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ABSTRACT 

AN ARTIFICIAL NEURAL NETWORK MODEL FOR PREDICTING FREEWAY 

WORK ZONE DELAYS WITH BIG DATA 

 

by 

Bo Du 

Lane closures due to road reconstruction and maintenance have resulted in a major source 

of non-recurring congestion on freeways. It is extremely important to accurately quantify 

the associated mobility impact so that a cost-effective work zone schedule and an efficient 

traffic management plan can be developed. Therefore, the development of a sound model 

for predicting delays or road users is desirable. 

A comprehensive literature review on existing work zone delay prediction models 

(i.e., deterministic queuing model and shock wave model) is conducted in this study, which 

explores the advantages, disadvantages, and limitations of different modeling approaches.  

The performance of those models seems restricted to predict congestion impact under 

space-varying (i.e., road geometry, number of lanes, lane width, etc.) and time-varying 

(i.e., traffic volume) conditions. To advance the delay prediction accuracy, a multivariate 

non-linear regression (MNR) model is developed first by incorporating big data to capture 

the relationship of speed versus the ratio of approaching traffic volume to work zone 

capacity for work zone delay prediction. The MNR model demonstrates itself able to 

predict spatio-temporal delays with reasonable accuracy.  

A more advanced model called ANN-SVM is developed later to further improve 

the prediction accuracy, which integrates a support vector machine (SVM) model and an 

artificial neural network (ANN) model. The SVM model is responsible to predict work 

zone capacity, and the ANN model is responsible to predict delays. The ultimate goal of 



ANN-SVM aims to predict spatio-temporal delays caused by a work zone on freeways in 

the statewide of New Jersey subject to road geometry, number of lane closure, and work 

zone duration in different times of a day and days of a week. There are 274 work zones 

with complete information for the proposed model development, which are identified by 

mapping data from different sources, including OpenReach, Plan4Safety, New Jersey 

Straight Line Diagram (NJSLD), New Jersey Congestion Management System (NJCMS), 

and INRIX. Big data analytics is used to examining this massive data for developing the 

proposed model in a reliable and efficient way. 

A comparative analysis is conducted by comparing the ANN-SVM results with 

those produced by MNR, RUCM (NJDOT Road User Cost Manual approach), and 

ANN-HCM (the ANN model with work zone capacity suggested by Highway Capacity 

Manual). It is found that ANN-SVM in general outperforms other models in terms of 

prediction accuracy and reliability. To demonstrate the applicability of the proposed 

model, an analysis tool, which adapts to ANN-SVM, is developed to produce graphical 

information. It is worth noting that the analysis tool is very user friendly and can be easily 

applied to assess the impact of any work zones on New Jersey freeways. This tool can 

assist transportation agencies visualize bottlenecks and congestion hot spots caused by a 

work zone, effectively quantify and assess the associated impact, and make suitable 

decisions (i.e., determining the best starting time of a work zone to minimize delays to the 

road users). Furthermore, ANN-SVM can be applied to develop, evaluate, and improve 

traffic management and congestion mitigation plans and to calculate contractor penalty 

based on cost overruns as well as incentive reward schedule in case of early work 

competition. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background and Problem Statement 

Transportation systems, especially roadway networks, form an integral part for the 

movement of passengers and goods aiding in progressive economic development. Severe 

weather conditions, heavy usage, and growing demand deteriorate the condition and 

functioning of these interconnected road networks over time. This makes it necessary to 

conduct regular road rehabilitation and reconstruction projects, which require different 

configurations of lane closures depending on when and where these activities occur.  

Closing a lane or even a shoulder of a road segment will cause disruptions in traffic 

flow, especially during peak hours. In the United States, 67% of federal funds were spent 

for roadway projects towards system preservation during 2011 and 2013 (Highway 

Statistics, 2013). These activities result in reduced travel time reliability and increased 

delays, crashes, wasted fuel, and frustration, which leads to increased road user costs; 

excess delay caused by lane closures in work zones is typically unavoidable. The U.S. road 

users lost approximately 552 million gallons of fuel and 482 million hours every year 

sitting in traffic jams caused by work zones (Facts and Statistics - Work Zone Delay, 

2016). Furthermore, traveler delay is considered critical in making key decisions about 

staging and scheduling for roadway reconstruction projects.  

The 1998 Federal Highway Administration (FHWA) report identifies this issue and 

recommends the development of a sound tool to predict and quantify work zone delays.  

Developing a method to predict the road user cost, delay and related traffic measures (i.e., 

speed, queue length, emissions, etc.) can aid in implementing appropriate counter 
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measures to mitigate the impacts, which is important for successful work zone 

management. Hence, developing a sound tool that provides reliable predictions for speed, 

delay and queue development due to work zone activities will help move traffic more 

efficiently and reduce motorist inconvenience by effectively planning work phasing and 

arranging detour routes.  

The deterministic queuing concept has been widely used to predict work zone delay 

because of its simplicity, which uses approaching traffic volume and work zone capacity as 

inputs (Abraham and Wang, 1981; Dudek and Richards, 1982; Chien and Schonfeld, 2001; 

Weng and Meng, 2013; Du and Chien, 2014). One drawback of the deterministic queuing 

model is that it usually underestimated the delay if the stochastic nature of traffic flow and 

the heterogeneous geometric conditions either were oversimplified or neglected (Chien et 

al., 2002; Tang and Chien, 2008). In addition, the approaching traffic speed is assumed to 

be constant in many previous studies (Chien et al. 2002; Karim and Adeli 2003; 

Habtemichael et al. 2015). Therefore, the deterministic queuing model shall be advanced in 

order to improve its prediction accuracy. 

Over the past two decades, the focus of modeling approaches in predicting work 

zone delay has transitioned from multivariate temporal correlation to multivariate 

spatio-temporal correlation and from parametric to non-parametric forms. As machine 

learning techniques can recognize patterns and adjust itself dynamically, the artificial 

neural network (ANN) models (e.g., radial basis function and multi-layer feed-forward 

neural networks, etc.) have been widely applied (Karim and Adeli, 2003; Jiang and Adeli, 

2003; Ghosh-Dastidar and Adeli, 2006). However, previous ANN models have been 

limited by using spot speeds and traffic counts collected by loop detectors.  
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The transportation industry has been experiencing a wide variety of unprecedented 

massive traffic data obtained from different sources, such as infrastructure sensors, mobile 

devices, and floating cars. This new and rich data (big data) needs to be managed, 

communicated, interpreted, aggregated, and analyzed in a reliable and efficient way. The 

use of conventional data management tools is not able to uncover hidden patterns, 

correlations, and other insights, which would leave the huge amount of traffic data 

underutilized. Therefore, big data analytics, which creates richer and more complete 

picture of what’s happening on the road, becomes a viable alternative for transportation 

engineers to analyze information efficiently and make decisions based on what they have 

learned.  

For the freeway work zone impact analysis, leveraging big data analytics and 

advanced delay prediction methods (e.g., ANN models), the accuracy of predicted work 

zone speed and delay can then be elevated. The ability of big data analytics to work faster 

and stay agile gives transportation agencies a competitive edge they did not have before. In 

addition, it would help transportation agencies improve work zone scheduling, reduce 

delays and better serve motorists. 

It is desirable to develop a sound model with big data for precisely predicting 

spatio-temporal work zone delay. Such a model helps transportation agencies have a good 

understanding of actual impacts of various highway reconstruction activities on a given 

network, and to be able to identify effective work zone mitigation measures. In addition, 

the proposed model can aid decision making by assessing the impacts of work zone 

activities in order to minimize disruptions to the traveling public. Furthermore, it can be 

utilized to accurately predict work zone road user costs more than the currently used 
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deterministic queuing models. More accurate road user cost prediction will allow for a 

more effective work zone congestion mitigation plan. This in turn will result in reduced 

travel delay, consumed fuel, and vehicle emissions. 

1.2 Objective and Work Scope 

The objective of this study is to develop a sound spatio-temporal freeway work zone delay 

prediction model with big data under various road geometric and work zone conditions.  

To achieve the above objective, the limitations of previous and existing delay 

prediction models are thoroughly reviewed. Then, two prediction models are developed 

and evaluated under various road geometric and work zone conditions. The first model is a 

multivariate non-linear regression (MNR) model, which utilizes the big data collected from 

various data sources including work zone information, road geometry, directional traffic 

volumes, and floating-car speed data. To enhance the prediction accuracy and reliability, 

the second model, an Artificial Neural Network (ANN) model, is developed utilizing the 

same big data mentioned above. To further improve the prediction accuracy, the work zone 

capacity used in the ANN model is predicted using the Support Vector Machine (SVM) 

model.  

The proposed freeway work zone delay prediction models are calibrated using 

historical traffic data on New Jersey freeways in years 2013 and 2014. To fill the gaps 

when no historical traffic data under work zone conditions are available during peak hours 

(i.e., 6-9 AM and 3-6 PM), a microscopic traffic simulation model (VISSIM) is used to 

simulate traffic data under various traffic conditions. To make the simulation closer to 

real-world condition, the traffic volume obtained from 2012 New Jersey Congestion 

Management System (NJCMS) database and speed data from INRIX are used to calibrate 



 

5 

 

the VISSIM network. Then, the performance of each model is evaluated based on the root 

mean square error (RMSE).  

1.3 Organization 

This dissertation is organized into six chapters. The flowchart of this study is shown in 

Figure 1.1. The focus of each chapter is briefly discussed below.  

 

 
 

Figure 1.1  Organization of the Dissertation. 

 

Chapter 1 introduces the background and the needs of developing a sound 

spatio-temporal freeway work zone delay prediction model, and discusses the objective 

and work scope of this research. Previous studies are reviewed and summarized in Chapter 

2, which include work zone capacity and delay prediction methods, model evaluation 
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performances, and big data technologies which could be utilized in the practice of work 

zone impact analysis and management. Chapter 3 describes the data needed for the model 

development, followed by the formulations of the work zone delay prediction models 

integrated with big data. Chapter 4 presents the development and evaluation of the 

proposed models based on qualified freeway work zone data collected in years 2013 and 

2014 on New Jersey freeways. The potential applications of the proposed models are 

presented in Chapter 5. Finally, research findings are concluded and suggestions to future 

studies are summarized in Chapter 6. 



 

7 

 

CHAPTER 2  

LITERATURE REVIEW 

 

The literature review in this chapter mainly focuses on the work zone delay prediction 

methods, model evaluation measures, and big data technologies. Since work zone capacity 

plays a key role affecting delays, this chapter first focuses on the existing studies on 

predicting restricted capacity caused by a work zone. Then, a detailed discussion of the 

models and tools for spatio-temporal work zone delay prediction is presented, followed by 

the reviews of big data technologies which could be utilized in the practice of work zone 

impact analysis and management.  

2.1 Work Zone Capacity Prediction 

Work zone capacity could be affected by many factors (e.g., number of opened lanes, work 

zone speed, approaching speed, work zone length, heavy vehicle percentage, etc.) which 

led to work zone capacity prediction more complex. Numerous relevant studies have 

focused on predicting work zone capacities based on field data, which can be generally 

categorized into three groups: parametric, simulation, and non-parametric approaches. 

2.1.1 Parametric Approaches 

Krammes and Lopez (1994) developed a regression model to predict the capacity for 

short-term freeway work zones using the data collected in 33 short-term work zones in 

Texas between 1987 and 1991. While the adjustment values of work intensity, presence of 

ramps, and heavy vehicles were considered in the prediction model, only a few factors 

affecting work zone capacity (i.e., work intensity, presence of ramps, and heavy vehicles) 



 

8 

 

were included. Kim et al. (2001) developed a new work zone capacity prediction 

methodology for freeways in Maryland based on more capacity reduction factors. These 

factors included the number of closed lanes, location of the closed lanes, heavy vehicle 

percentage, lateral distance to the open lanes, intensity of work activity, length and grade of 

the work zone. The authors reported that the developed regression model produced better 

capacity predicts as compared to the Krammes and Lopez model (1994). 

Elefteriadou et al. (2007) developed regression models for predicting capacity of a 

highway work zone considering the effects of heavy vehicles, lighting and weather 

conditions. A model was developed for analyzing three types of work zone configurations 

in Florida (i.e., 2-to-1, 3-to-2 and 3-to-1 lane closures). It was found that the model 

predicted work zone capacity more accurately based on simulation data. In addition, the 

presence of heavy vehicles had a significant impact on the capacity of a work zone. The 

work zone capacity dropped about 8% when the percentage of heavy vehicles increased 

from 0% to 20%.  

A more general model (Highway Capacity Manual, 2010) is applicable for 

predicting capacity of both short- and long-term work zones. The Highway Capacity 

Manual (HCM) recommended base capacity values for short-term work zones on 

freeways, which can be adjusted by using multiple reduction factors including percentage 

of heavy vehicles, intensity of work activity, lane width, and presence of ramps. While the 

HCM model is straightforward to apply, the work zones with shoulder closure were not 

considered. In addition, it is challenging for users to properly determine the reduction 

factors and examine delay impacts of shoulder closure work zones, thereby potentially 

result in in significant prediction errors caused by users’ own judgments.  



 

9 

 

2.1.2 Simulation Approaches 

Although the concepts of parametric approaches are widely accepted for predicting work 

zone capacity, the prediction results might not be accurate due to lack of proper data set. In 

addition, it is also challenging to examine the impact of different factors on work zone 

capacity by collecting field data under different work zone configurations. For example, it 

is unrealistic to set different work zone lengths, different speeds in the upstream of work 

zones, and different work zone durations in the field to cover all traffic and road geometric 

conditions. To evaluate the work zone impacts under various conditions, simulation 

models could be applied. 

In the past, simulation models have been applied in various studies focusing on 

work zone capacity predictions (Chien et al., 2002; Heaslip et al., 2009; Chatterjee et al., 

2009). Knowing that simulation models, once they are well calibrated, are capable of 

generating high fidelity traffic data given various work zone configurations, numerous 

research efforts exploiting simulation models have been conducted to predict work zone 

capacity. Heaslip et al. (2009) used CORSIM to develop a comprehensive database for 

various work zone scenarios, taking geometric, traffic, and work zone related factors into 

consideration. The simulated capacity was found to range between 1,288 vehicles per hour 

per lane (vphpl) and 1,982 vphpl, depending on the level of each parameter. However, the 

simulation models need to be well calibrated and require high levels of computational 

resources and time (Edara and Cottrell, 2007). 

2.1.3 Non-Parametric Approaches 

As discussed earlier, the parametric approaches usually provide low prediction accuracy 

because they cannot fully describe the complicated effects of influencing factors due to the 



 

10 

 

interaction effects and nonlinearities (Weng and Meng, 2013).  In addition, the simulation 

approaches face a great challenge that it is time consuming to simulate traffic data for work 

zone capacity prediction. The computation time consumed by simulation approaches may 

increase rapidly as the road network expands and the work zone duration and number of 

vehicles increase.  

To compensate for the deficiencies of the parametric and simulation approaches, 

numerous non-parametric approaches (e.g., artificial neural network model and support 

vector machine model) have been introduced to predict work zone capacity more 

accurately. Adeli and Jiang (2003) developed a radial-basis function neural network model 

to predict work zone capacity. This model took account for eleven different variables 

affecting work zone capacity. It was found that this neural network approach could provide 

higher prediction accuracy than parametric approaches. 

Support vector machine (SVM) is a new pattern recognition technique developed 

by Vapnik (1995 and 1998). It has been recently applied to many traffic volume and work 

zone capacity prediction analyses (Zhang and Xie, 2008; Xie et al., 2010; Lord and 

Mannering, 2010; Boto-Giralda et al., 2010; Yu and Abdel-Aty, 2013; Du et al., 2015). 

SVM has two unique features enabling to produce outstanding performance. On one hand, 

SVM is based on structural risk minimization principle and has better generalization ability 

than traditional work zone capacity prediction approaches (Suykens et al., 2002; Du et al., 

2015). It can reduce the chance of over-fitting and produce accurate predictions. On the 

other hand, a globally optimal solution is guaranteed regardless of the initial weights 

because the training of SVM is to solve a convex optimization problem (Scholkopf et al., 

2000; Zhang and Xie, 2008).  
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2.2 Work Zone Delay Prediction 

In this section, a summary of existing publications and reports related to the freeway work 

zone delay prediction is provided. Travel delay is defined as extra time motorists 

experience while traveling on a roadway segment due to the reduced capacity, such as 

work zone lane closures (Ullman et al., 2011; Weng and Meng, 2013; Habtemichael et al., 

2015). Predicting the work zone travel delay plays a critical role in developing traffic 

management plan and calculating road user cost. This section first describes the factors 

affecting work zone delay prediction. Then, a detailed discussion of the commonly used 

models and tools available for work zone delay prediction is presented. Similar to work 

zone capacity prediction, numerous methods have been developed for predicting work 

zone delays, which can be generally categorized into three groups: parametric, simulation, 

and non-parametric approaches. 

2.2.1 Factors Affecting Travel Speed 

Many factors influencing travel speed caused by a work zone lane closure were identified 

in the previous studies, which can be classified as follows. 

(1) Work zone related factors:  

 Number of closed lanes, total number of lanes, and lane closure location. Several 

studies (Dudek and Richards, 1981; Krammes and Lopez, 1994, Dixon et al., 1997; 

Kim et al., 2001; Chien et al., 2002; Chung et al., 2012) pointed out that the travel 

speed approaching and through a work zone vary significantly with the number and 

location of lane closures and total number of lanes due to restricted capacity. 

 Intensity of work activity. The intensity of work activity refers to the number of 

workers on the site, the number and size of work vehicles in use, and the proximity 

of the work activity to the travel lanes (HCM, 2010). The travel speed approaching 

and through a work zone may decreases as the intensity of work activity increases. 
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 Starting/ending time and duration of the work zone. The travel speed approaching 

and through a work zone varies significantly with starting/ending time and duration 

of the work zone (Chien and Schonfeld, 2001; Chien et al., 2002; Tang and Chien, 

2002; Meng and Weng, 2012; Du and Chien, 2014).  

(2) Traffic related factors:  

 Traffic volumes approaching a work zone. The travel speeds approaching and 

through a work zone may decrease as the approaching traffic volumes increase 

(Dudek and Richards, 1981; Krammes and Lopez, 1994; Chien and Schonfeld, 

2001; Chien et al., 2002; Tang and Chien, 2002; Du and Chien, 2014). 

 Work zone capacity. The work zone capacity will affect the travel speeds 

approaching and through a work zone. The work zone capacity prediction methods 

were discussed in Section 2.1. 

 Heavy vehicle percentage in traffic stream. Since heavy vehicles occupy more 

space and move more slowly than passenger cars on the roadway, a high heavy 

vehicle percentage may result in the decrease of the travel speeds approaching and 

through a work zone. 

(3) Geometric related factors:  

 Road type (Rural/Urban). The travel speeds approaching and though a work zone 

will be affected by road types (i.e., rural and urban roadways). 

 Grade. Kim et al. (2001) found that the presence of grades may exacerbate the flow 

constriction in work zones particularly in the presence of heavy vehicles which 

may result in travel speed reduction. 

 Effective lane width and lateral clearance of the work zone. Both the restricted lane 

width and lateral clearance of the work zone will negatively affect the travel speeds 

approaching and through a work zone. 

 Presence of ramps. The presence of ramps, especially the entrance ramp within the 

area approaching the work zone lane closure, can have a noticeable effect on work 

zone capacity for handling mainline traffic (HCM, 2010), which results in the 

reductions of the travel speeds approaching and through a work zone. 

(4) Others:  

 Weather and light conditions. Adverse weather (e.g., fog, snow, and rain) and bad 

light conditions have a negatively impact on travel speeds approaching and through 
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a work zone (Chien and Schonfeld, 2001; Chien et al., 2002; HCM, 2010; Weng 

and Meng, 2013). 

 Driver population. Non-commuter driver populations do not display the same 

characteristics as do regular commuters (HCM, 2010), which may have an impact 

on the travel speeds approaching and through a work zone. 

2.2.2 Parametric Approaches 

The deterministic queuing theory has been a commonly used parametric approach for 

predicting work zone delay (Abraham and Wang, 1981; Dudek and Richards, 1982; Chien 

and Schonfeld, 2001; Weng and Meng, 2013; Du and Chien, 2014). It has been in practice 

for decades, and was implemented by both the federal and state transportation agencies 

(e.g., FHWA and various state DOTs in Alabama, Florida, Illinois, New Jersey, Ohio, 

Oklahoma, Washington, etc.). It is often depicted using the diagram shown in Figure 2.1, in 

which the shaded area is the queuing delay (veh-hr) caused by work zone lane closures. 

The critical inputs are the approaching volume, roadway capacity under normal and work 

zone conditions, and duration of the work zone (McCoy et al., 1980; Jiang, 2001; Chien 

and Schonfeld, 2001; Tang and Chien, 2002; Du and Chien, 2014). The pros and cons of 

the deterministic model are examined as follows. 

In a study conducted by McCoy et al. (1980), the user delay was considered as the 

time lost while one is traveling through a construction and maintenance zone. The time lost 

is taken to be a function of the difference between the average overall speed of the two-lane 

two-way no-passing operation and that of the normal four-lane divided highway based on 

1979 data. Since they do not consider the situation in which the approaching traffic volume 

exceeds the work zone capacity, queuing delay is not taken into account in their study.  
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Figure 2.1  Queuing delay predicted by the deterministic model. 

 

Chien and Schonfeld (2001) used deterministic queuing theory to predict user 

queuing delays caused by a work zone with single lane closure on a four-lane highway 

(two-lane per direction). In addition to the queuing delay, the moving delay incurred by 

vehicles traveling through the work zone was also included in the user delay function. 

However, the time-varying traffic volume and factors affecting work zone capacity were 

not considered in this paper. 

Since work zone delay is significantly affected by volume-capacity ratio, light 

condition, heavy vehicle percentage, and lane width, Du and Chien (2014) formulated 

delay considering time-varying traffic pattern, work zone capacity adjustment factors and 

shoulder usage. A sensitivity analysis was conducted, and results suggested that shoulder 

use is needed, which increases work zone capacity and reduces user delay, especially 
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during peak hours. It is found that the traffic speeds under work zone and normal 

conditions with and without using the road shoulder were assumed (i.e., 45 mph and 55 

mph, respectively), which may affect the accuracy of predicted delays. The deterministic 

queuing model is suitable for predicting a delay for planning purposes but fails to provide 

accurate prediction under traffic operations wherein there are time-varying and congested 

traffic conditions (Chung, 2011). These models have a limited ability to analyze the 

spatio-temporal congestion impacts caused by work zones.  

Another well-known parametric approach for predicting work zone delay is based 

on the shockwave theory originally developed by Lighthill and Whitham (1955) and 

Richards (1956). The shockwave theory assumes that traffic flow is analogous to fluid flow 

and employs a flow-speed-density relationship to analyze the transition of traffic flow over 

space and time. The length of a physical queue can be determined based on a specified 

demand and capacity.  

A shockwave-based model developed by Wirasinghe (1978) was applied to 

determine total delay upstream of an incident. The model was indicated in a time-space 

diagram by considering two traffic-flow states (i.e., free-flow and jam). Al-Deek et al., 

(1995) predicted delays caused by single and multiple incidents on Route 1-880 in 

California with the shockwave theory. This method seemed effective in determining 

temporal and spatial incident delays, but overestimated the maximum incident queue 

length. 

Benekohal et al. (2013) used the shockwave theory to estimate queue and delay 

caused by a work zone. As concluded in that report the queue length and delay could be 

overestimated, especially under congested condition, because the shockwave speed was 
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approximated by interpolation from speed-flow curves rather than field data. Therefore, 

the shockwave theory seems is not a very reliable approach under congested traffic 

conditions (Habtemichael et al., 2015). 

2.2.3 Simulation Approaches 

Simulation approaches generally can be classified into macroscopic, mesoscopic, and 

microscopic approaches. Macroscopic simulation approaches are based on deterministic 

relationships of flow, speed, and density of the traffic stream (FHWA, 2006). Examples of 

macroscopic simulation approaches include Bottleneck Traffic Simulator (BTS) (Lin and 

Hall, 1991), Freeway Corridor Simulation Model (FREQ) (Smith et al., 1992), and 

TRANSYT-7F (Joseph et al., 1988; Schroeder et al., 2015).  

Mesoscopic approaches combine properties of both macroscopic and microscopic 

simulation approaches, which assign vehicle types and driver behaviors as well as 

relationships with roadway characteristics (FHWA, 2006). Examples of mesoscopic 

approaches include Continuous Traffic Assignment Model (CONTRAM) (Taylor, 2003), 

and Dynamic Network Assignment Simulation Model for Advanced Road Telematics for 

Planning (DYNASMART-P) (Sbayti et al., 2002).  

Microscopic simulation approaches simulate the movement of individual vehicles, 

based on theories of car-following and lane-changing (FHWA, 2006). Previous studies 

have been applying microscopic simulation approaches to quantify work zone delay 

(Chien et al., 2002; Meng and Weng, 2010; Chung et al., 2012). Knowing that well 

calibrated simulation models are capable of generating high fidelity traffic measures under 

various work zone configurations. CORSIM (Chien et al., 2002), PARAMICS (Wang et 
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al., 2002), and VISSIM (Edara et al., 2013) are among the most widely used microscopic 

simulation models.  

Chien et al. (2002) proposed a method for approximating work zone delay by 

integrating simulation data obtained from Corridor Simulator (CORSIM) and the concept 

of the deterministic queuing model. The simulation model considered various geometric 

conditions and time-varying traffic distributions was applied to predict queuing delays on 

interstate I-80 in New Jersey. However, to make the model more applicable to other work 

zone configurations, it requires extensive calibration and validation. 

Yang et al. (2008) used CORSIM to predict work zone delays due to reduced 

capacity. They found that predicting work zone delay with CORSIM was better than using 

deterministic queuing model because the simulation model can record the acceleration 

delay, deceleration delay, shockwave delay, and other factors that are ignored in 

deterministic queuing model. Since CORSIM can not simulate delays if a queue spillbacks 

beyond the entry nodes, traffic delay at work zones could be underestimated in congested 

conditions. In addition, tedious work is required to input data and long computation times 

may be needed for the simulation model. 

Wang et al. (2002) used the microscopic traffic simulation software, PARAMICS, 

to predict the traffic delay to road users under different maintenance schedule. This model 

is again only applicable when there is no queue, that is, the approaching traffic volume is 

less than the work zone capacity. 

Edara et al. (2013) developed a simulation model using VISSIM for predicting the 

traffic impacts (i.e., delay and queue length) of work zones under congested condition, 

which was calibrated using field data from two work zones in Missouri. Both work zones 



 

18 

 

involved a single lane closure on a three-lane section of freeway. The study found that 

VISSIM was appropriate for work zones in urban areas where lane closures may affect the 

traffic on neighboring roadways. Due to data limitations, the study recommended that the 

use of private sector data (e.g., INRIX) for predicting delay and queue length could 

generate a sufficiently large sample of work zones that could be used for calibration. 

To develop a simulation model, a comprehensive historical traffic volume 

origin-destination trip tables and speed data, high computational resources, 

time-consuming parameter calibration and long running time are required (Edara and 

Cottrell, 2007).  

2.2.4 Non-parametric Approaches 

To overcome the limitations of parametric and simulation approaches, non-parametric 

approaches were introduced. Since the concept of McCulloch–Pitt neuron introduced in the 

early 1940s (Adeli and Hung, 1995), the artificial neural network (ANN) has been evolving 

towards more precise and powerful model for pattern recognition and prediction. Neural 

networks were inspired by the mechanisms by which real biological neurons work in the 

human brain. The decision making process of the brain is simulated by an artificial network 

of neurons manipulating data among the many nonlinear nodes operating in parallel.  

In the transportation industry, artificial neural networks have been used to various 

traffic measures, such as traffic flow (Jiang and Adeli 2005; Kumar et al. 2015), freeway 

work zone capacity (Neubert et al. 2000; Karim and Adeli 2003), and work zone delay 

(Ghosh-Dastidar and Adeli 2006; Du et al. 2016). Zhang et al., (1997) use the simple back 

propagation (BP) neural network to simulate a macroscopic freeway traffic flow model. 

Park et al. (1998) use a radial-basis function neural network to forecast freeway traffic 
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flow. Suzuki et al. (2000) use a combination of the BP neural network and the Kalman 

filter and a macroscopic model to predict origin–destination (O–D) travel times and traffic 

flows.  

For the work zone related analysis, Karim and Adeli (2003) developed a radial 

basis function neural network (RBFNN) model to predict the work zone capacity, delay 

and queue length, considering number of lanes, number of open lanes, work zone layout, 

length, lane width, heavy vehicle percentage, grade, speed, work intensity, darkness factor, 

and proximity of ramps. Based on the prediction results of three examples, the authors 

concluded that RBFNN model was acceptable for most practical purposes, but the sample 

size used to train the RBFNN model is marginal. A neural network needs to be trained by 

using large number of samples so that the prediction results could be closer to actual 

observations.  

As discussed above, many studies have successfully applied ANN models (i.e., 

radial basis function and multi-layer feed-forward neural networks) to predict the freeway 

work zone capacity. However, these studies have not been directly applied to the work 

zone delay prediction problem. 

Vemuri et al. (1998) presented a sigmoidal neural network model for short-term 

forecasting of traffic delays in highway construction zones using data from presence 

detectors. The method was based on a modular approach wherein data from adjacent 

detectors was processed for predicting the travel time between the two detectors. 

Simulation examples were used to illustrate the traffic delay prediction algorithm. The 

simulation results indicated that the proposed approach performs reasonably well on 
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simulated data, while the performance of the proposed approach on field data needs to be 

investigated. 

Ghosh-Dastidar and Adeli (2006) presented a multi-layer feed-forward neural 

network model (i.e., Levenberg-Marquardt neural network model) for delay and queue 

length prediction at freeway work zones. The neural network model was trained using 

simulated data and tested using both simulated and real-world data. The computational 

model presented was applied to five examples of freeways with two and three lanes and 

one lane closure with varying entry flow or demand patterns. It is found that the actual 

traffic speed and volume patterns in freeway segments are not considered in this paper. 

Du et al. (2016) developed a multi-layer feed-forward ANN model to predict work 

zone delay using the probe-vehicle data (i.e., speeds under normal and work zone 

conditions) subject to the condition when traffic volume and capacity information are 

missing. Based on the prediction results of three examples, it was found that the ANN 

model outperformed the deterministic queuing model in terms of the accuracy in predicting 

travel delays caused by reconstruction projects. If the approaching traffic volumes are at or 

near the work zone capacity, this accuracy of prediction of this ANN model is not 

promising because the relationship of approaching traffic volume and work zone capacity 

is not considered. 

2.2.5 Tools for Work Zone Delay Prediction 

Memmott and Dudek (1985) developed a model called Queue and User Cost Evaluation of 

Work Zone (QUEWZ), which has been commonly used to predict user costs resulting from 

work zone lane closures. The model was designed to evaluate work zones on freeways or 

multilane divided highways with up to six lanes in each direction, considering percentage 
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of heavy vehicles, lane closure configuration (e.g., number of open lanes, length of the lane 

closure, and capacity of the work zone, etc.), hourly traffic volumes, and queuing length. 

An enhanced QUEWZ, called QUEWZ-98 (Copeland, 1998), approximated the work zone 

capacity based on the HCM 2000 procedures and the excess emissions to determine the 

road user cost. QUEWZ-98 can identify lane closure schedules that minimize work zone 

related delay.  It was reported that QUEWZ-98 is applicable to work zones on freeways or 

multilane divided highways (Benekohal et al., 2003). 

QuickZone (Mitretek System, 2000) is a work zone delay impact analysis tool 

developed by the FHWA. It is a Microsoft Excel-based application that facilitates software 

customization through an open source code. This tool is capable of calculating the average 

traffic delay and maximum queue length that could result from lane closure or restriction in 

both urban and suburban work zones. It was found that QuickZone could deliver of highly 

comprehensive and detailed output, and adopt the approach of modeling traveler response 

to prevailing traffic conditions, such as route changes, peak spreading and mode shifts. The 

main limitation of QuickZone is its detailed data requirements for both the main line where 

the work zone is installed and alternative route diversion roadways upstream of the work 

zone. Thus, users may not be able to gather all the data inputs that are necessary to 

implement QuickZone (Batson et al., 2009). 

Chitturi and Benekohal (2004) compared the performance of QUEWZ and 

QuickZone in predicting traffic delay at work zones using field data collected from 14 

freeway work zones in Illinois. Field data were compared to the results from QUEWZ and 

QuickZone software. QUEWZ overestimated the capacity and average speed, but 

underestimated the average queue length. The queue lengths from QuickZone did not 
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match the field data, which in general underestimated the queue length as well as the total 

delay observed in the field. Especially as demand is less than capacity, QuickZone does not 

return any user delay because it does not consider the delay due to reduced speed within the 

study work zone. 

The Work Zone Capacity Analysis Tool (WZCAT) analytical software program 

was developed by the Wisconsin Department of Transportation (2007). The main objective 

of this tool is to predict delays and queues for short-term work zone closure. WZCAT is 

developed based on the concept of deterministic queuing analysis through basic input/ 

output analysis. This tool was developed to function as an add-on program that operates 

within Microsoft Excel. Although WZCAT has a simple structure, it is not able to produce 

identical queuing patterns to the observed field data and significantly over predicts the 

queue length. Furthermore, the queuing pattern predicted was not similar to what was 

observed. 

The Iteris performance management system (iPeMS) is a commercial traffic data 

collecting, processing, and analyzing tool to assist traffic engineers in assessing the 

performance of the freeway system. It is an enhanced model from PeMS, which was 

originally developed by the University of California, Berkeley, in cooperation with 

Caltrans. This tool collects real-time traffic data from deployed intelligent transportation 

system (ITS) sensors, saves them in a data storage, and presents this information in various 

forms to traffic operators and planners. It also allows users to query freeway traffic data 

and to compute various performance measures. iPeMS can assist with conducting simple to 

advanced traffic analyses, including Highway Capacity Manual analyses, Synchro 

analyses, and computer simulations. In addition to determine the spatio-temporal impacts 
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of the existing work zone lane closures on the freeway, iPeMS also provides travel time 

predictions, where the algorithms combine historical and real time data. The longest 

prediction period is 30 minutes from the starting time (Choe et al., 2002). 

Rutgers Interactive Lane Closure Application (RILCA) is an interactive computer 

tool for planning lane closures for work zones developed for the New Jersey Turnpike 

Authority-Garden State Parkway division. Bartin et al. (2012) found that RILCA could 

provide various analyses and visualization options to plan lane closures interactively, 

obtain traffic volume information, determine the maximum queue length, and predict the 

time of clearance. However, the disadvantages of RILCA include the following:  

 Oversimplified formulae to predict queue length and delay,  

 No real-time traffic data, and  

 Lane closure analyses on only the NJ Turnpike and GSP. 

Chien et al. (2016) developed an on-line system analysis tool called the Work Zone 

Interactive Management Application - Planning (WIMAP-P), an easy-to- use and easy-to- 

learn tool for predicting the traffic impact caused by work zones on freeways and arterials. 

WIMAP-P is supported by a working database that was developed based on the data feeds 

from various sources, including OpenReach, Plan4Safety, New Jersey Straight Line 

Diagram (NJSLD), New Jersey Congestion Management System (NJCMS), and INRIX. 

The WIMAP-P system architecture comprises of three specific modules (i.e., a working 

database, a work zone speed prediction model, and an on-line software application) 

interacting together to generate the required results as shown below. 
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Figure 2.2  Work zone impact prediction module and result. 

Source: Chien, S., L. Spasovic, J. Lee, K. Mouskos, and B. Du. Feasibility of Lane Closures Using Probe 

Data. Draft Report. New Jersey Department of Transportation, 2016. 

 

An artificial neural network (ANN) and multivariate non-linear regression (MNR) 

models were developed based on 466 work zones, which are employed by WIMAP-P to 

predict speed caused by work zones on NJ freeways and arterials. The study found that the 

ANN model is slightly more accurate for predicting delays of historic work zones, but the 

MNR model demonstrates better reliability and consistency in predicting delays of work 

zones in places where there are no historic data. The graphical user interface of WIMAP-P 

can effectively facilitate data input and analysis in an efficient and reasonably intuitive 

manner while producing graphical results and customized reports. In addition to predict the 

spatio-temporal speed impact caused by work zones, WIMAP-P also computes the 

associated road user cost.  

In addition to the tools discussed above, other work zone delay prediction tools 

were reviewed and summarized in Table 2.1.  
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Table 2.1  Work Zone Impact Prediction Tools 

 

State Tool  Finding 

Tennessee 

(Tennessee DOT, 

2006) 

Lane Closure 

Decision Support 

System (LCDSS) 

Developed a web-based tool to predict 

queue length and delay based on HCM 

methodology for lane closures on 

Tennessee roads. 

Florida (Washburn et 

al., 2008) 
N/A 

Developed a non-linear regression model 

to predict work zone travel speed, 

saturation flow rate, queue delay, and 

queue length for two-lane roadway work 

zones (with a lane closure). 

Alabama (Turner et 

al., 2009) 
N/A 

Presented the results of research done to 

determine the need for an update of the 

queue prediction portion of ALDOT's lane 

closure analysis tool, a Microsoft 

Excel-based "Lane Rental Model" whose 

work zone capacity values are based on the 

1994 Highway Capacity Manual.  

Oregon (Oregon 

DOT, 2010) 

Web-based Work 

Zone Traffic 

Analysis (WZTA) 

Predicted project and corridor work zone 

delays by using the deterministic 

methodology. 

The thresholds used by WZTA are based 

on decades of on-the-job experience, 

technical observation and engineering 

evaluation. 

 

2.3 Performance Index for Model Evaluation 

This section focuses on the model evaluation measures that are widely used in evaluation 

of transportation models, such as coefficient of determination (R2), root mean squared error 
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(RMSE), and mean absolute percentage error (MAPE). These measures are discussed 

below. 

The R2 is a statistical measure of how close the data are to the fitted regression line 

(Forst, 2013). It is also known as the coefficient of determination. An R2 of 1.0 indicates 

that the regression line fits the data perfectly (Meng and Weng, 2010). The R2 can be 

defined as  

 

𝑅2 = 1 −
∑ (𝑐̂ℎ − 𝑐ℎ)2𝐻

ℎ=1

∑ (𝑐ℎ − 𝑐̅)2𝐻
ℎ=1

 

 

 

where: 

𝑐ℎ = The hth actual observation value; 

𝑐ℎ̂ = The hth predicted value;  

𝑐̅ = The mean of observations; and  

H = The total number of observations. 

The RMSE is a measure of the predictive success of the model and is a commonly 

referenced as providing an indication of the error of a model. It is usually calculated across 

all key observed and predicted count data points and may be calculated on an hourly basis, 

or across the full evaluation period depending on the focus of the project (New Zealand 

Transportation Agency, 2014). A smaller RMSE indicates greater accuracy of the model.  

Many studies (Wild, 1997; Zhang and Xie, 2008; Hou et al., 2015; Du et al. 2016) 

have used RMSE for evaluating the accuracy of work zone traffic flow forecasting models. 

For the work zone delay prediction model evaluation, the RMSE can be used for denoting 

the variability between the predicted and observed speeds upstream of a work zone as 

(2.1) 
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shown in Eq. 2.2. Note that the observed speeds may be obtained from the floating-car data 

as discussed in Section 2.4.  

 

𝑅𝑀𝑆𝐸 = √
1

𝐻
∑(𝑐̂ℎ − 𝑐ℎ)2

𝐻

ℎ=1

 

 

 

where:  

𝑐ℎ = The hth actual observation value; 

𝑐̂ℎ = The hth predicted value; and 

H = The total number of observations. 

The MAPE is another relative measure of error, which expresses accuracy as a 

percentage of the error as shown in Eq. 2.3. It has been used by several researchers (Wild, 

1997; Park, 2002; Chu et al., 2005; Hou et al., 2015; Du et al., 2016). 

 

𝑀𝐴𝑃𝐸 =
1

ℎ
∑ |

𝑐̂ℎ − 𝑐ℎ

𝑐ℎ
|

𝐻

ℎ=1

× 100%,       𝑐ℎ ≠ 0 

 

 

where: 

𝑐ℎ = The ith actual observation value; 

𝑐̂ℎ = The ith predicted value; and  

H = The total number of observations. 

There are other measures similar to the measures covered in this section, such as 

root mean square percentage error (RMSPE), mean absolute error (MAE), mean absolute 

deviation (MAD), and mean squared deviation (MSD), which were used by other 

(2.2) 

(2.3) 
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researchers (Fudala and Fontaine, 2010; Meng and Weng, 2010; Hou et al., 2015). In this 

study, the RMSE and MAPE are selected for model evaluation purpose. 

2.4 Big Data Technologies 

The traffic volume and speed data used in the existing work zone delay prediction studies 

were usually collected by loop detectors or road tube counters. In case the loop detectors 

are not installed near the work zone location, it is very challenging to obtain volume and 

speed data for work zone impact analysis. A wide variety of unprecedented massive traffic 

data obtained from different sources (e.g., infrastructure sensors, mobile devices, floating 

cars, and toll tags) has become increasingly available. As the sources of big data provide a 

lower-cost approaching for collecting traffic volume and speed data (Burt et al., 2014), the 

loop detectors would wane as these big data technologies become more common and 

mature.  

Previous studies (Haghani et al., 2009; Chen and Rakha, 2014; Elhenawy et al., 

2014) indicated that the floating-car speed data (i.e., INRIX) are reliable for travel time 

prediction. One of the most notable activities of using floating-car technology would be the 

I-95 Corridor Coalition project (2010), which demonstrated that floating-car data were 

accurate under a variety of traffic conditions, including congestion caused by incidents. 

However, it is very challenging to use floating-car data for developing work zone delay 

models as actual volume data under normal and work zone conditions are missing. Despite 

an increasing attention in modeling work zone delay prediction, only few studies (Chung, 

2011; Chung et al., 2012; Habtemichael et al., 2015) examined the spatio-temporal impacts 

of incidents with traffic volume and speed data collected by loop detectors. Therefore, it 

became desirable to interface floating-car data with an ANN framework that can precisely 
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predict spatio-temporal delays caused by work zone lane closures. Each of these 

floating-car technologies will be discussed below. 

Bluetooth is an open, wireless communication platform used to connect myriad 

electronic devices. Many computers, car radios and dashboard systems, PDAs, cellular 

phones, headsets, or other personal equipment are, or can be, Bluetooth-enabled to 

streamline the flow of information between devices (KMJ Consulting, Inc., 2010). 

Manufacturers typically assign unique Median Access Control (MAC) addresses to 

Bluetooth equipped devices. Bluetooth-based travel time measurement involves 

identifying and matching the MAC addresses of Bluetooth-enabled devices carried by 

motorists, passing a detector. The matchings of Bluetooth device can be used to measure 

arterial travel time, average running speed, and origin-destination patterns of travelers. 

Since MAC addresses are not tracked when the device is sold within the marketplace, these 

unique addresses can be detected and matched without establishing a relationship to 

personal or, otherwise, sensitive information, and thus, keeping the traveling public and 

their personal information anonymous (KMJ Consulting, Inc., 2010; Cambridge 

Systematics, Inc., 2012). 

The sample size of data is also critical in providing accurate and up-to-date travel 

times. A research conducted by University of Maryland (Puckett and Vickich, 2010) 

suggests that a four percent detection rate is required for roadways of 36,000 AADT or 

greater. Roads with lower volumes would require a larger match percentage to attain an 

adequate sample. A study by Tarnoff et al. (2009) has discussed that 5 – 7 % of vehicles in 

a traffic stream have Bluetooth enabled devices, which would be considered an adequate 

sample size.  
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Bluetooth technology is new but rapidly maturing as the percentage of vehicles 

with Bluetooth devices (smartphones, in-vehicle connections, tablets, etc.) increases 

rapidly; it is also easy to install and maintain.  With the cost per unit being relatively low, 

the predictions of travel times performed by Bluetooth technology have been compared to 

floating car methods and radio-frequency identification (RFID) as an accurate and 

cost-effective alternative (KMJ Consulting, Inc., 2010; Mendez, 2011). 

Another commonly used floating-car technologies is toll tags, which used for 

electronic toll collection and deployed at various points on a roadway network to obtain 

average travel time and speed information. With technological advancements, the traffic 

data collection technologies utilizing floating-car concepts have improved rapidly in the 

past few years, in terms of geographic coverage, sample size, accuracy in detecting vehicle 

location, and data processing algorithms. These improvements engendered greater 

accuracy and reliability of predicted information, such as speed and travel time, based on 

the floating-car traffic data. There are four components in a toll tag travel time system: 

electronic tags, antennas, readers, and a central computing and communication facility 

(Cambridge Systematics, Inc., 2012). As a vehicle with an electronic tag passes underneath 

a toll tag reader, the time and toll tag identification number are recorded. If the same 

vehicle passes the next reader location, the travel time and average speed between the two 

locations can be determined. The toll tag identification number can be coded to protect 

privacy.  

Sample size requirements for a toll tag travel time system depend on the market 

penetration of the toll tags. Ferman et al. (2005) suggests that a three percent penetration 

rate on freeways and 5 % on arterials is adequate. According to the New Jersey Turnpike 
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Authority (2008), more than 70 % of the vehicles registered in New Jersey have E-Z Pass 

toll tags. Similar to Bluetooth technology, toll tag readers are also mature due to their 

capability of providing a huge number of data points. With its simplicity in installation and 

maintenance, the percentage of toll transactions in New Jersey was predicted to be more 

than 70 % in 2010 (INRIX, 2008). The cost per unit is also relatively low. 

Radar detection system is a non-intrusive radar-based system operating in the 

microwave band and needs to be mounted on a roadside pole above a certain height.  The 

radar sensor provides per-lane presence, volume, occupancy, speed, as well as 

classification information in up to 12 user-defined detection zones. Output information is 

provided to existing controllers via contact closure and to other computing systems by 

serial port, IP communication port or by an optional radio modem. A single radar unit can 

replace multiple inductive loop detectors and the attendant controller. RTMS (Remote 

Traffic Microwave Sensor), one of the advanced radar detectors, is all-weather accurate 

and virtually maintenance-free. The detection range of one RTMS is up to 250 feet, which 

provides coverage for up to eight lanes of traffic (Image Sensing Systems, Inc., 2012). 

Microwave radar detector technology is mature, due to its ability to provide accurate spot 

speed data despite its inaccuracy for volumes. Radar units are easy to maintain, which can 

be conducted on radar units without closing traffic lanes (Cambridge Systematics, Inc., 

2012). 

Besides the floating-car technologies mentioned earlier, some commercial vendors 

also provide floating-car data, such as INRIX, TomTom, and HERE. They are based on 

GPS tracking systems, which capture vehicle movements nearly continuously within a 

very small time interval (e.g., 1 second) (Mudge et al., 2013).  It is assumed that the travel 
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time of tagged vehicle in a vehicle stream represents well the true travel time of all (tagged 

and non-tagged) vehicles in the stream. These methods capture the actual volume of all 

tagged vehicles while the portion of non-tagged vehicles remains unknown. 

The INRIX reported speeds are generated based on the data from a variety of 

sources including GPS-enabled vehicle fleets, smart phones, and connected cars equipped 

with GPS locator devices (Schrank et al., 2015). The primary INRIX data is from 

GPS-enabled vehicle fleets (e.g., delivery vans, taxi cabs, and long-haul trucks, etc.), 

which are supplemented by sensor-based data (Seymour et al., 2011). The collected data 

are compiled into an average speed profile for most freeways and arterials, which covers 

nearly 5 million miles of road, ramp and interchange in over 40 countries (INRIX, 2016). 

INRIX data attribute consists of three levels, which are real-time data for the specific 

segment, historical data (e.g., road reference speeds), and combination of real-time and 

historical data (Middleton et al., 2011). 

When sample sizes are large, it is likely that the average speed reflects the 

percentages of different vehicle types in the traffic stream, resulting in less bias (Turner et 

al., 2011). Haghani et al. (2009) found that the INRIX data have a satisfying accuracy on 

freeways. White et al. (2010) suggests that because INRIX data is based largely on 

fleet-based GPS probe vehicles, its use may be an issue for arterials, due to reduced sample 

size and the fact that commercial vehicles operate differently than other vehicles in terms 

of their acceleration and deceleration characteristics. Data quality specifications are in 

effect when flow exceeds 500 vehicles per hour and apply to both freeways and arterials 

(Brewer, 2007). Unlike toll tag readers and Bluetooth-installed readers, INRIX requires no 
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installation or maintenance cost for transportation agencies. The data providers have great 

incentive to provide accurate data at a low cost.  

2.5 Summary 

This chapter presented a literature review focusing on work zone capacity and delay 

prediction approaches, model evaluation measures, and big data utilized in work zone 

impact analysis. The findings and conclusions on the comprehensive literature review have 

been identified. 

Many research efforts predicted work zone capacity using parametric, 

non-parametric, and simulation approaches. However, the non-linear and interrelating 

factors affecting work zone capacity could not be fully described by parametric approaches 

and it is time consuming to calibrate and apply simulation models for work zone capacity 

prediction. Therefore, in order to improve the prediction accuracy and computational 

efficiency, there is a need to develop a creditable non-parametric model (i.e., SVM model) 

to uncover the non-linear relationships between influencing factors.  

Similar to the approaches for the work zone capacity prediction, the approaches 

developed for predicting work zone delay have been classified into parametric, 

non-parametric, and simulation approaches. Each approach has demonstrated good 

performance for work zone delay prediction under situation suitable for it. To fulfill the 

objective of this research, a sound and reliable model should be developed to predict 

spatio-temporal freeway work zone delay leveraging big data. 

Two well-known parametric methods developed for work zone delay prediction 

include the deterministic queuing models and the shockwave models. These two models do 

not take into account the dynamic changes of traffic volumes and speeds over space and 
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time and are therefore not very accurate and reliable for work zone delay prediction. 

Although the simulation approaches are able to provide the most detailed traffic data for 

work zone delay prediction, they suffer from several shortcomings as they usually require 

high computational resources, time-consuming parameter calibration, and long running 

time.  

To compensate for the weak points of the parametric and simulation approaches, 

non-parametric approaches have been employed for the prediction of work zone delay in 

many previous studies. One of the most widely used non-parametric approaches is the 

ANN, which is data-driven, flexible, and able to model non-linear dependencies of the 

influencing factors.  

With technological advancements, a wide variety of massive traffic data from 

infrastructure sensors and floating cars has become increasingly available. This new and 

rich data has made a way for big data analytics as an emerging method for predicting 

freeway spatio-temporal work zone delay. Although several studies (Vemuri et al. 1998; 

Ghosh-Dastidar and Adeli, 2006) used ANN to predict work zone delay but with limited 

traffic data from loop detectors or simulation, few studies were found assessing work zone 

spatio-temporal delay with big data. Hence, this dissertation tends to enhance the 

prediction accuracy, which focuses on capturing the relationship between approaching 

traffic volumes and work zone capacity predicted by a SVM model. With that, the 

spatio-temporal speed under a work zone condition can be predicted using an ANN model. 
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CHAPTER 3  

METHODOLOGY 

 

This chapter describes the data needed for the model development, followed by the 

equations of two spatio-temporal freeway work zone delay prediction models considering 

approaching traffic volumes, work zone capacity, and normal speeds prior to the work 

zone, including multivariate non-linear regression (MNR) model and the artificial neural 

network (ANN) model, are discussed in this chapter. The work zone capacity in the MNR 

model is approximated using reduction factors. While in the ANN model, the work zone 

capacity is predicted from SVM model. It is noted that the input variables of MNR and 

ANN models are determined based on Pearson and Spearman correlation tests and data 

availability. These models are explored, tested, and evaluated through historical freeway 

work zones for years 2013 and 2014 in New Jersey, which will be discussed in Chapter 4.  

3.1 Database Development 

This section presents the main characteristics of the database (DB) for the proposed model 

development. To develop a sound model for predicting speed/delay caused by an expected 

work zone with lane closures on freeways, it requires significant amount of data under 

different categories (Karim and Adeli, 2003; Edara and Cottrell, 2007; Taylor et al. 2007; 

Habtemichael et al. 2015): 

 Historical work zone data: work zone related information, such as work zone type, 

date and locations of the work zone, lanes closed, length, duration, lane width, 

shoulder width, shoulder usage. 

 Road geometry data: road type, number of lanes, distance, speed limit, grade, 

median/shoulder width, lateral clearance, and interchange locations. 
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 Traffic volume data: weekday and weekend passenger-car and heavy vehicle 

volumes collected in the field or from the sources of big data presented in Section 

2.4. 

 Floating-car data: traffic speeds for freeway segments under normal and work zone 

conditions, which are collected by floating-car technologies listed in Section 2.4.  

 Crash records: crash location, severity, and start/end time. 

The overview of these databases is shown in Figure 3.1. 

 

Figure 3.1 General database overview. 

 

It is noted that the process to define the final DB is based on the availability and 

applicability to predict the freeway work zone speed and delay as required by the proposed 

prediction model. The DB can be developed using the advanced computing resources, 

which provided adequate of data storage and computing processing to handle the large data 

resources that are necessary to process and execute the proposed prediction model.  
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3.2 Model Formulation 

Two models, including a multivariate non-linear regression (MNR) model and a 

multi-layer feed forward ANN model, are developed to predict the spatio-temporal delay 

caused by a planned work zone on freeways. This section describes the basic 

configurations of MNR and ANN models followed by identification of inputs for their 

implementation on freeways. 

3.2.1 The Multivariate Non-Linear Regression Model 

When a work zone is present especially during the peak hours, the traffic flow will be 

significantly interrupted due to an insufficient capacity. This will reduce the speed 

upstream from the work zone. The congestion will continue to propagate, the speed of this 

disturbance will dependent on the upstream traffic volume and capacity of the work zone 

segment. In order to predict the spatio-temporal speed under work zone condition, the work 

zone characteristics (e.g., work zone length and duration), road geometry (e.g., number of 

lanes and grade), and traffic condition (e.g., volume and speed) shall be taken into account 

(Karim and Adeli, 2003; Edara and Cottrell, 2007; Taylor et al., 2007; Habtemichael et al., 

2015). 

As mentioned in the literature review, the potential input variables of work zone 

delay prediction suggested by previous studies (Kim et al., 2001; Adeli and Jiang, 2003; 

Edara and Cottrell, 2007; Du et al., 2016) include approaching traffic volume, work zone 

capacity, work zone length, work zone duration, work zone lane width, to name a few. The 

actual choice of inputs is based on the Pearson and Spearman correlation tests and data 

availability. Briefly, the Pearson correlation evaluates the linear relationship between two 

variables while the Spearman correlation evaluates the non-parametric relationship 
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between the variables. The closer the value is to 1 or -1, the stronger the correlation 

between the variables. It will be discussed later in the next chapter that how the factors 

affecting speed of upstream work zone in this study are determined. 

The general freeway MNR model is a non-linear function considering approaching 

traffic volumes, work zone capacity, and normal speeds prior to the work zone. For each 

freeway section i (1 ≤ 𝑖 ≤ 𝑚) and for each specific time interval j (1 ≤ 𝑗 ≤ 𝑛), a total of m 

x n speed observations are available during the observation period. As discussed in 

previous chapters, the big data analytics allows researchers to examine large amounts of 

traffic data to efficiently uncover hidden patterns, correlations and other insights. The 

speed for any particular time interval/section combination can be obtained either from loop 

detector stations or floating-car data sources (e.g., Bluetooth, INRIX, etc.) using big data 

analytics. From these speed observations, a spatio-temporal distribution of speeds under 

normal condition (i.e., condition in which there is no incident) prior to the work zone 

(denoted as 𝑠𝑖𝑗) can be constructed as in Table 3.1.  

Then associated with a work zone occurred on freeway section i at time j, a 

spatio-temporal speed matrix under work zone condition prior to the work zone (denoted as 

𝑦𝑖𝑗) can be constructed based on observed freeway traffic data (e.g., work zone speed, 

traffic flow approaching work zone, etc.). Table 3.2 shows the speed matrix under work 

zone condition.   
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Table 3.1  Speed Distribution under Normal Condition 

 

  
  
  
T

ra
ff

ic
 F

lo
w

 D
ir

ec
ti

o
n
 →

 

Freeway 

Section 

Time Interval 

1 2 … j … n 

1 𝑠11 𝑠12 … 𝑠1𝑗 … 𝑠1𝑛 

2 𝑠21 𝑠22 … 𝑠2𝑗 … 𝑠2𝑛 

⋮ ⋮ ⋮ … ⋮ … ⋮ 

i 𝑠𝑖1 𝑠𝑖2 … 𝑠𝑖𝑗 … 𝑠𝑖𝑛 

⋮ ⋮ ⋮ … ⋮ … ⋮ 

m 𝑠𝑚1 𝑠𝑚2 … 𝑠𝑚𝑗 … 𝑠𝑚𝑛 

 

 

Table 3.2  Speed Distribution under Work Zone Condition 
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Freeway 

Section 

Time Interval 

1 2 … j … n 

1 𝑦11 𝑦12 … 𝑦1𝑗 … 𝑦1𝑛 

2 𝑦21 𝑦22 … 𝑦2𝑗 … 𝑦2𝑛 

⋮ ⋮ ⋮ … ⋮ … ⋮ 

i 𝑦𝑖1 𝑦𝑖2 … 𝑦𝑖𝑗 … 𝑦𝑖𝑛 

⋮ ⋮ ⋮ … ⋮ … ⋮ 

m 𝑦𝑚1 𝑦𝑚2 … 𝑦𝑚𝑗 … 𝑦𝑚𝑛 

 

 

As traffic increases on the network, the resulting travel time and delay increase, 

especially when the approaching traffic volume is close to the work zone capacity. In an 
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effort to better represent speed reduction and delay due to work zone activities, the concept 

of the Bureau of Public Roads (BPR) function (Bureau of Public Roads, 1964) is adapted in 

this study to construct the corresponding speed-flow relationships based on historical work 

zone data to achieve reasonable congested weighted speeds. Therefore, the MNR model is 

formulated as follows.  

 

𝑦𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗

𝑠𝑖𝑗

1 + 𝑐 ( 
𝑄𝑗

𝐶𝑤
 )

𝑑 

 

where: 

𝑦𝑖𝑗 = The average speed of segment i at time j under work zone condition (mph); 

𝑠𝑖𝑗 = The average speed of segment i at time j under normal condition (mph); 

𝑖 = The ith freeway segment in upstream of work zone (1 ≤ 𝑖 ≤ 𝑚); 

𝑗 = The jth time interval after work zone started (1 ≤ 𝑗 ≤ 𝑛);  

𝑚 = The number of freeway segments (e.g., Traffic Message Channels) upstream 

of work zone; 

𝑛 = The number of time intervals (e.g., 15 minutes) since the beginning of a 

freeway work zone till 2 hours after the work zone has been removed; 

𝑄𝑗 = Traffic volume approaching the work zone at time j (vph);  

𝐶𝑤 = Work zone capacity (vph); 

𝑎𝑖𝑗, 𝑏𝑖𝑗 = Freeway model coefficients of segment i at time j; and 

𝑐, 𝑑 = Arrays of freeway model coefficients. 

 

(3.1) 
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In Eq. 3.1, arrays of coefficients c and d determine how fast the speed under work 

zone condition ( 𝑦𝑖𝑗 ) decreases from normal to congested conditions. Based on the 

information gathered in the database developed previously, the optimal values of 𝑎𝑖𝑗, 𝑏𝑖𝑗, 

c, and d can be determined by minimizing RMSE (as defined by Eq. 3.2) with an 

exhaustive search algorithm (ESA) (Hajdin and Lindenmann, 2007; Weng and Meng, 

2012). The detailed step procedure of ESA will be discussed in Chapter 4. As discussed in 

Section 2.3, the lower the RMSE, the better is the model performance.  

 

𝑅𝑀𝑆𝐸 = √
1

𝑚𝑛
∑(𝑦̂𝑖𝑗 − 𝑦𝑖𝑗)2

∀𝑖,𝑗

 

 

where:  

𝑦̂𝑖𝑗 = Predicted speed of segment i at time j (mph); and 

𝑦𝑖𝑗  = INRIX reported speed of segment i at time j under work zone condition 

(mph). 

The work zone capacity (𝐶𝑤) in Eq. 3.1 is approximated as a product of normal 

capacity (𝐶), work zone capacity reduction factor ( 𝛿), total number of lanes (𝑁𝑇), and 

open lane ratio (𝑅𝑜). Thus, 

 

𝐶𝑤 = 𝐶 ∗  𝛿 ∗ 𝑁𝑇 ∗ 𝑅𝑜 
 

where:  

𝐶 = The normal capacity (vphpl); 

𝛿 = The work zone capacity reduction factor; 

(3.2) 

(3.3) 
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𝑁𝑇 = The total number of lanes; and 

𝑅𝑜 = The ratio of the number of open lanes to the total number of lanes. 

The optimal values of capacity reduction factors in Eq. 3.3 under different lane 

configurations (i.e., 2-lane, 3-lane, and 4-lane) can be determined by minimizing the 

corresponding RMSE with ESA. 

It is worth noting that it is important to identify the spatio-temporal boundaries (i.e., 

m and n in Eq. 3.1) by comparing the predicted speed (𝑦̂𝑖𝑗) to the normal speed (𝑠𝑖𝑗) for 

each segment i at time j, in a similar manner to previous studies (Chung, 2011; Chung et 

al., 2012; Du et al., 2016). There are two possible conditions that can be observed: 

 If the predicted speed of segment i at time j is lower than or equal to 75% of its 

normal speed value (i.e., 𝑦̂𝑖𝑗 ≤ 0.75𝑠𝑖𝑗), that segment is considered as negatively 

affected by the work zone at time j. Adjacent upstream segments meeting this 

condition are joined together to form the queue. 

 When predicted speeds on every upstream segment associated with a queue have 

returned to values greater than 75% of their normal speed values (i.e., 𝑦̂𝑖𝑗 >

0.75𝑠𝑖𝑗) and prevailed for one time interval (e.g., 15 minutes), the work zone 

impact is considered cleared. 

Therefore, the congestion status of upstream segment i at time j is associated with a 

binary variable denoted as 𝜏𝑖𝑗. If the congestion status is positively affected by the work 

zone, 𝜏𝑖𝑗 = 1; otherwise, 𝜏𝑖𝑗= 0. Thus,  

 

𝜏𝑖𝑗 = {
1            𝑖𝑓 ŷ𝑖𝑗 ≤ 0.75𝑠𝑖𝑗

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
 

 

Relative to the display of information in Table 3.2, an example of the negative 

effects (i.e., speed reduction) of the work zone can be identified diagrammatically as 

(3.4) 
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shown in Table 3.3. The negative effects of the work zone will be propagated from the 

work zone location to upstream sections. Such a discontinuity between non-congested and 

congested traffic flows and speeds is the reason for instabilities, spreading of shock waves, 

and formation of congestion with stop-and-go waves. With the criteria defined above, the 

segments affected by the reconstruction project (light red cells in Table 3.3) can be 

identified. Then the spatio-temporal boundaries of the work zone can be determined 

accordingly. It should be pointed out that the criteria of determining spatio-temporal 

boundary can be adjusted based on user preference. 

Table 3.3  Example of Freeway Sections Impacted by the Work Zone 

 

T
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w
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o
n
 →

 

Freeway 

Section 

Time Interval 

1 2 3 4 5 6 7 8 … n 

1 𝑦̂11 𝑦̂12 𝑦̂13 𝑦̂14 𝑦̂15 𝑦̂16 𝑦̂17 𝑦̂18 … 𝑦̂1𝑛 

2 𝑦̂21 𝑦̂22 𝑦̂23 𝑦̂24 𝑦̂25 𝑦̂26 𝑦̂27 𝑦̂28 … 𝑦̂2𝑛 

3 𝑦̂31 𝑦̂32 𝑦̂33 𝑦̂34 𝑦̂35 𝑦̂36 𝑦̂37 𝑦̂38 … 𝑦̂3𝑛 

4 𝑦̂41 𝑦̂42 𝑦̂43 𝑦̂44 𝑦̂45 𝑦̂46 𝑦̂47 𝑦̂48 … 𝑦̂4𝑛 

5 𝑦̂51 𝑦̂52 𝑦̂53 𝑦̂54 𝑦̂55 𝑦̂56 𝑦̂57 𝑦̂58 … 𝑦̂5𝑛 

6 𝑦̂61 𝑦̂62 𝑦̂63 𝑦̂64 𝑦̂65 𝑦̂66 𝑦̂67 𝑦̂68 … 𝑦̂6𝑛 

7 𝑦̂71 𝑦̂72 𝑦̂73 𝑦̂74 𝑦̂75 𝑦̂76 𝑦̂77 𝑦̂78 … 𝑦̂7𝑛 

8 𝑦̂81 𝑦̂82 𝑦̂83 𝑦̂84 𝑦̂85 𝑦̂86 𝑦87̂ 𝑦̂88 … 𝑦̂8𝑛 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ … ⋮ 

m 𝑦̂𝑚1 𝑦̂𝑚2 𝑦̂𝑚3 𝑦̂𝑚4 𝑦̂𝑚5 𝑦̂𝑚6 𝑦̂𝑚7 𝑦̂𝑚8 … 𝑦̂𝑚𝑛 

 

Set of freeway 

sections impacted 

by the work zone 
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As mentioned earlier, the accurate prediction of traffic delay is of utmost 

importance in supporting the efficient planning of work zones for transportation agencies 

(e.g., traffic management centers, metropolitan planning organizations and state DOTs). 

The predicted spatio-temporal speeds under work zone condition with the developed MNR 

model can be used for assessing work zone impacts (e.g., delay, delay cost, and queue 

length). The work zone delay (D) can be defined as the additional delay produced by the 

reduced speed caused by the work zone (𝑦̂𝑖𝑗) over the normal speed (𝑠𝑖𝑗), which can be 

calculated by Eq. 3.4. 

 

𝐷 = ∑ 𝑚𝑎𝑥 {𝑙𝑖 [
1

𝑦̂𝑖𝑗
−

1

𝑠𝑖𝑗
] 𝑉𝑖𝑗, 0}

∀𝑖,𝑗

,            ∀𝜏𝑖𝑗 = 1 

 

 

where: 

𝐷 = The total queue delay caused by the work zone (veh-hr); 

𝑙𝑖 = The length of freeway segment i (mi); and 

𝑉𝑖𝑗 = The traffic volume of segment i at time j (veh). 

Consequently, the congested impact length (or called queue length) at time j can be 

measured as a summation of congested segments positively affected by the work zone at 

time j.  

 

𝐿𝑗 = ∑(𝜏𝑖𝑗𝑙𝑖)

∀𝑖,𝑗

,                  ∀𝜏𝑖𝑗 = 1 

 

 

where: 

𝐿𝑗 = The queue length at time j (mi). 

(3.5) 

(3.6) 
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Note that the maximum queue length can thus be determined as the greatest 𝐿𝑗 

within the work zone period. In addition to delay and queue length, the MNR model 

determines the delay cost to road users caused by work zones. Considering the values of 

travel time delay for passenger cars and heavy vehicles, the delay cost is equal to the sum 

of delays consumed by passenger cars and heavy vehicles multiplied by the corresponding 

values of time. Thus, 

 

𝐶𝑑 = 𝐷(𝑃𝑐𝜇𝑐 + 𝑃𝑡𝜇𝑡) 

 

where: 

 𝐶𝑑 = The delay cost to road users caused by the work zone ($/zone); 

𝑃𝑐 = The percent of passenger cars; 

𝑃𝑡 = The percent of heavy vehicles; 

𝜇𝑐 = The value of travel time delay for passenger cars ($/veh-hr); and 

𝜇𝑡 = The value of travel time delay for heavy vehicles ($/veh-hr). 

The percent of passenger cars and heavy vehicles can be obtained from available 

traffic counts database. The monetary values of travel time delay for passenger cars and 

heavy vehicles can be determined based on user preference. 

3.2.2 The Artificial Neural Network Model 

To enhance the MNR model for predicting freeway work zone delay, a multi-layer 

feed-forward ANN is proposed for predicting the spatio-temporal delays caused by a 

pre-scheduled freeway work zone. In the proposed ANN model, the SVM model is in 

charge of predicting the restricted capacity caused by a work zone. 

(3.7) 
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As discussed in the literature review, SVM is very friendly to use and has the 

particular strength of overcoming the over-fitting problem and local minima. To develop 

the SVM model, the whole dataset processed in Section 3.1 was randomly split into three 

subsets for training (70%), validation (20%), and testing (10%). Based on previous studies 

(Kim et al., 2001; Adeli and Jiang, 2003; Edara and Cottrell, 2007; Du et al., 2015), the 

principal training vectors in the SVM model may include but not limited to: number of 

lanes, number of open lanes, work zone length, upstream traffic volume, heavy vehicle 

percentage, and average upstream speed. The actual choice of training vectors can be 

determined based on data availability and Pearson and Spearman test results.  

The basic idea of SVM, as shown in Figure 3.2, is to map the training vectors 

mentioned previously into a higher dimensional space via a kernel function and then 

construct a separating hyper-plane with maximum margin (dash lines in Figure 3.2). 

Finally, a SVM model is created to predict the work zone capacity (𝐶𝑤). 

 

Figure 3.2  Basic concept of the SVM model. 
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To be more specific, given a non-linear training data set of l instance-label pairs 

(𝑥𝑝, 𝐶𝑤𝑝), 𝑝 = 1, … , 𝑙 where l is the total number of training samples, 𝑥𝑝 ∈ 𝑅𝑁  consists of 

N training vectors, and 𝐶𝑤𝑝 ∈ 𝑅 is the work zone capacity of the corresponding sample 𝑝. 

The non-linear relationship between 𝑥𝑝 and 𝐶𝑤𝑝 can be linearized: 

 

𝐶𝑤 = 𝑓(𝑥) = 𝜔𝑇𝜙(𝑥) + 𝛽 

 

where 𝜔 is the vector of coefficients, 𝑇 is the transposition of the matrix, 𝛽 is a constant, 

and 𝜙 is a non-linear transformation from 𝑅𝑁 to a higher dimensional space. To find the 

value of 𝜔 and 𝛽, SVM requires the solution of the following optimization problem: 

 

𝑚𝑖𝑛
𝑤,𝑏,𝜉𝑝

1

2
𝜔𝑇𝜔 + 𝜆 ∑ 𝜉𝑝

𝑙

𝑝=1

 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
 𝐶𝑤𝑝(𝜔𝑇𝑥𝑝 + 𝛽) ≥ 1 − 𝜉𝑝

𝜉𝑝 ≥ 0                                     
                            (3.9) 

 

where 𝜉𝑝 is a slack variable and 𝜆 is a regularization parameter. It is noted that Eq. 3.9 is 

known as an error function and the subscript p indicates the iteration number of training. 

That is, the training process of SVM tends to minimize the error function by updating the 

training vectors iteratively. It is also worth noting that an increasing 𝜆 places more weight 

on the slack variable 𝜉𝑝 , meaning that the optimization attempts to make a stricter 

separation between classes. By solving for the Lagrangian dual of the above problem, a 

dual problem is introduced: 

 

(3.8) 
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𝑚𝑖𝑛
1

2
∑ ∑ 𝐶𝑤𝑝𝐶𝑤𝑞𝛼𝑝𝛼𝑞

𝑙

𝑞=1

𝑙

𝑝=1

𝑘(𝑥𝑝, 𝑥𝑞) − ∑ 𝛼𝑝

𝑙

𝑝=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝐶𝑤𝑝𝛼𝑝 = 0

𝑙

𝑝=1

,    0 ≤ 𝛼𝑝 ≤ 𝜆,    𝑝, 𝑞 = 1,2, … , 𝑙 

 

 

where 𝛼𝑝 is the Lagrange multiplier vector and 𝑘(𝑥𝑝, 𝑥𝑞) is the kernel function. There are 

several types of kernel functions, including linear, polynomial, radial basis, and sigmoid 

kernel functions (Wu et al., 2004; Zhang and Xie, 2007; Xiao and Liu, 2012). One of the 

most widely used kernel functions is the radial basis function, which is used in this study 

and defined in Eq. 3.11. 

 

𝑘(𝑥𝑝, 𝑥𝑞) = 𝑒𝑥𝑝 {−𝛾|𝑥𝑝 − 𝑥𝑞|
2

} 

 

 

where 𝛾 is a parameter. The sequential minimal optimization algorithm (Xiao and Liu, 

2012) can be used to solve the constrained quadratic problem of Eq. 3.10 and get the final 

decision function as follows: 

 

𝐶𝑤 = 𝑓(𝑥) = ∑(𝛼𝑝
∗ − 𝛼𝑞)

𝑙

𝑝=1

∙ 𝑘(𝑥𝑝, 𝑥𝑞) + 𝛽 

 

 

where 𝛼𝑝
∗ is the optimal value of Lagrange multiplier vector 𝛼𝑝.  

Both optimization problems in Eqs. 3.9 and 3.10 are convex optimization 

problems, which means once the kernel function and the parameters 𝜆  and 𝛾  are 

determined, there will be a global optimal solution for 𝑤 and 𝑏. It is noted that these 

(3.10) 

(3.11) 

(3.12) 
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parameters can be determined by using ESA. The configuration of tuning parameters of 

SVM model is shown in Figure 3.3. More details will be discussed in Chapter 4. 

 

Figure 3.3  Parameter tuning of the SVM model. 

 

After developing the SVM model, the next step is to develop the ANN model. As 

suggested by many researchers (Adeli and Jiang, 2003; Weng and Meng, 2013; Pan et al., 

2015; Hajbabaie et al., 2015; Du et al. 2016), factors affecting the speeds of upstream a 

work zone include, but are not limited to, total number of lanes (𝑁𝑇), number of open lanes 

(𝑁𝑜), approaching traffic volume (𝑄𝑗), work zone capacity (𝐶𝑤), heavy vehicle percentage 

(𝑃𝑡), etc. Symbolically, the spatio-temporal work zone speed (y𝑖𝑗) can be expressed as a 
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function of the selected input variables based on the Pearson and Spearman correlation 

tests: 

𝑦𝑖𝑗 = 𝑔(𝑁𝑇 , 𝑄𝑗, 𝐶𝑤, 𝑃𝑡 , … , 𝑒𝑟 , … , 𝑒𝑀 ) 

 

 

where:  

𝑦𝑖𝑗 = The average speed of segment i at time j under work zone condition (mph); 

𝑁𝑇 = The total number of lanes; 

𝑄𝑗 = Traffic volume approaching the work zone at time j (vph);  

𝐶𝑤 = Work zone capacity (vph); 

𝑃𝑡 = The percent of heavy vehicles; 

𝑒𝑟 = The rth input variable;  

𝑟 = The element at input layer (1 ≤ 𝑟 ≤ 𝑀); and 

𝑀 = The total number of input variables. 

The general configuration of the ANN model for predicting the work zone speed is 

shown schematically in Figure 3.4. It has an input layer with M nodes representing the M 

input variables included in the work zone delay prediction function defined by Eq. 3.13, 

multiple hidden layers with numerous neurons, and an output layer with one node 

representing predicted work zone speed of segment i at time j (𝑦̂𝑖𝑗). The weights of input 

variables can be tuned based on training algorithms, such as Levenberg-Marquardt, 

Bayesian regularization, and scaled conjugate gradient algorithms (Chan, 2002; Karim and 

Adeli, 2003; Ghosh-Dastidar and Adeli, 2006). To improve the prediction accuracy, the 

training algorithm, and number of hidden layers and neurons of the ANN model must be 

carefully determined, which will be discussed in details in the next chapter. Similar to the 

(3.13) 
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MNR model, the RMSE is selected as the primary criterion for determining the best ANN 

model based on the available work zone data. 

 

Figure 3.4  Configuration of a general ANN model. 

 

With the predicted speed from the ANN model, the work zone delay (D), queue 

length (𝐿𝑗), and delay cost (𝐶𝑑) can be calculated using Eqs. 3.5 through 3.7. 

3.3 Summary 

In this chapter, two models (i.e., MNR and ANN models) are developed for freeway 

spatio-temporal work zone delay prediction. The MNR model is a non-linear parametric 

model considering approaching traffic volumes, work zone capacity, and normal speeds 

prior to the work zone. The input variables used for developing the MNR model can be 

determined based on the results of Pearson and Spearman correlation tests. 
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In addition to the MNR model, an ANN model is adapted to further enhance the 

freeway work zone delay prediction accuracy, which focuses on capturing the relationship 

between approaching traffic volumes and work zone capacity predicted by a SVM model. 

With the historical freeway work zone information and associated traffic data collected 

from various data sources, SVM is expected to predict the freeway work zone capacity 

reasonably well when it is similar to the historical profile. Similar to the MNR model, the 

actual choices of input variables considered in the proposed ANN model can be determined 

based on the Pearson and Spearman correlation tests and data availability. RMSE is 

selected as the primary criterion for determining the optimal model parameters of the MNR 

model, and suitable training algorithm, optimal number of hidden layers and neurons of the 

ANN model. 

In Chapter 4, the parameters of these models will be determined and calibrated 

based on the available freeway work zone data for the years 2013 and 2014 in New Jersey. 

Apart from historical work zone data, the evaluation for peak-hour work zone cases will be 

conducted in microscopic simulation due to the absence of historical work zone data during 

peak hours (e.g., 6-9 AM and 3-6 PM). 
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CHAPTER 4  

NUMERICAL EVALUATION 

 

The freeway work zone data for years 2013 and 2014 in New Jersey are utilized here to 

develop the proposed models discussed in Chapter 3. The data collection and processing 

procedures are presented in Sections 4.1 and 4.2. Since all work zone data were incurred 

during off-peak periods, a microscopic traffic simulation model (VISSIM) discussed in 

Section 4.3 is developed to generate simulated traffic speeds under various work zone 

configuration and traffic conditions. The developments of the MNR and ANN models for 

spatio-temporal freeway work zone delay prediction are discussed in Section 4.4. Then the 

evaluation analysis is conducted to evaluate the model performance as shown in Section 

4.5. Finally, three short-term freeway work zones on New Jersey freeways are used to 

further test model performance for assessing work zone impacts (e.g., delay, delay cost, 

and queue length) in Section 4.6. 

4.1 Data Collection 

To develop a sound model for predicting speed/delay caused by work zones with lane 

closures on freeways, both the quantity and quality of data from multiple sources are 

needed. Based on the available work zone data (years 2013 and 2014) in New Jersey, five 

data sources are identified and applied to develop a working database (see Figure 4.1).  

 OpenReach DB: work zone type, location, starting/ending time, number of closed 

lanes, duration, and length of the work zone. 

 NJSLD (New Jersey Straight Line Diagram) DB: road type, number of lanes, 

distance, speed limit, and interchange location. 
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 Plan4Safety DB: severity, location, and starting time of the accidents on New 

Jersey freeways.  

 NJCMS (New Jersey Congestion Management System) DB: traffic volumes and 

heavy vehicle percentage.  

 INRIX Speed DB: traffic speeds for freeway Traffic Message Channel (TMC) 

segments. 

 

Figure 4.1  Data sources and working database. 

4.1.1 OpenReach DB 

The work zone data was extracted from TRANSCOM’s incident reporting system called 

OpenReach (CoVal Systems, 2016). It receives work zone and other incident data from 

various sources including New Jersey Department of Transportation (NJDOT), which are 

then uploaded into the OpenReach DB for storage and dissemination to other 

TRANSCOM member agencies, traveler information providers, and the general public via 

the 511 traveler information system. It contains a list of work zones with location, starting 

and ending mileposts, description, duration and length as shown in Table 4.1. The 
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definition of each field can be found in Appendix A. There were more than 15,000 work 

zone events on New Jersey freeways in 2013 and 2014 recorded in the OpenReach DB. A 

data cleaning process was conducted to identify suitable freeway work zones for the model 

development, which will be discussed in the next section. 

4.1.2 NJSLD DB 

The roadway inventory and geometry data of each work zone event (e.g., standard route 

identifier (SRI), functional classification, total number of lanes, and presence of signalized 

intersections) was based on the most recent NJSLD DB (NJDOT, 2015). As shown in 

Figure 4.2, the NJSLD, initially designed as a planning tool is a one-dimensional graphical 

depiction of a section of roadway and its related data which includes the Interstate 

freeways, the US highways, and the State routes. The NJSLD information management 

system, including the data repository and software, is maintained by NJDOT’s Bureau of 

Transportation Data Development. By using SRI and mileposts obtained from NJSLD, the 

travel speed within work zones and upstream of work zones can be identified.  Further the 

main geometric characteristics of the work zone such as direction, speed limit, and number 

of lanes were used to develop the proposed models in this research. 



 

 

 

Table 4.1  Sample Data Extracted from 2014 OpenReach 

 

Event 

ID 

Facility 

Name 

Created 

Time 

Closed 

Time 

Event 

Type 
Event Description 

From 

Mile Marker 

To 

Mile Marker 

72747501 I-295 
5/1/14 

09:00 

5/1/14 

14:00 
Construction 

NJ DOT - TOC South: Construction, 

construction on I-295 southbound North of 

Exit 60 - I-195/NJ 129 (Hamilton Twp)  to 

Exit 61 - Arena Dr (Hamilton Twp)  right 

lane closed  until 2:00 P.M. 

60.5 61.4 

72747901 I-80 
5/1/14 

09:00 

5/1/14 

15:00 
Construction 

NJ DOT - STMC: Construction, guard rail 

repairs on I-80 both directions between East 

of Exit 12 - CR 521/Hope-Blairstown Rd 

(Frelinghuysen Twp)  and West of Exit 26 - 

US 46 (Mount Olive Twp)  left lane closed 

for repairs  until 3:00 P.M. 

14 26 

72748401 I-78 
5/1/14 

09:00 

5/1/14 

15:00 
Construction 

NJ DOT - STMC: Construction, pothole 

repair on I-78 both directions West of Exit 

26 - CR 665/Rattlesnake Bridge Rd 

(Readington Twp) to East of Exit 41 - Dale 

Rd to Plainfield Ave (Watchung)  right lane 

closed until 3:00 P.M. 

26.7 42.7 

72764701 I-80 
5/1/14 

20:00 

5/2/14 

06:00 
Construction 

NJ DOT - STMC: Construction, milling on 

I-80 eastbound between Exit 53 - NJ 23/US 

46 (Wayne Twp) and Exit 57 - NJ 19 

(Paterson)  3 left lanes closed for repairs 

until 6:00 A.M. 10-15 minute delay. 

53.6 58.2 

     

Source: CoVal Systems. Introduction to OpenReach: http://www.covalsystems.com/latest/openreach/openreach.html, accessed on July 10, 2016. 

5
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Figure 4.2  Sample data extracted from 2015 NJSLD DB. 

Source: New Jersey Department of Transportation. 2015 Straight Line Diagrams Website: 

http://www.state.nj.us/transportation/refdata/sldiag/, accessed on Jul. 10, 2016. 

 

4.1.3 Plan4Safety DB 

Plan4Safety (Maher et al. 2016) is a multi-layered decision support program decision 

support tool created for the NJDOT to aid the studies conducted by transportation 

engineers, planners, enforcement, and decision makers in New Jersey's transportation and 

safety agencies. It helps to analyze crash data in geospatial and tabular forms. Similar to the 

NJDOT Crash Record, Plan4Safety provides crash location, date and time of the crash as 

shown in Table 4.2, which is used for screening out crash related work zone events in order 

to analyze mobility impacts purely caused by work zone activities. Nearly 11,000 freeway 

crashes out of more than 200,000 crashes in 2013 and 2014 on New Jersey highways were 

used for this screening assessment. 



 

 

 

Table 4.2  Sample Data Extracted from 2014 Plan4Safety 

 

DOT Web ID 
Case 

Number 
County 

Crash 

Date 

Crash 

Time 
Severity 

Crash 

Location 

Location 

Direction 
SRI Milepost 

2014090414-003375 14-003375 HUDSON 4/4/2014 17:08 Injury I-280 South 00000280 14.92 

20142019B130-2014- 

03979A 

B130-2014- 

03979A 
UNION 12/9/2014 12:56 Injury I-78 West 00000078 53 

20140414A310-2014- 

01381A 

A310-2014- 

01381A 
CAMDEN 7/12/2014 22:20 

Property 

Damage 
I-76 North 00000076 0.5 

2014023314-03506 14-03506 BERGEN 3/7/2014 18:59 
Property 

Damage 
I-287 South 00000287 66 

 

 

Source: Maher, A., M. Jafari, E. Bossett, M. O’Connell, and J. Buison. Plan4Safety Website: http://cait.rutgers.edu/tsrc/plan4safety, accessed on July 10, 

2016. 
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4.1.4 NJCMS DB 

The traffic flow data, necessary for the analysis of work zone impacts, were obtained from 

the most recent 2012 New Jersey Congestion Management System (NJCMS) (Chien and 

Ozbay, 2012). The NJCMS is data management and data analysis system used primarily by 

the Bureau of Systems Planning to predict congestion measures for New Jersey highways. 

The highway links in the NJCMS tables are identified by SRI or Route Name (e.g., I-80, or 

I-195), and by begin and end mileposts. The link information stored in NJCMS was tied to 

work zones identified in OpenReach DB using these unique link identifiers. Traffic flow 

data was then used to calculate link volumes in conjunction with work zone information for 

the model development. 

4.1.5 Floating-Car Traffic Speed DB 

The main traffic speed data that are used for model development in this research are 

historical speed data from INRIX (2016). The historical INRIX speed data is anonymously 

collected from GPS-enabled vehicles and mobile devices through Traffic Message 

Channel (TMC) and compiled into 1-minute-average speed measurements. This historic 

1-minute speed data were aggregated into 15-minutes of speed data for each TMC located 

upstream of each work zone that was used to develop the proposed models. As shown in 

Figure 4.3, there are more than 1,200 TMCs in New Jersey covering interstate and express 

freeways. The INRIX raw data, which included more than 2 billion records, was collected 

for 24 hours a day over a 2-year period, from January 2013 to December 2014. This time 

period, including weekdays, weekends, peak, and non-peak hours, adequately reflected 

real traffic conditions before, during, and after work zone activities. 
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Figure 4.3  INRIX TMC locations for NJ freeways. 

4.2 Data Processing 

In order to identify work zones with full and accurate information needed for model 

development, Figure 4.4 illustrates a data cleaning procedure applied to identify work zone 

data suitable for developing the proposed model. This study leverages big data analytics to 
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process the massive amount of traffic data in an efficient and reliable way. A sample of 

SQL queries can be found in Appendix B.  

  

Figure 4.4  Data processing procedure. 

 

 Step 1: Identify historical work zone events from the OpenReach incident database. 

Remove work zones with uncompleted information (e.g., missing work zone 

milepost, starting/ending date, and duration). 

 Step 2: Add the standard route identifier (SRI), work zone direction, and number of 

lanes-closed information to each work zone based on the NJSLD database. 

 Step 3: Neglect accident-related historical work zones by crosschecking accidents 

recorded in the Plan4Safety database. 

 Step 4: Map the aggregated 15-minute speed data from INRIX for each TMC 

located in the upstream of each work zone identified in Step 3. 
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The major issues encountered during data processing are described below. 

OpenReach: The DB was populated with additional information related to each 

work zone by adding the corresponding SRI, work zone direction and number of 

lanes-closed information (Table 4.3). Discrepancies in time and even the location of 

observed work zone and planned work zone reported in the OpenReach were observed 

(e.g., work zone created date was later than closed date, work zone facility name was not 

reported, number of closed lanes were not mentioned in “Event Description”, etc.). Such 

inconsistent records were neglected in the model development process. 

SLD: The attribute “number of lanes” in SLD often includes both directions and 

center turn lane in SLD. Since this attribute plays a key role in both model development 

and work zone impact analysis, the SLD records had to be manually updated. It is noted 

that only a few numbers of cases were observed to have this issue. 

Plan4Safety: The SRI in Plan4Safety is different from the SLD as shown in Table 

4.3. The DB developed contains manually fused data from the Plan4Safety and the SLD 

such that all the crash data had the same SRI consistent to the SLD SRI as illustrated in 

Table 4.4. 

INRIX: INRIX reported speed was on a TMC basis, which has only starting and 

ending coordinates in the original data, while the corresponding work zones in OpenReach 

DB are based on the SLD and mileposts. These two data sources could not be 

cross-referenced with each other. Therefore, a conversion methodology to associate INRIX 

TMC information and SLD information needed to be developed. Hence, the DB in this 

research fused the INRIX TMC data to the SRI-based OpenReach data. 



 

 

 

Table 4.3  Processed 2014 OpenReach Sample Data 

 

Event 

ID 

Facility 

Name 
SRI* Direction* 

Created 

Time 

Closed 

 Time 

Event 

Type 

Event 

Description 

From 

Mile 

Marker 

To 

Mile 

Marker 

Closure 

Lane* 

72747501 I-295 00000295_S Southbound 
5/1/14 

09:00 

5/1/14 

14:00 
Construction 

NJ DOT - TOC South: 

construction on I-295 

southbound North of 

Exit 60 to Exit 61, 

right lane closed  until 

2:00 P.M. 

60.5 61.4 
Right 

lane 

72747901 I-80 00000080__ Eastbound 
5/1/14 

09:00 

5/1/14 

15:00 
Construction 

NJ DOT - STMC: 

guard rail repairs on 

I-80 eastbound 

between East of Exit 

12 and West of Exit 

26, left lane closed for 

repairs  until 3:00 

P.M. 

14 26 Left lane 

72748401 I-78 00000078__ Eastbound 
5/1/14 

09:00 

5/1/14 

15:00 
Construction 

NJ DOT - STMC: 

pothole repair on I-78 

eastbound between 

West of Exit 26 to 

East of Exit 41, right 

lane closed until 3:00 

P.M. 

26.7 42.7 
Right 

lane 

72764701 I-80 00000080__ Eastbound 
5/1/14 

20:00 

5/2/14 

06:00 
Construction 

NJ DOT - STMC: 

milling on I-80 

eastbound between 

Exit 53 and Exit 57, 

left lane closed for 

repairs until 6:00 

A.M. 10-15 minute 

delay. 

53.6 58.2 Left lane 

*: Manually added columns.

6
3
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NJCMS: The SRI coded in NJCMS is non-directional, which has been manually 

corrected to match the directional SRI coded in SLD DB. With this correction, the link 

traffic volume by direction can be accurately stored in the working database.  

After conducting the data cleaning procedure, there are 274 work zones qualified 

for developing the proposed model. Figure 4.5 illustrates the variation of work zone 

duration by number of lanes using a box plot. The median of work zone durations on 4-lane 

freeways is slightly greater comparing to those on 2-lane and 3-lane freeways. In addition, 

the duration distribution of selected historical work zones on 3-lane freeways is more 

dispersed than the other two categories.   

It was also found that all 274 historical short-term work zones occurred during 

either night time or middle of day. In other words, no short-term work zones were found 

during peak hours (i.e., 6-9 AM and 3-6 PM). Therefore, the evaluation for the cases of 

work zone duration crossing peak-hour was conducted by comparing the predicted speeds 

to the speeds generated by microscopic simulation.  

 

Figure 4.5  The box plot of work zone duration by number of lanes. 
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Table 4.4  Processed 2014 Plan4Safety Sample Data 

 

DOT 

Web ID 

Case 

Number 
County 

Crash 

Date 

Crash 

Time 
Severity 

Crash 

Location 

Location 

Direction 
SRI 

Modified 

SRI* 
Milepost 

2014090414-003375 14-003375 HUDSON 4/4/2014 17:08 Injury I-280 South 00000280 00000280__ 14.92 

20142019B130-2014- 

03979A 

B130-2014- 

03979A 
UNION 12/9/2014 12:56 Injury I-78 West 00000078 00000078_W 53 

20140414A310-2014- 

01381A 

A310-2014- 

01381A 
CAMDEN 7/12/2014 22:20 

Property 

Damage 
I-76 North 00000076 00000076__ 0.5 

2014023314-03506 14-03506 BERGEN 3/7/2014 18:59 
Property 

Damage 
I-287 South 00000287 00000287_S 66 

*: Manually added column. 

6
5
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4.3 Simulated Work Zone Data 

Given that conducting reconstruction projects during peak hours in the real world would be 

impractical, VISSIM was selected to generate traffic data under normal and work zone 

conditions during peak hours based on its capabilities. VISSIM can simulate traffic 

operations in a complex and large-scale roadway network, in which every vehicle is 

modeled as a distinct object and follows a stochastic lane-change, car-following, and gap 

acceptance logic. The vehicle movement is updated in every 0.1 second (or a shorter 

interval depending on the computer capability) to regenerate the status of vehicles. The 

stochastic factors such as driver behavior characteristics, vehicle characteristics, and traffic 

characteristics are considered to simulate the relationships among vehicles on the links. 

Therefore, VISSIM is able to generate various traffic data (e.g., traffic speed and volumes 

on user-specified links aggregated in different time intervals under normal and work zone 

conditions) for evaluating the developed prediction model. 

Three hypothetical work zones located on 2-lane, 3-lane, and 4-lane freeways were 

identified for generating simulated traffic data. The characteristics of them and the total 

number of simulation runs are shown in Table 4.5. The road geometry and lane 

configuration data were obtained from NJSLD DB. Traffic volumes were obtained from 

NJCMS DB.  In the VISSIM network, a total of 20 sensors were placed at 0.5-mile spacing 

throughout the 10 miles upstream of each hypothetical work zone location. The simulated 

traffic volumes and speeds were measured in every 15 minutes at each data collection 

point. In order to consider traffic flow variations, five random seeded VISSIM simulation 

runs were made for each work zone combination. Therefore, a total of 1,980 simulation 

runs (440 + 660 + 880 = 1,980) were made. 
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Table 4.5  Characteristics of the Hypothetical Work Zones 

 

Work Zone 

Location 

No. of 

Lanes 

Work Zone 

Duration (hr) 

Work Zone 

Starting Time 

No. of 

Closed 

Lanes 

AADT 

No. of 

Simulation 

Runs 

I-295 NB, 

MP 27-27.5 
2 

2, 4, 6, 8, 10, 12, 

14, 16, 18, 20, 22 

7 AM, 10 AM, 

4 PM, 8 PM 
0*, 1 45,269 440 

I-80 WB, MP 

42-43 
3 

2, 4, 6, 8, 10, 12, 

14, 16, 18, 20, 22 

7 AM, 10 AM, 

4 PM, 8 PM 
0, 1, 2 80,476 660 

NJ-42 NB, 

MP 12-12.8 
4 

2, 4, 6, 8, 10, 12, 

14, 16, 18, 20, 22 

7 AM, 10 AM, 

4 PM, 8 PM 

0, 1, 2, 

3 
91,304 880 

   *: 0 represents shoulder closure. 

 

The COM interface from VISSIM 7 using C# program was used to program the 

work zone lane closure combinations listed in Table 4.5. The VISSIM network, prior to 

conducting experimental analyses, had also been calibrated with field-collected traffic data 

to match the real-world conditions by tweaking car following and lane changing models 

parameters. Figures 4.6 through 4.8 show that the simulated traffic volumes are very close 

to the traffic counts obtained from NJCMS DB for all three cases. 

 
Figure 4.6  NJCMS and simulated traffic volumes at MP 27 on I-295 NB. 
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Figure 4.7  NJCMS and simulated traffic volumes on at MP 42 on I-80 WB. 

 

 
Figure 4.8  NJCMS and simulated traffic volumes at MP 12 on NJ-42 NB. 

3.4 Model Development 

In this section, the multivariate non-linear regression (MNR) model and the multi-layer 

feed forward artificial neural network (ANN) model are developed and discussed next. 
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4.4.1 The Multivariate Non-linear Regression Model 

Based on the developed database in previous sections, a multivariate non-linear regression 

(MNR) model was developed to predict speeds caused by work zone lane closures. This 

section describes the configuration of the MNR model followed by identification of inputs 

for its implementation on freeways.  

It is worth noting that the predicted speeds can be extended up to 10 miles upstream 

of the work zone and 2 hours after the work zone is removed, in the absence of any 

accidents during the analysis period. These limits were determined based on the 2013 and 

2014 freeway work zone data collected in New Jersey as discussed in Sections 4.1 and 4.2. 

The formula for the MNR model whose development processes are discussed next. 

As discussed in Chapter 3, by assessing the database developed in previous 

sections, the work zone capacity, approaching volume, and normal speed of upstream 

segment are selected as model inputs. Therefore, the freeway MNR model is formulated 

for different lane configurations namely, 2-lane, 3-lane and 4-lane, which is formulated as 

Eq. 4.1. 

 

𝑦𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗

𝑠𝑖𝑗

1 + 𝑐 ( 
𝑄𝑗

𝐶𝑤
 )

𝑑 

 

 

where: 

𝑦𝑖𝑗 = The average speed of segment i at time j under work zone condition (mph); 

𝑠𝑖𝑗 = The average speed of segment i at time j under normal condition (mph); 

𝑄𝑗 = Traffic volume approaching the work zone at time j (vph);  

𝐶𝑤 = Work zone capacity (vph); 

(4.1) 
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𝑎𝑖𝑗, 𝑏𝑖𝑗 = Freeway model coefficients of segment i at time j; and 

𝑐, 𝑑 = Arrays of freeway model coefficients. 

In Eq. 4.1, the work zone capacity (𝐶𝑤) is approximated as a product of normal 

capacity (𝐶), work zone capacity reduction factor ( 𝛿), total number of lanes (𝑁𝑇), and 

open lane ratio (𝑅𝑜). Thus, 

 

𝐶𝑤 = 𝐶 ∗  𝛿 ∗ 𝑁𝑇 ∗ 𝑅𝑜 
 

 

where:  

𝐶 = The normal capacity (vphpl); 

𝛿 = The work zone capacity reduction factor; 

𝑁𝑇 = The total number of lanes; and 

𝑅𝑜 = The ratio of the number of open lanes to the total number of lanes. 

The freeway MNR model was based on a data set of 274 work zones, which were 

selected due to the completeness of their data that were deemed useful in developing the 

model. These 274 records covered a total of eight work zone types as shown in Table 4.6. 

For each lane closure type presented in Table 4.6 (i.e., shoulder, 1-lane, and 2-lane 

closures), the first randomly selected 70% of the qualified freeway work zones in 2013 and 

2014 were used to develop the MNR model; the next 20% work zone data were used for 

validation; and the rest 10% work zone data were used for testing.  

 

 

 

 

 

(4.2) 
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Table 4.6  Number of Work Zones for Various Types of Lane Closures 

 

No. of Lanes Shoulder Closure 1-lane Closure 2-lane Closure 

2 10 62 N/A 

3 30 104 12 

4 7 36 13 

 

 

The values of capacity reduction factors are shown in Table 4.7. Table 4.8 

illustrates the optimal coefficients values of MNR with respect to different lane 

configurations, which were also determined based on 70% of the historical work zone data. 

It is noted that these parameters were determined by using ESA. The steps of the ESA 

processes are discussed below. 

Step 1: Set c = 0.1. 

Step 2: Set d = 1.  

Step 3: Set 𝛿 = 1. 

Step 4: Calculate  𝑦̂𝑖𝑗 using Eq. 4.4 based on 70% of the work zone data.  

Step 5: Calculate RMSE using Eq. 3.2. 

Step 6: Let 𝛿 = 𝛿 - 0.05. If 𝛿 > 0, go to Step 4; otherwise, go to Step 7. 

Step 7: Let d = d + 0.1. If d < 4, go to Step 3; otherwise, go to Step 8. 

Step 8: Let c = c + 0.05. If c < 1, go to Step 2; otherwise, go to Step 9. 

Step 9: Find the optimal combination of 𝑎𝑖𝑗, 𝑏𝑖𝑗, c, d, and 𝛿 with the least RMSE. 
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Table 4.7  Capacity Reduction Factors 𝛿 and 𝑅𝑜 

 

Lane Closure 

Configuration 

2-lane 3-lane 4-lane 

𝛿 𝑅𝑜 𝛿 𝑅𝑜 𝛿 𝑅𝑜 

Shoulder Closure 0.9 1 0.95 1 0.95 1 

1-lane Closure 0.5 0.5 0.6 0.66 0.7 0.75 

2-lane Closure - - 0.5 0.33 0.6 0.5 

3-lane Closure - - - - 0.5 0.25 

 

 

Table 4.8  The MNR Model Coefficients 

 

No. of Lanes 
Coefficients 

𝑐 𝑑 

2 0.1 2.9 

3 0.1 2.1 

4 0.1 2.3 

 

With the predicted work zone speed from MNR model, work zone delay, delay 

cost, and queue length can be calculated using Eqs. 3.5 - 3.7, accordingly. 

4.4.2 The Artificial Neural Network Model 

This section deals with a non-parametric approach for predicting short-term work zone 

delay on freeways by an artificial neural network (ANN) model, in which the work zone 

capacity is predicted by SVM. The SVM is developed using traffic data (i.e., traffic volume 

and speed) based on nine work zones in years 2014 and 2015. The speed data were 

gathered from INRIX, and traffic volumes were collected by Remote Traffic Microwave 

Sensors (RTMS). Since most work zones were conducted during off-peak periods only, 
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simulated data for peak period are applied using VISSIM. As discussed in Chapter 2, the 

RTMS provides per-lane presence, volume, occupancy, speed, as well as vehicle 

classification information. Currently there are nine RTMSs deployed around 

I-295/I-76/Route 42 Direct Connection project location, which collect traffic volume data 

(aggregated at 5 minutes) for 24 hours a day from November 2014 to July 2015.  

Based on the combined dataset and the results of the Pearson and Spearman tests, 

six training vectors were selected for developing the SVM model in this research, which 

are number of lanes, number of open lanes, work zone length, upstream traffic volume, 

heavy vehicle percentage, and average upstream speed. These vectors were first randomly 

split into three subsets for the purposes of training, validation and testing. Then, the SVM 

model mapped these training vectors into a higher dimensional space using a radial basis 

kernel function. There are several types of kernel functions, including linear, polynomial, 

radial basis, sigmoid and automatic relevance determination kernel functions (Zhang and 

Xie, 2008; Yu and Abdel-Aty, 2013). Then the optimal hyper-planes were determined by 

maximizing the margins of the training vectors. Finally, a trained SVM model was created 

to predict the work zone capacity (𝐶𝑤). More detailed information has been discussed in 

Chapter 3. 

After the development of SVM, the next step is to develop an artificial neural 

network (ANN) model. Similar to the development of MNR, the factors affecting the speed 

upstream of the work zone were determined by the Pearson and Spearman correlation test, 

which include average speed of upstream work zone TMC segment i at time j under normal 

condition (𝑠𝑖𝑗); traffic volume approaching work zone at time j (𝑄𝑗); work zone capacity 

(𝐶𝑤); and distance from segment i (𝑑𝑖). Note that 𝐶𝑤 is predicted by the SVM model. 
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Therefore, the average speed of upstream work zone TMC segment i at time j  (𝑦𝑖𝑗) under 

work zone condition can be represented by Eq. 4.3: 

 

𝑦𝑖𝑗 = 𝑔(𝑠𝑖𝑗, 𝑄𝑗 , 𝐶𝑤, 𝑑𝑖) 

 

 

As 𝑄𝑗 increases, the resulting travel time and delay increase, especially when it is 

close to the restricted capacity caused by a work zone lane closure. To represent the 

relationship among 𝑠𝑖𝑗 , 𝑄𝑗, 𝑎𝑛𝑑 𝐶𝑤 , the concept of the Bureau of Public Roads (BPR) 

function (Bureau of Public Roads, 1964) was adapted. It is assumed that the weighted 

speed of segment i at time j denoted as 𝑣𝑖𝑗 is the historic speed under normal condition 

multiplied by a reduction factor that is a function of approaching volume and work zone 

capacity ratio, which can be formulated as:  

 

𝑣𝑖𝑗 =
𝑠𝑖𝑗

1 + A ( 
𝑄𝑗

𝐶𝑤
 )

𝐵 

 

 

where:  

𝑠𝑖𝑗 = The speed of segment i at time j under normal condition (mph);  

𝑄𝑗 = The traffic volume approaching the work zone at time j (vph); 

𝐶𝑤 = The work zone capacity (vph); 

𝐴, 𝐵 = The arrays of model coefficients; 

𝑖 = The ith freeway segment in upstream of work zone (1 ≤ 𝑖 ≤ 𝑚); 

𝑗 = The jth time interval after work zone started (1 ≤ 𝑗 ≤ 𝑛);  

𝑚 = The number of segments (e.g., TMCs) upstream of work zone; and 

(4.3) 

(4.4) 
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𝑛 = The number of time intervals (e.g., 15 minutes per interval) since the beginning 

of a freeway work zone till 2 hours after the work zone has been removed. 

It will be discussed later how the optimal value of parameters A and B can be 

determined. With the weighted speed (𝑣𝑖𝑗) from Eq. 4.4 and the distance from segment i to 

the work zone (𝑑𝑖), the work zone speed (𝑦𝑖𝑗) in Eq. 4.3 can be simplified as: 

 

𝑦𝑖𝑗 = 𝑔(𝑣𝑖𝑗 , 𝑑𝑖) 

 

 

The Neural Network Toolbox in MATLAB (2016) was used for developing the 

ANN model. As discussed earlier, there were 274 number of freeway work zones 

available, which were randomly divided into three groups (i.e., 70%, 20%, and 10% of 

total work zones, respectively) for training, validation, and testing purposes. It is worth 

noting that different divisions had been investigated and it was possible to get a minimum 

error using the above combination. The root mean square error (RMSE) formulated as Eq. 

3.2 was used as an index to determine the optimal combination of A and B in Eq. 4.4, the 

suitable training algorithm, and optimal numbers of hidden layers and neurons by using 

ESA. The lower the RMSE value, the better is the model performance. The steps of the 

ESA processes are discussed below. 

Step 1: Set A = 0.1. 

Step 2: Set B = 1.  

Step 3: Calculate 𝑣𝑖𝑗 using Eq. 4.4. Then predict work zone speed using single 

layer ANN model with 10 neurons. 

Step 4: Calculate RMSE using Eq. 3.2. 

Step 5: Let B = B + 0.1. If B < 4, go to Step 3; otherwise, go to Step 6. 

Step 6: Let A = A + 0.05. If A < 1, go to Step 2; otherwise, go to Step 7. 

(4.5) 
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Step 7: Find the optimal combination of A and B with the least RMSE. 

By using ESA, the optimal values of A and B in Eq. 4.4 with respect to different 

lane configurations are illustrated in Table 4.9, which were determined based on single 

layer ANN models with 10 neurons with 70% of freeway work zone data. 

Table 4.9  Calibrated Model Coefficients for Predicting 𝑣𝑖𝑗 

 

No. of Lanes 
Coefficients 

𝐴 𝐵 

2 0.1 2.7 

3 0.1 2.6 

4 0.2 2.2 

 

After determining the optimal values of A and B, the next step is to find the best 

training algorithm. Table 4.10 depicts the lowest RMSEs for the three training algorithms 

provided by MATLAB Neural Network Toolbox (2016) based on single layer ANN 

models with 10 neurons. By considering work zones on 3-lane freeways, it was found that 

the Levenberg-Marquardt (LM) algorithm (i.e., RMSE = 4.9 mph) was selected for its 

better efficiency and performance, compared to Bayesian Regularization (i.e., RMSE = 5.3 

mph) and Scaled Conjugate Gradient (i.e., RMSE = 5.8 mph) algorithms. 
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Table 4.10  RMSEs of Various Training Algorithms in the ANN Model 

 

No. of Lanes 

RMSE (mph) 

Levenberg-Marquardt 

(LM) 

Bayesian 

Regularization 

(BR) 

Scaled 

Conjugate 

Gradient 

(SCG) 

2 5.9 6.3 6.5 

3 4.9 5.3 5.8 

4 6.3 6.6 6.9 

 

Based on the selected LM algorithm, Table 4.11 shows the RMSEs of the 

1-hidden-layer and 2-hidden-layer models for the work zones on 3-lane freeways. It was 

found that no substantial difference occurs by adjusting number of neurons or adding an 

extra layer in the ANN model. Hence a single layer ANN model with 10 neurons is 

sufficient to predict work zone speed with satisfactory accuracy along with the benefit of 

reduced computation time as compared to 2 or more layers ANN models. Similarly, 

one-layer LM ANN model with 10 neurons is satisfactory for work zones on both 2-lane 

(i.e., RMSE = 5.9 mph) and 4-lane (i.e., RMSE = 6.3 mph) freeways. 

Table 4.11  RMSEs of Various ANN Models (3-lane Freeway) 

 

ANN Models 
No. of Neurons RMSE 

(mph) Layer 1 Layer 2 

1-layer ANN 

5 - 5.4 

10 - 4.9 

15 - 5.0 

2-layer ANN 

5 5 5.6 

10 10 5.3 

15 15 5.2 
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The finalized architecture of the proposed ANN model is shown in Figure 4.9. The 

ANN model consist of an input layer with two neurons representing the weighted speed 

(𝑣𝑖𝑗) and distance from upstream segment i (𝑑𝑖), one optimized hidden layer with ten 

neurons and an output layer with one neuron representing predicted work zone speed (𝑦̂𝑖𝑗). 

In the input layer, the predicted work zone capacity (𝐶𝑤) from SVM model along with 

normal speed (𝑠𝑖𝑗) and approaching traffic volumes (𝑄𝑗) were used for calculating the 

weighted speed (𝑣𝑖𝑗). It is worth noting that the proposed ANN model can predict speeds 

up to 10 miles upstream of the work zone since the beginning of a freeway work zone till 2 

hours after the work zone has been removed. 

 
Figure 4.9  Configuration of the proposed ANN model. 

 

Similar to MNR model, with the predicted work zone speed from ANN model, 

work zone delay, delay cost, and queue length can be calculated using Eq. 3.5 - 3.7 

accordingly. 
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3.5 Model Evaluation 

Based on historical work zone data for off-peak period, the performances of the two work 

zone delay prediction models (i.e., MNR and ANN) developed in previous section under 

various lane configurations (i.e., 2-lane, 3-lane, and 4-lane) and locations (i.e., North, 

Central, and South NJ) are assessed in this section.  

First, a detailed analysis is conducted to assess the overall model performance of 

the MNR and ANN models for predicting delays caused by work zone activities on 

freeways. These two freeway work zone delay prediction models are evaluated using 10% 

(27) of 274 identified work zone records in 2013 and 2014. The steps taken to assess the 

model accuracy/reliability are listed below. 

Step 1: Classify the randomly selected 27 freeway work zones by lane 

configuration (i.e., 2-lane, 3-lane, and 4-lane) and location (i.e., North, Central, and South 

NJ). The corresponding data distribution per lane and region of the selected work zones are 

illustrated in Table 4.12. Note that no qualified work zone was selected on 4-lane freeways 

in South NJ as the corresponding data for the years 2013 and 2014 were found to be 

insufficient to be included in the model development. 

Table 4.12  Test Samples by Lane Configuration and Region 

 

No. of Lanes 

Region 

North Central South 

2 3 3 2 

3 6 5 3 

4 4 1 0 
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Step 2: Run each work zone with the freeway MNR and ANN models, 

respectively. Then compute the RMSE based on the predicted speeds versus the travel 

speeds reported from the corresponding INRIX speed database. The RMSEs under various 

lanes and types of lane closure by regions for two models are summarized in Table 4.13. It 

is found that the ANN model outperformed the MNR model for all lane configurations and 

regions. Table 4.13 also indicates that the ANN model yielded the lowest RMSE (RMSE = 

4.9 mph) for testing historic work zones on 3-lane freeways against the 2-lane (RMSE = 

5.9 mph) and 4-lane freeway (RMSE = 6.3 mph) because of more work zones available for 

model development. 

Table 4.13  RMSE of the MNR and ANN Models (mph) 

 

No. of 

Lanes 

 North Central South Overall 

MNR ANN MNR ANN MNR ANN MNR ANN 

2 8.8 5.8 9.3 6.2 5.5 5.4 8.2 5.9 

3 6.3 4.6 5.6 4.9 5.5 5.3 5.9 4.9 

4 6.7 6.4 6.2 5.8 N/A N/A 6.6 6.3 

Overall       6.4 5.2 

 

Step 3: According to the results from Tables 4.13, the ANN model outperforms the 

MNR model in terms of smaller RMSE based on historical work zones during off-peak 

periods. From this step, the ANN model is further evaluated. Based on the RMSE 

associated with each test work zone, the average RMSEs were classified into 3 categories 

(i.e., < 5 mph, 5 - 10 mph, and 10 - 15 mph) by lane configuration and region as shown in 
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Table 4.14. Comparing the results by lane configuration, the ANN model on 3-lane 

freeways produced the most accurate and reliable (64% RMSE < 5 mph) predicts, followed 

by 2-lane (28% RMSE < 5 mph) and 4-lane (100% RMSE between 5 - 10 mph) freeways. 

Comparing the results by region, the predicted results of work zone delays in the Northern 

NJ is relatively stable and accurate (47% RMSE < 5 mph), followed by Southern NJ (40% 

RMSE < 5 mph) and Central NJ (32% RMSE < 5 mph). One possible reason for this is that 

there were more work zones on 3-lane freeways in Northern NJ available for model 

development. 

Table 4.14  RMSE Distribution of the ANN Model 

 

No. of Lanes 
RMSE 

Range 

Region 

North Central South 

2-lane 

< 5 mph 33% 0% 50% 

5 - 10 mph 67% 100% 50% 

10 - 15 mph 0% 0% 0% 

3-lane 

< 5 mph 83% 60% 33% 

5 - 10 mph 17% 40% 67% 

10 - 15 mph 0% 0% 0% 

4-lane 

< 5 mph 0% 0% 0% 

5 - 10 mph 100% 100% 0% 

10 - 15 mph 0% 0% 0% 

Overall 

< 5 mph 47% 32% 40% 

5 - 10 mph 53% 68% 60% 

10 - 15 mph 0% 0% 0% 

 

Step 4: To further demonstrate the model performance, the simulated data for work 

zones crossing peak hours were used for evaluating the performance of the ANN model. It 

is found in Table 4.15 that in general the ANN model could achieve satisfactory 
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performance for work zone speed prediction in terms of accuracy and stability during peak 

hours (i.e., 6.9 mph for 2-lane freeway, 5.3 mph for 3-lane freeway, and 6.7 for 4-lane 

freeway). This implies that the ANN model could generate prediction results with 

compatible accuracy when the trend of real-world traffic conditions during peak hours is 

similar with the simulated data. It is also found that as the number of closed lanes increases 

from shoulder closure to 2-lane closure, the RMSEs are slightly increased for all three lane 

configurations. This indicates that the traffic congestion during peak period could reduce 

the accuracy of the ANN model. Therefore, to improve the prediction accuracy, the actual 

traffic counts for peak period at the scenes of work zones should be collected from the field 

to replace the simulated data for further validation of the developed models. 

Table 4.15  RMSE of the ANN Model based on Simulation Data 

 

No. of Lanes 

RMSE (mph) 

Shoulder 

Closure 

1-lane 

Closure 

2-lane 

Closure 
Overall 

2 6.6 7.2 N/A 6.9 

3 5.1 5.4 5.9 5.3 

4 6.3 7.2 6.8 6.7 

 

3.6 Case Studies 

Overall, the evaluation results in Section 4.5 indicate that the ANN model is able to 

perform well in predicting freeway work zone delay under various lane configuration 

conditions and time of day. In this section, the ANN model is evaluated with new work 

zones in 2015, in which delay, delay cost, and maximum queue length were applied to 
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assess the model performance. Results from the proposed ANN model with the work zone 

capacity predicted by SVM (called ANN-SVM) are compared with the prediction results 

using other models: 

 RUCM: The method suggested by the NJDOT Road User Cost Manual 

(NJDOT, 2015) (see Appendix C for more details); 

 ANN-HCM: The proposed ANN model with work zone capacity suggested by 

HCM (2010) as formulated in Eq. 4.6; and 

 ANN-SVM: The proposed ANN model with work zone capacity suggested by 

SVM. 

 

𝐶𝑤 = (1600 + 𝐼)𝑓𝐻𝑉𝑁𝑜 − 𝑅 

 

where: 

𝐶𝑤 = The work zone capacity (vph); 

𝐼 = The adjustment factor for type and intensity of work activity (vphpl); 

𝑓𝐻𝑉 = The heavy-vehicle adjustment factor indicated in the HCM; 

𝑁𝑜 = The number of open lanes within the work zone; and 

𝑅 = The manual adjustment for on-ramps (vph). 

The characteristics of three short-term work zones performed in 2015 are shown in 

Table 4.16, which include time period, road geometry, and traffic pattern. Case 1 was a 

2-mile long work zone with two-lane closure on a three-lane segment on I-78 westbound, 

which was performed between 11 PM to 6 AM next day in October 2015. Case 2 was a 

0.3-mile long work zone with one-lane closure on a three-lane segment on NJ-21 

southbound, which was performed between 10 AM and 3 PM in November 2015. Case 3 

was a 0.2-mile long work zone with shoulder closure on a two-lane segment on I-280 

(4.6) 
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eastbound, which was performed between 10 AN and 3 PM in December 2015. In addition, 

the work zone capacities suggested by the SVM model as well as the HCM method (2010) 

are summarized in Table 4.16. Due to the impacts of approaching traffic volume and speed 

are neglected in the HCM method, the predicted work zone capacity with HCM for Cases 1 

and 2 are lower than those with SVM. While for Case 3, the predicted work zone capacity 

with HCM is greater than that with SVM. The hourly traffic distributions for all 3 cases are 

shown in Figure 4.10, which were used for calculating work zone delay and cost. 

Table 4.16  Work Zone Characteristics 

 

 Case 1 Case 2 Case 3 

Location I-78 WB NJ-21 SB I-280 EB 

Milepost Range 47.3 - 49.3 4.2 - 4.5 14.1 - 14.3 

Number of Lanes 3 3 2 

Work Zone Length (mi) 2 0.3 0.2 

Starting Time 11 PM, 10/2015 10 AM, 11/2015 10 AM, 12/2015 

Ending Time 6 AM, 10/2015 3 PM, 11/2015 3 PM, 12/2015 

Duration (hours) 7 5 5 

Number of Closed Lanes 2 1 0* 

𝑪𝒘 with SVM (vph) 1,524 3,222 3,798 

𝑪𝒘 with HCM (vph) 1,395 2,976 3,910 

*: Shoulder closure. 
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Figure 4.10  Hourly traffic distribution. 

 

As summarized in Table 4.17, the delays with all the three models are compared to 

the "ground truth" information which is based on INRIX reported speeds. Note that the 

number in the parentheses represents the error percentage from predicted delay against 

ground truth delay, which indicates model performance in terms of prediction accuracy. As 

RUCM does not furnish the calculation details regarding work zones with shoulder 

closures on freeways, ANN-SVM is compared with ANN-HCM for Case 3. Apparently 

ANN-SVM outperforms both RUCM and ANN-HCM. Because ANN-SVM takes 

approaching traffic volume and speed variations into consideration, it is more applicable 

than other two models. The assumption of no queue under non-congested condition is a 

possible reason why the delays predicted by RUCM are underestimated for Cases 1 and 2. 

In Table 4.17, delay cost is computed using Eq. 3.5. It is also worth noting that for 

Case 1, the error percentage differences of three models seem minor because of low traffic 
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volumes during nighttime. When work zones are placed in daytime with higher traffic 

volumes (i.e., Cases 2 and 3), ANN-SVM becomes very effective and outperforms other 

two models. In addition, the maximum queue lengths (approximated using Eq. 3.6) with 

the three models as well as the ground truth data are illustrated. 

Table 4.17  Model Results Comparison 

 

 Models Case 1 Case 2 Case 3 

Delay a (Error %) 

RUCM 0 (100%) 0 (100%) N/A 

ANN-HCM 62 (17%) 70 (6%) 72 (14%) 

ANN-SVM 59 (11%) 63 (5%) 81 (4%) 

Ground Truth d 53 66 84 

Delay Cost b 

RUCM 0 0 N/A 

ANN-HCM 1,350 1,524 1,562 

ANN-SVM 1,284 1,371 1,757 

Ground Truth d 1,153 1,437 1,822 

Maximum Queue 

Length c 

RUCM 0 0 N/A 

ANN-HCM 0 0.2 0.6 

ANN-SVM 0 0.2 0.6 

Ground Truth d 0 0.2 0.6 

Note: a Delay: veh-hr; b Delay cost: $;  c Queue length: miles; d INRIX speeds. 

 

Figure 4.11 illustrates the variation of the queue lengths over time predicted by all 

the three models using Eq. 3.6, which are used to compare with the ground truth queue 

length. It is found that all these models performed well in Case 1 because of low traffic 

volumes during nighttime. However, for the daytime work zone with higher volumes (i.e., 
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Cases 2 and 3), the queue length predicted by ANN-SVM is more accurate that other two 

models. 

 
(a) Case 1 

 
(b) Case 2 

 
(c) Case 3 

Figure 4.11  Temporal queue length distribution. 
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3.7 Summary 

In this chapter, two models are developed for work zone delay prediction. The first model, 

the MNR model, is a non-linear model to capture spatio-temporal speed changes when 

non-recurrent congestion occurs caused by work zone activity. The prediction accuracy of 

the MNR model is acceptable as illustrated in Section 4.5. Regarding ANN-SVM, the 

evaluation results indicate that it is a better approach for work zone delay prediction 

because it can improve the accuracy of prediction results comparing to other models (i.e., 

MNR, RUCM, and ANN-HCM). The proposed ANN-SVM can predict the work zone 

impacts (i.e., delay, delay cost, and queue length) for the future work zone reasonably well 

when the traffic pattern is similar to the profile of the training data. The proposed 

ANN-SVM will be applied to various applications in the next chapter.  
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CHAPTER 5  

MODEL APPLICATIONS 

 

As discussed in Chapter 1, the objective of this study is to develop a sound spatio-temporal 

freeway work zone delay prediction model with big data under various road geometric and 

work zone conditions.  Two freeway work zone delay prediction models (i.e., MNR and 

ANN models) have been developed in Chapter 3 and evaluated in Chapter 4. Comparing to 

RUCM, MNR, and ANN-HCM, ANN-SVM had demonstrated its performance in terms of 

prediction accuracy under various lane configuration and time of day.  

In this chapter, the potential applications of ANN-SVM to support work zone 

planning and analysis on freeways are discussed. By employing ANN-SVM, a work zone 

delay prediction tool is developed in Section 5.1. Then, Case 2 presented in Section 4.6 is 

applied here for determining optimal the start time of a work zone that yields the least delay 

as well as cost in Section 5.2. Finally, ANN-SVM is applied to calculate the contractor 

penalty in terms of cost overruns as well as an incentive reward schedule in case of early 

work competition as shown in Section 5.3. 

5.1 Work Zone Impact Analysis 

By incorporating ANN-SVM, a work zone delay prediction tool (WZDPT) can be 

developed to post information graphically, which can aid transportation agencies to make 

proper decisions by assessing work zone activities in order to minimize disruptions to the 

traveling public. Depending upon the user inputs such as route, milepost range and 

direction, WZDPT can quickly locate the expected work zone on the map and apply 

ANN-SVM for work zone impact analysis. This further enhances the ease of use of 
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WZDPT, as users would not require any pre-requisite knowledge regarding road geometry 

condition for analysis.  

A historical work zone on the Interstate Highway 80 (I-80) - one of the most 

congested and busiest highways in New Jersey - is selected for demonstrating the 

application of ANN-SVM. One out of three lanes was closed for repairs on I-80 eastbound 

between mileposts 34.0 and 34.5 from 9 AM to 3 PM on October 14, 2014 as shown in 

Figure 5.1. The traffic volumes are obtained from NJCMS (2012) as illustrated in Figure 

5.2, which consists of an average 7% of heavy vehicles.  

 
Figure 5.1  Work zone on I-80 in Wharton, NJ. 

 

 
Figure 5.2  Hourly traffic distribution at MP 33.79 on I-80 EB. 
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Based on the work zone information discussed above, WZDPT will retrieve the 

roadway geometry information (e.g., number of lanes at work zone location) from the 

NJSLD DB and normal speeds in upstream of work zone from INRIX. Then WZDPT can 

quickly generate the normal speed (part a) and the predicted speed (part b) heat maps of 

I-80 eastbound work zone as shown in Figure 5.3. This enables user to compare 

spatio-temporal speed changes side-by-side and better assess the impact of the proposed 

reconstruction project.  

By using Eq. 4.5, Figure 5.4 illustrates the predicted impacts of the 6-hour work 

zone on I-80 EB versus different lane closures (i.e., shoulder, 1-lane, and 2-lane) and work 

zone starting times (i.e., 3 AM, 9 AM, 3 PM, and 9 PM). The normal speeds and predicted 

work zone speeds are illustrated horizontally with respect to the number of lane closures 

and vertically with respect to the starting time of the work zone. The predicted work zone 

delays consistently increase as number of closed lanes increases, especially during peak 

periods. In addition, work zone delay impact is greater in the peak period than in the 

off-peak period (comparing heat maps in Rows 1 and 4. Moreover, the speed recovers 

slowly as the work zone end time approaches the peak period (compare heat maps in Row 

1). The work zone delay prediction tool shows the capability of creating richer and more 

complete picture of what is happening on the road, which can be used as a viable 

alternative for transportation engineers to analyze information efficiently and make proper 

delay mitigation strategies. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3  Comparison of predicted and actual speeds of the I-80 EB work zone site.  

(a) Normal Speed Heat Map

34.0 60 62 67 68 68 68 68 68 67 68 68 66 68 68 69 69 68 68 68 70 70 66 69 68 69 69 68 67 69 70 70 69

61 64 68 70 70 70 69 69 69 69 69 68 69 70 70 70 69 69 70 71 71 67 70 69 70 70 70 69 70 71 71 70

33.0 61 64 68 70 70 70 69 69 69 69 69 68 69 70 70 70 69 69 70 71 71 67 70 69 70 70 70 69 70 71 71 70

61 64 68 70 70 70 69 69 69 69 69 68 69 70 70 70 69 69 70 71 71 67 70 69 70 70 70 69 70 71 71 70

32.0 61 64 68 70 70 70 69 69 69 69 69 68 69 70 70 70 69 69 70 71 71 67 70 69 70 70 70 69 70 71 71 70

61 64 68 70 70 70 69 69 69 69 69 68 69 70 70 70 69 69 70 71 71 67 70 69 70 70 70 69 70 71 71 70

31.0 61 64 68 67 67 68 67 66 66 66 67 65 66 67 67 67 66 67 67 67 68 65 68 67 68 69 68 67 69 68 68 67

65 67 70 67 68 68 68 66 65 66 66 67 67 67 68 68 67 68 67 68 69 65 69 68 70 69 68 68 69 69 69 67

30.0 65 67 70 67 68 68 68 66 65 66 66 67 67 67 68 68 67 68 67 68 69 65 69 68 70 69 68 68 69 69 69 67

65 67 70 67 68 68 68 66 65 66 66 67 67 67 68 68 67 68 67 68 69 65 69 68 70 69 68 68 69 69 69 67

29.0 68 68 70 69 69 70 68 67 67 68 67 68 68 69 69 69 69 69 69 68 69 67 69 69 70 69 69 70 71 70 69 69

68 69 71 69 69 70 68 68 68 68 68 69 69 70 70 69 69 70 69 68 70 67 69 68 69 69 70 70 70 71 70 70

28.0 66 67 69 66 67 68 65 66 66 66 66 65 67 67 68 68 67 67 66 66 70 66 66 67 66 66 67 67 69 69 69 68

66 67 69 66 67 68 65 66 66 66 66 65 67 67 68 68 67 67 66 66 70 66 66 67 66 66 67 67 69 69 69 68

27.0 66 67 69 66 67 68 65 66 66 66 66 65 67 67 68 68 67 67 66 66 70 66 66 67 66 66 67 67 69 69 69 68

64 65 66 65 65 67 60 63 63 63 61 61 64 64 65 65 65 63 63 63 67 64 64 65 64 63 65 63 66 66 66 64

26.0 61 61 64 62 63 66 58 61 61 60 59 57 61 62 63 63 63 61 61 62 65 60 61 63 61 58 64 61 64 65 65 62

61 62 64 63 63 66 61 61 62 60 61 59 61 62 64 63 63 61 61 62 64 60 62 63 62 60 65 63 64 66 65 63

25.0 64 64 66 65 66 68 64 64 64 64 64 63 63 64 65 65 65 64 64 65 66 64 64 65 65 64 67 66 67 68 67 65

24.5 66 66 68 67 68 69 65 65 66 66 66 66 65 66 66 68 68 66 67 68 68 66 66 67 67 67 68 69 69 69 68 67
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(b) Predicted Speed Heat Map

34.0 55 56 56 55 57 56 55 56 56 55 56 56 55 57 56 58 57 59 59 59 59 59 59 59 62 68 66 65 67 69 69 67

55 56 56 55 57 56 55 56 56 55 56 56 55 57 56 58 57 59 59 59 59 59 59 59 62 68 66 65 67 69 69 67

33.0 56 58 59 59 59 58 56 58 59 59 59 58 56 58 59 59 59 58 56 58 59 59 59 58 65 70 69 68 69 71 71 68

56 58 59 59 59 58 56 58 59 59 59 58 56 58 59 59 59 58 56 58 59 59 59 58 65 70 69 68 69 71 71 68

32.0 61 62 56 58 59 59 59 58 56 58 59 59 59 58 62 62 62 62 62 62 62 64 62 62 66 66 65 64 66 65 66 64

61 62 56 58 59 59 59 58 56 58 59 59 59 58 62 62 62 62 62 62 62 64 62 62 66 66 65 64 66 65 66 64

31.0 63 64 62 62 62 62 62 62 62 62 62 62 62 62 67 67 66 67 66 67 67 64 68 66 68 66 65 65 67 66 66 64

63 64 62 62 62 62 62 62 62 62 62 62 62 62 67 67 66 67 66 67 67 64 68 66 68 66 65 65 67 66 66 64

30.0 63 64 67 64 66 66 66 64 64 65 65 66 66 66 67 67 66 67 66 67 67 64 68 66 68 66 65 65 67 66 66 64

64 65 66 65 66 68 66 65 66 66 66 67 66 67 68 67 67 68 67 66 67 65 67 67 68 66 68 68 70 69 67 67

29.0 64 65 66 65 66 68 66 65 66 66 66 67 66 67 68 67 67 68 67 66 67 65 67 67 68 66 68 68 70 69 67 67

64 65 67 65 66 67 65 65 66 67 66 67 67 68 68 68 67 68 67 66 67 65 67 66 68 67 70 69 69 70 69 68

28.0 64 65 67 65 66 67 65 65 66 67 66 67 67 68 68 68 67 68 67 66 67 65 67 66 68 67 70 69 69 70 69 68

64 64 65 64 65 65 64 64 65 65 65 65 65 66 66 66 65 65 65 65 67 64 65 65 65 65 67 66 68 68 69 67

27.0 63 63 64 63 64 65 60 63 63 63 61 61 64 64 64 64 64 63 63 63 65 64 64 64 64 63 65 63 65 66 66 64

61 61 63 62 63 64 58 61 61 60 59 57 61 62 63 63 63 61 61 62 64 60 61 63 60 57 64 60 64 65 65 62

26.0 61 62 63 63 63 65 61 61 62 60 61 59 61 62 64 63 63 61 61 62 64 60 62 63 61 58 65 63 64 65 65 63

61 62 63 63 63 66 61 61 62 60 61 59 61 62 64 63 63 61 61 62 64 60 62 63 62 60 65 63 64 66 65 63

25.0 63 63 64 64 65 66 64 64 64 64 64 63 63 64 65 65 65 64 64 65 65 64 64 65 65 64 66 65 65 66 66 65

24.5 64 64 65 64 66 66 64 64 65 65 65 65 65 65 65 66 66 65 66 66 66 65 65 65 66 65 66 68 67 67 66 66
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Figure 5.4  Comparison of predicted speeds with different work zone starting times and lane closure configurations. 
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In addition to examining the work zone impact prediction results, users can view 

the hourly volume distribution approaching the work zone obtained from NJCMS DB as 

shown in Figure 5.5, which allows users to examine the volume changes over space and 

time. If the traffic counts of a study work zone site are different from those that NJCMS 

summarized in the table, a user-specified parameter (in percentages) is offered to adjust the 

volumes. 

 

Figure 5.5  Hourly traffic volumes. 

 

After reviewing traffic volume counts, users may select one of the three criteria 

below to determine the queue: 

Criterion 1: 75% of historic average speed – The status of queue is positive at a 

segment whose speed falls below 75% of the historic average speed. The historic average 

speed is specific to the time of a day and the day of a week for each segment, and is 

calculated based on the speeds collected in 2014. More detailed information can be found 

in Chapter 3.  
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Criterion 2: 75% of historic average speed or LOS (Level of Service) D Speed – 

The status of queue is positive at a segment whose speed falls below 75% of the historic 

average speed or LOS D speed (i.e., 35 mph). 

Criterion 3: Historic average speed – The status of queue is positive at a segment 

whose speed falls below the historic average speed. This measure will show predicted 

queue over space and time that is “worse than normal.” Users are also able to enter an 

“offset” into this option. 

For the 6-hour work zone conducted at 3AM with one lane closure on I-80 EB MP 

34 - 34.5 (see speed heat map in Column 3 and Row 1 in Figure 5.4), Figure 5.6 shows the 

queue length distribution over time by using three criteria listed above. The work zone 

delay prediction tool provides user with flexibility in determining work zone impacts based 

on preferences and needs. Note that the queue by using Criterion 3 is determined for any 

time when speeds are 5 mph lower than normal speed. It is found that the queue length 

defined by Criterion 3 is longer than those defined by Criteria 1 and 2. The reason for this is 

that due to lane closure required by the planned work zone, the speed drops quickly as the 

traffic volume increases. 

 
Figure 5.6  Temporal queue length distributions. 
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Furthermore, WZDPT allows the user to generate a report of lane closure impacts 

based on a default template. The report contains all the necessary information for the 

roadway segment of interest as well as the predicted delay, delay cost and queue length 

using Eqs. 3.5 through 3.7. For instance, a report generated for the lane closure of I-80 

from milepost 34 to milepost 34.5 from 3:00 AM to 9:00 AM plus two hours after the work 

zone removed is illustrated in Figure 5.7. This report not only presents the impact of a 

proposed lane closure in a logical and concise manner, it also assists agencies and 

contractors in preparing project documentation. It is noted that the volume showed in the 

analysis report is the hourly volume approaching the work zone obtained from NJCMS 

DB. 

 

Figure 5.7  Work zone mobility impact report. 
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5.2 Work Zone Schedule Optimization 

In this section, ANN-SVM is evaluated with the work zone in Case 2 (see Section 4.6) 

under various starting times and durations. Figure 5.8 shows the variation of delay cost 

versus start time for various work zone durations. Considering a 5-hour work zone, it is 

found that the most cost-effective starting time would be 12 AM. If this work zone must be 

performed during the daytime (i.e., between 6 AM and 6 PM), the suggested starting time 

would be 10 AM.  It is also found that when the 5-hour work zone ends close to or at peak 

hours, the residual queue must wait for extra time to be cleared, which results in more delay 

and cost. As the duration is greater than 7 hours, the delay cost reaches the minimum at 10 

PM because of light traffic volumes between 10 PM and 5 AM.  

 

Figure 5.8  Delay cost vs. starting time for various work zone durations (Case 2). 

 

Figure 5.8 also indicates that a work zone performed in the daytime with longer 

duration would raise the delay cost, especially if the work zone schedule crosses peak 
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hours. In general, low delay cost may be expected as the work zone is performed during the 

nighttime, albeit the labor cost is expected to be high. This also explains the work zone 

practices often seen in daily commutes. 

Figure 5.9 illustrates and explores the relationship between delay cost and start time 

for various demand levels, varying from 80% to 150% of the original volume in Case 2. It 

is found that the delay costs are close and relatively low for the start time beginning with 11 

PM or later until 3 AM (next day) because the traffic during the corresponding work zone 

time period is light.  The delay cost significantly increases if the work zone duration 

crosses peak hours. The results would give transportation agencies a competitive edge by 

examining the delay costs versus work zone start and end times subject to different traffic 

distributions over space and time. 

 

Figure 5.9  Delay cost vs. starting time for various traffic multipliers (Case 2). 
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5.3 Lane Rental Charge Determination 

A FHWA report (FHWA, 2011) defines lane rental fee as a daily-base or hourly-base 

charge for the time period a lane is closed to through traffic for construction activities. This 

provision is intended to minimize the disruption of the work zone traffic and to encourage 

minimal use of lanes for construction activities. The delay costs for various starting times 

and durations, as shown in Figure 5.8, can be used as a guideline to form the basis for 

awarding or deducting payments to contractors for early and late project completions, 

respectively. For example, in Case 2, assuming that the contractor delays two hours to open 

the closed lane to traffic (i.e., takes seven hours instead of five hours to complete the work). 

If work zone started at 10 AM, the transportation agency could charge $964 in penalties to 

the contractor for late completion because of the cost incurred by the excess delay. Note 

that this charge may vary depending on the traffic volume distribution, work zone starting 

time, and duration of late work completion of the study site as shown in Figure 5.10. 

 
Figure 5.10  Penalty vs. starting time for 2-hour delayed completion (Case 2). 

 

$964

0

100

200

300

400

500

600

700

800

900

1,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
en

a
lt

y
 (

$
)

Time of Day



 

100 

 

CHAPTER 6  

CONCLUSIONS AND FUTURE RESEARCH 

 

With increasing roadwork activities that are necessary to rehabilitate and revitalize the 

roadways in the United States, planning lane closures for roadwork has drastically 

demanded more accurate predictions on the impact of lane closures. It is crucial to be able 

to precisely predict the lane closure impacts to minimize both the cost and traffic 

congestion induced by roadwork. In response to this challenge, two models, the MNR and 

ANN models, for quantifying work zone delay were developed using big data in this 

research. In the MNR model, the work zone capacity was predicted using reduction factors 

based on historical work zones in years 2013 and 2014. While in the ANN model, the work 

zone capacity was approximated using the SVM model (called ANN-SVM). Subject to the 

limitation of work zone related traffic information collected from the field for peak period, 

a calibrated and validated simulation model was developed using VISSIM to generate 

traffic data for model development. The performance of each model was analyzed.  

Then the proposed ANN-SVM model was embedded into a work zone delay 

prediction tool, which can be used to support state and local traffic construction, 

operations, planning staff, and construction contractors to: 

 Quantify and display temporal-spatial corridor speed/delay predictions resulting 

from capacity decreases in work zones on New Jersey freeways and arterials. 

 Identify delay impacts of alternative project phasing plans. 

 Conduct tradeoff analyses between construction costs and delay costs. 

 Examine the impacts of construction staging by location, time of day (peak versus 

off-peak), and season (summer versus winter). 
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 Assess travel demand measures and other delay mitigation strategies. 

 Help establish work completion incentives. 

For example, ANN-SVM could be used to calculate the costs of conducting work at 

night instead of during the day, to change the starting and ending times, and to compare the 

impact of several time schedules on traffic flow conditions, or to divert the traffic to one 

road versus another road during different phases of construction. The costs, traffic delays, 

and potential backups can be predicted for both an average day of work and for the whole 

life cycle of construction. This model can also analyze the advantages of various strategies 

for minimizing the projected traffic delays. These mitigation strategies might include the 

retiming of signals on detour routes to help traffic flow more smoothly, planning a media 

campaign to publicize the planned work zones, or using traveler information systems that 

allow drivers to plan ahead and choose other routes if possible. 

6.1 Conclusions 

While developing the work zone capacity and delay prediction models, a wealth of 

insights, challenges, areas of potential improvements, and opportunities available to 

agencies in the areas of work zone impact assessment, data collection, and performance 

measurement were identified, all of which are summarized below. 

6.1.1 Spatio-temporal Work Zone Delay Prediction 

In this study, an ANN-SVM was developed using big data to quantify delays incurred by 

work zones on New Jersey freeways, in which the restricted capacity (or called work zone 

capacity) was approximated using SVM. ANN-SVM was designed to adapt to the 

relationship of speed versus the ratio of approaching traffic volume to work zone capacity, 
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which has proven to be a robust work zone delay prediction model and achieves reasonable 

well prediction accuracy. The performance of ANN-SVM outperforms that with RUCM 

and ANN-HCM in predicting delay, delay cost, and queue length. 

A work zone delay prediction tool integrated with ANN-SVM was developed to 

post information graphically, which can aid transportation agencies to make proper 

decisions by assessing work zone activities in order to minimize disruptions to the 

traveling public. It is worth noting that this easy-to-use and easy-to-learn tool does not 

require users to set various adjustment factors based on practical experience. It is very 

convenient for practitioners to assess the impact of work zones and determine the optimal 

work zone schedule which can yield the least delay and cost. Based on the predicted 

spatio-temporal speeds affected by an expected work zone, a proper traffic management 

plan (i.e., locations of changeable message signs, variable speed limits, and traffic detour 

management, etc.) may be prepared accordingly. ANN-SVM can assist work zone planners 

in designing optimal start and end time of work zone as function of time of day. In addition, 

it can be used to calculate contractor penalty in terms of cost overruns as well as incentive 

reward schedule in case of early work competition. 

6.1.2 Big Data Analytics in Work Zone Impact Analysis 

With technological advancement, the transportation industry has been experiencing a wide 

variety of unprecedented massive traffic data obtained from different sources, such as 

infrastructure sensors, mobile devices, and floating cars. This new and rich data (big data) 

needs to be managed, communicated, interpreted, aggregated, and analyzed in a reliable 

and efficient way. However, use of conventional data management tools is not able to 

uncover hidden patterns, correlations, and other insights, which would leave the huge 
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amount of traffic data underutilized. Therefore, big data analytics, which creates richer and 

more complete picture of what’s happening on the road, becomes a viable alternative for 

transportation engineers to analyze information efficiently and make decisions based on 

what they’ve learned.  

For the freeway work zone impact analysis, leveraging big data analytics and 

advanced freeway work zone delay prediction methods (e.g., ANN models) with big data, 

the accuracy of predicted work zone speed and delay can be then significantly improved, 

rather than predicting delay using traditional deterministic queuing method with the data 

captured by loop detectors. The ability of big data analytics to work faster and stay agile 

gives transportation agencies a competitive edge they did not have before. In addition, it 

would help transportation agencies improve work zone operations, reduce delay costs and 

better serve motorists. 

6.1.3 Work Zone Data Deficiencies 

The major issues founded during data processing procedures are as follows: 

 Although the length of a work zone and the corresponding starting/ending times 

are initially set by NJDOT, this information is finalized by the contractor who 

demarcates the work zone. OpenReach DB needs to be updated based on the 

contractor’s finalized work zone schedule. 

 The traffic counts information at the scenes of work zones are important measures 

for predicting speed and delay, which is not available at most places. The hourly 

traffic volumes recorded in NJCMS DB are thus used for model development. 

 The OpenReach and INRIX DBs do not include the SRI information. In addition, 

INRIX DB also lacks the mileposts of TMCs. This problem has been fixed 

manually in this study. This issue will occur as new TMCs on New Jersey 

freeways are defined. 
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6.2 Future Research 

Future research to enhance ANN-SVM in prediction spatio-temporal work zone delay and 

its applications shall focus on the following aspects: 

The actual traffic counts for peak period at the scenes of work zones should be 

collected from the field to replace the simulated data for further validation of the developed 

models. While using real world traffic counts, the sample size should be chosen in a way 

that assure that the collected data can reflect the actual work zone impacts on traffic flows 

under various lane configurations and work zone conditions. More accurate traffic counts 

information will substantially improve the reliability of the developed models and produce 

more accurate results regarding the upstream speed, queue delay and cost. Such extensions 

will allow the transportation engineers to identify the optimal start and end times of each 

work zone, which will further improve the traffic flow operation of each facility. 

It is desirable to develop a self-updating database by gathering data from various 

sources in an automated manner wherever feasible. Modifying and standardizing the 

existing database with the inclusion of common fields of information, in order to facilitate 

effective communication between sources that would reduce the time required for manual 

processing and improve productivity.  

Traffic Message Channels (TMCs) can play a key role in collecting mobility and 

safety data, identifying issues that arise, and providing information to the public regarding 

current work zones within its surveillance zone. INRIX has re-defined the length of the 

TMCs, which are now smaller. The performance of the proposed model in this study can be 

elevated if it utilizes these smaller TMCs, as it will more accurately predict the speed and 

queue length for each time interval. 
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The work zone capacity predicted from SVM can be applied in the MNR model to 

improve the prediction accuracy. In addition, the proposed model in this study can be 

further extended to include the network impact of a work zone. Such an expanded model 

may have functions including: (a) a network-wide work zone impacts prediction module; 

(b) an optimal work zone schedule module; and (c) a work zone optimal staging module. 
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APPENDIX A 

OPENREACH DATA DEFINITION 

 

In this appendix, the OpenReach data fields are identified in the list below. 

Field Description Data Stream Example 

EVENTID* Event Identification 45675101 

Facility Name*  Route Name NJ 3 

Created At Date 

Time* 
Incident Start Date and Time  2/1/13 22:00 

Closed At Date 

Time* 
Incident End Date and Time 2/2/13 7:31 

Event Type Incident Type Construction 

Event Description Description of the Incident 

NJ DOT - STMC: 

Construction, construction 

on NJ 3 both directions 

between US 46 (Clifton)  

and West of CR 509/Broad 

St (Clifton)  right lane 

closed  until 7:00 A.M. 

City From Name The city at the start of the incident Clifton 

County From 

Name 
The county at the start of the incident Passaic 

State From Name The state at the start of the incident NEW JERSEY 

City To Name The city at the end of the incident Clifton 

County To Name The county at the end of the incident Passaic 

State To Name The state at the end of the incident NEW JERSEY 

From Mile 

Marker* 
Incident Starting Milepost 3.8 

To Mile Marker* Incident Ending Milepost 4.9 

Final Duration The Duration of the Incident 570 

Latitude The Latitude of the Incident 40.83257731 

Longitude The Longitude of the Incident -74.14454447 

*: Fields selected for database development. 
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APPENDIX B 

A SAMPLE QUERY FOR DATA PROCESSING 

 

Presented below is a sample SQL query used in the database development of this study: 

 

CREATE NONCLUSTERED INDEX [day_week] ON 

[dbo].[Interstate_Highway_Feb_2014] ([day_week] ASC) WITH (PAD_INDEX  = OFF, 

STATISTICS_NORECOMPUTE  = OFF, SORT_IN_TEMPDB = OFF, 

IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, 

ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ON) ON [PRIMARY] 

go 

=============================================================== 

update [Interstate_Highway_Feb_2014] set time_range_fk_id= time_range.time_range_id 

from time_range 

where CONVERT(time, [measurement_tstamp], 102)  between min_interval and 

max_interval 

go 

=============================================================== 

update [Interstate_Highway_Feb_2014] set  dw=0 where (day_week=1 or day_week=7) 

go 

=============================================================== 

update [Interstate_Highway_Feb_2014] set  dw=1 where dw is null 

go 

=============================================================== 

CREATE CLUSTERED INDEX [ix_cluster3] ON [dbo].[Interstate_Highway_Feb_2014] 

([tmc_code] ASC, [time_range_fk_id] ASC, [dw] ASC) WITH (PAD_INDEX  = OFF, 

STATISTICS_NORECOMPUTE  = OFF, SORT_IN_TEMPDB = OFF, 

IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, 

ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ON) ON [PRIMARY] 

GO 

=============================================================== 

SELECT [tmc_code], [time_range_fk_id], COUNT(dw)as max_len 

into   Interstate_Highway_Feb_2014_Maxrecords 

FROM [Interstate_Highway_Feb_2014] 

where [dw]=0 

group by [tmc_code], [time_range_fk_id] 

go     

=============================================================== 

SELECT [tmc_code], [time_range_fk_id], COUNT(dw) as max_len 

into   US_Highway_feb_2014_wd_maxrecords 

FROM [Interstate_Highway_Feb_2014] 

where [dw]=1 

group by [tmc_code], [time_range_fk_id] 
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go 

=============================================================== 

SELECT *, ROW_NUMBER() OVER(PARTITION BY tmc_code, time_range_fk_id 

ORDER BY speed ) AS "Row Number" 

into Processed_Interstate_Highway_Feb_2014 

FROM [Interstate_Highway_Feb_2014]  

where dw=0 

go 

=============================================================== 

SELECT *, ROW_NUMBER() OVER(PARTITION BY tmc_code, time_range_fk_id 

ORDER BY speed ) AS "Row Number" 

into Processed_Interstate_Highway_Feb_2014 

FROM [Interstate_Highway_Feb_2014]  

where dw=1 

go  

=============================================================== 

update [Processed_Interstate_Highway_Feb_2014] set 

[Processed_Interstate_Highway_Feb_2014].max_len=agg.max_len 

from Interstate_Highway_Feb_2014_Maxrecords agg WITH (NOLOCK) 

where [Processed_Interstate_Highway_Feb_2014].tmc_code = agg.tmc_code and 

           [Processed_Interstate_Highway_Feb_2014].time_range_fk_id = 

           agg.time_range_fk_id and 

           [Processed_Interstate_Highway_Feb_2014].[dw]=0 

go 

=============================================================== 

update Processed_Interstate_Highway_Feb_2014  set percentile=round(CAST([Row 

Number] AS float)/ CAST([max_len] AS float),6) 

go 

update Processed_Interstate_Highway_Feb_2014  set percentile=round(CAST([Row 

Number] AS float)/ CAST([max_len] AS float),6) 

go 

=============================================================== 

select tmc_code, time_range_fk_id, avg(speed) as avg_speed, stdev(speed) as 

stdev_speed, max(speed) as max_speed, min(speed) as min_speed, count(speed) as 

count_speed 

into Interstate_Highway_Feb_2014_Output 

from   Processed_Interstate_Highway_Feb_2014 y 

where  ([percentile]>=0.05 and [percentile]<=0.95) 

group by [tmc_code], time_range_fk_id  

go 

=============================================================== 

SELECT [tmc_code], [time_range_fk_id], [min_interval], [max_interval], [avg_speed], 

[stdev_speed], [max_speed], [min_speed], [count_speed] 

FROM Interstate_Highway_Feb_2014_Output INNER JOIN [time_range] ON 

[time_range_id]=[time_range_fk_id] 

go 
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APPENDIX C 

NJDOT RUCM APPROACH 

 

The detailed procedure of NJDOT RUCM approach predicting work zone delay and cost is 

presented in this Appendix. Before conducting the computation, certain important criteria 

and assumptions must be identified: 

 Average user cost per car hour is $18.15/veh-hr. 

 Average user cost per truck hour is $30.25/veh-hr. 

 The work zone speed is generally 10mph -15mph less than the unrestricted speed. 

The unrestricted speed is generally assumed the posted speed limit of the section 

operating in an unrestricted flow condition. Following this, the unrestricted speed 

of the studied segment as 65 mph; hence, the work zone speed is assumed as 50 

mph. 

Take Case 1 of Section 4.6 as an example, the selected section of the I-78 WB 

mainline is comprised of three lanes. The closure of two lanes was required for carrying out 

work zone operations, and all traffic operations were supported by the remaining one open 

lane. Capacity of the roadway in both normal and work zone scenarios are given in the 

NJDOT RUCM (NJDOT, 2015) as illustrated in Table C.1.  
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Table C.1  Traffic Capacities 

 

Facility Type Ideal Capacity 

Freeway - 4 lanes 2,200 passenger cars per hour per lane 

Freeway - 6 or more lanes 2,300 passenger cars per hour per lane 

Multilane highway 2,200 passenger cars per hour per lane 

Two-lane highway 1,400 passenger cars per hour per lane* 

Signalized Intersection 1,900 passenger cars per hour of green per lane 

          *: For 50/50 volume, split by direction. 

 

Work zone road capacity counted in vehicle/lane/hour is taken as the number of 

lanes multiplied by the capacity provided in Table C.2. With one lane closure on a 3-lane 

freeway, the work zone capacity is 1,200 vph. Table C.3 depicts the calculation procedure 

suggested by the NJDOT RUCM. 

Table C.2  Measured Work Zone Capacity - Freeway Section 

 

Number of Direction 

Lanes 
Number 

of 

Studies 

Average Capacity 

Recommended Value (*) 

veh/lane/hour 
Normal Open 

Vehicle 

per hour 

Vehicle per 

lane per hour 

3 1 7 1,170 1,170 1,200 

2 1 8 1,340 1,340 1,300 

5 2 8 2,740 1,370 1,400 

4 2 4 2,960 1,480 1,500 

3 2 9 2,980 1,490 1,500 

4 3 4 4,560 1,520 1,500 

*: Values may be increased 100 veh/lane/hour when work zone is protected with Jersey 

barrier. 
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The queue rate is calculated as the difference between the hourly capacity of the 

facility and the unrestricted hourly demand during each hour of the day. The queuing rate is 

the hourly rate at which vehicles accumulate, or, if negative, dissipate from any queue that 

may exist. A physical queue develops when the queue rate is greater than zero. In this 

scenario, the approaching volume is too small compared to the capacity provided. Hence, 

either negative queue rates are obtained or no queue is formed. 

Under unrestricted flow conditions, the number of vehicles that travel through the 

work zone is generally seen as the traffic demand on the facility during the hours when the 

work zone is in place. The total number of vehicles travelling through the work zone was 

5,054 vph as shown in Table C.3. As shown in Table C.4, the added travel time caused by 

the work zone based on the NJDOT RUCM can be computed using the following formula: 

 

𝑡 =
𝑑

𝑣𝑤
−

𝑑

𝑣𝑢
 

 

where:  

𝑡 = Added travel time (hr/veh); 

𝑑 = Work zone length (mi); 

𝑣𝑤 = Work zone speed (mph); and 

𝑣𝑢 = Unrestricted speed (mph). 

  

(C.1) 
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Table C.3  Analysis of the Work Zone 

 

 

Table C.4  Work Zone Delay Calculation 

 

Work Zone 

Length        

(mile) 

Work Zone 

Speed              

(mph) 

Unrestricte

d Speed              

(mph) 

Work Zone 

Travel Time at 

Unrestricted 

Speed            

(hr/veh) 

Work Zone 

Travel Time 

at Work 

Zone Speed            

(hr/veh) 

Added Time 

to Travel 

Work Zone                 

(hr/veh) 

2 50 65 0.031 0.040 0.009 

 

Work Zone: Normal Capacity: 6,900

Normal Speed (mph): 65 Percent Cars: 90 Work Zone Capacity: 1,200

Directional ADT: Percent Truck: 10 Lanes Under Normal Operation: 3

3.1(A) 3.1(B) 3.1(C) 3.1(D) 3.1(E) 3.1(G) 3.1(H) 3.1(I) 3.1(J)

Hourly 

Traffic 

(%)

Vehicle 

Demand 

(vph)

Lanes 

Open 

(#)

Roadway 

Capacity 

(vph)

Queued 

Vehicles 

(vph)

Work 

Zone 

Present? 

(Y or N)

Vehicles 

that Travel 

Work Zone 

(vph)

12-1 AM 0.7 466 1 1,200 0 Y 466 0

1-2 0.5 329 1 1,200 0 Y 329 0

2-3 0.4 173 1 1,200 0 Y 173 0

3-4 0.6 180 1 1,200 0 Y 180 0

4-5 1.8 223 1 1,200 0 Y 223 0

5-6 4.4 216 1 1,200 0 Y 216 0

6-7 6.2 499 1 6,900 0 N 0 0

7-8 7.2 2,108 1 6,900 0 N 0 0

8-9 5.6 2,398 1 6,900 0 N 0 0

9-10 5.0 1,717 1 6,900 0 N 0 0

10-11 4.8 1,396 1 6,900 0 N 0 0

11-12 PM 5.1 1,533 1 6,900 0 N 0 0

12-1 5.3 1,817 1 6,900 0 N 0 0

1-2 5.5 1,695 1 6,900 0 N 0 0

2-3 5.6 1,555 1 6,900 0 N 0 0

3-4 6.5 1,380 1 6,900 0 N 0 0

4-5 6.9 2,547 1 6,900 0 N 0 0

5-6 6.4 2,566 1 6,900 0 N 0 0

6-7 5.9 1,789 1 6,900 0 N 0 0

7-8 4.9 1,070 1 6,900 0 N 0 0

8-9 4.0 1,073 1 6,900 0 N 0 0

9-10 3.0 1,223 1 6,900 0 N 0 0

10-11 2.1 1,113 1 6,900 0 N 0 0

11-12 1.6 939 1 1,200 0 Y 939 0

TOTALS 100.0 30,005 2,526 0

-5,830

-5,827

-5,677

-5,787

-261

-5,345

-5,520

-4,353

-4,334

-5,111

I-78 WB MP 47.3 - 49.3

3.1(F)

Queue Rate 

(vph)

-871

-5,205

-734

Time 

Period 

(hour)

Vehicles 

that Travel 

Queue

 (vph)

-1,027

-1,020

-977

-984

-6,401

-4,792

-4,502

-5,183

-5,504

-5,367

-5,083
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The delay cost is calculated for specific vehicle classes, and is the product of the 

percentage of class and the volume, additional travel time delay, and the average user cost 

per vehicle. Table C.5 shows the calculation based on the NJDOT RUCM. The reduction 

factor is used to accommodate for variations in traffic data, roadway capacities, and cost 

rates. 

Table C.5  Work Zone Delay Cost Computation (NJDOT RUCM) 

 

 
 

3.5(A) 3.5(B) 3.5(C) 3.5(D) 3.5(E) 3.5(F) 3.5(G) 3.5(H)

Road User Cost Component
Vehicle 

Class

Percent 

Class

 (%)

Total 

Vehicles

 (#)

Added Travel 

Length

 (mile/veh)

Added Time 

(hr/veh)

Cost Rate 

($/veh-hr, $/mile)

Road User Cost 

($)

Queue/Flagging Delay CAR 90 2,526 0.000 18.15 0

(Added Time) TRUCK 10 2,526 0.000 30.25 0

Queue/Flagging Idling VOC CAR 90 2,526 0.000 0.9695 0

(Added Cost) TRUCK 10 2,526 0.000 1.1150 0

CAR 90 2,526 0.009 18.15 371

(Added Time) TRUCK 10 2,526 0.009 30.25 69

Circuity Delay
CAR 90 0 0.000 18.15 0

(Added Time) TRUCK 10 0 0.000 30.25 0

Circuity VOC
CAR 90 0 0.0 0.320 0

(Added Cost) TRUCK 10 0 0.0 0.640 0

Total Vehicles that Travel Queue: 0 Daily / Hourly Road User Cost 440

Total Vehicles that Travel Work Zone: 2,526 Calculated Road User Cost (CRUC) 330

Total Vehicles that Travel Detour: 0 Daily RUC (1) or Hourly RUC (0) 1

Percent Passenger Cars: 90% Total Road User Cost (per Day) 330

Percent Trucks: 10% Total Road User Cost  (per minute)   

Work/Flagging Zone Delay
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