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ABSTRACT

A THEORETICAL ANALYSIS OF 
VOLATILE CONTAMINANT REMOVAL BY THE 

PNEUMATIC FRACTURING PROCESS

by
Yuan Ding

A mathematical model that simulates the process o f contaminant removal 

from a pneumatically induced fracture within a porous medium is presented. It 

includes: (1) model development; (2) parameter evaluation; (3) statistical 

sensitivity analysis; and (4) model validation.

Based on the dual porosity approach, a mathematical model for a fractured 

porous formation is developed for both two dimensional and axial symmetrical 

cases. This model constitutes a pair o f coupled partial differential equations for 

the porous medium and discrete fracture, respectively. The initial and boundary 

conditions have been determined based on field considerations o f a soil vapor 

extraction system. By means o f Laplace transforms, analytical solutions o f the 

equations are obtained in explicit forms o f exponential and error functions.

The four principal physical parameters used in the model include tortuosity, 

retardation factor, fracture aperture, and extraction flow rate. Fracture aperture 

and flow rate are related to the characteristics o f geologic formation and 

operational system, while tortuosity and retardation factor are related to 

geochemical characteristics. Guidelines for determination o f these parameters are 

provided. In addition, a statistical analysis is performed to evaluate the 

sensitivity o f mass removal to variations in these parameters. A linear
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relationship between the standard deviations o f mass removal and tortuosity or 

retardation factor is obtained. The sensitivity o f mass removal to the fracture 

aperture is found to be minimal; however, aperture affects mass removal 

indirectly through extraction flow rate. Mass removal is determined to be 

sensitive to flow rate in low flow ranges only.

Validation o f the model was carried out using contaminant removal data from 

two field projects: AT&T Richmond Works and Tinker AFB. Good correlation 

was obtained between the model predictions and the field data for both sites. In 

addition, a comparison o f the model was made with experimental data from 

previous laboratory studies, which yields satisfactory agreement over a range o f 

experimental conditions.
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CHAPTER 1

INTRODUCTION

1.1 Background

While industry has advanced at a rapid pace since World War II, waste problems 

have been neglected both intentionally and unintentionally under the guise o f 

modernization. After decades o f negligence and unregulated waste disposal 

practices, the nation is facing serious challenges from environmental damage 

caused by past industrial activities.

There are many potential sources o f environmental contamination, including 

the agrochemicals, industrial effluents, storage tank leaks, seepage from disposal 

sites for toxic substances, and petroleum product spills. It has been estimated that 

the amount o f hazardous waste generated annually was 264 million metric tons, 

which equates to approximately one ton o f hazardous waste for each person per 

year (Harris, 1987). The enormous amount o f hazardous waste that has 

accumulated over the years makes this figure even more astounding. Another 

study reported that only ten percent o f the waste generated prior to 1980 was 

disposed o f by practices that would be considered adequate according to current 

standards (USEPA, 1980). Thus, as much as 90 percent o f the hazardous waste 

was disposed o f at unregulated facilities. These irresponsible disposal practices 

have created over 22,000 sites containing unregulated hazardous waste throughout 

the country. The improper disposal o f hazardous waste has caused a number of 

serious problems that not only result in the destruction o f the ecological system 

and natural resources; but also, present a danger to public health and a major 

financial burden to the nation.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2

Among the numerous contaminant sites in the United States, there exist 

countless environmental tragedies. The incident in Love Canal (Brown. 1980) at 

Niagara Falls is only one example: Residents were forced to abandon their homes 

and community to avoid facing further health risks from exposure to highly toxic 

chemicals. The chemicals originated from the disposal site at Love Canal where 

at least 20,000 tons o f waste, including many hazardous substances such as 

Dioxin, PCBs (polychlorinated biphenyl), and radioactive waste, were dumped. 

By the late 1960's, after three decades o f chemical dumping in Love Canal, the 

impact on the community was enormous. Finally in 1978, a state health study 

and the long-time fight by the victims resulted in the first evacuation of a 

contaminated community. By 1989, state and federal governments had spent $140 

million to clean up the site and relocate the residents. With its political impact 

across the Nation, Love Canal has come to symbolize the devastating effects of 

toxic wastes on families and society.

1.1.1 Pollution Control Policy

Although the seriousness o f the hazardous waste problem has been recognized for 

more than two decades, the present regulations and methods o f control are still in 

an early stage o f development due to the complexity and potential enormity o f the 

problem. The first and probably the most important modern environmental law 

was enacted in January o f 1970, namely, the National Environmental Policy Act 

(NEPA) o f 1969. NEPA is a milestone in man's understanding o f the relationship 

between his own survival and the survival o f the total ecology that has supported 

all life on earth. This act dictated that decision makers approach industrial 

development by balancing the environmental, economic, and technological factors 

to protect and enhance public health and welfare. In response to NEPA, the
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federal government formally established the U.S. Environmental Protection 

Agency (USEPA) in 1970, i.e., the first government environmental organization 

in the world. Through the USEPA, the role o f the federal government in 

environmental management has been significantly expanded. During the 1970’s, 

which came to be called the "environmental decade", many important statutes 

were enacted to restrict the improper handling o f hazardous wastes. The Clean 

A ir Act o f 1970 legislated the prevention and control o f air pollution to protect 

and enhance the quality o f the air resources o f the nation. The Clean Water Act 

o f 1972 established the goal o f ending industrial pollution o f the nation's rivers, 

streams, and lakes by 1985. The Resource Conservation and Recovery Act o f 

1976 (RCRA) was designed to assure proper management o f hazardous wastes 

through "cradle-to-grave" regulatory controls. In 1980 and 1984, RCRA was re­

authorized twice for enhancement. Since their enaction, these statutes have 

played a very important role in preventing the creation o f new contaminated sites. 

However, they have had no effect on the hazardous waste sites already in 

existence. I f  a healthy environment is to be established, these long-term dangers 

cannot be ignored.

1.1.2 Remediation Policy

The cleanup action started from the enactment o f the Comprehensive 

Environmental Response, Compensation and L iability Act o f 1980 (CERCLA or 

Superfund) which is a remedial program on cleaning up the nation’s worst 

hazardous waste sites created by past industrial disposal practices. CERCLA 

established a hazardous substance Superfund as well as regulations controlling 

inactive hazardous waste sites. Later, this important act was revised and extended 

by the Superfund Amendments and Reauthorization Act o f 1986 (SARA).
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However, the implementation o f Superfund is challenging, both technically and 

economically, since every site is unique and full o f uncertainties. The remedial 

action is tedious, and millions o f dollars and many years can be spent to 

remediate one site.

Among the various hazardous wastes, it is generally recognized that volatile 

organic compounds (VOCs), such as trichloroethylene, tetrachloroethylene, as 

well as petroleum fuels, are the major concerns (Bedient et al., 1994). Although 

VOCs may enter the vadose zone in many different ways, they eventually enter 

the groundwater system. Groundwater cleanup is very expensive and extremely 

d ifficu lt, i f  not impossible. An important and necessary step is removal o f 

contaminants from the vadose zone which serves as a source. In fact, it is safe to 

say that the groundwater remediation w ill never be complete so long as mobile 

contaminants remain in the vadose zone.

1.2 Objective and Scope

The primary objective o f this study is to evaluate the removal process o f volatile 

contaminants from an open fracture created by the pneumatic fracturing process, 

which is a new technology developed to enhance in situ remediation. Once a 

fracture network is established in a formation, contaminants are more easily 

accessed since the diffusion distance is shortened. Contaminant transport out o f 

the unfractured geologic network between fractures w ill continue as long as 

advective flow is maintained throughout the fracture network. This thesis w ill 

utilize a dual porosity approach (Streltsova, 1988) to predict mass transport out o f 

the fractured porous formation. The resulting model w ill permit determination o f 

the length o f time required to remediate a site, as well as the residual VOC 

concentrations remaining in the formation at any given time.
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In the process o f developing the fracture transport model, the following tasks 

w ill be performed:

1. A mathematical formulation o f the physical conditions and transport 

processes surrounding a discrete pneumatic fracture in the vadose zone w ill be 

developed.

2. An analytical solution o f the constitutive equation capable o f predicting 

mass removal rates o f VOC's in the vapor phase w ill be obtained.

3. The range of expected diffusion coefficient and retardation fraction w ill be 

established using standard published relationships and data.

4. A statistical analysis o f the analytical model w ill be performed to evaluate 

sensitivity to the input parameters.

5. The analytical solutions w ill be verified using data from two different field 

demonstrations and a series o f laboratory experiments.
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CHAPTER 2

THE PNEUMATIC FRACTURING PROCESS

2.1 Review of Current In Situ Remedial Technologies

Currently, there are two basic approaches for decontaminating soil in the vadose 

zone, namely, "ex situ" and "in situ" techniques. Ex situ remediation requires 

excavation with on-site or off-site treatment, while the in situ remediation 

removes (or treats) the contaminants in place thus minimizing disturbance to the 

site. Since excavation may not be feasible in many situations, the in situ 

remediation approach, in general, is technically and economically superior. As a 

result, a number o f in situ remedial technologies have been developed to treat 

contamination in the vadose zone. These remedial actions can be grouped into 

following general categories based on their characteristics.

2.1.1 Physical Treatment

Physical treatment is a relatively simple and safe approach compared with other 

treatment methods. Since no foreign materials are introduced into the formation, 

there is little  chance that the contamination situation w ill be worsened.

The soil vapor extraction (SVE) method, known as soil venting, in-situ 

volatilization, enhanced volatilization, or soil vacuum extraction, is one of the 

most popular physical treatment technologies (USEPA, 1995). In this process, a 

vacuum is applied through extraction wells to create a pressure gradient that 

induces transport o f chemical volatiles through the soil to extraction wells. This 

technology has been widely used in VOC removal from the vadose zone and it can 

also be useful in decontaminating groundwater, since the lowered VOC vapor

6
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pressure in the vadose zone w ill increase volatilization o f contaminants in the 

groundwater. Principal factors which govern the applicability o f SVE include 

contaminant distribution at the site, site hydrogeology, and contaminant 

properties. In general, SVE is an effective process for highly permeable 

formations such as sand, but is ineffective for low permeability formations such 

as silt and clay, since tight formations restrict the air flow through the porous 

medium (Travis and Macinnis, 1992).

Pump-and-treat is a physical treatment technology which is used for saturated 

zone in combination with other technologies. Contaminated groundwater is 

pumped out o f the formation and treated either off-site or on-site. This 

technology is commonly applied to reduce the rate o f plume migration, or to 

confine the plume to a potentiometric low area (Bedient et al., 1994).

2.1.2 Chemical Treatment

In general, chemical methods for detoxification o f VOCs in the unsaturated zone 

are severely hindered by the difficulties o f dispersing chemical amendments in a 

contaminated zone (Bowman, 1989). As such, most attempts o f chemical in situ 

treatments have been limited to chemical spills or dump sites where near-surface 

contaminated soil could be treated. Potential chemical reactions o f the treatment 

reagents with the soils and wastes must be considered with any chemical 

treatments. Since most hazardous waste disposal sites contain a mixture of 

contaminants, a treatment approach that may neutralize one contaminant could 

render another more toxic or mobile. In addition, the chemical amendment 

introduced into the soils may create new pollution. The general chemical 

treatments include solidification-stabilization, neutralization, and oxidation- 

reduction (Grasso, 1993).
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The solidification-stabilization method is designed to make contaminants 

physically bound or enclosed within a stabilized mass. This method includes 

inducing chemical reactions between the stabilizing agent and contaminants to 

reduce their mobility. Neutralization involves injecting dilute acids or bases into 

the ground to adjust the pH range. This pH adjustment can serve as pre-treatment 

prior to oxidation-reduction or biological remediation. The oxidation-reduction 

method consists o f using oxidation-reduction reactions to alter the oxidation state 

o f a compound through loss or gain o f electrons, respectively. Such reactions can 

detoxify and solubilize metals and organics. This technology is a standard 

wastewater treatment approach, but its application as in-situ treatment is limited.

2.1.3 Biological Treatment

The ultimate goal o f biological treatment is to achieve biodegradation of the 

organic chemicals. From attempts to utilize bacterial cultures to sophisticated 

genetic engineering applications, a myriad of biodegradation technologies have 

been explored (Grasso, 1993). Since a large portion o f the hazardous waste 

contamination in the U.S. stems from petroleum hydrocarbon products that have 

been discharged or spilled into the soil at petroleum refineries, airports, and 

m ilitary bases, bioremediation has become an accepted, simple and effective 

cleanup method (M ills, 1995). Basically, there are two approaches: stimulating 

the growth o f "indigenous" microorganism populations and adding new 

"endigenous” microorganisms. Biological treatments may utilize either one or 

both o f these approaches.

Many toxic organic chemicals can be metabolized or degraded to some degree 

by indigenous soil microorganisms. This natural process can be accelerated by 

pumping oxygen and nutrients into the contaminated zone to stimulate the resident
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microorganisms (e.g., Dupont, 1993). However, i f  the infiltration rate is low. 

remediation may be a very slow process. The process may be enhanced by 

introducing "acclimated" populations, which are developed from the indigenous 

microorganisms, back into the formation to increase the survival possibility o f the 

microorganisms and to expedite the biodegradation process.

In the endigenous approach, genetically endigenous microorganisms are 

introduced into the formation to clean the contaminants. There are two major 

difficulties in this approach. First, the dispersal o f introduced organisms 

throughout the contaminated zone is very d ifficult since microorganisms tend to 

be sorbed by solid particles and become clustered. Second, the newly introduced 

organisms may destroy the microbial balance once the porous medium has become 

decontaminated, which creates new ecological problems. Due to these difficulties 

and other disadvantages, this approach is presently not recommended by USEPA 

(1993).

In summary, a significant engineering deficiency with in situ bioremediation 

is the absence o f proven methods to introduce degrading populations of 

microorganisms, nutrients, and other chemicals into the subsurface environment 

for efficient mixing with microorganisms and the contaminants o f concern. In 

addition, the infiltration rate is an important governing parameter to the 

effectiveness o f the process.

2.1 .4  Thermal Treatment

Thermal treatment involves introducing extra energy into the contaminated zone 

to increase the formation temperature. Two different temperature ranges have 

been employed: high temperature treatment is used to destroy chemical structure
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as well as soil constituent to retard chemical movement, while low temperature 

treatment is used to increase chemical mobility and removal rates.

The in situ vitrification (ISV) technology (USEPA. 1994) is a high 

temperature treatment designed to treat soils, sludges, sediments, and mine 

tailings contaminated with organic, inorganic, and radioactive compounds. Joule 

heating, which is applied via electrodes, is used to melt contaminated soils and 

sludges, producing a glass and crystalline structure (at about 3000°  F  or 1600° C) 

with very low leaching characteristics. The glass and crystalline product w ill 

permanently immobilize hazardous substance and retain its physical and chemical 

integrity for geologic time periods. Since the ISV process is costly, it has mostly 

been restricted to radioactive or highly toxic wastes. The demand for high 

energy, specialized equipment, and trained personnel greatly lim it the use o f this 

method. A field demonstration o f ISV is evaluated by USEPA under the 

Superfund Innovative Technology Evaluation Program at the Parsons Chemical 

Site in Grand Ledge, Michigan (USEPA, 1994(a), 1994(b)).

The thermally enhanced soil vapor extraction process uses steam/hot-air 

injection or electric/radio frequency heating to increase the mobility o f vapors and 

facilitate soil vapor extraction (USEPA, 1993c). The temperature in this process 

is controlled in a low range so that there is no chemical destruction.

2.1.5 Enhancement Technologies

Hydraulic fracturing, also known as hydrofracturing, is an enhancement 

technology to increase formation permeability (Murdoch, 1992a, 1992b, 1992c). 

The fracturing process begins by using a hydraulic jet to cut a disk-shaped notch 

on the borehole wall. Water (with or without chemicals) is then injected into the 

notch until a critical pressure is reached and a fracture is formed. A proppant
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composed o f a granular material (e.g., sand) and a viscous fluid (e.g., guar gum 

and water mixture) is then pumped into the fracture. As a result, the mobility 

through d ifficu lt soil conditions can be increased.

A summary o f this technology is given in a USEPA Demonstration Bulletin 

(USEPA, 1993). Thus far, two field demonstrations have been conducted, one in 

conjunction with a vapor extraction system and the other with bioremediation. 

Since water or other liquid is used in the process, the moisture content o f the 

formation is increased during hydraulic fracturing. This additional water or liquid 

may block the pathway for VOC transport, and subsequently reduce the efficiency 

o f the VOC removal from fractured formations.

Pneumatic fracturing is a new enhancement technology developed at 

Hazardous Substance Management Research Center at New Jersey Institute o f 

Technology. This process involves injection o f pressurized air into soil or rock 

formations to create fractures and increase the permeability. The injection is a 

quick process (e.g., within 10 to 20 seconds), and clean air is the only ingredient 

o f the injection fluid. Thus, the potential chemical hazard or disturbance to the 

formation's chemical constituents is minimal. This technology has been applied 

to a number o f contaminated sites, and field results show that the process is 

effective in enhancing the VOC removal from the vadose zone (Schuring and 

Chan, 1992; HSMRC, 1994a). A more detailed description o f this process is 

presented in the next section.

2.1.6 Remarks

The success o f in situ remediation technologies depends largely upon the transport 

efficiency o f materials in and out o f the contaminated zone. Contaminants must 

be transported out o f the formation, while chemical, biological, and other
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amendments must be transported in. Currently, most in situ remediation methods 

are effective only in relatively permeable formations and are inadequate for fine­

grained soils due to the low natural permeability. Improving the transport 

conditions, thus, becomes an urgent task for the current remediation industry. 

The pneumatic fracturing process meets this need and has already been integrated 

with physical, thermal and biological treatment technologies. The pneumatic 

fracturing process is therefore a breakthrough technology which enhances and 

extends the application o f in situ remediation technologies (Schuring and Chan, 

1992; USEPA, 1995a; HSMRC, 1994b).

2.2 Pneumatic Fracturing Process 

The pneumatic fracturing process, developed and patented (US Patent, 1991) at 

New Jersey Institute o f Technology (NJ1T), is a new technology that enhances the 

in situ VOC removal from the vadose zone for low permeability formations. It is 

designed to be integrated with the previously mentioned in situ remediation 

technologies to increase formation permeability. It has been recognized as an 

acceptable technology for enhancement o f vapor extraction by the USEPA within 

the Superfund Innovative Technology Evaluation (SITE) Program (USEPA, 

1993).

2.2.1 Technology

The concept o f the pneumatic fracturing for fine-grained soils (such as silt and 

clay) and sedimentary rock formations (such as shale) is illustrated in Figures 2.1 

and 2.2, respectively. High pressure, clean air is injected into the geological 

formation at an injection point to create fractures. In soil formations, new 

fractures are created in the soil matrix, while in sedimentary rock formations the
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process dilates the existing natural joints and faults. These fractures increase 

formation permeability and exposed surface area, as well as shorten diffusive 

pathway lengths. Since the process injections clean air, it does not increase 

formation moisture content, and should not create new chemical reactions nor 

worsen the contamination situation.

The operational system for pneumatic fracturing includes a compressed air 

source, regulators and flow manifolds, pressure release valve, and HQ injector. 

A pressure transducer (attached to HQ injector) and a series o f tilt meters (on the 

ground surface) are used to measure the fracturing pressure and the movement o f 

the ground surface, respectively. Unlike hydraulic fracturing, pneumatic 

fracturing is a rapid process and the duration o f injection is typically in the range 

o f 10 to 20 seconds, and good field productivity is possible. Based on past field 

experience, a complete fracturing injection cycle along with process monitoring 

can be completed within 30 minutes. That translates to about 10 to 15 fractures 

in a typical production day for a three-person crew.

2.2.2 Development

The development o f the pneumatic fracturing process can be divided into two 

stages, viz., laboratory experiments and field pilot demonstrations.

Laboratory experiments o f pneumatic fracturing were begun in 1988 at NJIT 

(Papanicolaou, 1989; Shah, 1991). Mass removal tests were conducted in three 

identical vats as shown in Figure 2.3 using a surrogate contaminant. Vat 1 served 

as the control and was subjected to natural evaporation only. In Vat 2, a 

traditional soil vapor extraction system was applied. In Vat 3, the same soil 

vapor extraction system was utilized, except the soil in the tank was also 

pneumatically fractured. Typical results from these experiments are shown in
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Figure 2.4, which illustrates that the most efficient mass removal rate was 

observed in Vat 3, i.e., the tank enhanced with pneumatic fracturing. Similar 

results were obtained under a variety o f soil types and test conditions.

In order to extend the favorable laboratory test results into field application, 

the prototype pneumatic fracturing system was built and tested in 1989 on a clean 

site in Frelinghuysen Township, NJ. The objectives o f these proving ground 

demonstrations includes equipment development and evaluation o f fracture 

enhancement. The test site was a glacial lacustrine deposit containing clayey silt 

and sandy silt, which was ideal since the predominantly fine-grained soils 

displayed good uniformity. The results o f these development tests established the 

conceptual feasibility o f pneumatic fracturing in soil formations. A detailed 

description is given by Schuring and Chan (1992).

The first field p ilot application at a contaminated site was conducted at the 

AT&T Richmond Works located in Richmond, VA, in 1990 (Schuring et al., 

1991). A t this site, pneumatic fracturing was combined with soil vacuum 

extraction to enhance contaminant removal rates. Figure 2.5 illustrates the 

comparison o f effluent concentration between pre- and post- fracturing. The 

methylene chloride concentration peaked at 17 ppm and reduced to a non- 

detectable level after thirty-five minutes for pre-fracture period. In contrast, for 

the post-fracture test, the effluent concentration peaked at 8677 ppm and leveled 

o ff at 201 ppm after 150 minutes. Prior to the application of pneumatic 

fracturing, the vacuum extraction system was essentially ineffective. After 

fracturing, the efficiency of the mass removal increased up to 1,000 times with 

respect to the pre-fracture condition.

In addition, the pneumatic fracturing process has been applied in a 

sedimentary rock formation at an industrial site in Hillsborough, NJ. The site
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was underlain by siltstone, which is part o f the Brunswick (Passaic) formation. 

Results from this site showed that the pneumatic fracturing increased the VOC 

removal rate by 2400% (USEPA 1993c). Moreover, pneumatic fracturing dilated 

the formation, which extended the influence radius o f the vacuum extraction well, 

and allowed access to new pockets o f chemical contamination.

In conclusion, the pneumatic fracturing process has been applied to a number 

o f contaminated sites throughout the country. Thus far, the writer has 

participated in six contaminated sites and one clean site including: Tinker A ir 

Force Base (OK), AT&T (VA), AT&T (LA), Marcus Hook Refinery (PA), East 

Orange gas station (NJ), Derelco ECRA site (NJ), and Frelinghuysen Township 

site (NJ). These field tests have demonstrated that the pneumatic fracturing is 

very effective in enhancing both soil vacuum extraction and biodegradation for 

treatment o f VOCs in the vadose zone.
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CHAPTER 3

ANALYTICAL SIMULATION

Transport phenomena in porous media have been studied in several disciplines 

including geology, hydrology, reservoir engineering, and environmental 

engineering (Bird et al, 1960; Carman, 1956; Greenkorn, 1983; Scheidegger, 

1974). Due to the complex nature o f porous media, the problems concerning 

transport in porous media are more d ifficu lt than that in pure liquid or gas. 

Furthermore, transport through fractured porous media is even more complex due 

to the presence o f flow field discontinuities. Although such problems are difficult, 

they were important in itia lly in the petroleum industry since a number o f large oil 

fields are confined to fractured reservoirs. Later, due to the serious situation of 

leakage from nuclear waste repositories (e.g., Hoffman and Daniels, 1984), the 

importance o f transport in fractured media was enhanced and raised to a new 

level: it became an environmental issue. Besides dangers from nuclear waste 

leakage, disposal o f industrial hazardous waste also created enormous 

environmental problems (USEPA, 1980). Thus, a number o f investigations have 

studied contaminant transport through both non-fractured and fractured porous 

media (e.g., Fryar and Domenico, 1989; McCarthy and Johnson, 1993)

Generally speaking, there are two approaches for analyzing fractured media: 

the near field and the far field. The near field approach concentrates on the zone 

close to the individual fracture, so, usually, a formation with a single fracture is 

the domain. The far field approach considers large scale formation as the domain. 

Consequently, there exist many fractures which intersect each other and constitute 

a fracture network. Studies have been conducted with both approaches and models

21
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have been developed. Recently, a state-of-the-art report on various aspects o f 

flow and trace-transport in fractured rock was presented by Bear et al. (1993).

A number o f studies on fractured porous media were carried out in the 1980's 

with the primary objective o f dealing with radioactive waste disposal problems. 

Braester and Thunvik (1983) used a single fracture model to analyze gas migration 

from a radioactive low-level waste repository located in a hard rock formation 

below the sea bottom. They estimated the capability o f the rock formation to 

convey the gas produced in the repository up to the surface. By using Laplace 

transfer. Tang and Babu (1979) derived analytical solutions for the convective- 

dispersive transport o f a contaminant from an injection well in a porous medium. 

Later, Tang (1981) studied the radioactive contaminant transport through a porous 

medium with a single fracture. Chen (1985) derived analytical and approximate 

solutions to contaminant transport from an injection well for a confined aquifer 

and adjacent strata which is mathematically similar to a porous formation with a 

single fracture. Furthermore, Chen (1986) analyzed radioactive contaminant 

transport in a porous medium with a single fracture. Parker et al (1994) proposed 

a model to analyze the diffusive disappearance o f immiscible phase organic liquids 

in fractured media.

On the other hand, with the fracture network approach, Germain and Frind 

(1989) described a two dimensional model for an orthogonal network in which 

analytical solutions are incorporated to model matrix diffusion. Sudicky (1989) 

solved transport along the network numerically in Laplace transform space using 

the Laplace transform-Galerkin method. Sudicky and Mclaren (1992) presented a 

new approach to this problem, in which they described an extension o f the Laplace 

transform-Galerkin method for two dimensional, orthogonal networks, which is 

able to consider advective-dispersive transport in both the fracture network and the
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matrix. Kiipper et al. (1995a, 1995b) developed a transfer function approach to 

model mass transport in a network o f fractures. They also applied the transport 

model subject to advection and dispersion within the fractures, and diffusion 

within the matrix.

An examination o f the nuclear waste transport problem in comparison with the 

pneumatic fracturing process indicates that there are significant differences 

between them. The main concerns of the radioactive waste repository are leakage 

o f radionuclide from fracture into the porous matrix and the eventual contact with 

the biosphere or groundwater system. On the other hand, the principal objective 

o f the pneumatic fracturing process is to provide a high permeability channel for 

either recovery or delivery as means o f site remediation. Thus, the initial and 

boundary conditions for these two types o f problems are different. In addition, 

the basic feature o f the nuclear wastes in unsaturated fractured zone is different 

from those o f pneumatic fracturing process. In the vicinity o f the nuclear waste 

pockets, flow is driven by high temperature (exceeding 100° C) and large 

temperature gradients. Thus, isothermal or nearly isothermal flow conditions are 

not applicable to this situation (Pruess and Wang, 1987).

In addition to migration studies o f nuclear waste and industrial waste, a 

number o f other studies have been focused on the removal o f hazardous waste 

from the geological formations, especially since the Superfund program 

commenced in 1980 (e.g., Hodge and Devinny, 1995; Szatkowski et al., 1994; 

McCann et al., 1994). Among the various remedial technologies, soil vapor 

extraction has received the most attention due to its extensive applications (e.g., 

McWhorter 1990; Beckett and Huntley, 1994). The efficiency o f the soil vapor 

extraction process has been investigated with both theoretical and experimental 

approaches (Ross and Lu, 1994; Hutzler et al., 1989). However, it appears that
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studies dealing with the problem o f contaminant removal by soil vapor extraction 

from fractured porous media are scarce.

During the last few years, several studies have been carried out on different 

aspects o f the pneumatic fracturing process. Shah (1991) conducted laboratory 

bench scale tests to study the effects o f fracturing on contaminant mass removal 

rates. King (1993) developed an analytical model for predicting fracture behavior 

and fracture initiation pressures in geologic formations. Nautiyal (1994) extended 

the cubic relationship for discrete fracture flow  to include compressible gases. 

Fitzgerald (1993) developed the method and apparatus for integrating pneumatic 

fracturing with in situ bioremediation.

The purpose o f the present study is to address a very important question which 

remains unanswered on the pneumatic fracturing process: How quick w ill the 

contaminant be removed from the formation? This study w ill provide a rational 

description o f the contaminant removal process, thereby allowing an assessment o f 

the remediation process efficiency and duration.

3.1 Conceptual Model

The current conceptual approaches to the problem o f transport through a fractured 

medium can be classified into three broad categories: (1) the equivalent porous 

medium approach; (2) the purely discrete fracture medium approach; and (3) the 

dual porosity approach.

The equivalent porous medium approach is used when the formation o f 

interest contains many inter-connecting fractures. Figure 3.1 illustrates some 

sample structures o f fractured formations. This approach has been applied to large 

scale field studies where it is appropriate to treat the whole fractured medium as a 

porous medium equivalent (Zuber and Motyka, 1994). In this porous medium
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(a) Fractures Generated in a 100m by 100m Region

(b) Equivalent Model

Figure 3.1 Equivalent Porous Medium Model 
(Murray et al., 1989)
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approximation, the key parameters are the equivalent dispersivity tensor for solute 

transport (e.g., Gelhar et al., 1979) and the equivalent permeability tensor for the 

flu id flow (e.g., Hsieh et al., 1985).

The purely discrete fracture approach is used for a tight fractured medium 

under the conditions when: (1) a formation is made up to blocks o f rock with 

cracks in between; (2) the permeability o f blocks is negligible; and (3) there is no 

fluid exchange between blocks and the cracks. Fissured granite is a typical 

example. For a formation with these characteristics, it is no longer appropriate to 

approximate the entire fractured medium with averaged quantities such as the 

equivalent permeability tensor and the equivalent dispersivity tensor. The purely 

discrete fracture approach considers each fracture as a pair o f parallel plates with a 

constant aperture, so the flow through the fracture network is similar to a pipe 

network. Figure 3.2 illustrates the conceptual model for the discrete fracture 

approach, which has been used in the problems o f transport (e.g., Smith and 

Schwartz, 1984; Schwartz and Smith, 1988) and fluid flow (e.g.. Long and 

Witherspoon, 1985).

The dual porosity approach was first introduced by Barenblatt (1960) to 

describe the phenomena o f liquid transport in fissured rocks. This approach 

considers two media: a porous medium consisting o f relatively large open fissures; 

and a porous medium consisting o f small pores in the adjacent blocks. Thus, there 

are different porosities for the two porous media. A conceptual scheme o f dual 

porosity approach is illustrated in Figure 3.3. For a fractured porous medium, it 

is considered that the contaminant is stored in the porous medium and is 

transported along the discrete fracture (Barenblatt et al. 1990). The dual porosity 

model has been applied to problems o f contaminant transport through fractured 

porous media (e.g., Streltsova, 1988; Chen 1985).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ve
rt

ic
al

 D
im

en
si

on
 

(m
)

5 -  10 15 20

(a) Model 1 (Smith and Schwartz, 1993)

(b) Model 2 (Murray et al., 1989) 

Figure 3.2 Purely Discrete Fracture Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

PUMPING 
WELL AXIS

M A T R IX
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Figure 3.3 Dual Porosity Model
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Among the three approaches described above, the dual porosity approach fits the 

pneumatic fracturing process best for a few reasons. First, the fracture created by 

the high pressure air injection is quite distinguishable from the soil matrix, 

resulting in division o f the formation into two parts (i.e., the discrete fracture part 

and the soil matrix part). Second, field evidence to date suggests one fracture 

injection creates a major fracture plane with only minor secondary network 

fracturing (Murdoch, 1992a). Third, the soil matrix adjacent to the discrete 

fracture is porous indeed. Thus, the dual porosity model is most appropriate, and 

a special case w ill be studied: a porous medium with a discrete fracture.

Besides characterizing the media, transport mechanisms are o f paramount 

importance in this study. It is well known that the vapor transport processes 

include three components, namely, convection, diffusion, and dispersion (for 

example, Dullien, 1991). Convection is the passive movement o f chemicals with 

flowing flu id; diffusion occurs in response to concentration gradients and the 

Brownian motion o f molecules; and dispersion is the result o f velocity variations 

that cause the chemicals to be transported down-gradient.

In the application o f the pneumatic fracturing process, the permeability o f the 

soil formation is very low; thus, convection and dispersion in the porous medium 

adjacent to the fractures can be neglected and diffusion becomes the only 

remaining transport process (Shackeford, 1991). On the other hand, in a discrete 

fracture, induced flow carries the contaminant out o f the formation. Therefore, 

diffusion, convection, and dispersion processes may occur simultaneously within 

the fracture. However, since the fracture opening is quite small compared with 

the fracture length and it changes rather slowly, velocity variations are assumed to 

be insignificant and negligible, which means dispersion is negligible.

Figures 3.4 and 3.5 illustrate the conceptual models for two dimensional and
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Figure 3.5 Conceptual Model of Chemical Transport for Axial Symmetrical Analysis
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axial symmetrical cases, respectively. The formation consists o f a porous matrix 

with a single fracture. Although there may be more than one fracture in real field 

applications, a single fracture is an essential starting point for studies o f multi- 

fractured formations. Since the upper and the lower parts o f the porous matrix are 

considered symmetrical during the process o f mass removal, it is only necessary to 

model the upper part o f the porous matrix and the upper half o f this discrete 

fracture. Therefore, the mathematical model w ill be established based on the 

finite fracture zone and the semi-infinite (in the z  direction) porous zone, in 

which the porous medium is assumed to be homogenous and isotropic.

The discrete fracture w ill be assumed to consist o f two horizontal parallel 

planes, i.e., the aperture o f the fracture is constant. Furthermore, the aperture is 

assumed to be stable during the soil vapor extraction, which makes the next 

condition possible: the flow rate induced by extraction is constant. This 

assumption is generally consistent with field observations o f in situ flow rate 

measurement.

The moisture content is assumed to be uniformly distributed in the porous 

matrix and remains as such during the extraction operation. This condition is 

reasonable when the involved chemicals are much more volatile than water. In 

addition, it is assumed that there is no chemical reaction during the mass removal 

process. This is reasonable since no chemicals or any other amendments are 

introduced into the formation except for the clean air, which w ill not cause any 

chemical reactions except for a minor amount o f biodegradation.

In summary, the proposed mathematical model is developed based on the 

following conditions:

1. The formation consists o f two zones, i.e., a finite discrete fracture and a 

semi-infinite porous medium zone.
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2. The porous medium is homogenous and isotropic.

3. The aperture o f the fracture is constant.

4. The flow rate induced by vacuum extraction is constant.

5. The water in the soil matrix is immobile.

6. There are no chemical reactions during the process o f removal.

3.2 Mathematical Formulation

Following the conceptual model described in the previous section, the 

mathematical simulation o f VOC removal from a fractured porous medium is to be 

established two dimensionally with Cartesian (x , y , z ) coordinates and axial 

symmetrically with cylindrical (r,(p,z) coordinates. The selection o f these two 

coordinate systems reflects the most commonly encountered field situations. For 

instance, in the case o f a trench or a horizontal well problem, the two dimensional 

analysis is more convenient and provides a more useful solution; whereas the axial 

symmetrical analysis provides solutions for problems such as soil vapor extraction 

from a vertical borehole. The governing equations for concentration distributions 

o f VOCs in the discrete fracture and the porous matrix are derived based on the 

principle o f mass conservation. Once derived, Laplace transforms are used to 

obtain the analytical solutions. The processes o f establishing the governing 

equations with their initial-boundary conditions and seeking solutions in both 

coordinate systems are described in the following two sections.

3.2.1 Two Dimensional Analysis

The formation is divided into two zones, the discrete fracture and the porous 

matrix where different transport mechanisms exist. The characteristics for each 

individual zone and the relationship between them are derived below.
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1. Governing Equation in a Discrete Fracture

Generally, the aperture o f the fracture is very small compared with the length of 

the fracture; so, the concentration gradient in z direction is neglected. 

Consequently, the concentration in the discrete fracture is a function o f time t  and 

coordinate x  without z .  Figure 3.6(a) illustrates the chemical flux for an element 

in the discrete fracture. Applying the principle o f mass conservation (Dullien, 

1991), the mass balance for this element can be expressed as:

where

C, ( t , x )—chemical concentration in the discrete fracture

F t ( t , x )  — mass flux in the discrete fracture along x  direction

q 2 i ( t , x )  —diffusive flux from the porous matrix into the discrete fracture

Mathematically, the above equation can be simplified as:

b d£_ + E . b _ 0 (32)
a t  o x

Since the mass transport in the discrete fracture comprises both convection and 

diffusion, the mass flux F x can be expressed as (Dullien, 1991):

(3.1)

b half aperture o f the discrete fracture

(3.3)

(3.4)

where
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Figure 3.6 Mass Transport for an Element in Two Dimensional Analysis
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u x — velocity o f air in the fracture

<2 i — flow rate per unit width induced by the vacuum extraction

D x — diffusion coefficient in the discrete fracture

In general, the diffusion coefficient in open air (£>,) is dependent on the 

chemical compound, but independent o f chemical concentration for relative low 

concentration ranges. The range o f concentration for the present model is 

considered to be relative low. Therefore, the diffusion coefficient can be assumed 

to be a constant chemical parameter. However, for very high concentrations, the 

diffusion coefficient would have to be related to concentration, which is 

significantly more complex and beyond the scope o f this study.

The diffusive flux from the porous matrix into the discrete fracture. q 2X, is 

proportional to the vertical concentration gradient o f the porous matrix at the 

interface o f two zones:

The diffusion coefficient in the porous medium (D 2) is related to both 

chemical and soil properties. The evaluation o f D 2 w ill be discussed later in 

Chapter 4.

Substituting Equations (3.3) and (3.5) into (3.2)

(3.5)

where

C 2 ( t , x , z )  — chemical concentration in the porous matrix

n a ------------- air filled porosity for the porous medium

D 2 ------------- diffusion coefficient in the porous medium

(3.6)
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For typical cases o f pneumatic fracturing, the Peclet number is in the range 

from 104 to 105 which means convective transport is much larger than diffusive 

transport within the discrete fracture. Based on the Peclet number criterion (Bear, 

1972), the respective diffusion term can be neglected. The governing equation for 

the discrete fracture in two dimensional analysis with Cartesian coordinates is, 

therefore, given by

d C .  d C .  n a D , ( d a
1 + u ,  1------- * -  -

d t  1 d x  b d z
= 0 (3.7)

o

It should be pointed out that both C, and C 2 appear in the above equation, 

which complicates the equation and makes it d ifficu lt to solve.

2. Governing Equation for the Porous Medium

Applying the principle o f mass conservation, the mass flux for an element in the 

porous medium, as shown in Figure 3.6(b), can be expressed explicitly as:

F ^ d z -
d x

F 2x  + - - 2- d x  I d z  + F - , . d x  -
_ , a/%. , V ds, v  ̂ daF,. + —=^dz \dx = dxdz-i -n ndxdz
“  d z  J d t  d t

(3.8)

where

F 2 x ( t , x , z )  — mass flux in the porous matrix along x  direction

F 2. ( t , x , z )  —mass flux in porous matrix along z  direction

52(r,x ,z )— chemical adsorbed by the soil water and solid o f the porous 

matrix

f i a ------------- air filled porosity o f the porous matrix

Mathematically, the above equation can be simplified as

^  +  n a ^  +  ^  +  ^  =  0  (3.9)
d t  a d t  d x  d z
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Since there is diffusion in the porous matrix only, the mass transport can be 

expressed as

— D l x t i a
d C 2

d x
(3.10)

d a
F zz =  ~ D 2zn a —  

d z
(3.11)

where D^  and D2: are diffusion coefficients in x  and z directions, respectively. 

However, it should be pointed out that the diffusion coefficients in x  and z 

directions are the same since the porous medium is assumed to be homogeneous 

and isotropic, that is.

D ZX =  D 2Z =  D 2 (3.12)

The chemical sorption, 5,(r,;c,z), is related to the concentration, C 2 ( t , x , z ) .  

For a linear sorption isotherm, there is

S , = K X (3.13)

d S 2

d a
(3.14)

where K 2 is the distribution coefficient. Consequently, from Equation (3.13), the 

following can be obtained

dSn ,, d a  
— -  =  a ,  — -  

d t  '  d t

Substituting Equations (3.10), (3.11) and (3.15) into (3.9), we obtain

(3.15)

1 +
da n(d2a d2a

d t  { d x  d̂ z 2
=  0 (3.16)
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Furthermore, the retardation factor for the porous medium can be introduced as:

/?, = 1 + ^  (3.17)

The retardation factor (/?; ) is related to both chemical and soil properties. The 

determination o f R 2 w ill be discussed in Chapter 4.

Substituting Equations (3.17) into (3.16), we get the governing equation for 

the porous medium:

sc. a f s ^  + s^ =0
d t  /?, d x 2 d z 2

Since the movement o f chemicals in the porous matrix is predominantly in the z  

direction toward the fracture, the diffusive transport in horizontal direction is 

negligible compared with that in the vertical direction. Thus, the above equation 

can be simplified, and the governing equation for the porous medium in two 

dimensional analysis with Cartesian coordinate becomes:

d C 2 P 2 

d t  R ,2 V

(  d - C 2 

d z 2
= 0 (3.19)

3. Initial and Boundary Conditions

The initial and boundary conditions for Equations (3.7) and (3.19) are set up based 

on field conditions for a soil vapor extraction system. Initia lly, the contaminant is 

assumed to be uniformly distributed in the soil matrix, but absent from the discrete 

fracture. That is

C,(0,.r) = 0, C 2 ( 0 , x , z )  =  C a at t  =  0

where C 0 is the initial concentration in the porous medium. The justification for 

this assumption is based on field observations that contaminated zones are
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relatively large in comparison with the fracture dimension, and clean air is 

introduced during injection, so the concentration in the fracture can be set as zero 

for initial condition.

Since clean air is continuously introduced from one end o f the fracture (at 

x  = 0 ), the concentration at this point can be set as zero, that is

C,(r,0) = 0 at x  = 0

The soil matrix is assumed to extend infinitely, and remain undisturbed. So 

the concentration in soil matrix at infinity is constant, that is

C2(r,x,oo) = C a at z = c°

A t the interface between the discrete fracture and the porous matrix, the 

concentration o f the contaminant should be continuous, that is

C (f,x ,0 )  = C ,(/,x) at z  =  0

Apparently, C, and C, are linked together not only by the governing Equation

(3.7), but also by the above interface boundary condition. As a result, the two 

partial differential equations have to be solved simultaneously.

4. Solutions

The Laplace transform technique is used to solve the two partial differential 

equations simultaneously in conjunction with their initial and boundary conditions. 

The general process includes the following three major steps (Pearson, 1983; 

Latta, 1983):

1. Transform the partial differential equations to ordinary differential 

equations by using Laplace transforms.

2. Solve the two simultaneous ordinary differential equations.
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3. Transform the solutions o f the ordinary differential equations to solutions 

o f the partial differential equations by using inverse Laplace transforms.

It should be pointed out that ordinary differential equations are not the 

outcome o f the Laplace transforms for this problem. Instead the expressions are 

still partial differential equations which, however, have one fewer independent 

variable (time t ) than the original equations.

The two governing equations in conjunction with their initial and boundary 

conditions are summarized as follows

C 2 ( t , x , 0 )  =  C x { t , x )  at z = 0

Before taking the Laplace transform, relevant notations should be introduced first. 

We define

For the discrete fracture < (3.20)
C,(0,;t) = 0 at / = 0

C,(r,0) = 0 at x = 0

d C 2 D 2 ( d 2 C 2 \  ^

d t  R 2 \  d z 2 ,

For the porous medium C 2 ( 0 , x , z )  =  C a at t  = 0 (3.21)

C 2 ( t , x , c o )  =  C 0 at z = oo

L [ C x ( t , x ) ]  =  A t ( p ,  x ) (3.22)

L [ C 2 ( t , x , z ) \  = A 2 ( p , x , z ) (3.23)
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for Laplace transform, 

and

ZT1 [/I, (/?,*)] = C ^ r,* )

L ~ l [ A 2 (p , x , z ) \  = C 2 ( t , x , z )

(3.24)

(3.25)

for inverse Laplace transform. Where p  is the Laplace transform parameter. 

Applying Laplace transform to the each term o f Equation (3.20) results in

d C .  ^ d A ,
«, —— =  u , — - 
 ̂ d x  j  d x

D 2 n a f 5 C 0 _ D i n a (  d A A

b I  d z  J z -o . b {  d z  )

L [ C l ( t , 0 ) ]  =  A 1( p , 0 )  =  0  

Similarly, for each term in Equation (3.21)

d C 2 

I  d t
= p L ( C 2 ) -  (C, ),_„ = p A 2 -  C g

'  d 2 (d2c2\ _ D 2 f  d 2A 2 )

R 2 I  d z ‘ & I d z 2 J

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

L[C2(/,x ,0 )] = A n  ( p , x , 0 )  =  L [ C X (r,A:)] = A : ( p , x ) (3.32)
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Grouping Equations (3.26) through (3.29), and (3.30) through (3.33), 

respectively, two sets o f Laplace transformed equations are obtained as follows:

Q, d A x D , n a (  &4„
PAi -------1— ^2 b  d x  b  I d z

=  0

For the discrete fracture < (3.34)

/ l,(p ,0 ) = 0 at jc = 0

For the porous matrix < A 2 { p , x , 0 )  = A x( p , x )  at z  = 0 (3.35)

/L(p,.r,oo) = —  
P

at z = oo

The above two sets o f equations are still linked together and they are not exactly 

ordinary differential equations since the partial differential terms o f A 2 appear in 

both equations. However, time, t  , has disappeared from the equation set with the 

substitution o f p , which is considered to be a parameter rather than a variable. 

Thus, these two equations are much simpler than the original Equations (3.20) and

It can be seen that A ^  in Equation (3.35) can be solved first as a function of 

A , . The general solution is in the form
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. R , p  m =  — —

V A
(3 .37)

where A 2, and A a are undetermined functions.

Applying the boundary conditions at z = °° and z = 0 in Equation (3.35), 

respectively, it can be shown that

A 2l = 0 ( 3 . 3 8 )

A „  =  A ,  -  -2- 
P

(3.39)

Substituting Equations (3.38) and (3.39) into (3.36), yields the relationship 

between A 2 and A ,  as:

A , =  A , -  — e x p ( - m z )  + —  
P

Considering the form o f A 2 in Equation (3.34), it is convenient to express

(3.40)

3/4,
d z

= - m A j  ~  - ^ J  exp[ - m z )

and furthermore

1II

{  d z  ) 7 -0  V.

A . - S .

Substituting Equation (3.42) into (3.34), the following is obtained

(3.41)

(3.42)

Q x d A x m D 2n a

2 b  d x  b  

The above equation can be rewritten as

A ,  - - 2 -  = 0

2 b  d x
+  A , P  +  -

m P 2n a C 0

p b
=  0

(3.43)

(3.44)
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This is a first order ordinary differential equation. Along with the boundary 

condition in Equation (3.34), its solution can be expressed as

b  v"> 
P  +  r ^ r - P "

1 -  exp

n a -JD 2 R 2

Substituting Equation (3.45) into (3.40)

r 2b x  2 n a y [ D J &

; ^ p — o T rp
(3.45)

C  C
A , = — -----  exp

P  P b  3/2
p  + — ,------ p

n ay [ D j i : y

exp

-exp
P  + P '

2b x  i j D t R - ,  j— IR-, j—
—p rP -----7T~^<P  ~ zJ 7 r J pQ\ Qi v Ds

(3.46)

The above two solutions are for transformed Equations (3.34) and (3.35) but 

not for the governing Equations (3.20) and (3.21). To obtain the solutions for the 

original partial differential equations, inverse Laplace transforms are applied to 

these two solutions. Here, the following shorthand notations are introduced as 

follows:

^ L \  ~ ' (3.47)
P  +

n a y / D 2R 2

A l :  = exp
2 x n a j D J &  r -

— o T ^ r p
(3.48)

. (  2 b x
^ 3  = e xp | - - q - P (3.49)
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So Equations (3.45) and (3.46) reduce to the shorter forms as

c c
^ 2  =  ^ I A  "*■ ^ L l-^ z .4  ~  A - u A L - , A A L4

p  p

(3.51)

(3.52)

Applying inverse Laplace transform to the above two solutions

r‘U,) = r1 U J - l-1 (3.53)

L ~ l ( A 2 )  =  L - '
p

+ L "  ( A U A U ) -  L ~ l ( A L l A L2A u A u ) (3.54)

To apply the inverse Laplace transform, the error function and the complementary 

error function are needed. They are defined as follows, respectively,

e rf(a ) = exp(-C2 )^C

erfc(a) = 1 -  e rf(a )

By applying the inverse Laplace transform (Erdelyi, e t  a l .  1954), the following is 

obtained

i " K , ]  = Q 1 -  exp ' " ^ V i e r f c
b 2

n a - \ l ^ 2 ^ 2  y j (3.55)

L ~ ' ( A u A L 2 ) =  C0erfc
n a * J D 2R 2 

(  Q > S t
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- Q  exp n 2a D 2 R 2 ( l x _  £  

Q i  +  b t
erfc

'  n ayj D 2R 2 n a ^ j D 2R 2 n
— r —7=— x  --------;-------v /

, Qx ■*/? b

(3.56)

Introducing / j ( f )  as shorthand notation for the above equation

f l ( t , x )  =  L ~ 1 [ A L lA L 2 ]  (3.57)

To inverse the second term in Equation (3.53), the following

general inverse Laplace transform formula (e.g., Latta, 1983) w ill be used

if  L ~ l [ A ( p ) ]  =  f ( t )

then ZT1 [/!(/?) exp(-<zp)] = U { t  -  a ) f ( t  -  a )

where U ( t  - a )  =

0 when t  <  a

1 when t >  a

(3.58)

Applying the above formula, the following can be obtained

L " { A n A L2A LJ  =  U
2b x

Q \
fx t  -

2  b x

C QU f r - 2fec)J erfc
n ay j D , R ,
—  X f 2fe0t —

1 “ 
■*»

I  (2, J a v Q \  y

-exp
n 2a D ^ R - ,  \

r

f

n a y j D 2R 2 f  2 b x )

Q i
\

k Q \  y

n a y ] D 2 R 2 f  2  b x '
t  -

i A'

(3.59)
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The first three terms in Equation (3.52) can be obtained from inverse Laplace 

transform (Erdelyi, e t  a l .  1954) as

—  = C „ (3.60)

— ^ i a  = Q e rfc /  p T  z A 
I d ,  i 4 i

(3.61)

L ~ l ( A i a  ) =  C „ e rfc &  z  

D ,  2 4 1

~ C 0 exp
R , z  n ] D , R ,  

b  + b z ' 1
erfc

D ,  l 4 t  b  1
(3.62)

To obtain U x { A lxA l , A l 1_Al ^ )  in Equation (3.52), the following inverse has to be 

carried out first as the preparation:

n ~ D , R ,  p T  z 
 ̂ b Q x X  +  i o , 2 VF

-Q e xp — x  +
/>£ 6 62

\ Y
erfc

/
-x + j — — - p  + — :—

D , 2 ) 4  b
-4t

(3.63)

Applying the inverse Laplace transform formula (3.58)

l - 1( a l 1a L2a l , a J  =  c 0 u \ , - 2 b x \

•

erfc
/

a J V

n ‘ D , R ,  R ,  z
— -— ~ x  + /—-—  
Q \  \ D 2 2

r  2 b x N 
t  -

\  <2,I /
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Substituting Equations (3.55) and (3.59) into (3.53), and (3.60) - (3.62) and

(3.64) into (3.54), respectively, the final solutions o f the original sets o f partial 

differential equations (3.20) and (3.21) can be expressed as follows:

for t <
2 b x

<2,

c > 1— -  = 1 -  exp {  n ; D 2R 2 erfc{ b - *  J
(3.65)

—7-  = 1 -  exp
( n aR ,  n ; D , R ,  \  .

- ^ r f z  + - t  erfc 
b  b ~  ) 2  \  D-, S t  +  b

-S t (3.66)

for t >
2  b x

~ a ~

—  = erf
n a y ] D 2R 2

Q \
t  -

2  b x  

2 , ,
+ exp

b -

n a 4 ^ 2 ^ 2  J J

-  exp erf
n c ^ j D 2 R 2

~ Q :

2 b  
t  — — —x

2. y
2 b  

t  .v
2 , ,

(3.67)

C,
= erf

r n a ^ [ D J R ^  [ J i T  
'  x  +  z j — r  

2, \ D 2

'  t _ 2  b x '

2 ,1 y
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or, in combined format as

C< ,—  = 1-exp
b - J

- U f  2b \t  V , erfc
n B tJ D 2R 2 ( 2bx]

I  a J Xa < Gi j

+exp
n a y j D 2R 2 

Q i

t  -  •2 b x

g, J

I

n a ^ j D 2R 2
i  -

2 b x ) 2

a

c f
- f  - = 1 -  exp

V
-  K D 2 R 2 

b  b 2
erfc

^ D 2 4 t  b

(3.69)

-c / / - •
2 fcr

gT.
erfc — ' x + z j - f -  G, \ d 3

V
t -

2 b x

yv
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As indicated in Equations (3.65) to (3.70), the solutions are o f the form in 

exponential and error functions.

3.2.2 Axial Symmetrical Analysis

In most situations, the in situ soil vacuum extraction process is applied in a 

vertical borehole rather than in a horizontal trench case. For these cases, the 

contaminant removal is described better in cylindrical coordinates than in 

Cartesian coordinates. Since the soil medium is assumed to be homogenous and 

isotropic in the conceptual model (see Figure 3.5 in Section 3.1), the condition of 

axial symmetry automatically follows. Consequently, each physical variable of 

the problem w ill be independent o f coordinate cp. The governing equations for 

concentration distributions o f VOCs in the discrete fracture and the porous matrix 

w ill be derived based on the principle o f mass conservation, and solved by using 

the Laplace transform technique.

1. Governing Equation for the Discrete fracture

Figure 3.7(a) illustrates the chemical flux for an element in the discrete fracture 

for a cylindrical coordinate system. In general, the concentration gradient in the 

z  direction is neglected since the aperture o f the fracture is very small compared 

with the length o f the fracture. Consequently, concentration in the discrete 

fracture is a function o f time, t , and coordinate, r , only. Based on the principle
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Q43
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dr
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(b) Porous Medium 

Figure 3.7 Mass Transport for an Element in Axial Symmetrical Analysis
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o f mass conservation, the mass balance for this element can be expressed as: 

F ^ b r d i p  -
d F -  

F -  + - ^ - d r  
d r

x d C -
b ( r  +  d r ) d ( p  + q ^ r d q d r  = — - b r d ( p d r  (3.71)

d t

where

C3( /,r )  — chemical concentration in the discrete fracture

F3( f,r )  —  mass flux in the discrete fracture along r  direction

#43 diffusive flux from the porous matrix into the discrete fracture

b  half aperture o f the fracture

The above equation can be simplified as:

5 F -  dC- rq.~
F3 + r — -  + r — -  -  =  0 (3.72)

dr dt b

where the diffusive flux from the porous matrix into the discrete fracture is 

proportional to the vertical concentration gradient o f the porous matrix at the 

interface o f two zones:

# 4 ?  =  D 2 n a

r  d C A \
4 1 (3.73)

I  d z ' 2 -0

where

C 4 ( t , r , z ) — chemical concentration in the porous medium

Since the mass transport in the discrete fracture consists o f both convection 

and diffusion, F 3( t , r )  can be expressed as:

F (r ,r )  = ^ C , - A ^  (3-74)
d r

u % = ~ T T ~  (3-75)
A n b r
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where

u ?( r )  — velocity o f air in the fracture

Q i ------ f iow rate induced by the vacuum extraction

D x ------ diffusion coefficient for the discrete fracture

Substituting Equations (3.73) and (3.74) into (3.72), the following is obtained

d C , . Q y 3C? d , d ( d a ^ D 2n a

d t
I

A i t b r  d r r  d r V  d r  J b I  d Z )
=  0 (3.76)

S o

Again, based on the Peclet number criterion (Bear, 1972), the convective transport 

is much larger than the diffusive transport within the discrete fracture and the 

diffusion term can be neglected. Thus the governing equation for a discrete 

fracture in axial symmetrical analysis with cylindrical coordinates is:

a a <2? <9C, D 2n a

d t  47z b r  d r

' 5Q 

, dz Jz-o
=  0 (3.77)

2. Governing Equation for the Porous Medium

Figure 3.7(b) shows the chemical transport for an element in the porous medium. 

The mass balance o f the element gives:

F i r r d < p d z - F" +i r drd r
( r  +  d r ) d ( p d z  + F * z ~ F . r  -

d F ^

d z
d z r d < p d r

r d  (p d r d z  + n „  r d  cp d r d z
d t  d t

where

F 4 r ( t , r , z )  --mass flux in the porous matrix along r  direction 

F 4 z ( t , r , z )  --mass flux in the porous matrix along z  direction

(3.78)
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S4(t,r ,z ) — chemical adsorbed by the soil water and solid o f the porous 

matrix

n a ------------- air filled porosity

The above equation can be simplified as

f  +  „ ^  +  ^  +  ^  +  f ,  =  0  ( 3 . 7 9 )
d t  a t  d r  r  d z

It should be pointed out that the diffusion coefficients are chemical-physical 

parameters which are not related to the coordinates. Furthermore, the diffusion 

coefficients in the r  and z  directions are the same based on homogeneity and 

isotropy assumptions for the porous medium. That means

D 4r =  D 4. = D 2 (3.80)

The chemical transport in the porous medium is through diffusion process 

only. So there are

F<r = ~ D zn a ^  (3.81)
d r

F 4z =  - D 2n a ^  (3.82)
d z

The linear sorption isotherm is the same for both Cartesian and cylindrical 

coordinates, so

S4 = K 2C 4 = { R 2 - l ) n a C 4 (3.83)

where K 2 and ft, are defined as in the two dimensional analysis [Equations (3.14) 

and (3.17)], since they are independent o f the coordinate system. Based on 

Equation (3.83), the following is obtained
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(3.84)

Substituting Equations (3.81), (3.82), and (3.84) into (3.79), the governing 

equation for the porous medium becomes:

Since the movement o f chemicals in the soil matrix is predominantly in the vertical 

direction toward the fracture, whereas the diffusive transport in radial direction is 

negligible compared with the vertical direction, the above equation can be 

simplified. Thus, the governing equation for the porous medium in axial 

symmetrical analysis with cylindrical coordinate can be expressed as:

3. Initial and Boundary Conditions

The initial and boundary conditions for Equations (3.77) and (3.86) are set up 

based on field conditions similar to the analysis in Cartesian coordinates. For a 

relative large and uniform contaminated area, the initial contaminant is assumed to 

be uniformly distributed in the soil matrix, but absent from the fracture medium,

where C 0 is the initial concentration in the porous matrix.

Since the clean air is induced from the injection point ( r  = 0), the 

concentration at this point can be set as zero, i.e.,

(3.85)

C?(0,r) = 0, C4(0,r,z) = C 0 at t  =  0

C?(f,0) = 0 at r  =  0
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The concentration in the porous matrix at infinity is assumed to be 

undisturbed, i.e.,

C4(r,r,oo) = C Q at z = co

At the interface between the discrete fracture and the porous matrix, the 

concentration o f the contaminant must be continuous, i.e..

4. Solutions

The two governing equations along with their initial and boundary conditions can 

be summarized as follows:

It can be seen that C4 is in Equation (3.87) for C3 while C3 is one o f the 

boundary conditions for C4 in Equation (3.88). As a result, the above two partial

C 4 ( t , r , 0 )  =  C , ( t , r )  at z = 0

For the discrete fracture - (3.87)
C?(0 ,r) = 0 at f = 0

C3(f,0) = 0 at r  = 0

d t  f a y  d z 2 J

For the porous medium C4(0,r,z) = C 0 at 1 = 0 (3.88)

C4(r,r,0 ) = C3( /,r)  at z = 0

C4(t,r,co) = C0 at z  =  ooat z = oo
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differential equations are linked together and have to be solved simultaneously. 

Introducing the notations for Laplace transform

L(C ,) = /4 ,(p,r)

L { C 4 )  =  A 4 ( p , r  , z )  

and the notations for the inverse Laplace transform

ZT1 [ A - X p , r ) ] =  C3(r,r)

U x [ A 4 { p , r , z ) ]  =  C 4 ( t , r , z )

(3.89)

(3.90)

(3.91)

(3.92)

where p  is the Laplace transform parameter. Applying Laplace transform to each 

term o f Equation (3.87), yields

^ p j  =  p L { C , ) - { C , ) [m 0 = p A ,

r  Q  d C ? '  

^ A i z b r  d r

Q  d A ,, 
A n b r  d r

D zn a ( d C 4 ) _ D i n a f a O
b {  d z  ) z-<>- b I  dz J

(3.93)

(3.94)

(3.95)

L [Q (r,0 )] = A , ( p ,  0) = 0 

Similarly, for each term in Equation (3.88)

' d £ A

d t
=  p L ( C 4 ) - { C 4 ) lm 0 = p A 4 - C o

(3.96)

(3.97)
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d 2 (

[ r 2 {  d z 2 J j * 2  I
/  a2

d 2A A
(3.98)

L [ C 4 (r,r,0 )] = A 4 ( p . r ,  0) = L[C? (r,r)] = A ? ( p , r ) (3.99)

L[C4 (r,r,oo)] = A 4 ( p , r , c o )  =  L ( C 0 )  =  —

P
(3.100)

Combining Equations (3.93) through (3.96), and (3.97) through (3.100), 

respectively, yields following two sets o f Laplace transformed equations:

For the discrete fracture <

p A y +
<2? d A .  D 2n a

4T z b r  d r

8 A ±

v &  Jz . 0
=  0

(3.101)

^?(p ,0) = 0 at r  =  0

For the porous matrix

4 D, 8 2A 4 „
R> a z

A 4 { p , r , Q )  = A j , { p , r )  at z -  0

A 4 { p , r  ,co) =  — 
P

(3.102)

at z  = 00

It can be seen that A 4 in Equation (3.102) can be solved first as a function of 

A 3. The general solution can be expressed as

A 4 =  A 41 e x p ( n i z )  + A 4,  e x p ( - m z )  + —
P

(3.103)

m  = ¥ (3.104)
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where A 4I and A 42 are undetermined functions.

Applying the boundary condition at z = °o and z -  0 in Equation (3.102) 

respectively, A 4I and A 42 can be obtained as

^ > = 0 (3.105)

A 4 2 = A , ----- (3.106)

Substituting Equations (3.105) and (3.106) into (3.103), the link equation o f A 3

and A 4 is determined as:

A 3 - ^ l  e x p ( - m z ) - h ^ -  
P )  P

(3.107)

and

d A 4

d z
=  - m A .  — -  e x p ( - m z )  

P )
(3.108)

( Q a A
f

4
=  - m

I  d z Z -o \ P
(3.109)

Substituting Equation (3.109) into Equation (3.101)

47i b r  d r
A ,  2. =  0 (3.110)

which can be rewritten as

e  M ’ . + r A ( p + 5 9 a l ] . S ! P a £ l = o

47z b  d r p b
(3.111)

The solution for the above equation along with its boundary condition in Equation 

(3.101) is
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A9  = ■

p  +  -

1 -  exp
2 % b r 2 2 i z r 2n a J D ^ R  ^

---------- p --------------— —
Q* <2,

(3.112)

n a ^ D 2R 2

Substituting Equation (3.112) into Equation (3.107), the following is obtained

C  C  
A 4 = —  -  — exp

P  P
p  +

n a ^ D 2R 2

,3/2
-exp

b  t/2
P  +  r ~  =  p

n a y [ D ^ : y

exp
27c6r2 2 % r 2n a ^ j D 2R 2

The following notations are introduced for convenience,

/ l i5 = exp 271b r 2

~ q T

(3.113)

(3.114)

A L6 = exp
2 % r n a y j D 2R 2 '

J~p (3.115)

Substituting Equations (3.47), (3.114), and (3.115) into (3.112), (3.47), (3.50),

(3.114), and (3.115) into (3.113), respectively, yields

A-;. — A  L | A ^ A ^ A ^

A $  — A u  + A L lA L4 — A ^ A ^ A ^ A ^
P  P

Applying the inverse Laplace transform to the above two equations

(3.116)

(3.117)

U x { A 3 ) = r1 ( A u ) -  U x( A L1A L f A L6) (3.118)
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P  )

IAAmong the terms o f the above two equations. L  '(/4 t I ), L  1

and Zr'(/4t l /4M ) have already been obtained in Section 3.2.1. To obtain the last 

term in each equation, following two inverse Laplace transform are needed as the 

preparation:

(  2r 2TznayjD 2R2 " 
Q %4 t

-Q e x p
l itr rD .R y - n'D.R^

b Q ., b2
erfc

r n n ^ D ^

Q3J t + b
(3.120)

L~l ( A u * i a A u )  =  Q erfc
f Ttn^D^R^ + j~R7 z " 

2 ? V A - 2 V7

-C 0exp +  ̂  ,1  erfc 
bQ, b b2 I

+
f  t z n l D ^ r 2 f~ R 7

,  e, + i o 2 i V7

(3.121)

Applying the inverse Laplace transform formula (3.58) to the above two equations 

yields the following

L - ' ( A u A L i A u ) = C „ U
( 2 tm r2'
t ----------

v Q *  j
erfc

m n , y j D 2R 2

Qy
t - -

2  tm r~

~q T
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Substituting Equations (3.55) and (3.122) into (3.118), and (3.60) - (3.62) and

(3.123) into (3.119), respectively, the final solutions o f Equations (3.87) and 

(3.88) can be expressed as follows:

For t  <
2 n b r 2

~ Q ~

c * ,~pr = 1 -  exp (3.124)

C4 1—7- = 1 -  exp ^ z  + ^ ^ r l e r f c  
I  b ~  b  )

1 IR2 z V^2 ^ 2  rj 
2 X 1 X 1 1  b

(3.125)

For / >
2 n b r 2

~ q T
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C, . 
—— = erf

i z n J D ^ R ,  ,
 ^-=-r*

Q y

2 i t b  
r  r*

a
+ exp

f  n ; D , R ,  )
/

erf- ti.

V

n g - ^ ^ 2 ^ 2  J J

-exp
f  n ; D 2R 2 ^

erf
n n a ^ j D 2R 2 f  2Tib 2 ) - n a y l D 2R 2 (  2 tcZ? 2 \

I  b 1 Q :,
i  r

< 2 ? , b 1 2 ? )

(3.126)

—  = erf
7zna J D . R ,  , I R  

'  ~ r* + z „/■—=_
V

Q y ° 2  j

2tiZ? -> 
r  r “

e 3

+exp
. n z D ^ R

V *
-z + ■

b2
erf

[R7 z na-yjD2R, r '
d ,  v ? + *  Vr

-exp
/z„#, . n z D . R

■z + ■ - r  erf
7i n ay[ D J R  ,

<2?
r- + z 2 tc& , 

t  r
Qy

n a y ] D 2 R 2 f 2%b ^  
t -

1

Q%
(3.127)

or, in combined format as

C,
-  = 1 -  exp

( n l D ^ R  \
f

erfc■a - t
I b -  ) \

i

U
2  i z b r 2 ^ 

t ----------- erfc
n n  J D ^ R  ,------1---2 - 2 - f -

'  2 k b  ^  
t -------- r

I 2? ) Q y \  Q y  J
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- U t  -  ■
2 v . b r 1

~ Q ~

f  2
exp

K D ,/t, | .
erfc

7m a J D , R .  ,

 —^ - = - r ~
Qy

( 2:zb i x
t  -  ■

Qy

+
n „ j D &

I

'  2 n br  r
v Qy

( 3.128)

= 1 -  exp _ , K D 2R 2 \  

b2 Z b2
erfc I f^2 Z _j_ \ l ^ 2 ^ 2  r

\ d , T x b

U t  -
2vbr_

Qy
erfc

Qy
r ~  + z .

D-,

'  2  K b
t  r ~

Qy

(
-exp

n a R ,  . n z D ^ R ,
^ z  +  - \ ; - t  I erfc 

{  b -  b ‘  J

f  k / i  - y jD ^ R ,  „ [ r T  
— —-  ~ '  r ~  + z  —

Qy V f t

(  2 v b  ->  ̂
t  r ~

I  f t

i
na JD2R2 f  2 K b  3V

t  / -
f t

(3.129)

As with the two dimensional analysis, these solutions contain exponential and 

error functions as indicated in Equations (3.124) to (3.129).

3.3 Remarks

1. Time Division Function

It can be seen that the concentration expressions given in Equations (3.65) through

(3.68) are divided into two different time zones. The time division is not a 

constant, but rather a characteristic line:
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r = - ^ -  = — or x  =  t u x (3.130)
2 b x  __ x  

Q i «,

The above equation describes the physical location o f the introduced air front 

versus time. In Figure 3.8(a), the first time zone ( t < x / u x ) is above the line, 

while the second time zone (t > x / u ] )  is below the line. For the two dimensional 

case, the characteristic line is a first order function since the velocity is constant.

However, for the axial symmetrical condition, it can be seen from Equations

(3.124) through (3.126) that the time division is a high order function, since the 

velocity o f the air in the discrete fracture is not constant but a function o f the 

coordinate r . By the basic definition o f the velocity

f  =  ^  = 4 ^ ~  (3' 131)a t  A n b r

The above equation can be rewritten as

A n b r

Q *

Integrating the above equation, yields

d r  = d t  (3.132)

r A n b r  rJ — d r  =  \ d l  (3.133)
0 ^ 3  0

that is

2 n b r 2 . .
t  =  — — (3.134)

Based on the preceding derivation, it can be seen that the above equation 

describes the time-location relationship for induced air traveling along the discrete 

fracture. Although Equations (3.130) and (3.134) are in different forms 

mathematically, they have the same physical meaning for their respective 

situations.
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Equation (3.130)
x

Time Zone - 1

Time Zone - 2

t

(a) Two Dimensional Analysis in Cartesian Coordinates

r

Time zone - 1

Equation (3.134)

Time zone - 2

t

(b) Axial Symmetrical Analysis in Cylindrical Coordinates 

Figure 3.8 Time Division Characteristic Line
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Figure 3.8(b) illustrates the frontal location o f the introduced air in the axial 

symmetrical case. As expected, it is not a straight line but a curve. The first time 

zone { t  < 2 n b r 2/ Q ~ )  is above the curve while the second time zone ( t  >  l i z b r 2/ Q . )  

is below the curve.

2. Mass Removal

Based on the effluent concentration, the total mass removal can be calculated by 

the following integration:

t

Af, = | C xd t  (for two dimensional analysis) (3.135)
0

t

C ?d t  (for axial symmetrical analysis) (3.136)
o

where L, is the width o f the fracture area, C x and C, are expressed by Equations

(3.69) and (3.127), respectively.

The mass removal results in the next three chapters are based on the above 

two numerical integrations. The parameters involved in the solutions, and their 

influence on the solutions, w ill be presented in Chapters 4 and 5, respectively.
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CHAPTER 4

PARAMETER EVALUATION

In order to apply the model and predict contaminant behavior by the pneumatic 

fracturing process, key physical and chemical parameters must be known a  p r i o r i  

including: diffusion coefficient, retardation factor, fracture aperture, and 

extraction flow rate. In the present study, the aperture o f the fracture and the 

extraction flow  rate are measured in the field with monitoring devices. The 

diffusion coefficient and retardation factor are d ifficu lt to measure directly and, 

thus, the evaluations are based on published information. A ll four parameters are 

discussed in this chapter.

4.1 Diffusion Coefficient

Since diffusive transport plays an important role in remedial actions in soils, it is 

necessary to estimate the diffusion coefficient for contaminant removal analysis. 

The diffusion coefficient is defined as part o f Fick's law which can be expressed 

as the follows:

q  =  - n a D ^ ~  (4.1)
d x

where

q  —  the vapor diffusive flux 

C — concentration o f chemical in the soil air 

D  — diffusion coefficient in the soil matrix 

n a— air filled porosity o f the soil matrix

6 9
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Although the above equation appears to be rather simple, determination o f the 

diffusion coefficient is d ifficu lt for porous formations. Since the presence o f soil- 

solid and soil-water affects the diffusion process, the diffusion coefficient for 

interstitial soil-air should be smaller than that for unobstructed air due to the fact 

that: (a) diffusion area is decreased by the presence o f soil particles; (b) the 

diffusion distance is increased since the diffusion pathway is not straight but 

tortuous; and (c) dead pores o f the soil structure obstruct the diffusion pathways. 

The diffusion o f gas or vapor through soils has received considerable study 

beginning with agricultural research. However, in spite of numerous studies, 

quantitative data on the diffusion coefficient are both limited and diverse. 

Moreover, the definition o f the diffusion coefficient varies among the authors o f 

different disciplines. Thus, an analysis o f the diffusion coefficient based on 

available published data requires careful scrutiny.

There are a significant amount o f experimental investigations on diffusion 

processes through porous media. In the beginning o f this century, Buckingham 

(1904) measured C 0 2 movement through four different kinds o f soils with 

different states o f compactness and moisture content. He found that porosity was 

the governing parameter and textures o f soils had little influence on diffusion. 

Penman (1940a, 1940b) conducted an extensive experimental study on gaseous 

diffusion through various kinds o f soils with different tracers. He found that the 

porosity was important. Currie (1960a, 1960b, 1961), who studied gas diffusion 

through both dry and wet granular materials, concluded that diffusion coefficients 

varied for different materials. Lai et al. (1976) conducted both laboratory and 

field experiments to study gas diffusion behavior. They found that it was 

d ifficu lt, i f  not impossible, to determine the influence o f soil type on diffusion 

rate. Nielson et al. (1982) and Silker and Kalkwarf (1983) investigated radon
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diffusion experimentally. Their results were similar, and showed that increases in 

moisture content decreased diffusion rate.

The consensus o f laboratory experimental studies on diffusion transport 

through porous media showed that the diffusion coefficient depends principally on 

porosity, moisture content, and soil type. However, the mathematical 

relationships between diffusion coefficient and these parameters differ widely 

among investigators.

Since natural soil structure is typically disturbed due to the packing efforts in 

laboratory experiments, a number o f field evaluations have been carried out to 

avoid this artificial effect. Blake and Page (1948) conducted direct in situ 

measurements o f gaseous diffusion in soils. Although their experiments were 

conducted in the field, the geometric scale was still small (about one foot) for 

field applications. Two other field scale experiments were conducted by Weeks et 

al. (1982) and Kreamer et al. (1988). Weeks et al. investigated vertical diffusion 

to 45m depth o f below the ground surface. Kreamer et al. studied horizontal 

diffusion at a low-level nuclear waste disposal site.

Besides the laboratory and field studies, some investigators analyzed the 

diffusion problem using a theoretical approach. Marshall (1959) and Millington 

(1959) obtained different relationships between diffusion and porosity based on 

the theoretical pore size distribution. Millington and Shearer (1971) developed a 

mathematical formula to calculate the diffusion of aggregated porous solids. 

Youngquist (1979) analyzed various pore structure models and predicted diffusive 

rates through porous media. Nielson et al. (1984) developed a mathematical 

model for calculating radon diffusion coefficients. Saez et al. (1991) performed a 

theoretical analysis to predict effective diffusivities in porous media by using 

spatially periodic models.
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In order to present the influence o f the water and solid o f the porous medium 

separately from chemical properties. Carman (1956) first introduced the concept 

o f the tortuosity (t ) which was initially defined as the ratio o f straight length and 

the tortuous diffusive length. Tortuosity, therefore, describes the geometric 

character o f the diffusive path. However, since it is d ifficu lt to know the real 

geometric structure in a soil, tortuosity cannot be determined precisely. On the 

other hand, the tortuosity corresponding to a geometric condition cannot be 

determined experimentally since it is very difficu lt, i f  not impossible, to 

distinguish geometric influence from other effects. Thus, it is impossible to 

determine tortuosity separately. Tortuosity has therefore been redefined in the 

current literature (e.g.. Bear, 1979) to include the overall influence o f the soil 

water and soil solid. The tortuosity used in this thesis is defined by following 

equation

D  =  t D 0 (4.2)

where

t — tortuosity

D 0 —diffusion coefficient in the open air

Figure 4.1 shows the tortuosity data from published literature based on the 

definition o f Equations (4.1) and (4.2). Theoretically, the tortuosity for a porous 

medium may range from zero to one. The lower and upper limits are for the two 

extreme boundary cases, i.e., zero air filled space and 100% air filled space, 

respectively. However, for engineering applications, the tortuosity realistically 

ranges from 0.1 to 0.7 for typical porosities and moisture contents.

It should be noted that the diffusion coefficient in the open air (D 0) is usually 

considered to be a chemical parameter which is independent o f concentration in 

low concentration ranges. A t high concentrations, however, D 0 is a function o f
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concentration. Since most soil remediation situations involve low concentrations. 

D 0 w ill be assumed to be a parameter rather than a variable for the purposes of 

this study. Consequently, the diffusion coefficient in the soil matrix, D , is also a 

parameter rather than a concentration dependent function.

0.8 T Fbrosity =0.55

0.6 - -

>»
"55 0.4 o
5—o
E- 0 2 -

0.0
0.1 0.2 03 0.4 0.5

Air-filled Rxosity

1 ------- 2 .... 3 ---------4

■ 8 ------- 9 ----------- 1 0 -------------11

5

12

6 ----------- 7

I —  Buckingham (1904)

3 — Currie (1960)
5 — Grable and Siemer (1968) 
7 — Lai et al. (1976)
9 — Penman (1940)
I I  -  Weeks et al. (1982)

2 — Carman (1956)
4 — Dullien (1991)
6 — Kreamer et al. (1988) 
8 — Millington (1959)
10 -  Van Bavel (1952)
12 -  Wesseling (1962)

Figure 4.1 Tortuosity Distribution
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4.2 Retardation Factor

When VOCs are released in a soil formation, they exist not only in a gaseous 

phase (by mixing with the soil air) but also in a liquid phase (dissolved in the soil 

water) and solid phase (sorbed by soil solid). For a contaminated site with a long 

history, the chemicals in the three phases can be considered to be in equilibrium. 

I f  the chemicals in gaseous phase are removed as with a vapor extraction system, 

the equilibrium condition becomes disturbed resulting in chemical transport 

among the three phases. Continuous vapor extraction w ill cause conversion o f 

chemicals in liquid and solid phases into the gaseous phase for eventual removal 

from the formation. Since the amount o f chemicals stored in the solid and liquid 

phases may be much larger than that in the gaseous phase, failure to account for 

sorption may result in a significant underestimation o f the total mass o f a 

contaminant at a site. Consequently, this w ill lead to underestimation o f the time 

required for remediation. A parameter known as the retardation factor has been 

introduced to account for these phenomena (e.g., Bear, 1979).

In general, the retardation factor in a liquid-solid system is well defined, but 

its numerical value falls over a wide range. In unsaturated formations, however, 

evaluation o f a gaseous-liquid-solid, three phase system is necessary. 

Unfortunately, discussion in the current literature on three phase systems is 

limited (for instance, Bedient et al., 1994; Dragun, 1988; Freeze and Cherry, 

1979; Hemond, 1994), and to the best knowledge o f the writer, the retardation 

factor for such systems has been typically assumed to be either unity, meaning 

that the retardation effect is not taken into consideration, or an arbitrary number 

for analytical discussion convenience (Chen, 1988; Tang, 1981). An evaluation 

o f the retardation factor is fundamentally important and w ill be developed based 

on both physical and chemical characteristics.
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Since there is no standard definition o f retardation factor for a three-phase 

system, and to avoid the confusion o f different coefficients coming from different 

disciplines (e.g., chemistry, soil mechanics), it seems that the best approach is to 

start with the basic definition given in Equation (3.17):

Since and K 2 are independent o f coordinate system, the subscript "2" is 

removed for general meaning. The following parameters are defined for current 

discussion purposes:

S — chemical sorbed by the soil water and the soil solid (weight o f chemical 

per volume o f soil formation)

C A —chemical concentration in the soil air (weight o f chemical per volume of 

air)

C f f  —chemical concentration in the soil water (weight o f chemical per volume 

o f water)

C s —chemical concentration in the soil solid (weight o f chemical per volume 

o f solid)

0 — volumetric moisture content 

n  — porosity

Based on the physical meaning o f Equations (3.17) and (3.14), generally, we 

have

(3.17)

where (3.14)

R  =  1+ —  
n a

(4.3)
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Apparently, i f  the relationship between the sorption and the chemical 

concentration in the soil air can be established, it w ill be easy to obtain K , and 

furthermore, the retardation factor.

Consider a certain soil matrix with volume V .  The total chemical stored in 

the soil water and soil solid o f this volume can be calculated in two ways by using 

the total sorption (5) or the individual sorption (Ch, and C s ) for water and solid,

respectively. The results should be equal, i.e..

where C W/ C A is just the reciprocal o f the Henry's constant (H ), i.e.

It is important to notice that Henry's constant is a dimensional coefficient even 

though non-dimensional values are sometimes given in the references (e.g., 

Bedient et al, 1994). Those non-dimensional Henry's constants are not really 

dimensionless, but actually dimensional quantities with hidden units. The other 

term in Equation (4.7), C S/ C A , is the solid-gas partition coefficient for which

S V = C w Q V  +  C s ( \ - n ) V (4.5)

So the total sorption can be expressed as

S  =  C w0 + Cs( l -  n ) (4.6)

Rewriting the above equation,

(4.7)
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there are no data available in the current literature. Mathematically, this solid-gas 

partition coefficient can be rewritten as:

C s  _  Q  Qv _ J__Q_ o )

C A C w C A H C W

The partitioning o f a chemical between liquid and solid phases in a porous 

medium as determined by laboratory experiments is commonly expressed in a 

graphical form. The graphical relation o f sorption ( Ss) versus concentration ( C w )  

is known as an isotherm. A linear sorption isotherm is described by the following 

equation

(4.10)

where K d is the soil partitioning coefficient. Combining Equations (4.8) through 

(4.10) into (4.7) yields

S = C A !  +  ( l - n ) E ±  
H  H

(4.11)

Substituting Equation (4.11) into (4.4),

K  =  — —— =  — + (1 — (4.12)
d C A H  H

Substituting Equation (4.12) into (4.3), the retardation factor is obtained as

^ = 1  + — —  + ̂ — ^ ^ -  (4.13)
n a H  n a H

In the above equation, the Henry's constant (H ) is available from the standard 

works (e.g., Bedient et al, 1994). However, as in the case o f the diffusion 

coefficients, the determination o f K d  is not so simple since its value depends upon
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the properties o f both chemical and soil. Data for K d from laboratory 

experiments are scarce and scattered.

In a soil-solute system, the major part o f soil sorption o f VOCs is contributed 

by organic matter since the uptake by other soil constituents is considerably lower 

than that by organic matter. Karickhoff et al. (1979) proposed that the solute 

sorbed onto a solid is almost exclusively sorbed to the organic carbon fraction. 

They found a strong correlation between K d and the organic carbon content o f the 

sediment. The organic carbon partitioning coefficient, K oc , is introduced as the 

normalization o f the K d

where f oc is the organic carbon fraction. The relationship between the organic 

carbon fraction and the organic matter fraction ( / m )  is normally assumed to be 

fixed as (Dragun, 1988):

where K ^  is the organic partitioning coefficient. From the above three 

equations, we have

Both K oc and K m  are considered to be dependent on chemical properties but 

independent o f the soil organic content. A number o f investigations have shown 

that K oc and K om are functions o f solubility ( S J  o f the chemical. Other studies

(4.14)

(4.15)

K d can also be normalized by f m  , i.e.,

(4.16)

K „  = 1.72 K t (4.17)
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relate K oc and K om to the octanol-water partition coefficient ( K m ) .  However, as 

shown in Tables 4.1 and 4.2, the quantitative relationships obtained by various 

investigators using different methods and chemical groups are different. Since the 

hidden unit used by different authors may not be the same, some mathematical 

manipulation is required to compare the results.

Combining Equation (4.13) with (4.14) and (4.16), respectively, we have

*  = I +  - T 7  + — ( 4-18) n „ H  n „  H

and r = i + ± L + 1 n K ™ fom  (4.19)
n „  H  n „  H

Table 4.1 Relationships between Organic Partitioning Coefficient ( K ^ )

and Solubility (S0)

Investigator(s) Formula Chemical Group

Chiou et al. (1979) l o g ^ =  4.04 -  0.557 log 50 

( S 0 in pmol/L)

Chlorinated hydrocarbons

Karickhoff et al. 

(1979, 1981)

log^om = 0.21 -  0.541ogS0 

log ̂ o m  = -0.43 -  0.594 log 50 

(S0 in mol fraction)

Aromatic hydrocarbons 
and

chlorinated hydrocarbons

Kenaga and Goring 

(1980)

log^om = 3-4 -  0.55 log50 

log 50 = 4 .7 8 -1 .2 8 1 o g ^  

( S 0 in ppm)

Pesticides

Means et al. (1980) log^om = 3 .8 -0 .8 2  log 50 

( S 0 in mg/L)

Polynuclear aromatic 
hydrocarbons
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Introducing

0 1
R w  =  —  (4.20)

n „  H

K s - — %  = — ' ' % ■ / „  (4.21)
n a H  n a H  n a H

where the water retardation factor ( R w ) and solid retardation factor ( R s)  represent 

the retardation effects caused by the soil water and the soil solid sorptions, 

respectively. The above two equations can be rewritten as

Table 4.2 Relationships between Organic Partitioning Coefficient ( K ^ )  

and Octanol-Water Partitioning Coefficient ( K  )

Investigator(s) Formula Chemical Group

Briggs (1981) logAT^ = 0.52 log ̂  +0.64 Pesticides

Brown et al. (1981) log = 0.937 log -  0.22 Dinitroaniline
herbicides

Karickhoff et al. 
(1979,1981)

l o g ^ = l o g ^ - 0 . 4 5  
(or =  Q . 3 5 K m , ) 

log^om = 0-989 log -  0.58

Aromatic or 
polynuclear aromatics

Kenaga and Goring 
(1980)

log^om = 0.554 log +1.14 
^ ^  = 1 .3 5 8 ^ /^ - 0 .7 4 9

Pesticides

Means et al. (1980) log Rom = log Row ~  0-55 
(or ^ = 0 . 2 8 / ^ )

Polynuclear aromatic 
hydrocarbons

Rao and Davidson 
(1980)

lo g f f ^ l .C B lo g J ! ^ -0 .4 2 Insecticides, herbicides, 
and fungicides

Schwarzenbach and 
Westall (1981)

log = 0.72 log +0.25 Non polar organic 
compounds
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Rw =
(6/72) 1

1 - ( B i n )  H
(4.22)

{ M n ) - \ K d

s i- (e / /z )  h
(4.23)

where (6//z) is defined as water saturation. The above two equations indicate that 

solid sorption is more complex than water sorption. From the soil property point 

o f view, water sorption is related to water saturation only, while solid sorption is 

a function o f both water saturation and porosity. From the perspective of 

chemical property, water sorption is related to Henry’s constant only, while the 

solid sorption depends on both Henry’s constant and soil partitioning coefficient.

40

20 - -

c.oo 10

Chemical — Methylene Chloride

—  -  -  R w

I -  -  -  -  R s - l j

Case 1 -  porosity =  0.5 
Case 2 -  porosity =  0.6 
Case 3 -  porosity =  0.7

R s - 2  i 

R s - 3  i

/
»

» 0
/  /

/
/

/

-f-
0.1 0.2 0.3 0.4 0.5 0.6

Water Saturation

0.7 0.8 0.9

Figure 4.2 Specific Retardation Factors o f Soil Water and Solid

Figure 4.2 illustrates the distributions o f R w  and R s versus water saturation 

for different porosities. Apparently, for the three different cases shown, there is
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only one R w  curve since it is function o f water saturation only. Meanwhile, there 

is a R s curve for each o f the three porosities, since R s depends on both water 

saturation and porosity. It can be seen that the specific retardation factors 

increase with water saturation for both R w  and R s .

Substituting Equations (4.22) and (4.23) into (4.19), we have

R = \  +  R w + R s (4.24)

Figure 4.3 illustrates the retardation factor distribution versus water saturation for 

same three porosities. It can be seen that retardation factor increases rapidly 

when water saturation increases to more than 70%. It should be pointed out that 

in the case where there is no sorption effect for both the soil water and soil solid 

(i.e., R w  =  0 and R s = 0), the retardation factor is not zero but one.

60 - -

t2
. £  40 - -
ce•p
a>OS

20 - -

Chemical — Methylene Chloride

I  R -l

 R—2 i

 R—3

Case 1 — porosity =  0.5 
Case 2 — porosity =  0.6 
Case 3 — porosity =  0.7

/
' A

/

/
' ' / /

'  /  ,S  S

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Water Saturation

Figure 4.3 Retardation Factor Distribution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

4.3 Aperture of Fracture

The pneumatic fracturing process creates open, self-propped fractures in geologic 

formations. The aperture o f the fracture is defined as the distance between

surfaces o f fracture. Aperture is determined by a two step procedure. First, the

tilt o f the ground surface is measured with electronic sensors. Second, the tilt data 

are converted to the ground surface heave by numerical simulation with a 

computer. Both o f these steps w ill now be described.

4.3.1 Tilt Measurement

Model 700-series biaxial platform tiltmeters, manufactured by Applied 

Geomechanics, are used to measure the tilt distribution on the ground surface 

during and after a fracture injection. The precision electrolytic transducer inside 

the tiltmeter is capable o f detecting minute angular motion. The transducer 

operates on the fundamental principle that a bubble, suspended in a liquid-filled 

case, is always bisected by the vertical gravity vector. As the transducer tilts, the 

case moves around the bubble, linearly changing the electrical resistance

measured through the electrolyte. Each tiltmeter can measure two components of 

a t i lt  (X and Y). The resolution o f the tiltmeters used in this project is 0.1 

microradians.

Tiltmeters have been widely used in construction monitoring, structural

testing, bridge inspection and maintenance, and ground surface deformation 

detection (Tofani and Horath, 1990). However, in many previous uses, the goal 

o f measurement was the tilt itself which is the direct output o f the tiltmeter. 

When applying the technique to the pneumatic fracturing process, the tilt data 

must be converted into vertical displacement or heave. Thus, a large number of 

tiltmeters (see Figure 4.4) is needed to define ground surface deformation
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accurately. In reality, purchase cost limits the number o f tiltmeters which can be 

used. Field demonstrations o f pneumatic fracturing have utilized 12 tiltmeters 

positioned at various locations around the fracture injection well.

The spacing between each tiltmeter and the fracturing injection well depends 

on the formation geology and fracturing depth. In soil formations, the tiltmeters 

are spaced more closely than in rock formations, since soils are plastic and 

deform more locally. Also, the influence area o f fractures initiated at shallow 

depths is smaller than deeper fractures, owing to the lower bending stiffness of 

the formation. Figure 4.4 illustrates the two cases o f tiltmeter setup used at the 

south tank site on Tinker A ir Force Base. Layout (a) was for fracture injections 

made at a depth o f 7 to 9 ft, while layout (b) was for a depth o f 18 to 20 ft. As 

indicated, farthest tiltmeter is 20 ft from the injection well for the shallow 

injections and 30 ft for the deeper injections. Generally speaking, the tiltmeter 

array could be arranged in any number of ways based on the field conditions and 

expected directions o f fracturing development. However, the X-Y  cross array o f 

tiltmeters adopted here has a very convenient feature: the Y components o f the 

tiltmeters along with y axis (tiltmeters No. 1, 2, 3, 7, 8, and 9 in Figure 4.4) and 

the X components o f tiltmeters along with x axis (tiltmeters No. 4. 5, 6 . 10, 11, 

and 12 in Figure 4.4) present the radius tilts, while the X components o f 

tiltmeters along with y axis and the Y components along with x axis present the 

tangential tilt. With this arrangement o f tiltmeters, it is easy to examine the 

symmetric characteristics o f a fracture simply by observing the tilt data, as w ill be 

shown later.

24 t ilt measurements (each tiltmeter records an X and Y component) are 

collected for every half second through a computer controlled electronic data 

acquisition system. Figures 4.5 and 4.6 illustrate the radius and tangential
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Figure 4.5 Radius Components o f T ilt Data from Frelinghuysen
Township Site, NJ
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components o f tilt data from the Frelinghuysen Township site. The tiltmeter 

array is the same as shown in Figure 4.4(a). It can be seen that the tilt develops 

rapidly at the beginning o f injection and decays towards the end o f injection to 

some steady value which is greater than the initial condition (zero tilt). This 

confirms that when the fracture injection is shut off, the fracture does not totally 

close but actually maintains a measurable aperture. Among the 24 tilt 

components, only 11 sensed tilt  and all other components have zero reading. The 

zero reading for components X2-3, Y4-6, X8-9, and Y 11-12 indicate that the 

tangential tilts at these locations are all zero, which results in a somewhat 

symmetrical t ilt distribution around the fracture injection well. Meanwhile, the 

zero reading for components X-Y3, X-Y6, X-Y9, and X-Y12 show that the 

farthest tiltmeter location was not disturbed, i.e., the fracturing radius for this 

injection was smaller than 20 ft. In general, the responding tiltmeters showed 

axial symmetric behavior which was expected since the geologic formation was 

quite uniform. Non-symmetric t ilt  behavior is observed in non-uniform 

formations or when fracturing is conducted in the vicinity o f structure 

foundations.

4.3.2 Ground Surface Heave

Using data from the 12 tiltmeters for a selected time, a surface heave contour can 

be generated through a computer simulation known as "invert". By choosing a 

series o f consecutive times, a time history o f the ground surface heave may be 

obtained. Figures 4.7 through 4.9 shows the time development o f the surface 

heave contours during the injection, as well as the residual heave after termination 

o f the injection. It is noted that these results represent ground surface heave and 

are not a direct measurement for the fracture aperture under the ground.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Y( 
FT

)

89

Heave Unit: Inches
Coordinates of Fracture Well: (20,20)
Site: Frelinghuysen Township, NJ

40

30

20

0 10 20 30 40
XC FT)

Figure 4.7 Heave Contour for Ground Surface 
(Time =  2 sec)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Y(
 

F
T

)

90

Heave Unit: Inches
Coordinates of Fracture Well: (20,20)

Site: Frelinghuysen Township, NJ

40

30

20

OP

10

0 10 20 30 40
X( F T )

Figure 4.8 Heave Contour for Ground Surface 
(Time =  16 sec)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Y( 
FT

)

91

Heave Unit: Inches
Coordinates of Fracture Well: (20,20)

Site: Frelinghuysen Township, NJ

40

30

20

0 10 20 30 40
XC FT )

Figure 4.9 Heave Contour for Ground Surface 
(Time =  5 min)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

However, heave data obtained from tiltmeters are conservative estimations of 

aperture, since the real aperture w ill be equal to or greater than the observed 

ground surface heave. As indicated in Figures 4.8 and 4.9, the typical maximum 

heave during a fracture injection is about 0.5 inches, while the residual heave is 

around 0.1 inches. The aperture used in the present model analysis is the residual 

heave.

4.4 Flow Rate of Extraction

Since the primary objective o f pneumatic fracturing process is to increase the 

permeability o f the geologic formation, the flow rate, induced by soil vapor 

extraction, becomes an important indicator o f process effectiveness. It is 

important to measure the flow rates both before and after a fracture injection to 

evaluate the effects o f fracturing. Generally speaking, the larger the post-fracture 

flow rate, the more effective the fracturing. Typical flow increases have ranged 

from a few times to more than 1000 times at various sites. Since the flow rates 

for pre- and post-fracture are often in different magnitudes, a versatile measuring 

system is required. The flow measurement system shown in Figure 4.10 has been 

custom fabricated for the pneumatic fracturing project. It includes pitot tubes, 

magnehelics, manometers and an electronic flow meter. The system is capable of 

measurements over four orders o f magnitude, and all ranges are measured 

redundantly by more than one device.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



*  Magtiehelicfl)M

r ©
PilolTube

^ o i a C i o p D a i D a f i i i i p B

TO EXTRACTION 
WELL

Rol under

Mass Hcnvmder

Manomder

Dill Valve TO VACUUM 
PUMP

Figure 4.10 Flow Measurement System



CHAPTER 5

A STATISTICAL EVALUATION OF MASS REMOVAL

In general, a contaminated geologic medium is a very complex system, and 

description o f its exact behavior requires many physical and chemical parameters. 

In addition, soil formations are not spatially homogeneous and field conditions 

change with time. These variations introduce a degree o f uncertainty in 

contaminant removal predictions, and raise questions such as: What is the 

statistical reliability o f the input parameters from either measurements or previous 

published data? How sensitive is the solution for a different set o f input 

parameters? Since some o f the parameters required for solution o f the model are 

either highly variable or d ifficu lt to determine exactly, a statistical evaluation of 

the influence o f the input data on the mass removal is essential to answer these 

questions.

The direct input parameters for Equations (3.128) and (3.135) include 

diffusion coefficient, retardation factor, fracture aperture, and extraction flow 

rate. In this chapter, the influence o f these four parameters on this model 

solution w ill be analyzed individually. The end objective is to evaluate the 

behavior o f the mean and standard deviation o f mass removal for a probabilistic 

set o f input parameters.

5.1 Diffusion Coefficient

It can be seen from Equation (4.2) that the uncertainty o f the diffusion coefficient 

(D ) o f a chemical in a porous matrix may come from two sources: the diffusion 

coefficient (D 0) for open air and the tortuosity ( t )  o f the porous formation.

94
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Usually, the numerical value for diffusion coefficient o f open air is relatively 

stable and can be determined accurately, while the tortuosity may change 

frequently due to the soil heterogeneity. Therefore, the statistical evaluation for 

diffusion coefficient w ill focus on the statistical behavior o f tortuosity. Since the 

in situ measurement o f tortuosity for each site is very d ifficult to perform, the 

determination o f tortuosity is based on the published data which may not exactly 

reflect the particular field condition. Given this situation, a statistical evaluation 

w ill help to assess the uncertainty introduced by tortuosity variations.

To evaluate the statistical response o f mass removal to tortuosity, five sets o f 

tortuosity data with normal probability distributions were chosen. Figure 5.1 

illustrates one sample set with a normalized standard deviation o f 50%.

Mean = 0.4 Normalized Standard Deviation =  50%

0.2-

0.15-

0 . 1-

cu

0.05-

0.1 0.16 0.22 0.28 0.34 0.4 0.46 0.52 0.58 0.64 0.7

Tortuosity

Figure 5 . i Probability Distribution o f Tortuosity
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Tortuosity values were chosen in the range from 0.1 to 0.7 based on the 

discussion in Section 4.1. The mean values o f tortuosity remain constant at 0.4 

for each set analyzed, although the probability distribution changes for each value 

o f standard deviation which range from 0.04 to 0.2. The normalized standard 

deviations, defined as the ratio o f standard deviation and mean value, are 10%, 

20%, 30%, 40%, and 50% for the five cases, respectively.

M  — M an s — Standard

i  m  --------   M  +  s ---------M - s ----------  M /MI

—  * ~ 1 +  s/M —  " ■ 1 - s/M

r  3.016 T

2612 • •

4 ••

■■ 1.4

0.6 Z

1200 30 60 90

T i m e ( m i n )

Figure 5.2 Statistical Behavior o f Mass Removal with Respect to Tortuosity

Based on these tortuosity distributions, the mass removal is calculated for 

each individual tortuosity value. The statistical behavior o f mass removal 

including mean and standard deviation are obtained for all five cases. Figure 5.2
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shows the results based on the tortuosity distribution with 50% normalized 

standard deviation. Double vertical axes are used to illustrate properties o f both 

standard deviation and normalized standard deviation simultaneously, since they 

are in two different scales. The upper three curves are based on the left vertical 

axis. The solid curve represents the mean value for mass removal, while the dot 

and dash curves define the first confidence range extending from [mean - standard 

deviation] to [mean +  standard deviation]. It can be seen that the standard 

deviation increases when the mass removal itself increases with time.

However, the normalized standard deviation, characterized by the lower three 

curves based on the right vertical axis, is almost constant except for the initial 

period (less than 20 minutes). The heavy line at unity represents the mass 

removal normalized by itself. The single dash and double dash curves define the 

normalized first confidence range extending from [1 - normalized standard 

deviation] to [1 +  normalized standard deviation]. It can be seen that the 

normalized standard deviation is stabilized to 18% in this case. The fact that the 

normalized standard deviation of mass removal is smaller than that o f tortuosity 

means the mass removal data have less uncertainty than tortuosity. This 

phenomenon may also be observed directly from Figure 5.3, which compares the 

normalized distributions o f tortuosity and mass removal directly. As indicated, 

normalized distribution o f mass removal is narrower than that o f tortuosity.

To illustrate the behavior o f mass removal subject to different tortuosities 

more explicitly. Figure 5.4 presents four mass removal distributions along with 

their normalization by mean value for four tortuosities ranging from 0.18 to 0.57. 

It can be seen that the mass removal values increase and become more diverse 

with increasing time, while the normalized mass removal curves tend towards a 

steady state and become parallel to one another. A comparison o f Figure 5.2 with
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Figure 5.3 A Comparison o f Tortuosity and Mass Removal Distributions

5.4 actually illustrates the reason why the standard deviation of mass removal 

increases with mass removal, while the normalized standard deviation does not. 

The larger the tortuosity, the larger diffusion coefficient which means the faster 

diffusive transport. Therefore, larger tortuosity values w ill result in larger mass 

removal rates and faster remediation. It should be noted that the removal rate for 

various chemicals may be different when multiple compounds are present. Under 

these conditions, the chemical with the smallest diffusion coefficient w ill likely 

control the remedial time.

The summary o f the relationship o f normalized standard deviations between 

tortuosity and mass removal is illustrated in Table 5.1 and Figure 5.5. A linear 

regression is obtained for the five numerical samples with a correlation of 0.999. 

The slope of the regression equation is 0.35 which means that the normalized
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standard deviation for mass removal is 35% o f that for tortuosity based on the 

given tortuosity values.

 T  = 0. -  -  -  -  T  =  0 . ------------- T  = 0. —  -  -  T  = 0. ------------- M

--*  = 0.58 .............................. *  = 0.46 --------------*  = 0.34 --------------* = 0.22 -------------- M/M

15 3.0

10

5 • 2.0

0

•5 1.0

-10 0.5
0 30 60 90 120

T  i m e ( m i n )

Figure 5.4 Mass Removal Distributions with Respect to Four Tortuosities

Table 5.1 Relationship o f Normalized Standard Deviations between Tortuosity
and Mass Removal

Normalized Standard Deviation 
o f Tortuosity

Normalized Standard Deviation 
of Mass Removal

0.1 0.04

0.2 0.07

0.3 0.11

0.4 0.15

0.5 0.18
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0.2 -

>
Sample Calculation

Linear Regression j

.2">
D

M 0.05 -

Z

0 0.20.1 0.3 0.4 0.5
Normalized Standard Deviation of Tortuosity

Figure 5.5 Relationship of Normalized Standard Deviations between Tortuosity
and Mass Removal

5.2 Retardation Factor

It can be seen from Figure 4.3 that the retardation factors range from 10 to 30 

for the most commonly encountered range o f water saturations (30% to 70%). A 

similar approach used for tortuosity has been applied to evaluating retardation 

factor. Five sets o f retardation factors with normal probability distributions were 

used. Figure 5.6 illustrates one distribution set for retardation factors from 10 to 

30. For each set o f retardation factors, the mean value remains at 20, while the 

standard deviation varies from 1.0 to 5.0 which gives 5%, 10%, 15%, 20%, and 

25% as the normalized standard deviations, respectively. For each retardation 

factor, mass removal is calculated. The statistical properties o f mass removal
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Mean =  20 Normalized Standard Deviation =  25%

0.25-,

2? 0.15-

O.

0.05-

10 12 16 18 20 22 24 26 28 3014

Retardation Factor 

Figure 5.6 Probability Distribution o f Retardation Factor

with respect to each retardation factor distribution are obtained. Figure 5.7 shows 

the results for a 25% normalized standard deviation. The upper three curves, 

based on the left vertical axis, present the mean value (solid line) o f mass removal 

and the first confidence range (between the dot and dash curves), while the lower 

three curves, based on the right vertical axis, present the first normalized 

confidence range. In a manner similar to the tortuosity analysis, the standard 

deviation increases when the mass removal increases with time, while the 

normalized standard deviation is almost constant (8.7% for this case) except for 

the initial period o f time (less than ten minutes).

Comparisons o f retardation factor and mass removal probability distributions 

are presented in Figure 5.8. It can be seen that the mass removal distribution is 

narrower than that o f retardation factor.
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Figure 5.7 Statistical Behavior o f Mass Removal with Respect to
Retardation Factor

0.25 -r
Normalized Standard Deviation:
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Figure 5.8 A Comparison o f Retardation Factor and Mass Removal Distributions
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To illustrate the influence o f retardation factor to mass removal more 

explicitly, Figure 5.9 illustrates the mass removal distribution for various 

retardation factors from 14 to 26. It can be seen that mass removal increases with 

retardation factor, which, however, does not mean that the cleanup w ill be 

finished sooner. Actually, larger retardation factors correspond to the larger 

quantities o f total initial contaminant stored in the soil water and the soil solid, 

resulting in longer remedial time.

  R =  2 6 --------------R =  22 —  -  -  R =  18 —  *  -  R =  14

 R =  2 6 --------------R =  2 2 ---------------R =  1 8 --------------- R = 1 4

■M

■M/M

3.0

sre
00

• 2.0

-10 0.5
0 30 60 90 120

re>
1 w oi

re
2
•ouN

EUm
Z

T im e  ( m i n )

Figure 5.9 Mass Removal Distributions for Four Retardation Factors

Table 5.2 and Figure 5.10 illustrate the relationship o f normalized standard 

deviations between retardation factor and mass removal. The linear regression is 

made with a correlation coefficient o f 0.999. The slope o f the regression line is

0.35 which means the uncertainty for mass removal is 35% o f that for retardation 

factor.
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Table 5.2 Relationship o f Normalized Standard Deviations between 
Retardation Factor and Mass Removal

Normalized Standard Deviation 
o f Retardation Factor

Normalized Standard Deviation 
o f Mass Removal

0.05 0.019

0.10 0.037

0.15 0.053

0.20 0.070

0.25 0.087

0.1 T

Sample Calculatio  !

0.08 » Linear Regressio

0.06-

0.Q2-

0.150.05 021
Normalized Standard Deviation o f Retardation Factor

Figure 5.10 Relationship o f Normalized Standard Deviations between 
Retardation Factor and Mass Removal
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A comparison o f Figures 5.1 through 5.5 with 5.6 through 5.10 suggests that 

the influences o f tortuosity and retardation factor on mass removal are similar. 

This behavior becomes apparent i f  the effluent concentration (C?) in Equation

(3.128) is reexamined. In this solution, diffusion coefficient (related to 

tortuosity) and retardation factor are exactly symmetrical which means the 

exchange o f their position in the equation w ill not affect the solution itself. 

However, situations are different in Equation (3.129) for remaining concentration 

(C4) in the soil formation. Diffusion coefficient and retardation factor are not 

symmetrical in this equation. Therefore the influence o f these two parameters 

w ill not be similar in determining residual concentrations.

5.3 Aperture of Fracture

Based on field experiments, the aperture o f fractures ranges from 10 to 40 

mm during fracturing injection and 0.5 to 5 mm during vapor extraction after 

fracturing injection. Since it w ill be shown in this section that the direct 

influence o f the aperture to mass removal is very small, a large range o f aperture 

values are chosen for statistical evaluation. Figure 5.11 shows the 11 selected 

aperture values with a normal probability distribution. The mean value is 3 mm 

and the standard deviation is 1.5 mm, which gives normalized standard deviation 

as 50%. For this set o f aperture data, the statistical properties o f mass removal 

are presented in Figure 5.12. Instead o f using the first confidence range, the 

tenth confidence range is used to make the three curves distinguishable since the 

standard deviation for mass removal is very small. It can be seen that the 

differences caused by different aperture data is almost negligible except for the 

short initial period o f time (less than ten minutes).
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Mean =  3 mm Normalized Standard Deviation =  50%

0.2th
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Aperture (mm)

Figure 5.11 Probability Distribution o f Aperture
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Figure 5.12 Statistical Behavior o f Mass Removal with Respect to Aperture
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Figure 5.13 shows the comparison o f normalized aperture and mass removal 

distribution. The normalized standard deviation is only 3% for mass removal 

with respect to 50% for aperture.

0.25 T
Normalized Standard Deviation:

A p e r t u r e

0.20  - -

M a s s  R e m o v a l  !

50% for aperture 
3% for mass 
removal

o.oo
o.o 0.5 1.0

Normalized Aperture or Mass Removal

1.5 2.0

Figure 5.13 A comparison o f Aperture and Mass Removal Distributions

These results indicate that the aperture of fracture has little influence on the 

mass removal, which is fortunate since actual fracture aperture is d ifficult to 

measure in the field. However, the relationship between the mass removal and 

the fracture aperture in this analytical solution does not suggest that fracture 

aperture is unimportant in remedial actions. On the contrary, achievement of a 

substantial fracture aperture is key to the pneumatic fracturing process. It is 

important to note that the preceding statistical evaluation o f aperture is made 

under the assumption that the flow rate is independent o f aperture measurement,

i.e., constant flow rate is used. Actually, the relationship between fracture 

aperture and flow rate is governed by the "cubic" law which states that the flow
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rate w ill increase eight-fold i f  fracture aperture is doubled. Since the flow rate 

does have a significant influence on the mass removal, as w ill be discussed in the 

next section, aperture is considered important only through its influence on flow 

rate. In summary, then, this section has demonstrated that the direct influence of 

aperture to mass removal is insignificant, although it does have an indirect 

influence through flow rate.

5.4 Flow Rate of Extraction

Although field measurements o f flow rates are usually relatively accurate during 

soil vapor extraction operations, a small change o f aperture and vacuum pressure 

w ill change flow rate substantially since the flow rate is intimately related to 

fracture aperture or vacuum pressure. As a result, flow rates typically vary 

within a relatively large range in field applications. Since the controlling 

relationship between flow  rate and aperture is the cubic law, the flow rate 

variations have non-linear characteristics. Meanwhile the influence o f flow rate 

on mass removal is also a non-linear phenomenon as w ill be seen in this section.

Due to the very non-linear characteristics o f flow rate, 11 flow rates are 

chosen as shown in Figure 5.14 with logarithmic uniform distribution from zero 

to two, resulting in a range o f flow rates from 1 to 100 liter/m in. Normal 

probability distribution is used for the logarithm o f flow rate, which gives the log­

normal distribution o f flow rate shown in Figure 5.15. For this set o f flow rates, 

the mean value is 14 liter/min and the standard deviation 13 liter/m in, which 

gives 94% as the normalized standard deviation.

Figure 5.16 illustrates the influence of the 11 flow rates on mass removal. It 

can be seen that the mass removal only varies slightly for flow rates above 40 

liter/m in, but significant changes occur for the flow rates smaller than 10
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For Log (flow rate):
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Figure 5.14 Probability Distribution o f Logarithm o f Flow Rate

Mean =14 (1/m) Normalized Standard Deviation =94% 
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Figure 5.15 Probability Distribution o f Flow Rate
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Figure 5.16 Mass Removal Distributions form Various Flow Rates

liter/min. This behavior may be explained by considering the fundamental 

mechanisms of transport. Flow rate impacts mass removal since: (1) larger flow 

rates carry away the chemical faster; and (2) larger flow rates result in the lower 

concentration at the interface boundary, which increases the diffusive transport in 

the soil matrix, since diffusion rate is controlled by the concentration gradient. 

These two controlling processes (convection and diffusion) have both a related 

phase and an independent phase. When flow rate is low, the increase in flow rate 

w ill effectively reduce the interface boundary concentration and have a large 

influence on the diffusive transport. This is also the stage when mass removal is 

very sensitive subject to flow rate changes. However, when flow rate is large 

enough to keep a very low interface boundary concentration, an increase in flow
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rate has less influence on the diffusive transport. A t this point, diffusion is the 

"bottle neck" and becomes the dominant controller, so mass removal i> n't 

sensitive to flow rate.

0.23
** T Normalized Standard Deviation;

94% for flow rate 
22% for mass removal

o 020  -

0.15 ..
Flow Rate

0.10 ..

t 0.05 ..

0.00
0.01 0.1 101

Normalized Row Rate or Mass Removal

Figure 5.17 A Comparison o f Flow Rate and Mass Removal Distributions
in Semi-logarithmic Scale

This non-symmetric distribution is explicitly depicted in Figures 5.17 and 

5.18. Both Figures show the comparison o f probability distributions for flow rate 

(input) and mass removal (output) but in different scales. Figure 5.17 is in a 

semi-logarithmic scale in which flow rate has a symmetric distribution with equal 

increments, while mass removal exhibits a non-symmetric distribution with a 

high rate o f change on the right side of the perk. Figure 5.18 has a linear scale in 

which the flow rate exhibits a rather long tail on the right side, while mass
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removal again drops rapidly. The shape o f the mass removal distribution also 

indicates that mass removal is more sensitive at low flow rates than at high flow 

rates. Such information on the mechanism o f mass removal are useful in 

optimizing pumping rate from an economic point o f view.

P  025 T Normalized Standard Deviation:

94% for flow rate 
22% for mass removal

o 020  ..

0.15 ..

Flow Rate
0.10 ..

Mass Removal
t 0.05 --

0.00 M 
0 6 82 4

Normalized Flow Rate or Mass Removal

Figure 5.18 A Comparison o f Flow Rate and Mass Removal Distributions
in Linear Scale

Figure 5.19 shows the behavior o f standard deviation o f mass removal. 

Again, the standard deviation increases as mass removal increases, while the 

normalized standard deviation tends to stabilized at 22%. Since the normalized 

standard deviations for flow rates is 0.94, the uncertainty for the mass removal is 

smaller than that for the flow rate. However, the relationship may be different 

for different flow rate ranges due to its non-linear characteristics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

M  — Mean s — Standard Deviation

M   M  +  s  M - x  M /M    1 +  s / M ------------I - x/M

3.0

e- 2.5

2.0 g4 ••

1.0

0.0 z-12

0 30 60 90 120

T i me  ( m i n )

Figure 5.19 Statistical Behavior o f mass Removal with Respect to Flow Rate

5.5 Summary

Among the four parameters discussed in this chapter, tortuosity and retardation 

factor introduce the greatest uncertainty in prediction o f mass removal. The 

normalized standard deviation for mass removal is about 35% o f the normalized 

standard deviation for both tortuosity and retardation factor. Fracture aperture 

has very limited direct influence on the mass removal; however, it has substantial 

indirect influence through its impact on flow rate. Mass removal is sensitive to 

changes in flow rate for relatively low flow ranges (less than 10 liter/min). 

However, when flow rate is high (greater than 40 liter/m in), changes in flow rate 

have minimal influence on mass removal.
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CHAPTER 6

CASE STUDIES

The principal objective o f this chapter is to validate the analytical model using 

both field and laboratory data. First, post-fracture mass removal rates from two 

field projects w ill be compared with model predictions. The sites chosen were 

AT&T Richmond Works and Tinker A ir Force Base, since the field data measured 

at these two sites had the highest level o f quality control and assurance. This 

chapter w ill also utilize data from previous laboratory investigations to provide 

model verification. Specifically, the experimental results from soil test tank 

experiments performed by Papanicolaou (1989) and Shah (1991) w ill be compared 

with the analytical model

6.1 AT&T Richmond Works Site

6.1.1 Site Descriptions

The AT&T Richmond Works site is an excellent case for model comparison 

studies for two reasons. First, the contaminated zone is a relatively homogenous 

stratum o f s tiff silty clay, and thus satisfies the physical conditions required in the 

model assumptions. Second, it was the only site equipped with a continuous- 

read ing mass spectrometer attached directly to the extraction well, which allowed 

a high degree o f reliability for mass removal measurements.

The site for the pilot demonstration o f pneumatic fracturing was an 

abandoned above-ground tank farm at the AT&T Richmond Works in Richmond, 

Virginia. The general layout o f the site is illustrated in Figure 6.1 and the site is

114
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Figure 6.1 AT&T Richmond Works Site Layout
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described in detail by Schuring et al. (1991). This tank farm structure consisted 

of a six-inch thick, lightly reinforced concrete slab surrounded by a twelve-inch 

thick perimeter containment wall. A concrete sump trench extended down the 

middle of the tank farm, and the steel VOC storage tank immediately over the 

demonstration location had been removed. The soil formation consisted of 

stratified clay, silt, sand, and gravel. The surficial stratum was a s tiff clay that 

extended to variable depths up to twenty feet. Laboratory tests on the clay 

indicated that it had a Unified Classification o f CH-MH and was highly 

overconsolidated. The clay stratum was entirely in the vadose zone and was 

underlain by a more permeable sand and gravel layer, which contained an 

unconfined water table. Soil samples from the vadose zone showed that the 

methylene chloride (MeCl,) and 1,1,1-trichloroethane (TCA) were the two 

principal VOCs in the clay with concentration ranging up to 485 ppm and 250 

ppm, respectively.

A vapor extraction system was installed and operated to establish the pre- and 

post-fracture effluent behavior. VOC concentrations in the soil gas were 

measured with a Perkin-Elmer ICAMS continuous-reading mass spectrometer. 

The effluent was sampled at two minute intervals, and were displayed and printed 

by a microcomputer. The system had a lower detection lim it o f 1 ppm.

6.1.2 Application of Analytical Solution

In order to model the effluent concentration and mass removal data with respect to 

time using the analytical solution derived in Chapter 3, it is first necessary to 

estimate the numerical values o f the four transport parameters discussed in 

Chapters 4 and 5. For methylene chloride, the following values were chosen:
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(1) Tortuosity -- a normal probability distribution in the range from 0.1 to

0.7;

(2) Retardation factor — a normal probability distribution in the range from 

10 to 30;

(3) Aperture o f the fracture -- 0.2 inches based on field measurement; and

(4) Extraction flow rate — 30 liter/min based on field measurement.

For 1,1,1-trichloroethane, the numerical values o f four parameters are 

similar, except the retardation factor was assumed in the range o f 5 to 15 due to 

differing chemical sorption effects.

1.00 T M  — Mean s —  Standard Deviation
Field

c
.2
u.

Site: AT&T Richmond Works 
Date: June 14, 1990<DOc

a  0.10 : -
■o
CD

15
E

M - s

Z

0.01

30 900 60 120

Time (min)

Figure 6.2 A Comparison o f Effluent Concentrations between Field 
Measurement and Analytical Solution (Methylene Chloride)

A comparison o f field and model effluent concentrations for MeCl2 is shown 

in Figure 6.2, In this figure, the points represent field measurements; the solid 

line is the mean curve o f the analytical solution based on statistical input
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parameters; and the dot- and dash-line define the first confidence range o f the 

analytical solution. As indicated, all field effluent concentrations o f methylene 

chloride fall in the first confidence range predicted by the model except for one 

point at the beginning. It is also noted that the field data are randomly distributed 

around the mean curve, which demonstrates an excellent match with the model.

A review o f the data suggests that the effluent concentration behavior can be 

approximately divided into three stages. In the first stage, the concentration 

increases rapidly at the very beginning and reaches the maximum at 80% o f initial 

concentration within 2 minutes. Then, in the second stage, the concentration 

decreases quickly to 10% o f initial concentration within 20 minutes. Later, in the 

third stage, the concentration still decreases but at a slower rate.

Figure 6.3 compares the effluent concentration o f TCA between the field 

measurements and the analytical solution. It can be seen that there is more spread 

o f the field data around the model predictions than for MeCL, so the second 

confidence range is also shown. In general, the initial field data are somewhat 

higher than concentrations predicted by the model. At later times ( >  20 

minutes), the field data are below the model predictions, although all data points 

fall in either the first or second confidence range.

A review o f Figures 6.2 and 6.3 demonstrates that the normalized effluent 

concentration data are in general agreement with model predictions, and 

compounds exhibit similar behavior in form. The similarity comes from the same 

field conditions for both compounds. This phenomenon w ill be seen again in the 

next case study. The magnitudes o f the MeCl2 data show excellent agreement 

with all field values except one falling within the first confidence range. The 

greater deviation o f the TCA heterogeneity data is attributed to the non-uniformity 

o f the distribution o f this compound in the test zone.
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Figure 6.3 A Comparison o f Effluent Concentrations between Field 
Measurement and Analytical Solution (TCA)

Comparisons o f total mass removal versus time for the field measurements 

and the analytical solution are illustrated in Figures 6.4 and 6.5 for MeCl2 and 

TCA, respectively. As expected, the trends are similar to those previously 

observed for effluent concentration. For MeCl2, the analytical solution provides 

an excellent match with the field measurement, since all the field data are located 

close to the mean curve. For TCA, the model predicts smaller values than the 

observed field data for the first half hour, and then exceeds the field data for later 

times, since the effluent concentrations predicted by the model have the same 

trend.
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Figure 6.4 A Comparison o f Mass Removal between Field Measurement and 
Analytic Solution (Methylene Chloride)
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Figure 6.5 A Comparison o f Mass Removal between Field Measurement and
Analytic Solution (TCA)
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A tabular summary o f the input data used for model perdition presented in 

Figure 6.2 and 6.3 is contained in Appendix. The appendix also contains a 

sample calculation o f one value o f mean concentration as determined by the 

analytical model.

6.2 Tinker Air Force Base Site

6.2.1 Site Description

Tinker A ir Force Base (AFB) is located in the southeast portion o f the 

Oklahoma City Metropolitan Area. It encompasses 4,277 acres and contains 

approximately 500 buildings. Presently, it serves as a worldwide repair depot for 

a variety o f aircraft, weapons, and engines. These activities require the use of 

large quantities o f solvents and fuels, which in the past were often stored in 

underground storage tanks. During the period o f 1972 to 1990, investigation 

revealed that extensive leakage and spills had occurred in the vicinity o f the 

underground tanks. The compounds trichloroethylene (TCE) and toluene were 

among those encountered as soil contaminants. A detailed description o f site 

characteristics and operation is given by HSMRC (1994), and Figure 6.6 gives a 

general site plan o f the Southwest Tank Area.

The site is underlain by the Garber Sandstone and Wellington formations 

which extend to a combined total depth o f 800 to 1000 feet. They are Permian in 

age, and are comprised o f a system o f interbedded sandstones, siltstones, and 

shales deposited in deltiac and alluvial environments. The lithology o f the 

formation is complex, and bed thicknesses vary greatly over short distances. The 

thickness o f individual beds may range up to 20 to 40 feet, but a vast majority of 

beds do not exceed several feet in thickness.
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The upper 10 feet o f soil at the site consists primarily o f weathered red clays 

o f the Garber-Wellington Formation containing interbedded silty clay and silt. 

Clay backfill materials and sandy gravels were found at some locations to a depth 

o f 15 feet. Below the upper clay unit, lithology grades into a sandy unit, which is 

comprised o f clay, pebbly zones, siltstone and silty sand interbedded with fine to 

coarse grained reddish-brown sand. Cementation o f sands begins at about 20 feet 

below ground surface and increases with depth.

The focus of the pneumatic fracturing demonstration at Tinker AFB was the 

recovery o f fuels and solvents which had leaked into the subsurface from several 

underground storage tanks. For the purposes o f model validation, effluent data 

from the southwest tank area were chosen. At this location, a vapor extraction 

system was operated to evaluate the effects o f pneumatic fracturing. During the 

vacuum extraction tests, vapor samples were collected from the effluent in tedlar 

bags and analyzed with a gas chromatograph. Samples were prepared by using 

the purge and trap method and analyzed by using a Hewlett Packard 5890a gas 

chromatograph equipped with dual ECD and FID detectors.

The model comparisons for the present study were limited to the compounds 

Trichloroethylene (TCE) and Toluene since these data were considered to be the 

most reliable.

6.2.2 Application of the Analytical Solution

Post-fracture vacuum extraction was conducted at two wells (Well D2 and Well 

S2) at locations shown in Figure 6 .6 . The data from Well S2 were chosen for 

comparison with the model since it was judged closest to the condition o f the 

analytical model, i.e., relatively homogenous condition with moderate levels o f 

contamination.
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M  — Mean s — Standard Deviation1.0
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Date: July 9. 1993
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Figure 6.7 A Comparison o f Effluent Concentrations between Field 
Measurement and Analytical Solution (TCE)

Figures 6.7 and 6.8 provide comparisons o f effluent concentrations for TCE 

and Toluene between the field measurements and the analytical solutions. Since 

the first concentration measurement was taken 15 minutes after the beginning o f 

the test, data for the first two stages o f concentration behavior are not available. 

However, all four field points in the third stage o f extraction show reasonable 

agreement with the analytical solution. A comparison o f the data from Tinker 

AFB (Figures 6.7 and 6 .8) and AT&T Richmond Works (Figures 6.2 and 6.3) 

shows decidedly different effluent concentration behaviors. This serves to 

demonstrate the adaptability o f the model.

Mass removal curves for TCE and Toluene are illustrated in Figures 6.9 and 

6.10, respectively. As indicated, most field measurements fall within the first 

confidence level o f the model.
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M  —  Mean — Standard Deviation
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Figure 6.8 A Comparison o f Effluent Concentrations between Field 
Measurement and Analytical Solution (Toluene)
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Figure 6.9 A Comparison o f Mass Removal between Field Measurement and
Analytical Solution (TCE)
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Figure 6.10 A Comparison o f Mass Removal between Field Measurement and
Analytical Solution (Toluene)

A tabular summary o f the input data used for model prediction presented in 

Figure 6.7 and 6.8 is contained in Appendix. The appendix also contains a 

sample calculation o f one value o f mean concentration as determined by the 

analytical model.

6.3 Laboratory Experiment

A number o f laboratory experiments were previously conducted to simulate 

pneumatic fracturing at a bench scale. These experiments were carried out in 

plexiglass vats filled with contaminated soil (see Figure 2.3) and are described in 

detail by Papanicolaou (1989) and Shah (1991). These vat experiments provided 

numerous measurements o f contaminant removal rate for both fractured and 

unfractured soils (e.g., Figure 2.4). It was decided to compare these laboratory 

data with the analytical solutions developed in Chapter 3 for the purposes o f 

model validation.
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20 T Experiment Mean s — Standard Deviation
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Figure 6.11 A Comparison o f Mass Removal between Laboratory 
Experimental Data and Analytical Solution

Figure 6.11 compares the results o f the laboratory experiments with the 

analytical simulation for mass removal. In general, the agreement appears quite 

satisfactory, with most o f the laboratory experimental data points falling within 

the first confidence level. Some of the experimental scatter is certainly 

attributable to the wall effects, and the obvious differences in geometry between 

the laboratory experiments and those assumed in the model. Also, some o f the 

experiments utilized plain water as a surrogate contaminant, which deviates from 

the basic model assumption o f a volatile organic compound. It is further noted 

that certain input data required for the model were not recorded for some o f the 

early laboratory experiments (e.g., flow rate), and had to be estimated. In view 

o f the above uncertainties, the agreement between the laboratory data and the 

model is considered satisfactory.
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6.4 Remarks

In general, the analytical model appears to predict effluent behavior from both 

field demonstrations reasonably well. Among the two field case studies, the 

AT&T Richmond Works site provided the most complete validation, since data 

were measured every two minutes over a period o f approximate one and a half 

hours. Data from Tinker AFB site were more limited, but still proved useful for 

model validation.

The laboratory data from previous vat experiment also showed general 

agreement with the analytical model. These data were considerably more 

scattered, however, which is attributed to geometric differences and variations in 

experimental procedure.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The pneumatic fracturing process has proven to be an effective enhancing 

technology for in situ remediation based on a number o f field demonstrations, as 

well as laboratory experiments. This study has focused on the mathematical 

description o f contaminant removal for the pneumatic fracturing process. Based 

on the analysis presented in the previous chapters, the principal conclusions are 

summarized as follows:

1. A mathematical model based on the dual porosity approach has been 

developed to simulate the process o f contaminant removal from pneumatically 

induced fractures, including both two dimensional and axial symmetric cases. 

The two dimensional approach can be applied for cases o f trench or horizontal 

well extraction, while the axial symmetrical analysis can be used for radial 

extraction from a vertical borehole. The model consists o f two partial differential 

equations: one diffusion equation for the porous medium [Equation (3.7) or 

(3.77)] and one diffusion-convection equation for the discrete fracture [Equation 

(3.19) or (3.86)]. The initial and boundary conditions for the model equations 

have been determined based on operational considerations for a soil vapor 

extraction system. These two equations are linked together by the conditions at 

the interface o f the porous medium and the discrete fracture, and, thus, must be 

solved simultaneously.

2. Analytical solutions for both the two dimensional and axial symmetrical 

cases were obtained through the Laplace transform technique. These explicit
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solutions are expressed in terms o f exponential and error functions (see Equations 

(3.69), (3.70), (3.128), and (3.129)), and can be conveniently used by engineers 

and scientists in the field.

3. Four physical parameters are utilized in the model including tortuosity, 

retardation factor, fracture aperture, and flow rate. Fracture aperture and flow 

rate are obtained from field measurements o f the pneumatic fracturing process, 

while tortuosity and retardation factor are estimated from available information in 

the current literature. Guidelines are provided for determination o f all four 

parameters.

4. A statistical analysis o f mass removal is conducted to evaluate its 

sensitivity to variations in the four principal parameters mentioned above. Five 

sets o f tortuosities and retardation factors with normal distributions are used in the 

evaluation. The influence o f tortuosity on mass removal is similar to that o f 

retardation factor. Based on numerical calculations, a linear relationship o f 

normalized standard deviations between mass removal and tortuosity or 

retardation factor is obtained for these numerical case studies (see Figure 5.5 and 

5.10). The normalized standard deviation o f mass removal is substantially less 

(approximately 65%) than that for either tortuosity or retardation factor. The 

sensitivity o f mass removal to fracture aperture is minimal, although it affects 

mass removal indirectly through extraction flow rate. The sensitivity o f mass 

removal to flow rate depends on flow range. Mass removal is sensitive to small 

flow rates (e.g., less than 10 liter/min), but insensitive to large flow rates (e.g., 

greater than 40 liter/m in).

5. Comparisons o f the mathematical model with field data were carried out 

for two field projects involving pneumatic fracturing and soil vapor extraction at 

contaminated sites. Good correlation was obtained between model predictions and
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the field data. A comparison o f the model with results from previous laboratory 

experiments also indicated satisfactory agreement, although some scatter o f the 

laboratory data was observed, and was attributed mainly to geometric differences 

between the model and the laboratory apparatus.

6 . Engineering applications o f this model to site remediation are feasible 

since the model provides a quantitative analysis o f mass removal with respect to 

time. The model can be used to evaluate remediation efficiency and predict 

treatment times, which are important aspects o f engineering planning.

7.2 Recommendations

While the pneumatic fracturing process is proving to be an effective technology 

for contaminant removal from different geological formations, it is still 

considered to be an emerging technology. More work is necessary to expand its 

applications and to improve the understanding o f its underlying mechanisms. The 

following specific recommendations are presented:

1. In the application o f pneumatic fracturing process, it is often necessary to 

fracture at different depths in the same borehole. Therefore, consideration of 

fracture characteristics and transport phenomena in a multi-fracture case should be 

investigated. Since an analytical solution for transport in a multi-fracture system 

would be very d ifficu lt to achieve, a numerical approach should be considered for 

such situations.

2. An analytical model in conjunction with sorption kinetics and chemical-soil 

interactions should be developed, since sorption kinetics plays an important role 

in long term remediation processes.

3. Validation o f the present model should continue as additional field data 

becomes available. Particular attention should be given to long term extraction
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data from sites where pneumatic fracturing has been applied for periods o f several 

weeks or months.

4. The present mathematical model and solution should be incorporated into a 

computer code and program for engineering design purposes.
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APPENDIX

SAMPLE CALCULATION

The values o f each o f the parameters used in the three case studies presented in 

Chapter 6 are listed in Table A .I .  A sample calculation o f applying the model in 

predicting effluent concentration from soil vapor extraction data is presented in 

detail below for the case o f AT&T Richmond Works site with methylene chloride.

The normalized effluent concentration given by Equation (3.126) is expressed 

in the form o f both exponential and error functions which can be obtained in the 

standard mathematical handbook (e.g., Abramowitz and Stegun, 1972). To 

calculate the mean value of C,/C„ , the tortuosity with the assigned probability 

distribution (see Figure 5.1) is used. Thus, each of the 11 tortuosities from 0.1 to 

0.7 is used for Equation (3.126). For the following given input parameters

n  = 0.55, n a = 0.24, D 2 = 1.1 x 10"6 n r  /sec, R  =  20, 6 = 2 . 5 x l 0 ' 3 m,

Q y = 30 liter /  min = 5 x 10^ m3 /  sec, r  =  0.4 m, r = 150 sec

one can proceed the calculation by substituting these values into Equation (3.126). 

Hence,

C, . —  = erf 0.24 x 3.14-y/l.l x IQ-6 x 20 
5 x 10*4

x 0.4* 150 —
2 x 3 . 1 4 x 2 . 5 x l 0 ' 3

5 x 1 0 ^
x 0 .4 2

-exp
0.24 x 1.1 x 10^ x 20 x 150

(2.5 x lO ' 3)2

(

X erfc
V

f  0.24 x V l . l x lO - *  x  20x150
2.5 x 10' 3
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Table A .l Parameters Used in Case Studies (Chapter 6)

Site AT & T  
Richmond Works

Tinker AFB Laboratory
Experiment

Chemical
Methylene
Chloride
( c h 2 c i 2 )

1, 1, 1,- 
Trichloroethane 

( C , H , C t ,)

Trichloroethylene

(C ,f/C /,)

Toluene

(C6/ / 5C7/3)

Ethanol /  Water 
( C H ^ H . O H  ) 

{ H f i )

Porosity 0.55 0.55 0.55 0.55 0.6

Air-filled
Porosity

0.24 0.24 0.24 0.24 0.42

Tortuosity* 0.40 0.40 0.40 0.40 0.70

Diffusion 
Coefficient 

in air (cm2/s)
0.11 0.11 0.083 0.088 0.23

Diffusion 
Coefficient* 

in soil (cm2/s)
0.04 0.04 0.033 0.035 0.16

Retardation
Factor*

20 11 42 47 1200

Flow Rate 
(liter/min)

30 30 68 68 70

Half Aperture 
(mm)

2.5 2.5 2.5 2.5 2.5

* Given data are mean values
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 ̂0 .2 4 2 x  1.1 x 10"6 x 2 0 x  150

xerfc
0.24 x 3.14^1.1 x 10-6 x 20

x 0 .4 2 1 5 0 -
5 x1 0 ^

0 .24  x  V l . l  x  1 0 ^  x  2 0  

+  2 .5  x  1 0 '3

= 0.095 -  0.103 +  0.102 

= 0.094

Having obtained the value o f C-/C0 as indicated, the next step is to calculate 

the mean value o f C . / C 0 and the standard deviation. First, applying the same set 

o f parameter values except that tortuosity changes from 0.1 to the other ten values 

listed in Table A .2, the normalized effluent concentrations can be obtained as 

shown in Table A .2 in a similar manner. Then, the mean value o f C,/C„ can be 

obtained by the following calculation:

+ 0.154 x  0.179 + 0.168 x 0.194 + 0.154 x 0.208 + 0.118 x 0.221 

+ 0.076 x 0.233 + 0.041 x 0.244 + 0.028 x 0.255 

= 0.191

The standard deviation, 5 , can now be calculated as follows:

5 = 0.028 x (0.191 -  0.094)2 + 0.041 x (0.191 -  0.123)' + 0.076 x (0.191 -  0.145)2

+ 0.118 x (0.191 -  0.163)2 + 0.154 x (0.191 -  0.179)2 + 0.168 x (0.191 -  0.194)2

+ 0.154 x (0.191 -  0.208)2 + 0.118 x (0.191 -  0.221) 2 + 0.076 x (0.191 -  0.233)2

=  0 .028 x  0 .094 +  0.041 x 0.123 +  0 .076 x  0.145 +  0.118 x 0.163
C
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+  0 .076 x (0.191 -  0 .2 3 3 )’  +  0.041 x  (0.191 -  0 .2 4 4 )2 +  0 .028 x  (0.191 -  0 .255 )2 

=  0.035

Table A.2 Sample Calculation for Mean Concentration

Probability Tortuosity

T

Diffusion 
Coefficient 
D, (n r  /s )

c,

0.028 0 .10 1.1 x  10-6 0 .094

0.041 0 .16 1.8 x  10-6 0.123

0 .076 0.22 2 .4  x 10** 0 .145

0 .118 0 .28 3.1 x  10*6 0 .163

0 .154 0 .34 3 .7  x  10"6 0 .179

0.168 0 .40 4 .4  x  10"6 0 .194

0 .154 0 .46 5.1 x  10-6 0 .208

0 .118 0 .52 5 .7  x  10"6 0.221

0 .076 0 .58 6 .4  x l O -6 0.233

0.041 0 .64 7 .0  x  10"6 0 .244

0 .028 0 .7 0 7 .7  x  10-6 0 .255
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