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ABSTRACT

COMPOSITE BEAM ANALOGY FRACTURE MODEL (CBAFM):
A NON-LINEAR FRACTURE MECHANICS MODEL FOR CONCRETE

by
Mohammed Enamul Haque

The main objective of this dissertation is to develop a simple non-linear fracture 

mechanics model for the determination of fracture mechanics parameters for concrete, 

such as fracture process zone length (rp), critical fracture energy release rate (GIC), 

critical stress intensity factor (KjC) and fracture energy (GF). The fracture process 

zone (FPZ) is modeled as a damaged non-elastic cohesive band where the extent of 

damage due to microcracking varies from no damage at the boundary of FPZ to 

complete crack surface separation at the notch or macro-crack tip. The proposed 

method can predict theoretically both the pre-peak and post-peak load versus crack 

mouth opening displacement (P-CMOD) and load versus load point deflection (P-5) 

behaviors for a three point bend (3-PB) single-edge notch (SEN) beam. To apply this 

method, one only needs to measure peak load (Pu) and corresponding crack mouth 

opening displacement (CMODu) of a 3-PB SEN beam, and cylinder compressive 

strength. This method does not require post-peak load-deflection or CMOD data. 

Furthermore, it does not require information as to the unloading characteristics of a 

beam. The testing machine need not be very stiff. This makes the testing procedure 

greatly simplified and makes it suitable not only for the testing laboratory but also for 

work sites where a closed-loop testing machine is not available. A microcomputer



based simple numerical model is also developed based on the proposed fracture model. 

This model is verified by comparison with numerous experimental results as well as 

with other available methods from the literature.
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CHAPTER 1

INTRODUCTION AND OBJECTIVES

1.1 Introduction

The formation and propagation of cracks play an important role in the behavior of all 

cementitious materials. Realistic design procedures require considerations as to the 

analysis of crack formation and crack propagation in concrete. In a cementitious 

material like concrete, due to microcracking, the stresses in front of a crack tip may 

have a stress distribution similar to the one shown in Figure 1.1. The concentration of 

the fracture zone in a small area, compared to the specimen dimensions as idealized in 

small scale yielding of metals, does not conform with the size of the fracture process 

zone in concrete. The microcracking zone is relatively large in concrete, and therefore 

calculation of fracture parameters should include the effect of this zone. The material in 

this fracture zone is far from being linear elastic, and if the zone length is not small 

compared with the specimen dimension and the notch or pre-crack depth, one has to 

consider the properties of the zone when studying the crack propagation.

maximum stress (ft ’l 
microcracks

crack visible in microscope
fractu re  zone 

(p rocess zone) crack visible to naked eyes tre s s

end of stress transfer

real,crack

Figure 1.1 A Loaded Concrete Beam with a crack and a fracture zone. 
No well-defined crack tip exists.

1
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Application of linear elastic fracture mechanics (LEFM) to concrete was first 

attempted by Kaplan in 1961. Since then, a large number of test programs have been 

conducted to examine the applicability of LEFM to concrete. Results of these 

experiments show that when Mode I fracture toughness, KJC, is evaluated for notched 

concrete specimen using LEFM (measured peak load and initial notch length), a 

significant size effect is observed. This size effect is attributed to nonlinear slow crack 

growth that occurs prior to peak load; and as a result the concepts of LEFM are not 

directly applicable. Different parameters have been proposed to describe the fracture 

behavior in concrete subjected to mode I deformation, such as the fracture toughness, 

KIC, the critical strain energy release rate, GiC, the fracture energy, Gp, the J integral, 

the critical tip opening displacement, CTODc and the crack resistance, R. Many 

fracture mechanics models have been proposed in recent years to account for the non­

linear behavior o f concrete around the crack tip region. Among them, three of the 

most well-known fracture models are the Fictitious Crack Model (FCM) by A.E. 

Hillerborg (1976), the Crack Band Model (CBM) by Z.P. Bazant (1983), and the 

Two-Parameter Fracture Model (TPFM) by Jenq and Shah (1985a). The first two 

models represented the fracture process zone with a damage band or a band of crack 

closing pressure, which depends on the crack opening displacement (i.e. the post- peak 

stress-displacement relationship). The accuracy of these models relies significantly on 

the selected post-peak stress-displacement relationship, and since they are primarily 

using numerical finite element method, a non-linear stress-displacement relationship 

further complicates the computational process. The fracture energy, Gp, which is 

defined as the area under the post-peak stress versus the crack opening displacement
I

curve, the Young’s modulus of elasticity, E, and uniaxial tensile strength, f t , are the 

material properties required to describe the tensile fracture behavior of concrete. On
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the other hand, the TPFM does not require the post-peak constitutive relation, instead 

it calculates critical stress intensity factor at the tip of effective crack in such a way that 

the measured elastic crack-mouth-opening displacement equals the one calculated using 

LEFM formula. Since both the fracture mechanics parameters, (KIC and CTODc ) are 

directly determined from LEFM, crack tip singularity is automatically incorporated in 

the TPFM. Although, TPFM does not require post-peak stress-displacement 

relationship for calculating critical stress-intensity factor, but it requires cyclic P- 

CMOD relationship for estimating inelastic coefficients, ( a  , p ). These inelastic 

coefficients are considered as material properties in TPFM, and employed for 

predicting theoretical P-CMOD and P-8 diagrams.

Two other well-known methods - Go Method (Go, Cheer and Swartz, 1983) 

and the Australian Method (Nallathambi and Karihaloo, 1985) are also used for 

calculating fracture parameters. The Go Method is based on bending analogy and is a 

finite element method. In this method, the William’s stress function was applied to the 

single-edge notch beam specimen and evaluated at twenty-three boundary stations 

using boundary collocation method. On the other hand, the Australian method 

provides a set of regression formulae based on various experimental results and finite 

element analysis of a “fictitious beam”. The fictitious beam containing a notch of 

effective depth and having unchanged stiffness was introduced to be equal to the real 

beam with original notch length and reduced stiffness. The accuracy of these two 

methods significantly depends on experimental results and boundary conditions of the 

finite element analysis.

None of these models developed a theoretical constitutive model that is able to 

describe softening behavior in terms of post-peak stress-displacement variables and the 

crack closing pressure. On the other hand, experimental determination of stable post­

peak stress - crack mouth opening displacements and deflections require a very stiff
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closed-loop servo-controlled materials testing machine. Stable post-peak 

displacements in beams are achieved by maintaining a constant rate of increase of 

CMOD through the closed-loop system. Even though, CMOD increases at a 

controlled rate, local deformation immediately across the crack increases drastically, 

sometimes resulting in a premature and unstable failure. Certainly, the complete 

testing procedure is complicated, time consuming, and above all, costly.

Fracture energy, Gp has been considered to be a reliable fracture mechanics 

parameter which can describe the process of cracking in concrete. To determine the 

fracture energy, the RILEM Technical Committee 50-FMC (1985) has put forward a 

recommendation, which specifies a method for the determination of the fracture energy 

of concrete and mortar by means of a stable three-point bend test on notched beams. 

Keeping the importance of GF in mind, a simple theoretical methodology for the 

estimation of fracture energy is proposed in this dissertation.
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1.2 Objectives

The main objective o f this research is to develop a simple non-linear fracture mechanics 

methodology for the determination of fracture mechanics parameters, such as fracture 

process zone length (rp), critical fracture energy release rate (Gic), critical stress 

intensity factor (Kic) and fracture energy (Gf), and for predicting theoretically Load- 

CMOD and Load-Deflection behaviors for a three-point bend (3-PB) single-edge-notch 

(SEN) concrete beam. The main advantage of the proposed methodology is simplicity. 

Unlike previously developed cohesive models, the present approach does not require 

the post-peak load-deflection or CMOD data. Furthermore, the present approach 

does not require information as to the unloading characteristics o f the beam. 

Therefore, the testing machine need not be very stiff. No closed-loop displacement 

control is needed. This makes the testing procedure greatly simplified and makes it 

suitable not only for the testing laboratory but also for work sites where a closed-loop 

testing machine is not available. The proposed methodology is shown schematically in 

the Flow Chart (Figure 1.2).

In the process of developing the proposed fracture mechanics model, the 

following are achieved:

1. The fracture process zone (FPZ) is modeled as a damage band where the extent of 

damage due to microcracking varies from no damage at the tip of FPZ to complete 

crack separation at the notch tip or macro-crack. Hence, in the proposed model, it is 

assumed that the FPZ possess a continuously variable Young’s modulus o f elasticity, 

Ey, where Ev= 0 at the notch and Ey = E (uncracked modulus) at the boundary of 

FPZ.

2. The fracture process zone for a 3-PB SEN beam is analyzed using composite beam 

analysis and by satisfying equations of static equilibrium and stress boundary 

conditions.
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Input: Pu, CMODu 
(from a 3-PB SEN 

Beam Test)

Check it's validity 
with experimental 
P-Deflection data

Input:
Material Properties: fc'

Check it's validity 
with experimental 

P-CMOD data

Develop

Theoretical Load-Deflection curve

Calculate Fracture Energy using 

theoretical Load-Deflection curve

Consider Critical fracture energy 

release rate as a material property, 

develop Theoretical P-CMOD curve

Analyze the beam for:

Fracture process zone, rp 
Critical fracture energy release rate

Figure 1.2 Schematic flow chart for the proposed methodology

3. A set of mathematical equations are derived to determine the fully developed 

process zone length (rp), unrecoverable stress or stress loss during the process of 

developing fracture zone, unrecoverable crack mouth opening displacement, critical 

fracture toughness KIC , and critical fracture energy release rate, GiC.

4. The entire Load-CMOD relationship is developed theoretically based on the 

knowledge of peak load (Pu) and corresponding crack-mouth opening displacement 

(CMODu).
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5. Theoretical Load-Deflection relationship is developed from the theoretical Load- 

CMOD results obtained above.

6. Fracture energy, Gp is calculated from the theoretical Load-Deflection curve.

7. The validity o f the theoretical Load-CMOD and Load-Deflection are examined with 

the available experimental data.

8. The proposed model is compared with the other available models, such as Fictitious 

Crack Model (FCM) and Two-Parameter Fracture Model (TPFM).



CHAPTER 2

SURVEY OF LITERATURE

2.1 Fracture Mechanics of Concrete

Linear elastic fracture mechanics (LEFM) considers the stress distribution in the 

vicinity of the crack tip to be related to a constant K, known as the stress intensity 

factor. The stress at the crack tip theoretically approaches infinity, while the stress in 

reality can never exceed the cohesive strength of the material. Since no real materials 

can withstand infinitely large stress, an inelastic zone is usually present in front of the 

crack tip. If size of the inelastic zone is much smaller than the dimension of a structure, 

linear elastic fracture mechanics (LEFM) can be approximately used. Nevertheless, 

the size of the inelastic fracture zone, also termed the fracture process zone, is small 

for usual dimensions of concrete structures. The material in the fracture process zone 

is partly destroyed due to micro-cracks, but still able to transfer stress. The stress 

transferring capability normally decreases when the local deformation of the zone 

increases, i.e. when the number of micro-cracks increases. At present, models with 

more than one fracture parameter have been proposed to explain the fracture process in 

concrete. Many fracture mechanics models have been proposed in recent years to 

account for the non-linear behavior of concrete around the crack tip region. The 

Fictitious Crack Model, FCM (Hillerborg, et al., 1976), the Crack Band Model, CBM 

(Bazant, et al., 1983), the Two-Parameter Fracture Model, TPFM (Jenq and Shah, 

1985a, 1985b), the Go Method (Go, Cheer and Swartz, 1983) and the Australian 

Method (Nallathambi and Karihaloo, 1985) are reviewed in the literature survey.

Fracture energy, Gp has been considered to be a reliable fracture mechanics 

parameter which can describe the energy dissipation in the process of fracture. The 

RILEM method (RILEM TC-50 FMC 1985) which has been widely used by many

8
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researchers for calculating the fracture energy is discussed in this literature survey. The 

basic concept of this method for calculating Gp, is to utilize the calculated area under 

the load-load point displacement curve for a three-point bend notched beam test.

2.1.1 Fictitious Crack Model (FCM)

Fictitious Crack Model (FCM) was proposed by A.E. Hillerborg (1976). In FCM, the 

fracture energy (Gf ) which is defined as the area under the post-peak stress vs. crack 

opening displacement (o-COD) curve, uniaxial tension strength (ft ’) and the shape of 

o-COD curve (obtained from the uniaxial tension test) are the material parameters 

required for the FCM. The fracture process zone is modeled as an extension of the 

actual crack subjected to a closing pressure which depends on the crack opening 

displacement. The FCM assumes the effect of microcracked zone to be confined to a 

narrow band of line cracks where the total fracture energy is consumed.

The fundamental idea of FCM is best demonstrated by means of a tension test, 

Figure 2.1. The test is assumed to be deformation-controlled and stable, so that it is 

possible to follow the descending branch of stress-deformation curve all the way down 

to zero load. The test bar is assumed to be homogeneous and to have a constant cross- 

section. Before the maximum force Fmax is reached, the deformations at A and B are 

identical. When Fmax is reached, the deformation has a value ALe. When the 

deformation is increased still further, the force starts decreasing due to the fact that a 

fracture zone develops somewhere along the bar. Consequently, as the force 

decreases, the deformation also decreases everywhere except within the fracture zone.

In Figure 2.1, it is assumed that the whole fracture zone falls within gauge 

length A. The deformation within gauge length B can then be described by means of a 

stress-strain curve, including the unloading branch. The deformation within gauge 

length A includes also the deformation of the fracture zone. The additional
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deformation, w, due to the fracture zone is the difference between the descending 

branches of curves A and B. It is possible to describe the deformation properties of the 

test bar by means of two diagrams:

• The stress-strain (a-e) diagram, including the unloading branch, Figure 2. lc.

• The stress-deformation ( ct- w )  diagram for the fracture zone, Figure 2. Id.

Jr L\ A La i - -P U A BLe -t

r < -----F

(a) t
fracture zone

A,B

Elongation, A L

^  w(c) strain e=a Lb/L (d) wL

Figure 2.1 The principles for division of the deformation properties into a 
o-E diagram and o-w diagram, where w is the additional deformation 
due to formation o f a fracture zone (Hillerborg, 1983).
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By these two diagrams, one can calculate the deformation AL of any gauge length L0, 

where the gauge end is not situated within a fracture zone. If there is no fracture zone 

within the gauge length, the deformation is,

AL=eL0. (2.1)

If a fracture zone is situated within the gauge length, the deformation is,

AL= eL0  + w (2.2)

It has to be noted that w is a length contrary to e , which is a strain. The width o f the 

fracture zone does not enter into the equation above. The simplest possible assumption 

can be that the original width of the fracture zone is zero. The total width of the 

fracture zone then equals w. According to the assumption of zero original width, the 

fracture zone can be described as a tied crack with width w, i.e. a crack which can 

transfer a stress, a  according to the a-w curve when its width is w. As the fracture

zone in reality has a certain width, the tied crack which is introduced as simplified

description is not a real crack. It has therefore been called a fictitious crack.

The application of FCM to the description of the tensile test is shown in Figure

2 .2 .

A_______   B

F < — ----->  F

w

Figure 2.2 The simplified description of the fracture zone as a 
“fictitious crack” with width w (Hillerborg, 1983).

During the tensile test to complete separation, energy is absorbed inside and 

outside the fracture zone. With the FCM the energy absorbed in the fictitious crack is

Ajo' o-dw = AGF (2.3)
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where A=cross sectional area; wj=w-value for ct=0; Gp=area below the a-w  curve, 

Figure 2.3.

 =>
strain e w

W|

Figure 2.3 Energy dissipation related to the a -e  and a-w diagrams.
The values o f the shaded area represent the energy dissipation 
per unit material volume and per unit crack area respectively 
(Hillerborg, 1983)

Gp thus is the absorbed energy per unit crack area for the complete separation 

of the crack surface. The crack area in question is the projected area, not the total 

area of the irregular crack surface. The energy absorption outside the fictitious crack is 

determined in the usual way as the volume of the specimen times the area below the 

a -e  curve. For a purely elastic material, this energy absorption is zero.

Figure 2.4 shows the stress distribution in front of a notch or a crack tip in a 

beam under the action of a growing imposed deformation (or load). The fracture zone 

that has developed is described as the fictitious crack. Within the fictitious crack the 

relation between the stress a  and the crack width w is given by a-w  curve. Eveiywhere 

outside the fictitious crack the a - s  curve for the material is valid. As the deformation 

increases, the stress in front of the fictitious crack tip increases. No stress is assumed 

to be higher than the tensile strength, ft'. As soon as a stress has reached ft', any 

increase in deformation cause the development of a fictitious crack at that point. Thus 

the stress at the fictitious crack tip is ft' as long as the fictitious crack grows.
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preformed
crack

fictitious
crack

oy=0,

fictitious
crack

newformed
crack

preformed
crack

Figure 2.4 Stress Distribution in front of a crack tip before 
and after growth of real crack (Hillerborg, 1983)

Although the FCM has a very general applicability, it is hardly ever possible to 

find analytical solutions based on the FCM. Thus finite element method (FEM) is 

necessary to implement the model. In this method it is easy to follow the growth of 

fictitious and real cracks, which coincide with the sides of elements. The elements are 

just separated by distances w and forces corresponding to a  from a-w curve are 

introduced across the crack.

In FEM calculations it is very time-consuming and extensive to use non-linear 

a -e  and a-w curves. It is however relatively inexpensive to use stepwise linear a-w 

curves. The simplest possible assumptions regarding a -e  and a-w curves to be used in 

FEM analyses are according to Figure 2.5, i.e. , straight line approximations for both 

curves. Most of the analyses performed so far have been based on these assumptions.
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CT

ft'

ft'/E £

a

f.'

w
w  ,= 2 Gf I ft'

Figure 2.5 Simple approximate assumption for use in numerical calculations 
(Hillerborg, 1983)

2.1.2 Crack Band Model (CBM)

In concrete, as well as mortars, fracture is preceded by a gradual dispersed 

microcracking that occurs within a relatively large fracture process zone ahead of the 

tip of a continuous crack. In CBM, fracture of this type is modeled as the propagation 

of a band of uniformly and continuously distributed (smeared) cracks with a fixed width 

wc at the fracture front, with wc assumed to represent a material property (Figure 

2 .6) .

Figure 2.6 The Cartesian Coordinate for Crack Band Model (Bazant, 1983)
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Z
ft'

6 O

a.z
ft'

s.
' 0

ft’

8
8P

Figure 2.7 Stress-Strain for fracture process zone (Bazant, 1983)

The fracture energy, Gf, which is defined as the energy consumed in the 

formation and opening of all microcracks per unit area of plane (x,y) (Figures 2.6 and 

2.7):

GF =M>cCj a 2ds/  (2.4)
0

Referring to Figure 2.7(b)

GF = O.5wc( / > 0), e0 = / /  / Cf  (2.5)

where

wc = the effective width of the fracture process zone (or crack band) over which the 

microcracks are assumed to be uniformly spread.
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E f=  the fracture strain, i.e., the additional strain caused by the opening o f  the 

microcracks.

f̂ ' = the direct tensile strength

Eo = 5f/wc, (5f = sum of the openings of individual microcracks), is the strain at the 

end of strain-softening and o z = 0 .

Cf = the slope of strain-softening curve.

The pre-peak and post-peak behavior are both described by a stress-strain 

relationship as shown in Figure 2.7c, characterized by elastic modulus E, strength 

(peak stress) ft ', and strain-softening modulus E{, which is negative.

The energy consumed per unit advance of the crack band, called the fracture energy, 

may then be simply expressed as:

By analyzing numerous test data (Bazant and Oh, 1983), it was shown that Gp may be 

predicted (with a coefficient of variation about 16%) from the empirical formula,

(2.7)

GF = 0.0214(/( 'da / E (2 .8)

where E, ft ' are in pound per square inch; da=maximum aggregate size in inch.
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Both the Fictitious Crack Model and the Crack Band Model, mentioned above, 

irrespective of the approaches adopted, require a complete stress-crack opening 

relationship.

2.1.3 Two Param eter Fracture Model (TPFM)

Two-Parameter Fracture Model (TPFM) was proposed by Jenq and Shah (1985a,b). 

The TPFM does not require post-peak (or strain softening) constitutive law. The 

TPFM includes the non-linear slow crack growth prior to peak load. The two 

parameters are the critical stress intensity factor (KlC) and the critical crack tip opening 

displacement (CTODc). The concept behind this model can be explained from P- 

CMOD relationship (Figure 2.8). Initially, the P-CMOD plot is linear up to about half 

the maximum load (0.5Pm), and the corresponding CTOD is zero. Then, a significant 

inelastic displacement and slow crack growth occur during the load increase from 0.5 

Pm on the ascending branch to 0.95Pm on the descending one. The latter loading 

station defines the critical point, often called point of instability. At this point, the 

crack tip opening displacement reaches a critical value (CTODc) and Kj = KIC.

To determine the stress intensity factor, the effective crack length, ae should 

be calculated first. The effective crack length is the sum of the initial notch (a0) plus an 

effective crack extension at the peak load. An iterative numerical scheme is necessary 

to evaluate ae. First an initial value of a = a0  + Ale was assumed. For this assumed 

value of a, the measured value of maximum load and using the following LEFM 

equation (Tada, et al. 1976), CMODe was calculated. This procedure was repeated 

until the calculated and measured CMOD values agree.

CMOD
6Pl-a  
h 2 -b- E

(2.9)
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ao

CMOD

P

0 <= K . <= 0.5 K

CMOD

30

CMOD

CTOD

Pm

0-5K(C < K | < K, 

CTOD<CTODc

CMOD
CMOD'

CMOD

CTOD

Pm

CTOD = CTODc

CMOD
CMOD'

Figure 2.8 Two-Parameter Fracture Model
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where

V'(A) = 0 .76-228A + 3.87A2 -2.04A3 + ° ' 6 6  ■
'  0 - 4 2

for — = 4; A = — 
h h

The critical stress intensity factor was calculated using the following LEFM equation:

where

h -b
r (a]  1 1.99- A{\ -  A)(2.\5-2.93A + 2.1 A2) 

(l + 2 ^ ) ( l - ^ ) 3/2

(2 . 10)

A = -
h

The P-CMOD curves for the descending part were calculated using a constant value of 

KIC. For a given beam, a given value of a, P and CMODe can be calculated using 

LEFM equations (2.9) and (2.10). The value of CMODT was computed using the 

following equation:

CMODT = CMOD£f  p  ' + CMOD7
f  n  \p  -  a

max <a / 3 - a y
, for CMOD7 > CMODTmm (2.11)

where CMOD^  = CMOD at peak load, Pm. The inelastic coefficients, a  and |3 are 

considered material properties and determined from cyclic P-CMOD curves.

2.1.4 Go Method (Go, Cheer and Swartz, 1983)

This method calculates critical stress intensity factor based on bending analogy, finite 

element method. The William’s stress function
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sin) ”  -  l ] # - - — j s i n ^  + 1 16

cos^-j -  lj 6 -  cos^  + lj&
(2 . 12)

was applied to the single-edge-notch beam and evaluated at twenty-three boundary 

stations, using the boundary collocation method. The constant of those obtained by 

this method, a] is used to evaluate stress-intensity factor, Kj as

K , = - a xj 2 n  (2.13)

An equation for estimating Kj was derived ( Refai and Swartz, 1987 ) using the least 

squares method and was as following:

( 2  14)

M = r- * ±
4

for -  = 3.75 
where h

A = -0.065z2 -  3.483z -  0.12 + 5.706Z'1 + 0.166z~

~ " - T

Other expressions for different 1/h are given in Reference (Go, Cheer and Swartz, 

1983).

Using the LEFM relation and neglecting Poisson's ratio, the critical energy release rate 

is found as following:
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In order to obtain the critical stress intensity factor, Kjc , using Equation. (2.14), the 

crack length must be evaluated at the point of instability. In Reference (Refai and 

Swartz, 1987), this point was estimated on the descending portion of the P-CMOD 

curved and at 0.95 of the maximum load. The effective crack length was estimated 

from the maximum load calibration curves.

2.1.5 The Australian Method

Nallathambi and Karihaloo (1985) proposed an analytical expression for determining 

critical stress intensity factor, Kjc  and critical energy release rate, Gjc  for plain 

concrete in 3-P bending. In developing these expressions, extensive use has been made 

of their experimental data and full allowance has been considered for slow crack 

preceding fracture and for the complex state of stress existing at the growing crack 

front. The determination of the extended crack growth is based on the results of a 

series of tests and on a self-consistent approximation to the non-linear response of the 

slow crack growth prior to fracture. In this method, a fictitious beam containing a 

notch of effective depth, ae and having unchanged stiffness E was introduced to be 

equal to the real beam with the reduced stiffness and the original crack length. This 

concept with the help of a finite element program and the use of various experimental 

results led to a regression formula that represents the process zone as follows:

( a . - a ) l h  = & Po +fil ' —̂ W tttTtIW tYtI+A<g + V  \ g  + \J \h)  r i \ h A h )  " * \ h  + 1 

where the regression coefficients are

(2.16)

0 O = 3960; 0 , = 144; P2 = -88.2; /?, = 8.7; 0 A = -3950;



In Equation (2.16), a=a0  for notched beams, and a=aj for precracked beams. The 

maximum aggregate size is denated by g.

In order to calculate the stress intensity factors and the energy release rates at 

the tip of an advancing crack, the true stress state ahead of the crack tip was 

considered. The stress state consists of a tensile stress normal to the crack front and 

also a tensile stress in the plane of the crack and a shear stress. Plane stress finite 

element calculations were performed on the test beams and a regression analysis was 

performed on the critical stress intensity factors and the critical energy release rates 

were calculated using the effective crack length. It follows that

(2.17)

(2.18)

P-l (2.19)
b h

The various functions appearing in Equations (2.17) and (2.18) are defined as 

following:
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The regression coefficients Aj, Cj, Bj, Dj are given in the following Table 2.1.

Table 2.1 Regression (Coefficients

i / j Ai Ci Bj DJ
0 3.6460 1.5640 0.4607 1.9560

1 -6.7890 -8.3200 0.0484 0.3982

2 39.2400 52.9500 -0.0063 -0.0553

3 -76.8200 -124.900 0.0003 0.0027

4 74.3300 122.900 -0.0059 0 . 0 2 0 2

5 0.0003 -0.0055

In order to apply this method to the precracked beams, it was assumed (Refai 

and Swartz, 1987) that the initial crack depth - excluding any microcracking, i.e., 

outside the process zone, stress free surface - is equal to distance from the crack 

"mouth" to the root of the "V-shape" revealed by the dye penetration, a j .

2.2 Stress-Displacement Relationships

The stress-crack opening displacement (o-w) relationship will significantly affect the 

prediction of the load-CMOD and load-deflection responses using the FCM. The most 

reliable stress-displacement relation is supposed to be the one directly obtained from 

the uniaxial tension test. Conducting a direct tension test to observe the post-peak 

tensile response of concrete and other brittle materials is difficult. Different empirical
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stress-displacement relationships have been proposed for mortar and concrete of 

various mix-proportions. A few of the experimentally observed a-w  relationships are 

described as follows:

Reinhardt conducted a direct tension test using a prism specimen with both ends 

glued to steel plates which were pulled apart under strain control (Reinhardt, 

Comelissen and Hordijk, 1986), and proposed an empirical a-w  relation as:

a  is the closing pressure 

f,1 is the maximum tensile strength 

4  represents the ratio of crack opening displacement to 

maximum crack opening displacement at a  = 0 ;

4 = w / wc

cl and C2  for concrete equals 3.0 and 6.93 respectively.

Wecharatana and Chiou (1986) also conducted direct tension test using closed- 

loop strain control to observe the post-peak responses. Two types of tension 

specimens, i.e. dog bone and tapered specimen, were used. They obtained an empirical 

a-w relationship as follows:

w h e re  a , f i  and  £  a re  th e  s a m e  a s  defined  above .

A,B,C and D are empirical constants which for mortar and concrete are equal to 0.052, 

400, 1.75 and 0.5 respectively.

(2.24)

where

(2.25)



25

The simplest a-w  relation is the linear one (Figure 2.9a) proposed and used by 

Petersson (1981). The two-line approximation of the a-w  relation (Figure 2.9b) was 

also proposed and used by Petersson (1981). Since the FCM requires extensive 

numerical computation, selecting a linear a-w  relation reduces enormously the tedious 

analysis. The linear a-w  function can be written as follows:

/ ,  V '  (2.26)
where a, f  t and £ are the same as defined above.

a

w

a

2/9 w c w,c

Figure 2.9 (a) The a-w curve approximated to a single straight line; (b) A two- 
line approximation of the a-w curve (Petersson, 1981)

2.3 Fracture Energy

The RILEM Technical Committee 50 FMC (1985) proposed a method for calculating 

fracture energy, Gp per unit surface area o f real crack. The RILEM proposed formula

is

GF={Wo+mg-80)lA„g (2.27)
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where

WQ = the area under the load versus Ioad-point displacement (P-5) curve from 

P=0 to P=0 again.

mg = self weight of the beam between supports plus twice the weight of 

fixtures supported by the beam.

5o = measured displacement at P=0 of the unloaded portion of the (P-5) 

curve.

Aijg = Uncracked cross-sectional area of the beam at mid-span.



CHAPTER 3

PROPOSED FRACTURE MODEL (CBAFM)

3.1 General

According to the theory of elasticity, the stress intensity factor Kj is a measure of the 

stress intensity near the crack tip. When Kj reaches a critical values KIC, the fracture 

toughness, the crack propagates. Kj and KIC have to be used instead of stress and 

strength because according to the theory of elasticity the stress approaches infinity at 

the crack tip. As infinite stresses do not exist in reality, this way of treating the 

problem of crack stability never gives an exact description of the reality. When a 

notched or pre-cracked 3-P bend concrete beam as shown in Figure 3.1 subjected to 

load Pu, a zone of micro-cracks will be developed in front of the notch or the pre­

crack front as shown in Figure 3.2. In-elastic deformations take place within this 

micro-cracked zone. It has been established that the stress transfer mechanism in the 

microcracked zone is govern by the stress-softening relationship. Since this in-elastic 

deformation zone can transfer stresses according to stress-softening relation (Figure 

3.3), this in-elastic deformation zone are treated in this research as a cohesive crack 

opening (CCO) zone or fracture process zone (FPZ). The extent of this zone results in 

the observed nonlinearities.

In this dissertation, the fracture process zone (FPZ) is modeled as a damage 

band where the extent of damage due to microcracking varies from no damage at the 

tip of FPZ to complete separation at the notch or macro crack. Hence, in the 

proposed model, it is assumed that the FPZ possess a continuously variable Young’s 

modulus of elasticity, Ev, where Ev=0 at the notch or macrocrack, and EV=E (the 

modulus of elasticity of uncracked zone) at the end of fracture process zone. Because 

of Ev, it is possible to consider the microcracked section as a composite, and analyzed

27
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it as such. Considering variable Young’s modulus of elasticity within FPZ and analysis 

as a composite beam, the proposed fracture mechanics model has given a name as 

Composite Beam Analogy Fracture Model (CBAFM).

3.2 Modeling Assumptions and Boundary Conditions

Assumptions and boundary conditions employed for the analysis of the microcracked 

section according to the Composite Beam Analogy Fracture Model (CBAFM) are 

given in the following:

1. For simplicity, it is assumed that the stress-strain (a - e ) and stress-displacement 

{ a -u )  curves follow straight lines according to Figure 3.3. Before any micro-crack 

develops, the material follows stress-strain, and once micro-crack develops, the 

material follows stress-displacement. The strain portion of the horizontal axis in 

Figure 3.3 corresponds to the elastic stage, and the displacement portion corresponds 

to the microcracking stage.

2. Unloading-reloading within the stress-strain zone occurs along the original loading 

line. Within the stress-displacement zone unloading-reloading follows lines parallel to 

the loading elastic zone straight line according to Figure 3.3.

3. Fracture process zone is assumed to have fully developed first, at the peak load 

(P u ).

4. Young’s Modulus of Elasticity (E) within the fracture process zone (or the cohesive 

crack opening zone) varies linearly from zero at the notch tip to E at the process zone 

boundary (Figure 3.4).

5. The fracture process zone is a cohesive zone and able to transfer stress.

6 . Plane sections before bending remain plane after bending (Figs. 3.4(c) and 3.5 (c)).
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a ?l5
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Figure 3.1 (a) Three Point Load Beam Geometry; (b) Section

P= P,

rp
FPZ with band 
width Wc3 o

—)J |£— CMODu

Figure 3.2 Partial Beam Section showing parameters at (Pu, CMODu)

CJ(X)

0 "9
strain displacement

Figure 3.3 Stress-Strain and Linear Softening Stress-Separation
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Ev(x) = E( 1 -x/rp) 
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Figure 3.4 (a) Actual Beam Section; (b) Actual Stress Diagram; 
(c) Linear Strain-COD
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■f.’/Ec 2-2

b(x) = b/Nv(x) 
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Figure 3.5 (a) Composite Beam Section; (b) Composite Stress Diagram; 
(c) Linear Strain-COD

9999994
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3.3 Determination of Fracture Process Zone Length

Based on model assumptions, at peak load, Pu, the FPZ will be fully developed. 

Beyond this critical point, the real crack will begin to develop and load starts to 

decrease. The peak load, Pu is the only parameter needed for the computation of fully 

developed process zone, rp. The schematic flow chart for estimating fracture process 

zone length is shown in Figure 3.6.

The proposed model requires material properties o f concrete which are direct 

tensile strength (f,) and Young’s Modulus of Elasticity (E), and they can be calculated 

from compressive strength (fc') using the following Equations:

For Normal weight concrete,

E = 5 7 0 0 0 ^  (3.1)

(3 .2 )

where units for f c, ft and E are in PSI.

The Equation for the direct tensile strength, f,’ (which is lower than the modulus of 

rupture, f r = 75-Jf^ ) shown above is an empirical equation which has been widely

used by many researchers.

In order to obtain a non-linear fracture process zone (i.e. microcracking zone), 

the peak-load, Pu must be greater than the elastic load carrying capacity of the section, 

Pe (Figure 3.7). This means that the peak-load moment, Mu should be greater than the 

elastic moment capacity of the section, Me . The peak-load moment, Mu can be 

calculated from Pu, and the elastic moment capacity, Me can be calculated using the 

following Equations: (for derivation, see Appendix A-l and A-2)



Check
S tress Boundary condition1 

Static Equilibrium

N.G.

O.K.

Assum e trial rp

Change rp

Calculate f,’ and E from fe'

Calculate Mu and M,

Obtain Fully Developed 
Fracture Process zone, rp

Determine the compressive 
strength (fc1) from a 
Cylinder test

From a 3-PB SEN Beam test, obtain P u, CMOD,

Peak Load, P u is less than the 
elastic load carrying capacity of 
the beam  section, P „  and fracture 
mechanics analysis can not be done.

Develop equivalent composite section 

Calculate com posite section properties 

Calculate stresses

(Note: "A" is the connector for Figure 3.9)

Figure 3.6 Schematic Flow Chart for Estimating Fracture Process Zone
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o to a : Elastic zone, No micro-cracks develop 

a to  b : Micro-cracks( FP2) develop 

at b : FPZ becom es fully developed 

b to  c : Crack propagates until failure

o CMODu CMOD

Figure 3.7 Pu and Pe are identified on a typical P-CMOD Curve

(3.3)

where y = unit weight of concrete

= 150 lb./Cu.ft. for Normal Weight Concrete.

Beam dimensions, span (L), height (h) and width (b) are shown in Figure 3.1. 

Elastic Moment Capacity, Me can be expressed as

K  = - f ib ( h - a 0)2 
o

(3.4)

Elastic load capacity, Pe can be calculated as

p- = i (3.5)
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If M u < M e , the peak load (Pu) will be less than the elastic load carrying capacity 

(Pe) of the section, and there will be no fracture process zone. In that case, the 

fracture mechanics analysis can not be done.

The fully developed fracture process zone (rp) is evaluated in an iterative 

manner according to the following steps:

(i) A trial rp within the limiting values, 0 < rp < 0.634(h-ao) ‘s chosen to start the 

iteration, where the upper limit for rp is evaluated according to the derivations given in 

Appendix A-3.

(ii) The variable modular ratio, Nv(x) as shown in Figure 3.5 is defined as:

(iii) Based on the variable modular ratio as defined in step (ii), the composite section 

(Figure 3.5a) is developed, and composite section properties, 

Acy J c ’Sc\-\Sc2-2and ^c3-3 are calculated using the following equations: (for derivation,

see Appendix A-4)

Area of the Composite section:

(3.6)

x
where Ev(x) = E  1 -

V rp)
; ( 0  <x<rp)

Ac = (b-hx -0 .5 b rp) (3.7)

where ligament length /?, = ( h - a 0)

Location of N.A. :

6 (/t, -  0 .5rp)
(3.8)
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Composite Moment of Inertia:

+ ^ ■ + ^ ( * , - 0  6 6  b l r p - y f  (3.9)

Section Modulus for the composite section:

s ^ = i j y
Sc2-2 = Ic l (h\ ~ rP - y )  (3 1 °)
s ^ i ' U h - y )

(iv) Composite and actual stresses at different levels, 1 - 1 , 2-2 and 3-3 are calculated 

using the following set of equations:

Composite stresses are calculated by using composite section moduli (Figure 3.5b):

°c2-2 = M J S e2_2 (3.11)cl-Z u cl-2

°c3-2 = M u/S cl-1

Actual stresses are calculated from composite stresses using modular ratios (Figure 

3.4b):

^i-i = o'd-i
a 2-2=<Jc2-2 (3.12)

o-,, = — 2^=3— _ 5 a = i= 0<0 
Nv{x = rp) oo

It should be noted that the modular ratios at levels 1-1 and 2-2 are 1
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(v) The stress boundary condition at the tip of process zone rp, requires:

^ 2-2 = CT,2-2 = /, ' ( 3  13)

(vi) The compressive force (C), tensile force (T) and moment capacity ( M c a p a c i t y  )  

are calculated using the following set of equations (Figure 3.8b):

(for derivation, see Appendix A-6 )

C = 0.5-ac]_r b-y
Tx = 0.5-crc2_2-b(h-a0- y - r p )

= ~ b ' f ‘P ( ( 7 c 2 - 2 + l ^ <Jc 3 - 3 )  (3 14)
t = tx + t2

M C A P A C I T Y  — C Z

or - T  Z

Where moment arm, Z = 0.6667y  + 3 /,,

Where y x ~ — 2 _ _ 1 -  T}( h - a 0 -  y  -  rp) + TA(h -  a0 - y - r p )  + - r p °c2-2 + a c3-l
2&C2-2 0"c3-3'

and by substituting, <*0 - 3  h - a p - y  
°c2-2 h - a a- y - r p

y\ = ■ - T x( h - a 0 - y - r p )  + T2U h - a 0 - y - r p )  + - r P
2 ( h - a 0 - y ) - r p '  
3 (h -a 0 - y ) - 2 r p j

(v) Check the static equilibrium, = 0
T = C
M  u —  M C A P A C I T Y
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Ev(x )  =  E / N v ( x )

Figure 3.8 (a) Force and Moment Equilibrium

Figure 3.8(b) Force and Moment Equilibrium for Equivalent 
Composite Section
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This iterative procedure (steps (i) through (v)) is continued by changing rp values until 

the stress boundary condition and the equations of static equilibrium are satisfied. The 

rp which satisfies both the stress boundary condition and static equilibrium is the 

correct process zone length.

3.4 Determination of Fracture Parameters

The methodology to be used to determine fracture parameters, such as critical fracture 

energy release rate, G1C and critical stress intensity factor, Kic is shown in a schematic 

flow chart (Figure 3.9). Before calculating fracture parameters, one must obtain the 

fully developed fracture process zone length, rp using the procedure as described in 

previous section and in Figure 3.6.

Gjc is the critical energy release rate per unit width per unit crack extension at 

the peak. It corresponds to the situation when the process zone is fully developed, and 

any further increase in deformation results in growth of macrocrack and a 

corresponding drop in load. Unlike the LEFM based G[C, the energy release rate here 

is not elastic, since it consists of the energy consumed during the formation of the 

process zone. GjC is the irrecoverable energy absorbed during crack formation. It is 

evaluated by integrating the product involving the consumed stress (irrecoverable 

stress) and the irrecoverable opening displacement of the process zone:

° i c = i n a " ( x) ' M c ° D" W dx ( 3 i 5 )

where,

<%(x) = consumed stress distribution, or the irrecoverable stress within the process 

zone.
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MCODjr(x) = irrecoverable opening displacement of the microcracked or the process 

zone.

Irrecoverable stress is defined as the difference between the composite and 

actual stresses within the microcracked region (Figure 3.10), and is evaluated in the 

following manner:

At a distance x (within the FPZ)

Composite stress distribution = <xc(x) (3.16)

1 XActual stress distribution = cr(x) =  t-t-c J x) = 1 ovfx)
v ’ N v(x) cV '  V rp) cV '

(3.17)

Calculate Stress Loss

Obtain linear relation 
betw een CM ODu and CTODu  
Calculate FPZ band width

Calculate irrecoverable microcrack 
opening displacement

Calculate Critical Energy Release Rate 

and Critical Stress Intensity Factor

(Note: "A" is the connector for Figure 3.6)

Figure 3.9 Schematic Flow Chart for determining Fracture Parameters
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Stress loss (Irrecoverable stress) = a ir (x) = crc (x ) -  cr(x)

1= crc(x) 

= CT*(X)

i -
K{*)

1-1 + — 
rp.

rp)

= ^ Z L f ,  + J L ) f iL  
h  I y>Arp

M ■ y. ,
Since, - a  = ° c2- 2 =f t

c

Therefore, a„{x) = f't
f  \ f  \

1 + -^  
v y\j \rpj

, where 0 <x<rp

N.A.

Composite Stress

FPZ
(0 <  = x <  =  rp)

Actual Stress

(3.18)

Figure 3.10(a) Actual Stress and Composite Stress in 
the Fracture Process Zone.



41

a  (x) .Composite Stress

Actual Stress

(0<=x<=rp)

At x
AC=Composite Stress= ac(x) 
AB=Actual Stress= crc(x)/Nv(x) 

BC=lrrecoverable Stress = ajr(x)

Figure 3.10(b) Stress Loss within the Fracture Process Zone

Figure 3.11(a) shows the linear crack opening displacement which is based on 

the modeling assumption and boundary condition (6) - Plane sections before bending 

remain plane after bending. By assuming existence of linear relationship between the 

crack tip and crack mouth opening at peak load, the crack-tip-opening displacement 

(CTODu) can be related to crack-mouth-opening displacement (CMODu) as following:

CTODu = CMODu
( h - y - a „ )

(h - y ) .

(3.19)
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Similarly, assuming linear relations, the band width Wc can be expressed as:

CMODu
f J E

y  i

h - y
(3.20)

where y x=(h- y - r p - a 0)

N.A.

(ft '/E)Wc
FPZ

CTODi

CMODi

Figure 3.11(a) Linear Crack Opening Displacement

As shown in Figure 3.11(b), the total opening displacement of the process zone, 

MCODj(x) as a function of x (where 0 <x<rp)  is derived from the composite stress 

distribution as:

MCOD!(x) = ^ ( y x+ x ) { K
( f ; ) Xj  t w i + —c

y \ .

(3.21)



CTODu
MCOD(x)

Totjal MCOD

(ftVE)Wi
Recoverable MCOD

0  <  =  x <  =  rp
AC = Total MCOD(x)
AB = Recoverable MCOD(x) = MCODrc(x) 
BC = Irrecoverable MCOD(x) = MCODir(x)

Figure 3.11(b) Total and Recoverable Crack Opening Displacement Curves

A certain portion of the opening displacement within the process zone is due to elastic 

deformations which can be recovered upon unloading. Based on the stress-softening 

diagram given in Figure 3.3, the recoverable opening displacement of the microcracked 

zone, MCODrc(x) can be obtained from the actual stress distribution as:
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Therefore, MCOD rc (x) = II 1 +
x

y\ j
i - ±

rp
(3.22)

The irrecoverable opening displacement of the process zone, MCODjr(x) can be 

obtained by subtracting Equation (3.22) from Equation (3.21), resulting in:

MCOD,r (x) = MCOD, (x) -  MCODrc (x) 

<E A  y ^ k r p )= /, (3.23)

GjC is evaluated by integration of Equation(3.15), and substitutions of a ;r(x), and 

MCODjr(x) from Equations (3.18) and (3.23). By integration ofEquation (3.15), G]^ 

can be expressed as:

Therefore,

b • GJC = f rP crir (x) • MCOD,r (x)dx 
Jx=0J»x=rp

x-0

rn> (Ŵ
E Arp- m m

- f  \~
i + ^

v y\J
dx

= / ;
i fxVx + 2-l fxVx-f -Virv*l

\rpj  |Jo l v , V Jo

■ / . i f
1 V  rp3

yrp
+ 2

y { )

rp_

5

/ \ 
T. l+ —

/ \ 
r_P_

5 I y x)

G, c~ b
1 /, ' -rp-Wc 4*

3 2

r \  ■>( \
-  + _

5
(3.24)
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From Equation (3.20), / , CMOD. y\
h - y

After simplifying Equation ( 3.24 ), GjC can be expressed in terms of CMODu as:

GJC -
f [  • CMODu - rp-y]

b - (h - y )
1 1
3 + 2

f  \
r_P_

V vJ
+  -  

5

f  \rp
(3.25)

According to LEFM, critical stress intensity factor, Kjc can be expressed as

Klc = -JE ■ GIC for plane stress,

and

Kk  = -Je E ,
1- u2

for plane strain

(3.26)

(3.27)

By substituting the Poisson ratio v = 0.15 for ordinary concrete, we get

Klc = 1.01 yjE-GIC yjE ■ GIC for plane strain (3.28)

By substituting GjC from Equation (3.24, or 3.25), KjC can be expressed in different 

forms.

3.5 Theoretical P-CMOD Curve

3.5.1 Descending P-CMOD Curve

In the proposed model, it is assumed that the process zone length (rpj) will not remain 

constant as the crack grows. So, rpj is an unknown variable during the crack
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propagation which will be calculated through an iterative process until static 

equilibrium is satisfied.

For any new crack length, ai (where ai>ao), first assume a trial value o f rpi 

and calculate composite section properties using Equations (3.7),(3.8),(3.9) and 

(3.10). Then calculate stresses at different locations (Figure 3.5b) using the following 

Equations:
0-C2-2 = / , ’
O’ci-i -rp , )  (3.29)

= f r ( h - y - a i ) / ( h - y - a i - rp,)

Using the stresses calculated above, compute total compression (C) and Tension (T) 

as following:

In Figure 3.8b

C = 05-aci_r b-y (3.30)

T = t] +t2 (3.31)

where
r, = 05 -/,' •b-(h-a , - y - r p , )  
t2 =b-rpi • / /  /3 + b-rpi -crci_3 /6

Once forces, C and T are calculated, static equilibrium, T=C will be checked. If the 

equilibrium is not satisfied, assume a new trial value of rpj and repeat the above 

procedure.

Then calculate Moment, Mi using the following Equation:

+ (3.32)
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where y, = ^[(2 • • g, / 3) + t2 (g, + g2)]

g i = ( h - a , - y - r p l )

g2 = 0.5 • rp, ■ (<rc2_2 + crC3_3) / (2 • crc2. 2 + a c3_3)

Calculate Pj using the following Equation:

M, - ~ y . b ‘h-l (3.33)

where y = unit weight of concrete

= 150 lb./Cu.ft. for Normal weight concrete.

In this research, the critical energy release rate, Gic is considered as a 

material property which is required to predict the post-peak behavior of the crack- 

mouth opening displacement. By considering linear proportion of total energy loss 

based on the process zone length, rpu at Pu and rpj at Pj (where Pj < Pu) and by 

rearranging Equation (3.25) for CMODj instead of CMODu, CMODj can be 

expressed as:

where y ] ={h-a, - y  -  rp,)

3.5.2 Ascending P-CMOD Curve

Determination of pre-peak load-CMOD relationship is accomplished through an 

iterative procedure similar to those performed earlier for the post-peak region. The 

procedure involves determination of proper process zone length, rp, and evaluation of

CMOD, = GIC
ft  ’rPi -Ti I 3 2 5l_y, ) ) {rp, )

(3.34)
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the load from equilibrium conditions. It is important to know that in this case, the 

modular ratio for the composite section is different from the one assumed at the post­

peak stage. At peak, the process zone is fully developed and the original notch tip is 

totally separated. This results in a notch tip material of zero modulus, and the variable 

modular ratio is as given by the linear relationship in Equation (3.6). However, at pre­

peak levels, the process zone is not fully developed, and therefore the material at the 

notch tip is not totally separated. The real stress distribution in front of the notch tip is 

as shown in Figure 3.12. In this case, the modulus of elasticity of the damaged section 

at the notch tip is not known, and the modular ratio has to be evaluated accordingly.

During the development for the fracture process zone, the stress diagram and 

the position of the neutral axis (N.A.) changes which is shown in Figure 3.13.

N.A.

Composite Stress

'Actual Stress
racture Process Zorn

Figure 3.12 Stress distribution before the Process zone becomes fully developed.

For the elastic strength condition (notch tip stress = ft'), the position of the neutral axis 

is at — . At peak, the process zone is fully developed, and the position of neutral axis
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is at y u . Therefore, the pre-peak position of the neutral axis, y t, varies within these

In order to obtain a set of pre-peak P-CMOD coordinates, we need to consider 

a set of y i , where y u <y, <h} / 2. For any location ofN.A., y  , first assume a trial 

values of rpj (a very small number, rpj<rpu) , and using linear relationships and 

assuming a'b' parallel to ab in Figure 3.13, evaluate the actual and the composite 

stresses at the notch tip as following:

In Figure 3.13;
rp2 = rp, ; rp3 = rpu\ y2 = y, 
a'a" _ a'a" _ rp,

w " f ,  rPu

aa'=aa"-a'a"= / /  \ - ^ -
L r P u .

Therefore, composite stress at notch tip,

^ c .  notch (3.35)

and actual stress at notch tip,

/ \
' r' i rP>

V notc h = a a  =/, 1 ----- (3.36)
v

The variable modular ratio can be calculated by taking the ratio of composite stress to 

actual stress at the tip of notch as following:
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^  ctnotch

(*■ - y . )
(h, - y ,  - r p , )

' notch | j PPi

rpuy

(3.37)

y 1 = 1/2 hi

NA3
NA2

NA1

= h-a

rp3

rp2
i k ' - . - a i l . .  a  ^ _ v .

K- fr^l , d '

• Stress Diagram 1 (Line a"c"): Elastic Strength Condition with zero process 
zone length. aa"=dc"-ft '

• Stress Diagram 2 (Line a'b'c'): Process Zone Developing Stage 
Process Zone length rp2<rpu where rpu= Fully developed Process Zone. 
Assumption: Line a'b' is parallel to line ab.

• Stress Diagram 3 (Line abc): Process Zone fully developed. 
rp3=rpu.

• Neutral Axis yl>y2>y3

Figure 3.13 Stress diagrams during the Process Zone developing Stages



Using the above modular ratio, Nvj, develop the equivalent composite section as 

shown in Figure 3.14, and calculate the distance of the N. A., y i colcuhted from the top of 

the section using the following Equation:

Aatata* - rp]) /2 + A2-(h] -rp, l2) + A2>-(hx -2-rp, /3)) (3.38)

where
A = A\ + A2 + A3 
A\ = b-(hl -rp,) 
A2 = rp, •b / N „

A3 = 0.5-rp, •b 1--
N„

Then compare the calculated distance of the N.A., y lcalcuhled with the y .  If the 

difference between them is not negligible, assume a new trial value of rpj and repeat 

the above procedure.

Once the correct rpj for y, obtained, develop the composite section and stress 

diagram (Figure 3.14), and calculate the forces T, C and moment arm Z using the 

following formulae:

The width of the section within the fracture process zone:
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1 -
h-a N .A .

7 "

L b /N vi 

b (x )= b [1 -x /r Pi(1 -1 /N vi)]

Figure 3.14 Composite Section and Composite Stress Diagram During 
the Process Zone Developing Stage.

Calculate forces C, t ] , t 2 , T (Figure 3.14):

C  =  ' ( / '  ' f ' ) ’ where t i  = h - a 0 - r p , - y ,

T =  /j + t2

where
2 
2

t) = -h'

rp,, . ( h + X

rPi
/

, - - 5 - 1 ,— L
N.

dx

' - k X H

/ \X
dx

{ r p j

rp,+
rPi
2 ti

rp; , rp,

= (/;•* )

=( / ,  * - '  p,)

rp, , 1 rp, | rpj 1 rp;
2 6 A’ 2 AT, 3AL-/7

2rp, 3rp, -h 
2

± ( i + —  
2 1 N,

\ f

6 h
1 +  -

N J

(3.40)

(3.41)
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Locate C.G. of t2 :

-  r 7’' A t i  + x
0- Z ' f .

-('■'•‘( f t  

= (/;•* )

h
■b

rp, N„
x d x

\ + —r \ x - d x -
h

, _ _ L  P ( , + 4
N „ )  J« I  h

dx
\rPiJ

2 3 /
rP, , rP,

2 3 h
1- 1 rp, | rp,

N sJ{2>rp,  4 rp, -h

rp! + 1 rp] _ (  q f rpf_ +  rp,3

^  ' ^ 2  3 h

= (/»’ -b-rp;)

~{f i  'b ' rp ! )

N„ 4 h

1 I f  r p , ) 1 rp,-  + — +  + —- '
6 12 K h ' J  3N„ 4 N „ - t i

I  i + A
6 1 N..

N i f \ f  ^1 I rp, ] , 3
+  —  - 2 - r  1 +  —

12 U  A K

Therefore, C.G. of t2  from the tip of process zone:

rp, • 1 +  -K.
+ L ( r_p±

12 V h
1 +  -

N„

1 f i + J j L I f a )
2 I  N „ )  6 \ h ) I  * U J

Locate C.G. of T

y  i = j • h  + t 2 (b + *)

Moment arm, Z

2 _
z  = - y ,  + y t

Calculate moment, Mj and force, Pi using the following equations.

(3 .4 2 )

(3 .4 3 )

(3 .4 4 )

M,  = T Z = C Z (3 .4 5 )
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M. — v-b-h- l2 
'  8

(3.46)

Using Wc from Equation (3.20) calculate CMODj as following:

CMOD, = ~ W C •(/»-J j ) / h' b
(3.47)

where
h' = h - a 0 - r p , - y f

3.6 Theoretical Load-Deflection Curve

Based on the theoretical Load-CMOD curve as developed above, a simple formulation 

are derived to predict theoretical Load versus Load-Point Deflection (P-6).

For 3-PB SEN beam specimen, empirical equations for calculating CMOD and 

load-Point Displacement are presented by Tada et al (1976) as following:

For span to depth ratio of 4:

CM0D = ^ 2 - V i(£) 
E

(3.48)

Load-point deflection, 8 = —— V2{£) (3.49)

Where ; a = ct0+rp\ £ = £  
h

V,, (£) = 0.76 -  2.28(£) + 3.87(£)2 -  2.04(£)3 +
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Vi(£) and V2(£) for span to depth >4 can be estimated by interpolation from the 

curves provided by Tada et al. (1976).

From Equations (3.48) & (3.49), one can derive a relationship between CMOD and 

load-point deflection, 6 as following:

By using Equation (3.50), it is possible to relate CMOD to 5 at various points along a 

typical P-CMOD diagram, and therefore develop a load-deflection relationship. In this 

dissertation, theoretical P-6 curve is developed using Equation (3.50) and the 

theoretical P-CMOD relation as developed in previous section.

Estimation of fracture energy requires computation of the area beneath load-deflection 

diagram. In this dissertation, the fracture energy, Gp is calculated using RILEM method 

TC 50-FMC (1985) which is described in literature review, section 2.3. The theoretical 

P-5 curve as developed in previous section is used to estimate Gp.

3.8 Computer Model based on CBAFM

A simple PC based PASCAL program, named CBAFM.PAS is developed based on 

the proposed fracture model, CBAFM. The Flow Chart is shown in Figure 3.15. The 

computer model has four main modules, (i) Module-1 for calculating the fully 

developed process zone length (rp), the critical fracture energy release rate (G ic) and

S = 0.25 -CMOD (3.50)

3.7 Estimation of Fracture Energy
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the critical stress intensity factor (Kic), (ii) Module-2 for developing the descending 

(post-peak) branch of the theoretical P-CMOD curve, (iii) Module-3 for developing 

the ascending branch of the theoretical P-CMOD curve and (iv) Module-4 for 

developing the theoretical Load-Load Point Deflection curve.
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Calculate:

Program Module-3 
Pre-Peak P-CMOD

Program Module-2 
Post-Peak P-CMOD

Program Module-1 
Calculate: rp, G)c ,

Program Module-4 
P-Deflection Curve

INPUTS:
Beam Geometry L , b , h, ^
Peak Load, P and CMOD 

u u
Material: f '

Peak Load is less than the 
Elastic load carrying 
Capacity. No Fracture 
Analysis Possible

Figure 3.15(a) Computer Flow Chart for the Proposed Model
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/  Check \  
Static Equlibrium and 
^Boundary Condition,

Calculate Composite 
Section Properties

Calculate S tresses and 
Forces and Moment

Develop Composite 
Equivalent Section

rp = Fully Developed 
Process Zone Length

Assume New rp 
(use half-interval 

technique)

Calculate
Critical Fracture Energy Release Rate 

Critical S tress Intensity Factor

Figure 3.15(b) Flow Chart for Program Module-1
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T = C

New a.

Change ra

Assume trial process 
zone length, rpj

Assume new crack 
length, a- (i =1,2,3..)

Calculate composite 
section properties

Calculate composite 
stresses and forces (T, C)

Calculate 
Moment, Mj 

Load, Pj 
CMODj

Figure 3.15(c) Flow Chart for Program Module-2
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s i  ^ calculate*

Assume

New y.

Assume trial rp.

Assume New

Calculate P. , CMOD

Composite Section 

Calculate T, C, M.

Calculate Modulur

Assume yj i =1,2,3 

( 7 u < 7 j  < (h-a^/2

Develop Equivalent 

composite Section, and 

Calculate, "ycalculated

Figure 3.15(d) Flow Chart for Program Module-3
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a = a . +rp.

Calculate (Ref. Tada, 1976) 

V.  (a/h) and V„ (a/h)

Calculate Deflection:

5. =f(CMOD., V ,V0 , L/a)

From Program Module 1, 2, and 3

Obtain a j, rp., Pj and CMODj

Figure 3.15(e) Flow Chart for Program Module-4



CHAPTER 4

RESULTS AND DISCUSSION

4.1 General

The validity o f the proposed model (CBAFM) is examined from the analysis of 

available experimental data on 3-PB beams. Experimental results involved data on 

beams from tests by Yu (1995), Refai and Swartz (1987), Jenq and Shah (1985b), Go, 

Cheer-Germ and Swartz (1983), and Nallathambi and Karihaloo (1985). Table 4.1 and 

Table 4.2 represent experimental data for 3-PB SEN beams and 3-PB Pre-cracked 

beams respectively employed by CBAFM for the determination of fracture parameters 

and load-displacement relationships. Data required for analysis by CBAFM are beam 

dimensions (L, b, h), initial notch length (a0) or precracked length (a;), material 

property (fc') or (ft', E), peak load (Pu) and crack mouth opening displacement 

corresponding to peak load (CMODu ). Besides Load-CMOD and Load-Deflection 

relationships, the fracture mechanics parameters acquired from the analysis of data 

encompassed the fracture process zone length, and it’s extent during the fracturing 

process, GiC, KIC, and Gf. The following sections describe the comparison of the 

proposed model with the available experimental data and with other models.

4.2 Experimental Verification 

Figures 4.1(a) & (b) through 4.3(a) & (b), depict comparison of the experimental 

Load-CMOD and Load-Deflection data by Yu (1995), and the computed relationships 

developed by the proposed model. The theoretical results are obtained by using the 

experimental Pu, CMODu, and fc’. Experimental data involved small, medium, and

62
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large size specimens, and as shown in these figures, agreement between the computed 

and experimental relationships are quite satisfactory.

Table 4.1 Beam Dimensions and Data from Experiments for use with the Proposed 
Model
Beam
No.

Ref. L x b x h x a0 
(mm)

E
(MPa)

ft'
(MPa)

Pu
(kN)

CMODu
(mm)

1 P] 457x76x76x38 30.44xl03 3.20 0.84 0.04
2 M 813x102x102x51 30.44xl03 3.20 1.09 0.06
3 [1] 965x102x152x76 30.44xl03 3.20 1.67 0.05
4 [2] 640x160x160x80 36.03xl03 3.78 5.07 0.04
5 [2] 2000x500x500x250 41.02x103 4.31 56.94 0.11
6 [3] 762x76x203x61 38.43xl03 4.00 5.03 0.05
7 [3] 1143x76x305x92 39.32xl03 3.76 7.56 0.71
8 [4] 572x51x152x48 24.15xl03 2.76 2.00 0.05
9 HI 203x51x51x24 24.15x10-3 2.76 0.62 0.03

[1] Yu, 1995; [2] Jenq/Shah, 1985b; [3] Refai/Swartz, 1987; 
[4] Ratanalert/Wecharatana, 1990

Table 4.2 Pre-cracked Beam Dimensions and Data from Experiments for use with the 
Proposed Mode__________________________________________________________
Beam
No.

Beam
W- M

L x b x h x a; 
(mm)

E
(MPa)

ft'
(MPa)

Pu
(kN)

CMODu
(mm)

10 B31 762x76x203x77.2 38.4xl03 4.00 4.85 0.114
11 B25 762x76x203x121.9 38.4xl03 4.00 2.80 0.102
12 B24 762x76x203x144.5 38.4xl03 4.00 1.98 0.097
13 C22 1143x76x305x116.1 39.4xl03 3.76 7.65 0.064
14 C2 1143x76x305x128.9 39.4xl03 3.76 6.05 0.102
15 C24 1143x76x305x132.0 39.4xl03 3.76 6.12 0.071
16 C20 1143x76x305x143.8 39.4xl03 3.76 4.67 0.102
17 C15 1143x76x305x146.0 39.4xl03 3.76 4.89 0.102
18 C5 1143x76x305x160.6 39.4xl03 3.76 4.54 0.102
19 C26 1143x76x305x173.1 39.4xl03 3.76 4.27 0.076
20 C27 1143x76x305x185.3 39.4xl03 3.76 2.89 0.102
21 CIO 1143x76x305x205.1 39.4xl03 3.76 2.49 0.117

(aj = Initial crack length of pre-cracked beam) 
[1] Reference- Refai/Swartz (1987)
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Figure 4.1(a) Comparison of computed (CBAFM), and experimental load-CMOD 
relations for small size beam (Beam No. 1).
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Figure 4.1(b) Comparison of computed (CBAFM), and experimental load-deflection
relations for small size beam (Beam No. 1).
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Figure 4.2(a) Comparison of computed (CBAFM), and experimental load-CMOD 
relations for mid-size beam (Beam No. 2).
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Figure 4.2(b) Comparison of computed (CBAFM), and experimental load-deflection
relations for mid-size beam (Beam No. 2).
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Figure 4.3 (a) Comparison of computed (CBAFM), and experimental load-CMOD 
relations for large size beam (Beam No. 3).
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Figure 4.3(b) Comparison of computed (CBAFM), and experimental load-deflection
relations for large size beam (Beam No. 3).



67

4.3 Comparison with Available Models

4.3.1 Comparison of Calculated K jc  and Gjc  from Different Methods

The fracture parameters, critical stress intensity factor, KIC and critical fracture energy 

release rate, GIC are calculated by the proposed method for two different sizes of 

twelve precracked beams. The beam dimensions and experimental data are given in 

Table 4.2. Table 4.3 shows a comparison of calculated Kic and Gic values by four 

different methods which are TPFM (Jenq and Shah, 1985a), Go Method (Go, Cheer- 

Germ and Swartz, 1983), the Australian Method (Nallathambi and Karihaloo, 1985) 

and the proposed method. The calculated KjC and GJC values by TPFM, Go Method 

and the Australian Method are obtained from the reference (Refai and Swartz, 1987). 

The comparison of Kic and Gic values in Table 4.3 indicate that Kic and Gic values 

measured by all these techniques vary within a close range.

Table 4.3 Comparison of computed KjC and GjC values by different methods.

Beam
Id.

Proposed Model 
(CBAFM)

Jenq/
(TPF

'Shah
M )P]

Go Methodl.2.1 The Australian 
MethodPi

Ktc Gic Ktc Gic Ktc Gjc Ktc Gjc
MPav'mm N/m MPa\/mm N/m MPaVmm N/m MPav'mm N/m

B31 45.4 53.75 36.0 34.0 33.2 28.8 43.7 46.4
B25 41.3 44.36 35.6 32.9 36.8 35.2 28.5 19.6
B24 36.9 35.50 36.5 34.8 38.2 38.0 35.6 29.0
C22 50.1 63.92 41.6 44.3 41.7 33.8 46.2 51.1
C2 51.4 67.04 42.3 45.5 36.8 34.4 43.3 44.4

C24 45.3 52.22 39.3 39.3 37.2 35.2 44.8 47.5
C20 40.4 41.56 38.8 38.4 36.5 34.1 29.8 21.1
C15 45.9 53.66 39.5 39.8 36.2 33.4 27.4 18.1
C5 49.2 61.63 41.3 43.4 36.6 34.2 54.4 68.6

C26 44.3 49.93 41.5 43.6 36.2 33.4 60.4 82.0
C27 38.0 36.68 33.3 28.0 34.5 30.1 49.2 51.9
CIO 43.2 47.40 36.0 33.0 33.2 28.1 51.2 52.8

[1] (Jenq and Shah, 1985a); [2] (Go, Cheer-Germ and Swartz, 1987); 
[3] (Nallathambi and Karihaloo, 1985)
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4.3.2 Comparison among CBAFM, TPFM and Experimental Data

Figures 4.4 through 4.5 depict P-CMOD relations by the proposed model, CBAFM, 

the two-parameter fracture model, TPFM, and experimental data (Jenq and Shah, 

1985b). Beam dimensions and other pertinent data are shown in Table 4.1. As shown 

in these figures, P-CMOD relations evaluated by the proposed model are in good 

agreement with the experimental results.

4.3.3 Comparison among CBAFM, FCM and Experimental Data

In Figures 4.6 through 4.7, P-CMOD relations by the proposed model, CBAFM, are 

compared with the fictitious crack model, FCM and the experimental data (Refai & 

Swartz, 1987). Beam dimensions and other pertinent data are given in Table 4.1. The 

predicted P-CMOD curves by the proposed model are in better agreement with the 

experimental results compared to predicted P-CMOD by FCM.

In Figures 4.8 through 4.9, P-CMOD relations by the proposed model, 

CBAFM, are compared with the fictitious crack model, FCM and the experimental 

data (Ratanalert and Wecharatana, 1990). Beam dimensions and other pertinent data 

are given in Table 4.1. In P-CMOD curves by FCM, three different softening 

relationships were assumed including (i) linear stress-displacement relationship, (ii) 

Reinhardt's empirical stress-displacement relationship, and (iii) Wecharatana's empirical 

stress-displacement relationship. These stress-displacement relations are discussed in 

Section 2.2, and are given here again for completeness:

Linear o-w (Eq. 2.26): = (l -
f t

where,

a  = closing pressure;
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ft’ = maximum tensile strength;

4 = ratio of crack opening displacement to maximum crack opening displacement at 

o=0; £, = w/wc;

Reinhardt’s empirical equation (Eq. 2.24): -jr  = (l + (c,£)3 - ^ 1  + c,3)e"C3

where,

For concrete, cl = 3 .0 ; c2 = 6.93; 

o, £, ft’ are the same as defined above.

Wecharatana’s empirical equation (Eq. 2.25): -y- = -  e~B̂  j(l -  £)D

where

o, £,, ft’ are the same as defined above.

For concrete and mortar, A, B, C and D are equal to 0.052, 400, 1.75 and 0.5 

respectively.

Figures 4.8 and 4.9 clearly describe that the accuracy of FCM significantly 

depends on the assumed post-peak stress-displacement relations. On the other hand, 

the predicted P-CMOD curves by the proposed model are in good agreement with the 

experimental data. Hence, the accuracy of the predicted P-CMOD by the proposed 

method are quite acceptable and satisfactory.
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Figure 4.4 Load versus CMOD curves - Theoretical prediction by CBAFM, TPFM 
and experimental results (Jenq and Shah, 1985b) for Beam No. 4.
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Figure 4.5 Load versus CMOD curves - Theoretical prediction by CBAFM, TPFM
and experimental results (Jenq and Shah, 1985b) for Beam No. 5.
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Figure 4.6 Load versus CMOD curves - Theoretical prediction by CBAFM, FCM and 
experimental results (Refai and Swartz, 1987) for Beam No. 6.
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Figure 4.7 Load versus CMOD curves - Theoretical prediction by CBAFM, FCM and
experimental results (Refai and Swartz, 1987) for Beam No. 7.
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Figure 4.8 Load versus CMOD curves - Theoretical prediction by CBAFM, FCM and 
experimental results (Ratanalert and Wecharatana, 1990) for Beam No. 8.
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Figure 4.9 Load versus CMOD curves - Theoretical prediction by CBAFM, FCM and
experimental results (Ratanalert and Wecharatana, 1990) for Beam No. 9.
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4.4 Comparison of Fracture Energy 

RILEM method, Equation (2.27) is employed for the determination of Fracture 

energy, Gf , by the proposed method (CBAFM), and the experimental data from three 

different beam sizes obtained by Yu, (1995). Theoretical and experimental load- 

deflection results given in Figures 4 .1(b) through 4.3(b) are employed for this purpose. 

Gf values were also computed by using empirical equation given by Bazant (1983):

Gf =0 .0214(/;+127)/,': - d J E

Where, da is the maximum size of coarse aggregate (inch), and the units for ft’ and E 

are PSI. Computed values are compared in Table 4.4, where close agreements are 

found between the experimental and computed Gp values by the proposed model.

Table 4.4 Comparison of Fracture Energy values, GF

Beam No. Fracture Energy, Gp (N/m)
Proposed Model Experimental 

(Yu, 1995)
Bazant (1983)

1 94.50 101.50 75.25
2 94.50 101.50 75.25
3 99.75 98.00 75.25

4.5 Behavior of Crack Propagation

In order to obtain some useful information on the behavior of crack propagation, a set 

o f dimensionless graphs (Figures 4.10 - 4.14) have been plotted based on the results 

from the proposed model for different sizes of beams.
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In Figure 4.10, the theoretical post-peak load as a ratio of peak-load (Pu) is 

plotted against crack growth. Here crack growth is shown as a ratio of crack length 

(real crack + process zone length) and the beam depth. The plot shows similar 

behavior for all these beams.

In Figure 4.11, the theoretical post-peak CMOD as a ratio of CMOD at peak­

load (CMODu) is plotted against crack growth. The graph shows that as the crack 

grows, the rate o f change of CMOD increases faster. When the crack growth is about 

85% of the beam depth which corresponds to about eight (8) times of CMODu , the 

CMOD increases very rapidly, and this point can be viewed as the critical crack-mouth 

opening displacement at complete failure (i.e. beam becomes two pieces), CMODf .

In Figure 4.12, the theoretical post-peak load as a ratio of peak-load (Pu) is 

plotted against CMOD as a ratio of CMOD at peak-load (CMODu). The graph shows 

that for larger beam, load carrying capacity drops more rapidly compared to smaller 

sizes of beams. This is a further proof of the effect of specimen size on brittleness of 

concrete specimen.

In Figure 4.13, the theoretical post-peak load as a ratio of peak-load (Pu) is 

plotted against post-peak process zone length (rp) as a ratio of process zone length at 

peak-load (rpu). The graph shows that process zone length decreases more rapidly for 

smaller sizes of beams compared to larger sizes of beams.

In Figure 4.14, the theoretical post-peak process zone length (rp) as a ratio of 

process zone length at peak-load (rpu) is plotted against CMOD as a ratio of CMOD at 

peak-load (CMODu). It shows that the theoretical CMOD/CMODu versus rp/rpu 

curve is independent of beam size. The graph shows that as the rp decreases as CMOD 

increases. By combining Figure 4.11 with Figure 4.14, it can be seen that the process 

zone decreases as the crack grows. It is interesting to note that the Figure 4.14 is 

nothing but the combination of Figures 4.12 and 4.13. The graphs of Figures 4.12 and
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4.13 are beam size dependent where as graphs of Figure 4.14 are size independent. 

This means that the size dependency of P/Pu versus CMOD/CMODu and P/Pu versus 

rp/rpu are compensated in CMOD/CMODu versus rp/rpu.

The above concluding remarks, which are made based on the theoretical results 

o f the proposed model for three different sizes of beams, should be further investigated 

experimentally, as well as, theoretically on more different sizes of beams.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

5.1 Summary and Conclusions 

The main objective of this dissertation was to develop a simple non-linear fracture 

mechanics methodology for the determination of Fracture Energy (Gp) of concrete and 

it's non-linear fracture mechanics parameters, such as fracture process zone length 

(rp), critical fracture energy release rate (G]C) and critical stress intensity factor (KIC) 

for three point bend single-edge notch concrete beams. The validity of the concepts 

advanced in the proposed fracture model were demonstrated by an acceptable 

comparison of the theoretical prediction of the load versus CMOD, load versus load- 

point deflection (5) relations and calculated Gp from theoretical P-5 with the 

experimentally measured values.

The conclusions of this dissertation can be summarized as follows:

1. The fracture energy (Gp) of concrete and non-linear fracture characteristics such as 

fracture process zone length (rp), critical fracture energy release rate (GjC) and critical 

stress intensity factor (KjC) can be determined according to the proposed model which 

is based on an analogous composite beam with continuously variable Young's modulus 

of elasticity within the fracture process zone.

2. The fracture process zone can be modeled as a damaged cohesive band where the 

extent o f damage due to microcracking varies from no damage at the tip of FPZ to a 

complete damage (i.e. complete crack surface separation) at the tip of notch or pre­

crack. Hence the fracture process zone can be defined as a material with a variable 

modulus of elasticity, Ey, where Ev = 0 at the tip of notch or pre-crack and Ev = E 

(the modulus of elasticity of un-cracked zone) at the end of FPZ.

79
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3. The proposed model can predict theoretically both the pre-peak and post-peak load 

versus crack-mouth opening displacement (CMOD) and load versus load-point 

deflection (6) behavior for a three point bend (3-PB) single-edge-notch (SEN) beam. 

The accuracy of the predicted P-CMOD and P-5 relations are quite acceptable and 

satisfactory when compared with the experimental data.

4. The proposed model requires only Peak load (Pu) and corresponding crack-mouth 

opening displacement (CMODu). It does not require post-peak load-deflection or 

CMOD data. Furthermore, it does not require information as to the unloading 

characteristic of the beam. The testing machine does not need to be very stiff. No 

closed-loop displacement control is needed. This makes the testing procedure greatly 

simplified and makes it suitable not only for the testing laboratory but also for work 

sites where a closed-loop testing machine is not available.

5. The critical crack-mouth opening displacement at complete failure (CMODp) (i.e. 

the beam becomes completely fractured into two pieces) can be approximately 

estimated as eight times the crack-mouth opening displacement at peak load 

(CMODu).

5.2 Recommendations for Future Research 

Most of the current analytical research to investigate the fracture behavior of concrete 

is based on the limiting states of plane stress or plane strain. Extending it to three 

dimensional case is necessary for further understanding and better simulation of 

fracture mechanics of concrete. The microcracking zone or the process zone is usually 

modeled analytically in one dimension (i.e. along the direction of crack propagation) 

and process zone length remains constant across the beam width. But some 

experimental results (Refai and Swartz, 1987) show that the microcracking zone
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length varies across the beam width. Therefore, more effort both analytical and 

experimental is needed in this area.

For the sake of simplicity in the proposed model, the post-peak stress- 

displacement relation was assumed linear which is most widely used in analytical 

model. The proposed model can be further investigated by using bi-linear or other 

experimental result based empirical stress-displacement relations as discussed in 

literature survey, Section 2.2.

The contribution of tension reinforcement for reinforced concrete beam can be 

a new topic to be investigated by proposed fracture model.

The critical crack-mouth displacement at complete failure (CMODp) as 

obtained in this dissertation should be further investigated using more beam data and 

experimental results. Also, all concluding remarks which are made in this dissertation 

in Section 4.5 should be further investigated experimentally as well as theoretically on 

different sizes of beams.



APPENDIX - A

FORMULAE DERIVATION 

A -l: Moment at peak load. P„

Assuming unit weight of concrete = 150 pcf

Beam Dimensions, L,b,h are in inches, unit of Peak Load, Pu is pounds 

and unit of Peak Moment, Mu is lb-in 

(Ref. Figure 3.1)

M . ,  +
150
1 2 3

b-h
8

= 0.25.P, • L + 0.010851Z> Z,2

A-2: Elastic Moment Capacity. M >̂

71

c

C = 7 - = i / / .* - ( A - a „ )

M e =C(or T)-Z 

= -b - (h -a 0) ~ ( h - a 0)

= -g/,' ■b-{h-a0f

82
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A-3: Boundary Limits for rn

Minimum value of rp = 0. 

Derivation for the upper limit of rp:

N.A.

rp = fully developed fracture process zone length, (at peak load, Pu). 

According to the composite section, the neutral axis, N.A. must lie above the 

process zone. Therefore,

y  < (hi-rp)
=:>h\>(y+rp) .......................(A3 -1)
R.H.S. ofEq. (A3 -1):

(y + rp) =
3/7,2 + rp2 -  3/?, rp

rp
+ rp

3h 2 + 3/7, rp -  2rp~ 

e U  ~ \ r p

Therefore, Eq.(A 3-l) becomes

6/?1 " 2 rp)  > (3/?‘2 + 3h] rP ~ 2rP ' )

=> (3/7,2 -6/7, -rp + 2rp2^>0  .......... (A3-2)
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Let us find out the real roots of

3/?,2 -  6/?, • rp + 2rp2 = 0

Therefore, /y? = 2.366/7, which is not possible. 
= 0.63397/?, 

rp must be less than 0.63397/?,
0<rp< 0.63397/?,

A-4: Section properties for the Composite section (Ref. Figure 3.5a)

Composite Area:

LC = b-h, -  —b rp 
1 2 ^

where /?, = h -  a0

Location of neutral Axis:

y  =

3h] -  3/7, •rp + rp2
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A-5:

Modulus o f Inertia for the composite section,

= ~ b(hi-n > )’ + %

* Y 6 b r P ^ \ b - n { h t - \ r p - ^

Section Modulus for the composite section at different levels:

5  - Lc l —1 ~  _
y

s  ~ L —
2 2 ~  (f*\ ~ r p - y )

Stresses at levels 1-1. 2-2 and 3-3

Composite Beam Stresses (Ref. Figure 3.5b)

cl-l

' c  2 -2

_ K

^c3-3 =

c l—1

M u
SC2-2
M u

? c 3 -3

Actual stresses (Ref. Figure 3.4b)

°Vl -  ^ c l - l

c3 -3

where N v (x) =

N v(x = rp) oo 

E

- ^ z l  = 0

Ev(x)

-i
1--------- , 0 <x<rp

rp



Static Equilibrium (Ref. Fig. 3.8b)

C  =  \ a c \~rb -y 
T = 7; + T2

where 7”, = j  a c2.2 •b(h-a0- y  -  rp) 

and T2 can be derived as following:

dA=bv(x).dx

CTC2-2

Q(X)

CTc3-3

O'W = O’rt-J + ( a c 3- 3 -  ) —  - 0 <x<rp\ r p j
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G.G. of T2 : 

1y  =— £ oa(x)-bv(x)-x-dx  
2 l 2

1 r
T2 Jo

1
~T2

bo

1
~T2 .6

°  c7-2  + ( CTc 3 -3  ^  c2~1)

2 \  

rp)

f x
Krp

xdx

d* + %c33 "  0-.2-2
’■p X 3 A

dx
0 \ rp  rp^)

12 - 2  VP7

b ' rP2{°c7-2 +0-C3-3)

\ b r p ( 2 ( j c2_2 +o-c3. 3)

1 I o c2_2 + o-c3_3= -rp\
2 v2£7c2_2 + £7c3_3y

1
y\ = y [ ( 7' -yn) + T2{(h - ao - y - rp)+yT2}]
by substituting yTX, y T2 and from similar triangles.

' c 3 -3  _

' c 2 -2

=■

~ J;
h ~ a 0 ~ y ~ rP  

\ T\{h ~ ao - y - r p )  +

T2 \{h - ao - y - rp )  + j
2{h - a 0 - y ) - r p

{ 3(h-a0 - y ) - 2 r p

2 _Moment arm, Z = —y + y]

Moment capacity, M CAPACrrr = C(or T) ■ Z

Equations for static equilibrium:
£ / /  = 0 ^>T=C

M  = 0 => M CAPACITy -  M u



APPENDIX - B

COMPUTER PROGRAM BASED ON CBAFM

Program Composite_Beam_Analogy_Fracture_Model_CBAFM;
(* A Non-linear Fracture Mechanics Model for Three-Point Bend Beams *)
(* for Ph.D. Dissertation at NJIT -May 1995 *)
(* Programmed by : MOHAMMED ENAMUL HAQUE, NJIT ID # 000-84-2355 *)
Label 1,2,3;
var
aO,a,aa,h,alp,n,bta,ft,fc,Ec,GIc,
sigll,sig22,sig33,mu,pu,rp,L,cmodu,dna,ina,gf,me,pe,kl,
b,v,w,x,y,z,ctod,ctodu,cmod,cmode,
acorn, ybar.icom, s 11, s22, s3 3, comp, ten,
ae,aOh,aeh,KIe,KIc,delta,
dag,phi,wc,CTODE :real;
i j,k, mm,bno,key, nob: integer;
filel,filell:text;

Procedure compsec(h,aO,b,rp:real;var Acorn,ybar,Icom,si I,s22,s33:real); 
var
hi :real;
begin
hl:=h-a0;
acom:=b*hl-0.5*b*rp;
ybar:=(3 *h1*h1 +rp*rp-3 *h 1 *rp)/(6*(h 1-0.5 *rp));
Icom:=b/12*exp(3 *ln(hl -rp))+b*(hl -rp)*exp(2*ln(abs((hl -rp)/2-ybar))) 

+b*exp(3*ln(rp))/36+0.5*b*rp*exp(2*ln(abs(hl-2*rp/3-ybar))); 
si 1 :=icom/ybar; 
s22: =icom/(h 1 -rp-ybar); 
s3 3 :=icom/(h 1 -ybar); 
end;

Procedure PZL(h,aO,b,ft,mu:real;var rp,sigl I,sig22,sig33,ybar,comp,ten:real); 
var
x 1 ,x2,tol, del,t 1 ,t2,yy 1 ,yy2,y 1 bar,Mcap: real;
i: integer;
begin
xl:=0.01;x2:=(h-a0)*0.7;
i:=0;
del:=999.0;tol:=0.1; 
while (del>tol) do begin
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i:=i+l;
IF(I=1) THEN RP:=X1;
IF(I=2) THEN RP:=X2;
IF (I>2) THEN 
rp:=(xl+x2)/2;
compsec(h,aO,b,rp, Acorn,ybar,Icom,si 1 ,s22,s33);
sig22:=mu/s22;
del:=abs(sig22-ft);
if (sig22-ft) >0.0 then xl :=rp
else
x2:=rp;
end;
sigl 1 :=mu/sl I;sig33:=mu/s33;
comp:=0.5*sigl l*b*ybar;
tl  :=0.5*sig22*b*(h-a0-ybar-rp);
t2:=b*rp*sig22/3+b*rp*sig33/6;
ten:=tl+t2;
yyl :=h-aO-ybar-rp;
yy2:=0.5 *rp* (sig22+sig3 3 )/(2 * sig22+sig3 3); 
ylbar:=(tl*0.66667*yyl+t2*(yyl+yy2))/ten;
Mcap:=comp*(0.6667*ybar+ylbar);
end;

Procedure calculate_ctodu__cmodu(cmodu,sig33,h,ao,ec,ybar:real;var wc, ctodu:real); 
begin
ctodu:=cmodu*(h-ybar-ao)/(h-ybar);
wc:=ctodu/(sig33/ec);
end;

Procedure Calculate_GIc_kl(h,b,aO,rp,ybar,ft,cmodu,ec:real;var gic,kl :real); 
var
yl,sqkl:real;
begin
yl :=h-aO-rp-ybar;
gic:=ft*rp*cmodu*yl/(h-ybar)/b;
gic:=gic’,1(l/3+l/2*rp/yl+l/5*rp*rp/yl/yl);
sqkl:=gic*ec;
kl :=exp(0.5*ln(sqkl));
end;

Procedure ELASTIC_STRENGTH(ft,aO,h,b,l:real; var Me,Pe:real); 
begin
(* length unit inch, force unit lb. *)
Me:=ft*b*(h-a0)*(h-a0)/6.0;
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Pe:=(Me-0.01085*b*h*l*l)*4/l;
end;

Procedure P_Delta(l,b,h,aO,rpi,P,CMOD,ec,pu:real; var delta:real); 
var
ai,gi,v 1 ,v2,delcrk,delnock:real;
ij:integer;
begin
(* Program Module 4 *)
ai:=a0+rpi;
gi:=ai/h;
(* for 1/h =4 only *)
vl:=0.76-2.28*gi+3.87*gi*gi-2.04*gi*gi*gi+0.66/(l-gi)/(l-gi); 
v2:=exp(2*ln(gi/(l-gi)))*(5.58-19.57*gi+36.82*gi*gi- 
34.94*gi*gi*gi+12.77*gi*gi*gi*gi); 
delcrk:=0.25*l/ai*cmod*v2/vl;

delta:=delcrk;
end;

Procedure P_CMOD_ascending_Model(L,h)aO,b,rpu,pu,pe,ybar,wc,ft,ec:real); 
var
p,cmod,rpi,ybari,delyb,ac,ab,ang,hl,nn,area,al,a2,a3,mom,
c,tl,t2,t3,delybar,ybarcal,T,yr,bp,xbar,delta:real;
ij,m:integer;
begin
hi :=h-a0;
ang:=ft/rpu;
i:=l; (* First Point *)
P:=0.0; cmod:=0.0; delta:=0.0; 
rpi:=0.0; ybari:=hl/2;
Writeln(filel 1 ,cmod, V ,p,delta); 
i:=2; (* rp = 0 Elastic limt *) 
p:=pe;
ybari:=hl/2; rpi:=0.0; 
cmod:=ft/Ec*wc*(ybari+aO)/ybari;
P_Delta(l,b,h,aO,rpi,p,cmod,ec,pu,delta);
Writel^filell.cmod.V.p,1,',delta);
ybari:=hl/2;
m:=7;
for i:=3 to m do begin 
ybari:=h 1/2-(h 1/2-ybar)*(i-2)/m; 
rpi:=0.001;
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delybar:=1.0;
while delybar>0.001 do begin
ac:=ft*(hl-ybari)/(hl-ybari-rpi);
ab:=ft-rpi*ang;
nn:=ac/ab;
(* calculate ybarcal *)
al:=b*(hl-rpi);
a2:=rpi*b/nn;
a3:=0.5*rpi*(b-b/nn);
area:=al+a2+a3;
ybarcal:=l/area*(al*(hl-rpi)/2+a2,,,(hl-rpi/2)+a3*(hl-2*rpi/3));
delybar:=abs(ybari-ybarcal);
if(delybar>0.001) then rpi:=rpi+0.001;
end;
(* calculate Mom & P *)
C :=0.5 *(ft/(h 1 -ybari-rpi)*ybari) *ybari *b;
Tl:=0.5*ft*(hl-ybari-rpi)*b;
bp:=hl-ybari-rpi;
t2:=b*ft*rpi*(0.5*(l+l/nn)+rpi/(6*bp)*(l+2/nn)); 
xbar:=rpi*(l/6+l/(3*nn))+rpi*rpi/bp*(l/12+l/(4*nn)); 
xbar:=xbar/(0.5 *( 1+1 /nn)+rpi/(6*bp)*( 1 +2/nn));
T:=tl+t2;
yr:=(tl *2*(hl -ybari-rpi)/3+t2*(hl -ybari-rpi+xbar))/T;
Mom:=C*(2*ybari/3+yr);
P:=4.0/l*(Mom-0.01085*b*h*l*l); 
cmod :=ft/ec*wc*(h-ybari)/(h 1 -ybari-rpi);
P_Delta(l,b,h,aO,rpi,p,cmod,ec,pu,delta);
Writeln(filel 1, cmod,'',',p,',', delta);
end;
end;

Procedure P_CMOD_Descending_Model(aO,h,rpo,b,l,ft,Gic,cmodO,ybarO,pu:real); 
var

ai,Pi,CMODi,c 1 ,c2,lamda,aih,rpi,t 1 ,t2,comp,yy 1 ,yy2,y 1 bar,
ten,ybar,Mmaxi,Pmaxi,yli,cmod2:real;
ij,N:integer;

Begin 
lamda:=0.633; 
cl :=rpo/(h-aO)-lamda1,'aO/h; 
n:=10;
for i:=l to n-2 do begin 
aih: =aO/h+( 1 -(aO/h))*i/n; 
ai:=aih*h;
(* 1 st trial value of rpi *)
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rpi :=rpo/(h-aO)*(h-ai);
(* Calculate Mmaxi *)
comp:=0.0; ten:=10.0; (* make initial trial comp < ten *) 
compsec(h, ai,b,rpi, Acom,ybar,Icom, s 11, s22, s3 3); 
sig22:=ft;
sigl 1 :=ft*ybar/(h-ybar-ai-rpi); 
sig33 :=ft*(h-ybar-ai)/(h-ybar-ai-rpi); 

comp:=0.5*sigl l*b*ybar; 
t l  :=0.5*ft*b*(h-ai-ybar-rpi); 
t2:=b*rpi*ft/3+b*rpi*sig33/6; 
ten:=tl+t2; 
yyl :=h-ai-ybar-rpi;
yy2:=0.5 * rpi * (sig22+sig3 3 )/(2 * sig22+sig3 3 ); 
ylbar:=(tl*0.66667*yyl+t2*(yyl+yy2))/ten;
Mmaxi:=comp * (0.6667*ybar+y 1 bar); 
Pmaxi:=4.0/l*(Mmaxi-0.01085*b*h*l*l);
(* Calculate CMODi, assuming Gic Const. Material Property *) 
yli:=h-ai-rpi-ybar;
AA:=(h-ybar),|,b/(ft*rpi*yli*(l/3+l/2*rpi/yli+l/5*rpi*rpi/yli/yli));
cmodi:=Gic*AA*rpo/rpi;
P_Delta(l,b,h,ai,rpi,pmaxi,cmodi,ec,pu,delta); 
writeln(filel l,cmodi,V,pmaxi,V, delta); 

end; 
end;

begin (* MAIN *) 
assign(file 1 ,'a:D AT A.PAS'); 
assign(filel l,'a:RESULT.PAS'); 
reset(filel); 
rewrite(filel 1);
(* Length unit is INCH, Force unit is POUND *) 
readln(filel);
writeln('**** CBAFM.PAS is Running ****'); 
writeln('**** Programmed by: Mohammed E. Haque, Ph.D.,P.E. ****'); 
nob:=2; (* nob = total number of beams *) 
for i:=l to nob do begin
key:=123; (* key=123 for doing all the program modules *) 
readln(filel,l,b,h,aOh,pu,fl,cmodu,Ec); (* a0h=ao/h *) 
a0:=a0h*h; bno:=i;
(* Check for the Elastic Strength o f the Beam *)
ELASTIC_STRENGTH(ft,aO,h,b,l,Me,Pe);
rp -0 .0 ;
Mu:=Pu*V4+0.01085*b*h*l*l; (* Unit Weight of Concrete = 150 PCF *) 
(* Mu:=Pu*l/4.0;*)
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If  (Pe >= Pu) then begin
writelnCElastic Moment Capacity Me = ',Me: 10:3,' lb-in'); 
writelnCMoment due to Pu = ',Mu:10:3,' lb-in’);
writelnCELASTIC LOAD CAPACITY Pe=',Pe: 10:3,' #',' IS MORE THAN ACTUAL 
LOAD Pu=',

Pu:10:3,' #');
writelnCNO FRACTURE WILL BE DEVELOPED. CHECK Pu OR TENSILE 
STENGTH ft*');
writeln('** ****** PROGRAM TERMINATION DUE TO BAD DATA *****♦***');
Goto 1
end;
(* Program MODULE-1 *)
PZL(h,aO,b,ft,mu,rp,sigl 1 ,sig22,sig33,ybar,comp,ten);
ae:=aO+rp;
aeh:=ae/h;
calculate_ctodu_cmodu(cmodu,sig33,h,aO,ec,ybar,wc,ctodu);
Calculate_GIc_kl(h,b,aO,rp,ybar,ft,cmodu,ec,Gic,kl);
writeln(filel l.BEAM SL. NO. ',BNO);
writelnCBEAM NO. ',BNO,' is now working');
writeln(filell,'l,','b,',’h,','aO,','rp,',Ec,','ft,','Pu,','CMODu,','GIc,',’Kl');
writeln(filel l,l,',',b,',',h,',',aO,',',rp,',',Ec,',',ft,',',Pu,',',CMODu,',',Gic,',',Kl:10:3);
writeln(filell,’C M O D ,'d e l ta ') ;
while key=123 do begin
(* Program MODULE-3 *)
P_CMOD_ascending_Model(L,h,aO,b,rp,pu,pe,ybar,wc,ft,ec); 
P_Delta(l,b,h,aO,rp,pu,cmodu,ec,pu,delta);
Writeln(filel 1 ,cmodu,',',pu,',',delta);
(* Program MODULE-2 *)
P_CMOD_Descending_Model(aO,h,rp,b,l,ft,Gic,cmodu,ybar,pu);
writeln(filel 1);
key:=99;
end;
end;
writeln('**** SUCCESSFUL COMPLETION ****');
close(filel);
close(filel 1);
1: end.

Note: The Output file “Result.Pas” is formatted in such a way that after each output, 
there will a . This is done in order to down load the Output file "Result.Pas" into 
Microsoft EXCEL or Lotus 1-2-3, which will provide graphic applications (such as 
prepare graphs etc.).



APPENDIX - C 

SI UNIT CONVERSION FACTORS

The following SI Unit Conversion Factors have been used in this dissertation:

Quantity Multiply by to obtain

Length Inch ( in) 25.4 Millimeter (mm)
Force Pound-force ( lb) 4.448222 Newton (N)
Bending Moment Pound-force-inch (lb-in) 0.112985 Newton-Meter (N-m)
Stress Pound-force per Sq. inch 

(lb/in2)
0.00689475 Megapascal (MPa)

Fracture Energy Pound-force per Inch 
(lb/in)

175.127 Newton per Meter 
(N/m)

Stress Intensity 
Factor

PSlVin 0.034748 MPaVmm
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