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ABSTRACT

VIBRATION AS AN AID 
IN ROBOTIC PEG-IN-HOLE ASSEMBLY

by
Hsin-Te Liao

This dissertation presents an analytical and experimental investigation 

of vibration assisted engagement for parts mating. A dynamic model of 

assembly is established by using Lagrange’s equation for impact to derive 

impact equations for a robotic manipulator in peg-in-hole assembly. The 

model can be used to analyze part motion and contact force in the m ating of 

parts by robots. The impact equations of a SCARA robot are derived using 

this model and utilized to investigate how robot configuration, insertion 

speed, chamfer angle, coefficient of restitution and other system param eters 

affect impulsive force and departure angle in the assembly of a peg with a 

chamfered hole in the presence of position errors. In the analytical 

investigation, how the vibration amplitude, vibration frequency, frequency 

ratio, phase angle, uncertainty and tolerance of the assembly system affect 

the engagement time is analyzed. An algorithm is developed to determine the 

required time for engagement given a set of assembly and vibration 

param eters. An intelligent force-based approach is used in  conjunction with 

this algorithm to aid mating of parts and is implemented in experiments to 

verify analytical results.
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di distance in z direction between coordinate frame Xi-ys-Zi and
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dx distance in x direction between the center of the peg and the location of

the contact point

dy distance in y direction between the center of the peg and the location of
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Fx insertion force in the x direction

Fy insertion force in the y direction

Fz insertion force in the z direction

Fz.s difference between the largest and smallest value of the insertion force

Fz during sweep

x v
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NOMENCLATURE
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CHAPTER 1

INTRODUCTION

1.1 M otivation  a n d  S ig n ificance  

Assembly is an im portant part of manufacturing. Robotic assembly is 

representative of a class of tasks in which contact occurs in the robot 

operation. In high-speed assembly a robot arm dynamically interacts with a 

workpiece, where an impulsive force is generated and exerted on the end- 

effector of the robot. This impact may damage the mating parts or change the 

motion of the robot. To accomplish such high-speed assembly, the dynamic 

response of the robot arm must be investigated in order to accommodate or 

control the robot’s interaction with the workpiece. M ating of two parts, which 

can often be modeled as a peg-in-hole insertion problem, is a typical robotic 

assembly operation. Because of the substantial positional and dimensional 

errors in assembly machines, parts, fixtures, etc., positional uncertainty 

between two mating parts is inevitable, as shown in Figure l-(a). 

Engagement failure is defined as the situation where two mating parts 

cannot engage after they come in contact with each other. In addition to 

engagement failure, there is another kind of assembly failure called insertion 

failure, where wedging or jamming occurs during the insertion process, after

l
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2

the parts have engaged. Both engagement failure and insertion failure are 

commonly encountered in  parts mating.

CFrJ

\ /

(a) (b)

F ig u re  1.1 Model of peg-in-hole insertion

1.2 L ite ra tu re  S u rv ey

Considerable research and development efforts have been made on parts 

mating. The main research activities include four main directions: parts 

mechanics, feedback control, auxiliary device design, and vibration assisted 

parts mating. The mechanics of parts mating was studied extensively at 

Charles Stark Drapers Laboratory(Simunovic, 1975: Drake, 1977; Whitney, 

1982; Gustavson, 1985; Whitney and Rourke, 1986; Nevins and Whitney, 

1989) and elsewhere. Simunovic investigated force information in  robotic 

peg-in-hole insertion, which was further developed into the jamming and 

wedging diagrams in Whitney’s work (1979,1982). The result of this analysis 

was used to design a remote center compliance (RCC) device, a passive wrist 

which provides some compliance to absorb the misalignment between the 

m ating parts. Incorporated with a chamfer surface, the RCC can guide the
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peg into the hole as shown in Figure l-(b). The RCC device has been 

demonstrated to be highly effective in avoiding insertion failure. However, 

for the RCC device to be effective the peg must fall within the chamfer mouth 

a t the first contact. Furthermore, if  the initial angular error is too large, 

wedging will occur and cannot be overcome with RCC. There were many 

other studies on analysis of parts mating and strategies for automated 

assembly. Ohwovoriole and Roth (1981) used the theory of screws to study 3- 

D parts  mating. Sturges (1988) constructed general 3 D models for assembly 

of non-axisymmetric parts and used them to analyze m ating of rectangular 

parts. Cutkosky and Kao (1989) used properties of the grasp stiffness matrix 

to determine whether a grasp is stable or not. Pai and Leu (1991) derived a 

sufficient condition on the joint stiffness of a robot for jamming prevention. 

Leu and Jia  (1995), following an analysis similar to W hitney’s, derived the 

m ating force and part movement in peg-in-hole assembly by an industrial 

robot with its own compliance. In tha t case the end-effector compliance 

matrix is a general matrix, not a diagonal matrix.

Strategies for compliant assembly have been studied by a num ber of 

researchers. Lozano-Perez, et al. (1981) developed a method of synthesizing 

fine motion strategies. Mason (1981) developed a theory of compliance and 

force control based on models of the m anipulator and task geometry. Donald 

(1988) developed a formal framework for error detection and recovery using 

geometric characterization. Lee and Hou (1988) presented an approach for
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4

automatically determining the C-frame for various shaped objects in peg-in- 

hole assembly. Gottschlich and Kak (1989) discussed a dynamic planning 

strategy capable of detecting and recovering errors during an assembly 

process. Caine et al. (1989) developed strategies for chamferless insertion of 

axisymmetric and non-axisymmetric parts. Peshkin (1990) proposed a 

method for synthesizing an assembly task by specifying a compliance matrix 

which is error corrective. McCarragher and Asada (1992) developed a discrete 

event controller using Petri net modeling to determine the optimal sequence 

of discrete states for successful assembly.

Another approach to overcome positional errors in assembly is using 

feedback control techniques to perform on-line correction of positional errors. 

Raibert and Craig (1982) were among the first to propose a hybrid 

position/force control technique for controlling compliant motions of a 

manipulator. The goal of the control was to simultaneously satisfy position 

and force constraints. Hogan (1985) devised a method of impedance control 

which was capable of accepting positions and outputting forces. Kelly (1990) 

developed a controller which was based on fuzzy logics to in terpret the forces 

and torques generated by the wrist-mounted force-torque sensor during the 

insertion process. H ara and Yokogawa (1991) dealt with a precision inserting 

operation for chamferless parts under vague positional information by using 

approximate reasoning. The position of the parts was recognized by 

introducing two fuzzy sets. J i and Leu (1992) used visual m easurem ent and
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5

feedback techniques to perform on-line error correction. It involved the use of 

a vision camera to probe the part position, with the sensed data fed back to 

the monitor controller.

In high-speed assembly, Asada and Kakumoto (1987,1988,1990) used 

the concept of virtual mass and generalized centroid to analyze the dynamic 

insertion process and designed a dynamic RCC. Keller (1986) presented a 

theory of impact of two rigid bodies, taking account of friction. Wang and 

Mason (1987) developed graphic methods to analyze the resultant motions of 

two objects under impact. McCarragher and Asada (1993) presented a model- 

based approach to study the dynamics generated due to geometric 

interactions in  an assembly process. Youcef-Toumi and Gutz (1994) showed 

th a t tracking of impact force could be tuned by selecting a favorable 

dimensionless ratio of force to approach velocity. These studies have revealed 

tha t it is im portant to take dynamic forces into consideration in the assembly 

analysis when the speed of assembly is high.

An interesting approach to aid parts mating is to apply vibration in 

order to increase the tolerance of the assembly system for positional 

uncertainty in  the mating parts, without the use of sensory feedback and 

compliant devices. A study a t AT&T Bell Laboratory (1984) demonstrated 

th a t applying vibrational motions provided a means for solving the problem 

of parts misalignment in printed wiring board assembly. The experimental 

results indicated th a t proper vibrational frequencies and amplitudes could
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help parts engagement by creating relative motions between the mating 

parts. Jeong and Cho (1989) designed a pneumatic device to generate 

vibrations and discussed the effect of vibration frequencies in  vibration 

assisted assembly. Mohri (1988), at Toyota Technology Institute, showed that 

insertion failure could be eliminated by introducing ultrasonic vibration to 

reduce the contact friction. Leu and Liu (1991) did a quasi-static analysis of 

force and motion for vibration-assisted insertion. Li and Asada (1992) 

presented an experiment-based approach using the Taguchi Method applied 

to the turning of the vibrator. The vibration was produced so th a t the effect of 

friction and stick-slip could be minimized. Leu and Katz (1994) determined 

the amplitude and cycle requirements for feasible parts mating with the aid 

of an increasing-amplitude vibration.

1.3 Objective and Scope of Research

The main objective of this research is to provide knowledge toward a full 

understanding about how vibration affects mating of parts and how to 

properly select vibration param eters for optimal assembly results. The 

research is focused on the engagement phase of parts mating. A 

m athematical model is established to analyze contact forces and part motions 

after the mating parts contact each other. An algorithm is developed to 

determine the optimal amplitudes, frequency, frequency ratio, and phase 

angle for different tolerances and uncertainties of the assembly system.
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Experiments of peg-in-hole insertion are performed to verify the theoretical 

results. A force-based intelligent approach is used to solve some practical 

problems such as the flatness and levelness of m ating parts and response 

delay of signal communication which may cause insertion failure. An 

experimental investigation of how vibration amplitude and vibration 

frequency affect the insertion force in constant-amplitude vibrations is also 

described.

1.4 Outline of Dissertation

In chapter 2, Lagrange’s equation for impact is used to derive the impact 

equation for a general manipulator. The details of the derivation of the robot 

impact equation are given. A SCARA robot is used as an example to illustrate 

how robotic assembly param eters affect impact force and part motion. In 

chapter 3, selection of suitable vibration param eters is discussed. An 

algorithm to determine minimum sweep time for various ratios of 

uncertainty to tolerance is also developed. In chapter 4 a force-based 

intelligent approach is used to aid mating of parts in our experiments to 

verify analytical results. Conclusions are given in chapter 5.
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CHAPTER 2

IMPACT EQUATION FOR ROBOTIC PEG-IN-HOLE ASSEMBLY

2.1 Impact Force and Part Motion After Impact

In the peg-in-hole insertion, an impact force is produced a t the point of 

contact as the peg contacts the chamfer wall or surface of the hole piece. This 

impact force will change the part motion and may cause assembly failure or 

damage the mating parts. Some robots such as the Adept One will shut off 

the power in order to protect the robot if the contact force is too large. I t is 

im portant to analyze the impact force and part motion after contact and 

during engagement in order to adopt a suitable control strategy and select 

optimal assembly parameters. The following Lagrange’s equation for 

collision(Goldsmith, 1959) is used to derive the general form of impact 

equation for a m anipulator colliding with a workpiece:

' d lO
.d q, 

where

q,: generalized coordinate 

qs: generalized velocity 

K : kinetic energy

= H, i= l,2 ,...,n  (2.1)

8
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Hj: generalized impulse

n : number of degrees of freedom

A: change over time interval of impact

The Lagrange’s equation for impact does not include potential energy. 

This is due to the fundam ental assumption of rigid body impact tha t the 

position coordinates remain unchanged during impact.

From the set of impact equations together with the coefficient of 

restitution and coefficient of friction, the impulse and part motion after 

collision can be analyzed. If the duration of impact is known, the impact force 

can be easily calculated from the obtained impulse. Goldsmith (1959) 

described how to set up experiments to measure the coefficient of restitution 

and the duration of impact.

2.2 Im p ac t E q u a tio n  for a  G en era l M an ip u la to r 

The peg-in-hole assembly by a general m anipulator is modeled as shown in 

Figure 3.1 where n-t-t’ is the impact coordinate frame. There are six 

components of the impulsive force and moment a t the contact point. The hole 

piece is assumed to be rigid. The impact equations can be derived for the 

assembly by applying equation (2.1) as follows:
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p e g

h o l e  Diece

F ig u re  2.1 Model of robotic peg-in-hole assembly

The total kinetic energy of the m anipulator is:

K -  \  I  t  £  T race
2 1= lp= 1 k= 1

£?t, t a t

k /
1 " T • •>

Qpqt + gZ liq ,

The derivative of the kinetic energy associated with joint j is

d  K  n 1 ™
—  = Z  Z  T raced i=i k=i

Thus

(2 .2)

(2.3)
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d K
= £ £  Trace

i=l k=l

d% j  <?T, 
.^Qj 1 <?q

(q 'k -qk)+ iJ(q'j- q j) j= i ,2 , . . . ,n  (2.4)

The generalized impulse Hj associated with joint j can be obtained by 

applying the principle of virtual work (Huang 1967) as follows:

H = | ( ?J"JlRoeRpP)-uJ+jlR / R pG • Uj for a revolute joint 
j | )1ReeRpP -u J for a prismatic joint

Substituting Equation (2.4) and (2.5) into (2.1) leads to

I  I  Trace
i=lk=l

'  d X  J  ^T.tN
1

(r}xj 1ReeRpP^-uj +^J 'R 0eRpG^-u for a revolute joint 

(J' IReeRpP^ u j for a prismatic joint

where

qj : velocity of joint j a t the beginning of impact 

q' : velocity of joint j a t the end of impact 

Tj : homogeneous transformation matrix of link i 

Jj : inertia  m atrix of link i 

I j  : motor inertia of link j

p=[p» p. p j  : linear force impulse vector 

G = [G„ Gl G^]1: angular moment impulse vector

(2 .6)
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H Re: rotation matrix from end-effector coordinate frame to coordinate 
frame of link j

BR p: rotation matrix from impulse coordinate frame, n-t-t’, to end- 
effector coordinate frame, x 0- y e-Ze (Figure 2.1)

fj : vector corresponding to the last column of ,‘1Tj

Uj : un it vector along z ( i . e .  axis of joint j)

The above impact equations have n equations but n+6 unknowns, 

which are n joint velocities after impact and six impulse components. 

Therefore, six more equations are needed to solve for these unknowns. These 

six equations can be obtained from the definitions of coefficients of restitution 

and friction (Brach, 1989).

2.3 P ro ced u re  o f D eriv ing  Im p a c t E q u a tio n s

The procedure of deriving impact equations for a particular m anipulator is as 

follows:

1. Define the coordinates of each joint.

2. Establish Denevit-Hartenberg param eters of robot links.

3. Find homogeneous transformation matrices Tx, 7’2, • • •, Tn.

4. Obtain the change of the derivative of kinetic energy associated with each
( d K \joint, i.e., A ----- , using Equation (2.4).
\dQi)

5. Find the rotation matrix from the impact coordinate frame to the end 
effector coordinate frame, pi? .

6. Find the general impulse Hi using Equation (2.5).
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7. Form Af d K '
M i .

= H ;.

8. Find the normal velocity at the surface contact. Then relate the normal 
velocities a t the beginning and the end of impact by the coefficient of 
restitution.

9. Relate the tangential impulse with the normal impulse with the 
coefficient of friction.

2.4 A ssem bly by  SCARA-Type R obot

ai

' *3, *4

X8

F ig u re  2.2 SCARA-type robot with three revolute and one prismatic joints

A SCARA-type robot with three revolute joints and one prismatic joint as 

shown in Figure 2.2 is used as an example to demonstrate the procedure in 

Section 2.3 for deriving the impact equations. Joints 1, 2, and 4 of the robot
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are revolute joints and joint 3 is a prismatic joint. We will la ter examine how 

the manipulator param eters affect the impulse and part motion after impact.

The Denevit-Hartenberg param eters of the robot links are shown in 

Table 2.1.

Table 2.1 Denevit-Hartenberg param eters of a SCARA-type robot

lin k # a: ai di Gi
1 0 ai d, 0i
2 180° a2 0 02

a 0 0 da 0
4 0 0 0 04

The transformation m atrix from the base coordinate frame to the world 

coordinate frame and from the end-effector coordinate frame to the joint 4 

coordinate frame are:

\vm _ 
l 0  ~

" 1 0 0

1o

" 1 0 0 o . 
.1

0 1 0 0
■iT  = 0 1 0 0

0 0 1
a 0

p 0 0 1
0 0 0 1 0 0 0 1

ye
( a ) i m p o c t  c o o r d i n a t e  f r a m e  ( b )  e n d - e f f e c t o r  c o o r d i n a t e  f r a m e  

F ig u re  2.3 Impact coordinate frame
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b o tto m  
of pec

n

n<
; V

/
/

( a) ( b ) ( c ) ( d )

Figure 2.4 Transformation from impact coordinate frame to end-effector 
coordinate frame

The impact coordinate frame and end-effector coordinate frame are 

shown in Figure 2.3. The transformation steps from the impact coordinate

and note tha t n-t-t’ coincides with x,.-y,.-z,. finally):

1. Rotate an angle -tp about the z0 axis, i.e., R, v (Figure 2.4 (a))

2. Translate a distance ds along the Xr axis, i.e., Px ^  (Figure 2.4 (a))

3. Translate a  distance dv along the yn axis, i.e., Pv (Figure 2.4 (a))

4. Rotate an angle 180°+a about the n axis, i.e., R„ 180 (Figure 2.4 (c))

5. Rotate an angle 90° about the t axis, i.e., Z?, ,,0 (Figure 2.4 (d))

Figures 2.4 (a) and (b) are the top and side views after steps 1, 2, and 3. 

Figures 2.4 (c) and (d) are the side views after steps 4 and 5, respectively.

The matrices associated with the above transformations are:

frame to the end-effector coordinate frame are as follows (refer to Figure 2.4

cos-<p - s i n - p  0 0 
s in - (p cos- <p 0 0

0 0 1 0  
0 0 0 1
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1 0  o o'
0 cos(l80°-ar) -  sin(l80° -  a) 0 
0 s in ( l8 0 ° -a )  cos(l80° -  a) 0 
0 0 0 1

cos90° 0 sin 90° o" 0 0 1 o'
0 1 0 0 0 1 0 0

-s in  90° 0 cos 90° 0 -1 0 0 0
0 0 0 1 0 0 0 1

1 0 0 d ;
0 1 0 0
0 0 01
0 0 0 1

"1 0 0 o '
0 1 0 d V

0 0 1 0
0 0 0 1

After the above transformation steps are performed, the final 

transformation matrix, which is the transformation matrix from the impact 

coordinate frame to the end-effector coordinate frame, is:

p  ■ p.r, ,tls , R ; , .  <i> ' R 't.m ) a

sin a cos (p -  cos or sin <p COS (p d x

cos (p sin a -  cos a sin <p -s in  <p d .

cos or sin or 0 0
0 0 0 1
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Link 1 and 2 have the shape of rectangular parallelepiped with two 

semi-cylindrical ends, but link 3 and 4 are cylinders. The pseudo inertia 

m atrix of each link is as follows: 

for link 1:

i

F ig u re  2.5 Shape and dimension of link 1

The shape and dimension of link 1 are shown in Figure 2.5. The inertia 

m atrix of link 1 associated with the coordinate frame xi-yi-zi is:

4 0 4 4
0 4 0 0
4 0 4 4
J4. 0 4 4

where:
2 _ v _ CL\ IYL]J \ Li-t II t-1 t

ii —— i —  +  a ,  m» +
2...3 , 8a,7ii,3r, m12 rf _ m13 r,'
1 Wl j t  r-----------r  •

3 n
d

J 13 =  4 i  =  — (3 a , 77i , , 7r  +  6 a , m , 3; r - 877i , , 7’, +  877i , 3r , )  
6/r

4. = 4. =-yKi
o

V “
J \ 2  = “77 (4771 u + 3771,0 + 3777,3 )

1 Jd
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4  “ K i  +ml2 +ml3)(tf + 1 2 df)

J34 = J43 = d\ (/nl j + m12 + m13)
J 44 =(mn +m 12 + wi13) 
mn : mass of part A in link 1 
m12 : mass of part B in link 1 
m13 : mass of part C in link 1

for link 2:

F ig u re  2.6 Shape and dimension of link 2

The shape and dimension of link 2 are shown in Figure 2.6. The inertia 

m atrix of link 2 associated with the coordinate frame X2-y2-Z2 is:

4 0 0 4
0 4 0 0
0 0 4, 0
4 0 0 4

where:
8 c y / i ^ r ,  | m v,r~ | m 13 t f

3;r

J 2  t 2  /  \

U =  41 = ----2 " ( m 21 +

9
J 22 = — (4m21 +3ninn +3 m23)

X 2
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12 _ K t  ^
33 — i n X ^ 2\ ^ 2 2  ^ 2 3  J

J 44 ip^2 l ^^22 *̂* ̂ 23) 
m21 : mass of part A in link 2 
m22 : mass of part B in link 2 
ra23 : mass of part C in link 2

for link 3 and 4:

F ig u re  2.7 Shape and dimension of link 3 and 4

The shape and dimension of link 3 are shown in Figure 2.7. The inertia 

matrix of link 3 associated with the coordinate frame X3-ys-Z3 is

nur~
O .5 0 0 0
4

0 m3r3“ 0 0
4

0 0 - a 3ma
3 2

0 0 -a 3 m;i in.,

Link 3 and 4 are identical links, so link 4 has the same inertia matrix 

as the link 3.
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Now, we can begin to derive the impact equations. We assume tha t the 

contact is a point contact, hence there is no angular moment impulse. The 

derived impact equations using Equation (2.6) are

for joint 1:

m 11°? , m 2 \ a 2 , 8^01,3^ , _ ml2n2 , mu r\ , nl2 2 r 2  , &a 2 m 2 2 r 2-j- .  ..  ^  ------------------ +  — ■ ■■ -J- " ■   4“  — —  ■ ■ +  . .  ...r .r —r  .  “  ■■ ■ “
3 3 3/r 3 2 2 2 3n

o

+ 2m3a 2 +m 3 r 3  +wi2i°ia 2 cos + w 22a 1a 2 cos#2 + m 2Zaxa 2 cos 0 2

rn r“ .
+ —^-2- + 4/?i3a 1a2 cos02 (9[ - 6 X) 

&
9 9 8 m ,,a,r. 9 9m01a ; ni21r„"

+  — =— —  H----------=— — + //i23o2 +m3a2 + 23 2 2

3 3

= a![ - cos(y? -  0 , + 02)sin a]P„ + a, [cos(y> -  + &2)cosa]P( (2.7)

for joint 2:
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= a 2 [-  cos(<p - 0 4) sin a]P„ + a 2 [cos(^ -  04) cos a]P( - a 2 [cos(^ -  0A )]P(,

(2 .8 )

for joint 3:

f dK>
\ d q zj

2m 3 (d2 -  dg) = cos a ■ P„ + sin a ■ P,

for joint 4:

d K

M i *
= H.,

+ +

[dx cos <p sin a -  dy sin <p sin orJP„ -  [-d x cos <p cos a + dy sin <p cos a]P, 

+ [-d x sin <p -  dy cos p]P(.

(2.9)

(2 . 10)
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In addition to the above four impact equations, three more equations 

are needed to solve for the seven unknowns: 9X, 0 2 , 6 3, 0 4, Pn, Pt , andPt.. 

These three equations can be obtained from the definitions of coefficients of 

restitution and coefficient of friction. The normal speed after impact is equal 

to the normal speed before impact multiplied by the coefficient of restitution, 

e. This relationship can be written in terms of the joint speeds before and 

after impact as follows:

{-sin a  [a, cos(^ + 02 - 0 4) + a 2 cos(^ -  0 4 )]}#,'

+ {-a2 sin a  cos(^ -  0 4 )j#2 

+ {cos a)d 3

(( r n - (2.11)= -e < |-s in a [a , cos((p + 0 2 - 0 4) + a 2 c o s (p -0 4)jj6?i

+ {-a2 sin a cos(<p -  0 4 )}0 ' 2  

+ {cos a)d 3  j

The tangential impulse Pt, Pt-, and normal impulse are related by the 

coefficients of friction, p, as

P4=A/P„ (2 . 12)

P ,= / /P n (2.13)

Equations (2.7) to (2.13) form the system’s equations whose matrix is
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a ll <*12 0 <*14 <*15 <*16 <*17 "e\
^21 <*22 0 <*24 <*25 <*26 <*27

0 0 <*33 0 <*35 <*36 0 d '3

<*41 <*42 0 <*44 <*45 <*46 <*47 K
<*51 <*52 <*53 0 0 0 0

p *
0 0 0 0 M - 1 0 p <
0 0 0 0 M 0 - 1

p «

<*11̂ 1 “*"<*12̂ 2 "*"<*14̂4 

<*21̂ 1 ”̂<*22̂ 2 ”*"<*24̂ 4
ci3 3 d 3

<*41<̂ 1 ^"<*42 2 <*44 4

'(<*51^1 <*52^2 +  a 53<^3 j

0

0

(2.14)

where

m lxax m^al 8 a,m13r, /?i11r,2 7n„r12 wi13r,2 m„r22 8a 2 m 2 3 r0

3 3 + i n  +~  + ~  + ~ T  + ^  + ̂ i t "
m v“

+ —^ -  + m13af + w 22a,2 +w 21af + 2/?i3a 2 + 77i23a,2 +m 23a 2 + 2r7i3af 

+ 2 w3a 2 +m3r32 +7712,0^2 cos#2 + m 2 2 axa 2 cos d2 + m 2 3 axa 2 cos 0 2

rn r 2
+ ̂ ^  + 4 mjjajaa cos02 

z

- + *
3 3 + 7?i23a 2 + rn3 a 2 +

s 877i23a 2r,
3 K

+ m 3 r3  +•77l22r2“ 771 23 7 2“
■ +

+—rn2 xaxa 2 cos92 + ^ - » i22a i <*2 cos#2 + -^ 7 7 i23a 1a 2 cos#2 + 277i3a , a 2 cos#2 ^ 2 2 ~ ~

<*14 -

a, 5 = a! [cos(̂ » -  04 + 02)sin a] 

a 16 = - a ^ c o s ^ - # ,  +02)cosa] 

a 17 = a x [sin(^ -  dA + 02)]
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^21^2 , ^21^2+ — + /n23a 2 + m3a2 +2 2 8/11 ty\d oVn o fflijnTo filrnoT'ty*  i m  n  J  ~  ~  i m  »* _i______ 4 4  4  j ______ 4 4  4

3 n
+ m3r3‘ +

+ T'/7l2iaia 2C0S 2̂ +^ wl22aia 2C0Ŝ 2 + ~ ni23a ia2cos ̂ 2 + 2m3a ja2 cos 02 2 2 2

a 22 -
m ^ a l  m n r? 2
 +  ------------ +  m 23°2  +  m 3a 2 +

-m3r3

23’•*'2'2 +  m  r 2 +  ? /t22r 2 +  ^ 2 3 ^

3;r

a 25 = a 2[cos(^ -  04)sina]

a 26 = -« 2 [c°s(<p “ ̂ 4 ) c°s a] 

a 27 = a 2[sin( <?-<?„)]

a33 = -2  m3

a36 = sin a

®42 —

«44 =

~tn3r2

UlnK

a i5 -  ~^dx cos (p sin a - d y sin cp sin a  j

a 46 = cos <p cos a + dy sin <p cos aj

a 47 = - [-d x sin <p -  dy cos p]

a 51 = -  sin a  [a, cos(p> + 02 -  #4) + a,, cos(<p -  0.,)]
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a 52 = - a 2 sin a cos(<p -  6 i )

= cos a

One can easily obtain the joint velocities and components of the 

impulse after impact from the above system’s equations.

2.5 Effect of Parameters on Impulse and Departure Angle

We investigate in this section how the impulse and departure angle in the 

peg-in-hole assembly depend upon robot configuration, link mass, link 

length, insertion speed, chamfer angle and coefficient of restitution for the 

SCARA-type robot described in section 2.4. The departure angle is defined as 

the angle between the tip velocity of the peg a t the end of impact and the 

chamfer surface as shown in Figure 2.8. The departure angle depicts the part 

motion after colliding. Both the impulse and the departure angle are desired 

to be as small as possible for successful parts mating.

F igure  2.8 The departure angle and chamfer angle
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Since the system’s equations are very complex, only p a rt of parameters 

can be analytically investigated. For those param eters which are difficult to 

be analytically investigated, numerical simulation will be used. From the 

th ird  row and the last two rows of Equation (2.14), the normal impulse Pn is:

2 m J d 3 -  dA
P „ = ------*----- A -  (2.15)cos a  + f jsm a

T V , A T t/">1 r \ r i t a a  A-f 1A1V> + A 1 A -»A #4 9  AAV» aIa^ A iV *  A J  A»AW I A Ma4-
i u v  u u a u g c o  u j l  j u x x i t o  j .  a n u  L  v > a n  u c  u u t a i n c u  u u m  t u c  u i a t

row, second row, and fourth row of Equation (2.14) as follows:

2 « , ( * - < , )
cosa + ^ s in a  D

- 2 m 3 [d!, -  d.,) m
d'0 - e . , = --------^ (2. 17)

cosa + /is in a  D

We then substitute (2.16) and (2.17) into the fifth row of Equation 

(2.14) and solve the resulting equation. The velocity change of joint 3 can be 

obtained as

-D (l + e){ci:Adx + aw,6 ., + a rad3 j(cos a + //sin a) 
d 3 d*3 “ r r. (2.18)

|2m3(a51iV1 -  ar,.2 N.,) + aMD(cos a  + //s in a ) |

Plugging (2.18) into (2.15) leads to
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P„ =
2m3 D(l + b^cl3 1 9x + a,5 2 92 + aB3 d3'̂

[2m3(aB1Ar1 -  a 5 2 N 2) + cos a + //sin a)]
(2.19)

To analyze the departure angle, we need to find the velocity normal to 

the  chamfer surface and the velocity on the chamfer surface. The normal 

velocity of the peg’s tip after impact is

u„ = -a J  tr, +
2 m 3 f y - d 3) jy2 

cos a + //sin a D
sin 9.

2 m 3 ( d i - d 3) n
V j I . ~

cosa + //s in a  D
[a, sin(02 -  0A) -  a 2 sin 94 j

(2 .20)

and the tangential velocity after impact is

v = - a, 90 +
2/ii3( d ' - d 3) jy2 

cosa + //s in a D

2 m 3 (d3 -  4 )  N,

cos 9,

ei~  •cos«+ /js in a  D
[a, cos(92 -  94) -  a 2 cos j

(2 .21)

The departure angle is

y -  tan
( t \

V v!
( 2 .22 )
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where

— CX14C15 + O 15O 22 ~ ®12®25 — ^14^25 — ®12®45 ^2 2 ^4 5  "*" /^14® 16  /^ 1 6 ^ 2 2

_ /̂ 12®26 — /^14®26 — î ®12®46 "*" Â®22®46 t* ®14̂ 17 ®17®22
— ju’a l2a 2 1 -  fi'aua 2 1  -  fi’a^a„  + n 'a 2 2 a 4 1

N 2 ~  ® 1 2 ® 1 5  ^ ] 4 ® 1 5  -  ® 1 I ^ 2 5  — ® 1 4 ® 2 5  — ® 1 1 ® 4 5  ^ 1 2 ^ 4 5  / ^ ® 1 2 ® 1 6  "*" M & 14& 16

— //C t j j t t g g  — / / t t 140 26 ~  fJ& 1X̂ "46 "*" / ^ 1 2 ® 4 6  P  ®12®17 ^ 1 4 ^ 1 7

— 1̂1̂ 27 1̂4̂ 27 ~ 1̂1̂ 47 ®12®47

— ® ] 2  — ® 1 1 ® I 4  "*" ^ ® I 2 ® 1 4  — ® 1 1 ® 2 2  _  ® 1 4 ® 2 2

Equations (2.19) and (2.22) do not include , d3, and  <9,. Therefore, the 

angle of joint 1, the displacement of joint 3, and the velocity of joint 4 do not 

have any effect on either the normal impulse or the departure angle. 

However, the coefficient of restitution and the velocities of joint 1,2, and 3 all 

have linear effect on the normal impulse.

Before numerical analysis, we would like to investigate the basic

qualitative feature of functional dependence of normal impulse and

departure angle. First, Equation (2.19) can be rewritten in the form

n _ C ,  sin a + C2 cos a OON
n 2 /  r* r* \  • \ £ . £ 6 )cos a + {jucosa + t :iju + t 4 Jsina

where C i, C 2 , C 3 , and C t  are functions depending only on e, cp, 0 2 , 0 i ,  &l , d2, 6 :i, 

and the robot geometry and masses. Thus, for example, if Ca  is much larger
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than 1 + \C3\, then P„ is nearly independent of the coefficient of friction p.. We

also note tha t for any range of specification of the robot geometry, 

configuration and kinematics for which the signs of C i ,  C 2 , C 3 , and C4 remain 

the same and |C4| » 1  + |C3|, the basic qualitative feature of the functional

dependence of Pn on the key variables such as a  and p remains the same. 

Hence, the numerical analysis of the functional properties of P„ for the 

particular choice of robot param eters tha t follows is essentially typical. A 

similar analysis of the equation for the departure angle y leads to an 

analogous conclusion, namely, the functional properties obtained from 

numerical analysis of the equation represents typical behavior (at least 

within a fairly broad range of robot parameters).

In  the numerical simulation described below, e equals to 0.3 and p 

equal to 0.2 (unless differences are mentioned), and the robot param eters 

have the following nominal values (upon which variations are made):

T ab le  2.2 Nominal values of fink param eters of a SCARA-type robot

a 4 = 0.5 m a2 = 0.4 m a3 = 0.5 m 3 1 -  a3
r s =0.1 m r2 = 0.08 m r 3 = 0.04 m *1 = r3
dj = 0.5 m d, = 0 m d3 = 0.2 m d, = d;)
mn = 20 kg m2l = 15 kg m:) = 5 kg m., = m3

mi2 = 3 kg m i3 = 3kg m22 = 1 kg m2.3= 1 kg
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F ig u re  2.9 Normal impulse vs. coefficient of restitution and chamfer angle

~S*> < *s^

F ig u re  2.10 Departure angle vs. coefficient of restitution and chamfer angle
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F ig u re  2.11 Normal impulse vs. coefficient of friction and chamfer angle

F ig u re  2.12 Departure angle vs. coefficient of friction and chamfer angle

Figure 2.9 plots normal impulse against coefficient of restitution and 

chamfer angle. The figure shows that a higher coefficient of restitution and a
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smaller chamfer angle result in a larger impulse. The relationship between 

normal impulse and coefficient of restitution is linear. This can be seen from 

Equation (2.19). However, the normal impulse has a larger variation for

change in chamfer angle when the chamfer angle is near 90°. The effect of 

the coefficient of restitution and chamfer angle on the departure angle is 

shown in Figure 2.10. The smaller the coefficient of restitution, the smaller 

the departure angle. This is due to the fact th a t a higher coefficient of 

restitution leads to a higher normal velocity after impact, which causes the 

direction of the rebound velocity further away from the chamfer surface. In 

the higher range of chamfer angle, the coefficient of restitution has a linear 

effect on the departure angle. However, the departure angle has significant 

variation in the lower range of chamfer angle when the coefficient of 

restitution is very small.

F ig u re  2,13 Normal impulse vs. insertion speed and chamfer angle
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F ig u re  2.14 Departure angle vs. insertion speed and chamfer angle

Figures 2.11 and 2.12 show tha t the coefficient of friction does not affect 

the normal impulse and departure angle at all. The effects of insertion speed 

on normal impulse and departure angle are depicted in Figures 2.13 and 

2.14, respectively. The normal impulse depends linearly on insertion speed. 

This can be verified from Equation (2.22) where the velocity of joint 3 has a 

linear effect on the normal impulse. However, the departure angle is 

independent of insertion speed.

Figures 2.15 to 2.20 show the effect of robot configuration on normal 

impulse and departure angle. These figures show tha t the normal impulse 

and departure angle have the same curve shapes versus variation in robot 

configurations and tha t joints 1 and 3 do not affect normal impulse and
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*-£> o

F ig u re  2.19 Normal impulse vs. joint 2 and joint 4 angles

“SB* o

F ig u re  2.20 Departure angle vs. joint 2 and joint 4 angles
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The effects of mass and length of links 1 and 2 are shown in Figures 

2.21 to 2.24. The smaller the mass or length of link 1 or 2, the smaller the 

normal impulse and departure angle. The length of link 3 does not affect 

normal impulse and departure angle as seen from Equations (2.19) and 

(2.22). We analyze the effects of the radius and mass of link 3 in Figures 

(2.25) and (2.26). The normal impulse depends linearly on the mass of link 3; 

the larger the mass, the larger the normal impulse. However, the larger the

tvi p o c  f l i o  c r n o l l o v  o v f n  vo  owiy lo  T l^noA  f l m i v o e  o I ca oh nur
441UOU) U44V 0414 tOlXV A I/11V/ Ull ̂ 4V/. A liOOV/ AAgjtAAViO UAOU OilVJ VV till U A/ I'll O

radius of link 3 does not have any effect on the normal impulse and 

departure angle.

F ig u re  2.21 Normal impulse vs. mass and length of link 1
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F ig u re  2.22 Departure angle vs. mass and length of link 1

F ig u re  2.23 Normal impulse vs. mass and length of link 2
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in

F ig u re  2.26 D eparture angle vs. mass and radius of link 3

The above analytical and numerical results describe the dependence 

relations of normal impulse and departure angle on various param eters of 

the assembly system. This is useful to m anipulator design and equipment 

layout planning in robotic assembly involving m ating of parts. The goal of 

design and planning should be to minimize the impulsive force and 

departure angle, because a larger impulse may cause p a rt damage and a 

larger departure angle is likely to cause assembly failure.
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CHAPTER 3

EFFE C T  O F VIBRATION PARAMETERS ON ENGAGEMENT TIME

3.1 Introduction

Two kinds of vibration motion can increase tolerance to provide positional 

adjustment: incre asin g- amplitu de vibration and constant-amplitude

vibration. A circular spiral path, as shown in Figure 3.1 whose amplitude 

increases with time is an example of increasing-amplitude vibration. A study 

of increasing-amplitude vibration was presented by Leu and Katz (1994). 

Illustrated  in Figure 3.2 is a constant-amplitude vibration whose sweep path 

is generated by two sinusoidal motions.

F ig u re  3.1 Increasing-amplitude vibration

41
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F ig u re  3.2 Constant-amplitude vibration

We will discuss here how to determine the optimal param eters of 

vibration for constant-amplitude vibration. It is a more complex problem to 

determine the optimal vibration param eters for constant-amplitude vibration 

than  for increasing-amplitude vibration. One interesting and practical way of 

generating a sweep path is by applying sinusoidal motions. Sinusoidal 

motions are infinitely differentiable and they are relatively easy to generate 

mechanically. The sinusoidal motion is a typical kind of constant-amplitude 

vibration. In the case of mating two axisymmetric parts, the motion used to 

aid the engagement of the two parts can be generated by the combination of 

two translational, sinusoidal motions, i.e.

x = Asin(<a£) 
y = Bsin(kcot + 9)
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where A and B are the vibration amplitudes, co is the radial frequency in the 

x direction, k is the ratio of the two frequencies, and 0 is the phase angle.

3.2 Positional Uncertainty and Tolerance

Successful mating of parts requires tha t the task’s total positional 

uncertainty be within the tolerance of the task for positional errors. Let us 

consider positional uncertainty and tolerance in assembly. Positional 

uncertainty always exists in assembly equipment. It might be caused by 

m anufacturing errors, control errors, therm al effects, etc. Tolerance is related 

prim arily to the geometry of the parts at the mating interface, and it 

represents the capability of the assembly to tolerate positional errors..

Let the uncertainty and tolerance of an assembly be denoted by sets U 

and T, respectively. In the mating of two parts, positional uncertainty 

generally exists in both parts. Pai & Leu (1991) presented a study of task 

uncertainty and tolerance and their effects on assembly task  feasibility. They 

considered the uncertainty of a task performed by a robot to consist of an 

end-effector uncertainty set Uj and a task uncertainty set U2: The total 

uncertainty is then U = U i 0  U2, where 0  is a mathematical symbol for set 

difference.

Two possible relations between uncertainty U and tolerance T in an 

assembly task are illustrated in Figure 3.3, which depicts tha t T may contain
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U (i.e. T U) or T may be contained by U (i.e. T c U ) .  Clearly, engagement 

between two parts succeeds if  T z> U but fails if T <= U.

/-4

A^T-iTT rt>\rr f-TT\GiJ i  —' W \*̂  /  A '

F ig u re  3.3 Two possible relations between uncertainty set U and tolerance 
se tT

The principle of vibration-assisted m ating of parts is to apply vibration 

to one of two mating parts such tha t the relative movement between the 

parts follows a planned sweep path S satisfying

$s Tdsz>U (3.2)

Essentially, the introduction of the relative movement has enhanced 

the tolerance capacity of the assembly system for positional uncertainty in 

the assembly equipment.
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3.3 Vibration Amplitude

Figure 3.4 shows key param eters of the uncertainty and tolerance sets in 

planar assembly. Ti is the original tolerance set, and T2 is a rectangular box 

within the Ti set, i.e. T2 c  Ti. T2 is used to avoid any U region not covered by 

the sweet of Ti. In the round peg-in-hole insertion, Ti is usually a circle. The 

point Ct is the center of T2. The distances from the center of the T2 to the 

boundary of the uncertainty in x and y directions are U^U^.Uy.and as 

shown in the figure.

For feasible parts mating, the amplitudes A and B of the two applied 

sinusoidal motions m ust satisfy

U

F ig u re  3.4 Sizes of uncertainty set U and tolerance set T
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A > m a x f u ‘ - ^ . U 2 - ^

B > max
T T  ̂

U 1 U 2 -  —
y 2 ’ y 2

(3.3)

The equal sign is used for minimizing the engagement tim e and 

reducing the insertion force. We ■will discuss th is relationship later. In 

practice, since the relative motion between m ating parts can not stop 

immediately after the peg lies within the tolerance area, a safety factor 

should be used to ensure successful engagement.

3.4 V ib ra tio n  F req u en cy  

Since the vibration frequency affects the speed of motion but not the 

sweep path, the vibration frequency should be as high as possible. However, 

in  practice, this frequency must be limited so as to reduce changes in position 

during the response delay caused by the communication time between 

assembly assisted devices and the time to execute the “stop motion” 

command. A large movement during the delay may result in engagement 

failure. The consideration of selecting vibration frequency is as follows:

The derivative of Equation (3.1) is

x’=co Acos(<u t)
/ x (3.4)

y ' - k o  Bcos (ko) t + 6)
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Hence, the maximum lateral speed is

v, = co-J A2 +(fcB)“ (3.5)

Suppose td is the communication delay time. We now consider mating of a 

round peg with a round hole. To avoid the peg moving out of the engagement 

region due to the delay time, it is required tha t

vtt d < 2(w+cR) (3.6)

where c is the clearance ratio which is equal to (R-rg) / R, R is the radius of 

the hole and rg is the radius of the peg. By substituting (3.5) into (3.6), the 

vibration frequency co should satisfy

co <
2(w+cR)

i >/ A2 + (kB)2
(3.7)

v,

l>n J
t

V ,

F igu re  3.5 Sliding motion on chamfer surface
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Another consideration is the relative velocity between the peg and the 

chamfer when the peg first contacts the chamfer after the search motion. 

When the peg begins to contact with the chamfer surface, the motion of the 

peg relative to the hole can be decomposed to two components: vt which is 

parallel to the chamfer surface and un which is perpendicular to the chamfer 

surface as shown in Figure 3.5. The insertion may fail if

v, = v; sin a  -  v, cos a < 0 (3.8)

because the satisfaction of this equation results in a peg escaping motion, i.e., 

the peg slides upward away from the hole instead of downward into the hole. 

Hence, the vibration frequency co should satisfy

* <  , " ' t ang  (3.9)
J a s +(w )s

The th ird  consideration is avoidance of resonance of the assembly 

system. Suppose co# is the first nature frequency of the assembly system. To 

avoid the system resonance, the vibration frequency co should satisfy
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Therefore, the final selection of the vibration frequency should be

co = mm-! 2(w+cR) y. tan  a
(3.11)

t d>/A2+(/eB)2 ’^ A 2+(kB)2

3.5 A lgo rithm  fo r D e te rm in in g  R eq u ired  Sw eep T im e

To determine the optimal path  produced by sinusoidal motions in two 

orthogonal directions, the frequency ratio k  and phase angle 0 of the two 

vibration motions also need to be considered. I t is difficult to analytically find 

the optimal frequency ratio k and phase angle 0 for a given uncertainty set U 

and tolerance set T. A possible approach is to numerically determine the 

optimal value of k and phase angle 0 where equation (3.2) can be satisfied in 

the shortest time. Figure 3.6 illustrates the numerical approach for 

determining the minimum time to sweep the whole uncertainty area for 

given vibration parameters. The rectangle of dimensions 2A and 2B (A and B 

are obtained from Equation 3.3) is divided into many smaller rectangles 

whose widths are Tx and heights are 2B, except for the two boundary 

rectangles whose widths are equal to or smaller than Tx. The horizontal 

coordinates of these lines and two boundary lines are denoted as Xi, 

i=0,l,2,...,n where n= integer[2A/Tx] + 2 if [2A/TX] is not an integer or n= 

integer[2A/Tx]+l if [2A/TX] is an integer, Suppose tha t after some time, the
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sweep path intersects xi at point y,.j, j=l,2,...,m where m is the number of 

intersection points of the sweep path and the line segment x = xi. Also, let yi.o 

and yi,m+i be the two y boundary values the y at x=xi. Equation (3.2) is 

satisfied if yij+i - yij < Ty for every i e {0,l,2,...,n} and j e {0,l,2,...,m}. Then 

the required time of motion for the sweep of the tolerance region to cover the 

whole uncertainty region can be obtained numerically as will be described in 

an algorithm. By iteratively changing k and 0 and computing the 

corresponding time of motion needed for successful engagement, the optimal 

frequency ratio and phase angle can be determined.

2 B

F igu re  3.6 Sweep path for helping engagement

The algorithm for determining the sweep time required for engagement of 

parts for a specified frequency and phase angle is as follows:
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1. The rectangle of dimensions 2A and 2B is divided into many smaller 

rectangles whose widths are Tx and heights are 2B, except for the two 

boundary rectangles whose widths are equal to or smaller than Tx.

2. Determine the horizontal coordinates of the two boundary lines and 

the lines tha t divide 2A. Denote these coordinates as xi, i=0,l,2,...,n 

where n = integer[2A/Tx] + 2 if  [2A/TX] is not an integer or n = 

integer[2A/Tx] +1 if [2A/Tx] is an integer.

3. F o r  each Xi, compute the y coordinates for the intersecting points 

between the sweep path and x = Xi, i = 0,l,2,...,n.

4. Sort all y coordinates such tha t yij+i > yy, j = 1, 2,..., m and let yi.o = ymin 

(x = Xi), yi,m+i = y m«x (x = Xi) for each x = Xi.

5. Compute yi.j+i— yy, j = 0,l,2,...,m for each x = x;. If all the distances 

{yi.j+i- yi.j} < Ty, i = 0, 1, 2,..., n, j = 0,l,2,...,m, record t, i.e., the required 

sweep time, otherwise continue to the next intersecting point where t 

=> t  + At, and go back to step 3.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



52

F ig u re  3.7 Sampling point of sweep path

The symbol • in Figure 3.7 is the intersecting point of the sweep path 

and a vertical line. Once all of the distances between two consecutive points 

in each vertical line are smaller or equal to Ty, the time is the required sweep 

time for successful engagement.

3.6 N um erica l R esu lts  an d  D iscussion

On the basis of the method described in the previous section, we investigate 

in this section how the sweep time required for parts engagement varies with 

changes in frequency ratio, phase angle, vibration frequency, insertion speed 

and tolerance.

The dimensions of the peg and the hole piece are given in Table 3.1:
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T ab le  3.1 Dimensions of the peg and hole piece

radius of hole radius of peg width of chamfer height of chamfer

12.7 mm 12.65 mm 2.2 mm 2.2 mm

The tolerance area, Ti, is a circle and its diameter is equal to 

2x[2.2+(12.7-12.65)] = 4.5 mm. The applicable tolerance T2 is chosen as the 

largest rectangle within Ti and thus Tx and Ty are both equal to

4.5 / >/2 = 3.18. In the first simulation example, we assume th a t the 

uncertainty region has the dimensions U x = U x = Uy = Uj = 5.59 mm.

Therefore, the vibration amplitude A = B = 5.59 -  3.18/2 = 4 mm from 

Equation (3.3). Following the algorithm described, the sweep time required 

for a given co, k and 0 can be determined. For example, if frequency co = 4 

rad/second, frequency ration k -  1.1, phase angle 0 = 0, then the required 

sweep time is equal to 4.71 seconds.

F ig u re  3.8 Sweep time vs. frequency ratio and phase angle
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The required sweep time is plotted against frequency ratio k and phase 

angle 0 in Figure 3.8. This figure shows th a t the plot of the sweep time is 

approximately symmetric with respect to frequency ratio k = 1 and phase 

angle 0 = 90 degrees. The highest value of the required sweep time (60 

seconds) actually indicates th a t the tolerance area has not covered the entire 

uncertainty area after this amount of time (there is a possibility tha t the 

uncertainty area can never be fully covered).

F ig u re  3.9 Sweep time vs. frequency ratio and phase angle

In Figure 3.9, all of the param eters are the same as those in Figure 3.8, 

except th a t the ranges of frequency ratio and phase angle are reduced. The 

best range of frequency ratio for smaller amount of sweep time is for k to be 

between 0.805 and 0.82 or between 1.18 and 1.195 as can be seen from
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Figure 3.10. Let the frequency of the vibration in  the x-direction is the one 

whose maximum is limited as described in Section 3.4, then the value of k  

should be larger than one. Thus the range of k for the smallest amount of 

sweep time in the  range of 1.18 and 1.195. These figures show tha t the phase 

angle and frequency ratio are, in  general, coupled in  their effect on the 

required sweep time. However, the phase angle 9 does not have much effect 

on the sweep time if  a suitable frequency ratio is used.

n c  u ccu  w iu i  txic x a i ig c  u i  rc u c tw e e u  i . o j  B iiu  x.^D 8iuu i c u u c c  ui*5

interval of k to 0.005 as shown in Figure 3.10. The optimal range of 

frequency ratio is seen again to be between k  = 1.18 and 1.195. The required 

sweep time is the  smallest at phase angle 0 = 0.

_  -s.N'** ’ •Si*'*

F ig u re  3.10 Sweep time vs. frequency ratio and phase angle
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F ig u re  3.11 Sweep time vs. frequency ratio and phase angle (U'x = = Uj,
= Uy = 4.59 mm)

The second example has the same param eter values as the first 

example, except tha t the uncertainty has the dimensions U* = U;; = Uy =

Uy = 4.59 mm. Figure 3.11 leads to a conclusion similar to th a t from the first

example about the optimal frequency ratio and phase angle for engagement 

of the two parts. Since the uncertainty region is smaller in the second 

example, the best range of frequency ratio is wider than tha t in the first 

example. However, the optimal frequency ratio is still equal to about 0.810 

and 1.19.

We next investigate the ratio of uncertainty to tolerance on the sweep 

time. To simplify the discussion, we assume th a t both the uncertainty set and 

tolerance set are rectangular boxes of the same shape, thus we can define the
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ratio of uncertainty to tolerance as the ratio of either of two corresponding 

dimensions of the two rectangular boxes. Figure 3.12 depicts the effect of the 

ratio of uncertainty to tolerance on sweep time for various frequency ratios. It 

shows tha t the sweep of the tolerance region to cover the uncertainty region 

is difficult when the ratio of uncertainty to tolerance is high. In  some cases, 

the uncertainty may be unknown. A value of frequency ratio should be 

determined and used for such a general cases. Figure 3.12 shows tha t if the

r n t i n  rvf n n n a v f  o i n h r  t-nlAMV&V X/A VltlOUl. UUA11 1/ V (lU i>UJ.l y  !<U l u l O i u i i b O  x o  u x i i v i i u  » y n ,  a  o u x t a u x c  u c ^ u c n t y  i a u u  t i )  u S c

is about 1.1

F ig u re  3.12 Sweep time vs. frequency ratio and ratio of uncertainty to 
tolerance
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(a) £=1

\X ,
:<>(>

(b) /e =1.1

(e) £ =1.4(d) /e=1.3

F ig u re  3.13 Sweep paths for different frequency ratios

Figure 3.13 shows some of the sweep paths generated by two sinusoidal 

motions for different frequency ratios. The value of vibration param eters is 

as follows: amplitude A = B = 4 mm, frequency w =4 rad/sec, and phase angle 

0 = 0. Note tha t vibration frequency does not affect the sweep pattern but the 

sweep speed. The motion is a straight line when £=1. This certainly is not the 

purpose of applying sinusoidal motion to aid parts engagement. Figures 3.13-

(e) and (f) show that the sweep pattern  repeats itself after 2.92 and 1.58 

seconds, respectively. Obviously, they can only be applied to cases where 

there are large tolerances. Compared with the other cases in Figure 3.13, 

Figure 3.13-(b) and (c) have a smoother and better behaved sweep path. The 

sweep of the tolerance region can cover the whole uncertainty region faster
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when k = 1.2 than when k = 1.1 if the tolerance is larger. However, k = 1.1 

can be applied to the situation with a smaller tolerance than k  = 1.2.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 4

PEG-IN-HOLE ASSEMBLY STRATEGY AND IMPLEMENTATION

4.1 In tro d u c tio n

Experiments are conducted to verify the proposed algorithm determining 

optimal vibration parameters for minimizing engagement time and to provide 

further knowledge essential to the understanding of the assembly process. 

Some practical problems which initially cause engagement failure during 

experiments are solved by a force-based method. The effect of vibration 

param eters on contact force is also investigated.

4.2 E x p e rim en ta l S e tu p  

The main experimental setup for the engagement phase of parts mating is 

depicted in Figure 4.1. As illustrated, a peg held a t the end of an Adept One 

robot is to be mated with a hole mounted on the top of a positioning table, 

which can be moved in the x and y directions at programmed frequencies, 

amplitudes and phase angles to generate the desired sweep path  at desired 

speed. The Adept-One robot is a four-degree-of-freedom robot. It is a typical 

SCARA robot used for assembly in industry. The positioning table is used to 

generate desired sweep paths. A Lord force/torque sensor mounted a t the 

wrist is used to measure the six force and torque components throughout the 

assembly process. The sampling rate of this force/torque sensor is 25 Hz. A

60
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compliant device is mounted between the peg and the force/torque sensor to 

increase lateral compliance. PC-1 and PC-2 are two IBM compatible personal 

computers. PC-1 is used to control the motion of the Adept-One robot and the 

sweep path of the positioning table. PC-2 is used to record the force/torque 

data. PC-1 and PC-2 communicate with each other in  order to coordinate the 

whole process of peg-in-hole insertion.

Adent One Rnhot

x y - l a b l e  contro l l er

O O O “F/T sens or  
compl ian t  dev i ce 

h o l e  p i e c e __

x y -  t a b l e  .

x y - t a b l e  driver

F/T sensor  
control lerPC - 2PC-

o 6

F ig u re  4.1 Setup for vibration-assisted mating of parts with Adept-1 robot

4.3 P ra c tic a l P ro b lem s E n c o u n te re d

Because the surface of the hole piece and the bottom surface of the peg may 

not be exactly flat or leveled, two problems causing engagement failure were 

encountered during the search process for engagement. These two problems 

are described below:
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Problem 1: As shown in  Figure 4.2-(a), the symbol represents the contact 

point between the peg and the hole piece. The Adept-One robot will shut 

down in a few seconds (around 5 seconds) to protect the robot from damage if 

the force at the end-effecter of the robot is greater than 280 Newtons. In our 

m ating algorithm, the first inserting target depth of the peg is set to the level 

of line Lt shown in Figure 4.2-(b) so tha t the produced force will be smaller 

than  280 Newtons during the search. If the sweep direction is as shown in 

Figure 4.2 (b), the peg keeps in  contact with the hole piece from the position 

1 to the position 2. However, soon after the position 2 this contact does not 

exist any more. The sensor will detect th a t there is no contact forces in the 

insertion direction after the position 2 and then the peg stops at position 3 

(due to the delay of the hardware response). Therefore, the sensor mistakenly 

regards the whole peg as being in the hole, However, although it is still not.

jwt?6 p d i r ec t ion

(a) (b)

F ig u re  4.2 Model of problem 1
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s w e e p  d i r e c t i o n

f n

F ig u re  4.3 Model of problem 2

Problem 2: External forces acting on the peg’s tip generated during the sweep 

cause the deflection of the peg. If the moving direction of the peg is from the 

left to the right, the peg will be inclined as shown in Figure 4.3, where F?. is 

the insertion force, is the reaction force, p is the coefficient of friction, and 8, 

is the lateral deflection at the peg’s tip. The friction force fj is equal to pf2 .

The deflection of the peg relating to the force and effective compliance at the 

peg tip for a robot system is

[5] -  [C][f] (4.1)

where
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M -

S x
8 y
Sz

SOv  X

56 y
86,

= deflection at the peg’s tip

M = m x
m„

Lmz

= external force acting on the peg’s tip

[C]=

C,1 C]2 C13 C,4 C,5 C16

C21 C22 *̂ 23 C24 C25 ^26

C31 C32 C33 C34 C35 C36

^42 C43 C44 C46

C r.'j CM c r.t Cffi ^56

C61 ^62 *-03 C6t CflB C06

= effective compliance at the peg’s tip

If F,. increases, f, and (j.fz increase, so is the deflection of the peg’s tip.

Hence, the lateral and angular errors will be increased. A way to reduce 

these errors is to reduce the external force. This can be achieved by reducing 

Fz, which can also prevent the surface of the workpiece from damage due to 

the larger insertion force during the sweep phase.
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4.4 Algorithm of Engagement Process

—  CFP
m ove peg

problem  2
m ove peg  up 

by h i
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r
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m ove peg  down by hz

9 ' '  .

. f t
LI

p r o b l e m  I

Fz=0 I

ry
jL10

insert peg

11
en d

Figure 4.4 Flowchart of peg-in-hole insertion

In this experiment the insertion of the peg into the hole can be 

successfully performed once the peg is in contact with the chamfer because of 

the use of a compliant device as shown in Figure 4.1. The algorithm th a t has
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been developed for aiding engagement is shown in Figure 4.4. This algorithm 

is able to solve the problems mentioned above, in addition to utilizing the 

sweep method described in Chapter 3.

To protect the robot system, the first inserting target point is set to a 

point which is a little below the surface of the hole piece. The amount below 

the surface of the hole piece is hi. It was determined experimentally that 

moving the peg down 0.1 mm will produce around 42 Newtons of force. Since 

the allowable contact force in the insertion direction is 280 Newtons, ht 

should be smaller than (280 + 42) x 0.1 = 0.67 mm. In Step 1 of the flowchart, 

the peg moves to this preset target. If the vertical force is equal to zero (Step 

2), i.e., the position error is within the tolerance and then the peg keeps 

moving to the final target location (Step 10). If not, a decision needs to be 

made as shown by Step 3. If the insertion force is greater than  a pre-specified 

safe value, FZ|S, the peg needs to move up h, to reduce the insertion force

(Step 4). This addresses Problem 2 discussed above. FZlS in  Step 3 is the 

difference between the largest and smallest values of the insertion force Fz 

during the sweep. This difference is due to the peg contact a t the different 

points of the surface which have different heights (mainly because the 

holepiece is not perfectly leveled). The largest peak-to-valley value of contact 

force can be determined from a simple experiment as shown in Figure 4.13. 

This value is the difference between the largest and smallest value of the 

insertion force Fz.
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The amount of peg displacement h\ in Step 4 is obtained from Equation

(4.1):

= 5 z = c3lfx + c32fy + c33[/; - ( l - s ) F 28] + c3imx + c35m y + c36mx (4.2)

Since fx,fy,mx,m y,and mxare very small a t the instant of contact, Equation

(4.2) can be simplified to

hl =S z  = c33[ £  -  (1 -  s)Fz „] (4.3)

where

f z : reaction force in the insertion direction at the initial contact 

Fz,s: difference between the largest and smallest value of the vertical 

force Fz during the hole search 

s : a safe factor

The positioning table begins to move and the Lord sensor continues to 

m easure and monitor force in Steps 5 and 6. Once the sensor detects th a t the 

insertion force is equal to zero, the positioning table stops moving (Step 7) 

and the peg is moved down by h2 as shown in Step 8. The purpose of moving

the peg down h 2 is to determine whether the peg really falls within the

chamfer mouth and whether it will produce initial lateral and angular errors
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th a t are too large. h2 is the difference of the height between the lowest point

and the highest point on the bottom surface of the peg, which is related to the 

peg's angular error, as shown in Figure 4.5.

7
F ig u re  4.5 Determination of the amount of downward motion of the robot

If the vertical force is equal to zero in Step 9, i.e., the peg falls within the 

chamfer mouth the peg can be inserted to the final target location (Step 10). 

Otherwise the search process continues by going back to Step 3.

4.5 E x p erim en ts  o f Peg-in-H ole In se rtio n  

Experiments of peg-in-hole insertion are performed to verify tha t the 

engagement time is less than the analytically determined required sweep 

time and tha t the proposed algorithm can deal with the practical problems 

mentioned in Section 4.2.
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Uy  - 6

U

F ig u re  4.6 Location of initial contact points

In our experimental cases, the uncertainty area is a square, of which 

each side is 11.18 mm (Ux = Uy = 11.18 mm). The tolerance area is a circle 

whose diameter is 4.5 mm. The applicable tolerance area used is a square 

with Tx = Ty = 3.18 mm. The amplitudes A and B of the two vibrations in the 

x and y directions are equal to (11.18 -  3.18)/2 = 4 mm. We assume their 

centers of the uncertainty area and tolerance area coincide as shown in 

Figure 4.6. The numbers 1, 2,..., 8 in Figure 4.6 represent the initial contact 

positions which will be used in the experiment. The phase angle used is 0 

degree, the ratio of vibration frequency is 1.1, the delay time to stop 

movement is 0.19 seconds, the insertion speed is 50 mm/second, chamfer 

angle is 45 degree, and the dimensions of the peg and the hole piece are as 

shown in  Table 3.1. Then the vibration frequency from Equation (3.7) is:
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0)
_ 2 x [2.2 + (12.7 -12.65)]
— m i .7. ii-  --I—-,—... “  “1 / UU> /

0.19 x yj42 + (l.l x 4)2
sec

and from Equation (3.9) is

50tan45° .  . , .vo -  —, ^  ■ - = 8.4 rad / sec
J 4 ’ + ( U « 4  f

Since one ha lf of nature frequency of the robot system is greater than 

these two values, the frequency of x-direction used is 4 rad/sec from Equation 

(3.11).

Hence, the sweep time predicted from the analysis is equal to 4.71 

seconds.

Search Time = 0.172 sec.

o
o -60

0 1 2  3 -I 5 6
time (sec.)

7 8 9

F ig u re  4.7 Forces with initial position a t the point 5
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Search Time = 0.172 sec.
800

^  700 

g  600

g ,  500 

S  400

mx
my
mz

g 200 

100

-100

50 1 2 3 6 7 8 9

time (sec.)

F ig u re  4.8 Moments with initial position a t the point 5

Figures 4.7 to 4.12 illustrate the time histories of the contact and 

moment force during the assembly process for the above eight initial contact 

positions. The peak value of f?. is the contact force a t the beginning of the 

contact. After moving up the peg by h v the force becomes smaller than  the 

safe value, and then the positioning table begins to move. The amount of 

upward movement of the peg depends on the value of Fz (Equation 4.3). The 

search time in the figures is the duration of movement of the positioning 

table.

In Figures 4.7 and 4.8, the contact force fz a t the beginning of contact is 

equal to 115 Newtons. Therefore, the peg is first moved up to reduce the 

contact force. The search time is only 0.172 seconds when the initial position
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is at the  point 5. This search time is very short compared to other initial 

contact positions because the moving direction of xy-table is initially toward 

the Point 5. Figures 4.9 to 4.12 show the results for points 3 and 8 being the 

initial contact points. We can see th a t all of f*, fy, m*, and my have oscillatory 

patterns during the search motion. This is because the search motion is 

generated with sinusoidal motions in  two orthogonal directions. Figures 4.9 

and 4.11 show three and two search movements, respectively, because they 

have encountered the situation of problem 1 described in section 4.2. Tf the 

engagement has not succeeded yet after a search movement, the positioning 

table needs to move again. The experimental results for other starting points 

in Figure 4.6 are given in  Appendix A.

Search Time = 1.3535, 1.375, and 1.156 sec.

20

g  -20
o, -40 o
g  -60

-80

-100

-120

-140

-160

0 2 3 4 5 6 7

time (sec.)

F ig u re  4.9 Forces with initial position at the point 3
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Search Time = 1.3535, 1.375, and 1.156 sec.

i i i
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0 1 2  3 4 5 6  7

time (sec.)

F ig u re  4.10 Moments with initial position at the point 3

Search Time = 1.695 and 0.711 sec.
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-160
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0 2 3 54 6 l
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F ig u re  4.11 Forces with initial position at the point 8
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Search Time = 1.695 and 0.711 sec.
2000

/-Vaa
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my
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I

&
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-2000

1 5 6 7

time (sec.)

F ig u re  4.12 Moments with initial position a t the point 8

4.6 Effect o f  V ib ra tio n  P a ra m e te rs  on  C o n tac t F orce  

We experimentally investigate how the amplitude and frequency of 

vibration affect the contact force. These results provide useful information for 

selecting the safe value of contact force in the z-direction as mentioned in 

Section 4.3, and for determining the characteristics of forces in the use of 

vibration as an aid for parts mating. A contact force due to two orthogonal 

sinusoidal motions with the frequency ratio of k = 1.1 and the phase angle of 

9 = 0 degree is analyzed. The sweep path is shown in Figures 3.13 (b).
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20
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A = B = 4 mm, frequency = 6 rad./sec.
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fz
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F ig u re  4.13 Contact forces with A = B = 4 mm and co = 6 rad./sec.

A = B = 4 mm, frequency = 5 rad./sec.
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F ig u re  4.14 Contact forces with A = B = 4 mm and co = 5 rad./sec.
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A = B = 4 mm, frequency = 4 rad./sec.
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F ig u re  4.15 Contact forces with A = B = 4 mm and co = 4 rad./sec.

Figures 4.13 to 4.15 show the sinusoidal sweep motions in two orthogonal 

directions with the same vibration amplitude, 4 mm, and the same depth in 

the z-direction, 0.2 mm. Their frequencies are 4, 5, and 6 radians per second, 

respectively. The force in  the vertical direction is fz and the friction forces in 

the x and y directions are f* and fy. Fluctuation in the amplitude of the 

contact force in the z-direction (fz) can be seen. This is due to height variation 

of the contact point on the surface of the work piece. The largest difference of 

vertical force exists between 6.5 and 7 seconds in Figure 4.13. This implies 

th a t the peg sweeps from the highest point to the lowest point of the table 

during this duration. This difference is about 42 Newtons, which is used as a 

safe value in the experimental investigation as described previously. The
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forces in the x and y directions also have sinusoidal patterns. The largest 

peak-to-vale value of fy also occurs between 6.5 and 7 seconds, but the 

difference between the highest and lowest values of fit during this period is 

not larger than those occurring during other periods. This implies th a t the 

peg is moving more in the y direction than in the x direction during this 

period. These differences provide useful information for calculating the 

lateral and orientation errors of the peg. Figures 4.14 and 4.15 have similar 

oscillating behavior as tha t in Figure 4.13. The variations in the contact 

forces during the sweep are also the same as those in Figure 4.13. They 

indicate tha t vibration speed does not affect the contact force, as expected.

A = B = 8 mm, frequency = 6 rad./sec.

-20

S "to

^  -60

-80

-100

-120

8 12 140 6 102
time (sec.)

F ig u re  4.16 Contact forces with A = B = 8 mm and to = 6 rad./sec.
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A = B = 8 mm, frequency = 5 rad./sec.
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F ig u re  4.17 Contact forces with A = B = 8 mm and co = 5 rad./sec.

A = B = 8 mm, frequency = 4 rad./sec.
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F ig u re  4.18 Contact forces with A = B = 8 mm and (0 = 4 rad./sec.
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Figures 4.16 to 4.18 have the same vibration motions as Figures 4.13 to 

4.15, except tha t the vibration amplitude is changed from 4 mm to 8 mm. All 

of the curves have similar oscillatory patterns. The largest peak-to-vale value 

of fz is equal to about 65 Newtons and it happens between 6.5 and 7 seconds 

from Figure 4.16. Figures 4.17 and 4.18 have similar oscillating curves and 

about the same difference of the contact forces as those in Figure 4.16. Again, 

these figures indicate tha t the vibration speed does not affect the contact 

force. Comparing with Figures 4.13, 4.14, and 4.15, we see th a t the larger the 

amplitude of the sweep path, the bigger the peak-to-vale value of the contact 

force (since the surfaces of the working parts are not perfectly leveled). The 

workpiece should be leveled as much as possible in robotic assembly in order 

to reduce the variation of the contact force, f7„ during the sweep motion and to 

avoid damage to part surfaces. The experiments have provided useful 

information pertaining to the understanding of general assembly tasks as 

well as showing the effect of applied vibration motion to aid parts mating.
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CHAPTER 5

CONCLUSION

An impact model of robotic peg-in-hole assembly has been developed, from 

which the impulse and joint velocity after collision can be obtained for any 

robotic manipulators. Using this model we have obtained the impact 

equations for a SCARA robot and used them to analyze the effects of link 

mass, link length, joint angle, insertion speed, chamfer angle and coefficient 

of restitution on the impulse and departure angle when the peg impacts the 

chamfer surface. The information is helpful to the designer and user of a 

robotic assembly system in determining robot configuration, insertion speed, 

and other param eters to ensure assembly success without damage to mating 

parts. The impact equations enable the calculation of a set of joint velocities 

a t the end of the impact. These joint velocities constitute the in itial condition 

in the motion following the impact.

Introducing vibration to generate relative motion between two mating 

parts can effectively increase the tolerance of the assembly system for 

positional errors. This is useful for achieving engagement success when it 

otherwise might fail. We have analyzed the assistance of parts mating with 

vibrations having sinusoidal motions in two orthogonal directions. The 

vibration amplitudes, phase angle and ratio of vibration frequencies are

80
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functions of the system's tolerance and uncertainty. By combing theoretical 

and numerical analyses, the amplitudes, frequencies, phase angles and 

frequency ratios of vibrations tha t will minimize engagement time have been 

obtained for general cases. Two practical problems relating to angular errors 

of m ating parts and delay of hardware response were investigated and solved 

by an intelligent force-based method. Together with the optimal sweep path 

obtained from the analytical and numerical analyses, this method assures 

th a t engagement always succeeds within the calculated sweep time and that 

the vertical force does not exceed the maximum allowed during the search 

phase. An experimental investigation of the relationships between the 

contact force and vibration param eters was undertaken. The results were 

useful to determine safe values of contact force for successful peg-in-hole 

assembly.

We have not investigated the effects of vibration param eters on the 

m ating of parts during the insertion phase. It is suggested th a t the research 

be continued along this direction in order to answer in depth the following 

questions:

(1) How is the coefficient of friction affected by the amplitude, frequency and 

orientation of vibration during the insertion phase?

(2) W hat vibration parameters can most effectively reduce the friction during 

insertion?
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APPENDIX A

TIME HISTORIES OF FORCE AND MOMENT OF CONTACT IN THE
MATING EXPERIMENT
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Figure A .l Forces with initial position at the point 1
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Figure A.2 Moments with initial position at the point 1
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Search Time = 2.078 sec.
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F igu re  A.3 Forces with initial position a t the point 7
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F ig u re  A.4 Moments with in itial position a t the point 7
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F ig u re  A.5 Forces with initial position at the point 6
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F ig u re  A.6 Moments with initial position at the point 6
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Search Time = 1.203 sec.
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F ig u re  A.8 Moments with initial position at the point 2
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Search Time = 0.883 sec.
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F igure A.9 Forces with initial position a t the point 4
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