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ABSTRACT

ROBUST APPROACH TO OBJECT RECOGNITION THROUGH FUZZY 
CLUSTERING AND HOUGH TRANSFORM BASED METHODS

by
Tianxiong Fu

Object detection from two dimensional intensity images as well as three dimensional 

range images is considered. The emphasis is on the robust detection of shapes such as 

cylinders, spheres, cones, and planar surfaces, typically found in mechanical and 

manufacturing engineering applications. Based on the analyses of different HT methods, a 

novel method, called the Fast Randomized Hough Transform (FRHT) is proposed. The 

key idea of FRHT is to divide the original image into multiple regions and apply random 

sampling method to map data points in the image space into the parameter space or 

feature space, then obtain the parameters of true clusters. This results in the following 

characteristics, which are highly desirable in any method: high computation speed, low 

memory requirement, high result resolution and infinite parameter space. This project also 

considers use of fuzzy clustering techniques, such as Fuzzy C Quadric Shells (FCQS) 

clustering algorithm but combines the concept of “noise prototype” to form the Noise 

FCQS clustering algorithm that is robust against noise. Then a novel integrated clustering 

algorithm combining the advantages of FRHT and NFCQS methods is proposed. It is 

shown to be a robust clustering algorithm having the distinct advantages such as: the 

number of clusters need not be known in advance, the results are initialization
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independent, the detection accuracy is greatly improved, and the computation speed is 

very fast. Recent concepts from robust statistics, such as least trimmed squares estimation 

(LTS), minimum volume ellipsoid estimator (MVE) and the generalized MVE are also 

utilized to form a new robust algorithm called the generalized LTS for Quadric Surfaces 

(GLTS-QS) algorithm is developed. The experimental results indicate that the clustering 

method combining the FRHT and the GLTS-QS can improve clustering performance. 

Moreover, a new cluster validity method for circular clusters is proposed by considering 

the distribution of the points on the circular edge. Different methods for the computation 

of distance of a point from a cluster boundary, a common issue in all the range image 

clustering algorithms, are also discussed. The performance of all these algorithms is tested 

using various real and synthetic range and intensity images. The application of the robust 

clustering methods to the experimental granular flow research is also included.
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CHAPTER 1

INTRODUCTION

1.1 Purpose of Research

In the discrete product manufacturing industries, the most automated form of production 

is the computer-integrated manufacturing system (CIMS). Computer-integrated 

manufacturing systems are designed to fill the gap between high-production transfer lines 

and low-production NC machines. High-production transfer lines are used to produce the 

parts in large volumes due to their high efficiency. One transfer line can only manufacture 

one part at a time, which makes it very inflexible, namely, the highly mechanized line has 

to be shut down and redesigned when a minor change of part design is required, and 

sometimes, even the transfer line has to be discarded when the change is a major one. On 

the other hand, stand-alone NC machines possess very high flexibility, which are ideally 

suited for variations in workpart configuration. Numerically controlled machine tools are 

widely used in job shops and small batch manufacturing environments because they can be 

easily reprogrammed to deal with product changeovers and part design changes. As a 

trade off, NC machines can not produce machine parts at high output rates. In terms of 

manufacturing efficiency and productivity, there exists a gap between the high-production- 

rate transfer machines and the highly flexible NC machines. Nowadays, customers 

requirements to products are of a rich variety, so the manufacturers have to continually 

change and improve their designs to keep their share of the markets. Usually these parts

1
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are of fairly complex geometry that belong to midrange production volumes, and the 

production equipment must be flexible enough to handle a variety of part designs. Transfer 

lines are not suited to this application because they are inflexible. NC machines are not 

suited to this application because their production rates are too slow. The solution to this 

midvolume production problem is the CIMS. CIMS can increase machine utilization, 

reduce direct and indirect labor, reduce manufacturing lead time, lower in-process 

inventory, and increase schedule flexibility [Groover et al. 1984],

Robots and mobile vehicles play an important role in the computer-integrated 

manufacturing systems. They are used to handle materials, such as transferring parts 

between machines, changing tools, loading and unloading parts, etc.. They make the 

systems more flexible. Unfortunately, because mobile vehicles and robots lack more 

intelligent guidance systems, their application ranges are greatly restricted. Computer 

vision is an ideal tool to enhance intelligence to those systems.

In modem manufacturing technology, computer-aided quality control is an 

important aspect. It is concerned with those activities related to inspection of product and 

component quality, detection of poor quality, and corrective action necessary to eliminate 

poor quality. Among many different inspection methods, computer vision is an attractive 

noncontact method. The use of computer vision system for inspection is an exciting area 

which holds the promise of significant improvements in both the productivity of the 

inspection process and the quality of the resulting product. Computer vision systems can 

deal with noncontact gaging of dimensions as well as inspection based on pattern 

recognition of object features.
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Moreover, computer vision systems can be used for scientific and medical image 

analysis, classifying biological cells is an application example. They can also be used in 

aerospace and defense industries, such as target tracking, simulation and reconnaissance.

Figure 1.1 Image of Randomly Packed Spheres.
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There are other areas in engineering where computer vision plays an important 

role. For example, recently, there has been a considerable increase in the use of vision 

based techniques for experimental studies in multi-phase flows [Ghidaglia et al. 1993, 

Hsiau and Hunt 1993, Krishnan et al. 1992, Li et al. 1992]. These applications include 

measurement of velocity fields, measuring flow patterns, describing the flow structure 

(including micro-structure of particles), and finding velocity distribution of the particles. 

Locating and tracking individual particles is often the main objective of many experimental 

studies in granular flows. If the image quality is good and the scene is not too complex, 

simple binary analysis or gray level template matching techniques can be used successfully. 

Unfortunately, many times the image quality may not be good, and the patterns may be 

only partially visible. An example of closely packed spheres is shown in Figure 1.1, where 

the objective is to locate as many spheres as possible, with reasonable accuracy. This task 

is a challenge to many exsiting simple methods, and it requires that the method used is, a) 

fast since there are many spheres to be detected, and b) reliable for detecting even partially 

visible spheres.

Generally, computer vision is the science that develops the theoretical and 

algorithmic basis by which useful information about the world can be automatically 

extracted and analyzed from an observed image, image set, or image sequence from 

computations made by special-purpose or general-purpose computers. Such information 

can be related to the recognition of a generic object, the three-dimensional description of 

an unknown object, the position and orientation of the observed object, or the 

measurement of any spatial property of an object, such as the distance between two of its
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5

distinguished points or the diameter of a circular section [Haralick and Shapiro, 1992], 

Image processing and pattern recognition are two closely related computer application 

areas, which together define the field of computer or machine vision. Image processing is 

the technique to convert digitally encoded images from a given form into another more 

useful form. Pattern recognition is the ability to understand structure in sensor-derived 

data, whether by humans, animals, or computers. Pattern recognition involving image data 

typically is preceded by various image processing operations to convert the original 

images into a form that will ease the actual pattern recognition operations. Unlike image 

processing, pattern recognition is very much context dependent. It is intrinsically a 

classification task, and can range from simple matching of an unknown pattern against a 

fixed set of sample patterns to the analysis and matching of an elaborately structured 

pattern feature set.

Based on the above discussion, we can see that whether it is a robot navigation 

system, mobile vehicle guidance system, quality inspection system, robot assembly system 

or tracking systems, environment recognition or object recognition is the common task. 

This project will focus on object recognition techniques applicable to the above systems.

1.2 The Image Formats

An image is a spatial representation of an object, a two-dimensional or three-dimensional 

scene, or another image. In computer vision, image usually means recorded image, such as 

a video image, a digital image, or a picture. It may be abstractly thought of as a 

continuous function I  of two variables defined on some bounded region. The value of the
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image located at spatial coordinates (x,y) is denoted by I(x,y). For optic or photographic 

sensors, I(x,y) is typically proportional to the radiant energy received in the 

electromagnetic band to which the sensor or detector is sensitive in a small area around 

(x,y). In this case the image is called an intensity image. For range finder sensors, I(x,y) is 

a function of the line-of-sight distance from (x,y) to an object in the three-dimensional 

world, and the image is called a range image. For tactile sensors, I(x,y) is proportional to 

the amount by which the surface at and around (x,y) deforms the sensor. When the image 

is a map, I(x,y) is an index or a symbol associated with some category such as color, 

thematic land use, soil type, or rock type. We refer to such an image as a symbolic image 

[Haralick and Shapiro, 1992],

In computer vision, we usually deal with two kinds of images, intensity images and 

range images. Based on the above definition, it is not difficult to see that digitized intensity 

images are arrays of numbers that indicate the brightness at points on a regularly spaced 

grid and contain no explicit information about depth. Range data are often produced in the 

form of an array of numbers, referred to as a range image, where the numbers quantify the 

distances from the sensor focal plane to object surfaces within the field of view along rays 

emanating from points on a regularly spaced grid. The most attractive feature of range 

images is the explicitness of the surface information. Many industrial and navigational 

robotic tasks will be more easily accomplished if such explicit depth information can be 

efficiently obtained and interpreted. The techniques about intensity images have been 

widely researched and used in the practical applications. However, most of research about 

range images is still in the developing stage. This project will focus on development of the
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techniques of object recognition from both intensity images and range images, with more 

emphasis on range images.

1.3 Hough Transform and its Application to Pattern Recognition

The Hough transform plough, 1962], HT, is a powerful method of parameter extraction 

that can convert a difficult global detection problem in image space into a more easily 

solved local peak detection problem in a parameter space. It has long been recognized as a 

technique of almost unique promise for shape and motion analysis in images containing 

noisy, missing, and extraneous data.

The following will illustrate the key ideas of basic HT method by considering 

extracting a straight line from a set of collinear points in an image. Assume that the image 

is a two-dimensional one with coordinates (x,y),  and the straight line can be expressed by

y  = mx+c,  (1.1)

where m and c are two parameters, the slope and intercept, which characterize the line. 

To determine the equation, m and c need to be decided. Reformat Eq. (1.1),

c = - x m + y ,  (1.2)

then we can observe that a point (x^y,) in image space corresponds to a straight line 

determined by c = - x jm+yl in parameter space. All lines corresponding to the points 

which are collinear in image space should intersect at a common point in parameter space 

and the coordinates of this common parameter point represent the straight line connecting

the image points, i.e., the problem of extracting a straight line from a set of collinear
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points in image space is solved by searching a point of intersection in parameter space. 

Figure 1.2 is a sketch map of the Hough transform for line detection.

(a) (b)

Figure 1.2 The Hough Transform for Line Detection, (a) image space; (b) parameter 
space.

Actually, the most popular HT method for a straight line is via the equation of the 

normal vector from the origin to the straight line [Duda and Hart, 1972], i.e.,

p  — x  cos( 8)"^ y  sin (&), (1.3)

where p  is the length of the vector and 6 is the angle it makes with the x axis. Here each 

point (x ,,^ ) is mapped into a sinusoidal curve in (p, 6) parameter space and thus a line is 

detected by the intersection of these sinusoids.

Based on Hough's ideas, many variations of Hough transform method have been 

developed [Illingworth and Kittler, 1988], and most recently, some probabilistic 

approaches have also been developed [Leavers, 1992], Chapter 2 discusses in greater
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detail the merits and demerits of some approaches and proposes a novel probabilistic HT 

method.

1.4 Fuzzy Clustering Techniques

Fuzzy techniques have been successfully used for a variety of clustering and classification 

problems. They are based on objective function optimization techniques and generate a 

fuzzy partition of the data.

Let 9? be the set of real, F  = {v],v ,, . . . ,v jc 3 1  be a set of feature vectors in a 

feature space, where n is the number of vectors. Let P = {pl,p 2,...,p c) represent a c- 

tuple of prototypes each of which characterizes one of the c clusters. Let utJ be the grade 

of membership of feature point v; in cluster pt, and U = [uv ] is a c x n matrix called the 

fuzzy partition matrix satisfying the following conditions:

s[0,l], / e{ l,2 ,...,c } ,j  e{ l,2,...,«},

c

Z = 7 S{1, 2,.../?},
7 =  1

0 < 2 > v <#L *'s {1,2, . . .c},  (1.3)
7  =  1

Then the problem of fuzzily partitioning the n feature vectors into c clusters can be 

formulated as the minimization of an objective function J{P ,U \X )  of the form

J(PM -,V) = i , 'Z ( u ,J)m(dIJ)2, (1.4)
.=1 y=l

where, m e[l, x ) is a weighting exponent called the fuzzifier, and dtj is the distance from a

feature point Vj to the prototype p, and can be different measurement with different
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application. Minimization of the objective function with respect to U subject to the 

constraints in (1.3) yields [Bezdek, 1981]

\/dd I . =  0
uij = < 0 i e l j ,  l j * 0  (1.5)

1 i e I  j , I  j * 0

c d  -1-
where dd = ]>](—- ) m~\ = {/|1 < i < c,dtJ2 = 0}.

* = i  dig

With different prototypes P and different definitions of distance dtJ, the 

minimization of the objective function (1.4) leads to different algorithms. Chapter 3 will 

present more detailed discussion about fuzzy techniques and extend some algorithms to 

cluster extraction from range images.

1.5 Scope of Research and Outline of Dissertation

In machine manufacturing industry, most parts consist of basic shapes, such as blocks, 

cylinders, spheres, cones. Developing recognition methods for these basic shapes will 

greatly contribute to the development of robot navigation system, mobile vehicle guidance 

system, inspection system, and even robot assembly system in various applications, 

especially in machine manufacturing environment. Therefore, this project will concentrate 

on developing object recognition techniques for general shapes and the performance of 

most algorithms is tested with these basic shapes.

A brief introduction about this project has been presented in this chapter. In what 

follows, the effort of this research project will be discussed in a greater detail. A survey of 

Hough transform technique, including recent developments, especially in the aspect of
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probabilistic Hough type methods are presented in the next chapter. Some mathematical 

analyses and investigations of the storage requirements and computation cost of existing 

Hough transform methods are presented, and a novel probabilistic Hough transform 

method that is called Fast Randomized Hough Transform (FRHT) is proposed. The FRHT 

method uses a window based sampling method to randomly pick data points from the data 

set, which makes the computation speed much faster. The effect of outliers on this method 

is also analyzed. It can be applied to 2-dimensional intensity images and 3-dimensional 

range images, and its performance of the method is tested with different data sets.

Chapter 3 deals with fuzzy clustering techniques, including a brief review of fuzzy 

c-shells type algorithms. Based on the existing fuzzy clustering algorithms, the Fuzzy C 

Quadric Shells algorithm is extended to the three-dimensional object recognition from 

range images. Chapter 3 also discusses different distance computation methods that are 

closely related to the computation speed, convergence and precision of results of fuzzy c 

shells algorithms.

In Chapter 4 the noise problem in clustering methods is covered. Based on the 

concept of ‘noise prototype’ introduced by Dave [Dave 1991], the noise type Fuzzy C 

Quadric Shells algorithm is developed. It can be used in the object recognition from range 

images.

Chapter 5 investigates the advantages and disadvantages of Hough transform 

based methods and fuzzy clustering algorithms, and then proposes a new integrated 

method combining their advantages. Several examples are given along with the 

interpretation of results, as well as a comparative study.
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Chapter 6 treats validity techniques required for elimination of spurious clusters 

which is an important step in improving and refining the final clustering results. This 

chapter gives a brief introduction of current clustering validity measures, and also 

proposes a new validity criterion for circular clusters.

In Chapter 7 a practical application of object recognition methods to the granular 

flow research is presented. This research project is supported in part by a U. S. 

Department of Energy contract.

Chapter 8 provides some theoretical analyses and comparisons of FRHT, noise 

clustering method, Least Squares (LS) type clustering algorithms, and Least Median 

Squares (LMS) type clustering methods. Then a new algorithm called Generalized Least 

Trimmed Squares method for Quadric Surfaces (GLTS-QS) is proposed.

Finally, in Chapter 9, the conclusions of the research are drawn and suggestions 

are made for the future work.
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CHAPTER 2

HOUGH TRANSFORM BASED METHODS

2.1 Introduction

The Hough transform, HT, was first introduced by Paul Hough in a patent filed in 1962. It 

was used to detect complex patterns of points in binary image data [Hough 1962], 

Rosenfeld [1969] brought it to the attention of the image processing researchers, 

thereafter HT gradually became a popular pattern recognition method. Duda and Hart 

[1972] used angle-radius (&,p) rather than slope-intercept parameters to parameterize the 

straight lines. This means that image points map into sinusoidal curves in a two-parameter 

space, which avoids the singularity problem, limits the parameter space and simplifies the 

computation. As to the properties of the HT method, much work [Shapiro 1975, 1978a, 

1978b, 1978c, 1979, Cohen and Toussaint 1977, Van Veen and Groen 1981, etc.] has 

been published. Kimme et al [1975] used edge direction information to constrain the range 

of parameters, then applied the HT technique to detect circular arcs. Several researchers 

[Wechsler and Sklansky 1977, Tsuji and Matsumoto 1978, Tsukune and Goto 1983, etc.] 

investigated searching parabolas and ellipses. Merlin and Fraber [1975] presented a 

generalized HT method to find an arbitrary shape at a given orientation and a given scale. 

By using directional edge information, Ballard [1981] extended the generalized HT to 

detect arbitrary shapes for any orientation or any scale. Various results have been 

successfully achieved by using this idea [Silberberg et al. 1984, 1986, Tsui et al. 1989, 

etc.].

13
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The key idea of Hough transform, HT, is to convert a difficult global detection 

problem in image space into a more easily solved local peak detection problem in a 

parameter space [Illingworth and Kittler, 1988], The HT has long been recognized as a 

powerful technique in image processing and data analysis. But, due to its computational 

and storage complexity, the standard HT has been modified and extended.

The storage or memory in computer is directly related to accuracy of results and 

the number of parameters to be detected. To achieve better results with the limited 

memory, one may only focus on smaller meaningful ranges over the large range parameter 

space. Various approaches have showed that both memory requirements and 

computational load can be dramatically reduced using an intelligent, iterative, coarse to 

fine accumulation technique. Li et al. [1986] presented a fast Hough transform method to 

detect straight lines. The parameter space is partitioned into quadrants and accumulated. 

Each quadrant is then examined and the algorithm proceeds by subdivision at each scale of 

those quadrants containing votes in excess of a predetermined threshold. Quadrants are 

processed until they either fail to produce enough votes or reach a predetermined size. A 

disadvantage of the method is that the peaks located at the boundaries of quadrants may 

be missed by the processing. Illingworth and Kittler [1987] developed an adaptive Hough 

transform method for the detection of 2-D shapes. It uses a small accumulator array and 

the idea of a flexible iterative "coarse to fine" accumulation and search strategy to identify 

significant peaks in the Hough parameter spaces. The method is substantially superior to 

the standard HT implementation in both storage and computational requirements.
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However, this method can not detect lines reliably when the number of lines is large and 

the length of lines is short with respect to the size of the image [Leavers, 1992],

Recently, some probabilistic approaches to the HT have been reported by several 

researchers. In a simple effort to reduce the amount of computation, a random 

subsampling of the points in the image space can be used as a reduced but representative 

data set using which the regular HT method is performed. Kiryati et al. [1991] developed 

such a method and called a probabilistic Hough transform algorithm for straight line 

detection. The algorithm randomly samples the image data and only the sampled portion 

of image points is transformed, which reduces the execution time of the incrementation 

stage although the results are accumulated in the conventional way. It is shown that the 

sample size will be directly related to the number of false peaks and the complexity of the 

image. Since this method only concerns about how to reduce execution time of voting 

stage, the accuracy of results and the accumulator array remain unchanged.

Better probabilistic approaches that are not just based on a randomly selected 

reduced data set have been reported. For example, the approach proposed by Califano et 

al. [1989] where they recognize and make explicit the problems concerning the 

combinatorial explosiveness inherent in their method. They propose a concept of 

"generalized neighborhoods." Circular segments are swept out around fixed feature points. 

Constraints are imposed on the size and location of the segments. Successive segments 

must overlap and their size is chosen such that the radius of the circle is that distance over 

which two neighborhoods are expected to contain coherent information. They use a 

normal n-dimensional accumulator and point out the difficulties in interpreting the
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accumulated evidence which are associated with the effects of correlated noise. To find an 

overall consistent interpretation of the data, they use a "competitive integration" 

mechanism motivated by connectionist networks. However, the method may not work 

well for the extraction of long distance correlation when there is not a chain between two 

distant portions of the same feature.

The randomized Hough transform [Xu et al., 1990, Fu and Dave, 1993], RHT, is a 

kind of probabilistic method. For the conventional or standard HT, one point in image 

space is mapped into many points in the parameter space, then the local peaks in the 

parameter space are searched after all points in image space have been mapped, and the 

local peaks represent the detected parameters. However, the randomized Hough transform 

method randomly picks n points in image space for an n-parameter curve, and maps them 

into one point in the parameter space at each step of the iterative procedure by solving n 

joint equations. It uses a parameter data set with each element containing both a real 

valued vector and an integer score to implicitly represent the parameter space, and update 

the parameter set at each step by the point mapped from the randomly picked points, then 

searches the parameters of the detected curves from the accumulated parameter data set. 

For a cluster expressed by an n-parameter linear equation, the general RHT procedure is 

as following:

(1) Take all points in image space into the image data set D. Then, initialize a 

parameter data set P = null and set number of iterations k  = 0.

(2) Randomly pick n points dl,...,dn out of D  in such a way that all points of D  have 

an equal probability to be taken as d], then all points in D -  {d]} have an equal
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probability to be taken as d2, etc., finally, all points in D -  {d^, r f , } have an 

equal probability to be taken as dn. Substitute values of the n points in the n- 

parameter equation respectively, then solve the n joint equations to determine one 

parameter point pi . Search among set P for an element p c such that pc = p, (or 

\pc ~ P i \  <  £  3  being a given tolerance). If found, go to ( 4 ) .

(3) Insert pt into set P as a new element and attach to it an accumulating cell with

score one. Go to (5).

( 4 )  Increase the score of the accumulating cell of pc by one, if the score is not smaller 

than a given threshold go to (6).

(5) Accumulate k = k + \ \ \ f k >  k ^  ( k ^  is a threshold value of iterations), then stop, 

otherwise, go to (2).

(6) Take pc as the set of possible parameters of a cluster, if mp, the number of points 

lying on this cluster in D is more than mmm, the minimum number of points 

expected in a true cluster, then go to next step; otherwise, take pc and its 

accumulating cell out of set P, and go to (2).

(7) Take the mp points out of D, and a cluster represented by pc has been detected.

Reset P = null, k = 0, and go to (2).

In the above algorithm, the tolerance 8  is introduced to further reduce the storage 

and adjust the resolution of the parameter space. When 8 = 0, the RHT has the highest 

resolution. The larger 8 is, the lower is the resolution but the less storage is used. The 

threshold kmxi is used to terminate the processing procedure, i.e., all clusters should be
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classified within iterations. Obviously, the is related with the pixels and pattern 

of image data.

Compared with the conventional HT, the RHT has some advantages: infinite 

parameter space, arbitrarily high parameter resolution, small storage, high computation 

speed. However, in order to effectively apply the RHT to different situations, especially to 

some more sophisticated cases, such as classifying clusters in range images, we may 

modify or improve it further with the following aspects:

(1) In RHT, the tolerance 8  is introduced to reduce the storage and adjust the 

resolution of the parameter space. When <5 = 0, the RHT has the highest resolution 

but the most storage which might be impractical and even impossible to 

accommodate for some kinds of data. When 8*0  , the storage is reduced. 

However when a non-zero value is set for 8 , it is difficult to select an appropriate 

value without any prior information about the image data, since sometimes one 

value of 8  may be too small for one set of data but may be too large for the others.

(2) Further increase detection speed and reduce storage. Though the RHT can 

effectively increase computation speed and reduce storage memory compared to a 

conventional HT, there still is a combinatorial explosive problem when the data 

contains more clusters and each cluster consists of many parameters.

(3) Develop reliable methods to determine whether a point lies on a cluster. This issue 

is not addressed by Xu et al. [1990],

(4) Use a better set of criteria to terminate the searching procedure. Xu et al. [1990]
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only use a threshold number of iterations to stop the detection, and do not discuss

how to appropriately choose the threshold number.

Bergen and Shvaytser [1991] provided a strictly theoretical paper which suggests a 

Monte-Carlo approximation to the Hough transform. They propose some algorithms 

which are similar to those of Kiryati et al. [1991] or Xu et al. [1990], Their analysis deals 

only with single feature, noiseless data.

Leavers [1992] proposed a dynamic generalized Hough transform method for the 

concurrent detection of circles and ellipses in 2D images. This method starts from a single 

connected point which is used to seed the transformation. A segmentation is conducted 

based on the point and a similar random sampling method as Xu et al. [1990] is used in the 

segment. As to the memory for an n-parameter shape, the method uses one axis to record 

the accumulated results of one parameter instead of the n-dimensional space. Hence if T is 

the resolution in transform space, then the memory requirements will be nT  which is much 

smaller than T" in the standard Hough transform method. However, this method is not 

suitable for noisy data like Figure 1.1 and 3D range images because of its segmentation 

technique, and the claimed memoiy reduction may not be realized for all kinds of 

situations due to its single-valued requirement for the transformed parameters.

Based on the above review of recent approaches, a novel probabilistic Hough 

transform algorithm which can be used in complicated situations, such as feature 

extraction from range images, will be presented.
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2.2 Mathematical Analysis of Hough Transform Methods

Undoubtedly, the HT technique is a powerful tool for pattern recognition and cluster 

detection. A brief analysis of the technique is presented to gain some insight.

For convenience, assume that there are noc clusters within an image without any 

outliers and nop parameters to be decided for each cluster, each cluster contains the same 

number of points, and the total number of points in the image data is num. Then for the 

conventional Hough transform, a nop-dimensional accumulator array is required. Let T be 

the resolution for all parameters in transform space, then an implementation of the 

conventional HT requires calculations on the order of

N HT=numx p nô ]\  (2.1)

Actually the conventional HT is a "one to many" mapping method. If we use "many to 

one" accumulating method, i.e., mapping nop points in image space to one point in 

parameter space by solving nop joint equations, then the total number of mappings is

N  =^  M AP

r \num
\nopJ

tmm\ ^
nop\(num-nop)\

Such "many to one" transform methods can be called "hard mapping" methods.

As to the RHT method [Xu et al., 1990], while all points in the image have an 

equal probability to be sampled and the number of points is big enough so that the 

probability of picking a point from any exsiting clusters can be considered as unchanged 

after some points are picked out, the possible number of mappings required for extracting 

the first cluster is noc"op, for the second cluster is (noc -  \)mp, and so on. Then the total 

possible number of mappings required for extracting all clusters is
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noc

N rht = (”ocn°P + {noc-\)nop+ -+ 2nop +r°p)xnt = , (2.3)
i=i

where nt is the given threshold number for searching a possible cluster, i.e. when the score 

at a point or a node of the accumulator reaches nt the parameters represented by the point 

are taken as the parameters for a possible cluster and ascertained by further process. The 

threshold n, is usually a very small number, like 2 or 3.

By observing the above three equations for the three parameters, rtum, nop and 

noc, which have direct effect to computation speed, we can see that N HT and N  wp are 

independent of noc, whereas T is independent of num. Eq. (2.1) shows us that, with T 

and nop increasing, N m  will increase significantly. In addition, the domain of Hough 

space and its resolution T have to be decided before the mapping action, which may 

restrict the application of HT. Hence, the conventional HT may not be applied to a 

complicated case which either needs high dimensional accumulator and high resolution or 

it is difficult to decide the domain of the transform space. Obviously, it may also not be a 

good method for dealing with the data set containing a large number of points. For the 

"hard mapping" method, from the expression of N MP, it is not difficult to see that there 

is a combinatorial explosive problem. Perhaps that is why there has not been any 

application of it after Hough proposed his transform method in 1962. Eq. (2.3) tells us 

that comparing with the other two methods, N RHT will be much smaller since it is only 

related with the small numbers, nop, noc, and nt. That is the main advantage of this 

method. Before drawing the conclusion, let us use Eqs. (2.1), (2.2) and (2.3) to create the 

following tables for the comparison among the different methods. For convenience, set
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T=  100, n ,= 2 , and num = 2000. In those tables, all the numbers larger than 106 are 

rounded. It is necessary to point out that the time for each mapping in RHT and “hard 

mapping” is usually one or two orders more than the time in HT. However, the total 

computing time by RHT is much shorter than the time by HT because the large difference 

of number of mappings between them.

Table 2.1 Computation Load Comparison Among Different Methods with noc = I .
nop 2 3 4 5 6 7 8 9 10
* h t

2 . 0 E + 0 5 2 . 0 E + 0 7 2 .0 E + 0 9 2 .0 E + 1 1 2 .0 E + 1 3 2 .0 E + 1 5 2 . 0 E + 1 7 2 .0 E + 1 9 2 .0 E + 2 1

N
• ' v  M AP

2 . 0 E + 0 6  ' 1 .3 E + 0 9 6 . 6 E + 1 1 2 .7 E + 1 4 8 .8 E + 1 6 2 . 5 E + 1 9 6 .3 E + 2 1 1 .4 E + 2 4 2 .8 E + 2 6

N RH T
2 2 2 2 2 2 2 2 2

Table 2.2 Computation Load Comparison Among Different Methods with noc -  2.
nop 2 3 4 5 6 7 8 9 1 0

2 .0 E + 0 5 2 . 0 E + 0 7 2 .0 E + 0 9 2 . 0 E + 1 1 2 .0 E + 1 3 2 .0 E + 1 5 2 .0 E + 1 7 2 .0 E + 1 9 2 .0 E + 2 1

N1 y M A P
2 .0 E + 0 6 1 .3 E + 0 9 6 . 6 E + 1 1 2 .7 E + 1 4 8 .8 E + 1 6 2 .5 E + 1 9 6 .3 E + 2 1 1 .4 E + 2 4 2 .8 E + 2 6

N
i v  RH T

1 0 1 8 3 4 6 6 1 3 0 2 5 8 5 1 4 1 0 2 6 2 0 5 0

Table 2.3 Computation Load Comparison Among Different Methods with noc = 5.
nop 2 3 4 5 6 7 8 9 1 0

Km 2 . 0 E + 0 5 2 . 0 E + 0 7 2 .0 E + 0 9 2 . 0 E + 1 1 2 .0 E + 1 3 2 . 0 E + 1 5 2 . 0 E + 1 7 2 .0 E + 1 9 2 .0 E + 2 1

Nl y  M AP
2 . 0 E + 0 6 1 .3 E + 0 9 6 . 6 E + 1 1 2 .7 E + 1 4 8 .8 E + 1 6 2 . 5 E + 1 9 6 .3 E + 2 1 1 .4 E + 2 4 2 .8 E + 2 6

N RH T
1 1 0 4 5 0 1 9 5 8 8 8 5 0 4 1 0 3 0 1 9 3 6 5 0 9 2 5 9 5 8 4 . 5 E + 0 6 2 . 2 E + 0 7

Table 2.4 Computation load comparison among different methods with noc =10.
nop 2 3 4 5 6 7 8 9 10
N ht 2 . 0 E + 0 5 2 . 0 E + 0 7 2 .0 E + 0 9 2 .0 E + 1 1 2 .0 E + 1 3 2 .0 E + 1 5 2 . 0 E + 1 7 2 .0 E + 1 9 2 .0 E + 2 1

N M AP
2 . 0 E + 0 6 1 .3 E + 0 9 6 . 6 E + 1 1 2 .7 E + 1 4 8 .8 E + 1 6 2 .5 E + 1 9 6 .3 E + 2 1 1 .4 E + 2 4 2 .8 E + 2 6

N RH T
7 7 0 6 0 5 0 5 0 6 6 6 4 4 1 6 5 0 4 .0 E + 0 6 3 .6 E + 0 7 3 .4 E + 0 8 3 .1 E + 0 9 3 .0 E + 1 0

The numbers in the tables clearly show us that the computation load for all three 

methods increases with the increment of nop while num and noc are fixed; the RHT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



method has the least computation in any cases, the standard HT is the next, whereas the 

"hard mapping" method has the slowest computation speed. Since the computation load of 

the RHT method is independent of the number of points which is usually much bigger than 

other parameters, the RHT particularly demonstrates its advantages while dealing with the 

images containing huge amount of data. Moreover, even if n, is increased by an order of 

magnitude, the will go up only by a factor of 10.

For the Hough type transform method, the computation cost and the accuracy of 

result are two important aspects to be concerned. While some analysis to the computation 

has been presented as above, the following will investigate the level of accuracy.

As we know, we usually have to determine the resolution T and the boundary of 

transform space before using the conventional HT. Assume that the upper bound and 

lower bound are Bu and B, respectively for each parameter. Then the accuracy of result A 

will be

' (2.4)

To achieve higher accuracy, we can take either bigger T  or smaller Bu-  B,. However, the 

Bu -  Bt is limited by the feature of image data, and the T is restricted by the memory of 

computer. For sake of simplicity, T, Bu and B, are assumed to be same for all parameters. 

For an nop-dimensional problem, the memory requirement can be approximated as

M m  = Tmp, (2.5)

i.e., Tnop cells of accumulator array is required for storing results in the transform space.

For a high dimensional image, for example, it is impossible to use a higher resolution T
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due to limited memory in most present computers. For example, if T  = 100, and nop -  9, 

then an array of size 1009 or 1 0 '8 has to be defined. If the array is an integer one, the 

memory requirement will be 4.0E+13 mega-bytes on a 32-bit computer.

In reality, all of the predefined parameter space in the conventional HT method is 

rarely completely used. This phenomena has attracted many researchers and led to 

different novel methods, such as the early mentioned adaptive HT and various probabilistic 

HT methods. The adaptive Hough transform method [Illingworth and Kittler, 1987] uses a 

small accumulator array and the idea of a flexible iterative "coarse to fine" accumulation 

and search strategy to identify significant peaks in the Hough parameter spaces. For the 

same example as above, the same accuracy may be achieved with a smaller array here. 

Using T -  10, then an array of size 109 is required. The adaptive method uses this array to 

get some coarse peaks first, then iteratively applies the same accumulating method to the 

areas around those coarse peaks separately until the fine results are achieved. The method 

can use much less memory to achieve results with the same accuracy in comparison with 

the standard HT method. But the number like 109 is still too big for most computers as it 

would require 4 Gbytes or more. In other words, the method is not suitable for the images 

with high dimensional parameters, such as the range images containing quadric curved 

surfaces. The RHT method [Xu et al., 1990] uses a parameter data set with each element 

containing both a real valued vector and an integer score to implicitly represent the 

parameter space. The dynamic data structure is adopted to store the parameter data set 

and only the valid points in the parameter space are stored. For a multiple-cluster image, 

i.e., noc> 2, the parameter space is reset as null as soon as a new cluster is detected. So
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the method will not waste any memory space. From Eq. (2.3), it is easy to derive the 

expression for possible number of elements in the parameter space, as

M Rm =nocmp. (2.6)

The only difference between Eqs. (2.5) and (2.6) is the root of exponential function. 

Generally, T is much bigger than noc, so M m  is much much bigger than M RHT, for 

example, when T  = 100, noc = 10, nop = 9, then M m  = 1018, = 109. Although the

RHT needs more memory for each element of parameter data set than the conventional 

HT, that difference is not significant in comparison with the difference between M m  and 

M m r. Furthermore, the RHT introduces a tolerance 8  to further reduce the memory 

requirements. Therefore, it is not difficult to conclude that, the RHT method needs less 

memory than the standard HT for most images, especially for the images containing 

clusters with more parameters.

As mentioned before, theoretically the RHT possesses the highest level of accuracy 

when 8= 0. By adjusting 8, the different level of accuracy can be achieved.

2.3 The Fast Randomized Hough Transform Method

The review and analysis of Hough techniques has been presented in the two preceding 

sections. Generally, the RHT method is an outstanding one among various efforts, which 

possesses some good features such as high computation speed, less storage requirement, 

and high accuracy of results. However, some improvements are needed in order to apply 

the method to the more complicated cases, like range images containing more clusters 

with more parameters, for instance, if noc =10, nop = 9, then the number of mappings
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N rht = 3.1 x 109, and the possible number of elements in the parameter space 

M jujt = 109, which obviously is a challenge to most computers.

The number o f mappings reflects the computation load, and the possible number of 

elements in the parameter space is directly related to the required volume of storage. 

Reducing N ^  and will increase computation speed and reduce memory

requirements. From Eqs. (2.3) and (2.6), it seems impossible to change and 

as the two related parameters, noc and nop are intrinsic to an image. But, carefully 

checking the Table 2.1 again, where noc= 1, we can find an interesting fact that N RHT 

takes a small constant 2 independent of the nop. That means that the computation load 

will be light and the storage will be small whenever the number of clusters is small. 

Though it is impossible to change the inherent number of clusters in an image, there is a 

practical method that can reduce the number o f clusters within a local region by dividing 

the whole image area into multiple regions, which is the key idea of the following fast 

randomized Hough transform method (FRHT).

Before describing the new method, some analysis regarding the computation is 

required. For the sake of simplified analysis, assume that the image contains noc clusters 

without outliers, each cluster consists of nop parameters and contains the same number of 

data points, and the total number of points in the image is num. If the image is divided into 

nor different regions where each region equally contains rc clusters, then

noc=norxrc, (2.7)

the number of mappings with the fast randomized Hough transform,
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N nm  = nor * 2  imp x n, , (2.8)
:=1

and the possible number of elements in the parameter space,

M FRHr= rcnop. (2.9)

To see the effect of FRHT, two tables are presented, Tables 2.5 and 2.6, with

different rc under the following initial conditions: noc= 10, n,= 2.

S e t  u p  t h e  in itia liz a tio n .

D iv id e  t h e  im a g e  in to  m u lt ip le  r e g io n s .

R a n d o m ly  p ic k  [n o p ]  p o in t s  f ro m  a  r e g io n .

C a lc u l a t e  c lu s t e r  p a r a m e te r s .

N o
A c c u m u la t e  p a r a m e t e r s .

T h e  a c c u m u l a t e d  s c o r e  >  t h e  t h r e s h o ld ?

Y e s

C h e c k  t h e  a c c u m u l a t e d  r e s u l t s .
T h e  n u m b e r  o f  p o in t s  ly ing  o n  t h e  p o s s ib l e  c l u s t e r  >  

t h e  th r e s h o ld  n u m b e r  o f  p o in t s ?

N o

Y e s

R e m o v e  t h e  p o in t s  b e lo n g in g  to  t h e  d e t e c t e d  c lu s t e r .  
A r e  a n  c l u s t e r s  d e t e c t e d  o r  

i s  t h e  r e m a in in g  n u m b e r  o f  p o in t s  l e s s  t h a n  t h e  
m in im u m  n u m b e r  o f  p o in t s  f o r  a  c l u s t e r ?

N o

,Y e s

Exit.

Figure 2.1 Flow Diagram of Fast Randomized Hough Transform.
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The two comparison tables clearly indicate that the new Hough transform method 

can greatly increase the computation speed and reduce the storage memory, which is why 

it is called the 'fast randomized Hough transform' method. A number of assumption were 

made to arrive at the number in these tables, and their implication will be discussed later. 

The following deals with the details of the FRHT method. A flow diagram of the method 

is shown in Figure 2.1 and all the general information and particular details about it will 

follow. Since the range images are a challenge to many existing algorithms and are also a 

focus of this project, it is assumed that the image in question is a range image in the 

following description except where indicated.

Table 2.5 Computation and Storage Comparison Between RF
nop 2 3 4 5 6 7 8 9 10

N RH T
7 7 0 6 0 5 0 5 0 6 6 6 4 4 1 6 5 0 4 .0 E + 0 6 3 .6 E + 0 7 3 .4 E + 0 8 3 .1 E + 0 9 3 .0 E + 1 0

N FRHT
2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0

^ R H T
1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 .0 E + 0 6 1 .0 E + 0 7 1 .0 E + 0 8 1 .0 E + 0 9 1 .0 E + 1 0

M FRHT
1 1 1 1 1 1 1 1 1

T and FRHT with rc = 1.

Table 2.6 Computation and Storage Comparison Between RF
nop 2 3 4 5 6 7 8 9 1 0

N RH T
7 7 0 6 0 5 0 5 0 6 6 6 4 4 1 6 5 0 4 .0 E + 0 6 3 .6 E + 0 7 3 .4 E + 0 8 3 .1 E + 0 9 3 .0 E + 1 0

N  FRHT
5 0 9 0 1 7 0 3 3 0 6 5 0 1 2 9 0 2 5 7 0 5 1 3 0 1 0 2 5 0

^ R H T
1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 .0 E + 0 6 1 .0 E + 0 7 1 .0 E + 0 8 1 .0 E + 0 9 1 .0 E + 1 0

M FRHT
4 8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

T and FRHT with rc= 2.

2.3.1 Initialization and Dividing an Image

Generally, a range image contains many more points than for example the edge map of an 

intensity image does. The range data represents the surface feature of objects. Besl and
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Jain [1986] presented the invariant surface characteristics in range images and classified 

the image regions into eight surface types by the mean curvature and Gaussian curvature. 

Here, for a general quadric curved surface, the model can be expressed as

a,x2 +a2y 2 +a,z2 +a4xy+asxz+a6yz+ a7x+ asy+ a 9z+ aw = 0. (2.10)

Obviously, there are ten parameters for each surface, and nine of them are independent. 

When some of the parameters are set to zero, Eq. (2.10) represents a specific case, for 

instance, if a, = a2 = a3 > 0 ,a l0 < 0 and a4 -  as = a6 = a7 = ag = a9 = 0, then the surface 

represents a sphere. Without any prior information about the detected surface, a general 

equation of (2.10) is always taken as the default model.

Figure 2.2 Dividing an Image into Multiple Regions.

To make the dividing procedure simple, it is suggested to divide the whole image 

into multiple regions such that each one has approximately the same area. The number of 

regions depends on the minimum number of points a cluster must contain. The previous
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analysis indicates that, in order to achieve an optimum increase in computation speed and 

reduction in storage memory, each region should contain only one cluster. Unfortunately, 

it is a tough requirement for most practical applications, where each cluster may contain 

different number of points and occupy irregular areas. Figure 2.2 displays the top view of 

different hypothetical cases of an image, where numbers indicate different clusters and 

letters represent the different regions.

Figure 2.2a is an ideal case in which each region contains one cluster. In Figure 

2.2b, cluster No. 1 covers four regions, whereas cluster No. 4 covers two regions. If the 

searching sequence for all regions is A-B-C-D, then the cluster No. 1 is identified and 

removed first, the next will be No. 2 and No. 3. However, since some points of cluster 

No. 4 are located in region C, there are still some data points in the region after No. 3 is 

removed. In this case, it is recommended to go to the next region because there are not 

enough points left in region C, which brings up a criterion for stopping the search within a 

region, i.e., when a region does not contain enough number of points, it will not be 

searched further. Usually the threshold number of points is same as the minimum number 

of points for a cluster. If the searching sequence is D-C-B-A, the cluster No. 4 will be 

detected first and the data points of cluster No. 1 in region D will be ignored according to 

the above discussed criterion. While searching region C, the data points of cluster No. 1 in 

region C should not be ignored since they are comparable with the data points in cluster 

No. 3. Either No. 3 or No. 1 may be detected first. Therefore, to avoid missing a cluster, it 

is necessary to set the maximum number of clusters within a region as two or more. 

However, to give consideration to the computation speed and storage, the number should
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not be too big. To put together the above considerations, another criterion for stopping 

the search within a region may be imposed, namely, when two clusters have been 

identified within one region, the searching procedure is moved to the next region. 

Consequently, according to Eq. (2.8), NR, the maximum number of mappings for a region 

can be decided by

N R =(2nop + \)x n t. (2.11)

It has to be pointed out that the number determined by Equation (2.11) can only be taken 

as a reference, and the actual maximum number of mappings for a region might need a 

larger one due to actual situations in applications, for example, some regions might 

contain more than two clusters.

In the above discussion, all regions are searched sequentially according to the 

physical locations, i.e. row by row or column by column. Equation (2.8) is derived with 

the assumption that each cluster contains same number of points. Actually in most 

applications, different cluster may contain different number of points. Consequently, the 

searching sequence will affect the total number of distance computations, namely, when 

the clusters containing more points are detected earlier, the total number of distance 

computations is smaller. To keep a fair computation load, the FRHT should search the 

regions with more points earlier. For instance, in Figure 2.2b, the searching sequence 

should be A-D-B-C. Though this kind of searching sequence can not guarantee that the 

cluster with greatest number of points would be detected at the earliest searching, the 

clusters with more points could be detected earlier.
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In the conventional HT, an accumulator needs to be set in advance. In the FRHT, a 

storage structure should also be arranged in advance. Because a new point needs to be 

inserted to an appropriate location in the parameter space when it is obtained, a binary tree 

data structure is suggested to use here. The binary tree data structure has proved to be a 

fast technique to perform searching, inserting and erasing operations [H. Schildt, 1988]. 

Hence only a binary tree needs to be defined in advance instead of an array. To sum up the 

above discussion, the initialization consists of the following:

(1) Divide the image into multiple regions;

(2) Set up the model of the clusters;

(3) Select the minimum number of points a cluster must contain;

(4) Choose the maximum number of clusters to be searched in a region as 2;

(5) Determine the maximum number of mappings in a region;

(6) Decide the threshold number of points for searching a region, which is usually 

same as the minimum number of points for a cluster;

(7) Build a binary tree for storing the accumulating results and set the root of 

binary tree as mill.

2.3.2 Sampling of Data Points

After an image is divided into multiple regions, the FRHT will search clusters through all 

those regions one by one. In the searching procedure, a random sampling method is 

adopted to pick nop different points from a region, where nop is the number of 

independent parameters, as an example, nop =9 for the model with the expression of
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(2.10). During the sampling of data points, it is required that all points in the sampling 

region have an equal probability to be taken as one of the nop points, and any one point in 

the region can be picked only one time for each sampling. Here a sampling is defined as 

the random sampling of nop points. Obviously, one sampling corresponds to one 

mappings. If the number of sampling reaches the maximum number of mappings in a 

region, the searching within the present region will be terminated.

The previous mathematical analysis shows that the random sampling method may 

greatly increase the detection speed and save storage space.

2.3.3 Calculating the Parameters

The FRHT is a kind of "many to one" transform method, which maps nop points in image 

space into one point in parameter space by solving nop joint equations. In other words, 

nop joint equations can be obtained by substituting the values of randomly picked points 

into the model expression, and consequently, one point in parameter space, i.e., nop 

parameters, can be computed by solving those joint equations.

2.3.4 Accumulating the Parameters

After the values of a point in parameter space C = {c, ,c, ,...,c  }are obtained, unlike the 

RHT method, they are normalized and then inserted into the data tree. The normalization 

is done by dividing all elements in C by the one with biggest absolute value, i.e.,

C -
C

(2 .12)
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where C represents the normalized values of C. All the normalized values will be 

restricted as

0 -  NI -  1 > / ' ( 2 . 1 3 )

where c, is the normalized value of c,. Thereafter, if there is a node in the binary tree 

with the same normalized values, the score of the node will be increased by one, 

otherwise, those values will be stored at a proper accumulating cell with score one. 

Theoretically, two sets of values may be the same, but in practice even the two sets of 

values from one cluster may have some bias due to the computation accuracy in the 

computing device. Therefore, it is necessary to give a tolerance 8 for the values at a node, 

by which it can be decided if two sets of values can be merged or not. Therefore, if set c \  

as the previous set of values at a node and

\ct - c \ \ < 8 ,  i e{ l,2 ,...,nop ), (2.14)

then consider the two sets of values as the same. It is easy to see that 8  can be taken as 

the resolution of parameters. Furthermore, because all the values in parameter space are 

normalized, the magnitude of 8  represents the percentage error of results and has a 

practical meaning for any kind of image data, and it can also be easily predetermined even 

in absence of prior information.

During the accumulation, if the score at a point has reached to a given number 

then the points may correspond to a cluster and the parameter will be examined in a way 

discussed in the following section. The given number n, depends on image quality, and is 

usually suggested to take a small number, like 2 or 3, but if the data contains too much 

noise, a bigger number is recommended. It is advised to take the number as small as
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possible since it affects the computation speed, which can be figured out from the 

previous mathematical analysis.

2.3.5 Inspection of the Results

When the score at a point in parameter space reaches nt, the parameters at the point may 

represent a cluster. The FRHT takes C as the possible parameters of a cluster and checks 

how many points in the whole image lie on the cluster. If the number of points is more 

than the defined minimum number of points in a cluster, C represents a true cluster, all 

points belonging to the cluster is removed from all the divided regions, and the root of the 

binary tree is reset as null, otherwise, C represents a false cluster and is erased from the 

binary tree.

How to determine a point lies on a cluster may appear to be simple as it could be 

decided just by checking whether the values of the point satisfy the expression of the 

detected cluster. In reality, it is difficult to satisfy the expression even with the points on 

the cluster because of different types of errors, such as the errors from data acquisition 

and computation. This problem may be solved by setting a tolerance s , i.e., if the values 

of a point (x,,y t ,zt ) are substituted into the expression of the cluster and satisfy

l^x ,2 +a2y,2 +a3z,2 +aAx,y, +asx,z, +a6y,z, +a7x, + asy, +a9z, + a I0|| < e, (2.15)

then the point can be considered to lie on the cluster. However, a proper value for e can 

not be easily selected without prior information about the cluster as it does not have any 

physical meaning. Therefore, it is suggested to use the actual distance between a point and 

a cluster to determine whether a point belongs to a cluster. The distance D is defined as
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the shortest distance between the point (x^y^z,)  and the cluster. Let (xc,yc,zc) be the 

point on the cluster, which has the shortest distance to point ( x ^ y ^ z j ,  then

D = min - x cf  + ( y , - y cf  + (z ,- z cf  ), subject to

axx ;  +a2y ;  +a3zc2 +aAxcyc +asXczc +a6yczc +a7xc +a%yc +a9zc +al0 = 0. (2.16) 

The Lagrangian method and the routines from MINPACK (refer to the Appendix A for 

more details) can be used to calculate this distance. In Equation (2.16), nine of ten 

parameters of the model are independent and the other one can be set as a constant in 

actual applications. With the Euclidean distance, it is easy to set a threshold value D, to 

classify a point to a cluster. If the distance D  between a point and a cluster satisfies 

D < D t, then the point is classified to the cluster.

2.4 The Effect of Outliers on the Fast Randomized Hough Transform

The preceding sections present the mathematical analysis with the assumption that the 

image does not contain any outliers, i.e., every point in the image can be classified to a 

cluster. This section will discuss the effect of outliers on the fast randomized Hough 

transform method.

Let us assume that there are noc clusters within an image having outliers and nop 

parameters to be decided for each cluster. From the previous analysis of RHT and FRHT, 

we know that the possible number of mappings is independent of the total number of 

points, so the percentage is used here to indicate the amount of outliers. Let be the 

percentage amount of outliers in the image, and Pt be the percentage in /th cluster, then

A +A +-"+ /L c+A  = 1- (217)
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Usually, the cluster with more points is detected earlier than other clusters with less 

points, hence, without loss of generality, we define

£ > £ > - > / ? _ .  (2.18) 

Similarity as Eq. (2.3), the possible number of mappings for extracting all clusters by the 

RHT method is

n 'm t = ( ^ r > < « , + ( ^ r x / ^ . . +( ^ f c ^ r

or

noc 1—̂P j
= (2.19)

7 = 1

where P0 = 0. The expression for possible number of elements required in the parameter 

space becomes

= (2.20)

Obviously, Eq. (2.3) and (2.6) are the special cases of (2.19) and (2.20) respectively, 

where /?, = /?, =•••=Pnoc and /?. = 0. To see the effect of outliers on the RHT method, set 

/?, = 2, n oc-  10, and /?, = /?, -■••=Pnoc, then two tables with different amount of outliers 

and different number of parameters are created as Tables 2.7 and 2.8.

As to the FRHT method with outliers, in order to simplify the analysis, assume that 

the image is divided into nor different regions where each region contains same percentage 

of outliers and same number of clusters, rc, and each cluster has the same amount of 

points, P, then Eq. (2.7) still helds true here, Eq. (2.17) becomes

noc x p+Pe = \ ,  (2 .21 )
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and the possible number of mappings for extracting all clusters with the fast randomized 

Hough transform,

Correspondingly, the possible number of elements required in the parameter space,

M' = (— -— Y°pyn o rxp> ■

(2 .22)

(2.23)

Table 2.7 Computation Load with Different Amount of Outliers /?,.
nop 2 4 5 6 7 8 9 10

fi=0% 7 7 0 6 0 5 0 5 0 6 6 6 4 4 1 6 5 0 4 .0 E + 0 6 3 .6 E + 0 7 3 .4 E + 0 8 3 .1 E + 0 9 3 .0 E + 1 0

p= 1 0 % 1 0 3 9 9 0 5 2 8 3 8 9 3 8 0 9 2 5 4 8 .0 E + 0 6 8 .1 E + 0 7 8 .3 E + 0 8 8 .7 E + 0 9 9 .1 E + 1 0

> 5 = 2 0 % 1 4 4 5 1 4 2 0 0 1 4 7 6 9 7 1 .6 E + 0 6 1 .8 E + 0 7 2 .0 E + 0 8 2 .3 E + 0 9 2 .7 E + 1 0 3 . 2 E + 1 1

P =  50% 4 9 7 0 8 2 1 5 0 1 .4 E + 0 6 2 .4 E + 0 7 4 .3 E + 0 8 7 .7 E + 0 9 1 .4 E + 1 1 2 .6 E + 1 2 4 .8 E + 1 3

Table 2.8 Storage Requirements with Different Amount of Outliers j.3e.
nop 2 4 5 6 7 8 9 1 0

p= 0 % 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 .0 E + 0 6 1 .0 E + 0 7 1 .0 E + 0 8 1 .0 E + 0 9 1 .0 E + 1 0

/?= 1 0 % 1 2 3 1 3 7 2 1 5 2 4 2 1 6 9 3 5 1 1 .9 E + 0 6 2 .1 E + 0 7 2 .3 E + 0 8 2 .6 E + 0 9 2 .9 E + 1 0

/ ? =  2 0 % 1 5 6 1 9 5 3 2 4 4 1 4 3 0 5 1 7 6 3 .8 E + 0 6 4 .8 E + 0 7 6 .0 E + 0 8 7 .5 E + 0 9 9 .3 E + 1 0

oNoII 4 0 0 8 0 0 0 1 6 0 0 0 0 3 .2 E + 0 6 6 .4 E + 0 7 1 .3 E + 0 9 2 .6 E + 1 0 5 .1 E + 1 1 1 .0 E + 1 3

To see the effect of outliers on FRHT, the following tables, 2.9 to 2.12, are 

established with different rc and different Pc under the following initial conditions: 

no c-  10, nt =2.

The numbers in these tables show that for the RHT and FRHT methods, with the 

amount of outliers inreasing, the computation speed will decrease and the storage 

requirements will increase. This can be easily understood as that for the whole image with 

the RHT or a region with the FRHT method, the outliers or noisy points can be taken as
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an extra cluster which can not fit a model, and the total number of clusters in the searching 

region increases by one, therefore the possible number of mappings and the possible 

storage requirements increase.

Table 2 . 9  Computation Load with Different Amount of Outliers Pt and ll£

nop 2 3 4 5 6 7 8 9 1 0

p= 0 % 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0

£ =  1 0 % 2 5 2 7 3 0 3 4 3 8 4 2 4 6 5 2 5 7

£ = 2 0 % 31 3 9 4 9 6 1 7 6 9 5 1 1 9 1 4 9 1 8 6

£  = 50% 8 0 1 6 0 3 2 0 6 4 0 1 2 8 0 2 5 6 0 5 1 2 0 1 0 2 4 0 2 0 4 8 0

Table 2 . 1 0  Computation Load with Different Amount of Outliers P t  and r c =  2 .

nop 2 3 4 5 6 7 8 9 1 0

P =  0 % 5 0 9 0 1 7 0 3 3 0 6 5 0 1 2 9 0 2 5 7 0 5 1 3 0 1 0 2 5 0

£ =  1 0 % 6 4 1 2 8 2 6 6 5 6 9 1 2 3 8 2 7 1 7 5 9 9 7 1 3 2 7 7 2 9 4 4 2

£ = 2 0 % 8 5 1 9 0 4 4 1 1 0 5 3 2 5 5 5 6 2 7 4 1 5 5 1 5 3 8 5 3 1 9 5 9 4 4

£  = 50% 2 5 0 9 1 0 3 3 7 0 1 2 6 7 0 4 8 2 5 0 1 8 5 7 1 0 7 2 0 9 7 0 2 .8 E + 0 6 1 .1 E + 0 7

Table 2 . 1 1  Storage Requirements with Different Amount of Outliers fie and r c -  1 .

nop 2
-*
J 4 5 6 7 8 9 1 0

p= 0 % 1 1 1 1 l 1 l 1 1

£= 1 0 % 1 .2 1 .4 1 .5 1 .7 1 .9 2 .1 2 .3 2 .6 2 . 9

£ = 2 0 % 1 .6 2 . 0 2 .4 3 .1 3 .8 4 . 8 6 .0 7 .5 9 .3

£  = 50% 4 8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

Table 2.12 Storage Requirements with Different Amount of Outliers (5e and r c - 2 .
nop 2 3 4 5 6 7 8 9 1 0

p= 0 % 4 8 16 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

£ =  1 0 % 5 11 2 4 5 4 1 2 0 2 6 8 5 9 5 1 3 2 2 2 9 3 7

£ = 2 0 % 6 1 6 3 9 9 8 2 4 4 6 1 0 1 5 2 6 3 8 1 5 9 5 3 7

£  =  5 0 % 16 6 4 2 5 6 1 0 2 4 4 0 9 6 1 6 3 8 4 6 5 5 3 6 2 6 2 1 4 4 1 .0 E + 0 6

Although the outliers affect the cluster detection with the FRHT method, the 

previously described steps are still applicable to the images with outliers or noisy points
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except that the maximum number of mappings in a region needs to be set to a bigger 

value.

2.5 Numerical Results and Conclusions

The FRHT method is described in above sections, in what follows, some experimental 

results and conclusions will be presented.

To test the performance of the FRHT algorithm, a range image with four different 

ten-parameter quadric surfaces is created as shown in Figure C. 1 (see Appendix C) that 

contains 19600 data points, and all original parameters for each surface cluster are listed in 

Table 2.13. As discussed before, the model equations for all the clusters can be 

represented as Equation (2.10), which contains nine independent parameters. Obviously, 

the conventional Hough transform method can not be used to solve this problem because 

of the huge memory requirements. Set the minimum number of points for a cluster as 

about 10% of the total number of points, the accumulating threshold number n, as 2, the 

tolerence 8  as 0.0001, and the threshold distance D, as 0.05, then the detection result 

by the RHT method is shown in Figure C.2 and the parameters are listed in Table 2.14. 

The CPU time for the detection on a SPARC 10 Station is 354.6 seconds. Dividing the 

image into 3x2 regions and using the same initial conditions, the detection result by the 

FRHT is shown in Figure C.3 and the detected parameters are listed in Table 2.15. The 

CPU time on a SPARC 10 Station is 230.2 seconds that is less than the time used by the 

RHT method.

Based on the image in Figure C.l, two noise images in Figures C.4 and C.5 are 

generated in such a way that 1960 and 3920 noise/outlier points, which are about the same
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as 10% and 20% of the total number of points in the original image, are randomly added 

to it respectively. With the same initial conditions as above examples, the detection results 

by the RHT and the FRHT methods are shown as Figures C.6 to C.9, and the detected 

parameters are listed in Tables 2.16 to 2.19. The CPU time used on a SPARC 10 Station 

by different methods is listed in Table 2.20. The results indicate that the FRHT method 

possesses faster computation speed than the RHT method, and the image with more noise 

points takes more detection time. It has to be pointed out that because the images used 

here contain huge amount of data points, and since the Euclidean distance computation for 

all points is very time consuming, much of the CPU time in the above experiments is spent 

for the distance computation, and the advantage of the FRHT method is not that obvious. 

For a simplified image as shown in Figure C.10, which is generated with the same quadric 

surface parameters as the image in Figure C.l but only about 1600 data points, the RHT 

method obtains the parameter results shown in Table 2.21 in 140.0 seconds, whereas the 

FRHT method uses 17.6 seconds to obtain the results as shown in Table 2.22. Certainly, 

while detecting the simplified image, the minimum number of points for a cluster needs to 

be set as a smaller number, like 15% of the total number of points. Now we can see that 

the computation speed with the FRHT method is much faster than that with the RHT 

method. It is worthy to point out that for the huge images, it is strongly recommended to 

randomly sample the data and then apply FRHT with Euciliden distance computations, 

which will greatly reduce the computation load.

The above noise images are generated by adding some random noise points to a 

non-noise image thus amounting to adding outliers. However, the noise can also be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

generated by randomly shifting the original points along a direction within a specific 

distance. The latter case is more like what happens in the practical applications. A noise 

image generated by randomly shifting all points in Figure C.10 along z direction within 

±0.05 unit distance is shown as Figure C. 11. Here we set the minimum number of points 

for a cluster as 15% of the total number of points, the accumulating threshold number nt 

as 2, the tolerence S  as 0.001, and the threshold distance D, as 0.2, and apply the 

FRHT method to the noise image, then the graph result is shown in Figures C. 12 and the 

parameter result is shown in Tables 2.23. The CPU time on a SPARC 10 Station is 146.2 

seconds. But with the same initial conditions, the RHT method is not able to identify the 

clusters in the image.

As mentioned above, the Eucilidean distance computations are very time 

consuming that might not be practical for some applications. To speed up the 

computation, some methods of approximate distance computation have been proposed 

[Taubin 1991, Haralick and Shapiro 1992], which will be discussed in greater detail in 

Chapter 3. Using the first-order distance approximation method [Haralick and Shapiro 

1992], the FRHT algorithm and its mathematical analyses can be interpreted more 

completely. With the approximate distance computations, the results for the image in 

Figure C.l by RHT and FRHT methods are shown in Table 2.24, where different 

perentage amount, from 20% to 100%, of data points are randomly sampled before the 

algorithms are used, and the CPU time is clocked on a SPARC 10 Station. In Table 2.24, 

N thco represents the theoretically estimated number of samplings assuming each cluster 

contains same number of points, whereas N aaual represents the actual number of
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samplings. From the table, we can see that the actual number of samplings is independent 

of the total number of points, and the computation speed with RHT is much slower than 

the speed with FRHT. While the RHT method is used, the CPU time mostly depends on 

the actual number o f samplings that is usually very big, and while the FRHT method is 

used, the CPU time depends on the total number of points in the image as the actual 

number of samplings is very small. Through the experiment, it was found that most of the 

CPU time used by FRHT is to read and sample the data at the beginning, for instance, in 

the above example, 11.5 seconds was used to read and sample the data, which means that 

the actual computation time by FRHT could reach to a level of one tenth of a second.

Another example is considered as shown in Figure C .l3, which is an image of 

200x200 with three clusters, one sphere, one cylinder and one frustum of a cone, 

artificially generated on the computer. There are 4062 points in the image and the depth 

values are recorded in floating numbers. All three clusters can be correctly detected by the 

FRHT method with 3x3 windows in 5.0 seconds on a Sparc 10 computer, and the results 

are shown in Figure C. 14.

Based on the analysis and the experiments, we can conclude that the FRHT 

method possesses the following characteristics: high computation speed, low memory 

requirement, high result resolution and infinite parameter space. It can be used to detect 

complex shapes, such as the quadric surface image containing several clusters and noisy 

points. Through the experiments, it was noticed that sometimes for noise images, the 

FRHT method is sensitive to the number of regions, in other words, it does not work well
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for some noise images. In Chapter 5, this issue will be further discussed and strategies to 

improve the performance of the FRHT method will be presented.

Table 2.13 The Original Parameters for Creating the Four Clusters in the Range Image as 
Shown in Figure C. 1.________________________________________________________
C l u s t e r * ■ a , * 3 * 4 * 5 * 6 * 7 * 8 * 9 * i o

1 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 2 5 . 0 1 . 0 0 0 0 6 8 . 2 2 2

2 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 2 0 . 0 1 . 0 0 0 0 1 8 . 2 2 2

3 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 0 0 0 - 4 . 0

4 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 - 2 . 2 2 2 0 . 0 1 . 0 0 0 0 1 8 . 2 2 2

Table 2.14 The Numerical Results of Figure C.2.
C l u s t e r * i *2 * 3 * 4 * s * 6 * 7 * 8 a 9 * 1 0

1 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 2 5 . 0 1 . 0 0 0 0 6 8 . 2 2 2

2 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 2 0 . 0 1 . 0 0 0 0 1 8 . 2 2 2

3 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 0 0 0 - 4 . 0

4 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 - 2 . 2 2 2 0 . 0 1 . 0 0 0 0 1 8 . 2 2 2

Table 2.15 The Numerical Resu ts of Figure C.3.
C l u s t e r a 2 * 3 * 4 * s * 6 * 7 * 8 * 9 * 1 0

1 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 2 5 . 0 1 . 0 0 0 0 6 8 . 2 2 2

2 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 2 0 . 0 1 . 0 0 0 0 1 8 . 2 2 2

3 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 0 0 0 - 4 . 0

4 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 - 2 . 2 2 2 0 . 0 1 . 0 0 0 0 1 8 . 2 2 2

Table 2.16 The Numerical Results of Figure C.6.
C l u s t e r * i a . * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 1 0

1 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 2 5 . 0 1 . 0 0 0 0 6 8 . 2 2 2

2 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 2 0 . 0 1 . 0 0 0 0 1 8 . 2 2 2

3 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 0 0 0 - 4 . 0

4 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 - 2 . 2 2 2 0 . 0 1 . 0 0 0 0 1 8 . 2 2 2

Table 2.17 The Numerical Results of Figure C.l.
C l u s t e r * i a , * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 1 0

1 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 8 5 . 0 0 0 8 1 . 0 0 0 0 6 8 . 2 3 5

2 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 2 0 . 0 1 . 0 0 0 0 1 8 . 2 2 2

3 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 0 0 0 - 4 . 0

4 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 - 2 . 2 2 3 0 . 0 0 0 8 1 . 0 0 0 0 1 8 . 2 3 4
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Table 2.18 The Numerical Results of Figure C.8
C l u s t e r 0 , a , * 3 * 5 * 6 * 7 * 8 a 9 a \o
1 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 2 5 . 0 1 . 0 0 0 0 6 8 . 2 2 2

2 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 2 0 . 0 1 . 0 0 0 0 1 8 . 2 2 4

3 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 0 0 0 - 4 . 0

4 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 - 2 . 2 2 2 0 . 0 1 . 0 0 0 0 1 8 . 2 2 2

Table 2.19 The Numerical Results of Figure C.9.
C l u s t e r 0 > a , « 3 * 4 0 5 0 6 0 7 0 8 0 9 0 1 0

1 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 0 4 . 9 9 9 7 1 . 0 0 0 0 6 8 . 2 1 7

2 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 5 0 . 0 1 . 0 0 0 0 1 8 . 2 2 5

3 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 0 3 0 . 0 0 0 5 1 . 0 0 0 0 - 4 . 0

4 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 - 2 . 2 2 2 0 . 0 0 0 4 1 . 0 0 0 0 1 8 . 2 2 5

Table 2.20 The CPU Time by Different Methods (unit: second).
R a n g e  I m a g e F i g u r e  C .  1 (  n o  n o i s e ) F i g u r e  C . 4  ( p l u s  1 0 %  n o i s e ) F i g u r e  C . 5  ( p l u s  2 0 %  n o i s e )

R H T  M e t h o d 3 5 4 . 6 6 9 8 . 0 1 0 2 4 . 2

F R H T  M e t h o d 2 3 0 . 2 2 5 8 . 3 2 9 8 . 5

Table 2.21 The Numerical Resu ts o f  Figure C. 10 by the RHT Method.
C l u s t e r 0. <7, 03 04 05 06 07 08 a g 010
1 0.0556 0.1250 0.0 0.0 0.0 0.0 2 . 2 2 2 2 5.0 1.0000 6 8 . 2 2 2

2 0.0556 0.1250 0.0 0.0 0.0 0.0 2.2224 0.0 1.0000 18.225
3 0.0556 0.1250 0.0 0.0 0.0 0.0 0.0 0.0 1.0000 -4.0
4 0.0556 0.1250 0.0 0.0 0.0 0.0 - 2 . 2 2 2 0.0 1.0000 18.222

Table 2.22 The Numerical Results of Figure C. 10 by the FRHT Method.
C l u s t e r 0 i <7, 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0

1 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 2 5 . 0 1 . 0 0 0 0 6 8 . 2 2 3

2 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 2 0 . 0 1 . 0 0 0 0 1 8 . 2 2 2

3 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 0 0 0 - 4 . 0

4 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 - 2 . 2 2 2 0 . 0 1 . 0 0 0 0 1 8 . 2 2 3

Table 2.23 The Numerical Results of Figure C.12.
C l u s t e r 0 . <7, 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0

1 0 . 0 5 7 3 0 . 1 2 7 5 0 . 0 0 0 3 - 0 . 0 0 3 - 0 . 0 0 1 - 0 .0 0 1 2 . 2 4 4 2 5 . 0 5 1 8 1 . 0 0 0 0 6 8 . 9 2 5

2 0 . 0 5 4 8 0 . 1 2 3 4 0 . 0 0 0 7 - 0 . 0 0 1 0 . 0 0 0 3 0 . 0 0 1 5 2 . 1 9 8 4 - 0 . 0 1 5 1 . 0 0 0 0 1 8 .0 8 1

3 0 . 0 5 4 8 0 . 1 2 5 1 0 . 0 0 . 0 0 1 1 0 . 0 0 0 4 0 . 0 0 1 6 0 . 0 0 . 0 1 . 0 0 0 0 - 3 . 9 9 4

4 0 . 0 6 3 9 0 . 1 3 5 7 0 . 0 1 4 7 - 0 . 0 0 3 0 . 0 0 5 0 - 0 . 0 0 3 - 2 . 5 5 8 0 . 0 6 6 9 1 . 0 0 0 0 2 1 . 1 9 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

Table 2.24 Results for the Image in Figure C.l by RHT and FRHT Methods with 
Approximate Distance._______________________________________________________
S a m p l i n g

P e r c e n t a g e

N u m b e r  

o f  P o i n t s

R H T F R H T  ( 3 X 3  w i n d o w s )

A 't h e o j V a c tu a l C P U  T i m e A 't h e o .Y a c t u a l C P U  T i m e

1 0 0 % 1 9 6 0 0 5 6 4 6 8 0 1 2 0 7 4 7 1 9 4 . 4 8 8 1 3 . 2

8 0 % 1 5 6 6 7 5 6 4 6 8 0 1 3 3 7 4 8 2 1 2 . 1 8 9 1 2 . 9

6 0 % 1 1 7 9 2 5 6 4 6 8 0 1 5 9 6 0 4 2 4 1 . 1 8 8 1 2 . 5

5 0 % 9 8 7 5 5 6 4 6 8 0 1 0 4 1 2 6 1 6 4 . 3 8 1 1 1 2 . 4

4 0 % 7 9 5 3 5 6 4 6 8 0 5 9 8 7 6 1 0 0 . 6 8 1 0 1 2 . 0

2 0 % 4 0 2 5 5 6 4 6 8 0 9 2 2 3 3 1 4 3 . 5 8 9 1 1 . 7
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CHAPTER 3

FUZZY CLUSTERING TECHNIQUES

3.1 Introduction

Fuzzy techniques have been successfully used for a variety o f clustering and classification 

problems [Bezdek, 1981, Dave, 1989, Dave and Patel 1990a, 1990b], They are based on 

objective function optimization techniques and generate a fuzzy partition of the data. The 

Fuzzy c-Means (FCM) algorithm [Bezdek, 1973] is one of the earliest fuzzy clustering 

methods proposed that is generally used to detect clusters of spherical shapes. It is the 

most widely used standard algorithm that might be changed to different variations by using 

different norm inducing matrices for distance measurement in it. The GK algorithm 

[Gustafson and Kessel, 1981] adopts a scheme where the norm inducing matrix is 

optimized. Bezdek et al [1981] generalized FCM by allowing the prototype to be linear 

manifolds of arbitrary and different dimensions. The Fuzzy c-Shells (FCS) algorithm 

[Dave et al, 1989, Dave, 1990] is a novel generalization of FCM that uses hyper-spherical 

shells as cluster prototypes. It has proved to be a great success as a method of detecting 

and representing circular sub-structure in two dimensional data-sets in digital images 

[Dave et al, 1990a, Dave, 1990], Based on the "shell" concept, a series of algorithms have 

been developed, such as Fuzzy Ellipsoidal-Shell Clustering algorithm [Dave et al, 1990b], 

Adaptive Fuzzy C-Shells Clustering algorithm [Dave and Bhaswan, 1992, Dave and Fu,

47
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1994], Fuzzy C Quadric Shells Clustering algorithm [Krishnapuram et al, 1992, Fu and 

Dave, 1993], etc..

Fuzzy clustering techniques partition a data point with membership values between 

0 and 1, and these values indicate the degrees to which a point belongs to different 

clusters. The clustering methods with hard memberships partition a point with only one of 

two values, either 0 or 1. In other words, a point can only be classified to one cluster. 

Certainly, the hard clustering method can be taken as a special case of the fuzzy method. 

Based on the numerical experiments, the use of fuzzy memberships is shown to have a 

distinct advantage over hard memberships for those clustering algorithms [Dave, 1990], 

The following discussion will focus on the fuzzy case except where indicated. In general, 

the fuzzy methods are found to be more reliable. The most of the proposed methods are 

used for 2-D image data. Here we present effective methods of 3-D object recognition 

from range images using fuzzy techniques.

3.2 Fuzzy C-Shells Clustering Algorithm

As earlier described, the prototype model and the definition of distance between a point 

and a prototype are two important factors for a clustering algorithm, so it is necessary to 

define them for the c-shells clustering methods before further discussion.

The spherical prototype and ellipsoidal prototype are two kinds of shell-like 

clusters. They can be characterized by the cluster centers. Since the spherical shell is a 

special case of ellipsoidal shell, where major radius and minor radius are equal, only a
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general /-dimensional hyper-ellipsoidal shell is defined as below [Dave and Bhaswan, 

1992],

Definition 1: The /th hyper-ellipsoidal shell prototype, p {, at center q: eSR')

is the set

P i  = {v e 9*'|(v- q t )T A i (v-  ? , )  = 1}, (3.1)

where At is a / x / symmetric positive definite matrix that accounts for the size,

eccentricity and orientation of the ellipsoid. When A t is a diagonal matrix with all 

diagonal elements being equal, the definition is applicable to hyper-spherical shells.

The definition of distance between a point and a shell cluster is given below.

Definition 2: The distance Dik between a point vk and a hyper-ellipsoidal shell p, 

is defined as

(A* Y = ([(v, -  q ,  Y  A ,  ( V ,  -  q, )]'12 - 1): (3.2)

The definition is also applicable to hyper-spherical shells when A t is a diagonal 

matrix with equal entries on diagonal.

As stated in chapter 1, an objective function can be formulated based on the 

defined prototype and the distances. Assume that V= {v,,v: ,...,vB} c9? ' is a set of n

feature vectors in the feature space, O = {qlyq2,...,q c} (zW 1 represents a set of shell

centers, and A  =  { A 1 , A : , . . . , A C }  indicates a set of / * /  symmetric positive definite
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matrices. Let uik be the grade of membership of feature point vk in cluster pn and 

U=[uik] is a c x n  matrix called the fuzzy partition matrix satisfying the following 

conditions:

uik e[0,l], i e{l,2,...,c},& e {l,2,...,n},

C

I X =1> * e { l , 2,
;=1

n

i e{l,2,...c}, (3.3)
*=i

For hard partitions, the only difference from above conditions is ulk e {0,1}.

Then the problem is to find c clusters as well as a c-partition of the n feature 

vectors by minimizing the following objective function:

A U ,Q ,A ) = ± Z ( u , kr (D ,ky-, (3.4)
;=! i-=i

where, we[l,co) is a weighting exponent called the fuzzifier. Minimization of the 

objective function subject to the necessary constraints yields the following equations.

For fuzzy memberships:

1/dd  / ,  = 0
0 / g / , ,  I k * 0  (3.5)
1 / e / „  / t * 0

c D —
where dd = ^ (—£-)m-', Ik = {/|i <i <c,Dik2 = 0}. 

i =  1 D j k

For hard memberships:

|0  / € /
* - 1 ,  * (3.6)
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where Ik = {i\Dlk = min(Z)a.,l < / < c)}. And the following equations about cluster centers 

q, and norm inducing matrices Ai are satisfied for either case of memberships:

Z(w,*)m: r ( v * - ? , ) = o ,  (3.7)
k= 1 a ik

(3.8)
k=\ a iic

where dik is defined as

(<** )2 = (v* - q , ) TM vk-q ,)-  (3.9)

Therefore, the solution to q, and A, can be obtained by simultaneously solving equations 

(3.7) and (3.8). For hyper-spherical shells, equation (3.9) becomes a scalar and provides 

radius information. Now, the fuzzy c-shells (FCS) algorithm can be summarized as below.

FCS Algorithm:

(1) Fix the number of clusters c and the exponent m, m e [l,x) and m = 1 for hard 

memberships. Initialize the fuzzy partition matrix U.

(2) Compute q, and A, by equations (3.7), (3.8) and other related equations.

(3) Update the fuzzy membership matrix U according to equation (3.5) or (3.6). If 

the fuzzy partition is stable, stop, otherwise, go to step (2).

3.3 Fuzzy C Quadric Shells Clustering Algorithm

Based on fuzzy c-shells clustering methods, the shell is extended to the quadric type and 

the corresponding c quadric shells clustering algorithm has been used in 2-D image data
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[Krishnapuram et al., 1992, Dave and Bhaswan, 1992], The following will discuss how to 

apply the Fuzzy C Quadric Shells clustering method to 3-D range data.

Generally, a quadric curved surface in 3-D space can be represented as

ape2 +a2y 2 +a2z 2 +apcy +asxz +aiy z+ a 1x+ azy+ a 9z+ a w = 0. (3.10)

Obviously, there are ten parameters for each surface, and nine of them are independent.

The hyper-spheres and hyper-ellipsoids are extreme cases of it. The definition for the

quadric prototype in 3-D space is given as below.

Definition 3: The rth quadric curved surface prototype in 3-D space is the set

p, = {v&yV\vTA y  + vTBl + C, =0}, (3.11)

where

vT =[x,y,z], (3.12)

and

an an /  V2 ai5 / V2
- an /  V2 ai2 ai6 /  -Jl 11OCf

______fs. >Ci ~ ano
_a1}/yj2 ai6/ S  an _ 1 'O L__

Equation (3.10) is different from the above defined prototype, where the constant 

V2 is introduced for simplifying the following derivation. Correspondingly, the distance 

from a point to a cluster can be defined as below.

Definition 4: The distance dtk between a point vk and a cluster p, is defined as

V * )2 = (.vlA,vt +vlB!+ C,)2. (3.14)
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The dik is an algebraic distance instead of an exact Euclidean distance.

Then, with the same assumptions as in the FCS method for fuzzifier m and fuzzy 

partition matrix U, the objective function to be minimized is

Rewrite it as

where

and

In equation (3.16),

where

and

» = 1  k= 1

r,r = [ O T ] ,

r , i  =  k  a ,2  a ,3 a ,s a . e \

=  \a n  a ts a i9 « , i o ] -

M t =
Ok R] 

l  R k S k j

O k — ° k ° k ’  S k — SlcSk > R k ~  Sk °k  >

° l  = [x; y; 4  V2xky k -Jlxkzk V2ytzt ],

sl  = [** yk zk i]-

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

Now, the objective function becomes
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JQ= ± ± M mr?M kT,. (3.23)
1=1 k=1

In order to avoid the trivial solution, we can use the following constraint 

[Krishnapuram et al., 1992]:

||r„|f = l. (3.24)

Let

G , = X ( « , r ^ ,  / / , = i ( w , r 5 ; , (3.25)
j = 1 > = 1  j=]

thereafter, the r y] and T,, can be obtained from the matrix (F  -G ,r //,“'G,). Let Emin be 

the eigenvector of the matrix associated with the smallest eigenvalue, then

r , , = H min, (3.26)

r,: = - / / ; 1G ,r1. (3.2?)

The memberships will still be updated using equation (3.5) for the fuzzy case or

(3.6) for the hard case, except that the distances are computed using equation (3.14). This

algorithm is summarized as:

FCQS Algorithm:

(1) Fix the number of clusters c and the exponent m, m e  [l,x) and m = 1 for

hard memberships. Initialize the fuzzy partition matrix U.

(2) Compute the parameter vector T, according to equations (3.26), (3.27) and 

other related equations.

(3) Update the fuzzy partition matrix U by equation (3.5) or (3.6). If the cluster

partition is stable, stop, otherwise, go to step (2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

3.4 The Improved Fuzzy C-Shells Clustering Algorithms

In the above FCQS algorithm, for quadric surfaces, the distance defined by Equation 

(3.14) is a kind of nonlinear algebraic distance instead of Euclidean distance. As an 

example in Figure 3.1, there are four points A(0,6), 5(0,4), C(2,0), Z)(6,0) and two ellipses 

E{. x2 / 1 6 + j 2 / 4  = 1 , ( x - 10)2 14+ y2 = 1 . The Euclidean distances DE and

the algebraic distances DA from these points to the two ellipses are respectively shown in 

Table 3.1.

.. B

E2

Figure 3.1 Two ellipses for the distance comparison

From Table 3.1, we have the following findings:

• The algebraic distance is not proportional to the Euclidean distance;

• The algebraic distance is sensitive to the location of point, such as the distances 

from B, C, D to ellipse £,;
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• The algebraic distance is different for different curves, such as the distances 

from point D to two ellipses.

Therefore, the memberships updated by the nonlinear distance are not very meaningful. 

Moreover, the nonlinear distances make the curve fitting rather sensitive to other curves in 

the data set, which might lead to unstable solutions [Krishnapuram et al, 1993],

Table 3.1 The Comparison Among Euclidean Distance, Algebraic Distance, and 
Approximate Distance for Figure 3.1.

Ellipse A
Point A B c D C D
A 4 2 2 2 6 2
A 8 *■» 0.75 1.25 15
A 2.67 1.5 3.0 1.67 3.75 1.5

In general, the distance defined by Equation (3.14) is nonlinear. But as a special 

case when the prototypes are planes, the model becomes a first-order polynomial function

Ax + By + Cz + D = 0, (3.28)

then the Euclidean distance from a point (x0,y 0,z0) to the plane prototype is

_ (Axr0 + By0 + Cz0 + D)~ 
A2 + B 2 +C2(A t)2 = — "T T T p i .' Aa » (3-29)

and the algebraic distance is

( A  )2 = (Axo + fyo + Cz0 + D f . (3.30)

Obviously, the algebraic distance becomes linear.

For the prototype with highly nonlinear algebraic distance, the FCQS method 

might not work well and a new algorithm using Euclidean distance might improve the 

clustering performance. Equation (2.16) gives the formula for the computation of
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Euclidean distance between a point and a quadric prototype in 3D space. It is necessary to 

point out that for simplicity, the Euclidean distance is only used to update the 

memberships and the parameters are still computed using the algebraic distance 

[Krishnapuram et al., 1992], The improved FCQS algorithm with exact distances can be 

described as:

The Improved FCQS Algorithm with Exact Distances:

(1) Fix the number of clusters c and the exponent m, m e  [l,oo) and m = 1 for 

hard memberships. Initialize the fuzzy partition matrix U.

(2) Compute the parameter vector T, according to equations (3.26), (3.27) and 

other related equations.

(3) Update the fuzzy partition matrix U by equation (3.5) or (3.6), where the 

distance is computed using Equation (2.16). If the cluster partition is stable, 

stop, otherwise, go to step (2).

Because the computation of Euclidean distance is very time consuming, it is suggested to 

use the regular FCQS method whenever possible. Fortunately, some approaches using 

approximate distance to replace exact distance have been performed [Taubin 1991, 

Haralick and Shapiro 1992], What interests us is the first-order approximation of the exact 

distance by which the approximate distance of a point from a surface can be represented 

as:
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where Vdlk is the gradient of the algebraic distance functional dik evaluated at point k. 

Undoubtedly, the approximate distance is still a kind of nonlinear distance. For the 

example shown in Figure 3.1, the approximate distances Dp between the four points and 

the two ellipses are computed according to Equation (3.31) and listed in Table 3.1, which 

clearly indicates the nonlinearity of approximate distance. Nevertheless, it can work well in 

various applications and its performance will be further investigated in Chapter 5.

Equation (3.31) brings a closed form of distance solution to our algorithms so the 

computation speed might be extremely raised, and correspondingly, the improved FCQS 

algorithm with approximate distances can be described as:

The Improved FCQS Algorithm with Approximate Distances:

(1) Fix the number of clusters c and the exponent m, m e [l, x) and m -  1 for 

hard memberships. Initialize the fuzzy partition matrix U.

(2) Compute the parameter vector T, according to equations (3.26), (3.27) and 

other related equations.

(3) Update the fuzzy partition matrix U by equation (3.5) or (3.6), where the 

distance is computed using Equation (3.31). If the cluster partition is stable, 

stop, otherwise, go to step (2).
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3.5 Experiments and Conclusions

The FCS algorithm has been widely used in various applications [Dave 1990, Dave and 

Patel 1990a, 1990b, Dave and Bhaswan 1992, etc.]. In what follows, some experiments 

for the FCQS method are presented.

The range image in Figure C.l contains four clusters with 19600 data points. 

Using ideal initial memberships, i.e., the memberships of a point are assigned as 1 to the 

right cluster and 0 to other clusters, the FCQS algorithm converges in one iteration when 

the fuzzifier m is 2. While the largest membership of a point to its right cluster is assigned 

as 0.7, the cluster partition becomes stable in 7 iterations when m = 5 and in 3 iterations 

when OT = 10, but does not work well when 777 = 2. Furthermore, when the largest 

membership of a point to its right cluster is assigned as 0.5, the cluster partition becomes 

stable in 6 iterations when m = 10, but the algorithm does not work well when m = 2 and 

777 = 5. To see the performance of the improved FCQS algorithm with exact distances, 

when the largest membership of a point to its right cluster is assigned as 0.7, the cluster 

partition becomes stable in 7 iterations when m = 5 and in 4 iterations when /??= 10, but 

algorithm does not work well when m = 2. Based on the experiments, the CPU time for 

one iteration is usually about 4 to 5 times of the time spent by the normal FCQS 

algorithm. However, it is necessary to point out that the method of Euclidean distance 

computation used here is based on the Lagrange multiplier technique and the routines 

from the MINPACK (see Appendix A for more details), the speed might be increased by 

other methods.
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For the image in Figure C.4 with 10% extra random noise points, while the largest 

membership of a point to its right cluster is assigned as 0.7, the FCQS algorithm may not 

be able to work well when m is a smaller number. When m is as large as 25, the FCQS 

method becomes convergent in 12 iterations and each iteration uses about 150 seconds on 

a SPARC 10 computer, whereas the improved FCQS algorithm with exact distances 

becomes stable in 17 iterations. For one iteration, the CPU time by the improved FCQS 

algorithm with exact distances is about 4 to 5 times of the time by the normal FCQS 

algorithm.

Similarly, we also tested the FCQS algorithm with approximate distances and 

found that it had the same level of computation speed as the FCQS algorithm with 

algebraic distances.

Through the experiments, we can see that the FCQS algorithm uses all the data 

information to compute the parameters for all clusters, the results can be very precise 

when the initial memberships are accurate enough. Its computation speed for an iteration 

is proportional to the number of points and the number of clusters, and the number of 

iterations mostly depends on the initial memberships and the characteristics of each cluster 

model. With different distance computation methods, the number of iterations needed is 

different but the FCQS with exact distances is more robust than other two methods. The 

major limitations of such kind of algorithms are that the number of clusters and a better 

initial membership matrix need to be given in advance, and their performance in noise 

images is poor. The later chapters will further investigate these issues.
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CHAPTER 4

NOISE PROBLEM WITH CLUSTERING TECHNIQUES

4.1 Introduction

Clustering techniques are used to identify components or data points belonging to 

different assemblies or different clusters. Many investigators have developed various 

clustering methods for different applications [Everitt, 1974, Jain and Dubes, 1988], Since 

clustering techniques deal with numerical problems, the related mathematical theory has 

been developed based on the various demands from practical applications and the different 

clustering methods have also emerged as an outgrowth of developments in related theory. 

As we know, noisy data is always mixed with original data, thus any potential method 

must be able to deal with noisy data.

To deal with noise problem, there are two kinds of methods. One is to identify the 

noisy data points and remove them before applying any clustering methods [Jain and 

Dubes, 1988], Here, the clustering methods do not have to deal with noise problem, but 

identifying noisy data may be extremely difficult. Weiss [1988] uses the maximum 

likelihood principle to separate the data of interest from random noise and then fits a 

single line to good data amongst noisy background. The technique has a disadvantage of 

becoming trapped at local minima. The other kind of methods are based on the clustering 

algorithms designed to deal with the noisy data points, namely, the algorithms by 

themselves can detect good clusters amongst noisy data. As an example, Jolion and
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Rosenfeld [1989] detect good clusters amongst noisy points by using a weighting method 

which assigns higher weights to the points belonging to the good clusters and lower 

weights to the noisy points, where the weight is proportional to the density of data points 

in its vicinity.

In chapter 3, Equation (3.3) shows us that for any point in the data, the sum of 

memberships for all clusters must be one even when that point is a noisy point. It would be 

more reasonable if the sum of memberships of a noisy point in all good clusters is less than 

one or even is zero. To solve this problem, Dave [1991] proposed a concept of'noise- 

prototype' that is presented as below.

Definition: Noise prototype is a universal entity such that it is always at the same 

distance from every point in the data-set. Let pn be the noise prototype and vk be 

the point in feature space. Then the noise prototype is such that the distance 

of point vk from pn, is

dnk = ¥ , Vk. (4.1)

This definition implies that all the points in the data-set are at the same distance 

from the noise cluster though it does not indicate what the distance y/ is. Applying this 

concept to the previously described fuzzy algorithms can create new noise fuzzy clustering 

methods that will be more effective for handling noisy data and outliers. The following 

sections will present Noise Fuzzy C-Shells (NFCS) clustering method and Noise Fuzzy C 

Quadric Shells (NFCQS) clustering method.
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4.2 Noise Fuzzy C-Shells Clustering Algorithm

Based on the concept of 'noise prototype,1 the FCS algorithm can be re-formulated by 

adding a noise cluster. Assume that there are c good clusters in the data-set, the extra 

(c + l)th cluster is a noise cluster. Then the objective function including the noise cluster is 

rewritten as:

This is the major difference between the FCS method and the NFCS method. With the 

constraint (4.4), a noisy point may be assigned a total membership close to zero in all 

good clusters. This obviously makes more sense.

Assume that the noise distance y/ is specified, the minimization of Jn brings up the 

following equations.

For fuzzy memberships:

c+1 n

J n(U,Q,A) = Z t M m(Dik)2, (4.2)
>=1 k=\

where the distances are defined as:

(4.3)

As to the fuzzy partition matrix, the constraint on the memberships becomes

c

(4.4)
1=1

1jdd / ,  = 0

uik = \ 0 /' g / t , /,. * 0 (4.5)

where dd = ^ ( — )m- \  h  = {ft ^ ' * c+ \,D ,2 = 0}.
;'=i ik
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For hard memberships:

(4.6)

where Ik = {i\Dlk = min(Dijt, l < / < c  + l)}. And the following equations about cluster 

centers qi and norm inducing matrices A, are satisfied for either case of memberships:

where / e{l,2,...,c}. Similarly as the FCS method, the solution to q, and A, can be 

obtained by simultaneously solving equations (4.7) and (4.8).

In the NFC S algorithm, the noise distance y/ is a critical parameter, which can be 

estimated as [Dave, 1991]:

where A is a multiplier used to obtain y/ from the average of distances.

Now, the Noise Fuzzy C-Shells (NFCS) algorithm can be summarized as below.

NFCS Algorithm:

(1) Fix the number of clusters c and the exponent m, m e [l,oo) and m = 1 for hard 

memberships. Set the initial X and initialize the fuzzy partition matrix U.

(2) Compute q, and At by equations (4.7), (4.8) and other related equations.

(4.7)

(4.8)

y/1 = X * (4.9)
nc
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(3) Calculate the distance using equation (4.3) and update the fuzzy membership 

matrix U according to equation (4.5) or (4.6). If the fuzzy partition is stable, 

stop, otherwise, go to step (2).

4.3 Noise Fuzzy C Quadric Shells Clustering Algorithm

Applying the concept of 'noise prototype' to the FCQS algorithm, a new algorithm called 

Noise Fuzzy C Quadric Shells (NFCQS) clustering method is created. Let the (c + l)th 

cluster be the noise cluster, the objective function is then rewritten as:

c+1 n

^ = Z Z ( « J " ( 4 ) 2 (4.10)
1=1 * = 1

where the distance is defined as:

, J k  € { 1 , 2 , e {1,2,...,c}2= , > , , /, t ,
I W  ; e { c  + l}

The equation (4.9) about noise distance is still suitable here. Using the same definitions as 

in the FCQS algorithm for parameter vector T, and matrix Mk, then the objective Sanction 

becomes

^ = Z Z ( “*)"r .r ^ * r . (412)
i=l k =1

Same as the FCQS method, the parameter vector T, can be computed by equations (3.26) 

and (3.27). As to the memberships, the constraints and updating equations for the NFCS 

method are applicable to the NFCQS algorithm here. The algorithm is described as below.
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NFCQS Algorithm:

(1) Fix the number of clusters c and the exponent m, m e [l,°o) and m = 1 for hard 

memberships. Set the initial k  and initialize the fuzzy partition matrix U.

(2) Compute the parameter vector T, according to equations (3.26), (3.27) and 

other related equations.

(3) Calculate the distance using equation (4.11) and update the fuzzy partition 

matrix U by equation (3.5) or (3.6). If the cluster partition is stable, stop, 

otherwise, go to step (2).

4.4 Experiment Results and Conclusions

To evaluate the performance of the NFCS algorithm, one example is presented here to 

detect the cluster prototypes in noise data. Figure D. 1 shows three circular clusters that 

are generated using random distribution of points centered around the prototypes listed in 

Table 4.1 plus some randomly added noise. The number of noisy points is about the same 

as the number of good points. The prototypes detected using the conventional FCS 

algorithm are shown in Figure D.2, and the prototypes detected using the NFCS technique 

are shown in Figure D.3. To be fair in comparison, very good initial estimates of the circle 

position and size were provided for both the algorithms. Results are even worse for the 

conventional FCS algorithm if random initialization is used. The numerical values of the 

detected prototypes are shown in Table 4.1. This example clearly shows that the NFCS 

method is robust against noise.
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As to the NFCQS algorithm, an example of the range image containing four 

clusters and 10% extra noise points in Figure C.4, which is used in Chapter 3, is presented 

here. As stated in Chapter 3, for the noise image, the detection results using the FCQS 

method are stable in 12 iterations when m -  25. While applying the NFCQS algorithm to 

the image with the same m value, the results become stable in 9 iterations. Therefore, the 

noise type algorithms might even increase converging speed.

Table 4.1 Numerical Results for the Example in Figure D. 1.
P r o t o t y p e

N o .

A c t u a l  V a l u e s C o m p u t e d  V a l u e s :  F C S C o m p u t e d  V a l u e s :  N F C S

C e n t e r  ( x . y ) R a d i u s C e n t e r  ( x . y ) R a d i u s C e n t e r  ( x , y ) R a d i u s

1 ( 4 1 . 7 . 1 5 8 . 4 ) 4 0 . 0 8 ( 6 8 . 9 . 1 3 6 . 8 ) 5 6 . 1 3 ( 4 3 . 8 . 1 5 7 . 3 ) 4 0 . 7 4

2 ( 1 4 5 . 9 . 1 8 4 . 5 ) 4 9 . 7 7 ( 1 4 5 . 9 , 1 8 4 . 1 ) 4 9 . 6 8 ( 1 4 5 . 8 . 1 8 4 . 0 ) 4 9 . 6 1

3 ( 1 8 6 . 6 . 1 0 9 . 6 ) 3 9 . 9 3 ( 1 8 8 . 7 . 9 9 . 0 ) 4 3 . 4 4 ( 1 8 7 . 1 . 1 0 6 . 3 ) 4 0 . 7 5

As a summary, the clustering algorithms combining the fuzzy c shell techniques 

and the concept of noise prototype possess better performance in images with noise, and 

might even result in faster convergence. Nevertheless, the number of clusters is still 

required to be known in advance, and better initialization of the partition matrix is required 

in some cases. Chapter 5 will present a novel algorithm to overcome these disadvantages.
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CHAPTER 5

INTEGRATED CLUSTERING METHOD

In the early chapters, the Hough transform based clustering methods as well as the fuzzy 

c-shells and the noise fuzzy c-shells clustering algorithms are investigated. Each kind of 

method has its advantages and disadvantages. Based on further analysis of these methods, 

in this chapter, we develop an integrated method such that their advantages could be 

combined and utilized, and their disadvantages might be avoided.

5.1 Analysis of Different Clustering Algorithms

Comparing with other Hough type clustering methods, the FRHT possesses the 

advantages of high detection speed, low storage requirement, and arbitrarily parameter 

precision. Our experience with the FRHT method indicates that the false iterations and the 

higher minimum number of points for a cluster are two main reasons that contribute to 

increase the computation load, especially for the cases of images with noise points. Here 

the false iteration means an iteration by which a right cluster can not be found. No matter 

if it is a true or a false iteration, the FRHT would calculate the distances between all the 

remaining points in the data set and a possible cluster. Since the exact distance 

computation is very time consuming, a false iteration would increase the computations. 

The higher minimum number of points for a cluster could make the detected clusters more 

reliable but might also increase the number of false iterations, whereas the lower minimum 

number could increase the detection speed but might create false clusters. So there is a 

trade off between the computation load and the precision of detection results.

68
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Furthermore, sometimes even with a higher threshold minimum number of points, the 

FRHT might not be able to detect all clusters.

For the fuzzy c-shells clustering algorithms and noise type algorithms, the 

computing time mainly depends on the number of distance computations that is 

proportional to the number of iterations, the number o f clusters and the total number of 

feature points. Assume that N Uer iterations is needed to obtain a stable membership matrix, 

then the total number of distance computations by the fuzzy c-shells clustering algorithms 

is

N ,u r  X tmm X nOC’ (5.1)

and the noise type algorithms generally need a few more computation than that. However, 

as indicated in Chapter 4, the noise type algorithms might need fewer iterations. Therefore 

in practice, they have the same level of computation load. The major difference between 

them is that the noise type methods might be able to treat noise points more properly. 

Through experiments, we found that the number of iterations was roughly proportional to 

the number of clusters for the fuzzy clustering methods. Therefore, the total number of 

distance computations is roughly proportional to the square of the number of clusters. It is 

not difficult to see that the number of distance computations will reduce quickly with the 

number of clusters reducing. However, as indicated in earlier chapters, for the fuzzy c- 

shells clustering algorithms and their noise type methods, the number of clusters and the 

good initial memberships have to be given in advance. As for the FRHT method, when an 

appropriate number of windows is selected, the number of random mappings is very small 

and the detection time mainly relies on the total number of distance computations that is
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proportional to the number of data points and the number of clusters. Assume that there 

are not any false iterations and each cluster contains the same number of points, then the 

total number of distance computations can be represented as

noc + 1
num x— - — . (5.2)

Equations (5.1) and (5.2) show us that the FRHT method generally has higher detection 

speed than the fuzzy clustering methods when they use same distance computation 

method. Unfortunately, the FRHT algorithm could not work well when the algebraic 

distance is used. Moreover, when the data set contains noise data points, the computing 

load and the false iterations will increase, and the FRHT method itself may not work well.

The above arguments can be summarized as follows: the FRHT method does not 

need the number of clusters and the initial memberships in advance, and possesses higher 

computation speed; the noise fuzzy c-shells algorithms can work fast and accurately with 

the noise data, especially when there is only one cluster. These features give us an 

opportunity to combine them into a novel clustering algorithm that could omit the initial 

conditions and achieve accurate and fast results. In the FRHT method, after the score 

value at a point in the accumulating binary tree reaches the threshold nt, it starts checking 

all the points whether they belong to the possible cluster. If the number of points 

belonging to a possible cluster is more than the predefined minimum number of points for 

a cluster, the possible cluster becomes a true cluster, otherwise, the possible cluster is a 

false one. In reality, due to the noise effect, a true cluster might be omitted because of a 

higher predefined minimum number of points for a cluster, and a false cluster might be 

obtained because of a lower predefined number. If the noise fuzzy c-shells clustering
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algorithm is applied here to refine and ascertain the results, it would reduce the false 

iterations and improve the reliability of results. Under such conditions, the problem for the 

noise fuzzy c-shells clustering methods becomes a simple one in which the data set 

contains only one cluster with good initial parameters. The next section will present the 

new algorithm in detail.

5.2 The Integrated Clustering Method

Upon the above discussion, it can be concluded that the novel integrated algorithm would 

greatly improve the performance of cluster detection. Figure 5.1 is the flow diagram of 

this algorithm and the details are described as following.

The only difference between Figure 2.1 and Figure 5.1 is that the later one has an 

extra block for refining results by applying the noise fuzzy clustering methods. To avoid 

the repeat, the description about most of the integrated algorithm is referred to the FRHT 

method in section 2.3 except what is presented below.

After a possible set of parameters is obtained, the threshold distance D, for the 

integrated method can be set as a greater value than that in the FRHT. With the greater 

threshold distance D„ more points could be collected to compose a new data set that 

would be used to refine the results by the NFCQS algorithm. Usually, the collected points 

in the new data set should be more than the minimum number of points for a cluster, 

otherwise, they should be returned to the original data set and another searching iteration 

begins. Because the new data set contains only one possible cluster and the parameters for 

the possible cluster are obtained by the previous step, the number of clusters for the
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NFCQS is one and the initial memberships can be calculated using the previously 

computed parameters. Therefore, the NFCQS algorithm is reformed for the new data set 

as below.

S e t  u p  t h e  in itia liz a t io n  f o r  F R H T  a n d  N F C Q S .

D iv id e  t h e  im a g e  in to  m u lt ip le  r e g io n s .

R a n d o m ly  p ic k  [n o p ]  p o in t s  f ro m  a  r e g io n .

C a lc u la te  c l u s t e r  p a r a m e te r s .

N o
A c c u m u la t e  p a r a m e te r s .

T h e  a c c u m u l a t e d  s c o r e  >  t h e  t h r e s h o ld ?

Y e s

N o C h e c k  t h e  a c c u m u l a t e d  r e s u l t s .
T h e  n u m b e r  o f  p o in t s  ly ing  o n  t h e  p o s s ib l e  c l u s t e r  >  

t h e  t h r e s h o ld  n u m b e r  o f  p o in t s ?

y  Y e s
N o A p p ly  t h e  n o i s e  ty p e  m e th o d  to  r e f in e  r e s u l t s .  

D o  t h e  r e f in e d  r e s u l t s  r e p r e s e n t  a  t r u e  c l u s t e r ?

Y e s

R e m o v e  t h e  p o in t s  b e lo n g in g  to  t h e  d e t e c t e d  c lu s te r .  
A re  all c l u s t e r s  d e t e c t e d  o r  

i s  t h e  r e m a in in g  n u m b e r  o f  p o in t s  l e s s  t h a n  th e  
m in im u m  n u m b e r  o f  p o in t s  f o r  a  c l u s t e r ?

N o

Yes

Figure 5.1 The Integrated Clustering Algorithm.
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NFCQS Algorithm for One Cluster:

(1) Fix the number of clusters c = 1 and the exponent m, m e [  l,oo) and m = 1 

for hard memberships. Set the initial X .

(2) Initialize the fuzzy partition matrix U by equation (3.5) or (3.6).

(3) Compute the parameter vector T, according to equations (3.26), (3.27) and 

other related equations.

(4) Calculate the distance using equation (4.11) and update the fuzzy partition 

matrix U by equation (3.5) or (3.6). If the cluster partition is stable, stop, 

otherwise, go to step (3).

As soon as the parameters are refined by the NFCQS method, they can be used to check 

how many points belong to the possible cluster among all the unclassified points, where 

the same threshold distance D, and the same minimum number of points for a cluster as in 

the FRHT method are used. Sometimes, as the initial cluster may only include partial true 

cluster as shown in Figure 5.2a, the refined results by the NFCQS may not include the 

complete true cluster yet, just as shown in Figure 5.2b. In this case, it is necessary to 

perform another NFCQS operation based on the last NFCQS results, which could be 

continued until the true cluster is found. Of course, to determine whether a true cluster is 

found in the algorithm, we can check the difference of number of points in the cluster 

between two consecutive NFCQS operations, and if the difference is negligible, the further 

operations are not necessary and the true clusters is found, otherwise, the further 

operations are needed. Normally, the number of points in a cluster increases with every
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further NFCQS operations, but it might even decrease in some situations. If the decrease 

is negligible, the true parameters are found and the process stops, otherwise, the search 

process should be discarded and a new FRHT searching process should be started.

Solid line: true cluster, center line: estimated cluster, dashed line: distance boundary.

Figure 5.2 The NFCQS Refines the Results. The two inner dashed lines are +I-D, 
boundaries around the estimated cluster, and the two outer dashed lines are the greater 
distance boundaries so more points could be collected for NFCQS. (a) Initial NFCQS 
process, (b) Further NFCQS process.

In Chapter 3, three different distance computation methods are discussed. While 

using algebraic distances and approximate distances, the NFCQS has same level of 

computation speed that is much faster than the speed when the exact distances are used. 

Experiments show that the NFCQS using algebraic distances works very well in many 

applications, especially when a better initial membership matrix is available and there is 

only one cluster in the data set. Therefore, while applying the NFCQS to refine the results 

by the FRHT method, we normally use algebraic distances by which detection would be 

faster.

(a) (b)
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When exact distances are used in the FRHT method, the nonlinear problem with 

distance computation is avoided but the computation speed is too slow and is not 

practical. Though the approximate distances are somewhat nonlinear as indicated in 

Chapter 3, they can work well in some circumstances, especially when the points are quite 

close to the boundary. Some efforts have been conducted on this issue [Taubin 1991, 

Keren et al. 1994], Hence, we usually use the approximate distances in the FRHT.

It seems that the new integrated method increases the computation load as it 

calculates the distances at least twice, which are right before and after applying the 

NFCQS algorithm respectively. On the other hand, the integrated method greatly reduces 

the false iterations through use of the NFCQS algorithm, especially for the noisy data sets. 

Moreover, the new method is a more reliable clustering technique that can achieve more 

accurate results and detect the clusters omitted by other methods. Its performance is 

presented in the following section.

5.3 Experiments and Results

In what is presented below, the algebraic distances are used for the NFCQS iterations 

execpt where indicated, and as for the FRHT method and the FRHT process in the 

integrated method, we use both exact distances and approximate distances.

While using the FRHT method, we found that sometimes it was sensitive to the 

choice of the number of regions, and sometimes it did not work well for the noise images. 

Figure E.l is the detection result of the image in Figure C.5 by the FRHT method using 

3x3 regions. Each cluster is displayed with a different gray value. With a SPARC 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

Station, the CPU time spent for the detection is 339.7 seconds while the exact distances 

are used. There are five clusters in Figure E.l, which are listed in Table 5.1. From the 

table, we can see the parameters of clusters 4 and 5 are very close as they actually belong 

to one cluster. Applying the integrated algorithm to the same image with the same initial 

conditions, we can obtain the graph results as shown in Figure E.2 and the parameter 

results as listed in Table 5.2. There are four clusters which are in a close match with the 

original image. However, due to the extra Euclidean distance computations performed for 

the huge amount of points, the CPU time spent by the integrated algorithm is 570.4 

seconds, which is more than the time used by the FRHT method.

As stated in Chapter 2, the image in Figure C.5 is generated by randomly adding 

some noise points to a non-noise image. The simplified noise image in Figure C. 11 is 

generated by shifting the original points within a limited distance. For this image, the 

FRHT method works but with a slow computation speed, as discussed in Chapter 2. 

Applying the integrated clustering algorithm to it with the same initial conditions, we 

obtain the graph results as shown in Figure E.3 and the parameter results as listed in Table 

5.3. The CPU time used for the detection is 49.9 seconds that is less than 146.2 seconds, 

the time spent by the normal FRHT method, where the exact distances are used for both 

FRHT processes. Therefore, the integrated clustering algorithm can improve the clustering 

results and sometimes can even increase the computation speed.

What is presented above are the examples from the artificial generated data 

images. The following will show the clustering ability of the integrated algorithm for real, 

practical range images. Figure E.4 shows a range image generated by adding some noise

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



77

points to an image containing two real images, one cylinder and one sphere, which are 

obtained from the Michigan State University. The total number of points is 16225. The 

results by the FRHT method are detected in 198.6 seconds and displayed in Figure E.5 in 

which some points on the sphere are not identified, whereas the results by the integrated 

clustering algorithm are detected in 348.4 seconds and displayed in Figure E.6 in which 

the two clusters look in a better match with the original data image.

Figure C.13 shows an artificially generated image of 200x200 pixels, with three 

clusters, one sphere, one cylinder, and one frustum of a cone. There are 4062 points in the 

image. While the depth values are recorded in floating numbers, the regular FRHT method 

can easily detect all clusters as shown in Figure C.14. While the depth values are integers, 

the maximum distance error for a point to its right cluster surface becomes one unit of 

length and the FRHT method does not work well. In this case, since the radius of the 

cylinder is only 17 units of length, the image can be considered as a coarse or noisy one 

that is shown in Figure E.7. The integrated algorithm can detect all three clusters in 24.3 

seconds and the results are shown in Figure E.8.

Figure E.9 is a more complicated image containing five clusters, one plane surface, 

one cylinder, one cone, one sphere and one ellipsoid. There are 11038 points in the image 

and the depth values are recorded in integer numbers. We performed a series of 

experiments using the integrated clustering algorithm for it.

First, with the approximate distances in FRHT process and the algebraic distances 

in NFCQS process, the integrated clustering algorithm detected all five clusters as shown 

in Figure E.10 in 77.8 seconds on a Sparc 10 Station, where the image was divided into
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4x4 regions, the minimum number of points for a cluster was set as 9% of the total 

number of points and the distance threshold was 1.0 unit. The multiple NFCQS processes 

were used and Figure E .ll shows how the cone cluster is refined by NFCQS. Figure 

E.l la shows the result of cone cluster by FRHT, E. 1 lb and c are two intermediate results, 

and E. 1 Id is the final result using NFCQS.

When 50% of total number of points was randomly sampled before the integrated 

algorithm was applied, the CPU time became 29.2 seconds that is less than the time used 

by the 100% original data image. However, the CPU time does not seem to be directly 

proportional to the number of points. Further observing the clustering procedure, we 

found that the 100% image used 18 NFCQS processes and performed 12638 times of 

mappings, and the 50% image used 14 NFCQS processes and performed 6134 times of 

mappings. Moreover, the NFCQS process usually needs more iterations when there are 

more points being processed. Nevertheless, the more points are taken into process, the 

more precise the results are. In this example, 1.94% amount of points were missed out for 

the 50% image and 1.51% amount of points were missed out for the 100% image.

We also used this data set to test the integrated algorithm with exact distances in 

the FRHT operations. The CPU time was 1326.7 seconds that was much more than the 

time in above experiments, but the result was more precise and only 0.00453% amount of 

points were missed out.

For the range image clustering problem, Krishnapuram et al. [1993b] propose the 

Unsupervised Quadric Surface Fitting (UQSF) algorithm. In the algorithm, the range 

image is first sampled so that the number of points to be processed is reduced. Then a
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planar approximation of the data is obtained by the Compatible Cluster Merging 

algorithm. In the next step, the neighboring planes are merged to produce quadric surfaces 

by the Quadric Compatible Cluster Merging algorithm. Then the Possibilistic C Plano- 

Quadric Shells algorithm is used with all data points to refine the results. Because the 

intensive computation has to be conducted for all points iteratively in each step of the 

algorithm, the algorithm might be time consuming. As an example, for a 200x200 image 

with three or four clusters, the authors stated that the CPU time spent by the algorithm on 

a SPARC 1 Station was between 30 to 60 minutes. In order to compare the computation 

speed between the Unsupervised Quadric Surface Fitting algorithm and the integrated 

clustering algorithm, the range image in Figure E.12 with three clusters is used for the 

experiment. It is a computer generated range image for a lamp, its depth values are 

recorded with integers and the total number of points is 13065. The CPU time spent by 

the integrated algorithm on a SPARC 10 Station is only 45.4 seconds that is roughly equal 

to 450 seconds on a SPARC 1 Station if we assume that Sparc 10 is ten times as fast as 

Sparc 1. The results are shown as in Figure E.13. It is noted here that the integrated 

algorithm uses all the points while the Unsupervised Quadric Surface Fitting algorithm 

uses only 20% of the points. If 50% of total number of points is randomly sampled before 

the integrated algorithm is applied, the CPU time becomes 38.5 seconds. Therefore, the 

integrated clustering algorithm possesses faster computation speed than the UQSF 

algorithm. Since the UQSF algorithm is based on first fitting planes, it is easy to do so for 

the shapes like cylinders and cones. But it may not work well for examples like Figure 

C. 1, because each cluster may require too many planes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

A common disadvantage of most clustering algorithms is that the number of 

clusters needs to be decided in advance. The integrated clustering algorithm proposed in 

this chapter combines the advantages of the FRHT method and the NFCQS algorithm to 

form a robust clustering algorithm with which the number of clusters is not necessary to 

be determined in advance, the detection accuracy will be improved and the computation 

speed might even be increased. It is particularly suitable for the images containing noise 

points or outliers. This algorithm can be easily extended to other situations.

Table 5.1 The Numerical Results of the Image Shown in Figure C.5 by the FRHT Method 
with 3x3 Regions.__________________________________________________________
C l u s t e r " , a , * 3 a, " s * 6 o, ct9 a \o
1 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 5 5 . 0 0 0 3 1.0000 6 8 . 2 2 7

2 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 3 0 . 0 1.0000 1 8 . 2 2 3

3 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1.0000 - 4 . 0 0 0

4 0 . 0 5 5 6 0 . 1 2 4 4 0 . 0 0 . 0 0 . 0 0 . 0 - 2 . 2 1 8 - 0 . 0 0 8 1.0000 1 8 . 1 4 7

5 0 . 0 5 5 6 0 . 1 2 5 2 0 . 0 0 . 0 0 . 0 0 . 0 - 2 . 2 2 4 - 0 . 0 0 3 1.0000 1 8 . 2 4 7

Table 5.2 The Numerical Results of the Image Shown in Figure C.5 by the Integrated 
Clustering Method._________________________________________________________
C l u s t e r o, * 3 a $ On Og ° 9 a ]()
1 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 2 4 . 9 9 9 9 1 . 0 0 0 0 6 8 . 2 2 1

2 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 2 2 6 0 . 0 1 . 0 0 0 0 1 8 . 2 2 6

3 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 0 0 0 - 4 . 0 0 0

4 0 . 0 5 5 6 0 . 1 2 5 2 0 . 0 0 . 0 0 . 0 0 . 0 - 2 . 2 2 2 0 . 0 1 . 0 0 0 0 1 8 . 2 2 2

Table 5.3 The Numerical Results of the Image Shown in Figure C .ll by the Integrated 
Clustering Method._________________________________________________________
C l u s t e r a , a , * 3 o4 O f o6 Oy a g o9 O]o
1 0 . 0 5 5 4 0 . 1 2 4 8 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 1 5 1 4 . 9 9 2 7 1 . 0 0 0 0 6 8 . 0 8 8

2 0 . 0 5 5 2 0 . 1 2 4 9 0 . 0 0 . 0 0 . 0 0 . 0 2 . 2 1 0 1 0 . 0 1 . 0 0 0 0 1 8 . 1 1 3

3 0 . 0 5 5 3 0 . 1 2 4 8 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 . 0 0 2 0 0 . 0 0 1 1 1 . 0 0 0 0 - 3 . 9 9 3

4 0 . 0 5 5 6 0 . 1 2 5 0 0 . 0 0 . 0 0 . 0 0 . 0 - 2 . 2 2 4 0 . 0 0 1 8 1 . 0 0 0 0 1 8 . 2 5 1
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CHAPTER 6

CLUSTER VALIDITY

6.1 Introduction

Clustering techniques are very important tools for data analysis and pattern recognition. 

To confirm or ascertain the clustering results, many clustering validity criteria have been 

developed [Dubes and Jain 1979, Dave et al. 1990, Dave 1991b, Brailovsky 1991, 

Krishnapuram et al. 1993b, etc.]. Normally, the data is checked for clustering tendency 

before further clustering. Only if the data tends to be non-random a cluster structure is 

imposed by clustering algorithms. Hence, the clustering validity includes two aspects, one 

is whether the data is valid or the points are valid, the other is whether the structure or 

model is suitable for the data [Dubes and Jain 1979], The following refers them as data 

validity and cluster validity respectively.

The pattern matrix and the proximity matrix can be used to record and analyze the 

features of data that might lead to the data validity measurement. In a pattern matrix each 

pattern is described by a set of measurements or features. Whereas in a proximity matrix 

each row or column represents a pattern. The entries are index values of similarity or 

dissimilarity. However, sometimes it is very difficult or even impossible to check the data 

validity, such as the image data without prior information. The cluster validity is a step 

right after the model is obtained and is an important tool to ascertain or deny the imposed 

structure or model of the data. The following will mainly discuss the cluster validity.
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6.2 Cluster Validity

The cluster validity measuring methods are categorized as global validity measures and 

individual validity measures [Dave et al. 1990a, Dave 1991b, Krishnapuram et al. 1993b], 

The global validity measures are used to judge the overall partition of the data set into all 

clusters. The individual validity measures are used to evaluate the goodness of a particular 

cluster.

6.2.1 Global Validity and Individual Validity

With the fuzzy clustering algorithms, all data points are assigned fuzzy partitions against 

all clusters. The amount of fuzziness usually reflects uncertainty. The data points with the 

greater memberships possess the less uncertainty associated with their classification. From 

the membership updating methods, we can see that the distances between different clusters 

do affect the uncertainty. Therefore, the data points within well separated clusters have 

greater memberships to their clusters and possess less uncertainty. The goal of global 

validity measures is to find a criterion to measure the classification uncertainty. Various 

measures have been proposed, such as the partition coefficient [Bezdek 1974], the fuzzy 

set decomposition measure [Backer and Jain 1981], the classification entropy [Bezdek 

1981], the proportion exponent [Windham 1981], and the polarization degree [Dimitrescu 

1988], Since these measures are based solely on the fuzzy partition matrix, they lack direct 

connection to the geometric properties of the clusters and they do not work well in the 

case of shell type clusters [Dave 1991b, Krishnapuram et al. 1993b], Some measures 

include the nature of the geometry of the data set, such as the sum-of-squared-errors
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criterion [Thorndike 1953], the related-minimum-variance criterion [Duda and Hart 1973], 

the figure of merit [Hoffman and Jain 1987] and the hypervolume and density criterion 

[Gath and Geva 1989], However, these measures are used to deal with the compact or 

filled clusters.

For the shell type clusters, Dave [1991b] introduced a measure based on the 

hypervolume and partition density for the case of spherical and elliptical shells. It is 

generalized to the general shell types as the following [Krishnapuram et al, 1993b],

Using the same terminology defined in Chapter 3, the fuzzy shell covariance matrix 

can be defined as

t/ C s 'tI] < 1 . The total shell hypervolume Vs and shell partition density Ds may be 

defined as

(6 . 1)

where r  . is the distance vector from a point v; to a shell prototype p , , and

n

( 6 .2)

The shell hypervolume of a cluster can be defined as

(6.3)

The shell density of a cluster may be defined as

(6.4)

where 5, is the sum of close members of shell p , given by S, = X w,; such that
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r , = 5 X  - <6-5)i=i

Ds = ZDSr (6 .6)
1=1

Dave et al. [1990a] also introduces T, the thickness of a spherical shell to measure the 

global validity,

T = ^ J z l ---------    > (67)

l L n ] / c
j=i

where c, and rt represent the center and the radius of a cluster respectively. Krishnapuram 

et al. [1992 and 1993c] propose similar measures. The fuzzy average shell thickness of a 

cluster is defined as:

j's=7j-Z(»,)iKr. (6.8)
iy> ;=i

Then the total fuzzy average shell thickness Ts is defined as:

Ts = i T Si. (6.9)
1=1

The global validity measures are used to evaluate the overall partition of the data 

set, which is very time consuming and is not guaranteed to work well for noisy or complex 

data sets.

The individual validity measures are used to ascertain or deny the results for a 

single cluster, and are therefore computationally more efficient. The previously defined 

measures, such as the shell hypervolume of a cluster in (6.2), the shell density of a cluster 

in (6.3) and the fuzzy average shell thickness in (6.7), may be used to measure the
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individual validity for shell clusters. Their reliability will be tested and compared in the 

later experiment.

6.2.2 Surface Density

In fact, the shell clusters lie in the subspaces of feature space. A more appropriate validity 

measure for such subspace clusters should take into account the density of the cluster. The

following surface density criterion [Krishnapuram et al, 1993b] is a valuable validity

measure for shell clusters that is related to the density of the cluster.

The surface density criterion measures the number of points per unit curve length 

or surface area instead of the number of points per unit shell volume, which takes into 

account the fact that shell clusters are subspace clusters. In the two-dimensional case, the 

surface density <5, of cluster p i is defined as the number of points per unit estimated arc 

length:

< 5 , = - ^ -  . (6.10a)
2nrcffi

In the three-dimensional case,

■ <610b)effi

In (6.10a) and (6.10b), S, is the sum of central members defined as

= J  -  {̂ |1 ^  k < | < r max}, (6.11)
ji j

and r max is the threshold distance, only the points that do not lie too far from the shell 

are counted. In Equations (6.10a) and (6.10b), regi is the effective radius of shell cluster p,
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defined as

r„# =V 7>(C ,),  (6.12)

where C, is the covariance matrix of cluster p,, which is different than the fuzzy shell 

covariance matrix CSj in (6.1) for shell clusters.

Assume that the circular arc in two-dimensional space is perfect and continuous, 

the theoretical value of surface density for the arc can be derived as [Krishnapuram et al. 

1993b]

 i ' , (6-13)
2

where y  is the angle of the arc. Equation (6.13) indicates that Sarc is independent of 

radius of the arc. Using (6.13), the theoretical value of surface density for a complete 

circle, a semi-circle and a quarter circle can be obtained respectively as 1.0, 0.65 and 0.57.

Hence, in order to make surface density invariant to partiality, a compensation factor is

introduced as [Krishnapuram et al. 1993b]

1.74 -  0.172 x ( y -  -  0.44) y  e [0,0.44)
T T

/„  =(1.54-0.594 x ( - ^ - 0.77) y  e [0.44,0.77) (6.14)

1.0- 2.34 x (— -1.0) — e [0.77,1.0] 
r r

T T
where —  can be computed before the computation of cluster validity. Actually, —  can

be taken as a measure of partiality for circular clusters. Its value indicates the partiality, 

and for a complete circle, the value is 1.0.
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After the scaling factor is introduced, the surface density for a circular arc becomes

< C = / /  ■ (615)

The above discussed surface density criterion is for measuring the individual validity, but it 

can also be used as a global validity measure to evaluate the overall partitions when the 

surface densities for all clusters are summed up.

However, this measure is more suitable when it is expected that circle boundaries 

in an image is one pixel thick and more or less continuous. It can not distinguish between 

the following two cases shown in Figure 6.1. The next section will propose a new measure 

handling this problem.

Figure 6.1 Two Circles with Different Distributions of Points.

6.3 A New Validity Criterion for Circular Clusters

In practical applications, the points on a circular cluster are not always distributed equally 

along its circumference due to  various reasons, and the circular images might not be
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perfect and continuous. As a common sense, a partial circle should possess a smaller 

validity value than a complete one, and a circle with uneven-distributed points should have 

a smaller validity value than a circle with well-distributed points. The following will 

propose a new validity criterion to numerically evaluate the circular images.

6.3.1 Eccentricity

Before further discussion, it is necessary to introduce the concept of average mass 

center that is defined as:

where Cm is the vector of average mass center of n points, v and wt are respectively the 

vector and the weight factor of /th point.

As we know, a complete circle is a symmetrical shape, and its geometrical center 

and its average mass center should coincide. On the contrary, the geometrical center and 

the average mass center for an incomplete circle might not coincide. Hence, the difference 

between both centers might be used as a parameter to measure how complete a circle is. 

Based on this idea, a concept of eccentricity is given as below.

Eccentricity: The eccentricity of a circle, Ec is defined as:

n

C. (6.16)m n

(6.17)
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where Dc represents the distance between the geometrical center and the average

mass center of the circle, and R  is the radius.

Generally, the eccentricity is a value between 0 and 1 for a circular shape if all 

points are located on the circular arc. Using this definition, a few examples, such as a 

complete circle, a half circle and a quarter circle, are listed in Table 6.1. The eccentricity 

values show us how symmetrical the circles are to their geometrical centers.

6.3.2 Distribution Measurement

Usually, the points on a circular image are unevenly distributed along its arc, 

namely, there are more points on some arc sections but fewer points or even none on 

other sections. If there are same number of points on two circles, the circle with well- 

distributed points should be considered as a better cluster than the one with uneven- 

distributed points. A measurement of distribution is proposed as the following.

Divide the circle equally into N s sections, and find the average number of points in 

each section, by

n' * = j r -  (618)3

Then check every section in turn to see how many points it contains. If the number of 

points is more than the average number of points on a section, the section is counted as a 

valid section. After all sections are checked over, the number of valid sections, Nrs is 

obtained. As the last step, the distribution measure IT is computed by
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(6.19)

To sum up, the method of distribution measure computation is briefly summarized 

as below.

(1) Divide the circle into Ns sections and find the average number of points on 

each section »M by (6.18);

(2) Count the number of valid sections N vs;

(3) Compute the distribution n  by (6.19).

It is easy to see that the distribution is also a value between 0 and 1. The results for a few 

examples are listed in Table 6.1, which shows their distribution measures.

6.3.3 Valid Points and Valid Density

The above defined concepts of eccentricity and distribution can denote different aspects of 

the circle validity. A synthesized parameter, valid points V is defined as

which reasonably reflects the effects of eccentricity and distribution. However, it can not 

exactly represent the validity as it is affected mostly by the total number of points, in other 

words, it should be related with the number of points per unit arc. The following proposed 

valid density, Vd is defined to meet the requirement.

Vp = nYl{\-E c) , (6 .20)
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Definition: The valid density of a circle is the valid points per unit arc that can be 

represented as

■ ( 6 2 , )

From the above definition, we can see that a smaller circle has a bigger valid density value 

than a bigger circle when they contain the same number of points, which makes the 

criterion fair. Nevertheless, it should be pointed out that the valid points Vp and the 

valid density Vd might not be integers. Table 6.1 shows a few examples.

6.3.4 Conclusions

The above discussion is based on the case that all points are located right on the circular 

arc. Unfortunately, some of points might not lie on it in practical images. In that case, it is 

suggested to merely compute the valid density using those points that do not lie too far 

from the arc. Such requirement is comparable to use of “central members” by other 

validity measures.

Sometimes, a circular image becomes incomplete due to camera position or frame 

position, such as the edge images of the spheres located close to image frame edge in 

Figure 1.1. It might not be fair to these circles if the same method as in Equation (6.20) is 

used to compute their valid densities. It is necessary to compensate the valid density for 

these circles as below.

First it is needed to count Nbs, the number of blank sections that do not contain
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any points. Then the amended valid density Vd' is obtained by

K ' =  J T 1   • (6-22)

s

A few examples are listed in Table 6.1, which indicate the effect of the amended method. 

From the table, we can see that with the same amount of points, the complete circle with 

radius 7?=10 has the same amended valid density as the half circle with radius R=20.

For those examples in Table 6.1, where all points are exactly located on the 

boundary and have hard memberships, the measures of shell hypervolume, shell density 

and shell thickness become meaningless. The validity values of surface density for those 

examples are calculated and listed in Table 6.1. From the table, we can see that the surface 

density is independent of radius and number of points, i.e., the same type of circles has the 

same value of surface density no matter what their radii and number of points are. The 

amended surface density is one for all shapes. While applying the valid density measure, 

we can identify them by different values, for instance, with the same radius and number of 

points, a complete circle has a greater validity value than a half circle and a half circle has 

a greater validity value than a quarter circle; with the same radius and shape, a circle with 

more points has a greater validity value than the one with fewer points. After the amended 

valid density measure is applied, the clusters with the same radius and actual distribution 

of points have a same validity value, for example, a half circle with 360 points has the 

same validity value as the complete circle with 720 points when both of them have the 

same radius. Therefore, the valid density measure is more reasonable measure considering 

the distribution situation and the eccentricity of a circular cluster.
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In Chapter 7, a practical example is used to demonstrate the applicability of 

different validity criteria presented here. Though the criteria proposed here only focus on 

the circular shapes, they can be extended to other two-dimensional shapes and three- 

dimensional shapes, which is the future work.

Table 6.1 The Examples for Valid Density Criterion (N s = 36, and all points are well- 
distributed on the specific arc section).__________________________________________
Circle Complete Half Quarter

n 3 6 0 3 6 0 7 2 0 3 6 0 3 6 0 7 2 0 3 6 0 3 6 0 7 2 0

R 1 0 2 0 2 0 1 0 2 0 2 0 1 0 2 0 2 0

Ec 0.000 0.000 0.000 0 . 6 4 0 . 6 4 0 . 6 4 0 . 9 0 . 9 0 . 9

n 1.000 1.000 1.000 0 . 5 0 0 0 . 5 0 0 0 . 5 0 0 0 . 2 5 0 0 . 2 5 0 0 . 2 5 0

v P 3 6 0 3 6 0 7 2 0 6 4 . 8 6 4 . 8 1 2 9 . 6 9 9 1 8

Vd 5 . 7 3 2 . 8 6 5 . 7 3 1 . 0 4 0 . 5 2 1 . 0 4 0 . 1 4 0 . 0 7 0 . 1 4

Vd' 5 . 7 3 2 . 8 6 5 . 7 3 1 1 . 4 6 5 . 7 3 1 1 . 4 6 2 2 . 9 2 1 1 . 4 6 2 2 . 9 2

8 1 .0 1 .0 1 .0 0 . 6 5 0 . 6 5 0 . 6 5 0 . 5 7 0 . 5 7 0 . 5 7

8 ' 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0
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CHAPTER 7

PRACTICAL APPLICATION TO THE GRANULAR FLOW RESEARCH

7.1 Introduction

Motion analysis using vision based methods has found many practical applications in a 

variety of engineering problems, ranging from automatic target detection for defense, to 

human motion analysis in human factor and bio-mechanical engineering. Recently, there 

has been a considerable increase in the use of such techniques for experimental studies in 

multi-phase flows [Ghidaglia et al. 1993, Hsiau and Hunt 1993, Krishnan et al. 1992, Li et 

al. 1992], These applications include measurement of velocity fields, measuring flow 

patterns, describing the flow structure (including micro-structure of particles), and finding 

velocity distribution of the particles. In general, the image analysis is based on simple 

techniques such as binary image analysis, histogram analysis of gray level images, or 

template matching techniques [Ghidaglia et al. 1993, Hsiau and Hunt 1993, Krishnan et al. 

1992, Li et al. 1992], As the applications are becoming more complex, accurate shape 

detection in relatively low resolution, noisy images is required for obtaining meaningful 

results [Hanes 1993, Dave et al. 1993]. In such situations, simpler approaches such as 

binary image analysis do not work well. As a consequence, the task of image processing, 

which was once considered a simple exercise, requires considerable amount of research 

and/or development.
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7.2 Physical Experiment

The physical experiment used as an example here comes from the experimental studies of 

granular flows. Research in that field is relevant to many areas, such as industrial solids 

handling, plastics processing, pharmaceuticals, and natural granular flows such as 

avalanches and land-slides. Lack of reliable theories has led to numerous experimental 

investigations [Dave et al. 1993, Foerster et al. 1994, Ghidaglia et al. 1993, Hanes 1993, 

Hsiau and Hunt 1993, Li et al. 1992, Yu 1993], from which an example is drawn here. 

The experiment involves measurement of particle configurations in inclined chute flows 

[Hanes 1993], or random packing of the spheres [Rosato 1993], It is described below with 

the details of image analysis requirements.

Locating and tracking individual particles is often the main objective of many 

experimental studies in granular flows. If the image quality is good and the scene is not 

too complex, simple binary analysis or gray level template matching techniques can be 

used successfully. Unfortunately, many times the image quality may not be good, and the 

patterns may be only partially visible. An example of closely packed spheres is shown in 

Figure 1.1, where the objective is to locate as many spheres as possible, with reasonable 

accuracy. This task requires that the method used is, a) fast since there are many spheres 

to be detected, and b) reliable for detecting even partially visible spheres.

7.3 Divide and Conquer-Noise FCS Algorithm and Its Application

Consider a practical application, where an image of 256 x 256 contains circular shapes of 

diameters ranging from 10 to 60 pixels. For an accurate location of the shapes, detecting
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centers to within one pixel may not be enough. However, even for just one pixel accuracy 

in computing centers as well as radii, a three dimensional array of 256 x 256 x 60 may be 

required by the conventional HT method. For a sub-pixel accuracy the array would be 

even larger. As the size of array goes up, so do computations, both in terms of filling the 

accumulator and then searching for the peaks. An interesting variation of the HT, called 

the Adaptive Hough Transform (AHT) [Illingworth and Kittler 1987], may be used where 

the resolution is varied from coarse to fine to achieve higher accuracy without using a very 

large accumulator array. In theory, one can achieve a very fine resolution and hence high 

accuracy in object location using this approach. However, in practice, the results are not 

always as promising.

For the application considered here, the basic HT method was applied without the 

use of gradients, and the HT method similar to the one in [Kimme et al. 1975] was applied 

with the use of gradients. In either case, it was observed that the method required a large 

number of computations to achieve a reasonable level of accuracy. On the other hand, if 

only a rough estimate of the centers is required then either method is reliable and very 

quick.

As discussed in Chapter 4, the noise FCS algorithm is robust against noise but needs 

good initial fuzzy partitions for all data points. The following will propose an integrated 

algorithm that uses HT method to obtain good initialization for the noise FCS algorithm, 

which is called Divide and Conquer-Noise FCS (D&C-NFCS) algorithm.
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7.3.1 The Algorithm

The proposed algorithm is based on obtaining approximate results using the HT method 

and then using that information in noise FCS (NFCS) algorithm. Our experience with 

using HT with a coarse resolution suggests that one can successfully locate most of the 

nearly circular shapes in the data. When edge gradient information is not available, the 

circle is parameterized by center coordinates (a,b), and radius r  using the following 

equation

( x - a f + ( y - b ) 2 =r- (7.1)

and a three dimensional accumulator array. The resolution of the array is chosen such that 

each parameter is resolved to an accuracy about six pixels. Thus the accumulator array is 

coarse corresponding to the accuracy of six pixels as compared to the “fine” array 

corresponding to 1/4 pixel required accuracy. All the significant peaks above a certain 

threshold, which is chosen based on available prior knowledge and keeping in mind the 

possibility of partial shapes, are detected. For each peak, the set of parameters (a,b,r) are 

used to select all the points within a small neighborhood of the circle of radius r centered 

at (a,b). This set of points are then processed using NFCS algorithm with radius r and 

center (a,b) used as initial known parameters for the iterative algorithm to detect a single 

cluster. It should be noted that even the elliptical shapes are detected using this approach 

without having to use expensive HT technique for ellipse detection, which is discussed by 

Dave and Bhaswan [1992],

When edge gradient information is available, we employ a scheme similar to the one 

in [Kimme et al. 1975], The circle detection is done in two passes. In the first pass, centers
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are detected using a two dimensional array, where the accumulation is done by varying 

radius r over the expected range, and then computing (a,b) using the following equations.

fa  = x  + (sigri)r cos 49 
[b = y  + (sigri)rsm<p

Here <p is the gradient angle returned by the edge operator, and the sign is set to either + 

or - depending on the intensity transition across the edge, i.e. whether one crosses from 

higher to lower or lower to higher intensity as one goes away from the circular object. For 

the second pass, for each peak of the first pass, only a one dimensional accumulator array 

is used and by fixing (a,b), values for r are accumulated. In situations where all the 

objects to be detected have about the same radius, as is the case for the second physical 

experiment, this method becomes easier, as the second pass is not required. For this 

method also, the resolution of the accumulator is coarse. Using either of .the above HT 

methods, one can obtain rough estimates of (a,b) and r. Since good estimates for the 

center and radius are available, the NFCS algorithm stated in Chapter 4 becomes quite 

simple, in which the number of clusters is set as one, and the initial fuzzy partition matrix 

is obtained from (a, b) and r.

The whole divide and conquer algorithm is briefly described as below.

Divide and Conquer-NFCS Algorithm:

(1) Set maximum number of clusters, then use conventional HT method to search 

centers and locations of all possible clusters. According to the different physical 

constrains of applications, some clusters might be consolidated.
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(2) Refine the parameter results of step (1) by NFCS algorithm.

(3) Remove false clusters through checking physical constrains and validity for all 

detected clusters.

In this algorithm, the NFCS algorithm becomes one of the steps in the overall procedure. 

A clean-up step is also required so that spurious patterns may be deleted or multiple 

patterns may be consolidated. This step requires a set of validity and checking criteria, 

which is mentioned in Chapter 6.

7.3.2 Practical Examples

The above algorithm is applied to the particle packing experiment, where the image of 

Figure 1.1 is analyzed to locate as many spheres as possible. It is emphasized that the 

objective is not to find every sphere but to locate as many spheres as possible, in particular 

all the fully visible spheres are expected to be located. The edge data for this image is 

shown in Figure F.l. This is the edge map of the original image (about 150x130 

pixels) and there are 2596 number of points in the edge data. As can be seen in the figure, 

the edge data contains some artifacts due to shadows and poor image quality. There are 

many partial shapes due to hidden geometry. This example appears to be more complex as 

compared to the examples reported before [Dave and Patel 1990, Krishnapuram, Frigui 

and Nasraoui 1992, 1993, Krishnapuram, Nasraoui and Frigui 1992], This data is used in 

D&C-NFCS algorithm with maximum number of clusters set to 26. Since all circles have a 

fixed radius, the multiple clusters should be consolidated by the physical constrain that the
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distance between any two sphere centers ought to be greater than the radius. The HT 

accumulator array used in this example is approximately 25x20. The X used in noise 

distance was set at 0.5. Validity measures used include shell thickness, fuzzy hyper-shell- 

volume, fuzzy hyper-shell-density, surface density, number of points per cluster, and valid 

density. For this experiment, all the circles should be of the same size, so one can restrict 

the range of radius r in equation (7.2). The results for these conditions are shown in 

Figure F.2 where the circles are plotted over the edge data, and in Figure F.3 where the 

circles are superimposed over the image data. These results do not include the effect of 

applying validity criteria or cluster merging. As can be seen, most circles are found with a 

very good detection accuracy. However, some of the circles detected are slightly 

misplaced or even spurious. After all, these results are a significant improvement over the 

results of HT alone. Several examples of individual clusters are shown in Figure F.4 to 

demonstrate the improvements made through NFCS algorithm in localization of clusters. 

In this figure, the results of D&C-NFCS are shown using a solid line circle, and the results 

of HT alone are shown using a dashed line circle.

7.3.3 Results of Validity Measures and Conclusion

Validity measures for the clusters shown in Figures F.2 and F.3 are presented in Table 7.1. 

The last six rows present several statistical parameters for each measure. These parameters 

are: average, standard deviation, maximum, minimum and average + or - one standard 

deviation of the sample. One may use the last parameter as an indicator of the goodness of 

fit. For example, in case of shell thickness, clusters having values above 0.091 are 

questionable, while in case of surface density, clusters having values less than 0.397 are
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questionable. Using shell thickness, clusters 14, 15, 17, 20 and 21 are classified as bad 

clusters. Cluster 12 is a spurious cluster and it is just missed being classified as a bad 

cluster, while cluster 17 is a good cluster and it is classified as a bad cluster using this 

criterion. It is interesting that cluster 17 is classified as a bad cluster by all the measures 

listed. Careful observation of the edge data for this cluster reveals that it is essentially a 

very short circular arc, and therefore may have been mis-classified.

Table 7.1 Validity Parameters for the Clusters Shown in Figure F.3.
C l u s t e r S h e l l S u r f a c e C e n t r a l F u z z v  S h e l l - F u z z y  S h e l l - V a l i d

N u m b e r T h i c k n e s s D e n s i t v M e m b e r s V o l u m e D e n s i t v D e n s i t v

0 0 . 0 6 1 0 . 9 4 9 1 0 7 1 0 .0 1 9 . 4 7 0 . 5 9 5

1 0 . 0 5 0 0 . 9 5 2 1 0 7 8 . 0 7 1 1 . 2 4 0 . 7 0 3

2 0 . 0 5 1 0 . 9 5 6 1 0 7 8 . 2 2 1 1 . 4 7 0 . 6 4 9

3 0 . 0 5 7 0 . 8 9 6 1 0 2 9 . 4 1 9 . 3 4 0 . 5 1 5

4 0 . 0 5 9 1 .0 3 1 1 1 6 9 . 6 4 1 0 . 6 6 0 . 4 6 9

5 0 . 0 7 1 0 . 7 6 2 8 4 1 0 . 7 7 6 . 7 3 0 . 4 0 3

6 0 . 0 7 9 0 . 7 8 8 9 0 1 2 . 7 6 5 . 9 0 0 . 5 2 3

7 0 . 0 5 0 0 . 5 7 5 6 3 7 . 7 7 6 . 2 2 0 . 7 6 7

8 0 . 0 5 2 0 . 9 4 3 1 0 6 8 . 3 8 1 0 . 9 6 0 . 6 4 3

9 0 . 0 6 5 0 . 8 8 7 1 0 0 1 0 . 4 6 8 . 3 9 0 . 6 0 6

1 0 0 . 0 7 1 0 . 9 3 7 1 0 7 1 1 . 9 2 8 . 1 2 0 . 6 2 2

1 1 0 . 0 7 8 0 . 5 4 3 6 0 1 1 . 7 3 4 . 3 2 0 . 3 3 3

1 2 0 . 0 8 9 0 . 5 8 4 6 7 1 3 . 3 3 4 . 4 4 0 . 3 2 2

1 3 0 . 0 7 6 0 . 4 5 8 5 1 1 1 . 4 5 3 . 9 5 0 . 6 9 6

1 4 0 . 1 1 2 0 . 4 2 6 5 0 1 8 . 1 7 2 . 5 6 0 . 1 8 9

1 5 0 . 1 0 6 0 . 3 4 8 4 0 1 3 . 7 3 2 . 7 1 0 . 1 2 1

1 6 0 . 0 7 6 0 . 8 0 4 9 2 1 2 . 5 2 6 . 3 7 0 . 3 9 5

1 7 0 . 0 9 7 0 . 3 3 0 3 7 1 4 . 7 8 2 . 3 0 0 . 1 3 1

1 8 0 . 0 6 2 0 . 5 3 4 5 7 9 . 2 6 5 . 1 4 0 . 9 3 3

1 9 0 . 0 4 2 0 . 4 1 5 4 6 6 . 1 3 6 . 0 0 0 . 6 8 5

2 0 0 . 0 9 2 0 . 3 9 7 4 5 1 1 .7 1 3 . 5 2 0 . 1 5 9

2 1 0 . 0 9 8 0 . 3 4 4 3 3 1 3 .3 3 2 . 2 8 0 . 6 0 0

2 2 0 . 0 6 9 0 . 4 3 1 4 9 1 1 . 4 0 3 . 8 8 0 . 9 4 4

2 3 0 . 0 7 4 0 . 4 3 6 5 1 1 3 .0 1 3 . 6 0 0 . 5 9 6

2 4 0 . 0 8 8 0 . 3 6 3 4 1 1 0 . 9 6 3 . 2 8 0 . 1 2 4

2 5 0 . 0 6 3 0 . 4 6 0 5 2 1 0 . 3 7 4 . 4 0 0 . 9 4 6

A v e r a g e 0 . 0 7 3 0 . 6 3 7 7 2 1 1 . 1 3 6 . 0 5 0 . 5 2 6

S t a n d a r d  D e v . 0 . 0 1 8 0 . 2 4 0 2 7 2 . 4 9 2 . 9 4 0 . 2 5 0

M i n i m u m 0 . 0 4 2 0 . 3 3 0 3 3 6 . 1 3 2 . 2 8 0 . 1 2 1

M a x i m u m 0 . 1 1 2 1 .0 3 1 1 1 6 1 8 . 1 7 1 1 . 4 7 0 . 9 4 6

A v g . + / - s d . d e v . 0 . 0 9 1 0 . 3 9 7 4 4 1 3 . 6 2 3 .1 1 0 . 2 7 6
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The cluster merging criterion removes the cluster 12 and merges it into cluster 16. 

The final results of the D&C-NFCS algorithm after cluster removal and merging are 

shown in Figure F.5. The results shown here indicate that the strategy outlined here works 

well for such examples. Regarding the validity measures used, although each one results in 

a few mis-classifications, in general, all the validity measures have worked reasonably well. 

The surface density measure has one very good feature, i.e. its ability to provide an 

absolute measure. It gives a value of close to 1 for very good clusters, however, it is not 

clear what should be the cut-off value for the bad clusters. Using the strategy proposed 

here, it indicates that clusters 15, 17, 20, 21 and 24 should be thrown out. This results in 

mis-classification of bad clusters 12 and 14, and good clusters 17 and 24. However, since 

these clusters are border-line cases, such mis-classification is not entirely unexpected.

While in case of valid density, clusters 7, 13, 18, 19, 21, 22, 23 and 25 are 

compensated as they locate in close distances to the frame edge. As can be seen from 

Table 7.1, clusters 14, 15, 17, 20 and 24 should be thrown out using the proposed 

strategy. Further observation of the table, if a threshold value of 0.350 is applied, then 

clusters 11 and 12 would also be thrown out. The results are obtained without using 

merging criterion, and displayed in Figure F.6. Though the occluded good clusters 11,17 

and 24 are mis-classified, all spheres in the top layer are correctly detected.

The final outcome of the D&C-NFCS algorithm is shown in Figure F.5 or F.6, and 

the computational cost of the whole algorithm to achieve these results was only about 50 

seconds of CPU time (on Sparc 10 model 41, one CPU), including the HT part. The 

reason for its speed is mainly due to the use of segmented data in NFCS algorithm.
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Although the unsupervised algorithm similar to the one in [Krishnapuram et al. 1992, 

1993c] is not run with this data, one can estimate the time required in such an approach by 

just running the NFCS on the whole data with about 40 clusters. This is because in order 

to find about 26 clusters, one might have to use at least 40 clusters to begin with so that 

after cluster removal and merging, about 26 clusters may be found. It is necessary to point 

out that the NFCS algorithm is from Dave and Bhaswan [1992], requiring solution to non­

linear equations. Therefore it may be slower as compared to quadric shells type algorithms 

used by Krishnapuram et al. [1992, 1993c], However, in the comparison presented here, 

both the D&C-NFCS and the regular NFCS algorithms use the same code to solve the 

same set of non-linear equations. In order to obtain a fair estimate of time, results of HT 

were used to initialize the 40 cluster prototypes. Using such initialization, NFCS is run for 

15 iterations only and terminated. At that time only some of the clusters were found 

correctly, and it required over 600 seconds of CPU time. One can realize that this time is 

still only a fraction of the time required for the complete unsupervised algorithm. Through 

this simple example, it can be seen that using the proposed technique, one gets an 

algorithm that is at least an order of magnitude faster than the conventional algorithms.

In Chapter 5, the Integrated Clustering algorithm for general quadric surfaces is 

proposed, and certainly, a similar algorithm can be developed for 2D images. As to the 2D 

circular shapes, three independent parameters can determine their model equations, hence 

only three non-collinear points need to be picked for each mapping. For the image in 

Figure 1.1, with the restricted radii, the integrated RHT-NFCS method detected the first 

30 clusters and then merged them into 11 clusters in 77.2 seconds. The results are shown
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in Figure F.7 and F.8. In this case, the advantage of the RHT method seems not so 

distinguishable as there are a lot of false iterations with it, and on the contrary, the normal 

HT method based on Equation (7.2) avoids the combination explosive problem by 

restricting the radii and achieves a faster speed.
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CHAPTER 8

THEORETICAL ANALYSIS OF DIFFERENT CLUSTERING METHODS

and their applications to 2D and 3D images have also been presented. The goal of cluster 

detection can be considered as fitting model equations to image points. Besides the 

discussed methods, there exist many other fitting methods, such as least squares regression 

method, least median squares method. This chapter will perform some analysis and 

comparison among these different methods.

8.1 Least Squares Regression Method

The purpose of regression analysis is to fit equations to observed variables. The general 

linear model is [Rousseeuw and Leroy, 1987]

where n is the number of variables (sample size). The variables are called the

explanatory variables or carriers, whereas the variable y t is called the response variable. In 

classical theory, the error term e, is assumed to be normally distributed with mean zero 

and unknown standard deviation cr. The goal is to find the vector of parameters

The Hough based methods and fuzzy techniques have been discussed in early chapters,

y, = xA + -- + x,P0P+ e, ' = 0 , ( 8 . 1)

(8 .2)

from the given data:

105
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Applying a regression method to the data set yields

-  r*
0 = | : (8.4)

where the estimated vector, 0  represents the regression coefficients. Then j>,, the 

predicted or estimated value of y, can be obtained by

y , = x , A + - +x,pdp, (8.5)

The residual rt of the /'th case is defined as:

n = y , - y , -  (8-6)

To solve the above problem, different regression methods have been developed. The

least squares (LS) method is a well-known one that has become the cornerstone of

classical statistics. The basic idea is to minimize the sum of squared residuals, which can 

be represented as

n
Minimize ^  r 2 (8.7)

® ; = 1

The LS method can be computed explicitly from the data, but its application is 

restricted by some kinds of outliers in the data, i.e., it does not work well under some 

circumstances. For example, Figure 8.1a contains five points, (x, ,_y, ),...,(jc5 ,_y5) in a 

two-dimensional data set, with a well-fitting LS line. If the point (x, ,y x) is shifted along
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x-axis as shown in Figure 8.1b, then the LS regression line is completely tilted. The 

resulting point is an outlier which is called a leverage point since its effect on the LS 

estimator is very large [Rousseeuw and Leroy, 1987],

V Y

( a )  ( b )

Figure 8.1 LS regression line with respect to the data (a) without outliers, and (b) with an 
outlier.

Obviously, LS method might not deal with the noise data containing outliers. So the 

development of robust regression methods has been performed, which tries to devise 

regression estimators that are not so strongly affected by outliers. Before further 

discussion of different estimators, it is necessary to introduce a concept, breakdown point, 

which can evaluate the ability of an estimator [Rousseeuw and Leroy, 1987], Take any 

sample of n data points,
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(8 .8)

and let T be a regression estimator, i.e.,

r ( Z )  =  0 . ( 8 . 9 )

Now consider all possible corrupted samples Z'that are obtained by replacing any m of the 

original data points by arbitrary values (this allows for very bad outliers). Let bias(m\ T,Z) 

denote the maximum bias that can be caused by such a contamination:

where the supremum is over all possible Z'. If bias(nr,T,Z) is infinite, this means that m 

outliers can have an arbitrarily large effect on T, which may be expressed by saying that 

the estimator "breaks down." Therefore, the (finite-sample) breakdown point of the 

estimator T  at the sample Z is defined as

In other words, it is the smallest fraction of contamination that can cause the estimator T 

to take on values arbitrarily far from T(Z).

For least squares method, as can be seen from Figure 8.1, one outlier is sufficient to 

carry T over all bounds. Therefore, its breakdown point equals Mn which tends to zero for 

increasing sample size n, so it can be said that LS has a breakdown point of 0%. This 

indicates the extreme sensitivity of the LS method to outliers.

However, based on the LS method, many methods have been proposed to fit curves 

[Haralick and Shapiro 1992], It is necessary to point out that those LS based methods 

might have slightly higher than 0% breakdown points.

bias(m-T,Z) = sup\ \nZ')-T(Z)\ \ , (8 . 10)

en(T,Z) = mm{—:bias{m\ T,Z) is infinite ( 8 . 11)
n
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8.2 Least Median of Squares

A complete name for the LS method would be least sum of squares, Rousseeuw [1984] 

proposed a robust regression method, least median of squares (LMS), by replacing the 

word “sum” with “median”. LMS can be represented as

Minimize med r 2, (8.12)
©  i

The breakdown point of the LMS technique is as high as 50%, the best that can be 

expected by any methods [Rousseeuw and Leroy 1987].

As we know, the LS regression method has a straightforward formula to compute 

the regression coefficients, which makes it simple to use. However, the LMS technique 

can not be explicitly represented by a formula. It is implemented as a complete code called 

PROGRESS [Leroy and Rousseeuw 1984], The algorithm in PROGRESS proceeds by 

repeatedly drawing subsamples of p  observations, which is similar to the drawing method 

in the FRHT method. For each subsample, indexed by J, the corresponding vector of 

coefficients Qj can be achieved. Then a median value for the subsample can be obtained 

by

m e d t y - x f i j ) 2. (8.13)

Finally, the minimal median value is retained until the drawing is finished.

Theoretically, one could repeat the sampling procedure for all possible samples of 

size p, of which there are C%. Unfortunately, C,f. increases very fast with n and p, which 

would bring the combination explosive problem to some applications. Therefore, a certain 

number of random selections is recommended, such that the probability that at least one of

the m subsamples contains all good points is close to 1. A subsample containing all good
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points means it consists of p  good observations of the sample, which may contain up to a 

fraction s  of bad observations. The expression for this probability, assuming that n'p is 

large, is

1 - (1 - (1 - * ) ') "  . (8.14)

Obviously, for a specific probability that must be close to 1, the number of subsamples m 

can be determined for given values of p  and £. Rousseeuw and Leroy [1987] created a 

table shown in Appendix B, for p <  10 and for a percentage of contamination varying 

between 5% and 50%.

Based on the basic idea of LMS, Rousseeuw and Leroy [1987] propose the minimum 

volume ellipsoid (MVE) estimator, and Jolion et al. [1991] further extend it as a 

generalized minimum volume ellipsoid (GMVE) clustering algorithm. In section 8.4, the 

MVE type algorithms will be discussed in detail.

8.3 Comparison among Different Methods

In order to apply the LS and the LMS methods to the data with multiple clusters, one 

needs to perform a presegmentation to the data set, which is very difficult to accomplish 

when the data are scattered or noisy, and the overlapping clusters exist. As to the early 

described Noise Fuzzy Clustering and FRHT methods, they directly identify clusters from 

the original data instead of performing presegmentation and then merging or fitting.

As discussed in above sections, the LS method has a 0% breakdown point, and the 

LMS method approaches a 50% breakdown point. The FRHT method should have a 50% 

breakdown point because of that there is always a solution for the right cluster if the
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number of noise points is not over 50%. Full scale analysis in multivariate data in higher 

dimension is beyond the scope of this project. We can look into a simple example as 

shown in Figure 8.2, which contains only one cluster and some noisy points. If the number 

o f good points in the data set is 50% of the total amount of points, then if the minimum 

number of points for a cluster is set as a number approaching 50% of the total number of 

points, the FRHT can always detect the true cluster no matter what kind of noisy points is 

there. The FRHT uses a similar sampling method as LMS. Both of them should have the 

same breakdown point, 50%, because theoretically they can take all combinations of 

subsamples from the data set.

Figure 8.2 A Data Set Containing a Cluster and Some Noisy Points.

As to the Noise Fuzzy Clustering method, with good initial membership partitions 

and appropriate initial parameters, the breakdown point might approach a higher number. 

Full scale analysis is beyond the scope of this project. With the same example shown in 

Figure 8.2, if there is a very good initial membership matrix, the Noise Fuzzy Clustering 

method can detect the true cluster correctly when there are more than 50% of good points
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in the data set. As mentioned before, the Noise Fuzzy Clustering method is sensitive to the 

initial membership matrix, but theoretically there always exists a good initial membership 

matrix. Therefore the Noise Fuzzy Clustering method should have a higher breakdown 

point. The concept of breakdown point is introduced for the case of single cluster where 

the highest breakdown point is near 50%. For the case of multiple clusters, theoretically 

the highest breakdown point is still 50%, but in most situations, the clustering algorithms 

for multiple clusters may not “break down” when the number of outliers is greater than 

50%. For instance, when the FRHT is used to detect multiple clusters, for a specific 

cluster, both of the noise points and the data points belonging to other clusters could be 

taken as outliers, obviously they might be more than the data points in the detected 

cluster. Therefore, both of the FRHT and the Noise Fuzzy Clustering methods possess 

higher breakdown point, which is clearly demonstrated from the examples in the early 

chapters.

The goal of all the four mentioned methods is to find an equation in a better match 

for the data points. The LS method and the Noise Fuzzy Clustering method use all data to 

minimize their objective functions, and there is a closed form solution for the LS method 

when the function is linear, whereas the Noise Fuzzy Clustering method needs to 

iteratively update the membership partitions till they become stable, generally, it is 

computationally expensive. Though the LMS method might not have to use all the data as 

discussed in Section 8.2, it is necessary to use all the data in order to get a 100% reliable 

solution, which might bring up the combination explosive problem when the number of 

points and the number of parameters are greater ones. The FRHT method uses some of
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the data instead of all the data to search the right clusters, which makes it a faster 

detection method.

To sum up, the comparison among different methods is shown in Table 8.1, where 

NFC stands for Noise Fuzzy Clustering method.

Table 8.1 Comparison Among Different Methods
Method Pre­

segmentation
Breakdown

point
Closed Form 

Solution
Data

involved
Robust

LS Y e s L o w Y e s * A l l N o

LMS Y e s H i g h N o A l l  o r  p a r t i a l Y e s

NFC N o H i g h * * N o A l l Y e s

FRHT N o H i g h * * N o P a r t i a l Y e s

* Only when the equation is linear. **Refer to the text.

Through the above comparison, we can see that the LMS, the Noise Fuzzy 

Clustering and the FRHT methods have high breakdown points and are robust, whereas 

the LS method has a low breakdown point; the Noise Fuzzy Clustering and the FRHT 

methods can be used to detect multiple clusters from an image data set without 

presegmentation, but the LS and the LMS can not; the FRHT method randomly picks up 

some number of points from the data set to fit the data to a equation, whereas the other 

three methods use every point in the data. It would be an interesting issue to combine their 

advantages to form an efficient algorithm, for instance, combining the features of high 

speed in FRHT, multiple clusters and fuzzy partitions in Noise Fuzzy Clustering, and 

robustness in LMS to form a fast robust clustering algorithm, which is the future work.
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8.4 A New Clustering Algorithm for Quadric Surfaces

The minimum volume ellipsoid estimator extracts the cluster with least volume region 

containing h percent of the data points. The h is usually 0.5, and the MVE can always find 

the true cluster when the number of outliers is less than 50% for a single cluster data set. 

For the data set with multiple clusters, the MVE would not work well because in most 

cases, the number of outliers is more than 50% for a specific cluster. The MVE is 

extended as the generalized minimum volume ellipsoid estimator that can be used to solve 

many pattern recognition problems in computer vision [Jolion et al. 1991], The GMVE 

searches a cluster at an iteration. Similarly as the FRHT method, when a best cluster is 

found, the data points belonging to the cluster are removed from the data set and a new 

iteration begins. The detection process terminates until the number of remaining points 

becomes less than the minimum number of points a cluster must contain or the number of 

detected clusters reaches the maximum number of clusters. At each iteration, the MVE 

estimator is applied with different values of h decreasing from 0.5. For each h, a cluster 

with minimum volume ellipsoid can be obtained. After all clusters with different values of 

h are obtained, the Kolmogorov-Smimov test is employed to check the significance level 

of all clusters at different h, and the cluster with the smallest significance level over all h 

values is the best cluster at the iteration.

Just like the FRHT, the GMVE is a kind of “find a cluster at a time” algorithm, and is 

able to identify all true clusters in the data set. However, because the GMVE needs 

extensive computations its speed is very slow. Moreover, it can always obtain a solution 

even when there does not exist a true cluster in the data set.
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Rousseeuw [1983, 1984] introduced the least trimmed squares (LTS) estimator for 

regression, which is given by

Minimize £ ( r 2),

where (r2),.„ <•••<(r2)n:„ are the ordered squared residuals. The best robustness 

properties are achieved when h0 is approximately n/2, in which case the breakdown point 

attains 50%.

Based on the above discussion, we can develop a new algorithm called Generalized 

Least Trimmed Squares for Quadric Surfaces (GLTS-QS) as following for the range 

image data discussed in the early chapters.

GLTS-QS algorithm:

(1) Set the minimum number of points a cluster must contain, the maximum 

number of clusters, the maximum number of samplings for an iteration, the 

distance threshold Dt for considering a point belonging to a cluster, the 

maximum and minimum values of h. Initialize the least sum of squared 

distances at all different h as positive infinity (or a positive large number).

(2) For a sampling, randomly sample nine different points and substitute their 

values into (2.10) to obtain nine equations. Then solve the nine joint equations 

to obtain the parameters of a possible cluster. Calculate the distances of all 

remaining points from the possible cluster and sort them by magnitude in a 

ascending order. Calculate the sum of squared distances of the h percent of 

points with smaller distances for all specific h values, and if the sum of squared
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distances is smaller than the least sum of squared distances for a specific h, just 

update it with the new value and store the corresponding parameters; 

otherwise, continue.

(3) If  the number of samplings reaches the maximum number o f samplings, 

continue; otherwise, go to (2).

(4) For a possible cluster with the least sum of squared distances at a h value, 

check how many points in the current data set are located on the boundary of 

the cluster, where a point is considered lying on the cluster if the distance of it 

from the calculated boundary is shorter than Dt.

(5) If  the clusters at all different h values are checked, continue; otherwise, go to 

(4).

(6) Take the cluster with most points on its boundary as the best cluster at the 

iteration, and remove the points on the cluster from the data set.

(7) If  the remaining number of points becomes less than the minimum number of 

points a cluster must contain, or the number of detected clusters reaches the 

maximum number of cluster, the clustering process is over; otherwise, go to 

(2).

In the algorithm, the minimum and maximum values of h can be determined from the 

information of the data set. The minimum value takes the minimum size of cluster, and the 

maximum value takes the smaller value from 0.5 and the maximum size of cluster. For 

example, when the minimum size is 0.1 or 10% of the whole data set and the maximum
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size is 0.4 or 40% of the whole data set, the minimum and maximum values of h can take 

0.1 and 0.4 respectively. The value of h is decreased from maximum to minimum by a 

factor o f 2. In the above example, the first value is 0.4, the second one is 0.2 and the last 

one takes 0.1. As to the selection of the maximum number of samplings, one can refer to 

the analyses in 8.2 for LM, and in 2.2 for RHT. When there are more clusters in the data 

set of quadric surfaces, an extremely large number is needed to ensure the true cluster can 

be detected. Obviously, the window method in FRHT can reduce the number to a very 

small one.

For the image shown in Figure C.13, the GLTS-QS algorithm detected all three 

clusters correctly in 608.6 seconds on a Sparc 10 Station, where the values of h were set 

as 0.4 and 0.2, the Dt was set as 1.0, the maximum number of samplings was set as 1000, 

and the maximum number of clusters was set as 3. When we divided the image into 3x3 

windows before applied the GLTS-QS algorithm, the algorithm could detect all clusters in

7.3 seconds, where the maximum number of samplings is set as small as 3.

For the image shown in Figure E.7 with coarse depth values, while the maximum 

number of samplings was set as 1000, the GLTS-QS algorithm identified all three clusters 

in 721.6 seconds that was much longer than the CPU time used for the same image with 

the floating values of depth. In addition, about 20% amount of points were taken as the 

outliers.

Through the experiments, we can see that the GLTS-QS algorithm is very time 

consuming for the range images with more clusters and more outliers. However, the 

window method can greatly improve its speed. From the above discussion, we also see

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

that the most computation load is from the multiple values of h and the greater number of 

samplings. If we can apply the FRHT method to obtain a coarse cluster, then use the 

GLTS-QS algorithm, namely, substitute the NFCQS process in the integrated clustering 

algorithm discussed in Chapter 5, we might need only one value of h, 0.5, and a smaller 

number of samplings for the GLTS-QS process. For the image shown in Figure E.7, we 

could detect all three clusters in 11.7 seconds when the FRHT with 3x3 windows was 

used before the GLTS-QS process with that one value of h, 0.5 was used and the 

maximum number of samplings was set as 1000, and about 7% amount of points were 

taken as the outliers. Obviously, the results indicate that the above integrated method 

works better than the GLTS-QS alone.

However, the above results are not as good as the results by the integrated clustering 

algorithm combining the FRHT and NFCQS, which was discussed in Chapter 5. The main 

reason is that, with the GLTS-QS algorithm, the final parameters of the true cluster are 

obtained from the values of nine points so they are not optimum. Actually, the FRHT has 

the same problem. Whereas for the NFCQS algorithm, the final results do not necessarily 

pass through any point but they are in sort of best match with all points. To improve the 

performance of GLTS-QS, the LS method and the fuzzy techniques might be employed to 

find the optimum results, which is the work at next step.
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CHAPTER 9

CONCLUSIONS

9.1 Conclusions

There exist various clustering methods for pattern or object recognition. The focus of this 

dissertation was on the methods based on fuzzy techniques and Hough transform. 

Methods based on robust statistics similar to the minimum volume ellipsoid estimator were 

also considered. Based on the theoretical analyses of these methods conducted in this 

thesis, several novel clustering algorithms were proposed along with experimental testing 

of the methods. Although these new algorithms can be generally applied to both 2D and 

3D images, the focus was more on the clustering techniques for 3D range images.

Based on the analyses of different HT methods, the techniques based on the 

randomized HT were found to be ideally suitable for images requiring a large number of 

parameters for the clusters. A variation of the RHT, called the fast randomized Hough 

transform was proposed. The key idea of FRHT is to divide the original image into 

multiple regions and apply random sampling method to map data points in the image space 

into the parameter space or feature space, then obtain the parameters of true clusters. This 

results in the following characteristics: high computation speed, low memory requirement, 

high result resolution and infinite parameter space. This method was shown to work well 

with many complex images, such as the quadric surface image containing many clusters 

and noisy points. Such performance is impossible for the conventional Hough transform
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method. This method has also been successfully used in rather noisy 2D images such as 

the one shown in Figure 1.1.

Fuzzy clustering techniques are based on objective function optimization techniques 

and generate a fuzzy partition of the data. The Fuzzy c-Shells algorithm proposed by Dave 

[1990, 1991b] has proved to be a great success as a method of detecting and representing 

circular sub-structure in 2D data sets in digital images. A series of algorithms have been 

proposed using the “shell” concept [Dave et al. 1989, Dave and Patel 1990a, 1990b, Dave 

and Bhaswan 1992, Krishnapuram et al. 1992, etc.], Krishnapuram et al. extended the 

circular shells to the general quadric shells and developed the Fuzzy C Quadric Shells 

clustering algorithm [Krishnapuram et al. 1993c], Application of the FCQS clustering 

algorithm to 3D range data were discussed in this thesis along with experimental testing. It 

was shown that although with a very good membership initialization the FCQS can 

correctly cluster the data, its performance in noisy images with poor initialization is not 

very good.

Any valuable clustering algorithm should be able to deal with outliers or noisy points 

mixed in the data. Dave proposed a concept of “noise prototype” that could identify noisy 

data points as a separate cluster so the true clusters might be detected correctly [Dave 

1991a]. Combining the concept of “noise prototype” with the regular fuzzy clustering 

algorithms created the noise type clustering algorithms, such as the Noise Fuzzy C Shells 

and Noise Fuzzy C Quadric Shells clustering algorithms. The author investigated these 

algorithms in detail, and showed through the experimental results that the noise type 

algorithms were robust against noise and might have faster convergence.
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Whether or not the algorithm is a noise type, the major limitations are the need to 

know the number of clusters in advance and a need for a good membership initialization in 

order to achieve good clustering results. Whereas the FRHT method does not need such 

kind of prior information and even possesses the advantages of high detection speed and 

low storage requirement. But its results may not be very accurate as they are decided by 

the values of only a few points through solution of a set of parameter equations. In this 

dissertation, a novel integrated clustering algorithm combining the advantages of FRHT 

and NFCQS methods was proposed. It has proved to be a robust clustering algorithm 

through which the number of clusters is need not be determined in advance, the initial 

membership matrix is not required, the detection accuracy is greatly improved and the 

computation speed is very fast. The development of this algorithm is one of the major 

contributions of this work.

The Least Squares regression method and the Least Median of Squares method are 

also analyzed in this work. The LS method has a theoretical breakdown point of 0% and 

its results are easily influenced, whereas the LMS has a theoretical breakdown point of 

50% and its results are robust. Unfortunately, even LMS can not work well for the data 

with multiple clusters in absence of presegmentation. The Generalized Minimum Volume 

Ellipsoid estimator is a robust clustering method that can be used solve many pattern 

recognition problems in computer vision [Jolion et al. 1991], Based on the idea of GMVE, 

the generalized Least Trimmed Squares for Quadric Surfaces (GLTS-QS) algorithm was 

developed. It is a robust clustering algorithm but has very slow computation speed 

because of extensive computations. By using the similar window method as in the FRHT,
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its speed can increase greatly. If the FRHT is applied before the GLTS-QS, then its speed 

might further increase. In other words, the clustering method combining the FRHT and the 

GLTS-QS can improve clustering performance.

According to the optimality of results, the clustering algorithms discussed here can 

be classified into two categories: optimized clustering algorithm and non-optimized 

algorithm. The optimized clustering algorithms include all types of fuzzy c shells 

algorithms and LS method, where the final parameters are in sort of best match with all 

data points. The non-optimized algorithms include FRHT and LMS methods, where the 

final parameters are obtained from the values of a few points so they are not optimum. 

Therefore, in some situations, combining two types of algorithms is a good idea, as 

demonstrated by the integrated algorithm that combines FRHT and NFCQS methods.

From the procedural point of view, the clustering algorithms can be classified into 

two types. The one is that all clusters are detected simultaneously, such as in fuzzy 

clustering algorithms. The other is that all clusters are identified one by one, i.e. clusters 

are found one at a time, such as the FRHT method and the GLTS method.

In all these range image clustering algorithms, the computation of distance of a point 

from a cluster boundary is a must. Usually, there are three kinds of distance, the Euclidean 

distance or geometric distance, the approximate distance and the algebraic distance. The 

Euclidean distance is the exact distance that can provide reliable results but has the 

slowest computation speed. The approximate distance is the first-order approximation of 

the exact distance that has very fast computation speed and can achieve reliable results in 

most situations but is sort of nonlinear distance. The algebraic distance is computed
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directly from the model equation, has the fastest computation speed and can work well in 

some situations but is highly nonlinear distance. The analyses and experimental results 

indicated that the approximate distance is preferred in most cases due to its features of 

high speed and reliability.

Application of the robust clustering methods to the granular flow research project 

was considered. We developed the D&C-NFCS algorithm to detect the exact locations of 

spherical particles from an extremely noisy image, where the regular HT was first used to 

obtain the coarse results, then the NFCS method was used to refine the results. The 

experimental results showed that the D&C-NFCS algorithm is an efficient clustering 

method for noisy images.

Clustering validity is an important issue in clustering techniques. In this dissertation, 

recent developments in cluster validity for shell clusters were reviewed, and a new validity 

criterion for circular clusters was proposed. The new validity method was developed by 

considering the distribution of the points on the circular edge, and its performance was 

tested through examples.

9.2 Future Work

In this dissertation, different clustering methods for both intensity images and ranges 

images are investigated, and were shown to be effective against noisy data, 

computationally fast, and did not depend on initializations. Nevertheless, the work 

presented here can be only considered as a start of more extensive studies based on the 

ideas presented. Extensive investigation and further research are needed in order to make
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these techniques more reliable and applicable to the problems in manufacturing industry 

and other fields.

The algorithms proposed here are used for the general quadratic shapes, but in some 

practical applications, the clusters may be some specific simple shapes, for example, in the 

machine manufacturing industry, many parts are of cylindrical shape. The algorithm 

developed for a particular case will have faster speed and can achieve more reliable results. 

The clustering approach can be coupled with learning schemes to make it an automatic 

recognition system.

As mentioned before, the GMVE is a robust clustering algorithm, but needs a great 

deal of computations. To make the methods based on it more efficient, its computation 

load needs to be reduced. Those ideas and methods used for reducing computation in HT 

might be applied to increase its speed. For example, the experiments showed that the 

window based method was able to reduce computation load for GLTS-QS. However, an 

extensive investigation is needed for the GMVE.

In order for the approach proposed here, namely, finding one cluster at a time, to 

work, one must know how to test for a good cluster. Reliable cluster validity criteria are a 

must for this technique as they can be used not only to measure the goodness of the final 

results, but also to enhance some clustering algorithms, for example, in the GLTS-QS 

algorithm, an effective clustering validity criterion for measuring the validity o f all possible 

clusters at different values of h would definitely improve the clustering performance. Ideas 

for circular clusters are proposed here but more work is required for developing a general 

approach.
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APPENDIX A

DSCRIPTION OF SUBROUTINE HYBRD IN MINPACK

/* subroutine hybrd */

/* the purpose of hybrd is to find a zero of a system of */
/* n nonlinear functions in n variables by a modification */
/* o f the powell hybrid method, the user must provide a */
/* subroutine which calculates the functions, the jacobian is */
/* then calculated by a forward-difference approximation. */

/* the subroutine statement is */

/* subroutine hybrd(fcn,n,x,fvec,xtol,maxfev,ml,mu,epsfcn, */
/* diag,mode,factor,nprint,info,nfev,§ac, */
/* Idfjac,r,lr,qtfiwal,wa2,wa3,wa4) */

/* where */

/* fen is the name of the user-supplied subroutine which */
/* calculates the functions, fen must be declared */
/* in an external statement in the user calling */
/* program, and should be written as follows. */

/* subroutine fcn(n,x,fvec,iflag) */
/* integer n,iflag */
/* double precision x(n),fvec(n) */
/*   */

/* calculate the functions at x and */
/* return this vector in fvec. */
/*   */

/* return */
/* end */

/* the value of iflag should not be changed by fen unless */
/* the user wants to terminate execution of hybrd. */
/* in this case set iflag to a negative integer. */

/* n is a positive integer input variable set to the number */
/* of functions and variables. */

/* x is an array of length n. on input x must contain */
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/* an initial estimate of the solution vector, on output x */
/* contains the final estimate of the solution vector. */

/* fvec is an output array of length n which contains */
/* the functions evaluated at the output x. */

/* xtol is a nonnegative input variable, termination */
/* occurs when the relative error between two consecutive */
/* iterates is at most xtol. */

/* maxfev is a positive integer input variable, termination */
/* occurs when the number of calls to fen is at least maxfev */
/* by the end of an iteration. */

/* ml is a nonnegative integer input variable which specifies */
/* the number of subdiagonals within the band of the */
/* jacobian matrix, if the jacobian is not banded, set */
/* ml to at least n - 1. */

/* mu is a nonnegative integer input variable which specifies */
/* the number of superdiagonals within the band of the */
/* jacobian matrix, if the jacobian is not banded, set */
/* mu to at least n - 1. */

/* epsfcn is an input variable used in determining a suitable */
/* step length for the forward-difference approximation, this */
/* approximation assumes that the relative errors in the */
/* functions are of the order of epsfcn. if epsfcn is less */
/* than the machine precision, it is assumed that the relative */
/* errors in the functions are of the order of the machine */
/* precision. */

/* diag is an array of length n. if mode = 1 (see */
/* below), diag is internally set. if mode = 2, diag */
/* must contain positive entries that serve as */
/* multiplicative scale factors for the variables. */

/* mode is an integer input variable, if mode = 1, the */
/* variables will be scaled internally, if mode = 2, */
/* the scaling is specified by the input diag. other */
/* values of mode are equivalent to mode = 1. */

/* factor is a positive input variable used in determining the */
/* initial step bound, this bound is set to the product of*/
/* factor and the euclidean norm of diag*x if nonzero, or else */
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/* to factor itself, in most cases factor should lie in the */
/* interval (.1,100.). 100. is a generally recommended value. */

/* nprint is an integer input variable that enables controlled */
/* printing of iterates if it is positive, in this case, */
/* fen is called with iflag = 0 at the beginning of the first */
/* iteration and every nprint iterations thereafter and */
/* immediately prior to return, with x and fvec available */
/* for printing, if nprint is not positive, no special calls */
/* of fen with iflag = 0 are made. */

/* info is an integer output variable, if the user has */
/* terminated execution, info is set to the (negative) */
/* value of iflag. see description of fen. otherwise, */
/* info is set as follows. */

/* info = 0 improper input parameters. */

/* info = 1 relative error between two consecutive iterates */
/* is at most xtol. */

/* info = 2 number of calls to fen has reached or exceeded */
/* maxfev. */

/* info = 3 xtol is too small, no further improvement in */
/* the approximate solution x is possible. */

/* info = 4 iteration is not making good progress, as */
/* measured by the improvement from the last */
/* five jacobian evaluations. */

/* info = 5 iteration is not making good progress, as *1
/* measured by the improvement from the last */
/* ten iterations. */

/* nfev is an integer output variable set to the number of */
/* calls to fen. */

/* fjac is an output n by n array which contains the */
/* orthogonal matrix q produced by the qr factorization */
/* of the final approximate jacobian. *1

/* ldfjac is a positive integer input variable not less than n */
/* which specifies the leading dimension of the array fjac. */
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/* r is an output array of length lr which contains the */
/* upper triangular matrix produced by the qr factorization */
/* of the final approximate jacobian, stored rowwise. */

/* lr is a positive integer input variable not less than */
/* (n*(n+l))/2. */

/* qtf is an output array of length n which contains */
/* the vector (q transpose)*fvec. *1

/* wal, wa2, wa3, and wa4 are work arrays of length n. */

/* subprograms called */

/* user-supplied fen */

/* minpack-supplied ... dogleg,dpmpar,enorm,fdjacl, */
/* qform,qrfac,rlmpyq,rlupdt */

/* fortran-supplied ... dabs,dmaxl,dminl,minO,mod */

/* argonne national laboratory, minpack project, march 1980. */
/* burton s. garbow, kenneth e. hillstrom, jorge j. more */
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APPENDIX B

A TABLE ABOUT NUMBER OF RANDOM SUBSAMPLES IN LMS

Table B.l Number m of Random Subsamples, Determined in Function of p  and s by 
Requiring That the Probability of at Least One Good Subsample Is 95% or More 
[Rousseeuw et al. 1987].___________________________________________ _________
Dimension Fraction s of Contaminated Data

P 5% 10% 20% 25% 30% 40% 50%
1 1 2 2 3 .> 4 5
2 2 2 3 4 5 7 11
3 2 3 5 6 8 13 23
4 2 3 6 8 11 22 47
5 3 4 8 12 17 38 95
6 4 10 16 24 63 191
7 3 5 13 21 35 106 382
8 3 6 17 29 51 177 766
9 4 7 21 36 73 296 1533
10 4 7 27 52 105 494 3067

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX C 

ADDITIONAL FIGURES FOR CHAPTER 2

Figure C.l A Range Image with Four Quadric Surfaces. There are 19600 points in the 
image and the parameters of all four clusters are shown as Table 2.13.
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Figure C.2 Results of the Image Shown in Figure C. 1 by the RHT.
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Figure C.3 Results of the Image Shown in Figure C. 1 by the FRHT with 3x2 Regions
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Figure C.4 A Noise Range Image Generated from the Image Shown in Figure C. 1 by
Adding 10% Noise Points.
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Figure C.5 A Noise Range Image Generated from the Image Shown in Figure C.l by 
Adding 20% Noise Points.
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Figure C.6 Results of the Image Shown in Figure C.4 by the RHT.
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Figure C.7 Results of the Image Shown in Figure C.4 by the FRHT with 3x2 Regions.
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Figure C.8 Results of the Image Shown in Figure C.5 by the RHT.
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Figure C.9 Results of the Image Shown in Figure C.5 by the FRHT with 3x2 Regions.
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Figure C.10 A Simplified Range Image with Four Quadric Surfaces. There are 1600
points in the image and the parameters of all clusters are shown in Table 2.13.
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Figure C .ll  A Noise Range Image Generated from the Image Shown in Figure C.10 by
Randomly Shifting all Points Along the Depth Direction.
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Figure C.12 Results of the Image Shown in Figure C. 11 by the FRHT with 3x2 Regions.
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Figure C.13 A Range Image with Three Quadric Shapes. There are 4062 points in the 
image and the depth values are recorded in floating numbers.
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Figure C.14 Results of the Image Shown in Figure C. 13 by the FRHT with 3x3 Regions.
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APPENDIX D

FIGURES FOR CHAPTER 4

Figure D.l Three Circular Clusters with Added Noise.
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Figure D.2 Results of the Image Shown in Figure D.l by the Conventional FCS 
Algorithm.
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Figure D.3 Results of the Image Shown in Figure D.l by the Noise Clustering Algorithm 
(NFCS).
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APPENDIX E 

FIGURES FOR CHAPTER 5

Figure E .l Results o f  the Image Shown in Figure C.5 by the FRHT with 3x3 Regions
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Figure E.2 Results of the Image Shown in Figure C.5 by the Integrated Algorithm.
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Figure E.3 Results of the Image Shown in Figure C.l 1 by the Integrated Algorithm.
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Figure E.4 A Noise Range Image Generated from Two Real Images by Adding Some 
Noise Points.
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Figure E.5 Results of the Image Shown in Figure E.4 by the FRHT with 1x2 Regions.
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Figure E.6 Results of the Image Shown in Figure E.4 by the Integrated Algorithm.
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Figure E.7 A Noise Range Image with Three Quadric Shapes. There are 4062 points in 
the image and the depth values are recorded in integer numbers.
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Figure E.8 Results of the Image Shown in Figure E.7 by the Integrated Algorithm.
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Figure E.9 A Range Image with Five Quadric Surfaces. There are 11038 points in the 
image and the depth values are recorded in integer numbers.
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Figure E.10 Results of the Image Shown in Figure E. 10 by the Integrated Algorithm.
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(a) Result by FRHT.
Figure E .ll  The Multiple NFCQS Processes for Refining the Detection Result of the 
Cone Cluster.
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(b) An intermediate result by NFCQS.
Figure E .ll  The Multiple NFCQS Processes for Refining the Detection Result of the 
Cone Cluster (continued).
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(c) An intermediate result by NFCQS.
Figure E.11 The Multiple NFCQS Processes for Refining the Detection Result of the 
Cone Cluster (continued).
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(d) Final result.
Figure E .ll  The Multiple NFCQS Processes for Refining the Detection Result of the 
Cone Cluster (continued).
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Figure E.12 A Computer Generated Range Image for a Lamp. There are 13065 points 
the image and the depth values are recorded in integer numbers.
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Figure E.13 Results of the Image Shown in Figure E. 12 by the Integrated Algorithm.
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APPENDIX F

FIGURES FOR CHAPTER 7

Figure F.l Edge Data for the Image of Figure 1.1.
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Figure F.2 Results of the Image Shown in Figure F.l by D&C-NFCS Plotted over Edge 
Data for cm  = 26 (before cluster removal and merging).
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Figure F.3 Results of the Image Shown in Figure F.l by D&C-NFCS Plotted over 
Original Image for = 26 (before cluster removal and merging).
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Figure F.4 Several Examples Comparing Results for Individual Cluster Detection Using 
NFCS and HT. Solid line circles are the results of NFCS, dashed line circles are the results 
of HT, small open circles are the points classified into circular cluster and the solid dots 
are the points classified into noise cluster.
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Figure F.5 Final Results of D&C-NFCS Plotted over Original Image for c^  = 26 by 
Using the Validity Criteria Discussed in Section 6.2.
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Figure F.6 Final Results of D&C-NFCS Plotted over Original Image for = 26 by 
Using the Valid Density Criterion.
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Figure F.7 Results of RHT-NFCS Plotted over Edge Data.
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Figure F.8 Results of RHT-NFCS Plotted over Orignial Image.
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