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ABSTRACT

ESTIMATION AND CANCELLATION OF FRICTION IN CONTROL
SYSTEMS

by
Sofia Mentzelopoulou

The research reported in this dissertation concerns the estimation and cancel-
lation of friction in control systems. For purposes of analysis, the Coulomb friction
model, the “extended” Coulomb friction model as well as dynamic friction models are
used. In addition, for systems with multiple degrees-of-freedom, a general matrix
representation of friction is presented.

For the design of the friction estimators, the theory of nonlinear observers is
applied. In particular, for a system with multiple degrees-of-freedom, holonomic
constraints, and multiple friction sources, three different observers are presented
to estimate the friction force or torque. The first (Generalized Coulomb Friction
Observer) is designed by assuming that friction is described by the classical Coulomb
model; the second (Generalized Tracking Observer) considers friction as a system
unknown constant input; and the third (Generalized Dynamic Friction Observer) is
designed by assuming that friction is described by a dynamic model.

For the analysis of the performance of the proposed estimators, two cases are
considered. First considered is the case where both the system “positions” and
“velocities” are available for measurements. Second considered is the case where
only the system “positions” can be measured. In the first case, the observers use
the measurements of the states to estimate the friction forces. In the second case,
an additional reduced-order velocity observer is used to estimate the unmeasured
“velocities”.

The problem of friction cancellation in a system with multiple degrees-of-

freedom, external inputs and friction sources is also addressed. Necessary and



sufficient conditions are derived for cancellation of the friction. The conditions are
based on the relative distribution of the system inputs and friction sources at the
different system degrees—of-freedom. When cancellation is possible, a control law for
accomplishing it is presented.

The effectiveness of the proposed algorithms for friction estimation and cancel-
lation is demonstrated by simulations. The observers are applied and compared in
systems with linear as well as nonlinear dynamics.

Finally, experimental data for the different friction compensators are taken and
compared, using an experimental apparatus built for this purpose. The results of
the experiments confirm the theory and demonstrate that friction can be estimated

and cancelled by the algorithms developed in this research.
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NOMENCLATURE
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PREFACE

Friction is a paradox. Most mechanical systems need friction to operate. It is
undesirable, however, in control systems since its presence limits the system static
accuracy and causes limit cycles (the “slip-stick” phenomenon) at low velocities. It
still remains as a phenomenon not very well defined and explained.

To reduce friction in a control system, passive techniques (such as improved
lubrication, air bearings, magnetic bearings) are commonplace. These techniques,
however, are not always adequate, and sometimes active friction cancellation
techniques are used. The simplest of these is dither: noise inserted at the point
of control. This technique is very simple, but it cannot always be used in high
precision operation since it may result in unacceptable vibrations. More recently
control engineers have sought to ameliorate the effects of friction by using more
sophisticated measures to counteract its effects such as high gain PD control, model
based feedback, joint torque control, model reference adaptive control or adaptive
pulse width control.

In this dissertation, three methods for estimating and compensating friction
are presented. T'wo of them are model-based while the third considers friction as an
unknown bias system parameter. A comparative study of the methods is conducted
by simulations and experimentally.

The thesis is organized as follows: Chapter 1 contains a brief historic and
scientific introduction concerning research in the area of friction. Chapters 2, 3 and
4 deal with the estimation of Coulomb and “extended” Coulomb friction for the
cases of one degree-of-freedom systems with measurable “position” and “velocity”,
one degree-of-freedom systems with unmeasurable “velocity” and multiple degree-
offreedom systems, respectively. In Chapter 5 the problem of friction cancellation
is addressed in a multiple degree-of-freedom system with multiple friction forces and

controls. Chapters 6 and 7 deal with the estimation of “dynamic” friction in a single

xvili



and multiple degree-of-freedom system, respectively. Chapter 8, presents experi-
mental results. The algorithms proposed in the previous chapters are implemented
on an experimental apparatus and experimental data are collected, analyzed and
interpreted. Finally, in Chapter 9, the work presented in this thesis is summarized

and suggestions for future research are presented.

xix



CHAPTER 1

FRICTION: AN EVERYDAY PHYSICAL PHENOMENON

Friction is an important phenomenon that appears in most everyday operations in
many of which it is necessary. In control applications, however, friction is often
undesirable because it effects precision and accuracy in system performance as well
as system stability.

Owing to its importance, many researchers have been involved with friction,
trying to explain and describe the friction phenomenon and to give some solutions
to the problem of friction compensation. According to Armstrong—Hélouvry (1991),
who published a monograph with an extensive friction historical background, the first
researcher, who studied the friction phenomenon was Leonardo Da Vinci in 1452.
Leonardo described friction as a force independent of the contact area, opposite to
the motion and proportional to the perpendicular to the surface force. His work, after
being hidden for years, was rediscovered by Amontons in 1699 and later developed
by Coulomb (1785) (Figure 1.1a). They all described the friction in a system with
nonzero velocity. This friction was called kinetic friction. In 1833 Morin introduced
static friction which corresponds to velocities very close to zero or zero. A few years
later, in 1866, Reynolds described viscous friction which appears in contact with
liquids. The combination of those three different friction forces, static, kinetic and
viscous, constitutes the basic zero-memory friction model which is extensively used
by researchers until the present (Figure 1.1b). Finally, in 1902, a better explanation
for the transition period between static and kinetic friction at low velocities was
given by Stribeck. (Figure 1.1c)

The systematic study of friction became the science of tribology during the
first half of the 20th century. One goal of the new science was to explain the friction

phenomenon by better understanding the surface topography. Another goal was the
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Figure 1.1 Classical friction models (friction versus velocity) (a) Coulomb kinetic
friction model, (b) Static plus viscous friction model and (c) Static plus viscous plus
Stribeck friction model.

development of better lubricants which can be very effective in the reduction of the
friction between two surfaces.

After the World War II, a more theoretical approach to the phenomenon of
friction in control systems started to appear. For the analysis, theoretical tools like
describing function theory, mathematical modeling and state space techniques have
been developed and used. In addition, numerous experiments have been conducted

in order to observe and describe the friction phenomenon.

1.1 Mathematical Models of Friction
Several mathematical models have been proposed to describe the effects of friction

in different applications. These models can be classified into two different categories:
e “zero memory”’ models

o “dynamic” models



1.1.1 Zero Memory Friction Models

The first proposed zero memory friction model is the Coulomb model described as
F = asgn(v)

where F' is the friction, a is the friction magnitude, and v is the velocity. The friction

magnitude a is generally proportional to the normal force Fy,:
a=ckF,

where c is the “coeflicient of friction”, a dimensionless parameter. The normal force
F,, may be time varying, depending upon what is happening elsewhere in the system.
This investigation regards the product a = ¢F,, as an undetermined parameter to be
estimated.

Tustin (1947) proposed a model that considers friction to be a decaying

exponential function of the relative velocity,
F = [Fy + (F, — Fe)e™/*]sgn(v)

where F§, F}, and F is static, kinetic and total friction, respectively, while v and v,
is the velocity and the characteristic velocity at which starts the kinetic friction,
respectively. This model helps to describe the macroscopic limit cycle behavior that
takes place in servo-mechanisms with a negative viscous friction force.

Bo and Pavulescu (1982) presented an exponential model of the form:
F=[F.+(Fs- Fk)e"(%)"]sgn(v)

In the above equation a and n are adjustable empirical parameters. More precisely,
n has been found to range from 0.5 to 1.0. Fuller (1984) suggested n to be very large
if there is effective lubrication.

Armstrong-Hélouvry (1991) explored the friction behavior of a brush type d—c

servo motor driven mechanism with gearing. For his analysis he employed Tustin’s



model and specified the parameters of the model to fit the experimental data. Specif-
ically, he found F, = 9.56, F, — F;, = 1.13 and v, = 0.019. Furthermore, he examined
different empirical models in order to describe Stribeck friction. More precisely, he
used Tustin’s model (F, — Fi)e~¥/*, a Gaussian model (F, — F)e~(*/*)* | a Gaussian
model with offset (F; — Fk)e'((”‘”°)/”’)2, a Lorentzian model, proposed by Hess and
Soom, (F; — Fk)ﬁ(lag_j and a polynomial model. He concluded that the models
to consider are the “two-break” Gaussian model, the Lorentzian model and the
Gaussian with offset. In addition, for compliant motion, he applied the Bo and
Pavulescu model with n = 2 and a to be 0.0053 or 0.035.

Canudas de Wit et al. (1991) addressed the problem of modeling and compen-
sation of friction at velocities close to zero. A new model, linear in parameters,
with zero memory, which captures the downward bends at low velocity was used to
adaptively compensate for friction. This model, in combination with an adaptive
computed torque method, was tested experimentally in a robot manipulator.

Gogoussis and Donath (1987, 1990, 1993), proposed a model which describes
Coulomb friction in the bearings and transmissions of robot manipulators. In
addition, they studied friction and its effects for the forward dynamics problem for

robots.

1.1.2 Dynamic Friction Models
Dynamic friction includes hysteresis effect at zero velocity (Figure 1.2). The dynamic
friction models can be divided to those having a state space form and to those without

a state space description.



Figure 1.2 Dynamic friction model has hysteresis effect at zero velocity.

1.1.2.1 Dynamic Friction Models Not in State Space Form
Derjaguin et al. (Armstrong-Hélouvry, 1991) studied the transient behavior of the
static friction, and proposed the following model

t
L4y

Fy(t) = Fie 4+ (Faco — F)

where Fj., is the steady state static friction, F}. is the kinetic friction and « is the
characteristic rise time of static friction.
Kato et al. (1972, 1974) proposed a different model to describe the transient

behavior of static friction
Fy(t) = Fe + (Faoo — Fi)(1 — ™)

The parameters v and n depend on the application, the nature of the materials in
contact. and the existence of a lubricant. For conformable contacts, Kato found «
to range from 0.04 to 0.64 and n from 0.36 to 0.67.

Karnopp (1985) provided a method for modeling dynamic systems that contain
slip—stick friction, which results in a set of differential equations.

Hess and Soom (1990) emploved a model of the form

1
F= [Fk+FU|U|+(F3—Fk)1—+(—U-—— (L ])Z]sgn(v)

Vs
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where the last term of the above equation corresponds to the Stribeck friction.
Furthermore they described the frictional lag with respect to velocity that occurs
when velocity changes sign, with a pure time delay 77, which is increasing as the
lubricant viscosity and the perpendicular to the surfaces force increase. Evidence
of the existence of that lag had been reported earlier by Sampson et al. (1943),
Rabinowicz (1958), Bell and Burdekin (1966, 1969), Rice and Ruina (1983) and
Walrath (1984) through experimental data.

Haessig and Friedland (1991) presented a model called the “bristle model”
which is an approximation designed to capture the true nature of sticking.

Armstrong-Hélouvry (1993) applied dimensional and perturbation analysis to
the problem of slip stick encountered during the motion of machines. The friction
model studied (“seven—-parameter” model) is the one of Hess and Soom, motivated by
current tribological results and incorporates Coulomb, viscous and Stribeck friction
with frictional lag and rising static friction. In addition, he examined Kato’s model
for a nonconformable contact and found v = 1.66 and n = 0.65 (Armstrong-
Hélouvry, 1991).

Polycarpou and Soom (1992) reported experimental data which verifies the

seven—-parameter model of Armstrong-Hélouvry.

1.1.2.2 Dynamic Friction Models in State Space Form
The dynamic friction models proposed in the literature have the following generic
form
F o= 7(f,v)
= {(fiv)

where f is the normalized friction force, and v(f,v) and &(f,v) are functions that

characterize the specific friction model.
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Dahl (1976) studied the friction in small rotations of ball bearings with a spring

force and proposed the following friction model

[ = ev|l— [sgn(v)['sgnll - f sgn(v)] (1.1)
F = af (1.2)
where ¢ determines the slop of the friction curve, ¢ is a constant that determines the
width of the hysteresis and a is a constant that specifies the magnitude of the force.

Ruina (1980) presented a dynamic model to describe the friction present at the

relative motion of the earth’s crystal plates. His model has the form:
f

v
F = F,+a ln;—— + f

v v
—Z[f + b ln;):]

where L is the characteristic length controlling the evolution of f.
Walrath (1984) presented an experimental friction model to describe the

bearing friction behavior,

TF = —F + T sgn(v)

where T is the constant rolling friction torque, v is the relative gimball velocity and
7 is an adjustable model parameter. Furthermore, based on this model, he designed
a digital adaptive controller for an airborne optical pointing and tracking telescope.

Haessig and Friedland (1991) proposed the “reset integrator model,” which is
numerically more efficient than their bristle model and exhibits behavior similar to
the model proposed by Karnopp (1985). Specifically, the “reset integrator” friction

model is described as follows
f= v-9¢7"(v)]
F = af

where ¢ is a constant that determines the width of the hysteresis and ¢~!(f) is the

inverse function of ¢(:). Function ¢(-) is an odd function that varies between +1.
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Linker and Dieterich (1992) performed tests involving step changes and pulses
in normal load, during constant velocity sliding, and they proposed a model similar
to the one that was proposed by Ruina.

Canudas de Wit et al. (1993) proposed a new dynamic model for friction that

captures most of the friction behavior:

c_ bl
f= g(v)

F = oof +01f + o0

where g(:) is a function that depends on many factors such as material properties,
lubrication, temperature, and g, o7 and o, are the stiffness, damping and viscous
friction parameters, respectively.

Harnoy and Friedland (1993) developed a model to describe dynamic friction
on lubricated surfaces. The model is developed for a short journal bearing, but
can be extended to other geometries of sliding surfaces. Furthermore, in Harnoy et
al. (1994), an improved dynamic model is proposed for the resistance forces to the

rotation of a journal, in a lubricated sleeve bearing at low speed.

1.2 Friction Compensation
Many researchers have been involved, through the years, with the problem of friction
compensation in specific applications, using several empirical methods as well as
classical control feedback design techniques. One of the earliest techniques to
eliminate the effects of friction is dither (injection of noise at the control input)
which is simple and effective. It may, however, cause random oscillations in the
system due to the effects of the noise. Hence it cannot be used in high precision
operations. Other methods proposed in the literature can be classified into two

different categories as follows:
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e Friction compensation without explicitly estimating the magnitude of the

friction

e Friction cancellation by estimating the friction

1.2.1 Friction Compensation Without Estimating Friction

Tou and Schulthesis (1953) extend the describing function analysis technique to cover
problems of static and sliding friction in feedback systems. In particular it has been
shown that the use of integral equalization in series with the loop may easily lead
to instability. Essentially equivalent minor loop equalizers, however, may yield an
entirely satisfactory system.

Shen et al. (1962, 1964) found that a system which is subjected to dry
friction can be stabilized by using nonlinear passive compensation. Specifically, for
small ramp inputs it is necessary to increase the damping by a derivative control
which becomes saturated for high ramp rates. To decrease the steady—state error
at high ramp rates and achieve stability a dead zone before the integrator is used.
Additionally they proposed an input adaptive system to adjust the magnitude of the
saturation and of the dead zone.

Friedland et al. (1976) designed a servo for a gyro test table. In the design,
friction was represented as an independent random walk and the feedback law was
calculated based on the theory of linear optimal control.

Kubo et al. (1986) proposed a controller with a fixed kinetic friction feedback,
to avoid over—-compensation of friction in empirically tuned controllers, since he
observed that friction does not always destabilize the system.

Townsend and Salisbury (1987) used describing function analysis to study the
friction in a control system and proposed integral control to compensate it. In

addition they study the stability of the system response to various inputs.
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Southward et al. (1991) proposed a nonlinear compensation force, for slip-
stick friction, to supplement a PD control law applied to one degree-of-freedom
mechanical systems.

Armstrong-Hélouvry (1991) used a dither signal that is slightly greater in
magnitude than the magnitude of static friction and a reduction of number in the
rms contact force error was observed. Also he demonstrated a technique involving
closed loop constant velocity glides and measuring average torque.

Wu and Paul (1980), Luh et al. (1983), Mukerjee and Ballard (1985), Pfeffer
et al. (1989) proposed a technique, called “joint torque control,” which is based on
the output torque sensing and control, to compensate kinetic friction.

Dupont (1993, 1993a, 1994) used a PD controller for friction compensation and

proposed stability conditions to avoid the “stick—slip” phenomenon.

1.2.2 Friction Cancellation by Estimation
Gilbart and Winston (1974) presented a model reference adaptive control system
built of analog components, used to control the pointing of a tracking telescope.

Craig (1987) identified adaptively kinetic and viscous friction parameters.
Cheok et al. (Armstrong-Hélouvry, 1991) used an optimization procedure to
identify the slip—stick friction parameters.

Canudas de Wit et al. (1987, 1991) proposed an adaptive algorithm to
compensate the effects of friction on line. Canudas de Wit, and Seront (1990)
designed a feedback law to robustify the closed loop system properties, under a
possible inexact friction compensation, which may provoke limit—cycles.

Yang and Tomizuka (1988) presented an adaptive pulse width control scheme to
provide precise positioning of a control object under the influence of static, Coulomb
friction and backlash. In addition Tung et al. (1991, 1993) proposed and used

repetitive control for improving low velocity tracking performance.
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Brandenburg et al. (1988, 1991) and Schifer et al. (1991, 1993) studied the
stability of an elastic two-mass system with Coulomb friction and backlash, and
proposed the conditions to ensure optimal operation down to the lowest speeds and
standstill. They also, applied a model reference adaptive control structure to adapt
the parameters of Coulomb friction.

Friedland and Park (1991) presented an adaptive algorithm to compensate
Coulomb friction, which entails the use of an observer designed based on the Coulomb
friction model.

Maqueira et al. (1993) presented a practical adaptive friction compensation
technique for line-of-sight pointing and stabilization. The Coulomb friction level and
a spatial time constant are estimated and used to update a simple friction reference
model which generates commands to cancel friction disturbances using relative rate
feedforward.

Baril (1993) proposed a robust nonlinear friction compensator to complement

a linear controller that considers friction as an uncertain disturbance.

1.3 Contribution of the Research Presented in This Thesis
New results in the area of friction estimation and cancellation are presented in this

research. Specifically

e The Coulomb friction observer, introduced by Friedland and Park (1991),
is extended to the case of unmeasurable velocity by introducing a velocity
observer coupled to the friction observer. The development of the theory
includes a methodology for determining the observer parameters to ensure
convergence (where possible) or boundedness of the estimation error when
Coulomb friction as well “extended” Coulomb friction (static plus viscous plus

Stribeck friction) is estimated.
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e The Coulomb friction observer with and without the additional velocity
observer is extended to systems with multiple degrees-of-freedom and friction
sources. To this end, a general model for the friction vector force is introduced.
In addition, for the multiple mass system case a feedback control law is
designed to cancel the friction totally or partially, depending on the system

topology.

e For estimating dynamic friction, a “Dynamic Friction Observer” is introduced

which is designed based on a dynamic friction model.

e Based on the theory of observers the “Tracking Observer” is proposed which

assumes friction an unknown system input.

To demonstrate the effectiveness of the methods developed in this thesis various
applications including linear and nonlinear dynamics are illustrated. A comparative
study of the proposed algorithms is conducted through simulations as well as exper-
imentally. In the simulations, the algorithms are tested in systems with linear and
nonlinear dynamics. In the experiments a particular experimental apparatus, built
for this purpose, was used to demonstrate the ability of the proposed methods to

estimate and cancel the friction in a real hardware application.



CHAPTER 2

ADAPTIVE COMPENSATION OF “EXTENDED” COULOMB
FRICTION IN A SINGLE DEGREE-OF-FREEDOM SYSTEM

2.1 Introduction
The problem considered in this chapter is the estimation and cancellation of Coulomb
plus viscous plus Stribeck friction —which we call “extended” Coulomb friction—
that may be present in a control system with one degree-of-freedom, using the theory
of reduced order observers.

Two different observers are proposed and compared in estimating the friction
force. The first observer (CFO), proposed by Friedland et al. (1991), is designed
based on the Coulomb friction model; the second (TO) is a “tracking” observer
which considers friction as an unknown constant system input, the estimation of
which generally leads to integral control action (Friedland, 1986).

Global stability is shown when the acceleration of the system is finite. The
observers estimates converge to the true value of friction for a particular range of the
observer gains.

Finally, favorable simulation results verify the good performance of the designed

friction compensators.

2.2 Statement of the Problem
An “ideal” (i.e., frictionless) mechanical system with a single degree-of-freedom, has

the following dynamic description

Vo= u (2.1)

where z,v and u are the position, the velocity and the input (acceleration) due to

all forces to the system, respectively.

13
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Furthermore, for the above system (2.1) the input u is assumed to be of the
form:

u=—gi(z — ;) — g0 (2.2)

where z, is a reference position and the coefficients g; and g, may be selected to
satisfy desired performance specifications (Friedland, 1986).

Next, let us consider the same system as (2.1) with the addition of the friction
phenomenon effects. This new system can be called “actual” and is described as

follows:

r = v

v = w— F(a,v) (2.3)

where F'(a,v) is the friction force and w is the system non-frictional input. The
friction force includes static plus viscous plus Stribeck friction and is described by

the “extended” Coulomb model
F(a,v) = a(v) sgn(v) (2.4)

where a(v) is the friction parameter and is an even function of velocity. Specifically,
according to Armstrong-Hélouvry, (1991) and Canudas de Wit, (1990, 1991), the

friction coefficient a(v) can be represented in general by the following form
a(v) = a; + age~ %I 4 aqlv| (2.5)

where a; is the coefficient corresponding to the static friction, a4 corresponds to
the viscous friction and a; and a3 to the Stribeck friction. All the coefficients are
considered for the analysis positive and constant.

The problem considered in this chapter is the estimation and cancellation of the

friction in system (2.3) such that the latter becomes equivalent to the ideal system

(2.1).
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Figure 2.1 Block diagram of the Coulomb friction observer (CFO)

2.3 Estimation and Cancellation of Friction
Defining a and Fto represent the estimates of ¢ and F respectively, the following

observers are proposed to estimate the friction force in the system.

2.3.1 Coulomb Friction Observer (CFO)
The observer has the following structure:
@ = ZF—-kplvlp (26)

F = asgn(v) (2.7)
where the variable zg is given as
tp = kr plo]*" (w = F) sgn(v) (238)

and kr and p are parameters to be chosen by the designer to ensure convergence of
the error to zero. (The conditions under which these parameters can be so chosen

are discussed in the next section.)

A block diagram representation of this observer is shown in Figure 2.1
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Figure 2.2 Block diagram of the tracking observer (TO)

2.3.2 Tracking Observer (TO)
This observer is based on the tracking of the total friction force F(a,v). Its dynamics
are given by

F = z+4+kaz+kv (2.9)

~

2 = —kv—ky(w—-F) (2.10)

where z is the observer state and k&, k7 are the observer gains to be chosen by the
designer to ensure convergence of the error to zero.

A block diagram representation of this observer is shown in Figure 2.2

2.3.3 Cancellation of Friction

To cancel the friction in system (2.3), the input w has to be in the form

~

w=u+F (2.11)

where u is the control that would be used in the absence of friction. It can be easily

shown that friction cancellation becomes more effective as £ approaches F'(a,v).
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2.4 Error Analysis and Selection of Observer Gains
To evaluate the performance of the observers and to establish conditions for the
gains kg, k; and ks, the error under the real and the estimated parameters has to be

considered.

2.4.1 Coulomb Friction Observer (CFO)

Define the error e, between the actual @ and the estimated friction parameter @ to

be

eg=a—a (2.12)

Differentiating both sides of the above equation (2.12) and using (2.3), (2.4), (2.6),
(2.8), (2.7) and (2.11), yields

b = a—a
da. -1
= éfjl—v—ZF“l-kF#lvlul v sgn(v)
- g_sz—k‘pllivw ' fw— F — 9] sgn(v)
ety o Al
I~ i

The above differential equation describes the rate of change of the error e,. The
following conditions are sufficient for exponential stability of the estimation error:

L. kp >0

2. p>0

3. %i} is bounded.
assuming that v is bounded away from zero.

Notice that for a constant friction coeflicient, the third condition does not
apply, and the results are the same as presented in Friedland et al. (1991).

Next it will be shown that Condition 3 is always valid if the acceleration of the

system is bounded. To this end, the following lemma will be used.
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Lemma 2.1 If a is described by (2.5), then the partial derivative of a with respect

to v is bounded.

Proof

Differentiating equation (2.5), yields

fa _ (—asase M 4 a4)sgn(v) (2.14)
Ov
By careful examination of the right hand side of equation (2.14), it can be concluded

that

—daqda3 S —020,36—‘13]”' <0

and

a4 — azaz < (—agaae_“"'"’ + a4) < a4 (2.15)

Next, comparing equations (2.14) and (2.15) yields

da
|%| < max(|aq — azas|, |a4|) (2.16)

The proof is complete. AN

Using the Lemma 2.1, Condition 3 is satisfied if the acceleration v of the system
is bounded. The boundedness condition is not a serious restriction since in general
it is valid. As an example consider the sinusoidal motion of a mass. In this case the
velocity is sinusoidal as well as the acceleration, thus the acceleration is bounded and
Condition 3 is valid. For the case however of a square wave reference position, the
velocity contains delta functions at the changes of the direction of the displacement.
In those instants the acceleration becomes infinite and the proposed observer loses
track. Nevertheless, the duration of an infinite acceleration is very small comparing
to the overall motion of the system which gives the opportunity to the observer to

recover.
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2.4.2 Tracking Observer (TO)
Define the error er as

er = F(a,v)— F (2.17)

Differentiating both sides of the above equation (2.17) and using (2.3), (2.4), (2.9),
(2.10), and (2.11), yields

- A

ér = Fla,v)-F
= —3—kw— ko + F(a,v)

= kyep + F(a,v) (2.18)

In order for the solution of this differential equation to remain in a neighborhood
of the origin (the size of which depends on F), the following conditions must be valid:
1. k<0
2. F(a,v) bounded.
Notice that there is no restriction for %;.
The second condition can be simplified as follows, assuming that v 5 0:
3—31} bounded.

This condition is always valid, according to Lemma 2.1, if the acceleration of the

system is bounded.

2.5 Simulation Results: One Mass System
For the simulations, we consider the ideal system (2.1), with input u given by (2.2)
where the gains g; and g are chosen to be g; = 200 and g, = 20. The closed loop
ideal system, with this input u, has a natural frequency of 10v/2 and a damping
factor 0.707. In addition, the actual system, given by (2.3), has the same input u as

the ideal system, while the friction is given by

F(a,v) = (40 + 20e™ " + 2[v|) sgn(v)
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Figure 2.3 (a) Transient response of ideal system and actual without friction cancel-
lation (b) Error between the transient responses of the ideal system and the actual
without friction cancellation (c) Actual friction.

The reference position is a square wave with amplitude 1 and frequency of 0.5 Hz.
Moreover, white noise with a rms value of 0.1 is assumed present in all measurements.
Notice that the chosen level of noise is comparable to the noise of a typical sensor
and the quantization noise present in the experiments described in Chapter 8.

Figures 2.3a,b show a comparison of the behavior of the transient response
of the ideal system (where friction is not present) and the actual (where friction is
present) without including friction cancellation in the feedback. Additionally, Figure
2.3¢ shows the friction considered present in the actual system.

Figure 2.4 show the transient response of the ideal and the actual system versus
time, the error between the ideal system and the actual (with friction compensation)
versus time, and the estimated friction versus velocity, respectively, when the CFO
observer is used and for different values of the observer gains. As it can be seen from
the graphs, the performance of the overall system improves as the gain &p increases.
An increase, however, of the observer gain p results in a better friction estimate.

. The performance of the tracking observer, (TO), is shown in Figure 2.5 As it
can be seen from the graphs, the performance of the overall system improves as the

gain k; increases.
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From these results it would appear that observer performance can be improved
indefinitely by increasing the gains. But when estimation noise is considered, it is
found, as expected, that increasing the gains improves the transient response at the
expense of increased steady state rms error.

Comparing the performances of the two observers it can be seen that both
are satisfactory. The CFOQO, however, seems to be able to track more the detailed

characteristics of friction than the TO.
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CHAPTER 3

ADAPTIVE COMPENSATION OF “EXTENDED” COULOMB
FRICTION IN A SINGLE DEGREE-OF-FREEDOM SYSTEM
WITHOUT VELOCITY MEASUREMENTS

3.1 Introduction

In numerous applications the velocity measurements required in the friction
observers, described in Chapter 2, are not available. Considered in this chapter is the
estimation and cancellation of “extended” Coulomb friction (Coulomb plus viscous
plus Stribeck friction) that may be present in a single degree-of—freedom system,
using the theory of reduced order observers, when velocity cannot be measured.
A two stage nonlinear observer is introduced which simultaneously estimates the
velocity and the friction force. The observer consists of one of the friction observers
proposed in the previous chapter combined in cascade with a velocity observer.

The conditions for asymptotic stability of the overall observer are derived for
the case of estimating Coulomb as well as “extended” Coulomb friction. The observer
converges to the true value of friction for a particular range of observer gains.

Finally, favorable simulation results verify the good performance of the friction

compensator.

3.2 Statement of the Problem

Consider the ideal system

T = v
v o= u (3.1)

and
u=—gi(z —z,)— gv (3.2)

24
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where z,v and u are the position, the velocity and the input (acceleration) due to
all non-frictional forces to the system. z, is a reference position and the coefficients
g1 and g; may be selected to satisfy desired performance specifications (Friedland,
1986).

Next, let us consider the actual system

v = w— F(a,v) (3.3)

where F(a,v) is the friction force and w is the system non-frictional input. The

friction force is represented by the “extended” Coulomb model
F(a,v) = a(v) sgn(v) (3.4)
and the friction coefficient a{v) is described as follows:
a(v) = a1 + aze” %Yl 4 aq|v| (3.5)

where a; is the coefficient corresponding to the Coulomb friction, a4 corresponds to
the viscous friction and a, and a3 to the Stribeck friction.

To achieve friction cancellation, the input w must be of the form
w=u—F

where F' is the estimate of the friction.
The problem considered in this chapter is the estimation and cancellation of
friction in system (3.3) such that the latter becomes equivalent to the ideal system

(3.1), assuming that only the position x is measurable.

3.3 Friction Estimation Without Velocity Measurements
To estimate the friction force (3.4), it is necessary to estimate the velocity. To this

end, a velocity observer is added in cascade to the friction observers, presented in
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Figure 3.1 Two stage observer for estimating the friction force in the absence of
velocity measurements.

the previous chapter. The structure of the resulting nonlinear observer is shown in
Figure 3.1. The velocity observer uses the measured position and the estimate of
the friction to provide an estimate of the velocity, and the friction observers use the

estimate of the velocity to estimate the friction.

3.3.1 Velocity Observer

The dynamics of the velocity observer are defined by:
D=z, + k,x (3.6)

where ¥ is the estimate of the velocity v, k, is the corresponding observer gain, and

the variable z, is given as

Zy = —k,0+u (3.7)
When the velocity observer is used, the estimate ¢ replaces the true velocity v
in the friction observers, as will become apparent next.
3.3.2 Coulomb Friction Observer (CFO)

When the velocity observer is used, the CFO observer takes the form

@ = zr— keld] (3.8)
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A

F = dsgn(0) (3.9)

[w$)

where the variable zp is given as
ip = kp (w — F) sgn(d) (3.10)

and kp is a parameter to be chosen by the designer to ensure convergence of the
error to zero. (The conditions under which kg can be so chosen are discussed in the

next section). Notice that the observer (3.8)-(3.10) is the same as (2.6)-(2.8) when

p=1

3.3.3 Tracking Observer (TO)

When the velocity observer is used, the tracking observer takes the form

F = z+4kz+ked (3.11)

A

where z is the observer state and k;, k; are the observer gains to be chosen by the

designer to ensure convergence of the error to zero.

3.4 Error Analysis and Selection of Observer Gains
To evaluate the performance of the observers and to establish conditions for the gains
ky, kr, k1 and ks, the error under the real and the estimated parameters has to be

considered. Define

€y = v—0 (3.13)

A

er = Fla,v)—F (3.14)

Next, the error analysis will be studied for each of the two friction observers.
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3.4.1 Coulomb Friction Observer (CFO)
To simplify the analysis, the special case of a constant friction coefficient a (Coulomb
friction) will first be considered followed by the more general case where a is a

function of the velocity (“extended” Coulomb friction).

3.4.1.1 Coulomb Friction
Differentiating both sides of the equations (3.13) and (3.14) and using (3.3), (3.4),
(3.6), (3.7), (3.8), (3.10) and (3.9), yields

.
Py

€y, = v—10
= —Fla,v)+w-2, -k,
= —F(a,w)+ F+u—u+kd—ko
= —kye, —ep (3.15)
and
ér = Flaw)—F
= [=2p + kp 0 sgn(d)]sgn(d)
= —kpfw—F -9

= ——kp [u — 2},, — kul]

= ki kye, (3.16)

Summarizing, we have
b = qilewer) = —hvey — cr (3.17)
ér = qaev,er) = krk, e, (3.18)

It 1s easily seen that the equilibrium point of the above linear differential
equations (3.17) and (3.18), is the origin i.e., e,, = er, = 0. The global asymptotic
stability for this system of equations is determined by the nature of the Jacobian

matrix
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¥ =

9 0

}9% a-gll; [_kv -1
P P = | krk, o]
B_Z% 6_312: e=0

Calculating the characteristic polynomial of ¥ we get

(3.19)

| sI — ¥ |= 8% + kys + krk,

If k, > 0, and kr > 0, the eigenvalues of ¥ lie in the open left half plane. and

the equilibrium point e = 0 is globally asymptotically stable.

3.4.1.2 “Extended” Coulomb Friction

Following the same procedure as for the previous case, yields

€y, = qi(ey,er) (3.20)

. da .
ép = q;»(eu,ep)-{-—a%v (3.21)

where q;(ey,er) and g¢2(es,er) are given by (3.17) and (3.18) respectively. The
above linear differential equations are not homogeneous. The following conditions
are sufficient to ensure stability in a neighborhood of the point e,, = er, = 0,

1. Realleig(¥)] < 0.0

2. %i) is bounded.
where matrix W is given by (3.19).

According to the results of the previous subsection, sufficient conditions for 1
to hold, are:

la. kp >0

1b. k, >0

Finally, using Lemma 2.1, Condition 2 is always valid if the acceleration of the
system is finite.

Notice that for a constant friction coeflicient, Condition 2 does not apply,

yielding to the results presented for the previous case.
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3.4.2 Tracking Observer (TO)
As in the previous section, the special case of a constant friction coefficient a will

first be considered, followed by the more complicated case where a is a function of

the velocity.

3.4.2.1 Coulomb Friction
Differentiating both sides of equations (3.13) and (3.14) and using (3.3), (3.4), (3.6),
(3.7), (3.11) and (3.12), yields

A

€, = V—0
= —Fla,v)+w—-2,—k,2

= —F(a,v)+ﬁ'+u—-u+kuﬁ—kuv

= —ky,e,—eFp (3.22)

and
ér = F(a,v)—F

= —3— kv — ko

= klﬁ -+ kgu - klv - kg(z"u + k— 'l):E)

= —(kl + kgk,,)ev (323)

The equilibrium point for the above differential equations {3.22) and (3.23),

is the origin, as it can easily be shown, i.e., e,, = er, = 0. Since the differential

equations are linear, the conditions for global asymptotic stability are determined by
the nature of the Jacobian matrix W,

~k, -1

Y= gk 0

(3.24)

If k&, > 0 and (k; + k3k,) < 0, the eigenvalues of W lie in the open left half

plane and the errors, e, and er, converge globally to zero.
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Figure 3.2 (a) Actual Coulomb friction (b) Actual “extended” Coulomb friction.

3.4.2.2 “Extended” Coulomb Friction

Following the same procedure as for the previous subsection, yields

éu = —kvev—ep (3.25)

ér = —(ky + kaky)ey, + F (3.26)

The above linear differential equations are not homogeneous. The following
conditions are sufficient to ensure stability in a neighborhood of the point e,, =
er, =0,

1. Real[eig(?)] < 0.0

2. F bounded.
where matrix ¥ is given by (3.24).

According to the results of the previous subsection, sufficient conditions for 1
to hold, are:

la. k, >0

1b. &y + k2k, <0

Finally, using Lemma 2.1, Condition 2 is always valid if the acceleration of the
system is finite.

Notice that for a constant friction coefficient, Condition 2 does not apply and

the results are the same as presented for the previous case.
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Figure 3.3 Performance of the CFO compensator, with kr = 10, £k, = 100, in
estimating (a) Coulomb friction (b) “extended” Coulomb friction

3.5 Simulation Results: One Mass System (continued)
For the simulations, we consider the ideal system (3.1), where the input u is given
by (3.2) and the gains g; and g, are chosen to be g; = 200 and g, = 20. The closed
loop ideal system, with this input u, has a natural frequency of 10y/2 and a damping
factor 0.707. In addition, the actual system, given by (3.3), has the same input u as

the ideal. At the simulations Coulomb friction is considered as follows
F{a,v) = 50 sgn(v)
while the “extended” Coulomb friction is given by
F(a,v) = (40 + 20~ + 2]v|) sgn(v)

(Figures 3.2a.b). The reference position is a square wave with amplitude 1 and
frequency of 0.5 Hz. Moreover, white noise with a rms value of 0.1 is assumed to be

present in all measurements.
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in estimating (a) Coulomb friction (b) “extended” Coulomb friction

Figure 3.3 show the error between the transient responses of the ideal system
and the actual (with friction compensation) versus time, and the estimated friction
versus velocity when both the CFO and velocity observers are used to estimate and
cancel Coulomb or “extended” Coulomb friction. Similarly, the performance of the
tracking observer, (TO), with the additional velocity observer is shown in Figure 3.4
As can be seen from the graphs. the ill-effects of velocity observer are negligible and

the friction can be estimated and cancelled successfully.



CHAPTER 4

ADAPTIVE ESTIMATION OF “EXTENDED” COULOMB
FRICTION IN A MULTIPLE DEGREE-OF-FREEDOM SYSTEM

4.1 Introduction
In this chapter, the problem of friction estimation in a multiple degree-of-freedom
system, is considered, under the assumption that friction is described by the
“extended” Coulomb model. The results of this chapter are an extension of those
presented in Chapters 2 and 3, for systems with multiple friction sources and multiple
degrees—of—{reedom.

Two different observers, generalizations of those presented before, are considered.
The first is the generalized Coulomb friction observer designed based on a static
friction model (GCFO); the second is the generalized tracking observer (GTO). For
the analysis two cases are considered:

1. All the states are available for measurement.

2. Only position can be measured.

In the first case, the nonlinear observers use the measurements of the states to
estimate the friction forces. In the second case, when only the positions and not the
velocities are measurable, an additional observer is used to provide estimates of the
velocities which are inputs to the friction observers.

Finally, favorable simulation results verify the theoretical analysis. Excellent
performance of the proposed system in the presence of white noise is demonstrated

by simulations.

4.2 Statement of the Problem
A system with multiple degrees—of-freedom consists of one or more masses charac-

terized by translational motion in one or more directions and/or rotational motion.
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In the following analysis the case of rotational motion perpendicular to planar trans-
lational will be considered as well as translational motion in three dimensions.

The dynamic model that describes such a system is the following:

T = v (4.1)
M(z)o = g(z,v,w)— F(a,v) (4.2)
where
x = [z132 -z (4.3)
v = [vrvg oee vy (4.4)

and z; and v; are the ¢th “position” and “velocity”. The mass matrix M(z) is
symmetric and positive definite. The vector g(z,v,w) is a function of position and
velocity as well as of the external input w to the system and represents the total
non—frictional system force vector; F'(a,v) is the friction vector.

Assuming that the friction between two surfaces is described by the Coulomb
model, it can be shown (see Appendix A), that the friction force vector can be written

in the following form:

F(a,v) = U Asgn(U'v) (4.5)
where
a --- 0
A=diag{a}=| + .. (4.6)
0 - a,

The vector a contains the unknown friction coefficients and U is a known, n X v,
matrix (where v is the number of different friction forces).
Now, if friction is described by the “extended” Coulomb model, the {riction

coefficients a; are written as

a;i = @i + aie” % 4 q;45;] (4.7)



36

where a;1, a;2, @;3 and a;4 are parameters which are assumed constants in this inves-
tigation, and o; is the ith element of the vector U’v. In this case, the matrix friction

coefficient A takes the form

A= Ay + Age~edisllU | A, diag{|U"v|} (4.8)

where
A; = diag{ay;- - - aui} (4.9)
forz=1,2,3,4.
The problem considered in this chapter is the estimation of the friction force

vector F(a,v) in the system (4.1)-(4.2).

4.3 Observers Dynamics
For the estimation of the friction vector F(a,v), assuming availability of the

measurements of the positions and velocities, two nonlinear observers are studied.

4.3.1 Generalized Coulomb Friction Observer (GCFO)
Let [U'v]; represent the ith element of the vector U'v. Then, if @ and F' are the
estimate vectors of a and F'(a,v) respectively, the following observer to estimate the

friction vector F'(a,v) is proposed.

F o= US(v)a (4.10)
a = zp— Kr h(JU'v)) (4.11)
with

zp = Kp D(v) S(v) U' M~ (z) [g(z,v,w) — US(v) 4] (4.12)

where
S(v) = diag{sgn([U"v]:), -~ ,sgn([U"v].,)} (4.13)

ha(JU"v])

h(|JU|) = (4.14)

hy([U"0])
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D) = diag( ALy (4.15)

and K is a matrix to be chosen by the designer to ensure convergence of the error
to zero. (The conditions under which K can be so chosen, are discussed in the next
section.)

It is seen from (4.14)—(4.15) that h(JU'v|) is a vector with elements that are
functions which are analytic and monotonic in their arguments. Moreover, the matrix
D(v) is diagonal, the elements of which are the partial derivatives of the functions

h;(-) with respect to their arguments.

4.3.2 Generalized Tracking Observer (GTO)
Assuming again that F' is the estimate vector of F(a,v), the following alternate

observer for friction estimation is proposed:
F=z4Kz+Kp (4.16)
with
3= =Ky — K;M™Y(z) [g(z,v, w) — F) (4.17)

where K, and K, are matrices to be chosen by the designer to ensure boundedness

of the error.

4.4 Selection of Gains and Error Analysis
To determine the gains K, K; and K3, the error between the true and the estimated

friction parameters is considered.

4.4.1 Generalized Coulomb Friction Observer (GCFO)
The error between the true vector a and its estimate & is calculated for the purpose

of determining K and assessing performance. Let

€a =0—4a (4.18)
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Differentiating both sides of the above equation (4.18), and using (4.11), (4.12)
and (4.2), yields

A

€, = a—a
L BR(U]) AU ]) (") |
= a= 2 Kr 500 ae) o
= —Kr D) S@)U' M™'U S(v) e+a (4.19)

The above differential equation is not homogeneous if vector a is not a constant.
If the gain K is picked to ensure exponential stability and a is bounded, the error
will be bounded in a neighborhood of the origin (Brockett, 1970).

Next, it is shown that a is bounded when the friction coefficient matrix is given
by (4.8).

In order for the rate of change of a to be bounded, each coefficient a; should

be bounded, for every i = 1,---,v. Now, using equation (4.7) yields

. _ Oa;dy;

a; = 9%, di (4.20)

. a; . ds:
According to Lemma 2.1, a—_' is bounded. Furthermore, H-t—' represents the system
Vi

relative accelerations which can be assumed to be bounded.

4.4.2 Generalized Tracking Observer (GTO)
In order to evaluate the performance of the observer, the error between the true and

the estimated friction forces is considered.
ep=F—F (4.21)
Differentiating both sides of (4.21), and using (4.16), (4.17) and (4.2), yields

ép = F—F
= F—3—Kw— Ky

= Ko M™'(z)ep+ F (4.22)
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The above differential equation is not homogeneous if vector /' is not a constant.
If the gain K, is picked to ensure exponential stability and F is bounded, the error
will be bounded in a neighborhood of the origin (Brockett, 1970).

Next, it is shown that F is bounded when the friction coefficients a; are
described by (4.7).

The friction force vector is written in the form:
F=USWw)a (4.23)

and

F=US@a+US(v)a+USw)a (4.24)

If the friction coeflicient vector a is constant the last term is zero; otherwise it is
bounded as shown in Section 4.4.1. U is in general a function of the positions z. It
is reasonable to assume that the states  as well as the velocities are bounded and so
are the matrices U and U. In addition, matrix S(v) contains the sign of the relative
system velocities. Assuming that [U'v]; # 0, S(v) is real, bounded, and S(v) = 0.

Finally, since all the terms of equation (4.24) are bounded, F is bounded.

4.5 Friction Estimation Without Velocity Measurements
In the foregoing analysis, assuming that the entire state vector of the system was
available for measurement, two nonlinear observers were proposed to estimate the
friction force vector. In this section, however, only the position x is assumed
measurable. Therefore, in order to estimate the unmeasurable velocities, an
additional nonlinear reduced order state observer is used. This observer is combined
in cascade with the observers of the previous sections to estimate the friction vector.
A block diagram representation of the cascade structure of the velocity and friction

observers is shown in Figure 4.1.
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Figure 4.1 Cascade structure of velocity and friction observers.

4.5.1 Velocity Observer “Architecture”
Assuming 0 represents the estimate of the velocity v, the following nonlinear,

reduced-order state observer is proposed:
U=z, + K,z (4.25)

with
2y = —Kyb+ M7Y(z) [g(z, b, w) — F] (4.26)

where K, is the design parameters matrix.
The latter observer uses as inputs the measurements of the positions z as well
as the estimates of the previously proposed observers (4.10)—(4.12) or (4.16)-(4.17),

to estimate the velocities.

4.6 Combining Velocity and Friction Observers
When the velocity observer is used. the estimate ¢ replaces in the friction observers

the true velocity v.



41

4.6.1 Generalized Coulomb Friction Observer (GCFO)
When the velocity observer is used, the GCFQO observer (4.11)-(4.12) takes the form:

(p = KpD(®)S(0)U'M™ () [g(z,d,w) — US(D)d]
@ = zp— Kph(JU'd|) (4.27)
F = US®)a (4.28)
To determine the gains Kr and K, the error under the real and the estimated
parameters has to be considered. To this end define
ey, = v—0 (4.29)
€q = a—a (4.30)

Differentiating both sides of (4.29) and (4.30), and using (4.2), (4.27) and
(4.25), yields

ey = quley,eq,v,a) (4.31)

€a = (qa(€y,€q,v,0)+a (4.32)
where

qv(ev, eaa”)‘l) = M_l(m) [g(ma'I)’w) - g(:x,f),w)] - M—l(w) {S(v)a - S(U - ev)[a - ea]}
—-K,e,

qa(€uy €a,v,a) = KpD(v—e,)S(v—e,)U' Kye,

The above differential equations are not homogeneous if vector a is not a
constant. If the gains K, and Kr are picked to ensure exponential stability and
a is bounded, the error will be bounded in a neighborhood of the origin (Brockett,
1970).

The Jacobian matrix ¥ of equations (4.31) and (4.32), calculated at e, = ¢, =

0, is
—K, + M~ (2)g,(z,v,w) —M~Ya)US(v)

=1 KpD@)S@U'K, 0
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where g,(z,v,w) = ng;,:_,wl. For the above calculations of partial derivatives it is
assumed, that v # e,, and a # e,. If the gain matrices can be picked such that ¥
has eigenvalues in the left half plane, ||®]| bounded and ||¥|| is sufficiently small,

the estimation error is exponentially stable.

4.6.2 Generalized Tracking Observer (GTO)
When the reduced order velocity observer is used, the GTO observer, for the friction

forces (4.16), (4.17) takes the form

;= =Ko — KoM\ (z) [g(z,d,w) — F]

A

Fo= z4+ K2+ Kb (4.33)

To determine the gains K;, K, and K,, the error under the real and the
estimated parameters has to be considered. The components of the vector error

are:

ey, = v—70 (4.34)

ep = F(a,v)-—ﬁ’ (4.35)

The analysis is similar to the one presented for the GCFO observer in the
previous section.
The differential equations describing the rate of change of the estimation errors

are the following

é‘U = M—I(I)[g(l‘,v, 'U)) - g(:l?, i}’ w)] - M—l(:l,')ep - I(Ue‘u
ér = —(Ki+ K:K,)e, + F(a,v) (4.36)
The above differential equations are not homogeneous. If the gains K,, I; and K,

are picked to ensure exponential stability and F'(a,v) is bounded, the error will be

bounded within the origin (Brockett, 1970).
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Figure 4.2 The two-mass system.

The Jacobian matrix W of equations (4.36) and (4.36), calculated at e, = ep =

0, is
- — K, + MY z)gy(z.v.w) —M1(z)
- —(IX’] -+ I\’QI{U) 0
where g,(z.v.w) = ME’—"”Z. If the gain matrices can be picked such that ¥ has

eigenvalues in the left half plane, ||¥|| bounded and ||\Il|| is sufficiently small, the

estimation error is exponentially stable.

4.7 Example 1: Two—Mass System
Let us consider the system, shown in Figure 4.2, which consists of two masses m,
and m,, one on top of the other. In this system friction appears between the two
masses as well as between the second mass and the ground.

The system differential equations are

mli)l = —-(7]2 + 7]3)(1,'1 + N3Tg — Fl
Moty = My — (M + 7N3)ae — Fr 4w (4.37)
where 71, n2. 13 are the spring constants, my, m, are the masses, while z;, v1, T2, vy

are the displacement and the velocity of the masses m; and m, respectively, and w

is the input. Fj, F, are the total friction forces of the first and the second mass,
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respectively, and are described as follows

Fi = ajsgn(vy — vy) (4.38)
Fy = aqsgn(vy) — asgn(vy — v,) (4.39)
The problem considered in this example is the estimation of the friction forces

that appear in the two-mass system.

First let us rewrite the system differential equations in the standard form (4.1),

(4.2):
T = v
My = g(z,v,w) - F(a,v)
where
F(a,v) = [F, F) = UAsgn(U'v)
and

z=[z1 @], v=[0 vy

—(n2 + n3)x1 + 322 ]
s Uy = 4.40
9(=,v,w) [ nax1 — (M + 73)r2 + w ( )
_ mi 0 _ 1 0 _ ay 0
e[ 0 Lue 2 eas[8 0]

Next the two observers proposed in the chapter will be designed and simulated.

4.7.1 Observers Dynamics

Generalized Coulomb Friction Observer (GCFO)
Choose h(|U'v]) to be

h(JU'v]) = |U'v| = [ [or = v } (4.42)

|va]
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Then, according to (4.15), the matrix D becomes
D = diag{d,,d>2} = diag{1,1} (4.43)
Moreover, using (4.13), S(v) is
S(v) = diag{sgn(v1 — v2),sgn(vz)} (4.44)

Finally, substituting (4.42)-(4.44) into (4.11) and (4.12), the GCFO observer

takes the form

Fl = (ZF] - kp]l’&l - 132|)sgn(1‘;1 - '(32) (4—45)

Fy = (213 — kpa|Oa|)sgn(dy) — (4.46)
and

tr1 = kpisgn(dy, — 132){(m1)_1[—(7]2 + n3)xy + Nz — Fl]
—(ma) a1 — (m + n3)z2 — £3]}

spe = kposgn(d2)(me)  naz: — (m + na)az — Fi]
where the gain Kr = diag{kg1, kr2}.

Generalized Tracking Observer (GTO)
According to (4.16) and (4.17), the GTO observer for the friction forces has the

following form

Fi = 2z 4+ kney + kg (4.47)
Fy = 234 kiawy + kot (4.48)
and
Z = —kpdr — kaa(mi) T~ (n2 + n3)e1 + nsz2 — ﬁ1]

2y = —kisby — kaa(ma) T [max1 — (1 + ma)z2 +w — 3]
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Figure 4.3 System input and transient responses.
where the observer gain matrices were picked to be diagonal, i.e
.[{1 = diag{ku, kgl}

[\’2 = dia,g{kgl,kzg}

Velocity Observer “Architecture”.

Assuming that only the position is available for measurements, the observer to

estimate the velocity is the following

=zt kT (4.49)
by = zyy + k22 (4.50)
and
Gy = —ky b+ (M) [=(m2 + 1s)z1 + az2 — F)
Sy, = —hyl2+ (M) ez — (m + m3)z2 + w — Fz]

where, K, = diag{k,,, k., }.

4.7.2 Simulation Results
For the simulations, the values of the system parameters are assumed to be m; = 10,
me = 50, 7y = 100, 2 = 50, 73 = 20, a; = 10 and ay = 20. The measurements of

the positions are considered to be contaminated with white noise with a rms value
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of 0.1. The input is sinusoidal with frequency = Hz. The system input and transient

response are shown in Figure 4.3.
The results for the GCFO observer are shown in Figures 4.4a and 4.5a. The

observer gain matrices used in the simulations are

Kr = diag{500,700}
K, = diag{10,10}
Figures 4.4b and 4.5b show the results for the GTO observer. The observer
gain matrices used in the simulations are
K, = diag{0,0}
K, = diag{-1000,—-5000}
K, = diag{10,10}
The estimation of “extended” Coulomb friction is shown in Figures 4.5a,b.
In the simulations the gains for the observers remain unchanged, while the friction
coeflicients are described as follows
a; = 204 10e"r-vl 4 [v1 — vg|
az = 40+ 20e712l 4 v,
As it can be seen from the simulations, the GCFO observer that is designed
based on a Coulomb friction model, performs better: The GTO observer needs a

relatively high gain to track the details of the friction force, which results in a high

overshoot in the observer transient response.

4.8 Example 2;: Two Link Robot Arm
The dynamic equation describing the motion of a two robot arm manipulator is

(Grossman, 1991) (Figure 4.6)

M0)w + F.(0,w) + F4(0) = w — F(a,w) (4.51)
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where

0 = [0 6] (4.52)

w = [w w ], (4.53)

are vectors containing the angular positions and velocities of the two links respec-
tively.
Matrix M (@) is the inertia matrix and can be written analytically as follows:

Mll M12 ]

M) = [le Mo (4.54)

with

M]] = I] +12+777,1b:12+m2([% +b§)+2m2l1bg C0802
M12 = 12 + mgbg + 7’72211b2 COos 02
My = My

M, = 12+mzbg

where m;, I; are the mass and the length of the ith link, &; is the distance from the
7th joint to the center of gravity of the ith link, and [; is the moment of inertia of
the 2th link about the center of gravity.

The vector F.(8,w) represents the coriolis and centrifugal forces of the system
while F,(0) is the gravitational force vector. The analytic expressions of the vectors

F.(0,w) and F,(0) are

| —maliby (2w + w2)ws sin(02)
FC(G,(.U) - [ 7722[1()2&)3 sin(02) (455)
and
| (maby + maly) cos(81) + mgb; cos(0; + 0;)
Fg(e) - [ 'rllgbg COS(&] + 02) g (4.56)

where ¢ is the gravitational acceleration.
The input vector w is the sum of all the external input forces applied to the

system.
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Friction is assumed present at the two joints and is described in (4.51) by the

vector F'(e,w), where

Fla,w)

il

(] = [ ]

= Eliag{sgn(wl)ﬁgn(w?)l [ Z: :|
S(w) ;

a

The vector a contains the unknown constant Coulomb friction coeflicients «;, and
a9,
The problem considered in this example, is the estimation of the friction vector

F(a,w).

4.8.1 Friction Observer “Architecture”

Generalized Coulomb Friction Observer (GCFO)
Assume & and F' to be the estimate of a and F(a,w) respectively. Then, the GCFO

observer takes the form:

@ = zrp— Kp |w| (4.57)
F = S()a (4.58)

with
ip = KpS(@)M™(0)[w — F.(0,0) — F,(8) — F] (4.59)

where M ~1(6) is the inverse of the inertia matrix M(0) and Kr is a matrix to be
chosen by the designer to ensure convergence of the error to zero. Notice that the

inertia matrix is positive definite, and can always be inverted.

Velocity Observer “Architecture”
Assuming w represents the estimate of the velocity w, the velocity observer takes the
form:

&=z, + K0 (4.60)
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with
2w = M7Y(0)[u — Fu(0,0) — Fy(0) — F] = K.,& (4.61)

where K, is the designed parameters matrix.
The latter observer uses as inputs the measurements of the angular position ¢
as well as the estimates of the previously proposed observer (4.57) to estimate the

velocities of the links.

4.8.2 Simulation Results

To verify the performance of the observers described above, a simulation study was
performed. The values of the system parameters were assumed to be m; = 0.7718
kg, my = 0.2713 kg, {; = 0.205 m, l, = 0.224 m, I; = 0.00863 kg-m?2, I, = 0.00132
kg-m?, k; = 0.04 m, k; = 0.065 m and g = 9.8 m/s?. The measurements of angular
positions were considered to be contaminated with white noise with an rms value of
0.5. The applied inputs were u; = sin(2¢) and u, = 0. The values of the friction
coeflicients were assumed to be a; = 0.001 and a; = 0.005. The gain matrices Kp

and K, were selected as

ko[-0 0 Kk _[1 05
F=101 0005 )" "~ |1 10

The results are shown in Figure 4.7. As can be seen from the figure, friction can be

estimated successfully in a system with nonlinear dynamics.
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Figure 4.4 (a) Performance of the GCFO observer in estimating Coulomb friction
Fy between the two masses and (F; + F,) between the second mass and the ground

(b) Performance of the GTO observer in estimating the system friction forces.
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Figure 4.7 Performance of the GCFO observer in estimating Coulomb friction (a)
Actual and estimated friction Fy (b) Actual and estimated friction F3.



CHAPTER 5

FRICTION CANCELLATION IN A SYSTEM WITH MULTIPLE
INPUTS AND FRICTION SOURCES

5.1 Introduction
The problem considered in this chapter is the cancellation of friction in systems with
multiple inputs and friction sources. This problem has been considered in the past by
many researchers. Techniques such as high gain PD control, model-based feedback,
dither, joint torque control, model reference adaptive control, adaptive pulse width
control were proposed.

In this chapter an investigation is conducted concerning the relation between
the system topology and friction cancellation in a system linear with respect to the
inputs. In particular, topological conditions are derived, based on the distribution
of the inputs and the friction forces in the system, which determine whether total or
partial friction cancellation is possible. When cancellation is possible, an appropriate
feedback control law is designed to cancel the friction. The method leads to total or
partial friction cancellation, depending on the topology of the system.

The proposed feedback design can be combined with the algorithms for friction
estimation proposed in the previous chapters (or, for that matter, another friction
estimation method) to cancel the friction forces.

Simulation results demonstrate the effectiveness of the method.

5.2 Statement of the Problem
The general dynamic model that describes a system which is linear with respect to
the inputs, is
T = v (5.1)

M(z)y = g(z,v)+ Bw - F (5.2)

54
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where

T = [z Tal (5.3)

v = [vyvg cer ) (5.4)

and z; and v; are the ith “position” and “velocity,” respectively. The matrix M(z) is
the known mass matrix which is symmetric and positive definite. The vector g(z, v)
and the matrix B are also assumed to be known and w is a r X 1 vector of the external

system inputs; F' is the friction vector which can be written as follows
F=UF (5.5)

where the vector F' contains the different friction forces, i.e.

F=[F -} (5.6)

and U is the friction “distribution” matrix (Appendix A).

The problem considered in this chapter is the determination of an appropriate
feedback control law to cancel the friction vector F'. This problem, however, doesn’t
have always a solution, as it will become apparent by the analysis that follows. In the
next section, necessary and sufficient conditions will be derived to determine which

of the friction forces can be cancelled.

5.3 Design of Feedback Control Law

The input w of the system can be written as
w=u-+u (5.7)

where u is the input designed for the system with no friction to satisfy some
performance criteria, and @ is the input that will be designed to eliminate or cancel

(when possible) the effects of friction.
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The problem of friction cancellation can be reformulated as follows: Find an
appropriate input @ such that
Ba=UF (5.8)

assuming that B is a n x r matrix, where n is the number of the system states and
r the number of the system inputs. The conditions under which equation (5.8) has
a solution are examined below and a feedback control law is designed when possible

to do so.

5.3.1 Perfect Friction Cancellation
Perfect friction cancellation is possible under certain topological conditions between

the distribution of the inputs and the distribution of the friction forces in the system.

e n=rand rankB =r

In this case the input @ takes the form

i=BUF (5.9)

o n>randrankB =7 and U, FF =0

where the matrix U, is defined as

KU:[&] (5.10)

and the matrix K is determined such that

on | B1
IsB—[O]

If the above conditions are satisfied, friction can be cancelled perfectly by the
following input

4= B'UF (5.11)
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e n>rand rankB < r and U, F =0

where U, is defined by (5.10). If the above conditions are satisfied, then
more than one solution may be found for (5.8). To determine a solution, the

algorithm, proposed in Appendix B, may be used.

5.3.2 Partial Friction Cancellation
e n>rand rankB =r and Uy F' # 0

where U, is defined by (5.10).

In this case friction can be cancelled partially by the following input

4= B{'U F (5.12)

e n>r and rankB < r and U, F # 0

where U, is defined by (5.10). To determine a solution, the algorithm proposed

in Appendix B may be used.

e n < r and rankB < n,

then a solution that minimizes the least mean square error is proposed. Specif-
ically,

&= (B'B)"'B'UF (5.13)
In the special case where rankB = n, the algorithm given in Appendix B may

be used in order to determine an appropriate input «.

Note 1
The theory presented in this section is based on the knowledge of the friction distri-
bution matrix U, the control matrix B, the mass matrix M, and the vector friction

force I. In the case where F is not known, the GCFO and GDFO observers, proposed
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in Chapter 4 and 7, respectively, can be used to estimate the unknown forces. The
GTO observer, however, as is proposed in Chapters 4 and 8, assumes that U is
unknown, and estimates F instead of F, which may be very important for some

applications. The modified GTO observer, (MGTO), able to estimate F, has the

following form

A

F=z4+ K12+ Kpov (5.14)

with

~

2= —Kpv — KpaM ™ g(z,v,w) — UF) (5.15)

where F' is the estimate vector of F’, and K,,; and K,,2 are matrices to be chosen
by the designer to ensure convergence of the estimation error to zero. To determine
the matrices K, and Ko, the same procedure as that followed in Chapter 4 can
be applied. The MGTO observer is similar to the GTO, and can be used to estimate
Coulomb as well as dynamic friction satisfactorily. When the observers are used, the

input w uses the estimates of the friction instead of the actual friction force.

Note 2

If the matrix B contains some zero rows, then friction forces that cannot be cancelled
may exist in the system. In this case, for simplicity, we can eliminate these forces from
the equation (5.8) before we proceed to apply the conditions for partial or perfect
friction cancellation. To this end, the following procedure should be followed:

Step 1: Assume that the zero rows in B are the i;st, - - -, 7;th. Then, eliminate those
rows, and create a submatrix B of B, which contain no zero rows.

Step 2: Check if there are any non zero elements in the ¢st, -- -, 7jth rows of the
matrix U. If there are, it is assumed that they belong to the jjst, - - -, jsth columns.
This means that there exist friction forces that cannot be cancelled. The friction

forces F; that are the jyst, - -+, j,th elements of the vector F' cannot be cancelled due
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to the relative distribution of the system inputs with the one of the frictions on the
different system degrees—of-freedom.

Step 3: Eliminate the rows #;st, - - -, ¢;th as well as the columns jist, ---, j,th from
the matrix U and create a new submatrix U. Finally create a submatrix F,, which

results from F' after eliminating the jjst, - -, 7,th elements.

Considering the matrix simplifications proposed above, equation (5.8) can be

rewritten as follows

Bu=UF, (5.16)

5.4 Example: Two-Mass System (Continued)
Let us consider again the two-mass system (Figure 4.2). The system differential

equations are

mivy = —(n2 +n3)x1 + M3z, — (5.17)

maly = n3x1— (M +13)T2 +w— F (5.18)

where F; and F; are the total friction forces applied to the top and bottom mass

respectively. For the above system,

F1=F‘1

F2 - Fz—Fl

where Fj is the friction that exists between the two masses, and F, is the friction
between the second mass and the ground.

It can be easily seen that when the input is applied on the bottom mass, only £},
can be totally cancelled. This can also be shown by following the analysis developed

in the present chapter.
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Step 1: Form matrices M, B, U and F using equations (5.17)-(5.18), as

w=m 0] 8a[0] we] L 0] £=]]

Step 2: The first row of matrix B is zero. Thus, we have to check if there exist any
nonzero elements in the first row of the matrix /. As it can be seen, the element
which belongs to the first row and first column of U is nonzero. Therefore, eliminate
the first row of B, the first row and column of U and the first element F; of the

friction vector, and create the submatrices B, U and F,, as

B = 1, U - 1, Fn == F2
Step 3: Solve the equation (5.16). By doing so, we get
a=F

as expected.

Notice that in the case where the friction observers proposed previously were
used, the input @ would be equal to the estimate of the second friction F and not
the actual F£3.

For the simulations the actual system has an input w of the form
w = Fy + sin(2t)

The ideal system, however, does not contain the force F, and has an input equal to
sin(2t). In addition, the actual friction is assumed to be described by the “Coulomb”
model, while the GCFO observer is used to estimate the friction.

The results of the simulations are shown in Figure 5.1. As it can be seen from
the graphs, the response of the actual system is very much closer to the response of

the ideal when friction cancellation is applied.
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Figures (a) and (b) respectively.



CHAPTER 6

ADAPTIVE COMPENSATION OF DYNAMIC FRICTION IN A
SINGLE DEGREE-OF-FREEDOM SYSTEM

6.1 Introduction
The problem considered in this chapter is the estimation and cancellation of friction
in a single degree~of-freedom system assuming that friction is described by a dynamic
model, (Dahl, 1976, Haessig et al., 1991) rather than a memoryless model that has
been considered in the previous chapters.

Evidence is mounting that friction is a dynamic phenomenon, i.e., that a zero-
memory nonlinearity does not adequately capture the true nature of friction (Dahl,
1976, Haessig et al., 1991, Armstrong—Hélouvry, 1991, Hess et al., 1991, Canudas et
al., 1993) The dynamic effects of friction, however, are often small and difficult to
measure. Therefore it would be natural to ask whether it is permissible to ignore
them in designing a compensation technique that relies upon a model of the friction.

In the present chapter the performance of three friction estimators are
compared. The first (CFO) is the one proposed by Friedland et al. (1991), and
is designed based on the Coulomb friction model. The second proposed observer
(TO) is based on the tracking of the total friction force F' as an unknown bias
(also presented in the previous chapters). The third observer (DFO), proposed in
this chapter, incorporates an assumed dynamic friction model (i.e., Dahl or the
reset—integrator).

If the velocity is not directly measured, another reduced—order observer is used
to estimate it. Conditions for stability of the estimators are derived in the absence
of a velocity observer and in the presence thereof.

To compare the performance of the proposed observers in estimating dynamic

friction, simulations were conducted.
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6.2 Statement of the Problem
The dynamic process studied is assumed to be a single mass acted upon by a friction
force F' and a control force w. Accordingly, the overall dynamics of the process are

represented by

T = v (6.1)

b» = w—F (6.2)

where z and v are the position and velocity of the mass, respectively. The friction

force F'is given by

F = af (6.3)
f= &@1h (6.4)

where the parameter ¢« is the coefficient of friction that multiplies the normalized
friction f, and (v, f) is assumed to be a bounded function as long as v and f are
bounded.

The function é(v, f) varies between the different friction models. Specifically,

for the “reset integrator” friction model

€v,f) = cv—¢7'(f)] (6.5)

where ¢ is a constant that determines the width of the hysteresis and ¢~(f) is the
inverse function of ¢(-). ¢(v) = —¢(—v) is a function of the velocity which can
be assumed to vary between 1. For implementation purposes suitable analytical
approximations for ¢(-) and its inverse should be used.

Another model, considered in this thesis is the Dahl model. For this model the

function £(v, f) has the following form:

&v,f) = ev|l — fo(v)l'sgn[l — fo(v)] (6.6)

where ¢ determines the slope of the friction curve.
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Now, as has already been mentioned in the Chapters 2 and 3, for friction

cancellation, the input w should be of the form
w=u+F (6.7)
where £ is the estimate of friction and u is given as

u=—gi(z —z,;) — gav (6.8)

with z. to be a reference position and the coefficients g, and gz to be selected to
satisfy desired performance specifications.
The problem considered in this chapter is the estimation and cancellation of

dynamic friction F in the system (6.1)-(6.2).

6.3 Observer Dynamics
Defining a, f and F' to represent the estimates of a, f and F', respectively, the

dynamics of the three friction observers studied below are:

6.3.1 Coulomb Friction Observer (CFO)
This observer is designed based upon a Coulomb friction model and is described as

follows

A

F = (zp—kp|v]|")sgn(v) (6.9)
ip = kp plv]* ' (w = F) sgn(v) (6.10)

where zp is the observer state and & is the observer gain to be chosen by the designer

to ensure convergence of the error to zero.

6.3.2 Tracking Observer (TO)
This observer is based upon the tracking of the total friction force F'. Its dynamics
are given by:

A

F = z+4+ka+ ko (6.11)
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i o= —kw— ky(w— F) (6.12)

where z is the observer state and k;, ko are the observer gains to be chosen by the

designer to ensure convergence of the error to zero.

6.3.3 Dynamic Friction Observer (DFO)
This observer is designed based upon a dynamic model for f, and estimates of the

friction coefficient a and the normalized friction force f. Specifically

a = Za+kaf'v (613)
f = z;+kpx+ kpv (6.14)
with
fa = —kavbi(v, f) — kaf(w — F)
2y = —kpv—kp(w—F) +&(v, f)
and
= &f (6.15)

where z,, z; are the observer states and k,, ks and ksy are the observer gains to
be chosen by the designer to ensure convergence of the error to zero. The function
£1(+,+) corresponds to the dynamic friction model based on which the observer is
designed, and may not be the same as the function £(-,-) used to describe the actual

friction model.

6.4 Selection of Gains and Error Analysis
To establish conditions for the gains kp, ky, ke, ka, ksy and kj2, we consider the error

between the true friction force F and its estimate F':

~

Ep = F-F (616)
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Differentiating both sides of the above equation and using (6.4) through (6.15), an
analytic expression for each observer is derived that describes the rate of change of

the estimation error er.

6.4.1 Coulomb Friction Observer (CFO)

The differential equation of the error eg is
ép = F—F
= F— ipsgn(v) — ke plo]* "0

= F—kpp v lep (6.17)

The following conditions are sufficient for exponential stability of the estimation error

in a neighborhood of zero:
1. n>0
2. kp >0

3. dF/dt bounded

assuming that v is bounded away from the origin. Notice that Condition 2 is assumed
to be valid by the statement of the problem as long as the system velocity and friction

force remain bounded.

6.4.2 Tracking observer (TO)

The differential equation of the error er is

P F

EF
= F—é—klv—kgl}
= hkyep + F (6.18)

In order for the solution of this differential equation to remain in a neighborhood of

the origin, the following conditions must be valid:
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1. ko <0
2. dF/dt bounded

Notice that there is no restriction on kj.

6.4.3 Dynamic Friction Observer (DFO)
This observer is second order, therefore two differential equations are needed to

describe the propagation of the error. Define

e, = a—a (6.19)

es = f~f (6.20)

Then, differentiating equations (6.19) and (6.20) and using (6.13) and (6.14) yields

& = f-f
= kpaes+ kppfes — kppeacs + E(v, f) = &(v, f) (6.21)
and
€, = a-—a
= —ko(f + kv —eg)(aes + feq — eacy) (6.22)

The above differential equations are not homogeneous if the model for which the
observer is designed does not match the actual friction model.

The Jacobian matrix ¥ of equations (6.21), calculated at ey = e, =0, is

_ | kreat+&islv, f) kpaf
¥ = _kaa(f + kj2v) —kaf(f + kf2'v) (623)

where & f(v, f) = %(;;fl. If the gains can be picked such that ¥ has eigenvalues in

the left half plane, ||®|| bounded and ||¥]] is sufficiently small, the estimation error

is exponentially stable and will converge in a neighborhood of the origin (the size of

which depends on |£(v, f) — & (v, f)])-
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To find the conditions under which matrix ¥ has eigenvalues in the left half
plane the Routh-Hurwitz criterion can be applied. Using this criterion it is found

that it is sufficient to pick the gains as follows:

1. kaf(f +vky2) > 0
kuf(f + vkﬂ) + 'flf(v’f)

2.0<]€f2<
a

a&l('va f)

3.——6‘,‘—.

<0

The requirement that the rate of change of £(v, f) with respect to f is less than
zero is satisfied if £(v, f) describes the Dahl model, (6.6), or the “reset—integrator”
model (6.5):

If the DFO observer is designed based on Dahl friction model, then &;(v, f) is

given by (6.6) and Condition 3 is always satisfied since

051(U,f) _ y i-1
T =—cv p(v)i|l — fo(v)]

As it has already been mentioned, ¢(v) is an odd function, therefore v¢(v) > 0, and
¢ is the width of the hysteresis which is a positive scalar. Hence 9¢;(v, f)/0f < 0.
If the DFO observer is designed based on reset-integrator model, then &; (v, f)

is given by (6.5) and Condition 3 is always satisfied since

06(v, ) _ __097)

a7 = af <0

since ¢~1(f) is a monotonically increasing function.

6.5 Friction Estimation Without Velocity Measurements
The foregoing analysis was based on direct measurements of the velocity of the
mass. However, if only the position of the mass can be observed, it is necessary
to estimate the velocity as well. The resulting overall observer is configured as two

coupled reduced-order observers as shown in Figure 3.1. The first uses the measured
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position and the estimate of the friction to provide an estimate of the velocity, and
the second uses the estimate of the velocity to estimate the friction.

The dynamics of the velocity observer are
vV = z,+ k,x (6.24)
Zy, = u—kyd (6.25)

where ¢ is the estimate of the velocity and %k, is the corresponding observer gain.

6.6 Combining Velocity and Friction Observers
When the velocity observer is used, the estimate v replaces the true velocity v in the
friction observers.
The gains of the combined friction-velocity observers are established by placing
the poles of the dynamic system defined by the estimation errors:

€y = V=1 = g€y, er) (6.26)

.
A

ér = F—F = qp(ey,er) (6.27)

The error analysis will be studied below for each of the three friction observers.

6.6.1 Coulomb Friction Observer (CFO)

In the case of unmeasurable velocities the Coulomb friction observer is considered

with g = 1. Then,

qv(ew BF) - -kveu — €fr
(IF(CU,CF) = kF' kueu +F

and

—k, -1
U= { 0 ] (6.28)

The error converges in a neighborhood of zero if F' is bounded and the Jacobian
matrix W is negative definite, and bounded away from the origin. The conditions for

the Jacobian matrix to be negative definite are the following:



70
1. k, >0

2. kp >0

6.6.2 Tracking Observer (TO)

For this observer

qu(evaeF) = _kveu_eF

qF(eua eF’) = _(kl + k‘gku)eu -+ F

and the Jacobian matrix is given by

—k, -1

v = —kl - kg]\?u 0

(6.29)

As in the case of the first observer, the error converges in a neighborhood of zero
if ' is bounded and the Jacobian matrix ¥ is negative definite, and bounded away
from the origin. The conditions for the Jacobian matrix to be negative definite are

the following:
1. k&, >0
2. ]\71 + kzkv <0
6.6.3 Dynamic Friction Observer (DFO)

The parameter-estimating observer has third-order dynamics; hence three differ-

ential equations are needed to characterize the error propagation:

by = V-0 =gy €ares,v, F) (6.30)
b = a—a =quley eares,v,F) (6.31)
e = f—f = qs(ey,€q,€5,0, F) (6.32)

where

qv(eva ea,Ef,U,F) - —kvev —€F
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qa(ev’ €a,€f,0, F) = “ka[(v— ev)(kfl +kf2kv) + kv(f - ef)]ev

Qf(eva eaaefavaF) = —kfleu - ku’kuev + f(v, f) - €1(’U - evaf - ef)

The Jacobian matrix of the above equations, ¥, where

[ 0q,  Oq,  Oqu ]
de, de, Oej

0q. 0qa dq,
Oe, Oeg Oey

9¢; 94 4
Oe, Oeq Oey

_kv —f —a
_ | —kalv(kps + kp2ko) + ko f) O 0
0 (v, f A€ (v, f)
%—l—kfl_kukv 0 —la—f— ]

determines the local behavior of the estimation error. In order for the matrix ¥ to

be negative definite, the following conditions are sufficent:

1. ky>a>0

2. —ko[vf(ks + ks2ky) + ko f?] >0

3. 8él(v1f) <0

of
For the second condition, note that vf > 0. Thus, choosing &, < 0 and kp1+ks2ky, > 0

ensures that Condition 2 is satisfied. The third condition is always valid for a Dahl or
“reset integrator” model, as it has been shown in section 1.4.3. If these conditions are
met ||®|| is bounded and ||¥|[sufficiently small, the error differential equations are
exponentially stable. Finally, since the error dynamic system is not homogeneous,
another condition should be added (|é(v, f) — €1(v, f)| < €), to ensure convergence

of the error around zero.
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6.7 Simulated Performance

The three observers are compared in a simulation study. For the simulations, we
consider the ideal system (the system with no friction), with input « given by (6.8)
where the gains g, and g, are chosen to be g; = 200 and g, = 20. The closed loop
ideal system, with this input u, has a natural frequency of 10v/2 and a damping
factor 0.707. In addition, the actual system, given by (6.1)-(6.2), is assumed to have
the input w, given by (6.7), and u the same as the ideal. The reference position is a
square wave with a frequency of 0.5 Hz. Moreover, white noise with an rms value of
0.1 is added to the measured position for verisimilitude.

As a dynamic friction model is assumed the reset integrator model. The

function ¢(:), in the dynamic friction model, is approximated by

Di(f-1)+Dz  f>1
$71(f) =1 D:f, —l<f<l (6.33)
Di(f+1)—Ds, f<-1

with D; = 1000 and D; = 0.0001. The friction coefficient a and the model gain ¢
were set to 50 and 100, respectively. In addition, the third observer was designed
based upon the reset integrator model.

As expected, the DFO observer, based upon the estimation of the parameters of
an otherwise completely defined model, performs the best in estimating the friction
level (Figure 6.1a). The tracking observer also performs remarkably well, even
capturing the hysteresis effect (Figure 6.1b). The first observer, CFQO, is most
sensitive to observation noise. (The effect of noise is scarcely perceptible with the
other observers.) But, although it does not capture the hysteresis effect, it estimates

the friction level very well after a short transient period (Figure 6.1c).
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Figure 6.1 Actual and ideal transient response, error between the actual and
ideal system response, actual friction, and estimated friction using (a) the CFO
compensator. with kp = 100, 4 = 1 and &k, = 100 (b) the TO compensator, with
ky = 0. k2 = —100 and k, = 100 (c) the DFO compensator, with &y; = —0.01,
kpa =0, k, = ~10 and &, = 100



CHAPTER 7

ADAPTIVE ESTIMATION OF DYNAMIC FRICTION IN A
MULTIPLE DEGREE-OF-FREEDOM SYSTEM

7.1 Introduction
The problem considered in this chapter is the estimation of friction in a multiple
degree-of—freedom system assuming that friction is described by a dynamic model.
The results of this chapter are an extension to those presented in Chapter 6, for
systems with multiple degrees—of-freedom and friction sources.

Two friction estimators, generalization of those presented before, are proposed
and compared. The first is the generalized dynamic friction observer designed based
on a dynamic friction model (GDFO); the second (GTO) is the generalized tracking
observer presented in Chapter 4.

For the analysis both the cases of measurable and unmeasurable system
“velocities” are considered.

Finally, favorable simulation results verify the theoretical analysis. The results
indicate that the dynamic effects of friction in control systems can be dealt with

effectively.

7.2 Statement of the Problem
A system with multiple degrees-of-freedom, as has already been mentioned, is
consisted from one or more masses characterized by translational motion in one
or more directions and/or rotational motion. In the following analysis the case of
rotational motion perpendicular to planar translational will be considered as well as
translational motion in three dimensions.

The dynamic model that describes such a system is the following
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M(z)o = g(z,v,w)—F (7.2)

where
T = [z132 T4 (7.3)
v = [vivg e vy (7.4)

and z; and v; are the ith “position” and “velocity”. The mass matrix M is symmetric
and positive definite. Vector g(z, v, w) is a function of position and velocity, as well as
of the external non—frictional input w to the system and represents the total system
force vector; F is the friction vector.

Assuming that the friction between two surfaces is described by a “dynamic”
model, then it can be shown (see Appendix A), that the friction force vector can be

written in the following form

F=UAf (7.5)
where
ay -°-°° 0
A =diag{a}=| : .. (7.6)
0 - a,
and
f=¢&U,f) (7.7)
with
EU', f) = [&a(@1, f) -+ Eu(By £)) (7.8)
and
f=lhfl (7.9)

Vector a contains the unknown friction coefficients; U is a known n x v matrix;
£i(0;, fi) is a function that depends on the assuming dynamic model (Dahl, reset
integrator, etc.) and for the analysis is assumed bounded if &; and f; are both

bounded. Notice that &;(-,-) may not be the same as &;(+,-) for ¢ # 7.



76

The problem considered in this chapter is the estimation of the friction force

vector F'.

7.3 Observer Dynamics
Defining é, f and F to represent the estimates of a, f and F respectively, the

dynamics of the two friction observers studied in this chapter are:

7.3.1 Generalized Dynamic Friction Observer (GDFO)
This observer is based on the estimation of the friction coeflicient ¢ and the

normalized friction f, using an assumed correct dynamic model for f. Specifically

i = zo+4 K,diag{f}U"» (7.10)
f = z+ Kne+ Kpv (7.11)
with
5 = —Kadiag{Uv}E(U', f) — Kodiag{ fYU'M ™" (z) [g(z,v,w) — F]
i = —Kpv—KpM™(2)[g(z,v,0) — F]+ &U', f)
and
F = Udiag{a}f (7.12)

where z,, z5 are the observer states and K,, Ky and Ky, are the observer gains to

be chosen by the designer to ensure convergence of the error to zero.

7.3.2 Generalized Tracking Observer (GTO)
Assuming that F' is the estimate vector of F, the following alternate observer to

estimate the dynamic friction vector F' is proposed.

A

F=z+Kiz+ K (7.13)

with

z=—Kyw— KoM (z) [g(z,v,w) — ] (7.14)



(s

where K; and K, are matrices to be chosen by the designer to ensure convergence

of the error to zero.

7.4 Selection of Gains and Error Analysis
To determine the gains K, K3, K,, K1 and K, the error between the true and the

estimated friction parameters is considered.

7.4.1 Generalized Dynamic Friction Observer (GDFO)
For this observer two sets of differential equations are needed to describe the propa-

gation of the error. Define

€. = a—a (7.15)

e = f — f (716)
Then, differentiating equations (7.15) and (7.16) and using (7.10) and (7.11), yields

e = -1
= EU'v, f)—2; — Kpv — KoM ™ (2) [g(a, v, w) — Udiag{a} f]
= K; M7 (a) Uldiag{f}e, + diag{a}e, — diag{éc}e] + £(U"v, f) = E(U", f)
(7.17)

and

~

€e = a—a
= —3u— K.diag{U") f — K.diag{f}U"
= K,[diag{U'v} K2 + diag{ fYU')M () U[diag{f}ea + diag{a}e,

—diag{é. }ey] (7.18)

The equilibrium point for the above differential equations (7.17) and (7.18), is

the origin, as it can easily be shown, i.e., ef, = €5, = 0 . The local stability for the
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above system is determined by the nature of the Jacobian matrix:

Oés dé;
W= Oes  Oeu | _ [ Vi ‘I’“] (7.19)
0é dé Vo o .
de;  Oeq |,
Analytically, we have
!
\1111 = I(sz_l((L') Udlag{a} -+ Qi%—}),—f)'

\1’12 = ngI\’_IUdiag{f}
Uy = K,[diag{U'v}K s + diag{f}U'|M ' (z) Udiag{a}
Uy = K, [diag{U'v} I}y + diag{f}U'|M ' (z) Udiag{[f}
To assure local exponential stability, the gains K, and Ky, should be picked
such that the eigenvalues of ¥ lie in the open left half plane, ||¥|| is bounded and

||®|| is sufficient small. Notice that [, doesn’t appear in matrix ¥; therefore there

is no restriction on how to choose it.

7.4.2 Generalized Tracking Observer (GTO)
Consider the error er between the friction force F' and its estimate F

A

er=F—F (7.20)

Differentiating both sides of the above equation and using equations (7.7) through
(7.12), the following analytic expression, that describes the rate of change of the

error er, yields
ép = F—F

= F—3—Kv— Ky
= K,M ‘(z)ep + F (7.21)

The above differential equation is not homogeneous if vector F' is not a constant. If

the gain I, is picked to ensure exponential stability and F is bounded, the error will
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be bounded in a neighborhood of the origin (Brockett, 1970). Notice that there is
no any condition imposed on the gain kK.

Next, it will be shown that the rate of change of the friction vector F' is bounded
when the normalized friction vector elements f; are bounded.

The friction force vector is written in the form:
F=UAf (7.22)
Then, differentiating the above equation, yields
F=UAf+UAf+UAf (7.23)

Since the friction coefficients a; are constants, matrix A is constant and A is zero.
Matrix U is in general a function of the positions 2. It is reasonable to assume that
the states z as well as the velocities are bounded and so matrices U and U. It is
reasonable also to assume the normalized friction vector f to be bounded when the
system velocities and accelerations are bounded. In addition, vector f is bounded
since, by assumption at the statement of the problem, £;(9;, f;) are bounded when ¥;
and f; are both bounded. Finally, since all the terms of equation (7.23) are bounded,
Fis bounded.

7.5 Friction Estimation Without Velocity Measurements
In the foregoing analysis, assuming that the entire state vector of the system is
available for measurements, two nonlinear observers to estimate the friction force
vector were proposed. In this section, however, only the position z is assumed
to be measurable. Therefore, in order to estimate the unmeasurable velocities, an
additional nonlinear reduced order state observer is used. This observer 1s combined

in cascade with the observers of the previous sections to estimate the friction vector.
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7.5.1 Velocity Observer “Architecture”
Assuming that © represents the estimate of the velocity v, the observer to estimate
the velocity is:
0= zy + Ky (7.24)
with
2y = —Kod + M7 (z) [g(z, b, w) — F] (7.25)
where K, is the designed parameter matrix.
The latter observer uses as inputs the measurements of the positions = as well
as the estimates of the previously proposed observers (7.10)—(7.12) or (7.13)-(7.14),

to estimate the velocities of the masses.

7.6 Combining Velocity and Friction Observers
When the velocity observer is used, the estimate 9 replaces in the friction observers

the true velocity v.

7.6.1 Generalized Dynamic Friction Observer (GDFO)
For the parameter—estimating observer three sets of differential equations are needed

to characterize the error propagation:

€y = V—0 = qy(€y,€q,€5,v,F) (7.26)
ba = G—G = qa(€vs €a, €5, 0, F) (7.27)
€ = f—f = qs(ey,€a,€5,v, F) (7.28)
where
tlenscarer,n, F) = —Kyey+ M) [g(2, 0,0) — g(a,0 — e, )]
— M (z) Uldiag{f — e;}e, + diag{a — e, }e; — diag{e. }es]
Go(€vs€ar €50, F) = —K,diag{f —e;}U'K,e, — K diag{U'(v — €,) }(K 1 + Ks2 K, )ey

qr(evsares, v, F) = —(Kpn+ KpaKy)e, +&(v, f) — E(v —ew, [ —€f)
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The Jacobian matrix for the above system of differential equations is

where

dq. dq, dq, |
Oe, Oeq Je;

0q.  0Oq.  Oqo _ Vi Ui Wi
de, de, deg -

Oqy  Oqy  Oqy

\1121 \1’22 \1123
U3 Wi Was

Oe, Oeq,  Oey

4 ey=ey=ea=0

ag(m7 v? w)
Ov
— MY (z) Udiag{f}

— K, + M™\(z)

—~M~Y(z) Udiag{a}
K, [diag{ F)U'K, + diag{U"v} (K1 + K j2K,)]
0

0
9¢(v, f)
ov

0
0&(v, f)
of

— ]X’fl Iﬂ’jg I(U

The error converges exponentially to zero if the gains K, K,, Ky, and K, are picked

such that the Jacobian matrix has eigenvalues in the left half plane, ||¥|| is bounded

and ||®|| is sufficiently small.

7.6.2 Generalized Tracking Observer (GTO)

Let us define the errors e, and e as follows

Iy

€&, = v—10 = qy(es, er,v,F) (7.29)

ér = F—F = qriey, er, v, I) (7.30)
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where,
Go(ev, ery v, F) = ~Kye, — M7 (z) ep + M7 (z) [g(z,v,w) — g(z, D, w)]
gr(evyer, v, F) = —(Ky + KoK, )e, + F

The above differential equations are not homogeneous. If the gains K,, K; and
K, are picked to ensure exponential stability and F is bounded, the error will be
bounded near the origin (Brockett, 1970).

The Jacobian matrix of the error equations is

M (2B e g (7.31)

‘P = »
(K + K, K,) 0

If the gain matrices can be picked such that ¥ has eigenvalues in the left half plane,
||®]| is bounded and ||®|| is sufficiently small, the estimation error is exponentially

stable.

7.7 Example: Two—Mass System (Continued)
Let us consider again the two-mass system ( Figure 4.2). The system differential

equations are
mity = —(n2+ n3)zr + M3z — I
77121.)2 = nN3%1 — (T]] + 'I]3)$2 +w — F2 (732)

where F; and F, are the total friction forces applied to the top and bottom mass

respectively. Specifically

Fi = afy (7.33)

Fg —alfl +(12f2 (734)

As a dynamic friction model is assumed the reset integrator model, which yields

fi = alv—ve—¢7(A)] (7.35)
fr = cafva— ¢7(f2)] (7.36)
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where ¢y, c; are constants that determine the width of the hysteresis. The function
#(v) is an odd function of the velocity which varies between +1. The function ¢~!(f)
is the inverse function of ¢(v). For implementation purposes suitable analytical
approximations for ¢(-) and its inverse will be used.

The problem considered in this example is the estimation of the friction forces.

7.7.1 Observer “Architectures”

Generalized Dynamic Friction Observer (GDFO)

The dynamics of this observer are

d1 = zq + Ka f1(01 — 92)
ay = Zg2t Kazfz?}z
H = zpn+ Kma + K

fo = zpo+ Kppza + K200,

where
Za = —Kaala(dr = 0y fl)[f’l — o] — Kalfl{(ml)_l[—(nz + n3)x1 + 3Ty — ﬁ'1]
—(m2) " 1321 — (M + 1372 + w — F3)}
z'a2 = —I\,a27}2§2('l)2,f,:2) - Iﬁ,azfz(mz)_l [7]3371 - (7’1 + 773)‘7:2 +w— FZ]

iz = &1(0 — Do, fl) — Ky10y — Kle(ml)—l[—(ﬂz + n3)zy + Nazy — Fl]

g1 = E2(bo, fo) — K 1202 — K ja2(m2) ™ g2y — (1 + 13) 2 + w — F3]
and
R = afy

aafa — a1 fr

>3
|

In the above equations, the gains matrices are assumed to be diagonal

K, = diag{]&’al,f&'ag}
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1&’_,'1 = di&g{](fu,f(jm}

Ky = diag{Kn, K2}

Generalized Tracking Observer (GTO)

The dynamics of this observer are:

and

where

ﬁi = 21— k11m1 + kQI{)l (737)
Fg = 29— km.’L‘z + kgz'l}g (738)
z1 = —kud — ka(ma) T~ (02 + n3)21 + 3Tz — F1]
29 = —kighy — kaa(ma) [nszs — (1 + a)a + w — F3)

K, = diag{ki,ki2}

K, = diag{ks1, ks}

Velocity Observer “Architecture”.

Assuming that only the position is available for measurements, the observer to

estimate the velocity is the following:

and

O = 2y, + ky 1y (7.39)
ﬁz = 2y, + kv2$2 (740)
?:’u, = —kul 2’\)1 + (777-1)_1[—(7]2 + 7]3)(1)1 -|- N3T2 — 13‘1]
z'vz = _kvz'&? + (mZ)—l[Wle - (7]1 + 7]3)1'2 + w — F’g]

where, K, = diag{k,,, k., }.
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Figure 7.1 System input and transient response.

7.7.2 Simulation Results

For the simulations, the values of the system parameters are assumed to be m; = 10,
my = 50, m; = 100, n, = 30, n3 = 20, a; = 10 and a» = 20. The measurements
of the positions are considered to be contaminated with white noise with an rms
value of 0.1. The input is sinusoidal with frequency = Hz. The system input and the

transient response are shown in Figure 7.1.
As a dynamic friction model is assumed the reset integrator model. The

function ¢(-), in the dynamic friction model, is approximated by

Di(f — 1)+ Do, f>1
o7 f) =13 D.f, —l<f<1 (7.41)
Di(f+1)— Dy, f< -1

with D; = 1000 and D; = 0.0001. The friction coeflicients a; and a; are picked 10
and 20, respectively. The friction model gains ¢; and c; are set to 100.

The results for the GDFO are shown in Figure 7.2a. The observer gain matrices
used in the simulations are
K, = diag{-30,-100}

K; = diag{0.01,0.01}

K, = diag{0,0}

K, = diag{l0,10}
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Figure 7.2b shows the results for the GTO observer. The observers gain

matrices, used at the simulations, are

K, = diag{0,0}
K, = diag{~1000,—5000}

K, = diag{10,10}

As it can be seen from the simulations, the GDFO observer that is designed
based on the actual friction model performs the best. The GTO observer is not able
to track the hysteresis without a high gain, which results in a high transient response
overshoot. Although it doesn’t capture the hysteresis effect accurately, it estimates

the friction level very well after a short transient period.
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Figure 7.2 (a) Performance of the GDFO observer in estimating dynamic friction
F} between the two masses and (F) + F,) between the second mass and the ground
(b) Performance of the GTO observer in estimating the system friction forces.



CHAPTER 8

EXPERIMENTAL EVALUATION OF FRICTION ESTIMATION AND
COMPENSATION TECHNIQUES

8.1 Introduction
In this chapter experimental results are reported on friction estimation and compen-
sation. The goal of this experimental study is to help understand the nature of
friction as well as to demonstrate the effectiveness of the algorithms proposed in the
previous chapters.

The results reported in this chapter are a comparative study of four methods
for estimating and cancelling the friction between two parallel rubbing surfaces. Four
different observers are investigated for estimating the friction force. The first observer
(CFO) is designed based on the classic Coulomb friction model; the second (TO)
tracks the friction force as if it were an unknown bias; the third (DFOa) is based
on the reset integrator dynamic model; and the fourth (DFOb) is based on Dahl’s
model of friction. The above observers were presented in Chapters 2, 3 and 6.

The results demonstrate not only the friction cancellation but also show the
advantages and disadvantages of a dynamic friction description versus the classical

“zero memory” friction representation.

8.2 Experimental Apparatus
The experimental apparatus used is shown in Figure 8.1. It consists of a motor
driving one of two parallel metal circular plates. The position of the fixed plate can
be adjusted with a micrometer screw thereby adjusting the normal force and hence
the level of friction. Attached to the fixed surface is a disk of material to be used in
the experiment.
The movable plate is driven by a d-c motor, the angular position of which

is measured by an incremental encoder with an effective resolution of 2000 pulses
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Figure 8.1 Experimental apparatus.

per revolution. Through an interfacing circuit consisting of a Hewlett—Packard
HCTL2016 counter and some other interfacing logic, the output of the encoder
is transmitted to an IBM Data Acquisition and Control Adapter (DACA) board
residing in an MS-DOS (386-20) personal computer where the position count is
converted to a 16 bit word. The algorithm to be evaluated is coded in C and imple-
mented on the 386-20. The resulting control signal command, generated by the
DACA board, is externally amplified in a power amplifier to provide the input to the
brushes of the motor (Figure 8.2) .

The experiments, whose results are reported here, were conducted with a
sampling frequency of 100 Hz; the integrals in the algorithms described below were
computed numerically using a first-order Euler scheme.

The algorithms were tested by applying an internally-generated square wave

reference input of 50 degrees amplitude. Without compensation, there is a steady
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Figure 8.2 Experiment configuration.

state position error (“hang—off”) proportional to the magnitude of the friction force

which increases as the fixed plate is pressed harder against the movable plate.

8.3 Algorithms
The goal of this experiment is to evaluate the estimation and cancellation of friction.
To this end, four different friction observers were studied and compared. Each
observer comprises a velocity observer (which furnishes an estimate of the relative

angular velocity of the surfaces) driving the friction observer under investigation.

Angular velocity estimation

The dynamics of the velocity observer are defined by

20 + kb (8.1)

£
fl

2y = —F4wu—kw (8.2)

where @ is the estimate of the angular velocity w and %, is the scalar designed

observer parameter.
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The latter observer uses as inputs the measurements of the position 6, the
estimate /' of the friction force F, the external input w and estimates the shaft

angular velocity

Friction estimation

For the analysis, the friction force F is assumed of the form
F=af (8.3)

where the parameter a is the coefficient of friction that multiplies the normalized
friction f.
Defining a, f and F' to represent the estimates of a, f and F, respectively, the

dynamics of the four friction observers are as follows:

Coulomb Friction Observer (CFO)
This observer is estimating the friction coefficient ¢ under the assumption that f =
sgn(w), and is given by

F = (zr+kr | |)sgn(®) (8.4)

-

tpo= —kp(w— F)sgn(®) (8.5)

where zp is the observer state, and kg is the observer gain to be chosen by the
designer to ensure convergence of the error to zero, while § and w are the relative

position and velocity of the surfaces, respectively.

Tracking Observer (TO)
This observer is based on the tracking of the total friction force F'. Its dynamics are

given by:

~

= 24 k0 + kol (8.6)

P o= =& — ky(w— F) (8.7)
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where z is the observer state and k;, k; are the observer gains to be chosen by the

designer to ensure convergence of the error to zero.

“Reset Integrator Model” Based Observer (DFOa)
This observer is based on estimating the friction coefficient ¢ and the normalized
friction force f, using an assumed dynamic model for f. In accordance with the

theory developed in Chapter 4, the observer dynamics are defined by

@ = zathafio (8.8)
Fo= zp+kpb+kpo (8.9)
with
be = —kacd? + kacdd () + kot f? — kafu
i = —kpd —kpw—af)+c@—¢7(f))
and
F=af (8.10)

where z,, zy are the observer states and k,, ks; and ks, are the observer gains to be
chosen by the designer to ensure convergence of the error to zero. The constant c
determines the width of the hysteresis of the friction at low velocities and ¢~!(f) is
the inverse function of ¢(:), an odd function that varies between +1. For implemen-
tation purposes suitable analytical approximations for ¢(-) and its inverse would be

used.

“Dahl Model” Based Observer (DFODb)
This observer has similar structure to the DFOa observer. It is designed, however,
based on the Dahl friction model. In accordance with the theory developed in
Chapter 6, the observer dynamics are defined by

& = zg+ kg fO (8.11)

f o= 2+ ka0 + kol (8.12)
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with
be = —kao?|l — fsgn()|'sgn(l — sgn(d)) — kaf (w — f&)
Zp = —kad — k(v —af) + ad|l — fsgn(@)|'sgn(1 — sgn())
and
F=af (8.13)

where z,, z; are the observer states and kq, k41 and kqp are the observer gains to be

chosen by the designer to ensure convergence of the error to zero.

8.3.1 Friction Cancellation
The estimate of the friction force was also used to cancel the actual friction developed
between the rubbing surfaces. This was achieved by making the input voltage to the

motor w to be

w=u+F (8.14)

where £ is the estimated value of the friction force and u is given by
u=—g1(0 — 0,(1)) — g (8.15)

where 0,.(¢) is a reference angular position. The coefficients g; and g, were selected

to satisfy desired performance specifications (Friedland, 1986).

All the above observers use as inputs the angular position # as well as the

estimated angular velocity w.

8.4 Experimental Results
A series of eight experiments were performed, each in two stages. During the first
stage the parallel plates were separated; during the second stage they were brought
into contact by adjusting the micrometer screw (Figure 8.1). During the first phase,

when the plates are not in contact, the observer estimates the friction present in
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the motor alone. In the second phase, when the plates are in contact, the observer
estimates the sum of the friction in the motor and the friction developed between
the contacting surfaces.

The control law without compensation of friction is
w=—g{0 - 0-(t)] — g

where 0,(¢) is the reference square wave with amplitude 50 degrees and @ is the
estimated angular velocity produced by the observer. The feedback gains of the
input u were chosen as g; = 200 and g, = 50.

To assess the capabilities of the friction estimation algorithms and the effec-
tiveness of friction compensation, two experiments were performed for each friction
observer. In the first experiment the friction was estimated but the estimate was
not used to compensate for friction; in the second, the friction was compensated
by generating a component of control torque equal and opposite to the estimated
friction torque.

Figures 8.3a, 8.4a, 8.5a and 8.6a show the reference and actual angular positions
versus time, the error between the actual and the reference angular positions versus
time, the frictional acceleration versus time and the frictional acceleration versus
velocity in the case where only friction estimation was performed; Figures 8.3b, 8.4b,
8.5b and 8.6b show these quantities with friction compensation.

In the first phase of the experiments, where the surfaces are not in contact, the
magnitude of friction is small. When the surfaces are brought in contact, the friction
increases substantially. The increase in friction shows up clearly in the experimental
results.

As expected, the presence of friction affects the angular hang—off of the motor:
without compensation, the steady state hang—off error increases with increased
friction (Figures 8.3a, 8.4a, 8.5a and 8.6a). Friction compensation, however, all but

eliminates the hang-off and excellent performance is exhibited. The performance
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improvement is seen by comparing Figures 8.3a, 8.4a, 8.5a and 8.6a with 8.3b, 8.4b,
8.5b and 8.6b, respectively.

Implementation of the DFQ observers, based on dynamic friction models,
requires substantial experimental tuning because of the number of parameters in
each model. Nevertheless, the results of these observers are quite similar.

The tracking observer (TO) gives results between those of the DFO’s and the
CFO. Figures 8.3b and 8.4b are very similar as well as figures 8.4a, 8.5a and 8.6a.

The plots of estimated friction versus velocity shown for each experiment
emphasize the effect of adding the external friction. The lower level is due to the
friction in the motor alone; the upper level is the sum of the friction in the motor
and the external friction. It is interesting to note that the friction in the motor
exhibits the hysteresis phenomenon observed by a number of investigators. When
the external friction load is applied the friction level increases but the hysteresis loop
does not change very much. This suggests that the external load (dry friction) does
not produce much hysteresis.

Upon comparing the performance of the four observers, it can be inferred that
the CFO observer (Figure 8.3) seems to give the best results both for estimation of

friction and for compensation.
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Figure 8.3 System transient response and friction estimate using the CFO observer
(a) without friction cancellation (b) with friction cancellation.



NORM. FRICTION

NORM. FRICTION

(=]

sow
50

20 40 60 80
TIME

POSITION (DEG)

ERROR (DEG)
o B __8

2
-
[=]

anl

20 40

2 80 80
TIME
4000
2000 <
0
-2000
4000
20 40 60 80
TIME
4000
2000}
0
-2000
4000
6000 -200 4] 200
VELOCITY

(a)

NORM. FRICTION

NORM. FRICTION

POSITION (DEG)

L3

ERROR (DEG)

-200 0 200
VELOCITY

(b)

97

Figure 8.4 System transient response and friction estimate using the TO observer
(a) without friction cancellation (h) with friction cancellation.
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions
Friction in a control system can be successfully estimated using one of the three

observers presented in this thesis:

1. The “Generalized Coulomb Friction Observer,” (GCFO), which is designed
based on a Coulomb friction model, performs well in estimating not only
Coulomb friction but also “extended” Coulomb and dynamic friction. In the
case of dynamic friction, however, it doesn’t capture the hysteresis effect very
well. Despite this fact, the GCFO observer demonstrated excellent experi-

mental performance.

2. The “Generalized Dynamic Friction Observer,” (GDFO), which is designed
based on a general first order dynamic friction model, gives good results in
tracking a friction model that contains hysteresis effects at low velocities. The
GDFO observer performs well not only in simulations but also, in the exper-

iments despite the fact of the high complexity of the dynamic friction models.

3. The “Generalized Tracking Observer,” which considers friction as an unknown
system parameter, is the simplest in structure It gives reasonable performance
but not as good as the more complex observers. Moreover, in order for the
GTO to estimate detailed friction characteristics, such as hysteresis, a high

gain is required. This results in a large transient overshoot.

All the observers presented use as inputs the measured “positions” and “velocities”

of the system.

100
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When the velocity cannot be measured, it can be estimated using an additional
observer in cascade with the friction observers. Use of this velocity observer
introduces no significant degradation of performance in estimation of friction.

Friction cancellation has also been studied in this thesis. Perfect friction cancel-
lation depends on the system topology and is not always possible. When the topology
is suitable, the friction estimates can be used to cancel the friction (almost) perfectly.
When the topology is not suitable, partial friction cancellation may be considered.
A procedure for accomplishing this was presented.

To verify the validity and effectiveness of the theory presented in this thesis,
several experiments were conducted where all of the observers were tested for friction
estimation and cancellation. With a simple apparatus to produce varying levels
of friction, four friction estimation and compensation algorithms were investigated.
Experimental data were collected for each. The experimental results verified the
capability of the observer—based friction compensators to cancel the effects of friction
in control systems. The friction estimates that the observers give are reasonable
in that they produce estimates that increase as the load is increased and that they
display the hysteresis phenomenon reported by other investigators. The experimental
results revealed that all the algorithms tested are effective for compensation of friction
but behave differently in estimation of friction. Particularly, the CFO seems to give
the most satisfactory results. The TO overcompensate friction. The DFQOa and
DFOb exhibit good performance but they are very complicated to tune.

The results indicate that the performance of a friction observer does not neces-
sarily improve as its complexity is increased. The first observer based on the Coulomb
friction model seems to perform the best, although it is quite simple. The tracking
observer is slightly simpler, but its performance does not seem to be as good. The
additional complexity of observers that are based on dynamic models does not seeﬁ;

justified in view of the performance they yield in cancelling friction. Their use,
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however, may be justified when the goal is not only cancelling friction, but also

gaining a better understanding of the underlying physics.

9.2 Recommendations
A comparative experimental study of the various friction estimation and compen-
sation techniques presented in the literature should be undertaken.

A theoretical analysis of the global convergence of the estimation error to zero
is needed.

More also research is needed in the case of minimizing the ill-effects of friction
when the topology does not allow for perfect cancellation. When friction cannot be
cancelled, its effects can be regarded as a bias system input. This merits further
investigation.

Finally, the general problem of friction modeling still remains. The algorithms

proposed by this dissertation could be helpful in this application.



APPENDIX A

MATRIX FORM OF FRICTION FORCES

Consider a system containing n masses subjected simultaneously to several forces

including Coulomb friction forces, with the following dynamic description
Mz = g(z,v,w) — F (A.1)

where the vectors = and v belong to RF (k > n) represent “positions” and
“velocities”, respectively. Here, g(z,v,w) is the total non—frictional force applied to
the system, F is the friction force, and M is the “mass” matrix.

Next the general expressions of the friction vector F' will be derived explicitly

for the following cases:

1. Coulomb friction

2. “Extended” Coulomb friction

w

. Dynamic friction

"

. “Extended” dynamic friction

A.1 Vector Coulomb Friction Force
It will be shown that for a system with Coulomb friction, the friction force F' can be

written:

F = F(a,v) = UA sgn(U"v) (A.2)

with

a=[a-a)]

A = diag{a}

103
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where U is a known matrix, U’ is the transpose matrix of U, a is a vector containing
the friction coefficients (which we assume constants), 4 is a diagonal matrix
containing all the different friction coeflicients and v is the number of the different
friction forces applied to the system.

The following cases will be considered for the motion of the system:
1. Motion with no constraints

(a) Translational motion in one direction
(b) Translational motion in more than one direction.
(c) Rotational motion.

(d) Translational motion on a plane with rotation perpendicular to that plane.
2. Motion with holonomic constraints.

For each of the above cases, the form of the dynamic equations and the friction vector

characterizing the system will be investigated.

A.1.1 Translational Motion in One Direction with no Constraints
By applying Newton’s second Law of motion to a multiple mass system with transi-

tional motion in one direction, the resulting dynamic description of the system is the

following
=0 (A.3)
My = g(z,9,w) - F(a,?) (A.4)
where
M= diag{m,, -+, m,}’ and m; >0 (A.9)

F(a,?) = [Fi(a,d), -+, Fu(a,d)] (A.6)
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and the vectors Z and ¥ represent positions and velocities, respectively. Furthermore,
G(Z,9,w) is the total non—frictional force applied to the system and Fj(a,®) is the
friction force applied to the ith degree-of-freedom.

Analytically, from the definition of Coulomb friction, Fi(a,?) can be written
as the sum of the relative friction forces which are proportional to the sgn of the
relative velocities of the particular mass with the other masses, i.e.

n
Fi(a,?) = aio sgn(s;) + Z a;; sgn(v; — ;) (A.T)
J=1,#3

or equivalently

a108g0(01) + a128gn(0; — U2) + < - + a1,8gn(0; — By)

CLzoSgn(’L—Jz) + 021sgn('l_)2 - ’l_)l) R agnsgn(z‘)g - ﬁn)

Ples)= | (A.8)

| @n0sgN(Tn) + @n15gN(0n — V1) + -+ + @np-18g0(Tn — Vp—1) |
where a;; is the friction coefficient corresponding to the friction developed between
the ¢th and the jth mass and ag is the friction coefficient corresponding to the friction
relative to a fixed base (“ground”).

Next, considering the fact that the friction developed between two masses is

unique ( action = reaction), i.e a;; = a;;, it is shown that the following lemma holds:

Lemma A.1 Assuming that a;; = aj;, matrices U, and A, can always be found such
that
F(a,0) = U, A, sgn(U'5) (A.9)

where U, is a matriz containing zeroes and ones and has dimension
n x n(n 4+ 1)/2, while A, is a diagonal matriz containing all the different friction

coefficients.

Proof:
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Due to the symmetry property, i.e a;; = a;;, and
aijsgn(v; — v;) = —ajisgn(v; — ;) (A.10)

Next, let us define the vector d, to be

[ d;
dy
d,= | ds (A.11)
dy,

where
) c;mj?;(v_x)ﬁ [ agosgn(dz) ]
12 g 1 2 aggsgn(ﬁg — 1.33)

a13sgn 51 — '173 _ _
a248gn (Vg — Uy)

)

( )
a1ysgn(vy — 04) || dy =

( )

dl - Uy — U ’ (A12)
arssgn(v; — s azssgn(; — Vs)
._ ] agnSgn(’l_)2 - ?-_}'n)
| a1n5gn(t1 — ¥) | L |
[ azosgn(ds)
az4sgn (U3 — Uy)
dy = | @sssgn(t3—0s) | ... d = [ anosgn(vn) | (A.13)

] a3nsgn(v3 — 0y,) |
As it can be seen, d, does not contain the elements a;;sgn(d; — v;) if ¢ > j.

Furthermore, let us rewrite equation (A.7), describing the zth friction force

Fi(a,v) as follows

n

Fi(a,?) = apsgn(v;)+ Z a;j sgn(v; — ;)

J=1, i#j
i—1 n

= 4o sgn(ﬁ;) + Z a; sgn(f;i — 'l_)j) + Z a;; sgn(fJ,- — f)j) (A.14)
Jj=1 J=i+1

Using property (A.10), equation (A.14) can be written as:

—

Fi(a,?) = aio sgn(d;) — Y a;; sgn(v; — 5;) + Z ai; sgn(v; — v;) (A.15)

1=1 J=i+1
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Analytically, writing equation (A.15) for every ¢ and using the vector d,, yields

Fi(a,0) = ajosgn(v1) + are sgn(v1 — 02) + -+ + a1, sgn(dy — 0,)

= wnd; + wiedy + - + windy (A.16)

where

The successive row vectors w,j, for every j > 1 contain only zero elements.

Furthermore,
Fg(d, ?7) = d9o Sgl’l(’l_)l) — Q13 sgn({;l —_ 52) + ag3 sgn(ﬁg - '1_13) + ..
+ag, sgn(ty — p)
= wyd; 4+ wady + - - + wond, (A.17)
where

wy = [111 - 1]

The row vectors ws;, for every j > 2 contain only zero elements.

Moreover,
Fg(a,’l_)) = d3ap sgn(t‘)l) — a3 sgn(t')l — ’l._)3) — (o3 sgn(t_)g - 173)
+asq sgn(vs — 04) + - - + a3, 5gn(v3 — )
= wady + waedy + wasds + - - + wand, (A.18)
where

w3 = [00 -10 --- 0]

[0 —10--- 0]

W32

W33z = [1 11... 1]
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The row vectors ws;, for every 7 > 3 contain only zero elements.

Finally,

Fo.(a,0) = anosgn(ty) —ayn sgn(dy — 0,) — *++ — an1,n SEN(Tp—1 — Up)

= wnldl + wn2d2 + wn3d3 +---+ wnndn (Alg)
where

Wy = [000 --- 0 —1]

Wey = [000 -+ —1]

Wan = [1] (A.20)

Next we define matrices W; such

) ) 1 1 1 1
w1 0 —-1 0
“n 0 0 —1 "~ -~ 0
Wy=|wa | =| . . . (A.21)
Wn1 | o e 0
- (0 0 0 -1
) . [0 0 0O 7
Wiz 1 1 1 1
W22 0 -1 0
Wy=| waz | = 0 0 -1 (A.22)
s 0
Wy
-2 o oo 0 —1|
- - [o o 0 |
Wia 0 0 0
W23 1 1 ]
Wa=| Was [ =| 5 _,4 0 (A.23)
| Wn3 i I 0 0 __1 _j
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Finally, o
- 0
wln 0
Wan
0
W, = W3an = . (A.24)
' 0
| Wnn | 1

The matrices W; have dimensions n x (n — i + 1).

Substituting equations (A.21)—(A.24) into (A.16)-(A.19) and then using (A.6),

yields

F(a,3) = U,d, (A.25)

where

Uo = [W] W2 v I/Vn} (A26)

Next, let us define the matrix A, to be
.Ao = dz'ag{am, 12, @13y **°y A1n, A20, A23, "', A2n, * ", Qn_1 n, anO} (A27)

Using equation (A.27), the vector d, given by (A.11) can be written as

Vo1
do=A, sen(| ) (A.28)
VOTT.
where
o o
U1 v vy — U3
Vo= | oo |s ve= | P20 [ V= [ 5] (A.29)
s | V27




In addition, it can be easily proven that

[ & ] 1 0 0 0 0 By
Ty — Vg 1 =1 0 0 0 g
Dy — U3 1 0 -1 0 0 s
-9 | — [1 0 0 -1 0 4
¥1 — Tn 1 0 0 0 -1 Tn

i i L 1o LU

Vol Wll

[ 5, ] (01 0 0 0 ] gl
T2 — s 01 -1 0 0 o
Dg—04 | = [0 1 0 -1 0 @3

4
Uy — Op 01 0 0 -1 _
~——— ~ -~ ~ | Un |
Vo2 W2’
[ 5, ]
V3 0 0 1 0 0 '52
D3 — Dy 001 -1 0 D3
: = R : (I
U3 — Un 0061 0 -1 :
Y e ~ -~ - Un,
Vo3 WS’ - .
o 1
(3
_ V3
[vn]=iooovo 0] | &
Von 444 :
-ﬁn-

Hence, substituting equations (A.30)-(A.33) into (A.28), yields

d, = Asgn(U'o)
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(A.31)

(A.32)

(A.33)

(A.34)
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Finally, substituting (A.34) into (A.25), yields
F(a,?) = U, Asgn(U) (A.35)

where, the matrices U, and .4, are given by equations (A.26) and (A.27) respectively.

Obviously, U, is unique for a particular 4,. However, by changing the order of
the diagonal elements of A,, matrix U, changes. Specifically, an interchange between
the ¢th and the jth diagonal elements of A4, results in an interchange between the
ith and the jth columns of U,. Hence, many different sets of matrices U, and A4, can
be found such that equation (A.35) is valid.

The proof is complete. A

The representation of the friction vector F'(a, %) by (A.9) however, is too general
to represent a typical mechanical system. The latter has a considerably simpler
topology for which

F(a,7) = UA sgn(U'0) (A.36)

Matrix A is diagonal and is obtained from A, after eliminating the known
zero friction coeflicients a;;. Moreover, U is a submatrix of U, where the columns
corresponding to the zero rows of A,, have been eliminated. The matrices .4 and U

obviously have smaller dimensions than A, and U, respectively.

Finally, representations (A.3), (A.4) and (A.36) can be generalized through a

unitary matrix transformation T as follows

r = Tz
v = Tv
M = TMT (A.37)
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F(a,9) = T'F(a,v)

U =TU

since M is a symmetric positive definite matrix.

A.1.2 Translational Motion in More than One Direction with no
Constraints

Without loss of generality 3-dimensional motion is considered.
According to the results of the previous section, the dynamic equations

describing a system of » masses in Cartesian coordinates are

r = v
?'] = Uy
Z = v,

Mb, = §.(Z,0.w)— Fy(az, o) (A.38)

Méy = §y(Z, vy, w) — Fy(ay,z—’y)

Mi’z = gz(j,ﬁz,w) - Fz(az,ﬁz)
where the mass matrix M is given by (A.5), §-(Z, 0z, w), §y(J, 0y, w), §.(Z,0:,w)
represent the total forces in the z,y, 2z directions, respectively, excluding friction,

while F.(az, ¥s), Fy(ay,d,), F.(a,,v,) are the friction forces in the three dimensions.

Furthermore, according to (A.36),

Fz(amf)z) = 0:5-’42: sgn((_];l“)z)
Fy(ay,v,) = U,A,sgn(U;v,) (A.39)

F‘z(azal—)z) = Uz-Az Sgn(Uzlﬁz)

Equations (A.38) and (A.39) can be written in matrix form as follows:

W)
Il
<l

Mv = g%, v,w)—F(a,v) (A.40)
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where
x = [z g z] (A.41)
v =[5 9 0] (A.42)
M = diag{M, i, i1} (A.43)
B(X,V,w) = diag{g.(Z,:,w), §y(¥,0y, w), §:(Z, 0z, w)} (A.44)
and

U, 0
0

oSe

0
0

z

A.1.3 Rotational Motion with no Constraints

This case is similar to the one presented above. Therefore it will not be investigated

separately.

A.1.4 Translational Motion on a Plane and Rotation Perpendicular to
that Plane with no Constraints

It can be easily seen that this case is analogous to pure rotational motion or purely

translational motion with no constraints.

A.1.5 Motion with Holonomic Constraints

Let us rewrite the dynamic equations describing an n-mass system as follows
M,3 = g.(2,2,w) — Fy(a, ) (A.45)

where the vectors € R¥ and @ € R* represent “positions” and “velocities”, respec-
tively. Here g.(z,&,w) is the total force applied to the system, excluding friction,
F.(a, ) is the friction force, M, is the “mass” matrix and a is a vector containing

the friction coefficients.
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It has been shown in the previous sections that the friction for a system with

unconstrained motion can be written as follows
Fy(a,z) = Uy, Asgn(ULz) (A.46)

where U, is a known constant matrix, while A is a diagonal matrix containing all
the different friction coefficients in a proper order.
Now assume that the motion of the masses is subject to A holonomic

constraints,

'(bl(.'l',t) = 0
Pa(z,t) = 0 (A.47)
1&,\(:E,t) = 0

The coordinates of the vector « of the differential equations (A.45), under the
constraints (A.47), become dependent on each other. Now, since the constraints
(A.47) are holonomic, the coordinates of z can be transformed to a new set of
coordinates ¢ € R™, which are called generalized. In these new coordinates the

system (A.45)-(A.47) takes the form:

Mq(:i :gq(qa (is w) —Fq(a’q') (A48)

where M, is the new mass matrix, ¢,(¢,¢,w) the new non-frictional force vector, and

F,(a, ) the friction force. For the system (A.48) the following lemma holds:

Lemma A.2 The friction force vector in the generalized coordinates q can be written

in the standard form

Fy(a,q) = UpA sga(U4) (A.49)

where U, the new distribution matriz of the system friction forces.
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Proof
To show that the friction force vector remains in the standard form in the
new coordinates ¢, equation (A.48) will be derived explicitly from (A.45). To derive

equation (A.48), the Lagrangian equations will be used (Synge, 1942)

d 8E
where
oF oF oF
e = ... Z= A.51
dq [ Oq1 qm J (A-51)
oF oF OF
= = = ... == A.52
94 [ ol Ogm ] ( )
and
o, = Tq'<I)z (A.53)
¢, = g.(z,&,w)— Fya,z) (A.54)

In the above equations, £ is the kinetic energy of the system, ®, is the generalized
total force vector in q coordinates and @, is the total force vector in & coordinates as
can be seen from (A.54). Notice that the vector g.(z, Z,w) may include conservative
forces, which would have the form —%g— where V is the potential energy (Timoshenko,
1948).

The kinetic energy of system (A.45) is
1., .
E = 5i'Myi (A.55)

and has a unique value independently of the coordinates used to describe the system
dynamics.

Consider « as a function of ¢. Then the following relations can be easily derived

& =Ty (A.56)



and
r= qu + T4q
where
oz
T, = 55
a2 O
Iq aqm
a‘h 8qm
while
m=k-—A
, d 0z
T, = a—;Tq = 55

Furthermore, using equations (A.59) and (A.55) yields

OF _ 0B
dq¢ ~ 0% Oq
= {TIMT,

Similarly, using (A.55) and (A.56)

b _ 9B9:
8¢ 01 04
= ¢TIMT,

Differentiating (A.61) yields

d 9E .,

=) = TIMT g+ T/M T, + (T,) MTyd

'35
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(A.57)

(A.58)

(A.59)

(A.60)

(A.61)

(A.62)

Substituting (A.62), (A.60), (A.53), (A.54), (A.46) and (A.56) into (A.50) yields

TIMTyG = —T!MTyq + Tige(x, &, w) — ToUzAsgn(U.T44)

(A.63)



Defining
M,
U,

94(4, ¢, w)

= TIMT,
= TV,

= Tigo(z, T4, w) — TiM T4
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(A.64)
(A.65)
(A.66)

(A.67)

equation (A.63) takes the form (A.48) and the friction force vector is described by

the standard form (A.49).

The proof is complete.

A.2 Vector “Extended” Coulomb Friction Force

In this case the friction coefficients a; are written as

a; = ajy + age 0 4 aia |0

A

(A.68)

where a1, a;2,a;3 and ai4 are constant coeflicients and o; is the ith element of the

vector U'v.

Using equation (A.68), the vector friction coefficient a takes the form

ay an + ape” 30 4 ay4)0]
a = E = :
ay a, + au2€_a"3|ﬁu, -+ au4|6u|
or equivalently,
ay 0 a1 0 a14|1')|1 0
: = | : 2 :
0 ay 0 ayl 0 aU4|{}V|
N
A A Ay
a13|171| 0
a2 0 R 0 au3|17u|
| P e 4
0 ay2

(A.69)



118

Finally, the total friction force vector is written as
F(a,v) =UA, sgn(U'v) (A.70)

where

Ay = Ay + Age= 828U A diag{|U"v|} (A.71)

A.3 Vector Dynamic Friction Force

In the case of dynamic friction, each particular friction force is described as follows
F,' = a; f,‘ (A72)

and

Ji = &(vs, fi) (A.73)

where &;(;, fi) is a function that depends on the assumed dynamic model (Dahl,
“reset integrator”, etc.)

In vector form the total friction can be written as follows:
Fla,v)=UA f (A.74)

and
f=€EU,f) (A.75)

Notice that &;(.,.) may not be the same as ;(.,.) for ¢ # j.

A.4 Vector “Extended” Dynamic Friction Force
This case is a combination of the “extended” Coulomb friction with the dynamic

effects and is described as follows
Fla,v) =UA, f (A.76)

where A, and f are given by (A.71) and (A.75), respectively.



APPENDIX B

A SPECIAL CASE SOLUTION OF EQUATION AX =B

Let us consider the following equation:
AX=1H (B.1)

with A and B known real matrices with dimensions m x n and m x [, respectively.
Moreover, it is assumed that n > m and rank(A) = m.

Equation (B.1) has an infinite number of solutions. To find one of them, the
following procedure may be used.
Step 1: Find a cofactor D of the matrix A such that D is a square matrix with
dimension m X m and rank(D) = m.
Step 2: Assume that matrix D consists of the 214, - - ;s columns of the matrix A.
Then, define a matrix X containing the iy, - 1, rows of the matrix X.

Step 3: Solve the following equation:
DX=B— X=D"'B

Step 4: The solution of the equation AX = B is

0 otherwise

[X~-]—{ [Xij] =i Vb=1,---,m
ij] =

where [X;;] and [Xj;], are the ijth element of the matrices X and X, respectively.
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