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A B S T R A C T

BLIND DETECTION IN CHANNELS W ITH INTERSYM BOL
INTERFERENCE

by  
R aafat Edward K am el

In high speed digital transmission over bandlim ited channels, one of the 

principal im pairm ents, besides additive white Gaussian noise, is intersymbol in ter­

ference. For unknown channels, adaptive equalization is used to m itigate the 

interference. Different types of equalizers were proposed in the literature such as 

linear, decision feedback equalizers and m axim um  likelihood sequence estim ation. 

The transm itter embeds sequences with the da ta  regularly to help the equalizer 

adapt to the unknown channel parameters.

It is not always appropriate or feasible to send training sequences; in such 

cases, self adaptive or blind equalizers are used. The past ten years have witnessed an 

interest in the topic. Most of this interest, however, was devoted to linear equalization

In this dissertation we concentrate on blind decision feedback equalization and 

blind maximum likelihood sequence estimation. We propose a new algorithm : the 

“decorrelation algorithm ,” for controlling the  blind decision feedback equalizer. We 

investigate properties such as convergence and probability of error.

A new algorithm  is also proposed for blind maximum likelihood sequence 

estim ation. We use two trellises: one for the d a ta  and the other for the channel 

param eters. The V iterbi algorithm is used to search the two trellises for the best 

channel and da ta  sequence estim ates. We derive an upper bound for this scheme.

We also address the problem of ill convergence of the constant modulus 

algorithm  and propose a technique to improve its convergence. Using this technique,



global convergence is guaranteed as long as the channel gain exceeds a certain critical

value.

The question of the Viterbi algorithm ’s complexity is im portant for both 

conventional and blind maximum likelihood sequence estimation. Therefore, in 

this dissertation, the problem of reducing the complexity of the Viterbi algorithm 

is also addressed. We introduce the concept of state  partitioning and use it to 

reduce the num ber of states of the Viterbi algorithm. This technique offers a better 

com plexity/perform ance tradeoff than previously proposed techniques.
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C H A P T E R  1

IN T R O D U C T IO N

Many communication channels are subject to dispersion to a greater or lesser degree. 

The received signal is spread or dispersed in time. This effect results in a  non-ideal 

frequency response in the form of a non-constant am plitude and /or non-linear phase.

An example of this includes bandwidth efficient digital communication systems, 

where the effect of each transm itted symbol extends beyond one symbol period. The 

distortion caused by the overlapping symbols is called intersymbol interference (ISI). 

This distortion lim its the speed of reliable transmission on band-lim ited channels.

Severe distortion occurs in radio channels, such as mobile radio and terrestrial 

microwave systems, due to m ultipath. In such channels more than  one path  exists 

between the receiver and the transm itter, each arriving with different propagation 

delays. In the mobile environment, m ultipath  occurs due to reflection from buildings, 

moving objects, etc. In terrestrial microwave telecommunication systems, m ultipath  

arises from reflection off the ground and atm ospheric refractions.

M ultipath  channels are characterized by a delay spread which is defined as the 

reciprocal of the coherence bandwidth. W hen the delay spread exceeds the symbol 

period, frequency-selective fading produces ISI [l]

1.1 A d ap tive  E qu alization

Equalization is used to m itigate ISI in d a ta  communications systems. Figure 1.1 

depicts a  model of a da ta  communication system. Equalization is defined as the 

problem of restoring the transm itted symbols ({/*;}) by processing the ou tpu t of the 

channel. Since the channel (H(z~1)) is usually unknown to the transm itter and the 

receiver, a form of adaptive equalization is always considered. The past three decades

1



2

have witnessed progress in the theory and applications of adaptive equalization [2] 

[3]. Equalization techniques can be divided into two categories: linear and nonlinear

W-

Channel Channel
OutputInput

D ecisionChannel
H(z')

Equalizer
W (z ')

F ig u re  1.1 Channel Equalization

A linear equalizer is implemented using a transversal filter whose weights are 

adaptively adjusted according to a certain criterion. This criterion is, in general, a 

m inim ization of a given cost function $(•) (The derivative of the cost function with 

respect to weight vector <£(•)=$'(•) is known as the error function.). Referring to 

Figure 1.1, the adaptation rule can be expressed as

w<*+1)=w(*j -

where W (k) is the equalizer weight vector at the kth  instant. A common criterion 

is the least mean squared (LMS) error between the desired ou tpu t and the actual 

ou tput. The ra te  of convergence of such an adaptive equalizer is determ ined by the 

eigenvalue spread of the input covariance m atrix [5]. An improved algorithm  was 

developed in [6] [7], which is based on the recursive least squares (RLS) algorithm. 

The algorithm  minimizes a weighted sum of squared errors. Compared to the LMS, 

the RLS converges faster at the expense of computational complexity. In effect the 

RLS replaces the constant gain fj of the LMS update equation by a variable gain. 

The complexity is reduced through the use of other RLS-based algorithms, which 

include the so-called “square-root RLS algorithm ” [8] and the  “fast RLS algorithm ” 

[9]. Another technique to increase the speed of convergence is to  orthogonalize the 

received signal. This is done using a  lattice filter [10] [11] [12].



For a severely distorted channels, the linear equalizer cannot effectively cancel 

the ISI. For a channel w ith spectral nulls, the linear equalizer compensates for the 

distortion by placing a high gain on th a t frequency range, thus, enhancing noise at 

th a t frequency.

It was this type of channel th a t m otivated the use of nonlinear equal­

ization techniques. These include decision feedback equalization (DFE), m axim um  

aposteriori probability (M AP) and maximum likelihood sequence estim ation (MLSE).

The basic idea of the DFE is to cancel the ISI caused by the previously 

detected da ta  [4] [13]. The DFE has a forward filter for cancelling the precursor 

and a feedback filter to cancel the postcursor. The weights of the DFE can also be 

adaptively controlled using either the LMS [14] or the different versions of the RLS 

and lattice type [1]. Because of the structure of the DFE, it can cancel ISI w ith 

minimal enhancement of noise. A m ajor problem with the DFE is error propagation. 

If an error is made in the decision, it will propagate down the feedback filter and, 

therefore result in residual ISI and a reduced margin against noise at future decisions 

[1] [15]. D FE is still an active area of research where there are different a ttem p ts to 

reduce the effect of error propagation [16]. In [16] a block decision feedback equalizer 

is proposed, where the equalization is performed on a  block of da ta  samples ra ther 

than one sample. By varying the length of the block, the block decision feedback 

equalizer can em ulate different forms of equalization ranging from the conventional 

DFE to maximum likelihood sequence estimation.

In [17] an algorithm  is developed that is based on the maximum a posteriori 

probability criterion. The technique is optim um  in the sense of minimizing the 

probability of symbol error. The performance of the MAP is superior to th a t of 

the DFE. However, the large com putation burden of this technique is its m ajor 

disadvantage.



A nother estim ation technique th a t has been proposed for ISI channels is the 

m axim um  likelihood sequence estim ation (MLSE) [18]. This technique is based on 

maximizing the  likelihood function of the  received sequence. The V iterbi algorithm  

(VA), which is used for decoding convolutional codes, is also used here. An adaptive 

version of the VA was proposed in [19], where the channel param eters are first 

estim ated and then the estim ated param eters are used in the m etric calculation of 

the VA. The main disadvantage of the VA is tha t its complexity grows exponentially 

with the channel span. Recently there has been a lot of research concerned with 

reduced complexity VA which compromises performance for complexity [20] [21] [22].

All of the  above adaptive equalization techniques use training sequences sent 

by the transm itter to help the equalizer adapt to the unknown channel. Such an 

approach is not always appropriate or feasible [23]. The process of embedding 

training sequences in the transm itted  d a ta  complicates the tran sm itte r design. A 

remedy for this problem is to use blind equalization, he., adap tation  to  the channel 

without the use of a training sequence.

The blind equalization problem is more formally defined as th a t of recovering 

the original input signal to an unknown system based on the observation of the 

system ’s ou tpu t and some of the characteristics of the input signal. Blind equalization 

is the  m ain focus of this research.

1.2 B lin d  E qualization

The problem  of blind equalization is th a t of finding an appropriate cost function 

(or equivalent error function) th a t reflects the amount of ISI introduced by the 

channel, and which does not involve the transm itted  symbols [23][24] [25] [26] [27]. 

O ptim ization of the cost function should lead to minimization of the ISI. In other 

words, optim ization of such a function should be consistent with the minimization
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of ISI. In what follows, we give a review of different error functions considered in the 

literature.

The first known blind equalization algorithm  was introduced by Sato [24]. 

Sato’s error function is given by

<f>{Yk) = Yk - R 1sgn(Yk), ( 1 . 1)

where R \ is defined as , I k is the transm itted  symbol. The above error

function was later generalized by Benveniste et al., [25] into a class of error functions 

given by

= vHn) - r R = E^ ~ ^ k], (i.2)
where tp(x) is an odd, twice differentiable function, with > 0,Va; >  0. The

function 'ip(-) generalizes Sato’s linear function.

Sato’s cost function can be written as $(yfc) =  |(|hfc| — f?i)2. Godard [23] 

then described a class of cost functions given by

* ( Y k )  =  ^  ( \Yk\p -  Rp  f  , P  =  1, 2, • • •, (1.3)2 p

where R p =  ^  is clear th a t for p =  1, G odard’s cost function is th a t of Sato.

It is also worth mentioning th a t for p = 2 the algorithm  is the constant m odulus 

algorithm  (CMA) developed separately by Treichler et al., [28][29].

Bellini et al [26] followed a different approach and developed what they term ed 

“Bussgang Techniques.” Based on some assumptions about the equalizer and the 

channel param eters, they derived a maximum likelihood estim ator of the reference 

signal. This estim ator depends on the type of m odulation used and the signal-to- 

noise ratio (SNR). W riting the equalizer’s output Yk as

Yk =  +

=  f u R - p  T  n*,
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where f k is the convolution of the channel and equalizer ( f k =  {hk * wk}k, hk and wk

Under the assum ption th a t n k is normally distributed with a zero mean and variance 

of cr2, and M —ary PAM (M is even) alphabet with I k is uniformly distributed over

[—( M  — 1 )d, —(M  — 3)d, • • •, —d, d, ■ ■ ■ (M  — 3)d, (M  — l)d], g(Yk) is given by

g(Yk) would be used as an estim ate of thus, the weights update equation would

which has the  same form as the Sato, Benveniste and Godard algorithm s. For this 

reason all of the aforementioned algorithms are considered as special cases of the 

Bussgang technique.

All of the  above functions are non-con vex which, in turn , imply the existence of

may be undesirable, i.e., at those equilibria the equalizer will not be able to remove 

ISI. This was shown and dem onstrated by Ding et al., for the Godard algorithm 

[30][31] and for the Sato algorithm [32]. In [33], the ill convergence of the Benveniste 

et al algorithm s [25] was also considered, thus proving tha t none of the previous 

algorithms were globally convergent. For these algorithms equalizer initialization

being the channel and equalizer param eters, respectively), |/^ | =  m ax|/fc| and njt is 

the ISI. Bellini et al [26] derived a function g(Yk) defined as

be

W(fc +  1) =  W (*) +  g (g(Yk) -  Yk) X ,, (1.4)

where X& is the vector of the channel outputs.

The error function of the Bussgang algorithm  may be w ritten as

<KYk) = Yk - g ( Y k)

local m inim a to which the blind equalizer might converge. Some of these equilibria



becomes an im portant issue. One would initialize the equalizer away from the neigh­

borhood of the ill-convergent minima.

Verdu, et ai ,  [34] developed a technique th a t insures global convergence of 

blind equalizers. The key observation in [35] is th a t overparam eterizing the  blind 

equalizer is the prim e cause of ill-convergence, and anchoring (setting the  first 

coefficient to one) the blind equalizer is proposed [34][36]. This together w ith using 

a convex function, guarantees convergence. Verdu used the minimized energy as 

a cost function. Vembu et al., [36] used the /j norm of the equalizer weight as 

a cost function, which was approxim ated by the lp norm of the equalizer output. 

Kennedy and Ding, [37] applied the concept of anchored equalization to  a QAM 

transmission. Due to the complex nature of the signal constellation, they perform ed 

joint equalization and carrier recovery. This was done by anchoring the sum of the 

real and imaginary parts of the center tap to 1, and using the maximum of either 

the real or the imaginary part of the equalizer ou tput as a cost function. The cost 

function was implem ented using the lv norm of the real or imaginary part of the 

equalizer’s output.

Another family of blind equalization algorithms tha t appeared in the  litera ture  

is th a t based on high-order moments and polyspectra [38] and [39]. In general, 

these algorithms give better performance a t the expense of higher arithm etic  

complexity. Basically, these algorithms use the received samples to estim ate the 

channel param eters and reconstruct the transm itted  data  via inverse filtering. The 

com putational complexity of these algorithms makes them  inappropriate for on-line 

processing.

Another technique of blind equalization is th a t which is based on m axim um  

likelihood sequence estim ation [40]. The channel and the da ta  are jointly estim ated. 

One would initially assume certain channel param eters then use th a t to calculate the 

branch m etric and retain the best K  surviving paths into each state. Associated with



each of the K  surviving paths is a least channel estim ate which is updated at every 

tim e instant. These channel estim ates are then used to calculate the branch metric 

for the following tim e instant. The com putational complexity of such an approach is 

substantially higher than the VA [18]. The storage requirement is also higher since 

it retains more survivors.

In [41] an iterative procedure was devised which processes a frame of received 

data. An initial guess of the channel is m ade which is used by the VA, to find 

the maxim um  likelihood estim ate from the frame of received d a ta  samples. The 

output of the VA is then used to find a  better channel estim ate using a least square 

approach. The new channel estim ate together with the received frame are then used 

by the VA, to obtain a better sequence estim ate. The process is iterated until the 

channel estim ate converges. The channel estim ation step requires a m atrix inversion 

of the correlation m atrix of estim ated data. The dimensions of this m atrix are 

proportional to the frame length ( The frame length used in [41] was 1000 data 

symbols). This problem was avoided in [41] by assuming tha t such a m atrix can be 

closely approxim ated by an identity m atrix, since the input d a ta  is independent and 

id e n tic a lly  distributed (iid). However this argument would only be true if the VA 

outputs reliable data.

Another approach similar to [41] was used in [42] to jointly recover d a ta  and 

estim ate the param eters of an underwater channel. The Expectation M aximization 

algorithm [43] was used to estim ate the channel instead of the least squares approach 

in [41].

The main emphasis of blind equalization was on the linear equalizer structure. 

We on the other hand, concentrate on other structures and techniques which received 

less attention, such as decision feedback equalization and m axim um  likelihood 

sequence estimation.



This dissertation is organized as follows, in Chapter 2 we introduce a  new blind 

equalization criteria “decorrelation.” We then develop the decorrelation blind equal­

ization algorithm. We prove the convergence of the algorithm for autoregressive 

(AR) type channel. Although this channel model is not as widely used in digital 

communications as the moving average (MA) type, it gives good insight into the 

problem of convergence. The decorrelation algorithm is used in conjunction with the 

decision feedback equalizer. The convergence to zero ISI is investigated and estab­

lished in this chapter. We also describe a faster converging form of the decorrelation 

algorithm by using an RLS-like decorrelation algorithm.

In Chapter 3 we study the probability of error of the blind decision feedback 

equalizer for the additive white Gaussian noise case. In our derivation, we use a 

reduced complexity state  machine proposed by Duttweiler et al., [15]. Lower and 

upper bounds on the probability of error are found.

The constant modulus algorithm exhibits ill convergence due to the m ultim odal 

nature of its error function. Ill convergence is defined as the convergence to local 

m inim a that are incapable of removing ISI. In Chapter 4 we investigate the effect of 

anchoring the blind equalizer on the convergence of the constant modulus algorithm. 

By considering the  AR model, we show tha t the convergence of the constant modulus 

algorithm is improved. We demonstrate that as long as the equalizer gain exceeds a 

certain critical value, the algorithm is guaranteed to globally converge to the global 

minima. The constant modulus algorithm is also used with the decision feedback 

equalizer.

In Chapter 5 a new blind maximum likelihood sequence estim ation technique 

is introduced. In this setting, we quantize the channel param eters and develop a 

channel trellis for the discrete channel. We propose an iterative algorithm  whereby 

the Viterbi algorithm is used to search for the most likely data  sequence and channel 

param eter vector. We formulate the probability of an error event for the blind
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V iterbi following Forney’s approach. An upper bound on the probability of bit error 

is then derived. Compared with other techniques, this m ethod prevails by its reduced 

com putational complexity.

M otivated by the work done with the probability of error of the decision 

feedback equalizer, we use sim ilar concepts to reduce the  complexity of the Viterbi 

algorithm . State partitioning concepts and their applications to reduced state  

sequence estim ation are introduced in Chapter 6 . It is shown th a t the state parti­

tioning technique offers a be tte r com plexity/perform ance tradeoff than  previously 

known methods.

Conclusions and future directions are given in C hapter 7.



CHAPTER 2

D E C O R R E L A T IO N  A L G O R IT H M  FO R  B L IN D  E Q U A L IZ A T IO N

In the previous chapter, we defined the blind equalization problem as tha t of 

recovering the transm itted  signal through an unknown channel based solely on the 

observation of the channel’s output and the characteristics of the transm itted  signal. 

Algorithms based on exploiting a special property of the original input signals are 

known as “property restoral” [30]. One example is the constant modulus algorithm 

[28], where one exploits the constant constellation of the original signal in order to 

adapt the blind equalizer.

In this chapter, we assume that the original data  is independent and identically 

distributed (iid). This is a valid and widely used model. At the output of the 

channel, the da ta  is no longer independent. The channel introduces the correlation 

in the form of the ISI. We exploit the white noise like characteristics of the original 

signal and adapt the blind equalizer using decorrelation. This was m otivated by [44] 

which provided a  simple test to show th a t an adaptive equalizer has converged to 

the correct settings. In [44] it was shown tha t if the input data is binary and iid, 

then the decorrelation at the output of the slicer of a decision directed equalizer is 

a necessary and sufficient condition for the correct convergence of the equalizer. In 

this chapter we show th a t the decorrelation at the input of a slicer is a necessary and 

sufficient condition for the perfect cancellation of ISI.

This chapter is organized as follows. In section 2 .1, we discuss the equalization 

of autoregressive channels. Moving average channels are discussed in section 2 .2 . 

In section 2.3 we present a rapidly converging version of the algorithm, based on 

minimizing time-average correlations.

11



2.1 Equalization of Autoregressive Channels

2.1 .1  P rob lem  Form ulation

Consider an A R(n) channel driven by an equi-probable binary sequence {Ik}- The 

ou tpu t Xk  is given by
n

X k  =  g h  +  (2.1)
i=i

where g is the channel gain and q ’s are the channel param eters.

w.

F igure 2.1 Blind Linear Equalizer

Figure 2.1 shows the anchored FIR  blind equalizer. In C hapter 1, we m entioned 

the  advantages of using an anchored equalizer [34]. The ou tpu t of the equalizer, with 

weights w i , w2, • • •, wn, is given by

Ak = Xk — ^ 2  WiXk-i
t'=i

n

=  g h  + Y l  (a « ~  w>) x k~i
t=i

It can be shown th a t the above equation can be w ritten as
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For the decorrelating algorithm, the weight update equation is given by

uif+1 =  +  gAf-Ak-i  for i =  1,2, • • •, n. (2-3)

The steady sta te  equalizer weight is found by setting the error function function

of the weight update equation (in this case A kAk-i  for % =  l , - - - n . )  to zero. In 

what follows, we show th a t at steady s ta te  the equalizer will converge to the channel 

param eters and, hence, cancel ISI. Before proceeding with the proof, we derive some 

correlation relations.

M ultiply equation (2.2) by Ak-(n+\) an<i  take the expectation, to get

Ah Ak—(n+l) — 9 ( Ik^-k—(«+l) ^   ̂ Ik—iAk—(n-\-\) J T y  <XiAk—iAk—(ri+l)
\  t= l /  t'=l

=  (2.4)
1=1

The last step follows from the fact th a t Ik- iAk-(n+i) are independent for i — 

0 ,1 ,2 , • • • , n. It further follows th a t

n

( n + l )  — y  y &n—i+1 Ah Ah—j
i=1

-  0

since we require th a t AkAk-i  =  0 for i — 1,2, • • ■ ,n  at the steady state. Similarly

one can prove th a t AkAk-i  = 0 for i > n. Therefore, at steady sta te  we have

A kA k- i  =  erAS(i), (2.5)

where A(-) is the kronecker delta, where we assumed th a t Ak is wide sense stationery 

random process.

2.1 .2  S tea d y  S ta te  A nalysis

In the Z-domain, one may write equation (2.2) as

1 — a^z~x — • ■ • — a nz
n- — A { z ) = g I ( z ) ,
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where A ( z )  and I { z )  are the Z-transforms of A k and I k , respectively. In the tim e 

domain, using long division, the above equation may be written as

OO
Y ^ l i A k - i  =  g h ,  (2 .6)
i=0

where
70 =  1
71 = W1 ~  Oil
72 -  (w2 -  a 2) -  u>i7 i
73 =  (w3 -  o 3) -  w27 i -  w i72

In =  {wn -  a n) -  wn- 171 -  tni7n_i

Now m ultiply equation (2 .6 ) by A k - 1 and take expectation

OO
Y ^ l i A k - i A k - i  =  0.
1=0

Using the result from equation (2.5), the above reduces to

<^t7i =  °;

therefore, we get 71 =  0, i.e. wi =  07 . Similarly, one can show th a t 72 =  0, which 

together with 71 =  0, gives w2 — a 2. Thus, showing th a t

Wi = a,- for i = 1, 2 , • • • , n.

Therefore, at steady state, the decorrelation algorithm results in perfect ISI cancel­

lation.

2 .1 .3  S im ulation  R esu lts

Consider the output of an A R (l) channel given by

X k =  h  +  0.9Xk-i .

The output of the anchored MA equalizer is

Ak = Xk — wiXk~\.
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The weight update  equation is given by

w^ +1) =  w [k  ̂ +  Q M A kA k- \ .

The figure below depicts the residual ISI and the equalizer tap  weight. This is the 

result of the M onte Carlo average of 100 independent runs. The residual ISI is the 

mean square of the error (Ik — A k).

0.9

0.8

0.7

0.6

Residual ISI0.5

0.4

0.3

0.2

0.1

0
0  50  100 150 200  250 300  350  400  450  500

Iterations

Figure 2.2 Residual ISI and Learning Curve for the Decorrelating Linear Equalizer

It is evident from the figure th a t the residual ISI vanishes after about 150 

iterations. The convergence of the equalizer weight is also dem onstrated.

2.2 E qualization  o f M ovin g  A verage C hannels

2.2 .1  P ro b lem  Form ulation

The channel and equalizer model under consideration is shown in Figure 2.3. The 

cascade of transm it, channel and receive filters is modeled as an FIR  filter with 

impulse response
N

h(n) = 1 -f- 5 3  ^i^(n ”  *)» 
i=i
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where £(■) is the kronecker delta. In the above equation we normalized relative to 

the  first cursor (ho)- We also assume that the input I/, is a binary white sequence 

w ith a zero mean. The ou tput of the channel is thus given by

N
Xk  — Ik T ^  ) h ih - i .

i=1

Channel

\v

1 + h.z'1 + h z'2 + ... + h z 1 1 i N

Adaptive Control

F ig u re  2.3 Decision Feedback Equalizer with Decorrelation Control 

We assume th a t the channel is slowly tim e varying and the receiver has perfect 

carrier and tim ing recovery. The channel post-cursors {hi,  • • •, /i/v} introduce in ter­

symbol interference on the current data  symbol Ik- The estim ated data  Ak is 

produced by passing Ak through a slicer.

Referring to Figure 2.3, the input to the slicer of the  decision feedback equalizer 

Ak is given by

=  X k - A ' ^ W

= +  (2.7)
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A A A A
where A k - i  is the vector of the past N  decisions A^,_j =  [A k - i ,A k -2, ' - - , A k - N ] 

(the prime stands for transpose) and Tt-i is the vector of past transm itted  infor­

m ation bits Ifc_j =  [7fc_i, Ik - 2, ■' ‘ , h -N ] ,  where /*._,• £ { -1 ,1 }  and P { h - i  =  1} =  

P { I k-i = - 1} =  W  and H  are the equalizer and channel param eter vectors, 

respectively;W ' =  [uq, W2, • • •, u>/v] and H7 =  [Ai, A2, • • ■, h^].

In this chapter we will assume a noiseless situation, i.e., we consider an 

arbitrary  high signal-to-noise ratio. Additive white noise will be considered in the 

next chapter. For ideal ISI cancellation, the sheer’s input Ak =  Ik and therefore 

sequence {A*} will be decorrelated, i.e., A kA k-n =  0 for n /  0. In other words, 

decorrelation is a necessary condition for ideal cancellation of ISI. In order to be

able to use the decorrelation of the slicer’s input as a criterion for controlling the

feedback weight vector W , we must prove th a t decorrelation is also sufficient for 

cancelling ISI. This is what we intend to show in the next section.

2.2 .2  Sufficiency

In order to prove sufficiency, we rewrite equation (2.7) as

N N
Ak = h  + Y l  hi h - i  -  wiAk-i- (2.8)

1=1 t = l

If we denote the set of all correct decisions by A\  and the set of all incorrect decisions 

by A 2, i.e.,

Ai = {Ai : A, = I{}

A.2 =  {Ai : Ai = —/,•},

then equation (2 .8 ) can be written as

Ak = h  + (hi -  Wi)Ik-i  +  (hi + wi ) h - i

= Ik + E ' Y i h - i  (2.9)
1=1

=  h  + isik ,
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where 7; is given by

{ (hi — W{) for all i : Ak-i  £ A\  
(hi +  Wi) for all i : Ak-i  6  M

and

N
isik = H h - i -

t'=i

We can now show th a t decorrelation is a sufficient condition for cancelling ISI. 

M ultiply equation (2.9) by A k - \  — [.Afc-i, Afc_2, • • •, -dfc-w], the vector of the past 

slicer’s input, to obtain

N
AkAk-i = h Ak-i + T^ih-iAk-r.

1=1

Taking the expectation on both sides of the above equation, it can be shown that 

the above equation reduces to

( A kAk -!  \  /  71 +  E ilT 1 7«7t+i \
AkAk - 2 72 +  7t'7i'+2

AkAk-n

AkAk-N+i

7n T  E fc l” 7»7i+n

7W-1 +  7 i7 ^
\  7  N

(2 . 10)

/V A k A k - N  )

It is clear from the last entry of the vectors in the above equation tha t ŷN — 0

iff AkAk-N  =  0. Similarly, it follows fi'om the ( N  — l) th  entry th a t if 7^  =  0 ,

then 7 /V-1 =  0 iff AkAk-N+i  =  0. One would thus start from the bottom  enti’y

and use back substitution to show tha t 7 ,■ =  0 for i =  1 , • • •, fV iff AkAk-i  = 0 for 

i =  1, • • •, N .  It thus follows from equation (2.9) th a t isik — 0 in the steady sta te

iff AkAk-i  = 0 for i =  1, • • •, N . This completes the proof th a t decorrelation is also 

sufficient for cancelling ISI. In the above analysis nothing was mentioned about the 

convergence of the equalizer weights. This point is investigated in the next section.



19

2.2 .3  S tea d y  S ta te

We now consider the convergence of the weights. M ultiply equation (2.7) by =  

\Ak-i ,  A k - 2, • • • , A k - ;v] ; the vector of the past slicer’s input, to obtain,

AkA fc_a =  IkA k-i  +  A ^ I ' ^ H  -  A ^ A ' ^ W .  (2.11)

W hen taking the expectation of equation (2.11), the first term  vanishes since

E { A k- m h - n } = 0  for m  >  n ,

as A k does not depend on the present or future data inputs. It can also be shown 

(Appendix A, Claim 2) tha t

E { A k-m A k- n} = 0  for m  > n.

Therefore

/  A kA k. !  \ /  A k- \ I k- i  A k- \ I k-2 ••• At-i/fc-zv N ( hx \
A kA k- 2

= 0 A k- 2 h - 2  • • • A k- 2 h - N h*2

\  A kA k- n  / \  0 ■ • • Afc_Af/fc-v / \  h u  )

A k- \ A k- \  A k- \ A k-2 
0 A k-2 A k-2

A k- \ A k_N

A k-2 A k-N

\  0 0 • • • A k-ivAk-N )

The last entry of equation (2.12) can be w ritten as

/  Wi \
u>2 

V w n  /

( 2 . 12 )

A kA k_N = A k - M h - N ^ N  — \Ak-iv\wN. 

It can be shown from equation (2.7) for (k — N ), th a t

A k-iyIk-N  — I k-m — 0 / =  I-

Therefore,

A kA k-N

wN
/iw — A kA k- N

\Ak- N\

=  h/y — A kA k-N, (2.13)
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where we used the result of Claim 4. of Appendix A; th a t |Ajt_n| =  1 Vn. It is

c l e a r  f r o m  e q u a t i o n  ( 2 . 1 3 )  t h a t  w j y  —  h n  i f f  A k A k - N  —  0  l - e - A k  a n d  A k - N  a r e  

u n c o r r e l a t e d .  N e x t ,  c o n s i d e r  t h e  ( N  —  1 )  t h  e n t r y

A k A k - N + l  =  A k - N + l h - N + l h . N - 1  +  A k - N + l h - N ^ N  —  A k - N + l A k - N + l w N - l -

— Ak-N+lAk-NWN

B u t  A k _ N + i A h ^ N + 1  =  | A fc_AT+ i |  =  1 a n d  A fc_ ; v + i  A - - ; v + i  =  c r j  =  1 ;  t h e r e f o r e

A kA k-M+1 =  h,N-i — tu/v-i 4- Afc_jv+x/fc_^/iyv

— A k - N + i A k - N W N  ( 2 A 4 )

N o w ,  u s i n g  e q u a t i o n s  ( A . 1 7 )  a n d  ( A . 1 8 )  w i t h  i  =  N  a n d  m  =  N  —  1 w e  g e t

A k A f j - w + i  =  h i v - i  —  w n - i  +  h . N ( h i  —  w i ( l  —  2 q k - N ) )

+ w ^ ( t n i  -  ^ 1 ( 1  -  2 q k . N ) ) .  ( 2 . 1 5 )

w h e r e  q k ~ i  =  P { A k - i  —  — / * _ , • }  i s  t h e  p r o b a b i l i t y  o f  e r r o r  f o r  i  =  1 ,  ■■■,  N .  I n  

g e n e r a l ,  f o r  t h e  r a t h  e n t r y  w e  h a v e ,

N  N  _____________

A A rA /j—.,^  —  A k —m I k —m h j y i  T  ^  ( h i A k ^ . m I k —i rnm | A / j _ m | )  ) W i A k —m A k —i .

: ' = m + 1 i = m + 1

F o l l o w i n g  t h e  a b o v e  a r g u m e n t ,  w e  g e t  f r o m  ( A .  1 7 )  a n d  ( A . 1 8 )

________________________  N
A kA k—m =  h-m T  )  1 m ru,_m( 1 2(jffc_,))

1 =  771 +  1

yv

+  ^ 2  w i ( w i ~ m  ~  ~  2 < ? fc _ ,))  ( 2 . 1 6 )
* =  771 +  1

T o  s u m m a r i z e ,  w e  c o m b i n e  e q u a t i o n s  ( 2 . 1 3 ) ,  ( 2 . 1 5 )  a n d  ( 2 . 1 6 )  a s

A kA k-N  =  hn  — w n

AfcAfc_ n +i -  hptihi — w i ( l — 2qk- N ) ) +  w n (wi  — h i ( l — 2qk- N) )  +  h- N- i — Wff - i

_______  N N
A kA k - 1  =  ^ / i i ( / i i_ i  -  iu.vlU -  2qk-i))  +  J 2 w i iw i - i  ~  hi - U 1 -  2 f̂c-,-))

i=z 2 i=2
+hi — Wi. (2.17)
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In order to find the steady state equalizer weights, one would have to determ ine first 

the probability of error qk. In section 2.2.5 we determ ine the probability of error qk 

as a  function of the equalizer weights. This is used with equation (2.17) to study the 

convergence of the weights and the transient behavior of the probability of error.

2 .2 .4  T he A d ap tive  C ontrol A lgorith m

In order to decorrelate the Ajt’s, we control the equalizer weights using the steepest 

decent method. The weight update equation for an adaptive algorithm  can be 

expressed as

=  w- +  nf{-)  for i = 1, • • •, N,  (2.18)

where n is the constant of adaptation and /(• )  is called the error function of 

the algorithm. The roots of the error function determ ine the steady state  of the 

algorithm.

The previous discussion suggests using AkAk-i  as a driving function for the 

algorithm. An appropriate error function in equation (2.18) would be AkAk-i .

As a result one can write equation (2.18) as

wf+1 =  -f nAkAk-i  for i — 1, • • •, N.

In a practical implementation one would replace the expectation by the current 

realization, leading to the stochastic difference equation,

wf+1 =  + nAkAk-i  for i =  1, • • •, N. (2.19)

The above analysis shows that the algorithm in equation described (2.19) will 

converge in the mean. That is, the mean value of iu; will converge to  the  channel 

param eter hi.

2.2 .5  T ransient A nalysis

In this section we examine the dynamic behavior of the proposed equalizer. We use 

the probability of symbol error qk at instant k  as a performance index. A difference
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equation for qk is developed, which can be solved together with the weight update  

equation to determ ine the probability of decision error as a function of tim e index 

k. The derivation given in this section can be extended to a general order N  moving 

average type (MA) channel. However, for the sake of simplicity we consider an order 

3 MA channel, which will be used in the simulation described in the next section. 

The channel output Xk  at the kth  instant is given by

Xk = Ik 4- h\Ik- \  +  h^Ik-2^ (2.20)

where hi and h^ are the channel param eters.

From equation (2.7) the sheer’s input is given by

A k =  X k -  -  w ^ A k - 2

  Ik +  h i Ik - i  +  ^2-7fc-2 -  ^Ak-i  — A k - 2, (2.21)

where we have used the superscript k in the weights wi and W2 to emphasize their 

dependence on tim e, since we are studying the transient response of the algorithm . 

Using equation (2.21) we will determ ine the probability of correct decision (qk) as a 

function of the index k. Using the to tal probability theorem , one can write

qk =  P { A k ± h }

— P {A k  7̂  h  I Ak-i  7  ̂ I k - i , A k-2 7̂  h-2}qk-\qk-2  

+ P {A k  7̂  h  | Ak-i  7̂  h - i ,  Ak -2 =  h-2}<lk-\Pk-2

-\-P{Ak 7̂  Ik | Ak- 1 =  Ik-1, Ak-2  7̂  Ik—2}Pk—lQk—2

+ P {A k  7̂  h  | Ak- 1 =  Ik -i ,  Ak -2 — h-2)Pk-\Pk-2-  (2.22)

Next, we evaluate each term  in the right hand side of equation (2.22). The probability

of an incorrect decision can be expressed as

P { A k ^  h )  = \  [ P { A k =  1 | J* =  -1 }  +  P {Ak  =  - 1  | h  =  1}) •
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Expressing the  first term  in the RHS of equation (2.22), as above,

P  {Ak  =  1 | Ik =  - 1 ,  A k- l  7£ h - l ,  Ak -2 7̂  /fc-2}

=  P  |  1 +  ( h i  +  ^)Ik- 1 +  ( ^ 2  +  ^4 ^ f c - 2) >  0 }

i / n f r  .  1 “  (^2 +  W^ )  ]  i n f /   ̂ 1 +  (fo +  U ^ )  1 \
-  2 u  i  " - >  i * . + « . w i  / + p \ > t & . + - F i  j ) ( 5

In the last step of equation (2.23) we used Claim 7 of Appendix A:

P  {Ak  =  —1 | h  =  1, Afc-i 7  ̂ I k - i , A k-2 7̂  7fc_2}

=  P  { { ( l  +  (^1 +  ^)7fc_l +  (/&2 +  ^2 ’̂ )Ik-2) <  0 |

Therefore, from equations (2.23) and (2.24) one can write,

P {A k  7  ̂ h  | Afc_! 7  ̂ I k- i , A k-2 7- 4 -2 }  — 7  (-P |  h - i  >  — J - 2 (A.j”
4 \  I |«i +  '|

+ P 1 /*_, > 1 + p  I <  -A+ ( k +Ah 1
{■ 1

1 p  /  r l + ( h 2 + w {2k) )

\ k \ h i  +  w [ k  ̂ |

However, since the pdf of I k - i  is even, it follows that

P { I k - 1 >  x }  =  P { h - 1 <  - a : } .

Therefore,

P{A fc 7- | Afc_! /  h - i ,  A k - 2  7̂  A—2}

Similarly, for the other term s in equation (2.22) one can show:

l /  f 1 — (A2 — w i^ )  1
P { A k ^  h  | A*_i #  h - i ,  Ak-2 = h - 2} =  -  I P  < P - i  >  — ^ ^  —  j
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=  f2 {h i ,h2,w{k\ w { k))

P { A k ^  I k | A k- i  =  /*_!, i fc_2 ±  I k- 2} = \ { p \ h - i  > 1 - —  +  (^ ) |))
\hi -  w\

+p<Î > l r 1+-f r\hi - w} '| 

h ( h i , h 2, w (i \ w {2 ))

P { A k ±  Ik | Afc-i =  h - i ,  A k- 2 =  I k -2} = l- [ p \ h - 1 >  1 -■
\hi -  wj

, p  ( j  .  1 + ( ^ 2  - V P )

+ 1 fc_1 “~7I w T -( 1*1 — 1

=  fA(h1, h 2, w ^ ) , w (2 ])

Substituting the above in equation (2.22):

qk =  qk-iqk-2f i ( h i ,  h2,w[k), w {k)) + qk-ipk-2f 2( h i , h 2lw[k) ,w[k))

Ppk- i q k - 2h { h i , h 2, w {k\ w (k)) + Pk-iPk-2f4(hi,  h2,w[k) , w {2k}), (2.26)

where pk is the probability of a correct decision. Equation (2.26) is a second-order 

difference equation which depends on the channel param eters hi and h2 and on the 

current equalizer’s weights w\k  ̂ and w2k\  For the more general order N,  the  channel 

equation (2.26) will take the  general form

qk =  f ( q k - i , - - -  ,qk~N,hu --- , h N ,w[k),---  (2.27)

The instantaneous probability of error may be com puted recursively using equation 

(2.27), weights update equation (2.19), and the appropriate initial conditions for the 

probability of error. Equation (2.27) is highly nonlinear; therefore, only low-order 

channels are numerically tractable for showing the convergence of qk to zero.
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2 .2 .6  I llu stra tiv e  E xam ples and S im ulation

In studying the dynamic behavior of the blind decision feedback equalizer and 

exam ining the convergence of qk in equation (2.26), we will use the mean of the 

weights, i.e., the expected values of w [k  ̂ and w^k\  Therefore the controlling 

algorithm:

-|- pAkAk-i  for i =  1,2. (2.28)

By substitu ting from equations (2.13) and (2.16) we get

, „ ( fc+ 1) _  , J k ) i , . ( uw2 — W2 A  P\n,2 w2 J

u;jfc+1) =  w[k) 4  p((hi  -  w[k)) +  h2(hi -  (1 -  2qk- 2)w[k))

4 w ^ )(u ;f ) -  (1 -  2qk- 2)h1))

Solving these two equations together w ith equation (2.26) recursively will give the 

transient behavior of the weights w ^  in the mean and the error probability qk.

Example 1 Consider a minimum phase channel with transfer function

H ( z ~l ) =  1 4  0.8^-1 -  0 .64”2.

Figure 2.4 depicts the probability of error qk and the expected value of the weights 

w\k\ i  — 1,2 as a function of k .  The initial probability of error used was q-i  =  

2 =  | ,  qo =  \ .  It is clear from this figure tha t the weights converge to the channel 

param eters (u>i =  0.8 and w2 — —0.6). Notice that the weights converge to the right 

value after a certain number of iterations, and, tha t the error probability reaches 

zero after approximately 50 iterations. The error becomes zero and stays at th a t 

value before the weights converge to  their final values. This is due to the decision 

m aking and the absence of noise.

Exam ple 2 For the non-minimum phase channel given by

H (z ~ l ) =  1 4  0.5z-1 -  1.442-2 ,
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Figure 2 .4 Probability of Error and Learning Curve for Exam ple 1.

Figure 2.5 shows the probability of error g* and the expected value of the weights 

w\k\  i =  1,2 as a function of k. Note th a t the weight as well as the  probability 

of error converges slower than in Example 1 to the correct value of the  channel 

param eters (in this case uq = 0.5 and W2 = —1.44).
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F igure 2.5 Probability of Error and Learning Curve for Exam ple 2.

The channels considered in the above examples were also used in a com puter 

simulation. Here we implement the stochastic control of equation (2.19) directly
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to ex tract the value of wjkK The results are shown in Figures 2.6 and 2.7 for the 

m inim um  and non-m inim um  phase channels of Examples 1 and 2, respectively. At 

each iteration equation (2.26) was used to calculate the probability of error which 

is also shown in Figures 2.6 and 2.7. Notice th a t these figures show the M onte Carlo 

averages of 200 experim ents each. The adaptation constant used was fi — 0.01 and 

the weights were first initialized to zero.

0.6
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F igure 2 .6 Probability of Error and Learning Curve using Simulation.

0.6
0.4

0.2

o
- 0.2

- 0.4

- 0.6

- 0.8

1.2

1.4

1.6
100 150 200 250 300  350  400  450  5000 50

Iterations

F igure 2 .7 Probability of Error and Learning Curve using Sim ulation.
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Next, by varying the initial settings of the equalizer weights, we show that 

w ith the channel of Example 2 the algorithm always converges to the correct point 

(0.5, —1.44) regardless of the initial condition. Figure 2.8 portrays the trajectories 

for different equalizer initializations. It is clearly showing th a t the decorrelation 

algorithm  is globally convergent for the channel under consideration.

2

1.5

1

0.5

0

-0.5

1

1.5

•2
0.51.5 -0.5 0 1 1.5 2■2

wl

F ig u re  2 .8  Admissibility of the BDFE

Analytical derivation of the probability of error for a higher-order channel using 

the techniques in the previous section is extremely complicated. Instead we present 

in Figure 2.9 a simulation performed in a m anner similar to those in Figures 2.6 and 

2.7 for equalizing the channel whose transfer function is given by

H{z~')  =  1 +  0.8Z-1 +  0Az~2 -  0.6z~s + 0 .2 z~ \

The four weights Wi,i = 1 ,2 ,3 ,4  converge to the correct channel param eters.
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F ig u re  2.9 Learning Curve of the BDFE

2.3 W eig h ted  D e c o rre la tio n  A lg o r ith m

A drawback of using a blind equalizer is the speed of convergence. It can take several 

hundred to several thousand symbols for the blind equalizer to converge. The speed 

of convergence for the conventional LMS equalizer was improved by using a weighted

sum of the past squared errors [6]. The resulting algorithm, known as the Recursive

Least Squares (RLS), improves the speed of convergence substantially. The penalty 

is an increase in com putational complexity.

The decorrelation algorithm described in this chapter uses a simple error 

function, which makes it easy to extend to  an RLS-like algorithm. In this section 

we show how one can improve the convergence of the algorithm by considering a 

weighted sum of past correlations.

Consider the Blind DFE. The input to the slicer is given by

Ak =  Xk — ' j r w \ k'> Ak-i,  (2.29)
i = l

where X k is the input to the equalizer at tim e k and Wi s are the equalizer’s weights. 

Equation (2.29) can also be written as

Ak — X k — Aj-W fc, (2.30)
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where A' =  [Aj-U A j - 2, ■ ■ •, A,-_n] and W'k =  [u>jfc), w{2k\  • • •,

To improve the convergence speed of the classical LMS equalizer, Godard [6] 

suggested the use of the Kalman algorithm for equalization. The Kalman algorithm , 

or Recursive Least Squares algorithm, minimizes the weighted sum squared error. 

Using the  same approach, we can use the weighted sum of past correlations. We 

proceed as follows. We force

E
3= 0

to zero, where A 'j = A j - 2, • • •, Aj_n]. Substituting for A k from equation (2.30)

and setting the weighted correlation time average to zero, we get

= 0 .
j=0

The above equation leads to

W ^ R - ^ D f e ,  ( 2 . 3 1 )

where

R/c ^  E A ^ A . A '
3= 0

and

D t  £  V A '  - A  A

3= 0

2.3 .1  T h e R ecu rsive  M atr ix  Inversion

Equation (2.31) involves the inversion of an n x n  m atrix , Rfc, and the Kalm an 

form ulation involves a recursion formula for the evaluation of the inverse m atrix . A 

sim ilar one can be used here.

It is im portant to note th a t m atrix R t  can be obtained recursively as

R* =  AR,_! +  A kA'k. (2.32)
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It is known th a t for any A  nonsingular m atrix, and u and v  the following is true:

1 A _1n v ' A " 1

<A + U V ' > ' ( 2-33>

Therefore, using equation (2.33) in equation (2.32), we get a recursive formula for

R - 1*:

R - 1* =  I  ( r " V i  -  . (2 .34)
A \  A +  A fcR  t-iAfc /

Next define

P* =  R - 1 fc, (2.35)

and further define the Kalman vector gain as

kfc =  — —  P fc- iA fc, (2.36)
A +  fik

where the scalar fik is given by

Pk  — A 4 R -1  jt-iA fc.

Using the above definitions, one can write equation (2.34) as

P* -  i  (P ,_ j -  kfcAj-Pjt_i) . (2.37)

The vector D k can also be obtained recursively as

T>k = m k- 1 + X kA k . (2.38)

Using equations (2.31) and (2.35), we can write

W* =  PfcDfc.

Therefore, using the recursive formulae for P^ and D* from equations (2.37) and 

(2.38) respectively, we get

W , =  y  (Pfc-! -  kfcAiPfc-i) (ADfc_! +  XjfcAfc)
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=  Pfc_iDfc-i +  —X fcP i-jA i

—kfcA^P/t-iDA;-! — — AjfckjtAjtPfc-iA*:

=  W fc_a +  (A +  j.ik) kfc

1
—kjfcAj.Wfc-1 — —X ^ k *

=  W ^ + k ^ X * - A ' . W ^ )

=  W fc_! +  Zk kjfe, (2.39)

where ^  is given by

2,  =  ( x ,  -  a ; w *_x) .

The order th a t constitutes the weighted decorrelation algorithm is sum m arized below:

W fc -  W fc.i +  z^kjt

where

zfc =  ( x fc -  AjfeWfc.!)

The vector is evaluated by the recursions

1 ^k k - t — Pfc-iA/t
A +  Hk

P fc =  j  ( P fc_x -  kfcA^Pfc-i) .

where

Hk = A'^Pfc-iAfc

2.3 .2  S im u lation  R esu lts

A channel whose transfer function given by

H{z~l ) =  1 +  0.5z-1 -  1.44z-2

was used to dem onstrate the improvement in the convergence rate when using the 

weighted correlation approach. Figure 2.10 depicts the Monte-Carlo average of 100 

experiments of the decorrelation DFE and the weighted decorrelation DFE.
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F ig u re  2 .10  Learning Curves of the Decorrelating D FE and Weighted Decorrelating 
DFE

Figure 2.11 depicts the averaged squared error of the decorrelating D FE and 

the weighted decorrelating DFE. The increased speed of the la tter is clearly shown.
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F ig u re  2.11 Residual ISI of the Decorrelating D FE and Weighted Decorrelating 
DFE

O ther forms of fast blind equalizers based on decorrelation can also be derived. 

One can exploit the shifting properties of the correlation m atrix R  in the same way as 

[9] to  derive fast versions. In this way, one can reduce the com putational complexity 

while m aintaining the speed of convergence.



CH APTER 3

E R R O R  A N A L Y SIS O F T H E  B L IN D  D F E

In C hapter 2, we introduced a blind decision feedback equalizer based on the decor­

relation of d a ta  samples at the input of the slicer. Assuming no additive noise, we 

showed th a t decorrelation of these samples is necessary and sufficient for obtaining 

zero ISI a t the steady state. We also examined the dynamic behavior of the decorre­

lation algorithm  and showed convergence to the steady state  w ith zero ISI. However, 

due to  the  analytical complexity of the problem, we restricted our dynam ic study 

only to the third-order moving average channel.

Following the technique developed in [15], we extend in this chapter our 

dynamic study of the blind decorrelation equalizer to include channels of any order. 

The steady state  probability of error for additive white Gaussian noise (AWGN) is 

considered. We derive upper and lower bounds on the probability of error. The 

results of this chapter also appear in [48].

After stating the problem and giving the error model section 3.1, we derive 

an upper bound expression for the probability of error of the equalizer during the 

transient period in the absence of noise (The source of error during the transient 

period is the imperfect equalization). Section 3.3 presents lower and upper bounds 

on the probability of error in the steady state  in the presence of AWGN. Numerical 

and sim ulation results are given in section 3.4. The chapter is concluded in section 

3.5.

34
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3.1 P ro b le m  S ta te m e n t a n d  E r r o r  M o d e lin g

Consider the decision feedback equalizer shown in Figure 3.1. Assume the sampled 

impulse response at the input be given by

N
Xk — h  +  5~2/hiIk-i +  Uk, (3.1)

t=i

where I k is the data  to be detected and rik is an AWGN with a zero mean and 

variance of a 2.

Channel

sgn(.)
n,'k

,. + w z

DFE

F ig u re  3.1 Decision Feedback Equalizer and Channel Model

At the input of the slicer, the sampled signal is given by

N
Ak — X k ~ 5 2  wiAk-i

i=i
N N

~  h + '52 h j k - i  -  52  w*Ak-i + n k. (3.2)
t=i t=i

Since we are interested in the probability of error due to noise and error propagation 

we will assume perfect equalization, i.e., the weights W{ have converged to the channel 

param eters A,-. Extension to imperfect equalization can be addressed in a similar 

m anner as in [15]. One may then write equation (3.2) as

N
Ak = Ik + 52 hiEk—i +  n k, (3-3)

;=i

where E k = h  — Ak- For binary transmission E k takes the values {—2,0 ,2} .
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Duttweiler, et al., [15] considered the following reduced finite state  machine 

for the error sequences {£*_;, 1 <  i < M ) ,  where M ,  the num ber of states, is an 

arb itrary  positive integer:

<$>o = { E k - i , E k - 2 , - • • \ E k - \  /  0}

4>m =  {E)c- i ,Ek-2, ' • • \Ek-j — 0,1 <  j  < m, Ek-m-i  7  ̂ 0}, l < m < M  — 1

4>m  =  {-E/.—1, -E/t-2, • • • \Ek-j  =  0,1 <  j  < M ) .

(f>m consists of the error sequences th a t s ta rt with m  zeros (i.e., all decisions m ade 

from k  — 1 to k  — m  are correct) followed by a non-zero error (i.e., the k  — m  — 1 

decision was erroneous). In other words, when the equalizer is in sta te  <f>m, the first m  

delay elements (the first delay element is the one closest to the slicer) in the feedback 

filter contain correct decisions, and the (m +  l) th  element has an erroneous decision. 

For our analysis we let M  equal N,  the order of the channel.

The states are given in the table below.

T a b le  3.1 State Assignment

State Error Sequence
<t> 0 E X  X
<f> i 0 E X X •••
(f> 2 0 0 E X X •••

4>n - i 0 0 • • • 0 E X X (the first N  — 1 elem ents are 0 ’s)
4>n 0 0 ••• 0 0 X X (the first N  elements are 0 ’s)

A discrete random process Sk is defined which takes an integer value from 

{0 , 1, • • • ,  A^}. Specifically when the equalizer is in sta te  (j>i then Sk = i ■ In other 

words, Sk equals the number of consecutive correct decisions starting from the first 

delay element. From Table 3.1 if at tim e k the equalizer is in state  <f>i, i = 1, • • •, I V — 1, 

i.e. Sk =  i then Sk+i could either be i +  1 if the new decision is correct, or 0 if it 

is erroneous. Being in state  (j)0 then Sk+1 =  1 if the next decision is correct, or
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S k+1 =  0 if the decision is erroneous. On the other hand, being in s ta te  <̂ jv, S k = N  

then S k+1 =  N  if the next decision is correct or S k+i =  0 if it is wrong. The state 

transition diagram is shown in Figure 3.2.

F ig u re  3.2 S tate  Transition Diagram

In [15] it is assumed that the random  sequence {*?&} has reached a  sta te  of 

second-order stationarity, such th a t P { S k =  m }  and P { S k = =  m  — j }  are

independent of the tim e k for all m  and j .  From the State Transition Diagram it

clearly follows tha t

P { S k = m \S k- i  = m  - j }  =  0 , for j  ^  1, m  ^  0 , (3.4)

and therefore,

N
P {S k  — m }  = ' £ , P { S k = m \S k- 1 = l } P { S k- 1 = l}

1=0

-  P { S k - -- m \ S k- i  = m -  1 } P { S k- i  =  m  -  1}

=  Pm  r n  =  1,  • • • ,  N  -  1.

It is also clear from the definition of S k and the state  diagram th a t

P { S k =  =  m  -  1} =  P { E k = 0\Sk- i  = m  -  1}

=  a m_ i  m  =  1, • • • ,7 V  -  1 ,

while

P { S k =  0jSk^  =  m -  1} =  P { E k ^  0 |5 fc_! =  m  -  1}

— 1 Q!m_l .
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I t  c a n  b e  s e e n  t h a t  a m  i s  t h e  p r o b a b i l i t y  o f  t h e  c o r r e c t  d e c i s i o n  w h e n  t h e  

e q u a l i z e r  i s  i n  s t a t e  <j>m . T h e  p r o b a b i l i t y  P { S k =  0 } a n d  P { S k =  N }  c a n  b e  o b t a i n e d  

f r o m  t h e  a b o v e  e q u a t i o n s  a n d  t h e  s t a t e  d i a g r a m .  I n  f a c t ,  o n e  c a n  s h o w  t h a t

Po =  X ( 1 _ a f ) P '  ( 3 -5 )
1=0

P m  =  O m - l P m - 1 ,  1 <77 1  <  N  -  I  ( 3 . 6 )

OW-1 /o
P n  =    P N —i  • ( 3 . 7 )

1 -  a j v

C l e a r l y ,  a t  a n y  t i m e  k  t h e  p r o b a b i l i t y  o f  e r r o r  i s  g i v e n  b y

qk =  P { E k ±  0 } 

=  P { S k = 0 }

=  P o -  ( 3 . 8 )

N o w ,  f r o m  e q u a t i o n s  ( 3 . 6 )  a n d  ( 3 . 7 )  w e  c a n  w r i t e

m — 1
P m  =  P o  n 1 <  m  <  TV -  1

t = 0

N - 1

pyv =  p o ( l - « ; v ) -  f t a * .
i= 0

However,

/V N - l

X I  Pi =  Po +  X  P< +  P W
{=0 i= l

/  TV-2 i N - l  \

= po ( i + x  n a ™+ (i ~  a ^ ) _i n a m )
\  *=0 m = 0  m = 0 /

=  l .

Therefore,

q — R j J ,

where

N - 2 t TV—1

P n  =  i + x  n am ^  _  a N ) 1 n  °Lm
i = 0  m = 0  m = 0

(3.9)
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In order to calculate the probability of error, one has to know all the state transition 

probabilities, a,-. This is not feasible for large N.  Instead, Duttweiler, et al., used a 

lower bound on the transition probability to derive an upper bound on the probability 

of error.

By deriving expressions for the lower and upper bounds on the transition proba­

bilities, we obtain respectively an upper and lower bound on the probability of error 

of the blind decision feedback equalizer.

3.2 Transient B eh avior o f th e  P ro b a b ility  o f  Error

In C hapter 2 we considered the probability of error of the  blind decision feedback 

equalizer in the transient state  and showed that it converges to zero when noise is 

absent. In the noiseless case, the error is caused only by the  residual ISI. Due to the 

analytical complexity of the problem, we were able to establish our results only for 

low-order channels. Using the error model of the previous section, we can extend the  

result to higher-order channels.

In this section, we first derive a lower bound on the sta te  transition proba­

bilities. Using this bound in equation (3.9), we can get an upper bound on the 

probability of error. It should be mentioned tha t in the transient period these bounds 

are functions of the time index k.

In the absence of noise, equation (3.2) becomes

A , =  I k +  X h i h - i  -  (3-10)
j=l t=l

3 .2 .1  T ransition  P ro b a b ility  a w

Being at state  N  implies th a t A k-i = I k- i  for i =  1, • • • , /V so th a t equation (3.10) 

can be written as

N

A* =  / ,  + X h - i .  (3.11)
t'=l
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The state  transition probability a/v (which is the probability of correct decision) is 

given by

a N = l- P { A k =  l | / fe =  1} +  \ p { A k =  - l \ I k = - 1 } .  (3.12)

It can be shown th a t P { A k = l \ I k =  1} =  P { A k - — l \ I k =  —1}; therefore,

a N = P { A k — 1| I k — 1}

=  P { l + j r i (h i - w \ k)) l k- i > 0 }
1 = 1

=  P { ' E ( h i - w \ k)) l k. i > - l }
i = i

= P { ( h 1 - w [ k)) l k. 1 + Y > - 1}, (3.13)

where the random  variable Y  is given by

Y  =  X  ( h i ~  Wi k))
t'=2

By conditioning on Y ,  we can obtain a lower and an upper bound on ajy. However, 

since we are interested in proving th a t the probability of error approaches zero, we 

will consider only the lower bound on aw- In Appendix B we derive this bound:

i - E £ 2 l f r - ™jfe)|X
I hi -  w[k

ajv >  P \ h - i > -  t i='- {k) J-  • (3-14)

3.2 .2  T ran sition  P rob ab ility  a m
A

Being at s ta te  m  implies that the previous m  decisions were correct ( A k-i  =  h - i  for

i =  1, • • • , 77i), the  (m + l) th  decision was incorrect ( A k- m- i  =  —h - m - i )  and one

cannot specify the  rest of the decisions. Therefore, equation (3.10) becomes 
m N

A k — I k +  X (hi — h - i  +  (hm+1 +  Wmll) h - m - 1  + X ^ i h - i
i=l i=m+l

-  X
i=m+1

Following a similar technique as above, we derive a lower bound on the conditional 

probability P { A k =  l|/jt =  1}. In fact,

— P  { a * =  1|/a: =  l}
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/  771

=  P  1 +  (hx -  «,}*>) I k- i  +  X  (hi -  w\k)) 1 ^
I i=2

N N - 1 
+  (h m+l +  Ulm+l) h -m -1  +  X  h i h - i  ~  X  Wi ^  A k-i  >  0 >

i=m+l t=m+l J

= p { l + ( h 1 -  4 fc)) I k-1 + Y1 + Y2 + Y3 - Y 4 > 0 } , (3.15)

where

to

Y i  =  E  ( h i  -  w j k ) )  h - i
i= 2

Y i  =  ( h m + l +  M m + i)  h - m - 1

y3 = X h,A-t
1 = 7 7 1 - (-1

y4 = X
1 = 7 7 1  +  1

In Appendix B we derive the lower bound on a m, which is given by

^ 7 7 1  ^

p { j  .  1  -  E r = 2  I h i  -  1 ^ 1  -  | h w + 1  +  t f l f f U l  -  S j L n - 2  I h i  I ~  E ^ m + 2  1 ^ 1

1 1 I h i - t o ^ l
(3.16)

3 .2 .3  T ran sition  P rob ab ility  a 0

At state  zero, the past decision was erroneous (/U _i =  ~ h - 1) and nothing can be 

said about the o ther decisions. Therefore, from equation (3.10) we have

A k = h  + (hi +  w[k)Sj + X  h h - i  -  X  wik)Ak-
i = 2  i = 2

a 0 =  P  { A k ^  l \ Ik = ■

=  P  | l  +  (hi +  w[k)  ̂ +  X h i h - i  - X w \k)A k- i  < o | . 
I 1=2 i=2 J

Following a similar derivation, one can show tha t

1 i -  n  -  s L  i » f
|/ii +  iy}*

n ) T ^ 1 ^ i = 2 I " -11 2 ^ i = 2  I I I  7 0  1 ^&0 > P  \ h -1  > ------------- ------;-- f*jj------------  > • (3.17)



42

3 .2 .4  S u m m ary o f Lower B ound s on T ransition  P ro b a b ilitie s

In summary, we have

r i -  £ ^ 2 1 hi I -  K -A)l 1
d o  >  P  {  h -1 >

| hx +  w{(*>l

dm T

> ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- l

for 0 <  m  < N  — 1

"  -  T * " *  } '

Given w\k\  one can determ ine an upper bound on the instantaneous probability of 

error qk.

To evaluate the transient response of the equalizer, we can iteratively solve for 

the instantaneous probability of error together with the equalizer weights from the 

update equation given in [46] and summarized below.

w j +1) =  w $  +  P (hN -  wffl)

Wjv- i * = wn - i +  P (hjv(hi -  10^(1 -  2qk- N )) 4- wN(w[h) -  h a(l -  2qk-N))

+ hN~i -

w[fe+1) =  +  n  h i(h ,-i -  w\t^(1 -  2qk-i)) +  X ~  h ;- i ( l  -  2qk-i))
\i=2 i=2

+ h i -  , (3.18)

where qk =  P{Ak  = —Ik} — Pp/i  obtained from equation (3.9).

3 .3  S tea d y  S ta te  P ro b a b ility  o f  Error

In this section we consider the probability of error a t the steady state. In this case 

we assume that the input to the equalizer is corrupted by AWGN. We consider
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the sta te  transition diagram in Figure 3.2. One can find exact expressions for the 

transition probabilities aw -i and aw- For the other transition probabilities a m for 

1 <  m  < N  — 1; however, we will derive upper and lower bounds. Using these we 

can determ ine lower and upper bounds for the steady state  probability of error as a 

function of the received bit energy to noise power ratio (Eb/No).

3 .3 .1  T ra n s i t io n  P r o b a b il i ty  a n

Rewriting equation (3.3),
N

Afc =  /fc +  X  hiEk-i + nu- (3.19)
i=i

Since the equalizer was in state IV, the  last N  decisions were correct (Ek-i  =  0 , 

i — 1, • • •, N )  and equation (3.19) becomes

Afc =  Ik +  nk.

Now the sta te  transition probability, aw , is

a N = \ p  {Ak = 1|/* =  l} + ^ p  {Ak  =  -1 |/*  =  - l } ,

where

and

Therefore,

P { A k =  l \ Ik = l}  =  P { l +  nfc> 0 }

=  P { n k > -1 } ,

p { A k  = - l \ h  =  - l }  =  P { ~ l + n k < 0 }

=  P { n k < 1}.

o n  = ^  ( P { n k > -1 }  +  P { n k < 1}) 

=  P { n k > -1 }

=  Q , (3-20)
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where
1

Q ( x ) = v s r e^ dy-

3 .3 .2  T ransition  P ro b a b ility  a/v-i

Being in state  N  — 1 means th a t the past IV — 1 were correct and the  iVth decision 

was erroneous. Therefore, equation (3.19) becomes

A  k = h  +  hpjEk-N + nu■ (3.21)

Now A k - N  in error implies th a t E k - N  assumes the value ± 2 . Following a similar 

procedure as the one above, we derive an expression for a /v -i in Appendix 2 . The 

transition probability o /v-i is given by

<3-22>

3 .3 .3  T ransition  P ro b a b ility  a m

Being in state  m  implies th a t the past m  were correct and the decision on Ak - m-1 

was erroneous. Nothing can be said about Ak-i  for * =  m +  2 , ■ ■ • , N .  Thus, rewriting 

equation (3.3) as

N
Ak =  Ik T h-m + lEk-m-l  +  h i^k - i  +  ^ k

m + 2

= Ik +  hm+iEk-m-l  +  ^m+1 +  Kk, (3.23)

where Ym is defined as
N

£  hiEk-i.
i=m+l

Based on equation (3.23), in Appendix 2 we derive the lower and upper bounds on

a m > ;  ( g  (  1 2h" X' + ft?-+ l)  + Q  (  1 + 2h" * ' )  <3-24)

c m < L ( q  A 1 ~  2/‘” +' ~  <9m+1)  +  Q ( - 1  +  2hm+' ~  /3m+1)  )  , (3.25)
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where
N

f3m = 2 J 2  N -  (3-26)
2= 7 7 1 + 1

3 .3 .4  S u m m ary  o f R esu lts

To sum m arize, we have

a m > 1 ((? ( _ 1  ~  2km+1 +  ^m+1 j  +  Q ( z i ± l hm+1 + ^ +1~
cr

for 0 <  m  <  N  — 2

q, < I  ̂  —1 — 2hm+i — /3m + ^  ^  ^ —1 + 2hm+i — ^m+i

for 0 < m  < N  — 2

1 f ^ f  — l — 2hN\  i ^ 1 + 2/ i^^\
ojyv-i — -  v  1 +  Q

))■

2  V V cr J  V o'

a N
-  « ( + ) ■

Using these results in equation (3.9), we can obtain the lower and upper bounds on 

the probability of error in the steady state.

3 .4  N um erica l E xam p les and S im u lation  R esu lts

As an example, we consider the channel whose transfer function is given by

H {z~ l ) =  1 +  O.S-z-1 +  0 .6z"2 +  0.4z-3 .

In this case, the feedback section contains three delay elem ents, N  — 3. We also 

have four states viz, fa,  fa, fa  and fa.

The lower bounds on the transition probabilities for the instantaneous proba­

bility of error, in the absence of noise, are given by

“ ° -  T * - ^ ---------------------------------------1
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F ig u re  3 .3  Probability of Error qk in the Absence of Noise (Transient Period)

£*1 >  P  j i j t - i  >  -

>  P  j ^ t - i  >  -

oa > P  \ h - N  >

1 -  |hj - w \k)| -  |h2 +  w (2k)| -  \h3\ -  \wjk)\ 

\ h i  -

1 -  E L i  \ h i  -  -  | / t3 +  103° I \

J
l ~ E L 2 \ h i - w \ k)\ \

 ̂ I h r - w ^ l  J

Substituting the above transition probabilities in equation (3.9), one can obtain an 

expression for the probability of error in term s of the equalizer weights. The upper 

bound on the probability of error can be obtained by solving the resulting expression 

and the weight update equation given in equation (3.18). The figure below portrays 

the upper bound of the probability of error against the tim e index k.

For the steady state  probability of error, we assume perfect equalization and 

AWGN. The transition probabilities are given by

Qo > I  ( 0  + q  ( z I ± ^ ± A ) )

Qo < 11 + Q = I ± ^ A ))



where 0\  =  2 ( |^21 +  |^3 |) and 02 — 2 |/i3 |. Figure 3.4, below, shows the lower and the 

upper bound of the probability of error. Also shown is the  simulation result, which 

did not assume perfect equalization. The upper and lower bound are also applicable 

to the  conventional decision feedback equalizer. The “no ISI” lower bound is shown, 

and one can see th a t the lower bound derived here is tigh ter than  the no ISI bound. 

We also have
/  F!l \

=  1 0 logloE b \  £ i = i  h i

N 0/ d B 2<r2

o U p p e r  B o u n d  
x S im u la tio n  
+ L o w e r  B o u n d  
o N o  IS I

u.o
t:a>

0.01o
S '

•s o.ooiXI

0.0001

l e-OS

lc-06

F ig u re  3 .4  Probability of Error



3.5 C onclusion

In this chapter we used the error model proposed in [15] to obtain upper and lower 

bounds on the steady state  probability of error for a blind decision feedback equalizer. 

Despite using a different technique, the upper bound obtained was the same as tha t 

derived in [15]. The lower bound is tighter than the commonly used “no ISI” lower 

bound.

The same error model was also used to study the behavior of the  equalizer in 

the transient mode when the only source of error is the residual ISI. It was shown 

through a numerical example that the equalizer converges to the zero ISI case. It 

was also shown th a t the no noise probability of error vanishes after less than 50 

iterations.

In the steady state  case, we assumed perfect equalization to determ ine the 

probability of error, while in the transient case we assumed zero noise to study the 

convergence of the  algorithm.



CHAPTER 4

A N C H O R E D  C O N S T A N T  M O D U L U S A L G O R IT H M

Among the first known blind equalization algorithms is the constant modulus 

algorithm  (CMA). This algorithm  is of the property restoral type. T hat is, it 

exploits the constant modulus property of the transm itted  signal constellation to 

adap t the blind equalizer. Its cost function is non-convex, and has local m inim a, 

a t some of which the equalizer is incapable of canceling ISI. The existence and 

stability  of these minima were discussed in [31]. Due to these undesirable minim a, 

the  equalizer initialization becomes an im portant issue. One would need to initialize 

the tap  weights away from the neighborhood of these minima.

Verdu, et al. [34], developed a technique th a t insures global convergence 

of blind equalizers. Their key observation was th a t overparam eterizing the blind 

equalizer is the prime cause of ill-convergence. Hence, they proposed to anchor (set 

the  first coefficient to one) the  blind equalizer. Anchoring the blind equalizer together 

w ith using a convex function guarantees convergence. In [34], the minimum energy 

is used as a  cost function and, hence, we will refer to this algorithm  as the “anchored 

m inim um  energy algorithm ” (AMEA).

In this chapter we will consider anchoring the constant modulus algorithm  

(CM A). Anchoring the CMA will improve the performance of the convergence 

property of the original CMA. It is shown that the anchored blind equalizer with 

the  CMA (ACMA) converges to the channel param eters rendering zero ISI provided 

the  channel gain exceeds a certain critical value. If the gain drops below this 

critical point, the algorithm  will converge to a local minimum . This problem can be 

alleviated by introducing a gain in the equalizer. The speed of convergence of this 

equalizer will be compared to th a t of AMEA [34].

49
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This chapter is organized as follows. F irst we consider using the ACMA for 

blind equalization of autoregressive and moving average type channels in sections

4.1 and 4.2, respectively. In section 4.3, we present sim ulation results. We draw 

conclusions in section 4.4.

4.1 E qualization  o f  A u toregressive  C han nels

Consider a real A R  channel of order n  (A R ( n )), the received signal is given by
n

rk = gak + Y ! a irk-i,
i - l

where g is an arbitrary  gain, and a , ’s are the AR(n)  channel param eters. The 

inform ation symbols (a/t’s) are binary, independent and identically distributed with 

zero m ean and unit variance. The moving average (MA) anchored equalizer output 

has its first tap  set to 1, and, therefore, its output is given by
n

Vk =  r k +  XI w ir k - i  
1 =  1 

n

= ga-k + Y l  (a i +  Wi) rk-i
i=l

=  gak + isik (4.1)

where lOj’s are the equalizer’s coefficients and isik is given by
n

isik =  (a « +  Wi) rk~i' (4-2)
i=i

The CMA exploits the fact th a t the  original constellation has a  constant envelope, 

th a t is, E{|afc|} =  1 for all k. Therefore an appropriate cost function would be

J(Vk) = {\Vk\2 ~  l ) \  (4.3)

which is minimized when the equalizer ou tput has a constant modulus (E{  |?a|} =  1)-

Using stochastic gradient descent to minimize the above cost function, the update

equation for the CMA is given by

Wi+1 = w- -  gru-i  (y \  -  1 ) y k  for i =  1, • • ■ , n. (4.4)
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Figure 4.1 shows the anchored linear equalizer and the CMA control.

F ig u re  4.1 Anchored Linear Equalizer w ith the  CMA 

Multiply the above equation by a,- +  w k:

wf+1 (ai + wf) =  wf (cci +  wf)  -  n (a i - \ -  wkJ r k- i y k (y\  -  l )  .

Now take the expectation of the above conditioned on w k:

ociE{wkJrl\wk} +  w - E { w k+l\w-} =  a {w- +  ( w fy 2 -  y  (a,- +  w-'j E { r k^ y k (jjI -  l )  |w-}.

Steady state is reached when E { w k+1\wf} — wf,  and, therefore, we have

(a ; +  w f j  E { r k- i y k (y2k -  l)  |u^'} =  0 for i = 1, • • •, n  and all k. (4.5)

The above n equations determ ine the points of equilibrium  of the algorithm . One 

would have to solve the above equations in order to determ ine whether the algorithm  

would converge to the desired values (w; = a,)  and, hence, cancel the ISI completely. 

Instead we show directly th a t, under certain conditions for the gain g, equation (4.5) 

implies complete cancellation of ISI.

Adding the above n equation we get

+  w i )  E b ' k - i V k  ( y k -  l )  \ w k )  =  0 .
1 = 1
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Substituting equations (4.1) and (4.2) in the above equation results in

E { i s i k ((gak -f- i s ik f  -  l)  (gak +  i s i k) |iuf}

=  E { i s i k (g3al + (3g2a2k -  l)  is ik + (3isi2k -  l )  gak + isi \ ) k * } } .

=  0

Now, with the definition (4.2), i s ik depends on the previous data  and w k (which 

itself depends only on the previous data  a* -;,! >  1), therefore is ik is independent of 

the current da ta  ak. Using this together with the fact that both have a zero mean, 

we get

e S^{vI -  l )  yk J 2 ( a i +  «>.•) nfe-ik.*J =  E  {is isk(y2k -  l ) y k\wk}

=  (3ff2(ra -  !) E { is il \wi }  +  E { i s i4k\wK;}

= (3g2 -  l)  E{ is i2k\w^} + £ { i s 4 k f }

(4.6)

=  0 .

If 3g2 — 1 in equation (4.6) is a positive quantity then it can be w ritten as

E{isit \w?} = - K 2E { is i \ \w k} (4.7)

with K  positive. However, both E { i s i \ \w k} and E { i s i k \wf} being positive quantities 

implies

E{is il \w^} = E { i s i2k \wf} = 0 ,

and together with the fact tha t the expected value of isik is 0 , we conclude tha t 

isik =  0 with a probability of 1. In sum, if the algorithm reaches a  steady state  then 

equation (4.5) is satisfied for i =  1, • • •, n, and from equation (4.1)

Tk =  9ak f°r all k.

If, however, 3g2 — 1 is negative then equation (4.6) can be w ritten as

£ { « > ? }  = A 2£ M | u , f ) ,  (4.8)
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where A2 =  1 — 3g2, in which case the ISI power is not necessarily zero. This

corresponds to a case wherein the algorithm converges to a local minimum, which

could be undesirable. We show the existence of such undesirable equilibria by using 

a simple example.

4 .1 .1  U n d esirab le  E quilibria

Consider an AR(n)  channel w ith one feedback tap, given by

rk = gak +  ark-n- 

The equalizer output is then given by

Vk -  gak +  {w + a )  rk- n , (4.9)

and the ISI term  by,

isik -  {w +  a)rk -n• (4-10)

It is then easy to show th a t

E { 4 )  ,  1 +  5q2
E { r l )  9  l - a > '

and by substituting equation (4.10),

E { is i i \w ]  o/ , n2  ̂ +  5q2 .
1 U S = g 2(w + a )2~-----— . (4.11)

E{ is i l \w }  1 — a A

Combining equation (4.11) with equation (4.8), we get

/ .2 . o 1 &(w +  a ) =  A
g2(l  +  5 a 2)

=  - 3j2) A T sSTy (“-12)

or
y/ l  -  3g2

w = —a  ±
1 — a 4 

(1 +  5a2)
(4.13)

9 \

This clearly shows th a t the weight w  will not converge to the correct channel 

param eter a.
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In particular, following a procedure similar to tha t of [31], we predict the 

condition on g and a  which results in w = 0, and in no ISI cancellation (see equation 

(4.9)). Setting w  =  0 , in equation (4.13) with w = 0 , we get

2 1 — a 4
9 ~  3 +  a 2 +  2 a4 '

Therefore if the gain satisfies the above equation, the equalizer will not remove ISI. 

In conclusion, if the condition 3g2 — 1 >  0 is guaranteed, one would ensure th a t the 

algorithm would always converge to the correct channel parameters. In other words 

should the channel gain g be less than ^=, the algorithm will not converge to the no 

ISI case.

The actual dependence of steady state  and ill convergence of the ACMA on 

the channel gain g is examined in the following example. For the A /2(l)

rk = gak +  0.6rfc_i. (4-14)

The ACMA equalizer is given by

Vk =  rk T w ^ r k- i .  (4-15)

Using these two equations, we plot in Figure 4.2 the cost function J (y k) =  

E { ( y k — l ) 2} as a function of w and g. From this figure it is clear th a t if the 

gain g > =  0.577 then the cost function has a unique minimum at w ~  a  — 0.6.

If, however, the gain g drops below the function will have two m inim a and a

maximum at w = a  and therefore the equalizer will not converge to the channel 

param eter.

One can alleviate this problem by introducing an arbitrary gain, G, in the 

equalizer. The output of the equalizer is then given by

71

Vk =  Grk +  G wir h-i
i= 1

n
=  Ggak +  G ^  («,■ +  to,-). (4.16)

i= l
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Figure 4 .2  Cost Function for Different Gain g

Following a similar procedure as the one above, one can show th a t at the algorithm ’s 

steady state, ISI is cancelled (with a probability of 1) if and only if

1
9 > G V 3 '

(4.17)

Thus, one can choose G  appropriately such tha t condition (4.17) is satisfied. In other 

words, one would choose G such tha t for the worst case g condition (4.17) is m et. If 

the worst case g is 0.01, for example, one would choose G > ^=.

4.2 E qualization  o f M ovin g  A verage T yp e C hannels

Consider a real MA type of channel of order n, M A ( n ) ,  the received signal, is given

by

n  -  gak + hiak-i,
i —  1



56

where g is an arb itrary  gain and h^s  are the MA(n) channel param eters. The input 

to the sheer of the  decision feedback equalizer is given by

n

Vk =  r k -  J 2  v>iVk-i 
1 =  1

n  n

=  9 a k +  Y  hiCtk-i -  Y  WiVk-i> ( 4 -18)
t'=l i=l

where u>,-’s are the equalizer’s coefficients. Figure 4.3 shows the decision feedback 

equalization, with the control section.

F ig u re  4 .3 The Anchored DFE using the CMA

Now, if we denote the set of all correct decisions by Yx and the set of all incorrect 

decisions by Y " , i.e.,

Y '  =  {Hi  : &  =  a , }

Y" =  {Vi ■ Vi =  - a . } ,

then equation (4.18) can be written as

Vk =  g a h +  Y  ( h  ~  w i ) V k - i  ~  Y  {hi +  w i ) i ) k - i  
i iyk- i tY '  i iy f i - i tY”

n

=  9 a k  +  Y  ' i i V k - i
i=i

=  gak +  isik, (4 -19)
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where
n

isik = '52'liyk-i,
1=1

and the 7,-’s are given by

7 ,• =  ( h i -  w-)  for i : Dk-tcYi

7 i =  - ( h i  + wf)  for i : y k- i c Y 2.

Applying the constant modulus cost function in equation (4.3) for the DFE, 

and using equation (4.18) for dyk/dw{ , we get the following update equation

w f +1 w f  +  yyk-i (yl  ~  l )  yk for * =  1,2, ■ ■ •, n. (4.20)

M ultiplying equation (4.20) by 7

w f+17 i = w^-fi +  n n n - i  (yl  -  1) yk- (4.21)

As before, take expectation conditioned on to obtain

£{u?f+17i|u£} =  w’l E ^ w ’l )  +  f iE ^ i V k - i  (y\  -  l )  (4.22)

It is simple to show th a t steady state  is reached (th a t is E{w!-+1 |u>f} =  wf)  if and 

only if

Ei'fiijk-i (yl  -  l )  Vk] =  0 for all i for which yk^ Y x or yk- i tY 2.

Summing on i we have

E  (yl  -  l )  yk\w-1 =  E { i s i k (yl  -  1) yk\wf}

=  0.

This is exactly the same equation we have for the AR(n) channel case. In Figure 4.3 

we present a digital im plem entation of the DFE-ACM A for an M A  type channel.
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4.3 Simulation

In this section we present simulation results of the anchored constant modulus 

algorithm  as it is applied to the linear equalization for autoregressive channels and 

to the decision feedback equalization of moving average type channels. In particular, 

we show the effect of the gain g on the performance.

4.3 .1  L inear E q u aliza tion

Consider the A i?(l) channel whose output signal r*, is given by

rk =  gak +  0 .6r fc_i 

The linear equalizer taps weights are updates using

w {k+1) =  w {h) -  nrk-iVk (yl ~  l )  •

The averaged squared error of this equalizer is given in Figure 4.4

g = i.o
g=0.9

,g=0.8 '=0,5
0.8

T , 0.6

•g=0.6
0.2

,g=0.7

250 300200100 1500 50

Iterations

F igure 4 .4  Mean of the Squared Error of ACMA for Different Gain g.

4 .3 .2  D ec is io n  Feedback E qualization

To examine the performance of the D FE we consider a channel whose transfer 

function is given by

H( z ~ 1) = g  + 0.5z~1 - l A 4 z ~ 2 (4.23)
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with the corresponding adaptation rule of equation (4.20). The averaged squared 

error is depicted in Figure 4.5.

2.5

;g=0.5

0.5
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Iterations

F ig u re  4 .5 Mean of the Squared Error of ACMA for Different Gain g.

In these figures, the estim ate of the residual ISI power is obtained by passing 

the sequence of the squared error((a;t — sgn (yk))2) through a sm oothing filter whose 

transfer function is given by 0.05/ (1 — 0.95.Z-1). These figures show clearly th a t the 

speed of convergence of the  ACMA, for the linear and decision feedback equalizers, 

depends on the channel gain g. As the gain g the approaches breakpoint, g =  the 

algorithm  takes a longer tim e to converge. We notice th a t for 1 <  g <  0.7, the speed 

of convergence is nearly constant, reaching approximately zero after 130 iterations, 

while for g =  0.6  the algorithm converges after 250 iterations. The ill convergence of 

the algorithm  is also evident for the gain of g =  0.5 <  ^=.

The performance of the ACMA is also compared with the anchored minimum 

energy algorithm  described in [34]. In Figure 4.6, we depict the convergence of this 

algorithm  when used w ith the A /2(l) channel used in equation (4.9). The adaptation 

rule for the  AMEA is given by

w ik+1) = w (fc) +  fiykVk-i
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As in ACMA, the speed of convergence depends on the channel gain g. However, 

being globally convergent, the AMEA shows no ill convergence for a small g.

Finally, in Figure 4.7 we compare the rate of convergence of the ACMA with 

tha t of the AMEA for g =  1.0. The ACMA converges faster than the AMEA. In fact, 

the ACMA converges to the exact channel param eters such tha t after approxim ately 

130 iterations, the mean squared error vanishes.

■ l i t  I I
\ AnEjwied MiatauacEOccgJ!. AlgorUbol
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4 .4  C o n c lu sio n

In this chapter we used the concept of anchoring the blind equalizer [34] w ith the 

constant modulus algorithm for AR and MA channels. We showed analytically and 

through simulation th a t the algorithm  converges successfully if the unknown channel 

gain exceeds a certain value ( ^ ) -  The algorithm will fail to  converge to the desired 

value if the channel gain drops below this value. This problem can be minimized 

if we introduce a gain in front of the equalizer. Introducing a gain at the equalizer 

will not elim inate the problem, but it will lower the critical point below which ill 

convergence appears.

Compared to the algorithm  described in [34], the ACMA converges faster and 

achieves less mean squared error at the steady state.



CH APTER 5

B L IN D  M A X IM U M  L IK E L IH O O D  SE Q U E N C E  E S T IM A T IO N

In chapters 2-4 we considered blind equalizers based on symbol-by-symbol detection. 

This includes linear and decision feedback equalizers. In this and next chapter 

we use the m axim um  likelihood sequence estim ation approach, which is based on 

the entire received sequence [18]. For severely distorted channels, linear equalizers 

enhance noise, resulting in unsatisfactory performance. The perform ance of the 

decision feedback equalizer is, on the other hand, lim ited by error propagation. The 

maximum likelihood technique is efficiently implemented using the VA. The MLSE 

thus offers improved performance over the linear and decision feedback equalizers, 

but not w ithout an increase in complexity. This point will be addressed in the next 

chapter, where we describe a techniques for reducing the complexity of VA.

Only recently did blind maximum likelihood sequence estim ation (MLSE) start 

receiving atten tion  [40] [41] [42] [50],

In this chapter we consider a blind m axim um  likelihood sequence estim ation 

algorithm  th a t has lower complexity compared with existing ones. It also offers a 

good complexity/speed-of-convergence tradeoff.

This chapter is organized as follows. In section 5.1, we describe the channel 

model and present the formulation of the problem. The new technique for blind 

Viterbi equalization is proposed in section 5.2. An illustrative example is given in 

section 5.3. We derive an upper bound on the probability of bit error, in section 5.4. 

In section 5.5, we present the simulation results and the com putation of the upper 

bound. Conclusions are drawn in section 5.6.

62
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5.1 Problem Statement

In this section we first introduce the discrete channel model and then the blind 

m axim um  likelihood sequence estim ation problem. Consider the discrete channel 

model given below.

F ig u re  5.1 Discrete Channel Model

The sampled output of the channel, r*, at instant k  is given by

rk = A'kh  + n k, (5.1)

where A k = [afc, 1, • ■ • and h  =  [h0,h i ,-  ■ ■, hL}'.

{hi}^L0 is the sampled impulse response of the cascaded transm it, channel and

receive filters, assumed slowly tim e varying, {at-,}  is the sequence of transm itted

symbols, which are assumed identically distributed independent random  variables 

and {rifc} is an additive white noise sequence with Gaussian distribution. At each 

instan t the d a ta  takes one of the M possible levels {±1, ±3 , ■ • •, ± (M  — 1)} with 

equal probability.

First we consider the problem of estim ating a sequence of N  transm itted  da ta  

symbols from a sequence of channel outputs r* =  [r j, r2, • • • for a  known channel. 

There are M N equi-probable sequences denoted by |A ( 1), • • •, A ( M N)}. The ML 

estim ator chooses the most likely sequence A ml  according to

A Ml = a rg m a x /r |A(r |A ), (5.2)
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where /r|A  (' I *) is the conditional probability density function (pdf). Since {n^} are 

iid random  variables, one can write

/ r |A ( r |A )  =  n / ^ | A ( r fc|A*),
k=1

= n Mr* - A*l>). (5-3)
fc=i

where f n(') is the Gaussian pdf. In principle the maximization in equation (5.2) 

should take place through exhaustive search over the  M N sequences, which can be 

carried out efficiently using the VA [18].

For the blind equalization problem at hand, one might consider the conditional 

probability of the received sequence rfc conditioned on both the transm itted  sequence 

and the channel impulse response. Assuming all channel realizations are equally

probable, the joint ML estim ate for the transm itted  da ta  sequence and the channel

param eters is given by

(A m l ,1im l ) =  a rg m a x /r |Aih( r |A ,h ) ,  (5.4)

wherein the m axim ization is carried over all possible channel realizations and trans­

m itted  da ta  sequences. Such a problem is not trivial since h  is continuous and A is 

discrete.

In [40], Seshadri proposed to solve equation (5.4) by finding the least square 

estim ate of the channel for each possible sequence and then choosing the da ta  

sequence with the lowest least square error. This means th a t one will have to  retain  all 

the possible sequences and as a result the complexity will increase exponentially with 

the message length. Realizing this, it was also proposed in [40] to use a  suboptim al 

search algorithm. In the suboptim um  algorithm , one would retain a t each node the 

M  (M  > 1) best sequences, as opposed to the VA which retains only the  surviving 

path. The m ajor drawback of such an approach is its complexity.

Ghosh and Weber [41], on the other hand, developed an iterative procedure, 

whereby one would s ta rt with an initial guess of the channel param eters. Given the
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initial channel param eters, the VA is used on a frame of observed data to determine 

the m axim um  likelihood estim ate of the transm itted data. This is then used to 

obtain a better estim ate of the channel. The procedure is iterated  until the channel 

estim ate converges. The length of the da ta  frame is an im portant param eter of the 

algorithm  and has to be large enough to obtain a good channel estim ate. In [41] a 

frame length of 1000 symbols was used.

An iterative approach was also proposed in [42]; however, channel estim ation 

was based on the Expectation M aximization (EM) algorithm  [43], In [50] it was 

suggested to use numerical techniques to carry out the maximization over the channel 

param eters. The technique proposed in [50] was based on processing a frame of data  

and iterating between the VA and the maximizer with respect to the channel.

In [50], it was shown th a t the estim ator given in equation (5.4) would lead to 

a biased estim ate of the channel param eter h. In particular, equation (5.4) can be 

w ritten as

1 ..................   (5.5)=  a r g m in m in - A ||r - A h |[ 2,
A  h A

where || • | |2 is the /2-norm, K  is the sample size over which the search of A  takes 

place, and

r  =
T\ \

V r K + L  /

(  a \  0 0

a 2 ♦ • 0

0  ••  • ai< d K - l

^  o  • • • 0 a K

A  =

It was shown th a t as K  approaches infinity, the estim ate hML will be a biased 

estim ate of the channel param eter vector h. Similar to  [41] and [42] an iterative 

procedure was used, where the maximization with respect to the input was performed 

using the VA, and the maximization over the continuous channel was performed using
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numerical techniques. The latter maximization is performed on a  frame of data. It 

was dem onstrated th a t with a frame length of K  =  1000, the error performance of 

blind VA closely matches that of the conventional VA (with a known channel) and 

for K  =  100 the blind VA departs from the conventional one.

Since [50] deals with the general problem given in equation (5.4), the results 

are applicable to the techniques given in [41], [42] and the technique developed in 

this chapter. The m ajor drawback with the techniques reported in [40] [41] [42] [50] 

is complexity.

5.2 T h e P rop osed  T echnique

We assume a  quantized channel (this is justified in practice, since finite precision 

processors are used to implement the algorithm) and develop two trellises: one for 

the channel and the other for the data. The resulting scheme offers a considerable 

reduction in the computational complexity compared with [41] [42]. It also prevails 

over existing techniques with a good complexity/performance tradeoff.

The key observation is tha t if the channel is discrete, one could interchange 

the roles of da ta  and channel param eters in the VA branch metric. T hat is, if the 

data  is known one would search a channel trellis for the ML channel param eters and 

vice versa. Therefore, we propose to use two trellises, one for da ta  and the other 

for channel. Two VAs are used to search two trellises in parallel, one for the data 

and the other for the channel. The output of one is fed into the m etric calculator 

of the other. This joint maximization eventually converges to the estim ate given in 

equation (5.4). The resulting scheme has a considerably lower complexity compared 

with existing techniques. It also offers a good complexity/performance tradeoff.

The channel parameters are approximated by discrete values from the infinite 

alphabet {0, ± c, ±2c, • • •}, where c can be chosen to be arbitrarily small. W ith such 

a channel alphabet, the corresponding channel trellis will have an infinite number of



67

states. However, since the channel vector h does not vary much from one signaling 

interval to the other, as the data  vector A , we need not consider all possible levels of 

the channel param eters a t a  given instant. In order to reduce complexity, we propose 

a simple state  assignment scheme for the channel trellis. The next channel estim ate, 

h t+1, in the proposed scheme is given by

hl+1 =  h 1 for state  0

and

h !+1 =  h* ±  c • 1„ for state  n = 1, 2 , • • •,

where 1„ is a vector of length L  +  1 whose elements are either zeros or ones. For 

the special case when 1„ =  0, the degenerate state  0 results. Clearly the num ber of 

states (the m axim um  num ber of states is 2L+1) does not depend on the param eter c 

bu t on the channel memory L.

A smaller num ber of states can be used if the vector l n is restricted to be all 

zero except for the unity at the n th  location to unity. It is clear th a t the above state  

assignment results in L  +  2 states. Therefore the num ber of states increases linearly 

w ith L. The branches emerging from all states, except for state  0 , have two parallel 

transitions, one corresponding to an increm ent (+c) and the other to  a decrement 

(—c). There are o ther state  assignment schemes with less than 2i+1 states, but the 

above assignment will result in a simple trellis.

The algorithm  will proceed as follows:

1. S tart with an initial channel estim ate, h — h°.

2. Use the VA to solve for

A m l -  arg max / ( r |A,
A

with the branch m etric (rjt — .



68

3. Use the VA to solve for

h M L =  a rg m ax /(r|A A /£ ,,h ML),h

with the branch m etric (r* — XiLi A.-flfc-i) .

4. Itera te  2 and 3.

It can be noticed th a t the algorithm achieves the ML estim ate of the channel by 

adaptively incrementing or decrementing the previous estim ate. Using the channel 

state  table above, we change one channel param eter per transition. To improve the 

speed of convergence one can add more states to the channel trellis, which allows 

one to change two or more param eters at a tim e. This will significantly improve the 

ra te  of convergence at the expense of complexity. Thus, one can compromise ra te  of 

convergence to complexity.

Another param eter th a t affects the performance is the step param eter c. 

Choosing a smaller c will reduce the rate of convergence, but will improve the error 

rate. This point is dem onstrated in the following example.

5.3 A n Illu stra tive  E xam p le

The algorithm described above was used to equalize the channel (assumed unknown) 

whose sampled impulse response is given by

h{n) =  0.407 • 8{n) +  0.815 • 8(n — 1) +  0.407 • 8{n — 2),

where <$(•) is the Kronecker delta function. For simplicity, binary transm ission is

assumed, and therefore with L — 2, the channel and data  trellises will have 4 states

each. The states of the channel trellis are given by

h *+1 =  h ' for state  0

h ,+1 =  IV ±  c ■ 1„ for state  n =  1, 2 ,3.
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The vector l n is in this case has all it elements zero except the n th  element equals 

one. The trellises are shown in Figure 5.2

(000)

( 100)

(010)

(001)

( -1,-1)

( -1, 1)

( 1,-1)

( 1,1)

Channel Trellis Data Trellis

F ig u re  5.2 Channel and D ata Trellises

The channel was initialized to h° =  (0 0 0). The estim ation error for three 

different values of c were determined by simulation at an SNR of lOdB. The 

estim ation error, defined as the mean squared difference between the true and 

estim ated channel parameters, is depicted in Figure 5.3.
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F ig u re  5.3 Estim ation Error for Different Values of c
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5.4 P rob ab ility  o f  Error

In this section we investigate the error performance of the blind sequence estim ation 

scheme developed in section 5.2. We will use Forney’s approach [18].

Define the state  of the channel s (k ) a t tim e k by

S  ( & )  —  , &k—2 1 ' ' ' t ^ k —i )  5

where i is the memory of the channel, and denote the corresponding state  estim ated 

by the VA by s(k),  where

—  {̂ Q,k—\iQ>k—2') ’  '  '  i ^ k — i ) *

The sequence {At-ii dk-2i ■ • •, a*-*} is th e sequence estim ated by the VA. Following 

Forney’s approach [18], an error event £  is said to occur between k =  k\ and k — k2, if 

s(ki)  = s(ki) ,  s(k2) =  s(k2) an(l a(&) 7̂  s(k) for all k, k\ < k < k2. Since s(k) = s(k) 

for k = k i , k 2, it follows that

(®fcl —15 —2i ' ' * 5 — i ) — k\  — 15 — 2 ) ' ' ‘ ) ®fcj — i)

and

( e / c 2 —1 > ®&2—2 j ‘ > ®fe2—*) ( a &2 — 1 ’ ®&2—2 j ’ ’ ' ■> &k2—i)  •

Now, define the error sequence associated with the event £  as

® +1 > ‘ ‘ > &k2—i—l }5

where e* =  a* — a*. The Euclidean distance df(£) of the error event is given by

k2 / m i n ( k - k i  ,i) \ 2

d2i(£ ) = £  D  ■ (5-6)
fc=fc! \  j=0 /

5.4.1 P ro b a b ility  o f  an Error E vent

The probability of an event error associated with an error sequence e, is now derived. 

Following Forney’s approach for an error event to occur, three sub-events must take 

place:
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£\\ At tim e k\ we m ust have .s(A:i) =  s{k\).

£2: The input sequence A  between ki and k2 — i — 1

A — -(-1 ? ^ k 2 —i —1 }■

m ust be such th a t A  +  e is an allowable sequence. For the binary transm ission 

of ± 1, if efc, =  2 then the corresponding input symbol m ust be a =  1.

£3: Between fci and fc2, the noise term s must be such th a t the estim ated sequence 

{Sj : k\ < j  < k2} accumulates greater likelihood than  the transm itted  

sequence {aj : k\ < j  < k2}.

Event £2 is independent of £\ and £3; therefore, we can write

P { £ ]  = P { £ 2}P {£3}P{£ ,  |£3}.

5 .4 .2  P ro b a b ility  o f  £2

For binary transmission considered in this chapter, ^ { £ 2} given by

k2 —i — 1 9   lekl

n ^)  = n -v -
jt=fci z 

_  2_w(e))

where ru(e) is the num ber of non zero elements in e.

5 .4 .3  P ro b a b ility  o f  £3

Define the received signal sample by

Tk — Xk +  «fe,

where xk =  h 'A . Now consider the blind scheme introduced in the previous chapter. 

We assume th a t at steady state, the estim ated channel param eters are given by h,
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and further define

f iA  where h/ is the estim ated param eter vector of the channel

A
=  %k ~  Vk

=  (h; — h')A

=  A h'A . (5.7)

Then we have

P {£3} =  P  < J  irk ~  V k f  -  (rh -  ykf  >  0

=  p  1 2 £  _  vk) (nk + e*) > £  ~  yfc)2

where the k2 — k\ dimensional vectors y , y, n and e are defined as

(a, b) is the inner product of the vectors a and b and || • || is the l2 norm. The 

probability of event £3 is thus given by

(5.8)
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where

n =

e =

< y  -  y , n  >

l | y - y | |  
<  y - y , e  > (5.9)

l l y - y | |  ‘

The scalar quantities n and e are the projections of the vectors n and e on y  — y,  

respectively. The quantity e indicates the amount of mismatch between the estim ated 

and actual channel param eters: It is proportional to the step c and the length of the 

error event &2 ~  k\. A two-dimensional representation of the different vectors and 

scalars described so far is shown in the following figure.

F ig u re  5 .4 Representation of Different Vectors

Since n is a vector of iid Gaussian random variables, each with a mean of zero 

and a variance of a 2 , it can be shown that h is a Gaussian random variable with a 

zero mean and variance of a 2. Therefore,

l l y - y | | - 2 e \
P { £ s } =  Q 

=  Q

2a
' d(£) — 2e' 

2a .
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=  9 (V)• (5-io)

where

q { u )  =

d{£) = d ( £ ) ~  21.

5.4 .4  P ro b a b i l i ty  o f £\ G iv en  £3

Following Forney’s argument, the probability, P { £ i \£3}, is closely overbounded by 

1, for m oderate SNR. Therefore, the probability of occurrence of £  is given by

P { £ } =  P { S 2}P {£ 3}P {£ 1\£3}

<  2~Ŵ Q  • (5-11)

Further, denote the set of all possible error events starting a t ki by E,  then summing 

over all events starting at ki,  we get

P{E) < E  p{£)-
eeE

where P { E }  is the probability th a t any error event starts at k\. The above upper 

bound can alternatively written as

<5-12)
deD  '  ' £ £ Ed

where D  is the set of all possible Euclidean distances and E j  is the set of all 

error events with Euclidean distance d. For m oderate SNR the term  involving the 

minimum distance will dominate the above summation; therefore, at m oderate to 

high SNR, we have

P { E } <  Q ( — ^ 2~wiel  (5.13)
V 2cr )  ££Ei

For binary transmission, the number of bit errors associated with an error event is 

equal to the number of non-zero elements of the error vector e, which is given by



w(e).  Thus the probability of error, Pe, is upper- bounded by

Pe < Q ( k r )  £  2- u'(eM e )
\  )  £ £ E A

= J - q { (5.14)

at m oderate to high SNR. The coefficient J  is given by

J  =  Y ,  2 - w ( e ) w ( e ) .
£<EES

The essential difference between the above derivation and the one given in [18], 

is th a t here we considered the effect of channel estim ation error. This error will 

reduce the effective minim um  distance and hence degrade the performance.

The degradation in performance depends on the quantity  e given in equation

(5.9). It can be shown th a t

e <  I N I -

By approxim ating ||e || by (k2 — &i) • c, we will show in the next section th a t the 

resulting bound is a valid one for different values of c.

5.5 S im u lation  R esu lts  and U p p er  B ou n d s

5.5 .1  S im ulation  R esu lts

For evaluating the upper bounds derived in the previous section, we used the  same 

channel as in section 5.3. The impulse response of the channel is given by

h(n) =  0.407 • S(n)  +  0.815 • S(n -  1) +  0.407 • 5(n -  2 ).

The estim ated probability of bit error was found through simulation for different 

values of c and for the known channel case. Figure 5.5 shows the probability of bit 

error versus the received bit energy-to-noise power ratio, which is given by
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Figure 5.5 Probability of Bit Error (Simulation)

W ith c = 0.01 the probability of error closely follows th a t of the ideal VA. For 

the c =  0.05 curve it can be seen th a t there is a loss of less than 1 dB. However as 

the value c increases beyond 0.05, the degradation from the ideal case becomes more 

pronounced.

5 .5 .2  U p p er  B ound

We consider first the ideal case, MLSE with a known channel. For the channel 

under consideration, there are an infinite num ber of error events of the form e =  

± { 2 , —2 , 2 , —2 , • • •, 0 , 0 } (i.e. error symbols have alternating signs), all achieving the 

minimum distance of \/2.67. Referring to equation (5.14), the error coefficient J  is 

given by

OO 1
J  = I ] 2 ( n  +  1) —

71 =  1

=  3.
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Therefore, the probability of bit error is over-bounded by

Pe <  3 Q
v ^ 6 7 '

2(7

for m oderate SNR.

For the blind case, as mentioned at the end of the previous section, we take 

||e || =  n ■ c, where n is the length of the error event. This means th a t we assume 

all channel param eters were estim ated correctly except one, which deviates from the 

correct one by a factor of c. It will be dem onstrated th a t with this assum ption, one 

will get a valid upper bound. The upper bound in this case is given by

OO J
a  <  £  2 (n +  1) -

7 1 = 1

Q
\/2.67 — 2y/n  • cN

/ 2n+1 " V  2a

The figure below shows the upper bound for c =  0 .01 , 0.05 and 0 .1.

o.oi

Simulation
Known Channel 
c = 0.01 
c = 0.05 
c = 0.1

Upper Bound
Known Channel 
c =  0.01 
c =  0.05 
c =  0.1

0.001

0.0001

F ig u re  5 .6  Upper Bounds on the Probability of Bit Error

The above figure shows the upper bounds for different values of c and for the 

ideal MLSE. It can be seen th a t the bound developed in the previous section is a 

valid one. It is also evident th a t the assumption we m ade at the end of the previous 

section, ||e|| =  n • c is also valid. As expected, the simulation results lie below the
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upper bound which demonstrates th a t on the average

|h — h | <  c • 1 .

where 1 a vector of length L  with only one non-zero element which is equal to one.

5.6 C o n clu sio n

A new algorithm for blind Viterbi equalization was proposed. It approximates the 

continuous level channel model by a discrete one. A channel state  assignment scheme 

was presented tha t leads to a simple channel trellis. The num ber of states of the 

channel trellis increase linearly with the channel memory. The channel and data 

trellises are used to find the joint maximum likelihood channel and da ta  estimates.

The algorithm offers a good complexity/performance tradeoff. It also compromises 

complexity for faster convergence and lower error rates. The rate of convergence 

depends directly on the param eter c. For c =  0.01, the probability of error of the 

blind scheme is very close to tha t for the conventional one. W ith c =  0.05, the 

probability of error degraded by less than 0.5 dB.

This blind scheme could also be used with reduced complexity trellises discussed 

in C hapter 6 . In this way the overall complexity can be varied.



CHAPTER 6

R E D U C E D  STATE V IT E R B I E Q U A L IZ A T IO N

The type of equalization used to m itigate ISI caused by noisy linear channels can 

be divided into two classes. The first, symbol-by-symbol equalization, encompasses 

linear and decision feedback equalization. The second involves maxim um  likelihood 

sequence estim ation (MLSE) [18], where the Viterbi algorithm  (VA) is used to solve 

the estim ation problem.

W hile the first class has low complexity and a high error rate, the second has 

a lower error ra te  at the expense of complexity. The complexity of the VA grows 

exponentially with the length of the channel impulse response. W hen the impulse 

response becomes larger, the VA becomes im practical, and m ethods for complexity 

reduction are needed.

Research has been directed toward obtaining reduced-complexity equalizers, 

while m aintaining MLSE performance as close as possible. To reduce the complexity, 

a num ber of authors have proposed incorporating a linear or decision feedback prepro­

cessor so th a t the MLSE will be deal with an equivalent channel w ith a  shorter 

impulse response [53] [54]. In [53], a linear equalizer was used to shorten the impulse 

response of the channel, while in [54] a D FE was used to truncate the length of 

the channel. Such approaches were found to lim it the performance of the combined 

system.

Recently, Eyuboglu and Qureshi [20] and Duel-Hallen and Heegard [21] 

have proposed sequence estim ators which provide a good perform ance/com plexity 

tradeoff. The technique in [20] is useful for systems utilizing a large signal constel­

lation, while tha t in [21], which is a special case of [20], is suitable for channels with 

a long impulse response.
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In [21] the complexity of the VA is reduced by considering a few states of the 

channel. The ISI due to the rest of the states is estim ated using a feedback detector 

analogous to  th a t of the decision feedback equalizer (DFE). The estim ated ISI is then 

used in the branch m etric com putation. As in the DFE, error propagation affects 

the perform ance of the  algorithm. The degradation due to error propagation was 

found to be less than  th a t of the DFE.

In this chapter, a new technique is presented for reducing the complexity of 

the VA for channels with long memory. The technique offers more flexibility in the 

choice between performance and complexity than the one in [21]. It can generate 

trellises w ith any num ber of states rather than  only power of 2 states as in [20] [21].

The motivation to this chapter is the work on error propagation for the DFE 

given in [15]. The error sequences for the DFE can be modeled as a Markov chain, 

whose num ber of states is exponential in the num ber of distinct m agnitudes of error 

and the  num ber of past decisions th a t influence the current decisions. The complexity 

of the resulting systems is extremely high. To reduce systems complexity Duttweiler, 

el al. , [15] proposed a reduced state  machine. This can be viewed as grouping error 

sequences in order to reduce the complexity. This grouping can also be envisioned 

as partitioning the set of all possible error sequences in a unique m anner. This led 

to a technique for reducing complexity, which is presented in this chapter.

This chapter is organized as follows. In section 6 .1, we present the channel 

model and introduce the partitioning approach for reducing the complexity of the 

VA. In section 6 .2 , we describe a general procedure to do the partitioning. An 

example is given in section 6.3. In section 6.4, we discuss the probability of error for 

the reduced complexity scheme. Conclusions are given in section 6.5. A sum m ary of 

the results presented in this chapter can be found in [22], and more detailed results 

in [52],
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6.1 Channel Model and the Proposed Technique

In this section we will consider channels with finite impulse response. The discrete 

tim e channel model considered here is given in Figure 6 .1 . This model arises in a 

pulse am plitude m odulation (PAM) system at the ou tpu t of a sampled, whitened 

m atched filter [18]. The channel h (D ) is modeled as a  finite response filter (FIR), 

and n ( D ) is a white Gaussian noise source with a zero m ean and variance of cr2. The 

d a ta  sequence a(D)  consists of symbols a*,, which are independent and identically 

distributed.

n(D)

a(D) h(D) <±>
y(D)

F ig u re  6 .1  The Discrete Channel Model

We will assume binary transmission in this chapter. Therefore, data  symbols 

(ik take values of ± 1  with equal probability. Referring to Figure 6 .1, the output y(D)  

is given by

y(D) = a(D)h(D) + n(D),

where h(D),  given by h(D) — h0 +  h\D  +  ••• +  hnD n , defines the channel 

impulse response, whose degree is determined by the channel memory. The

state  of the channel, s(k),  a t tim e k is defined by the binary n tuple given by

( a^ — i ,  a k - 2 i • • • ? « f c - n ) )  the previous input data. Therefore, at any tim e k  there are 

2n possible states. We denote the set of channel states by fl; then

Q = {s,' : Si is a state  of the system , i = 0 , 1, • • • , 2n — l}.

In the proposed technique, the set D is divided into N , 5,-, subsets, where N  is 

2 < N  < 2 n, such tha t

i- U Io 1 Si =  n
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2 . S i  n  S j  = 0; the em pty set, for i ^  j  and 0 <  i , j  < N  — 1

3. The subsets f>t- are chosen such th a t for all sn(k) £ S i , the corresponding next 

sta te  s n(k  +  1) m ust belong to one subset.

The first two conditions specify a partition on the set fi, and hence one could 

also specify an equivalence relation on ft. The third condition is a constraint on the 

partitions th a t enables a trellis to be defined. Thus, not every partition  on H could 

be a candidate; only those tha t result in a trellis are suitable. A procedure is devised 

for defining partitions tha t satisfy the th ird  condition. This is detailed in section 6 .2 . 

The resulting trellis will have N  states.

At this point one should emphasize the difference between the  partitioning 

considered in this chapter and tha t in [20]. In [20] the signal constellation (signal 

set) is partitioned into different levels so th a t each element 1 <  i <  m, of state  

vector s(h), is assigned to a subset. A subset trellis having a smaller num ber of states 

than the original trellis is then defined. In this chapter we are partitioning the set of 

channel states. Only when the number of states per trellis is a power of 2, will our 

technique result in trellises similar to those reported in [20].

The branch m etric for the MLSE is given, by (ijk — Z)"=1 Since

each state  in the  reduced trellis is a union of two or more channel states, an am biguity 

will result in the  branch metric calculation. T hat is, the branch m etric is no longer 

uniquely determ ined by the previous/present trellis s ta tes’ pair. Sim ilar to  [20] [21], 

a feedback mechanism is introduced to resolve this ambiguity. The branch m etric 

associated w ith the reduced trellis is given by (y^ — 5Di=i — £ ”+1 ^i^k-i  — ak)2,

where I < m  is determ ined by the reduced trellis. The previous s ta te  estim ate 

{ c i k - i - 1 , ■ • • is stored in the path  history associated with the present state.
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6.2 T h e P artition in g  P rocedure

A partition of a set fl is a pairwise disjoint collection of non em pty subsets of fi, whose 

union is f2. It is known that an equivalence relation in fi defines a partition of ft, 

and, conversely, a partition in fi yields an equivalence relation. Given an equivalence 

relation R  in SI, let R(a ) =  {s £ H : aRx}  for each a 6  S7. R (a ) is known as an 

equivalence class of R  and is a  subset of fI. The collection of subsets, {R(a) : a £ S7), 

is a partition of fl. A collection of equivalence relations {R \ ,  /?2, • • •, R n} is known 

as an equivalence sequence iff for all i,j 1 <  i <  j  < n, and all x , y  £ fl we have 

x R j y  = >  xRiy.  That is, R n(x ) C R n- i ( x )  C • • • C Ri{x)  C S7.

For the channel model described in the previous section, the states of the 

channel are given by binary n tuples. Consider the equivalence relation Ri  given by: 

x R iy  iff the first i components of the n-tuples x and y are identical, for any states x  

and y £ fi. It can be shown th a t i?,- is an equivalence relation. It can also be shown 

th a t the sequence {Ri,  R?, ■ • •, R n} is an equivalence sequence.

Figure 6.2 shows the different levels of partitioning and the corresp onding 

subsets. Label the subsets at the fth level, with binary i tuples. It should be noted 

th a t there are 21 subsets at level i, each with cardinality 2n_t. The number of subsets 

will determ ine the number of states of the trellis.
n

R ,(0) R,df

RVoi) RV10),(00)

R^OOO) R }(0 0 1 ) R JO IO ) R 3(011 ) R |1 0 0 )  R p O l )  R /H O )  R 3( 111)

F igure 6 .2 The Partitioning Tree
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We will now show th a t the equivalence sequence {i?i, f?2, • • • , R n ]  can define 

partitions th a t will result in a reduced complexity trellis.

In order to show th a t the partitions associated with the above equivalence 

sequence satisfy the th ird  constraint, we first present it in a m athem atical form.

Define two functions F i ( x )  and F - i ( x )  as the next state  of the channel, when 

the present state  is x , and inputs are 1 and —1 respectively. T hat is, if x  =  

( x i , x 2, •• • ,£ „ ), then

F \ (®) — (1 ? ® i »* * * > x n—\ )

and F - i (x )  = ( - 1, aq, • - ■,

To m eet the th ird  condition, the equivalence relation R  m ust satisfy 

x R y  = >  F \ { x ) R F \ { y )  and

=$> F - \ { x ) R F - \ { y )  for all x  and y  € fi. (6-1)

W hen the above statem ents are satisfied, the functions F i ( - )  and F - i(-) are said to 

be compatible w ith R. Equation (6.1) can also be w ritten as,

for all x  and y  € y  € R ( x )  F i ( y )  £ R ( F i ( x ) )  and

= >  F - i ( y )  6  R ( F - i ( x ) ) .  (6.2)

6 .2 .1  T rellises w ith  2m S ta tes

Now we are ready to show th a t the partition obtained from the different relations 

satisfies the th ird  constraint, i.e., equations. (6.1) and (6.2). Consider the equiv­

alence relation R , ]  the set { F i ( y )  : y  £  R i ( x ) }  for some x  £  $1 is the set of all 

channel states th a t have the first i +  1 components identical. The first elem ent being 

1 and the consecutive i elements are identical, since the previous state  y  £  R i ( x )  . 

Therefore, one can write:

{ F i ( y ) : y  e  R i ( x ) }  =  R i+1( F i ( x ) )

C RiiF^x)).
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The second step follows from the definition of equivalence sequence. Therefore, it 

can be concluded tha t

xRiy  = $  F\{x)Ri+\F\{y)  and (6.3)

= >  F\{x)RiF\{y) for all x  and y E ft. (6.4)

A similar argument holds for TLx(-); therefore,

xRiy  =$■ F1(x)RiFi(y)  and (d-5)

=4> F_i(x)R iF- i (y )  for all x  and yE. f l .

Comparing with equation (6 .1), we conclude that the equivalence relation Ri  defines 

a partition th a t would result in a trellis. Using an equivalence relation a t a given level 

will result in a power of two-state trellis. It should be mentioned th a t these trellises 

are the same as those found by Duel-Hallen, et al. [21] On the other hand, using our 

state  partitioning technique, one can find trellises with any num ber of states.

6 .2 .2  T re llise s  w ith  N u m b e r  o f  S ta te s  n o t 2m

This is accomplished by considering partitions formed by subsets taken from adjacent 

levels.

To show th a t the partition so formed would result in a trellis, one has to satisfy 

two conditions:

xRiy  ==>• F1(x )R i+iFi(y)  and

=>■ F-.i(x)Ri+iF-i(y)  for all x  and y E ft  (6 .6)

and

xRi+iy => F i (x )R iF1(y) and

F- i (x )R iF - i (y )  for all x and y E ft. (6.7)
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Condition (6 .6 ) follows from equation (6.3). To prove condition (6.7); we note tha t 

since R i + i ( x )  C R i ( x ) ,  then

F 1( x ) R i+i F 1( y )  = * >  F i ( x ) R i F i ( y ) .

Also from equation (6.4) we have

x R i+1y  = 4 >  F 1( x ) R i+1F 1( y ) .

Therefore, it follows tha t

x R i+1y  = 4 >  F i ( x ) R i F i ( y ) .

A similar argum ent holds for F - i(a:). Therefore, the partition formed by considering 

subsets from two adjacent levels results in a trellis.

It is worth mentioning th a t subsets from non adjacent levels will not form a 

trellis since (6 .6) will not be satisfied. In fact,

xR iy  = >  F i(x)R jF i(y )  and

= > •  F - i ( x ) R j F - i ( y )  for all x  and y  €E

is true only for j  =  i +  1.

6.3 A n E xam ple

Consider the channel given by

/i(Z?) =  ho +  h\D  +  +  hzDz . (6*8)

The above channel has memory n =  3; therefore, the state  can be represented by 

binary three tuples x  =  ( ® i ,X 2 , £3). One can use up to three levels of partitioning, 

or the  equivalence sequence { R i ,  R 2 , R 3 } ■ We will consider the trellises formed by 

the equivalence sequence. Using the notation in section 6.2, the table below gives 

different partitioning schemes.
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T able 6.1 Different Partitioning Schemes for Channel with Memory n = 3.

Num ber of States Subsets
2
3 i?1(0 ) , ^ 2(10), ^ 2( 11)
4 R 2(00),R2(01 ) ,R 2(10) ,R 2(U )
5 R 3(000),R3(G 0l) ,R2(01)

R 2{10),R2{11)
6 r 3(ooo), R3(001), r 2(oi)

R 2(10),R 3(110),R 3(111)
7 r 3(ooo), r 3(ooi), r 2(oi)

R 3( 100), R 3( 101), f?3(110), R 3( 111)
8 /?3(000), i?3(001), R 3(010), i?3(011) 

/?3(100), i?3(101), R 3( 110), R 3(111)

The last entry in the table is the degenerate case of 8 states. The branch 

m etric depends on the originating node of a given branch. If the originating node of 

a branch corresponds to  a subset from level I (/ <  n), then the branch m etric jk  is 

given by
l n

Ik =  {]Jk 'y ] h-jdk-i y  ' hihk-i) . 

t=o ;= ;+ i

The trellises for the partitioning schemes considered in the above table are given 

below.

F igure 6 .3  Trellises for the schemes given in Table 6.1
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6.4 Probability of Error

In this section we will investigate the error performance of the partitioning schemes 

developed in section 6 .2 . It was noted in [20] [21] [55] th a t the effect of the error 

propagation is minimal for m oderate to high SNR. Therefore, we will assume in 

our derivation th a t the effect of error propagation is negligible. In the sequel we will 

consider trellises w ith powers of two states, from which other trellises will be derived.

6 .4 .1  T rellises w ith  2m S ta tes

These trellises are the same as those derived in [21], and hence the analysis given 

in [21] applies here. Nevertheless, we will relate the probability of error to different 

partitioning levels. This will be vital for the analysis of trellises w ith an arbitrary  

num ber of states. We will use Forney’s approach [18].

Consider the trellis formed by the subsets from level i. As noted earlier, the 

resulting trellises will have 2* states, which are represented by the binary i tuple. 

Define the s ta te  of the channel s ( k )  at tim e k  by

*s( &) — 2, , djc-i ) 1

and denote the  corresponding sta te  estim ated by the VA by s (k ), where

s(k) — (cLfc—i , Clk—21 i &k—i ) •

The sequence {a,/.-1, a*_2, • ■ ■, a*-*} is th e sequence estim ated by the VA. Following 

Forney’s approach [18], an error event £  is said to occur between k = k\ and k = k2,

if s(k i)  = s(k i) ,  s (k2) = s(k2) and s(k) ^  s(k)  for k\ <  k < k2. Since s{k) =  s{k)

for k — k t , k 2, it follows that

—1 > —2 > ‘ > Gt&i —i ) { ^ k i  — 1: — 2) ' ’ ' i & hi — i)

and

( ®/C2 — 1 > ^ k 2 —2 t  ,  0 ^ 2 —t )  —  ( 0 A2 —1 1 — 2 l  ) i ) *
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Now define the input error sequence associated with the event £, by

e {efcl 1 efci H-l j ' ' ' ) efi2— • —1 } 1

where =  a*, — a^. The Euclidean distance d!f(£) of the error event is given by

k2 /mm(k-ki,i) \ 2

dK £ ) =  £  ]C  hi ek-3 ■ (6-10)
k=kj \  j =0 /

In the  case of binary transmission, the probability of error is upper bounded by [18]

P̂ £ q ( ^ )  £  »(e)2-*n
deD \ £cr /  £6Edi

where Ed{ is the set of all error events having a Euclidean distance of df and D  is 

the set of square roots of Euclidean distances attained by error events. The factor

u>(e) is the number of bit errors a given error event entails, and Q(-) is given by

1 r°° 1 1

Q { x )  =  - z =  e ~ y l 2dy .
V27r Jx

For m oderate to high SNR the upper bound of the probability of error is dom inated 

by events attaining the minim um  distance, i.e.,

where K{ is given by

P e < K i Q ( ^ - Y  (6 .11)

Ki  =  u>(e)2~u'(e). (6 .12)

Note th a t we used the subscript i throughout to emphasize the  dependence of terms 

like dimin and A't on the level of partitioning i. Therefore, to evaluate the upper 

bound on the  probability of error for a given level, one has to determ ine d,mm and

Ki.

At lower SNR one can get better bounds by considering the stack algorithm 

given in [55], However, with the stack algorithm one has to first find the  error state 

diagram  [55]. The complexity of such a diagram becomes in tractable for channels 

with a long impulse response. Therefore, we will only consider events w ith minimum 

distances.
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6 .4 .2  T rellises w ith  N u m b er o f S tates not 2m

We showed in section 6.2 how to form trellises by considering subsets from adjacent 

levels rather than from one level. Examples of these trellises were given in section 

6.3.

To find an upper bound on the probability of error for these trellises, w ithout 

loss of generality we consider the trellis formed by subsets from levels i and i +  1. 

Further assume th a t the trellises are formed by considering p subsets from level i 

and q from level i +  1 in such a way th a t the third constraint given in section 6.1 

is satisfied. At m oderate to high SNR, using the total probability theorem , the 

probability of error of such a scheme can be upper bounded by

P. < §A -.Q  . (6.13)

It can be easily shown th a t for q = 0 the upper bound for level i results, while 

for p =  0 tha t of level i +  1 results. Note tha t in equation (6.13) the first term  

dominates asymptotically, since d,min <  d,-+imin. T hat is, at high SNR the first term  

in equation (6.13) is more dominant than the second. Therefore, the performance of 

such a trellis would be the same as tha t of level i at sufficiently high SNR. However, 

a t m oderate SNR, the performance of these trellises is better than those with 2* 

states, i.e., trellises formed by considering subsets from level i only. This point is 

dem onstrated in the following example. The improvement in performance becomes 

more pronounced for longer channels.

6 .4 .3  S im ulation  and U p p er  B ounds

As an example, consider the channel whose impulse response is given by

h{n) =  0.7107-<5(n)T0.1421-<5(n—l)+0.2132-<5(n—2)+0.1421-<5(n—3)+0.6396-6(rc—4).

(6.14)

The above channel has memory n — 4; therefore, the states can be represented by 

binary four tuples x  =  (sq , x 2, x 3, x4). One can use up to four levels of partitioning,



or the equivalence sequence {ft4, f?2, R 3, ft-i}- We will consider the trellises formed 

by the equivalence relations ft3 and f t4. Using the same notation as above, the table 

below gives some schemes we considered in the simulation and com putation of the 

upper bounds.

Table 6.2 Selected Partitioning Schemes for a Channel with Memory n = 4

Number of States Subsets
8 ft3(ooo), ft3(001), ft3(010), ft3(011) 

ft3( 100) ,f t3 (101) ,f t3(110) ,f t3( l l l )
12 ft3(ooo),ft3(ooi)

ft4(0100) , f t4(0101) ,f t4(0110) , f t4(0111)
ft4(1000) , f t4(1001) ,f t4(1010) , f t4( 1011)
ft3(110) , f t3 ( l l l )

14 R3(000),i? 4v: '- - -^  ^ 4(0011) 
ft4(0100) , f t4(0101) ,f t4(0110) , f t4(0111) 
ft4(1000), ft4(1001), ft4(1010), f t4( 1011) 
ft4(1100) , f t4(1101) ,f t3( l l l )

16 ft4(0000), f t , (0001), f t4(0010), ft4(0011) 
ft4(0100) , f t4(0101) ,f t4(0110) , f t4(0111) 
ft4(1000), f t4(1001), f t4( 1010), ft4(1011) 
ft4(1100) , f t4(1101) ,f t4( 1110) ,f t4( l l l l )

For level 4, the error sequences th a t have minimum distance are ± ( 2 ,0 ,0 ,0 ,0 ) , 

and for level 3 these sequences are ± (2 ,0 , 0,0). The simulation results together with 

the upper bounds derived in the previous subsections are shown below.

Figure 6.4 shows th a t the upper bound is in agreement with the simulation 

results. For the example at hand, there is less than a 2dB loss when considering 

8-state instead of the 16-state trellis. The improvement in the error performance 

obtained when using 12- and 14-state trellises over the 8-state trellis decreases 

with increasing SNR. T hat is, at m oderate SNR the 12- and 14-state trellises have 

better performance over the 8-state, but a t higher SNR the improvement will be 

insignificant.

90
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Upper bound 
8 -slate 
12-slate 
14-state

0.01 Simulation

12-state 
14-state 
16-state

0.001

0.0001

F igure 6 .4  Probability of Error for Different Partitioning Schemes

6 .5  C onclusion

In this chapter we introduced a new approach to reduce the complexity of the VA. 

This approach is based on partitioning the set of channel states. It also offers good 

complexity versus performance tradeoff. It was shown th a t the trellises obtained in 

[21] are special cases of those described in this chapter.

The state  partitioning approach results in trellises w ith an arbitrary  num ber 

of states which are not necessarily powers of 2 states, as in [21]. Depending on the 

length of the channel and the operating SNR, trellises w ith non-power of 2 states 

can a tta in  a considerably lower probability of error than the powers of 2. However, 

a t high SNR the improvement of the former over the la tte r is insignificant.



CHAPTER 7

C O N C L U S IO N S  A N D  F U T U R E  D IR E C T IO N S

In this work we reported a num ber of new approaches to blind equalization. These 

varied from symbol-by-symbol detection to the sequence estimation.

In Chapter 2 we presented the decorrelation algorithm for decision feedback 

equalization and we showed convergence both analytically and through simulation. 

We also presented a rapidly converging version of the decorrelation algorithm. 

A natural extension would be to apply the decorrelation algorithm to the linear 

equalizer and study the effect of finite param eterization on convergence of the 

algorithm. In this work we assumed th a t the original source emits a white, noise-like 

sequence, i.e., with zero correlation. An interesting point would be to investigate the 

effect of a non-white source on the decorrelation algorithm. A possible modification 

on the algorithm  would be to m atch the output and input correlation. If such a 

m atch is achieved, correct convergence would be guaranteed [56].

In Chapter 3, we derived lower and upper bounds for the steady sta te  proba­

bility of error. The lower bound was found to be tighter than the “no ISI” bound. 

We assumed perfect equalization for the probability of error calculation. A possible 

direction to follow is to relax such an assumption.

In C hapter 4, we introduced the concept of anchoring to the constant modulus 

algorithm. We showed that such an approach will improve the convergence of the 

algorithm. As a m atter of fact, we showed th a t as long as the channel gain exceeds 

a certain critical value, the algorithm will be globally convergent. The anchored 

constant modulus algorithm  was applied to the linear equalizer for autoregressive 

channels and decision feedback equalizers for moving average channels. An extension 

of the anchored constant modulus algorithm of C hapter 4, to include the linear
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equalizer, is also a possible future step. The effect of anchoring on the finitely 

parameterized equalizer is a point worth investigating.

In Chapter 5 we introduced a scheme for blind Viterbi equalization, using 

a fixed step size c. It was found th a t for small values of c (less than  0.05), the 

probability of error of the blind Viterbi approaches the ideal one. The speed of 

convergence, on the other hand, was found to decrease with the value of c. A possible 

way to enhance the speed of convergence is to use a variable step size.

In Chapter 6 , the concept of state  partitioning was successfully applied in 

the binary case. We showed that this approach will generate trellises with an 

arbitrary number of states, not necessarly powers of two, which offers a better 

complexity/perform ance trade-off than other techniques [20] [21]. Extending this to 

include non-binary and two-dimensional m odulation schemes is essential. A possible 

path to follow might be to incorporate Ungerboeck-type partitioning [57] on the 

constellation level [20] and state partitioning on the channel level. Prelim inary results 

showed the effectiveness of this method.

Equalization is one of the possible fields of application of reduced s ta te  sequence 

estimation. Applications to other fields should be addressed. These include decoding 

of convolutional and trellis codes and multi-user detection.



A P P E N D IX  A

D E R IV A T IO N  O F D E N S IT Y  F U N C T IO N S

Claim 1 T h e p rob ab ility  d en sity  fu n ction  f A k{ m) o f  th e  random  variable A k  

d efin ed  in eq u ation  (2 .7 ) is an even  function .

Proof

The input to the slicer in equation (2.7) Ak is given by

N
A k  =  X k  -  Y  w i A k - i

l ' = l

N
= h  + Y  { h ih - i  ~  WiAk-i) ■ (A .l)

t=i

If we denote the set of all correct decisions by A ' and the set of all incorrect decisions 

by A", i.e.,

A '  =  { A i  : A i  =  I i )

A "  - -  { A {  : A i  — — I i } ,  

then the  input of the slicer in (A .l) can be written as

Ak = I k Jr Y j  {hi — Wi) Ik-i + ’Y ,  (hi +  wi) Ik-i- (A -2 )
i,Ak- i tA '  i-.Ak-icA"

From the above equation one can see th a t A k  can be expressed as a sum of

independent random variables. Therefore, the probability density function (pdf) of

A k  is the convolution of the individual pdfs, thus,

f a k  =  f h  *  *  G o Y l V i:Ak _ , c A ' > h h i + m ) I k - n  ( A - 3 )

where Conv . , and Conv . „ are the convolution of the probability densityi:Ak_iCA> ,-.Ak_^A" 1 J J

functions of the corresponding random variables in the sum m ations of equation (A .3).
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Since I ^ s  are random variables taking values of —1 and 1 with equal probabilities 

we have

//*(*) =  l j  +  ^ a r - 1))

^  {S{x + h i  -  wi) + S{x -  h i  + W i ) )

f ( h i + w i ) i k - i { x )  =  2 & { x  h i  r u , ) ) .

The convolution equation in (A.3) can be transform ed into a product form by using 

the Fourier Transform

^ ~ A k =  3~Ik ' I J  • 71 ^ ( h i + W i ) / * _ , ;  ( A - 4 )

i : A k - i c A '  i :Ak _ i t A "

where is the Fourier Transform of the pdf of the random  variable X . Therefore, 

we have

X ,k{u) = cos(u>)

X ( h , - u H) i k - i ( u )  =  c o s ( ( h i  -  W i ) u j )

F ( h i + W , ) l k _ t ( w )  =  COS ( ( h i  +  W i ) u ) .

Now we consider the product term s in equation (A.4). The first term ,

 1_
2\a>\-

i : A k - i ( . A '

where |A '| is the cardinality of the set A' and a,-’s represent all the possible sums and 

differences among all {hi — Wi) such that

Similarly, for the other product term  in equation (A.3) one can write,

17 X3 co s ( M ,
i xAk - i t A "  bi

where |A"| is the cardinality of the set A" and V s  represent all the possible sums 

and differences among all {hi +  to,) such th a t Afc_teA".
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As a result equation (A.4) can be w ritten as

X Ak{u>) =  cos(u;) • — Y  cos{aioj) • 1 3  cos(Vu)
<*i frj

=  cos(u;) ■ „ _ 2 Y ,  Y j  cos(fliw) cos(6,-u>) since | A'| +  \ A " \  =  N
^ Of bi

=  cos (a;) • Y  Y  cos((a« +  M w) +  cos ((a; -  bi)u>)
1 a,' bi

=  cosM  • 1 3 cos(c.-w),
Ci

where c; represents all the possible pairwise sums and differences of a,s and h,s. 

Further, one can write

T Ak =  ^  1 3 cos((ct- +  l)w) +  cos((c; -  l)u;). (A.5)
C»

Taking the inverse transform  of equation (A.5), we can w rite the  pdf of A k  as

SaA x ) =  Ci~  1) +  <(I  +  Ci +  1) +  <5(a; “ A- +  1) + S(z  + g  -  1)) .

(A.6)

Therefore, the pdf of A k  is an even function, and it also exhibits half sym m etry about 

± 1.

Claim 2

E {A k_mA k_n } =  0 for m  > n

Proof:

C o n s i d e r  t h e  j o i n t  c u m u l a t i v e  d i s t r i b u t i o n  f u n c t i o n  ( C D F )  o f  A k - m A k - n  v i z  

F A k _ m A k - n ( x , y ) ,

^  =  P ^  £■) A-k—n < ?/}

=  P{Afs—m ^  X, A.k—n ^  y | — Ik~~n\p

A~P{Ak—m ^  X-, A-k—n | Ak—n — /&_n}<7

=  P ^  X, Ik—n ^  2/ I n —

“1“ {  A k  — yyi ^  X ,  / / c _ n ^3 y  |   Ift — n }  { / 1
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where p is the probability of a correct decision and q is the probability of an incorrect 

decision.

F A k - m A k - n { X i y )  P { A k - m  5: V  | A - k —n  —  h —n } P { h —n  — V  \ A k —n  I k —n } p

~hP{Ak—m h  X | Ak—n = Ik—n}P{ Ik—n — V | A k—n =  Ik—n}*? 

=  P {A k —m — •V,Ak—n =  h —n } P { h —n — V \ Ak—n =  Ik—n}

T P { A k —m — V , A k —n — I k —n } P {  I k —n — V | A k —n I k —n }

(A.7)

since A k - m is independent of Ik-n  for m  > n. By definition

P { I k - n  <  y  I A k - n  =  I k - n }  =  F  %  -  1 ) P { I k - n  =  1 | A *-» =  I k - n }
J  — CO

- \ - 6 ( y  +  1 ) P { I k - n  =  —  1 | A k - n  —  I k - n } d p .  

(A .8)

Now, from equation (2.7) we write

A k —n  —  I k —n  T Y k —n ,

where
N

Y k —n  —  ^  '̂h { I k —n —i W j A k —n —i J  • 
i=l

From the  definition of A k ,

P {A k —n  =  I k - n  | I k - n  =  1) =  -P{sgn(Afc_n ) =  I k - n  \ h - n  =  1}

- P {sgn(l +  Y k - n )  =  1)

=  P { Y k - n > - 1).

Similarly,

P { A k - n  =  h - n  | h - n  =  " 1 }  =  P { Y k - n  <  l}- 

However from Claim 1 of this appendix the pdf of A k  and, hence, of A k- n and Y k - n  

is even. This leads to

P { A k - n  =  h - n  | h - n  =  1} =  P { A k - n  =  h - n  \ h - n  =  ~l }  ■ (A.9)
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Now, using Bayes’ law,

P { A k - n -  h - n  | h - n  =  l } P { h - n  =  1 }
P  { h —n — 1 | A-k—n — I k—n }  — 

P { h —n " 1 | A k —n h —n}

P  { A k —n — h —n

P { A k —n  =  h - n  | h - n  =  ~ ^ }  P  { h - n  =  1 }

P  { A k - n  =  h - n  

Therefore, by using equation (A,9) we get

P { I k - n  =  1 I A k - n  =  h - n }  =  P { h - n  - “ I | A f c - n  —  h - n }  =  “ '

Hence, we can write

P { h - n  <  y  | A k - n  =  h - n }  =  \  f  “  1) + ^  + 1)) ^ii </ —oo

=  */*-„(»). (A. 10)

Similarly, it can be shown that

P  { - I k - n  <  y  \ A k - n  =  - h - n }  =  ^ /  ( 6 ( p  -  1) +  6 ( f l  +  1) )  df i
L  J —oo

=  * / . - „ ( » ) ■  ( A . 1 1 )

Substituting equations (A .10) and (A .11) in (A .7), we get

^ A k - m A k - rS'X ’>y^ ~  P { A k —m  5: X t A k —n  —  h - n } F l k _ n { y )

+  P { A k- m <  x A k- n  =  - h - n } F l k- „ { y )

= FAk- m{x)FIk_n{y).

Therefore, the jo int pdf of A k - m A k - n is given by

fAk- mAk- n = fA k- m{ x ) f Ik_n(y).

Hence,

E  { A k - m A k - n }  =  E { A k - m } E { I k - n }  

=  0 .
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Claim 3

E {Ik_mAk—n} =  0 n ^ m

Proof:

We have

Fa„ h (x ^ )  =  p {Ak-n  <  <  y]K  — n  1 K ~ -T T l  '

=  P { I k —m  ^  y ,  A - k —n ^  3: | A - k —n  —  I k —n } P { A - k —n  =  

T-P{7fc—m  —  V i  A - k —n  5̂  3- | Afc—n " I k —n } P { A - k —n  = 

=  P { I k —m  V i  I k —n  — X  | A - k —n  =  I k —n } P k —n

p P { I k —m  —  V i  I k —n  —  X  | A - k - n  — I k —n } ( } k —n •

Ik-m  independent of /*_„ for m ^  n, hence

P (a;’ 2/) = P { ^ k —m — y  | A-k—n =  I k - n } P { ^ k —n — ® | A-k—n Ik— i

m ^  2/ | Afc_n - 7/j—tiJP I Ik—n — X | A-k—n -

Using equations (A.9) and (A .10), we get

P A k - n h - m ^ X ̂  =  P { P - m  — V i A-k-n =  I k - n - l }  F l k- n_i (x )

~ } ~ P { I k —Tn V i  A - k —n  ~  I k - n - l } P f f r - n - i i x )

Therefore, from equation (A. 12), we can conclude that

E {  A - k - n l k —m }  — E { l k —m l k —n }• 

=  0

Claim 4

E {|A k|} =  1 for every  n

a}

I k —n }

} P k —n

- I k —n \  (Ik-n-

(A .12)

(A .13)

(A.14)



Proof:

The pdf f \Ak\ of the random  variable |y4*| can be expressed as

/  fAk(x ) + f A k{~ x )  x > 0
f\Ak\(x ) 0 x <  0

2 fAk{x) x > 0 
0 x <  0

since fA k{x ) is an even function.

Substituting from equation (A.6 )

f  {b{x  -  |1 +  Ci|) +  8{x -  |1 -  ct |)) x > 0
/|j4fcl \  0 x < 0 .

The above equation is sym m etric about x — 1, therefore the mean

£ { |/U |}  =  1.

Claim 5

For m  ^  n A k_mA k_n =  0

m  =  n A k-n

Proof:

Assume m  < n, then

F'A A — P { A k —n ~  X, A k —m — U}m^k—n v

— P  {A.fc—n ^  Xy Ak—m — V | Afc—m — Ifc-m }Pk—m

P \ A f c —n  X , —7/i ^  y  | -Afc—m  ^  k —m  } */ A;—

A A

— P { A k —n ^  X^I k —m — V | A k —m I k —m j P k —m

A A

"H P  { A k —n — I k —m  ^  y  J A-k—m “  -t k —rn } Qk
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Ak-n  depends only on Ik-m for m > n, hence, it is independent of all I k -m with 

m  < n. Therefore,

F A k—mA k—n — P { A k —n — X | A k —m — I k —m } P { I k —m —1 — V | A k —m I k —m } P k —m

T  P  {A k —n — X , | A k —m — I k —m } P  { I k —m 2A I A k —m — I k —m } Qk—r

— P { A k —n — X ^ A k —m — I k —m {  P  { I k —m *S~: V \ A k —m I k —m }

P  P  { A k —n — X) A k —m — I k —m j  P {  I k —m — V i\  A k —m — I k —m } •

By using equations (A.9) and (A .10), we get

F A k _ m A k - n =  P { A k - n  ^  3?) A k —m  =  I k - m }  P l k - m { y )

P { A k —n — X , A k —m — I k —m }F I k- m ( v )

= FAkJ x ) F Ik_ J y ) .  (A.15)

Therefore,

A k —m A k —n — A k —n l k —m —l

= 0 . (A .16)

For m  > n, a similar proof can be shown by conditioning on A k -n instead.

For m  = n, since the pdf of A k - n is even, it follows tha t

P  { A k - n  =  ±} =  P  { A k - n  =  ~ l }  =  \ -

From the above, it is straightforward to show that, for m  = n,

I j U  =  i.

Claim 6

For m  +  1 < i < N

A k_m lk-i =  h;_m W j _ m  (1 — 2qk-j)

A k_rn A-k_i — h;_m (1 2qk_;) — W ; _ m
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where qk-i is the probability th a t Ak-i ^  h-i-

Proof:

Note tha t

A k —m ^ k —i  —  A k —m l k —i A k - m A k —i-

From equation (2.7),

N  N
A k —m =  I k —m ~b )   ̂h j l k —m —j  )  ! t V j A k —m —j-

j =1 j = 1

We consider each term  separately:

N  N  _________

A-k—m l k —i — I k —m l k —i ~b ^  I k —m —j  I k —i ^   ̂W j A-k—m —j I k —i •
3=1 J=1

The first term  in the RHS is zero, since i > m. Similarly, the summation in the 

second term  is j  = i — m .  Using the result in Claim 3 the term s in the second 

sum m ation are all zero except for j  =  i — m. Therefore,

Ak—mlk—i — hi—m Wi—mAk—ilk—ii

=  h i - m  -  W i - m (1 -  2qk- i )  (A. 17)

Now, consider

N  _______________  N
A k —mA-k—i — I k —m A k —i “b ^  ) h j l k —m —.jAk—i ^  tU jA k —m —.jA k—i <

j = 1 j=l

Using Claim 3, the first term  is zero. Furthermore, using the same claim, the only 

non-zero term  in the first summation is j  =  i — m. On the other hand, using Claim 

5 the only non-zero term  in the second sum is j  = i — m.

Ak-m-Ak—i — hi—mAk—iIk—i 1Ui—TnAj._-

— hi—mA-k—ilk—i Wi—m

~  hi—m (1 2̂ ffc_,) Wj^m (A. 18)
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Claim 7

P { ( - 1  +  (h x +  w ik))Ik_x +  (h 2 +  w^k))Ik_2) > 0}

p r r  .  l - ( h 2 +  W^k))  ̂ l  +  (h2 + W k̂)) ,

{ k' 2 | h 1 +  w<k »| } +  P { I k - 1 > | h , + w « '  I (A‘19)

Proof:

Define V  as

V  = P{  1 +  (h\ +  w[k^)Ik-1 +  (A2 +  ^4 ^Kfc-2) > 0}.

Then

V  =  — (^P{ 1 +  (hi +  w[k^)Ik-i -fi (A2 +  w2 ^)) > 0}

+  P{  1 +  {h\ +  w[ '^)Ik- i  ~  (A2 +  u4 ^)) > 0 }) .

If (hi + iw ^) >  0 , then

1 \  h  +  w\ hi +  w\ )

If, on the other hand, (hi +  w[k )̂ < 0, then

V  -  - ( p i T  - l - ( f t 2  +  «4fe)x , ( p ( r 1 ~  U>2 +  w (2 ] 1 
9 1 <  , | (fc) J +  ( °{-U—l < (fc) }
^ \  Ax +  w} ;

-  - ( p f T  -> 1 ~  (^2 +  ( p i  t 1 -  (A2 +  toj^ \
-  9 I "{■'fe-i > (fc) I +  > , , (fc) J I •

2 \  Ai +  w\ hi +  w\ J

The last step follows since the pdf of h — i is an even function. Therefore, combining

the above

P{  ( —1 +  (hi +  w[h^)Ik-1 T (A2 +  W2^)h—2) >  0}

1 ( r rr . l - ( h 2 + w {2k)) _ 1 +  (A2 +  w (2h)) \
-  2 r ^ -  > ‘ i ^ . + ^ i  j  -



A P P E N D IX  B

D E R IV A T IO N  O F T R A N S IT IO N  P R O B A B IL IT IE S  

B .l  D erivation  o f E quation  (3 .14 )

From equation (3.13),

P{A„ =  1 | 4  =  1} =  £  p \ h - , >  =  y ( N , k ) \ p { Y  = y ( N, k ) } .
y(N,k) I \hl  — IWi I Jy(N,k)

Since Y  is independent of h - i ,  we get

p { A k = \ \ h  = i}  =  £  p  I h - i  \  p \ y =
y[N,k) I

P { A k =  l \ h  = 1} >  P { h - 1 >

i + y ( N, k )

\hi -  w[k)| .

1 ~  E vL  I ̂  -  n;lfc)|

It can be shown that

P { A k =  1 | I k =  1} =  P { A k =  - l | / fc =  -1 } .

Therefore, we get

|/i! -  w[k
* n > p { h . - i >  -  • (B .l)

B .2  D eriva tion  o f E quation  (3 .16)

From equation (3.15), by conditioning on F i ,y 2, l 3 and Y4,

P { A fc =  l | J *  =  l }

v -  n f r l + y i ( m , k )  +  y 2 { m , k )  +  y 3 ( m t k ) - y 4 ( m . k )

F \ > -------------------------- [7 (*)]
VI ( m , fc ) l!/2(m,fc) f  | f t l  ~  ^ 1  I

t/3 (m,k),yi (m,k)
iV i ,Y 2,Y 3, r 4}-

P  {Yi -  y i ( m ,k ) ,Y 2 =  y2( m ,k ) ,Y 3 = y3( m ,k ) ,Y 4 = y4(m .k)}

v -  n f r  ^ 1 + 2/ i(m , fc) + P2( m, k )  + y3(m ,k )  -  y4(m ,k )
Zu P \ Jk - 1 > --------------------------------   (fcT-------------------

y3(m,k),y4(mtk)
P  {^i =  y i ( m ,k ) ,Y 2 = y2(m ,k ) ,Y 3 =  y3{ m ,k ) ,Y 4 =  y4(m ,k )}
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p { A k =  i \ h  =  i }

.  „  f J . 1 -  Er=2 \hi -  ^ 1  -  Ihm + 1 +  | -  E i I m+2 \h{\ -  E fem +2 K ^ l
-  P V ‘ - I >  |fc, -  »S*>|

Since

P { A k =  lj I k =  1} =  P { A k = -1 |7*  =  - 1}.

Therefore, one can write

p L t  1 -  Ifr -  -  l< W i +  toi‘i-,1 -  £ !L » w  I hi\ -  e £ „ «  k p ’l 1
|/ii -  w\(*)l

(B.2)

B .3  D erivation  o f E quation  (3 .22)

From equation (3.22)

P { A k =  1|I k =  1} =  P {  1 +  hnEk-N  + n k >  0}

=  P { n k > —1 — 2h,N}P{Ek-iv = 2}

+ P { n k >  —1 +  2h /^}P {E k_N =  —2}

=  Q ( ~ l ~a 2h- ^  P { E k-N  = 2} + Q  (K~ l+a 2hN ĵ P {E k -N  = -2 } .

and

P { A k =  — l \ I k = —1} =  P { — 1 +  h]yEk-jy +  n k < 0 }

=  P { n k <  1 — 2h^/}P {E k^N =  2}

-\-P{nk < 1 +  2 h s } P { E k-N  — —2}

=  Q ^ ~ 1 + ( T2h- N ^ P { E k . N  =  2 }

+ Q  ~ hN ĵ P { E k-N = -2 } .

Combining the above two equations, we get

-  U Q ( = ^ ) + Q ( = 1 ^ ) ) .  (B .3,
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B.4 Derivation of Eqs. (3.24) and (3.25)

From equation (3.23) we have,

P{Ak  =  l | 7 f c  =  l }  =  / ? { l  +  hm+iEk-m-i  +  Ym+1 +  nk >  0 } .

Using the  to tal probability theorem  the above probability is evaluated in term s of 

the probabilities of Ek- m- i  and Um+i. Therefore,

=  S ' q I  - 1 - ^ + 1  . p { y m+i  =  f c + i  =  2 } P { E k - m ~l  =  2}
Vm+1 V ^  /

+  j *  Q f ~ l  + 2hm+1- y m+A  . ^  =  =  _ 2 } .P { £ t _m_ 1 =  —2}

Define (3m as
N

/3m = 2 J 2  N
i —m + l

Using the above we can bound the transition probability. It can be shown that

P { A k = l \ I k = l}  > Q ^ ~ 1 ~  2hm^  +  P { £ fe- m- i  =  2 }

+Q  ^ - 1 +  2 ^ + i +  ^m+i^ =  _ 2}) (B .4)

and

P { A k = l \ I k = 1} <  Q =  2}

+ Q  ^ ~ 1 + 2^ + i  - i m+i j  P{jBjt_rn_ 1 =  _ 2}) (B.5)

Similarly, it can be shown tha t

p {a * =  - i | 4  =  - i } >  q f ~ 1 ~ 2A" ^ 1 + A "+1j p ( £ t - „ - 1 =  -2 }

+ ( 3  =  2 } ,  (1 3 .6 )

and

p { A *  =  - i | 4  =  - i }  <  Q  ~ - 1" * 1 =  - 2 )

+ Q  ^ - 1  +  2J>m+i 7  / W i j  =  2 ). (B.7)
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From equations (B.4) and (B .6 ) we can find a lower bound for a m:

^ - 1 - 2 k m + 1 + .̂ + ^  +  Q  ^ - 1 + 2 k m + l ± P r n + l  ^  _ ( g  g )

Similarly, from equations (B.5) and (B.7) an upper bound on a m can be obtained 

a m < ^ ( g  +  Q ^ - 1 + 2 hm+i - P m + iy j   ̂ (fi g)

where

(3m = 2 £  (B .10)
i=rra+l
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