & & /SQ.IN & .MIN & DEG F \\
\hline 10.18 & 342.5 & & & & 575. & 575. & & 0.437 & 349.0 & 0.0826 & & \\
\hline 12.18 & 342.5 & & & & 959. & 959. & & 0.437 & 349.0 & 0.0971 & & \\
\hline 14.10 & 342.1 & . 872 & . 872 & 2.727 & 1158 & 1158 & 0.4 & 0.437 & 349.0 & 0.1962 & -22.6 & 355. \\
\hline 15.10 & 358.6 & . 714 & . 714 & \& . 591 & 1412. & 1412 , & 1.6 & 0.437 & 391.2 & 0.1482 & 0.5 & 391. \\
\hline 19.80 & 361.6 & . 690 & . 690 & - 572 & 1447. & 1447. & 1.9 & 0.437 & 391.7 & 0.1409 & 0.1 & 391. \\
\hline 22.10 & 373.1 & . 644 & . 644 & 4.541 & 1564. & 1564 & 2.4 & 0.413 & 393.1 & 0.1094 & 5.7 & 393. \\
\hline 27.10 & 391.1 & . 542 & . 542 & 2.470 & 1831. & 2831. & 3.5 & 0.361 & 396.3 & 0.0936 & 3.4 & 396. \\
\hline 32.10 & 400.7 & . 437 & . 437 & 7.391 & 2139. & 2139. & 4.5 & 0.309 & 399.3 & 0.0861 & 1.9 & 399. \\
\hline 37.20 & 406.9 & . 330 & . 330 & 0.304 & 2513. & 2513. & 5.4 & 0.257 & 402.2 & 0.0816 & 0.7 & 402. \\
\hline 42.10 & 412.0 & . 223 & . 223 & -211 & 2981. & 2981. & 6.2 & 0.205 & 405.1 & 0.0784 & -0.1 & 405. \\
\hline 47.10 & 417.0 & . 223 & . 123 & . 119 & 3552. & 3552. & 7.0 & 0.153 & 408.0 & 0.0758 & -0.1 & 407. \\
\hline 47.35 & 417.3 & . 218 & . 118 & . 115 & 3582. & 3582. & . 7.0 & 0.150 & 408.3 & 0.0755 & -0.4 & 408. \\
\hline
\end{tabular}

TBAP. WAS CHANGED AT AXIAL LOCE 50.35 IN. TO TBAR= 434.0 F
IN ORDEF TO CONVERGE.
\(52.35420 .9 .000 .000 .0004229 .4229 . \quad 6.8 \quad 0.150410 .9 \quad 0.0769 \quad 4.7434\). \(57.35426 .6 .000 .000 .0004732 .4732 . \quad 9.30 .150413 .8 \quad 0.0746 \quad 3.9 \quad 434\). \(62.35429 .0 .000 .000 .0005058 .5058 . \quad 9.70 .150416 .70 .0730 \quad 3.2 \quad 434\). \(63.95429 .5 .000 .000 .0005133 .5133 .9 .90 .150417 .70 .0728 \quad 3.0 \quad 434\).

\section*{OUTPUT OF SIMULATION}

```

| 65.19 | 424.8 | .000 | .000 | .000 | 4010. | 4010. | 5.4 | 0.269 | 428.4 | 0.0791 | 2.1 | 434. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 66.42 | 425.3 | .000 | .000 | .000 | 4056. | 4056. | 5.4 | 0.387 | 418.1 | 0.0849 | 1.7 | 434. |
| 71.37 | 426.6 | .000 | .000 | .000 | 4195. | 4195. | 5.6 | 0.412 | 421.6 | 0.0857 | 1.6 | 434. |
| 76.32 | 428.5 | .000 | .000 | .000 | 4319. | 4319. | 5.8 | 0.437 | 424.4 | 0.0856 | 1.5 | 434. |
| 77.89 | 429.3 | .000 | .000 | .000 | 4363. | 4363. | 5.9 | 0.338 | 425.5 | 0.0806 | 1.7 | 434. |
| 79.45 | 430.8 | .000 | .000 | .000 | 4427. | 4427. | 5.9 | 0.238 | 426.4 | 0.0760 | 2.1 | 434. |

FLUTED SECTION WITH 1. PAIRS OF FLUTES
$96.05430 .8 .000 .000 .0004426 .4426 .6 .00 .213431 .20 .0760 \quad 2.1434$.

```

```

MINIMUM TEMPERATUREE	440.794 DEG F
TEMP FLUCTUATIONE	0.000 DEG F
FLOK INDEX $(N)=$	0.750
GRATIO INJ.	0.000
RESIDENCE TIME:	
MELT POOL=	

TORQUE $=$ 7877.5 INCH. POUNDS
POWER BREAK-DOWN:
SOLIDS CONV. = 0.043 HP
MELTING $=2.935 \mathrm{HP}$
MIXING $\quad=1.671 \mathrm{HP}$
FLIGHT CLEAR $=1.345 \mathrm{HP}$
COMPRESSION $=0.213 \mathrm{HP}$
MIXING DEVICE= 0.059 HP
PRESSURE FLUCTUATIONE KP 187.10 PSI/CYCLE

TOTAL CONDUCTED HEAT THROUGH BARRELE | $-31.8 ~ T O$ | $28.1 ~ B T U / M I N ~ O R ~$ |
| :--- | :--- | :--- | :--- |
| $-0.75 ~ T O$ | $0.66 ~ H P$ |

MAXIMUN: SCREF SPEED, RPM: $\quad \begin{array}{rlrrrrrrr}50.0 & 75.0 & 100.0 & 125.0 & 150.0 & 175.0 & 200.0\end{array}$

```

```

STRENGTH ANALYSIS OF YOUR SCREW (4140STEE):
MA:IMUM PERMITTED COOLING HOLE DIAMETER IS 1.100 INCHES
MAXIMUM PERMITTED CHANNEL DEPTH WITHOUT CORING SCREW IS 0.652 INCHES
YISCOSIT: WAS CALCULATED IN THE FOLLOKING SHEAP RATE RANGE

SHEAF RATE	TEMF.	VISCOSITY
$1 / S E C$	DEG.F	LB.SEC/SO.IN
969.99	337.7	0.0548940
11.73	389.8	0.1468164

VISCOSITY WAS CALCULATED IN THE FOLLOWING TEMPERATURE RANGE
SHEAR RATE TEMP. VISCOSITY
1/SEC DEG.F LB.SEC/SQ.IN $14.32 \quad 442.2 \quad 0.1006939$ $969.99 \quad 319.0 \quad 0.0626749$
AT 50.00 RPM \& B0.00 LB/HP PRODUCTION RATE
HEAD PRESSURE IS 4707. PSI.
FOP MORE DETAIL
SELECT ONE OF THE FOLLOWING:

```
```

1 - Date Analysis

```
1 - Date Analysis
2 - Run New Simulation
2 - Run New Simulation
3- EXIT
```

3- EXIT

```

1MF90 EXPERIMENT NUMBER 1.00 SCIENTIFIC PROCESS \& RESEARCH, INC.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(N=50.0\) & RPM & \multicolumn{2}{|l|}{OUTPUT= 90} & \multicolumn{2}{|l|}{90.00 LB/HR} & \multicolumn{2}{|l|}{SOAK TIME \(=\)} & \multicolumn{2}{|l|}{0.00 sEconds} & \\
\hline \multirow[t]{3}{*}{SECTION} & \multirow[t]{3}{*}{\begin{tabular}{l}
LENGTH \\
(IN)
\end{tabular}} & \multicolumn{2}{|l|}{CH. DEPTH} & \multicolumn{2}{|r|}{WIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{3}{*}{BAR. DIAM (IN)} & \multirow[t]{3}{*}{FLT. WIDTH (IN)} & \multirow[t]{3}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { HOLE } \\
& \text { AREA } \\
& \text { (SQIN) }
\end{aligned}
\]} \\
\hline & & SOLID & MELT & SOLID & MELT & & & & & \\
\hline & & (IN) & (IN) & (IN) & (IN) & (IN) & & & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 2 & 27.550 & 0.150 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.354 & 1.354 & 3.450 & 2.500 & 0.300 & & \\
\hline 4 & 2.475 & 0.387 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 6 & 3.125 & 0.237 & 0.000 & 2.604 & 0.000 & 3.125 & 2.500 & 0.300 & & \\
\hline 7 & 16.600 & 0.213 & 0.000 & 2.859 & 0.000 & 3.450 & 2.500 & 0.300 & 1.000 & 0.914 \\
\hline 8 & 4.950 & 0.213 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline
\end{tabular}

ATTENTION - SOLIDS HEIGHT IN HOPPER IS LOW !

SOLIDS CONVEYING ZONE ANALYSIS

```

    65.29422.3.000.000.000 3832. 3832. 5.5 0.269 418.3 0.0828 2.2 414.
    66.42 423.1.000.000.000 3876. 3876. 5.5 0.387 419.0 0.0886 1.7 414.
    71.37 425.4 .000.000 .000 4012. 4012. 5.7 0.412 421.6 0.0889 1.6 414.
    76.32 427.6 .000.000.000 4133. 4133. 5.9 0.437 424.4 0.0885 1.5 414.
    ```

```

    79.45 430.0.000.000.000 4237. 4237. 6.0 0.238 426.4 0.0788 2.1 414.
            FLUTED SECTION WITH 1. PAIRS OF FLUTES
    96.05 430.0.000.000.000 4236. 4235. 6.1 0.213 431.2 0.0788 2.1 414.
    101.00 439.5 .000 .000.000 4501. 4501. 6.3 0.213 438.3 0.0776 2.2 414.
MIMIMUN TEMPERATURE= 439.452 DEG F
TEMP FLUCTUATION= 0.000 DEG F
FLOW INDEX (N)= 0.757
GRATIO INJ.=
RESIDENCE TIME:
MELT POOL= 0.056948207 HRS
TORQUE = 79B4.1 INCH.POUNDS
MOWER RRENK-DOWN',
MELIING = = 3.137 HP
MELTING }
FLIGHT CLEAR = 1.334 HP
COMPRESSION =0.209 HP
MIXING DEVICE= 0.060 HP
PRESSURE FLUCTUATIONE HP 179.06 PSI/CYCLE

```

```

MAXIMUM SCREK SPEED,RPM:
POWER CONSUMFTION, ( OF AVLILABLE: }\begin{array}{lllllll}{1/3}\&{6.5}\&{12.7}\&{15.8}\&{19.0}\&{22.2}\&{25.3}
STRENGTH ANALYSIS OF YOUR SCREW (4140STEE):
MAXIIMUM PERMITTED CODLING HOLE DIAMETER IS 1.100 INCHES
MAXIMUT, FERMITTED CHANNEL DEFTH WITHOUT CORING SCREW IS 0.649 INCHES
VISCOSITY WAS CALCULATED IN THE FOLLOWING SHEAP RATE RANGE
SHEAF RATE TEMF. VISCOSITY
1/SEC DEG.F LB.SEC/SO.IN
787.11 342.5 0.0582690
0.0582690
VISCOSITY WAS CALCULATED IN THE FOLLOWING TEMPERATURE RANGE
SHEAR RATE TEMF. VISCOSITY
1/SEC DEG.F LB.SEC/SO.IN
14.32 441.9 0.1008983
233.20 329.0 0.1045385
AT 50.00 RPM \& 90.00 LB/HR PRODUCTION RATE
HEAD PRESSURE IS 4501. PSI.
FOR MORE DETAIL
SELECT ONE OF THE FOLLOWING:

```
```

1 - Data Analygig

```
1 - Data Analygig
2 - Run New Simulation
2 - Run New Simulation
3- EXIT
```

3- EXIT

```

1MF100
EXPERIMENT NUMBEP. 1.00 SCIENTIFIC PNOCESS E RESEARCH, INC.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(N=50.0\) & RPM & \multicolumn{2}{|l|}{OUTPUT \(=1\)} & \multicolumn{2}{|l|}{\(100.00 \mathrm{LB} / \mathrm{HR}\)} & SOAK & TIME \(=\) & \multicolumn{2}{|l|}{0.00 SECONDS} & \\
\hline SECIION & LENGTH & \multicolumn{2}{|l|}{CH. DEPTH} & \multicolumn{2}{|r|}{WIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{2}{*}{\begin{tabular}{l}
BAR. \\
DIAM
\end{tabular}} & \multirow[t]{2}{*}{FLT. WIDTH} & \multirow[t]{3}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { HOLE } \\
& \text { AREA } \\
& \text { (SQIN) }
\end{aligned}
\]} \\
\hline \(\cdots\) & (IN) & SOLID & HELT & SOLID & HELT & & & & & \\
\hline & & (IN) & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 2 & 27.550 & 0.250 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.354 & 2.354 & 3.450 & 2.500 & 0.300 & & \\
\hline 4 & 2.475 & 0.387 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 6 & 3.225 & 0.237 & 0.000 & 2.604 & 0.000 & 3.225 & 2.500 & 0.300 & & \\
\hline 7 & 16.600 & 0.213 & 0.000 & 2.859 & 0.000 & 3.450 & 2.500 & 0.300 & 1.000 & 0.914 \\
\hline 8 & 4.950 & 0.213 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline
\end{tabular}

ATTENTION - SOLIDS HEIGHT IN HOPPEP IS LOW !
```

SOLIDS HEIGHT = 36.00 IN. BASE PRESSURE = 0.33 PSI
INCREASE HEIGHI TO = 186.02 IN. MAXIMUH PRESSURE = 0.75 PSI

```

SOLIDS CONVEYING ZONE ANALYSIS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline OPTIMUM BARREL = & \multicolumn{3}{|r|}{67.00 DEG.F} & \begin{tabular}{l}
FOR \\
AND
\end{tabular} & \multicolumn{3}{|l|}{SOLIDS COMVEXING} & \\
\hline LOCATION & FHI & ROBF & FRIE & FRIS & TEMPERAT & , DEG F & POWER & Pressure \\
\hline IN & DEG & LB/CU.ET & & & BARREL & SCREW & HP & PSI \\
\hline 1.00 & 23.7 & 22.13 & 0.059 & 0.003 & 67.0 & 207.0 & 0.00 & 0.51 \\
\hline 2.00 & 13.6 & 21.22 & 0.065 & 0.008 & 67.0 & 207.0 & 0.00 & 0.79 \\
\hline 3.00 & 13.5 & 21.33 & 0.072 & 0.014 & 67.0 & 207.0 & 0.00 & 1.25 \\
\hline 4.00 & 13.3 & 21.53 & 0.084 & 0.025 & 67.0 & 207.0 & 0.00 & 2.00 \\
\hline 5.00 & 12.9 & 21.92 & 0.101 & 0.044 & 75.0 & 207.0 & 0.00 & 3.28 \\
\hline 6.00 & 12.7 & 22.12 & 0.072 & 0.054 & 67.0 & 207.0 & c. 01 & 4.03 \\
\hline 7.00 & 12.5 & 22.39 & 0.083 & 0.067 & 67.0 & 207.0 & 0.01 & 4.94 \\
\hline 8.00 & 12.2 & 22.66 & 0.093 & 0.078 & 67.0 & 207.0 & 0.01 & 5.89 \\
\hline 9.00 & 12.0 & 22.96 & 0.105 & 0.091 & 67.0 & 207.0 & 0.01 & 6.98 \\
\hline 10.00 & 11.7 & 23.31 & 0.117 & 0.104 & 67.0 & 207.0 & 0.02 & 8.23 \\
\hline 10.90 & 11.4 & 23.66 & 0.129 & 0.117 & 330.0 & 207.0 & 0.03 & 9.53 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline L & TOUT & X/W & X/W G & GRATIC & PRESS & URE P & POWER & HOUT & TBAR & TVISC & D. HEAT & FILM \\
\hline If & DEG \(F\) & & SOLID & & PS & & HP & IN & DEG \(F\) & LB.SEC & BTU/IN & TEMP \\
\hline & & & & & Peal & FULL & & & & /SQ.IN & . MIN & DEG F \\
\hline 13.10 & 342.5 & & & & 471. & 471. & & 0.437 & 349.0 & 0.0811 & & \\
\hline 15.10 & 364.4 & & & & 837. & 837. & & 0.437 & 380.8 & 0.0839 & & \\
\hline 17.10 & 371.3 & & & & 1071. & 1071. & & 0.437 & 390.6 & 0.0903 & & \\
\hline 18.10 & 355.9 & . 879 & . 879 & 9.732 & 1111. & 1111. & 0.2 & 0.437 & 390.6 & 0.1863 & -32.5 & 391 \\
\hline 19.80 & 361.7 & . 830 & . 830 & 0.691 & 1179. & 1179. & . 0.4 & 0.437 & 390.6 & 0.1851 & -2.2 & 392 \\
\hline 24.80 & 373.3 & . 763 & . 763 & 3.655 & 1379. & 1379. & . 1.1 & 0.385 & 394.7 & 0.1522 & 2.8 & 394 \\
\hline 26.10 & 378.0 & . 746 & 6.746 & 6.645 & 1431. & 2431. & . 1.2 & 0.372 & 395.5 & 0.1232 & 3.5 & 395 \\
\hline 31.10 & 391.2 & . 674 & 4.674 & 4.601 & 1646. & 1646. & 1.9 & 0.320 & 398.6 & 0.1098 & 2.1 & 398 \\
\hline 36.10 & 398.9 & . 596 & 6.596 & 6.546 & 1899. & 1899. & 2.5 & 0.267 & 401.5 & 0.1027 & 1.0 & 401 \\
\hline 41.10 & 403.6 & . 508 & . 508 & 8.478 & 2200. & 2200. & 3.1 & 0.215 & 404.4 & 0.0985 & -0.5 & 404 \\
\hline 46.10 & 406.3 & . 402 & . 402 & 2. 390 & 2527. & 2527. & 3.7 & 0.163 & 407.2 & 0.0964 & -2.6 & 407. \\
\hline 47.35 & 406.7 & . 373 & . 373 & 3.363 & 2599. & 2599. & 3.8 & 0.150 & 408.1 & 0.0960 & -4.0 & 408. \\
\hline & & & & ---SE & CONDAR & CHAN & NNEL BE & EGINS & & & & \\
\hline 52.35 & 404.0 & 185 & 5. 374 & 4.185 & 2953 & 2953. & 4.3 & 0.150 & 410.6 & 0.1020 & -6. 2 & 410. \\
\hline 57.35 & 408.0 & . 077 & . 288 & 8.077 & 3282 & 3282. & 4.6 & 0.150 & 413.5 & 0.1001 & -2.7 & 413. \\
\hline 62.35 & 423.1 & . 003 & . 010 & - 003 & 3520. & 3520. & 5.6 & 0.150 & 416.3 & 0.0959 & 3.4 & 416. \\
\hline 63.95 & 425.3 & . 000 & . 000 & . 000 & 3576. & 3576. & 5.6 & 0. 150 & 417. & 0.0944 & 1.8 & 417. \\
\hline
\end{tabular}

\begin{tabular}{ccc}
VISCOSITY WAS CALCULATED IN THE FOLIOWING TEMPERATURE RANGE \\
SHEAR RATE & TEMP. & VISCOSITY \\
\(1 / S E C\) & DEG.F & LB.SEC/SQ.IN \\
14.32 & 441.3 & 0.1012381 \\
230.69 & 329.0 & 0.1049526
\end{tabular}

AT 50.00 RPM \& \(100.00 \mathrm{LB} / H R\) PRODUCTION RATE
HEAD PRESSURE IS 4288. PSI.
FOR MORE DETAIL
SELECT ONE OF THE FOLLOWING:
```

- Data Analysis
- Run New Simulation
3- EXIT

```

195110
EXPERIMENT NUMBER 1.00 SCIENTIFIC PROCESS RESEARCH, INC.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(N=50.0\) & RPM & \multicolumn{2}{|l|}{OUTPUT \(=1\)} & \multicolumn{2}{|l|}{\(110.00 \mathrm{LB} / \mathrm{HR}\)} & \multicolumn{2}{|l|}{SOAX TIME=} & \multicolumn{2}{|l|}{0.00 SECONDS} & \\
\hline SECTION & LENGTH & \multicolumn{2}{|r|}{CH. DEPTH} & \multicolumn{2}{|r|}{WIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { EAR. } \\
& \text { DIAM }
\end{aligned}
\]} & \multirow[t]{2}{*}{FLT. WIDTH} & \multirow[t]{3}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { HOLE } \\
\text { AREA } \\
\text { (SQIN) }
\end{gathered}
\]} \\
\hline + & (IN) & SOLID & MELT & SOLID & HELT & & & & & \\
\hline & & (IN) & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 2 & 27.550 & 0.150 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.354 & 1.354 & 3.450 & 2.500 & 0.300 & & \\
\hline 4 & 2.475 & 0.387 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 6 & 3.125 & 0.237 & 0.000 & 2.604 & 0.000 & 3.125 & 2.500 & 0.300 & & \\
\hline 7 & 16.600 & 0.213 & 0.000 & 2.859 & 0.000 & 3.450 & 2.500 & 0.300 & 1.000 & 0.914 \\
\hline 8 & 4.950 & 0.213 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline
\end{tabular}
hOPPER ANALYSIS
ATTENTION - SOLIDS HEIGHT IN HOPPER IS LOW !
SOLIDS HEIGHT \(=36.00\) IK. BASE PRESSURE \(=0.33\) PSI INCREASE HEIGHT TO \(=186.01\) IN. MAXIMURE PRESSURE \(=0.33\) PSI 0.75 PSI

SOLIDS CONVEYING ZONE ANALYSIS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1. & TOUT & 2.16 & x/L Gr & gratic & PRESS & URE PO & POWER & HOUT & TBAR & TVISC & D.heat & FILM \\
\hline IN & DEG F & & SOLID & & PS & & HP & IN D & DEG F & LB.SEC & BTU/IN & TEMP \\
\hline & & & & & REAL & FULL & & & & /SO.IN & . MIN & DEG \\
\hline 23.10 & 342.5 & & & & 418. & 418. & & 0.437 & 349.0 & 0.0775 & & \\
\hline 15.10 & 364.4 & & & & 806. & 806. & & 0.437 & 380.8 & 0.0816 & & \\
\hline 17.10 & 371.3 & & & & 1051. & 1051 & & 0.437 & 390.6 & 0.0885 & & \\
\hline 18.60 & 359.4 & . 892 & 2.892 & 2.752 & 1144. & 1144. & . 0.2 & 0.437 & 390.9 & 0.1932 & -34.6 & 391. \\
\hline 19.80 & 360.5 & . 860 & O. 860 & . 724 & 1191. & 1191. & 0.3 & 0.437 & 390.9 & 0.1954 & -3.0 & 391. \\
\hline 24.80 & 371.1 & . 809 & . 809 & . 702 & 1389. & 1389. & 1.0 & 0.385 & 394.7 & 0.1638 & 3.7 & 394. \\
\hline 26.60 & 37E.0 & . 790 & 0.790 & . 693 & 1460. & 1460. & - 1.2 & 0.367 & 395.8 & 0.1258 & 4.4 & 395. \\
\hline 31.60 & 392.0 & . 737 & . 737 & . 665 & 1671. & 1571. & . 1.9 & 0.314 & 398.9 & 0.1116 & 3.3 & 398. \\
\hline 36.60 & 400.6 & . 678 & . 678 & . 630 & 1916. & 1916. & 2.6 & 0.262 & 401.8 & 0.1036 & 2.3 & 402. \\
\hline 42.60 & 405.6 & . 611 & .611 & . 584 & 2199. & 2199. & 3.2 & 0.210 & 404.7 & 0.0993 & 1.1 & 404. \\
\hline 46.60 & 408.2 & . 530 & . 530 & . 520 & 2477. & 2477. & 3.8 & 0.258 & 407.5 & 0.0971 & -1.0 & 407. \\
\hline 47.35 & 408.4 & . 516 & . 516 & . 508 & 2511. & 2511. & 3.9 & 0.250 & 408.0 & 0.0970 & -2.5 & AOB. \\
\hline & & & & S & CONDAR & CHANL & NWEL B & EGINS & & & & \\
\hline 52.35 & 400.2 & . 296 & .59B & . 296 & 2813. & 2813. & 4.4 & 0.150 & 410.6 & 0.1075 & -12.5 & 420. \\
\hline 57.35 & 402.8 & . 145 & . 353 & . 145 & 3114. & 3114. & 4.8 & 0.150 & 413.4 & 0.1063 & -5.9 & 413. \\
\hline 62.35 & 408.6 & . 067 & . 204 & . 067 & 3338. & 3338. & 5.1 & 0.250 & 416.3 & 0.1014 & -2.3 & 416. \\
\hline 63.95 & 409.6 & . 028 & . 093 & . 028 & 3392. & 3392. & 5.6 & 0.150 & 417.3 & 0.1002 & -6.3 & 417. \\
\hline
\end{tabular}
```

65.19 411.9.020.020.020 3456. 3456. 5.8 0.269 428.1 0.0930 4.4 418.
FIIM THICKNESS IS 0 - TBAR= 0.42B4E+03
FILM THICKNESS IS 0 - TBAR 0.4184E+03
66.42 413.4 .015 .015 .013 3499. 3499. 6.1 0.387 418.8 0.0988 3.6 429.
71.37 428.5 .001.001.001 3632. 3632. 6.6 0.412 421.5 0.0973 1.1 421.
FILM THICKNESS IS 0 - TBAR= 0.4220E+03
FILM THICKNESS IS 0 - TBAR= 0.4220E+03
76.32 423.3 .000.000.000 3749. 3749. 6.8 0.437 424.3 0.0951 1.5 422.
77.89 424.7 .000.000.000 3790. 3790. 6.8 0.338 425.4 0.0895 1.7 422
79.45 426.5 .000 .000.000 3848. 3848. 6.9 0.238 426.3 0.0845 2.1
FLUTED SECTION WITH 1. PAIRS OF FLUTES
96.05 426.5 .000.000.000 3847. 3847. 7.0 0.213 431.1 0.0845 2.1 422.
MINIMUM TEMPERATURE= 435.849 DEG F
TEMP FLUCTUATION= 0.000 DEG F
FLOW INDEX (N)= 0.76B
GRATIO INJ.= 0.000
RESIDENCE TIME:
MELT POOL= 0.045023140 HRS
TORQUE = 9111.0 INCH. POUNDS
POWER BREAS:-DOWH:
SOLIDS CONT. = 0.017 HP
MELTING = 4.325 HP
MIXING = 1.361 HP
FLIGHT CLEAR = 1.301 HP
COMPRESSION = 0.178 HP
MIXING DEVICE= 0.060 HP
PRESSURE FLUCTUATIOND
TOTAL CONDUCTED HEAT THROUGH BARRELE -96.7 TO -28.2 BTU/MIN OR
-2.28 TO -0.66 HP
MASIMUM SCREK SPEED,RPH: NUAILABLE: 50.0 75.0 100.0 125.0 150.0 275.0 200.0
POWER CONSUMFTION, % OF AVAILABLE: 7.2 10.8 14.5 18.1 21.7 25.3 28.9
STRENGTH ANALYSIS OF YOUR SCREW (4140STEE):
MAXIMUM FERMITTED COOLING HOLE DIAMETER IS 1.100 INCHES
MAXIMUM PERMITTED CHANNEL DEPTH WITHOUT CORING SCREW IS 0.623 INCHES

| VISCOSITY WAS CALCULATER IN THE FOLLOWING SHEAF RATE RANGE |  |  |
| :---: | :---: | :---: |
| SHEAP RATE | TEMF. | VISCOSITY |
| $1 / S E C$ | DEG.F | LB.SEC/SO.IN |
| $8 B 4.32$ | 375.5 | 0.0447617 |
| 6.39 | 390.9 | 0.1588934 |

```

```

1 - Data Aralysis

- Run New Simulation
3 - EXIT

```

IMF120
EXPERIMENT NUMBER 1.00 SCIENTIFIC PROCESS RESEARCH, INC.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(N=50.0\) & RPM & \multicolumn{2}{|l|}{OUTPUT 12} & \multicolumn{2}{|l|}{2.00 LB/HR} & SOAP: & TIME= & \multicolumn{2}{|l|}{0.00 SECONDS} & \\
\hline SECTION & LENGTH & \multicolumn{2}{|l|}{CH. DEFTH} & \multicolumn{2}{|r|}{KIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{3}{*}{\begin{tabular}{l}
BAR. \\
DIAM \\
(IN)
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLT. \\
WIDTH \\
(IN)
\end{tabular}} & \multirow[t]{3}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { HOLE } \\
& \text { AREA } \\
& \text { (SQIN) }
\end{aligned}
\]} \\
\hline \% & (IN) & SOLID & MELT & SOLID & MELT & & & & & \\
\hline & & (IN) & (IN) & (IN) & (IN) & (IN) & & & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 2 & 27.550 & 0.250 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.354 & 1.354 & 3.450 & 2.500 & 0.300 & & \\
\hline 4 & 2.475 & 0.387 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 6 & 3.125 & 0.237 & 0.000 & 2.604 & 0.000 & 3.225 & 2.500 & 0.300 & & \\
\hline 7 & 16.600 & 0.213 & 0.000 & 2.859 & 0.000 & 3.450 & 2.500 & 0.300 & 1.000 & 0.914 \\
\hline 8 & 4.950 & 0.213 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline
\end{tabular}

ATTENTION - SOLIDS HEIGHT IN HOPPER IS LOW !

SOLIDS CONVEYING ZONE ANALYSIS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
OPIIMUM SURFAC \\
BARPEL \(=8\)
\end{tabular}}} & \multicolumn{2}{|l|}{E TEMPERATURES} & \multicolumn{3}{|l|}{FOR SOLIDS CONVEYING:} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{6.50 DEG.F}} & \\
\hline & & 89.50 DEG & & AND & SCREW = & & & & \\
\hline LOCAIIOH & PHI & ROBF & FRIB & FRIS & TEMPERATURE & , DEG & \(F\) & POWER & PRESSURE \\
\hline If & DEG & LB/CL.FT & & & BARPEL & SCREW & & HP & PSI \\
\hline 1.00 & 19.1 & 21.13 & 0.052 & 0.002 & 293.7 & 226.5 & & 0.00 & 0.48 \\
\hline 2.00 & 25.0 & - 21.19 & 0.056 & 0.006 & 94.7 & 226.5 & & 0.00 & 0.69 \\
\hline 3.00 & 18.9 & 21.28 & 0.061 & 0.011 & 96.1 & 226.5 & & 0.00 & 0.99 \\
\hline 4.00 & 16.7 & 21.39 & \(0.06 E\) & 0.017 & 95.8 & 226.5 & & 0.00 & 1.44 \\
\hline 5.00 & 1E.4 & 21.57 & 0.077 & 0.026 & 87.9 & 226.5 & & 0.00 & 2.12 \\
\hline 6.00 & 18.2 & 21.68 & 0.046 & 0.032 & 70.0 & 226.5 & & 0.00 & 2.47 \\
\hline 7.00 & 18.1 & 21.78 & 0.049 & 0.037 & 70.0 & 226.5 & & 0.00 & 2.76 \\
\hline 8.00 & 18.0 & 21.85 & 0.050 & 0.040 & 70.0 & 226.5 & & 0.00 & 3.04 \\
\hline 9.00 & 17.8 & 21.94 & 0.053 & 0.045 & 70.0 & 226.5 & & 0.01 & 3.31 \\
\hline 10.00 & 17.7 & 22.00 & 0.055 & 0.048 & 70.0 & 226.5 & & 0.01 & 3.57 \\
\hline 10.70 & 17.6 & 22.06 & 0.057 & 0.050 & 329.0 & 226.5 & & 0.01 & 3.75 \\
\hline
\end{tabular}

```

    65.19 408.4 .077.077.077 0. 3293. 5.6 0.269 418.1 0.0972 5.3 418.
    66.42410.1 . 080.080.070 0. 3335. 5.8 0.387 418.8 0.102B 0.3 419.
        FILM THICKNESS IS 0 - TBAR= 0.41BEE+03
        FILM THICKNESS IS 0 - TBAR= 0.418BE+03
    71.37 424.2.034 .034.029 0. 3466. 6.8 0.412 421.4 0.1019 2.8 421.
        FILM THICKNESS IS O - TBAR= 0.4237E+03
        FILM THICKNESS IS 0 - TBAR= 0.4237E+03
    76.32 416.8 .008 .008 .007 0. 3582. 7.7 0.437 424.2 0.0997 17.6 424.
    77.89 420.5 .005 .005 .005 0. 3622. 7.9 0.338 425.3 0.0938 4.7 425.
FILH THICKNESS IS 0 - TBAR= 0.4259E+03
FILH THICKNESS IS 0 - TBAR= 0.4259E+03
79.45 422.4 .001 .001 .001 0. 3679. B.0 0.238 426.2 0.0885 0.9 426.
FLUTTED SECTION WITH 1. PAIRS OF FLUTES
96.05 438.0.001.001.001 0. 3678. B.1 0.213 431.0 0.0885 0.9 426.
101.00 441.9 .000.000.000 0. 3882. 8.3 0.213 438.4 0.0817 2.0 431.

| MINIMUM TEMPERATURE= | 442.932 DEG |
| :---: | :---: |
| TEMP FLUCTUATION= | 0.000 DEG |
| FLOK INDEX (N) = | 0.775 |
| GRATIO INJ. $=$ | 0.000 |
| RESIDENCE TIME: |  |
| MELT POOL= 0.0 | 631229 HRS |

TORQUE = 10507.7 INCH.POUNDS
FOWER BREAK-DOWN:
SOLIDS CONV, = 0.008 HP
MIXING = 1.263 HP
FLIGHT CLEAR = 1.310 HP
COMPRESSION = 0.162 HP
MIXING DEVICEE 0.061 HP
PRESSURE FLUCTUATIONE 143.29 PSI/CYCLE
TOTAL CONDUCTED HEAT THROUGH GARREL= -93.0 TO -15.7 BTU/MIN OR
-2.19 TO -0.37 HP
MASIMUN SCREW SPEEE,RPM: 50.0 75.0 100.0 125.0 150.0 175.0 200.0

```

```

STRENGTH ANALYSIS OF YOUR SCREW (4140STEE):
MAYIMUN PERMITIED COOLING HOLE DIAMETER IS 1.100 INCHES
MAXIMUH FERMITTED CHANNEL DEPTH WITHOUT CORING SCREF IS 0.593 INCHES
VISCOSITY WAS CALCULATED IN THE FOLLOWING SHEAR RATE RANGE
SHEAR RATE TEMF. VISCOSITY
1/SEC DEG.F LE.SEC/SO.IN
870.15 380.0 30.6 0.0438751
VISCOSITY WAS CALCULATED IN THE FOLLOWING TEMPERATURE RANGE
SHEAR RATE TEMF. viscosity
1/SEC DEG.F LB.SEC/SQ.IN
43.90 441.7 0.0815906
435.08 329.0 0.0822313
SELECT ONE OF THE FOLLOWING:
1 - Data Analysis
2 - Run New Simulation

- EXIT

```

\section*{OUTPUT OF SIMULATION}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{\(1 \mathrm{MBFO5}\) (III) Varying the IPFC} \\
\hline \multicolumn{2}{|l|}{EXPERIMENT NUMBER} & \multicolumn{2}{|l|}{R 1.00} & \multicolumn{4}{|r|}{SCIENTIFIC PROCESS \& R} & \multicolumn{2}{|l|}{RESEARCH, INC.} & \\
\hline \(N=50.0\) & RPM & \multicolumn{2}{|l|}{OUTPUT \(=1\)} & 100.00 L & LB/HR & SOAK & TIME= & \multicolumn{2}{|l|}{0.00 sEconds} & \\
\hline SECTION & LENGTH & \multicolumn{2}{|l|}{CH. DEFTH} & \multicolumn{2}{|r|}{WIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{2}{*}{BAR. DIAM (IN)} & \multirow[t]{2}{*}{FLT. HIDTH (IN)} & \multirow[t]{2}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { HOLE } \\
& \text { AREA } \\
& \text { (SQIN) }
\end{aligned}
\]} \\
\hline * & (IN) & \begin{tabular}{l}
SOLID \\
(IN)
\end{tabular} & \[
\begin{aligned}
& \text { MELT } \\
& \text { (IN) }
\end{aligned}
\] & SOLID (IN) & \[
\begin{aligned}
& \text { HELTT } \\
& \text { (IN) }
\end{aligned}
\] & & & & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 2 & 27.550 & 0.150 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.354 & 1.354 & 3.450 & 2.500 & 0.300 & & \\
\hline 4 & 2.475 & 0.387 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 6 & 3.125 & 0.237 & 0.000 & 2.604 & 0.000 & 3.125 & 2.500 & 0.300 & & \\
\hline 7 & 16.600 & 0.213 & 0.000 & 2.859 & 0.000 & 3.450 & 2.500 & 0.300 & 1.000 & 0.914 \\
\hline 8 & 4.950 & 0.213 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline
\end{tabular}

ATTENTION - SOLIDS HEIGHT IN HOPPER IS LOK !
SOLIDS HEIGHT \(=136.00\) IN. BASE PRESSURE E \(\quad 0.33\) PSI
INCREASE HEIGHT TO \(=186.01\) IN. MAXIMUN PRESSURE \(=10.75\) PSI

SOLIDS CONVEYING zONE AMALYSIS

```

            FLUTED SECTION WITH 1. PAIRS OF FLUTES
    ```

```

TORQUE = 10404.7 INCH.POUNDS
POWER BREAI:-DOWN:
SOLIDS CON:. }=0.000 H
SOLIDS CON` = 0.000 HP
MIXING = 1.670 HP
FLIGHT CLEAR = 1.569 HP
COMPRESSION =0.234 HP
MIXING DEVICEE 0.060 HP
FRESSURE FLUCTUATION= 170.05 PSI/CYCLE
FRESSURE FLUCTUATIONE 170.05 PSI/CYCLE

```

```

MAXIMUM SCREF SPEED,RPM: 50.0 75.0 100.0 125.0 150.0 175.0 200.0
POWER CONSUMPTION, { OF AVAILLABLE:
STREMGTH ANALYSIS OF YOUR SCREW (4140STEE):
MAYIMUM PERMITTED COOLING HOLE DIAMETER IS 1.100 INCHES
MAXIMUN PERMITTED CHANHEL DEFTH WITHOUT CORING SCREK IS 0.595 INCHES
VISCOSITY WAS CALCULATED IN THE FOLLOWING SHEAR RATE RANGE

SHEAR RATE	TEMP.	VISCOSITY
$1 / S E C$	DEG.F	LB.SEC/SQ.IN
$96 E .41$	334.0	0.0563521
6.00	339.0	0.2426229

UISCOSITM WAS CALCULATED If THE FOLLOWING TEMPERATURE PNNGE
SHEAF RATE TEMF. VISCOSITY
1/SEC DEG.F LB.SEC/SQ.IN
14.32 441.6 1B.SEC/SQ.
12.91 293.7 0.2909913
SELECT ONE OF THE FOLLOWING:
1 - Data Analysis
2 - Run New Simulation
3 - EXIT

```

1 MBF 10
EXPERIMENT NUMBER 1.00 SCIENTIFIC PROCESS \& RESEARCH, INC.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(N=50.0\) & RPM & \multicolumn{2}{|l|}{OUTPUT \(=10\)} & \multicolumn{2}{|l|}{00.00 LB/HR} & SOAK & TIME \(=\) & \multicolumn{2}{|l|}{0.00 SECONDS} & \\
\hline \multirow[t]{3}{*}{SECTION} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { LENGTH } \\
& \text { (IN) }
\end{aligned}
\]} & \multicolumn{2}{|l|}{CH. DEFTH} & \multicolumn{2}{|r|}{WIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { BAR. } \\
& \text { DIAM } \\
& \text { (IN) }
\end{aligned}
\]} & \multirow[t]{3}{*}{FLT. WIDTH (IN)} & \multirow[t]{3}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { HOLE } \\
& \text { AREA } \\
& \text { (SQIN) }
\end{aligned}
\]} \\
\hline & & SOLID & HELT & SOLID & (MELT & & & & & \\
\hline & & (IN) & (IN) & (IN) & (IN) & (IN) & & & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 2 & 27.550 & 0.150 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.354 & 1.354 & 3.450 & 2.500 & 0.300 & & \\
\hline 4 & 2.475 & 0.387 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 6 & 3.125 & 0.237 & 0.000 & 2.604 & 0.000 & 3.125 & 2.500 & 0.300 & & \\
\hline 7 & 16.600 & 0.213 & 0.000 & 2.859 & 0.000 & 3.450 & 2.500 & 0.300 & 1.000 & 0.914 \\
\hline 8 & 4.950 & 0.213 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline
\end{tabular}

ATTENTION - SOLIDS HEIGKT IN HOPPER IS LOW !
SOLIDS HEIGHT \(=36.00\) IN. BASE PRESSURE \(=0.29 \mathrm{PSI}\) INCREASE HEIGHT TO = 124.00 IN. MAXIMUM PRESSURE 0.50 PSI

SOLIDS CONVEYING ZONE ANALYSIS


```

vISCOSITY WAS CALCULATED IN THE FOLLOWING TEMPERATURE RANGE
SHEAR RATE TEMF. VISCOSITY
1/SEC DEG.F LB.SEC/SQ.IN
24.32 441.3 0.1012367
230.72 329.0 0.1049472
AT 50.00 RPM \& 100.00 LB/HR PRODUCTION RATE
HEAD PRESSURE IS 4294. PSI.
FOF MORE DETAIL
SELECT ONE OF THE FOLLOWING:
1 - Data Anajysis
2 - Run New Simulation

- EXIT

```

1MBT15

ATTENTION - SOLIDS HEIGHT IN HOPPER IS LOK !

SOIIDS CONVEYING ZONE ANALYSIS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{OPTIMUM SURFACE TEMPERATURES BARREL \(=67.00\) DEG.F}} & \multirow[t]{2}{*}{\begin{tabular}{l}
FOR \\
AND
\end{tabular}} & \multicolumn{4}{|l|}{SOLIDS CONVEYING:} \\
\hline & & & & & SCREK & 229 & OO DEG & \\
\hline LOCATION & PHI & ROBP & FRIB & FRIS & TEMPERATUR & E, DEG F & POWER & PRESSURE \\
\hline IN & DEG & LB/CU.FT & & & BARREL & SCREW & HP & PSI \\
\hline 1.00 & 13.7 & 21.23 & 0.186 & 0.077 & 67.0 & 229.0 & 0.00 & 0.50 \\
\hline 2.00 & 13.5 & 21.32 & 0.199 & 0.087 & 67.0 & 229.0 & 0.00 & 1.17 \\
\hline 3.00 & 13.1 & 21.77 & 0.227 & 0.111 & 67.0 & 229.0 & 0.00 & 2.83 \\
\hline 4.00 & 12.0 & 22.93 & 0.289 & 0.162 & 67.0 & 229.0 & 0.01 & 7.14 \\
\hline 4.75 & 10.4 & 25.07 & 0.370 & 0.227 & 117.3 & 229.0 & 0.03 & 14.98 \\
\hline 5.25 & 9.4 & 26.71 & 0.337 & 0.248 & 275.7 & 229.0 & 0.05 & 21.11 \\
\hline 5.75 & \(\varepsilon .5\) & 28.78 & 0.332 & 0.244 & 284.8 & 229.0 & 0.08 & 29.28 \\
\hline 6.25 & 7.4 & 31.72 & 0.331 & 0.243 & 291.4 & 229.0 & 0.11 & 41.36 \\
\hline 6.75 & 6.2 & 35.88 & 0.330 & 0.241 & 297.6 & 229.0 & 0.17 & 59.72 \\
\hline 7.25 & 5.1 & 42.75 & 0.330 & 0.239 & 303.8 & 229.0 & 0.25 & 88.21 \\
\hline 7.75 & 4.1 & 49.65 & 0.329 & 0.238 & 311.4 & 229.0 & 0.37 & 133.21 \\
\hline 6.25 & 3.3 & 59.52 & 0.329 & 0.236 & 320.0 & 229.0 & 0.55 & 204.78 \\
\hline 8.75 & 2.7 & 70.15 & 0.327 & 0.235 & 330.0 & 229.0 & 0.83 & 318.14 \\
\hline B. 75 & 2.7 & 70.15 & 0.327 & 0.235 & 330.0 & 229.0 & 0.83 & 318.14 \\
\hline
\end{tabular}

```

65.19	418.5	. 000	. 000	. 000	4211.	4211.	6.7	0.269	418.2	0.0871	2.2	416
66.42	419.8	. 000	. 000	. 000	4254.	4254.	6.7	0.387	419.0	0.0927	1.7	416
71.37	423.4	. 000	. 000	. 000	4387.	4387.	6.9	0.412	421.6	0.0923	1.6	416
76.32	426.3	. 000	. 000	. 000	4505.	4505.	7.1	0.437	424.4	0.0914	1.5	416.
77.89	427.4	. 000	. 000	. 000	4547.	4547.	7.2	0.338	425.5	0.0861	1.7	416.
79.45	428.9	. 000	. 000	. 000	4606.	4606.	7.2	0.238	426.3	0.0814	2.1	416.
FLUTED SECTION WITH 1. PAIRS OF FLUTES												
96.05	428.9	. 000	. 000	. 000	4605.	4605	7.3	0.213	431.1	0.0814	2.1	416
01.00	38.0	0	0		485	85	7.6	. 21	38.	080	2.1	416


MINIMUM TEMPERATURE*	437.987 DEG F
TEMP FLUCTUATION=	0.000 DEG F
FLON INDEX (N)	0.763
GRATIO INJ.	0.000
RESIDENCE TIME:	
MELT POOL=	0.052353885 HRS

TORQUE = 9534.4 INCH.POUNDS
POWER BREAK-DOWN:
SOLIDS CONV. = 0.829 HP
MELTING = 3.618 HP
MIXING = 1.511 HP
FLIGHT CLEAR = 1.358 HP
COMPRESSION = 0.202 HP
MIXING DEVICE= 0.060 HP
PRESSURE FLUCTUATION= 170.33 PSI/CYCLE
TOTAL CONDUCTED HEAT THROUGH BARREI= -47.7 TO - -14 TO -14.9 BTU/MIN OR
MAXIMUM SCREF SPEED,RPM: 50.0 75.0 100.0 125.0 150.0 175.0 200.0
POWER CONSUMPTION, ( OF AVhILABLE: }\begin{array}{llllllllll}{7.6}\&{11.3}\&{15.1}\&{18.9}\&{22.7}\&{26.5}\&{30.3}
STPEIGGTH ANALYSIS OF YOUP SCREW (4140STEE):
MAXIMUM PERMITTED COOLING HOLE DIAMETER IS 1.100 INCHES
MAXIMUM PERMITTED CHANNEL DEFTH WITHOUT CORING SCREW IS 0.613 INCHES

VISCOSITY WAS CALCULATED IN THE FOLLOWING SHEAF RATE RANGE		
SHEAP RATE	TEMF.	VISCOSITY
$1 / S E C$	DEG.F	LE.SEC/SQ.IN
1077.25	342.5	0.0506723
7.29	380.8	0.1684484

VISCOSITY WAS CALCULATED IN THE FOLLOWING TEMPERATURE RANGE
SHEAR RATE TEMP. VISCOSITY
1/SEC DEG.F LB.SEC/SQ.IN
14.32 441.4 0.1011971
230.45 329.0 0.1049915
AT 50.00 RPM G 100.00 LB/HR PRODUCTION RATE
HEAD PRESSURE IS 4854. PSI.
FOF HORE DETAIL
SELECT ONE OF THE FOLLOWING:
- Data Analysis
- Run Nev Simulation
- EXIT

```

1 MBr 20
EXPERIMENT NUMBER 1.00 SCIENTIFIC PROCESS RESEARCH, INC.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{N}=50.0\) & RPM & \multicolumn{2}{|l|}{OUTPUTE 1} & \multicolumn{2}{|l|}{00.00 LB/HR} & \multicolumn{2}{|l|}{SOAK TIME=} & \multicolumn{2}{|l|}{0.00 SECONDS} & \\
\hline SECTION & LENGTK & \multicolumn{2}{|l|}{CH. DEPTH} & \multicolumn{2}{|r|}{WIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { BAR. } \\
& \text { DIAM }
\end{aligned}
\]} & \multirow[t]{2}{*}{FLT. WIDTH} & \multirow[t]{3}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { HOLE } \\
& \text { AREA } \\
& \text { (SOIN) }
\end{aligned}
\]} \\
\hline * & (IN) & SOLID & MELT & SOLID & MELT & & & & & \\
\hline & & (IN) & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 2 & 27.550 & 0.150 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.354 & 1.354 & 3.450 & 2.500 & 0.300 & & \\
\hline 4 & 2.475 & 0.387 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 6 & 3.125 & 0.237 & 0.000 & 2.604 & 0.000 & 3.125 & 2.500 & 0.300 & & \\
\hline 7 & 16.600 & 0.213 & 0.000 & 2.859 & 0.000 & 3.450 & 2.500 & 0.300 & 1.000 & 0.914 \\
\hline 8 & 4.950 & 0.213 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline
\end{tabular}

ATTENTION - SOLIDS HEIGHT IN HOPPER IS LOW :
```

SOLIDS HEIGHT = 36.00 IN. BASE PRESSURE = 0.14 PSI
INCREASE HEIGHT TO = 37.27 IN. MAYIMTM PRESSURE = 0.15 PSI

```

SOLIDS CONVEYING ZONE ANRLYSIS

OFTIMUN SURFACE TEMPERATURES FOR SOLIDS CONVEYING:
BARREL = 67.00 DEG.F AHD SCREW = 229.00 DEG.F
\begin{tabular}{cccccccrr}
LOCATION PHI & ROBF & FRIB & FRIS TEMPERATURE, DEG F & POWER & PRESSURE \\
IN & DEG LB/CU.FT & & & BARREL & SCREW & HP & PSI \\
1.00 & 13.7 & 21.13 & 0.236 & 0.077 & 67.0 & 229.0 & 0.00 & 0.48 \\
2.00 & 13.4 & 21.44 & 0.256 & 0.094 & 67.0 & 225.0 & 0.00 & 1.65 \\
3.00 & 12.3 & 22.56 & 0.321 & 0.147 & 67.0 & 229.0 & 0.01 & 5.85 \\
3.65 & 10.6 & 24.75 & 0.411 & 0.220 & 67.8 & 229.0 & 0.02 & 13.87 \\
4.15 & 8.7 & 28.33 & 0.445 & 0.245 & 70.2 & 229.0 & 0.05 & 28.02 \\
4.65 & 6.2 & 35.79 & 0.447 & 0.241 & 106.6 & 229.0 & 0.11 & 60.55 \\
5.23 & 4.6 & 45.47 & 0.386 & 0.238 & 285.3 & 225.0 & 0.22 & 109.47 \\
5.63 & 3.3 & 59.63 & 0.406 & 0.236 & 300.4 & 229.0 & 0.41 & 208.68 \\
6.13 & 2.5 & 75.00 & 0.380 & 0.234 & 317.1 & 229.0 & 0.78 & 400.04 \\
6.43 & 2.3 & 81.83 & 0.378 & 0.234 & 330.0 & 229.0 & 1.15 & 590.87
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline L & TOLT & X/b & X/6 G & GRATIO & PRESS & SURE & POWER & HOUT & TBAR & TVISC & D. HEAT & FITM \\
\hline & DEG F & & SOL & & & & HF & IN & DEG F & Le.sEC & BTU/IN & TEMP \\
\hline & & & & & REAL & FULL & & & & /SQ.IN & .MIN & DEG \(F\) \\
\hline 8.87 & 342.5 & & & & 1211. & 1211. & & 0.437 & 349.0 & 0.0828 & & \\
\hline 10.87 & 342.5 & & & & 2590. & 1590. & & 0.437 & 349.0 & 0.0962 & & \\
\hline 13.37 & 336.3 & . 909 & . 909 & . 782 & 1860. & 1860. & 1.4 & 0.437 & 330.2 & 0.2425 & -23.4 & 339 \\
\hline 18.37 & 354.1 & . 775 & 5.775 & . 658 & 2037. & 2037. & 2.1 & 0.437 & 390.8 & 0.1860 & -1.8 & 390. \\
\hline 19.80 & 359.0 & . 236 & 6.736 & . 625 & 2088. & 2088. & 2.3 & 0.437 & 391.8 & 0.1707 & -2.3 & 391 \\
\hline 21.37 & 366.5 & . 715 & 5.715 & . 614 & 2144. & 2144. & 2.5 & 0.421 & 392.7 & 0.1372 & 3.6 & 392. \\
\hline 26.37 & 383.6 & . 648 & 8.648 & . 573 & 2331. & 2331. & 3.2 & 0.369 & 395.8 & 0.1179 & 2.3 & 395. \\
\hline 31.37 & 393.7 & . 576 & 6.576 & . 525 & 2544. & 2544. & 3.7 & 0.317 & 398.8 & 0.1079 & 1.4 & 98. \\
\hline 36.37 & 399.8 & . 498 & 8.498 & . 467 & 2797. & 2797. & 4.3 & 0.265 & 401.7 & 0.1020 & 3 & 401. \\
\hline 41.37 & 403.9 & . 410 & . 410 & . 396 & 3099. & 3099. & 4.9 & 0.212 & 404.5 & 0.0985 & -1.1 & 404. \\
\hline 46.37 & 406.6 & . 309 & . 309 & . 307 & 3420. & 3420. & 5.4 & 0.160 & 407.4 & 0.0963 & -2.8 & 407. \\
\hline 47.35 & 407.0 & . 288 & . 288 & . 287 & 3475. & 3475. & 5.5 & 0.150 & 407.9 & 0.0961 & -3. 3 & 407. \\
\hline & & & & S & Condar & Y CHAN & NNEL BE & EGINS & & & & \\
\hline 52.35 & 406.0 & . 134 & 4.272 & . 134 & 3823. & 3823. & 5.9 & 0.250 & 410.7 & 0.1005 & -5.9 & 410. \\
\hline 57.35 & 409.3 & . 023 & . 056 & . 023 & 4151. & 4151. & 6.7 & 0.150 & 413.5 & 0.0988 & -3.3 & 413. \\
\hline 62.35 & 415.9 & . 000 & . 000 & . 0000 & 4389. & 4389. & 7.1 & 0.150 & 416.4 & 0.0942 & 1.9 & 415. \\
\hline 63.05 & 437.7 & . 000 & . 000 & . 000 & 4443 & 4443. & 7.2 & 0.150 & 417.4 & 0.0929 & 1.8 & 415. \\
\hline
\end{tabular}
```

65.19	419.7	. 000	. 000	. 000	4511.	4511.	7.3	0.269	418.3	0.0865	2.2	415
66.42	420.8	. 000	. 000	. 000	4554.	4554.	7.3	0.387	419.0	0.0922	2.7	425
71.37	423.9	. 000	. 000	. 000	4686.	4686.	7.5	0.412	421.6	0.0920	1.6	415
76.32	426.6	. 000	. 000	. 000	4804.	4804.	7.7	0.437	424.4	0.0912	1.5	415
77.89	427.6	. 000	. 000	. 000	4845.	4845.	7.8	0.338	425.5	0.0860	1.7	415
79.45	429.1	. 000	. 000	. 000	4905.	4905.	7.8	0.238	426.4	0.0813	2,1	415
FLUTED SECTION WITH 1. PAIRS OF FLUTES												
96.05	429.1	. 000	. 000	. 000	4904.	4904.	7.9	0.213	431.1	. 0813	2.1	415
								21	38	. 080	2.	


MINIMUM TEMPERATURE $=$	438.093 DEG F
TEMP FLUCTUATION=	0.000 DEG F
FLON INDEX $(N)=$	0.763
GRATIO INJ.	0.000

RESIDENCE TIME:
MELT POOL= 0.055453643 HRS

```

```

MAXIMUN: SCREK SFEED,RFK: NOF AVAILABLE:
STRENGTH ANALYSIS OF YOUR SCREW (414OSTEE):
MAXIMUT PERMITTED COOLING HOLE DIAMETER IS 2.100 INCHES
MAXIMUT: PERMITTED CHANNEL DEFTH WITHOUT CORING SCREW IS 0.597 INCHES
VISCOSITY WAS CALCULATED IF THE FOLLOWING SHEAF RATE RANGE
SHEAF RATE TEMF. viscosity
1/SEC DEG.F LB.SEC/SQ.IN
1099.72 342.5 0.0501981
5.71 355.9 0.2118465
VISCOSITY WAS CALCULATED IN THE FOLLOWING TEMPERATURE RANGE
SHEAF RATE TEMP. VISCOSITY
1/SEC DEG.F LB.SEC/SQ.IN
14.32 441.5 0.1011423
230.26 329.0 0.1050236
AT 50.00 RPM \& 100.00 LB/HR PRODUCTION: FATE
HEAD PRESSURE IS 5152. PSI.
FOR MORE DETAIL
SELECT ONE OF THE FOLLONING:

```
```

1 - Data Analysis

```
1 - Data Analysis
- Run New Simulation
- Run New Simulation
3 - EXIT
```

3 - EXIT

```

1MBF25
EXPERIMENT NUMBER 1.00 SCIENTIFIC PROCESS \& RESEARCH, INC.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{N}=50.0\) & RPM & OUTPUT= & \multicolumn{3}{|l|}{= \(100.00 \mathrm{LB} / \mathrm{HR}\)} & \multicolumn{2}{|l|}{SOAS TIME=} & \multicolumn{2}{|l|}{0.00 SECONDS} & \multirow[b]{4}{*}{\[
\begin{gathered}
\text { HOLE } \\
\text { AREA } \\
\text { (SOIN) }
\end{gathered}
\]} \\
\hline SECTION & LENGTH & \multicolumn{2}{|l|}{CH. DEPTH} & \multicolumn{2}{|r|}{WIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{3}{*}{\begin{tabular}{l}
BAR.
DIAM \\
(IN)
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLT. WIDTH \\
(IN)
\end{tabular}} & \multirow[t]{3}{*}{NO OF holes} & \\
\hline & & SOLID & MELT & SOLID & MELT & & & & & \\
\hline & & (IN) & (IN) & (IN) & (IN) & (IN) & & & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 2 & 27.550 & 0.150 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.354 & 1.354 & 3.450 & 2.500 & 0.300 & & \\
\hline 4 & 2.475 & 0.387 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline 6 & 3.125 & 0.237 & 0.000 & 2.604 & 0.000 & 3.125 & 2.500 & 0.300 & & \\
\hline 7 & 16.600 & 0.213 & 0.000 & 2.859 & 0.000 & 3.450 & 2.500 & 0.300 & 1.000 & 0.914 \\
\hline & 4.950 & 0.213 & 0.000 & 2.061 & 0.000 & 2.475 & 2.500 & 0.300 & & \\
\hline
\end{tabular}

HOPPER ANALYSIS
ATTENTION - KEEP SOLIDS LEVEL IN HOPPER ABOVE 24.47 IN. GASE PRESSURE \(=0.10\) PSI

SOLIDS CONUEYING ZONE ANALYSIS

```

    FLUTED SECTION WITH 1. PAIRS OF FlUTES
    96.05 429.2.000.000.000 4913.4913. 7.9 0.213 431.1 0.0813 2.1 425.
    101.00 43E.2 .000.000.000 5162. 5162. 8.2 0.213 438.3 0.0802 2.1 415.
MINIMUM TEMPERATURE= 438.157 DEG F
TEMF FLUCTUATJON= 0.000 DEG F
FLOK INDEX (N)= 0.763
GRATIO INJ.= 0.000
RESIDENCE TIME:
MELT POOL= 0.056831159 HRS
TORQUE = 10317.5 INCH.POUNDS
POWER BREAY-DOWN:
SOLIDS CONT. = 0.932 HP
MELTING = 3.916 HP
HIXING = 1.606 HP
FLIGHT CLEAR = 1.468 HP
COMPRESSION = 0.219 HP
MIXING DEVICE= 0.060 HP
PRESSURE FLUCTUATIONE 170.16 PSI/CYCLE
TOTAL CONDUCTED HEAT THROUGH BARREL= -21.5 TO 20 11.5 BTU/MIN OR

```

```

STRENGTH ANALYSIS OF YOUR SCREW (4140STEE):
MAXIMUN PERMITTED COOLING HOLE DIAMETER IS 1.100 INCHES
MAXIMUN PERMITTED CHANNEL DEPTH WITHOUT CORING SCREW IS 0.597 INCHES
VISCOSITY WAS CALCULATED IN THE FOLLOWING SHEAP RATE RANGE
SHEAR RATE TEMF. VISCOSITY
1/SEC DEG.F LB.SEC/SC.IN
1100.22 342.5 0.0501876
6.00 339.0 0.2426220
VISCOSITY WAS CRLCULATED IN THE FOLLOWING TEMPERATURE RANGE
SHEAR RATE TEMP. VISCOSITY
I/SEC DEG.F LE.SEC/SQ.IN
14.32 441.5 0.1011094
230.27 329.0 0.1050221
AT 50.00 RPM \& 100.00 LE/HR PRODUCTION RATE
HEAD PRESSURE IS 5162. PSI.
FOP. MORE DETAIL
SELECT ONE OF THE FOLLOWING:

```
```

] - Data Analysis

```
] - Data Analysis
2 - Run New Simulation
2 - Run New Simulation
3- EXIT
```

3- EXIT

```

2MBFO5

ATTENTION - SOLIDS HEICHT IN HOPPER IS LOW 1

SOLIDS CONVEYING ZONE ANALYSIS

FLUTED SECTION WITH 2. PAIRE OF FLUTES

\begin{tabular}{lr}
MINIMUM TEMPERATURE= & 436.472 DEG \(F\) \\
TERP FLUCTUATIONE & 0.000 DEG F \\
FLOW INDEX \((N)=\) & 0.776 \\
GRATIO INJ, & 0.000 \\
RESIDENCE TIME: & \\
MELT POOL \(=\) & 0.060664140 HRS
\end{tabular}
TORQUE = 8252.5 INCH.POUNDS
POWER BREAK:-DOWN:
\(\begin{array}{ll}\text { SOLIDS CONY. } & =0.000 \mathrm{HP} \\ \text { MELTING } & =3.789 \mathrm{HP}\end{array}\)
\(\begin{array}{ll}\text { MELTING } & =3.789 \mathrm{HP} \\ \text { MIXING } & =1.233 \mathrm{HP}\end{array}\)
FLIGHT CLEAR \(=1.340 \mathrm{HP}\)
COMPRESSION \(=0.174 \mathrm{HP}\)
MIXING DEVICE \(\quad 0.174 \mathrm{HP}\)
MIXING DEVICE 0.042
PRESSURE FLUCTUATION= 134.22 PSI/CYCLE
TOTAL CONDUCTED HEAT THROUGH BARRELE \(\quad \begin{array}{llll}-44.7 & \text { TO } & 35.9 & \text { BTU/MIN OR } \\ & -1.05 \text { TO } & 0.85 \mathrm{HP}\end{array}\)
\(\begin{array}{lrrrrrrrrr}\text { MAXIMUM SCREW SPEED, RPM: } & 50.0 & 75.0 & 100.0 & 125.0 & 150.0 & 175.0 & 200.0 \\ \text { POWER CONSUYPTION, } & \text { OF AVAILABLE: } & 6.5 & 9.8 & 13.1 & 16.4 & 19.6 & 22.9 & 26.2\end{array}\)
STRENGTH ANALYSIS OF YOUR SCREW (4140STEE):
MAXIMUM PERMITTED COOLING HOLE DTAMETER IS 0.900 INCHES
MAXIMUM PERMITTED CHANHEL DEPTH WITHOUT CORING SCREW IS 0.518 INCHES
VISCOSITY WAS CALCULATED If THE FOLLOWING SHEAR fATE RANGE
SHEAR RATE TEMP. VISCOSITY
 1/SEC DEG.F LB.SEC/SQ.IN
 \(\begin{array}{lll}991.08 & 334.0 & 0.0557660\end{array}\)
 \(\begin{array}{lll}5.78 & 265.0 & 0.3343562\end{array}\)
VISCOSITY WAS CALCULATED IN THE FOLLOWING TEMPERATURE RANGE
SHENT RATE TEMF. VISCOSITY
 1/SEC DEG.F LR.SEC/SQ.IN
 \(12.89 \quad 436.8 \quad 0.1044811\)
 \(\begin{array}{rrr}12.89 & 438.8 & 0.1044811 \\ 9.11 & 23 E .1 & 0.3105899\end{array}\)
SELECT ONE OF THE FOLLOWING:
```

1 - Data Analysis
2 - Run Neb Simulation
3-EXIT

```

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 76.07 & 424.5 & . 000 & . 000 & . 000 & 3160. & 3160. & 4.9 & 0.437 & 424.2 & 0.0983 & 1.2 & 417. \\
\hline 77.64 & 425.6 & . 000 & . 000 & . 000 & 3195. & 3195. & 4.9 & 0.338 & 425.3 & 0.0913 & 1.3 & 417. \\
\hline 79.20 & 427.1 & . 000 & . 000 & . 000 & 3246. & 3246. & 5.0 & 0.238 & 426.2 & 0.0853 & 1.6 & 417. \\
\hline & & \multicolumn{11}{|l|}{FLUTED SECTION WITH 1. PAIRS OF FLUTES} \\
\hline 95.80 & 427.1 & . 000 & . 000 & . 000 & 3244. & 3244. & 5.0 & 0.213 & 431.0 & 0.0853 & 1.6 & 417. \\
\hline 100.75 & 436.1 & . 000 & . 000 & . 000 & 3454. & 3454. & 5.2 & 0.213 & 438.1 & 0.0853 & 1.6 & 417. \\
\hline
\end{tabular}
\begin{tabular}{lrl}
MINIMUM TEMPERATURE & 436.120 & DEG \(F\) \\
TEMP FLUCTUATIONE & 0.000 DEG F \\
FLOK INDEX (N) & 0.775 & \\
GRATIO INJ. & 0.000 \\
RESIDENCE TIME: & & \\
MELT POOL= & 0.051764593 & HRS
\end{tabular}
TORQUE \(=\) 6544.B INCH.POUNDS
POWER BREAF-DOWN:
SOLIDS CONV. \(=0.031 \mathrm{HP}\)
MELTING \(=2.812 \mathrm{HP}\)
MIXING \(=1.075 \mathrm{HP}\)
FLIGHT CLEAR \(=1.096 \mathrm{HP}\)
COMPRESSION \(=0.148 \mathrm{HP}\)
MIXING DETICE= 0.042 HP
PRESSURE FLUCTUATION= 134.51 PSI/CYCLE
TOTAL CONDUCTED HEAT THROUGH BARREL= \(\begin{array}{rrrrr}-102.9 \text { TO } & -38.5 \mathrm{BTU} / \mathrm{MIN} \text { OR } \\ -2.40 \mathrm{TO} & -0.91 \mathrm{HP}\end{array}\)
MAXIMUM SCPEK SPEED, RPM: \(\quad 50.0 \quad 75.0100 .0125 .0150 .0175 .0200 .0\)

STRENGTH AHALYSIS OF YOUR SCREW (4140STEE):
MBXIMUM PERMITTED COOLING HOLE DIAMETER IS 0.900 INCHES
MAXIMUM PERMITTED CHANNEL DEFTH WITHOUT CORING SCREW IS 0.562 INCHES
VISCOSITY WAS CALCULATED IN THE FOLLOWING SHEAR RATE RANGE
SHEAP. RATE TEMF. VISCOSITY
 1/SEC DEG.F LB.SEC/SQ.IH
 \(813.70 \quad 342.5 \quad 0.0574303\)
 \(\begin{array}{lll}5.41 & 385.5 & 0.1687969\end{array}\)
VISCOSITY WAS CALCULATED IN THE FOLLOWING TEMPERATURE RANGE
SHEAF RATE TERF. VISCOSITY
 1/SEC DEG.F LB.SEC/SQ.IN
 \(12.89 \quad 436.4 \quad 0.1046804\)
 \(205.68 \quad 329.0 \quad 0.1093994\)
AT \(50.00 \mathrm{RPM} 8 \quad 87.80 \mathrm{LB} / \mathrm{HR}\) PRODUCTION RATE
heat pressure is 3454 . PSI.
FOF MORE DETAIL
SELECT ONE OF THE FOLLOWING:
1 - Data Analysis
2 - Run New Simulation
- EXIT

2MBF 15

ATTENTION - SOLIDS HEIGHT IN HOPPER IS LOW !

SOLIDS CONVEYING ZONE ANALYSIS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline OFTIMUM 5 & \multicolumn{3}{|l|}{URFACE TEMPERATURES 69.00 DEG.F} & FOR
AHD & \multicolumn{3}{|l|}{SOLIDS CONVEYING:} & \\
\hline LOCATIO: & PHI & ROBF & FRIf & FRIS & TEMPERATURE & E,DEG F & POWER & PRESSURE \\
\hline If & DEG & LB/CU.FT & & & BARREL & SCREF & HP & P5I \\
\hline 1.00 & 17.1 & 21.12 & 0.181 & 0.077 & 69.0 & 229.0 & 0.00 & 0.47 \\
\hline 2.00 & 16.9 & 21.27 & 0.291 & 0.085 & 69.0 & 229.0 & 0.00 & 1.05 \\
\hline 3.00 & 26.4 & 21.65 & 0.214 & 0.105 & 69.0 & 229.0 & 0.00 & 2.37 \\
\hline 4.00 & 15.2 & 22.51 & 0.263 & 0.145 & 69.1 & 229.0 & 0.01 & 5.55 \\
\hline 4.90 & 13.3 & 24.40 & 0.308 & 0.211 & 203.5 & 229.0 & 0.02 & 12.35 \\
\hline 5.40 & 12.3 & 25.56 & 0.329 & 0.236 & 270.7 & 225.0 & 0.03 & 16.65 \\
\hline 5.90 & 11.2 & 27.05 & 0.331 & 0.249 & 278.0 & 229.0 & 0.05 & 22.38 \\
\hline 6.40 & 10.0 & 29.10 & 0.327 & 0.244 & 284.5 & 229.0 & 0.07 & 30.54 \\
\hline 6.90 & 8.7 & 32.04 & 0.327 & 0.243 & 289.8 & 229.0 & 0.10 & 42.76 \\
\hline 7.40 & 7.2 & 36.29 & 0.326 & 0.241 & 295.5 & 229.0 & 0.24 & 61.56 \\
\hline 7.90 & 5.0 & 42.20 & 0.325 & 0.239 & 302.2 & 229.0 & 0.21 & 91.09 \\
\hline \(\varepsilon .40\) & 4.7 & 50.49 & 0.326 & 0.238 & 306.8 & 225.0 & 0.31 & 138.54 \\
\hline E. 90 & 3.7 & 60.73 & 0.325 & 0.236 & 317.2 & 229.0 & 0.46 & 215.37 \\
\hline c. 40 & 3.1 & 71.58 & 0.324 & 0.235 & 326.5 & 229.0 & 0.69 & 336.78 \\
\hline 9.50 & 3.0 & 73.61 & 0.324 & 0.235 & 329.4 & 229.0 & 0.75 & 371.30 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & TOLT & 2/h & X/6 G & GRATIO & PRESSU & URE P & POWER & Hout & TBAR & TVISC & .heat & EILM \\
\hline IN & DEG I & \multicolumn{3}{|c|}{SOLID} & \multicolumn{2}{|l|}{PSI} & HP & IN & DEG F & LB.SEC & BTU/IN & TEMP \\
\hline & & & & & REAL & FULL & & & & /SQ.IN & .MIN & DEG F \\
\hline 12.80 & 342.5 & & & & 950. & 950. & & 0.437 & 349.0 & 0.0329 & & \\
\hline 14.30 & 336.0 & . 863 & . 863 & . 734 & 1288. & 1288 & 1.0 & 0.437 & 349.0 & 0.2366 & -17.0 & 349. \\
\hline 15.30 & 350.3 & . 750 & . 750 & 0. 616 & 1448. & 1448. & 1.6 & 0.437 & 391.2 & 0.2045 & -1.9 & 391. \\
\hline 19.80 & 352.3 & . 737 & . 737 & . 605 & 1465. & 1465. & 1.6 & 0.437 & 391.7 & 0.1966 & -2.2 & 391. \\
\hline 21.50 & 360.5 & . 714 & . 714 & . 594 & 1519. & 1519. & 1.8 & 0.420 & 392.6 & 0.1540 & 2.6 & 392. \\
\hline 26.50 & 378.6 & . 647 & . 647 & . 557 & 1687. & 1687. & 2.3 & 0.368 & 395.8 & 0.1306 & 1.7 & 395. \\
\hline 31.50 & 389.7 & . 576 & 6. 576 & 6.514 & 1877. & 1877. & 2.7 & 0.315 & 398.8 & 0.1180 & 0.9 & 398. \\
\hline 36.50 & 396.7 & . 501 & . 501 & 1.461 & 2099. & 2099. & 3.2 & 0.263 & 401.7 & 0.1107 & 0.1 & 401. \\
\hline 41.50 & 401.2 & . 417 & . 417 & . 396 & 2356. & 2356. & 3.6 & 0.211 & 404.5 & 0.1061 & -1.0 & 404. \\
\hline 46.50 & 404.1 & . 320 & . 320 & . 313 & 2608. & 2608. & 4.0 & 0.159 & 407.4 & 0.1035 & -2. 5 & 407. \\
\hline 47.35 & 404.5 & . 302 & . 302 & . 297 & 2642. & 2642. & 4.0 & 0.150 & 407.9 & 0.1031 & -2.9 & 407. \\
\hline & & & & & CONDARY & chan & NE: BE & GINS & & & & \\
\hline 52.35 & 403.5 & . 144 & . 288 & . 144 & 2911. & 2911. & 4.3 & 0.150 & 410.6 & 0.1070 & -5.8 & 410. \\
\hline 57.35 & 407.6 & . 035 & . 085 & . 035 & 3183. & 3183. & 5.0 & 0.150 & 413.5 & 0.1042 & 11.1 & 413. \\
\hline 62.35 & 413.5 & . 000 & . 001 & . 000 & 3382. & 3382. & 5.5 & 0.250 & 416.4 & 0.0995 & 0.8 & 426. \\
\hline 63.95 & 415.5 & . 000 & . 000 & . 000 & 3427 & 3427 & 5.5 & 0.250 & 417.4 & 0.0980 & 1.3 & 416. \\
\hline
\end{tabular}
```

65.06	417.4	. 000	. 000	. 000	3479.	3479.	5.6	0.269	418.2	0.0916	1.6	416.
66.17	418.4	. 000	. 000	. 000	3512.	3512.	5.6	0.387	418.8	0.0992	2.3	416.
71.12	421.8	. 000	. 000	. 000	3628	3628.	5.7	0.412	421.4	0.0990	1.2	416.
76.07	424.8	. 000	. 000	. 000	3731.	3731.	5.9	0.437	424.2	0.0982	2.1	416.
77.64	425.8	. 000	. 000	. 000	3767.	3767.	5.9	0.338	425.3	0.0912	1.3	416
79.20	427.3	. 000	. 000	. 000	3817.	3817.	6.0	0.238	426.2	0.0852	1.6	416
FLUTED SECTIO: WITH 2. PAIRS OF FLUTES												
95.80	427.3	. 000	. 000	. 000	3815.	3815.	6.0	0.213	431.0	0.0852	1.6	416.
00.75	36.2	000		0	025	025		213	38	085	.	1


MINIMUM TEMPERATURE $=$	436.196	DEG F
TEMF FLUCTUATION	0.000	DEG F
FLON INDEX (N)	0.775	
GRATIO INJ.	0.000	
RESIDENCE TIME:	0.054166913	HRS

TORQUE = 7928.4 INCH.POUNDS
POWEP BREAY-DOWH:
SOLIDS CONT. = 0.750 HP
MELTING }=3.017\textrm{HP
MIXING = 1.114 HP
FLIGHI CLEAR = 1.144 HP
COMPRESSION = 0.155 HP
MIXING DEVICE= 0.042 HP
PRESSURE FLUCTUATION= 134.44 PSI/CYCLE
TOTAL CONDUCTED HEAT THROUGH BARREL= }\begin{array}{llll}{-58.7 TO }\&{-20.5 BTU/MIN OR}
MAXIIMUN SCREW SPEED,RPM: 50.0 75.0 100.0 125.0 150.0 175.0 200.0
POWEF CONSUHFTION, OF AVKILABLE: 6.2 0.2 9.3 12.4 15.5 18.6 21.7 24.8
STRENGTH ANALYSIS OF YOUR SCREW (4140STEE):
MAXIMUH PERMITTED COOLING HOLE DIAMETER IS 0.900 INCHES
MAYIMUT PERMITTED CHANNEL DEPTH WITHOUT CORING SCREW IS 0.528 INCHES

VISCOSITY WAS CALCULATED IN THE FOLLOWING SHEAR RATE RANGE		
SHEAF RATE	TEMF.	VISCOSITY
$1 / S E C$	DEG.F	LB.SEC/SO.IN
1022.47	342.5	0.0518853
6.51	349.0	0.2203923

VISCOSITY WAS CALCULATED IN THE FOLLOWING TEMPERATURE RANGE
SHEAF RATE TEMP. VISCOSITY
1/SEC DEG.F LB.SEC/SQ.IN
12.89 438.5 0.1046373
205.66 329.0 0.1094019
AT 50.00 RPM \& 67.80 LB/HR PRODUCTION RATE
HEAD PRESSURE IS 4025. PSI.
FOF MORE DETAIL
SELECT ONE OF THE FOLLONING:
1 - Data Analygis
2 - Run New Simulation
3- EXIT

```

2 MEF20

OUTPUT=
\(87.80 \mathrm{LB} / \mathrm{HR}\)
SOAK TIMEE
0.00 SECONDS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{SECTION} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { LENGTK } \\
\text { (IN) }
\end{gathered}
\]} & \multicolumn{2}{|l|}{CH. DEPTH} & \multicolumn{2}{|r|}{WIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { BAR. } \\
& \text { DIAM } \\
& \text { (IN) }
\end{aligned}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLT. \\
WIDIH \\
(IN)
\end{tabular}} & \multirow[t]{3}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { HOLE } \\
& \text { AREA } \\
& \text { (SQIN) }
\end{aligned}
\]} \\
\hline & & SOLID & MELT & SOLID & MELT & & & & & \\
\hline & & (IN) & (IN) & (IN) & (IN) & (IN) & & & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 1.822 & 0.000 & 2.225 & 2.250 & 0.300 & & \\
\hline 2 & 27.550 & 0.150 & 0.000 & 1.822 & 0.000 & 2.225 & 2.250 & 0.300 & & \\
\hline 3 & 26.600 & 0.150 & 0.450 & 1.324 & 1.324 & 3.450 & 2.250 & 0.300 & & \\
\hline 4 & 2.225 & 0.387 & 0.000 & 1.822 & 0.000 & 2.225 & 2.250 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 1.822 & 0.000 & 2.225 & 2.250 & 0.300 & & \\
\hline 6 & 3.125 & 0.237 & 0.000 & 2.558 & 0.000 & 3.125 & 2.250 & 0.300 & & \\
\hline 7 & 16.600 & 0.213 & 0.000 & 2.800 & 0.000 & 3.450 & 2.250 & 0.300 & 1.000 & 0.914 \\
\hline 8 & 4.950 & 0.213 & 0.000 & 1.822 & 0.000 & 2.225 & 2.250 & 0.300 & & \\
\hline
\end{tabular}

HOPPEP ANALYSIS
ATTENTION - SOLIDS HEIGHT II HOPPER IS LOW !

SOLIDS COFVEYING ZONE ANALYSIS

```

    76.07 425.0.000.000.000 4130. 4130. 6.3 0.437 424.2 0.0980 1.1 415.
    77.64 426.0.000.000.000 4166. 4166. 6.3 0.338 425.3 0.0921 1.3 425
    79.20 427.4.000.000.000 4215. 4215. 6.4 0.238 426.2 0.0852 1.6 415.
    FLUTED SECTION WITH 1. PAIRS OF FLUTES
    95.80427.4 .000.000.000 4214. 4214. 6.4 0.213 431.0 0.0852 1.6 415.
    100.75 436.3 .000.000.000 4423.4423. 6.6 0.213 438.1 0.0852 2.6 415,
MINIMUTY TEMPERATURE= 436.286 DEG F
TEMF FLUCTUATION= 0.000 DEG F
FLOW INDEX (N)= 0.776
GRATIO INJ. = 0.000
RESIDENCE TIME:
MELT POOL= 0.056131452 HRS
TORQUE = B331.7 INCH. POUNDS
POWER BREAY:-DOWN:
SOLIDS CONV. = 1.142 HP
MELTING = 2.950 HP
MIXING = 1.237 HP
FLIGHT CLEAR = 1.189 HP
COMPRESSION =0.161 HP
MIXING DEVICE= 0.042 HP
PRESSURE FLUCTUATION= 134.37 PSI/CYCLE
TOTAL COHDUCTED HEAT THROUGH BARREL=
MAXIMUM SCREW SPEED,RPM: SO.0 75.0 100.0 125.0 150.0 175.0 200.0
PONER CONSUMPTION, \& OF AVAILABLE: }\begin{array}{llllll}{6.6}\&{9.9}\&{13.2}\&{16.5}\&{19.8}\&{23.1}
STRENGTH ANALYSIS OF YOUR SCREW (4140STEE):
MAXIMUH PERMITTED COOLING HOLE DIAMETER IS 0.900 INCHES
MAXIMUY PERMITTED CHANNEL DEFTH WITHOUT CORING SCREF IS 0.516 INCHES
VISCOSITY WAS CALCULATEL IH THE FOLLOWING SHEAP RATE RANGE
SHEAF RATE TEMF. VISCOSITY
1/SEC DEG.F LE.SEC/SQ.IN
1043.61 342.5 0.0514072
vISCOSITY wAS CALCULATED IN the following temperature range
SHLAF RATE TEMF. VISCOSITY
1/SEC DEG.F LB.SEC/SQ.IN
12.89 4 438.6 0.1045863
205.60 329.0 0.1094241
AT 50.00 RPM \& 87.80 LB/HF PRODUCTION RATE
HEAD PRESSURE IS 4423. PSI.
FOF MORE DETAIL
SELECI ONE OF THE FOLLOWING:
1 - Data Analygis
2 - Run New Simulation

- EXIT

```

2MBF25
EXPERIMENT NUMGER 1.00 SCIENTIFIC PROCESS RESEARCH, INC.
\(\mathrm{N}=50.0 \mathrm{RPM} \quad\) OUTPUT \(=87.80 \mathrm{LB} / \mathrm{HR} \quad\) SOAK TIME= 0.00 SECONDS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{SECTION} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { LENGTH } \\
& \text { (IN) }
\end{aligned}
\]} & \multicolumn{2}{|l|}{CH.DEPTH} & \multicolumn{2}{|r|}{WIDTH} & \multirow[t]{2}{*}{LEAD} & BAR. & FLT. & No OF & \\
\hline & & SOLID & HELT & SOLID & HELT & & DIAM & WIDTH & HOLES & AREA \\
\hline & & (IN) & & (SOIN) \\
\hline 1 & 19.800 & 0.437 & 0.000 & 1.822 & 0.000 & 2.225 & 2.250 & 0.300 & & \\
\hline 2 & 27.550 & 0.150 & 0.000 & 1.822 & 0.000 & 2.225 & 2.250 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.324 & 1.324 & 3.450 & 2.250 & 0.300 & & \\
\hline 4 & 2.225 & 0.387 & 0.000 & 1.822 & 0.000 & 2.225 & 2.250 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 1.822 & 0.000 & 2.225 & 2.250 & 0.300 & & \\
\hline 6 & 3.225 & 0.237 & 0.000 & 2.558 & 0.000 & 3.125 & 2.250 & 0.300 & & \\
\hline 7 & 16.600 & 0.213 & 0.000 & 2.800 & 0.000 & 3.450 & 2.250 & 0.300 & 1.000 & 0.914 \\
\hline 8 & 4.950 & 0.213 & 0.000 & 1.822 & 0.000 & 2.225 & 2.250 & 0.300 & & \\
\hline
\end{tabular}

HOPPER ANALYSIS
ATIENTION - KEEP SOLIDS LEVEL IN HOPPER ABOVE 24.47 IN. BASE PRESSURE \(=0.10 \mathrm{PSI}\)

SOLIDS CONVEYING ZONE APALYSIS

fluted section with 1. pairs of flutes

TORQUE = 8388.6 INCH. POUNDS
POHEK BREAY-DOWN:
SOLIDS CONY. \(=0.846 \mathrm{HP}\)
MELTING \(=3.217 \mathrm{HP}\)
\(\begin{array}{ll}\text { MELTING } & =3.217 \mathrm{HP} \\ \text { MIXING } & =1.261 \mathrm{HP}\end{array}\)
\(\begin{aligned} \text { MIXING } & =1.261 \mathrm{HP} \\ \text { FLIGHT CLEAR } & =1.233 \mathrm{HP}\end{aligned}\)
FLIGHT CLEAR \(=1.233 \mathrm{HP}\)
COMPRESSION \(=0.167 \mathrm{HP}\)
HIXING DEVICE= 0.042 HP

MAXIMUM SCREK SPEED, RFM: \(\quad 50.0 \quad 75.0 \quad 200.0 \quad 125.0 \quad 150.0 \quad 175.0200 .0\)

STRENGTH ANALYSIS OF YOUP SEREW (4140STEE):
maximu permitted cooling hole diameter is 0.900 inches
MAXIMUM PERMITTED CHAHNEL DEPTH WITHOUT CORING SCREW IS 0.514 INCHES
\begin{tabular}{cccc}
VISCOSITY & WAS CALCULATED IN: THE FOLLOWING & SHEAR RATE RANGE \\
SHEAR RATE & TEMF. & VISCOSITY \\
\(1 / S E C\) & DEG.F & LB.SEC/SQ.IN \\
1041.87 & 342.5 & 0.0514462 \\
6.04 & 339.0 & 0.2424222
\end{tabular}
VISCOSITY HAS CRLCULATEL IN THE FOLLOKING TEMFERATUPE RANGE
SHEAP RATE TEMF. VISCOSITY
 1/SEC DEG.F LE.SEC/SQ.IN
 \(12.89 \quad 438.6 \quad 0.1045531\)
 \(\begin{array}{lll}9.11 & 326.7 & 0.2533081\end{array}\)
AT 50.00 RPM \& 87.80 LB/HR PRODUCTION RATE
HEAD PRESSURE IS 4386. PSI.
FOP. MORE DETKIL
SELECT ONE OF THE FOLLOWING:
1 - Data Analysis
2 - Run New Simulation
- EXIT

3MBFO5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline EXPERIMENT & \multicolumn{2}{|l|}{T NUMBER 1} & 1.00 & \multicolumn{2}{|r|}{SCIENTIFIC} & PROCESS & \multicolumn{2}{|l|}{S \& RESEARCH,} & INC. & \\
\hline \(N=50.0\) & RPH & \multicolumn{2}{|l|}{OUTPUT \(\quad 7\)} & 75.60 & LB/HR & SOAF: & TIME \(=\) & \multicolumn{2}{|l|}{0.00 SECONDS} & \\
\hline \multirow[t]{3}{*}{SEctION} & \multirow[t]{3}{*}{\begin{tabular}{l}
LENGTH \\
(IN)
\end{tabular}} & \multicolumn{2}{|l|}{CH. DEFTH} & \multicolumn{2}{|r|}{WIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { BAR. } \\
& \text { DIAM } \\
& \text { (IN) }
\end{aligned}
\]} & \multirow[t]{3}{*}{FLT. WIDTH (IN)} & \multirow[t]{3}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { HOLE } \\
& \text { AREA } \\
& \text { (SQIN) }
\end{aligned}
\]} \\
\hline & & SOLID & MELT & SOLID & MELT & & & & & \\
\hline & & (IN) & (IN) & (IN) & (IN) & (IN) & & & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 2.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline 2 & 27.550 & 0.180 & 0.000 & 2.584 & 0.000 & 2.978 & 2.000 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.286 & 1.286 & 3.450 & 2.000 & 0.300 & & \\
\hline 4 & 1.975 & 0.387 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline \(E\) & 3.125 & 0.237 & 0.000 & 2.498 & 0.000 & 3.125 & 2.000 & 0.300 & & \\
\hline 7 & 16.600 & 0.213 & 0.000 & 2.724 & 0.000 & 3.450 & 2.000 & 0.300 & 1.000 & 0.914 \\
\hline \(B\) & 4.950 & 0.213 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline
\end{tabular}

HOPPER ANALYSIS
ATTENTIOF - SOLIDS HEIGHT IN HOPPEP IS LOW !
\begin{tabular}{ll}
SOLIDS HEIGHT \(=\) & 36.00 IN. BASE PRESSURE \(=\) \\
INCREASE HEIGHT TO \(=186.01\) IN. MAXIMUN PRESSURE \(=\) & 0.33 PSI \\
0.75 PSI
\end{tabular}

SOLIDS CONVEIING 2ONE ANALYSIS

OFTIMUM SURFACE TEMPERATURES FOR SOLIDS CONVEYING:
BARREL \(=773.00\) DEG.F AHD SCREW \(=231.50\) DEG.F
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline LOCATION & PHI & ROBP & FRIB & FRIS & TEMPERATU & E.DEG F & POWER & \multicolumn{3}{|c|}{PRESSURE} \\
\hline IN & DEG & LB/CU.FT & & & BARREL & SCREW & HP & & PSI & \\
\hline FRICTION & COEFF & ICIENI O & Ori BARRE & EL SUR & FACE MUST & EE HIGHER & THAJ: & ON & SCREW & SURFACE \\
\hline FRIS \(=\) & 0.757 & 367E-01 & FRIE= & 0.7 & 48980E-01 & & & & & \\
\hline 1.00 & 22.7 & 21.10 & 0.075 & 0.076 & 73.7 & 231.5 & 0.00 & & 0.34 & \\
\hline 2.00 & 22.7 & 21.10 & 0.075 & 0.076 & 73.8 & 231.5 & 0.00 & & 0.34 & \\
\hline 3.00 & 22.7 & 21.10 & 0.075 & 0.076 & 73.8 & 231.5 & 0.00 & & 0.34 & \\
\hline 4.00 & 22.7 & 21.10 & 0.075 & 0.076 & 74.3 & 232.5 & 0.00 & & 0.34 & \\
\hline 5.00 & 22.7 & 21.10 & 0.072 & 0.076 & 77.6 & 232.5 & 0.00 & & 0.35 & \\
\hline 6.00 & 22.7 & 21.10 & 0.039 & 0.076 & 70.0 & 231.5 & 0.00 & & 0.28 & \\
\hline 7.00 & 22.7 & 21.07 & 0.035 & 0.074 & 70.0 & 231.5 & 0.00 & & 0.22 & \\
\hline 8.00 & 22.7 & 21.07 & 0.033 & 0.074 & 70.0 & 231.5 & 0.00 & & 0.17 & \\
\hline 9.00 & 22.8 & 21.04 & 0.029 & 0.073 & 70.0 & 231.5 & 0.00 & & 0.13 & \\
\hline 20.00 & 22.8 & 21.04 & 0.027 & 0.079 & 70.0 & 231.5 & 0.00 & & 0.09 & \\
\hline 11.00 & 22.8 & 21.04 & 0.026 & 0.073 & 70.0 & 231.5 & 0.00 & & 0.07 & \\
\hline 12.00 & 22.8 & 21.04 & 0.025 & 0.073 & 70.0 & 231.5 & 0.00 & & 0.05 & \\
\hline 12.10 & 22.e & 21.04 & 0.025 & 0.073 & 330.0 & 231.5 & 0.00 & & 0.05 & \\
\hline
\end{tabular}

ATTENTION - SOLIDS CONVEYING CONTROLS OPERATION
REQUESTED OUTPUT IS UHATTAIHABLE

VISCOSITY WAS CALCULATED IN THE FOLLOWING TEMPERATURE RANGE
SHEAR RATE TEMF. VISCOSITY
\begin{tabular}{ccc}
\(1 / S E C\) & DEG. & LB.SEC/SQ.IN \\
32.84 & 438.0 & 0.0887321
\end{tabular}
```

1 - Data Analysis

- Run Net Simulation
3 - EXIT

```

3MBFIC
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline EXPERIME & ENT NUMBE & \multicolumn{2}{|l|}{1.01} & \multicolumn{7}{|c|}{SCIENTIFIC PROCESS \& RESEARCH, INC.} \\
\hline \(N=50.0\) & RPM & \multicolumn{2}{|l|}{OUTPUT \(=7\)} & \multicolumn{2}{|l|}{\(75.60 \mathrm{LB} / \mathrm{HR}\)} & SOAP: & TIME= & 0.00 s & SECONDS & \\
\hline SECTION & LENGTH & \multicolumn{2}{|l|}{CH. DEPTH} & \multicolumn{2}{|r|}{WIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { BAR, } \\
& \text { DIAM }
\end{aligned}
\]} & \multirow[t]{2}{*}{FLT. WIDTH} & \multirow[t]{3}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { HOLE } \\
& \text { AREA } \\
& \text { (SOIN) }
\end{aligned}
\]} \\
\hline 1 & (IN) & SOLID & MELT & SOLID & MELT & & & & & \\
\hline & & (IN) & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline 2 & 27.550 & 0.150 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.286 & 1.286 & 3.450 & 2.000 & 0.300 & & \\
\hline 4 & 1.975 & 0.387 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline 6 & 3.125 & 0.237 & 0.000 & 2.498 & 0.000 & 3.125 & 2.000 & 0.300 & & \\
\hline 7 & 16.600 & 0.213 & 0.000 & 2.724 & 0.000 & 3.450 & 2.000 & 0.300 & 1.000 & 0.914 \\
\hline 8 & 4.950 & 0.213 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline
\end{tabular}

ATTENTION - SOLIDS HEIGHI IN HOPPER IS LOW !
SOLIDS HEIGHT \(=36.00\) IN. BASE PRESSURE \(=10.29\) PSI
INCREASE HEIGHT TO \(=124.00\) IN. MAXIMUM PRESSURE \(=0.50 \mathrm{PSI}\)

SOLIDS CONVEYING ZONE ANALYSIS

OFTIMUN SURFACE TEMPERATURES FOR SOLIDS CONVEYING:
BARREL \(=101.50\) DEG.F AND 14.00 DEG.F

FPISE \(0.119470 E+00\) FRIRE \(0.119404 E+00\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 2.00 & 22.7 & 22.08 & 0.118 & 0.119 & 108.5 & 114.0 & 0.00 & 0.29 \\
\hline 2.00 & 22.7 & 21.08 & C. 117 & 0.119 & 121.0 & 114.0 & 0.00 & 0.28 \\
\hline 3.00 & 22.7 & 21.08 & 0.116 & 0.119 & 111.7 & 114.0 & c. 00 & 0.27 \\
\hline 4.00 & 22.7 & 21.0 E & 0.116 & 0.115 & 112.2 & 114.0 & 0.00 & 0.26 \\
\hline 5.00 & 22.7 & 21.08 & 0.118 & 0.119 & 95.5 & 114.0 & 0.00 & 0.25 \\
\hline 6.00 & 22.7 & 21.08 & 0.084 & 0.119 & 70.0 & 114.0 & 0.00 & 0.20 \\
\hline 6.67 & 22.8 & 21.06 & 0.081 & 0.118 & 70.0 & 114.0 & 0.00 & 0.18 \\
\hline 6.92 & 22.8 & 21.06 & 0.080 & 0.118 & 70.0 & 114.0 & 0.00 & 0.17 \\
\hline 7.17 & 22.8 & 21.06 & 0.080 & 0.118 & 70.0 & 114.0 & 0.00 & 0.16 \\
\hline -.42 & 22.8 & 21.06 & 0.079 & 0.118 & 70.0 & 114.0 & 0.00 & 0.25 \\
\hline \(7.6 E\) & 22.8 & 21.06 & 0.079 & 0.116 & 70.0 & 114.0 & 0.00 & 0.14 \\
\hline 7.93 & 22.日 & 21.06 & 0.078 & 0.118 & 70.0 & 114.0 & 0.00 & 0.13 \\
\hline E. 17 & 22.8 & 21.06 & 0.076 & 0.118 & 70.0 & 114.0 & 0.00 & 0.12 \\
\hline 6.42 & 22.8 & 21.06 & 0.077 & 0.118 & 70.0 & 124.0 & 0.00 & 0.11 \\
\hline E. 67 & 22.8 & 21.06 & 0.077 & 0.118 & 70.0 & 114.0 & 0.00 & 0.10 \\
\hline E. 92 & 22.8 & 21.06 & 0.077 & 0.118 & 70.0 & 114.0 & 0.00 & 0.10 \\
\hline 9.17 & 22.6 & 21.06 & 0.076 & 0.118 & 70.0 & 114.0 & 0.00 & 0.09 \\
\hline 9.42 & 22.8 & 21.03 & 0.074 & 0.116 & 70.0 & 214.0 & 0.00 & 0.08 \\
\hline 9.67 & 22.8 & 21.03 & 0.074 & 0.116 & 70.0 & 224.0 & 0.00 & 0.08 \\
\hline 5.75 & 22.8 & 21.03 & 0.074 & 0.116 & 329 & 114.0 & 0 & 0. \\
\hline
\end{tabular}

ATTENTIOF - SOLIDS COHVEIING COHTROLS OPERATIOF:
REQUESTER OLTPUT IS UNATTAINABLE

STRENGTH ANALYSIS OF YOUR SCREW (4140STEE):
MAYIMUM, PERMITIED COOLING HOLE DIAMETER IS 0.700 INCHES
MAXIMUM PERMITTED CHANNEL DEPTH WITHOUT CORING SCREW IS 0.482 INCHES
\begin{tabular}{ccc}
UISCOSITY HAS CALCULATED IN THE FOLLOWING SHEAR RATE RANGE \\
SHEAF RATE & TEMF. & VISCOSITY \\
\(1 / S E \mathrm{SE}\) & DEG.F & LB.SEC/SO.IN \\
843.97 & 339.0 & 0.0578758 \\
3.72 & 349.0 & 0.2361072
\end{tabular}

Viscosity was calculated in the follohing terferature range
\begin{tabular}{clc}
SHEAP. RATE & TEMF. & VISCOSITY \\
\(1 / S E C\) & DEG.F & LB.SEC/SQ.IN \\
32.85 & 438.0 & 0.0887296 \\
334.90 & 329.0 & 0.0912090
\end{tabular}

SELECT ONE OF THE FOLLOWING:
```

1 - Data Analygis
2 - Run New Simulation
3 - EXIIT

```

3MET15
EXPERIMENT NUMBER 1.00 SCIENTIFIC PROCESS 6 RESEARCH, INC.
\(\mathrm{N}=50.0 \mathrm{RPM}\) OUTPUTE \(75.60 \mathrm{LB} / \mathrm{HR}\) SONK TIMEr 0.00 SECONDS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{SEETION} & \multirow[t]{3}{*}{\begin{tabular}{l}
LENGTH \\
(IN)
\end{tabular}} & \multicolumn{2}{|l|}{CH. DEPTH} & \multicolumn{2}{|r|}{WIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{2}{*}{BAR. DIAM} & \multirow[t]{3}{*}{FLT. WIDTH (IN)} & \multirow[t]{3}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { HOLE } \\
& \text { AREA } \\
& \text { (SQIN) }
\end{aligned}
\]} \\
\hline & & SOLID & MELT & SOLID & M & & & & & \\
\hline & & (IN) & (IN) & (IN) & (IN) & (IN) & (IN) & & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline 2 & 27.550 & 0.150 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.286 & 1.286 & 3.450 & 2.000 & 0.300 & & \\
\hline 4 & 1.975 & 0.387 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline 5 & 5.900 & 0.437 & 0.000 & 2.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline 6 & 3.125 & 0.237 & 0.000 & 2.498 & 0.000 & 3.125 & 2.000 & 0.300 & & \\
\hline 7 & 16.600 & 0.213 & 0.000 & 2.724 & 0.000 & 3.450 & 2.000 & 0.300 & 1.000 & 0.914 \\
\hline 8 & 4.950 & 0.213 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline
\end{tabular}

HOPPEP ANALYSIS
ATTENTION - SOLIDS HEIGHT IR HOPPER IS LOW !

SOLIDS CONVEYING ZONE ANALYSIS

OFTIMUK SURFACE TEMPERATURES FOR SOLIDS CONVEYING: BARREL \(=\) TO.50 DEG.F AND SCREW \(=229.00\) DEG.F
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline LOCAIION & PHI & ROPP & FRIP & FRIS & TEMPERAT & , DEG F & POWER & PRESSURE \\
\hline IN & DEG & LB/CU.FT & & & BARREL & SCREW & HP & PSI \\
\hline 1.00 & 22.6 & 21.12 & 0.176 & 0.077 & 70.5 & 229.0 & 0.00 & 0.43 \\
\hline 2.00 & 22.4 & 21.22 & 0.183 & 0.083 & 70.8 & 229.0 & 0.00 & 0.86 \\
\hline 3.00 & 21.8 & 21.40 & 0.195 & 0.097 & 70.6 & 229.0 & 0.00 & 1.75 \\
\hline 4.00 & 20.8 & 22.00 & 0.230 & 0.122 & 71.0 & 229.0 & 0.00 & 3.65 \\
\hline 5.00 & 1E.E & 23.13 & 0.281 & 0.171 & 76.5 & 229.0 & 0.01 & 7.81 \\
\hline 6.00 & 16.9 & 24.50 & 0.288 & 0.215 & 70.0 & 229.0 & 0.02 & 12.81 \\
\hline 7.00 & 14.6 & 26.58 & 0.322 & 0.248 & 70.0 & 229.0 & 0.04 & 20.80 \\
\hline 7.50 & 13.1 & 28.24 & 0.319 & 0.245 & 70.0 & 229.0 & 0.06 & 27.04 \\
\hline 8.00 & 11.6 & 30.51 & 0.318 & 0.244 & 70.0 & 229.0 & 0.08 & 36.24 \\
\hline 8.50 & 5.9 & 33.81 & 0.319 & 0.242 & 70.0 & 229.0 & 0.10 & 50.34 \\
\hline 9.00 & 8.1 & 38.57 & 0.318 & 0.241 & 70.0 & 229.0 & 0.14 & 72.33 \\
\hline ¢. 50 & E. 5 & 45.34 & 0.315 & 0.235 & 70.0 & 229.0 & 0.20 & 107.62 \\
\hline 10.00 & 5.2 & 54.42 & 0.318 & 0.237 & 70.0 & 229.0 & 0.29 & 165.13 \\
\hline 10.50 & 4.1 & 65.26 & 0.312 & 0.236 & 70.0 & 229.0 & 0.42 & 259.49 \\
\hline 10.65 & 2.8 & 68.59 & 0.318 & 0.235 & 330.0 & 229.0 & 0.48 & 298.05 \\
\hline
\end{tabular}

I TOUT \(\% / \hbar\) X/K GRATIO PRESSURE POWER HOUT TBAR TVISC D.HEAT FILM
IN DEG \(F\) SOLID PSI \(H\) F IN DEG F LB.SEC BTU/IN TEHP
 FILM THICKIESS IS 0-TBAR= 0.4152E+03
 FILM THICKHESS IS 0-TBAP= \(0.4152 \mathrm{E}+03\)
\begin{tabular}{llllllllllllllllll}
62.35 & 412.4 & .000 & .000 & .000 & 2763. & 2763. & 3.9 & 0.250 & 416.3 & 0.1049 & 1.0 & 416. \\
63.95 & 414.4 & .000 & .000 & .000 & 2800. & 2800. & 3.9 & 0.150 & 417.4 & 0.1035 & 1.0 & 416. \\
-74.94 & 416.0 & .000 & .000 & .000 & 2837. & 2837. & 4.0 & 0.269 & 418.1 & 0.0969 & 1.2 & 416. \\
65.92 & 416.9 & .000 & .000 & .000 & 2862. & 2862. & 4.0 & 0.387 & 418.6 & 0.1067 & 0.9 & 416. \\
70.87 & 420.3 & .000 & .000 & .000 & 2960. & 2960. & 4.1 & 0.412 & 421.2 & 0.1069 & 0.9 & 416. \\
75.82 & 423.3 & .000 & .000 & .000 & 3047. & 3047. & 4.2 & 0.437 & 424.0 & 0.1060 & 0.8 & 416. \\
77.39 & 424.3 & .000 & .000 & .000 & 3076. & 3076. & 4.2 & 0.338 & 425.1 & 0.0970 & 0.9 & 416. \\
78.95 & 425.8 & .000 & .000 & .000 & 3117. & 3117. & 4.3 & 0.238 & 426.0 & 0.0897 & 1.1 & 416.
\end{tabular}

FLUTED SECTION KITH 1. PAIRS OF FLUTES

100.50434 .6 .000 .000 .0003285 .3285 .4 .40 .213438 .0 0.0908 1.1 416.
\begin{tabular}{lr}
MINIMUY TEMPERATURE & 434.629 DEG F \\
TEMP FLUCTUATIONE & 0.000 DEG F \\
FLON INDEX \((N)=\) & 0.790 \\
GRATIO INJ. & \\
RESIDENCE TIME: & 0.000 \\
MELT POOL \(=\) & 0.052846901 HRS
\end{tabular}

TORQUE \(\quad 5600.6\) INCH. POUNDS
POWER BREAK-DOWN:
SOLIDS CONT, \(=0.477 \mathrm{HP}\)
\(\begin{array}{ll}\text { SOLIDS CONK. } & =0.477 \mathrm{HP} \\ \text { MELTING } & =2.206 \mathrm{HF}\end{array}\)
MIXING \(=0.745 \mathrm{HP}\)
FLIGHT CLEAR \(=0.890 \mathrm{HP}\)
COMPRESSION \(=0.105 \mathrm{HP}\)
MIXING DEVICE= 0.028 HP
PRESSURE FLUCTUATIONE HP 100.06 PSI/CYCLE
\(\begin{array}{lllll}\text { TOTAL CONDUCTED HEAT THROUGH BARREL }= & -87.9 \text { TO } & -46.9 \mathrm{BTU} / \mathrm{MIN} & \text { OR } \\ -2.07 & \text { TO } & -1.22 \mathrm{HP}\end{array}\)
\begin{tabular}{lrrrrrrrr}
MASIMUM SCREW SPEED, RPM: & 50.0 & 75.0 & 100.0 & 125.0 & 150.0 & 175.0 & 200.0 \\
POKEF CONSUMFTION, \(O F\) AUAILABLE: & 4.4 & 6.7 & 8.9 & 11.1 & 13.3 & 15.6 & 17.8
\end{tabular}

STRENGTH ANALYSIS OF YOUR SCREW (4140STEE):
MAXIMUT FERMITTED COOLING HOLE DIAMETER IS 0.700 IMCHES
MAXIMUM PERMITTED CHANNEL DEFTH WITHOUT CORING SCREK IS 0.465 INCHES
\begin{tabular}{ccc}
YISCOSITY WAS CALCULATED IH THE FOLLOKING SHEAF RATE RANGE \\
SHENF FATE & TEMF. & VISCOSITY \\
\(1 / S E C\) & DEG.F & LE.SEC/SQ.IN \\
\(105 E .87\) & 342.5 & 0.0511142 \\
3.80 & 353.4 & 0.2269123
\end{tabular}
\begin{tabular}{ccc}
VISCOSITY WAS CALCULATED IN THE FOILLOWING TEMPERATURE RANGE \\
SHEAF RATE & TEMP. & VISCOSITY \\
\(1 / S E C\) & DEG. & LB.SEC/SQ.IN \\
32.85 & 438.0 & \(0.08 B 7302\) \\
180.38 & 329.0 & 0.1146036 \\
AT 50.00 RPM \& & 75.60 LB/HR PRODUCTION RATE \\
HEAD PRESSURE IS & \(3285 . \operatorname{PSI}\).
\end{tabular}

FOP MORE DETAIL
SELECT ONE OF THE FOLLOKING:
1 - Data Analysis
2 - Run New Simulation
3 - EXIT

3MBF20
EXPERTMENT NUMBER 1.00 SCIENTIFIC PROCESS \(\&\) RESEARCH, INC.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(N=50.0\) & RPM & \multicolumn{2}{|l|}{OUTPUTE 7} & \multicolumn{2}{|l|}{75.60 LB/IRR} & SOAY: & TIME= & \multicolumn{2}{|l|}{0.00 SECONDS} & \\
\hline SECTION & LENGTH & \multicolumn{2}{|r|}{CH. DEPTH} & \multicolumn{2}{|r|}{HIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{2}{*}{BAR. DIAM} & FLT. & \multirow[t]{3}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { HOLE } \\
\text { AREA } \\
\text { (SQIN) }
\end{gathered}
\]} \\
\hline * & (IH) & SOLID & MELT & SOLID & - HELT & & & WIDTH & & \\
\hline & & (IN) & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 2.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline 2 & 27.550 & 0.150 & 0.000 & 1.584 & 0.000 & 2.975 & 2.000 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.286 & 1.286 & 3.450 & 2.000 & 0.300 & & \\
\hline 4 & 1.975 & 0.387 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 2.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline 6 & 3.125 & 0.237 & 0.000 & 2.498 & 0.000 & 3.125 & 2.000 & 0.300 & & \\
\hline 7 & 16.600 & 0.213 & 0.000 & 2.724 & 0.000 & 3.450 & 2.000 & 0.300 & 1.000 & 0.924 \\
\hline 8 & 4.950 & 0.213 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline
\end{tabular}

HOPPER ANALYSIS
ATTENTIOR - SOLIDS HEIGHI IN HOPPER IS LOW !
SOLIDS HEIGHT = 36.00 IN. BASE PRESSURE \(=00.14\) PSI
INCREASE HEIGHT TO \(=0.15 \mathrm{PSI}\)

SOLIDS CONVEYING zONE ANALYSIS

OFTIMUM SURFACE TEMPERATURES FOR SOLIDS CONVEYING:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline BARREL \(=\) & \multicolumn{3}{|c|}{70.50 DEG.F} & AND & \multicolumn{2}{|l|}{SCREH = 22} & \multicolumn{2}{|l|}{0 DEG.F} \\
\hline LOCATION & PHI & ROBP & FRIB & FRIS & TEMPERAT & , DEG & POWER & RESSURE \\
\hline IN & DEG & LB/CU.FT & & & BARREL & SCREK & HP & PSI \\
\hline 1.00 & 22.6 & 21.11 & 0.226 & 0.077 & 70.5 & 229.0 & 0.00 & 0.40 \\
\hline 2.00 & 22.2 & 21.31 & 0.230 & 0.088 & 70.9 & 229.0 & 0.00 & 1.15 \\
\hline 3.00 & 21.0 & 21.91 & 0.274 & 0.118 & 70.8 & 225.0 & 0.00 & 3.35 \\
\hline 4.00 & 15.0 & 23.71 & 0.362 & 0.191 & 71.8 & 225.0 & 0.01 & 10.16 \\
\hline 4.50 & 15.2 & 25.92 & 0.424 & 0.242 & 72.2 & 229.0 & 0.02 & 18.32 \\
\hline 5.00 & 12.1 & 29.61 & 0.379 & 0.244 & 70.0 & 225.0 & 0.04 & 32.90 \\
\hline 5.50 & 9.3 & 35.07 & 0.377 & 0.242 & 70.0 & 229.0 & 0.07 & 56.58 \\
\hline 6.00 & 6.7 & 44.41 & 0.377 & 0.239 & 70.0 & 229.0 & 0.23 & 103.61 \\
\hline 6.50 & 4.6 & 58.73 & 0.376 & 0.236 & 70.0 & 229.0 & 0.24 & 200.45 \\
\hline 7.00 & 3.4 & 74.88 & 0.374 & 0.235 & 70.0 & 229.0 & 0.46 & 398.65 \\
\hline 7.50 & 3.0 & 85.04 & 0.370 & 0.234 & 70.0 & 229.0 & 0.89 & 797.53 \\
\hline -. 55 & 2.9 & Es. 59 & C. \(00 \%\) & 0.234 & 330.0 & 229.0 & 0.96 & 865.86 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1. & TOUT \(x\) & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
\begin{gathered}
x / k / k \text { GF } \\
\text { SOLID }
\end{gathered}
\]}} & atic & PRESS & URE & POWER & HOUT & TBAR & TVISC & D. HEAT & TILM \\
\hline If: & DEG F & & & & PS & & HP & IN & DEG F & LB. SEC & BTU/IN & TEMP \\
\hline & & & & & REAL & FULL & & & & /SQ.IN & .MIN & DEG F \\
\hline 10.08 & 342.5 & & & & 1482. & 1482. & & 0.437 & 349.0 & 0.0850 & & \\
\hline 12.00 & 335.6 & . 864 & 4.864 & . 728 & 1685. & 1685. & 5. 1.1 & 0.437 & 349.0 & 0.2544 & -28.9 & 349. \\
\hline 17.00 & 346.5 & . 756 & . 756 & . 614 & 3753. & 1753. & 1.6 & 0.437 & 389.9 & 0.2279 & -1.6 & 389. \\
\hline 18.40 & 352.0 & . 719 & . 719 & . 584 & 1772 & 1772. & 1.7 & 0.437 & 390.8 & 0.2121 & -1.9 & 390. \\
\hline 19.80 & 356.5 & . 683 & 3.683 & . 555 & 1795 & 1795. & . 1.8 & 0.437 & 391.8 & 0.1073 & -2.3 & 391. \\
\hline 24.80 & 374.2 & . 613 & . 613 & . 520 & 1929. & 1929. & 2.1 & 0.385 & 394.7 & 0.1460 & 1.0 & 394. \\
\hline 29.80 & 385.5 & . 543 & . 543 & . 480 & 2081. & 2081. & 2.4 & 0.333 & 397.7 & 0.1310 & 0.4 & 397. \\
\hline 34.80 & 392.7 & . 470 & . 470 & . 432 & 2257. & 2257. & . 2.7 & 0.281 & 400.7 & 0.1220 & -0.2 & 400. \\
\hline 35.80 & 397.5 & . 392 & . 392 & . 374 & 2457. & 2457. & . 3.0 & 0.229 & 403.5 & 0.1162 & -0.9 & 403. \\
\hline 44.80 & 400.4 & . 300 & . 300 & . 298 & 2654. & 2654. & 3.3 & 0.177 & 406.4 & 0.1127 & -2.4 & 406. \\
\hline 47.35 & \(400 . \mathrm{E}\) & . 244 & . 244 & . 244 & 2724 & 2724. & . 3.4 & 0.150 & 407.9 & 0.1119 & -4.1 & 407. \\
\hline & & & & --SEC & CONDARY & CHAN & NNEL BE & EGINS & & & & \\
\hline 52.35 & 401.0 & . 087 & . 170 & . 087 & 2913. & 2913. & . 3.8 & 0.150 & 410.6 & 0.1142 & -2.8 & 410. \\
\hline \multirow[t]{3}{*}{57.35} & 407.4 & . 012 & . 029 & . 012 & 3130. & 3130. & . 4.2 & 0.150 & 413.5 & 0.1090 & 1.7 & 413. \\
\hline & FILT. & + THI & CKNESS & Is 0 & 0-TBA & \(A P=0\) & 0.4146 E & +03 & & & & \\
\hline & FILM. & M THI & CKHESS & 150 & \(0-\mathrm{TBA}\) & \(\mathrm{AR}=0\) & 0.4146 E & +03 & & & & \\
\hline 62.35 & 414.1 & . 000 & . 000 & . 000 & 3291. & 3291. & 4.4 & 0.150 & 416.4 & 0.1036 & 1.0 & 415. \\
\hline 63.95 & 415.6 & . 000 & . 000 & . 000 & 332 E & 3328. & 4.5 & 0.150 & 427.4 & 0.1024 & 0.9 & 415. \\
\hline
\end{tabular}
```

64.94	417.2	. 000	. 000	. 000	3365.	3365.	4.5	0.269	418.1	0.0962	1.2	1
65.92	418.0	. 000	. 000	. 000	3389.	3389.	4.5	0.387	418.7	0.1060	0.9	415.
70.87	420.9	. 000	. 000	. 000	3487	3487.	4.6	0.412	421.2	0.1065	0.9	415
75.82	423.6	. 000	. 000	. 000	3573	3573.	4.7	0.437	424.0	0.1058	0.8	15.
77.39	424.6	. 000	. 000	. 000	3603	3603.	4.8	0.338	425.1	0.0968	0.9	415.
78.95	426.0	. 000	. 000	. 000	3644	3644.	4.8	0.238	426.0	0.0896	1.1	415.
		FLUTED SECTION WITH 1. PAIRS OF FLUTES										
Oe. 55	426.0	. 000	. 000	. 000	364	3643.	4.8	0.213	430.8	0.0896	1.1	415.
00.50	434.7	000	000	000	3812	81	5.0	0.213	438.0	. 0907	1.	415

```

```

TORQUE = 6258.4 INCH.POUNDS
POWEF BREAK:-DOWN:
SOLIDS CONS. = 0.961 HP
MELTING }=2.178\textrm{HP
MIXING }=0.763 H
FLIGHT CLEAR = 0.935 HF
COMPRESSIOH =0.109 HP
MIXING DEVICEE 0.028 HP
FRESSURE FLUCTUATION= 100.02 PSI/CYCLE
TOTAL CONDUCTED HEAT THROUGH BARREI= -65.6 TC -43.1 BTU/MIN OR
-1.55 TO -1.01 HP
MAXIMUR: SCREF SPEED,RPK: S0.0 75.0 100.0 125.0 150.0 175.0 200.0
POWEF CONSUMPTION, (OF AVKILABLE: E.0 7.4 9.9 12.4 14.9 17.4 19.9
STRENGTH ANALYSIS OF YOUR SCREW (414OSTEE):
MAXIMUM PERMITTED COOLING HOLE DIAMETER IS 0.620 IMCHES
MASIMUM PERMITTTED CHANNEL DEPTH FITHOUT CORING SCREW IS 0.445 INEHES
VISCOSIT: WAS CALCULATED IN THE FOLLOWING SHEAR RATE RANGE
SHEAF RATE TEMF. VISCOSITY
1/SEE DEG.F LB.SEC/SQ.IN
965.0! 342.5 0.0532525
3.72 349.0 0.2362072
VISCOSITY WAS CALCULATED IN THE FOLLOWING TEMPERATURE RANGE
SHEAR RATE TEMP. VISCOSITY
3/SEC DEG.F LB.SEC/SQ.IN
32.85 436.0 0.0887272
349.48 329.0 0.0897076
AI 50.00 RPM \& 75.60 LB/HP PRODUCTION RATE
HEAD PRESSURE IS 3812. PSI.
FOF MORE DETKIL
SELECT ONE OF THE FOLLONING:
1- Data Analysis
2 - Run New Simulation
3- EXIT

```

3MBT25
EXPERIMENT NUMBER \(\quad 1.00 \quad\) SCIENTIFIC PROCESS \& RESEARCH, INC.
\(N=50.0 \mathrm{RPM} \quad\) OUTPUTE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{SECTION} & \multirow[t]{3}{*}{\begin{tabular}{l}
LENGTH \\
(IN)
\end{tabular}} & \multicolumn{2}{|l|}{CH.DEPTH} & \multicolumn{2}{|r|}{WIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{3}{*}{BAR. DIAM (IN)} & \multirow[t]{3}{*}{FLT. WIDTH (IN)} & \multirow[t]{3}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { HOLE } \\
& \text { AREA } \\
& \text { (SQIN) }
\end{aligned}
\]} \\
\hline & & SOLID & MELT & ID & MEL & & & & & \\
\hline & & (IN) & (IN) & (IM) & (IN) & (IN) & & & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline 2 & 27.550 & 0.150 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.286 & 1.286 & 3.450 & 2.000 & 0.300 & & \\
\hline 4 & 1.975 & 0.387 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline 6 & 3.125 & 0.237 & 0.000 & 2.498 & 0.000 & 3.125 & 2.000 & 0.300 & & \\
\hline 7 & 26.600 & 0.213 & 0.000 & 2.724 & 0.000 & 3.450 & 2.000 & 0.300 & 1.000 & 0.914 \\
\hline 8 & 4.950 & 0.213 & 0.000 & 1.584 & 0.000 & 1.975 & 2.000 & 0.300 & & \\
\hline
\end{tabular}

HOPPER ANALYSIS
ATTETIIOR - KEEP SOLIDS LEVEL IN HOPPER ABOVE 24.47 IN. BASE PRESSURE = 0.10 PSI

SOLIDS CONVEYING ZONE ANALYSIS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline OFTIMUM S BARPEL = & & 70.50 DEG.F & \begin{tabular}{l}
atures \\
.
\end{tabular} & \begin{tabular}{l}
FOR \\
AND
\end{tabular} & \multicolumn{3}{|l|}{SOLIDS CONVEYING:} & \\
\hline LOCATION & PHI & ROBP & FRIB & FRIS & TEMPERATU & JRE, DEG F & POWER & PRESSURE \\
\hline IN & DEG & Lb/CU.FT & & & BARREL & SCREW & HP & PSI \\
\hline 1.00 & 22.7 & 21.09 & 0.275 & 0.076 & 70.5 & 229.0 & 0.00 & 0.40 \\
\hline 2.00 & 21.9 & 21.43 & 0.296 & 0.094 & 71.0 & 229.0 & 0.00 & 1.60 \\
\hline 3.00 & 15.4 & 22.76 & 0.370 & 0.156 & 71.0 & 229.0 & 0.02 & 6.64 \\
\hline 3.55 & 16.2 & 25.03 & 0.456 & 0.227 & 72.3 & 229.0 & 0.01 & 15.01 \\
\hline 4.05 & 12.1 & 29.71 & 0.482 & 0.244 & 74.8 & 229.0 & 0.04 & 33.91 \\
\hline 4.55 & 7.4 & 41.32 & 0.484 & 0.240 & 83.0 & 229.0 & 0.09 & 8E.6E \\
\hline 5.05 & 4.3 & 62.57 & 0.429 & 0.236 & 282.9 & 229.0 & 0.23 & 237.26 \\
\hline 5.55 & 3.1 & 81.55 & 0.423 & 0.234 & 308.5 & 229.0 & 0.56 & 586.24 \\
\hline 5.85 & 2.9 & 86.37 & 0.420 & 0.234 & 330.0 & 229.0 & 0.95 & 1008.03 \\
\hline
\end{tabular}

```

64.94 417.5.000.000.000 3437. 3437. 4.8 0.269 418.1 0.0960 1.2 434.
65.92 418.3 . 000.000 .000 3462. 3462. 4.8 0.387 418.7 0.1058 0.9 434.
70.87 421.0 .000.000 .000 3559. 3559. 4.9 0.412 421.2 0.1064 0.9 434.
75.82 423.7.000.000.000 3646. 3646. 5.0 0.437 424.0 0.1058 0.8 434.
77.39 424.6.000.000.000 3676. 3676. 5.0 0.338 425.1 0.0968 0.9 434.
78.95 426.0.000.000.000 3716. 3716. 5.2 0.238 426.0 0.0895 1.1 434.
FLUTED SECTION WITH 3. PAIRS OF FLUTES
95.55 426.0.000.000.000 3715. 3715. 5.1 0.213 430.8 0.0895 1.1 434.
100.50 434.8 .000 .000 .000 3884. 3884. 5.2 0.213 438.0 0.0907 1.1 434.
MINIMUM TEMPERATURE 434.755 DEG F
TEMF FLUCTUATION= 0.000 DEG F
FLOH INDEX (N)= 0.790
GRATIO INJ.W 0.000
RESIDENCE TIME:
MELT POOL= 0.056170948 HRS
TORQUE = 6600.2 INCH.POUNDS
POWER BREAK:-DOWTH:
SOLIDS CONV. = 0.051 HP
MELTING = 2.421 HP
MIXING = 0.767 HP
FLIGHT CLEAR = 0.969 HP
COMPRESSION = 0.108 HP
MIXING DEVICE= 0.028 HP
PRESSURE FLUCTUATION= 100.01 PSI/CYCLE

```

```

MRNIMUM SCREG SPEED,RPM:
POWER CONSUMPTION, OF AVAIILABLE: }\begin{array}{llllll}{\mathrm{ ( O.2 }}\&{7.9}\&{10.5}\&{13.1}\&{15.7}\&{28.3}
STRENGTH ANALYSIS OF YOUR SCREW (414OSTEE):
!!!CAUTION!!!
MAXIMUM PERMISSIBLE CHANNEL DEPTH FOR SAFE SCREW IS: 0.435 INCHES
YOUR FEED SECTION IS 0.437 IMCHES DEEP
CHECK: RESIF VISCOSITY, SOURCE OF POWER CONSUMPTION
OF MODIF! SCREF GEOMETRY!
MAXIMUT FERHITTED COOLING HOLE DIAMETER IS 0.524 INCHES
MAXIMUY PERHITTED CHANNEL DEFTH KITHOUT CORING SEREK IS 0.435 INCHES

VISCOSITY HAS CALCULATED IN THE FOLLOWING SHEAR RATE RANGE		
SHEAR RATE	TEAF.	VISCOSITY
1/SEC	DEG.F	LB.SEC/SQ.IN
970.38	342.5	0.0531209
3.50	339.0	0.2590871

```
VISCOSITY HAS CALCULATED IN THE FOLLONING TEMPERATURE RAHGE
SHEAP RATE TEMF. VISCOSITY
 1/SEC DEG.F LB.SEC/SO.IN
 \(32.85 \quad 438.0 \quad 0.0887264\)
 \(\begin{array}{lll}742.73 & 319.0 & 0.0787264\end{array}\)
AT 50.00 RPM \(\& ~ 75.60 \mathrm{LB} / \mathrm{HP}\) PRODUCTION RATE
HEAD PRESSURE IS 3884. PSI.
FOR MORE DETAIL
SELEET ONE OF THE FOLLOWING:
```

1- Data Analysis

- Run New Simulation
3 - EXIT

```

4MBFO5
EXPERIMENT NUABER 1.01 SCIENTIFIC PROCESS 6 RESEARCH, INC.
\(N=50.0 \mathrm{RPK} \quad\) OUTPUT= \(63.50 \mathrm{LB} / \mathrm{HR} \quad\) SOAF: TIME 0.00 SECONDS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{SECTION} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { LENGTH } \\
& \text { (IN) }
\end{aligned}
\]} & \multicolumn{2}{|l|}{CH. DEPTH} & \multicolumn{2}{|r|}{WIDTH} & \multirow[t]{2}{*}{LEAD} & \multirow[t]{3}{*}{\begin{tabular}{l}
BAR. \\
DIAM \\
(IN)
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLT. \\
WIDTH \\
(IN)
\end{tabular}} & \multirow[t]{3}{*}{NO OF HOLES} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { HOLE } \\
& \text { AREA } \\
& \text { (SQIN) }
\end{aligned}
\]} \\
\hline & & SOLID & MELT & SOLID & MELT & & & & & \\
\hline & & (IN) & (IN) & (IN) & (IN) & (IN) & & & & \\
\hline 1 & 19.800 & 0.437 & 0.000 & 1.368 & 0.000 & 1.750 & 1.750 & 0.300 & & \\
\hline 2 & 27.550 & 0.150 & 0.000 & 1.368 & 0.000 & 1.750 & 1.750 & 0.300 & & \\
\hline 3 & 16.600 & 0.150 & 0.450 & 1.234 & 1.234 & 3.450 & 1.750 & 0.300 & & \\
\hline 4 & 1.750 & 0.387 & 0.000 & 1.368 & 0.000 & 1.750 & 1.750 & 0.300 & & \\
\hline 5 & 9.900 & 0.437 & 0.000 & 1.368 & 0.000 & 1.750 & 1.750 & 0.300 & & \\
\hline 6 & 3.225 & 0.237 & 0.000 & 2.417 & 0.000 & 3.125 & 1.750 & 0.300 & & \\
\hline 7 & 16.500 & 0.213 & 0.000 & 2.622 & 0.000 & 3.450 & 1.750 & 0.300 & 1.000 & 0.914 \\
\hline 8 & 4.950 & 0.213 & 0.000 & 1.368 & 0.000 & 1.750 & 1.750 & 0.300 & & \\
\hline
\end{tabular}

HOPPER ANALYSIS
ATTENTION - SOLIDS HEIGHT IN HOPPER IS LON:
SOLIDS HEIGHT \(=16.00\) IN. EASE PRESSURE \(=10.33\) PSI 0.0 .75 PSI
INCREASE HEIGHT TO \(=186.01\) IN. MAXIMUM PRESSURE

SOLIDS CONVEYING ZONE ANALYSIS

OFTINUM SURFACE TEMPERATURES FOP SOLIDS CONVEYING:
BARREL \(=74.50\) DEG.F AMD \(\quad\) SCREH \(=231.50\) DEG.F
\begin{tabular}{cccccccccc|}
LOCATION PHI ROBP FRIB FRIS TEMPERATURE, DEG F POWER PRESSURE \\
IN DEG LB/CU.FI & BARREL SCREF & HP & PSI
\end{tabular} FRICIIOH COEFEICIENT ON BARREL SURFACE MUSI BE HIGHER THAK ON SCREW SURFACE FRIS = \(0.762736 \mathrm{E}-01 \mathrm{FRIB}=0.701721 \mathrm{E}-01\)
\begin{tabular}{lllllllll}
1.00 & 32.8 & 21.10 & 0.070 & 0.076 & 75.5 & 231.5 & 0.00 & 0.30 \\
2.00 & 32.5 & 21.10 & 0.070 & 0.076 & 75.6 & 231.5 & 0.00 & 0.27 \\
3.00 & 32.2 & 21.10 & 0.070 & 0.076 & 75.9 & 231.5 & 0.00 & 0.25 \\
4.00 & 32.2 & 21.07 & 0.065 & 0.074 & \(7 \epsilon .3\) & 231.5 & 0.00 & 0.23 \\
5.00 & 32.1 & 21.07 & 0.066 & 0.074 & 78.3 & 231.5 & 0.00 & 0.21 \\
6.00 & 32.1 & 21.07 & 0.033 & 0.074 & 70.0 & 232.5 & 0.00 & 0.16 \\
7.00 & 32.2 & 21.04 & 0.029 & 0.073 & 70.0 & 231.5 & 0.00 & 0.12 \\
8.00 & 32.2 & 21.04 & 0.027 & 0.073 & 70.0 & 231.5 & 0.00 & 0.09 \\
9.00 & 32.2 & 21.04 & 0.025 & 0.073 & 70.0 & 231.5 & 0.00 & 0.06 \\
10.00 & 22.2 & 21.04 & 4.022 & 0.073 & 74.0 & 231.5 & 0.00 & 0.05 \\
11.00 & 32.2 & 21.04 & 0.022 & 0.073 & 70.0 & 231.5 & 0.00 & 0.03 \\
11.70 & 32.3 & 21.01 & 0.022 & 0.071 & 330.0 & 231.5 & 0.00 & 0.03
\end{tabular}

ATTENTION: - SOLIDS COHVEVINE CONTROLS OPERATION:
REQUESTED OUTPUT IS UHATTAIHABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & Tote & X/W & X/h GR & GRATIO & PRES & URE & POWEF & HOUT & TBAR & TVISC & D. HEAT & FILM \\
\hline IN & DEG 5 & \multicolumn{3}{|c|}{SOLID} & & & HP & IN & DEG F & LB. SEC & BTU/IN & TEMP \\
\hline & & & & & REAL & FULL & & & & /SQ.IN & . MI't & DEG \(\mathbf{F}\) \\
\hline 14.2E & 345.9 & & & & 0. & 427 & & 0.437 & 359.9 & 0.0855 & & \\
\hline 16.28 & 370.5 & & & & 0. & 703 & & 0.437 & 390.1 & 0.0923 & & \\
\hline 17.28 & 350.2 & . 929 & 9.929 & . 767 & 0. & 706 & 0.05 & 0.437 & 390.1 & 0.2329 & -23.3 & 390. \\
\hline 19.80 & 354.2 & . 858 & . 858 & . 726 & 0. & 714 & 0.18 & 0.437 & 391.7 & 0.2396 & -2.5 & 390. \\
\hline 23.BE & 367.7 & . 801 & 1.801 & . 707 & 0. & 726 & 0.39 & 0.395 & 394.1 & 0.2665 & 1.2 & 393. \\
\hline 26.BE & 381.6 & . 732 & 2.732 & . 681 & 0 & B45 & 0.64 & 0.343 & 397.1 & 0.1450 & 0.8 & 397. \\
\hline 33.86 & 390.7 & . 664 & 4.664 & . 648 & 0 & 982 & 0.88 & 0.292 & 400.1 & 0.1324 & 0.4 & 400. \\
\hline 38.88 & 394.6 & . 594 & . 594 & . 594 & 0 & 1133. & 1.1 & 0.238 & 403.0 & 0.1259 & -1.2 & 402. \\
\hline 43.8 B & 396.9 & . 516 & . 516 & . 516 & 0 & 1283. & 1.3 & 0.186 & 405.8 & 0.1225 & -2.9 & 405. \\
\hline 47.35 & 396.3 & . 452 & . .452 & . 452 & 0 & 1341 & + 1.5 & 0.150 & 407.9 & 0.1204 & -2.7 & 407. \\
\hline & & & & S & OndAR & CHA & NHEL B & I & & & & \\
\hline 52.35 & 392.8 & . 224 & 4.431 & . 224 & 0. & 1470. & 1.6 & 0.150 & 410.4 & 0.1274 & -7.8 & 410. \\
\hline 5\%.35 & 400.0 & . 082 & -197 & . 082 & 0. & 1643. & 1.9 & 0.150 & 413.3 & 0.2211 & \(-1.3\) & 423. \\
\hline 62.35 & 408.2 & . 018 & . 057 & . 016 & 0. & 1771. & 2.3 & 0.150 & 416.3 & 0.1139 & 1.3 & 416. \\
\hline
\end{tabular}
```

        FIIM THICFNESS IS 0- TBAR= 0.4168E+03
        FILM THICKNESS IS O - TBAR= 0.4168E+03
    63.95 410.5 .005.019.005 0.1800. 2.6 0. 150 417.3 0.1124 12.4 417.
    -------------------------SECONDARY CHANNEL ENDS--------------------------------
    64.83 411.9.004 .004 .004 0. 0. 1827. 2.6 0.269 417.9 0.1050 3.2 418
    65.70 413.0.003.003.003 0. 1844. 2.7 0.387 418.4 0.1172 
            FILY THICKNESS IS 0 - TBAR= 0.4188E+03
            FIIM THICKNESS IS 0 - TBAR= 0.4188E+03
    | 70.65 | 417.6 | . 000 | . 000 | . 000 | 0. | 1922. | 2.8 | 0.412 | 421.1 | 0.1169 | 0.6 | 419 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 75.60 | 421.3 | . 000 | . 000 | . 000 | 0. | 1991. | 2.8 | 0.437 | 423.9 | 0.1155 | 0.6 | 419. |
| 77.16 | 422.6 | . 000 | . 000 | . 000 | 0. | 2015. | 2.9 | 0.338 | 425.0 | 0.1039 | 0.6 | 419. |
| 78.72 | 424.1 | . 000 | . 000 | . 000 | 0. | 2047. | 2.9 | 0.238 | 425.9 | 0.0952 | 0.8 | 419. |
| FLUTED 5 |  |  |  |  |  |  |  |  |  |  |  |  |
| 95.32 | 424.1 | . 000 | . 000 | . 000 | 0. | 2046. | 2.9 | 0.213 | 430.6 | 0.0952 | 0.8 | 419 |
| 100.27 | 433.2 | 000 | 000 | 000 | 0. | 178 | 3.0 | 0.213 | 437.8 | 0.0967 | 0.8 | 419 |

MINIMUM TEMPERATURE= 433.194 DEG F
TEMF FLUCTUATION= 0.000 DEG F
FLOH INDEX (N)= 0.806
GRATIO INJ.= 0.000
RESIDENCE TIME:
MELI POOL= 0.049503591 HRS
TORQUE = 3790.5 INCH.POUNDS
POWER BREAK-DOWN:
SOLIDS CONS. = 0.000 HP
MELTING }=1.858 H
MIXING }=0.444 H
FLIGHT CLEAP = 0.638 HP
COMPRESSIOH: = 0.056 HP
MIXING DEVICEE 0.017 HF
PRESSURE FLUCTUATIONE 73.60 pSI/CYCLE
TOTAL CORDUCTED HEAT THROUGH BARPEL= -103.7 TO -67.4 BTU/MIN OR
-2.44 TO -1.59 HP
MAXIMUT SCREH SPEED,RPM: 50.0 75.0 100.0 125.0 150.0 175.0 200.0

```

```

STRENGTH AHALYSIS OF YOUR SCREW (4140STEE):
!!!cALTION!!!
MA:IMUNG PERMISSIBLE CHANHEL DEFTH FOP SAFE SCREK IS: 0.404 INCHES
YOUF FEEL SECTIOR IS 0.437 INCHES DEEP
CHECE: RESIN YISCOSITY, SOURCE OF PONER CONSUMPTION
OF MODIFY SCREF GEOMETRY!
POWEP CONSUMPTIOR EXCEEDS PRUDENT STRENGTH OF SCREW BY 12.95 %

VISCOSITY WAS CALCULATED IN THE FOLLOWING SHEAR RATE RANGE		
SHEAF RATE	TEMF.	VISCOSITY
$1 / S E C$	DEG.F	LB.SEC/SQ.IN
572.39	373.9	0.0542351
0.82	390.1	0.1814330

VISCOSITY WAS CALCULATED IN THE FOLLOKING TEMPERATURE RANGE
SHEAF RATE TEMF. VISCOSITY
1/SEC DEG.F LB.SEC/SQ.IN
25.01 4.0.0.0937841
28€.19 329.0 0.0968691
SELECT ONE OT THE FOLLOWING:

```
```

1 - Date Analysis

```
1 - Date Analysis
- Run New Simulation
- Run New Simulation
- EXIT
```

- EXIT

```


SOLIDS CONVEYING ZONE ANALYSIS

REQUESTED OUTPUT IS UNATTAINABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline IN & OUT & X/W & X/W & gratio & E & P & POWER & HOUT & TBAR & TVISC & D. HEAT & FILM \\
\hline IN & DEG F & & SOLID & & & & HP & IN & DEG F & LB.SEC & BTU/IN & TEMP \\
\hline & & & & & REAL & FULL & & & & /SQ.IN & . MIN & DEG \\
\hline 10.70 & 342.5 & & & & 0. & 376. & & 0.437 & 349.0 & 0.0870 & & \\
\hline 12.70 & 342.5 & & & & 0. & 778. & & 0.437 & 349.0 & 0.0985 & & \\
\hline 14.20 & 333.3 & . 951 & 1.951 & 1.827 & 0. & 875. & 0.08 & 0.437 & 349.0 & 0.2867 & -17.8 & 349. \\
\hline 18.80 & 345.6 & . 851 & 1.851 & 1.729 & 0. & 919. & . 0.38 & 0.437 & 392.0 & 0.2581 & -2.3 & 390. \\
\hline 19.80 & 349.3 & . 823 & 3.823 & . 706 & 0. & 928. & 0.43 & 0.437 & 391.5 & 0.2470 & -2.4 & 391. \\
\hline 24.80 & 370.0 & . 753 & . 753 & . 682 & 0. & 975. & . 0.68 & 0.385 & 394.6 & 0.1628 & 1.0 & 394. \\
\hline 29.80 & 383.6 & . 686 & 6.686 & . 652 & 0. & 1098. & 0.92 & 0.333 & 397.7 & 0.1424 & 0.6 & 97. \\
\hline 34.80 & 391.8 & . 618 & 8.618 & 8.616 & 0. & 1237. & 1.2 & 0.281 & 400. & 0.1309 & 0.1 & 00. \\
\hline 39.80 & 394.7 & . 546 & 6.546 & . 546 & 0. & 1390. & 1.4 & 0.229 & 403.5 & 0.1257 & -1.4 & 403. \\
\hline 44.80 & 397.2 & . 464 & +.464 & 4.464 & 0. & 1532. & 1.6 & 0.177 & 406.3 & 0.1220 & -2.1 & 406. \\
\hline 47.35 & 398.4 & . 416 & 6.416 & . 416 & 0. & 1568. & 1.7 & 0.150 & 407.9 & 0.1204 & -2.8 & 407. \\
\hline & & & & S & DAR & Y CHANN & NNEL BE & EGINS & & & & \\
\hline 52.35 & 393.7 & . 199 & 9.383 & . 199 & 0. & 1694. & 2.8 & 0.150 & 410.4 & 0.1265 & -7.3 & 410. \\
\hline 57.35 & 401.3 & . 068 & 8.163 & . 068 & 0. & 1866. & 2.2 & 0.150 & 413.3 & 0.1199 & -0.9 & 413. \\
\hline 62.35 & 409.1 & . 012 & 2.038 & 8.012 & O & 1994. & 2.6 & 0.150 & 416.3 & 0.1132 & 1.6 & 416. \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrrr}
MAXIMUM SCREW SPEED, RPM: & 50.0 & 75.0 & 100.0 & 125.0 & 150.0 & 175.0 & 200.0 \\
POWER CONSUMPTION, OF AVAILABLE: & 3.2 & 4.8 & 6.4 & 8.0 & 9.6 & 11.3 & 12.9
\end{tabular}

STRENGTH ANALYSIS OF YOUR SCREK (4140STEE):
!!!caution!:!
HNSIMUM PERMISSIBLE CHANTEL DEPTH FOR SAFE SCREW IS: 0.393 INCHES YOUR FEED SECTION IS 0.437 INCHES DEEP
CHECF RESIH VISCOSITY, SOURCE OF POHER CONSUHFTION
OR MODIFY SCREW GEOKETRY!
POWER CONSUMPTION EXCEEDS PRUDENT STRENGTH OF SCREW BY 18.45 :
\begin{tabular}{ccc}
VISCOSITY WAS CALCULATED IN THE FOLLOWING SHEAR RATE RANGE \\
SHEAF RATE & TEAKP. & VISCOSITY \\
\(1 / S E C\) & DEG.F & LB.SEC/SQ.IN \\
533.99 & 372.6 & 0.0562262 \\
0.50 & 349.0 & 0.2586268
\end{tabular}

VISCOSITY WAS CALCULATED IN THE FOLLOWING TEMPERATURE RANGE
SHEAR RATE TEMP. VISCOSITY

1/SEC DEG.F LB.SEC/SQ.IN
\(\begin{array}{lll}25.01 & 437.8 & 0.0937818 \\ 150.90 & 329.0 & 0.1218715\end{array}\)
SELECT ONE OF THE FOLLOWING:
```

1 - Data Mnalysic
2 - Run New Simulation

- EXIT

```

4 MBF 15

HOPPER ANALYSIS
ATTENTION - SOLIDS HEIGHT IN HOPPER IS LON !
```

SOLIDS HEIGHT m 36.00 IN. BASE PRESSURE = 0.21 PSI
INCREASE HEIGHT TO = 64.55 IN. HAXIMUH PRESSURE = 0.26 PSI

```

SOLIDS CONVEYING ZONE ANALYSIS

!!!CAUTIOH!!!
MAXIMUM PERHISSIBLE CHANNEL DEFTH FOR SAFE SCREW IS: 0.402 INCHES YOUR FEED SECTION IS 0.437 INCHES DEEP
CHECK RESIM VISCOSITY, SOURCE OF POWER CONSUTPTION
OF MODIFY SCREF GEOHEIRY!
POWER CONSUHPTION EXCEEDS PRUDENT STRENGTH OF SCREF BY 13.89 *
\begin{tabular}{ccc}
VISCOSITY HAS & CALCULATED IN THE FOLLOWING SHEAR RATE RANGE \\
SHEAR RATE & TEMP. & VISCOSITY \\
1/SEC & DEG.F & LB.SEC/SQ.IN \\
572.39 & 373.9 & 0.0542351 \\
0.82 & 390.1 & 0.1814330
\end{tabular}
\begin{tabular}{ccc}
VISCOSITY WAS CALCULATED IN THE FOLINWING TEMPERATURE RANGE \\
SHEAR RATE & TEMF. & VISCOSITY \\
\(1 / S E C\) & DEG.F & LB.SEC/SQ.IN \\
25.01 & 437.8 & 0.0937841 \\
286.29 & 329.0 & 0.0968691 \\
AT 50.00 RPM & 63.50 & LB/HR PRODUCTION RATE
\end{tabular}
HEAD PRESSURE IS 2179. PSI.

FOR MORE DETAIL
SELECT ONE OF THE FOLLOWING:
```

- Data Analyeis
- Run New Simulation
3 - EXIT

```

4MBF20

ATTENTION - SOLIDS HEIGHT IN HOPPER IS LOW !
```

SOLIDS HEIGHT = 36.00 IN. BASE PRESSURE = 0.14 PSI
INCREASE HEIGHI TO = 37.27 IN. MAXIMUM PRESSURE = 0.15 PSI

```

SOLIDS CONVEYING ZONE ANALYSIS

```

63.95	410.7	. 004	. 014	. 004	$\begin{gathered} 2656 \\ \text { ECONE } \end{gathered}$	$2656 .$   RY CHA	${ }_{N E L_{i}^{2}}$	$\begin{aligned} & 0.150 \\ & \text { ENDS } \end{aligned}$	417.3	0.1122	21.5	417.
64.83	412.1	. 003	. 003	. 003	2683.	2683.	3.3	0.269	417.9	0.1048	3.2	418.
65.70	413.2	. 002	. 002	. 002	2700.	2700.	3.3	0.387	418.5	0.1171	0.3	418.
70.65	417.8	. 000	. 000	. 000	2778.	2778.	3.4	0.412	421.1	0.1168	0.6	419.
75.60	421.4	. 000	. 000	. 000	2847.	2847.	3.4	0.437	423.9	0.1154	0.6	419.
77.16	422.6	. 000	. 000	. 000	2871.	2871.	3.5	0.338	425.0	0.1039	0.6	419.
78.72	424.2	. 000	. 000	. 000	2903.	2903.	3.5	0.238	425.9	0.0951	0.8	419.
95.32424, FLUTED SECTION WITH 1. PAIRS OF FLUTES												

```


!!!CAUTION!!!
MAYIMUM PERMISSIBLE CHANNEL DEPTH FOR SAFE SCREW IS: 0.375 INCHES YOUR FEED SECTION IS 0.437 INCHES DEEP CHECK RESIN VISCOSITY, SOURCE OF POWER CONSURPTION OR MODIFY SCREW GEOMETRY!
POWEP CONSUMPIION EXCEEDS PRUDENT STRENGTH OF SCREF BY 28.301
\begin{tabular}{ccc}
VISCOSITY WAS CALEULATED IN THE FOLLOWING SHEAR RATE RANGE \\
SHEAR RATE & TEMP. & VISCOSITY \\
1/SEC & DEG.F & LB.SEC/SO.IN \\
B63.73 & 342.5 & 0.0559446 \\
0.49 & 350.9 & \(0.254214 B\)
\end{tabular}

VISCOSITY WAS CALCULATED IN THE FOLLOWING TEMPERATURE RANGE
SHEAR RATE TEMP. VISCOSITY
1/SEC DEG.F LB.SEC/SQ.IN
\(\begin{array}{rrr}25.01 & 437.8 & 0.0937835\end{array}\)
\(150.73 \quad 329.0 \quad 0.1219206\)
AT 50.00 RPM \& \(63.50 \mathrm{LB} / \mathrm{HR}\) PRODUCTION RATE
head pressure is 3034. PSI.
FOR MORE DETAIL
SELECT ONE OF THE FOLLOWING:
```

1 - Data Analysis
2 - Run New Simulation
3 - EXIT

```

4MBF25

SOLIDS CONVEYING ZONE ANALYSIS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline OPTIMUM S BARREL & \multicolumn{3}{|l|}{URFACE TEMPERATURES
\[
72.50 \text { DEG.F }
\]} & \[
\begin{aligned}
& \text { FOR } \\
& \text { AND }
\end{aligned}
\] & \multicolumn{2}{|l|}{SOLIDS CONVEYING: SCREW = 22} & 29.00 DE & \\
\hline LOCATION & PHI & ROBP & FRIB & FRIS & TEMPERAT & , DEG F & POWER & PRESSURE \\
\hline IN & DEG & LB/CU.FT & & & BARREL & SCREW & HP & PSI \\
\hline 2.00 & 33.0 & 21.06 & 0.268 & 0.074 & 72.7 & 229.0 & 0.00 & 0.29 \\
\hline 2.00 & 32.0 & 21.23 & 0.279 & 0.084 & 73.1 & 229.0 & 0.00 & 0.86 \\
\hline 3.00 & 30.1 & 21.70 & 0.307 & 0.108 & 73.3 & 229.0 & 0.00 & 2.58 \\
\hline 4.00 & 25.9 & 23.16 & 0.383 & 0.172 & 74.2 & 229.0 & 0.01 & 8.08 \\
\hline 4.55 & 21.5 & 25.26 & 0.455 & 0.232 & 74.6 & 229.0 & 0.01 & 15.81 \\
\hline 5.05 & 16.8 & 28.76 & 0.422 & 0.245 & 265.5 & 229.0 & 0.03 & 29.54 \\
\hline 5.55 & 11.8 & 35.27 & 0.421 & 0.242 & 276.5 & 229.0 & 0.05 & 57.90 \\
\hline 6.05 & 7.3 & 48.55 & 0.622 & 0.238 & 286.7 & 229.0 & 0.11 & 129.05 \\
\hline 6.55 & 4.6 & 69.37 & 0.419 & 0.235 & 300.5 & 229.0 & 0.24 & 314.71 \\
\hline 7.05 & 3.6 & 84.89 & 0.414 & 0.234 & 326.6 & 229.0 & 0.56 & 791.44 \\
\hline 7.15 & 3.5 & 86.10 & 0.414 & 0.234 & 330.0 & 229.0 & 0.67 & 950.84 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & TOUT & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { x/6 } \begin{array}{l}
x / 6 \\
\text { SOLID CRATIO }
\end{array}
\end{aligned}
\]}} & PRES & RE & POWER & hout & TBAR & TVISC & D. HEAT & \multirow[t]{2}{*}{TEMLM} \\
\hline IN & DEG F & & & & & & HP & IN & DEG F & LB.SEC & BTU/IN & \\
\hline & & & & & REAL & FULL & & & & /SQ.IN & . MIN & \\
\hline 9.73 & 342.5 & & & & 1554. & 1554. & & 0.437 & 349.0 & 0.0870 & & \\
\hline 11.70 & 342.5 & & & & 1931. & 1931. & & 0.437 & 349.0 & 0.0992 & & \\
\hline 12.70 & 333.2 & . 952 & . 952 & . 829 & 2929. & 1929. & 0.7 & 0.437 & 349.0 & 0.2868 & -17.7 & 349. \\
\hline 17.30 & 345.4 & . 852 & . 855 & . 731 & 1921. & 1921. & 1.0 & 0.437 & 390.1 & 0.2587 & -2.3 & 390. \\
\hline 19.80 & 353.8 & . 784 & . 784 & . 673 & 1916. & 1916. & 1.2 & 0.437 & 391.7 & 0.2284 & -2.6 & 391. \\
\hline 24.80 & 372.7 & . 714 & . 714 & . 647 & 2023. & 2023. & . 1.4 & 0.385 & 394.7 & 0.1593 & 0.8 & 394. \\
\hline 29.80 & 384.8 & . 646 & . 646 & . 616 & 2144. & 2144. & . 1.6 & 0.333 & 397.7 & 0.1410 & 0.4 & 397. \\
\hline 34.80 & 392.2 & . 578 & . 578 & . 577 & 2283. & 2283. & . 1.9 & 0.281 & 400.6 & 0.1305 & 0.0 & 400. \\
\hline 39.80 & 395.0 & . 505 & . 505 & . 505 & 2435. & 2435. & . 2.1 & 0.229 & 403.5 & 0.1255 & -1.5 & 403. \\
\hline 44.80 & 397.5 & . 423 & . 423 & . 423 & 2575. & 2575. & . 2.3 & 0.177 & 406.3 & 0.1219 & -2.2 & 406. \\
\hline 47.35 & 398.5 & . 372 & . 372 & . 372 & 2610. & 2610. & . 2.4 & 0.150 & 407.9 & 0.1204 & -3.1 & 407. \\
\hline & & & & -SE & NDAR & CHAN & NNEL BE & EG. & & & & \\
\hline 52.35 & 394.6 & . 169 & . 326 & . 169 & 2734. & 2734. & . 2.5 & 0.150 & 410.5 & 0.1255 & -6.6 & 410. \\
\hline \multirow[t]{3}{*}{57.35} & 402.7 & . 052 & . 124 & . 052 & 2905. & 2905. & - 2.9 & 0.150 & 413.4 & 0.1185 & -0.4 & 413. \\
\hline & FILM & 4 THI & CKNESS & IS & O-TB & \(A R=0\) & 0.4157 E & E+03 & & & & \\
\hline & FILM & 4 THI & CKNESS & 15 & TB & AR= 0 & 0.4257 E & E+03 & & & & \\
\hline 62.35 & 410.0 & . 002 & . 007 & . 002 & 3033. & 3033. & . 3.5 & 0.150 & 416.3 & 0.1124 & 11.3 & 416. \\
\hline 63.95 & 412.2 & . 000 & . 000 & . 000 & 3062. & 3062. & 3.6 & 0.150 & 417.3 & 0.1110 & 0.7 & 417. \\
\hline
\end{tabular}

```

TORQUE = 4925.9 INCH.POUNDS
POWER BREAK-DOWN:
SOLIDS CONV. = 0.667 HP
MELTING = 2.001 HP
MIXING = 0.467 HP
FLIGHT CLEAR = 0.694 HP
COMPRESSION * 0.060 HP
MIXING DEvICE= 0.017 HP
PRESSURE FLUCTUATION= 73.64 PSI/CYCLE

```

```

MRXIMUM SCREW SPEED,RPM: 50.0 75.0 100.0 225.0 150.0 175.0 200.0

```

```

STRENGTH ANALYSIS OF YOUR SCREW (4140STEE):

```
!!!CAUTJON!!!
MAXIMUM PERMISSIBLE CHANNEL DEPTH FOR SAFE SCREH IS: 0.362 INCHES
YOUR FEED SECTION IS 0.437 INCHES DEEP
CHECK RESIN VISCOSITY, SOURCE OF POWER CONSUMPTION
OR MODIFY SCREK GEOMETRY!
POWER CONSUMFTION EXCEEDS PRUDENT STRENGTH OF SCREF BY 35.15 :
'ISCOSITY WAS CALCULATED IN THE FOLLOWING SHEAR FATE RANGE
\begin{tabular}{ccc}
SHEAR RATE & TEMP. & VISCOSITY \\
\(1 /\) SEC & DEG.F & LB.SEC/SQ.IN \\
877.20 & 342.5 & 0.0555635 \\
0.48 & 349.0 & 0.2586268
\end{tabular}

VISCOSITY WAS CALCULATED IN THE FOLLOHING TEMPERATURE RANGE
SHEAR RATE TEHP. VISCOSITY
 1/SEC DEG.F LB.SEC/SQ.IN
 \(\begin{array}{lll}25.02 & 437.8 & 0.0937795\end{array}\)
 \(154.31 \quad 329.0 \quad 0.1209496\)
AT 50.00 RPM \& 63.50 LB/HR PRODUCTION PATE
HEAD PRESSURE IS 3438. PSI.

FOR MORE DETAIL
SELECT ONE OF THE FOLLOWING:
```

- Data Analysis
- Run New simulation
- EXIT

```
```


[^0]:    University Microfilms International

[^1]:    ${ }^{1}$ Note: EXTRUD ${ }^{\circledR}$ is the Registered Trademark of Scientic Process and Research, Somerset, New Jersey.

[^2]:    2 Patented U.S. and other countries.

[^3]:    * Not to be used in Extruder-Die combination.

