
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Fall 1994

An office document retrieval system with the capability of An office document retrieval system with the capability of

processing incomplete and vague queries processing incomplete and vague queries

Qianhong Liu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Liu, Qianhong, "An office document retrieval system with the capability of processing incomplete and
vague queries" (1994). Dissertations. 1091.
https://digitalcommons.njit.edu/dissertations/1091

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1091?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University M icrofilms International
A Bell & H owell Information C o m p a n y

3 0 0 North Z e e b R oad . Ann Arbor. Ml 4 8 1 0 6 -1 3 4 6 USA
3 1 3 .'7 6 1 -4 7 0 0 8 0 0 /5 2 1 -0 6 0 0

O rder N u m b e r 9514439

An office document retrieval system w ith the capability of
processing incom plete and vague queries

Liu, Qianhong, Ph.D.

New Jersey Institute of Technology, 1994

C o p y r ig h t © 1 9 9 4 b y L iu , Q ian h on g . A ll r ig h ts reserv ed .

U M I
300 N. Zecb Rd.
Ann Arbor, MI 48106

ABSTRACT

AN OFFICE DOCUMENT RETRIEVAL SYSTEM
W ITH THE CAPABILITY OF PROCESSING

INCOMPLETE AND VAGUE QUERIES

b y
Qianhong Liu

TEXPROS (TEXt PROcessing System) is an intelligent document processing

system. The system is a combination of filing and retrieval systems, which supports

storing, classifying, categorizing, retrieving and reproducing documents, as well

as extracting, browsing, retrieving and synthesizing information from a variety of

documents. This dissertation presents a retrieval system for TEXPROS, which

is capable of processing incomplete or vague queries and providing semantically

meaningful responses to the users. The design of the retrieval system is highly

integrated with various mechanisms for achieving these goals. First, a system catalog

including a thesaurus is used to store the knowledge about the database. Secondly,

there is a query transformation mechanism which consists of context construction

and algebraic query formulation modules. Given an incomplete query, the context

construction module searches the system for the required terms and constructs a

query that has a complete representation. The resulting query is then formulated

into an algebraic query. Thirdly, in practice, the user may not have a precise notion

of what he is looking for. A browsing mechanism is employed for such situations

to assist the user in the retrieval process. W ith the browser, vague queries can be

entered into the system until sufficient information is obtained to the extent that the

user is able to construct a query for his request. Finally, when processing of queries

responds with an empty answer to the user, a query generalization mechanism is used

to give the user a cooperative explanation for the empty answer. The generalizations

of any given failed queries (i.e., with an empty answer) are derived by applying both

the folder and type substitutions and weakening the search criteria in the original

query. An efficient way is investigated for determining whether the empty answer

is genuine and whether the original query reflects erroneous presuppositions, and

therefore answering any failed query with a meaningful and cooperative response. It

incorporates with a methodical approach to reducing the search space of generalized

subqueries by analyzing the results of executing the query generalization and by

efficiently applying the possible substitutions in a query to generate a small subset

of relevant subqueries which are to be evaluated.

AN OFFICE DOCUM ENT RETRIEVAL SYSTEM
W ITH THE CAPABILITY OF PROCESSING

INCOMPLETE AN D VAGUE QUERIES

by
Qianhong Liu

A Dissertation
Subm itted to the Faculty of

New Jersey Institute of Technology
Partial Fulfillment of the Requirements for the Degree

Doctor of Philosophy

Department of Computer and Information Science

October 1994

Copyright © 1994 by Q ianhong Liu

ALL RIGHTS RESERVED

APPROVAL PAGE

AN OFFICE DOCUMENT RETRIEVAL SYSTEM WITH

THE CAPABILITY OF PROCESSING INCOMPLETE AND VAGUE QUERIES

Qianhong Liu

Dr. /Peter A. Ng, Dissertation Advisor Date
Chairperson and Professor of Computer and
Information Science, NJIT

Dr. Jar' L. Wang, Dissertation Co-Advis9f Date
Assist t ofessor of Computer and Information Science, NJIT

Dr. James A.M. McHugh, Committee Member Date
Associate Chairperson and Professor of Computer and
Information Science, NJIT

Dr. Murray Turoff!6ommittee nber / sate
Distinguished Professor of Co puter and Information Science
and Management, NJIT

ES-rftedond TYeh:Co6nittee Member Date
Chair an, International Software Systems, Inc.

BIOGRAPHICAL SKETCH

Author: Qianhong Liu

Degree: Doctor of Philosophy

Date: October 1994

Undergraduate and Graduate Education:

s Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1994

• Master of Science in Computer Science,
Beijing University, P.R.China, 1987

e Bachelor of Science in Computer Science,
Beijing Information Technology Institute, P.R.China, 1985

Major: Computer Science

Presentations and Publications:

Q.H. Liu, J.T.L. Wang, and P.A. Ng, "On Research Issues Regarding Uncertain
Query Processing in an Office Document Retrieval System," Journal of Systems
Integration, vol. 3, no. 2, pp. 163-194, June 1993.

Q.H. Liu, J.T.L. Wang, and P.A. Ng, "An Office Document Retrieval System with
the Capability of Processing Incomplete and Vague Queries," In Proceedings
of the 5th International Conference on Software Engineering and Knowledge
Engineering, San Francisco, CA, pp. 11-17, June 1993.

J.T.L. Wang, F.S. Mhlanga, Q.H. Liu, W.C. Shang, and P.A. Ng, "An Intel-
ligent Documentation Support Environment," In Proceedings of the 5th Inter-
national Conference on Software Engineering and Knowledge Engineering, San
Francisco, CA, pp. 429-436, June 1993.

J.T.L. Wang, F.S. Mhlanga, Q.H. Liu, W.C. Shang, and P.A. Ng, "Database
Support for Software Documentation: The TEXPROS Project," To appear as
a book chapter in Software Automation and Productivity Improvement, 1995.

iv

This dissertation is dedicated
to

my parents
Fuzi Liu & J ian ting Zhang.

v

ACKNOWLEDGMENT

I am particu larly grateful to my dissertation advisor, Professor Peter A. Ng,

for his insightful guidance and encouragem ent th roughout this research and his

invaluable efforts in im proving th e w riting of this d issertation. T hanks also go to

Professor Jason T.L. W ang for his suggestion on earlier com ponents of this research.

I would also like to thank the individual com m ittee m embers. Professor

M urray Turoff gave extensive com m ents on various issues, including incom plete and

conflicting data . Professor Jam es A.M. McHugh and Dr. Raym ond T. Yeh provided

a thorough review of th e en tire dissertation.

This research was supported in part by New Jersey In s titu te of Technology and

by a grant from AT&T Foundation.

TABLE OF CONTENTS

Chapter Page

1 IN T R O D U C T IO N .. 1

1.1 T E X P R O S ... 3

1.2 P re lim in a r ie s .. 4

1.2.1 The Retrieval M ech an ism s.. 7

1.2.2 The System C a ta lo g ... 8

1.3 O rganization of the D isse rta tio n ... 8

2 M OTIVA TION AND RELATED W O R K .. 10

2.1 Query F o rm u la tio n .. 10

2.2 Incom plete and Vague Q u e r ie s .. 13

2.3 T he R epresentation of M eta-da ta Knowledge and Domain Knowledge
in th e Retrieval S y s te m .. 14

3 OVERALL A R C H IT E C T U R E O F RETRIEV AL S Y S T E M 17

4 SYSTEM C A T A L O G .. 21

4.1 Form alism of th e System C a ta lo g .. 21

4.2 T he Novelty of the System C atalog in T E X P R O S 23

4.3 System Catalog M an ag em en t.. 24

5 QUERY T R A N S F O R M A T IO N ... 26

5.1 C ontext C o n s tru c t io n ... 27

5.2 A lgebraic Q uery F o rm u la tio n ... 32

5.3 E x a m p le .. 34

6 B R O W S E R .. 37

6.1 O bject N e tw o rk ... 38

6.2 A rchitecture of B row ser.. 41

6.3 Browsing in T E X P R O S .. 43

6.4 Topic I n t e r p r e t e r ... 44

vii

Chapter Page

6.5 O bject Network C o n s tru c to r .. 49

6.5.1 Form al Definition for the O bject N e tw o rk 49

6.5.2 C onnecting M ultiple O bject N etw o rk s ... 51

6.6 E x a m p le s ... 54

7 G E N E R A L IZ E R ... 62

7.1 T he Design of O ur System: An Enhanced G e n e ra l iz e r 63

7.2 Principles of G e n e ra liz e r ... 64

7.3 M o tiv a tio n .. 65

7.4 Folder S u b s ti tu t io n ... 65

7.4.1 Sim ilarity D e f in it io n .. 65

7.4.2 Sim ilarity in SYSTEM C A T A L O G .. 68

7.4.3 Sem antic and S tructu ral In te rd e p e n d e n c y 68

7.4.4 Rules of Folder Substitu tion ... 74

7.5 T ype S u b s titu tio n .. 75

7.6 E x a m p le ... 76

8 G EN ERA LIZA TIO N RULES ... 80

8.1 C onjunctive Q u e r y .. 80

8.1.1 C onjunctive Query G r a p h ... 81

8.1.2 G eneralization ... 81

8.1.3 Inform ation R e tu r n e d ... 85

8.2 General Boolean Q u e r ie s .. 88

8.2.1 Transform ation of D N F .. 88

8.2.2 R estriction of the Space of S u b q u e rie s .. 89

8.3 E x a m p le ... 92

8.4 R e m a r k s ... 94

9 SU B ST ITU T IO N R U L E S ... 95

9.1 D eterm ining Various S u b s ti tu t io n s ... 95

viii

Chapter Page

9.2 C haracterization of R eturned In fo rm a tio n ... 97

9.3 Informal Specification of S u b s t i tu t io n s ... 98

9.3.1 Do Folder Substitu tion over a Specific Fram e Tem plate T 99

9.3.2 Do Fram e Tem plate Substitu tion in a Specific Folder F 101

9.3.3 Do Folder and Fram e Tem plate S ubstitu tion a t the Same T im e 104

9.4 Formal R epresentation of S u b s titu tio n s .. 107

9.4.1 D atabase S tructu re R e p re sen ta tio n ...107

9.4.2 Rules for Specifying the Substitu tion P rio rity 109

9.4.3 Substitu tion R u le s .. I l l

10 CONCLUDING R E M A R K S ...114

10.1 S u m m a ry ... 115

10.1.1 System C a ta lo g .. 115

10.1.2 Query Transform ation and B row ser...116

10.1.3 Q uery G eneralization M e c h a n ism .. 118

10.2 Poten tial Research D irec tions .. 119

10.2.1 Knowledge R e p re se n ta tio n .. 119

10.2.2 Intelligent D atabase A ssistant S y s te m ... 120

10.2.3 An Inform ation Sharing E n v iro n m e n t.. 121

10.3 Ongoing Research T o p ic s .. 122

10.3.1 D ocum ent C lassification... 123

10.3.2 D ocum ent C ategoriza tion ... 123

10.3.3 D ocum ent M anagem ent through H y p e r te x t 124

A PPE N D IX A TH E STR U C TU R E OF SYSTEM C A T A L O G 126

A PPE N D IX B RETRIEV A L ON SYSTEM CATALOG 135

A PPE N D IX C SYSTEM CATALOG M A N A G E M E N T .. 142

R EFER E N C E S .. 159

ix

LIST OF TABLES

Table Page

5.1 Operators of the XLAlgebra... 33

A .l Attributes Corresponding to the System C a ta lo g ... 134

x

LIST OF FIGURES

Figure Page

1.1 A Folder Containing Fram e Instances Regarding Qualifying Exam inations 5

3.1 O verall A rc h ite c tu re .. 17

3.2 Q uery I n te r f a c e .. 18

3.3 An Exam ple of the Formal Q u e ry .. 19

3.4 An Exam ple of th e Vague Q u e r y .. 20

4.1 A System Catalog S t r u c t u r e ... 22

5.1 An Exam ple of the Formal Q u e ry ... 27

5.2 Q uery T ran sfo rm atio n ... 28

5.3 An Exam ple of Context C onstruction A p p lic a tio n ... 36

6.1 O bject N e tw o rk .. 39

6.2 A rchitecture of B row ser.. 42

6.3 C onnecting M ultiple O bject Networks by (a)ANDing Fram e Tem plates
and (b)O R ing Frame T e m p la te s .. 53

6.4 C onstructing an O bject N e tw o rk .. 56

6.5 Connecting M ultiple O bject Networks by Unifying the ir Com m on Nodes 59

6.6 Connecting M ultiple O bject Networks by Adding depends .on Edge 60

6.7 C onnecting M ultiple O bject Networks by ANDing Fram e Tem plates . . . 61

7.1 P a rt of Filing O rg a n iz a tio n ... 66

7.2 S im ilarity in SYSTEM C A T A L O G .. 69

7.3 C ontents of the F o ld e rs .. 72

7.4 A D ocum ent T ype H ie ra rc h y ... 76

7.5 T he Query w ith Em pty A n s w e r ... 77

7.6 A H ierarchy of G eneraliza tions.. 78

8.1 C onjunctive Q uery G raph Corresponding to Figure 7.5 82

8.2 C onjunctive Query Graph for the Query Involving Two F o ld ers 83

Figure Page

8.3 An Exam ple of Conjunctive C om patible S u b q u e rie s 91

8.4 C onjunctive C om patible S u b q u e r ie s ... 93

9.1 C onjunctive Query G raph of Exam ple 9 . 2 .. 102

9.2 C onjunctive Query G raph of Exam ple 9 . 3 .. 106

A .l Exam ples in a Thesaurus ... 127

A .2 Exam ples of M e ta -d a ta .. 130

A .3 Exam ples of M eta -d a ta (co n tin u ed).. 132

A.4 Exam ples of M eta -d a ta (co n tin u ed)... 133

C .l D istribution of Fram e Instances fis .. 146

C.2 Insertion of a Folder fd c .. 148

C.3 Insertion of a Folder fd c .. 150

C.4 Relocation of a Folder fdc .. 151

C.5 Deletion of a Folder fdc .. 152

C.6 Before M erging Two Folders fdi and fd 2 ... 156

C.7 A fter M erging Two Folders fdi and fd 2 ...157

xii

CHAPTER 1

INTRODUCTION

Inform ation circulated in offices is often kept in docum ents. Some docum ents have

rigid structu res, such as forms [95]; some are tex t-orien ted , such as le tters, memos,

brochures, reports, electronic mails, facsimile, etc. T he docum ents may also contain

graphics, images, audio and video d a ta [96]. T here has been a growing in terest

on developing docum ent inform ation retrieval system s, which support office workers

to m anage their inform ation. Most of the previous work is based on the Office

D ocum ent A rchitecture (ODA) [21, 38], which is part of the s tandards for docum ent

interchange developed by the International S tandard ization O rganization (ISO) and

th e European C om puter M anufacturers Association (ECM A). Basically, th e system s

fall in to four categories [60, 107].

T he first group deals w ith m ultim edia inform ation including text, form, im age

and voice data. D iam ond [91] allows users to create, ed it, and transm it m ultim edia

docum ents with sim ple retrieval m ethods. T he MULTOS [2] office server supports a

well-defined query language and query processing techniques. MINOS [16] provides

in tegrated facilities for creating complex docum ent objects and for ex tracting and

form ulating new inform ation from existing docum ents. T here are various d a ta models

proposed for m ultim edia docum ents, spanning form relational [89, 109], sem antic

[21, 76] to object-oriented approaches [32, 39, 40, 110].

T he second group deals with bibliographic inform ation retrieval by incor­

porating AI techniques into them . For exam ple, SM ART [79] supports keyword

based retrieval for bibliographic database. EX -P [87] is an expert system which has

the capability of retrieving inform ation from docum ents concerning environm ental

pollution. O ther docum ent-based retrieval system s include CANSEARCH [73],

RU BRIC [93], THO M A S [70], E xpert/C onsu lta tion System [84], and others [14].

1

T he th ird group is concerned with docum ent categorization. Resum ix [92] is

one of such system s. It reads resumes, creates a sum m ary of the resumes, m atches

applicants to job openings, generates reports, and prints le tters of applicant acknowl­

edgm ent w ith a bitm ap signature from the appropria te hiring m anager. O ther

system s such as the new story categorization system , C O N ST R U E /T IS [36], also

provide sim ilar functions.

T he fourth group is concerned with message exchanging and filtering. Exam ples

are IN FO RM ATION LENS system [54], ISCREEN [74], M IFIA [52], and the system

described in [13]. The purpose of the systems is to help user filter, sort and prioritize

messages th a t are already addressed to them , and also help them find useful messages

they would not otherwise have received. Most of the system s only handle a special

type of docum ents.

W hile these systems appear to be successful in the ir own dom ains, their

functional capabilities are considerably lim ited. In a d istribu ted , cooperative

environm ent, where the m ost common docum ents are perhaps electronic messages

[54], a docum ent-based retrieval system m ust also support inform ation sharing and

exchange. These generally include the following activities: composing messages to

be sent; selecting, filing and prioritizing messages th a t are received; and responding

to messages. However, m ost of the existing systems have a m onolithic design; it

is difficult, though not impossible, to replace their com ponents or to improve their

functions for different user’s need.

As part of a program of research in the D ocum ent Processing Group a t the

In s titu te of Integrated Systems Research, an initiative is set forth to investigate

and develop a tex t processing system. O ur research is directed towards producing

a docum ent processing system which can be used in a variety of domains and is

in tended to m eet the above functional requirem ents.

3

1.1 TEXPROS

T E X P R O S (T E X t PRO cessing System) [107] is a personal, custom izable system for

processing office docum ents. T he system has functional capabilities of au tom ating

(or sem i-autom ating) com m on office activities such as docum ent classification,

filing, retrieval and reproduction , and inform ation ex traction , browsing, retrieval

and synthesizing. To accom plish these goals, th e system includes the following

com ponents:

• A state-of-the-art d a ta m odel capable of cap turing the behavior of the various

office activ ities [60, 61, 106].

® E x trac ting the synopsis or th e most significant inform ation from a docum ent

(such inform ation is often sufficient to satisfy th e user’s needs when inform ation

retrieval occurs) [34, 35, 108].

• A knowledge-based, custom izable docum ent classification handler th a t exploits

bo th spatial and tex tu a l analysis to identify the type of a docum ent [34, 35,

83, 108].

• An agent-based arch itectu re supporting docum ent filing and file reorganization

[104, 105, 117].

o A retrieval system th a t can handle incom plete and vague queries [50, 51],

In brief, T E X PR O S is for personal use, whereas the system s m entioned above are

designed for a m ulti-user or d istribu ted , cooperative environm ent (as a consequence,

they need a standard protocol for docum ent exchange). However, when using

T E X P R O S in an inform ation sharing environm ent, it requires to specify protocols

for governing th e definitions of fram e tem plate, which describe the properties (or

a ttr ib u te s) for the docum ent classes. For exam ple, when using T E X PR O S as a

library bibliographic retrieval system , one may need to stipu la te th a t the significant

inform ation for books in library contain a ttrib u tes “authors” , “affiliation” , “sub ject” ,

“ti tle ” , “abstrac tion” , “category” , “classification” , and so forth [106, 107].

This d issertation presents the retrieval system for TEX PR O S.

1.2 Preliminaries

M ost research concerning inform ation retrieval in database system s is based on

assum ptions of precision and completeness of both the d a ta stored in the database

and the queries entered by the user for retrieving data. In reality, however, both may

be incom plete or vague. A considerable am ount of research has focused on issues

which represent imprecise d a ta in database ([27, 28, 30, 49]) and im precise or vague

requests to retrieve da ta ([23], [68]).

Consider a collection of docum ents to be stored in an inform ation base. From

each docum ent, a synopsis of inform ation is ex tracted to form a fram e instance

(rem iniscent of the tuple in th e relational d a ta model). Fram e instances can be

classified according to their types which are called fram e tem plates (rem iniscent of

the schem a in the relational d a ta model). T he fram e instances can be categorized

based on the na tu re of their inform ation and are placed in folders. Thus, a folder

can contain a collection of fram e instances of various fram e tem plate types1 [107].

Figure 1.1 shows a folder nam ed Q.E. th a t contains fram e instances regarding

qualifying exam inations. Assume th a t this folder contains fram e instances of the

types Q.E.Result, Q.E.Application Form, Q.E.Question and Comprehensive Exam Result.

Furtherm ore, assume th a t both th e fram e tem plates Q.E.Result and Comprehensive

Exam Result have the a ttribu tes Student.N am e, Date-Taken and Outcome in common.

In order to retrieve inform ation from fram e instances, the user represents his request

1 This is a deviation from the relation [99] of the classical relational model, in which a
relation is associated precisely with one schema.

in a formal query. For exam ple, the formal query for finding all the students who

passed the qualifying exam inations in the Spring and Fall of 1990 is given as follows:

S E L E C T Q.E.(Y).Student-Name

F R O M Q.E.(Y)

W H E R E

(Q.E.(Y).Date-Taken = “Spring .1990” O R

Q.E.(Y).Date.Taken = “Fall 1990”) A N D

Q.E.(Y).Outcome — “Pass”\

Q.E. Folder

Comprehensive Exam Result
Frame Tem plateQ.E.Result Frame Template

Student_Name SludentJName

Date_Taken Date_Taken

Outcome Outcome

Q.E,Application Form
Frame Template

Q.E.Question Frame Template

Student_Ncime

DatejGiven

F ig u re 1.1 A Folder Containing Fram e Instances Regarding Q ualifying Exam i­
nations

In this query, the name of the folder Q.E. is explicitly specified from where

the inform ation will be searched. But the query is considered to be incom plete

with respect to Q .E. folder, since the fram e tem plate Y containing the a ttribu tes

6

Student-N am e, D ate-Taken and Outcome, is not explicitly specified. Y in this case

could be either one of the frame tem plates Q.E.Result or Comprehensive Exam Result,

because both have these a ttribu tes. However, the request here is to find out those

students who passed the qualifying exam ination in the Spring and Fall of 1990, and

not those who passed the comprehensive exam ination on the specified dates.

In general, th e explicit specifications of th e folders, fram e tem plates and

a ttrib u tes ensure th a t the system will retrieve precise inform ation (i.e., fram e

instances of the fram e tem plates as types from the various folders). B ut instead of

pu tting a burden on the user to be responsible for giving the explicit specifications

w ith great difficulties, he m ust be allowed to use variables to specify folders (the

location of fram e instances to be retrieved), fram e tem plates (the type of fram e

instances to be retrieved) and a ttribu tes (some properties of these fram e instances).

If the user uses Qualifying Exam in place of Q.E. (which is the precise keyterm

for the nam e of th e folder in which the query is to be applied), then th is query is

considered to be imprecise. Furtherm ore, in order to represent his request as a formal

query, the user needs additional inform ation about the qualifying exam ination, such

as w hether Qualifying Exam is the nam e of a folder or frame tem plate , any fram e

tem plates related to the qualifying exam ination, any a ttribu tes and the ir dom ains

for describing the results of the qualifying exam ination, the precise keyterm s for

folders, fram e tem plates and a ttribu tes, and so forth. Such inform ation is needed to

form ulate a com plete and precise query. In reality, it would be a great advantage if

a system would provide the user w ith the capability of entering a vague query such

as “W hat is Q ualifying Exam ination?” . This vague query can be specified as

T O P I C Qualifying Exam

Assume th a t the response of the query for finding all the studen ts who passed

the qualifying exam inations in the Spring and Fall of 1990 is an em pty answer.

Obviously, this em pty answer is a meaningless response to the user. T here can be

th ree in terp reta tions to such response. F irst, the response can be in terpreted to be

a genuine one. This would mean th a t indeed several s tuden ts took their qualifying

exam ination in the Spring or the Fall of 1990 bu t none of them passed it. On

th e o ther hand, the query may reflect an erroneous presupposition on behalf of the

user. The em pty answer is also yielded because e ither no stu d en t took the qualifying

exam ination or there was no qualifying exam ination held in th e Spring and Fall of

1990. Therefore, it is essential for a system to provide th e user w ith m eaningful

responses.

1.2.1 The Retrieval Mechanisms

In TE X PR O S [107], the retrieval system is capable of processing incom plete or vague

queries and providing m eaningful responses to users when em pty answers arise.

T he design of the retrieval system is highly in tegrated w ith various m echanisms

for achieving these goals. F irst, there is a query transform ation m echanism which

consists of context construction and algebraic query form ulation modules. Given

an incom plete query, the context construction m odule searches the system for the

required term s and constructs a query th a t has a com plete representation. This

resulting query is then form ulated into an algebraic query. Second, in practice, the

user may not have a precise notion of w hat he is looking for. We employ a browsing

m echanism for such situations to assist the user in th e retrieval process. T h ird , if

th e result of a query is an em pty set, a generalizer m echanism is used to give the

user more cooperative responses.

To accomplish these goals, the system needs to sto re th e knowledge about the

database. Knowledge representation and repository have been explored in many

system s (e.g., [10, 29, 57, 69]).

1 .2 .2 T h e S y s te m C ata log

We em ploy a system catalog to store the inform ation used for retrieval. The

system catalog (or the d a ta d ictionary) is an im portan t facility which provides the

capability of m anaging and m aintaining the consistency and in tegrity of the d a ta

stored in the database. In T E X PR O S, an in tegrated system catalog provides a

centralized retrieval environm ent for processing incom plete and vague queries in

addition to providing an environm ent for processing com plete queries and retrieving

the m eaningful inform ation about the entities of the database. In addition to

reflecting th e m eta-data of the docum ent filing organization, th e system catalog

also includes a thesaurus2. T he thesaurus comprises three m ajor com ponents. The

first com ponent contains synonymous keyterm s. The second com ponent describes

the term s th a t have sem antic associations w ith keyterms. T he th ird com ponent

describes the associations of the keyterm s in term s of folders, fram e tem plates and

a ttrib u tes . Since the user can query the system catalog, we organize the system

catalog as a special kind of a folder which mimics the docum ent filing organization

a t the system level. This provides a na tu ra l and consistent operational approach for

the user’s environm ent.

1.3 Organization of the Dissertation

T he rem ainder of this dissertation is organized as follows: C hap ter 2 contains a

survey of research which is related to my work. C hapters 3 through 9 present my

proposed research work. In C hapter 3, the overall arch itectu re of the proposed

retrieval system is described. This chapter inform ally describes the scenario th a t

underlies the formal trea tm en t of the retrieval model. C hapter 4 presents th e system

catalog which is utilized during the retrieval process. T he system catalog is a self-

contained d a ta dictionary which provides a centralized retrieval environm ent for

2A set of concepts in which each concept is characterized by hierarchical, synonymous,
horizontal, and other relations [77].

9

processing incom plete and vague queries. In chapter 5 the query transform ation

m echanism is discussed. C hapter 6 and C hapter 7 present an intelligent browser

and an enhanced generalizer, respectively. The browser enables the user to gain

knowledge abou t the entities stored in the database. The generalizer is utilized to

provide the user w ith meaningful and cooperative responses as in terp reta tions to

em pty answers by looking into the generalizations of any given failed queries (i.e.,

w ith an em pty answer) which are derived by applying both the folder and type

substitu tions and weakening the search criteria. C hapter 8 and C hap ter 9 discuss

an efficient way for determ ining a meaningful and cooperative response of any given

failed query. The two chapters present a m ethodical approach to reducing the search

space of generalized subqueries by analyzing the results of executing generalization

and then by efficiently applying the possible substitu tions to generate a small subset

of relevant subqueries. Finally, C hapter 10 sum m arizes the dissertation and discusses

some ongoing research topics th a t are related to the work in this d issertation.

CHAPTER 2

MOTIVATION AND RELATED WORK

This chap ter discusses work related to my research, th a t has been done in th e areas

of query form ulation, incom plete and vague query retrieval system and the represen­

ta tio n of m eta knowledge and dom ain knowledge in retrieval systems.

2.1 Query Formulation

M any D atabase M anagem ent Systems provide the facilities to assist the users in

form ulating their queries. Research is proceeding in m any directions.

• Systems th a t provide be tte r interfaces to the user.

Q B E (Q uery-by-Exam ple)[ll8] is a successful query system for relational

databases. T he visual forms utilized in QBE can help the user describe a

sim ple query. However, it is very difficult for the novice users to use these

forms to form ulate a complex query. Cam pbell et al.[7] defined a query

language whose theoretical foundation is based on the ER algebra (sim ilar to

the algebra in [71]), in which users graphically m anipulate en tity-relationship

(ER) diagram s to form ulate queries. Each diagram represents a partia l query

which is particu larly helpful in form ulating ad hoc queries. The burden here

is th a t the user needs to understand and rem em ber the algebraic operators

as he graphically specifies a path in the ER diagram . Wong and Kuo [111]

investigated the difficulty in using and understanding query languages. They

point out th a t (1) the user has to rem em ber too m any things as the database

has a very complex schema; (2) the language lacks m eta-data browsing facility;

and (3) the user can not get feedback during query processing. Instead, they

created a graphical user interface th a t allows the users to form ulate their

queries in a piecemeal fashion with feedback of partia l results available to

10

11

them a t any tim e. Their facility provides a m echanism th a t can guide and

encourage the user to explore and browse the m e ta-da ta to obtain a general

view of the database and select m atters th a t are of in terest. However, this

facility only provides menus, examples, illustrations and help messages a t the

stage of query form ulation. The user has to traverse a network and select a

pa th himself.

• Systems th a t use natu ra l language processing techniques to select index term s.

In tegrating natu ra l language interfaces into database query system s has gained

some atten tion . Bouzeghoub and M etais [4] designed th e SECSI system , in

which users’ requests are expressed in natu ra l language. T he system transla tes

the natu ra l language into internal sem antic network descriptions, creates a

relational database schem a from the sem antic network, and performs a norm al­

ization process on the schem a by evaluating a knowledge base. Rolland and

Proix [78] created the OICSI system which can generate a conceptual schem a

of an inform ation system from natu ra l language descriptions. A bottleneck

in these systems, however, is the requirem ent of na tu ra l language processing.

Some of the criticism s of natu ral language processing have concentrated on

the high cost of translating natural language query expressions into in ternal

sem antic descriptions.

• System s th a t build knowledge bases from docum ent contents.

Jakobson et al. [43] developed a knowledge-based database retrieval system ,

called intelligent database assistant, to help the user in database retrieval.

T hey proposed a system , called FRED , which gives users substan tial help in

query form ulation, database selection and d a ta in terp reta tion . R A B B IT [94] is

a database front-end th a t utilizes an intelligent database assistant. It is a menu-

based user interface which provides an interactive database query constructing

12

facility. KARMA [3] is another knowledge-based assistan t which utilizes a

m enu-base system for the novice user. To achieve th e high perform ance

of query-by-reform ulation, Wu and Ichikawa [112] provided a query guiding

facility, called KDA, which has several kinds of skeletons to guide users in

perform ing retrieval actions, such as forming a query, refining previously

formed queries and modifying m isconstructed queries. KDA is based on a

sem antic network transform ation approach th a t transla tes a sem antic network

description into a relational database schema description.

• System s th a t employ au tom atic query formulation

K orth e t al. [48] discussed System /U , a relational DBMS which is based on

the universal relation assum ption. The System /U relieves the user from the

responsibility of navigating the database relations. Instead , the user relies

on the predefinition of schem atic constructs called m axim al objects. O ther

related efforts based on the universal relation assum ption can be found in

[47, 53, 100],

Motro[64] proposed a query in terpreting system based on the au tom atic

inference of the connections required to answer a query. T he system provides

an uniform trea tm en t of d a ta and m etadata , so th a t th e user does not need

to distinguish between them . T he user specifies his requests using tokens.

T he system in terprets the tokens into a proper query by following a set of

algorithm s. However, th e user can not represent more inform ation (such as

th e relationships between tokens) in his query. This increases the am biguity

of in terpreting the queries. O ther approaches for au tom atic query form ulation

have been discussed in [31, 33].

13

2.2 Incomplete and Vague Queries

A considerable am ount of research has focused on issues which represent imprecise

d a ta in the database (e.g., [27, 28, 30, 49]), and im precise or vague requests to retrieve

d a ta (e.g., [23, 68]). Several I’epresentations for imprecise d a ta have been suggested.

These include “fuzzy” values [115], values accom panied by certain ty factors [98] and

null values [42]. So far, three basic approaches for processing vague queries have

been proposed.

• T he VAGUE system described in [67] is based on the vector space model. For

each a ttr ib u te from a vague condition specified in the query, the user may

choose between a num ber of different m etrics for the com parison of a ttr ib u te

values w ith the corresponding value from the query. Then the d istance between

th e query and a database object is com puted as a function of the d istance for

the different query conditions. M otro [65] classified user’s requests into two

kinds: (1) a specific request which is concerned only w ith d a ta th a t m atches

it precisely and (2) a goal which is concerned w ith d a ta which is close to

the ta rge t. He extended the relational database model to support goal queries.

T he concept of distance between d a ta values is defined and is incorporated into

relational system s. The typical query language QUEL is extended to express

goals. T he system is capable of answering questions with inform ation which is

sim ilar to the inform ation requested.

o Vague queries have also been discussed in the context of fuzzy system s (e.g.,

[5, 75, 116]). The formal aspects of these works are based on the theory of fuzzy

se ts1. Informally, a fuzzy set is a class in which the distinction from m em bership

to non-m em bership is vague ra th e r than crisp and precise. P rade and Testem ale

[75] discussed the representation of incom plete and uncertain inform ation by

fo rm a l definitions can be found in [90, 113].

14

m eans of possibility d istribu tions2. Zemankova [116] dem onstrated the fuzzy

set theory as a suitable framework for the representation and m anipulation of

certain inform ation in databases.

Buckles and Petry [5] extended the relational model to take in to account

nonprobabilistic uncertainties. Here, relations are extended to allow set-valued

dom ain elem ents. Each dom ain elem ent has an associated sim ilarity m atrix

th a t assigns to each pair of dom ain elem ents, a value between 0 and 1.

Some of the criticism s of fuzzy set theory concentrate on the subjectiv ity of

assigning m em bership functions to concepts [115].

• Recently, a probabilistic model for vague fact retrieval has been developed

[28], A set of conditions in a user’s query can be either tex t conditions or fact

conditions. Fact conditions can be in terpreted as being vague, thus leading to

nonbinary weights for fact conditions w ith respect to database objects. In the

probabilistic approach, imprecise or missing a ttr ib u te values can be stored as

probability d istributions over the set of possible a ttr ib u te values. T he system

integrates tex t and fact retrieval by regarding both conditions rela ting to tex t

or facts as being vague. A nother system th a t combines vague fact and tex t

retrieval is th e office inform ation system described in [19],

2.3 The Representation of M eta-data Knowledge and Domain
Knowledge in the Retrieval System

T he system catalog (or the d a ta dictionary) is an im portan t facility for m anaging and

m aintaining the consistency and integrity of th e d a ta stored in the database. D ate

[22] discussed an INGRES system catalog, which is a repository for inform ation

concerning various objects th a t are of in terest to the system itself, such as base

tables, indexes, forms, reports, access rights, integrity constraints, and so on. Davis

2They propose a model based on possibility theory introduced by Zadeh [114].

15

and Bonnell [24] described an approach, referred to as ED ICT, creating an enhanced

relational d a ta dictionary which represents the high-level sem antic inform ation about

the enterprise whose d a ta is stored as tables in the database. ED IC T provides a

centralized m anagem ent environm ent for m aintaining inform ation about the d a ta

in the database relations. Sibley [85] proposed an active and extensible dictionary

system in which the m eta-database is stored to com pletely control the database

m anagem ent system .

W ith the integration of database m anagem ent systems and inform ation

retrieval system s, it is desirable to develop a mechanism th a t provides a generalized

retrieval facility. Saxton et al. [80] and C roft[20] proposed th a t th e in troduction of

th e dom ain knowledge into a docum ent retrieval system would increase the effec­

tiveness of retrieval. M orgenstern [62] discussed the role of constrain ts in database

and knowledge representation. He proposed th a t the sim ilarities between database

schem a and knowledge representation frameworks may help to ex tend th e sem antics

expressible in schema. C urrent system catalogs (or d a ta dictionaries), however, are

not used to store dom ain knowledge.

A num ber of inform ation retrieval systems employ additional m echanism s to

store the domain knowledge. Siegel and M adnick [86] described a rule-based approach

to sem antic specification th a t can be used to establish sem antic agreem ent between a

database and an application. Fikes and K ehler [26] used a frame-based representation

to store concept descriptions. This representation combines and generalizes aspects

of the representations used by Shoval[84] and Tong[93]. Schauble[82] proposed a

thesaurus based concept space which would provide adequate term dependencies.

Chen and D har[l4] identified three types of knowledge which are necessary to perform

a successful retrieval. These include: the subject area knowledge, the classification

scheme knowledge, and the system knowledge. They proposed an au tom atic process

of generating the sem antic network knowledge base from an existing thesaurus (LCSII

1 6

H andbook). Sm ith et a l.[87] analyzed several thesaurus systems (such as, [25, 73,

102]) and proposed th a t thesauri may contain certain types of knowledge th a t m ust

be dealt w ith in designing an intelligent retrieval system.

CHAPTER 3

OVERALL ARCHITECTURE OF RETRIEVAL SYSTEM

Figure 3.1 illustrates the overall architecture of the retrieval system in TE X PR O S,

which is capable of processing incom plete or vague queries and providing sem antically

m eaningful responses to users. Upon receiving a query from a user, the parser first

checks th e inpu t query to determ ine w hether it is a formal query or a vague query.

Specifications of formal and vague queries are given, respectively, in th e top and

bo ttom part of Figure 3.2.

Begin

query

vague query

form al query

algebraic expression

nonem pty

with em pty answ er

DisplayQuery
Processor

Parser

Context
Construction

Generalizer

Algebraic
Query

Formulation

Browser

incom plete

Query Transformation

com plete

Figure 3.1 Overall A rchitecture

17

If the user does not have any idea of how to specify a formal query for his

request, the “T O P IC ” part as shown in Figure 3.2 will be used to describe his retrieval

goal. An exam ple is given in F igure 3.4. The vague query is then passed to the

browser, which goes through the system catalog looking up relevant inform ation (i.e.

all fram e tem plates possibly rela ted to the user’s request), and possible repositories

of inform ation a ttribu tes to describe the properties of the d a ta to be retrieved. Vague

queries can be entered to the system until sufficient inform ation is obtained to the

ex ten t th a t the user is able to use this inform ation to construct a formal query for

his request.

S E L E C T <attribute list>

F R O M <folder(frame template) list>

W I T H <subject o f folder and frame template>

W H E R E <predicate>

T O P I C

F ig u re 3 .2 Query Interface

Once the input query is s ta ted formally according to the specifications (an

exam ple is given in Figure 3.3), the query is transferred to th e query transform ation

mechanism . T he objective of the query transform ation is to transform a formal query

into a set of algebraic queries, which are to be processed by the query processor

to assist in answering the corresponding user’s original query. To accomplish this

objective, th e formal query is first exam ined to determ ine w hether it is com plete.

An user’s query is said to be com plete if each term (called keyterm s in TEX PR O S)

appearing in the query is consistent w ith the index term which exists in the database,

19

and no variables (such as “X” and “Y” in Figure 3.3) are used to specify any te rm in

th e user’s query. Otherwise, the query is said to be incom plete. T he com plete query

is d irectly passed to the algebraic query form ulation mechanism, which eventually

produces a corresponding set of algebraic queries. Given an incom plete query, a

com plete query is generated by using the context construction m echanism .

QUERY1: Find all the students who passed Q.E. in Fall 1990
or Spring 1990.

SELECT X (Y).S tu d e n t_ N a m e

FROM X (Y)

WITH X = = "Q .E ."

WHERE (X (Y).D a te _ T a k e n = "F all 1990"

X (Y) .D a ta _ T a k e n = "S p rin g 1990"

X (Y) .O u tc o m e = "P ass"

OR
) AND

TOPIC

F ig u re 3 .3 An Exam ple of the Formal Query

T he query processor executes the set of algebraic queries after its form ulation.

W hen processing of queries fails by responding with an em pty answer, possibly

w ithout any sem antical meaning to the user, the original query is passed to the

query generalizer to produce cooperative explanation for the em pty answer.

S E L E C T

F R O M

W I T H

W H E R E

T O P I C P eter N g

F ig u re 3 .4 An Exam ple of the Vague Query

CHAPTER 4

SYSTEM CATALOG

In T E X PR O S, an integrated system catalog provides a centralized retrieval environm ent

for processing incom plete and vague queries. The system catalog presents the infor­

m ation in a form which can be incorporated directly into th e database system of

T E X PR O S. Since the uniform representation of the system catalog and the database

itself (e.g., fram e instances, the synopses of the docum ents) is adopted, the user

can retrieve the inform ation in the system catalog using the sam e query form at

to retrieve any general fram e instances in the database. T he details of retrieving

inform ation from the system catalog are provided in A ppendix B.

4.1 F o r m a l i s m o f t h e S y s t e m C a t a l o g

We proceed to formally define the system catalog as follows:

Let A — {Aj, A2 , . . . , A„} be a finite set of a ttribu tes. Let V = {Dj, D2, . . . , Dn}

be a finite set of (not necessarily distinct) domains. Let dom: A — > V be a to tal

function which associates each a ttr ib u te A £ A w ith a dom ain dom(A) € D. We

define a system frame tem plate SF = {Ai, A2, . . , , Am} as a finite set of a ttribu tes

where A; 6 A , 1 < i < m. Let SF = {Ai, A2, . . . , Ap} be a system fram e tem plate. A

system fram e instance sfi over SF is a finite set of a ttribu te-value pairs {< Aj, V\ >

, < A2, V2 > , . . . , < Ap, Vp > } , where Aj £ SF, and Vj C dom(Aj) , 1 < j < p. The set

of all system fram e instances reflects the s ta te of the docum ent filing organization.

Let SFI = {s f in sfi2, • • •, sfiq} be the finite set of system fram e instances reflecting

the s ta te of the filing organization. The system catalog is a finite set of subsystem

folders SC = {sfi, sf2, . . . , s f r} where each sfj C SFI, 1 < j < r. All the system frame

instances in a subsystem folder sfj are over the same fram e tem pla te SF, denoted as

S F (sfj) . We also use the notation sf(SF) or simply sf to denote a subsystem folder sf,

in which it contains frame instances of the system fram e tem pla te SF as type. The

21

22

/ \
Frame Template SYSSYNONYMS

K ey T erm

S y n K ey T erm s

Frame Template SYSNARROWER

K e y T erm

N arrK ey T erm s

Frame Template SYSFOLDERS

F o ld e rN a m e

F T N a m es
D e p en d s_ O n

P a re n t_ O f

Frame Template SYSFRTEMPLATES

F T N a m e

A ttrN a m e
Is_ A

Frame Template SYSATTRTYPES

A ttrT y p e

D e g ree

D o m ain

Frame Template SYSTERMASSOC

K ey T erm

In d ex T m

In d e x T m T y p e

Frame Template SYSFRINSTCOUNT

FT N am e

F o ld e rN am e

C o u n t

Frame Template SYSATTRIBUTES

A ttrN am e

F T N am e

A ttrT y p e

A c tiv eD o m ain

Frame Template SYSSIMILARITY

In d ex T m 1

In d ex T m 2

In d ex T m T y p e

S im ila rity

Figure 4.1 A System Catalog S tructure

23

nota tion S y S C A T A C O Q (S V) is used to restric t the system catalog to the system

fram e tem p la te SF.

Let sfi = {< Ai, Vi > , < A2, Vi Ap, Vv > } be a system fram e instance.

Let X be any subset of {Ai, A2, . . . , Ap}. T he X value of sfi, denoted by sf i (X) ,

is th e system fram e instance obtained by deleting those elem ents < A j, Vj > from

sfi w here A j £ X . If X consists of a single a ttr ib u te , say A, then sf i (X) is sim ply

w ritten as sf i(A). (In this case, we use the nota tion sfi (A) to denote the value V in

th e attribu te-value pair < A, V > .) Figure 4.1 depicts a system catalog s tru c tu re

which com prises the set of system fram e tem plates. We expound on each of them in

A ppendix A.

4.2 The Novelty of the System Catalog in TEXPROS

T he novelty of th is system catalog is th a t not only it reflects the actual m e ta -d a ta

of th e docum ent filing organization, bu t also includes a thesaurus. Furtherm ore, the

use of th e concept of fram e tem plates, fram e instances and folders a t th e system

and operational levels provides a consistent view to th e user of h is /h e r personal

T E X P R O S . At the operational level, the concept of fram e tem plates is used to form

th e docum ent type hierarchy for classifying th e given docum ents; the concept of

fram e instances describe th e synopses of docum ents perta in ing th e ir significance to

th e user; and the concept of folders containing fram e instances of various types is used

to describe a logical file s tru c tu re of th e docum ent file organization. Similarly, a t the

system level, the concept of system fram e tem plates is used to classify the inform ation

contained in the system catalog; and the fram e instances describe the synopses of

th e inform ation regarding th e folder organization, docum ent classification (in term s

of fram e tem plates) and keywords th a t will be used by the user at different tim es.

T h is consistent approach to describing the operational knowledge of the environm ent,

where th e docum ents are reposited, and the knowledge abou t docum ents, structu res

24

and contents (in synopsis form), provides the user with an ease of classifying, filing

and retrieving docum ents.

4.3 System Catalog Management

The system catalog describes the docum ent filing organization and docum ent classi­

fication a t system level. It is m anaged dynam ically during docum ent classification

and filing.

We define a set of prim itive functions th a t manage the system catalog as

triggers. For instance, during docum ent classification, if a user selects a fram e

tem plate which does not exist in the system , the function In s e r tF rT e m p la te (F T N a m e ,

A ttrN am e,Is_A) is invoked. (This function will append a new fram e tem plate

containing relevant inform ation about the nam e of the frame tem plate , its a ttr ib u te

nam es, and its Is_A relationship in the docum ent type hierarchy as a system fram e

instance of .SWS'C.ATACOC/(SYSFRTEMPLATES). During docum ent filing, if a

user creates a folder which does not exist in the system, the function I n s e r t -

F o ld e rN a m e(folder) is invoked. (This function will create a system fram e

instance sfi of SYSFOLDERS type in the «SWSC*4T*4£C?£/(SYSFOLDERS), in which

sfi [F o ld e rN am e] is folder , the nam e of a folder, and the values for the o ther

a ttrib u tes are NIL).

We design various algorithm s to update the system catalog using these prim itive

functions. For instance, in the filing organization, it may be desirable to d is tribu te a

set of fram e instances f i s from a folder fdv into a folder fdc. The sequence of functions

is invoked as follows:

25

For each fi in f i s

Do f t := D e te r m in e F T (/ i) ;

I n s e r tF R IN S T (f t ,f d c,l);

If f t does not appear in the F T N a m e s of th e fram e

instance of SYSFOLDERS type associated w ith fd c

then I n s e r tF T N a m e (fd c,ft);

If C h e c k F IC o u n t (ft,fdp) = 1

then D e le te F T N a m e (fd p,ft);

D e Ie te F R IN S T (f t ,fd p,l)

All the algorithm s for system catalog m anagem ent can be found in A ppendix C.

CHAPTER 5

QUERY TRANSFORMATION

In th is chapter, an au tom atic m ethod to refine and form ulate the user’s query in to an

algebraic query is proposed. In TE X PR O S, the formal query is specified in SQL-like

syntax. T he exam ples of the form al queries are shown in Figure 3.3 and F igure 5.1 .

T he user specifies the nam es of th e folders and fram e tem plates required to process

th e query in the “FR O M ” clause, the nam es of a ttr ib u tes whose values are to be

retrieved by th e query in th e “SELEC T” clause, and th e pred icate th a t identifies the

fram e instances to be retrieved by th e query in th e “W H E R E ” clause. If th e user

does not know the nam e of any of these term s, he can use variables instead (e.g. the

“X ” and “Y ” in Figure 3.3) and then specify the subjects of th e corresponding folders

or fram e tem plates in the “W IT H ” clause if he knows. T he system can infer all the

variables to th e proper nam es of folders, fram e tem plates or a ttr ib u te s by retrieving

the system catalog. Intuitively, the user can express his queries by entering any

inform ation he knows freely. Therefore, the user focuses on the general idea of his

queries ra th e r than try ing to rem em ber a symbolic language or the precise nam es of

individual entities in system (or to look up the system catalog to find them), such as,

th e nam es of the folders, fram e tem plates and a ttrib u tes . T he term s for specifying

th e nam es of folders, fram e tem plates and a ttr ib u tes in a user’s original query are

called keyterm s in the system catalog. These keyterm s may not be the index term s

which are used in the database. T he objective of the query transform ation described

in this chapter is to assist users in finding the appropria te index term s, which are a

set of folders containing th e fram e instances to be retrieved, a set of fram e tem plates

which are the types of the fram e instances to be dealt w ith , and a set of predicates to

be satisfied by these fram e instances, corresponding to those given keyterm s from the

user’s query; and then apply the algebraic operators to the index term s to generate

th e algebraic queries.

26

27

QUERY2: Find all the students who were admitted in Fall 1990
and passed Q.E. before Spring 1992.

SELECT Q.E.(Q.E.Result).Student_Name

FROM Q.E.(Q.E.ResuIt)

X(Admission_Acc_Letter)

WHERE X(Admission_Acc_Letter).Date = "Fall 1990" AND
Q.E.(Q.E.Result).Date_Taken <= "Spring 1992" AND
Q.E.(Q.E.Result).Outcome = "Pass" AND
Q.E.(Q.E.ResuU).Student_Name = X(Admission_Acc_Letter).Name

TOPIC

F ig u re 5.1 An Exam ple of the Formal Query

5.1 C o n te x t C o n s tru c t io n

T he context construction m echanism generates a com plete query from the user’s

incom plete query (i.e., the construction of index term s stored in the database from

the set of keyterm s th a t appear in the user’s query). A user’s query is called an

incom plete query if it contains imprecise term s (non-index term s), subject term s

(the subjects of folders or fram e tem plates), or missing inform ation (unknown index

term s). A m apping of the keyterm s into a set of appropria te index term s can be

created through interaction w ith the system catalog. (The details of algorithm s

to retrieve th e system catalog are described in Appendix B.) In fact, the context

construction plays the role of a search computerized intermediary system [72] for infor­

m ation retrieval, which provides significant support for processing the incom plete

query. T he procedure of context construction is shown in Figure 5.2.

We develop a search strategy for Ending the appropria te index term s, which

com prise the search space, corresponding to the keyterm s in the user’s query. Also,

28

U se r’s Q ueries

No
Inpu t K ey term exists

in D B?
U ser Evaluation

Y es S ynonym Substitu tion

Change
Synonym
Selection

Yes

U ser Evaluation

N o
S ubjec t S ubstitution

C hange
Index Term

S election

C hange
Synonym
SelectionYes

V ariab le ex ists? User Evaluation

N o Index T e rm Inference

Change
Index Term

Selection Change
Index Term

Selection

U ser Evaluation

Change
Synonym
S electionC hange O riginal Query

.Q uery inc ludes "W IT H "?
G et Index Term

related to subject
from thesaurus

Get Synonym
from

thesaurus

G et Index Term
from

meta-data

A lgebraic

Q u ery F orm ula tion

End

F ig u re 5.2 Query Transform ation

29

we develop an interactive evaluation strategy for ensuring the precision of the search

space.

• Search S trategy

— Synonym Substitution: Processing Imprecise Terms.

In the system catalog, the system fram e instances of type SYSSYNONYMS

contain inform ation about synonymous keyterm s th a t are relevant to the

user. Associated with the keyterm s, the fram e instances of the type

SYSTERMASSOC specify index term s to be the names of folders, frame

tem plates and attribu tes. If a te rm is used by the user in his query,

the synonym substitu tion determ ines the keyterm and the corresponding

index te rm for the synonymous term by searching through the system

fram e instances of the types SYSSYNONYMS and SYSTERMASSOC,

respectively. For exam ple, looking for some inform ation abou t P eter, the

user may en ter “Peter Ng” as the nam e of the folder. However, there

m ay be no folder nam e labeled “Peter Ng” in the system . Through the

synonym substitu tion , the system obtains the folder “P eter A. Ng” by

retrieving the system fram e instances of the types SYSSYNONYM S and

SYSTERMASSOC.

— Subject Substitution: Processing Subject Terms.

In the system catalog, the system fram e instances of th e type SYSTER­

MASSOC contain the domain knowledge th a t folders and fram e tem plates

are labeled according to the subjects th a t they cover or touch upon. If the

user does not rem em ber the precise nam e of a folder or fram e tem plate , he

can express the inform ation needed in term s of concepts, denoted by the

sub ject of the folder or the subject of the frame tem plate. For instance,

in F igure 3.3, X denotes the folder which may contain the fram e instances

30

the user needs. X is specified to represent the subject “Q .E .” in the

W I T H clause. W hen this query is executed, the system retrieves the

system fram e instances of the type SYSTERMASSOC to find the nam e of

the folder X which deals w ith the subject “Q .E .” .

— Index Term Inference: Processing Missing Inform ation.

In the system catalog, the system fram e instances of the types SYSFOLDER,

SYSFRTEMPLATES, and SYSATTRIBUTES contain the m e ta -d a ta knowledge

th a t describes the organization of th e database in TE X PR O S. In conven­

tional database system s, the user is required to know the s tru c tu re of

the underlying schemas in detail to form ulate his queries. However, in

T E X PR O S, the user does not have to en ter com plete inform ation about

the schemas; the system can infer the precise term s from the missing

inform ation by retrieving these m eta-da ta from the system catalog. For

Exam ple, in Figure 5.1, X denotes the unknown names of th e folders

which contain the fram e tem plate “Admission_Acc_Letter” . T he system

obtains the nam es of the folders X by using the following algorithm :

A lg o r i th m : (G et folders from fram e tem plates)

G etfd_fr_ft(/i . name)

begin

n = ^ TName32/t„ (^ C A T M £ ^ (S Y S F O L D E R S)) ;

f d s — {sfi[FolderName]\sji £ f l } ' ,

for each f d 6 f d s do

F o ld e r N a m e s — f d s U G etP redecessor(/d);

/ 2 = .4£0C7(SYSFRTEM PLA TES));

if / 2 ^ empty then

31

begin

f t s = {sfi[FTName]\sfi £ /2 } ;

for each f t € f t s do

F o ld e r N a m e s = F o ld e r N a m e s U Getfd_fr_ft(/<)

end

re tu rn (F older N a m e s)

end

G etP redecessor(/d)

begin

/ I = tTraiderName= j d (S y S C A T ,4 £ 0 £ (S Y SFO LD ER S));

f p s = {sfi[Depends-On]\sfi £ / l } ;

if f p s ^ em pty then

f d = f d U G etP redecessor(/ps);

re tu rn (/d)

end

o Evaluation S trategy

In Figure 5.2, there are four ellipses representing the user’s in teraction w ith the

transform ation procedure. T he procedure of the synonym substitu tion may

retu rn a collection of index term to the user. T he procedure of the subject

substitu tion may re tu rn a collection of nam es of folders or fram e tem plates

to the user. T he procedure of the index term inference of the system may

retu rn a collection of index term s to the user. In these cases, the user is asked

to determ ine w hether the returned term s are the index term s he needs. For

instance, these procedures retu rn a collection of index term s which are either

the names of the folders or the frame tem plates. T he folders whose nam es are

32

the index term s may possibly contain the frame instances to be retrieved; and

th e fram e tem plates w ith the index term s as the ir nam es are the possible types

of the fram e instances to be retrieved. The user is then asked to select a set of

index term s for refining his query. The user is perm itted to select an alternative

set of index term s (represented as dashed lines in F igure 5.2), whenever he finds

th a t the previously selected index term s are not correct. These selected Index

term s will be the inpu t of the algebraic query form ulation phase. A fter query

processing, a set of fram e instances is returned to the user. If the user is not

satisfied w ith the outcom e, he is still perm itted to select an alternative set

of index term s or to modify his original query. Therefore, the system assists

th e user to confirm w hether these index term s represent the folders and fram e

tem plates from which th e fram e instances are to be retrieved or synthesized.

5.2 Algebraic Query Formulation

In our system , an algebraic operator table (as shown in Table 5.1) containing the set

of algebraic operators [61] is m aintained. In the process of the context construction, a

set of index term s, denoted by a set of folder names, fram e tem plate nam es, a ttr ib u te

nam es and a ttr ib u te values, is obtained. U tilization of the algebraic operators to

these index term s will generate the set of algebraic queries th a t can assist in answering

the u ser’s query.

For some sam ple queries, the following m ethod can be used for the algebraic

form ulation.

• Let folders found in the context construction be fd [l] , fd [2] , . . . , fcl[n\.

Let fram e tem plates found in the folder fd[i] be f t [i , i \ , f t [i , 2] , . . . , f t [i , m \ ,

(1 < i < n).

33

T a b le 5.1 O perators of the ZLAlgebra

Class O perators Type O perands Results
1 u , n , - binary folders folder
2 7T unary folder folder
3 • binary fr. instances fr. instance
3 X ,[X l binary folders folder
3 p unary folder folder
4 a unary folder folder
5 77 ,/z (A is an a ttr ib u te) unary folder folder
6 7 . (/? is a subset of the

com ponent a ttribu tes of A)

unary folder folder

7 countA,sum A,avgA, minA, maxA
(A is an a ttrib u te)

unary folder NUM

Let predicates containing a ttrib u tes found in f t [i , j] be (1 < i < n,

1 < j < m).

Let predicates containing a ttribu tes found in and /i[w , y]be p[i * j , u*u] ,

(1 5- j i v < m, 1 < i, u < n).

T he following cases may arise to produce a set of algebraic queries.

— For all the p[i,j] (1 < i < n, 1 < j < m), the following algebraic query is

produced:

t e m p [i * j , i * j] = <7p[iJ](7r/([i ;](/d [i])).

— For all the u*n] (1 < j , v < m, 1 < i, u < n), th e following algebraic

query is produced:

t e m p [i * j , u * v] = 1x1 {fd[u]))).

— For temp[i * j , u * v] (temp[i * j , i * j] is the special case) (1 < j , v < m,

1 < i , u < n), the following algebraic query is produced:

t empj resul t temp[i * j , u * u].

34

• T he set of above queries is applied to the a ttribu tes in the S E L E C T clause,

begin

if aggregate operator in the S E L E C T clause then

Resu l t = n MtributeNamJ t e m p - r e s u l t)

else

Resu l t = aggropAttribut' Names(tempjresult)

end

5.3 Example

Here an exam ple is given to illustrate an execution of the query transform ation.

The user’s original query is shown in Figure 5.3, in which the user w ants to find all

the Ph.D studen ts who passed the Qualifying Exam ination in th e Spring of 1990.

Assume th a t the user knows the folder Q.E., from which the fram e instances are to

be retrieved, but he does not know the types of frame instances (th a t is, the nam e

of the fram e tem plate). He uses Date-Taken and Result to express the nam es of

a ttr ib u tes in the predicate.

• C ontext Construction.

By following the procedure depicted in Figure 5.2, the user’s original query is

transform ed to the com plete query as shown in Figure 5.3.

— Check w hether the inpu t keyterm s, such as Q.E., Date-Taken and Result ,

exist in the system by consulting the system catalog as follows:

. e f = count F„„tr„ ,m, (^ „ tr„ara„ 0„ (S r5 C ^ £ O C (S Y S F O L D E R S))) ;

The folder Q.E. is in the system since e f is not equal to zero.

* acl = count/ttrArame(CT/UtrArame=Dale_Tafcen(ST<SC-ATylZiOt/CSYSATTRIBUTES)));

The attribute Date-Taken is in the system since ac 1 is not equal to zero .

35

* ac2 = count/1((rWame(CT/1((rA /am e=;?esu |(^4T^4£C9^(SYSATTRIBUTES)));

The attribute Result is not in the system since ac2 is equal to zero.

* ac3 = count/UirWame(CT/lt(rWame=S(udsn(_W(ims(«S;yc>C.47\/4£C?(7(SYSATTRIBUTES)));

The attribute Student-Name is in the system since ac3 is not equal to

zero.

- Apply Synonym Substitu tion for R esu l t by consulting th e thesaurus in

the system catalog. The system retu rns O utcom e , which is th e synonym

of R e s u l t , to the user by using the following algorithm :

n = V s y n K ^ r r n ^ u n i S y S C A T A C O G i S Y S S Y N O X Y M S)) ;

if /1 ^ empty then

y = sfi[KeyTerm] where sfi £ / l ;

— Apply Index Term Inference for getting the names of the fram e tem plate

by consulting the m eta-data in the system catalog:

y = ” Foi<urName=QA S y S C A T A L O G (S YSFOLDERS));

f t = {sfi[FTName]\sfi £ y};

A set of frame templates f t from the folder Q.E. is obtained. The user is asked

to select one of them. The user selects the name of frame template, Q.E.Result .

• Algebraic Q uery Formulation.

By em ploying th e algebraic operators, the system generates th e following

algebraic queries to assist in answering the user’s query.

te mpjresu l t = ^ Date_Taken=Sprin3iggOAOuUome=pass { ^ q ê .Result iQ-E-))i

Resu l t = 7T StudBnt_Nam, { t e m p j ’esultyi

QUERY: Find all the Ph.D students who passed
the Qualifying Examination in the Spring of 1990.

SELECT Q .E .(X).S tudenl_N am e

FROM Q .E .(X)

WHERE Q .E .(X).D ate_T aken = "S pring 1990"

Q .E .(X). R esult = "Pass"

AND

CONTEXT CONSTRUCTION

V
SELECT Q .E .(Q .E .R esu lt).S tudent_nam e

FROM Q .E .(Q .E .R esu lt)

WHERE Q .E .(Q .E .R esu lt).D ate_T aken = "S pring 1990"

Q .E .(Q .E .R esu lt).O utcom e = "Pass"

AND

Figure 5.3 An Exam ple of C ontext C onstruction A pplication

CHAPTER 6

BROWSER

In the previous chapter, we discussed an efficient and s tandard m ethod for retrieving

inform ation from databases, which is called systematic retrieval [63]. T he user

presents his request in a formal query; and upon receiving this query, th e system

executes the query transform ation to find, if necessary, the proper index term s corre­

sponding to those given keyterm s from the user query by retrieving the system fram e

instances in the system catalog, and then to generate the equivalent algebraic queries

by applying the algebraic operator to these index term s. T here are some situations,

however, in which th e system atic retrieval is difficult to achieve th e objectives. For

instance, the user m ay only have a vague retrieval ta rge t (e.g. W hat is P e te r Ng?).

Here, th e user does not know exactly what kinds of inform ation he needs until some

kind of description is displayed to him. (The user needs to gain knowledge abou t both

schemas and instances from the database.) In such situations, TEX PR O S employs

a browsing m echanism as a com plem entary retrieval m ethod.

Several database m anagem ent systems have provided th e user w ith tools th a t

allow users to explore the ir environm ent. C attell [8] designed a browser for an E ntity-

R elationship database, which could display each en tity w ith its context to th e user by

scanning a network of entities and relationships. D ’A tri and Tarantino [23] pointed

out the m ajor lim itations of m ost of the relational database browsers (e.g., SDMS[37],

TIM BER[88]). T he prim ary lim itation is th a t the user is confined to a single relation

a t a tim e, and it is very hard to browse across relation boundaries. M otro [63]

presents a browser, called BAROQUE, which supports inter-relation browsing by

using network views of relational databases. BA RO Q U E needs the additional space

to store the relational schemas and an item directory to support access by value. In

TE X PR O S, we create an object network to present th e view of the schem a (m eta­

data) of the database (about docum ent type hierarchy and folder organization) and

37

38

the database itself (fram e instances). However, all th is inform ation is incorporated

in the system catalog. Therefore, the object network always represents a snapshot

of a subset of the system catalog.

In the first part (section 6.1, 6.2 and 6.3) of th is chapter, we define the object

network, the arch itecture and the functionality of the browsing m echanism . The

second part (section 6.4 and 6.5) discusses the different com ponents of th e browser.

We conclude w ith some exam ples to illustrate how the m echanism works in section

6 .6 .

6.1 Object Network

In F igure 6.1, we describe each object in term s of schem a elem ents (m eta-data) and

d a ta elements. A database schema describes the struc tu re of the database and a set

of in tegrity constraints. In TE X PR O S, this description includes the nam es of the

folders along with the ir depends.on relationships, th e nam es of the fram e tem plates

along w ith their is-a relationships, and the nam es of the a ttrib u tes along w ith their

a ttr ib u te types.

As we discussed above, the user can obtain the inform ation about the specific

schem a elem ents by retrieving the system fram e instances in the system catalog using

the formal query, ju s t like retrieving any general fram e instances in th e database,

since the uniform representation of the system catalog and database itself is adopted.

However, it requires technical understanding of the d a ta model of T E X PR O S (i.e.,

the user needs a clear ta rge t for the retrieval). For instance, the user may w ant to

know the names of all the fram e tem plates in th e “A ssistants” folder. To avoid these

requirem ents, we describe the inform ation presented in the schema into an object

network. As m entioned above, the way of representing the schema in the system

catalog is the same as of representing the d a ta in the database, and therefore the

user is not required to distinguish between the schem a elem ents and d a ta elem ents.

39

Documents

FoIder[l] Foldcr[2] Foldcr[n]
(is -paren t-o f
depends-on)

W
FT[1] FT[2]

r*. \! \I \ '
I \ ' J I V VI
V

FT[3]
'• A V ^

FT[i] FT[j] FT[k]

i

A«[l]

■V

Att[2]
'A
Att[3]

A \

M \ / ' \ I \- / *
I \

Atl[i] Att|j] Attr[k]
/ \ \

•' » \

FT[m]A
/ \

\
\

(is-a-subtype-of,

is-a-supertype-oj)

\

'V
Attr[p]

I wI \ !>>
\

\ \
\ \
\ \

\ N
//

</ '<4
Att[il] Att[i2J... Att[ij]

/ I I ^
' \ Is -X

V
Val[l]

/ I \
, / J ' ‘ \

/ s ' ' > \
^ ^ . s ' V V A|

Val[2] Val[3] • • • • V n l [i] Val|J] Val[k]
*

*' s i
Val[t]

FT: frame template -----------3*- conrains-in fom utitin-in

Att: attribute name> has-type

Val: attribute value
------- > is-idem ified-by

------- •> is-a-com bination-of

-------- > includes

Figure 6.1 O bject Network

40

• T he schem a elements in the object network.

We represent the schem a elem ents with four vertical levels in the object

network: the docum ents in the database TE X PR O S, th e folders, the frame

tem plates, and the a ttribu tes. Each element is represented by an object. The

relationships between objects are described as follows: (1) the relationship

contains-information-in relates the docum ents in the TEX PR O S database to

folders; (2) the relationship has-type relates every folder to its fram e tem plates

which represent the types of fram e instances in the folder; (3) the relationship

is-identified-by relates every fram e tem plate to its a ttribu tes; and (4) to the

com posite a ttribu tes, the relationship is-a-combination-of relates a com posite

a ttr ib u te to each of its com ponents.

• D ual m odel in the object network.

We incorporate the folder organization (i.e. logical file organization) and

docum ent type hierarchy into the object network. To accomplish this, the

ob ject network is extended with the additional horizontal levels, which

represent the relationship among folders and the relationship am ong fram e

tem plates. (1) The relationship is-parent-of relates every folder to its

subfolders. The relationship depends-on relates every folder to its parent

folders. These relationships are reflected in the folder organization. (2) The

relationship is-a-supertype-of relates every frame tem plate to each of its subtype

fram e tem plates. T he relationship is-a-subtype-of relates every fram e tem plate

to its supertype fram e tem plate. These relationships reflect the generalization

and specialization relationships in the docum ent type hierarchy.

• T he d a ta elements in the object network.

In [63], the concept of access by value is proposed. T his concept gives the user

th e capability of retrieving all the occurrences of an a ttr ib u te value from the

41

database. The occurrences of an a ttr ib u te value are in term s of a ttrib u tes under

which the given values appear. For exam ple, the value Jason may appear in the

database as a value of the a ttr ib u te sender of a memo or the a ttr ib u te author

of a publication. In [63], an item directory is needed to store the m apping

from the values into a ttr ib u te nam es. In TEX PR O S, all this inform ation is

stored in the system frame instances of SYSATTRIBUTES type in th e system

catalog S y S C A T A L O Q . Each of these fram e instances over SYSATTRIBUTES

describes not only the a ttr ib u te nam es appearing in a specific fram e tem plate,

bu t also the a ttr ib u te types. T he la tte r part of the inform ation is helpful in

the case th a t a ttribu tes w ith sam e nam e have different a ttr ib u te types.

We present a view of the relationships between the a ttr ib u tes and the a ttr ib u te

values in the object network. The relationship includes relates every a ttr ib u te

to its values. Furtherm ore, the relationship between an a ttr ib u te value and

o ther values can be obtained only if they occur in the sam e fram e instance.

Formally, let Ji = {< Ai, Vj > , < A2 , V2 > , . . . , < An, Vn >} be a fram e instance

over fram e tem plate FT in the folder f. The following im plied relationships are

established: (1) the relationship is-Ai-of-VT-in-i-having-Ai relates th e value V\

to Vi(i = 2 , . . . , ra); and (2) the relationship is-Ai-of-FT-in-F-having-A\ relates

the value Vi (i = 2 , . . . , m) to V\.

6.2 Architecture of Browser

In T E X PR O S, the database can be viewed as a network of objects, which consist of

the schem a elem ents and da ta elements. All the inform ation, except the relationship

among d a ta elem ents, which can be obtained from the database itself, shown in the

object network can be derived simply by retrieving inform ation from the system

fram e instances in the system catalog, S y S C A T A C O Q .

T he com ponents of the browser are depicted in the Figure 6.2. W hen a user

enters a vague query as a topic, the system looks up all its rela ted inform ation in

the system catalog. The topic in terpreter finds all the relevant objects by retrieving

the system fram e instances from the system catalog. The objects include all possible

index term s (including the names of folders, fram e tem plates, a ttr ib u tes , and values)

and their relationships, which are pertain ing to the topic specified in the vague

query. And then the answers are combined to form an object netw ork, along with

some descriptions, which represents all the inform ation pertinen t to th e selected

topic. These description can be expressed in term s of the relationship is-Ai-of-FT -

in-f-having-A j for bringing together all the attribute-value pairs as a whole from the

same fram e instance. Therefore, the overall object network is not stored explicitly

in the system . O nly a portion (i.e., subgraph) of the object netw ork for the vague

query, dynam ically constructed by accessing the system catalog, is re tu rned to the

user.

Browser

v ague query
relevent

Object Network
o b ject ! ..

Topic
Interpreter

objects netw ork ! user’s query
reconstructionConstructor

descrip tions | ’’•••

query

Figure 6.2 A rchitecture of Browser

43

In the system , there are two principal retrieval m ethods, querying and browsing.

The user m ay select any object from the obtained object network to form the next

browsing topic. Such vague queries can be repeatedly entered into the system until

sufficient inform ation is obtained to the ex ten t th a t the user is able to use this

inform ation to construct a formal query of his request. The system is designed in

such a way th a t the browsing and querying m ay be interleaved.

6.3 Browsing in TEXPROS

Using the query interface as shown in F igure 3.4, the user can en ter any topic. By

browsing through the system frame instances in the system catalog, th e system is

able to respond w ith an object network which represents all the inform ation related

to the topic.

If the topic entered by a user is a schem a elem ent, such as the nam e of a folder,

th e nam e of a fram e tem plate, or the nam e of an a ttr ib u te , the system will re tu rn an

ob ject network in which the objects represent all the database definitions rela ted to

this topic. If the topic is a d a ta elem ent, such as an a ttr ib u te value, the system will

respond with a description which represents its relationships w ith o ther a ttr ib u te

values (i.e., they occur in the same fram e instance), provided the inform ation about

the topic is stored as the fram e instances in th e system . Indeed the browsing m ethod

in TE X PR O S supports the concept retrieval of some sorts.

We can extend our browser mechanism to accept more than one topic entered

by the user. For each topic, there corresponds an object network w ith the necessary

descriptions. T he connectedness among the object networks depends on th e re la t­

edness of the corresponding topics. For simplicity, the relatedness of given topics

is considered to be the same folder, fram e tem plate, a ttr ib u te or value, and their

relationships. T he system a ttem pts to find the relatedness among these topics.

Several individual object networks, each of which is associated w ith a topic, are

44

constructed first. According to the user’s request, the fu rther process m ay involve

two issues:

• How to connect these object networks into a connected object network.

Since the object network for each topic is only a subgraph of the object network

for the en tire system (such as, the object network depicted in F igure 6.1), the

system will re tu rn an object network to the user by connecting these subgraphs

together, provided these subgraphs are “jo in t” .1 Since the ob ject network

for the en tire system is a connected graph, the subgraphs, each of which is

associated w ith a topic, can be eventually connected to form an ob ject network

by adding a large num ber of objects, possibly loosely related to the topics. To

avoid this situation , th e system will lim it the num ber of objects to be added

into the subgraphs. Therefore, there may exist several disjoint object networks

for several unrela ted topics which are entered by the user.

• W hat query can be formed from this connected object network.

This issue can be resolved by observing the sequence of consecutive topics

entered by the user since they need to know th e prerequisite inform ation to

construct a formal query.

6.4 Topic Interpreter

T he topic in terp re ter is used to in terpret an inpu t topic as objects in the system , and

then retrieve other objects which are associated w ith them by accessing the system

catalog and the database. The following algorithm , described in the form of algebraic

expressions, provides an unified strategy for accessing “schem a” and “d a ta ” from the

system catalog and the database. The results will fu rther be used to construct the

1 “joint” means that they have common nodes or they will have common nodes after
adding some other objects to the object networks. Two object networks have a common
node provided their corresponding topics are related to each other, and the relatedness of
topics is of the same folder, frame template, attribute or value, and their relationships.

45

object network which represents all possible objects and their relationships related

to the topic.

A lg o r i th m 6 . 1 : (Check w hether the topic in the query is a folder nam e, a fram e

tem pla te nam e, an a ttr ib u te nam e or a value in the system ; and then call the ir

respective procedure. O therwise, find its related index term s by looking into the

thesaurus.)

B E G IN

h = ^ oMerWam<,=lop,c(^5C A rA £G 0(S Y S F O L D E R S));

h = ^ ™ ame=topic(«SJ«5CATA£Ge(SYSFRTEMPLATES));

h = a a ttrName= topic { S y S C A T AC OG (SYSATTRIBUTES));

U = ^ iveDaMinStopie{ S y S C A T A C 0 6 (S Y S A T i m B \J T E S)) ;

c a se (/i 7 ̂ empty) CallFolder(iopic);

case (/ 2 7 ̂ empty) C allF ram eT m (to 7hc);

ca se (/ 3 7 ̂ empty) C allA ttribu te(fopfc);

case (/ 4 7 ̂ empty) CaIlValue(/,opic);

case (/i = empty) C allT hesaurus(topic)

E N D

CallFolder(/d)

(G et inform ation related to the folder f d , such as, the parent(s) of f d , the

subfolder(s) of f d , and the fram e tem plate(s) associated w ith fd .)

B E G IN

/ = ^,d.rAr.™.B./-(^ C A rA C W (S Y S F O L D E R S));

f d c = {sfi[Parent-Of]\sfi = /} ;

f d p = {sji[Depends-On]\sfi = /} ;

f t — {sfi[FTNames]\sfi = /} ;

46

OUTPUT (f d „ f d c, f d p, f t)

END

C a llF r a m e T m (/t)

(G et inform ation related to the fram e tem plate f t , such as, its a ttrib u tes , its

superclass(es) and subclass(es), and th e folders associated w ith f t .)

BEGIN

/ = a f,rAfame=/t(5J«SC^r^£G t/(SY SFRTEM PLA TES));

att = {sfi[Attr-Name]\sfi = /} ;

f t p = {sfi[Is-A]\sfi = /} ;

/ ' = ^ ;s^ 2/((SJSCATACO£(SYSFRTEM PLATES));

if f ^ empty th e n

f t c = {sfi[FTName]\sfi 6 / '} ;

/ " = ^ FTWarae=/1(^5C ^TA £C >g(SY SFR IN STC 0U N T));

f d — {sfi[FolderName]\sfi = /"} ;

OUTPUT(/i, f t c, f t p,att, fd)

END

C allA ttribute(atZ)

(G et inform ation related to a ttr ib u te att, such as, the fram e tem plates including att,

the folders associated with these fram e tem plates, and the a ttr ib u te type of att.)

BEGIN

/ = ^ ^ ^ . . (S y f iC A T A r W f S Y S A T T R I B U T E S)) ;

(f t s , types) - {(sfi[FTName), sfi[AttrType])\sfi £ /} ;

For each (ft, type) £ (f t s, types) Do

{

/0) = a FTJVame=/((5J5CATA£OG(SYSFRINSTCOUNT));

47

f d s = {sfi[FolderName]\sfi £ Z ^ } ;

OUTPUT(aff, type, f t , f d s)-,

}

END

C allV alue(u)

(The procedure C allV alue(u) supports access by value. T he system retu rns the

other a ttr ib u te values which occur in the fram e instance(s) where the given a ttr ib u te

value v is.)

BEGIN

/ = ^ c(,„ei3om(im3„(5T 5C ytry l£^(SY SA T T R IB U T E S));

(atts , f t s) = {(sfi[AttrName\, sfi[FtName])\sji £ /} ;

For each (att, f t) £ (atts , f t s) Do

{ /* get folders satisfying att = v.*f

/(i) = CTFTWame=/t(S;ySC./47\4£C?<7(SYSFRINSTCOUNT));

(f t , f d s) = {(sfi[FTName], sfi[FolderName])\sfi 6 / ^ } ;

For each fd £ f d s Do

{ /* get the frame instances satisfying att = v.*f

f {2) = a alt=v(fd(ft))

OUTPUT (f {2), fd, f t);

}

}

END

48

C a llT h esa u ru s (t)

(The thesaurus can be readily incorporated into the browser to find the objects whose

sem antics are closely related to the topic(a vague query).)

BE G IN

/ (1) = ^ ev7ferm=t(5 y 5 C ^ r^ /:o a(S Y S T E R M A S S 0 C));

if /W = empty then

{ /* check SYSSYNONYMS.*/

/ (2) = a w .yTepm.2t(53;5C>ir>l/:oa(SYSSYNONYM S));

if / (2) = empty then

{ /* check SYSNARROWER.*/

/ (2) = a N„rrA.e!/7,erms3l(5T 5C ^>C G a(SY SN A R R O W E R));

if / (2) = empty then

RETURN(tmfcnoicm)

}
k — {$fi[KeyTerm]\sfi 6

/ (1) = < ^ rerm=jSJSCA TA £(3S(SY STERM A SSO C))

}

(indextm,type) = {(sfi[IndexTm],sfi[IndexTmType])\sfi 6 / ^ } ;

C8ise(type — “Folder”) CallFolder(inde.'cfm);

cas e(type — “F r a m e T m ”) CalIFrameTm(mdea;Zm);

cas e(type — “Attribute”) CallAttribute(mrfea;£m);

cas e(type = “value") CaHValue^rcde.'rtm)

EN D

49

6.5 Object Network Constructor

In th e previous sections, we pointed out th a t the browser m echanism allows users

to en ter m ultiple topics. The object network for each topic entered by the user is

only a subgraph of the object network for the entire system . The connectedness

am ong these subgraphs (i.e., partial object network) depends on the relatedness of

the ir corresponding topics. T he object network constructor finds the connections

am ong these topics and forms an object network from m ultiple object networks

before displaying. We shall proceed to give a formal definition of the object network.

6.5.1 Formal Definition for the Object Network

An object network can be denoted by O N — (TV, E, //v, /#) , where

1. TV = Nfd U N jt U N at U TV„, a collection of sets of nodes, where

(a) Nfd is a set of nodes representing the folders in the system;

(b) TVf t is a set of nodes representing the fram e tem plates in the system ;

(c) N at is a set of nodes representing the a ttrib u tes in the system , and

(d) N v is a set of nodes representing th e a ttr ib u te values in the system .

2. E — •E'ifd.jd) O E(f dj t) U E(f t j t) U E[ft,at) U -F(at,aq kJ E(at<v), a collection of sets

of edges, where

(a) E(f d,fd) Q Nf dXNf d- An edge (f d , f d !) £ E(f djd) denotes th e depends-on2

relationship between folders f d and f d ' (th a t is, f d ' is a paren t of f d) \

(b) E(fdj t) C N f d x N f t . An edge (f d , f t) £ £(/d,/t) denotes the h a s J y p e

relationship between a folder f d and a fram e tem plate f t (th a t is, f d

contains fram e instances over the fram e tem plate /£);

2the inverse relationship is isjparent~of.

50

(c) E(f tj tj C N j t x N f t . An edge (f t , f t ') £ E(f tj t) denotes t h e i s . a s u b t y p e s f 3

relationship between frame tem plates f t and f t ' (th a t is, f t is a subtype

of f t ') ;

(d) E (j t<at) C NjtX-Nat. An edge (f t , at) £ E (j t,at) denotes the i s Jden t i f i edJby

relationship between a fram e tem plate f t and an a ttr ib u te at (th a t is, the

at is an a ttr ib u te of the frame tem plate f t) ;

(e) E[at,at) <= N at x N at. An edge (at, at') £ E(atAt) denotes the is .a -combina tion .o f

relationship between th e com posited a ttr ib u te at and its com ponent

a ttr ib u te at', and

(f) E(at'V) C N at x N v. An edge (a t , v) £ E(at,v) denotes the includes

relationship between an a ttrib u te at and its value v.

3- Jn = { f j d , f j t , f a t , f v } , a set of mappings, where

(a) f f d : Nfd —* { f d } , where { f d } is the set of folder names in the system ;

(b) f j t : Nj t —> { f t } , where { f t } is the set of fram e tem plate nam es in the

system;

(c) f at : N at —► {at}, where {at} is the set of a ttr ib u te names in the system ,

and

(d) f v : N v —y{ v } , where {u} is the set of a ttr ib u te values in the system .

I e {f(jdjd)if(fd,jt)if(jtj t)jf(jt ,at)if{at,at)if{at,v)}^ a set of m appings, where

(a) f udj d) ■ Eudjd) —> {is-parent . o f , depends .on}.

(b) f(fdjt) ■ E(fdjt) -» {has-type}.

(c) f(iUJt) ■ E(JtJt) { is-a subtype . o f , i s .a super type -o f} .

(d) f(ft.at) ■ E(ft,at) {is-identified-by}.

3the inverse relationship is isjasupertype-of .

51

(e) J[at,at) '■ E{at, at) { is-a-combination-of] .

(f) f(at,v) • R(at,v) * { includes }.

An exam ple of illustrating the construction of an object network for a user’s topic is

given in Exam ple 6.1.

6.5.2 Connecting M ultiple Object Networks

T he user can en ter more than one topic by connecting them using operator A N D or

OR. T he A N D operator is used to connect the topics of the same type, such as, a

set of folders, fram e tem plates, a ttrib u tes or values. The O R operator can be used

to connect the topics of different types.

W hen a user enters several topics using connecting operator O R , the system

m ay take two kinds of action, forming object network and refining object network,

to com plete the object network construction task. By form ing an object network,

th e browser is applied separately on each topic to form its object network (th a t is,

an object network for each topic is formed). If the user asks for fu rther refinement,

the system will take an action of refining object network to find all the possible

connections am ong th e s^ o b jec t networks as follows:

• If there are common nodes among these object networks, such as, the nodes

corresponding to the sam e folder, fram e tem plate, a ttr ib u te or value, the object

networks are connected by unifying these common nodes.

• If there is depends-on relationship between any pair of folders, the object

networks are connected by adding depends-on edge between these folders.

52

• If there is is-asubtype-of relationship between any pair of fram e tem plates, the

object networks are connected by adding is .asubtype-o f edge between these

fram e tem plates.

W hen a user enters several topics using connecting operator A N D , the system

constructs an object network for each topic first using the browser, and then forms

an object netw ork containing only the common objects (objects are rela ted directly

or indirectly to these topics) among these object networks before displaying. The

obtained object network contains only topics entered by the user if they are nothing

in com mon, or displays all the possible common nodes w ith respect to th e given

topics (each topic has its object network) using the connecting operato r A N D .

For exam ple, upon receiving

TOPICS : M eet ing JMemo A N D Proceedings-Paper ,

possible resu ltan t object network is depicted in Figure 6.3(a), which specifies th a t a

folder Peter N g has types MeetingJVIemo and Proceedings_Paper. This resu ltan t

object network is different from the object network, as shown in Figure 6.3(b),

obtained by entering

TOPICS : M e e t in g -M e m o OR Proceedings -P aper .

Very often th e inform ation, which is provided in the obtained ob ject network, is

insufficient for fulfilling user’s retrieval target. Then the user can continue issuing

the topics from the object network or outside the network. If the topics entered by

the user using A N D operator are from the existing object networks (or at least one of

the topics is from the existing object netw ork), the system only extends th e existing

object networks by adding the common objects among the object networks. Each of

the common objects is related to the topics. T he relatedness relationships are the

53

(a)

Folder(Smith H arris)

A** ’***4*
F T(M eeting_M em o) F T(Proceedings_Paper)

TOPICS: Meeting_Memo AND Proceedings_Paper

(b)

F older(TE X PRO S) Folder(Sm ith H arris) Folder(Paper)

• • • *

^ A
FT(M ee^ng_M em o) F T(Proce^!ings_Paper)

/ \ / S

' ' \ • ’ \
/ \ * A

A tt(Sender) ■••• A tt(Subject) A tt(A uthors) A tt(T itle)

TOPICS: Meeting_Memo OR Proceedings_Paper

F ig u re 6 .3 Connecting M ultiple O bject Networks by (a)ANDing Fram e Tem plates
and (b)O R ing Fram e Tem plates

54

relationships among objects of the object network m odel. Therefore, th e following

browsing ta rge ts can be achieved further:

• If th e entered topics are th e folders, the question, “W hat are th e o ther fram e

tem plates associated to all these folders?” can be answered.

• If th e entered topics are th e fram e tem plates, th e following questions can be

answ ered from the resu ltan t ob ject network:

— W hat are the o ther folders having all these fram e tem plates?

— W hat are the a ttr ib u tes included in all these fram e tem plates?

• If th e entered topics are th e a ttr ib u tes , the question, “W hat are th e o ther fram e

tem plates including all these a ttr ib u tes?” can be answ ered.

• If th e entered topics are the values, th e question, “W hat are th e o th e r a ttr ib u te s

including all these values?” can be answered.

6 .6 E x a m p les

Example 6.1: Using the query interface as shown in F igure 3.4, when the user

en ters a topic, such as “P ete r Ng” , the system gathers and responds w ith all the

inform ation rela ted to the topic in the following m anner.

• T he topic in terpreter can in te rp re t th is topic as follows:

— T he system searches through the system fram e instances of the type

SYSTERMASSOC in the system catalog and learns from one of the fram e

instance th a t Peter Ng is a folder nam e in T E X P R O S .4

— T he system searches through th e system fram e instances of the type

SYSFOLDERS in the system catalog and learns th a t:

4Note tha t the index term Peter Ng can be of different index term types.

55

“the folder P e t e r N g depends on F a c u l ty ” , and the folder P e t e r N g

contains m any fram e instances of the types “Letter_of_Appointment_Offer” ,

“M eeting-M em o” , “Resume” , “Perform ance_Evaluation_Report”

“Faculty-A nnual-Sum m ary” , “Proceedings_Paper” , and others.

- T he system searches through the system fram e instances of th e type

SYSATTRIBUTES and SYSFRINSTCOUNT in the system catalog and

learns th a t Peter Ng is an a ttr ib u te value. Therefore, the system retrieves

o ther values related to Peter Ngivom the database, such th a t the following

inform ation reflecting is-Ai-of-FT-in-f-having-Aj relationships m ay be

displayed to th e user:

* Peter Ng is the Sender of a Meeting-Memo having the Subject Ph.D.

Qualifying Examination in the folder P e t e r N g .

* Peter Ng is one of th e Authors of a Proceedings_Paper having th e Title

A Query Algebra for Office Documents System in the folder P e t e r

N g .

• Figure 6.4 depicts a portion of the object network pertain ing to the vague query

“W hat is P e te r Ng” , resulting from the process of ob ject network constructor.

The formal specification of the object network is given as follows:

1. N — N j d U N j t U N at U N v, where

N j d = { f d , f d p};

N j t = { f t m m i f t r , f t pp, f t jp, . . . }-

N — {atse, at3u, . . . , at,jU, att and

N v = {Vpn, Vpqe, . . . , Vaqa, . . .}.

2. E E ^ j d j j .) ^ -®(J d , f t) ^ E ^ / t ^ a t) U E (a t , v), where

E (j d j d) = { { f d , f d p)};

{ { f d , f t m m) , { f d , f i r) , { f d , f t p p) , (f d , f t . j p) , . .

56

E (f t , a t) = { (f t m m t (f t m m j ®^s t t)> • • ■ > (/ ^ p p > ® ^ o u) » (f t p p :)> • • • i

(f t jpi ®^uu)i (f t jpi) i ...} , and

E (a t , v) = { (a ^ s e t v p n) ’ (flisu, V p q e . • . 1 (c t t’l) Vaqo.')) • •

Folder(FacuUy)

t
FoIder(Peter Ng)

FT(Meeting^femo) FT(Resume) FT(Proceediry>s_Paper) FT(Jourpal_Paper)

Att(Set^der) Att(Subjqct) ••••

\ '
t ^ A
tj " A

ValuefPeter Ng) Value(Ph .D.Qualifying
Examination)

Att(A j^iiors) AttfTjtle)
•• ^ \

*

Value(A Filing Organization
For Office Documents System)

FT: fram e template
Att: a ttribute
Val: attribu te value
X(Y): Y is an instance of X

depends_on

 > h a s jy p e

- — 3>- is_ iden lijied_by

“ includes

* Peter Ng is the Sender of a Meeting_Memo having the Subject Ph.D. Qualifying Examination
in the folder Peter Ng.

* Peter Ng is one of the Authors of a Proceedings_Paper having the Title A Filing Organization
for Office Documents System in the folder Peter Ng.

TOPICS: Peter Ng

F ig u re 6 .4 C onstructing an O bject Network

57

3 - I n = { f f d , f / u f a t , f v } , where

f f d (f d) = P e t e r N g ;

f f d (f dp) = Facul ty ,

f f t (f t mm) = Meeting.Memo\ f j t(f t r) = Resume ;

f f t (f tpp) = Proceedings -Paper-,

f f t (f t j p) = Journal-Paper;

. .

fat {at se) - S e n d e r ; f at{atsu) - Subject ; . . . - , f at (atau) = A ut h o r s ;

fat (ai t) - T i t l e ;

. .

fv(Vpn) = P e t e r Ng;

fv(vpqe) = P h . D . Qu a l i f y i n g E x a m i n a t i o n ;

f v { vaqa) = 4̂ Qu e r y Algebra f o r O f f i c e Document S y s t e m ; . . .

4. fE = { f (f d j d) , f (f d j t) } , where

f (/ d j d) ((f d , f d p)) = depends .on;

f (/dj t) ({fd, f t mm)) = lias-type; f (f dj t) ((fd, f t r)) = has-type;

f {/dj t) ((fd, fipp)) = has-type; f (/ d j t) ((f d , f t j P)) = hasJype;

* * •)

f(f t ,at){{f imm,atse)) = i s J d e n t i f ied-by; f { / i iat) ((f t mm, at su)) = i s - i d en t i f i e d Jnj . .

f (/ t , at) ((f ipp,atau)) = i s . i d e n t i f ied-by; f(/ t ,at)((f tpp,at t)) - i s J d e n t i f i ed - by . .

f u Ua t ^ i f t j p ^ t a u)) - i s J d e n t i f ied-by; f (f t,at){(f i jp,at t)) - i s J d e n t i f ied-by;

. .

^pn)) — i ncludesJ

j ^pge)) ■— includes , . . j

f(at,v) ((^ t » ^arja)) — includesJ . . .

58

Example 6.2: (Connecting M ultiple O bject Networks by Unifying

their Comm on Nodes)

U pon receiving the vague query,

TOPICS : Q.E . Applicat ion-Form OR Journal-Paper ,

th e system first generates two object networks, which are rela ted to the fram e

tem plates Q .E .Application -F orm and Journal -Paper, respectively. After refining

these two object networks, an object network, as shown in F igure 6.5, is constructed

by unifying the common node, namely, the folder F o r tu n e .

Example6.3 :(Connecting M ultiple O bject Networks by A dding depends-on Edge)

U pon receiving the vague query,

TOPICS : J e n n i f e r OR Paper ,

the system first generates two object networks with respect to th e folders J e n n i f e r

and Paper. A fter refining these two object networks, an object network, as shown

in F igure 6.6, is constructed by adding the depends-on edge between the folders

Ph.D.Students and Publication.

Example6.4 :(Connecting M ultiple O bject Networks by ANDing Fram e Tem plates)

From th e object network in Figure 6.4, a user may issue a vague query,

TOPICS : Proceedings-Paper AND Journal-Paper ,

when he wants to know “W hat are the other folders having the fram e tem plates

Proceedings-Paper and Journal-Paper. T he folder Paper having the types

59

Proceedings-Paper and J ournal-Paper is added to the object network in

Figure 6.4 to yield the resu ltan t object network as shown in Figure 6.6.

the ob jec t n e tw o rk fo r “ Q .E .A pplicu tion_F orm "

Folder(Q.E.) Folder(Jennifer)

* ̂ A '
FT(Q.E.AppJjcation_Form)

Att(Student-Name) Ait(Date_Taken)

the ob ject netw ork fo r “ Jo u rn a l_ P ap e r”

FoIder(Paper) Folder(Jennifer)

FT(J(fftrnalJdaper)

Att(Authors) Att(Title)

Refining Object Network

Folder(Q.E.) Folder(Jeiiitifer)
y

.** •••

Folder(Paper)

y• • *
* a ’ A ’’

FT(Q.E.AppUcationJForm) FT(Journal_Paper)

/
A ^

Att(Student-Name) Att(Date Taken) Att(Autliors) Att(Title)

TOPICS: Q.E.Application_Form OR Journal_Paper

F igu re 6 .5 Connecting Multiple Object Networks by Unifying their Common Nodes

60

the object network for “Jennifer" the object network for “Paper"

Folder(Ph.D.Students)i FolderfPublication)

1
FolderfJennifer)

1
Folder(Paper)

• • *•A
FT(Admission_Acc_Letter) FT(Transcript) FT(Journal_Paper) FT(Proceedings_Paper)

I I Refining Object Network

F older(Ph.DStudents)

Folder(Jennifer)
Folder(Publication)

t
A 1

Folder(Paper)

FT(Admission_Acc_Letter) FT(Transcript)

FT(Journal_Paper) FT(ProceedingsJPaper)

TOPICS: Jennifer OR Paper

F ig u r e 6 .6 Connecting Multiple Object Networks by Adding depends-on Edge

61

FolderfFaculty)

t Folder(Paper)

Folder(Peter Ng)

 ..

 >■ '
FT(Meeting_tfemo) FT(Resume) FT(Proceediijgs_Paper) FT(JourpalJ>aper)

l'. i f
Atl(Seyder) Att(St^ject)

\
i —V"
k ^ ^

Value(Peter Ng) Value(Ph.D.Qualifying
Examination)

jeet) Att(Aijthors) Att(Tjtle)

FT: fram e template

Alt: a ttribute

Val: attribu te value

X(Y): Y is an instance of X

Value(A Filing Organization
For Office Documents System)

•" d e p e n d s jm

• • • • h a s jy p e

— — is_ iden tified_by

includes

TOPICS: ProcecdingsJPapcr AND Journal_Papcr

Figure 6.7 Connecting Multiple Object Networks by ANDing Frame Templates

CHAPTER 7

GENERALIZER

T he context construction mechanism is introduced into our system prim arily to

relieve users from the necessity of rem em bering the precise term s (such as, index

term s and keyterm s) of individual entities in the system. However, since th e query

entered by th e user is less restrictive, th e response given to the user by th e system

m ay be less cooperative. According to Kao e t al.[45], the requirem ents for achieving

cooperative responses from the system are as follows: (1) the m axim of quantity :

be as inform ative as required; (2) the m axim of quality: contribute only when an

adequate am ount of evidence is present; (3) the m axim of relation: be relevant; and

(4) the m axim of m anner: avoid ambiguity.

Several system s which are capable of generating cooperative responses have

been developed. Schank and Lehnert[81] extended the response to th e user’s vague

and am biguity query. M cCoy’s ENHANCE system [57] and the M cKeown’s T E X T

system [58] a ttem p ted to generate answers for requesting the meta-knowledge. They

employed the knowledge base th a t includes the concept used in the database, to

accom plish th e generalization hierarchy from the d a ta itself. K aplan [46] presented

a portab le na tu ra l language query system with capability of generating cooperative

response to n a tu ra l language query. Especially in the case of null answer query,

th e kinds of cooperative response th a t the system can offer include: corrective

indirect response, suggestive indirect response, and supportive indirect response. To

accomplish these, it employs the domain transparen t m echanism and M eta-Q uery

Language. K alita [44] described how to give the sum m ary response for short non-

enum erative answers. The system employs a knowledge base which consists of frames

th a t are used to store the inform ation about database schema. M otro [69] presented

another approach to in terpreting null answers. According to his idea, every query

reflects a presupposition th a t the retrieval request being expressed is plausible and

62

63

the source of a null answer is in erroneous presupposition. A verification m echanism is

em ployed to detect these erroneous presuppositions [66], A generalizer is em ployed to

generate a set of o u tp u t presuppositions which are m inim ally m ore general than the

given in p u t presupposition. This can be done by weakening m athem atica l conditions

placed upon th e queries or by deleting conjunction from the queries. ARES [41] is a

system w ith th e capability of perform ing flexible in terp reta tion of the queries th a t is

based on th e relational d a ta model and allowing for a certain am ount of am biguity

as well. This can be achieved by functionally augm enting the relational operations

w ith th e additional com parison operato r “approxim ately equal to ” .

7.1 The Design of Our System: An Enhanced Generalizer

All of th e system s m entioned above require extending the original d a ta m odel to

one w ith general inform ation about th e m e ta -d a ta and dom ain knowledge of some

sorts. T E X P R O S requires these kinds of inform ation which are stored in th e System

Catalog.

T he following exam ple dem onstrates th a t the null answer is rarely satisfactory

in our system . Consider a query which retrieves all the studen ts who were enrolled

in th e course CIS792 (Pre-doctoral Research) and received a grade A from “M.S.

S tuden ts” folder. As there is no enrollm ent for which the course is CIS792 and the

s tu d en t received the grade “A” in “M.S. S tuden ts” folder, the system re tu rns a null

answer. T he null answer can be in terp re ted as follows:

• T here is no inform ation (i.e, no M.S. studen t takes CIS792) in the “M.S.

S tu d en ts” folder.

• T here is no M.S. studen t who received a grade A in the course CIS792.

• T he inform ation is located in o ther folders.

64

• T he inform ation is stored in the system as fram e instances of o ther types

ra th e r than those of the type which are used for exam ining th e query.

A ctually th e query reflects a presupposition of the user th a t some of M.S. s tuden ts

were enrolled in CIS792. In fact, only Ph.D . s tuden ts were enrolled in th is course; so

th e original query reflects an erroneous presupposition and the null answer is a fake

em pty answer.

In this d issertation, we present a generalizer m echanism for answ ering the

queries th a t reflects erroneous presuppositions w ith inform ative messages instead

of a null answer.

7.2 Principles of Generalizer

M otro [69] proposed a query generalizer, which issues a set of m ore general queries

from the original query to determ ine w hether th e em pty answer is genuine, or w hether

th e original query reflects erroneous presuppositions on behalf of the user. Conse­

quently, the procedure can be described as follows: when a query fails (w ith an

em pty answer), its im m ediate generalizations are generated and a ttem p ted . If all

th e im m ediate generalizations succeed (w ith nonem pty answers), th e original em pty

answ er was genuine , and the answers of the generalizations m ay be considered as the

partia l answer of th e original query. If a t least one of im m ediate generalizations fails,

th e original em pty answ er was Jake. This procedure is continued un til all significant

failures of queries are detected . (A failure of a query is considered to be significant

only if all of its generalizations succeed.)

M otro used th e SQL query language to dem onstrate his approach. To generalize

a query w ith conjunctive norm al form in the WHERE clause, in which every prim itive

te rm is a com parison between two a ttrib u tes or betw een an a ttr ib u te and a value,

65

a set of queries was produced by weakening a single prim itive term at a tim e. For

exam ple, “G P A > 3.6” was replaced by “G P A > 3.4” .

7.3 Motivation

We are em ploying the logical file organization and docum ent type hierarchy in our

model; consequently, the user needs to specify the folder , the frame template or the

attribute in the query to retrieve the inform ation. As m entioned before, the context

construction m echanism relieves users of the necessity to rem em ber the precise names

(such as folder name or frame template name) of individual entities in the system .

However, since the query entered by the user is less restrictive, the response to

the query given to the user by the system may be less cooperative. In T E X PR O S,

generating precise and meaningful responses is our target in the situation when em pty

answers arise, and therefore the generalizer is developed by incorporating both the

folder su bstitu tion and the type substitu tion.

7.4 Folder Substitution

To generalize a failed query, the folder nam e in the query is substitu ted by the nam e

of those folders whose sem antics are sim ilar to the original folder and are relevant to

the original query. To accomplish the folder substitu tion , the sim ilarity betw een two

folders in the logical file organization is taken into consideration.

7.4.1 Similarity Definition

Sim ilarity (as defined in [41]) is used in the flexible in terpreta tion such th a t the

values of a ttr ib u tes which are semantically close to an exact m atch w ith the query

condition can be obtained. We extend this concept to the sim ilarity between folders

in the logical file organization based on their sem antics (such as the content of the

folders) in our system . For instance, in the filing organization as shown in F igure

66

D ept. A ffairs

L ev e l 0:

Personnel

in fo rm ation
Level 1 A cadem ic A ffairs

Level 2: A ssistan ts Facu lty P h .D .P rogramM .S.Program

F inancial

A ssistan tsh ip
Level 3: P h .D .S tuden tsM .S .S tuden ls

J im

Level 4: Jenn ife r E ileen M ary JohnFortune

F igu re 7.1 Part of Filing Organization

67

7.1, the content of the folder “John” is more sim ilar to the content of the folder

“Fortune” than to th e content of the folder “J im ” , since both John and Fortune are

Ph.D . students and Jim is not.

Given a logical file organization (which is possibly a DAG structu re), the folder

f d 0 which is not a subfolder of any folders is considered to be a t level 0. Assume th a t

there is a folder fdj containing no subfolder. T he folder fdj is a t the level n if there

exists a pa th of m axim al distance n from fdo a t level 0 to fdj.

For exam ple, in F igure 7.1, the “Dept. Affairs” folder (the superfolder for this

case) is a t level 0. T he folder “Jim ” is at level 3, and the folders “Jennifer” , “E ileen” ,

“Fortune” , “M ary” and “John” are a t level 4. T he folders “A ssistants” , “Faculty” ,

“M.S. P rogram ” and “Ph.D .P rogram ” are a t level 2. The folders “M.S. S tuden ts” ,

“F inancial A ssistantship” and “Ph.D . S tudents” are a t level 3.

We derive the sim ilarity between the folders from the bo ttom level (level n) of

th e hierarchy of th e logical file organization. T he sim ilarity between two folders is

set to the level of the folder which is the least common paren t of both. For instance,

in F igure 7.1, the sim ilarity between the folders “Fortune” and “John” is set to the

level of the folder “Ph.D . S tuden ts” , which is 3. For the folders, which have more

th an one common paren t, the sim ilarity between the folders is calculated using the

following formula:

where L c is the level of the least common parent; Pc denotes the num ber of com mon

paren ts, and N denotes the to ta l num ber of folders in the filing organization.

For instance, these are two common parents, namely, the “Ph.D . S tuden ts” and

“A ssistants” , for th e folders “ Fortune” and “Jennifer” ; so the sim ilarity between

them would be 3 + ^ = 3.06.1

1Assume that there are totally sixteen folders in the filing organization.

68

7.4.2 Similarity in SYSTEM CATALOG

T he sim ilarities between folders m ay be stored in the system catalog as the system

fram e instances whose type is SYSSIM ILARITY as shown in F igure 7.2. The

system updates those frame instances dynam ically during docum ent filing. However,

updating th e sim ilarities in the system catalog according to every change in th e filing

system is usually expensive and m ay not be realistic. Furtherm ore, it is not necessary

th a t th e sim ilarities among all the folders are m aintained. In o ther words, some of

sim ilarities have been used rarely.

One solution to this is a lazy com putation approach, which com putes the

sim ilarities between folders when they need. Hence, when the generalizations of a

query are generated, a sim ilarity generator will be called to re tu rn the m ost updated

sim ilarities between folders involved in the query. 2 Requesting the sim ilarities when

query is generalized ensures th a t the m ost updated sim ilarities are being used.

7.4.3 Semantic and Structural Interdependency

We need to distinguish the folders which have th e same sim ilarities w ith a specific

folder fd. For exam ple, the sim ilarity of “Ph.D . S tudents” and “A ssistan ts” is the

sam e as th e sim ilarity of “Ph.D . S tuden ts” and “Faculty” . (B oth are of the level of

the folder “D ept.Affairs” .) Consider the sem antic and structu ra l interdependencies

am ong folders for solving the problem. Four types of interdependencies am ong folders

are defined: jointness, disjointness, partiaLjointness and covering. Jointness holds

between two folders having common fram e tem plates. Disjointness holds between

two folders having no common fram e tem plates. Covering holds when a folder is a

superset of th e union of other folders. PartiaLjointness holds am ong a set of folders

if there exists a folder which is a subset of the union of th is set of folders. The

covering and partiaLjointness are considered as sem antic interdependencies because

2It seems reasonable to keep the information about the levels of folders in the system
catalog.

69

The corresponding frame instances for SYSSIMILARITY

IndexTerml IndexTerm2 IndexTmType Similarity

Fortune John Folder 3

Fortune Jennifer Folder 3.06

Fortune Eileen Folder 2

Fortune Mary Folder 1

John Mary Folder 1

John Jim Folder 0

Ph.D. Students Assistants Folder 0

Ph.D. Students Faculty Folder 0

Ph.D. Students John Folder 3

M.S. Program Ph.D. Program Folder 1

M.S. Program Academic Affairs Folder 1

M.S. Students Ph.D. Students Folder 1

M.S. Students Ph.D. Program Folder 1

M.S. Students Financial
Assistantship Folder 2

F ig u r e 7 .2 Sim ilarity in SYSTEM CATALOG

70

they deal w ith the content of the folders, whereas, the jointness and disjointness

are of s tru c tu ra l interdependencies since they deal with the type of content in the

folders.

For instance, consider the folders “Ph.D . S tuden ts” , “A ssistants” , and their

subfolders, such as “Fortune” , “Jennifer” and “John” , etc . Since the union of “Ph.D .

S tuden ts” and “A ssistants” is the superset of the union of these subfolders, the

relationship of “Ph.D . S tudents” and “A ssistants” with these subfolders is a covering.

However, th e “Ph.D . S tudents” does not cover all its subfolders. T he partiaLjointness

holds between the folder “Ph.D . S tuden ts” and the “A ssistants” , since a folder

“Jennifer” is the subset of the union of “Ph.D . S tudents” and “A ssistan ts” . The

jointness holds between the folder “Fortune” and “Jennifer” , if they contain some

com mon fram e tem plates, such as th e “FulLTranscript” of Ph.D . students. The

disjointness holds between the folder “John” and “Jim ”, if they contain the fram e

instances of different types.

We proceed to formally define the sem antic and structu ra l interdependencies as

follows:

Definition 7.1: Let Cj be the criteria for a folder fi. Then Cj(fi) m ust be true

for any fram e instance fi to be located in the folder fi. Let it (fi) denotes a fram e

instance fi over th e fram e tem plate ft.

• Covering:

Let f j be a folder with criteria Cj.

Let f j \ , f j 2 , - - - , f j n {n > 0) be a set of folders with criteria C p , Cj2, . . . , Cjn,

respectively. Then the relationship between f j and fik (1 < k < n) is a covering,

or fj covers fjk, if for every fram e instance fi from fjk (1 < k < n),

((Cj{f i) A CjX{fi)) V (Cj (f i) A Cj2{fi)) V . . . V (Cj{fi) A Cjn(fi))) is true.

71

It should be noted th a t the folder fi could possibly contain some fram e instances

which does not satisfy any fik (1 < k < n).

• Jointness:

Let f i and f i be two folders w ith criteria Q and C2 respectively.

Then f i and /2 are jo in t (or satisfy the jointness condition)

i f (31t){3fii){3ji2)((it(fil) A ft(^ 2)) A (Cj(./t;) A C2(fi2))) is true.

• PartiaLjointness:

Let f i and / 2 be two folders w ith criteria Q and C2 respectively. Then fi and / 2

are partially jo in t w ith respect to f j (or satisfy the partiaL jointness condition)

if

1) 3 a folder f j w ith criteria Cj such th a t for every fram e instance fi in fi,

((Ci(.fi) A Cj(fi)) V (C2(fi) A Cj(f i))) is true3, and

2) for each 1 < k < 2 , there is a t least one f i in fi such th a t ((Ch{fi) A Cj(fi))

is true.

N ote th a t the first condition of the partiaLjointness is to consider all the fram e

instances in the folder fi , and the second condition is to ensure th a t each of

the folder f i and / 2 m ust have a t least one fram e instance from f i satisfying its

criteria.

• Disjointness:

Let f i and f i be two folders w ith criteria Cj and C2 respectively.

T hen fi and f i are disjoint

i f (C i{fit) A C2(fi2)) is false for every frame instance over the same frame

te m p la te ,^ ; from f i and f i2 from f i .

3It means that fi depends on fi U f i .

72

'A ssistan ts" "M .S .Students" "F inancial A ssistantship"

fi2

depends_on
"Eileen'

R4

fi4

fi5

F ig u re 7 .3 Contents of the Folders

Before concluding th is subsection, let us consider th e folders “Eileen” , “A ssistan ts” ,

“M.S. S tuden ts” and “Financial A ssistantship” as shown in Figure 7.3. Assum e th a t

the folder “Eileen” contains four frame instances: there are two fram e instances (say

f i 1 and f i 2) of personnel inform ation of being a student assistant; a fram e instance

(say Ji3) s ta tes th a t she requires to enroll as a full-tim e M.S. student to be able to

work as an assistant; and a fram e instance (say f i 4) offers her tu ition fee waiver for

com pleting the M.S. degree. In the folder “Financial A ssistantship” , it also contains

a fram e instance (say f i 5) of inform ation which is irrelevant to Eileen. In F igure 7.3,

the folder “Eileen” contains the frame instances f i x, f i 2, f i 3 and f i 4, and the folder

“Financial A ssistantship” may contain the fram e instances f i 4 and f i 5. T he ab strac t

folders “A ssistants” and “M.S. S tudents” v irtually contains those fram e instances

73

depicted in the do tted lines which satisfy their criteria bu t are actually deposited in

the concrete folder “Eileen” .

We say th a t the folders “A ssistants” and “M.S. S tuden ts” are partia lly joint

w ith respect to the folder “Eileen” since for all the fram e instances in “Eileen” ,

some satisfy the criteria for the “A ssistants” and some satisfy the criteria for the

“M.S. S tuden ts” . The folders “A ssistants” and “Financial A ssistan tsh ip” are also

partia lly jo in t w ith respect to the folder “Eileen” . And the folders “A ssistants” ,

“M.S. S tuden ts” and “Financial A ssistantship” satisfy also the partia l jointness

condition w ith respect to “Eileen” . But the folders “M.S. S tuden ts” and “Financial

A ssistan tsh ip” do not satisfy the partia l jointness condition w ith respect to “Eileen”

because some of the fram e instances in the folder “Eileen” , such as f i 2-, do not

m eet the criteria of “M.S. S tudents” or “Financial A ssistantship” . (T h a t is, the

com bined folder of “M.S. S tuden ts” and “Financial A ssistantship” does not cover

th e “Eileen” .)

T he folders “A ssistants” and “Eileen” do not satisfy the covering condition.

In general sense, we can say th a t the combined folder of “A ssistants” and “M.S.

S tuden ts” covers the folder “Eileen” .

For s truc tu ra l interdependency, in addition to the folders “A ssistants” and

“M.S. S tuden ts” , the folders “M.S. S tudents” and “Financial A ssistan tsh ip” satisfy

the jo intness condition, since they contain a common fram e instance (j i4) concerning

her tu itio n fee waived as a M.S. S tudent. However, the folders “A ssistants” and

“Financial A ssistantship” do not satisfy the jointness conditions; and therefore they

satisfy the disjointness condition. In fact, the folder “Eileen” is jo in t w ith the folder

“A ssistan ts” , “M.S. S tudents” , or “Financial A ssistantship” .

74

7 .4 .4 R u le s o f F o ld e r S u b s t i tu t io n

T he folder substitu tion is established by the following rules:

• T he system searches the system catalog and returns to the user a sequence

of folders, one by one, in the order th a t the first re turned folder has highest

sim ilarity to the folder in the original query (in the order w ith the sim ilarity

of the highest first, etc).

• To reduce the num ber of irrelevant substitu tions, the user can discontinue any

substitu tion if the retu rned folder is considered to be irrelevant to th e query.4

For instance, in the exam ple of section 7.6, the user rejects the substitu tion of

the folder “F inancial A ssistantship” for the “M.S. S tuden ts” folder since it is

irrelevant to the original query about the grade of the students.

• T he system displays the folders which are similar to the original folder in

the sequence according to the appropriate priorities, which are based on the

sem antic and s truc tu ra l interdependencies defined in the previous section.

For exam ple, given the original folder, say the “Ph.D . S tuden ts” , the “A ssistan ts”

precedes the “Faculty” in the sequence of folders returned by the system for

folder substitu tion , since the relationship of “A ssistants” and “Ph.D . S tuden ts”

is a partiaL jointness bu t the relationship of “Faculty” and “Ph.D . S tuden ts”

is a disjointness.

• If two folders have the same relationship w ith the original folder, then the

folder w ith th e higher level num ber (of the logical file organization) is prior to

the other folder w ith the lower level num ber.

4We should point out that comparing the similarities between folders is more meaningful
when their context is taken into consideration.

75

For instance, given the original folder “M.S. S tuden ts” , the “Ph.D . S tuden ts”

is preceded to the “Ph.D . Program ” in the sequence of folders for substitu tion ,

since the “Ph.D . S tudents” is w ith the higher level num ber than the level

num ber of the “Ph.D . P rogram ” folder. However, both relationships of “M.S.

S tuden ts” and “Ph.D . S tuden ts” , and of “M.S. S tudents” and “Ph.D . P rogram ”

are of disjoint ness.

• If two folders at the same level have the same relationship w ith an original

folder, then the system assigns them in an arb itra ry order to appear in the

sequence of folders for substitu tion .

7 .5 T y p e S u b s t i tu t io n

A failed query can be generalized by substitu ting other fram e tem plates, which may

possibly be the types of fram e instances retrieved by the user, for the fram e tem plate

appearing in the failed query. This process is called type substitution. The general

rules for type substitu tion are as follows:

1. Select the frame tem plates which are the siblings5 of the original one to be

its substitu tes first. For instance, in Figure 7.4, when the fram e tem plate

“G rade_R eport” is specified in a failed query, it is replaced by “FulL T ranscript”

or “Course_Grade_Report” which are the siblings of “G rade_Report” in the

docum ent type hierarchy.

2. W hen all the substitu tions in (1) fail, we substitu te the fram e tem plates of

its im m ediate parent for the original fram e tem plate . For instance, replacing

“G rade_R eport” in the failed query by “T ranscrip t” .

3. If (2) still fails, trea t the parent as the original fram e tem plate and re tu rn to (1).

5/t,- and ftj are the siblings if they have the same immediate parent.

76

Is_A
Is_A Is_A

Course_Grade_Report
Frame

Template

FulI_Transcript
Frame

Template

Transcript
Frame

Template

Grade_Report
Frame

Template

F ig u re 7 .4 A Docum ent Type Hierarchy

7.6 E x a m p le

The following exam ple dem onstrates our approach. As the evaluation of a given

query shown in Figure 7.5 preduces an em pty answer, the system makes an a ttem p t

to determ ine the reason of producing the em pty answer by generalizing the original

query, which is specified in a hierarchy of query generalizations shown in F igure 7.6.

Then the generalizations of the query are fu rther accomplished by executing the

folder substitu tion .

T he generalizations of the query are derived continuously by weakening the

search criteria. T he search criterion of the original query include the M .S . S tu d e n t s

folder (F), C ourse-Grade-Report fram e tem plate (T), Course-No = “C I S 792”

(C), and Grade = “A” (A). The original query is generalized to the following

queries by reducing the conditions C ourse -N o = “C I S 792”, Grade — “A” ,

Course-Grade-Report as the frame tem plate type for the fram e instances, or

M .S .S tu d e n t s as the folder where the fram e instances to be looked for.

77

QUERY: Retrieve all the students who were enrolled in the course CIS792
and received the grade A from the "M.S.Students" folder.

SELECT M ,S,Students(C ourse_G rade_R eport).S tudent_N am e

FROM M .S.Students(C ourse_G rade_R eport)

WHERE M .S.Students(C ourse_G rade_R eport).C ourse_N o = "CIS792"

AND

M .S.Sudents(C ourse_G rade_R eport). G rade = "A"

F ig u re 7 .5 The Query with Em pty Answer

• Q l: “ retrieve all th e studen ts who received a grade A in a Course_Grade_Report

from the “M.S. S tudents” folder. ” (F T A)

• Q2: “ retrieve all th e studen ts who received a grade A for the course CIS792 in

the Course_Grade_Report.” (T C A)

• Q3: “ retrieve all the students who were enrolled in the course CIS792 and their

Course_Grade_Report from the “M.S. S tudents” folder.” (F T C)

. Q4: “ retrieve all th e students who received a grade A for the course CIS792 in

the “M.S. S tudents” folder.” (F C A)

T he system retu rns nonem pty answers for the queries F T A and T C A , and no further

generalization for these two succeeded queries is needed. However, the system still

re tu rns an em pty answer for the query F T C and F C A . Therefore, the generalizations

for these two queries are fu rther proceeded as follows by reducing the search criteria:

• Q31: “retrieve all the students from their Course_Grade_Report in the “M.S.

S tuden ts” folder.” (F T)

• Q32: “retrieve all the studen ts who were enrolled in the course CIS792 from

the Course_Grade_Report.” (T C)

T C AFTA

T C FA CAFT FC

F C AFTC

FTCA

F "M .S." Fo lder

T "C ourse_G rade_R eport" Fram e T em plate

C C ourse_N o = "C IS792"

A G rade = "A ”

the failed query w ith fake em pty answ er

j the succeeded query

sign ifican t failure

Figure 7 .6 A Hierarchy of Generalizations

79

• Q33: “ retrieve all th e students who were enrolled in the course CIS792 from

the “M.S. S tudents” folder.” (F C)

• Q41 : same as Q33.

• Q42: “retrieve all the students who received the grade A from the “M.S.

S tuden ts” folder.” (FA)

• Q 43: “ retrieve all th e students who were enrolled in the course CIS792 and

got grade A.” (C A)

T he system still returns an em pty answer for the query F C , while the o ther gener­

alized queries, F T , T C , F A and C A succeed w ith non-em pty answers. T he failed

query F C is generalized fu rther to form the following two queries:

• Q33i: “retrieve all th e students from the “M.S. S tuden ts” folder.” (F)

• Q 3 3 2 “ retrieve all the students who were enrolled in the course CIS792.” (C)

Since both queries F and C succeed with non-em pty answers, it is an indication th a t

the em pty answer for the query F C was genuine. T he significant failure of query

F C is detected. The system is saying “None of the M.S. studen ts was enrolled in the

course CIS7921” .

To find the folders containing the fram e instances requested, the system calls the

similarity generator, which returns a sequence of folders in the order specified in

Section 7.4.4. A possible sequence can be “M.S. P rogram ” , “Ph.D . S tudents” , etc.

As th e folder in the original query is replaced by the folder “Ph.D . S tuden ts” , the

system returns non-em pty answer. Finally, a cooperative answer is responded to the

user for asserting th a t only Ph.D . students were enrolled in the course CIS792.

CHAPTER 8

G E N E R A L IZ A T IO N R U L E S

In chap ter 7, we presented query generalization mechanisms for answering any queries

th a t reflect erroneous presuppositions w ith inform ative messages instead of simply

a null answer. T he generalizations of any given failed query (i.e., w ith an em pty

answer) are derived by incorporating both the folder and type substitu tions and

w eakening search criteria, and th e system will be able to conclude a meaningful and

cooperative response by looking into a small subset of query generalizations. In

general, the results of evaluating these generalized subqueries contain inform ation

which is of poten tial interest to the user. In this chapter, we consider the general

boolean queries1 which produce em pty answers. We introduce a Conjunctive Query

Graph to represent all the possible conjunctive subqueries generated using the gener­

alization algorithm . The generalization algorithm is executed based on this graph

in which each of the nodes characterizes the search criteria and the arcs direct to

the next possible search criteria to be considered. A m ost significant feature of the

algorithm is its ability to reduce the space of generalized subqueries by restric ting

accesses to those facts which are effectively needed to answer a query. A set of rules

is applied fu rther to a tta in th a t property..

8 .1 C o n ju n c tiv e Q u e ry

We first focus our discussion on conjunctive queries 2, and then consider the general

boolean queries 3 in the next section.

1The queries consist of boolean combinations of predicates.
2The queries only use A N D operator.
3The queries use the operators A N D , OR and A N D NO T.

80

81

8.1.1 Conjunctive Query Graph

We define the index term set, E = { } to include all index term s or

p rim itive predicate term s4 appearing in the original query. T he power set of E,

P {E) , is m apped into a Conjunctive Query Graph, which represents all th e possible

conjunctive generalized subqueries by applying the generalization procedure to the

original query. T he nodes of the graph refer to the conjunctive subqueries which are

distinguished between the queries with em pty answers and queries w ith non-em pty

answ ers.5 T he arcs of the graph represent the set-inclusion relationship in th e power

set P (E) . T he leaves of the graph contain the subqueries which are denoted by

the index term s or prim itive predicate term s. For instance, F igure 8.1 depicts the

Conjunctive Query Graph corresponding to the query given in F igure 7.5, where F

and T an index term s, and C and A are prim itive predicate term s.

An exam ple of Conjunctive Query Graph for the query involving two folders is

depicted in F igure 8.2. T he quest for S tu d e n tJ V a m e s involves looking for any two

fram e instances having the same studen t nam e (i.e., S tu d e n t - N a m e = N a m e) , where

one fram e instance is of Admiss ion-Acc-Le t te r type in the P h . D . S tu d e n t s folder,

which contains Date = “Fal l 1990” , and the o ther is of Q .E .R esu l t type in the Q.E.

folder which contains D ate -T aken < “Spr ing 1990” and Outcome = “Pass" .

8.1.2 Generalization

T he conjunctive query graph for a query represents all the possible conjunctive

subqueries generated in the generalization procedure. Given rq subqueries derived

from th e original query, there are 5Zm=i IlfcLi num ber of conjunctive

subqueries. For determ ining a meaningful and cooperative response of any given

failed query, we exam ine only a small subset of query generalization, based on a

4A primitive predicate term is of the form ii@i2 or i@v, where v is a value, and @ is a
comparison operator.

5Finally, some nodes of the graph are labeled by the cardinalities of the result sets
associated with the queries.

FTCA

FTC FTA FCA TCA

FT FC FA T C TA CA

F "M.S." Folder

T "Course_Grade_Report" Frame Template

C Course_No = "CIS792"

A Grade = "A"

O Queries with empty answers

Queries with non-empty answers

F ig u re 8.1 Conjunctive Query G raph Corresponding to Figure 7.5

83

QUERY:
F ind th e s tu d e n ts w ho w e re a d m itte d in the F all 1990 an d
p assed th e Q u a lify in g E x a m in a tio n b efo re S p rin g 1992.

F 1 F T IP 1 IP I2 F 2 F T 2 P 2 1 P

F IF T 1 P 1 1 P 1 2

F2FT2P21

F lF T lP ll F 1FT 1P 12 F T 1 P 1 IP I2

F I F T l) \ F l P l i) K F 1 P 1 2) V F T 1 P 1 I) V F T 1 P 1 2) I P I 1 P I 2 F2P21 J V F T 2P21

passed th e Q u a lify in g E x a m in a tio n b efo re S p rin g 1992.

FI: Q.E.
FT1: Q.E.Result
PI I: Date_Taken <= "Spring 1992"
PI2: Outcome = "Pass"

F2: Ph.D. Students
FT2: Admission_Acc_Letter
P21; Date = "Fall 1990"

P ’: Student_Name = Name

F ig u re 8 .2 Conjunctive Query Graph for the Query Involving Two Folders

84

constant propagation strategy[101]; th a t is, the results of the first evaluated subqueries

are used to restric t th e search space for the following ones.

Algorithm 8.1: (For generating conjunctive query graph of a given query)

T he algorithm sta rts to form subqueries, which are of the index term s or prim itive

predicate term s appeared in a given query Q0. Each of the subqueries is represented

by a node a t the bo ttom level of the conjunctive query graph. T hen th e algorithm

issues the subqueries from the bottom level of the Conjunctive Query Graph6 and

stops as the original query Qo is reached.

New = { Q n , Q u , - ■ ■ iQ i m } - 7

m = 1. /* a t the first level*/

T he subqueries are issued as follows:

1. If New = {Qmi, Q m2 i • • •, Qmnm} contains the n m subqueries, each having m

terms (where n m — n™=i ni) in the level m of the graph, the subqueries

in th e level (m + 1) issued from Q mi ,Q m 2 , ■ ■ ■ ,Qmnm are pu t into Current ,8

which is the union of the following subqueries:

Q m i Q m j (1 < i < j < n m) denotes the subquery with m + 1 terms which is

the least common parents of Q m i and Q m j in the graph.9

6All the subqueries are issued in an order such that those in the lower level of Conjunctive
Subqueries Graph are visited first.

7It includes the subqueries in the bottom level.
fu rth e rm o re , they are put into two other sets. One, called Empty, includes all the

subqueries which generate empty answers. Another, called NonEmpty, includes all the
subqueries which generate non-empty answers.

9The subqueries having at least one child in the Empty set are put in the Empty set,
which will not be processed by retrieving the database.

85

2. I f Current is the original query, the system stops;

o th e rw is e ,

New <— Current ,

m = m + 1, and

R etu rn to (1).

8 .1 .3 I n f o r m a t io n R e tu r n e d

In a conjunctive query graph, there are nodes containing subqueries which are

redundan t or irrelevant. A subquery in a node is considered to be redundan t if

it contains subquery represented by another node which yields th e sam e result. A

subquery in a node is considered to be irrelevant with respect to th e original query

if it does not x’eflect the intentional goal of the original query.

T he following rules can be used to determ ine which nodes containing the

subqueries in a conjunctive query graph should be returned to th e user. T h a t is,

those nodes containing irrelevant or redundan t subqueries are no longer to be in

question.

D e f in it io n 8 .1 : An elem ent U of a subset W of P (E) is a minimal element of W if

there is no elem ent of W stric tly included in U.

D e f in it io n 8 .2 : An elem ent U of a subset W of P (E) is a maximal element of W

if no elem ent of W s tric tly contains U.

86

R u le 8 .1 : (For the subqueries with em pty answers)

T he only subqueries w ith em pty answers returned to the user are those th a t are

minimal elements of the set of subqueries w ith em pty answers.

For instance, in Figure 8.1, Empty = {F C , F T C , F C A , F T C A}, which is th e set of

subqueries w ith em pty answers. T he result of evaluating the conjunctive subquery

F C will be re tu rned to the user, since it is the m inim al elem ent of the E m pty set.

T he fact th a t F T C gives an em pty answer is an obvious consequence of the fact th a t

F C gives an em pty answer.

R u le 8 .2 : (For the subqueries with non-em pty answ ers)10

T he only subqueries w ith non-em pty answers returned to the users 11 are those th a t

are maximal elements of the set of subqueries giving non-em pty answers.

For instance, in Figure 8.1, NonEmpty = { F , T , C , A , F T , . . . , C A, F T A , T C A } ,

which is the set of generalized subqueries w ith non-em pty answers. Only th e results

of evaluating th e conjunctive subqueries F T A and T C A will be re tu rned to the user

since they are the m axim al elements of NonEmpty set. Intuitively, each te rm of a

conjunctive query which gives non-em pty answer will also give non-em pty answer.

10When a maximal query with non-empty result consists only of negated index terms, it
is not necessary to mention it in the answer.

n Their cardinalities (the number of frame instances which qualify these subqueries)
are to be presented to the user at the same time, which can help the user determine the
appropriate follow-up queries.

87

Algorithm 8.2: (T he generalization algorithm)

Given a failed query (i.e., it produces an em pty answer) and its corresponding

conjunctive query graph (which is constructed using Algorithm 8.1), the m eaningful

and cooperative responses can be derived by evaluating the subquery of each node

of th e graph in th e following way:

1. Traverse the graph from th e highest level to the bo ttom level of the graph.

2. For each node a t each level, evaluate its subquery.

(a) If the result of the evaluation of the subquery a t the node is a non-em pty

answer, then assign the subquery w ith the answer to the N o n E m p t y set

and stop traversing all its descendant nodes of the lower levels.

(b) If the evaluation of the subquery a t th e node gives an em pty answer,

then assign the subquery to the E m p t y set, and continue to evaluate the

subqueries of its descendant nodes of the lower levels.

A node is regarded as a m inim al elem ent (a significant failure) of the

E m p t y set if each of the subqueries of its im m ediate descendant nodes is

evaluated to be a non-em pty answer, or if it is a t the bo ttom level of the

graph.

3. D eterm ine the m axim al elem ents and the m inim al elem ents of th e N on E m p t y

set and the E m p t y set, respectively.

4. Analyze the m axim al and m inim al elem ents to ob ta in the reason for the original

query having an em pty answer.

88

8.2 General Boolean Queries

Given any general boolean query, the num ber of generalized subqueries

0 -e -> E m = 1 rifcLi where n i is the num ber of index and prim itive predicate

term s) in its corresponding conjunctive query graph becomes large as it (the original

query) contains m any index term s and prim itive predicate term s. Then the process of

deriving a meaningful and cooperative answer for a failed query requires to evaluate

th e generalized subqueries of all the nodes in the graph, and therefore, is inefficient.

In the following sections, the reduction of the space of generalized subqueries is

presented.

8.2.1 Transformation of DNF

A disjunctive query Q (or Q is in disjunctive norm al form (D N F)) is represented as

E-i + E? + . . . + E m, where E{ is either an index te rm or a prim itive predicate term .

T hen

Property 8.1: A disjunctive query Q gives an em pty answer if and only if

(Vi, 1 < i < m) (E{ gives an em pty answer).

In general, Ej can be a term which is a conjunction of prim itive predicate term s and

index term s. We shall call the conjunctive parts of a disjunctive query Q the DNF

term s. This Property8.1 can be used to analyze a disjunctive query w ith em pty

answer, by simply determ ining the evaluation of each of its index term s and prim itive

p redicate term s (or the conjunctive parts) to be em pty answer. T he following rules

can be applied for transform ing a general boolean query into one in the disjunctive

norm al form (DNF).

89

• Push the operators NOT down to the index term s or prim itive predicate term s

of the boolean query by applying De M organ’s laws repeatedly.

For instance, A - ' (B C) = A(->B + -iC)

where A is asserted while B and C are negated.

• Break conjunctions into disjunctions repeatedly using the property of distribu-

tiv ity of AND with respect to OR until the query is of DNF.

For instance, A(->B + ~^C) = A~>B + A~<C.

8.2.2 Restriction of the Space of Subqueries

Given a query of the disjunctive norm al form, applying the Algorithm 8.1 , the

corresponding conjunctive query graph can be constructed by first ex tracting all the

index term s and prim itive predicate term s, including the negated term s, from the

conjunctive parts of the disjunction of the query. These term s are the subqueries a t

the bo ttom level of the conjunctive query graph. The num ber of subqueries in the

Conjunctive Query Graph becomes large as there are m any index term s and prim itive

pred icate term s in the original query, but most of them are of no in terest. Figure 8.1

and 8.4 depict the conjunctive query graphs for the queries F T C A and FT~>C~iE,

respectively.

8.2.2.1 Restrict to Only Conjunctive Compatible Subqueries

Assum ing th a t the query is in disjunctive normal form, we can restric t the space of

the relevant subqueries of its corresponding conjunctive query graph for deriving the

m eaningful and cooperative response if the query gives an em pty answer.

Definition 8.3: A subquery U is com patible with Q if each index te rm or prim itive

predicate term of U has the sam e signature12 as in Q.

12If an index term is negated, its signature is —, or 4- otherwise.

90

R u le 8 .3 : T he generalized subqueries are restric ted to only conjunctive com patible

subqueries.

According to the R u le 8 .3 , the Conjunctive Query Graph can be used as long as

th e nodes of the bottom level of the graph are restricted to contain only the index

term s and prim itive predicate term s in the disjunctive query.

For instance, th e nodes of the bo ttom level of the graph are A, -uB, and -iC. It is

not necessary to consider B , C , and ->A.

8.2.2.2 Using the Covering Set of DNF

Given a query Q q\ A~ i(B C) which can be expressed in term s of A~>B + A~>C, there

corresponds a conjunctive query graph which contains only generalized conjunctive

com patible subqueries, as shown in F igure 8.3. The P r o p e r ty 8 .1 postu la tes th a t

if Q o produces an em pty answer provided both DNF term s. A->B and A->C m ust

produce em pty answers, since Q0 is the disjunction of these two term s (i.e., A~>B +

A~>C). This m otivates us to introduce and investigate the covering set of a query.

Given a query of disjunctive norm al form, there corresponds a conjunctive query

graph in which each node represents a conjunctive com patible subquery of the query.

D e f in it io n 8 .4 : The covering set of the query is the set of nodes in which the

subquery of each node is included in a t least one of the DNF term s 13 of the query,

and the set of nodes contains all th e index term s and prim itive predicate term s of

the query.

13Each conjunctive part of a disjunctive query is called DNF terms.

91

A-B A-C

T h e s u b q u e r ie s a re in th e c o v e r in g se t.

Figure 8.3 An Exam ple of C onjunctive Com patible Subqueries

T he DNF term s are the m axim al elements of th e covering se t.14

Rule 8.4: T he generalized subqueries are restric ted to the covering set of a

disjunctive query. T he subqueries not in the covering set of the query are considered

to be irrelevant.

W hen a disjunctive query gives an em pty answer, each one of its D NF term s also

gives an em pty answer. Given a disjunctive query w ith an em pty answer, the

Algorithm 8.1 for constructing a conjunctive query graph begins from selecting

all the com patible index term s and prim itive predicate term s from the query and

term inates as reaching the nodes containing subqueries which are the D NF term s of

th e query.

14A subquery X is included in a DNF term Y if every index term or primitive predicate
term in X is appeared in Y . Some nodes are included in more than one DNF terms.

92

For deriving the meaningful and cooperative response of the query, A lg o r i th m

8 .2 traverses all the nodes of the covering set, s tarting from the nodes containing

the DNF term s of the query.

8.3 Example

T he following exam ple dem onstrates our approach. Consider a query: “Find all

Ph.D . studen ts who were not enrolled in courses CIS792 and ENG543.” T he infor­

m ation can be searched through the F u l l ̂ Transcript (denoted as T) of each studen t

in the P h . D . S tu d e n t s folder (F) which contains no Course-No = “C /5 7 9 2 ” (C)

and CourseJXo — “E A G 543” (E). T he query can be represented as F T - ' (C E) .

• The system first transform s the query into one which is in DNF using th e rules

given in Section 8.2.1.

F T - i (C E) = E T (-n C + - > E) = F T ^ C + F T ^ E .

• For the query F T - > C + F T ~ > E , only the index term s F and T and the prim itive

pred icate term s ~ ' C and - > E are taken into consideration for constructing a

conjunctive query graph. The graph contains only conjunctive com patible

subqueries and is depicted in Figure 8.4.

• Every node of the graph is associated w ith a subquery. T hen the covering set

of the original query, which is shown in Figure 8.4, contains all th e nodes, each

of whose subqueries is included in a DNF term of the given query, and every

index term and prim itive predicate te rm in the given query m ust be in one of

these subqueries.

FT -C -E)

FT-C FT-E T -C -E)

FT F~C F-E T -C T -E -C -E

-C ~E

"P h .D . S tu d e n ts" F o ld e r

"F u ll_ T ran sc rip t" F ra m e T e m p la te

C o u rse _ N o = "C IS 7 9 2 "

C o u rse _ N o = "E N G 5 4 3 "

T h e su b q u e rie s a re in th e c o v erin g set.

F

T

C

E

Figure 8.4 Conjunctive Compatible Subqueries

94

8.4 Remarks

T he m ain objective of im plem enting the generalization algorithm is for generating

th e relevant, generalized subqueries for a given query. Each of the subqueries, which

is called a DNF term , is in conjunctive norm al form. The generation of th e subqueries

is based on the following observations. If a conjunctive subquery Q i which is included

in a conjunctive subquery Q2, gives an em pty answer, then Q 2 will give an em pty

answer. It is im portan t to avoid to process subquery <52- Similarly, if Q\ is not in

th e covering set of a query, then Q 2 is not in the covering set either.

Given a failed query, th e algorithm can be used to construct its covering set ,

from which the minimal subqueries w ith em pty answers and maximal subqueries w ith

non-em pty results can be obtained. The evaluation of these minimal subqueries w ith

em pty answers derives a more precise result, which explicates why the original query

yields an em pty answer. T he evaluation of these maximal subqueries w ith non-em pty

resu lts can determ ine the follow-up queries to be evaluated next.

R eturn ing the cardinalities of these result sets instead of these result sets

them selves15 prevents the user flooded with inform ation in these large result sets,

since the cardinalities of these sets can give enough clues to help determ ine the

reason of em pty answers produced and the appropriate follow-up queries.

15i.e., returning the number of frame instances which qualify a subquery instead of their
contents.

CHAPTER 9

SUBSTITUTION RULES

In C hap ter 8, we present the generalization mechanisms to distinguish the fake em pty

answer from the genuine em pty answer. In this chapter, we will present a m ethodical

approach to analyzing the results of executing generalization which is discussed in

C hap ter 8, and propose a strategic scheme of various substitu tions th a t may need to

produce a m eaningful and cooperative response according to the different situations.

A rule execution scheme is designed for efficiently applying th e possible substitu tions

to generate subqueries when a rule is executed.

We use rules, in first order logic, to define the orderly sequences of the folders

and fram e tem plates, which are used to replace the folders and the fram e tem plates

in the original query.

9.1 Determining Various Substitutions

In C hap ter 8, we presented the transform ation of query into one in a disjunctive

norm al form, which contains com patible conjunctive subqueries, called th e DNF

term s of the query. The covering set of the query is the set of subqueries such th a t

each of th e subqueries is included in a t least one of the D NF term s of the query,

and every index te rm and prim itive predicate term of the query m ust be in one of

these subqueries. Then, the m inim al subqueries with em pty answers in th e covering

set can be used to explain why the original query yields an em pty answer. And the

m axim al subqueries with non-em pty results in the covering set, together with the

num ber of fram e instances involved, can be used to determ ine which appropriate

subqueries to be considered next.

Let M i n and M a x be the sets of minim al subqueries and m axim al subqueries,

respectively. In this section, we will derive various criteria of different ways of substi-

95

96

tu tion , which m ay take place in the process of fu rther generalization, by taking these

two sets of subqueries into consideration.

Given a disjunctive original query Qo, if every DNF term F T p \ p 2 ■ ■ - Pm in Qo

has a genuine em pty answer, then th e em pty answer of Q0 is genuine. A lg o r i th m

9.1 is used to determ ine w hether F T p \ p 2 . ■ .pm has a genuine em pty answer.

A lg o r i th m 9 .1 :

A — {Pi> P2 y ■ ■ ■ ,Pm}, where (pi for i = 1 , . . . , m is a prim itive pred icate te rm which

includes a com parison between the attributes or between an attribute and a value)-,

F denotes a folder; T denotes a fram e tem plate;

F T p i p 2 . . . pm G E m p ty ,

M i n denotes the m inim al query set in which each subquery has an em pty answer;

M a x denotes the m axim al query set in which each subquery has a non-em pty answer;

BEGIN

if M i n — { F T p \ p 2 . . .pm } th e n { the em pty answer of the original query is genuine}

/* easel . 1 : only the original query is in the M i n . * /

else{ /* easel .2 : the em pty answer of th e original query is fake.*/

if F p ip 2 . . . pm G M a x th e n { do fram e tem plate substitu tion in folder F }

/* e a s e l . 3 : there is inform ation in folder F b u t o ther types of fram e tem plates.* /

e lse{ /* easel . 4 '■ there is no inform ation in folder F (w ith different reasons).* /

if T p i p 2 .. .pm G M a x th e n { do folder substitu tion over fram e tem plate T }

/* easel .5 : there is inform ation w ith type of fram e tem pla te T

bu t not in the folder F . * /

e lse{ /* ea s e l . 6 : there is no inform ation w ith type of fram e tem plate T .* /

if pip 2 .. .pm G M a x th e n { e a s e l . 7 : do folder substitu tion

and fram e tem plate substitu tion }

97

else{ /* easel . 8 : there is no inform ation satisfying all predicates

in th e system .*/

R e t u r n { there is no such inform ation in the system }

}

}

}

E N D

9.2 Characterization of Returned Information

A logical folder organization (as shown in F igure 7.1) mimics the filing organization

perceived by th e user. A docum ent type hierarchy represents the docum ent classifi­

cation in term s of a s tructu ra l organization of th e fram e tem plates in which each of

the tem plates describing the properties of a class of docum ents. We will proceed the

folder and fram e tem plate substitu tions based on th e logical folder organization and

docum ent type hierarchy, respectively. In Algorithm 9.1, we check F p \ p 2 . . . p m

prior to T p \p 2 . . . pm , because the folders have m ore sem antic characteristics than

the fram e tem plates.

Proposition 9.1: Let S = (F \T) (p ip2 . . . pm) - 1

(?) If S ^ M a x , then S £ E m p ty .

(i i) If S 0 E m p t y , th en S £ M a x .

T he reason for checking only the M a x set in e a s e l .3 and easel .5 is based on

the Proposition 9.1. Furtherm ore, Proposition 9.1 (i) gives the explanation

for ease l .4 and e a s e l . 6 . In ease l .4, the subquery F p \p 2 . . . p m re tu rns an em pty

1 (F\T)(plp2 .. .pm) reads as F(pip2 .. .pm) or T{p\p2 .. .pm).

98

answer, so there is an indication of no inform ation satisfying all predicates in folder

F. In e a s e l . 6 . the subquery T p \p 2 . . . pm returns an em pty answer, so there is no

such fram e instances of the fram e tem plate type T satisfying all predicates.

P r o p o s i t io n 9 .2 : If p ip2 • • - Pm € M a x , then (F j T) (p ip 2 . . . pm) G E m p ty .

P r o p o s i t io n 9 .2 sta tes th a t the subquery F p \p 2 . ■ -pm and the subquery T p \p 2 ■ ■ ■ pm

m ust have em pty answers when p\p 2 . . is in the M a x set. So we need both folder

and fram e tem plate substitu tions in easel .7.

P r o p o s i t io n 9.3: Let S = (F\T){p ip2 . . . pm). If S ^ M a x and pip2 .. . p m $ M a x ,

then pip 2 . . . pm G E m p ty .

P r o p o s i t io n 9 .3 supports ease l . 8 : when the subquery F p i p 2 . . . p m and the

subquery T p \p 2 . . . pm re tu rn the em pty answers, the subquery p\p 2 . . . pm m ust be

in th e E m p t y set if it is no t in the M a x set. So it concludes th a t the re is no

inform ation satisfying all the predicates, p t , p 2, . . . ,p m, in the system.

9 .3 In fo rm a l S p e c if ic a tio n o f S u b s t i tu t io n s

In A lg o r i th m 9 .1 , there are three ways of folder and fram e tem plate substitu tions.

In this section, various strategies for accomplishing these substitu tions a t different

situations are described.

99

9 .3 .1 Do Folder Substitution over a Specific Frame Template T

From the results of the subquery F p \p 2 . . . pm having an em pty answer and the

subquery T p \p 2 . . .p m being in the M a x set, in ease l .5, the system concludes tha t

there are fram e instances of type T in the file organization, which satisfy all the

prim itive predicate term s p i , p 2, ■ ■ ■ , pm, bu t there is no fram e instance in the folder

F satisfying these predicates. Thus, the folder F in the original query will be replaced

by a sequence of folders, which are associated w ith T , in the logical folder organi­

zation. T he order of folders in the sequence to be used for substitu tions is determ ined

in term s of th e similarities, and the semantic and structural interdependencies defined

in C hap ter 7:

1. From the logical folder organization, obtain an orderly sequence of folders

which are the candidates of folder substitu tion. T he folders in the sequence

are in the order of the following:

• T he folders having higher sim ilarities with F are prior to th e folders

having lower sim ilarities.

• For the folders which have the same similarities w ith F, the priorities of

taking folders into consideration are:

— the folders which are partiaLjoint with F to be first,

— the folders which are not coverings of F nex t, and

— the folders which are coverings of F last.

1 0 0

• For the folders, which have the sam e sim ilarities and same sem antic in te r­

dependency with F , the folders having more common fram e tem plates

w ith F is prior to the others having less common fram e tem p la tes.2

2. From the obtained sequence folders, substitu te the folders, which are jo in t w ith

F over fram e tem plate T , for F in the original query.

E x a m p le 9 .1 : Given the query in the Figure 7.5, from the results of evaluating

its corresponding conjunctive query graph as shown in Figure 8.1, we conclude th a t

there are fram e instances of type “Course_Grade_Report” in the en tire system

which satisfy predicates C and A , bu t there is no frame instance satisfying

these predicates in the folder “M.S. S tuden ts” and other folders associated with

fram e tem plate “Course_Grade_Report” . T h a t, “Financial A ssistantship” , “M.S.

P rogram ” , “P h .D .S tuden ts” , “Ph.D Program ” , “Academic Affairs” , e tc , is a

sequence of folders which are the candidates for folder substitu tion. T he folder

“Financial A ssistantship” should be elim inated from the sequence because it does not

jo in t with “M.S. S tudents” over “Course_Grade_Report” . And the rem aining folders

of the sequence which are joint with “M.S. S tuden ts” over “Course_G rade_Report”

are used to su b stitu te for the folder “M.S. S tuden ts” in the query of F igure 7.5.

2We use the concept of structural similarity, which means that a folder containing more
instances of the same frame template type is considered as more similar. For simplicity,
the degree of structural similarity can be computed by dividing the total number of frame
instances in the folder by the number of their.distinct frame template types. Thus, a folder
of highest degree of structural similarity is first taken into consideration. If two folders
have the same degree of structural similarity, then the folder having the smaller number
of frame template types will be considered first. Otherwise, one of these folders can be
selected arbitrarily as the tie-breaker.

1 0 1

9.3.2 Do Frame Template Substitution in a Specific Folder F

For ease l .3, since the subquery F p \p 2 . . . p m is in the M a x set, there are fram e

instances in the folder F satisfying all the prim itive predicate term s. The system

will proceed frame tem plate substitu tions in the folder F disregarding w hether there

are fram e instances of type T, which are satisfying all th e predicates. A sequence

of fram e tem plates, which are associated with F, in the docum ent type hierarchy is

used to substitu te for the fram e tem plate T in the original query.

® T he fram e tem plates in the docum ent type hierarchy, which are used to

substitu te for the fram e tem plate T in the original query, m ust satisfy the

following conditions:

— T he fram e tem plates are associated w ith the folder F.

— T he fram e tem plates include all the a ttr ib u tes of the prim itive predicate

term s, p},p 2, . . . ,pm.

• T he system assigns th e order of the tem plates for substitu tions based on the

Type Substitution Rules specified in Section 7.5.

Example 9.2: Given the following formal query:

S E L E C T Pli.D.Students(Grade_Report).Student_Name

F R O M Ph.D.Students(Grade_Report)

W H E R E

Ph.D.Students(Grade_Report).Course_No = “E./V<j 543” A N D

Ph. D.Students(Grade_Report). Grade = “A” ;

T he conjunctive query graph for this query is depicted in F igure 9.1, which yields

the following results of evaluating the subqueries:

1 0 2

FTEA

FTE FTA FEA TEA

FT FE FA TE EATA

F "Ph.D.Students" Folder

T "Grade_Report" Frame Template

E Course_No = "ENG543"

A
^ Grade = "A"

Queries with empty answers

Queries with non-empty answers

Figure 9.1 Conjunctive Query Graph of Example 9.2

103

(*') M a x = { F T A , F E A , T E A } .

(m) M i n = { F T E } .

In analyzing the M a x and M i n , the system can conclude th a t:

1. There are fram e instances satisfying predicates E and A in the folder F. T h a t

is, there is a t lease one Ph.D . studen t who received a grade A for the course

ENG543 (from F E A in the M a x set).

2. T here is no fram e instance of th e fram e tem plate type T , satisfying the

prim itive predicate term E in th e folder F (from F T E in th e M i n set).

T he system needs to find the appropriate fram e tem plate in th e docum ent type

hierarchy to replace the fram e tem plate “G rade_Report” in the “Ph.D . S tuden ts”

folder. A possible sequence of substitu tions can be “Course_G rade_Report” ,

“FulL T ranscrip t” , “T ranscrip t” , etc, according to the substitu tion rules defined

in section 7.5. Since th e fram e tem plate “FulLT ranscript” contains all th e a ttr ib u tes

appeared in the prim itive predicate term s E and A, and is associated w ith the

“Ph.D . S tuden ts” folder, it substitu tes for the fram e tem plate “G rade_R eport” in

the original query. If the query still returns an em pty answer after the substitu tion ,

the system needs to find one of the o ther fram e tem plates to be a su b stitu te for T

such th a t the query retu rns non-em pty answer.

From the result of T E A in the M a x set through evaluating the conjunctive

query graph, we conclude th a t there are fram e instances w ith type “G rad e .R ep o rt”

in the system , which satisfy all the predicates, bu t they are not in the folder “Ph.D .

S tuden ts” . A lthough the fram e tem plate “G rade.R eport” is associated w ith the

folder “P h .D .S tuden ts” since the subquery F T returns non-em pty answer, and the

fact th a t F T E is in the M i n set, we know th a t there is no fram e instance of

104

type “G rade_Report” in the folder “Ph .D .S tuden ts” , which satisfies the prim itive

predicate term “Course.N o = ENG543” .

9.3.3 Do Folder and Frame Template Substitution at the Same Time

T he evaluating results of the subqueries F p \p 2 .. . p m and TpiP 2 .. .pm having em pty

answers, lead us to conclude th a t there is no fram e instance of type T , which satisfies

all the predicates, and there is no frame instance satisfying all the predicates in the

folder F. For easel .7 , since the subquery pip 2 ■. . pm is in the M a x set, there are

fram e instances in the system satisfying all predicates. We try to find the folders

containing these fram e instances with the unknown fram e tem plates satisfying all

the predicates in the system using the folder and fram e tem plate substitu tions.

The system proceeds substitu tions as follows:

1. Do fram e tem plate substitu tion in the en tire system.

We get the appropria te fram e tem plates in the docum ent type hierarchy

to substitu te for the fram e tem plate T in the original query. Each of the

fram e tem plates contains all the a ttrib u tes of the prim itive predicate term s

Pi,P2 , ■ ■ • ,pm- The system assigns the order of tem plates for substitu tions

based on the Type Substitution Rules.

2. Do folder substitu tion .

T he folder substitu tions over these fram e tem plates can be executed as in

section 9.3.1.

105

Example 9.3: Given the following formal query:

SE L E C T M.S. Students(Grade_Report).Student_Name

F R O M M.S. Students(Grade_Report)

W H E R E

M.S. Students(Grade_Report).Course_No = “C /5792” A N D

M.S. Students(Grade_Report).Grade = “/I” ;

From the conjunctive query graph shown in Figure 9.2, we conclude th a t there is no

fram e instance w ith the type “G rade_Report” in the system satisfying the predicates

C and A (from T C in the M i n set), and there is no fram e instance satisfying these

predicates in the folder “M.S. S tuden ts” either (from F C in the M i n set). T hen a

possible sequence of fram e tem plate substitu tions can be “Course_Grade_Report” ,

“FulL T ranscrip t” , “T ranscrip t” , etc. Each of these fram e tem plates contains the

a ttr ib u tes “Course_No” and “G rade” . From the previous Exam ple 9.1, the sequence

of folder substitu tions consists of “M.S. P rogram ” , “Ph.D . S tuden ts” , “Ph.D .

P rogram ” , “Academic Affairs” , etc. Thus, the sequence of folder over tem plate

substitu tions can be “M.S. P rogram ” over “Course_Grade_Report” , “ M.S. P rogram ”

over “FulLT ranscript” , “ M.S. Program ” over “T ranscrip t” , . . . , “Ph.D . S tuden ts”

over “Course_Grade_Report” , “Ph.D . S tudents ” over “FulLT ranscript” , “Ph.D .

S tudents ” over “T ranscrip t” , etc. T he process stops w ith a meaningful response.

As a m a tte r of fact, these is another sequence of folder over fram e tem plate

substitu tions, in which, for each tem plate substitu te , such as “Course_G rade_Report” ,

we look into the folders “M.S. Program ” , “Ph.D . S tuden ts” , etc.

106

FTC A

FTC FTA FCA TCA

FT FC FA TC TA CA

"M.S." Folder

"Grade_Report" Frame Template

Course_No = "CIS792"

Grade = "A"

Queries with empty answers

Queries with non-empty answers

F igu re 9 .2 Conjunctive Query Graph of Example 9.3

F

T

C

A

o

107

9 .4 F o rm a l R e p r e s e n ta t io n o f S u b s t i tu t io n s

We described the strategies of various folder and fram e tem plate substitu tions in the

previous section. In this section, a formal representation of substitu tions is given in

term s of substitu tion rules, which are defined in first order logic.

9 .4 .1 D a ta b a s e S t r u c tu r e R e p r e s e n ta t io n

The following m eta predicates are used to define the substitu tion rules:

• F o ld e r (/) : / is a folder.

• F r a m e T m (/f) : f t is a fram e tem plate.

• F o lderQ y(< 7 , /) : a folder / appears in the query q.

• F ram eT m Q y (< 7 , f t): a frame tem plate f t appears in the query q.

• In d e x T m Q y (< 7 , T): T is an index te rm p a rt of the query q , which is of the

form Folder (F ram eTem pla te) .

• P re d ic a te Q y (< 7 , p): p is a prim itive predicate term in the query q.

• IS A (x, y): x is a subtype of y in the docum ent type hierarchy.

• S ib l in g (/ t i , f t 2): f t \ and f t 2 are siblings in the docum ent type hierarchy.

• A s s o c ia te (f , f t) : a folder / is associated w ith a frame tem p la te f t .

• A tt_ P re d ic a te (p , a): an a ttr ib u te a appears in the predicate p.

• A t t_ F r a m e T m (/ t , a): the fram e tem plate f t contains an a ttr ib u te a.

• P r i o r F o l d e r (/ , /] , / 2): a folder f \ is prior to a folder / 2 in the sequence of

folder substitu tions for the folder / .

108

• PriorFrameTm(/t, f t i , f t 2): a fram e tem plate f t \ is prior to a fram e

tem plate f t 2 in the sequence of fram e tem plate substitu tions for the fram e

tem plate f t .

® Prior_to_All(/, / ') : / ' has the highest priority in the curren t sequence of folder

substitu tions for / .

• Prior_to_All(/t, f t ') : f t ' has the highest p riority in th e current sequence of

fram e tem plate substitu tions for f t .

• EmptyAnswer(<7): the result of evaluating query q is an em pty answer.

• Sim ilarity(/1, / 2, s): the sim ilarity between a folder f i and a folder f 2 is s.

• PartialJoint(/i,/ 2, /) : the sem antic interdependency between a folder / i and

a folder / 2 is a PartiaLJointness with respect to the folder / (/ i and / 2 are

partially jo in t w ith respect to /) .

• C overing(/i,/ 2): the sem antic interdependency between a folder /i and a

folder / 2 is a Covering (f t covers / 2).

• D isjoint(/1, / 2): the s tructu ra l interdependency between a folder / i and a

folder / 2 is a disjointness (/ i and / 2 are disjoint).

• J o in t(/i,/ 2, f t) : the structu ra l interdependency between a folder / i and a

folder / 2 is a. jointness w ith respect to a common fram e tem plate f t (f i and / 2

are jo in t w ith respect to f t) . 3

3The relationships among Disjointness, Jointness, PartiaLJointness and
Covering are:
Disjoint(/!, / 2) ^ (V/Z)(-.Joint(/!, / 2, f t))
Covering(f i , f 2) => (3/t)(Joint(/i, / 2, //))
Covering(/j,/ji) A Covering(f j , f j 2), where f j C f a U f a and jjk f empty, (k - 1,2)

PartialJoint(/ji, f a , f j)

109

• SubstitutedFolder(/,/ j) : f i has been used to replace the folder / in the

query.

• SubstitutedFram eTm (/t,/ t j) : f t i has been used to replace the fram e

tem plate f t in the query.

• FrameTm_Rel_Predicate(p, f t) : the frame tem plate f t contains all the

a ttr ib u tes appearing in the prim itive predicate te rm p of an original query.

• Folder_Substitution(T, T ' , f , f ') \ the index term part T in the original query

is transform ed into T ' by substitu ting the folder / ' for / .

• FrameTm_Substitution(T, T ' , f t , f t 1): the index te rm p a rt T in the original

query is transform ed into T ' by substitu ting the fram e tem pla te f t ' for f t .

• Generalize_Query(<7 , q', f , / ‘): the original query q is transform ed into the

query q' by substitu ting the folder f for the folder / .

• Generalize_Query(<7 , q', f t , f t ') : the original query q is transform ed into the

query q1 by substitu ting the fram e tem plate f t ' for f t .

9.4.2 Rules for Specifying the Substitution Priority

T he following rules define an orderly sequence of folders and fram e tem plates to

accom plish the substitu tions. T he order of folder substitu tions is defined in Rule

9.1, Rule 9.2, and Rule 9.3, and th e order of frame tem plate substitu tions is

defined in Rule 9.4.

1 1 0

Rule 9.1: (For the folders having different sim ilarities with a specific folder /)

For (q, F o lder(/i), Folder(/2), FoIderQy(<y, /))

Sim ilarity^/, / i , s i) A S im ilarity(/, / 2, s2) A sj > s2 A

-iS u b stitu ted F o ld er(/,/ 1) A -iS u b stitu ted F o ld er(/,/2)

-»• P r io r F o ld e r (/ , / i , /2)

Rule 9.2: (For the folders having same sim ilarities w ith a specific folder /)

For (q, F o lder(/i), Folder(/2), FolderQy(g, /))

S im ila r ity (/,/x ,s j) A S im ila r ity (/,/2,52) A s\ = s2 A

((3 f) (F o l d e r (f) A P a r tia lJ o in t(/,/1?/')) A

((Pf"){Folder(f") A P artia lJoin t(/ , / 2, /")) A

-iS u b stitu ted F o ld er(/,/ 1) A -iSubstitutedF older(/, / 2)

-> PriorFolder(/ , / 1 , / 2)

Rule 9.3: (For the folders having same sim ilarities w ith a specific folder /)

For (q, F o ld er(/i), F older(/2), FolderQy(g, /))

S im ilarity (/, / 1 , s i) A S im ilarity(/, / 2, s2) A si = s2 A

- iC o v er in g (/,/ 1) A C o v er in g (/,/2) A

-iS u b stitu ted F o ld er(/,/ 1) A -iS u b stitu ted F o ld er(/,/2)

->• P r io r F o ld e r (/ ,/j ,/2)

Rule 9.4: (For the fram e tem plates in th e docum ent type hierarchy)

For (ry, F ram eT m (/i'), Fram eTm (/i"), FrameTmQy(</, f t))

-iSubstitutedFram eT m (f t , f t 1) A -iSubstitu tedF ram eT m (/i, f t ") A

S ib lin g (/i, / / ') A IS A (//, f t ")

—► Prior FrameTm(f t , f t ' , f t")

I l l

9 .4 .3 S u b s t i tu t io n R u le s

D e f in it io n 9 .1 defines the current folder / ' , which is prior to any folders in the

current sequence of folder substitu tions for th e folder / , and the current fram e

tem plate f t ', which is prior to any fram e tem plates in the current sequence of fram e

tem plate substitu tions for th e frame tem plate f t .

D e fin it io n 9 .1 : (P rio r_ to _ A ll)

Let Sy = {fi\Folder(fi)(l < i < ra)}.

Let Sj t = {f t j \FrameTm(f t j) (l < j < m)}.

• For (</,F older(/'), S f , FolderQ y^, /))

P rior_to_A ll(/,/ ') <-*■ V(/t- E Sj) (1 < i < n)PriorFolder(/, / ' , / ,)

• For (^, Fram eTm (/<'), 5 FrameTmQyt?, / /))

Prior_to_All(/<, f t 1) «-> V(/ij E Sjt)(1 < j < m)PriorFram eTm (/L ft' , ftj)

R u le 9 .5 defines the folder substitu tion over a specific fram e tem plate f t . T he folder

f is a subsitu te for th e folder / in the original query, such th a t the index te rm part

T of the original query is transform ed into T' .

R u le 9 .5 : (For the folder substitu tion over a specific fram e tem plate)

For (q, Folder(/'), FolderQy(</, /) , FrameTmQyfg, f t) , IndexTm Q yfg, T) ,T ')

Prior_to_A ll(/, / ') A Jo in t(/, / ' , f t)

—> Folder _Substitution(T, T ' , f , f)

D e fin it io n 9 .2 defines the concept of a fram e tem plate related to a predicate. T h a t

is, the fram e tem pla te f t contains all the a ttrib u tes which appear in the predicate p

of the query q.

1 1 2

Definition 9.2: (FrameTm_Rel_Predicate)

For (q, PredicateQy(< 7 , p), Fram eTm (//))

FrameTm_R,el_Predicate(p, f t)

V(a)(Att JPredicate(p, a) —► A tt JFram eTm (/i, a))

Rule 9.6 defines the fram e tem plate substitu tion associated w ith a specific folder / .

T he fram e tem plate f t ' is a subsitu te for the fram e tem plate f t in the original query

q, such th a t the index te rm part T of the original query is transform ed in to T'.

Rule 9.6: (For the fram e tem plate substitu tions associated w ith a specific folder)

For (q, F older(/), FrameTm(/Z'), F ram eT m Q y(g,/i), PredicateQ y(g,p),

IndexT m Q y (g,T),T ')

Prior_to_AIl(/t, f t ') A FrameTm_Rel_Predicate(p, f t ') A A ssocia te(/, f t)

—> Fram eTm _Substitution(T, T', f t , f t 1)

Rule 9.7 defines the fram e tem plate substitu tions applied in the entire system , if

Associate (f , f t) is relaxed from Rule 9.6.

Rule 9.7: (For the fram e tem plate substitu tions in th e system)

For (q, Fram eT m (/i'), FrameTmQy(< 7 , f t) , PredicateQy(< 7 , p),

IndexTmQy(< 7 , T) ,T ')

Prior_to_A ll(//, f t ’) A FrameTm_R,el_Predicate(p, f t 1)

—» Fram eTm _Substitution(T, T 1, f t , f t ')

113

R u le 9 .8: (The original query q is transform ed into q' by substitu ting the folder / '

for / or the fram e tem plate f t ' for f t .)

• For (q, Folder(/'), FolderQy(g, /) , IndexTmQy((?, T), T', q')

Prior_to_A ll(/, / ') A FolderJSubstitution(T, T', f , / ')

—> Generalize_Query(i7 , q', f , f)

e For (9 ,F ram eT m (/i'),F ram eT m Q y(g ,/i),In dexT m Q y((7 ,T),T /,(7 /)

Prior_to_A ll(/i, f t ') A Fram eTm _Substitution(Z’, T', f t , f t ')

—>■ G eneralize.Q uery{q,qf, f t , f t ')

R u le 9 .9: (In the case of the generalized query q' still having an em pty answer,

f needs to be identified as S u b stitu ted F o ld e r in the curren t sequence of folder

substitu tions. Similarly, f t ' needs to be identified as S u b stitu te d F r a m e T m in the

curren t sequence of frame tem plate substitu tions.)

a For (<?, Folder(/'),FolderQy(< 7 , /) , q')

P rior _to_All(/, f) A Generalize_Query(<7 , q', f , f) A Em ptyAnsw er(g')

—> S u b stitu ted F o ld er(/,/')

8 For (<j',FrameTm(/f/),Fram eTm Q y(^,/t),< 7 ')

Prior_to_All(/<, f t ') A Generalize_Query(<7 , q', f t , f t ') A EmptyAnswer(</')

—*■ SubstitutedFram eT m (f t , f t ')

C H A P T E R 10

C O N C L U D IN G R E M A R K S

In th is d issertation, we give a full description of an office docum ent retrieval system

w ith th e capabilities of processing incom plete and vague queries and providing

m eaningful responses to the users when em pty answers arise. I t has four m ajor

com ponents, namely, the system catalog, query transform ation, browser and gener-

alizer.

An unified system catalog is proposed for storing m e ta-d a ta and domain

knowledge of the docum ent filing organization, and a thesaurus a t bo th th e system

and operational levels. These provides a centralized retrieval facility for processing

com plete, incom plete and vague queries and retrieving the m eaningful inform ation

(perta in ing to the users) about the entities of the database.

U pon receiving it, a com plete query is transform ed into a set of algebraic queries

w ith com plete and precise inform ation regarding to the folders (where th e docum ents

reposited) and fram e tem plates (the docum ent types) from which th e fram e instances

(i.e., th e synopses of docum ents) are to be retrieved or synthesized. The query

processor executes the set of algebraic queries after its form ulation.

For any incom plete or vague queries, the browser provides a m echanism for

guiding systematically the user to gain sufficient knowledge abou t the entities stored

in the database, by representing dynam ically the snapshots of the dual m odel and

d a ta elem ents of the docum ent filing organization in term s of object networks. Such

inform ation is obtained by looking up the system catalog. Thus, th is allows the user

to construct a com plete query from his own request.

In a ttem p t to provide the user w ith meaningful and cooperative responses as

in terp re ta tions to any given failed query (i.e., w ith an em pty answ er), the gener-

alizer is em ployed to form ulate the generalizations of the given failed query, which

are derived by methodically analyzing the results of executing generalizations and by

114

115

strategically and efficiently applying the possible folder and fram e tem plate substi­

tu tions and weakening the search criteria.

10.1 S u m m ary

In the following subsections, we shall sum m arize the significant features of the

system catalog, the query transform ation and browser, and the query generalization

m echanism .

10 .1 .1 S y s te m C ata lo g

In T E X PR O S, the system catalog is shared by different com ponents of th e system . It

is desired to use an uniform representation, such as frames, for describing th e m eta­

d a ta and dom ain knowledge, and the contents of docum ents. This unified approach

allows to use the same m ethods for retrieving and m anaging of th e knowledge at

system and operational levels and elim inates problem s of duplicate knowledge and

translation between different knowledge representations. T he system catalog has the

following features:

• T he uniform representation of the system catalog and database itself provides

a n a tu ra l and consistent operational approach.

• It includes not only the m eta-data knowledge, but also the dom ain knowledge

to increase th e effectiveness of th e docum ent retrieval system .

• It supports not only the procedure of query processing as a trad itional system

catalog does, bu t also the query transform ation, browser and generalizer

m echanisms.

- It provides significant support for refining the incom plete queries and

form ulating the com plete queries.

116

- It supports for deriving dynam ically the object network perta in ing to a

vague query, helps the browser recognizing synonyms , and supports access

by value.

— It provides the sim ilarities, sem antic and structu ra l interdependencies,

and o ther m eta-data knowledge (i.e., the docum ent type hierarchy and

folder organization) to be used by the folder and fram e tem plate substi­

tutions, during the process of generalizing any failed queries for achieving

cooperative responses.

1 0 .1 .2 Q u ery T ran sform ation and B row ser

W hen the user has the knowledge of the database, he can specify his request in

a formal query. However, it is difficult for the user to utilize such knowledge to

form ulate precise and com plete queries. T he retrieval system , as a Search C om put­

erized Interm ediary System [72], is designed in such a way th a t it allows a user to

issue an incom plete query and can help him form ulate a com plete one. T he system

has the following features:

• The user can specify only part of the index term s he knows, and the context

construction m echanism can find the o ther missing index term s.

• T he user can specify the subject of an index term , and then the context
•9

construction m echanism can find all possible relevant index term s.

• T he context construction mechanism can find the precise index term s as the

correct substitu tes for the imprecise term s in the user query.

• T he am biguity of in terpreting the query is reduced by having the user to specify

as much inform ation as he knows.

117

• W hen the m ultiple index term s are found, th e system tries to approach the

user for clarification, which usually is a simple and inexpensive way to avoid

presenting any irrelevant outcome to the user.

Browsing is used to be a com plem entary m ethod when the system atic re trieval1 is

difficult or im possible to apply. W hen a vague query is issued as a topic, the system

presents the user an ob ject network, which creates an in tu itive environm ent for

browsing, such th a t an increm ental enhancem ent of user knowledge can be achieved.

• T he object network, which is composed of th e schem a elements and da ta

elem ents, is depicted as a two dimensional network. In the vertical level, the

relationships between the objects of different types (i.e., between th e folders and

fram e tem plates, the fram e tem plates and a ttrib u tes, the a ttribu tes and values)

are described; in the horizontal level, the relationships among the objects of

sam e type (i.e., the folders or frame tem plates) are presented.

• T he topics connected by operator A N D and O R comprise quite a sim ple query

interface. However, the very rich functionalities to achieve the user’s browsing

target are provided. T he user does not have to follow the lim ited guiding

facility to perform retrieval tasks, and therefore he has more flexible access to

th e database.

• T he object network is presented to the user a t any in stan t during the browsing

session. T he instantaneous feedback of the resu ltan t object network and

descriptions provides the user with a clear view for analyzing its inform ation

and then leading into the further browsing directions. Therefore, th e object

network providing w ith needed inform ation gives the user substan tial help for

constructing a formal query.

1The user presents the request in a formal query, and the system retrieves the data
promptly [63].

118

• The browsing process is a “long-sighted” navigation, since it is possible to

reach not only th e objects adjacent to the curren t one, bu t the d istan tly

rela ted objects w ithout navigating through all in term ediate objects. T he user

can select any object from the object network or outside the network as a next

browsing topic. The system a ttem p ts to find the possible connections of topics

or th e object networks.

T he browsing can be interleaved with formal querying. The com bination of the

browser w ith the formal query results in a very effective retrieval environm ent.

10.1.3 Query Generalization Mechanism

In T E X PR O S, since the query entered by the user is less restrictive, the response

given to the user by the system may be less cooperative. O ur retrieval system

is designed to accomplish the requirem ents, such as th e one described in [45], for

achieving cooperative responses in the situation when em pty answers arise.

• In order to detect th e erroneous presuppositions, the system evaluates the

results of the subqueries (the generalizations of a given failed query) which

are formed using the Conjunctive Query Graph. And a set of rules is applied

to reduce the space of generalized subqueries by excluding the redundant and

irrelevant subqueries. Therefore, only a small subset of query generalizations,

based on a constant propagation strategy, is taken into consideration in the

generalization procedure.

• To generate precise and meaningful responses for a given failed query, the

generalize!- is developed by incorporating both the folder substitu tion and type

substitu tion .

119

- T he similarity between folders in the logical file organization based on

the ir sem antics is defined. T he semantic and structural interdependency

are introduced to stress the sem antic m eaning of the relative sim ilarity.

— T he various strategies, which are defined in first order logic, are explored

for accomplishing substitu tions a t different context such th a t the sim ilarity

com parison is context-sensiti.ve[l]. Therefore, the resu ltan t queries,

generated by the application of various substitu tion strategies to the

original query, are more relevant and meaningful. 2

10.2 Potential Research Directions

In th is section, we will discuss several im portan t issues left to be resolved th a t

em anate from the work described in this dissertation.

10.2.1 Knowledge Representation

• W ith integration of the knowledge representation of retrieval system and o ther

subsystem s, such as, docum ent classification, filing, etc., create a centralized

docum ent classification, ex traction, filing and retrieval environm ent to achieve

an intelligent inform ation system. [77]

• Investigate the au tom atic processes of generating the frameworks for the

various subsystem s, from the system catalog, to support th e docum ent classi­

fication, filing and retrieval in the entire system . [14]

• For th e sake of effectiveness and efficiency, the overall s truc tu re of system

catalog may change in a variety of ways. One likely enhancem ent will be

to add a “server” which m aintains the system fram e instances in the system

2 A query is a kind of specification of a context. Disregarding to the specific query, the
substitution based only on the logical folder organization and document type hierarchy
would lead to irrelevant and meaningless outcome.

120

catalog and allows the subsystem s to access only the portion of system catalog

under its authorization. Therefore, based on a client-server architecture, th e

system can support th ree basic activities on docum ents classification, filing and

retrieval [9, 11, 12].

10.2.2 Intelligent Database Assistant System

In T E X PR O S, each fram e tem plate , which describes th e properties (or a ttrib u tes) for

a class of docum ents, is divided into s tructu red and unstruc tu red parts. T he contents

of an unstruc tu red p a rt can be free tex t, as opposed to th a t the a ttr ib u te values of the

s truc tu red p a rt are fixed length character strings. By keeping the synopses for both

tex tu a l and nontextual p arts of a docum ent in a fram e instance, a user may describe

the docum ent in a very succinct m anner, w ithout capturing all th e inform ation from

it. R etrieving and browsing such a small piece of inform ation require much less tim e

th an retrieving the original docum ent. However, the inform ation contained in fram e

instances governs the scope of querying. In perform ing concept-based and keyword-

based retrievals or access by value querying, it is necessary for the system to guide

or assist th e user to refine gradually his queries [107].

Considerable research has been discussed in the area of free tex t retrieval [18,

55, 56]. In our system , extending the browser m echanism to the unstructured part

of th e fram e instance can be developed as follows:

• C reating the links between the unstructu red fields and the subjects.

Using W ITH clause of th e query interface as shown in F igure 3.2, a user can

specify a subject for determ ining its related index term s. In system catalog,

we specify the subjects which related to the index term s, including folders and

fram e tem plates. We can identify the unstructu red fields according to the

subjects.

121

• C onstructing a subject network.

A subject network is a graph whose vertices correspond to subjects, and edges

correspond to relationships between those slibjects.

• Augm enting the subject network onto the object network.

T he subject network can be incorporated into th e existing object network by

connecting the subjects to the index term s.

• Browsing through the connections.

The connections between a unstructured field and its rela ted fram e instances

can be discovered dynam ically by traversing the paths.

10.2.3 An Information Sharing Environment

W hen using TEX PR O S in a m ulti-user or d istribu ted environm ent [6 , 17, 59, 97], it

requires to share inform ation contained in frame instances. W hen d a ta com m u­

nication and sharing are necessary, the system m ust provide m echanism s for

users to specify protocols for ex tracting , transm itting and exchanging inform ation.

Basically, there are two approaches of storing docum ents, nam ely, the centralized

and d istribu ted ones. For the d istribu ted one, each user has his own docum ent type

hierarchy and docum ent filing organization created a t his disposal in his own personal

T E X PR O S. T he other approach is to create a centralized database consisting of a

unified docum ent type hierarchy and a docum ent filing organization sharing by a

group of users, who have lim ited functional capabilities of adding (and deleting)

folders and fram e instances into (from) the docum ent filing organization, and of

ex trac ting inform ation from docum ents. Then, one m ust specify the protocols

for governing cooperatively th e fram e tem plates definitions, and the docum ent

classification and categorization.

For both cases, the system catalog, as a group com m unication and coordination

system , m ust reflect the contents, ex tracting from docum ents by a user, in such a way

122

th a t the other users are able to retrieve these docum ents by specifying formal queries,

or to browse through any inform ation th a t are not created by themselves. For the

d is tribu ted (centralized) case, the system catalog m ust be extended to one which has

capability of unifying (providing) m ultiple versions of docum ent type hierarchy and

docum ent filing organization from (to) each individual system . The query facility

for m ultip le databases includes the following features:

• An uniform interface is created using an uniform representation of the schem a

descriptions and the query specification for retrieving d a ta from the m ultiple

databases.

• For global applications, the browing mechanism can be extended to apply on

m ultip le versions of the docum ent type hierarchy and filing organization. The

browser m ay unify the different models visually for a standard presentation,

such as, th e object network.

• In d istribu ted environm ent, the coexistence of different docum ent type

hierarchies and filing organizations is allowed. Therefore, th e system needs to

assist users in identifying sem antically equivalent d a ta elem ents and reduce

the user’s effort of creating a query.

• Coexistence of the different models preserves th e autonom y of individual

database, and thus, all th e existing functions for local applications would not

be changed.

10.3 Ongoing Research Topics

Finally, we will briefly describe a num ber of significant ongoing research in the area

of docum ent classification, categorization, m anagem ent, and m any others, which

are closely related to the docum ent retrieval system. It is desirable to bring them

together to form a complete, workable system.

123

10.3.1 Document Classification

we classify docum ents th a t are sim ilar in properties into a docum ent class. Each class

is associated w ith a type (called a fram e tem plate) which describes the properties for

th e class of docum ents. T he docum ent type hierarchy exploits s truc tu ra l common­

alities between fram e tem plates, which are related by specialization and general­

ization [60, 61, 107, 106]. In general, th e type or class to which the docum ent belongs

can be identified autom atically by analyzing the contents, th e layout s truc tu re or the

conceptual structu re of any docum ent [1 0 , 34, 35, 52, 108]. The docum ent classi­

fication has laid a solid foundation for the inform ation ex traction from docum ents.

In T E X PR O S, a knowledge-based docum ent classification subsystem is investigated

for classifying docum ents based upon the layout s truc tu re w ith brief inform ation

ex tracted from the content of a docum ent [34, 35, 108]. T he subsystem employs the

knowledge acquisition tool to generate the docum ent form at trees (each of which

describes th e layout structu re and the content of a docum ent) for each type of

docum ents. This allows to identify the type of a docum ent by m atching its layout

s tru c tu re w ith simple content description against a small set of docum ent form at

trees.

10.3.2 Document Categorization

A fram e instance represents the synopsis of a docum ent. TE X PR O S provides

facilities to define folders which are repositories of fram e instances. And folders

are connected to another via the depends-on relationship, thus forming a folder

organization. Such an organization mimics the user’s real-world docum ent filing

system . Given a frame instance, TEX PR O S needs to identify a folder and place

it in th a t folder. This procedure is called docum ent categorization. Similarly, in

reorganizing files, the system needs to place all the involving fram e instances in

appropria te folders. To autom ate these operations, we adopt an agent-based archi­

124

tec tu re to im plem ent T E X PR O S’s categorization subsystem [104, 105, 107]. The

criteria used to categorize docum ents are defined in term s of a ttr ib u te values and

rules. Each filing agent (or folders) is associated with a criterion (a predicate),

d a ta structu res and operations for handling the fram e instances. By com paring the

contents of a fram e instance against the criterion, the agent is able to d is tribu te the

instance in to its descendent folders. If th e fram e instance satisfies categorization

rules (i.e., a categorization rule is a well-formed formula consisting of criteria) for

many descendent folders, copies are m ade and sent to each of these folders. By

doing so repetitively, the frame instance will be placed in appropria te folders. Given

an agent-based arch itecture of a folder organization, any newly created filing agent

(i.e., a folder) for the organization requires to specify its associated criterion. This

criterion m ust be “well-defined” to ensure th a t every frame instance to be inserted

in this folder is d istribu ted and placed exactly in it according to the categorization

rules.

T he file reorganization, which m ay occur frequently, may render fram e instances

accum ulated in buffers due to poor categorization criteria. It m ay also cause

duplicate fram e instances to be placed in the same folder. Given a collection of

folders w ith the ir criteria of an existing agent-based architecture, the file reorga­

nization m ust ensure th a t the desired categorization rules for the newly-formed

arch itectu re are “well-defined” (th a t is, all fram e instances are red istribu ted and

placed in appropria te folders based on the new rules) [117].

10.3.3 Document Management through Hypertext

The concept of hypertex t concerns inform ation m anagem ent and access. Research

work is conducted which focuses on integrating hypertext functionalities into

TEX PR O S for developing a direct m anipulation interface th a t provides access

125

to all the im plicit relationships among docum ents and the inform ation they contain

[103].

Among m any others, a visual program m ing environm ent, DocFlow V PE , is also

investigated for th e purpose of specifying and autom ating structu red office procedures

including the handling of office docum ents [15]. The DocFlow V PE provides a

program m ing interface th a t allows end-users doing their own program m ing in the

office environm ent.

APPENDIX A

THE STRUCTURE OF SYSTEM CATALOG

A .l Thesaurus

In T E X PR O S(an acronym for Text Processing System , which is an in tegrated system

for processing office docum ents), an approach to assist in the efficient inform ation

retrieval is to provide the system w ith the knowledge of synonyms. This is usually

accom plished by using a thesaurus. In the system catalog, there are th ree m ajor types

of com ponents, SYSSYNONYM S(a com ponent containing synonymous key term s),

SY SN A R R O W ER (a com ponent describing th e term s th a t have sem antic associations

w ith the keyterm s), and SYSTERM ASSO C(a com ponent describing th e associations

of keyterm s in term s of the names of folders, fram e tem plates and a ttr ib u te s) to form

th e thesaurus as shown in Figure A .I.

• The set of system fram e instances in S y S C A T ,4£<D£7(SYSSYI\!ONYMS), whose

type is specified by the system fram e tem plate SYSSYNOMYMS, contains infor­

m ation about synonymous term s th a t are relevant to th e user. T he KeyTerm

contains a system reserved keyterm , which is synonymous to the set of term s

th a t are denoted by SynKeyTerms which may exist in th e user’s queries.

Let sfi = {< KeyTerm, K T >, < SynKeyTerms, { S K T i , S K T 2, . . . , S K T k] >}

be a system fram e instance. Then sfi GSYSCATALOG(SYSSYNONYMS) iff

S K T i is a synonym of K T , \ < i < h.

For exam ple, P eter A.Ng can be referred to by one of m any different term s

such as P e te r Ng, Ng, Peter A. Ng and P.A.Ng as shown in F igure A .I.

• T he set of system fram e instances in <S3'7«S'C.AT.4.£0f?(SYSNARROWER),

whose type is specified by the system fram e tem plate SYSNARROWER,

contains a set of narrower key term s, N K T i (1 < i < n) in a user’s query

th a t are sem antically associated w ith a system reserved keyterm , K T . Let

126

127

The corresponding fram e instance for SYSSYNO NYM S

KeyTerm P e te r A . N g

SynKeyTerms P e te r N g , N g , P e te r A .N g , P .A .N g

The corresponding frame instance for SY SN ARR Q W ER

KeyTerm S tu d e n t A s s is ta n t

NarrKeyterms
T e a c h in g A s s is ta n t , G r a d u a te A s s is ta n t ,

R e s e a r c h A s s is ta n t , S tu d e n t A s s is ta n t

The corresponding frame instances for SYSTERM ASSOC

KeyTerm S tu d e n t A s s is ta n t

IndexTm A s s is ta n ts

IndexTmType f o ld e r

KeyTerm Q .E .A p p iic a tio n

IndexTm Q ,E , A p p lic a tio n F o rm

IndexTmType f r a m e te m p la te

F ig u re A . l Examples in a Thesaurus

128

sfi = {< K ey Term, K T > , < NarrKeyTerms, { N K T i , N K T ^ , . . . , N K T ^ } >}

be a system fram e instance. Then sfi eSYSCATALOG(SYSNARROW ER) iff

N K T i is a narrow er te rm of K T , 1 < i < k. To a certain ex ten t, N K T i is a

specialization of th e KT.

For exam ple, in F igure A .l, Teaching A ssistant, G raduate A ssistan t and

Research A ssistan t are referred to as S tuden t A ssistant.

0 T he fram e tem p la te SYSTERMASSOC provides a m echanism for associating

each keyterm th a t m ay appear in a user’s query to an index te rm th a t is actually

residing in th e database. T he associated index te rm is classified by an index

te rm type , IndexTm Type, which m ay be a folder nam e, a fram e tem plate

nam e or a a ttr ib u te nam e. Therefore, th e fram e instances of the type SYSTER­

MASSOC specify index term s to be the nam es of folders, fram e tem plates or

a ttr ib u te nam es which are associated w ith th e keyterm s. Let sfi be a system

fram e instance over SYSTERMASSOC. If s/?[IndexTm] is the nam e of a folder,

then s/i[IndexTmType] = ‘f o l d e r \ If s/i[IndexTm] is th e nam e of a fram e

tem p la te , then s /i[IndexTmType] = ‘f r a m e te m p la t e ' . If s/i[IndexTm] is

the nam e of an a ttr ib u te , then s/i [IndexTmType] = ‘att r ibu te ’.

In the exam ple of th e system fram e instances for SY STERM A SSO C shown in

F igure A .l, Q .E .A pplication Form and A ssistants are index term s residing in

th e database, which represent a fram e tem p la te nam e and folder nam e, respec­

tively.

A. 2 M eta-Data

T he last five com ponents, SYSFOLDERS (a com ponent for describing the folder

characteristics in a logical file s truc tu re), SYSFRINSTCOUNT (a com ponent for

counting the num ber of fram e instances associated with the fram e tem plates

in each folder), SYSFRTEMPLATES (a com ponent for describing the schem as of

129

fram e tem plates), SYSATTRIBUTES and SYSATTRTYPES (com ponents for defining

a ttrib u tes used in the frame tem plates) are m eta-data , which describe the organiza­

tional description of the database. D etailed descriptions of each of these com ponents

are given as follows:

• The fram e tem plate SYSFOLDERS provides a m echanism to describe not

only the fram e tem plates associated w ith each folder bu t also th e logical file

structure . T he la tte r inform ation is represented by the D e p e n d s_ O n and

P a re n t_ O f a ttrib u tes .

For exam ple, in F igure A .2 , Ph.D. Students folder may contain fram e instances

of the types specified by the frame tem plates, Admiss ion-Acc-Letter,

Updated-Transcript, etc. This folder depends on another folder nam ed Ph.D.

Program. This folder has two subordinate folders, and therefore, it is the

parent of two folders Q.E. and Publication. T he fram e tem plates represented

by the F T N a m e s are th e local fram e tem plates in th e the folder F o ld e rN a m e

for the purpose of filing reorganization. All the fram e tem plates associated

w ith the folder F o ld e rN a m e include not only these local fram e tem plates but

also all the fram e tem plates in the descendant folders of F o ld e rN a m e .

• The fram e tem plate SYSFRINSTCOUNT specifies the num ber of fram e instances

whose type is F T N a m e in the folder F o ld e rN a m e .

For exam ple, in Figure A .3, there are 20 fram e instances of th e Q.E.Result

type and 22 fram e instances of the Q.E.Application type in the folder Q.E..

• T he fram e tem plate SYSFRTEMPLATES specifies the a ttribu tes w ithin a fram e

tem plate. The Is_A a ttr ib u te describes the docum ent type hierarchy.

For exam ple, in Figure A.2, the schem a of a fram e tem plate, Q.E.Result

contains the a ttribu tes, Sender, Receiver, Date, Student-Name, Date-Taken

130

The corresponding frame instances for SYSFOLDERS

FolderName Q.E.

FTNames Q .E .A pp lica tion Form , Q .E .R esu lt, Q .E .Q u estio n

Depends_On P h .D S tu d en ts

Parent_Of N IL

FolderName P h .D S tuden ts

FTNames A d m iss io n _ A cc_ L e tter , U p da ted_T ranscrip t

Depends_On P h .D P rogram

Parent_Of
Q .E ., P ub lica tion

The corresponding frame instances for SYSFRTEMPLATES

FTName Q .E .R esu lt

AttrNames Sender, R ece iver, D ate, S luden t_N am e, D a te_T aken , O u tco m e

Is_A
M em o

FTName Q .E .A pp lica tion F orm

AttrNames S tuden t_N am e, D ate_Taken , C o u rses

Is_A E xam A p p lica tio n F orm

F ig u re A .2 Examples of Meta-data

131

and Outcome. In the docum ent type hierarchy, the Q.E.Result is a subtype of

Memo type.

• T he fram e tem plate SYSATTRIBUTES is used to describe the inform ation

about each a ttr ib u te in the system . Each a ttr ib u te , denoted by AttrName is

associated with an a ttr ib u te type denoted by AttrType in the fram e tem plate

FTName, and is bounded to a set of values, c; 'led ActiveDomain. The

a ttr ib u tes w ith the same nam e m ay have different a ttr ib u te types in different

fram e tem plates.

• T he fram e tem plate SYSATTRTYPE5 is to describe the inform ation abou t each

a ttr ib u te type denoted by AttrType, its degree denoted by Degree, and its

dom ain denoted by Domain.

Figure A .2 , Figure A .3 and Figure A.4 are exam ples of the fram e instances for these

five com ponents.

A .3 Attributes Corresponding to the System Catalog

Table A .l lists the finite set of a ttrib u tes corresponding to the system catalog.

132

T he corresponding fram e instance for SY SFR IN ST C O U N T

FTName Q.E.Result

FolderName
Q.E

Count 20

FTName Q.E.Application

FolderName Q.E.

Count 22

Figure A .3 Exam ples of M eta-data(continued)

133

The corresponding frame instances for SYSATTRIBUTES

AttrName R ec e ive r

FTName Q. E. R esu lt

Attrtype N a m e

ActiveDomain F ortune, Liu

D a te TakenAttrName

FTName
Q .E .R esu ll

AttrType D ate

ActiveDomain M a y 5 1992, M a y 26 1992, J u n e 13 1992

The corresponding frame instances for SYSATTRTYPES

AttrType N a m e

Degree 3

Domain d o m (F N a m e) X d o m (L N a m e) X d om (M N am e)

AttrType
D ate

Degree 3

Domain d o m (M o n th) X d o m (D a y) X d om (Y ear)

F igu re A .4 Examples of Meta-data(continued)

134

Table A .l A ttribu tes C orresponding to the System C atalog

A ttrib u te A dom (k) D escription
A ttrN am e S e t O f C har S t r in g th e nam e of an a ttr ib u te

belonging to some fram e
tem plate

A ttrT ype S e t O f C har S t r in g th e nam e of an a t tr ib u te
type

Domain S e t O f C h a r S t r in g x In teg e r a to ta l function which
associates a dom ain to

each a ttr ib u te
A ctiveD om ain S e t O f C h a r S t r in g x In teger the set of values an

a ttr ib u te has in th e DB
FolderN am e S e t O f C har S t r in g the nam e of a folder in the

filing organization
FT N am e S e t O f C har S t r in g th e nam e of a fram e tem p la te

th a t exists in the docum ent type
hierarchy

F T Names dom(FTName) th e nam e of a fram e tem plates
associated w ith a folder

D epends.O n S e t O f C har S t r in g a set of predecessor
folder nam es

Parent_O f S e t O f C har S t r in g a set of successor
folder nam es

IsJ^ S e t O f C har S t r in g a set of fram e tem p la te nam es
in superclass

Degree In teger the num ber of com ponent
a ttr ib u te types com prising

some a t tr ib u te type T
Key Term S e tO f C h a r S t r i n g a te rm th a t m ay appear in a u ser’s

query or associated w ith a term
in user’s query

IndexT m S e tO f C h a r S t r i n g a te rm th a t exists in
the da tabase

IndexT m T ype f o l d e r , frame template the type of IndexT m
SynKeyTerm s S etO f C har S t r in g a set of keyterm s th a t

appear in a user’s query and
are synonym ous to Key Term

N arrK eyTerm s S e tO f C h a r S t r i n g a set of keyterm s th a t
appear in a user’s query and are

sem antically associated w ith Key Term

APPEN D IX B

RETRIEVAL ON SYSTEM CATALOG

Recall th a t the system catalog is considered to be a folder of several fram e tem plates.

Each of these fram e tem plates is a representative of a subset of system fram e instances

of th e system catalog. In th is chapter, we restric t the following discussion to the

system catalog. We investigate the use of a l g e b r a to query th e system catalog,

and we present the m ethods of retrieval on the system catalog using algebraic query

language.

B . l R e t r i e v a l o n S V S C .4 7 \4 £ e> a (S Y S S Y I\IO N Y M S)

T he «ST’<SCATA£C?^(SYSSYNONYMS) com ponent allows th e user to use different

synonym s for a standard ized key term . For exam ple, in th e system , P e te r A. Ng is

a standard ized keyterm to refer to a person. The SYSSYNOM YM S allows th e user

to use different term s, such as P e te r Ng, P.A.Ng, etc. to refer to th e sam e person

and T A ’s or TA to refer to a teaching assistant. Such standard ized keyterm s can

be ob ta ined through the application of algebraic operators, such as projection(7r),

se lection(cr) and u n n e st (^) . For exam ple, a query can be given as follows:

G et th e keyterm whose synonym ous set includes x (Equivalently, get the keyterm

for x from SYSSYN ON YM S). Its equivalent algebraic query is as follows, y is the

keyterm yielded from a given synonymous keyterm x.

= <TSBBA.6B3.epmj2 ,(5 y 5 C ^ T ^ £ O a (S Y S S Y N O N Y M S)) , which is equivalent to

n = ^ Bjr.,T .™ .„ (^ ^ ^ .(^ C ^ T A C O a (S Y S S Y N O N Y M S)));

if / I 7^ e m p ty then

y — sj i [KeyTerm] where sji € / l ;

135

136

B . 2 R e t r i e v a l o n S y S C A T A C O Q (S Y S N A R R O V \IE R)

T he 5T«^C>lTA £O^(SYSNARR0W ER) com ponent provides a m echanism which

allows the user to derive a system standardized keyterm by given term s whose

sem antics are closely related to it. For exam ple, the term s Teaching Assistant ,

Graduate Assistant and Research Assistant are referred to th e keyterm Student

Assistant. To a certain extent, the studen t assistant has a broader function than the

o thers and they are sem antically related.

An exam ple of a query and its algebraic query is given as follows.

G et th e K ey Term whose narrow term set includes x.

n = a NarrKeyTerma2x(S y S C A T A C O g (SYSNARROW ER));

if / I 7 ̂ em pty then

y = sfi[IieyTerm] where sfi £ f 1 ;

B . 3 R e t r i e v a l o n 5 jy S C A 7 T 4 £ e> £ (S Y S T E R M A S S 0 C)

In an application, the system standardized keyterm s can refer to the nam es of

folders in which the frame instances of docum ents are located, or to the nam es of

fram e tem plates from which the fram e instances of docum ents are created in the

filing organization. In the process of retrieving fram e instances of docum ents, the

retrieval process can be eased by providing the inform ation abou t the folder which

contains a fram e instance to be retrieved, or the frame tem pla te corresponding

to th e type of the fram e instance to be retrieved. However th e exact nam es of

the folder and fram e tem plate may not necessarily be quoted by the user. The

S y S C A T v4 £ O ^ (S Y S T E R M A S S 0 C) provides a capability for the system to identify

the exact nam e of a folder and the exact nam e of a frame tem plate , if a standardized

keyterm is used.

c=>

137

In th e following, exam ples of queries and their algebraic queries are given.

• G et the index term z and its type z t , which is associated w ith given keyterm

V-

f 1 = <rKe9nm=y(SySCATACOg(SYSTERMASSOC));

if / I 7^ em pty then

(z , z t) = {sfi[IndexTm], sfi[IndexTmType]\sfi £ / l } ;

• G et th e folder z which is associated w ith Keyterm y.

n = °K„T,„^„™,„,w ,.(SySC;IT^CO g(SYSTER M ASSO C));

if / I / em pty then

y = sfi[IndexTm] where sfi £ / l ;

• G et th e fram e tem plate 2 which is associated with Keyterm y.

n = % Ter m ^ ^ m, SPE= ^ t ,cmplo J S T S C A T A £C?£(SY STERM A SSOC));

if / I 7 ̂ em pty then

y = sfi[IndexTm\ where sfi £ / l ;

In addition to the capabilities of describing synonyms of keyterm s, the sem antic

associations of term s and th e exact term s used as nam es of the folders and

fram e tem plates, th e system catalog also contains five additional com ponents,

SYSFOLDERS, SYSFRINSTCOUNT, SYSFRTEMPLATES, SYSATTRIBUTES and

SYSATTRTYPES, for describing the docum ent type and logical file s tructu res, the

folder characteristics, the schemas of fram e tem plates and the characteristics of the

a ttr ib u te s appeared in the fram e tem plates, which give significant support and help

to th e user during the process of ex tracting inform ation from docum ents, and storing

and retrieving fram e instances of docum ents.

138

B .4 R e t r ie v a l o n S;V<SC.4T.4£e?g(SY S FOLDERS)

T he 5 ’̂ <SC./4T.4£0£?(SYSFOLDERS) contains fram e instances, each of which

describes a folder in term s of its nam e, ancestor(s) and descendant(s), and the

types of synopses of docum ents contained in the folder. This provides the user

w ith the capabilities of finding the num ber of folders being checked for determ ining

w hether a folder is in the system (T E X PR O S), the types of fram e instances contained

in a folder, the folders which are its predecessor(s) (Depend_On) and successor(s)

(P aren t.O f), and all th e folders th a t are associated w ith a given fram e tem plates.

Following are exam ples of queries and their algebraic queries.

o Given e / , the num ber of folders, which are checked for determ ining w hether

th e folder z is in th e system .

e f = countFo;derWame(crFo,derJVame=i(5 y 5 C ^ T ^ £ O ^ (S Y S F 0 L D E R S))) ;

• G et all the children folders of 2 .

n = ^ 0 lderName=S S y S C A T A C O g { SYSFOLDERS));

if / I 7 ̂ empty then

f d c = {sfi[Parent-Of]\sj i E f l};

• G et all the fram e tem plates f ts associated w ith folder 2 .

G e tF t(z)

B e g in

n = ^ o(derWame=j(,5 ^ C ^ £ O a (S Y S F O L D E R S)) ;

f t s = {sfi[FTNames]\sfi E / l } ;

f c s = {sfi[Parent-Of]\sfi E / l } ;

if f c s 7 ̂ empty t h e n

F o r each fc E f c s D o

f t s — f t s U G e tF t (/ c) ;

139

return (fts)

end

• Get all th e paren ts folders of 2 .

f 1 = ^ M.n„ASySCATACOg(SYSFOLT>ERS)y,

if / I ^ em p ty then

f d p — {sfi[Depends-On]\sfi £ / l } ;

• G et all th e folders FolderNames associated w ith fram e tem p la te f t .

GetFolder(ft)

Begin

n = crFTNam̂ ft(SySCATACOg(SYSFOLDERS)y,

f d s — {sfi[FolderName]\sfi £ / l } ;

For each f d £ f d s Do

F o l d e r N a m e s = f d s U GetPredecessor(/d);

f 2 = o-7s_/13/t (S yS C A T ./LC(9£/(SYSFRTEM PLATES));

if / 2 7 ̂ em p ty then

Begin

f t s = {sfi[FTName]\sfi £ /2 } ;

For each f t £ f t s Do

F o l d e r N a m e s = F o l d e r N a m e s U GetFolder(/f);

end; »

ret urn (Folder N am es)

end

140

GetPredecessor(fd)

Begin

n = ^...^^(WSC^T^LCOCtSYSFOLDERS));

f p s = {sfi[Depends-On]\sfi 6 / l } ;

if f p s ^ empty then

f d = f d U GetPredecessor(/ps);

return(fd)

end

B.5 Retrieval on 5;y<SC^T^£0£(SYSFRTEMPLATES)

D uring the process of ex tracting inform ation from docum ents and retrieving fram e

instances of the docum ents, there needs a fram e tem plate 2 to govern the inform ation

ex traction and the retrieval based on a query by a ttrib u tes. Then the existence of

such a fram e tem plate in the system , the inform ation about its superclasses and

its a ttrib u tes , and the fram e tem plates containing the given a ttrib u tes can be in

question. Given the («S3^>C.AT.4;C(9£7(SYSFRTEMPLATES)), this inform ation can

be obta ined as follows.

• Given e f t , the num ber of fram e tem plates, which are checked for determ ining

w hether a fram e tem pla te z is in the system.

e f t = count FTName(aFTName=z(S y S C ' A T ,/LC0£/(SY SFRTEM PLA TES)));

• G et all the a ttribu tes in the fram e tem plate z.

f 1 = a FTName=z { ^ y ^ C A T A C O Q (S YS F RTEM P L A TES));

if / I ^ empty then

att rs — {s/i[i4f<WVames]|s/i £ / ! } ;

141

• Get fram e tem plates which are th e superclass of fram e tem pla te 2 .

Z 1 = <xFWame=I(^ C ^ T ^ £ 0 ^(SY SFR T E M PL A T E S));

if / I ^ em p ty then

f t s = {sfi[Is-A]\sfi e / l } ;

• G et all the fram e tem plates which include any subset of a ttr ib u te s att.

n = <T,(triVam5 j3 alt(^ 5 C ^ T ^ ^ (S Y S F R T E M P L A T E S)) ;

if / 1 7 ̂ em pty then

f t s = {s/f[E7W am e]|s/i e / l } ;

B .6 R etr ie v a l on SySCATACOg(SYSKnRmTES)

T he 53^<SC^4T-4£C?^(SYSATTRIBUTES) and <S;F<SC.AT.4£0£(SYSATTRTYPES)

provide the user w ith a detailed description of the a ttribu tes of the fram e tem plates

and th e capabilities to m anipulate the a ttribu tes.

Following are exam ples of queries and the ir algebraic queries.

• Given ac, the num ber of a ttribu tes, which are checked for determ ining w hether

th e a ttr ib u te att is in the system.

ac = coun tj,1Wra.(<rAllria<ill_ .„ (S J> S M T ^ C 0 5 (S Y S A T T R IB U T E S))) i

• G et all the fram e tem plates which include the a ttr ib u te att of type attype.

f 1 = ° AttrName=°t t^t t rTyPe=attyPe (S y S C A T A C O G (S Y S A T T R l B X J T E S))) -

f t = {sfi[FTName]\sfi £ / l } ;

• G et all the a ttribu tes whose active dom ain include any subset of v.

n = ^ c(iueDomoin2 „(<S^5C ^T^£O C ;(SY SA T TR IB U TES));

if / I 7 ̂ empty then

a t t rs = {sji[AttrName]\sfi £ / ! } ;

A P P E N D I X C

S Y S T E M C A T A L O G M A N A G E M E N T

In this chapter we describe how the system catalog is m anaged dynam ically during

docum ent classification and filing(categorization). We define the functions th a t

m anage th e system catalog as triggers.

C . l S y s te m C a ta lo g M a n a g e m e n t d u r in g D o c u m e n t C la s s if ic a tio n

D uring docum ent classification, if a user selects a fram e tem plate which does not

exist in the system catalog, th e following triggers are invoked:

1 . In s e r tF rT e m p la te (F T N a m e , A ttrN am e, Is_A):

This function will append a new fram e tem plate containing relevant infor­

m ation about nam e of the fram e tem plate, its a ttr ib u te nam es, and its Is_A

relationship in the docum ent type hierarchy as a system fram e instance of

S ;y S C A T A £ 0 £ (S Y S F R T E M P L A T E S) .

2 . In s e r tA ttr ib u te s (A ttrN a m e , FTN am e, A ttrT ype, ActiveDom ain):

Inform ation about any a ttribu tes of this fram e tem plate w ith their a ttr ib u te

types and active dom ains th a t do not exist in th e system m ust be appended as

system .fram e instances of <5>T<ST.AT.4£0C/(SYSATTRIBUTES).

3. I n s e r tA ttrT y p e s (A t trT y p e , Degree, Domain):

Inform ation about any a ttr ib u te types th a t do not exist in the system m ust be

appended as system fram e instances of <S'T’<SC.4T.4£(9£/(SYSATTR TY PES).

4. In se r tA sso c T e rm s(K e y T e rm , FTN am e, IndexTm Type):

This function will update th e subfolder «ST’5C A T A £C 2^ (S Y S T E R M A S S O C).

It appends th e fram e tem plate name, F T N a m e , as a value of I n d e x T e r m in

the frame instance associated with the K e y T e rm KeyTerm.

142

143

C .2 S y s te m C a ta lo g M a n a g em en t d u rin g D o c u m e n t F ilin g

The prim itive functions are defined in section C.2.1. In section C .2 . 2 various

algorithm s to update the system catalog using these prim itive function are described.

C .2 .1 P r im it iv e F u n ction s

T he following prim itive functions are employed for m anipulating system fram e

instances of SYSFOLDERS type in 53^>C^4T«'4£C?£(SYSFOLDERS) during docum ent

filing.

1. In se r tF o ld e r N a m e(folder):

This function will create a system fram e instance sfi of SYSFOLDERS type in

the <S3^<SC.4T./4£CY7(SYSFOLDERS), in which s/i[F olderN am e] is the nam e

of a folder folder , and the values for the o ther a ttrib u tes are NIL.

2. D eleteF old erN am e(/o /d er):

T his function will remove a system fram e instance sfi of SYSFOLDERS type

from th e SySC A T *4£0(/(SY SF O L D E R S), in which s/f[F olderN am e] is folder.

3. In sertF T N am e(/o /d er , frametemplate):

This function will append frametemplate as an elem ent of the s/i [F T N am es]

in th e system fram e instance sfi w ithout duplicate, where sfi £ SYSFOLDERS,

and s /i[F o ld erN am e]= folder.

4. D e le teF T N a m e(/o /d er , frametemplate):

This function will remove frametemplate from the set sfi [F T N am es],

where sfi £ SYSFOLDERS, and s/i [F olderN am e] = folder.

5. C heckFIC ount(/ram eiem p/aie, folder):

This function will check the num ber of fram e instances sfi [C ount],

where sfi £ SYSFRINSTCOUNT, sf i [F o ld erN am e]= folder and

sfi [F T N am e] = frametemplate.

144

6. InsertFR IN ST(/ram eiem p/a£e, folder,num.):

This function will add the value num to the sfi [C o u n t], where

sfi E SYSFRIIMSTCOUNT, s/i [F o ld e rN a m e]= folder and

sfi[F T N a m e]= frametemplate. If ->3sfi E SYSFRINSTCOUNT,

sfi[F o ld e rN a m e]= folder and s ^ [F T N a m e]= frametemplate, then this

function will insert a system fram e instance sfi of type SYSFRINSTCOUNT,

in which s/Z [F o ld e rN am e] = folder, sfi [F T N a m e] = frametemplate and

sfi [Count] = num.

7. D eleteFR IN ST (/ram eiem p/a£e, folder, num):

This function will sub trac t the value num from th e sfi [C o u n t],

where sfi E SYSFRINSTCOUNT, sfi[F o ld e rN am e] = folder and

s /s [F T N a m e]= frametemplate. If s/i [C o u n t]= 0 after subtraction , this

function will delete the system fram e instance sfi.

8 . InsertT)epend(ch i ld fo lder , parentfolder):

This function will append parentfolder as an elem ent of th e s /i[D ep en d s_ O n]

in the system fram e instance sfi w ithout duplicate, where sfi E SYSFOLDERS,

sfi [F o ld e rN am e] = childfolder.

9. D ele teD epend(ch i ld fo lder , parentfolder):

This function will remove s /i[D epends_O n] = parentfolder from the set

sfi [D ep en d s_ O n], where sfi E SYSFOLDERS, sfi [F o ld e rN a m e] = childfolder.

10. I n s e r t P a r e n t (parentfolder, childfolder)

This function will append childfolder as an elem ent of th e s/«[Parent_O f] in

the system fram e instance sfi w ithout duplicate, where sfi E SYSFOLDERS,

sfi [F o ld e rN am e] = parentfolder.

145

11. D eleteParent(parentfolder, childfolder):

T his function will remove sfi [Parent _Of] = childfolder from the set

sfi [Parent -Of], where sfi 6 SYSFOLDERS, sfi [FolderName] = parentfolder.

C .2.2 Algorithms for M odifying SYSFOLDERS

In T E X P R O S , an agent-based approach to au tom ating docum ent filing is employed

[104, 105]. Associated w ith each folder in th e filing organization, there is a filing

agent which specifies its private d a ta s truc tu res (called a ttr ib u tes) and operations (or

m ethods) for m anipulating the d a ta structu res. T he a ttr ib u te s specify the linkages

am ong folders, and th e criteria for accepting fram e instances reposited in folders a t

th e locations called ou tp u t and collection. The m ethods include d is tribu ting and

collecting fram e instances from folders to folders, modifying criteria , and so forth.

Based on these operations a t th e level of im plem entation, the re are two groups

of operations a t the user’s level for m anipu lating folders and th e fram e instances of

docum ents reposited in the folders. For the fram e instances, two m ajo r operations

are th e insertion of a fram e instance into a folder and the deletion of a fram e instance

from a folder. In th e process of au tom ating docum ent filing, th e insertion of fram e

instances in to proper folders can be done by d istribu ting each of th e fram e instances

from a folder in to one of its descendants. In dealing w ith folders, the operations

include th e insertion of a new folder, the relocation of a folder w ith its contents, the

deletion of a folder w ith or w ithout its contents and the m erge of folders w ith their

contents. T his section discusses operations th a t arise during docum ent filing and

which require updating the subfolder <ST<SC.AT./4£0£7(SYSFOLDERS).

1. T he process of au tom atically inserting fram e instances f is in to th e p roper folders

in th e filing organization requires the d istribu tion of each fram e instance fi of

a docum ent from a folder fd p in to a folder /d c, a descendant of /d p, as shown

in F igure C .l. This invokes DetermineFT(^) to determ ine th e type (a fram e

146

tem plate) f t of f i , and then I n s e r tF T N a m e (fd c, ft) will be invoked to append

the f t as a, value of th e F T N a m e s of th e fram e instance (of SYSFOLDERS type)

whose FolderN am e is /d c, if f t is not a value of th e F T N a m e s . T he function

C h e c k F IC o u n t(f t , fdp) is invoked to check the num ber of fram e instances

of type f t in folder fd p. T he function D e le te F T N a m e (fd p, ft) is invoked to

remove f t from F T N a m e s in the fram e instance associated w ith folder fd p if

no m ore fram e instance of f t type are in th e folder fd p. T he function

D e le te F R I N S T (f t , fdp, 1) is invoked to reduce the num ber of fram e instances

of type f t in folder fd p.

ditribute fi

F ig u r e C . l D istribution of Fram e Instances fis

In the filing organization, it may be desirable to d istrib u te a set of fram e

instances f i s from a folder fd p into a folder fd c. T hen the sequence of actions

activated is as follows:

147

For each f i in f i s

Do f t := D e te r m in e F T (/z) ;

I n s e r tF I C o u n t(f t , fdc, 1);

If f t does not appear in th e F T N a m e s of th e fram e

instance of SYSFOLDERS type associated w ith fd c

then In s e r tF T N a m e (fd c, ft);

If C h e c k F IC o u n t(f t , fdp)= 1

then D e le te F T N a m e (fd p, ft);

D e le te F IC o u n t(f t , fdp, 1)

end

A special case is th a t, in the filing organization, it m ay be desirable to insert

a fram e instance fi of a docum ent into a folder fd c, whose predecessor is fdp.

T hen, in S y S C A T A C O Q , the sequence of actions activated is as follows:

Do f t := D e te r m in e F T (/?) ;

If f t does not appear in th e F T N a m e s of the fram e

instance of SYSFOLDERS type associated w ith fd c

then In s e r tF T N a m e (fd c, ft);

I n s e r tF I C o u n t(f t , fdp, 1)

end

In ano ther case is th a t it may be desirable to delete(or remove) a frame

instance f i of a docum ent from a folder fd c, whose predecessor is fd p. Then, in

SySC A T A C O Q , the sequence of actions activated is as follows:

148

Do f t : = D e te r m in e F T (/ i) ;

If C h e c k F IC o u n t(f t , fdc)= 1

then D e le te F T N a m e (fd c, ft);

D e le te F IC o u n t(f t , fdc, 1)

create a folder fd

depending on fd/>

fd, fd, fdi

F ig u re C .2 Insertion of a Folder fd c

2. In the filing organization of the system (T E X PR O S), a folder fdp m ay have

several descendants, f d f s. For inserting a new folder fd c to be a child of a

folder fdp w ithin the filing organization, as shown in Figure C.2, the system

will invoke the function In s e r tF o ld e rN a m e (fd c) for inserting a system fram e

instance of SYSFOLDERS type, containing fd c as th e F o ld e rN a m e , into

the <S3ASCw4T.A£(9(7(SYSFOLDERS), and then I n s e r tD e p e n d (fd c, fdp) for

149

inserting fd p as its D e p e n c L O n . Finally, the function I n s e r tP a r e n t (f d p,

fdc) is invoked to append fd c as a value oi P a re n t_ O f in the fram e instance

associated w ith the folder whose nam e is fdp in th e S y S C A T A C O Q

(SYSFOLDERS). Thus, th e following actions are applied.

Do

InsertFolderName(fdc);

In s e r tD e p e n d (fd c, fdp);

I n s e r tP a r e n t (f d p, fdc)

end

However, it may be desirable to insert a new folder fd c to be a child of fd p and

to be a paren t of fd fs , as shown in Figure C.3. T hen after inserting a new

folder fd c to be a child of /dp, the following sequence of actions m ust be taken

to change fd fs as the descendants from fdp to fd c.

For each fd j in f d f s

Do

D e le te P a re n t(fd p, fdj-);

I n s e r tP a r e n t (f d c, fdj);

In s e r tD e p e n d (fd j , fdc);

D e le te D e p e n d (fd j , fdp)

end

150

crea te a fo lde r fd <

depend ing on fd r

and bein g a paren t o f

f d 's

fd, fd
/ i

F ig u re C .3 Insertion of a Folder fd c

3. W ith in the filing organization of TE X PR O S, it may be desirable to disassociate

th e folder fd \ as the predecessor of the folder fd c and to designate the folder

fd 2 as the predecessor of the folder fd c, which may have several folders as its

descendants. To change the predecessor of the folder fd c w ith its contents

from fd i to fd 2, as shown in Figure C.4, the function D e Ie te P a re n t(fd i ,

fdc) is invoked to remove the fd c from P a re n t_ O f associated w ith fd i and

I n s e r tP a r e n t (f d 2 , fdc) to append fd c as a value of P a re n t_ O f associated with

fd 2. T hen the function I n s e r tD e p e n d (fd c, fd2) and D e le te D e p e n d (fd c, fdi)

will be invoked for replacing fd \, one of the values of D e p e n d s_ O n associated

w ith fd c by the new value fd 2 in the <S3^SCylT.4£CR7(SYSFOLDERS).

In sum m ary, the sequence of actions activated is as follows:

151

fdc

M ove a fo lder fd

from fd; to fd,

fdr

F ig u re C .4 Relocation of a Folder fd c

Do

D e le te P a r e n t(f d l5 fdc);

I n s e r tP a r e n t (f d 2, fdc);

I n s e r tD e p e n d (f d c, fd2);

D e le te D e p e n d (fd c, fdi)

end

152

4. In filing organization, it m ay be desirable to collect all the fram e instances

f i a from folder fd c by its paren t folder fd p and then delete th e folder fd c and

its descendants, as shown in F igure C.5. All the fram e tem pla te nam es from

th e fram e instances in th e subtree of folder fd c are appended as th e values of
<•

F T N a m e s of th e folder fdp by invoking the function I n s e r tF T N a m e s (f d p,

ft). T hen th e function D e le te P a r e n t(f d p, fdc) is invoked to rem ove th e fd c

from th e P a r e n t_ O f associated w ith fd v. Finally, the function D e le te F o ld -

e rN a m e (fd) is invoked to remove th e relevant inform ation abou t folder fd c

and its descendants, which are the fram e instances in S y S C A T A C O Q

(SYSFOLDERS). In sum m ary, the sequence of actions activated is as follows:

D elete a fo ld e r fd

a fte r m o v in g all its fi

to fdp

F ig u r e C .5 Deletion of a Folder fd c

153

For each f t appeared in F T N a m e s of the fram e instance of SYSFOLDERS

type associated with fd which is either fd c or its descendants

Do

I n s e r tF T N a m e s (fd p, ft);

N u m b e r = C h e c k F IC o u n t (f t , f d) ;

In s e r tF I C o u n t(f t , fdp, N u m b e r) ;

D e le te F IC o u n t(f t , fdc, N u m b e r) ;

D e le te P a re n t(fd p, fdc);

For each folder f d as a value of the F o ld e rN a m e of the fram e instances

of SYSFOLDERS type associated w ith f dc and its descendants

Do

D e le te F o ld e rN a m e (fd)

In filing organization, it may be desirable to collect all the frame instances f i s

from folder fd c by its parent folder fdp w ithout deleting the folder fd c. A fter

processing I n s e r tF T N a m e s (fd p, ft), the function D e le te F T N a m e (fd , ft) is

invoked for rem oving f t from F T N a m e s in the fram e instances associated w ith

a folder fd which is either fd c or its descendants, if no m ore fram e instance of

f t type is in the folder fd. T he sequence of actions activated is as follows:

154

For each f t appeared in FTNames of the fram e instances of

of SYSFOLDERS type associated with fd which is e ither fd c

or its descendants

Do InsertFTNames(fdp, ft);

Number^ CheckFICount(f t : fd) ;

InsertFICount(ft, fdp, Number);

DeleteFICount(ft, fd, Number);

DeleteFTName(fd, ft)

end

5. In filing, it may be desirable to remove a folder fd c w ith its contents from

th e filing organization. T he contents include all th e fram e instances and its

descendants. Assume th a t the folder fdv is the parent of fd c. This can be done

by using a special operation called KillFolder.

In S y S C A T A C O G , DeleteParent(fdp, fdc) is invoked for removing fd c

from th e Parent_Of associated w ith fdp. Then DeleteFolderName(fd) is

invoked to remove the folder fd which is either fd c or its descendants from the

<SJ7‘SC .4X .'4£0£/(SY SF O L D E R S). A special case is th a t if, in the filing organi­

zation, th e last frame instance of a docum ent type f t has been removed from a

folder /d , then in SYSFOLDERS, the function DeleteFTNam e is invoked to

delete f t from the FTNames in the fram e instance associated w ith the folder

fd . T he sequence of actions activated is as follows:

155

For each f t appeared in F T N a m e s of the fram e instances of

of SYSFOLDERS type associated w ith fd which is e ither fd c

or its descendants

Do N u m b e r = C h e c k F I C o u n t (/ / , /d) ;

D e le te F IC o u n t(f t , fd, N u m b e r) ;

D e le te F o ld e rN a m e (fd) ;

D e le te P a r e n t(f d p, fdc)

end

6. Let the folders f d l v and fd2v be the predecessors of the folders fd \ and fd 2

respectively. In the filing process, it may be desirable to m erge the folder fd\

and fd 2 , to renam e the resu ltan t folder as fd c, and to move fd c as a descendant

of fdp , as shown in Figure C.6 and Figure C.7.

C orresponding to the folder fd c created in the filing organization, in SYSFOLDERS,

In s e r tF o ld e rN a m e (fd c) is invoked to create a frame instance of SYSFOLDERS

type w ith fd c as a value of F o ld e rN a m e . Then I n s e r tD e p e n d (f d c, fdp)

and I n s e r tP a r e n t (f d p, fdc) are invoked to append fdp in th e D e p e n d _ O n

associated w ith fd c, and fd c in the P a re n t_ O f associated w ith fd p, respectively.

T he function In s e r tF T N a m e s (fd c, ft) is invoked repeatedly for inserting all

the f f s appearing in the F T N a m e s of the fram e instances associated w ith fd i

and /c/2 , into th e F T N a m e s of th e fram e instance associated w ith fd c. The

function I n s e r tP a r e n t (f d c, childfolder) is invoked repeatedly for inserting all

the childfolders appeared in the P a re n t_ O f of the fram e instances associated

w ith fd \ and /d 2, into the P a re n t_ O f of the fram e instances associated

w ith fd c. W hile doing this, In se rtD e p e n d (c h ild fo ld e r, fdc) and D e le t-

eD ep en d (ch ild fo ld e r, fd*) are invoked for replacing fd \ and fd 2 by fd c as the

value of D e p e n d _ O n in the fram e instances of SYSFOLDERS type associated

156

w ith all the childfolders of fd\ and fd i by fd c. Finally, D e le te P a r e n t (f d lp,

fd i) and D e le te P a re n t(fd 2 p, fd2) are invoked to disassociate fd \ and fd 2 from

the ir paren t f d l p and fd 2 p. In summary, th e sequence of actions activated is as

follows:

ro o t

fd 2
f d l

fd 1

fd2,fdl.
I

fd 2 .

F ig u re C .6 Before Merging Two Folders fdi and fd2 -

I n s e r tF o ld e rN a m e (fd c);

I n s e r tD e p e n d (fd c, fdp);

I n s e r tP a r e n t (f d p, fdc);

For each folder fd k , (1 < k < n)

Do

For each f t appearing in F T N a m e s of the fram e instances of SYSFOLDERS

type associated w ith fdk

157

Do

In s e r tF T N a m e s (fd c, ft);

For each childfolder of the P a r e n t .O f associated w ith /<4

Do

I n s e r tP a r e n t (f d c, childfolder);

In se rtD ep en d (ch ild fo ld e r,.fd c);

d e le teD ep en d (c h ild fo ld e r, fdt);

D e le te P a r e n t (f d lp, fd i);

D e le te P a re n t(fd 2 p, fd2);

D e le te F o ld e rN a m e (fd i) ;

D e le te F o ld e rN a m e fd 2);

f d l , f d l . m i fd2.

F igu re C .7 After Merging Two Folders fdi and fd2.

158

Note th a t, in the filing organization, merging folder fd^ and /d 2, which have

the sam e parent /dp, and then renam ing the resu ltan t folder as fd c, which is a

descendant of fdp, is to be considered as a special case.

C.2.3 Algorithms for Modifying SYSTERMASSOC

During docum ent filling, the system also needs to update the subfolder

«S^y<5CylTA£C9^(SYSTERMASSOC) by invoking the following functions:

• U p d a te A sso c T e rm s(K e y T e rm , OldFolderName, NewFolderName, IndexTm Type):

T his function replaces OldFolderName, one of th e values of In d e x T e rm

associated w ith K eyTerm by the NewFolderName.

• In se r tA sso c T e rm s(K e y T e rm , FolderName, IndexTm Type):

This function will append FolderName as a value of I n d e x T e rm in the frame

instance associated with KeyTerm KeyTerm .

® D ele teA sso cT erm s(I< ey T erm , FolderName, IndexTm Type):

This function will remove FolderName from In d e x T e rm of the fram e instance

associated w ith KeyTerm KeyTerm .

R E F E R E N C E S

1. T. Anwar and H. Beck, “Knowledge M ining by Imprecise Querying: A
Classification-Based A pproach,” in Proceedings o f the 8th In terna­
tional Conference on Data Engineering , Tempe, Arizona, pp. 622-630,
February 1992.

2. E. B ertino, F . R ab itti, and S. G ibbs, “Q uery Processing in a M ultim edia
D ocum ent System ,” A C M Transactions on Office In form ation System s,
vol. 6, no. 1, pp. 1-41, January 1988.

3. P. Bose and M. R ajin ikanth , “KARM A: A Knowledge-Based A ssistant to a
D atabase System ,” in Proceedings o f the 2nd. Conference o f A I Appli­
cations, pp. 462-472, O ctober 1985.

4. M. Bouzeghoub and E. M etais, “SECSI: An E xpert System A pproach for
D atabase Design,” Inform ation Processing, pp. 251-257, 1986.

5. B. Buckles and F. Petry, “A Fuzzy R epresentation of D ata for Relational
D atabases,” Fuzzy Sets and System s, vol. 5, pp. 213-226, 1982.

6. O. Bukhres, J. Chen, A. Elm agarm id, X. Liu, and J. M ullen, “InterB ase: A
M ultidatabase P ro to type System ,” in Proceedings o f A C M SIG M O D
International Conference on M anagem ent o f Data , W ashington, D .C.,
pp. 534-539, June 1993.

7. D. Cam pbell, D. Embley, and B. Czejdo, “G raphical Query Form ulation for an
ER M odel,” Data and Knowledge Engineering , vol. 2, pp. 89-121, 1987.

8. R. C attell, “An Entity-B ased D atabase Interface,” in Proceedings o f the A C M
SIG M O D International Conference on M anagement o f D ata , Santa
M onica, CA, pp. 144-150, May 1980.

9. A. Celentano, M. Fugini, and S. Pozzi, “Knowledge-Based Retrieval of Office
D ocum ents,” in Proceedings o f the 13th A C M SIG IR International
Conference on Research and D evelopment in In form ation Retrieval,
Brussels, Belgium, Septem ber 1990.

10. A. C elentano, M. Fugini, and S. Pozzi, “Classification and R etrieval of
D ocum ents Using Office O rganization Knowledge,” in Proceedings A C M
Conference on Organizational Computing System s, A tlan ta , Georgia,
pp. 159-164, November 1991.

11. A. Celentano, M. Fugini, and S. Pozzi, “Querying Office System s about
D ocum ent Roles,” in Proceedings o f the l f t h A C M SIG IR International
Conference on Research and Development in Inform ation Retrieval,
Chicago, Illinois, pp. 183-189, O ctober 1991.

159

160

12. A. Celentano, M. Fugini, and S. Pozzi, “Conceptual D ocum ent Browsing and
Retrieval in K abiria ,” in Proceedings o f A C M SIG M O D International
Conference on M anagem ent o f Data, San Diego, CA, pp. 3, June 1992.

13. S. Chang and L. Leung, “A Knowledge-Based Message M anagem ent System ,”
A C M Transactions on Office Inform ation System s, vol. 5, no. 3, pp. 213-
236, 1987.

14. H. Chen and V. D har, “A Knowledge-Based Approach to the Design of
D ocum ent-Based Retrieval System s,” in Proceedings o f A C M Conference
on Office In form otion System , Cam bridge, MA, pp. 281-290, April 1990.

15. S. Chiang, J. W ang, M. Bieber, and P. Ng, “An Event-D riven Visual
Program m ing Environm ent for Office A utom ation through D ocum ent
Processing,” in Proceedings o f the 6th In ternational Conference on
Software Engineering and Knowledge Engineering, Ju rm ala, Latvia,
pp. 454-461, June 1994.

16. S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa, and A. P a th ria ,
“M ultim edia D ocum ent Presentation, Inform ation E xtraction , and
Docum ent Form ation in MINOS: A Model and System ,” A C M Trans­
actions on Office Inform ation System s, vol. 4, no. 4, pp. 345-383, 1986.

17. W. Chu, M. M erzbacher, and L. Berkovich, “T he Design and Im plem entation
of CoBase,” in Proceedings o f A C M SIG M O D International Conference
on M anagement o f Data, W ashington, D .C ., pp. 517-522, June 1993.

18. M. Consens and A. M endelzon, i''Hy+: A H ygraph-Based Query and
V isualization System ,” in Proceedings o f A C M SIG M O D International
Conference on M anagement o f Data, W ashington, D.C., pp. 511-516,
June 1993.

19. W. Croft and R. Rovetz, “Interactive Retrieval of Office D ocum ents,” in
Proceedings o f A C M Conference on Office Inform ation System s , New
York, 1988.

20. W. Croft, “User-Specified Domain Knowledge for Docum ent R etrieval,”
in Proceedings o f the 9th A C M S IG IR International Conference on
Research and D evelopment in Inform ation Retrieval, Pisa, Italy, pp. 201-
206, 1986.

21. W. Croft and D. Stem ple, “Supporting Office D ocum ent A rchitecture w ith
C onstrained T ype ,” in Proceedings o f A C M SIG M O D International
Conference on M anagem ent o f Data, San Francisco, CA, pp. 504-509,
May 1987.

22. C. D ate, “T he D ata D ictionary,” A Guide to IN G R E S, Addison-W esley
Publishing Company, 1989.

161

23. A. D ’A tri and L. Tarantino, “From Browsing to Q uerying,” IE E E Data
Engineering, vol. 12, no. 2, pp. 46-53, June 1989.

24. J. Davis and R. Bonnell, “ED IC T - An Enhanced Relational D ata D ictionary:
A rchitecture and Exam ple,” in Proceedings o f the 4th In ternational
Conference on Data Engineering, Los Angeles, California, pp. 184-191,
February 1988.

25. B. Defude, Knowledge-Base System versus Thesaurus: An Architecture
Problem about Expert System Design, Cam bridge U niversity Press, New
York, 1984.

26. R. Fiker and T. Kehler, “T he Role of Fram e-Based R epresentation in
Reasoning,” Com munications o f A C M , vol. 28, pp. 904-920, 1985.

27. N. Fuhr, “A P robabilistic Framework for Vague Queries and Im precise Infor­
m ation in D atabase ,” in Proceedings o f the 16th International Conference
on Very Large Data B asts, Brisbane, A ustralia, pp. 696-707, 1990.

28. N. Fuhr, “Integration of Probabilistic Fact and Text R etrieval,” in Proceedings
o f the 15th A C M S IG IR International Conference on Research and
D evelopment in Inform ation Retrieval, Copenhagen, Denm ark, pp. 211-
222, June 1992.

29. N. Fuhr and C. Buckley, “A Probabilistic Learning Approach for D ocum ent
Indexing,” A C M Transactions on In form ation System s, vol. 9, no. 3,
pp. 223-248, Ju ly 1991.

30. S. G adia, S. N air, and Y. Poon, “Incom plete Inform ation in R elational
Tem poral D atabases,” in Proceedings o f 18th International Conference
on Very Large Data Bases, Vancouver, C anada, pp. 395-407, A ugust
1992.

31. S. Gauch and J. Sm ith, “Search Im provem ent via A utom atic Q uery Refor­
m ulation,” A C M Transactions on In form ation System s, vol. 9, no. 3,
pp. 249-280, Ju ly 1991.

32. S. Gibbs and D. Tsichritzis, “A D ata M odeling A pproach for Office Infor­
m ation System s,” A C M Transactions on Office Inform ation System s,
vol. 1, no. 4, pp. 299-319, 1983.

33. S. Gibbs and D. Tsichritzis, “D ocum ent P resen tation and Query Form u­
lation in M use,” in Proceedings o f the 9th A C M SIG IR In ternational
Conference on Research and Development in In form ation Retrieval, Pisa,
Italy, pp. 23-29, 1986.

34. X. Hao, J. Wang, M. Bieber, and P. Ng, “A Tool for Classifying Office
D ocum ents,” in Proceedings o f the 5th International Conference on Tools
with Artificial Intelligence, Boston, MA, pp. 427-434, November 1993.

162

35. X. Hao, J. W ang, and P. Ng, “Nested Segm entation: An A pproach for Layout
Analysis in D ocum ent Classification,” in Proceedings o f the 2nd IA P R
Conference on D ocument Analysis and Recognition , T sukuba Science
City, Japan , pp. 319-322, October 1993.

36. P. Hayes and S. W einstein, “C O N STR U E/TIS: A System for C ontent-B ased
Indexing of a D atabase of News Stories,” in A A A I Proceedings o f the 2nd
Annual Conference on Innovative Applications o f Artificial Intelligence,
W ashington, D .C., pp. 1-5, 1990.

37. C. Herot, “Spatial M anagem ent of D ata ,” A C M Transactions on Database
System s, vol. 5, no. 4, pp. 493-513, Decem ber 1980.

38. W. Horak, “Office Docum ent A rchitecture and Office D ocum ent In ter­
change Form ats-C urrent S tatus of In ternational S tandard ization ,” IE E E
Computer, vol. 18, no. 10, pp. 50-60, 1985.

39. E. Horowitz and R. W illiam son, “SODOS: A Software D ocum entation Support
Environm ent-its Use,” IE E E Transactions on Software Engineering,
vol. 12, no. 11, pp. 1076-1087, 1986.

40. W. Howden, “C ontem porary Software Developm ent E nvironm ents,” C om m u­
nications o f AC M , vol. 25, no. 5, pp. 318-329, 1982.

41. T . Ichikawa and M. Hirakawa, “ARES: A R elational D atabase w ith the
Capability of Perform ing Flexible In terp re ta tion of Q ueries,” IE E E
Transactions on Software Engineering , vol. 12, no. 5, pp. 624-634, May
1986.

42. T . Imielinski, “Incom plete Inform ation in Logical D atabases,” IE E E Data
Engineering, vol. 12, no. 2, pp. 29-40, June 1989.

43. G. Jakobson, G. Lafond, E. Nyberg, and G. P iatetsky, “An Intelligent D atabase
A ssistant,” IE E E Expert, vol. 1, pp. 65-78, 1986.

44. J . K alita, “G enerating Sum m ary Responses to N atural Language D atabase
Queries,” Tech. Rep. TR84-9, University of Saskatchewan, 1984.

45. M. Kao, N. Cercone, and W. Luk, “W hat Do You M ean “Null”? T urning Null
Responses in to Q uality Responses,” in Proceedings o f the 3th In terna­
tional Conference on Data Engineering, Los Angeles, California, pp. 356-
362, February 1987.

46. J. K aplan, “C ooperative Responses from a Portab le N atural Language Q uery
System ,” Artificial Intelligence, vol. 19, no. 2, pp. 165-187, 1982.

47. W. K ent, “Consequences of Assuming a Universal R elation,” A C M Trans­
actions on Database Systems, vol. 6, no. 4, pp. 539-556, 1981.

163

48. H. K orth , G. Kuper, J. Feigenbaum, A. Gelder, and J. U llm an, “System /U : A
D atabase System Based on the Universal Relation A ssum ption,” A C M
Transactions on Database System s, vol. 9, no. 3, pp. 331-347, 1984.

49. S. Lee, “An E xtended R elational D atabase Model for U ncertain and Im precise
Inform ation,” in Proceedings o f the 18th International Conference on
Very Large Data Bases, Vancouver, C anada, pp. 395-407, A ugust 1992.

50. Q. Liu, “An Office D ocum ent Retrieval System w ith the C apability of
Processing Incom plete and Vague Q ueries,” Ph.D . Thesis P roposal,
D epartm ent of C om puter and Inform ation Science, New Jersey In s titu te
of Technology, January 1993.

51. Q. Liu, J. Wang, and P. Ng, “On Research Issues Regarding U ncertain Query
Processing in an Office Docum ent Retrieval System ,” Journal o f System s
Integration, vol. 3, no. 3, pp. 163-194, 1993.

52. E. Lutz, H. Kleist-Retzow, and K. Hoernig, “M AFIA —An A ctive Mail-
F ilter-A gent for an Intelligent Docum ent Processing S upport,” M ulti­
user Interface and Applications, Elsevier, pp. 16-32, 1990.

53. D. M aier, J. Ullm an, and M. Vardi, “On the Foundations of th e Universal
Relation M odel,” A C M Transactions on Database System s, vol. 9, no. 2,
pp. 283-308, June 1984.

54. T . Malone, K. G rantm , K. Lai, R. Rao, and D. R osenblitt, “Sem istructured
Messages are Surprisingly Useful for C om puter-Supported Coordi­
nation ,” A C M Transactions on Office Inform ation System s, vol. 5, no. 2,
pp. 115-131, 1987.

55. P. M artin , I. M acLeod, and B. Nordia, “A Design of a D istribu ted Full
Text Retrieval System ,” in Proceedings o f the 9th A nnual In ternational
A C M SIG IR Conference on Research and Development in In form ation
Retrieval, pp. 131-137, 1986.

56. J. Mayfield and C. Nicholas, “SNITCH: A ugm enting H ypertext D ocum ents
w ith a Sem antic N et,” International Journal o f Intelligent and
Cooperative Inform ation System s, vol. 2, no. 3, pp. 335-351, 1993.

57. K. McCoy, “A ugm enting a D atabase Knowledge R epresentation for N atural
Language G eneration,” in Proceedings o f the 20th AC L, Toronto,
O ntario , pp. 121-128, 1982.

58. K. McKeown, “The T E X T System for N atural Language G eneration: An
Overview.,” in Proceedings o f 20th ACL, Toronto, O ntario, pp. 113-120,
1982.

164

59. U. Merz and R. King, “D IR EC T: A Query Facility for M ultiple D atabase ,” in
Proceedings o f A C M SIG M O D In ternational Conference on M anagem ent
o f D ata , San Diego, CA, pp. 2, June 1992.

60. F. M hlanga, “XLModel and XLAlgebra: A D a ta M odel and A lgebra for Office
D ocum ents,” Ph .D . Thesis, D epartm ent of C om puter and Inform ation
Science, New Jersey In s titu te of Technology, M ay 1993.

61. F . M hlanga, J. W ang, T . Shiau, and P. Ng, “A Q uery A lgebra for Office
D ocum ents,” in Proceedings o f the 2nd In ternational Conference on
System s Integration, M orristown, N J, pp. 458-467, June 1992.

62. M. M orgenstern, “T he Role of C onstraints in D atabase , E xpert System s,
and Knowledge R epresen tation ,” in Proceedings o f the 1st In ternational
Workshop on Expert Database System s, K iaw ah Island, South C arolina,
pp. 351-368, O ctober 1984.

63. A. M otro, “BARO Q U E: A Browser for R elational D atabases,” A C M Trans­
actions on Office In form ation System s , vol. 4, no. 2, pp. 164-181, April
1986.

64. A. M otro, “C onstruction Queries from Tokens,” in Proceedings o f the
A C M SIG M O D In ternational Conference on M anagem ent o f Data,
W ashington D .C ., pp. 120-131, May 1986.

65. A. M otro, “E xtending th e R elational D atabase M odel to Support Goal
Q ueries,” in Proceedings o f 1st In ternational Conference on Expert
Database System s, Charleston, SC, pp. 129-150, A pril 1986.

66. A. M otro, “SEAVE: A M echanism for Verifying User P resuppositions in Q uery
System s,” A C M Transactions on Office In form ation System s, vol. 4,
no. 4, pp. 312-330, O ctober 1986.

67. A. M otro, “VAGUE: A User Interface to R elational D atabase th a t P erm its
Vague Q ueries,” A C M Transactions on Office In form ation System s,
vol. 6, no. 3, pp. 187-214, Ju ly 1988.

68. A. M otro, “A Trio of D atabase User Interfaces for H andling Vague R etrieval
R equests,” IE E E Data Engineering , vol. 12, no. 2, pp. 54-63, Ju n e 1989.

69. A. M otro, “FLEX: A Tolerant and C ooperative User Interface to D atabases,”
IE E E Transactions on Knowledge and Data Engineering, vol. 2, no. 2,
pp. 231-246, Ju n e 1990.

70. R. Oddy, “Inform ation R etrieval through D evelopm ent E nvironm ent,” Journal
o f D ocum entation, vol. 33, pp. 1-14, 1977.

165

71. C. P aren t and S. Spaccapietra, “An A lgebra for a G eneral Entity-R elationship
M odel,” IE E E Transactions on Software Engineering, vol. 11, no. 7,
pp. 634-643, 1985.

72. K. Parsaye, M. Chignell, S. Khoshafian, and H. Wong, Intelligent Databases,
John Wiley and Sons, Inc., U.S.A., 1989.

73. S. P o llitt, “CANSEARCH: An E xpert Systems A pproach to D ocum ent
R etrieval,” Inform ation Processinq and M anaqem ent, vol. 23, no. 2,
pp. 119-138, 1987.

74. S. Pollock, “A Rule-Based M assage F iltering System ,” A C M Transactions on
Office Inform ation System s , vol. 6, no. 3, pp. 232-254, 1988.

75. H. P rade and C. Testem ale, “Generalizing D atabase Relational A lgebra for the
T reatm ent of Incom plete or U ncertain Inform ation and Vague Q ueries,”
Inform ation Science, vol. 34, pp. 115-143, 1984.

76. F. R ab itti, “A Model for M ultim edia D ocum ents,” Office A utom ation, pp. 227-
250, 1985.

77. R. R ada and B. M artin , “A ugm enting Thesauri for Inform ation System s,”
A C M Transactions on Office Inform ation System s , vol. 5, no. 4, pp. 378-
392, O ctober 1987.

78. C. Rolland and C. Proix, “An E xpert System A pproach to Inform ation System
D esign,” Inform ation Processing, pp. 251-257, 1986.

79. G. Salton, Autom atic Text Processing, Addison-Wes ley, 1989.

80. L. Saxton and V. Raghavan, “Design of an In tegrated Inform ation R etrieval/
D atabase M anagem ent System ,” IE E E Transactions on Knowledge and
Data Engineering, vol. 2, no. 2, pp. 231-246, Ju n e 1990.

81. R. Schank and W. Lehnert, “T he Concept C ontent of C onversation,” in
Proceedings o f the 6th International Joint Conference on Artificial Intel­
ligence, Tokyo, Japan , pp. 769-771, 1979.

82. P. Schauble, “Thesaurus Based Concept Spaces,” in Proceedings o f the 10th
A nnual International A C M S IG IR Conference on Research and Devel­
opm ent in Inform ation Retrieval, pp. 254-262, 1987.

83. F. Shih, S. Chen, D. Hung, and P. Ng, “A D ocum ent Segm entation Classifi­
cation and Recognition System ,” in Proceedings o f the 2nd International
Conference on System s Integration, M orristown, N J, pp. 258-267, June
1992.

166

84. P. Shoval, “E xpert/C onsu lta tion System for the Retrieval D atabase with
Sem antic Network of Concepts,” in Proceedings o f the 4 th A C M SIG IR
International Conference on Research and Development in Inform ation
Retrieval, pp. 145-149, 1981.

85. E. Sibley, “An E xpert D atabase System A rchitecture Based on an A ctive and
Extensible D ictionary System ,” in Proceedings o f the 1st In ternational
Workshop on Expert Database System s , Kiawah Island, South Carolina,
pp. 401-422, 1986.

86. M. Siegel and S. M adnick, “A M etadata A pproach to Resolving Sem antic
Conflicts,” in Proceedings o f the 17th International Conference on Very
Large Data Bases, Barcelona, Spain, pp. 133-145, Septem ber 1991.

87. P. Sm ith, S. Shute, and D. Galdes,. “Knowledge-Based Search Tactics for an
Intelligent Interm ediary System ,” A C M Transactions on In form ation
System s , vol. 7, no. 3, pp. 246-270, Ju ly 1989.

88. M. S tonebraker and J. Kalash, “TIM B ER : A Sophisticated R elation Browser,”
in Proceedings o f the 8th International Conference on Very Large Data
Bases, Mexico City, Mexico, pp. 1-10, Septem ber 1982.

89. M. Stonebraker, H. S tettner, N. Lynn, J. Kalash, and A. G u ttm an , “D ocum ent
Processing in a Relational D atabase System ,” A C M Transactions on
Office Inform ation System s, vol. 1, no. 2, pp. 143-158, April 1983.

90. V. Tahani, “A Conceptual Framework for Fuzzy Query Processing - A Step
Toward Very Intelligent D atabase System s,” In form ation Processing &
M anagem ent, vol. 13, pp. 289-303, 1977.

91. R. Thom as, H. Forsdick, T . Crowley, R. Schaaf, R. Thom linson, V. Travers,
and G. Robertson, “Diamond: A M ultim edia Message System Build on
a D istributed A rchitecture,” IE E E Computing , vol. 18, no. 12, pp. 65-78,
1985.

92. L. Tokuda, “C om puter Assist H um ans in Hum an R esources,” in A A A I
Proceedings o f the 2nd A nnual Conference on Innovative Applications
o f Artificial Intelligence, W ashington, D. C, pp. 31-35, 1990.

93. R. Tong, “RUBRIC: An Environm ent for Full Text Inform ation R etrieval,”
in Proceedings o f the 8th A C M S IG IR International Conference on
Research and Development in In form ation Retrieval, pp. 243-251, 1985.

94. F. Tou, M. W illiams, R. Fikes, A. Henderson, and T . M alone, “RA BBIT:
An Intelligent D atabase A ssistan t,” in Proceedings o f the National
Conference o f AI, P ittsburgh , PA, pp. 314-318, A ugust 1982.

95. D. Tsichritzis, “Form M anagem ent,” Com munications o f AC M , vol. 25, no. 7,
pp. 453-477, 1982.

167

96. D. Tsichritzis, S. Christodoulakis, A. Lee, and J. Vandenbroek, “A M ultim edia
Office Filing System ,” Office A utom ation , Springer-Verlag, Berlin,
pp. 43-65, 1985.

97. F. Tuijnm an and H. Afsarm anesh, “M anagem ent of Shared D ata in Federated
C ooperative Peer Environm ent,” In ternational Journal o f Intelligent and
Cooperative In form ation System s , vol. 2, no. 4, pp. 451-473, 1993.

98. A. Tzvieli, “R epresentation and Access of U ncertain R elational D ata ,” IE E E
Data Engineering, vol. 12, no. 2, pp. 21-28, June 1989.

99. J. U llm an, Principles o f Database System s , C om puter Science Press, 2nd ed,,
' 1982.

100. J. Ullman, “ On K en t’s “Consequences of Assuming a Universal R elation” ,”
A C M Transactions on Database System s, vol. 8, no. 4, pp. 637-643, 1983.

101. L, Vieile, “Recursive Axioms in Deductive D atabase: T he Q uery/Subquery
A pproach,” in Proceedings o f the 1st In ternational Conference on
Expert Database System s, C harleston, South Carolina, A pril 1986,
B enjam in/C um m ings, 1987.

102. R. Wall, “Intelligent Indexing and Retrieval: A M an—M achine P artnersh ip ,”
Inform ation Processing and M anagement, vol. 16, pp. 73-90, 1980.

103. J . W an, M. B ieber, J. W ang, and P. Ng, “D ocum ent M anagem ent through
H ypertext: A Logic Modeling A pproach,” in Proceedings o f the 27th
In ternational Conference on System Sciences, K auai, Hawaii, pp. 558-
568, January 1994.

104. J . W ang, F. M hlanga, Q. Liu, W. Shang, and P. Ng, “Intelligent D ocum en­
ta tion Support Environm ent,” in Proceedings o f the 5th International
Conference on Software Engineering and Knowledge Engineering, San
Francisco, CA, pp. 429-436, June 1993.

105. J . W ang, F. M hlanga, Q. Liu, W. Shang, and P. Ng, “D atabase Support for
Software D ocum entation: The T E X PR O S P ro jec t,” To appear as a book
chapter in Software A utom ation and Productivity Improvement, 1995.

106. J . W ang, F. M hlanga, and P. Ng, “A New A pproach to M odeling Office
D ocum ents,” A C M S IG O IS Bulletin, vol. 14, no. 2, pp. 46-55, Decem ber
1993.

107. J. Wang and P. Ng, “TEX PRO S: An Intelligent Docum ent Processing
System ,” In ternational Journal o f Software Engineering and Knowledge
Engineering, vol. 2, no. 2, pp. 171-196, June 1992.

168

108. C. Wei, J. W ang, and P. Ng, “A Knowledge Based D ocum ent Classification
Tool,” in Proceedings o f the 3rd International Conference on System s
Integration , Sao Paulo, Brazil, pp. 1166-1175, A ugust 1994.

109. I<. W hang, A. A m m ann, A. Bolmarcich, M. H anrahan , G. Hochgesang,
K. Huang, A. K horasani, R. K rishnam urthy, G. Sockut, P. Sweeney,
V. W addle, and M. Zloof, “Office-by-Example: An In tegra ted Office
System and D atabase M anager,” A C M Transactions on Office In for­
m ation System s , vol. 5, no. 4, pp. 393-427, 1987.

110. D. Woelk, W. K im , and W . Luther, “An O bject-O riented A pproach to
M ultim edia D atabases,” in Proceedings o f A C M SIG M O D International
Conference M angem ent Data, W ashington, D. C, pp. 311-325, 1986.

111. H. Wong and I. Kuo, “GUIDE: G raphical User Interface for D atabase Explo­
ra tion ,” in Proceedings o f the 8th International Conference on Very Large
Data Bases, Mexico City, Mexico, pp. 1-10, Septem ber 1982.

112. X. Wu and T. Ichikawa, “KDA: A Knowledge-Based D atabase A ssistant w ith
a Query G uiding Facility,” IE E E Transactions on Knowledge and Date
Engineering, vol. 4, no. 5, pp. 443-453, O ctober 1992.

113. L. Zadeh, “Fuzzy Sets,” Inform ation and Control, vol. 3, pp. 177-200, 1965.

114. L. Zadeh, “Fuzzy Sets as a Basis for a Theory of Possibility,” Fuzzy Sets and
System s, vol. 1, no. 1, pp. 3-28, 1978.

115. M. Zemankova, “FIIS: A Fuzzy Intelligent Inform ation System ,” IE E E Data
Engineering , vol. 12, no. 2, pp. 11-20, June 1989.

116. M. Zemankova and A. K andel, “Im plem enting Im precision in Inform ation
System s,” In form ation Science, vol. 37, no. 2, pp. 107-141, Decem ber
1985.

117. Z. Zhu, J. M cHugh, J. Wang, and P. Ng, “A Form al A pproach to
Modeling Office Inform ation System s,” To appear in Journal o f System s
Integration, vol. 4, no. 4, 1994.

118. M. Zloof, “Query-by-Exam ple: A D atabase Language,” IB M System Journal,
vol. 16, no. 4, pp. 324-343, 1977.

	An office document retrieval system with the capability of processing incomplete and vague queries
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Motivation and Related Work
	Chapter 3: Overall Architecture of Retrieval System
	Chapter 4: System Catalog
	Chapter 5: Query Transformation
	Chapter 6: Browser
	Chapter 7: Generalizer
	Chapter 8: Generalization Rules
	Chapter 9: Substitution Rules
	Chapter 10: Copncluding Remarks
	Appendix A : The Structure of System Catalog
	Appendix B: Retrieval on System Catalog
	Appendix C: System Catalog Management
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

