New Jersey Institute of Technology

Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Fall 1994

An office document retrieval system with the capability of
processing incomplete and vague queries

Qianhong Liu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

6‘ Part of the Computer Sciences Commons

Recommended Citation

Liu, Qianhong, "An office document retrieval system with the capability of processing incomplete and
vague queries" (1994). Dissertations. 1091.

https://digitalcommons.njit.edu/dissertations/1091

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1091?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master., UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

University Microfilms International
A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. M1 48106-1346 USA
313:761-4700 800.521-0600

Order Number 95144389

An office document retrieval system with the capability of
processing incomplete and vague queries

Liu, Qianhong, Ph.D.

New Jersey Institute of Technology, 1994

Copyright ©1994 by Liu, Qianhong. All rights reserved.

U-M-I

300 N. Zeeb Rd.
Ann Arbor, MI 48106

ABSTRACT

AN OFFICE DOCUMENT RETRIEVAL SYSTEM
WITH THE CAPABILITY OF PROCESSING
INCOMPLETE AND VAGUE QUERIES

by
Qianhong Liu

TEXPROS (TEXt PROcessing System) is an intelligent document processing
system. The system is a combination of filing and retrieval systems, which supports
storing, classifying, categorizing, retrieving and reproducing documents, as well
as extracting, browsing, retrieving and synthesizing information from a variety of
documents. This dissertation presents a retrieval system for TEXPROS, which
is capable of processing incomplete or vague queries and providing semantically
meaningful responses to the users. The design of the retrieval system is highly
integrated with various mechanisms for achieving these goals. First, a system catalog
including a thesaurus is used to store the knowledge about the database. Secondly,
there is a query transformation mechanism which consists of context construction
and algebraic query formulation modules. Given an incomplete query, the context
construction module searches the system for the required terms and constructs a
query that has a complete representation. The resulting query is then formulated
into an algebraic query. Thirdly, in practice, the user may not have a precise notion
of what he is looking for. A browsing mechanism is employed for such situations
to assist the user in the retrieval process. With the browser, vague queries can be
entered into the system until sufficient information is obtained to the extent that the
user is able to construct a query for his request. Finally, when processing of queries
responds with an empty answer to the user, a query generalization mechanism is used
to give the user a cooperative explanation for the empty answer. The generalizations

of any given failed queries (i.e., with an empty answer) are derived by applying both

the folder and type substitutions and weakening the search criteria in the original
query. An efficient way is investigated for determining whether the empty answer
is genuine and whether the original query reflects erroneous presuppositions, and
therefore answering any failed query with a meaningful and cooperative response. It
incorporates with a methodical approach to reducing the search space of generalized
subqueries by analyzing the results of executing the query generalization and by
efficiently applying the possible substitutions in a query to generate a small subset

of relevant subqueries which are to be evaluated.

AN OFFICE DOCUMENT RETRIEVAL SYSTEM
WITH THE CAPABILITY OF PROCESSING
INCOMPLETE AND VAGUE QUERIES

by
Qianhong Liu

A Dissertation
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

Department of Computer and Information Science

October 1994

Copyright © 1994 by Qianhong Liu
ALL RIGHTS RESERVED

APPROVAL PAGE

AN OFFICE DOCUMENT RETRIEVAL SYSTEM WITH
THE CAPABILITY OF PROCESSING INCOMPLETE AND VAGUE QUERIES

Qianhong Liu

Dr. ’Peter A. Ng, Dissertatién Advisor Date
Chairperson and Professor of Computer and
Information Science, NJIT

Dr. Jaso L. Wang, Dissertation Co-Advisgl{ Date
Assistant Brofessor of Computer and Information Science, NJIT

Dr. James A.M. h‘/IcHugh, Committee Member Date
Associate Chairperson and Professor of Computer and
Information Science, NJIT

Dr. Murray TuroffzCommittee Member 7 Date
Distinguished Professor of Corfiputer and Information Science
and Management, NJIT

dr.kR/ay ond T.?eh,' Coffimittee Member Date
Chairpdan, International Software Systems, Inc.

BIOGRAPHICAL SKETCH

Author: Qianhong Liu
Degree: Doctor of Philosophy

Date: October 1994

Undergraduate and Graduate Education:

e Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1994

e Master of Science in Computer Science,
Beijing University, P.R.China, 1987

e Bachelor of Science in Computer Science,
Beijing Information Technology Institute, P.R.China, 1985

Major: Computer Science

Presentations and Publications:

Q.H. Liu, J.T.L. Wang, and P.A. Ng, “On Research Issues Regarding Uncertain
Query Processing in an Office Document Retrieval System,” Journal of Systems
Integration, vol. 3, no. 2, pp. 163-194, June 1993.

Q.H. Liu, J.T.L. Wang, and P.A. Ng, “An Office Document Retrieval System with
the Capability of Processing Incomplete and Vague Queries,” In Proceedings
of the 5th International Conference on Software Engineering and Knowledge
Engineering, San Francisco, CA, pp. 11-17, June 1993.

J.T.L. Wang, F.S. Mhlanga, Q.H. Liu, W.C. Shang, and P.A. Ng, “An Intel-
ligent Documentation Support Environment,” In Proceedings of the 5th Inter-
national Conference on Software Engineering and Knowledge Engineering, San
Francisco, CA, pp. 429-436, June 1993.

J.T.L. Wang, F.S. Mhlanga, Q.H. Liu, W.C. Shang, and P.A. Ng, “Database
Support for Software Documentation: The TEXPROS Project,” To appear as
a book chapter in Software Automation and Productivity Improvement, 1995.

v

This dissertation is dedicated
to
my parents
Fuzi Liu & Jianting Zhang.

ACKNOWLEDGMENT

I am particularly grateful to my dissertation advisor, Professor Peter A. Ng,
for his insightful guidance and encouragement throughout this research and his
invaluable efforts in improving the writing of this dissertation. Thanks also go to
Professor Jason T.L. Wang for his suggestion on earlier components of this research.

I would also like to thank the individual committee members. Professor
Murray Turoff gave extensive comments on various issues, including incomplete and
conflicting data. Professor James A.M. McHugh and Dr. Raymond T. Yeh provided
a thorough review of the entire dissertation.

This research was supported in part by New Jersey Institute of Technology and

by a grant from AT&T Foundation.

vi

TABLE OF CONTENTS

vil

Chapter Page

1 INTRODUCTION e e 1

1.1 TEXPROS 3

1.2 Preliminaries 4

1.2.1 The Retrieval Mechanisms 7

1.2.2 The System Catalog 8

1.3 Organization of the Dissertation. 8

2 MOTIVATION AND RELATED WORK 10

2.1 Query Formulation 10

2.2 Incomplete and Vague Queries L ... 13
2.3 The Representation of Meta-data Knowledge and Domain Knowledge

in the Retrieval System 14

3 OVERALL ARCHITECTURE OF RETRIEVAL SYSTEM 17

4 SYSTEM CATALOG e e e 21

4.1 Formalism of the System Catalog 21

4.2 The Novelty of the System Catalog in TEXPROS 23

4.3 System Catalog Management 24

5 QUERY TRANSFORMATION 26

5.1 Context Construction i 27

5.2 Algebraic Query Formulation 32

53 Example e 34

6 BROWSER e 37

6.1 Object Network i, 33

6.2 Architectureof Browser. 41

6.3 Browsingin TEXPROS i, 43

6.4 Topic Interpreter 44

Chapter Page

6.5 Object Network Constructor 49
6.5.1 Formal Definition for the Object Network 49

6.5.2 Connecting Multiple Object Networks 51

6.6 Examples. i 54

7 GENERALIZER e e 62
7.1 The Design of Our System: An Enhanced Generalizer 63
7.2 Principles of Generalizer 64
7.3 Motivation o e e 65
7.4 Folder Substitution e 65
7.4.1 Similarity Definition L 65

7.4.2 Similarity in SYSTEM CATALOG 68

7.4.3 Semantic and Structural Interdependency 68

7.4.4 Rules of Folder Substitution 74

7.5 Type Substitution. 75
7.6 Example e 76

8 GENERALIZATION RULES i, 80
8.1 Conjunctive QUery 80
8.1.1 Conjunctive Query Graph 81

8.1.2 Generalization 81

8.1.3 Information Returned 85

8.2 General Boolean Queries 88
8.2.1 Transformation of DNF 88

8.2.2 Restriction of the Space of Subqueries........... 89

8.3 Example 92
8.4 Remarks e 94

9 SUBSTITUTIONRULES e 95
9.1 Determining Various Substitutions, 95

viii

Chapter Page
9.2 Characterization of Returned Information 97
9.3 Informal Specification of Substitutions 98

9.3.1 Do Folder Substitution over a Specific Frame Template T'. . .. 99
9.3.2 Do Frame Template Substitution in a Specific Folder F 101

9.3.3 Do Folder and Frame Template Substitution at the Same Time 104

9.4 Formal Representation of Substitutions 107
9.4.1 Database Structure Representation 107

9.4.2 Rules for Specifying the Substitution Priority 109

9.4.3 Substitution Rules. 111

10 CONCLUDING REMARKS 114
1001 SUmMmMAry . vt e e 115
10.1.1 System Catalog. 115

10.1.2 Query Transformation and Browser. 116

10.1.3 Query Generalization Mechanism 118

10.2 Potential Research Directions. 119
10.2.1 Knowledge Representation 119

10.2.2 Intelligent Database Assistant System 120

10.2.3 An Information Sharing Environment 121

10.3 Ongoing Research Topics. 122
10.3.1 Document Classification. 123

10.3.2 Document Categorization. 123

10.3.3 Document Management through Hypertext 124
APPENDIX A THE STRUCTURE OF SYSTEM CATALOG 126
APPENDIX B RETRIEVAL ON SYSTEM CATALOG 135
APPENDIX C SYSTEM CATALOG MANAGEMENT................ 142
REFERENCES e 159

Ix

LIST OF TABLES

Table Page
5.1 Operators of the D_Algebra 33
A.1 Attributes Corresponding to the System Catalog 134

LIST OF FIGURES

Figure Page
1.1 A Folder Containing Frame Instances Regarding Qualifying Examinations 5
3.1 Overall Architecture o i 17
3.2 QuerylInterface 18
3.3 An Example of the Formal Query............................ 19
3.4 An Example of the Vague Query 20
4.1 A System Catalog Structure 22
5.1 An Example of the Formal Query 27
5.2 Query Transformation........... 28
5.3 An Example of Context Construction Application 36
6.1 Object Network 39
6.2 Architectureof Browser. L 42
6.3 Connecting Multiple Object Networks by (a)ANDing Frame Templates

and (b)ORing Frame Templates 53
6.4 Constructing an Object Network 56
6.5 Connecting Multiple Object Networks by Unifying their Common Nodes 59
6.6 Connecting Multiple Object Networks by Adding depends_on Edge 60
6.7 Connecting Multiple Object Networks by ANDing IFrame Templates ... 61
7.1 Part of Filing Organization 66
7.2 Similarity in SYSTEM CATALOG, 69
7.3 Contentsof theFolders 72
7.4 A Document Type Hierarchy 76
7.5 The Query with Empty Answer 77
7.6 A Hierarchy of Generalizations. 78
8.1 Conjunctive Query Graph Corresponding to Figure 7.5 82
8.2 Conjunctive Query Graph for the Query Involving Two Folders. 83

X1

Figure Page

8.3

8.4

9.1

9.2

A.l
A2
A3
A4
C.1
C.2
C.3
C4
C.5
C.6
C.7

An Example of Conjunctive Compatible Subqueries 91
Conjunctive Compatible Subqueries 93
Conjunctive Query Graph of Example 9.2 102
Conjunctive Query Graph of Example 9.3 106
Examples in @ Thesaurus e .. 127
Examples of Meta-data, 130
Examples of Meta-data(continued) 132
Examples of Meta-data{continued) 133
Distribution of Frame Instances fi, 146
Insertion of a Folder fd, i 148
Insertionof a Folder fd. 150
Relocation of a Folder fd. 151
Deletion of a Folder fd. 152
Before Merging Two Folders fd; and fda. o0 156
After Merging Two Folders fd; and fdo. 157

x11

CHAPTER 1
INTRODUCTION

Information circulated in offices is often kept in documents. Some documents have
rigid structures, such as forms [95]; some are text-oriented, such as letters, memos,
brochures, reports, electronic mails, facsimile, etc. The documents may also contain
graphics, images, audio and video data [96]. There has been a growing interest
on developing document information retrieval systems, which support office workers
to manage their information. Most of the previous work is based on the Office
Document Architecture (ODA) [21, 38], which is part of the standards for document.
interchange developed by the International Standardization Organization (ISO) and
the European Computer Manufacturers Association (ECMA). Basically, the systems
fall into four categories [60, 107].

The first group deals with multimedia information including text, form, image
and voice data. Diamond [91] allows users to create, edit, and transmit multimedia
documents with simple retrieval methods. The MULTOS [2] office server supports a
well-defined query language and query processing techniques. MINOS {16] provides
integrated facilities for creating complex document objects and for extracting and
formulating new information from existing documents. There are various data models
proposed for multimedia documents, spanning form relational [89, 109], semantic
[21, 76] to object-oriented approaches {32, 39, 40, 110].

The second group deals with bibliographic information retrieval by incor-
porating Al techniques into them. For example, SMART [79] supports keyword
based retrieval for bibliographic database. EX-P [87] is an expert system which has
the capability of retrieving information from documents concerning environmental
pollution. Other document-based retrieval systems include CANSEARCH [73],
RUBRIC [93], THOMAS [70], Expert/Consultation System [84], and others [14].

The third group is concerned with document categorization. Resumix [92] is
one of such systems. It reads resumes, creates a summary of the resumes, matches
applicants to job openings, generates reports, and prints letters of applicant acknowl-
edgment with a bitmap signature from the appropriate hiring manager. Other
systems such as the new story categorization system, CONSTRUE/TIS [36], also
provide similar functions.

The fourth group is concerned with message exchanging and filtering. Examples
are INFORMATION LENS system [54], ISCREEN [74], MIFIA [52], and the system
described in [13]. The purpose of the systems is to help user filter, sort and prioritize
messages that are already addressed to them, and also help them find useful messages
they would not otherwise have received. Most of the systems only handle a special
type of documents.

While these systems appear to be successful in their own domains, their
functional capabilities are considerably limited. In a distributed, cooperative
environment, where the most common documents are perhaps electronic messages
[54], a document-based retrieval system must also support information sharing and
exchange. These generally include the following activities: composing messages to
be sent; selecting, filing and prioritizing messages that are received; and responding
to messages. However, most of the existing systems have a monolithic design; it
is difficult, though not impossible, to replace their components or to improve their
functions for different user’s need.

As part of a program of research in the Document Processing Group at the
Institute of Integrated Systems Research, an initiative is set forth to investigate
and develop a text processing system. Our research is directed towards producing
a document processing system which can be used in a variety of domains and is

intended to meet the above functional requirements.

1.1 TEXPROS
TEXPROS (TEXt PROcessing System) [107] is a personal, customizable system for
processing office documents. The system has functional capabilities of automating
(or semi-automating) common office activities such as document classification,
filing, retrieval and reproduction, and in‘forrna,tion extraction, browsing, retrieval
and synthesizing. To accomplish these goals, the system includes the following

components:

o A state-of-the-art data model capable of capturing the behavior of the various

office activities [60, 61, 106].

o Extracting the synopsis or the most significant information from a document
(such information is often sufficient to satisfy the user’s needs when information

retrieval occurs) [34, 35, 108].

o A knowledge-based, customizable document classification handler that exploits
both spatial and textual analysis to identify the type of a document [34, 35,

83, 108].

e An agent-based architecture supporting document filing and file reorganization

[104, 105, 117).

A retrieval system that can handle incomplete and vague queries [50, 51].

In brief, TEXPROS is for personal use, whereas the systems mentioned above are
designed for a multi-user or distributed, cooperative environment (as a consequence,
they need a standard protocol for document exchange). However, when using
TEXPROS in an information sharing environment, it requires to specify protocols
for governing the definitions of frame template, which describe the properties (or

attributes) for the document classes. For example, when using TEXPROS as a

library bibliographic retrieval system, one may need to stipulate that the significant
information for books in library contain attributes “authors”, “affiliation”, “subject”,
“title”, “abstraction”, “category”, “classification”, and so forth [106, 107].

This dissertation presents the retrieval system for TEXPROS.

1.2 Preliminaries
Most research concerning information retrieval in database systems is based on
assumptions of precision and completeness of both the data stored in the database
and the queries entered by the user for retrieving data. In reality, however, both may
be incomplete or vague. A considerable amount of research has focused on issues
which represent imprecise data in database ([27, 28, 30, 49]) and imprecise or vague
requests to retrieve data ([23], [68]).

Consider a collection of documents to be stored in an information base. From
each document, a synopsis of information is extracted to form a frame instance
(reminiscent of the tuple in the relational data model). Frame instances can be
classified according to their types which are called frame templates (reminiscent of
the schema in the relational data model). The frame instances can be categorized
based on the nature of their information and are placed in folders. Thus, a folder
can contain a collection of frame instances of various frame template types! [107].

Figure 1.1 shows a folder named Q.E. that contains frame instances regarding
qualifying examinations. Assume that this folder contains frame instances of the
types Q.E.Result, Q.E.Application Form, Q.E.Question and Comprehensive Exam Result.
Furthermore, assume that both the frame templates Q.E.Result and Comprehensive
Exam Result have the attributes Studeni_ Name, Date_Taken and Outcome in common.

In order to retrieve information from frame instances, the user represents his request

IThis is a deviation from the relation [99] of the classical relational model, in which a
relation is associated precisely with one schema.

in a formal query. For example, the formal query for finding all the students who

passed the qualifying examinations in the Spring and Fall of 1990 is given as follows:

SELECT Q.E.(Y).Student_Name

FROM Q.E.(Y)

WHERE
(Q.E.(Y).Date-Taken = “Spring 1990” OR
Q.E.(Y).Date_Taken = “Fall 1990”) AND
Q.E.(Y).Outcome = “Pass”;

Q.E. Folder
Comprehensive Exam Result
Q.E.Result Frame Template Frame Template
Student_Name Student_Name
Date_Taken Date_Taken
QOutcome QOuicome
Q.E.Application Form

.E. tion Frame Templat
Q.E.Question Frame Template Frame Template

Topic_Name Student_Name

Date_Given Date_Applying

Figure 1.1 A Folder Containing Frame Instances Regarding Qualifying Exami-
nations

In this query, the name of the folder Q.E. is explicitly specified from where
the information will be searched. But the query is considered to be incomplete

with respect to Q.E. folder, since the frame template Y containing the attributes

6

Student-Name, Date_Taken and Outcome, is not explicitly specified. Y in this case
could be either one of the frame templates Q.E.Result or Comprehensive Exam Result,
because both have these attributes. However, the request here is to find out those
students who passed the qualifying examination in the Spring and Fall of 1990, and
not those who passed the comprehensive examination on the specified dates.

In general, the explicit specifications of the folders, frame templates and
attributes ensure that the system will retrieve precise information (i.e., {rame
instances of the frame templates as types from the various folders). But instead of
putting a burden on the user to be responsible for giving the explicit specifications
with great difficulties, he must be allowed to use variables to specify folders (the
location of frame instances to be retrieved), frame templates (the type of {rame
instances to be retrieved) and attributes (some properties of these frame instances).

If the user uses Qualifying Exam in place of Q.E. (which is the precise keyterm
for the name of the folder in which the query is to be applied), then this query is
considered to be imprecise. Furthermore, in order to represent his request as a formal
query, the user needs additional information about the qualifying examination, such
as whether Qualifying Exam is the name of a folder or frame template, any frame
templates related to the qualifying examination, any attributes and their domains
for describing the results of the qualifying examination, the precise keyterms for
folders, frame templates and attributes, and so forth. Such information is needed to
formulate a complete and precise query. In reality, it would be a great advantage if
a system would provide the user with the capability of entering a vague query such
as “What is Qualifying Examination?”, This vague query can be specified as

TOPIC Qualifying Exam

Assume that the response of the query for finding all the students who passed

the qualifying examinations in the Spring and Fall of 1990 is an empty answer.

Obviously, this empty answer is a meaningless response to the user. There can be

7

three interpretations to such response. First, the response can be interpreted to be
a genuine one. This would mean that indeed several students took their qualifying
examination in the Spring or the Fall of 1990 but none of them passed it. On
the other hand, the query may reflect an erroneous presupposition on behalf of the
user. The empty answer is also yielded because either no student took the qualifying
examination or there was no qualifying examination held in the Spring and Fall of
1990. Therefore, it is essential for a system to provide the user with meaningful

responses.

1.2.1 The Retrieval Mechanisms
In TEXPROS [107], the retrieval system is capable of processing incomplete or vague
queries and providing meaningful responses to users when empty answers arise.
The design of the retrieval system is highly integrated with various mechanisms
for achieving these goals. First, there is a query transformation mechanism which
consists of context construction and algebraic query formulation modules. Given
an incomplete query, the context construction module searches the system for the
required terms and constructs a query that has a complete representation. This
resulting query is then formulated into an algebraic query. Second, in practice, the
user may not have a precise notion of what he is looking for. We employ a browsing
mechanism for such situations to assist the user in the retrieval process. Third, if
the result of a query is an empty set, a generalizer mechanism is used to give the
user more cooperative responses.

To accomplish these goals, the system needs to store the knowledge about the
database. Knowledge representation and repository have been explored in many

systems (e.g., {10, 29, 57, 69]).

1.2.2 The System Catalog

We employ a system catalog to store the information used for retrieval. The
system catalog (or the data dictionary) is an important facility which provides the
capability of managing and maintaining the consistency and integrity of the data
stored in the database. In TEXPROS, an integrated system catalog provides a
centralized retrieval environment for processing incomplete and vague queries in
addition to providing an environment for processing complete queries and retrieving
the meaningful information about the entities of the database. In addition to
reflecting the meta-data of the document filing organization, the system catalog
also includes a thesaurus®. The thesaurus comprises three major components. The
first component contains synonymous keyterms. The second component describes
the terms that have semantic associations with keyterms. The third component
describes the associations of the keyterms in terms of folders, frame templates and
attributes. Since the user can query the system catalog, we organize the system
catalog as a special kind of a folder which mimics the document filing organization
at the system level. This provides a natural and consistent operational approach for

the user’s environment.

1.3 Organization of the Dissertation
The remainder of this dissertation is organized as follows: Chapter 2 contains a
survey of research which is related to my work. Chapters 3 through 9 present my
proposed research work. In Chapter 3, the overall architecture of the proposed
retrieval system is described. This chapter informally describes the scenario that
underlies the formal treatment of the retrieval model. Chapter 4 presents the system
catalog which is utilized during the retrieval process. The system catalog is a self-

contained data dictionary which provides a centralized retrieval environment for

2A set of concepts in which each concept is characterized by hierarchical, synonymous,
horizontal, and other relations [77].

9

processing incomplete and vague queries. In chapter 5 the query transformation
mechanism is discussed. Chapter 6 and Chapter 7 present an intelligent browser
and an enhanced generalizer, respectively. The browser enables the user to gain
knowledge about the entities stored in the database. The generalizer is utilized to
provide the user with meaningful and cooperative responses as interpretations to
empty answers by looking into the generalizations of any given failed queries (i.e.,
with an empty answer) which are derived by applying both the folder and type
substitutions and weakening the search criteria. Chapter 8 and Chapter 9 discuss
an efficient way for determining a meaningful and cooperative response of any given
failed query. The two chapters present a methodical approach to reducing the search
space of generalized subqueries by analyzing the results of executing generalization
and then by efficiently applying the possible substitutions to generate a small subset
of relevant subqueries. Finally, Chapter 10 summarizes the dissertation and discusses

some ongoing research topics that are related to the work in this dissertation.

CHAPTER 2

MOTIVATION AND RELATED WORK

This chapter discusses work related to my research, that has been done in the areas

of query formulation, incomplete and vague query retrieval system and the represen-

tation of meta knowledge and domain knowledge in retrieval systems.

2.1 Query Formulation

Many Database Management Systems provide the facilities to assist the users in

formulating their queries. Research is proceeding in many directions.

e Systems that provide better interfaces to the user.

QBE (Query-by-Example)[118] is a successful query system for relational
databases. The visual forms utilized in QBE can help the user describe a
simple query. However, it is very difficult for the novice users to use these
forms to formulate a complex query. Campbell et al.[7] defined a query
language whose theoretical foundation is based on the ER algebra (similar to
the algebra in {71]), in which users graphically manipulate entity-relationship
(ER) diagrams to formulate queries. Each diagram represents a partial query
which is particularly helpful in formulating ad hoc queries. The burden here
is that the user needs to understand and remember the algebraic operators
as he graphically specifies a path in the ER diagram. Wong and Kuo [111]
investigated the difficulty in using and understanding query languages. They
point out that (1) the user has to remember too many things as the database
has a very complex schema; (2) the language lacks meta-data browsing facility;
and (3) the user can not get feedback during query processing. Instead, they
created a graphical user interface that allows the users to formulate their

queries in a piecemeal fashion with feedback of partial results available to

10

11

them at any time. Their facility provides a mechanism that can guide and
encourage the user to explore and browse the meta-data to obtain a general
view of the database and select matters that are of interest. However, this
facility only provides menus, examples, illustrations and help messages at the
stage of query formulation. The user has to traverse a network and select a

path himself.

Systems that use natural language processing techniques to select index terms.
Integrating natural language interfaces into database query systems has gained
some attention. Bouzeghoub and Metais [4] designed the SECSI system, in
which users’ requests are expressed in natural language. The system translates
the natural language into internal semantic network descriptions, creates a
relational database schema from the semantic network, and performs a normal-
ization process on the schema by evaluating a knowledge base. Rolland and
Proix [78] created the OICSI system which can generate a conceptual schema
of an information system from natural language descriptions. A bottleneck
in these systems, however, is the requirement of natural language processing.
Some of the criticisms of natural language processing have concentrated on
the high cost of translating natural language query expressions into internal

semantic descriptions.

Systems that build knowledge bases from document contents.

Jakobson et al. [43] developed a knowledge-based database retrieval system,
called intelligent database assistant, to help the user in database retrieval.
They proposed a system, called FRED, which gives users substantial help in
query formulation, database selection and data interpretation. RABBIT [94] is
a database front-end that utilizes an intelligent database assistant. It is a menu-

based user interface which provides an interactive database query constructing

i2

facility. KARMA [3] is another knowledge-based assistant which utilizes a
menu-base system for the novice user. To achieve the high performance
of query-by-reformulation, Wu and Ichikawa [112] provided a query guiding
facility, called KDA, which has several kinds of skeletons to guide users in
performing retrieval actions, such as forming a query, refining previously
formed queries and modifying misconstructed queries. KDA is based on a
semantic network transformation approach that translates a semantic network

description into a relational database schema description.

Systems that employ automatic query formulation

Korth et al. [48] discussed System/U, a relational DBMS which is based on
the universal relation assumption. The System/U relieves the user from the
responsibility of navigating the database relations. Instead, the user relies
on the predefinition of schematic constructs called maximal objects. Other
related efforts based on the universal relation assumption can be found in
[47, 53, 100].

Motro[64] proposed a query interpreting system based on the automatic
inference of the connections required to answer a query. The system provides
an uniform treatment of data and metadata, so that the user does not need
to distinguish between them. The user specifies his requests using tokens.
The system interprets the tokens into a proper query by following a set of
algorithms. However, the user can not represent more information (such as
the relationships between tokens) in his query. This increases the ambiguity
of interpreting the queries. Other approaches for automatic query formulation

have been discussed in [31, 33].

13

2.2 Incomplete and Vague Queries
A considerable amount of research has focused on issues which represent imprecise
data in the database (e.g., [27, 28, 30, 49]), and imprecise or vague requests to retrieve
data (e.g., [23, 68]). Several representations for imprecise data have been suggested.
These include “fuzzy” values [115], values accompanied by certainty factors [98] and
null values [42]. So far, three basic approaches for processing vague queries have

been proposed.

e The VAGUE system described in [67] is based on the vector space model. For
each attribute from a vague condition specified in the query, the user may
choose between a number of different metrics for the comparison of attribute
values with the corresponding value from the query. Then the distance between
the query and a database object is computed as a function of the distance for
the different query conditions. Motro [65] classified user’s requests into two
kinds: (1) a specific request which is concerned only with data that matches
it precisely and (2) a goal which is concerned with data which is close to
the target. He extended the relational database model to support goal queries.
The concept of distance between data values is defined and is incorporated into
relational systems. The typical query language QUEL is extended to express
goals. The system is capable of answering questions with information which is

similar to the information requested.

o Vague queries have also been discussed in the context of fuzzy systems (e.g.,
[5, 75, 116]). The formal aspects of these works are based on the theory of fuzzy
sets!. Informally, a fuzzy set is a class in which the distinction from membership
to non-membership is vague rather than crisp and precise. Prade and Testemale

[75] discussed the representation of incomplete and uncertain information by

'Formal definitions can be found in [90, 113].

14

means of possibility distributions?. Zemankova [116] demonstrated the fuzzy
set theory as a suitable framework for the representation and manipulation of

certain information in databases.

Buckles and Petry [5] extended the relational model to take into account
nonprobabilistic uncertainties. Here, relations are extended to allow set-valued
domain elements. Each domain element has an associated similarity matrix

that assigns to each pair of domain elements, a value between 0 and 1.

Some of the criticisms of fuzzy set theory concentrate on the subjectivity of

assigning membership functions to concepts [115].

e Recently, a probabilistic model for vague fact retrieval has been developed
[28]. A set of conditions in a user’s query can be either text conditions or fact
conditions. Fact conditions can be interpreted as being vague, thus leading to
nonbinary weights for fact conditions with respect to database objects. In the
probabilistic approach, imprecise or missing attribute values can be stored as
probability distributions over the set of possible attribute values. The system
integrates text and fact retrieval by regarding both conditions relating to text
or facts as being vague. Another system that combines vague fact and text

retrieval is the office information system described in [19].

2.3 The Representation of Meta-data Knowledge and Domain
Knowledge in the Retrieval System

The system catalog (or the data dictionary) is an important facility for managing and
maintaining the consistency and integrity of the data stored in the database. Date
[22] discussed an INGRES system catalog, which is a repository for information
concerning various objects that are of interest to the system itself, such as base

tables, indexes, forms, reports, access rights, integrity constraints, and so on. Davis

2They propose a model based on possibility theory introduced by Zadeh [114].

15

and Bonnell [24] described an approach, referred to as EDICT, creating an enhanced
relational data dictionary which represents the high-level semantic information about
the enterprise whose data is stored as tables in the database. EDICT provides a
centralized management environment for maintaining information about the data
in the database relations. Sibley [85] proposed an active and extensible dictionary
system in which the meta-database is stored to completely control the database
management system,

With the integration of database management systems and information
retrieval systems, it is desirable to develop a mechanism that provides a generalized
retrieval facility. Saxton et al.[80] and Croft[20] proposed that the introduction of
the domain knowledge into a document retrieval system would increase the effec-
tiveness of retrieval. Morgenstern [62] discussed the role of constraints in database
and knowledge representation. He proposed that the similarities between database
schema and knowledge representation frameworks may help to extend the semantics
expressible in schema. Current system catalogs (or data dictionaries), however, are
not used to store domain knowledge.

A number of information retrieval systems employ additional mechanisms to
store the domain knowledge. Siegel and Madnick [86] described a rule-based approach
to semantic specification that can be used to establish semantic agreement between a
database and an application. Fikes and Kehler [26] used a frame-based representation
to store concept descriptions. This representation combines and generalizes aspects
of the representations used by Shoval[84] and Tong[93]. Schauble[82] proposed a
thesaurus based concept space which would provide adequate term dependencies.
Chen and Dhar[14] identified three types of knowledge which are necessary to perform
a successful retrieval. These include: the subject area knowledge, the classification
scheme knowledge, and the system knowledge. They proposed an automatic process

of generating the semantic network knowledge base from an existing thesaurus (LCSH

16

Handbook). Smith et al.[87] analyzed several thesaurus systems (such as, [25, 73,
102]) and proposed that thesauri may contain certain types of knowledge that must

be dealt with in designing an intelligent retrieval system.

CHAPTER 3

OVERALL ARCHITECTURE OF RETRIEVAL SYSTEM

Figure 3.1 illustrates the overall architecture of the retrieval system in TEXPROS,
which is capable of processing incomplete or vague queries and providing semantically
meaningful responses to users. Upon receiving a query from a user, the parser first
checks the input query to determine whether it is a formal query or a vague query.
Specifications of formal and vague queries are given, respectively, in the top and

bottom part of Figure 3.2.

Begin
query
vague query B
rowser
Parser
formal query
incomplete N)mplclc
Context Algebraic
. " Query
Constructi Q A
ction Formulation
Query Transformation

algebraic expression

Query nonempty
Processor answer

Display

with empty answer

Generalizer

Figure 3.1 Overall Architecture

17

18

If the user does not have any idea of how to specify a formal query for his
request, the “TOPIC” part as shown in Fig.ure 3.2 will be used to describe his retrieval
goal. An example is given in Figure 3.4. The vague query is then passed to the
browser, which goes through the system catalog looking up relevant information (i.e.
all frame templates possibly related to the user’s request), and possible repositories
of information attributes to describe the properties of the data to be retrieved. Vague
queries can be entered to the system until sufficient information is obtained to the
extent that the user is able to use this information to construct a formal query for

his request.

SELECT <attribute list>
FROM <folder(frame template) list>
WITH <subject of folder and frame template>
WHERE <predicate>

TOPIC

Figure 3.2 Query Interface

Once the input query is stated formally according to the specifications (an
example is given in Figure 3.3), the query is transferred to the query transformation
mechanism. The objective of the query transformation is to transform a formal query
into a set of algebraic queries, which are to be processed by the query processor
to assist in answering the corresponding user’s original query. To accomplish this
objective, the formal query is first examined to determine whether it is complete.
An user’s query is said to be complete if each term (called keyterms in TEXPROS)

appearing in the query is consistent with the index term which exists in the database,

19

and no variables (such as “X” and “Y” in Figure 3.3) are used to specify any term in
the user’s query. Otherwise, the query is said to be incomplete. The complete query
is directly passed to the algebraic query formulation mechanism, which eventually
produces a corresponding set of algebraic queries. Given an incomplete query, a

complete query is generated by using the context construction mechanism.

QUERY1: Find all the students who passed Q.E. in Fall 1990
or Spring 1990.

SELECT X(Y)Student_Name

FROM X(Y)
WITH X=="Q.E."
WHERE (X(Y).Date_Taken = "Fall 1990" OR

X(Y).Data_Taken = "Spring 1990") AND
X(Y).Outcome = "Pass"

TOPIC

Figure 3.3 An Example of the Formal Query

The query processor executes the set of algebraic queries after its formulation.
When processing of queries fails by responding with an empty answer, possibly
without any semantical meaning to the user, the original query is passed to the

query generalizer to produce cooperative explanation for the empty answer.

SELECT
FROM

WITH

WHERE

TOPIC Peter Ng

Figure 3.4 An Example of the Vague Query

20

CHAPTER 4
SYSTEM CATALOG

In TEXPROS, an integrated system catalog provides a centralized retrieval environment
for processing incomplete and vague queries. The system catalog presents the infor-
mation in a form which can be incorporated directly into the database system of
TEXPROS. Since the uniform representation of the system catalog and the database
itself (e.g., frame instances, the synopses; of the documents) is adopted, the user
can retrieve the information in the system catalog using the same query format
to retrieve any general frame instances in the database. The details of retrieving

information from the system catalog are provided in Appendix B.

4.1 Formalism of the System Catalog
We proceed to formally define the system catalog as follows:

Let A = {Ay,Az,...,A,} be a finite set of attributes. Let D = {Dy,D,,...,D,}
be a finite set of (not necessarily distinct) domains. Let dom: A — D be a total
function which associates each attribute A € A with a domain dom(A) € D. We
define a system frame template SF = {A;,A;,...,A,,} as a finite set of attributes
where A; € A, 1 <i <m. Let SF = {A1,A,,...,A,} be a system frame template. A
system frame instance sfi over SF is a finite set of attribute-value pairs {< A}, V] >
y <AL Vo>, < ALY, >}, where A; € SF, and V; C dom(A;),1 < j < p. The set
of all system frame instances reflects the state of the document filing organization.
Let SFl = {sfiy, sfiy,...,sfi,} be the finite set of system frame instances reflecting
the state of the filing organization. The system catalog is a finite set of subsystem
folders SC = {sf,,sfz,...,sf,} where each sf; C SFI,1 < j <r. All the system frame
instances in a subsystem folder sf; are over the same frame template SF, denoted as
SF(sf;). We also use the notation sf(SF) or simply sf to denote a subsystem folder sf,

in which it contains frame instances of the system frame template SF as type. The

21

Frame Template

SYSSYNONYMS

KeyTerm

SynKeyTerms

Frame Template

SYSNARROWER

KeyTerm

NarrKeyTerms

Frame Template

SYSFOLDERS

FolderName

FTNames

Depends_On

Parent_Of

Frame Template

SYSFRTEMPLATES

FT'Name

AttrName

Is_A

Frame Template

SYSATTRTYPES

AttrType

Degree

Domain

Frame Template

SYSTERMASSOC

KeyTerm

IndexTm

IndexTmType

Frame Template SYSFRINSTCOUNT

FTName

FolderName

Count

Frame Template

SYSATTRIBUTES

AttrName

FTName

AttrType

ActiveDomain

Frame Template

SYSSIMILARITY

IndexTm 1

IndexTm 2

IndexTmType

Similarity

22

Figure 4.1 A System Catalog Structure

23

notation SYSCAT ALOG(SF) is used to restrict the system catalog to the system
frame template SF.

Let sfi = {< A, Vi >, < A, Vo >,...,< A, V, >} be a system frame instance.
Let X be any subset of {A1,As,...,A,}. The X value of sfi, denoted by sfi(X),
is the system frame instance obtained by deleting those elements < A;, V; > from
sfi where A; & X. If X consists of a single attribute, say A, then sfi(X) is simply
written as sfi(A). (In this case, we use the notation sfi(A) to denote the value V in
the attribute-value pair < A,V >.) Figure 4.1 depicts a system catalog structure
which comprises the set of system frame templates. We expound on each of them in

Appendix A.

4.2 The Novelty of the System Catalog in TEXPROS
The novelty of this system catalog is that not only it reflects the actual meta-data
of the document filing organization, but also includes a thesaurus. Furthermore, the
use of the concept of frame templates, frame instances and folders at the system
and operational levels provides a consistent view to the user of his/her personal
TEXPROS. At the operational level, the concept of frame templates is used to form
the document type hierarchy for classifying the given documents; the concept of
frame instances describe the synopses of documents pertaining their significance to
the user; and the concept of folders containing frame instances of various types is used
to describe a logical file structure of the décument file organization. Similarly, at the
system level, the concept of system frame templates is used to classify the information
contained in the system catalog; and the frame instances describe the synopses of
the information regarding the folder organization, document classification (in terms
of frame templates) and keywords that will be used by the user at different times.
This consistent approach to describing the operational knowledge of the environment,

where the documents are reposited, and the knowledge about documents, structures

24

and contents (in synopsis form), provides the user with an ease of classifying, filing

and retrieving documents.

4.3 System Catalog Management
The system catalog describes the document filing organization and document classi-
fication at system level. It is managed dynamically during document classification
and filing.

We define a set of primitive functions that manage the system catalog as
triggers. For instance, during document classification, if a user selects a frame
template which does not exist in the system, the function InsertFrTemplate(FTName,
AttrName,Is_A) is invoked. (This function will append a new frame template
containing relevant information about the name of the frame template, its attribute
names, and its Is_A relationship in the document type hierarchy as a system frame
instance of SYSCAT ACOG(SYSFRTEMPLATES). During document filing, if a
user creates a folder which does not exist in the system, the function Insert-
FolderName(folder) is invoked. (This function will create a system frame
instance sfi of SYSFOLDERS type in the SYSCAT ACOG(SYSFOLDERS), in which
sfi[FolderName] is folder, the name of a folder, and the values for the other
attributes are NIL).

We design various algorithms to update the system catalog using these primitive
functions. For instance, in the filing organization, it may be desirable to distribute a
set of frame instances fi, from a folder fd, into a folder fd.. The sequence of functions

is invoked as follows:

25

For each fi in fi,

Do ft:=DetermineFT(f7);
InsertFRINST(ft, fd.,1);
If ft does not appear in the FTNames of the frame

instance of SYSFOLDERS type associated with fd,

then Insert FTName(fd,,ft);
If CheckFICount(ft,fd,)= 1
then DeleteFTName(fd,,ft);
DeleteFRINST(ft,fd,,1)

end

All the algorithms for system catalog management can be found in Appendix C.

CHAPTER 5
QUERY TRANSFORMATION

In this chapter, an autornatic method to refine and formulate the user’s query into an
algebraic query is proposed. In TEXPROS, the formal query is specified in SQL-like
syntax. The examples of the formal queries are shown in Figure 3.3 and Figure 5.1 .
The user specifies the names of the folders and frame templates required to process
the query in the “FROM?” clause, the names of attributes whose values are to be
retrieved by the query in the “SELECT” clause, and the predicate that identifies the
frame instances to be retrieved by the query in the “WHERE” clause. If the user
does not know the name of any of these terms, he can use variables instead (e.g. the
“X” and “Y” in Figure 3.3) and then specify the subjects of the corresponding folders
or frame templates in the “WITH” clause if he knows. The system can infer all the
variables to the proper names of folders, frame templates or attributes by retrieving
the system catalog. Intuitively, the user can express his queries by entering any
information he knows freely. Therefore, the user focuses on the general idea of his
queries rather than trying to remember a symbolic language or the precise names of
individual entities in system (or to look up the system catalog to find them), such as,
the names of the folders, frame templates and attributes. The terms for specifying
the names of folders, frame templates and attributes in a user’s original query are
called keyterms in the system catalog. These keyterms may not be the index terms
which are used in the database. The objective of the query transformation described
in this chapter is to assist users in finding the appropriate index terms, which are a
set of folders containing the frame instances to be retrieved, a set of frame templates
which are the types of the frame instances to be dealt with, and a set of predicates to
be satisfied by these frame instances, corresponding to those given keyterms from the
user’s query; and then apply the algebraic operators to the index terms to generate

the algebraic queries.

26

27

QUERY2: Find all the students who were admitted in Fall 1990
and passed Q.E. before Spring 1992.

SELECT QE.(Q.EResult).Student_Name

FROM Q.E.(Q.EResult)
X(Admission_Acc_Letter)

WHERE X(Admission_Acc_Letter).Date = “Fall 1990" AND
Q.E.(Q.E.Result).Date_Taken <= "Spring 1992" AND
Q.E.(Q.E.Result).Outcome = "Pass" AND
Q.E.(Q.E.Result).Student_Name = X(Admission_Acc_Letter).Name

TOPIC

Figure 5.1 An Example of the Formal Query

5.1 Context Construction

The context construction mechanism generates a complete query from the user’s
incomplete query (i.e., the construction of index terms stored in the database from
the set of keyterms that appear in the user’s query). A user’s query is called an
incomplete query if it contains imprecise terms (non-index terms), subject terms
(the subjects of folders or frame templates), or missing information (unknown index
terms). A mapping of the keyterms into a set of appropriate index terms can be
created through interaction with the system catalog. (The details of algorithms
to retrieve the system catalog are described in Appendix B.) In fact, the context
construction plays the role of a search computerized intermediary system [72] for infor-
mation retrieval, which provides significant support for processing the incomplete
query. The procedure of context construction is shown in Figure 5.2.

We develop a search strategy for finding the appropriate index terms, which

comprise the search space, corresponding to the keyterms in the user’s query. Also,

User’s Queries

End

Get Synonym
Input Keyterm exists from S User Evaluation — MaCec-eccceccnenes
in DB? thesaurus
Synonym Substitution
Change
Synonym
Selection
b
Yes Get Index Term
Query includes "WITH"? —3 relatedto subject .
User Evaluation — JG-------;
from thesaurus
r_:
Subject Substitution "'.
N
Change H
Index Term S,
Selection _o**
- Change
Get Index Term Synvﬁym
from Selection
Variable exists?
meta-data
No Index Term Inference kY
\
H
i
Change ¢
Index Term .
Sclection .~ Change
0 Index Term
Selection
Algebraic
R uery Processing~ [—>% User Evaluation)
Query Formulation Query &
Change
. Synonym
Change Original Query Selection

Figure 5.2 Query Transformation

28

29

we develop an interactive evaluation strategy for ensuring the precision of the search

space.
e Search Strategy

— Synonym Substitution: Processing Imprecise Terms.

In the system catalog, the system frame instances of type SYSSYNONYMS
contain information about synonymous keyterms that are relevant to the
user. Associated with the keyterms, the frame instances of the type
SYSTERMASSOC specify index terms to be the names of folders, frame
templates and attributes. If a term is used by the user in his query,
the synonym substitution determines the keyterm and the corresponding
index term for the synonymous term by searching through the system
frame instances of the types SYSSYNONYMS and SYSTERMASSOC,
respectively. For example, looking for some information about Peter, the
user may enter “Peter Ng” as the name of the folder. However, there
may be no folder name labeled “Peter Ng” in the system. Through the
synonym substitution, the system obtains the folder “Peter A. Ng” by
retrieving the system frame instances of the types SYSSYNONYMS and
SYSTERMASSOC.

— Subject Substitution: Processing Subject Terms.
In the system catalog, the system frame instances of the type SYSTER-
MASSOC contain the domain knowledge that folders and frame templates
are labeled according to the subjects that they cover or touch upon. If the
user does not remember the precise name of a folder or frame template, he
can express the information needed in terms of concepts, denoted by the
subject of the folder or the subject of the frame template. For instance,

in Figure 3.3, X denotes the folder which may contain the frame instances

30

the user needs. X is specified to represent the subject “Q.E.” in the
WITH clause. When this query is executed, the system retrieves the
system frame instances of the type SYSTERMASSOC to find the name of

the folder X which deals with the subject “Q.E.”.

Index Term Inference: Processing Missing Information.

In the system catalog, the system frame instances of the types SYSFOLDER,
SYSFRTEMPLATES, and SYSATTRIBUTES contain the meta-data knowledge
that describes the organization of the database in TEXPROS. In conven-
tional database systems, the user is required to know the structure of
the underlying schemas in detail to formulate his queries. However, in
TEXPROS, the user does not have to enter complete information about
the schemas; the system can infer the precise terms from the missing
information by retrieving these meta-data from the system catalog. For
Example, in Figure 5.1, X denotes the unknown names of the folders
which contain the frame template “Admission-Acc_Letter”. The system

obtains the names of the folders X by using the following algorithm:

Algorithm: (Get folders from frame templates)

Getfd fr ft(ft name)
begin
f1 = 0 prnamesnstname (SYSCAT ALOG(SYSFOLDERS));
fds = {sfi[FolderName]|sfi € f1};
for each fd € fds do
Folder Names = fds U GetPredecessor(fd);

f2=0 (SYSCAT ALOG(SYSFRTEMPLATES));

T Y lsaADftoname

if f2 # empty then

31

begin

fts = {slFTName]|sfi € 2}

for each ft € fts do

Folder Names = Folder Names U Getfd frft(f1)
end
return(Folder Names)

end

GetPredecessor(fd)
begin

fl= (SVSCAT ALOG(SYSFOLDERS));

= O polderNames= 1
Ips = {sfi[Depends_On]|sfi € f1};
if fps # empty then

fd = fd U GetPredecessor(fps);
return(fd)

end

o Evaluation Strategy
In Figure 5.2, there are four ellipses representing the user’s interaction with the
transformation procedure. The procedure of the synonym substitution may
return a collection of index term to the user. The procedure of the subject
substitution may return a collection of names of folders or frame templates
to the user. The procedure of the index term inference of the system may
return a collection of index terms to the user. In these cases, the user is asked
to determine whether the returned terms are the index terms he needs. For
instance, these procedures return a collection of index terms which are either

the names of the folders or the frame templates. The folders whose names are

32

the index terms may possibly contain the frame instances to be retrieved; and
the frame templates with the index terms as their names are the possible types
of the frame instances to be retrieved. The user is then asked to select a set of
index terms for refining his query. The user is permitted to select an alternative
set of index terms (represented as dashed lines in Figure 5.2), whenever he finds
that the previously selected index terms are not correct. These selected Index
terms will be the input of the algebraic query formulation phase. After query
processing, a set of frame instances is returned to the user. If the user is not
satisfied with the outcome, he is still permitted to select an alternative set
of index terms or to modify his original query. Therefore, the system assists
the user to confirm whether these index terms represent the folders and frame

templates from which the frame instances are to be retrieved or synthesized.

5.2 Algebraic Query Formulation

In our system, an algebraic operator table (as shown in Table 5.1) containing the set

of algebraic operators [61] is maintained. In the process of the context construction, a

set, of index terms, denoted by a set of folder names, frame template names, attribute

names and attribute values, is obtained. Utilization of the algebraic operators to

these index terms will generate the set of algebraic queries that can assist in answering

the user’s query.

For some sample queries, the following method can be used for the algebraic

formulation.

o Let folders found in the context construction be fd[1], fd[2],..., fd[n].
Let frame templates found in the folder fd[¢] be ft[i,1], ft[i,2],..., ft[¢,m],

(1<i<n).

33

Table 5.1 Operators of the D_Algebra

Class Operators Type Operands Results
1 u,nN, — binary folders folder
2 s unary folder {folder
3 ° binary | fr. instances | fr. instance
3 X, X binary folders folder
3 p unary folder folder
4 o unary folder folder
5 YN (A is an attribute) unary folder folder
6 y A, (B is a subset of the unary folder folder

component attributes of A)
7 count,,sum,,avg, , minA, max, | unary folder NUM
(A is an attribute)

Let predicates containing attributes-found in ft[z, 5] be p[é, j], (1 < i < n,

1 <7 <m).

Let predicates containing attributes found in ft[¢, 7] and fi[u, v]be pli * j,u*v],
(1<j,v<m,1<i,u<n).

The following cases may arise to produce a set of algebraic queries.

— For all the p[i,7] (1 £¢ < n,1 <5 <m), the following algebraic query is
produced:
templi* j,i % j] = o, (7, (fd[i])).

— For all the p[i*j,u*v] (1 £ j,v < m, 1 <i,u < n), the following algebraic
query is produced:
templix jyuxv] =0, (7, (i) X (g, (fd[u]))).

— For templ[i * j,u * v] (templi *],z * j] is the special case) (1 < j,v < m,
1 < 1,u < n), the following algebraic query is produced:

temp_result =X temp[i * J,u * v].

34

o The set of above queries is applied to the attributes in the SELECT clause.

begin
if A aggregate operator in the SELECT clause then

temp_result)

Resu’lt = 7rAt!v‘ibuteNamcs(

else

AttributeNames (temp-reSUIt)

Result = aggrop

end

5.3 Example
Here an example is given to illustrate an execution of the query transformation.
The user’s original query is shown in Figure 5.3, in which the user wants to find all
the Ph.D students who passed the Qualifying Examination in the Spring of 1990.
Assume that the user knows the folder Q.F., from which the frame instances are to
be retrieved, but he does not know the types of frame instances (that is, the name
of the frame template). He uses Date_Taken and Result to express the names of

attributes in the predicate.

e Context Construction.
By following the procedure depicted in Figure 5.2, the user’s original query is

transformed to the complete query as shown in Figure 5.3.

— Check whether the input keyterms, such as Q.E., Date_Taken and Result,

exist in the system by consulting the system catalog as follows:

SYSCAT ALOG(SYSFOLDERS)));

* ef = Countpolde,-Name(aFolderName=Q'E-(

The folder @.E. is in the system since ef is not equal to zero.

SYSCATALOG(SYSATTRIBUTES)));

* acl = countAurName(aAttrNan1e=Dute_Tak:11(

The attribute Date_T'aken is in the system since acl is not equal to zero .

35

% ac2 = count o (0,0 (SYSCATALOG(SYSATTRIBUTES)));

The attribute Result is not in the system since ac2 is equal to zero.

* ac3 = count SYSCATALOG(SYSATTRIBUTES)));

AttrName(aAttrName= Student—.Name (

The attribute Student_Name is in the system since ac3 is not equal to

Zero.

— Apply Synonym Substitution for Result by consulting the thesaurus in
the system catalog. The system returns Qutcome, which is the synonym
of Result, to the user by using the following algorithm:

F1= 04 rorrermsanesas(SYSCATALOG(SYSSYNONYMS));

if f1 # empty then

y = sfi[Key Term] where sfi € f1;

— Apply Index Term Inference for getting the names of the frame template
by consulting the meta-data in the system catalog:
Y = O pordernamen 0.5 (SYSCAT ALOG(SYSFOLDERS));

ft = {sAIFTName]|sfi € y);

A set of frame templates ft from the folder @.F.is obtained. The user is asked

to select one of them. The user selects the name of frame template, Q.F. Result.

e Algebraic Query Formulation.
By employing the algebraic operators, the system generates the following
algebraic queries to assist in answering the user’s query.

te?np‘result = aDate-Taken:SpringI990/\0“tc0me=Pass (’/TQ.E.Resuft (Q E))’

Result = 7 temp_result);

Student.Name (

36

QUERY: Find all the Ph.D students who passed
the Qualifying Examination in the Spring of 1990.

SELECT Q.E.(X).Student_Name
FROM Q.E.(X)
WHERE Q.E.(X).Date_Taken = "Spring 1990" AND

Q.E.(X). Result = "Pass”

CONTEXT CONSTRUCTION

SELECT Q.E.(Q.E.Result).Student_name

FROM Q.E.(Q.E.Result)

WHERE Q.E.(Q.E.Result).Date_Taken = "Spring 1990" AND
Q.E.(Q.E.Result).Outcome = "Pass"

Figure 5.3 An Example of Context Construction Application

CHAPTER 6
BROWSER

In the previous chapter, we discussed an efficient and standard method for retrieving
information from databases, which is called systematic retrieval [63]. The user
presents his request in a formal query; and upon receiving this query, the system
executes the query transformation to find, if necessary, the proper index terms corre-
sponding to those given keyterms from the user query by retrieving the system frame
instances in the system catalog, and then to generate the equivalent algebraic queries
by applying the algebraic operator to these index terms. There are some situations,
however, in which the systematic retrieval is difficult to achieve the objectives. For
instance, the user may only have a vague retrieval target (e.g. What is Peter Ng?).
Here, the user does not know exactly what kinds of information he needs until some
kind of description is displayed to him. (The user needs to gain knowledge about both
schemas and instances from the database.) In such situations, TEXPROS employs
a browsing mechanism as a complementary retrieval method.

Several database management systems have provided the user with tools that
allow users to explore their environment. Cattell [8] designed a browser for an Entity-
Relationship database, which could display each entity with its context to the user by
scanning a network of entities and relationships. D’Atri and Tarantino [23] pointed
out the major limitations of most of the relational database browsers (e.g., SDMS|[37],
TIMBER(88]). The primary limitation is that the user is confined to a single relation
at a time, and it is very hard to browse across relation boundaries, Motro [63]
presents a browser, called BAROQUE, which supports inter-relation browsing by
using network views of relational databases. BAROQUE needs the additional space
to store the relational schemas and an item directory to support access by value. In
TEXPROS, we create an object network to present the view of the schema (meta-

data) of the database (about document type hierarchy and folder organization) and

37

38

the database itself (frame instances). However, all this information is incorporated
in the system catalog. Therefore, the object network always represents a snapshot
of a subset of the system catalog.

In the first part (section 6.1, 6.2 and 6.3) of this chapter, we define the object
network, the architecture and the functionality of the browsing mechanism. The
second part (section 6.4 and 6.5) discusses the different components of the browser.
We conclude with some examples to illustrate how the mechanism works in section

6.6.

6.1 Object Network

In Figure 6.1, we describe each object in terms of schema elements (meta-data) and
data elements. A database schema describes the structure of the database and a set
of integrity constraints. In TEXPROS, this description includes the names of the
folders along with their depends_on relationships, the names of the frame templates
along with their 7s_e relationships, and the names of the attributes along with their
attribute types. |

As we discussed above, the user can obtain the information about the specific
schema elements by retrieving the system frame instances in the system catalog using
the formal query, just like retrieving any general frame instances in the database,
since the uniform representation of the system catalog and database itself is adopted.
However, it requires technical understanding of the data model of TEXPROS (i.e.,
the user needs a clear target for the retrieval). For instance, the user may want to
know the names of all the frame templates in the “Assistants” folder. To avoid these
requirements, we describe the information presented in the schema into an object
network. As mentioned above, the way of representing the schema in the system
catalog is the same as of representing the data in the database, and therefore the

user is not required to distinguish between the schema elements and data elements.

Daocuments
Folder(1] Folder(2] eceses Fodu(j] *eeees Foiderin) U
T, S el depends-on)
74
FT(1] FT{2] FTI[3] sssses FT[i] FT[j] FT(k] ©®®®® FT(m] (is-u-subtype-uf,
Pes .\.‘\\‘: - IIA\‘\\\ /"1 is-a-supertype-of)
: \\:\\\ \\ Y -\\\\ ', \‘_ ’// I“
N ~a SO s Y
i RN N AN /I \
' AT S ~\\\ St \‘ N R \
v WA RSN \;\\'\\J N .
Att[1] Att[2] Au[3] ®%ee® Agyfi] Aulj] Attr[k] e0eo Att:r[p]
h .
AN . ',";\‘\ g
AN N e
|\ \ o v, P |
[\\ [~ \‘J \d P |
\ . P |
| \ Aufil] Attfi2].. Att[ij] _~ 1
AN /7 NP ,
| AT /7 1\ >C
| \ \ 7 1 -~ ~Na [}
\ \ / \ >~ |
| \ \ / 1 7y ~< i
, \ \ // 4 - | \ =~ ~ \l/
! \ N / -7 ! _\
A4 N -~ A v

Val[l] Val[2]

FT: frame template -
Att: attribute name >
Val: attributevalue T 7° >
cmrmee D
-

val[3] &£ “eee oval[i] Val[j] V;\ll[k] ssscee Val[t]

contains-information-in
has-type
is-identified-by
is-a-combination-of

includes

Figure 6.1 Object Network

39

40

e The schema elements in the object network.
We represent the schema elements with four vertical levels in the object
network: the documents in the database TEXPROS, the folders, the frame
templates, and the attributes. Each element is represented by an object. The
relationships between objects are described as follows: (1) the relationship
contains-information-in relates the documents in the TEXPROS database to
folders; (2) the relationship has-type relates every folder to its frame templates
which represent the types of frame instances in the folder; (3) the relationship
is-identified-by relates every frame template to its attributes; and (4) to the
composite attributes, the relationship is-a-combination-of relates a composite

attribute to each of its components.

¢ Dual model in the object network.
We incorporate the folder organization (i.e. logical file organization) and
document type hierarchy into the object network. To accomplish this, the
object network is extended with the additional horizontal levels, which
represent the relationship among folders and the relationship among frame
templates. (1) The relationship is-parent-of relates every folder to its
subfolders. The relationship depends-on relates every folder to its parent
folders. These relationships are reflected in the folder organization. (2) The
relationship is-a-supertype-ofrelates every frame template to each of its subtype
frame templates. The relationship is-a-subtype-of relates every frame template
to its supertype frame template. These relationships reflect the generalization

and specialization relationships in the document type hierarchy.

o The data elements in the object network.
In [63], the concept of access by value is proposed. This concept gives the user

the capability of retrieving all the occurrences of an attribute value from the

41

database. The occurrences of an attribute value are in terms of attributes under
which the given values appear. For example, the value Jason may appear in the
database as a value of the attribute sender of a memo or the attribute author
of a publication. In [63], an item directory is needed to store the mapping
from the values into attribute names. In TEXPROS, all this information is
stored in the system frame instances of SYSATTRIBUTES type in the system
catalog SYSCAT ALOG. Each of these frame instances over SYSATTRIBUTES
describes not only the attribute names appearing in a specific frame template,
but also the attribute types. The latter part of the information is helpful in

the case that attributes with same name have different attribute types.

We present a view of the relationships between the attributes and the attribute
values in the object network. The relationship includes relates every attribute
to its values. Furthermore, the relationship between an attribute value and
other values can be obtained only if they occur in the same frame instance.
Formally, let fi = {< A;, V1 >, < Ag, Vo >,..., < A,,V, >} be a frame instance
over frame template FT in the folder f. The following implied relationships are
established: (1) the relationship is-A;-of-FT-in-f-having-A; relates the value V4
to Vi(i = 2,...,m); and (2) the relationship is-A;-of-FT-in-f-having-A; relates

the value V; (1 = 2,...,m) to 1].

6.2 Architecture of Browser
In TEXPROS, the database can be viewed as a network of objects, which consist of
the schema elements and data elements. All the information, except the relationship
among data elements, which can be obtained from the database itself, shown in the
object network can be derived simply by retrieving information from the system

frame instances in the system catalog, SYSCAT ALOG.

42

The components of the browser are depicted in the Figure 6.2. When a user
enters a vague query as a topic, the system looks up all its related information in
the system catalog. The topic interpreter finds all the relevant objects by retrieving
the system frame instances from the system catalog. The objects include all possible
index terms (including the names of folders, frame templates, attributes, and values)
and their relationships, which are pertaining to the topic specified in the vague
query. And then the answers are combined to form an object network, along with
some descriptions, which represents all the information pertinent to the selected
topic. These description can be expressed in terms of the relationship is-A;-0f-FT-
in-f-having-A; for bringing together all the attribute-value pairs as a whole from the
same frame instance. Therefore, the overall object network is not stored explicitly
in the system. Only a portion (i.e., subgraph) of the object network for the vague

query, dynamically constructed by accessing the system catalog, is returned to the

user.
Browser
T
: i
;
!
]
vague query relevent object 1 e
Topic objects Object Network network k. user’s qu ery .. \
Interpreter Constructor descriptions | ™ reconstruction ¢

Figure 6.2 Architecture of Browser

43

In the system, there are two principal retrieval methods, querying and browsing.
The user may select any object from the obtained object network to form the next
browsing topic. Such vague queries can be repeatedly entered into the system until
sufficient information is obtained to the extent that the user is able to use this
information to construct a formal query of his request. The system is designed in

such a way that the browsing and querying may be interleaved.

6.3 Browsing in TEXPROS
Using the query interface as shown in Figure 3.4, the user can enter any topic. By
browsing through the system frame instances in the system catalog, the system is
able to respond with an object network which represents all the information related
to the topic.

If the topic entered by a user is a schema element, such as the name of a folder,
the name of a frame template, or the name of an attribute, the system will return an
object network in which the objects represent all the database definitions related to
this topic. If the topic is a data element, such as an attribute value, the system will
respond with a description which represents its relationships with other attribute
values (i.e., they occur in the same frame instance), provided the information about
the topic is stored as the frame instances in the system. Indeed the browsing method
in TEXPROS supports the concept retrieval of some sorts.

We can extend our browser mechanism to accept more than one topic entered
by the user. For each topic, there corresponds an object network with the necessary
descriptions. The connectedness among the object networks depends on the relat-
edness of the corresponding topics. For simplicity, the relatedness of given topics
is considered to be the same folder, frame template, attribute or value, and their
relationships. The system attempts to find the relatedness among these topics.

Several individual object networks, each of which is associated with a topic, are

44

constructed first. According to the user’s request, the further process may involve

two issues:

e How to connect these object networks into a connected object network.
Since the object network for each topic is only a subgraph of the object network
for the entire system (such as, the object network depicted in Figure 6.1), the
system will return an object network to the user by connecting these subgraphs
together, provided these subgraphs are “joint”.! Since the object network
for the entire system is a connected graph, the subgraphs, each of which is
associated with a topic, can be eventually connected to form an object network
by adding a large number of objects, possibly loosely related to the topics. To
avoid this situation, the system will limit the number of objects to be added
into the subgraphs. Therefore, there may exist several disjoint object networks

for several unrelated topics which are entered by the user.

e What query can be formed from this connected object network.
This issue can be resolved by observing the sequence of consecutive topics
entered by the user since they need to know the prerequisite information to

construct a formal query.

6.4 Topic Interpreter
The topic interpreter is used to interpret an input topic as objects in the system, and
then retrieve other objects which are associated with them by accessing the system
catalog and the database. The following algorithm, described in the form of algebraic
expressions, provides an unified strategy for accessing “schema” and “data” {from the

system catalog and the database. The results will further be used to construct the

1“joint” means that they have common nodes or they will have common nodes after
adding some other objects to the object networks. Two object networks have a common
node provided their corresponding topics are related to each other, and the relatedness of
topics is of the same folder, frame template, attribute or value, and their relationships.

45

object network which represents all possible objects and their relationships related

to the topic.

Algorithm 6.1: (Check whether the topic in the query is a folder name, a frame
template name, an attribute name or a value in the system; and then call their
respective procedure. Otherwise, find its related index terms by looking into the

thesaurus.)

BEGIN
AL = O ptgernameniope (SYSCAT ALOG(SYSFOLDERS));

2 = O prnamentopie (SYSCAT ALOG(SYSFRTEMPLATES));
3= 0 g wamenrope (SYSCAT ACOG(SYSATTRIBUTES));

f4 = 0 4erivepomainotopic (SYSCAT ALOG(SYSATTRIBUTES));

case(fi # empty) CallFolder(topic);
case(f2 # empty) CallFrameTm(topic);
case(f3 # empty) CallAttribute(topic);
case(fy # empty) CallValue(topic);
case(f; = empty) CallThesaurus(topic)
END

CallFolder(fd)

(Get information related to the folder fd, such as, the parent(s) of fd, the
subfolder(s) of fd, and the frame template(s) associated with fd.)

BEGIN

f = O porgernamen,a SYSCAT ALOG(SYSFOLDERS));
fd. = {sfi[Parent _Of||sfi = f}; |
fd, = {sfi{Depends_On]|sfi = f};

St = {sfilFTNames]|sfi = f};

46

OUTPUT(fd,, fd., fd,, ft)
END

CallFrameTm(f1)
(Get information related to the frame template f#, such as, its attributes, its

superclass(es) and subclass(es), and the folders associated with ft.)

BEGIN
J = O prnamen s (SYSCAT ALOG(SYSFRTEMPLATES));
att = {sfi[Attr_Name)|sfi = f};
Sty = {sfills-Allsfi = f};
F''= 04, 10, (SYSCAT ALOG(SYSFRTEMPLATES));
if f' # empty then
fte = {sfi[FTName)|sfi € f'};
" = O prnamen s (SYSCATALOG(SYSFRINSTCOUNT));
fd = {sfi[FolderName]|sfi = f"};
OUTPUT(ft, fic, ft,att, fd)
END

CallAttribute(att)
(Get information related to attribute att, such as, the frame templates including att,

the folders associated with these frame templates, and the attribute type of att.)

BEGIN

F = 0 amecan (SYSCAT ALOG(SYSATTRIBUTES));

(fts,types) = {(sfil FTName], sfi AtirType])|sfi € f};
For each (ft, type) € (fts, types) Do

{
=g (SYSCAT ALOG(SYSFRINSTCOUNT));

— Y FTName=ft

47

fds = {sfi[FolderName)|sfi € f(l)};
OUTPUT(att,type, ft, fd,);

END

CallValue(v)
(The procedure CallValue(v) supports access by value. The system returns the

other attribute values which occur in the frame instance(s) where the given attribute

value v is.)

BEGIN
J = 0 psieomainae (SYSCAT ACOG(SYSATTRIBUTES));
(atts, fts) = {(sfi[AtirName), sfi[FtName))|sfi € f};
For each (att, ft) € (atts, ft;) Do
{ /* get folders satisfying att = v.*/
SO = 0 prpamen; (SYSCAT ALOG(SYSFRINSTCOUNT));
(f, fds) = {(sfi] FTName), sfi FolderName])|sfi € f(V};
For each fd € fd; Do '
{ /* get the frame instances satisfying att = v.*/
IO =0, (fd(ft)
OUTPUT(f®?, fd, ft);

END

48

CallThesaurus(t)
(The thesaurus can be readily incorporated into the browser to find the objects whose

semantics are closely related to the topic(a vague query).)

BEGIN
fO =0, rerme (SYSCATALOG(SYSTERMASSOC));
if f(1) = empty then
{ /* check SYSSYNONYMS.*/
F@ = O syniceyTerment(SYSCAT ALOG(SYSSYNONYMS));
if f?) = empty then
{ /* check SYSNARROWER.*/
f = O NarrKeyTermst (SYSCAT ALOG(SYSNARROWER));
if f(®) = empty then
RETURN{(unknown)
}
k = {sfi[KeyTerm]|sfi € f(¥};
fO = O ey Termei (SYSCATALOG(SYSTERMASSOC))

}

(indextm, type) = {(sfilIndexTm], sfi IndezTm Type])|sfi € f(V};
case(type = “Folder”) CallFolder(indextm);
case(type = “FrameTm”) CallFrameTm(indextm);
case(type = “Attribute”) CallAttribute(indeztm);
case(type = “value”) CallValue(indextm)

END

49

6.5 Object Network Constructor
In the previous sections, we pointed out that the browser mechanism allows users
to enter multiple topics. The object network for each topic entered by the user is
only a subgraph of the object network for the entire system. The connectedness
among these subgraphs (i.e., partial object network) depends on the relatedness of
their corresponding topics. The object network constructor finds the connections
among these topics and forms an object network from multiple object networks

before displaying. We shall proceed to give a formal definition of the object network.

6.5.1 Formal Definition for the Object Network
An object network can be denoted by ON = (N, E, fn, f&), where

1. N =Ny UNsUN, UN,, a collection of sets of nodes, where

(a) Ngq is a set of nodes representing the folders in the system;

(b) Ny is a set of nodes representing the frame templates in the system;
(c) N, is a set of nodes representing the attributes in the system, and
(d) N, is a set of nodes representing the attribute values in the system.

2. F = E(jd,fd) U E(jd,ft) U E(ﬂ'ﬂ) U E(ft,at) U E(at,at) U E(at'u), a collection of sets

of edges, where

(a) E(ta,sa) C© NyaXNyg. Anedge (fd, fd') € E(;4,7a) denotes the depends._on®
relationship between folders fd and fd' (that is, fd' is a parent of fd);

(b) E(sa1)y © Nja X Ny An edge (fd, ft) € E(;q,41) denotes the has_type
relationship between a folder fd and a frame template f¢ (that is, fd

contains {rame instances over the frame template ft);

2the inverse relationship is is_parent_of.

(c)

(c)

(d)
4. fp =
(a)
(b)
()
(d)

50

E(st,5ty © Nyex Ny Anedge (ft, ft') € Eqyy, 1) denotes the is_a_subtype o f3
relationship between frame templates ft and ft' (that is, ft is a subtype
of f1');

E(ftaty © NytX Nog. Anedge (ft, at) € E gy 01) denotes the ts_idents fied by
relationship between a frame template ft and an attribute at (that is, the

at is an attribute of the frame template ft);

E(at,aty © NatX Nog. An edge (at, at’) € Ee1,q1) denotes the is_a_combination_of
relationship between the composited attribute at and its component
attribute at’, and

Ewiwy © Na x N, An edge (at,v) € FE(a,,) denotes the includes

relationship between an attribute at and its value v.

= {1t f1t» for, fu}, @ set of mappings, where

frdt Nyg — {fd}, where {fd} is the set of folder names in the system;

fre o Ny — {ft}, where {ft} is the set of frame template names in the
system;
fat : Ny — {at}, where {at} is the set of attribute names in the system,

and

fo: Ny — {v}, where {v} is the set of attribute values in the system.
{f(fd,fd)a f(fd,ft)a f(ft,ft): f(jt,at)) f(at,at)’ f(at.u)}’ a set of ma'ppingsa where

firagdy © Egga gy — {is-parent_of , depends_on}.

fura,ge) © Epa gy — {has_type}.
funsy © By — {is-a_subtype_of , is_a_supertype_of }.

firtaty Egrary — {is-identified by}.

3the inverse relationship is is_a_supertype_of.

51

(€) fatar) : Elatary — {is-a_combination_of}.

(£) flatw) + Etatw) = {includes}.

An example of illustrating the construction of an object network for a user’s topic is

given in Example 6.1.

6.5.2 Connecting Multiple Object Networks

The user can enter more than one topic by connecting them using operator AN D or
OR. The AND operator is used to connect the topics of the same type, such as, a
set of folders, frame templates, attributes or values. The OR operator can be used
to connect the topics of different types.

When a user enters several topics using connecting operator OR, the system
may take two kinds of action, forming object network and refining object network,
to complete the object network construction task. By forming an object network,
the browser is applied separately on each topic to form its object network (that is,
an object network for each topic is formed). If the user asks for further refinement,
the system will take an action of refining object network to find all the possible

connections among these,object networks as follows:

e If there are common nodes among these object networks, such as, the nodes
corresponding to the same folder, frame template, attribute or value, the object

networks are connected by unifying these common nodes.

o If there is depends_on relationship between any pair of folders, the object

networks are connected by adding depends_on edge between these folders.

52

o If there is is_a_subtype_of relationship between any pair of frame templates, the
object networks are connected by adding is_a_subtype_of edge between these

frame templates.

When a user enters several topics using connecting operator AND, the system
constructs an object network for each topic first using the browser, and then forms
an object network containing only the common objects (objects are related directly
or indirectly to these topics) among these object networks before displaying. The
obtained object network contains only topics entered by the user if they are nothing
in common, or displays all the possible common nodes with respect to the given

topics (each topic has its object network) using the connecting operator AND.

For example, upon receiving

TOPICS : Meeting-Memo AND Proceedings_Paper,
possible resultant object network is depicted in Figure 6.3(a), which specifies that a
folder Peter Ng has types Meeting_ Memo and Proceedings_Paper. This resultant
object network is different from the object network, as shown in Figure 6.3(b),

obtained by entering

TOPICS : Meeting-Memo OR. Proceedings_Paper.

Very often the information, which is provided in the obtained object network, is
insufficient for fulfilling user’s retrieval target. Then the user can continue issuing
the topics from the object network or outside the network. If the topics entered by
the user using AN D operator are from the existing object networks (or at least one of
the topics is from the existing object network), the system only extends the existing
object networks by adding the common objects among the object networks. Each of

the common objects is related to the topics. The relatedness relationships are the

53

(@ .
:

Folder(TEXPROS) Folder(Smith Harris) Folder(Paper)

- -
. %, e
- ® . .
[. - .
. ® e o’
. . ., o

-...k #-'

]

! i

! [}

! i

! [}

! 1

! '

I . . !

: % ® o* . Se '

3 . i

| Q&£ :

! F1(Meq{ng_Memo) FT(Pro cexlings_Paper) E

i AN N !

b /]

' 4 N # !

i :

! 1

!]

! 1

! I

))
i
)
|
[}
[}
]

Att(Sender) e Att(Subject) Att(Authors) ... Au(Title)

TOPICS: Meeting_Memo OR Proceedings_Paper

Figure 6.3 Connecting Multiple Object Networks by (a)ANDing Frame Templates
and (b)ORing Frame Templates

54

relationships among objects of the object network model. Therefore, the following

browsing targets can be achieved further:

e If the entered topics are the folders, the question, “What are the other frame

templates associated to all these folders?” can be answered.

e If the entered topics are the frame templates, the following questions can be

answered from the resultant object network:
~ What are the other folders having all these frame templates?
— What are the attributes included in all these frame templates?

o If the entered topics are the attributes, the question, “What are the other frame

templates including all these attributes?” can be answered.

o If the entered topics are the values, the question, “What are the other attributes

including all these values?” can be answered.

6.6 Examples
Example 6.1: Using the query interface as shown in Figure 3.4, when the user
enters a topic, such as “Peter Ng”, the system gathers and responds with all the

information related to the topic in the following manner.
e The topic interpreter can interpret this topic as follows:

— The system searches through the system frame instances of the type
SYSTERMASSOC in the system catalog and learns from one of the frame
instance that Peter Ng is a folder name in TEXPROS.*

— The system searches through the system frame instances of the type

SYSFOLDERS in the system catalog and learns that;

4Note that the index term Peter Ng can be of different index term types.

55

“the folder Peter INg depends on Faculty”, and the folder Peter Ng
contains many frame instances of the types “Letter_of_Appointment_Offer”,
“Meeting_Memo”, “Resume”, “Performance_Evaluation_Report”

“IFaculty Annual Summary”, “Proceedings_Paper”, and others.

— The system searches through .the system frame instances of the type
SYSATTRIBUTES and SYSFRINSTCOUNT in the system catalog and
learns that Peter Ngis an attribute value. Therefore, the system retrieves
other values related to Peter Ngfrom the database, such that the following
information reflecting ¢s-A;-of-FT-in-f-having-A; relationships may be
displayed to the user:

* Peter Ng is the Sender of a Meeting_-Memo having the Subject Ph.D.
Qualifying Examination in the folder Peter Ng.

* Peter Ngis one of the Authors of a Proceedings_Paper having the Title
A Query Algebra for Office Documents System in the folder Peter

Ng.

o Figure 6.4 depicts a portion of the object network pertaining to the vague query
“What is Peter Ng”, resulting from the process of object network constructor.

The formal specification of the object network is given as follows:

1. N=NjgUNsjU NG UN,, where
Ny = {fd, fdy};
Nge = {ftmm, ftr; ftop, ftip, ...}
Not = {atse, atyy, ..., atqy, aty,. ..}, and
Ny = {Vpn,Vpges ++ +» Vagay + - -}
2. E=Eqq 50V Esa,5)U Eiria) U Eat,v), where
Ega,ra0) = {(fd, fdp)};
Eta, oy = {(fds flmm), (fd, ft2), (fdd, fipp), (fd, fHjp), - }5

E(jt,at) = {(ftmm,atse)a (ftmmaatsu)s ceey (ftpp, atau)a (ftpps (ltt), ceey
(flipy ateu), (ftjp, aty), ...}, and

E(at,v) = {(a'tsea vpn)s (atsu, que)s ey (att, vaqa)’ . ~}-

56

Folder(Facully)

Folder(Peter Ng)

".-°. 5 ‘.. l...
& d x e,
FT(M 88‘1"8’_}(8\"10) FT(Resume) FT(Proceedings_Paper) FT(Jourgal_Paper)
~ -7
RN . AN -,
YN S
AtK. Se‘der) All(Suijct) oo A ﬁA ythors) All(T{lle)
- s
\ \ - \
- b
o 3
- 4 Value(A Filing Organization
Value(Peter Ng) Value(Ph.D.Qualifying For Office Documents System)
Examination)

-
- ’

FT: frame template g depends_on
Att: attribute

Val: attribute value

X(Y): Y is an instance of X

coeelms has_type
==3 s identified_by
== includes

* PeterNg isthe Sender of a Meeting_Memo havingthe Subject Ph.D. Qualifying Examination
in the folder Peter Ng.
* PeterNg isoneof the Authors of a Proceedings Paper havingthe Title A Filing Organization
for Office Documents System in the folder Peter Ng.

TOPICS: Peter Ng

Figure 6.4 Constructing an Object Network

57

3. fv = {frd> frts fats fu}, where
fra(fd) = PeterNg;
fra(fdp) = Faculty;
fri(fimm) = Meeting_Memo; f,(ft,) = Resume;
Sfri(ftop) = Proceedings_Paper;
fri(ftjp) = Journal _Paper;
fat(atse) = Sender; fo(atsy) = Subject;...; fo(atey) = Authors;
Jar(aty) = Title;
Ju(vpn) = Peter Ng;
So(vpge) = Ph.D.Qualifying Examination;. . .;
fo(Vage) = A Query Algebra for Of fice Document System:. ..

4. fe = {f(sd,14) f(1d,51)}, Where
fisa.50)((fd, fdp)) = depends_on;
Sird ro((fd, ftmm)) = has-type; fiza,50)((fd, ft:)) = has_type;
fisd g ((fd, ftyp)) = has_type; fira,p0)((fd, flp)) = has_type;
firraty((ftmm, alse)) = isidentified by; fij1,a1)((flmm,atsy)) = is_identified by. . .;
firaty((ftpp, alaw)) = is-identi fied by; fissany((flpp,aty)) = isidentified by. . .;
fistat)(Flip, alau)) = is-identi fied by; fipo,an((fljp, aty)) = isidentified by;
f(at,v)((atsea vpn)) = includes;
f(at.u)((atsuvque)) = includes ... s

fiat,w)((alty Vage)) = includes; ...

58

Example 6.2: (Connecting Multiple Object Networks by Unifying
their Common Nodes)
Upon receiving the vague query,
TOPICS : Q.E. Application-Form OR Journal_Paper,
the system first generates two object networks, which are related to the frame
templates Q.F.Application_Form and Journal_Paper, respectively. After refining
these two object networks, an object network, as shown in Figure 6.5, is constructed

by unifying the common node, namely, the folder Fortune.

Example6.3 :(Connecting Multiple Object Networks by Adding depends_on Edge)
Upon receiving the vague query,

TOPICS : Jennifer OR Paper,

the system first generates two object networks with respect to the folders Jenn: fer
and Paper. After refining these two object networks, an object network, as shown
in Figure 6.6, is constructed by adding the depends_on edge between the folders
Ph.D.Students and Publication.

Example6.4 :(Connecting Multiple Object Networks by ANDing Frame Templates)

From the object network in Figure 6.4, a user may issue a vague query,

TOPICS : Proceedings_Paper AND Journal_Paper,

when he wants to know “What are the other folders having the frame templates

Proceedings_Paper and Journal_Paper. The folder Paper having the types

59

Proceedings_Paper and Journal_Paper is added to the object network in

Figure 6.4 to yield the resultant object network as shown in Figure 6.6.

easnsncscansns ssssensesvscnccssn sasssssmsasnsa Sstesveanceancas L R T N L LY N Y T Y T
1

g the object network for **Q.E.Application_Form" the object network for ** Journal_Paper” §
§ Folder(Q.E.) Folder(Jennifer) Folder(Paper) Folder (;l_ermif er)
FT(Q.E.Appjication_Form) FT(Jgurnal_Paper) '
: N P 7 :
H /’ \ P % :
H ’ [N H
Y s ¥
: Att(Student-Namie) Att(Date_Taken) Alt(Authors) Au(Title) ... :

...

m e o = n e o e e = ey) . . . AL A % T MR Y e e A bk b

]]
] 1
]]
] 1]
] []
1]
]]
: :
E Folder(Q.E.) Folder(Jenuifer) Folder(Paper) E
: '.'.'.’ ."...-. .-..‘ :
: 3 L& !
! FT(0. E.Ap]k'cation_F orm) FT(Journal_Paper) !
i 7 N ;o i
| s’ \ [} -~ \
' s b (] > -~ '
! #] 4 ' !
' Att(Student-Name) Att(Date_Taken) ... Att(Authors) At(Title) ... |
: !
]]
]]

Figure 6.5 Connecting Multiple Object Networks by Unifying their Common Nodes

the object network for *‘Jennifer”

Folder(Ph.D.Students)

Folder(!g‘nnifer) Folder(Paper)
o Q
FT(Admission_Acc_Letter) FT(Transcript) FT(Journal_Paper) FT(Proceedings_Paper)

...

Folder-(Paper)
FT(Admission_Acc_Letter) ~ FT(Transcript)
£° T
FT(Journal_Paper) FT(Proceedings_Paper)
TOPICS: Jemnifer OR Paper

60

........................

the object network for **Paper”

Folder(Publication)

Folder(Publication)

...

Figure 6.6 Connecting Multiple Object Networks by Adding depends-on Edge

61

Folder(Facully)
f Fotder(.Paper)
Folder(Peter Ng) ,o'.. E
.o'.‘.::.".. 0.. :
. -..'... ..- :
. °*® ’, ... R 0 ., . H
s xAp i
FT(Meeting_}{emo) FT(Resume) FT(Proceedings_Paper) FT(J ourgal_Paper)
’l \\ ¢ \\ - " 4
/ A ’ - - ’
4 \\ 4 - > : ” ‘
¥ | Be-=" Q¥
All(Segder) An(Sybject) Att(Aythors) Au(Tyile) -
‘d '\ - ub ‘\
-
‘ \ - - \‘
- ‘v
< K Value(A Filing Organization
Value(Peter Ng) Value(Ph.D.Qualifying . For Office Documents System)
Examination)
FT: frame template B depends_on
Att: attribute LILYY . 2 has type
Val: attribute value —— is_identified by
X(Y): Y is an instance of X
Ll] includes

TOPICS: Proceedings Paper AND Journal_Paper

Figure 6.7 Connecting Multiple Object Networks by ANDing Frame Templates

CHAPTER 7
GENERALIZER

The context construction mechanism is introduced into our system primarily to
relieve users from the necessity of remembering the precise terms (such as, index
terms and keyterms) of individual entities in the system. However, since the query
entered by the user is less restrictive, the response given to the user by the system
may be less cooperative. According to Kao et al.[45], the requirements for achieving
cooperative responses from the system are as follows: (1) the maxim of quantity:
be as informative as required; (2) the méxim of quality: contribute only when an
adequate amount of evidence is present; (3) the maxim of relation: be relevant; and
(4) the maxim of manner: avoid ambiguity.

Several systems which are capable of generating cooperative responses have
been developed. Schank and Lehnert[81] extended the response to the user’s vague
and ambiguity query. McCoy’s ENHANCE system [57] and the McKeown’s TEXT
system [58] attempted to generate answers for requesting the meta-knowledge. They
employed the knowledge base that includes the concept used in the database, to
accomplish the generalization hierarchy from the data itself. Kaplan [46] presented
a portable natural language query system with capability of generating cooperative
response to natural language query. Especially in the case of null answer query,
the kinds of cooperative response that the system can offer include: corrective
indirect response, suggestive indirect response, and supportive indirect response. To
accomplish these, it employs the domain transparent mechanism and Meta-Query
Language. Kalita [44] described how to give the summary response for short non-
enumerative answers. The system employs a knowledge base which consists of frames
that are used to store the information about database schema. Motro [69] presented
another approach to interpreting null answers. According to his idea, every query

reflects a presupposition that the retrieval request being expressed is plausible and

62

63

the source of a null answer is in erroneous presupposition. A verification mechanism is
employed to detect these erroneous presuppositions [66]. A generalizer is employed to
generate a set of output presuppositions which are minimally more general than the
given input presupposition. This can be done by weakening mathematical conditions
placed upon the queries or by deleting conjunction from the queries. ARES [41] is a
system with the capability of performing flexible interpretation of the queries that is
based on the relational data model and allowing for a certain amount of ambiguity
as well. This can be achieved by functionally augmenting the relational operations

with the additional comparison operator “approximately equal to”.

7.1 The Design of Our System: An Enhanced Generalizer
All of the systems mentioned above require extending the original data model to
one with general information about the meta-data and domain knowledge of some
sorts. TEXPROS requires these kinds of information which are stored in the System
Catalog.

The following example demonstrates that the null answer is rarely satisfactory
in our system. Consider a query which retrieves all the students who were enrolled
in the course CIS792 (Pre-doctoral Research) and received a grade A from “M.S.
Students” folder. As there is no enrollment for which the course is CIS792 and the
student received the grade “A” in “M.S. Students” folder, the system returns a null

answer. The null answer can be interpreted as follows:

e There is no information (i.e, no M.S. student takes CIS792) in the “M.S.

Students” folder.
e There is no M.S. student who received a grade A in the course CIS792.

e The information is located in other folders.

64

o The information is stored in the system as frame instances of other types

rather than those of the type which are used for examining the query.

Actually the query reflects a presupposition of the user that some of M.S. students
were enrolled in CIS792. In fact, only Ph.D. students were enrolled in this course; so
the original query reflects an erroneous presupposition and the null answer is a fake
empty answer.

In this dissertation, we present a generalizer mechanism for answering the
queries that reflects erroneous presuppositions with informative messages instead

of a null answer.

7.2 Principles of Generalizer

Motro [69] proposed a query generalizer, which issues a set of more general queries
from the original query to determine whether the empty answer is genuine, or whether
the original query reflects erroneous presuppositions on behalf of the user. Conse-
quently, the procedure can be described as follows: when a query fails (with an
empty answer), its immediate generalizations are generated and attempted. If all
the immediate generalizations succeed (with nonempty answers), the original empty
answer was genuine, and the answers of the generalizations may be considered as the
partial answer of the original query. If at least one of immediate generalizations fails,
the original empty answer was fake. This procedure is continued until all significant
failures of queries are detected. (A failure of a query is considered to be significant
only if all of its generalizations succeed.) |

Motro used the SQL query language to demonstrate his approach. To generalize
a query with conjunctive normal form in the WHERE clause, in which every primitive

term is a comparison between two attributes or between an attribute and a value,

65

a set of queries was produced by weakening a single primitive term at a time. For

example, “GPA > 3.6” was replaced by “GPA > 3.4".

7.3 Motivation
We are employing the logical file organization and document type hierarchy in our
model; consequently, the user needs to specify the folder, the frame template or the
attribute in the query to retrieve the information. As mentioned before, the context
construction mechanism relieves users of the necessity to remember the precise names
(such as folder name or frame template name) of individual entities in the system.
However, since the query entered by the user is less restrictive, the response to
the query given to the user by the system may be less cooperative. In TEXPROS,
generating precise and meaningful responses is our target in the situation when empty
answers arise, and therefore the generalizer is developed by incorporating both the

folder substitution and the type substitution.

7.4 Folder Substitution
To generalize a failed query, the folder name in the query is substituted by the name
of those folders whose semantics are similar to the original folder and are relevant to
the original query. To accomplish the folder substitution, the similarity between two

folders in the logical file organization is taken into consideration.

7.4.1 Similarity Definition

Similarity (as defined in [41]) is used in the flexible interpretation such that the
values of attributes which are semantically close to an exact match with the query
condition can be obtained. We extend this concept to the similarity between folders
in the logical file organization based on their semantics (such as the content of the

folders) in our system. For instance, in the filing organization as shown in Figure

66

Level 0:

Level 1:

Level 2;

Level 3:

Level 4;

e

Dept. Affairs

Pers 1
ersonn:c Academic Affairs
[nformation
Assistants Faculty M.S.Program Ph.D.Program
T37 ',l
M.S.Students .Fm.m(:ltn Ph.D.Students
Assistantship

Jennifer

Fortune

Figure 7.1 Part of Filing Organization

67

7.1, the content of the folder “John” is more similar to the content of the folder
“Fortune” than to the content of the folder “Jim”, since both John and Fortune are
Ph.D. students and Jim is not.

Given a logical file organization (which is possibly a DAG structure), the folder
fdy which is not a subfolder of any folders is considered to be at level 0. Assume that
there is a folder fd; containing no subfolder. The folder fd; is at the level n if there
exists a path of maximal distance » from fd; at level 0 to fd;.

For example, in Figure 7.1, the “Dept. Affairs” folder (the superfolder for this
case) is at level 0. The folder “Jim” is at level 3, and the folders “Jennifer”, “Eileen”,
“Fortune”, “Mary” and “John” are at level 4. The folders “Assistants”, “Faculty”,
“M.S. Program” and “Ph.D.Program” are at level 2. The folders “M.S. Students”,
“Financial Assistantship” and “Ph.D. Students” are at level 3.

We derive the similarity between the folders from the bottom level (level n) of
the hierarchy of the logical file organization. The similarity between two folders is
set to the level of the folder which is the least common parent of both. For instance,
in Figure 7.1, the similarity between the folders “Fortune” and “John” is set to the
level of the folder “Ph.D. Students”, which is 3. For the folders, which have more
than one common parent, the similarity between the folders is calculated using the

following formula:

P -1
. N

Le+

where L. is the level of the least common parent; P. denotes the number of common
parents, and N denotes the total number of folders in the filing organization.
For instance, these are two common parents, namely, the “Ph.D. Students” and
“Assistants”, for the folders “ Fortune” and “Jennifer”; so the similarity between

them would be 3 + fg = 3.06.1

IAssume that there are totally sixteen folders in the filing organization.

68

7.4.2 Similarity in SYSTEM CATALOG

The similarities between folders may be stored in the system catalog as the system
frame instances whose type is SYSSIMILARITY as shown in Figure 7.2. The
system updates those frame instances dynamically during document filing. However,
updating the similarities in the system catalog according to every change in the filing
system is usually expensive and may not be realistic. Furthermore, it is not necessary
that the similarities among all the folders are maintained. In other words, some of
similarities have been used rarely.

One solution to this is a lazy computation approach, which computes the
similarities between folders when they need. Hence, when the generalizations of a
query are generated, a similarity generator will be called to return the most updated
similarities between folders involved in the query. 2 Requesting the similarities when

query is generalized ensures that the most updated similarities are being used.

7.4.3 Semantic and Structural Interdependency

We need to distinguish the folders which have the same similarities with a specific
folder fd. For example, the similarity of “Ph.D. Students” and “Assistants” is the
same as the similarity of “Ph.D. Students” and “Faculty”. (Both are of the level of
the folder “Dept.Affairs”.) Consider the semantic and structural interdependencies
among folders for solving the problem. Four types of interdependencies among folders
are defined: joininess, disjointness, partial_jointness and covering. Jointness holds
between two folders having common frame templates. Disjointness holds between
two folders having no common frame templates. Cowvering holds when a folder is a
superset of the union of other folders. Partial_jointness holds among a set of folders
if there exists a folder which is a subset of the union of this set of folders. The

covering and partial_jointness are considered as semantic interdependencies because

%It seems reasonable to keep the information about the levels of folders in the system
catalog,.

The corresponding frame instances for SYSSIMILARITY

IndexTerm1 IndexTerm2 IndexTmType Similarity
Fortune John Folder 3
Fortune Jennifer Folder 3.06
Fortune Eileen Folder 2
Fortune Mary Folder 1

John Mary Folder |
John Jim Folder 0

Ph.D. Students Assistants Folder 0

Ph.D. Students Faculty Folder 0

Ph.D. Students John Folder 3

M.S. Program Ph.D. Program Folder 1

M.S. Program Academic Affairs Folder 1

M.S. Students Ph.D. Students Folder 1

M.S. Students Ph.D. Program Folder 1

M.S. Students Financial Folder 2

Assistantship

Figure 7.2 Similarity in SYSTEM CATALOG

70

they deal with the content of the folders, whereas, the jointness and disjointness
are of structural interdependencies since they deal with the type of content in the
folders.

For instance, consider the folders “Ph.D. Students”, “Assistants”, and their
subfolders, such as “Fortune”, “Jennifer” and “John”, etc . Since the union of “Ph.D.
Students” and “Assistants” is the superset of the union of these subfolders, the
relationship of “Ph.D. Students” and “Assistants” with these subfolders is a covering.
However, the “Ph.D. Students” does not cover all its subfolders. The partial_joininess
holds between the folder “Ph.D. Students” and the “Assistants”, since a folder
“Jennifer” is the subset of the union of “Ph.D. Students” and “Assistants”. The
jointness holds between the folder “Fortune” and “Jennifer”, if they contain some
common frame templates, such as the “Full Transcript” of Ph.D. students. The
disjointness holds between the folder “John” and “Jim”, if they contain the frame
instances of different types.

We proceed to formally define the semantic and structural interdependencies as

follows:

Definition 7.1: Let C; be the criteria for a folder f;. Then C;(fi) must be true
for any frame instance fi to be located in the folder f;. Let ft(fi) denotes a frame

instance fi over the frame template ft.

e Covering:
Let f; be a folder with criteria C;.
Let fi,f2,--.,fin (n > 0) be a set of folders with criteria C;;,Cja,...,Cjyn,
respectively. Then the relationship between f; and fir (1 < k < n) is a covering,
or f; covers fji, if for every frame instance fi from fj; (1 <k < n),

((Ci(f) A Cn(fi)) v (C(f) A Cia(fD)) VoV (C(f) A Cyn (/) s true,

71

It should be noted that the folder f; could possibly contain some frame instances

which does not satisfy any fir (1 < k < n).

e Jointness:
Let f; and f be two folders with criteria C; and C, respectively.

Then f; and f; are joint (or satisfy the jointness condition)

of - (3)(3fi)(Ffia)(F(fir) A (i) A (Co(fir) A Ca(fi))) s true.

e Partial_jointness:
Let f; and f; be two folders with criteria C; and C, respectively. Then f; and f;
are partially joint with respect to f; {or satisfy the partial_jointness condition)
if
1) 3 a folder f; with criteria C; such that for every frame instance fi in fj,
((C1(f) A C () V (Calfi) A C5()) is true?, and
2) for each 1 < k < 2, there is at least one fi in f; such that ((Cc(fi) A C;(fi))

is true.

Note that the first condition of the partial_jointness is to consider all the frame
instances in the folder f;, and the second condition is to ensure that each of
the folder f; and f; must have at least one frame instance from f; satisfying its

criteria.

e Disjointness:
Let f; and f; be two folders with criteria C; and C; respectively.
Then f; and f, are disjoint
tf (Ci(fir) A Ca(fin)) is false for every frame instance over the same frame

template, fi; from f; and fis from fo.

31t means that f; depends on f U fo.

72

" Assistants"' "M.S.Students' ""Financial Assistantship"

fid|

fi5

depends_on
"Eileen"

_ fil
fi2]

fi3

fi4

Figure 7.3 Contents of the Folders

Before concluding this subsection, let us consider the folders “Eileen”, “Assistants”,
“M.S. Students” and “Financial Assistantship” as shown in Figure 7.3. Assume that
the folder “Eileen” contains four frame instances: there are two frame instances (say
fi; and fi,) of personnel information of being a student assistant; a frame instance
(say fi5) states that she requires to enroll as a full-time M.S. student to be able to
work as an assistant; and a frame instance (say fi,) offers her tuition fee waiver for
completing the M.S. degree. In the folder “Financial Assistantship”, it also contains
a frame instance (say fiy) of information which is irrelevant to Eileen. In Figure 7.3,
the folder “Eileen” contains the frame instances fi,, fi, fi; and fi,, and the folder
“Financial Assistantship” may contain the frame instances fi, and fi;. The abstract

folders “Assistants” and “M.S. Students” virtually contains those frame instances

73

depicted in the dotted lines which satisfy their criteria but are actually deposited in
the concrete folder “Eileen”.

We say that the folders “Assistants” and “M.S. Students” are partially joint
with respect to the folder “Eileen” since for all the frame instances in “Eileen”,
some satisfy the criteria for the “Assistants” and some satisfy the criteria for the
“M.S. Students”. The folders “Assistants” and “Financial Assistantship” are also
partially joint with respect to the folder. “Kileen”. And the folders “Assistants”,
“M.S. Students” and “Financial Assistantship” satisfy also the partial jointness
condition with respect to “Eileen”. But the folders “M.S. Students” and “Financial
Assistantship” do not satisfy the partial jointness condition with respect to “Eileen”
because some of the frame instances in the folder “Eileen”, such as fi,, fi,, do not
meet the criteria of “M.S. Students” or “Financial Assistantship”. (That is, the
combined folder of “M.S. Students” and “Financial Assistantship” does not cover
the “Eileen”.)

The folders “Assistants” and “Eileen” do not satisfy the covering condition.
In general sense, we can say that the combined folder of “Assistants” and “M.S.
Students” covers the folder “Eileen”.

For structural interdependency, in addition to the folders “Assistants” and
“M.S. Students”, the folders “M.S. Students” and “Financial Assistantship” satisfy
the jointness condition, since they contain a common frame instance (fi,) concerning
her tuition fee waived as a M.S. Student. However, the folders “Assistants” and
“Financial Assistantship” do not satisfy the jointness conditions; and therefore they
satisfy the disjointness condition. In fact, the folder “Eileen” is joint with the folder

“Assistants”, “M.S. Students”, or “Financial Assistantship”.

74

7.4.4 Rules of Folder Substitution

The folder substitution is established by the following rules:

e The system searches the system catalog and returns to the user a sequence
of folders, one by one, in the order that the first returned folder has highest
similarity to the folder in the original query (in the order with the similarity

of the highest first, etc).

e To reduce the number of irrelevant substitutions, the user can discontinue any
substitution if the returned folder is considered to be irrelevant to the query.*
For instance, in the example of section 7.6, the user rejects the substitution of
the folder “Financial Assistantship” for the “M.S. Students” folder since it is

irrelevant to the original query about the grade of the students.

e The system displays the folders which are similar to the original folder in
the sequence according to the appropriate priorities, which are based on the
semantic and structural interdependencies defined in the previous section.

For example, given the original folder, say the “Ph.D. Students”, the “Assistants”
precedes the “Faculty” in the sequence of folders returned by the system for
folder substitution, since the relationship of “Assistants” and “Ph.D. Students”
is a partial_jointness but the relationship of “Faculty” and “Ph.D. Students”

is a disjointness.

o If two folders have the same relationship with the original folder, then the
folder with the higher level number (of the logical file organization) is prior to

the other folder with the lower level number.

4We should point out that comparing the similarities between folders is more meaningful
when their context is taken into consideration.

75

For instance, given the original folder “M.S. Students”, the “Ph.D. Students”
is preceded to the “Ph.D. Program” in the sequence of folders for substitution,
since the “Ph.D. Students” is with the higher level number than the level
number of the “Ph.D. Program” folder. However, both relationships of “M.S.

Students” and “Ph.D. Students”, and of “M.S. Students” and “Ph.D. Program”

are of disjointness.

If two folders at the same level have thc same relationship with an original
folder, then the system assigns them in an arbitrary order to appear in the

sequence of folders for substitution.

7.5 Type Substitution

A failed query can be generalized by substituting other frame templates, which may

possibly be the types of frame instances retrieved by the user, for the frame template

appearing in the failed query. This process is called type substitution. The general

rules for type substitution are as follows:

Q%]

3.

Select the frame templates which are the siblings® of the original one to be
its substitutes first. For instance, in Figure 7.4, when the frame template
“Grade_Report” is specified in a failed query, it is replaced by “Full_Transcript”
or “Course_Grade_Report” which are the siblings of “Grade_Report” in the

document type hierarchy.

When all the substitutions in (1) fail, we substitute the frame templates of
its immediate parent for the original frame template . For instance, replacing

“Grade_Report” in the failed query by “Transcript”.

If (2) still fails, treat the parent as the original frame template and return to (1).

Sft; and ft; are the siblings if they have the same immediate parent.

76

Transcript
Frame
Template

Is_A Is_A

Grade_Report Course_Grade_Report Full_Transcript
Frame Frame Frame
Template Template Template

Figure 7.4 A Document Type Hierarchy

7.6 Example
The following example demonstrates our approach. As the evaluation of a given
query shown in Figure 7.5 preduces an empty answer, the system makes an attempt
to determine the reason of producing the empty answer by generalizing the original
query, which is specified in a hierarchy of éluel‘y generalizations shown in Figure 7.6.
Then the generalizations of the query are further accomplished by executing the
folder substitution.

The generalizations of the query are derived continuously by weakening the
search criteria. The search criterion of the original query include the M.S.Students
folder (F), Course_Grade_Report frame template (T), Course_No = “CI1S5792”
(C), and Grade = “A” (A). The original query is generalized to the following
queries by reducing the conditions Course-No = “CIS5792”, Grade = “A”,
Course_Grade_Report as the frame template type for the frame instances, or

M.S.Students as the folder where the frame instances to be looked for.

77

QUERY: Retrieve all the students who were enrolled in the course CIS792
and received the grade A from the ''M.S.Students'' folder.

SELECT M S.Students(Course_Grade_Report).Student_Name
FROM M.S.Students(Course_Grade_Report)
WHERE M.S.Students(Course_Grade_Report).Course_No = "CIS792"
AND
M.S.Sudents(Course_Grade_Report). Grade = "A"

Figure 7.5 The Query with Empty Answer

¢ Q1: “retrieve all the students who received a grade A in a Course_Grade_Report

from the “M.S. Students” folder. ” (FTA)

e Q2: “retrieve all the students who received a grade A for the course CIS792 in

the Course_Grade_Report.” (TCA)

Q3: “retrieve all the students who were enrolled in the course CIS792 and their

Course_Grade_Report from the “M.S. Students” folder.” (FTC)

Q4: “retrieve all the students who received a grade A for the course CIS792 in

the “M.S. Students” folder.” (FCA)

The system returns nonempty answers for the queries FTA and TCA, and no further
generalization for these two succeeded queries is needed. However, the system still
returns an empty answer for the query FTC and FCA.. Therefore, the generalizations

for these two queries are further proceeded as follows by reducing the search criteria:

e Q31: “retrieve all the students from their Course_Grade_Report in the “M.S.
Students” folder.” (FT)

o Q32: “retrieve all the students who were enrolled in the course CIS792 {rom

the Course_Grade_Report.” (TC)

FTCA

FTC i FTA i FCA i TCA

"M.S." Folder

"Course_Grade_Report" Frame Template

Course_No = "CIS792"

> o0 o=

Grade = "A"

the failed query with fake empty answer

the succeeded query

significant failure

Figure 7.6 A Hierarchy of Generalizations

79

e Q33: “retrieve all the students who were enrolled in the course CIS792 from

the “M.S. Students” folder.” (FC)

Q41: same as Q33.

Q42: “retrieve all the students who received the grade A from the “M.S.

Students” folder.” (FA)

e Q43: “retrieve all the students who were enrolled in the course CIST92 and

got grade A.” (CA)

The system still returns an empty answer for the query FC, while the other gener-
alized queries, FT, TC, FA and CA succeed with non-empty answers. The failed

query FC is generalized further to form the following two queries:
o Q33;: “retrieve all the students from the “M.S. Students” folder.” (F)

e Q332 “ retrieve all the students who were enrolled in the course CIS792.” (C)

Since both queries F and C succeed with non-empty answers, it is an indication that
the empty answer for the query FC was genuine. The significant failure of query
FC is detected. The system is saying “None of the M.S. students was enrolled in the
course CIS792!",

To find the folders containing the frame instances requested, the system calls the
similarity generator, which returns a sequence of folders in the order specified in
Section 7.4.4. A possible sequence can be “M.S. Program”, “Ph.D. Students”, etc.
As the folder in the original query is replaced by the folder “Ph.D. Students”, the
system returns non-empty answer. Finally, a cooperative answer is responded to the

user for asserting that only Ph.D. students were enrolled in the course CIS792.

CHAPTER 8

GENERALIZATION RULES

In chapter 7, we presented query generalization mechanisms for answering any queries
that reflect erroneous presuppositions with informative messages instead of simply
a null answer. The generalizations of any given failed query (i.e., with an empty
answer) are derived by incorporating both the folder and type substitutions and
weakening search criteria, and the system will be able to conclude a meaningful and
cooperative response by looking into a small subset of query generalizations. In
general, the results of evaluating these generalized subqueries contain information
which is of potential interest to the user. In this chapter, we consider the general
boolean queries! which produce empty answers. We introduce a Conjunctive Query
Graph to represent all the possible conjunctive subqueries generated using the gener-
alization algorithm. The generalization algorithm is executed based on this graph
in which each of the nodes characterizes the search criteria and the arcs direct to
the next possible search criteria to be considered. A most significant feature of the
algorithm is its ability to reduce the space of generalized subqueries by restricting
accesses to those facts which are effectively needed to answer a query. A set of rules

is applied further to attain that property..

8.1 Conjunctive Query
We first focus our discussion on conjunctive queries 2, and then consider the general

boolean queries 3 in the next section.

IThe queries consist of boolean combinations of predicates.

2The queries only use AN D operator.
3The queries use the operators AND, OR and AND NOT.

80

81

8.1.1 Conjunctive Query Graph

We define the inder term set, E = {iy,...,1,} to include all index terms or
primitive predicate terms! appearing in the original query. The power set of E,
P(E), is mapped into a Conjunctive Query Graph, which represents all the possible
conjunctive generalized subqueries by applying the generalization procedure to the
original query. The nodes of the graph refer to the conjunctive subqueries which are
distinguished between the queries with empty answers and queries with non-empty
answers.® The arcs of the graph represent the set-inclusion relationship in the power
set P(E). The leaves of the graph contain the subqueries which are denoted by
the index terms or primitive predicate terms. For instance, Figure 8.1 depicts the
Conjunctive Query Graph corresponding to the query given in Figure 7.5, where F'
and T an index terms, and C and A are primitive predicate terms.

An example of Conjunctive Query Graph for the query involving two folders is
depicted in Figure 8.2. The quest for Student_Names involves looking for any two
frame instances having the same student name (i.e., Student_Name = Name), where
one frame instance is of Admission_Acc_Letter type in the Ph.D.Students folder,
which contains Date = “Fall 19907, and the other is of Q.E.Result type in the @Q.E.

folder which contains Date Taken < “Spring 1990” and Outcome = “Pass”.

8.1.2 Generalization

The conjunctive query graph for a query represents all the possible conjunctive
subqueries generated in the generalization procedure. Given n; subqueries derived
from the original query, there are Y ,._; Hfﬂﬁ’—:’%_—ll number of conjunctive

subqueries. For determining a meaningful and cooperative response of any given

failed query, we examine only a small subset of query generalization, based on a

1A primitive predicate term is of the form i1 @iy or i{@uw, where v is a value, and @ is a

comparison operator.
STinally, some nodes of the graph are labeled by the cardinalities of the result sets

associated with the queries.

"M.S." Folder
"Course_Grade_Report" Frame Template

Course_No = "CIS792"

F
T
C
A

Grade = "A"

O Queries with empty answers

{ 3 Queries with non-empty answers

Figure 8.1 Conjunctive Query Graph Corresponding to Figure 7.5

82

83

QUERY:

Find the students who were admitted in the Fall 1990 and
passed the Qualifying Examination before Spring 1992,

FIFTIP11P12F2FT2P21P’

2

@@&@}@@

passed the Qualifying Examination before Spring 1992.
FI: Q.E.
FTI: Q.E.Result
Pl1: Date_Taken <= "Spring 1992"'
P12: Outcome = ""Pass"’

F2: Ph.D. Students
FT2: Admission_Acc_Letter
P21; Date = ""Fall 1990

P’: Student_Name = Name

Figure 8.2 Conjunctive Query Graph for the Query Involving Two Folders

84

constant propagalion strategy[101]; that is, the results of the first evaluated subqueries

are used to restrict the search space for the following ones.

Algorithm 8.1: (For generating conjunctive query graph of a given query)

The algorithm starts to form subqueries, which are of the index terms or primitive
predicate terms appeared in a given query Qo. Each of the subqueries is represented
by a node at the bottom level of the conjunctive query graph. Then the algorithm
issues the subqueries from the bottom level of the Conjunctive Query Graph® and
stops as the original query Qo is reached.

New = {Qu, Q@125 - - 5 anl}-7

m = 1. [*at the first level*/

The subqueries are issued as follows:

L If New = {Qm1,Qm2s-+» Qun, } contains the n, subqueries, each having m
terms (where n,, = [T/, ”1—_751@) in the level m of the graph, the subqueries
in the level (m + 1) issued from Q1, @ma,- .-, Qmn,, are put into Current?®
which is the union of the following subqueries:

Qmi@m; (1 £ 1< j £ ny) denotes the subquery with m + 1 terms which is

the least common parents of Q; and Qn,; in the graph.®

8All the subqueries are issued in an order such that those in the lower level of Conjunctive
Subqueries Graph are visited first.

It includes the subqueries in the bottom level.

8Furthermore, they are put into two other sets. One, called Empty, includes all the
subqueries which generate empty answers. Another, called NonEmpty, includes all the

subqueries which generate non_empty answers.
9The subqueries having at least one child in the Empty set are put in the Empty set,

which will not be processed by retrieving the database.

85

2. If Current is the original query, the system stops;
otherwise,
New + Current,
m=m++1, and

Return to (1).

8.1.3 Information Returned
In a conjunctive query graph, there are nodes containing subqueries which are
redundant or irrelevant. A subquery in a node is considered to be redundant if
it contains subquery represented by another node which yields the same result. A
subquery in a node is considered to be irrelevant with respect to the original query
if it does not reflect the intentional goal of the original query.

The following rules can be used to determine which nodes containing the
subqueries in a conjunctive query graph should be returned to the user. That is,
those nodes containing irrelevant or redundant subqueries are no longer to be in

question.

Definition 8.1: An element U of a subset W of P(FE) is a minimal element of W if

there is no element of W strictly included in U.

Definition 8.2: An element U of a subset W of P(FE) is a mazimal element of W

if no element of W strictly contains U.

86

Rule 8.1: (For the subqueries with empty answers)
The only subqueries with empty answers returned to the user are those that are

minimal elements of the set of subqueries with empty answers.

For instance, in Figure 8.1, Empty = {FC, FTC,FCA, FTC A}, which is the set of
subqueries with empty answers. The result of evaluating the conjunctive subquery
FC will be returned to the user, since it is the minimal element of the Empty set.
The fact that FTC gives an empty answer is an obvious consequence of the fact that

FC gives an empty answer.

Rule 8.2: (For the subqueries with non-empty answers)!?
The only subqueries with non-empty answers returned to the users !! are those that

are mazimal elements of the set of subqueries giving non-empty answers.

For instance, in Figure 8.1, NonEmpty = {F,T,C,A,FT,...,CA,FTA ,TCA},
which is the set of generalized subqueries with non-empty answers. Only the results
of evaluating the conjunctive subqueries FT'A and T'C A will be returned to the user
since they are the maximal elements of NonEmpty set. Intuitively, each term of a

conjunctive query which gives non-empty answer will also give non-empty answer.

1When a maximal query with non-empty result consists only of negated index terms, it
is not necessary to mention it in the answer.

HTheir cardinalities (the number of frame instances which qualify these subqueries)
are to be presented to the user at the same time, which can help the user determine the
appropriate follow-up queries.

87

Algorithm 8.2: (The generalization algorithm)

Given a failed query (i.e., it produces én empty answer) and its corresponding
conjunctive query graph (which is constructed using Algorithm 8.1), the meaningful
and cooperative responses can be derived by evaluating the subquery of each node

of the graph in the following way:
1. Traverse the graph from the highest level to the bottom level of the graph.
2. For each node at each level, evaluate its subquery.

(a) If the result of the evaluation of the subquery at the node is a non-empty
answer, then assign the subquery with the answer to the Non Empty set

and stop traversing all its descendant nodes of the lower levels.

(b) If the evaluation of the subquery at the node gives an empty answer,
then assign the subquery to the Empty set, and continue to evaluate the
subqueries of its descendant nodes of the lower levels.

A node is regarded as a minimal element (a significant failure) of the
Empty set if each of the subqueries of its immediate descendant nodes is
evaluated to be a non-empty answer, or if it is at the bottom level of the

graph.

3. Determine the maximal elements and the minimal elements of the Non Empty

set and the Empty set, respectively.

4. Analyze the maximal and minimal elements to obtain the reason for the original

query having an empty answer.

88

8.2 General Boolean Queries
Given any general boolean query, the number of generalized subqueries
(i.e., mioi Tie, %ﬁ—_u, where n; is the number of index and primitive predicate
terms) in its corresponding conjunctive query graph becomes large as it (the original
query) contains many index terms and primitive predicate terms. Then the process of
deriving a meaningful and cooperative answer for a failed query requires to evaluate
the generalized subqueries of all the nodes in the graph, and therefore, is inefficient.

In the following sections, the reduction of the space of generalized subqueries is

presented.

8.2.1 'Transformation of DNF
A disjunctive query @ (or @ is in disjunctive normal form (DNF)) is represented as
Ey+ Ey+ ...+ E,, where E; is either an index term or a primitive predicate term.

Then

Property 8.1: A disjunctive query @ gives an empty answer if and only if

(Vi, 1 <i¢<m) (E; gives an empty answer).

In general, £; can be a term which is a conjunction of primitive predicate terms and
index terms. We shall call the conjunctive parts of a disjunctive query @ the DNF
terms. This Property8.1 can be used to analyze a disjunctive query with empty
answer, by simply determining the evaluation of each of its index terms and primitive
predicate terms (or the conjunctive parts) to be empty answer. The following rules
can be applied for transforming a general boolean query into one in the disjunctive

normal form (DNF).

89

o Push the operators NOT down to the index terms or primitive predicate terms
of the boolean query by applying De Morgan’s laws repeatedly.
For instance, A~(BC) = A(=B + ~C)

where A is asserted while B and C' are negated.

o Break conjunctions into disjunctions repeatedly using the property of distribu-
tivity of AND with respect to OR until the query is of DNF.

For instance, A(—~B + -C) = A-B + A-C.

8.2.2 Restriction of the Space of Subqueries

Given a query of the disjunctive normal form, applying the Algorithm 8.1 , the
corresponding conjunctive query graph can be constructed by first extracting all the
index terms and primitive predicate terms, including the negated terms, from the
conjunctive parts of the disjunction of the query. These terms are the subqueries at
the bottom level of the conjunctive query graph. The number of subqueries in the
Conjunctive Query Graph becomes large as there are many index terms and primitive
predicate terms in the original query, but most of them are of no interest. Figure 8.1
and 8.4 depict the conjunctive query graphs for the queries FTCA and FT-C-E,

respectively.

8.2.2.1 Restrict to Only Conjunctive Compatible Subqueries
Assuming that the query is in disjunctive normal form, we can restrict the space of
the relevant subqueries of its corresponding conjunctive query graph for deriving the

meaningful and cooperative response if the query gives an empty answer.

Definition 8.3: A subquery U is compatible with Q if each index term or primitive

predicate term of U has the same signature!? as in Q.

121f an index term is negated, its signature is —, or + otherwise.

90

Rule 8.3: The generalized subqueries are restricted to only conjunctive compatible

subqueries.

According to the Rule 8.3, the Conjunctive Query Graph can be used as long as
the nodes of the bottom level of the graph are restricted to contain only the index
terms and primitive predicate terms in the disjunctive query.

For instance, the nodes of the bottom level of the graph are A, =B, and -C. It is

not necessary to consider B, C, and —A.

8.2.2.2 Using the Covering Set of DNF

Given a query Qo: A—(BC) which can be expressed in terms of A=B + A-C, there
corresponds a conjunctive query graph which contains only generalized conjunctive
compatible subqueries, as shown in Figure 8.3. The Property 8.1 postulates that
if Qo produces an empty answer provided both DNF terms. A—=B and A-C must
produce empty answers, since Qo is the disjunction of these two terms (i.e., A—~B +

A-C). This motivates us to introduce and investigate the covering set of a query.

Given a query of disjunctive normal form, there corresponds a conjunctive query

graph in which each node represents a conjunctive compatible subquery of the query.

Definition 8.4: The covering set of the query is the set of nodes in which the
subquery of each node is included in at least one of the DNF terms 2 of the query,
and the set of nodes contains all the index terms and primitive predicate terms of

the query.

13Fach conjunctive part of a disjunctive query is called DNF terms.

91

Figure 8.3 An Example of Conjunctive Compatible Subqueries
The DNF terms are the maximal elements of the coverineg set.1

Rule 8.4: The generalized subqueries are restricted to the covering set of a
disjunctive query. The subqueries not in the covering set of the query are considered

to be irrelevant.

When a ;lisjunctive query gives an empty answer, each one of its DNF terms also
gives an empty answer. Given a disjunctive query with an empty answer, the
Algorithm 8.1 for constructing a conjunctive query graph begins from selecting
all the compatible index terms and primitive predicate terms from the query and
terminates as reaching the nodes containing subqueries which are the DNTF terms of

the query.

1A subquery X is included in a DNF term Y if every index term or primitive predicate
term in X is appeared in Y. Some nodes are included in more than one DNF terms.

92

For deriving the meaningful and cooperative response of the query, Algorithm
8.2 traverses all the nodes of the covering set, starting from the nodes containing

the DNF terms of the query.

8.3 Example
The following example demonstrates our approach. Consider a query: “Find all
Ph.D. students who were not enrolled in courses CIS792 and ENG543.” The infor-
mation can be searched through the Full Transcript (denoted as T') of each student
in the Ph.D.Students folder (F) which contains no Course_No = “CI1S5792” (C)
and Course_No = “ENG543” (E). The query can be represented as F'T-(CE).

e The system first transforms the query into one which is in DNF using the rules

given in Section 8.2.1.

FT~(CE) = FT(~C + =E) = FT-C + FT~E.

o For the query F'T-C + FT-F, only the index terms F and T and the primitive
predicate terms —C and —F are taken into consideration for constructing a
conjunctive query graph. The graph contains only conjunctive compatible

subqueries and is depicted in Figure 8.4.

e Every node of the graph is associated with a subquery. Then the covering set
of the original query, which is shown in Figure 8.4, contains all the nodes, each
of whose subqueries is included in a DNF term of the given query, and every
index term and primitive predicate term in the given query must be in one of

these subqueries.

“Ph.D. Students" Folder
“Full_Transcript" Frame Template

Course_No = "CIS792"

= O = =

Course_No = "ENG543"

The subqueries are in the covering set.

Figure 8.4 Conjunctive Compatible Subqueries

93

94

8.4 Remarks

The main objective of implementing the generalization algorithm is for generating
the relevant, generalized subqueries for a given query. Each of the subqueries, which
is called a DNF term, is in conjunctive normal form. The generation of the subqueries
is based on the following observations. If a conjunctive subquery @; which is included
in a conjunctive subquery @2, gives an empty answer, then @, will give an empty
answer. It is important to avoid to process subquery (2. Similarly, if @, is not in
the covering set of a query, then @, is not in the covering set either.

Given a failed query, the algorithm can be used to construct its covering set,
from which the minimal subqueries with empty answers and mazimal subqueries with
non-empty results can be obtained. The evaluation of these minimal subqueries with
empty answers derives a more precise result, which explicates why the original query
yields an empty answer. The evaluation of these mazrimal subqueries with non-empty
results can determine the follow-up queries to be evaluated next.

Returning the cardinalities of thesé result sets instead of these result sets
themselves!® prevents the user flooded with information in these large result sets,
since the cardinalities of these sets can give enough clues to help determine the

reason of empty answers produced and the appropriate follow-up queries.

15j e., returning the number of frame instances which qualify a subquery instead of their
contents.

CHAPTER 9

SUBSTITUTION RULES

In Chapter 8, we present the generalization mechanisms to distinguish the fake empty
answer from the genuine empty answer. In this chapter, we will present a methodical
approach to analyzing the results of executing generalization which is discussed in
Chapter 8, and propose a strategic scheme of various substitutions that may need to
produce a meaningful and cooperative response according to the different situations.
A rule execution scheme is designed for efficiently applying the possible substitutions
to generate subqueries when a rule is executed.

We use rules, in first order logic, to define the orderly sequences of the folders
and frame templates, which are used to replace the folders and the frame templates

in the original query.

9.1 Determining Various Substitutions

In Chapter 8, we presented the transformation of query into one in a disjunctive
normal form, which contains compatible conjunctive subqueries, called the DNF
terms of the query. The covering set of the query is the set of subqueries such that
each of the subqueries is included in at least one of the DNF terms of the query,
and every index term and primitive predicate term of the query must be in one of
these subqueries. Then, the minimal subqueries with empty answers in the covering
set can be used to explain why the originél query yields an empty answer. And the
maximal subqueries with non-empty results in the covering set, together with the
number of frame instances involved, can be used to determine which appropriate
subqueries to be considered next.

Let Min and Max be the sets of minimal subqueries and maximal subqueries,

respectively. In this section, we will derive various criteria of different ways of substi-

95

96

tution, which may take place in the process of further generalization, by taking these
two sets of subqueries into consideration.

Given a disjunctive original query Qo, if every DNF term FTpip;...pn, in Qq
has a genuine empty answer, then the empty answer of Qg is genuine. Algorithm

9.1 is used to determine whether F'Tp;p,...pn has a genuine empty answer.

Algorithm 9.1:

A= {p1,p2,...,Pm}, where (p; for : = 1,...,m is a primitive predicate term which
includes a comparison between the attributes or between an attribute and a value);
F denotes a folder; T denotes a frame template;

FTpypy...pm € Empty;

Min denotes the minimal query set in which each subquery has an empty answer;

Maz denotes the maximal query set in which each subquery has a non-empty answer;

BEGIN
if Min = {FTpp2...pn} then{ the empty answer of the original query is genuine}
/* casel.l : only the original query is in the Min.*/
else{ /* casel.2 : the empty answer of the original query is fake.*/
if Fp1ps...pm € Maz then{ do frame template substitution in folder F }
/* casel.3 : there is information in folder F' but other types of frame templates.*/
else{ /* casel.4 : there is no information in folder F' (with different reasons).*/
if Tpips ...pm € Maz then{ do folder substitution over frame template T" }
/¥ casel.5 : there is information with type of frame template T
but not in the folder F.*/
else{ /* casel.6 : there is no information with type of frame template 7".*/
if p1p2...pm € Maz then{ casel.7 : do folder substitution

and frame template substitution }

o7

else{ /* casel.8 : there is no information satisfying all predicates
in the system.*/

Return{ there is no such information in the system }

END

9.2 Characterization of Returned Information
A logical folder organization (as shown in Figure 7.1) mimics the filing organization
perceived by the user. A document type hierarchy represents the document classifi-
cation in terms of a structural organization of the frame templates in which each of
the templates describing the properties of a class of documents. We will proceed the
folder and frame template substitutions based on the logical folder organization and
document type hierarchy, respectively. In Algorithm 9.1, we check Fpip;...pm
prior to Tp;p;...pm, because the folders have more semantic characteristics than

the frame templates.

Proposition 9.1: Let S = (F|T)(pip2 . .. pm)-!
(/) If S ¢ Maxz, then S € Empty.
(22) If S & Empty, then S € Maz.

The reason for checking only the Maz set in case!.3 and casel.5 is based on
the Proposition 9.1. Furthermore, Proposition 9.1(i) gives the explanation

for casel./ and casel.6. In casel./, the subquery Fpips...p, returns an empty

YF|T)(pip2. . .pm) reads as F(pip2...pm) or T(mip2 ... pm)-

98

answer, so there is an indication of no information satisfying all predicates in folder
F. In casel.6. the subquery Tpip;...p, returns an empty answer, so there is no

such frame instances of the frame template type T satisfying all predicates.

Proposition 9.2: If pyps ... p, € Maz, then (F|T)(p1p; ... pm) € Empty.

Proposition 9.2 states that the subquery Fp;ps .. .p,, and the subquery T'pip, ... Pm
must have empty answers when pps ... p,, is in the Mex set. So we need both folder

and frame template substitutions in casel.7.

Proposition 9.3: Let S = (F|T)(pip2.-.pm)- S € Maz and p1p2...p, € Maz,

then pip2...pn € Empty.

Proposition 9.3 supports casel.8: when the subquery Fpips...p, and the
subquery T'pips...pm return the empty answers, the subquery pip; ... p, must be
in the Empty set if it is not in the Maz set. So it concludes that there is no

information satisfying all the predicates, p1,pa2,. .., Pm, In the system.

9.3 Informal Specification of Substitutions
In Algorithm 9.1, there are three ways of folder and frame template substitutions.
In this section, various strategies for accomplishing these substitutions at different

situations are described.

99

9.3.1 Do Folder Substitution over a Specific Frame Template T

From the results of the subquery Fpip;...p, having an empty answer and the
subquery T'pipz...pn being in the Maz set, in casel.5, the system concludes that
there are frame instances of type T in the file organization, which satisfy all the
primitive predicate terms pi,pz, ..., Ppm, but there is no frame instance in the folder
F' satisfying these predicates. Thus, the folder F in the original query will be replaced
by a sequence of folders, which are associated with T, in the logical folder organi-
zation. The order of folders in the sequence to be used for substitutions is determined
in terms of the similarities, and the semantic and structural interdependencies defined

in Chapter 7:

1. From the logical folder organization, obtain an orderly sequence of folders
which are the candidates of folder substitution. The folders in the sequence

are in the order of the following:

o The folders having higher similarities with F' are prior to the folders

having lower similarities.

o For the folders which have the same similarities with F, the priorities of

taking folders into consideration are:

— the folders which are partial_joint with F' to be first,
— the folders which are not coverings of F' next, and

— the folders which are coverings of F last.

100

e For the folders, which have the same similarities and same semantic inter-
dependency with F, the folders having more common frame templates

with F' is prior to the others having less common frame templates.?

2. From the obtained sequence folders, substitute the folders, which are joint with

F over frame template 7', for F' in the original query.

Example 9.1: Given the query in the Figure 7.5, from the results of evaluating
its corresponding conjunctive query graph as shown in Figure 8.1, we conclude that
there are frame instances of type “Course_Grade_Report” in the entire system
which satisfy predicates C and A, but there is no frame instance satisfying
these predicates in the folder “M.S. Students” and other folders associated with
frame template “Course-Grade_Report”. That, “Financial Assistantship”, “M.S.
Program”, “Ph.D.Students”, “Ph.D Program”, “Academic Affairs”, etc, is a
sequence of folders which are the candidates for folder substitution. The folder
“Financial Assistantship” should be eliminated from the sequence because it does not
joint with “M.S. Students” over “Course_Grade_Report”. And the remaining folders
of the sequence which are joint with “M.S. Students” over “Course_Grade_Report”

are used to substitute for the folder “M.S. Students” in the query of Figure 7.5.

2We use the concept of structural similarity, which means that a folder containing more
instances of the same frame template type is considered as more similar. For simplicity,
the degree of structural similarity can be computed by dividing the total number of frame
instances in the folder by the number of their distinct frame template types. Thus, a folder
of highest degree of structural similarity is first taken into consideration. If two folders
have the same degree of structural similarity, then the folder having the smaller number
of frame template types will be considered first. Otherwise, one of these folders can be
selected arbitrarily as the tie-breaker.

101

9.3.2 Do Frame Template Substitution in a Specific Folder F

For casel.3, since the subquery Fpip;...pm is in the Mazx set, there are frame
instances in the folder F' satisfying all the primitive predicate terms. The system
will proceed frame template substitutions in the folder F' disregarding whether there
are frame instances of type T', which are satisfying all the predicates. A sequence
of frame templates, which are associated with F', in the document type hierarchy is

used to substitute for the frame template T in the original query.

o The frame templates in the document type hierarchy, which are used to
substitute for the frame template T in the original query, must satisfy the

following conditions:

— The frame templates are associated with the folder F'.

— The frame templates include all the attributes of the primitive predicate

termsa P1:P2y-- s Pm-

o The system assigns the order of the templates for substitutions based on the

Type Substitution Rules specified in Section 7.5.

Example 9.2: Given the following formal query:

SELECT Ph.D.Students(Grade Report).Student_Name
FROM Ph.D.Students(Grade_Report)
WHERE
Ph.D.Students(GradeReport).Course-No = “ENG543” AND

Ph.D.Students(Grade_Report).Grade = “A”;

The conjunctive query graph for this query is depicted in Figure 9.1, which yields

the following results of evaluating the subqueries:

102

F
T
E
A

"Ph.D.Students" Folder
"Grade_Report" Frame Template

Course_No = "ENG543"

Grade = "A"

O Queries with empty answers

Queries with non-empty answers

Figure 9.1 Conjunctive Query Graph of Example 9.2

103

(¢) Maz = {FTA,FEA,TEA}.
(44) Min = {FTE)}.

In analyzing the Maz and Min, the system can conclude that:

1. There are frame instances satisfying predicates £ and A in the folder F'. That
is, there is at lease one Ph.D. student who received a grade A for the course

ENG543 (from FEA in the Maz set).

2. There is no frame instance of the frame template type T, satisfying the

primitive predicate term F in the folder F' (from FTE in the Min set).

The system needs to find the appropriate frame template in the document type
hierarchy to replace the frame template “Grade_Report” in the “Ph.D. Students”
folder. A possible sequence of substifutions can be “Course_Grade_Report”,
“Full_Transcript”, “Transcript”, etc, according to the substitution rules defined
in section 7.5. Since the frame template “Full Transcript” contains all the attributes
appeared in the primitive predicate terms E and A, and is associated with the
“Ph.D. Students” folder, it substitutes for the frame template “Grade_Report” in
the original query. If the query still returns an empty answer after the substitution,
the system needs to find one of the other frame templates to be a substitute for 7'
such that the query returns non-empty answer.

From the result of TEA in the Maxz set through evaluating the conjunctive
query graph, we conclude that there are frame instances with type “Grade_Report”
in the system, which satisfy all the predicates, but they are not in the folder “Ph.D.
Students”. Although the frame template “Grade_Report” is associated with the
folder “Ph.D.Students” since the subquery F'T returns non-empty answer, and the

fact that FF'TFE is in the M:in set, we know that there is no frame instance of

104

type “Grade_Report” in the folder “Ph.D.Students”, which satisfies the primitive

predicate term “Course_No = ENG543”.

9.3.3 Do Folder and Frame Template Substitution at the Same Time
The evaluating results of the subqueries F'pip;...pn, and T'pips . ..pm having empty
answers, lead us to conclude that there is no frame instance of type T, which satisfies
all the predicates, and there is no frame instance satisfying all the predicates in the
folder F. For casel.7, since the subquery pip;...pnm is in the Maz set, there are
frame instances in the system satisfying all predicates. We try to find the folders
containing these frame instances with the unknown frame templates satisfying all
the predicates in the system using the folder and frame template substitutions.

The system proceeds substitutions as follows:

1. Do frame template substitution in the entire system.
We get the appropriate frame templates in the document type hierarchy
to substitute for the frame template T in the original query. Each of the
frame templates contains all the attributes of the primitive predicate terms
P1,D2y...,Pm. The system assigns the order of templates for substitutions

based on the Type Substitution Rules.

2. Do folder substitution.
The folder substitutions over these frame templates can be executed as in

section 9.3.1.

105
Example 9.3: Given the following formal query:

SELECT M.S. Students(Grade_Report).Student_Name

FROM M.S. Students(Grade_Report)

WHERE
M.S. Students(Grade_Report).Course_No = “CI5792” AND
M.S. Students{ Grade Report).Grade = “A”;

From the conjunctive query graph shown in Figure 9.2, we conclude that there is no
frame instance with the type “Grade_Report” in the system satisfying the predicates
C and A (from T'C in the Min set), and there is no frame instance satisfying these
predicates in the folder “M.S. Students” either (from F'C in the Min set). Then a
possible sequence of frame template substitutions can be “Course_Grade_Report”,
“Full_Transcript”, “ITranscript”’, etc. Each of these frame templates contains the
attributes “Course_-No” and “Grade”. From the previous Example 9.1, the sequence
of folder substitutions consists of “M.S. Program”, “Ph.D. Students”, “Ph.D.
Program”, “Academic Affairs”, etc. Thus, the sequence of folder over template
substitutions can be “M.S. Program” over “Course_Grade_Report”, “ M.S. Program”
over “Full_Transcript”, “ M.S. Program” over “Transcript”, ..., “Ph.D. Students”
over “Course.Grade_Report”, “Ph.D. Students ” over “Full-Transcript”, “Ph.D.
Students ” over “Transcript”, etc. The process stops with a meaningful response.
As a matter of fact, these is another sequence of folder over frame template
substitutions, in which, for each template substitute, such as “Course_Grade_-Report”,

we look into the folders “M.S. Program”, “Ph.D. Students”, etc.

F "M.S." Folder
T “Grade_Report" Frame Template
C Course_No = "CIS792"

A Grade = "A"

O Queries with empty answers

3 Queries with non-empty answers

. »
. »

106

Figure 9.2 Conjunctive Query Graph of Example 9.3

107

9.4 Formal Representation of Substitutions
We described the strategies of various folder and frame template substitutions in the
previous section. In this section, a formal representation of substitutions is given in

terms of substitution rules, which are defined in first order logic.

9.4.1 Database Structure Representation

The following meta predicates are used to define the substitution rules:
e Folder(f): f is a folder.
¢ FrameTm(ft): ftis a frame template.
e FolderQy(q, f): a folder f appears in the query g.
e FrameTmQy/(q, ft): a frame template ft appears in the query q.

o IndexTmQy(q,T): T is an index term part of the query ¢, which is of the

form Folder(FrameT emplate).
¢ PredicateQy(q,p): p is a primitive predicate term in the query q.
o ISA(z,y): a is a subtype of y in the document type hierarchy.
e Sibling(ft1, ft3): fti1 and fi, are siblings in the document type hierarchy.
o Associate(f, ft): a folder f is associated with a frame template ft.
o Att_Predicate(p,a): an attribute a appears in the predicate p.
o Att_FrameTm(ft,a): the frame template ft contains an attribute a.

o PriorFolder(f, f1, f2): a folder f; is prior to a folder f; in the sequence of

folder substitutions for the folder f.

108

o PriorFrameTm(ft, ft,, ft2): a frame template ft, is prior to a frame

template fi{; in the sequence of frame template substitutions for the frame

template ft.

o Prior_to_All(f, f’'): f' has the highest priority in the current sequence of folder

substitutions for f.

e Prior_to_All{ft, ft'): ft’ has the highest priority in the current sequence of

frame template substitutions for ft.
o EmptyAnswer(q): the result of evaluating query ¢ is an empty answer.
e Similarity(f1, f2,s): the similarity between a folder f; and a folder f; is s.

o PartialJoint(fi, f2, f): the semantfc interdependency between a folder f; and
a folder f, is a Partial_Jointness with respect to the folder f (f; and f, are

partially joint with respect to f).

e Covering(fi, f2): the semantic interdependency between a folder f; and a

folder f; is a Covering (fi covers f3).

e Disjoint(f,, f2): the structural interdependency between a folder f; and a

folder f; is a disjotntness (fi and f; are disjoint).

e Joint(fi, f2, ft): the structural interdependency between a folder f; and a
folder f; is a jointness with respect to a common frame template ft (f; and f;

are joint with respect to ft). 3

3The relationships among Disjointness, Jointness, Partial Jointness and
Covering are:
Disjoint(fi, f2) & (VY ft)(=Joint(f1, f2, ft))
Covering(f1, f2) = (3/t)(Joint(fi, f2, /1))
Covering(f;, fj1) A Covering(f;, f;2), where f; C fi1 U f;2 and fjr # empty, (k= 1,2)
= PartialJoint(f;1, fj2, f;)

109

e SubstitutedFolder(f, f;): fi; has been used to replace the folder f in the
query.

e SubstitutedFrameTm(ft, ft;): ft; has been used to replace the frame

template ft in the query.

o FrameTm_Rel Predicate(p, ft): .the frame template ft contains all the

attributes appearing in the primitive predicate term p of an original query.

o Folder_Substitution(7,7”, f, f'): the index term part T in the original query

is transformed into 7" by substituting the folder f’ for f.

¢ FrameTm_Substitution(T,T", ft, ft'): the index term part T in the original

query is transformed into 7" by substituting the frame template ft’ for ft.

e Generalize_Query(q,¢', f, f*): the original query ¢ is transformed into the

query ¢' by substituting the folder f’ for the folder f.

o Generalize_Query(q, ¢/, ft, ft'): the original query ¢ is transformed into the

query ¢’ by substituting the frame template ft' for ft.

9.4.2 Rules for Specifying the Substitution Priority

The following rules define an orderly sequence of folders and frame templates to
accomplish the substitutions. The order of folder substitutions is defined in Rule
9.1, Rule 9.2, and Rule 9.3, and the order of frame template substitutions is

defined in Rule 9.4.

Rule 9.1: (For the folders having different similarities with a specific folder f)

For (g, Folder(f;), Folder(f;), FolderQy(q, f))
Similarity(f, f1,s1) A Similarity(f, fa,s2) A 51 > 52 A
—SubstitutedFolder(f, fi) A ~SubstitutedFolder(f, f2)
— PriorFolder(f, fi, f2)

Rule 9.2: (For the folders having same similarities with a specific folder f)

For (¢, Folder(f;), Folder(f;), FolderQy(g, f))
Similarity(f, fi, 1) A Similarity(f, f2,52) A sy = sz A
((3f)(Folder(f') A PartialJoint(f, f1, f')) A
((Af")(Folder(f") A PartialJoint(f, fs, f)) A
—SubstitutedFolder(f, f;) A ~SubstitutedFolder(f, f2)
— PriorFolder(, fi, f2)

Rule 9.3: (For the folders having same similarities with a specific folder f)

For (¢, Folder(f), Folder(f;), FolderQy(q, f))
Similarity(f, fi1,s1) A Similarity(f, f2,52) A s1 = s2 A
-Covering(f, fi) A Covering(f, f2) A
- SubstitutedFolder(f, f;) A =SubstitutedFolder(f, f2)
— PriorFolder(f, fi, f2)

Rule 9.4: (For the frame templates in the document type hierarchy)

For (¢, FrameTm(ft'), FrameTm(f1"), Fra'meTmQY((Ia ft)
-SubstitutedFrameTm(ft, ft') A ~SubstitutedFrameTm(ft, ft') A
Sibling(ft, f1') AISA(ft, ft")
— PriorFrameTm(ft, ft', ft")

110

111

9.4.3 Substitution Rules

Definition 9.1 defines the current folder f’, which is prior to any folders in the
current sequence of folder substitutions for the folder f, and the current frame
template ft', which is prior to any frame templates in the current sequence of frame

template substitutions for the frame template ft.

Definition 9.1: (Prior_to_All)
Let Sy = {fi|Folder(f:)(1 <i<n)}.
Let Sy, = {ftj|FrameTm(ft;)(1 <j < m)}.

o For (¢,Folder(f’), S¢,FolderQy(q, f))
Prior_to_All(f, f') = Y(f; € $;)(1 < i < n)PriorFolder(f, f', f;)

o For (¢, FrameTm(ft'), Ss;, FrameTmQy(q, ft))
Prior_to_All(ft, ft') < Y(ft; € S;;)(1 £ j < m)PriorFrameTm(ft, fi/, ft;)

Rule 9.5 defines the folder substitution over a specific frame template ft. The folder
f' is a subsitute for the folder f in the original query, such that the index term part

T of the original query is transformed into 7".

Rule 9.5: (For the folder substitution over a specific frame template)

For (¢, Folder(f'), FolderQy(y, f), FrameTmQy(q, ft), IndexTmQy(q,T),T")
Prior_to_All(f, f') A Joint(f, f', ft)
— Folder_Substitution(T,7", f, f')

Definition 9.2 defines the concept of a frame template related to a predicate. That
is, the frame template ft contains all the attributes which appear in the predicate p

of the query q.

112
Definition 9.2: (FrameTm_Rel Predicate)

For (¢, PredicateQy(q, p), FrameTm(ft))
FrameTm Rel Predicate(p, ft) '
— VY(a)(Att_Predicate(p,a) — Att_FrameTm(fi,a))

Rule 9.6 defines the frame template substitution associated with a specific folder f.
The frame template ft’ is a subsitute for the frame template ft in the original query

g, such that the index term part T' of the original query is transformed into 7.

Rule 9.6: (For the frame template substitutions associated with a specific folder)

For (¢, Folder(f), FrameTm(ft'), FrameTmQy(q, ft), PredicateQy(q, p),
IndexTmQy(q,7T),T")
Prior_to_All(ft, ft') A FrameTm_Rel Predicate(p, ft') A Associate(f, f1)
— FrameTm Substitution(7, T”, ft, ft')

Rule 9.7 defines the frame template substitutions applied in the entire system, if

Associate(f, ft) is relaxed from Rule 9.6.

Rule 9.7: (For the frame template substitutions in the system)

For (¢, FrameTm(ft'), FrameTmQy(q, ft), PredicateQy(q, p),
IndexTmQy(q,T),T)
Prior_to_All(ft, ft') A FrameTm.Rel Predicate(p, ft')
— FrameTm_Substitution(T, T, ft, ft')

113

Rule 9.8: (The original query ¢ is transformed into ¢’ by substituting the folder f’
for f or the frame template ft’ for ft.)

« Tor (g, Folder(f"), FolderQy(q, /), IndexTmQy(q, T), T', ¢')
Prior_to_All(f, f') A Folder_Substitution(T, T", f, f')

— Generalize_Query(q, ¢, f, f')

e For (g, FrameTm(ft'), FrameTmQy(q, ft),IndexTmQy(q,T),T’,¢")
Prior_to_All(ft, ft') A FrameTm_Substitution(T, T, fi, ft')

— Generalize_Query(q, ¢/, ft, ft’)

Rule 9.9: (In the case of the generalized query ¢’ still having an empty answer,
f’ needs to be identified as SubstitutedFolder in the current sequence of folder
substitutions. Similarly, ft’ needs to be identified as SubstitutedFrameTm in the

current sequence of frame template substitutions.)

e For (¢, Folder(J"), FolderQy(q, f), ')
Prior_to_All(f, f') A Generalize_Query(q, ¢, f, f') A EmptyAnswer(¢')
— SubstitutedFolder(f, f')

e For (¢, FrameTm(ft'), FrameTmQy(q, ft),¢')
Prior_to_All(ft, ft') A Generalize_Query(q, ¢, ft, fi') A Empty Answer(q')
— SubstitutedFrameTm(f¢, ft')

CHAPTER 10
CONCLUDING REMARKS

In this dissertation, we give a full description of an office document retrieval system
with the capabilities of processing incomplete and vague queries and providing
meaningful responses to the users when empty answers arise. It has four major
components, namely, the system catalog, query transformation, browser and gener-
alizer.

An unified system catalog is proposed for storing meta-data and domain
knowledge of the document filing organization, and a thesaurus at both the system
and operational levels. These provides a centralized retrieval facility for processing
complete, incomplete and vague queries and retrieving the meaningful information
(pertaining to the users) about the entities of the database.

Upon receiving it, a complete query is transformed into a set of algebraic queries
with complete and precise information regarding to the folders (where the documents
reposited) and frame templates (the document types) from which the frame instances
(i.e., the synopses of documents) are to-be retrieved or synthesized. The query
processor executes the set of algebraic queries after its formulation.

For any incomplete or vague queries, the browser provides a mechanism for
guiding systematically the user to gain sufficient knowledge about the entities stored
in the database, by representing dynamically the snapshots of the dual model and
data elements of the document filing organization in terms of object networks. Such
information is obtained by looking up the system catalog. Thus, this allows the user
to construct a complete query from his own request.

In attempt to provide the user with meaningful and cooperative responses as
interpretations to any given failed query (i.e., with an empty answer), the gener-
alizer is employed to formulate the generalizations of the given failed query, which

are derived by methodically analyzing the results of executing generalizations and by

114

115

strategically and efficiently applying the pbssible folder and frame template substi-

tutions and weakening the search criteria.

10.1 Summary
In the following subsections, we shall summarize the significant features of the
system catalog, the query transformation and browser, and the query generalization

mechanism.

10.1.1 System Catalog

In TEXPROS, the system catalog is shared by different components of the system. It
is desired to use an uniform representation, such as frames, for describing the meta-
data and domain knowledge, and the contents of documents. This unified approach
allows to use the same methods for retrieving and managing of the knowledge at
system and operational levels and eliminates problems of duplicate knowledge and
translation between different knowledge representations. The system catalog has the

following features:

¢ The uniform representation of the system catalog and database itself provides

a natural and consistent operational approach.

¢ It includes not only the meta-data knowledge, but also the domain knowledge

to increase the effectiveness of the document retrieval system.

e It supports not only the procedure of query processing as a traditional system
catalog does, but also the query transformation, browser and generalizer

mechanisms.

— It provides significant support for refining the incomplete queries and

formulating the complete queries.

116

— It supports for deriving dynamically the object network pertaining to a
vague query, helps the browser recognizing synonyms, and supports access

by value.

— It provides the similarities, semantic and structural interdependencies,
and other meta-data knowledge (i.e., the document type hierarchy and
folder organization) to be used by the folder and frame template substi-
tutions, during the process of generalizing any failed queries for achieving

cooperative responses.

10.1.2 Query Transformation and Browser

When the user has the knowledge of the database, he can specify his request in
a formal query. However, it is difficult for the user to utilize such knowledge to
formulate precise and complete queries. The retrieval system, as a Search Comput-
erized Intermediary System [72], is designed in such a way that it allows a user to
issue an incomplete query and can help him formulate a complete one. The system

has the following features:

e The user can specify only part of the index terms he knows, and the context

construction mechanism can find the other missing index terms.

e The user can specify the subject of an index term, and then the context
R
construction mechanism can find all possible relevant index terms.

e The context construction mechanism can find the precise index terms as the

correct substitutes for the imprecise terms in the user query.

o The ambiguity of interpreting the query is reduced by having the user to specify

as much information as he knows.

117

e When the multiple index terms are found, the system tries to approach the
user for clarification, which usually is a simple and inexpensive way to avoid

presenting any irrelevant outcome to the user.

Browsing is used to be a complementary method when the systematic retrieval® is
difficult or impossible to apply. When a vague query is issued as a topic, the system
presents the user an object network, which creates an intuitive environment for

browsing, such that an incremental enhancement of user knowledge can be achieved.

e The object network, which is composed of the schema elements and data
elements, is depicted as a two dimensional network. In the vertical level, the
relationships between the objects of different types (i.e., between the folders and
frame templates, the frame templates and attributes, the attributes and values)
are described; in the horizontal level, the relationships among the objects of

same type (i.e., the folders or frame templates) are presented.

e The topics connected by operator AN D and OR comprise quite a simple query
interface. However, the very rich functionalities to achieve the user’s browsing
target are provided. The user does not have to follow the limited guiding
facility to perform retrieval tasks, and therefore he has more flexible access to

the database.

o The object network is presented to the user at any instant during the browsing
session. The instantaneous feedback of the resultant object network and
descriptions provides the user with a clear view for analyzing its information
and then leading into the further browsing directions. Therefore, the object
network providing with needed information gives the user substantial help for

constructing a formal query.

IThe user presents the request in a formal query, and the system retrieves the data
promptly [63].

118

e The browsing process is a “long-sighted” navigation, since it is possible to
reach not only the objects adjacent to the current one, but the distantly
related objects without navigating through all intermediate objects. The user
can select any object from the object network or outside the network as a next
browsing topic. The system attempts to find the possible connections of topics

or the object networks.

The browsing can be interleaved with formal querying. The combination of the

browser with the formal query results in a very effective retrieval environment.

10.1.3 Query Generalization Mechanism

In TEXPROS, since the query entered by the user is less restrictive, the response
given to the user by the system may be less cooperative. Our retrieval system
is designed to accomplish the requirements, such as the one described in [45], for

achieving cooperative responses in the situation when empty answers arise.

e In order to detect the erroneous presuppositions, the system evaluates the
results of the subqueries (the generalizations of a given failed query) which
are formed using the Conjunctive Query Graph. And a set of rules is applied
to reduce the space of generalized subqueries by excluding the redundant and
irrelevant subqueries. Therefore, only a small subset of query generalizations,
based on a constant propagation strategy, is taken into consideration in the

generalization procedure.

e To generate precise and meaningful responses for a given failed query, the
generalizer is developed by incorporating both the folder substitution and type

substitution.

119

— The similarity between folders in the logical file organization based on
their semantics is defined. The semantic and structural interdependency

are introduced to stress the semantic meaning of the relative similarity.

— The various strategies, which a.re defined in first order logic, are explored
for accomplishing substitutions at different context such that the similarity
comparison is context-sensitive[l]. Therefore, the resultant quertes,
generated by the application of various substitution strategies to the

original query, are more relevant and meaningful. 2

10.2 Potential Research Directions
In this section, we will discuss several important issues left to be resolved that

emanate from the work described in this dissertation.

10.2.1 Knowledge Representation

e With integration of the knowledge representation of retrieval system and other
subsystems, such as, document classification, filing, etc., create a centralized
document classification, extraction, filing and retrieval environment to achieve

an intelligent information system. [77]

o Investigate the automatic processes of generating the frameworks for the
various subsystems, from the system catalog, to support the document classi-

fication, filing and retrieval in the entire system.[14]

e For the sake of effectiveness and efficiency, the overall structure of system
catalog may change in a variety of ways. One likely enhancement will be

to add a “server” which maintains the system frame instances in the system

2A query is a kind of specification of a context. Disregarding to the specific query, the
substitution based only on the logical folder organization and document type hierarchy
would lead to irrelevant and meaningless outcome.

120

catalog and allows the subsystems to access only the portion of system catalog
under its authorization. Therefore, based on a client-server architecture, the
system can support three basic activities on documents classification, filing and

retrieval [9, 11, 12].

10.2.2 Intelligent Database Assistant System
In TEXPROS, each frame template, which describes the properties (or attributes) for
a class of documents, is divided into structured and unstructured parts. The contents
of an unstructured part can be free text, as opposed to that the attribute values of the
structured part are fixed length character strings. By keeping the synopses for both
textual and nontextual parts of a document in a frame instance, a user may describe
the document in a very succinct manner, without capturing all the information from
it. Retrieving and browsing such a small piece of information require much less time
than retrieving the original document. However, the information contained in frame
instances governs the scope of querying. In performing concept-based and keyword-
based retrievals or access by value querying, it is necessary for the system to guide
or assist the user to refine gradually his queries [107].

Considerable research has been discussed in the area of free text retrieval [18,
55, 56]. In our system, extending the browser mechanism to the unstructured part

of the frame instance can be developed as follows:

e Creating the links between the unstructured fields and the subjects.
Using WITH clause of the query interface as shown in Figure 3.2, a user can
specify a subject for determining its related index terms. In system catalog,
we specify the subjects which related to the index terms, including folders and
frame templates. We can identify the unstructured fields according to the

subjects.

121

e Constructing a subject network.
A subject network is a graph whose vertices correspond to subjects, and edges

correspond to relationships between those subjects.

e Augmenting the subject network onto the object network.
The subject network can be incorporated into the existing object network by

connecting the subjects to the index terms.

e Browsing through the connections.
The connections between a unstructured field and its related frame instances

can be discovered dynamically by traversing the paths.

10.2.3 An Information Sharing Environment
When using TEXPROS in a multi-user or distributed environment [6, 17, 59, 97], it
requires to share information contained in frame instances. When data commu-
nication and sharing are necessary, the system must provide mechanisms for
users to specify protocols for extracting, transmitting and exchanging information.
Basically, there are two approaches of storing documents, namely, the centralized
and distributed ones. For the distributed one, each user has his own document type
hierarchy and document filing organization created at his disposal in his own personal
TEXPROS. The other approach is to create a centralized database consisting of a
unified document type hierarchy and a document filing organization sharing by a
group of users, who have limited functional capabilities of adding (and deleting)
folders and frame instances into (from) the document filing organization, and of
extracting information from documents. Then, one must specify the protocols
for governing cooperatively the frame templates definitions, and the document
classification and categorization.

For both cases, the system catalog, as a group communication and coordination

system, must reflect the contents, extracting from documents by a user, in such a way

122

that the other users are able to retrieve these documents by specifying formal queries,
or to browse through any information that are not created by themselves. For the
distributed (centralized) case, the system catalog must be extended to one which has
capability of unifying (providing) multiple versions of document type hierarchy and
document filing organization from (to) each individual system. The query facility

for multiple databases includes the following features:

e An uniform interface is created using an uniform representation of the schema
descriptions and the query specification for retrieving data from the multiple

databases.

e For global applications, the browing mechanism can be extended to apply on
multiple versions of the document type hierarchy and filing organization. The
browser may unify the different models visually for a standard presentation,

such as, the object network.

e In distributed environment, the coexistence of different document type
hierarchies and filing organizations is allowed. Therefore, the system needs to
assist users in identifying semantically equivalent data elements and reduce

the user’s effort of creating a query.

e Coexistence of the different models preserves the autonomy of individual
database, and thus, all the existing functions for local applications would not

be changed.

10.3 Ongoing Research Topics
Finally, we will briefly describe a number of significant ongoing research in the area
of document classification, categorization, management, and many others, which
are closely related to the document retrieval system. It is desirable to bring them

together to form a complete, workable system.

123

10.3.1 Document Classification

we classify documents that are similar in properties into a document class. Each class
is associated with a type (called a frame template) which describes the propertie. for
the class of documents. The document type hierarchy exploits structural common-
alities between frame templates, which are related by specialization and general-
ization [60, 61, 107, 106]. In general, the type or class to which the document belongs
can be identified automatically by analyzing the contents, the layout structure or the
conceptual structure of any document [16, 34, 35, 52, 108]. The document classi-
fication has laid a solid foundation for the information extraction from documents.
In TEXPROS, a knowledge-based document classification subsystem is investigated
for classifying documents based upon the layout structure with brief information
extracted from the content of a document [34, 35, 108]. The subsystem employs the
knowledge acquisition tool to generate the document format trees (each of which
describes the layout structure and the content of a document) for each type of
documents. This allows to identify the type of a document by matching its layout
structure with simple content description against a small set of document format

trees.

10.3.2 Document Categorization

A frame instance represents the synopsis of a document. TEXPROS provides
facilities to define folders which are repositories of frame instances. And folders
are connected to another via the depends-on relationship, thus forming a folder
organization. Such an organization mimics the user’s real-world document filing
system. Given a frame instance, TEXPROS needs to identify a folder and place
it in that folder. This procedure is called document categorization. Similarly, in
reorganizing files, the system needs to place all the involving frame instances in

appropriate folders. To automate these operations, we adopt an agent-based archi-

124

tecture to implement TEXPROS’s categorization subsystem [104, 105, 107]. The
criteria used to categorize documents are defined in terms of attribute values and
rules. Each filing agent (or folders) is associated with a criterion (a predicate),
data structures and operations for handling the frame instances. By comparing the
contents of a frame instance against the criterion, the agent is able to distribute the
instance into its descendent folders. If the frame instance satisfies categorization
rules (i.e., a categorization rule is a well-formed formula consisting of criteria) for
many descendent folders, copies are made and sent to each of these folders. By
doing so repetitively, the frame instance will be placed in appropriate folders. Given
an agent-based architecture of a folder organization, any newly created filing agent
(i.e., a folder) for the organization requires to specify its associated criterion. This
criterion must be “well-defined” to ensure that every frame instance to be inserted
in this folder is distributed and placed exactly in it according to the categorization
rules.

The file reorganization, which may occur frequently, may render frame instances
accumulated in buffers due to poor categorization criteria. It may also cause
duplicate frame instances to be placed in the same folder. Given a collection of
folders with their criteria of an existing agent-based architecture, the file reorga-
nization must ensure that the desired categorization rules for the newly-formed
architecture are “well-defined” (that is, all frame instances are redistributed and

placed in appropriate folders based on the new rules) [117].

10.3.3 Document Management through Hypertext
The concept of hypertext concerns information management and access. Research
work is conducted which focuses on integrating hypertext functionalities into

TEXPROS for developing a direct manipulation interface that provides access

125

to all the implicit relationships among documents and the information they contain
[103].

Among many others, a visual programming environment, DocFlow VPE, is also
investigated for the purpose of specifying and automating structured office procedures
including the handling of office documents [15]. The DocFlow VPE provides a
programming interface that allows end-users doing their own programming in the

office environment.

APPENDIX A

THE STRUCTURE OF SYSTEM CATALOG

A.1 Thesaurus
In TEXPROS(an acronym for Text Proceséing System, which is an integrated system
for processing office documents), an approach to assist in the efficient information
retrieval is to provide the system with the knowledge of synonyms. This is usually
accomplished by using a thesaurus. In the system catalog, there are three major types
of components, SYSSYNONYMS(a component containing synonymous keyterms),
SYSNARROWER(a component describing the terms that have semantic associations
with the keyterms), and SYSTERMASSOC(a component describing the associations
of keyterms in terms of the names of folders, frame templates and attributes) to form

the thesaurus as shown in Figure A.1.

o The set of system frame instances in SYSCAT ALOG(SYSSYNONYMS), whose
type is specified by the system frame template SYSSYNONYMS, contains infor-
mation about synonymous terms that are relevant to the user. The KeyTerm
contains a system reserved keyterm, which is synonymous to the set of terms
that are denoted by SynKeyTerms which may exist in the user’s queries.
Let sfi = {< KeyTerm, KT >,< SynKeyTerms, {SKT,SKT,,...,SKT:} >}
be a system frame instance. Then sfi €SYSCATALOG(SYSSYNONYMS) iff
SKT; is a synonym of KT,1 <1 <k.

For example, Peter A.Ng can be referred to by one of many different terms

such as Peter Ng, Ng, Peter A. Ng and P.A.Ng as shown in Figure A.l.

o The set of system frame instances in SYSCAT ALOG(SYSNARROWERY),
whose type is specified by the system frame template SYSNARROWER,
contains a set of narrower key terms, NKT; (1 < i < n) in a user’s query

that are semantically associated with a system reserved keyterm, K'T. Let

126

127

The corresponding frame instance for SYSSYNONYMS

KeyTerm

Peter A. Ng

SynKeyTerms

Peter Ng, Ng, Peter ANg, P.A.Ng

The corresponding frame instance for SYSNARROWER

KeyTerm

Student Assistant

NarrKeyterms

Teaching Assistant, Graduate Assistant,
Research Assistant, Student Assistant

The corresponding frame instances for SYSTERMASSOC

KeyTerm Student Assistant KeyTerm Q.E.Application
IndexTm Assistants IndexTm Q.E.Application Form
IndexTmType Sfolder IndexTmType Sframe template

Figure A.1 Examples in a Thesaurus

128

sfi = {< KeyTerm, KT >,< NarrKeyTerms,{NKT\,NKT,,...,NKT};} >}
be a system frame instance. Then sfi ESYSCATALOG(SYSNARROWER) iff
NKT; is a narrower term of KT,1 <12 < k. To a certain extent, NKT; is a
specialization of the KT.

For example, in Figure A.1, Teaching Assistant, Graduate Assistant and

Research Assistant are referred to as Student Assistant.

o The frame template SYSTERMASSOC provides a mechanism for associating
each keyterm that may appear in a user’s query to an index term that is actually
residing in the database. The associated index term is classified by an index
term type, IndexTmType, which may be a folder name, a frame template
name or a attribute name. Therefore, the frame instances of the type SYSTER-
MASSOC specify index terms to be the names of folders, frame templates or
attribute names which are associated with the keyterms. Let sfi be a system
frame instance over SYSTERMASSOC. If sfi[IndexTm] is the name of a folder,
then sfilIndexTmType] = ‘folder’. If sfi[IndexTm)] is the name of a frame
template, then sfilIndexTmType| = ‘frametemplate’. If sfi[IndexTm] is
the name of an attribute, then sfilIndexTmType| = ‘atiribuie’.

In the example of the system frame instances for SYSTERMASSOC shown in
Figure A.1, Q.E.Application Form and Assistants are index terms residing in
the database, which represent a frame template name and folder name, respec-

tively.

A.2 Meta-Data
The last five components, SYSFOLDERS (a component for describing the folder
characteristics in a logical file structure), SYSFRINSTCOUNT (a component for

counting the number of frame instances associated with the frame templates

in each folder), SYSFRTEMPLATES (a component for describing the schemas of

129

frame templates), SYSATTRIBUTES and SYSATTRTYPES (components for defining
attributes used in the frame templates) are meta-data, which describe the organiza-
tional description of the database. Detailed descriptions of each of these components

are given as follows:

e The frame template SYSFOLDERS provides a mechanism to describe not
only the frame templates associated with each folder but also the logical file
structure. The latter information is represented by the Depends_On and
Parent_Of attributes.

For example, in Figure A.2, Ph.D. Students folder may contain frame instances
of the types specified by the frame templates, Admission_Acc_Letter,

Updated_Transcript, etc. This folder depends on another folder named Ph.D.
Program. This folder has two subordinate folders, and therefore, it is the
parent of two folders Q.FE. and Publication. The frame templates represented
by the FTNames are the local frame templates in the the folder FolderName
for the purpose of filing reorganization. All the frame templates associated
with the folder FolderName include not only these local frame templates but

also all the frame templates in the descendant folders of FolderName.

e The frame template SYSFRINSTCOUNT specifies the number of frame instances
whose type is FTName in the folder FolderName.
For example, in Figure A.3, there are 20 frame instances of the Q.F.Result

type and 22 frame instances of the Q.E.Application type in the folder Q.F..

¢ The frame template SYSFRTEMPLATES specifies the attributes within a frame
template. The Is_A attribute describes the document type hierarchy.
For example, in Figure A.2, the schema of a frame template, Q.F.Result

contains the attributes, Sender, Receiver, Date, Student_Name, Date_Taken

130

The corresponding frame instances for SYSFOLDERS

FolderName Q.E.

FTNames Q.E.Application Form, Q.E.Result, Q.E.Question
Depends_On Ph.D Students

Parent_Of NIL
FolderName Ph.D Students
FTNames Admission_Acc_Letter, Updated_Transcrips
Depends_On Ph.D Program
Parent_Of

- Q.E., Publication

The corresponding frame instances for SYSFRTEMPLATES

FTName Q.E.Result
AttrNames Sender, Receiver, Date, Student_Name, Date_Taken, Outcome
Is.A Memo
FTName Q.E. Application Form
AttrNames Student_Name, Date_Taken, Courses
Is_A Exam Application Form

Figure A.2 Examples of Meta-data

131

and QOutcome. In the document type hierarchy, the Q.E.Result is a subtype of

Memo type.

e The frame template SYSATTRIBUTES is used to describe the information
about each attribute in the system. Each attribute, denoted by AttrName is
associated with an attribute type denoted by AttrType in the frame template
FTName, and is bounded to a set of values, c:'led ActiveDomain. The
attributes with the same name may have different attribute types in different

frame templates.

¢ The frame template SYSATTRTYPES is to describe the information about each
attribute type denoted by AttrType, its degree denoted by Degree, and its

domain denoted by Domain.

Figure A.2, Figure A.3 and Figure A.4 are examples of the frame instances for these

five components.

A.3 Attributes Corresponding to the System Catalog

Table A.1 lists the finite set of attributes corresponding to the system catalog.

132

The corresponding frame instance for SYSFRINSTCOUNT

FTName Q.E.Result
FolderName QE
Count 20
FTName Q.E.Application
FolderName Q.E.
Count 22

Figure A.3 Examples of Meta-data(continued)

133

The corresponding frame instances for SYSATTRIBUTES

AttrName Receiver
FTName Q.E.Result
Attrtype Name
ActiveDomain Fortune, Liu
AttrName Date_Taken
FIName Q.E.Result
AttrType Date
ActiveDomain May 5 1992, May 26 1992, June 13 1992

The corresponding frame instances for SYSATTRTYPES

AttrType Name
Degree 3
Domain dom(FName) X dom(LName) X dom(MName)
AttrType Date
Degree 3
Domain dom{Month) X dom(Day) X dom(Year)

Figure A.4 Examples of Meta-data(continued)

134

Table A.1 Attributes Corresponding to the System Catalog

Attribute A dom(A) Description
AttrName SetO fCharString the name of an attribute
belonging to some frame
template
AttrType SetO fCharString the name of an attribute
type
Domain SetO fCharString x Integer a total function which
associates a domain to
each attribute
ActiveDomain | SetOfCharString x Integer the set of values an
attribute has in the DB
FolderName SetO fCharString the name of a folder in the
filing organization
FTName SetO fCharString the name of a frame template
that exists in the document type
hierarchy
FTNames dom(FTName) the name of a frame templates
' associated with a folder
Depends_On SetO fCharString a set of predecessor
folder names
Parent_Of SetO fCharString a set of successor
folder names
Is A SetOfCharString a set of frame template names
in superclass
Degree Integer the number of component
attribute types comprising
some attribute type T
KeyTerm SetOfCharString a term that may appear in a user’s
query or associated with a term
in user’s query
IndexTm SetO fCharString a term that exists in
the database
IndexTmType folder, frame template the type of IndexTm
SynKeyTerms SetO fCharString a set of keyterms that
appear in a user’s query and
_ are synonymous to KeyTerm
NarrKeyTerms SetO fCharString a set of keyterms that

appear in a user’s query and are
semantically associated with KeyTerm

APPENDIX B

RETRIEVAL ON SYSTEM CATALOG

Recall that the system catalog is considered to be a folder of several frame templates.
Each of these frame templates is a representative of a subset of system frame instances
of the system catalog. In this chapter, we restrict the following discussion to the
system catalog. We investigate the use of algebra to query the system catalog,
and we present the methods of retrieval on the system catalog using algebraic query

language.

B.1 Retrieval on SYSCAT ALOG(SYSSYNONYMS)
The SYSCAT ALOG(SYSSYNONYMS) component allows the user to use different
synonyms for a standardized keyterm. For example, in the system, Peter A. Ng is
a standardized keyterm to refer to a person. The SYSSYNOMYMS allows the user
to use different terms, such as Peter Ng, P.A.Ng, etc. to refer to the same person
and TA’s or TA to refer to a teaching assistant. Such standardized keyterms can
be obtained through the application of algebraic operators, such as projection(w),
selection(o) and unnest(x). For example, a query can be given as follows:
Get the keyterm whose synonymous set includes z (Equivalently, get the keyterm
for from SYSSYNONYMS). Its equivalent algebraic query is as follows. y is the
keyterm yielded from a given synonymous keyterm z.
f1 =04, oprermsns(SYSCAT ALOG(SYSSYNONYMS)), which is equivalent to
T1 = Capmiceytermees Bapmicestooms (SYSCAT ALOG(SYSSYNONYMS)));
if f1 # empty then
y = sfi[KeyTerm] where sfi € f1;

135

136

B.2 Retrieval on SYSCAT ALOG(SYSNARROWER)
The SYSCAT ALOG(SYSNARROWER) component provides a mechanism which
allows the user to derive a system standardized keyterm by given terms whose
semantics are closely related to it. For example, the terms Teaching Assistant,
Graduate Assistant and Research Assistant are referred to the keyterm Student
Assistant. To a certain extent, the student assistant has a broader function than the

others and they are semantically related.

An example of a query and its algebraic query is given as follows.
Get the KeyTerm whose narrow term set includes z.

f1 = 0y iceyrermens (SYSCAT ALOG(SYSNARROWER));

if f1 5 empty then

y = sfi[KeyTerm] where sfi € f1;

B.3 Retrieval on SYSCAT ALOG(SYSTERMASSOC)
In an application, the system standardized keyterms can refer to the names of
folders in which the frame instances of documents are located, or to the names of
frame templates from which the frame instances of documents are created in the
filing organization. In the process of retrieving frame instances of documents, the
retrieval process can be eased by providing the information about the folder which
contains a frame instance to be retrieved, or the frame template corresponding
to the type of the frame instance to be retrieved. However the exact names of
the folder and frame template may not necessarily be quoted by the user. The
SYSCAT ALOG(SYSTERMASSOC) provides a capability for the system to identify
the exact name of a folder and the exact name of a frame template, if a standardized

keyterm is used.

137
In the following, examples of queries and their algebraic queries are given.

o Get the index term z and its type 2t , which is associated with given keyterm
y-
f1= 04 tormey (SYSCAT ALOG(SYSTERMASSOC));
if f1 # empty then
(z, 2t) = {sfi[IndexTm)], sfi[Index Tm Type]|sfi € f1};

¢ Get the folder z which is associated with Keyterm y.

JY = 0 rermeynindestmupen soider (S YSCAT ALOG(SYSTERMASSOC));

if f1 # empty then
y = sfi[IndexTm] where sfi € f1;

e Get the frame template z which is associated with Keyterm y.

fl = a[{eyTerm:yl\huiez:TmType=jrametempla¢c(SySCATAEOg(SYSTER’MASSOC));

if f1 # empty then
y = sfi[IndexTm] where sfi € f1;

In addition to the capabilities of describing synonyms of keyterms, the semantic
associations of terms and the exact terms used as names of the folders and
frame templates, the system catalog also contains five additional components,
SYSFOLDERS, SYSFRINSTCOUNT, SYSFRTEMPLATES, SYSATTRIBUTES and
SYSATTRTYPES, for describing the document type and logical file structures, the
folder characteristics, the schemas of frame templates and the characteristics of the
attributes appeared in the frame templates, which give significant support and help
to the user during the process of extracting information from documents, and storing

and retrieving frame instances of documents.

138

B.4 Retrieval on SYSCAT ALOG(SYSFOLDERS)
The SYSCAT ALOG(SYSFOLDERS) contains frame instances, each of which
describes a folder in terms of its name, ancestor(s) and descendant(s), and the
types of synopses of documents contained in the folder. This provides the user
with the capabilities of finding the number of folders being checked for determining
whether a folder is in the system(TEXPROS), the types of frame instances contained
in a folder, the folders which are its predecessor(s) (Depend-On) and successor(s)

(Parent_Of), and all the folders that are associated with a given frame templates.

Following are examples of queries and their algebraic queries.

o Given ef, the number of folders, which are checked for determining whether

the folder z is in the system.

SYSCAT ALOG(SYSFOLDERS)));

ef = CountFoIderName(aPoIderName=z(

e Get all the children folders of z.

fl=o (SYSCAT ALOG(SYSFOLDERS));

FolderName==z

if f1 # empty then
Jfdc = {sfi[|Parent .Of|sfi € [1};

o Get all the frame templates fts associated with folder z.
GetFt(z)
Begin
f1 = 0p iernamee (SYSCAT ALOG(SYSFOLDERS));
fts = {sfi[FTNames]|sfi € f1};
fes = {sfi[Parent _Of|sfi € f1};
if fes # empty then
For each fc € fes Do
fts = fisU GetFt(fc);

139

return(fts)

end

Get all the parents folders of =.

1= 0 vemen. (SYSCAT ALOG(SYSFOLDERS));

if f1 # empty then
fdp = {sfi[Depends_On]|sfi € f1};

Get all the folders FolderNames associated with frame template ft.
GetFolder(ft)

Begin
f1 =0 rrnamenss (SYSCAT ACOG(SYSFOLDERS));
fds = {sfi[FolderName]|sfi € f1};

For each fd € fds Do

Folder Names = fds U GetPredecessor(fd);

f2 =0, 45, (SVYSCAT ALOG(SYSFRTEMPLATES));
if f2 # empty then

Begin

fts = {sA[FTName]lsfi € f2};

For each ft € fts Do

Folder Names = Folder Names U GetFolder(ft);
end; s

return(FolderNames)

end

140

GetPredecessor(fd)

Begin

F1 = O poigernames 1o (SYSCAT ALOG(SYSFOLDERS));
Jps = {sfil Depends_On]|sfi € f1};

if fps # empty then

fd = fdU GetPredecessor(fps);

return(fd)

end

B.5 Retrieval on SYSCAT ALOG(SYSFRTEMPLATES)
During the process of extracting information from documents and retrieving frame
instances of the documents, there needs a frame template z to govern the information
extraction and the retrieval based on a query by attributes. Then the existence of
such a frame template in the system, the information about its superclasses and
its attributes, and the frame templates containing the given attributes can be in
question. Given the (§YSCAT ALOG(SYSFRTEMPLATES)), this information can

be obtained as follows.

e Given e¢ft,the number of frame templates, which are checked for determining
whether a frame template z is in the system.
(o (SYSCAT ALOG(SYSFRTEMPLATES)));

eft = count

FTName FTName==z

o Get all the attributes in the frame template z.
1 = 0 ppyamee: (SYSCAT ALOG(SYSFRTEMPLATES));
if f1 # empty then
attrs = {sfi[AttrNames||sfi € f1};

141

o Get frame templates which are the superclass of frame template =.
1= 0prnamens (SYSCAT ALOG(SYSFRTEMPLATES));
if f1 # empty then
fts = {sfills-Allsfi € f1};

e Get all the frame templates which iqclude any subset of attributes att.
f1=0 4 evamesnae (SYSCAT ALOG(SYSFRTEMPLATES));
if f1 # empty then B
fts = {sfi[FTName]|sfi € f1};

B.6 Retrieval on SYSCAT ACOG(SYSATTRIBUTES)
The SYSCAT ALOG(SYSATTRIBUTES) and SYSCAT ALOG(SYSATTRTYPES)
provide the user with a detailed description of the attributes of the frame templates

and the capabilities to manipulate the attributes.

Following are examples of queries and their algebraic queries.

o Given ac, the number of attributes, which are checked for determining whether

the attribute att is in the system.
ac=count,, (o, .. (SYSCATALOG(SYSATTRIBUTES)));

o Get all the frame templates which include the attribute att of type attype.
f1 =04, vame=atinAttrType=attype(SYSCAT ALOG(SYSATTRIBUTES)));

ft =A{sfi[FTNamel|sfi € f1};

o Get all the attributes whose active domain include any subset of v.

fl=0 SYSCAT ALOG(SYSATTRIBUTES));

ActiueDomainQu(
if f1 s empty then
attrs = {sfi[AttrName]|sfi € f1};

APPENDIX C

SYSTEM CATALOG MANAGEMENT

In this chapter we describe how the system catalog is managed dynamically during

document classification and filing(categorization). We define the functions that

manage the system catalog as triggers.

C.1 System Catalog Management during Document Classification

During document classification, if a user selects a frame template which does not

exist in the system catalog, the following triggers are invoked:

1.

X

InsertFrTemplate(FTName, AttrName, Is_A):
This function will append a new frame template containing relevant infor-
mation about name of the frame te‘mplate, its attribute names, and its Is_A

relationship in the document type hierarchy as a system frame instance of

SYSCAT ACOG(SYSFRTEMPLATES).

InsertAttributes(AttrName, FTName, AttrType, ActiveDomain):
Information about any attributes of this frame template with their attribute

types and active domains that do not exist in the system must be appended as

system frame instances of SYSCAT ALOG(SYSATTRIBUTES).

InsertAttrTypes(AttrType, Degree, Domain):
Information about any attribute types that do not exist in the system must be

appended as system frame instances of SYSCAT ALOG(SYSATTRTYPES).

Insert AssocTerms(KeyTerm, FTName, IndexTmType):
This function will update the subfolder SYSCAT ALOG(SYSTERMASSOC).
It appends the frame template name, F'TName, as a value of IndexTerm in

the frame instance associated with the KeyTerm KeyTerm.

142

143

C.2 System Catalog Management during Document Filing
The primitive functions are defined in section C.2.1. In section C.2.2 various

algorithms to update the system catalog using these primitive function are described.

C.2.1 Primitive Functions
The following primitive functions are employed for manipulating system frame

instances of SYSFOLDERS type in SYSCAT ALOG(SYSFOLDERS) during document

filing.

1. InsertFolderName(folder):
This function will create a system frame instance sfi of SYSFOLDERS type in
the SYSCAT ALOG(SYSFOLDERS), in which sfi[FolderName] is the name

of a folder folder, and the values for the other attributes are NIL.

2. DeleteFolderName(folder):
This function will remove a system frame instance sfi of SYSFOLDERS type
from the SYSCAT ALOG(SYSFOLDERS), in which sfi[FolderName)] is folder.

3. InsertFTName(folder, frametemplate):
This function will append frametemplate as an element of the sfi[FTNames]

in the system frame instance sfi without duplicate, where sfi € SYSFOLDERS,

and sfi[FolderName]= folder.

4. DeleteFTName(folder, frametemplate):
This function will remove frametemplate from the set sfifFTNames],

where sfi € SYSFOLDERS, and sfi[FolderName]= folder.

5. CheckFICount(frametemplate, folder):
This function will check the number of frame instances sfi[Count],
where sfi € SYSFRINSTCOUNT, sfi[FolderName|= folder and

sfi(FTName]= frametemplate.

6.

10.

144

Insert FRINST(frametemplate, folder,num):

This function will add the value num to the sfi{Count], where

sfi € SYSFRINSTCOUNT, sfi[FolderName|= folder and

sfilFTName|= frametemplate. If =3sfi € SYSFRINSTCOUNT,
sfi[FolderName]= folder and 5ﬁ[FTName]= frametemplate, then this
function will insert a system frame instance sfi of type SYSFRINSTCOUNT,
in which sfi[FolderName|= folder, sfi[FTName]= frametemplate and

sfi[Count]= num.

DeleteFRINST(frametemplate, folder, num):

This function will subtract the value num from the sfifCount],

where sfi € SYSFRINSTCOUNT, sfi[FolderName|= folder and
sfilFTName|= frametemplate. If sfi[Count]= 0 after subtraction, this

function will delete the system frame instance sfi.

. InsertDepend(childfolder, parentfolder):

This function will append parentfolder as an element of the sfi[Depends_On]
in the system frame instance sfi without duplicate, where sfi € SYSFOLDERS,
sfi[FolderName]= childfolder.

DeleteDepend(childfolder, parentfolder):
This function will remove sfi[Depends_On] = parentfolder from the set

sfilDepends_On], where sfi € SYSFOLDERS, sfi[FolderName]= childfolder.

InsertParent(parentfolder, childfolder)

This function will append childfolder as an element of the sfi[Parent.Of] in
the system frame instance sfi without duplicate, where sfi € SYSFOLDERS,
sfi[FolderName|= parentfolder.

145

11. DeleteParent(parentfolder, childfolder):
This function will remove sfi[Parent_Of] = childfolder from the set
sfi[Parent_Of], where sfi € SYSFOLDERS, sfi[FolderName]= parenifolder.

C.2.2 Algorithms for Modifying SYSFOLDERS
In TEXPROS, an agent-based approach to automating document filing is employed
(104, 105]. Associated with each folder in the filing organization, there is a filing
agent which specifies its private data structures (called attributes) and operations (or
methods) for manipulating the data structures. The attributes specify the linkages
among folders, and the criteria for accepting frame instances reposited in folders at
the locations called output and collection. The methods include distributing and
collecting frame instances from folders to folders, modifying criteria, and so forth.
Based on these operations at the level of implementation, there are two groups
of operations at the user’s level for manipulating folders and the frame instances of
documents reposited in the folders. For the frame instances, two major operations
are the insertion of a frame instance into a folder and the deletion of a frame instance
from a folder. In the process of automating document filing, the insertion of frame
instances into proper folders can be done by distributing each of the frame instances
from a folder into one of its descendants. In dealing with folders, the operations
include the insertion of a new folder, the relocation of a folder with its contents, the
deletion of a folder with or without its contents and the merge of folders with their
contents. This section discusses operations that arise during document filing and

which require updating the subfolder SYSCAT ALOG(SYSFOLDERS).

1. The process of automatically inserting frame instances fi; into the proper folders
in the filing organization requires the distribution of each frame instance fi of
a document from a folder fd, into a folder fd., a descendant of fd,, as shown

in Figure C.1. This invokes DetermineFT(fi) to determine the type (a frame

146

template) ft of fi, and then InsertFTName(fd,, ft) will be invoked to append
the ft as a value of the FTINames of the frame instance (of SYSFOLDERS type)
whose FolderName is fd., if ft is not a value of the FTNames. The function
CheckFICount(ft, fd,) is invoked to check the number of frame instances
of type ft in folder fd,. The function DeleteFTName(fd,, ft) is invoked to
remove ft from FTNames in the frame instance associated with folder fd, if
no more frame instance of ft type are in the folder fd,. The function

DeleteFRINST(ft, fd,, 1) is invoked to reduce the number of frame instances

of type ft in folder fd,.

fi

¥

ditribute fi Z

fd
[

/ N\

Figure C.1 Distribution of Frame Instances fi,

In the filing organization, it may be desirable to distribute a set of frame
instances fi, from a folder fd, into a folder fd;. Then the sequence of actions

activated is as follows:

147

For each fi in fi,
Do ft:= DetermineFT([7),
InsertFICount(ft, fd., 1);
If ft does not appear in the FTNNames of the frame
instance of SYSFOLDERS type associated with fd,
then InsertFFTName({d,, ft);
If CheckFICount(ft, fd,)= 1
then DeleteFTName(fd,, ft);
DeleteFICount(ft, fd,, 1)

end

A special case is that, in the filing organization, it may be desirable to insert
a frame instance fi of a document into a folder fd., whose predecessor is fd,.

Then, in SYSCAT ALOG, the sequence of actions activated is as follows:

Do ft:= DetermineFT(f7);
If ft does not appear in the FT'Names of the frame
instance of SYSFOLDERS type associated with fd,
then InsertFTName(fd,, ft);
InsertFICount(ft, fd,, 1)

end

In another case is that it may be desirable to delete(or remove) a frame
instance fi of a document from a folder fd., whose predecessor is fd,. Then, in

SYSCAT ALOG, the sequence of actions activated is as follows:

148

Do ft:= DetermineFT(f7);
If CheckFICount(ft, {d.)=1
then DeleteFTName(fd,, ft);
DeleteFICount(ft, fd., 1)

end

r create a folder fdr

depending on fdp

fd, fd fd

Figure C.2 Insertion of a Folder fd,

2. In ‘the filing organization of the syétem(TEXPROS), a folder fd, may have
several descendants, fd,’s. For inserting a new folder fd. to be a child of a
folder fd, within the filing organization, as shown in Figure C.2, the system
will invoke the function InsertFolderName(fd.) for inserting a system frame
instance of SYSFOLDERS type, containing fd. as the FolderName, into
the SYSCAT ALOG(SYSFOLDERS), and then InsertDepend(fd., fd,) for

149

inserting fd, as its Depend_On. Finally, the function InsertParent(fd,,
fd.) is invoked to append fd. as a value o. Parent_Of in the frame instance
associated with the folder whose name is fd, in the SYSCAT ALOG
(SYSFOLDERS). Thus, the following actions are applied.

Do
InsertFolderName(fd,);
InsertDepend(fd., fd,);
InsertParent(fd,, fd.)

end

However, it may be desirable to insert a new folder fd, to be a child of fd, and
to be a parent of fd;’s, as shown in Figure C.3. Then after inserting a new
folder fd. to be a child of fd,, the following sequence of actions must be taken

to change fdi’s as the descendants from fd, to fd..

For each fd; in fd;’s

Do
DeleteParent(fd,, fd;);
InsertParent(fd,, fd;);
InsertDepend(fd;, fd.);
DeleteDepend({d;, fd,)

end

150

fd .

" create a folder fd «

depending on fd»
fd
__é '

and being a parent of
fd’s
fd,

fd, fdl,

Figure C.3 Insertion of a Folder fd,

3. Within the filing organization of TEXPROS, it may be desirable to disassociate
the folder fd; as the predecessor of the folder fd, and to designate the folder
fda as the predecessor of the folder fd., which may have several folders as its
descendants. To change the predecessor of the folder fd. with its contents
from fd, to fdz, as shown in Figure C.4, the function DeleteParent(fd,,
fd.) is invoked to remove the fd. from Parent_Of associated with fd; and
InsertParent(fd,, fd.) to append fd. as a value of Parent_Of associated with
fdz2. Then the function InsertDepend(fd,, fd;) and DeleteDepend(fd., fd,)
will be invoked for replacing fd;, one of the values of Depends_On associated
with fd. by the new value fd; in the SYSCAT ACLOG(SYSFOLDERS).

In summary, the sequence of actions activated is as follows:

151

from fd , o fdz

l Move a folder fd_

B

-

Figure C.4 Relocation of a Folder fd,

Do

DeleteParent(fd,, fd.);
InsertParent(fd,, fd.);

InsertDepend(fd,, fd;);
DeleteDepend(fd,, fd;)

end

152

4. In filing organization, it may be desirable to collect all the frame instances
fi, from folder fd. by its parent folder fd, and then delete the folder fd. and
its descendants, as shown in Figure C.5. All the frame template names from
the frame instances in the subtree of folder fd. are appended as the values of
FTNames of th‘é folder fd, by invoking the function Insert FTNames(fd,,
ft). Then the function DeleteParent(fd,, fd.) is invoked to remove the fd.
from the Parent_Of associated with fd,. Finally, the function DeleteFold-
erName({d) is invoked to remove the relevant information about folder fd.
and its descendants, which are the frame instances in SYSCAT ALOG

(SYSFOLDERS). In summary, the sequence of actions activated is as follows:

Delete a folder fd
fdp . .
after moving all its fi fd»
to fdr |

fdc ST

Figure C.5 Deletion of a Folder fd.

153

For each ft appeared in FTNames of the frame instance of SYSFOLDERS
type associated with fd which is either fd. or its descendants
Do
InsertFTNames(fd,, ft);
Number= CheckFICount(ft, fd);
InsertFICount(ft, f{d,, Number);
DeleteFICount(ft, f{d., Number);
DeleteParent(fd,, fd.);
For each folder fd as a value of the FolderName of the frame instances
of SYSFOLDERS type associated with fd. and its descendants
Do
DeleteFolderName(fd)

end

In filing organization, it may be desirable to collect all the frame instances fi,
from folder fd. by its parent folder fd, without deleting the folder fd.. After
processing InsertFTNames(fd,, ft), the function DeleteFTName(fd, ft) is
invoked for removing ft from FTNames in the frame instances associated with
a folder fd which is either fd. or its descendants, if no more frame instance of

ft type is in the folder fd. The sequence of actions activated is as follows:

154

For each ft appeared in FTNames of the frame instances of
of SYSFOLDERS type associated with fd which is either fd,
or its descendants

Do InsertFTNames(fd,, ft);

Number= CheckFICount(ft, fd);
InsertFICount(ft, fd,, Number);
DeleteFICount(ft, fd, Number);
DeleteFTName(fd, ft)

end

5. In filing, it may be desirable to remove a folder fd, with its contents from
the filing organization. The contents include all the frame instances and its
descendants. Assume that the folder fd, is the parent of fd.. This can be done
by using a special operation called KillFolder.

In SYSCAT ALOG, DeleteParent(fd,, fd.) is invoked for removing fd.
from the Parent_Of associated with fd,. Then DeleteFolderName(fd) is
invoked to remove the folder fd which is either fd. or its descendants from the
SYSCAT ACOG(SYSFOLDERS). A ‘special case is that if, in the filing organi-
zation, the last frame instance of a document type ft has been removed from a
folder fd, then in SYSFOLDERS, the function DeleteFTName is invoked to
delete ft from the FTNames in the frame instance associated with the folder

fd. The sequence of actions activated is as follows:

155

For each ft appeared in FTNames of the frame instances of
of SYSFOLDERS type associated with fd which is either fd,
or its descendants

Do Number= CheckFICount(ft, fd);
DeleteFICount(ft, fd, Number);
DeleteFolderName(fd);

DeleteParent(fd,, fd.)

end

6. Let the folders fd1, and fd2, be the predecessors of the folders fd; and fd;
respectively. In the filing process, it may be desirable to merge the folder fd,
and fds, to rename the resultant folder as fd., and to move fd. as a descendant

of fd,, as shown in Figure C.6 and Figure C.7.

Corresponding to the folder fd,. creatgd in the filing organization, in SYSFOLDERS,
InsertFolderName(fd.) is invoked to create a frame instance of SYSFOLDERS
type with fd. as a value of FolderName. Then InsertDepend(fd., fd,)
and InsertParent(fd,, fd.) are invoked to append fd, in the Depend_On
associated with fd., and fd, in the Parent_Of associated with fd,, respectively.
The function InsertFTNames(fd,, ft) is invoked repeatedly for inserting all
the ft’s appearing in the FTNames of the frame instances associated with fd;
and fd;, into the FTNames of the frame instance associated with fd.. The
function InsertParent(fd,, childfolder) is invoked repeatedly for inserting all
the childfolders appeared in the Parent_Of of the frame instances associated
with fd; and fdy, into the Parent_Of of the frame instances associated
with fd.. While doing this, InsertDepend(childfolder, fd.) and Delet-
eDepend(childfolder, fd;) are invoked for replacing fd, and fd, by fd. as the
value of Depend_On in the frame instances of SYSFOLDERS type associated

156

with all the childfolders of fd; and fd, by fd.. Finally, DeleteParent(fdl,,
fd;) and DeleteParent(fd2,, {d;) are invoked to disassociate fd; and fd, from
their parent fd1, and fd2,. In summary, the sequence of actions activated is as

follows:

root

fd2
fdl,, (XX N] ?

))

/ fd, / fd,

fd1 fd1 fd2, fd2,

1 i

Figure C.6 Before Merging Two Folders fd; and fd,.

InsertFolderName({d,);
InsertDepend(fd,, fd,);
InsertParent(fd,, fd.);
For each folder fdy, (1 < k < n)
Do
For each ft appearing in FTNames of the frame instances of SYSFOLDERS

type associated with fd;

157

Do
InsertFTNames(fd,, ft);
For each childfolder of the Parent_Of associated with fdj
Do
InsertParent(fd,, childfolder);
InsertDepend(childfolder, fd.);
deleteDepend(childfolder, fd;);
DeleteParent(fdl,, fd,);
DeleteParent({d2,, {d,);
DeleteFolderName(fd,);
DeleteFolderNameid,);

root

fdip

]

fdl, fd1, fd2, fd2,

Figure C.7 After Merging Two Folders fd; and fd,.

158

Note that, in the filing organization, merging folder fd;, and fd;, which have
the same parent fd,, and then renaming the resultant folder as fd., which is a

descendant of fd,, is to be considered as a special case.

C.2.3 Algorithms for Modifying SYSTERMASSOC
During document filling, the system also needs to update the subfolder

SYSCAT ALOG(SYSTERMASSOC) by invoking the following functions:

e UpdateAssocTerms(KeyTerm, OldFolderName, NewFolderName, IndexTmType):
This function replaces OldFolderName, one of the values of IndexTerm

associated with KeyTerm by the NewFolderName.

o InsertAssocTerms(KeyTerm, FolderName, IndexTmType):
This function will append FolderName as a value of IndexTerm in the frame

instance associated with KeyTerm KeyTerm.

o DeleteAssocTerms(KeyTerm, FolderName, IndexTmType):
This function will remove FolderName from IndexTerm of the frame instance

associated with KeyTerm KeyTerm.

1

2

10.

11.

REFERENCES

. T. Anwar and H. Beck, “Knowledge Mining by Imprecise Querying: A
Classification-Based Approach,” in Proceedings of the 8th Interna-
tional Conference on Data Engineering, Tempe, Arizona, pp. 622-630,
February 1992.

. E. Bertino, F. Rabitti, and S. Gibbs, “Query Processing in a Multimedia
Document System,” ACM Transactions on Office Information Systems,
vol. 6, no. 1, pp. 1-41, January 1988.

. P. Bose and M. Rajinikanth, “CARMA: A Knowledge-Based Assistant to a
Database System,” in Proceedings of the 2nd. Conference of AI Appli-
cations, pp. 462-472, October 1985.

M. Bouzeghoub and E. Metais, “SECSI: An Expert System Approach for
Database Design,” Information Processing, pp. 251-257, 1986.

B. Buckles and F. Petry, “A Fuzzy Representation of Data for Relational
Databases,” Fuzzy Sets and Systems, vol. 5, pp. 213-226, 1982.

O. Bukhres, J. Chen, A. Elmagarmid, X. Liu, and J. Mullen, “InterBase: A
Multidatabase Prototype System,” in Proceedings of ACM SIGMOD
International Conference on Management of Data, Washington, D.C.,
pp. 534-539, June 1993.

D. Campbell, D. Embley, and B. Czejdo, “Graphical Query Formulation for an
ER Model,” Data and Knowledge Engineering, vol. 2, pp. 89-121, 1987.

R. Cattell, “An Entity-Based Database Interface,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, Santa
Monica, CA, pp. 144-150, May 1980.

A. Celentano, M. Fugini, and S. Pozzi, “Knowledge-Based Retrieval of Office
Documents,” in Proceedings of the 13th ACM SIGIR International
Conference on Research and Development in Information Retrieval,
Brussels, Belgium, September 1990.

A. Celentano, M. Fugini, and S. Pozzi, “Classification and Retrieval of
Documents Using Office Organization Knowledge,” in Proceedings ACM
Conference on Organizational Computing Systems, Atlanta, Georgia,
pp- 159-164, November 1991.

A. Celentano, M. Fugini, and S. Pozzi, “Querying Office Systems about
Document Roles,” in Proceedings of the 14th ACM SIGIR International
Conference on Research and Development in Information Retrieval,
Chicago, Illinois, pp. 183-189, October 1991.

159

160

12. A. Celentano, M. Fugini, and S. Pozzi, “Conceptual Document Browsing and
Retrieval in Kabiria,” in Proceedings of ACM SIGMOD International
Conference on Management of Data, San Diego, CA, pp. 3, June 1992.

13. S. Chang and L. Leung, “A Knowledge-Based Message Management System,”
ACM Transactions on Office Information Systems, vol. 5, no. 3, pp. 213-
236, 1987.

14. H. Chen and V. Dhar, “A Knowledge-Based Approach to the Design of
Document-Based Retrieval Systems,” in Proceedings of ACM Conference
ot Office {iformnaiion Systemn, Cambridge, MA, pp. 281-290, April 1990.

15. S. Chiang, J. Wang, M. Bieber, and P. Ng, “An Event-Driven Visual
Programming Environment for Office Automation through Document
Processing,” in Proceedings of the 6th International Conference on
Software FEngineering and Knowledge FEngineering, Jurmala, Latvia,
pp. 454-461, June 1994.

16. S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa, and A. Pathria,
“Multimedia Document Presentation, Information Extraction, and
Document Formation in MINOS: A Model and System,” ACM Trans-
actions on Office Information Systems, vol. 4, no. 4, pp. 345-383, 1986.

17. W. Chu, M. Merzbacher, and L. Berkovich, “The Design and Implementation
of CoBase,” in Proceedings of ACM SIGMOD International Conference
on Management of Data, Washington, D.C., pp. 517-522, June 1993.

18. M. Consens and A. Mendelzon, “Hy*: A Hygraph-Based Query and
Visualization System,” in Proceedings of ACM SIGMOD International
Conference on Management of Data, Washington, D.C., pp. 511-516,
June 1993.

19. W. Croft and R. Rovetz, “Interactive Retrieval of Office Documents,” in
Proceedings of ACM Conference on Office Information Systems, New
York, 1988.

20. W. Croft, “User-Specified Domain Knowledge for Document Retrieval,”
in Proceedings of the 9th ACM SIGIR International Conference on
Research and Development in Information Retrieval, Pisa, Italy, pp. 201~
206, 1986.

21. W. Croft and D. Stemple, “Supporting Office Document Architecture with
Constrained Type,” in Proceedings of ACM SIGMOD International
Conference on Management of Dala, San Francisco, CA, pp. 504-509,
May 1987.

22. C. Date, “The Data Dictionary,” A Guide to INGRES, Addison-Wesley
Publishing Company, 1989.

23

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34

161

. A. D’Atri and L. Tarantino, “From Browsing to Querying,” IEEE Data
Engineering, vol. 12, no. 2, pp. 46-53, June 1989.

J. Davis and R. Bonnell, “EDICT - An Enhanced Relational Data Dictionary:
Architecture and Example,” in Proceedings of the 4th International
Conference on Data Engineering, Los Angeles, California, pp. 184-191,
February 1988.

B. Defude, Knowledge-Base System wversus Thesaurus: An Architecture
Problem about Ezpert System Design, Cambridge University Press, New
York, 1984,

R. Fiker and T. Kehler, “The Role of Frame-Based Representation in
Reasoning,” Communicetions of ACM, vol. 28, pp. 904-920, 1985.

N. Fuhr, “A Probabilistic Framework for Vague Queries and Imprecise Infor-
mation in Database,” in Proceedings of the 16th International Conference
on Very Large Data Basts, Brisbane, Australia, pp. 696-707, 1990.

N. Fuhr, “Integration of Probabilistic Fact and Text Retrieval,” in Proceedings
of the 15th ACM SIGIR International Conference on Research and
Development in Information Retrieval, Copenhagen, Denmark, pp. 211~
222, June 1992.

N. Fuhr and C. Buckley, “A Probabilistic Learning Approach for Document
Indexing,” ACM Transactions on Information Systems, vol. 9, no. 3,
pp. 223-248, July 1991.

S. Gadia, S. Nair, and Y. Poon, “Incomplete Information in Relational
Temporal Databases,” in Proceedings of 18th International Conference
on Very Large Data Bases, Vancouver, Canada, pp. 395-407, August
1992,

S. Gauch and J. Smith, “Search Improvement via Automatic Query Refor-
mulation,” ACM Transactions on Information Systems, vol. 9, no. 3,
pp. 249-280, July 1991.

S. Gibbs and D. Tsichritzis, “A Data Modeling Approach for Office Infor-
mation Systems,” ACM Transactions on Office Information Systems,
vol. 1, no. 4, pp. 299-319, 1983.

S. Gibbs and D. Tsichritzis, “Document Presentation and Query Formu-
lation in Muse,” in Proceedings of the 9th ACM SIGIR International
Conference on Research and Development in Information Retrieval, Pisa,
Italy, pp. 23-29, 1986.

. X. Hao, J. Wang, M. Bieber, and P. Ng, “A Tool for Classifying Office
Documents,” in Proceedings of the 5th International Conference on Tools
with Artificial Intelligence, Boston, MA, pp. 427-434, November 1993.

162

!

35. X. Hao, J. Wang, and P. Ng, “Nested Segmentation: An Approach for Layout
Analysis in Document Classification,” in Proceedings of the 2nd IAPR
Conference on Document Analysis and Recognition, Tsukuba Science
City, Japan, pp. 319-322, October 1993.

36. P. Hayes and S. Weinstein, “CONSTRUE/TIS: A System for Content-Based
Indexing of a Database of News Stories,” in AAAI Proceedings of the 2nd
Annuel Conference on Innovative Applications of Artificial Intelligence,
Washington, D.C., pp. 1-5, 1990.

37. C. Herot, “Spatial Management of Data,” ACM Transactions on Database
Systems, vol. 5, no. 4, pp. 493-513, December 1980.

38. W. Horak, “Office Document Architecture and Office Document Inter-
change Formats-Current Status of International Standardization,” IEEE
Computer, vol. 18, no. 10, pp. 50-60, 1985.

39. E. Horowitz and R. Williamson, “SODOS: A Software Documentation Support
Environment-its Use,” IEEE Transactions on Software Engineering,
vol. 12, no. 11, pp. 1076-1087, 1986.

40. W. Howden, “Contemporary Software Development Environments,” Commu-
nications of ACM, vol. 25, no. 5, pp. 318-329, 1982.

41. T. Ichikawa and M. Hirakawa, “ARES: A Relational Database with the
Capability of Performing Flexible Interpretation of Queries,” IEEE
Transactions on Software Fngineering, vol. 12, no. 5, pp. 624-634, May
1986.

42. T. Imielinski, “Incomplete Information in Logical Databases,” IFEFE Data
Engineering, vol. 12, no. 2, pp. 29-40, June 1989.

43. G. Jakobson, G. Lafond, E. Nyberg, and G. Piatetsky, “An Intelligent Database
Assistant,” IEEE Ezxpert, vol. 1, pp. 65-78, 1986.

44. J. Kalita, “Generating Summary Responses to Natural Language Database
Queries,” Tech. Rep. TR84-9, University of Saskatchewan, 1984.

45. M. Kao, N. Cercone, and W. Luk, “What Do You Mean “Null”? Turning Null
Responses into Quality Responses,” in Proceedings of the 3th Interna-
tional Conference on Data Engineering, Los Angeles, California, pp. 356-
362, February 1987.

46. J. Kaplan, “Cooperative Responses from a Portable Natural Language Query
System,” Artificial Intelligence, vol. 19, no. 2, pp. 165-187, 1982.

47. W. Kent, “Consequences of Assuming a Universal Relation,” ACM Trans-
actions on Database Systems, vol. 6, no. 4, pp. 539-556, 1981.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

163

H. Korth, G. Kuper, J. Feigenbaum, A. Gelder, and J. Ullman, “System/U: A
Database System Based on the Universal Relation Assumption,” ACM
Transactions on Database Systems, vol. 9, no. 3, pp. 331-347, 1984.

S. Lee, “An Extended Relational Database Model for Uncertain and Imprecise
Information,” in Proceedings of the 18th International Conference on
Very Large Data Bases, Vancouver, Canada, pp. 395-407, August 1992.

Q. Liu, “An Office Document Retrieval System with the Capability of
Processing Incomplete and Vague Queries,” Ph.D. Thesis Proposal,
Department of Computer and Information Science, New Jersey Institute
of Technology, January 1993.

Q. Liu, J. Wang, and P. Ng, “On Research Issues Regarding Uncertain Query
Processing in an Office Document Retrieval System,” Journal of Systems
Integration, vol. 3, no. 3, pp. 163-194, 1993.

E. Lutz, H. Kleist-Retzow, and K. Hoernig, “MAFIA —An Active Mail-
Filter-Agent for an Intelligent Document Processing Support,” Multi-
user Interface and Applications, Elsevier, pp. 16-32, 1990.

D. Maier, J. Ullman, and M. Vardi, “On the Foundations of the Universal
Relation Model,” ACM Transactions on Database Systems, vol. 9, no. 2,
pp. 283-308, June 1984.

T. Malone, K. Grantm, K. Lai, R. Rao, and D. Rosenblitt, “Semistructured
Messages are Surprisingly Useful for Computer-Supported Coordi-
nation,” ACM Transactions on Office Information Systems, vol. 5, no. 2,
pp- 115-131, 1987.

P. Martin, I. MacLeod, and B. Nordia, “A Design of a Distributed Full
Text Retrieval System,” in Proceedings of the 9th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 131-137, 1986.

J. Mayfield and C. Nicholas, “SNITCH: Augmenting Hypertext Documents
with a Semantic Net,” International Journal of Intelligent and
Cooperative Information Systems, vol. 2, no. 3, pp. 335-351, 1993.

K. McCoy, “Augmenting a Database Knowledge Representation for Natural
Language Generation,” in Proceedings of the 20th ACL, Toronto,
Ontario, pp. 121-128, 1982.

K. McKeown, “The TEXT System for Natural Language Generation: An
Overview.,” in Proceedings of 20th ACL, Toronto, Ontario, pp. 113-120,
1982,

59.

60.

61.

62.

63.

64.

65.

66.

67.

63.

69.

70.

164

U. Merz and R. King, “DIRECT: A Query Facility for Multiple Database,” in
Proceedings of ACM SIGMOD International Conference on Management
of Data, San Diego, CA, pp. 2, June 1992.

F. Mhlanga, “D_Model and D_Algebra: A Data Model and Algebra for Office
Documents,” Ph.D. Thesis, Department of Computer and Information
Science, New Jersey Institute of Technology, May 1993.

F. Mhlanga, J. Wang, T. Shiau, and P. Ng, “A Query Algebra for Office
Documents,” in Proceedings of the 2nd International Conference on
Systems Integration, Morristown, NJ, pp. 458-467, June 1992.

M. Morgenstern, “The Role of Constraints in Database, Expert Systems,
and Knowledge Representation,” in Proceedings of the 1st International
Workshop on Expert Database Systems, Kiawah Island, South Carolina,
pp. 351-368, October 1984.

A. Motro, “BAROQUE: A Browser for Relational Databases,” ACM Trans-
actions on Office Information Systems, vol. 4, no. 2, pp. 164-181, April
1986.

A. Motro, “Construction Queries from Tokens,” in Proceedings of the
ACM SIGMOD International Conference on Management of Data,
Washington D.C., pp. 120-131, May 1986.

A. Motro, “Extending the Relational Database Model to Support Goal
Queries,” in Proceedings of Ist International Conference on FExpert
Database Systems, Charleston, SC, pp. 129-150, April 1986.

A. Motro, “SEAVE: A Mechanism for Verifying User Presuppositions in Query
Systems,” ACM Transactions on Office Information Systems, vol. 4,
no. 4, pp. 312-330, October 1986.

A. Motro, “VAGUE: A User Interface to Relational Database that Permits
Vague Queries,” ACM Transactions on Office Information Systems,
vol. 6, no. 3, pp. 187-214, July 1988.

A. Motro, “A Trio of Database User Interfaces for Handling Vague Retrieval
Requests,” IEEFE Data Engineering, vol. 12, no. 2, pp. 54-63, June 1989.

A. Motro, “FLEX: A Tolerant and Cooperative User Interface to Databases,”
IEEE Transactions on Knowledge and Data Engineering, vol. 2, no. 2,
pp. 231-246, June 1990.

R. Oddy, “Information Retrieval through Development Environment,” Journal
of Documentation, vol. 33, pp. 1-14, 1977.

71.

I
Q]

73.

74.

75.

76.

7.

78.

79.
80.

31.

82.

83.

165

C. Parent and S. Spaccapietra, “An Algebra for a General Entity-Relationship
Model,” IEEE Transactions on Software Engineering, vol. 11, no. 7,
pp. 634-643, 1985.

K. Parsaye, M. Chignell, S. Khoshafian, and H. Wong, Intelligent Databases,
John Wiley and Sons, Inc., U.S.A., 1989.

S. Pollitt, “CANSEARCH: An Expert Systems Approach to Document
Retrieval,” Information Processing and Management, vol. 23, no. 2,
pp- 119-138, 1987.

S. Pollock, “A Rule-Based Massage Filtering System,” ACM Transactions on
Office Information Systems, vol. 6, no. 3, pp. 232-254, 1988,

H. Prade and C. Testemale, “Generalizing Database Relational Algebra for the
Treatment of Incomplete or Uncertain Information and Vague Queries,”
Information Science, vol. 34, pp. 115-143, 1984.

F. Rabitti, “A Model for Multimedia Documents,” Office Automation, pp. 227-
250, 1985.

R. Rada and B. Martin, “Augmenting Thesauri for Information Systems,”
ACM Transactions on Office Information Systems, vol. 5, no. 4, pp. 378-
392, October 1987.

C. Rolland and C. Proix, “An Expert System Approach to Information System
Design,” Information Processing, pp. 251-257, 1986.

G. Salton, Automatic Text Processing, Addison-Wesley, 1989.

L. Saxton and V. Raghavan, “Design of an Integrated Information Retrieval/
Database Management System,” [EEE Transactions on Knowledge and
Data Engineering, vol. 2, no. 2, pp. 231-246, June 1990.

R. Schank and W. Lehnert, “The Concept Content of Conversation,” in
Proceedings of the 6th International Joint Conference on Artificial Intel-
ligence, Tokyo, Japan, pp. 769-771, 1979.

P. Schauble, “Thesaurus Based Concept Spaces,” in Proceedings of the 10th
Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pp. 254-262, 1987.

~

. Shih, S. Chen, D. Hung, and P. Ng, “A Document Segmentation Classifi-
cation and Recognition System,” in Proceedings of the 2nd International
Conference on Systems Integration, Morristown, NJ, pp. 258-267, June
1992.

166

84. P. Shoval, “Expert/Consultation System for the Retrieval Database with
Semantic Network of Concepts,” in Proceedings of the 4th ACM SIGIR
International Conference on Research and Development in Information
Retrieval, pp. 145-149, 1981.

85. E. Sibley, “An Expert Database System Architecture Based on an Active and
Extensible Dictionary System,” in Proceedings of the 1st International
Workshop on Ezpert Database Systems, Kiawah Island, South Carolina,
pp. 401-422, 1986.

86. M. Siegel and S. Madnick, “A Metadata Approach to Resolving Semantic
Conflicts,” in Proceedings of the 17th International Conference on Very
Large Data Bases, Barcelona, Spain, pp. 133-145, September 1991.

87. P. Smith, S. Shute, and D. Galdes, “Knowledge-Based Search Tactics for an
Intelligent Intermediary System,” ACM Transactions on Information
Systems, vol. 7, no. 3, pp. 246-270, July 1989.

88. M. Stonebraker and J. Kalash, “TIMBER: A Sophisticated Relation Browser,”
in Proceedings of the 8th International Conference on Very Large Data
Bases, Mexico City, Mexico, pp. 1-10, September 1982.

89. M. Stonebraker, H. Stettner, N. Lynn, J. Kalash, and A. Guttman, “Document
Processing in a Relational Database System,” ACM Transactions on
Office Information Systems, vol. 1, no. 2, pp. 143-158, April 1983.

90. V. Tahani, “A Conceptual Framework for Fuzzy Query Processing - A Step
Toward Very Intelligent Database Systems,” Information Processing &
Management, vol. 13, pp. 289-303, 1977.

91. R. Thomas, H. Forsdick, T. Crowley, R. Schaaf, R. Thomlinson, V. Travers,
and G. Robertson, “Diamond: A Multimedia Message System Build on
a Distributed Architecture,” IEEE Computing, vol. 18, no. 12, pp. 65-78,
1985.

92. L. Tokuda, “Computer Assist Humans in Human Resources,” in AAAI
Proceedings of the 2nd Annual Conference on Innovative Applications
of Artificial Intelligence, Washington, D. C, pp. 31-35, 1990.

93. R. Tong, “RUBRIC: An Environment for Full Text Information Retrieval,”
in Proceedings of the 8th ACM SIGIR International Conference on
Research and Development in Information Retrieval, pp. 243-251, 1985.

94, F. Tou, M. Williams, R. Fikes, A. Henderson, and T. Malone, “RABBIT:
An Intelligent Database Assistant,” in Proceedings of the National
Conference of Al Pittsburgh, PA, pp. 314-318, August 1982.

95. D. Tsichritzis, “Form Management,” Communications of ACM, vol. 25, no. 7,
pp. 453-477, 1982,

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

167

D. Tsichritzis, S. Christodoulakis, A. Lee, and J. Vandenbroek, “A Multimedia
Office Filing System,” Office Automation, Springer-Verlag, Berlin,
pp. 43-65, 1985.

F. Tuijnman and H. Afsarmanesh, “Management of Shared Data in Federated
Cooperative Peer Environment,” International Journal of Intelligent and
Cooperative Information Systems, vol. 2, no. 4, pp. 451-473, 1993.

A. Tzvieli, “Representation and Access of Uncertain Relational Data,” IFEFE
Data FEngineering, vol. 12, no. 2, pp. 21-28, June 1989.

J. Ullman, Principles of Database Systems, Computer Science Press, 2nd ed.,
I 1982.

" »

J. Ullman, “ On Kent’s “Consequences of Assuming a Universal Relation”,
ACM Transactions on Database Systems, vol. 8, no. 4, pp. 637-643, 1983.

L. Vieile, “Recursive Axioms in Deductive Database: The Query/Subquery
Approach,” in Proceedings of the Ist International Conference on
Faxpert Database Systems, Charleston, South Carolina, April 1986,
Benjamin/Cummings, 1987.

R. Wall, “Intelligent Indexing and Retrieval: A Man—Machine Partnership,”
Information Processing and Management, vol. 16, pp. 73-90, 1980.

J. Wan, M. Bieber, J. Wang, and P. Ng, “Document Management through
Hypertext: A Logic Modeling Approach,” in Proceedings of the 27th
International Conference on System Sciences, Kauai, Hawaii, pp. 558-
568, January 1994.

J. Wang, F. Mhlanga, Q. Liu, W. Shang, and P. Ng, “Intelligent Documen-
tation Support Environment,” in Proceedings of the 5th International
Conference on Software Engineering and Knowledge Engineering, San
Francisco, CA, pp. 429-436, June 1993.

J. Wang, F. Mhlanga, Q. Liu, W. Shang, and P. Ng, “Database Support for
Software Documentation: The TEXPROS Project,” To appear as a book
chapter in Software Automation and Productivity Improvement, 1995.

J. Wang, F. Mhlanga, and P. Ng, “A New Approach to Modeling Office
Documents,” ACM SIGOIS Bulletin, vol. 14, no. 2, pp. 46-55, December
1993.

J. Wang and P. Ng, “TEXPROS: An Intelligent Document Processing
System,” International Journal of Software Engineering and Knowledge
Engineering, vol. 2, no. 2, pp. 171-196, June 1992,

108.

109.

110.

111.

112.

113.
114.

115.

116.

117.

118.

168

C. Wei, J. Wang, and P. Ng, “A Knowledge Based Document Classification
Tool,” in Proceedings of the 3rd International Conference on Systems
Integration, Sao Paulo, Brazil, pp. 1166-1175, August 1994.

K. Whang, A. Ammann, A. Bolmarcich, M. Hanrahan, G. Hochgesang,
K. Huang, A. Khorasani, R. Krishnamurthy, G. Sockut, P. Sweeney,
V. Waddle, and M. Zloof, “Office-by-Example: An Integrated Office
System and Database Manager,” ACM Transactions on Office Infor-
mation Systems, vol. 5, no. 4, pp. 393-427, 1987.

D. Woelk, W. Kim, and W. Luther, “An Object-Oriented Approach to
Multimedia Databases,” in Proceedings of ACM SIGMOD International
Conference Mangement Data, Washington, D. C, pp. 311-325, 1986.

H. Wong and I. Kuo, “GUIDE: Graphical User Interface for Database Explo-
ration,” in Proceedings of the 8th International Conference on Very Large
Data Bases, Mexico City, Mexico, pp. 1-10, September 1982.

X. Wu and T. Ichikawa, “KDA: A Knowledge-Based Database Assistant with
a Query Guiding Facility,” IEEFE Transactions on Knowledge and Date
Engineering, vol. 4, no. 5, pp. 443-453, October 1992.

L. Zadeh, “Fuzzy Sets,” Information and Control, vol. 3, pp. 177-200, 1965.

L. Zadeh, “Fuzzy Sets as a Basis for a Theory of Possibility,” Fuzzy Sets and
Systems, vol. 1, no. 1, pp. 3-28, 1978.

M. Zemankova, “FIIS: A Fuzzy Intelligent Information System,” IEEE Data
Engineering, vol. 12, no. 2, pp. 11-20, June 1989.

M. Zemankova and A. Kandel, “Implementing Imprecision in Information
Systems,” Information Science, vol. 37, no. 2, pp. 107-141, December
1985.

Z. Zhu, J. McHugh, J. Wang, and P. Ng, “A Formal Approach to
Modeling Office Information Systems,” To appear in Journal of Sysiems
Integration, vol. 4, no. 4, 1994,

M. Zloof, “Query-by-Example: A Database Language,” IBM System Journal,
vol. 16, no. 4, pp. 324-343, 1977.

	An office document retrieval system with the capability of processing incomplete and vague queries
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Motivation and Related Work
	Chapter 3: Overall Architecture of Retrieval System
	Chapter 4: System Catalog
	Chapter 5: Query Transformation
	Chapter 6: Browser
	Chapter 7: Generalizer
	Chapter 8: Generalization Rules
	Chapter 9: Substitution Rules
	Chapter 10: Copncluding Remarks
	Appendix A : The Structure of System Catalog
	Appendix B: Retrieval on System Catalog
	Appendix C: System Catalog Management
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

