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ABSTRACT

MOTION ESTIMATION
USING OPTICAL FLOW FIELD

by
Jingning Pan

Over the last decade, many low-level vision algorithms have been devised for

extracting depth from intensity images. Most of them are based on motion of the rigid

observer. Translation and rotation are constants with respect to space coordinates.

When multi-objects move and/or the objects change shape, the algorithms cannot

be used.

In this dissertation, we develop a new robust framework for the determination of

dense 3-D position and motion fields from a stereo image sequence. The framewOrk is

based on unified optical flow field (UOFF). In the UOFF approach, a four frame mode

is used to compute six dense 3-D position and velocity fields. Their accuracy depends

on the accuracy of optical flow field computation. The approach can estimate rigid

and/or nonrigid motion as well as observer and/or object(s) motion.

Here, a novel approach to optical flow field computation is developed. The

approach is named as correlation-feedback approach. It has three different features

from any other existing approaches. They are feedback, rubber window, and special

refinement. With those three features, error is reduced, boundary is conserved,

subpixel estimation accuracy is increased, and the system is robust. Convergence of

the algorithm is proved in general.

Since the UOFF is based on each pixel, it is sensitive to noise or uncertainty

at each pixel. In order to improve its performance, we applied two Kalman filters.

Our analysis indicates that different image areas need different convergence rates,



for instance the areas along boundaries have faster convergence rate than an interior

area. The first Kalman filter is developed to conserve moving boundary in optical

flow determination by applying needed nonhomogeneous iterations. The second

Kalman filter is devised to compute 3-D motion and structure based on a stereo

image sequence. Since multi-object motion is allowed, newly visible areas may be

exposed in images. How to detect and handle the newly visible areas is addressed.

The system and measurement noise covariance matrices, Q and R, in the two Kalman

filters are analyzed in detail. Numerous experiments demonstrate the efficiency of

our approach.
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CHAPTER 1

INTRODUCTION

Over the last ten years, research on the analysis or visual motion has come to pl ay a

dominant role within the computer vision community [1]. The ultimate goals of this

research are vision systems with the ability to navigate, recognize, and track objects

and estimate their speed and direction. Such systems are required for tasks that are

too expensive, too hazardous, or too inaccessible for people to perform them. For

instances, when robots are used for repetitive manufacturing operations, handling

hazardous materials, and exploring the oceans or other planets, the robots need vision

systems to sense their environments, build internal models of those environments,

and construct and execute plans for achieving their goals. Most of the operations

must be performed in a dynamic world in which both the robots (or cameras) and

objects move and change shape overtime.

Most of previous ■ orks are based on the motion of camera. Apparently, the

camera motion is different from object(s) motion [2]. When a camera moves, the

whole scene moves. One can use two constant vectors T and R to describe the

motion because camera is rigid and its motion can only be translational and (or)

rotational. This model cannot be used in object tracking. Nor can this model be

used in multi-objects that have different motions. When the camera, is stationary

and uhiedti move, background is stationary, and motion representation must be a few

11111(1:ions of different objects. When moving objects change their shape overtime, i.e.,

they are nun rigid, !notion representation is more complicated. Such motion should

be represented as a. function of each point in 3-D world coordinate or 2-D image

plane coordinate. In many literatures [2]-[8, the rotation and translation motion of

1
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camera are known, according to the motions, depth map, time-to-collision, and other

three dimensional parameters are considered primal' ly.

In this research, we apply stereo vision to not only camera motion but also

object motion. In other words, application of this work will enable robots to be able

to not only travel through unknown environments but also to track moving objects.

Actually, it can be seen that our model can also be used in nonrigid objects as well

as rigid objects.

There are basically two different approaches to recovering the structure of

object(s) and the relative motion between object(s) and camera(s): the optical flow

field approach [9] and the feature correspondence approach [10]. This dissertation

research is based on the optical flow approach because the approach can be used

widely as long as its accuracy is improved. Since optical flow field describes motion

of each pixel, the optical flow approach inherently is not restricted to rigid or nonrigid

motion.

Although the research focuses on robot vision, the research of the optical flow

field has much wider potentials. In [11], the possibility using optical flow in video

coding application was discussed. Moreover, a significant amount of research has

focussed on using the optical flow and computer vision techniques in Model-Based

video compression [12]-[14]. The model-based video compression coding is to obtain

a very low bit rate digital video (about 10 Kbits/s). Image motion analysis has also

become active in modeling and analysis of heart wall motion [14].

In this thesis, a new approach to compute optical flow field and a new

framework in 3-1) motion estimation have been developed and presented. However,

before describing our work, we will describe some background and motivation for

the research.



1.1 Background and Motivation

Tlie procedure 
of.

	of structure and motion of 3-D object(s) can be

illustrated in Figure 1.1.

Firstly, images are taken by a camera and then are digitized by an AiD

converter one by one to form an image sequence. With this digital image sequence,

the object(s) are reconstructed. In this thesis, the reconstruction means that X(x, y),

Y(x, y), Z(x, y), X(x, y), y), and Z(x, y) are computed, where X, Y, and Z are

coordinates of 3-D object(s), and Z are velocities of X, Y, and Z, and x and

y are the coordinates in digital images.

How can these six 3-D fields be computed from the digital image sequence?

Generally speaking, in order to recover the 3-D object(s), disparity between a frame

and the next frame in the image sequence must be estimated. The disparity is defined

as following: If a world point (P) in 3-D space is projected onto the first frame as

a pixel with the coordinates (x1 and because of motion of the world point (P)

or motion of a. camera the world point (P) is projected onto the second frame as

another pixel (x 2 , y 2 ) that is not equal to (x 1 , y i ), then the disparity is the distance

between these pixels. Once the disparity is known, 3-D motion can be computed

using the perspective projection. We will describe the process next.

1.1.1 Optical Flow Computation

There are two basic approaches to compute disparity. As introduced in the beginning

of this chapter, they are the feature correspondence approach and the optical flow

ap roach.

In the leaLure correspondence approach, the motion of only features, such

as boundaries, ()Niers, and other interesting point sets, is computed. However,

extracting and establishing the feature correspondence is difficult [1 5]. In addition,

if an object is nonrigid, the approach usually can not be used.
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Figure 1.1 Reconstruction of 3-1) object(s)
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When optical flow approach is applied to compute disparities (or optical flow),

the motion field for the entire image is estimated instead of a few interesting point

sets. The motion field of images is expressed as

17 (x, y) =
u(x, y)
v(x ,y) 

(ix -
( t

3.1
tit _   

(x. y) is called as optical flow field. If intensity of the first image is represented by

/ 1 (x, y, , the second frame image .1.2 (x , y, t+ St) should be equal to I i (x-Fu(x, y)8t, , y+

v(x, y)St, t (St). The optical flow field 0(x, y) can be computed by minimize the

difference between the first image and the second image. This technique to compute

optical flow field is call "Correlation-based approach." This technique and another

technique named as Gradient-based approach will be discussed ill detail in Chapter

Basically, the computation of optical flow field has four problems. They are

noise, subpixel, aperture, and smoothness.

1. Noise: In image acquisition and digitization, noise may be generated. This

noise can reduce accuracy of optical flow computation. Therefore some kind

of filter is needed. In many literatures, image preprocessing is not considered.

However, in those literatures, when a refinement process of optical flow compu-

tation is used to propagate neighborhood information, this refinement actually

is a kind of filtering. When gradient-based approach is used to compute optical

flow derivative is substituted with difference because mages are digital. This

digitizat on is a source of noise.

Subpixel: We compute optical flow field from a digital image sequence. Digital

image means that intensity and coordinates are digitized. If the correlation-

based approach is used to compute optical flow held, matching measureme nt

will cause error. Under the assumption that en vironmental light taking the first

frame L I ( ,y) and the second frame I , y) does not change, this means that
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only motion of the :3-D object makes two images different, therefore ./9,(1 , ,y)

± 74x, y), y v(x, y)). Around a pixel P(x, y) in the first frame / 1 , a,

small window W1, 1 (x, y) is formed. Similarly, the same size window 11/ 7,2 (x, y) is

formed around the pixel (:r:, y) in the second image 12 . When Wp1 (x u, y + v)

matches W7,9(3:, y) exactly, u and v at the pixel are obtained. However, if motion

of the :3-D object causes that image shifts over subpixel, once the image is

digitized, it is impossible to find a Iljp1 that matches exactly a Wp2. Therefore,

estimation of subpixel image velocity is needed.

3. Aperture: Aperture is an inherent problem for every optical flow techniques.

When an edge is looked at from an aperture, motion of the edge in some

directions is impossible to know. For instance, Figure 1.2 shows an edge. When

the edge moves upwards or downwards, the motion is not visible. In gradient-

based approach, the aperture problem is represented as that two unknowns are

to be solved from one equation. The aperture problem only can be overcome

by means of neighborhood information. In the correlation-based approach, the

ambiguity can be avoided near corners of an object's image and in textured

areas [39].

4. Smoothness: When the neighborhood information is applied to refine the

optical flow field, can results be improved'? Sometimes, the answer is "no."

Because this refinement actually is a low-pass filter, the moving boundary or

the other point sets with great intensity variation are to be blurred.

Although optical How computation has many problems, it does not rely on special

features such as edge, corner, and the other interesting point, set. It can be used

widely in many computer vision tasks, for instance, :3-1_) structure and motion

analysis.



Figure 1.2 A boundary within aperture

Once optical flow field t7(x,y) is known, 3-1) parameters can be computed by

perspective projection. That will be discussed next.

1.1.2 3 -D Motion Computation

Let's take a look at Figure 1.3, which is to illustrate perspective projection. Assuming

that distance. D and focal length f are known, once the optical flow u is also known,

the AX can be obtained from the perspective projection

AX =
	 D	

(1 .2)

However, it is not easily to know D. Actually D is function of (x, y), 	 D = Z(x, y)

that is called "depth." If atI (x, y) are considered, it is referred to as depth map.

In order to compute Z(x, J), two or more cameras are needed. In other words,

stereo images should be used. In many literatures [17], motion of a single camera

is used to compute depth map. But, when the velocities of objects are considered,

7



X

Figure 1.3 Perspective projection
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Figure 1.4 Reconstruction system

a stereo image sequence is needed. Therefore, the robot vision problem is to build

up a reconstruction system whose input is a stereo image sequence and output is

a recovered object. Refer to Figure 1.4. Most of previous works are based on this

model. From control system theory point of view, this is an open loop system.

It is difficult for such system to obtains accurate outputs, high stability, and high

robustness.

In this thesis, we devise a novel system model that can be approximately repre-

sented by Figure 1.5.

Obviously, this is a close loop system. According to the recovered object,

a, virtual image sequence is estimated. By compensating the difference between the

real and virtual stereo image sequences, the object can be estimated more accurately.

Dynamic behavior is inherent to the nature of our physical environment. When

dynamic behavior of motion is needed, we must consider not only the current state

but also a series of previous states. Kalman filtering is an optimal process to fuse the

current state and the previous states. However, when objects move, newly visible

area(s) may, be exposed in image plane. In the new exposed area(s), the previous

states can not be used, otherwise error will be caused.
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Figure 1.5 Feedback reconstruction system

1.2 Thesis Objective

The objective of this dissertation is to develop a theoretical framework that can

estimate motion and position of 3-D objects in dynamic world from a stereo image

sequence. Here, dynamic world means that both camera(s) and object(s) can move.

In order to reach the goal, the following four tasks must be fulfilled.

1. Enhancing the accuracy of optical flow field.

2. Improving moving boundaries of optical flow field.

3. Setting up relationship between 3-D motion and 2-D optical flow fields.

4. Using the Kalman filter to optimally fuse current and previous information so

that 3-D motion and position can be relined over time when a stereo image

sequences is applied.
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L3 Thesis Overview

Chapter 2 reviews related techniques described in the literatures and explains how

they fit into our framework and what differences there are between them and our

work. Chapter 3 describes our new optical flow field computation approach that is

developed based on the correlation-based approach to optical flow computation and

feedback technique widely used in control system theory. Accuracy of the optical flow

field is considerably increased and the system is more robust. Chapter 4 presents

UOFF framework and its application in 3-D motion analysis. A four frame image

model is introduced. The model is used to compute position and motion of 3-D

objects. Chapter 5 describes a new method to improve the moving boundaries of

optical flow field. The method is based on a Kalman filter. Conventionally, Kalman

filter is used in incremental fashion. But here, we use Kalman filter to refine optical

flow filter based on a fixed set of images. Chapter 6 describes how to use another

Kalman filter and a stereo image sequence to improve the estimates of 3-D position

and motion, and how to handle newly visible area(s) explosion issue. Finally, Chapter

7 summarizes the major contribution of our research and indicates the directions for

future research.



CHAPTER 2

MAJOR RELATED APPROACHES

As noted in Chapter 1, the recovery of :3-D motion and structure information from

a. sequence of images can be decomposed into two steps: 1. Compute image plane

velocities from changes in image intensity values, i.e., compute optical flow. 2. Use

optical flow fields to estimate 3-D motion and structure.

2.1 Optical Plow Computation

Most of the current approaches to the computation of optical flow can be divided

according to their choice of a measurement.

1. Those that use the continuous variations of intensity over space and time to

measure instantaneous image-velocities, e.g., the gradient-based techniques [9],

[19]-[22].

2. Those that measure the displacement of points or primitive image tokens

between successive frames of a sequence, e.g., the correlation- based matching

techniques [25]-[28] and the symbolic-token based matching techniques . 29j

[31].

Those which measure the spatio-temporal energy of the image intensity

function in a small area during a small period of time to determine the

direction (and possibly the speed ) of motion image points i.e. optical flow

[32]-[3:3].

12
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2.1.1 The Gradient-based Approach

The gradient-based approach is based on the assumption that intensity of light

reflected by a point on a surface of an object and recorded in the image remains

constant during a short time interval, although the location of the image of that

point may change due to motion. This can be mathematically stated as,

	

kr, y, t) = /(x uAt, y vAt, t At) 	 (2.1)

where U = (u, v) is an image velocity vector at the point (x, y) and it is assumed to

be constant during the interval (t, t At). This equation is called intensity constant

equation. ./(x, y, t) is the image intensity at point (x, y) in the image at time t. In the

limit, when the time interval At tends to zero, the intensity-constancy assumption

leads to the following equation:

Jx u 	 Tyv + it = 0 	 .(2.2) .

because

f(x uAt, y vAt, t + At) = i(x,y,t)+ fxuAt .1,vAt + I t At

	

+ higher order terms. 	 (2.3)

Ignoring the higher order terms in Equation (2.3), using Equation (2.1) in Equation

(2.3) and taking the limit as At 	 0, Equation (2.2) can be obtained.

The collection of image velocity vectors U for the entire image constitutes the

optical flow field for the image.

Equation (2.2) embodies two unknowns a and v, and is not sufficient by itself to

specify the optical flow uniquely. But, it does constrain the solution. It is possible to

compute optical flow for images using the optical flow constraint equation together

with an additional assumptions. A popular assumption is smoothness constraint,

i.e., motion field varies smoothly in most parts of the image. Horn and Schmid: [9]



imposed this constraint by minimizing the error in optical flow.

I (A/ u + /t) 2 '2 (il Au 112 Av E)dX

where D is integration domain, the magnitude of a reflects the influence of the

smoothness term, Al (i x /v ), and II Au Av II.; are the measure of the

departure from smoothness in the optical flow. Here, II Au di and 11 Av 11: 22 are the

squares of the magnitude of the gradient of the optical flow velocity components u

and v respectively:

2Ou + Ott 	 (_av +
Oy 	 as 	 ay

They derived an iterative method to calculate the optical flow.

fik + fi k +
u k+1 	 k	

/z[is

Iv [ix tik + 1-1,Dk + It ] 

ct,2 + 	 + jry2

where k denotes the iteration number, u° and v° denote initial velocity estimates

which are set to zero, and fik and i5 k. denote neighborhood averages of u' and v k .

On the boundary the local smoothness of optical flow will not hold. A few

people have made efforts to improve optical flow determination along the boundaries,

but, it is still a problem.

The primal.) , difficulty for the gradient-based approaches arises from the

following facts: They are suitable when the displacements are small with respect

to great scale of the image intensity variations. But, sometimes the temporal

sampling rate cannot be high because limitation of digitization and resolution. On

the other hand, when the scale of the image intensity variation is very small, if the

displacements are not enough great, optical flow will not be obtained. Furthermore,

above two requirements are not easy to be met simultaneously in real image sequences

because the variations of intensities of real images may not be always uniform.

About the quantitative error and reliability analysis of the gradient-based approach,

Kearney et at. have discussed in detail [34.].

14

(2,4)

V
k+1

cv2 	 / 2 4_ ,f 2
' 	 ' 	 Y

(2. 5)

(2.6)
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2.1.2 The Correlation-based Approach

The correlation-based approach is also referred to the correlation matching approach.

It is based on the following principles.

If the intensity functions of two images are f(x,y) and g(x, y) that are two

successive frames. Then the cross correlation function. between the two images is

defined as

Cfg(aX Sy
) 

1"C° TX) f(x — Sx,y — Sy)gx,y)dxdy	 (2.7)
-00 -00

where S. = (5x, 6y) is the relative shift between the two images. C is the correlation

function, and 1: and y vary over the two images. The best estimate of S is determined

by maximizing the C over a set of candidate values for S. When a finite sized window

from one image is matched against identical windows from the second image, the

definition given above is modified such that the integration is limited to the windows.

If the image is represented by a discrete pixel array, the above description will still

hold except that "point" is replaced by a "pixel" and the integral is replaced by

discrete sum. Since our concern is primarily with digitized images, the following

discussion uses the discrete formulations.

The discrete formulation of Equation (2.7) is called "direct correlation

measure." There are also other related measures that can be used to determine

the match. The most commonly used measures for matching are listed below:

1. Direct correlation, in which the image intensity values of the corresponding

pixels in the two windows are multiplied and summed.

2. Mean normalized correlation, in which the average intensity of each window

is subtracted from the intensity values of each pixel in that window before

multiplication and summing.

3. Variance normalized correlation, in which the correlation sum is divided by the

product of the variances of the intensities in each window.
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4. Sum of squared differences, in which the sum of the square of the differences

bet eel the intensities at corresponding pixels is calculated.

5. Sum of absolute differences, which is similar to sum of squared differences,

except that the absolute values of the differences are used instead of their

squares.

In general, these measures can also be used as estimates of matching strength between

two feature vectors; hence, they are useful as matching measures [44]-[45] for many

different types of image events.

Based on sum-of-square-differences measure, the correlation matching process

is discussed below. For each pixel P(x, y) at location (x, y) in the first image /1 ,a.

correlation - window M 7, of size (2n-I-1)x (2n+1) is formed around the pixel. A

search-window of size (2N+1)x(2N+1) is established around the pixel at the

same location (x, y) in the second image '2. The (2N+1)x(2N+1) sample of error •

distribution is computed using the sum-of-squared-differences as

7i

E(Ax, Ay) = E	 u i (x.	 y + j) — 12 (x + i + Ax, y 	 AY)) 2

	
(2. 8)

j=-7t

here —N < Ax, Ay < +N.

In order to handle subpixel issue, many algorithms are developed. Here, Singh's

algorithm [LH] is discussed. The (2N+1)x(2N+1) sample of response-distribution is

computed as follows:

Re(Ax) Ay) , e — kE(Ax4Y) 	 (2.9)

where —N < Ax, Ay < +N.

One could compute an estimate of image velocity using, for instance, a

weighted-least-squares approach. Under the asstuription that noise is additive and

zero- mean, one could also associate a covariance with this estimate. Quantitatively,
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the weighted-least-squares based estimate, denoted by U 	 (u, v) , is given by

EAv H,(Ax, Ay)Aa
E„. Ez, y Rc (Ax, Ay)

fax ILy Rc (AX, Ay)Ay

EAs EA t, Rc(Ax, Ay)

(2.10)

v(x, (2.11)

where the summation is carried out over—N < u, v < +N. Because of noise, digiti-

zation, and aperture problem, this approach can produce great errors in some pixels

of the optical flow field. In order to reduce the errors, smooth constraint or other

similar techniques have to be used.

The correlation-based approaches have the following two drawbacks. Firstly, it

is inevitable that moving boundary is blurred because of use of smoothness. Secondly,

when real image vectors are subpixels, it is difficult to accurately calculate image

vectors in this approach. In Chapter 3, we discuss the problem in detail.

2.2 3-D Motion Computation

As noted in Chapter 1, most of the previous works are just to compute depth

map and/or time-collision by assuming that the camera motion is known. Some

of literatures consider computing depth map and camera translation together [4-].

When optical flow field is known, the computation of the motion of the observer is

not difficult because motion of observer can be represented by only six quantities,

three instantaneous translational components (Tx , 7-;„ T,) and three instantaneous

ica tat,ional components (R,,, Hy , R z ). The (Tv , Ty , ) and (H,, Ry , Rz ) are constant

with respect to space coordinates. However, when multi-objects and shape change

exist, Z(./ p), X(x, y), and '1>'(s, y), three fields, should be computed. This is one of

the differences between our work and the previous works. This section will introduce

a few concepts and two examples of motion interpretation.
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Figure 2.2 The geometry for stereopsis
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9 ...2.1 Motion Parallax

In this section, only the benefits of being able to fixate a point n our :3-D environment

is considered. Such a point is a point of reference and points (i.e., B) farther away

("behind") appear to move in the same direction as the viewer, while points (i.e., A)

that are nearer ("in front") appear to move away in the opposite direction. Figure

2.1 shows the fixation point.

The motion description is that of motion parallax, kinetic depth is the sensation

one gets when horizontally moving one's head while fixating a target. Ballard [35)

shows how a fixation point facilitates the derivation of depth by providing an instan-

taneous origin at (0, 0, z 0 ), where .z0 is the distance of the fixation point from the

viewer.

Vergence geometry is given in Figure 2.2. Given the focal length of the camera

f and the base (separation) b, what remains to be established for deriving the depth

zo is the displacement pair (a, /3). The geometry for triangulation is then quite easy

to use.

zo zo + f zo zo + f— 	
1 	 1 + a	 7' 	 7' +

Hence, one has

fb
zo = 	

+ ,3

Since

	cos 7 , 	 cos 72

=; sin 7 , 	 sf 	 ; 	 I 	 in 72

bsin 	 sin. -y2
zo = 	 . 	 (2.15)

si n(7,	 72 )

Using perspective projection, and the geometry of Figure 2.1 , any point in the image

plane. of coordinates (x,y) is given by

— f X (2.16)

and

b=l+r 	 (2.12)

(2.13)

(2.14)

Z	
(2.17)
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where (X , /, Z) are the 3-D coordinates. Assume that (X, )/, Z) and (u, v) stand

for the :3-D (world) and 2-D (optical flow retinal) velocities, respectively. Then

differentiating Equations (2.16-2.17) and assuming only translational velocity one

obtains

—Zu = 1.2\ + x2

-2v = f) .7 y2 	 (2.18)

Assuming that we fixate the target, its foveal position implies that the retinal

coordinates are approximately zero. Further assume that X and V are comparable

or greater than Z, and that f > x, y. Then

it 	 X
— 	 (2.19)

The :3-D velocity V can be obtained from Equations (2.18 and 2.19) as

1171(k2 + /-2 ) 2 = Z (u2 	 v 2 ) 1/2 . (2.20).

When the head of the observer moves right, a vestibular command motion l/  is

parallel and of opposite sign to V, and if one assumes the Z is small and zo > Z,

from similar triangles one can then write

11/R1	 zo 
(2.21)

V 	 —

Finally, from Equations (2.20) and (2.21) one readily obtains that

zo (u2 v 2 )V 2Z = zo[1.   -4. 	 (2.22)
VH

For zo < Z, the sign is negative, as one would expect when moving right and

observing targets nearer than the fixation point.

If the approach is explained by single camera motion, we can say that the z o

can be computed when the camera rotates counterclockwise over 108° 72 with

respect to the fixation point, then depth map can be computed when the camera

translates over VH . By the rotation and the translation of the camera, depth map is

obtained.



dZ
di 	

— Rx Y (2.24)

n1 [-1 0 X xy 	 —(1 + x 2) x
(1 + y 2 )	 —xy	 — a;

[ RR: 	 (2.25)
Tx

Ty
Z 0 —1 y
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2.2.2 Three-dimensional Motion

The more general case that [36] considers both translational velocity (T) and angular

velocity (R.) was treated by Waxman and Duncan [36]. For a 3-D pixel, P, the

differential motion is defined as

dP(.7.7 	—T — R x P.	 (2.23)

where T = (Tx ,Ty ,T2 ), R = (Rx Ry , Rz.) and

dt 	
—Tx — Ry Z Rz Y

dY
dt 	

—Ty RzX Rx Y

dX

If one were to project P(X, Y, Z) onto a unit focal length image ( = 1), the retinal

coordinates are again given as (x, y) (X/Z, Y/Z), and the optical flow (u, v) is

obtained as

In many literatures, it is assumed that T and R are motion of a camera. When

R 0 and T is known, i.e., the camera does not rotate, but its translation is known,

depth map Z(x, y) can be obtained from following equations:

Tx

Ty
T. 

(2.26)    

In those literatures, f,, and T.. are always chosen to be. zeroes (I = Tz = 0), thus

Z (x, y) =  	 (2.27)
u(x, y)

This equation is typically used in the approach of depth from motion. Then, such

system is of poor robustness. This will be discussed in Section 4.6.
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II T and R are variables with respect to spatial coordinates, the existing

approaches can not be used to estimate 3-D motion. In Chapter 4, we will introduce

a new approach, that is, unified optical flow field (UOFF) approach. The UOFF can

estimate :3-D motion (X x, y), ff (x , y), 2'(x , Y )).



CHAPTER 3

CORRELATION-FEEDBACK

In this chapter, a new approach using feedback technique is proposed to compute

optical flow. It is well-know that feedback is a powerful technique widely used in

the field of automatic control. Feedback can make system robust to noise and raise

accuracy. In general, this feedback technique can be used for any existing optical flow

determination algorithms, say either gradient-based or correlation-based optical flow

techniques. As an illustration of our proposal, we choose to work with correlation-

based technique because the recently developed correlation-based technique by Singh

in {44} has some attractive merits and is suitable for us to apply the feedback

technique. Therefore, we call this specific implementation the correlation-feedback

algorithm.

The approach can be briefly represented as following. When the first given

image that is taken by a camera and the optical flow velocities are known, the first

image is shifted at the optical flow velocities, as a result, an estimate of the second

given image is obtained. At beginning, the estimated second image is not accurate

since the velocities is not accurate. As long as the system is built appropriately,

the velocities will be iteratively compensated to make the difference between the

recovered second image and the second given image. Since a true optical flow velocity

may be a subpixel, a bilinear interpolation is applied to the digital image to obtain a

virtual and continuous estimated second image, so that accuracy of estimated optical

novki vectors Cali be increased considerably. In computation, the recovered iinage

intensities are calculated only at the place needed instead of that entire continuous

image. That is why it is called as the virtual and continuous image. We will show the

approach is generally convergent. At least, when image intensity is a linear function

23
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Figure 3.1 A schematic diagram.

of coordinates with free noise, the algorithm must converge to true values. In fact,.

if noise is reduced, the vicinity of a pixel can be thought of that the above condition

is satisfied approximately except the moving boundaries. However, the condition is

too strict. Actually, as long as extreme points of the response distributions (refer

to the next section) are just true optical flow vectors, the true optical flow vectors

can be recovered accurately. However, in the vicinity of a pixel, this condition is

approximately satisfied.

Section :3.1 proposes framework and the algorithm. Section 3.2 and 3.3 carefully

analyze the algorithm, compare it with previous works and discuss the convergence of

it. Section 3.4 demonstrates implementation and experiment to verify the algorithm.

3.1 Proposed Framework

Figure :3.1 shows an overview of the proposed framework. Every block in the figure

will be described below in detail.
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3.1.1 	 Initialization

In order to have estimated optical flow field converge to true values and make the

convergence faster, an early procedure can be used to compute an initial estimated.

optical flow field. It is not critical to select the early procedure. But, it is hoped that

the procedure is as fast as poss ible and as accurate as possible. In our experiments,

the algorithm of Horn and Schunck [9] is used. This is because that the algorithm is

fast and the problem caused by the smoothness is not serious at the first ten to twenty

iterations. Furthermore, our experiments show that even if the imposed smoothness

constraint causes serious error, subsequent correlation feedback procedure can still

make the error to a minimum. Our experimentsrents also show that even if no any early

procedure is used and initial optical flow are specified as any value except zero, the

algorithm is still convergent, but the convergent speed may be reduced.

After this stage, an initial optical flow field (0 (0) = (u ( ' ) ,v ( ° ) )) become

available.

3.1.2 Observer

As discussed in Chapter 2, it is clear that the correlation-based approach cannot

accurately recover subpixel optical flow vectors because image held has been digitized.

If the corresponding continuous image field f (x, y) could be known, the accuracy of

the recovery would be improved.

The continuous image field f 	 y) should have the following properties. Firstly,

where / 1 is the first digital image, 7 and j 1 are integer indexes in the first image.

That is, on the 2-f) grid, the intensities in the continuous image field Ai l	) are

coincident with that of the digitized image 1 1 (i i ,:),). Secondly, if [7(") 	 (u(") v(" ) )

that is optical How vector obtained in the nth iteration is equal to the true optical
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flow vector Oa = (ua,va), it is not difficult to see that

f122 — ?La ( 	 l2), j2 — v" (i2 j2)) = 12(i2,12)•
	 (3.2)

where 12 is the second given digital image, i.2 and j 2 are integer indexes of 12 .

Now, define

2) = I (i2 — u (" ) (i2, j2) 	 — v (" (i2j2)).
	 (3.3)

where /2(i2, j2) is an estimate of 12(i2,,i2). The difference between 12(22,12) and

j2 ) is affected by the error of O (" ) . In general, the greater the error, the greater

the difference. In other words, the difference between /2 (i 2 ,12 ) and / 2 (i9, J 2 ) contains

the information about the accuracy of ON. It is noted that we do not actually

estimate the entire continuous image field f(x,y). Only those values needed for

optical flow computation, say, f (i2 — u N (i2,12),12 V(")(i9)12)) will be estimated

from the first given digital image i i (x, y) by using a bilinear interpolation technique.

In our work, the bilinear interpolation discussed in [38] is adopted.

— •-1( " ) (.2i/2),i2 —0(" ) (i2,i2))

= (1 — (L)[(1 	 b)1 1 (2,j)+ b x 	 (2 ) j + 1)]

+a[(1 — b)	 + 1, j)	 b X 11 +	 + 1)]
	

(3.4)

where 	 u(")); j=	 — v ( " ) ); a = 7:2 — (") — i; b = j.2 — v(") — j; in (x)

means that only the integer part of x is retained.

3.1.3 Correlation

Once the interpolated image f ( 2 - u ( " ) (12,12),12 - v"(1),/2)) and the second given

digital image 12 (i2 , J2) arc available, we can select a correlation measure to search

for the best match for a given pixel of 1.2 (1. 2 ,1)) in a search-area in the interpolated

image .j 0: 2 — -0")(.1. 2, 1 1 — 1)(" 1 (i.), 1 2 )). In this thesis, the suns-ol-square-differences

D) [44] [39] is used. In essence, for each pixel P(i..,,j 2 ) at location (i2,1.0 in the
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12(i2,./2), a correlation window 1/17c of size 2772. -I- 1) x (27n + 1) is formed around the

pixel. The search window in our proposed approach is quite different from that used

the correlation-based approach, say, in (4.4] 39]. The search window is a "rubber"

window with variable window size. The size of this window depends on (u (14 , v ( " ) ).

Let u be a quantity chosen from the following five quantities (7/(" ) --7274 " ) u(") —

ii(") 	 (n)
4n

,(n) 	 u(') 	 (n) 	 n(n)
4n 	 2n l• Let v be a quantity chosen from the following five

quantities (v ( "' ) — 27 V(71) — 4,7n) t) (") , V (") + V" "(") 	 4")	2, 	 4n 	 ), where 77 is the number

of iterations. Hence, there are 5x 5 possible combinations for (u, v). Each of them

corresponds to a pixel in the continuous image plane f (x, y), i.e., (i 2 — u, j2 — v). A

correlation window is centered on this pixel. The 5 x5 samples of error distribution

can be computed by using the sum-of-square-differences. That is,

7)b 	 771

E (u, v) 	 E (i7-2(7.2+x, 32+ y)

f(i2 + — u, a2 + J — v))
2 	(3.5)

u ( " 	 u(n	u E u (n) 	 U(71) 	(n)
(n) 

u(n 	 )), u(n)   u(n)
—

92n ' u 	477	 4n	 n

)

(n) 	 (n) 	 ,v(n)

	

v E { v (n) 	 V771') v (n) 	 V 	, v (n) , v(n 	
„

	 —
)   v(n) 	 (3.6)

4n	 477,	 2n

The 5 x5 samples of response distribution can be computed as follows:

Rc oz, v) e-kE(it,v) (3.7)

There k is chosen so as to make R., be a number close to unity. The optical flow

vector derived at this correlation stage is then calculated as follows according to the

weighted-least-squares estimation.

u (c" ) (i2,i2) = 
E

Y R
e (u, v) t6

Eu 	 Rc(u, v)
Ev Rc( .",v)v (3.8)
✓ ,, k(u, v)

it is noted that the equations similar to Equations (3.5, :3.7, :3.8) have been used in

[44]. However, in our approach, since f(z> -f- x — u , 	 y — v) is a 2-dimensional
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-1 0.25*0.25 0.5 0.25 0.25*0.25

0 0.5*0.25 0.5*0.5 0.5*0.25

1 0.25*0.25 0.5*0.25 0.25*0.25

Figure 3.2 Gaussian mash.

continuous function, u and v are not necessary to be integers. Together with the

feedback technique, the accuracy of computing optical flow field can be increased

considerably.

3.1.4 Propagation

Except for the vicinity of a motion boundary, the optical flow velocity of neigh-

borhood pixels should be similar to the velocity of central pixel. Therefore,

neighborhood information should be used to improve computation of optical flow

velocities. That is,

where w(x, y) is a weighting function. We choose a Gaussian mask [24J as the

weighting function w(x, y). When N 1, w(x, y) is depicted in Figure 3.2. Similar

propagation stage was used in Singh's algorithm [44].
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3.1.5 Feedback and Iterations

In each iteration, the output of the algorithm, i.e., the calculated optical flow is

fed back into the algorithm. The observation, correlation and propagation discussed

above are then carried out. This algorithm can be considered as a feedback control

system. From the given digital image 	 I1(i1,j1) and the calculated optical flow

U

(n)at thenth iteration, a virtual continuous imagef(i2-u, j2- v)is estimated. The

difference between another given digital image I2 ( i2 , j )2 and the estimated virtual

continuous image f(i 2 - u, j 2 - v ) is used to adjust optical flow UN. Based on the

updated U(n) , the new iteration optical flow U(i+1) is generated in the propagation

stage. If the system model is correct,

U

(n)  will converge to the true optical flow. Two

given images are repeatedly utilized. As shown next, the algorithm will converge to

the true optical flow in general. When | u(n+1)-u(n)|and |v(n+1)-v(n)| are greater

than a predefined threshold, we update I2 in the observer stage according to the

values of u (n+1) ( i , j ), v (n+1) ( i , j) and I1(i,j). Otherwise, it is said that the algorithm

is convergent.

3.2 Convergence Proof

Here, we prove that the correlation-feedback algorithm converges to the true optical

flow if the response distribution defined in Equation (3.7) is single-maximum-valued

with the maximum being assumed at the true optical flow.

Let us neglect the propagation stage in the proof. Therefore, Equation(3.8)

can he rewritten as

where



Figure 3.3 Ideal g ( u (n),v(n))

Let normalized response distribution be denoted by g(u(n)i,v(n)j),

Consider the case where ( u(n)i,v(n)j) is in the vicinity of true image vector ( un,vn).

Assume g(u(n)i,v(n)j) is a sample of a surface of revolution having only one extreme

point (un,vn). The ideal 

g

(u(n)i,v(n)j) is shown in Figure .3.3. In fact, when

g

(u(n)i,v(n)j) is the vicinity of (un,vn), the assumption holds approximately.

Without loss of generality, only the positive u(n), un , u(n+1) values are considered

in order to simplify the proof.

Let
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Figure 3.4 Curve of h(ui(n)) and case 1.

It is not difficult to see that

h(u

i(n)

)

is a sample of a symmetrical curve about axis

ti," with only one extreme value at 

u

i(n)  =

u

a . The curve is shown in Figure

3.4.

The following two lemmas will be used for the convergence proof.

Lemma I : 

h(u

0(n)

), h(u 1(n)),h(u 2(n)), h(u 3(n)

) and

h(u

4(n)) satisfy the next equation:

Lemma. 2: u (n+1) and u (n) have the following relationships:

Lemma 1 is apparent and its proof is therefore omitted. The proof of Lenuna

is given below.
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From Equations (3.10) and (3.12), the proof of the first part of Lemma 2 is not

difficult to follow,

Similarly, the second part of Lemma 2 follows from Equations (3.10), (3.11) and

(3.13) straightforward.

With Equations (3.10), (3.11) and (3.13), and some algebraic manipulation, the third

part of Lemma 2 can be proved as follows.



Figure 3.5 Case 2.

u 4(n) - u(n+1) > 0, since h(ui(n)) > 0 i = 0, 1, 2, 3,4. Now, let's prove the convergence

of the algorithm.

Because h ( u 4( n ) ) > h ( u0(n)) and h (

u

3(n) ) > h (

u

1(n) ), and from Equations (3.15)

and (3.17), we have

According to Figure 3.4, we know

Case 2:

u 4

(n)  >

u

n  and

u

3(n)  ≤

u

n  as shown in Figure 3.5.

From Equations (3.15), (3.17) and Figure 3.5, one has

Thus
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Figure 3.6 Case 3.

Case .3: u 3(n) >un ,u2(n) ≤un  and h (u4(n) ) ≤ h (u2(n) ) ≤ h (u3(n) ) as shown in Figure

3.6.

Because 

h (u4(n)

) ≤ 

h (u2(n)

), and

u

3(n)  -

u

4(n+1)  > 0 according to Equation (3.16),

one has

From Figure 3.6, we know

Case 4: 

u

3(n) >

u

a ,

u

2a  ≤

u

a  and 

h (u2(n)

) > 

h (u3(n) ) ≥h (u4(n) )

.

Beacuse h (u4(n) )

 ≤ h

(u2(n) )

, and

u

3(n)  -

u

(n+1)  > 0 according to Equation (3.16),

one has
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Figure 3.7 Case 4.

Similarly, |v(n) - vn| eventually tends to zero when n → ∞

From the above discussion about these four cases and the known symmetry, we

conclude the proof of the convergence.

In our experiments, three successive image frames are used to computer Rc so

that assumption about the existence of only one extreme point holds much better. In

the Section 3.4, the computation of Rc will be described in detail. Our experiments

have shown that the algorithm is convergent indeed.

3.3 Analysis
3.3.1 Subpixel

This approach uses feedback technique to iteratively estimate and refine optical flow

held. The correlation-based approach can not accurately estimate subpixel optical

low velocity because they don't sufficiently make use of information that is provided

images .



F(x)
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Figure 3.8 Intensities of the first image.

In the correlation-based approaches, the basic procedures are represented as

follows. First, a correlation window Wc  of size (2m+1) by (2m+1) is formed around

the (x, y) pixel in the first image. A search window Wc  of size (2N+1) by (2N+1)

is established around the pixel at the same location of (x, y) in the second image.

The (mis)match measure M(Δ x , Δ y ) between Wc  and a window of the same size

(2m+1) by (2m+1) around each pixel in Wc , displaced from (x, y) by an amount

(Δ x, Δ y ), is computed. According to these measurements, we can compute the

image vector ( u , v ). But, since images are digital, usually we cannot recover true

optical flow vectors by the measurements accurately. Therefore, subpixel estimation

must he adopted. Are previous subpixel estimations efficient? Let us take a look at

the following example.

For the simplicity, a. one-dimension case is considered. Intensities of the first

image is shown in Figure 3.8. A correlation window Wc  of size :3 is formed around

the central pixel in the first image. Assume that the intensity is a continuous linear

function. That is F(x) = a In, where x is the location of pixel. Therefore,

when the true image vector is Δ x pixel, the second image can be represented as

F ( x -  Δ x ) = a + b (x - Δ x ). When the sum-square-dilference is used, we have the

error

36
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[F(x + 1) - F(3; + I - Ax x0) 2

= 3 b2 (A -x 1 ) 2
	

(3.2o)

where x i is the center pixel in the correlation window in the second image. according

to [44], we denote the response distribution by R ri . We then have

Rx 	e -E2(xok = (3.21)

where k is a parameter appropriately chosen. For a discussion of the selection of

parameter k, refer to Section 3.4. Here it is chosen as:

1740 .95)
k

-3b 2 rain .2,2 „._ 2 ((Ax - x i ) 2 )

Using the weighted-least-squares, one can estimate the velocity u as follows.

- 	

-2‘17
- --2 X 1 RI:

z-xi=-2 R2:1

The relative error is then
Ax -

	100%

(3.22)

(:3.23)

(3.24)

By using computer simulation, Figures :3.9 and 3.10, the diagrams depicting the

relative error and the absolute error versus true displacement, respectively, are

obtained. From these figures, we see that when the true disparities are - 1, 0 and 1,

the associated errors are zero. Usually the relative errors exceed easily beyond much

greater than 10%. The Equation (3.23) is a kind of optimal estimation to handle the

subpixel problem. Clearly it cannot accurately recover optical flow velocity vectors

whose components involve subpixels.

This example indicates tin even if image intensity is a linear function and noise

free, the correlation - based approach do not work efficiently. This is because they do

not, sufficiently use information that images provide. They use the information only

one time. In fact, if true velocity is not an integer, it is impossible to at once recover

the true velocity accurately.
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Figure 3.9 Relative error.

Although many refinement processes are used to improve the situation, the

effect of the improvement is not always remarkable. Our experiments have shown

that when the true. image velocity vectors are integer pixels, some correlation-ba sed

algorithm can recover some of the vectors accurately, but when the true velocity

vectors are subpixels, error is increased.

In correlation-feedback approach "rubber" window is used, i.e., search is

based on the vaxiable size instead of Fixed grid. Therefore, it is not necessary that

all of true image velocities are integer pixels. Feedback iteration is utilized to adjust

the optimal flow held so that the field becomes more and more accurate.

3.3.2 Refinement

Most of previous refinement methods are heed on some sort of optimal objective

criteria. Any criterion may have limitation and weakness. Most of these refinements

make use of the neighborhood optical flow velocity vectors to improve the velocity

vector. However if the neighborhood velocity vectors are not recovered very well,

using them is not helpful and not reliable. Also, use of the neighhorhood image

velocities violate the local (discontinuity of optical flow field.	Under the circum-
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Figure 3.10 Absolute error.

stances that only image sequence is known, it is best and most reliable to make

use of matching relationship between the images to refine optical flow. Our optimal

objective criterion is just based on the idea. The criterion is to make the difference

between the second given image I2 ( i, j ) and the image f(i2 -u,j2-v) estimated

from the first given image I1

( i,

j ) minimal. Our experiments verified that the optimal

objective criterion make not only the effect of noise reduced but also the boundary

information conserved.

3.3.3 Convergence

In Section 3.2, it is proved that the correlation-feedback algorithm is convergent, if

the normalized response distribution

is symmetrical and has only one peak which is assumed by true optical flow velocity.

When image intensity is a linear function of coordinates, it can be shown that

this condition must be satisfied. Without loss of generality, a one dimension case is
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considered. From Equation (3.21), we have

Rc(u" ) )
g(a'' ) )

e.....3b2(Ax_u(n))24..

(3.26)
—3b2(A2,—,,00 )2k

E„(”) e

It is not difficult to see from the above equation that only one peak of the response

distribution exists and the peak value is achieved when 1./ ( n ) is equal to Ax.

In fact, in the vicinity of a pixel, the intensity can usually be considered as such

a linear intensity, especially, bilinear interpolation is used. Therefore, we can claim

that mostly the true optical flow vectors having subpixel or integer pixel components

can be recovered by using the correlation-feedback approach.

3.4 Implementation and experiments

3.4.1 Implementation

Three images: the first, second and third frames in an image sequence, denoted by

1 1 , 1 2 , and 13 , respectively, are used to compute optical flow. Each is of 256 x 256.

Assume the time interval between / I and 12 is the same as that between /2 and 13 .

Also assume approximate uniform motion during these two intervals. From images

and / 2 , (7L ( ' ) (i,j),1) (6 (i,j)) can be computed using the Horn and Schunck's algorithm

19). From u (" ) (i., j), v ( " ) (i, j), the optical flow estimated during the nth iteration,

and / 1 and 1 2 , the response distribution / 1- (n("),1) (")) can be calculated using

Equations (3.5) and (3.7). Similarly, from images 1 3 and 1.), —u ( " ) (i,j), —v ( n ) (i,1),

H (---11(n ) , —1)H) can be calculated. The response distribution R,Ca (" ) ,' (")) can

then be determined as follows.

R.,(7/ (7d, v ( n ) ) = ftl'(u ( " ) , v (n ) )	 R. -,- (—u ( " ) , —v (,0 )	 (3.27)

it (." ) ( , j) and t),(." ) (i,j) can be obtained by using Equation (3.8). We adopt 3 x 3

correlation windows. The Gaussian mask shown in Figure 3.2 is used. The choice of
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Figure 3.11 Texture square (a).

parameter k in Equation (3.7) is adaptive [44]. In each search window, k is chosen

so as to make Rc+ and Rc- be a number close to unity. In the observer stage, the

bilinear interpolation is used. Our experiments show that the bilinear interpolation

is faster and better than B — spline. The u and v used in the implementation are a

little different from that in Equation (3.6), and are shown below.

Our experiment proves that this kind of rubber window has better convergence and

higher accuracy than the rubber window described in Equation (3.6).

3.4.2 Experiment

Figures 3.11, 3.12 and 3.13 show the three successive image frames: I 2 and

I3 . They were taken by a C(1) video camera and a DATACUBE system that is

a real time image processing system and is supported by a Sun workstation. The

experiment setting is shown in Figure :3.14. The focal length of the camera is 12.5

nun. `Hie distance between the texture square post and the camera is 1300 min. The



Figure 3.12 Texture square (b).
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Figure 3.13 Texture square (c).
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Figure 3.14 Imaging geometry in Experiment 1.
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texture square moves normal to the line of sight, with a velocity of 4- mm/frame.

According to the perspective projection relationship shown in Figure 3.14, the true

optical-flow (u.",va) is as follows.

12.5 X 4
7/," = 	 (3.28)

1300 x unit
va = 0.	 (3.29)

where the unit is a constant that represents the distance between two consecutive

pixels along x direction in a digital image. From camera calibration, we know unit =

0.014 min/ pixel. It will be discussed in Section 4.6 in detail. Thus

u" = —2.747 (pixels). 	 ( 3 .30)

The true optical flow field is shown in Figure :3.15. Since in our setting the object is

in motion while the camera s static, and the light of our laboratory is not uniform,

the different environmental light produces non-negligible noise. Before computing

the optical flow field, these three 256 x 256 images are compressed into three 64 x 64

images by sub-sampling. The sub-sampling algorithm is extremely simple. That is,

a 256 x 256 image is uniformly segmented into 64 x 64- blocks. Each block having

4 x 4- pixels corresponds to a pixel in the 64 x 64- image. The average intensity of

these 4 x 4 pixels is used as the intensity of the corresponding pixel in the 64. x 64

image, thus, generating three 64 x 64 images. Because of the sub-sampling, the true

optical flow values become: le = —0.6868; = 0.

In order to compare the performance of correlation-feedback approach with

that of the gradient-based approach and correlation-based approacll. We choose

the Horn and Schunck's algorithm to represent the gradient-based approach and

frailwwor k [44] the correlation-based approach. Table 3.1 shows the results

of comparison. In Table :3.1, n = 2 means that the correlation window is 5 x 5; zu = 2

means that the Gaussian mask size is 5 x 5; N = 4- means that the search window is

9 x 9. The program that implements Singh's algorithm is provided by Barron [4O].
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In the correlation-feedback algorithm, Horn and Schunck's algorithm with a 	 5 is

used in initialization. Finally, central 4-0 x 40 optical vector array is used to compute

0error as follows.

\/EPG Ej--9 0((ua(i,i) — ttr ( i )j)) 2 	(Va(i1.1) 	Ur(i)j))2)

Ej3-0(zia (i,i) 2

where (u", v«) is a true optical flow vector and (ur, yr) is a calculated optical flow

vector. These apply to all of the experiments reported in this chapter. The optical

flow fields that are calculated by using the gradient-based algorithm, the correlation-

based algorithm and the correlation-feedback algorithm are shown in Figures 3.16,

:3.17 and 3.18 respectively.

From Figures 3.11, 3.12 and 3.13, we know that many true optical flow vectors

are zeros because of the static background. It is why when Equation (3.31) is used

to calculate relative error, the denominator is too small due to the fact: many

true optical flow vectors are zeros. Consequently, the relative error calculated in •

Experiment I is greater than 10%. It is not easy to choose an appropriate formula

to compute relative error especially when many true optical flow vectors are zeros.

Relatively speaking, our correlation-feedback algorithm performs best in determining

optical flow for a texture post in translation.

In this experiment the correlation-feedback algorithm does converge. lts

convergence process is demonstrated in Figure 3.19.

3.4.3 Experiment II

Figures 3.20, 3.21 and 3.22 are obtained by rotating a CCD camera. with respect to

the center of a ball. The imaging geometry is shown at Figure 3.23. Lie rotating

velocity is 2.5'1 frame. The focal length of the camera is 12.5 mill. The distance

between the center of the ball and the camera is 1120 n un. In Figures :3.20, 3.21

and 3.22, the background seems static because it moves together with the camera.

Before computing optical flow field, three 256 x 256 images are compressed into three

7 / CTrOr = (3.31)



Table 3.1 The comparison in Experiment I

Techniques Gradient-based Correlation-based  Correlation-feedback
approach approach approach

Conditions Iteration = 128
α  = 5

Iteration = 25
n  = 2,w = 2

N = 4

Iteration = 10
Horn - iteration = 10

n  = 1, w  = 1

Uerror 56.37% 80.97% 44.56%	 I
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Figure 3.15 ua (x, y) of correct optical flow field.



Figure 3.16 ur ( x , y ) computed using the gradient-based approach.

Figure 3.17 

u

r

( x , y

) computed using the correlation-based approach.



Figure 3.18 ur ( x , y ) computed using the correlation-feedback approach.

Figure 3.19 The convergence process of the correlation-feedback approach.



Table 3.2 The comparison in Experiment II

Techniques Gradient-based
approach

Correlation-based
approach

Correlation-feedback
approach

Conditions Iteration = 128
a = 5

Iteration = 25
n = 2, w = 2

N = 4.

Iteration = 10
Horn — iteration = 10

n. = 1, w
hy

= 1

Uerror 65.67% 55.29%® 49.80%

64 x 64 images by using the same sub-sampling technique as that used in Experiment

I. Finally, central 40 x 40 optical vector arrays are used to compute u„.„,.. Table 3.2

reports the results for this experiment. There /terror, (u", v"), Our, n, w, and N

are of the same meaning as defined in Experiment I. It is obvious that our correlation-

feedback algorithm performs best in determining optical flow for this rotating ball

case.

3.4.4 Experiment III

As mentioned before, a very comprehensive study of various optical flow techniques

and comparison of their performance mainly in terms of accuracy have been

conducted recently in [401. In order to compare our correlation-feedback algorithm

with other techniques in a more objective, quantitative manner, we cite some results

reported in [4.0] which were obtained by applying some typical optical flow techniques

to some image sequences chosen with deliberation. On the other hand, we apply

our feedback technique to the identical image sequences and then report the results

with the same criterion as used in [40].

Three kinds of image sequence used in [40], kindly provided by the authors of

[40], are utilized here. They are named Translation Tree 2-D, Diverging Tree 2-1_),

and Yosemite. The first two simulate translational camera motion with respect to a

textured planar surface (see Figure :3.24). In the Translating Tree 2-D sequence, the

49



Figure 3.20 Ball (a).
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Figure 3.21 Ball (b).
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Figure 3.22 Ball (c).

camera moves normal to its line of sight along its X-axis, with velocities between 1.73

and 2.26 pixels/frame parallel to the x-axis in the image plane. In the Diverging Tree

2-D sequence, the camera moves along its line of sight. The focus of expansion is at

the center of the image. The speeds vary from 1.29 pixels/frame on left side to 1.86

pixels/frame on the right. The Yosemite sequence is a more complex test case (see

Figure 3.25). The motion in the upper right is mainly divergent, the clouds translate

to the right with a speed of 1 pixel/frame., while velocities in the lower left are about

4 pixels/frame. Barron, Fleet Beauchemin pointed out in [40] that "this sequence is

challenging because of the range of velocities and the occluding edges between the

mountains and at the horizon. There is severe aliasing in the lower portion of the

images however, causing most methods to produce poorer velocity measurements."

The same way to express the error occurred in the optical flow determination

as that used in [40], i.e., the angular measure of the error is utilized here. As Barron,

Fleet and Beauchemin pointed out in [40] that optical flow vectors may be written



Figure 3.23 Imaging geometry in Experiment II.
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;is displacements per time unit as in (7 (u, v) pixels/frame., or as a space-time

direction vector (u, v, 1) in units of (pixel, pixel, frame). When image velocity is

viewed (and measured) as orientation in space-time, it is natural to measure errors

as angular deviations from the correct space-time orientation. Therefore, let image

velocity U = (u, )T be represented as 3-D direction vectors, 17 (u, v, 1) r .„2+ t, -2.4.1

The angular error between the correct image velocity Cc and an estimate is

arccos(7, • 17e). (3.32)

It is obvious that the smaller the angular error OE is the more accurate the estimation

of optical flow field will be. Despite of the fact that the confidence measurement can

be used in our correlation-feedback algorithm, in this chapter, we don't consider the

usage of the confidence measurement. Therefore only the results that have 100%

density in Table 4.6, Table 4.7 and Table 4.10 in [4.0] are used in Tables 3.3 - :3.5 in

this chapter.

In the experiments, our correlation-feedback algorithm is applied to the above-

mentioned three kinds of image sequences. The results are then compared with

that obtained by using other techniques, reported in [4.0] in terms of angular error.

Therefore, we consider this comparison is objective and reliable.

Prior to computation of optical flow field, Yosemite images are compressed

front 316 x 252 to 79 x 63, Translating Tree 2-D and. Diverging Tree 2-D images are

compressed from 150 x 150 to 75 x 75 by using the same sub-sampling technique

as that used in Experiment I. In fact, this type of compression is of of function of

low - pass filtering.

is mentioned [40] the optical flow field for Yosemite image sequence is very

complex and Table :3.5 indicates evidently that our correlation-feedback algorithm

performs best. These lead to that our feedback technique is very suitable for complex

optical flow field determination. This is because the powerful feedback technique

is applied repeatedly and its refinement is based on the optimal local matching



Figure 3.24 TREE.

between the interpolated image, generated with estimated optical flow, and the given

digital images instead of other types of optimization. Tables 3.3 and 3.4- indicate the

feedback technique also performs very well in the case of translating and diverging

texture post cases.

3.5 Summary

It is well-known that feedback is a powerful technique widely used in the field of

automatic control field. It can make systems robust against noise and improve

performance drastically. In this chapter, we propose for the first time in the literature

on optical flow techniques a feedback approach to determining optical flow. The

numerous experiments in our laboratory demonstrate that it performs very well in

general. Usually better than the gradient-based and correlation-based approaches.

In the very complicated optical flow cases, specifically in the case of the Yosemite



Figure 3.25 YOSEMITE.

Table 3.3 Summary of the TRANSLATING TREE 2D velocity results.

Techniques Average
Error

Standard
Deviation

Density

Horn and Schunck (original) :38.72° 27.67° 100%
Horn and Schunck (modified) 2.09° 9.97° 100%
Uras et al. (unthresholded) 0.62° 0.52° 100%
Anandan 4.54° 3.10° 100%
Singh (step 1, n=2, w=2) 1.64° 2.44° 100%
Singh (step 2, n=2, w=2) 1.25° 3.29° 100%
Correlation feedback (n=1, w=1) 1.07° 0.48° 100%
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Table 3.4 Summary of the DIVERGING TREE 2D velocity results.

Techniques Average
Error

Standard
Deviation

Density

Horn and Schunck (original) 12.02° 11.72° 100%
Horn and Schunck (modified) 2.55° 3.67° 100%
Uras et al. (unthresholded) 0.62° 0.52° 100%
Nagel 2.94° 3.23° 100%
Anandan (frames 19 and 21) 7.64° 4.96° 100%
Singh (step 1, n=2, w=2) 17.66° 14.25° 100%
Singh (step 2, n=2, w=2) 8.60° 5.60° 100%
Correlation feedback (n=1, w=1) 5.12° 2.16° 100%

Table 3.5 Summary of the YOSEMITE 2D velocity results.

Techniques Average
Error

Standard
Deviation

Density

Horn and Schunck (original) 32.43° 30.28° 100%
Horn and Schunck (1 odified) 11.26° 16.41° 100%
Uras et al. (unthresholded) 10.44° 15.00° 100%
Nagel 11.71° 10.59° 100%
Anandan (frames 19 and 21) 15.84° 13.46° 100%
Singh (step 1, n=2, w=2) 18.24° 17.02° 100%
Singh (step 2, n=2, w=2) 13.16° 12.07° 100%
Correlation feedback (1 =1, w=1) 7.93° 6.72° 100%
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image sequence, considered as a most challenging one in a recent comprehensive

study of optical flow techniques [40], it performs better than all other techniques.

A concrete implementation of our feedback approach is the correlation-feedback

algorithm. It is an iterative procedure. In each iteration, the estimated optical flow

vectors (u (" ) , v ( " ) ) and their vicinity values (25 combinations in our algorithm) are

fed back to the observer stage. There they together with the first given digital image

are used to estimate, via a bilinear interpolation, certain portion (25 windows in our

implementation) of a virtual continuous image which is supposed to be coincident

with the second given digital image after a translation by the true optical flow. (It

is worth noting that there is no need to estimate the whole continuous image field in

the procedure. Only those values needed are estimated by using the bilinear interpo-

lation). in the correlation stage of the correlation-feedback approach, the difference

between the estimated portion of the continuous image and the corresponding portion

in the second given digital image is calculated in terms of sum-square-difference

(SSD). A weighted-least-square technique is then used to calculate (tt,C"),v(")), the

output of the correlation stage at the new iteration. In the propagation stage, the

optical flow vectors of pixels at a neighborhood make contribution to the optical flow

vector of the central pixel via the use of a Gaussian mask.

Our correlation stage is quite different from that used in the correlation-based

approaches in the following four aspects. Firstly, the search window in our approach

is a "rubber" window in the sense that it has variable size depending on (u ( " ) , v ( " ) )

In the correlation-based approaches, the search window has fixed size. Secondly, the

weighted-least-squares technique is used to calculate the output of the correlation

stage from 25 different weighted combination of (tt 1 " ) , iv ( " ) ) instead of from all possible

pixel positions in the fix-sized search window in the second digital image as in the

correlation-leased approaches. Thirdly, a bilinear interpolation technique used in the

observation stage provides the correlation stage with a virtual continuous image field
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for a more accurate SSD computation. Fourthly, the refinement objective function

is based on the minimal difference between the estimated continuous image and the

second given digital image. Therefore, this correlation-feedback algorithm can reduce

error considerably.

Since the observation, correlation and propagation stages are used in each

iteration, in other words, since the special objective function (the best matching

between interpolated continuous image by using estimated optical flow and the given

second digital image) is adopted, not only effect of noise is reduced but also the

boundary information is conserved. From Figures 3.16 -3.18, it is evident that our

feedback approach not only make optical flow field smoother than the gradient-based

and correlation-based approaches do but also preserve flow discontinuity better than

the other two techniques do.

When the response distribution has single maximum which is assumed by the

true optical -flow, the convergence of our algorithm to the true optical flow has been

proven. This condition is satisfied in the most practical cases. Specifically, consider

the ideal case where image intensity is a linear function of the image coordinates

and without noise. It is shown in Section 3.3.1 that, except the optical flow has

only integer multiple of pixels as its components, the correlation-based approach will

easily have error much greater than 10%. On contrary, this chapter shows that the

feedback technique proposed can converge to the true optical flow in this case.

As discussed, the correlation-feedback algorithm is quite robust against the

choice of the initialization. Even arbitrary non-zero constant initialization works.



CHAPTER 4

COMPUTING 3-D MOTION

Once optical flow fields are known, one can compute :3-D motion and structure. As

noted in Chapter 2, previous works mostly are based on motion of camera. However,

the motion of camera can be represented by six constants. Assuming that the six

constants are known, depth map can be computed from optical flow field. When

objects are allowed to move, depth map and 3-D motion are all variables with respect

to space coordinates, those approaches can not be used.

In this chapter, the Unified Optical Flow Field (UOFF) is discussed [41] - [43].

Based on the approach, the objects position (X(x, y), Y(x, y), Z(x, y)) and velocity

(X(x, y), Y(x, y), 2(x, y)) can be computed, where x and y are coordinates of image

plane. The approach does not require any condition such as objects should be rigid,

motion or depth map should be known.

4.1 Discussion of Unified Optical Flow Field (UOFF)

A c co rding to UOFF, an image brightness function should be described as below :

where x and p are coordinates on image plane, t is time, . indicates the sensor's i.e.

camera position in :3-D world space, i.e., the coordinates of the sensor center and the

orientation of the optical axis of the sensor, that is, g is a 5 - D vector.

=	 )

where	 fi and f represent the coordinate of the optical center of the sensor in 3 -D

world space; /3 and -y represent the orientation of the optical axis of the sensor in

:3-D world space.
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Assume now a. world point P in 3-D space that is projected onto the image

plane as a pixel with the coordinates xp and pp. Then, xi, and yp are also dependent

on t and That is, the coordinates of the pixel can be denoted by xp x (t ) s)

and PP = 7jF;(t, 	 Therefore, generally speaking, we have

y 	 g(xp(t,g),yp(i,s7),t ) . 0 	 (4.2)

Due to the assumption of the time-and-space-invariance of brightness, one can get

= g(x(t + At, 	 Ag), y(t + At, g'H- 	 t + At, 	 A. (4.3)

The expansion of the right-hand side of the above equation in the Taylor series and

the use of Equation (4.3) lead to

ag 	ag 	ag 	ag - ag 	 ay
( —u 	 v 	 + (—us + —vs + —)Ag+ = 0

Dx	 ay	 at 	 ax 	 ay 	as
(4.4)

where u 	 v 	 -.9 A ar 	ay
7:57 , 	at, u = Trs-,

We now discuss some special cases about the brightness time-and-space

invariant equation, i.e., Equation (4.4):

Case 1: If 	 0, i.e., sensor is static in a fixed spatial position, in other words both

the coordinate of the optical center of sensor and its optical axis direction remain

unchanged, dividing both sides of the equation by At and evaluating the limit as

At 0 degenerate Equation (4.4) into:

0g 	 ag 	 aq
	  = 0 	 (4.5)

Dx
u + Dry v + Di

It is the re 	 derived by Horn and Schnuck [9]

Case 2: If At = 0, its both sides are divided by A. and AW ---4 0 is examined,

Equation (4.4) then reduces to:

ag 	ag—u- + —0- + 	 = 0 	 (4.6)
x 	 ay
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	When At 	 0, i.e., at a specific time moment, the images generated with sensors

at different spatial positions can be viewed as a spatial sequence of images.

Equation(4.6) is then the equation for the spatial sequence of images. A simplified

version of this equation is discussed in the next section.

	

Case 3: If 	 is a constant, Equation (4.4) is the equation for a sequence of images

taken by a sensor experiencing a uniform motion.

Case 4: If t = f(g,t) and the function f(..., t,) is given, Equation (4.4) can then be

utilized to treat the case when the sensor is experiencing a known movement.

4.2 Further Discussion of U0F1?

in stereo imagery, two sensors are usually fixed in two positions in 3-D world space.

Hence, we can simplify discussion by considering two points in t.—.!Tspace, i.e., (t i ,.. 1 )

• 	 -and (1, 2 ,3 2 ) and choosing a. straight line in t — g space which passes through points.

(t ] , gi ) and (t 2 , g2 ). Along this line, we use p as a parameter to indicate the distance

between another point in the line and the point ( .6, gi ). Different p is therefore

corresponding to different point along the line in t g space. Along this line we then

have

g = g(x(p), y(p), p)
	

(4.7)

Thais, Equation (4.3), i.e., the expression for lie brightness time-and-space-invariance

equation, becomes

9(x(P), AP), p) = 9( 3.-(P + Ap), y(p + Ap), p + Ap)
	

(4.8)

It is noted that the variation of p implies the variation of both time and space along

the line. Similar derivation to that presented in Section 4.1 can lead to

f/xP + gi/fr + Jn = 0
	

(4.9)



where

DS

ap
ay

11 =
Op

ag 	 A ag
g.= 	 gyd2ay

A ay
91) 	 ap

(4.10)

( 4 . 1 1)

(4 12)
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Here, p and v are, respectively, the variation rates of the pixel coordinates, a; and y,

with respect to the distance parameter p in t g space. They can also be referred to as

pixel velocities with the following fact kept in mind, that is, p relates to both t and

Equation (4.9) is a governing equation which the optical flow quantities, i.e:, the pixel

velocities ti and v have to obey. After assuming the straight line, passing through

points (t 1 , 5;1 ) and (t 2 , s2 )in t — g space, and introducing parameter p, representing

point along the line from point (t 1 , ), hence simplifying the derivation, we are now

going to discuss how to solve unified optical flow field quantities. Similarly to Section

4.1, the discussion will be conducted with respect to several cases.

Case 1: If Ag= 0, i.e., the sensor is static in a fixed spatial position. As analyzed in

Case 1 in Section 4.1, the brightness "time"-invariance equation, i.e., Equation (4.5)

can be rewritten below
ay 	 ag 	 ay
ar

	11+ 
ay 	 at

v + 	  = 0 (4.1:3)

In comparison of Equation (4.1:3) with Equation (4.9), it is noted that and v become

q 	 qu and v, respectively, while 	 changes to -57. Obviously, with only one equation

available, it is impossible to solve the two unknowns. Hence, some constraint must

lie imposed. Among several choices (151, the most popular one is the smoothness

constraint \\Thiel ) is first utilized by Horn and Schnuck. Thus the next two equations

are derived

9;12 9,9yv = a,- v - — g3; 9t
	 (4.14)

y „g v u + 9,,v = ai 	 !hgt 	 (4.15)
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where a l is a constant, g, and q y are defined in Equations (4.12), q 	 -57'3q . It is

known that gx , gy and it can be estimated from the image sequence [91. The pixel

velocities u and v can then be solved by using the iterative algorithm developed in

1 91.

Case 2: in order to discuss the case when At = 0 more specifically, see Figure 4.1.

In Figure 4.1, an imaging setting is shown. There the optical centers of the left

and the right sensors are denoted by 0 and O R , respectively. The axis OZ is the

optical axis of the left sensor, while Of'ZR is that of the right sensor. These two

optical axes are coplanar. The 0 — XYZ and O R — XRYRZR are, respectively, the

Cartesian coordinate systems with axes OX and O R XR being on the same plane as

that of OZORZR and axes OY and O R YR perpendicular to the plane of OZOR Z R .

For simplicity it is further assumed that the left sensor is fixed, while the right

sensor is only allowed to he translated along the straight line 00R and to be rotated

around O R YR axis. The distance between OO R is denoted by 1, while the angle

between O R Z R and OZ is by 0. Beca.use At = 0, pis only a function of g" at the

specific moment t. Clearly, p = + y 2 0 2 where x is a characteristic length that is

determi ned according to the imaging setting parameters. We define .s °_ V 12 + x202 .

1-1_,.(ilmtion (4.9) becomes

[tots 	 gli v s 	gs = 0 	 (1.16)

where g„ and ,q„ are defined in Equations (4.12), and

,L 9
g = 	

d.s
(4.17)

11.' and v 8 are, respectively, the spatial variation rates of Ax and Ay with respect to

.1: 	 y
. e . 	 =- 	 v" = 	 The Ax and Ay are defined as

,r 8 — 	 AY 	 "I/ 	
I 	 (4.18)
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Figure 4.1 Imaging geometry
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where the coordinates (sr y T ) and ) are representing the two pixels on the

right and the left images, respectively, such that they are corresponding to the same

world point in 3-D space.

Equation (4.16) is the equation for a spatial sequence of images which is

discussed in detail in [19] [20]. As pointed out in [19] [20], when the optical axes of

both the left and right sensors are coplanar as shown in Figure 4.1, and the scene is

far from the sensors that Z can be considered equal to Z R , the next equation holds

vs = 0 (4.19)

We. then have

us — (4.20)
gs.

Since f's and gy can be obtained from the given pair of stereo images, us can therefore

be solved from the above equation.

Case :3: Assume imaging geometry is the same as discussed in the above case.

Consider a rectangular four-frame model that is shown in Figure 4.2. There images

(a.), (b), (c) and (d) are chosen from a stereo image sequence. Images (a) and (c) can

be viewed as two images from a. monocular image sequence taken with a left sensor,

while images (b) and (d) can be thought as two images from a monocular image

sequence generated with a right sensor. Images (a) and (b) are taken at moment,

while images (c) and ((I) are at t t + At moment.

Recognizing that imaging geometry from images (b) to (d) belongs to Case 1,

we can apply Equations(4.14-4.15) to images (b) and (d), resulting in the following

two quantities: 'u1  and v 1  where the superscript indicates that the quantities

associated with are with respect to the right ii image sequence.

Simil arly, applying Equations (4.14-4.15) to images (a) and (c), we obtain uL

and i,L which are, respectively, the counterparts of ul v 1  defined for the left image

Se q 	 !lee.



Figure 4.2 Four frame model
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Recognizing that imaging geometry from images (a.) to (b) is Case 2 and

applying Equations (4.19-4.20) to images (a) and (b), we get ?Ls and vs.

Based on these six field quantities of the unified optical flow field, i.e., u R , v R ,

u L , v L , us and vs, another set equations can be derived with which 3-D motion can

be recovered. A detailed discussion in this regard is contained in the next section.

4.3 A New Approach to Motion Analysis Using UOFF

In order to reconstruct :3-D motion field we need to determine the following six

quantities: X, Y, Z, X, Y, Z. From the preceding section, we already have u L , v t ,

us, vs available for each pixel on image (a) in Figure 4.2, and uR, v 1 available for

each pixel on image (b) in Figure 4.2. Now we shall discuss the relation between

these two sets of quantities.

To reconstruct :3-D motion field we can start from either image in the pair of

stereo images. For instance, we can start from a pixel in the left image, say the pixel

located on the north-west corner of the left image. So, besides the six known field

quantities, u L , v L , u R , v R u 3 and vs, we also have x L , y L available. On the other

hand, in order to use uR (:r R ,y 8 ,t) and v R (x R ,y R ,t) in reconstruction of 3-D motion,

we have to know :e R and y' which correspond to :-cL and yL, respectively, i.e., both

image points (x L ,y 1-') and (x R,y R ) are related to the same world point in :3-D space.

In other words., eight quantities: uL, v L , uR, ;z:L and 1jL are available Willie

eight, quantities: X, Y, Z , a a nd y R are required to be solved.

Now consider a pair of (u L , L) and a pair of (ur , on image planes such that

they are associated with the same world point in 3-D space. That is, u L , v L are the

velocities of a pixel on the image (a); U R , v R are the velocity of a. pixel on image (b);

such that these two pixels are related to the same world point in 3-I) space. Hence,
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there exists an inherent relation between them. This relation can be shown below.

1R y 	t 	,(x L,) 	 yL t) cos 0 
1 Z
— cos 0
Z2

v R( R ,y R ,t ) 	 IJ7 	 SI)

See Appendix A.1 for the derivation.

(4.21)

(4.22)

Equations (4..2:3-4.24) relating the spatial variation rates, us and vs, to the

imaging setting paramete.cs, 1, 0 and f, the characteristic length, x, and 3-D space

coordinate, X, Y and Z, are derived in Appendix A.2. There the approximation,

i.e., equating derivative and average variation rate, has been made when_ Equation

(A.3) is established. The similar approximation is made in [9].

us 1 2(1 — cos 0)--(Z+
sin 0 )/

L
s 
=0 (4.24)

As mentioned at the beginning of this section, the six quantities in the unified

optical flow field have been calculated at this point. Hence, us is available. Through

the use of Equation (4.23) the coordinate along the depth, Z, can be found for the

world point corresponding to the north-west corner pixel in the left image. Via. the

use of the formulae of perspective projection, i.e., Equations (4.31) and (4.31) the

values of the other two coordinates, X and Y, of this world point in :3-D space can

be recovered.

Again the approximation, replacing derivative by average variation rate, is

ina.de in deriving the following two equations.

—
+ x .202

Y R

+ x 2 0 2

+ x202 	 (4.23)

(4.25)

(4.26)

These two equations become a bridge in determining the corresponding 	 and

yu from 	 and yL.
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W ith .17R and y determined, u R (xn , y R , t) is then available. Therefore, Z can

he solved from Equation (4.21). Furthermore, the following two equations derived

in Appendix A.:3

1/, L = 	
,k

Z )1
L Y Z

=
can then be used to solve for X and Y.

(4-.27)

(4 2S)

Up to this point, the eight equations, i.e., Equations (4.3O-4.31, 4.21, 4.23,

4.25-4.28), relating the eight known and the eight unknown quantities defined at the

beainning of this section have been established. It is also seen that all of the six

quantities, X, Y, Z, X , Y, and Z, describing the 3-D motion of the world point

associated with the north-west corner in the left image have been calculated. The

same computation procedure can be conducted with respect to every pixel in the left

image in a certain order. The order via which the computation is carried out could

be row-by-row, column-by-column, or diagonal-by-diagonal.

Thus we see that as long as the smoothness constraint is satisfied the proposed

technique can recover the whole 3-D motion field directly, i.e., the motion of world

p i iints i n 34) space that are projected onto image (a.). It is obvious that in the

above-described 3-D motion reconstruction the role played by image (a) and that by

image (b) are interchangeable, i.e, we also can begin the reconstruction from pixels

in image (b). It is also seen that although we start the development of the set of

equations for motion analysis from the corresponding pairs, ett L , 	 and (u k ,

there is no need for feature correspondence in the reconstruction of 3-D motion field.

In summa.ry, the set of equations used for reconstructing the six 3-D motion

parameters is listed below.

f 1 sin 0 cos 0
Z =  	 (4 .29)

u5,/1 2 + x 20 2 sin 0 + 21( — cos 0)



I f cos 0

X = 	
uL Z + Z X

Z

vL Z ZY
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(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

= u s 	 + x 2 0 2 +

Y
R 

Y

(u rn — u L cos 0)Z 2

x 
xLz

f
y yL Z

Y =
f

It can be seen that in Equations (4.29-4.36) all quantities on the right-hand sides are

available because they are either the imaging setting parameters, the unified optical

flow field quantities, or the 3-D coordinates and their derivatives which have been

solved by the preceding equations. Quantities x' and yR on the left-hand sides of

Equations (4.32-4.33), respectively, are used to determine which value of -0(xu , y n , t)

should be utilized in Equation (4.34) to calculate Z. All quantities on the left-hand

sides of Equations (4.29-4.31, 4.34-4.36), being the motion parameters: position and

velocity in 3-D space, can therefore be solved straightforward. The derivation of

UOFF is based on intensity constant equation , i.e., the gradient-based approach.

But, when u t , v L, v r',71 5 ,and v 3 are determined in other techniques, we still can

use DUFF to recover the velocity and position of objects.

4.4 Nine-frame Model

In the last chapter, the correlation-feedback approach is developed. It is proved that

the approach is more efficient for computing optical flow field. Using the approach,

one needs three images to compute an optical flow field. The three images are taken

I)y three cam - as that are shown in Figure 4.3.
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Camera 0
	

Camera 2
Camera 1

Figure 4.3 Camera Model

The angle between two camera is 0. The selection of 0 is very important. When

intensity variation is large, 0 should be relatively small. When intensity variation is

11, 0 should be larger. Otherwise, optical flow computation would be affected.

The reason has been discussed in Section 2.1.1. Usually, we select 0 2.5°. As time

increases, a stereo image sequence is obtained. Figure 4.4 shows that nine-frame

model when time increments from t o to t 2 .

From images L20, 121, and Iv , 1/ 5 ( `14 	 and v s(x m , y 	 can  be computed,

andwhere yni:04 	are coordinates of the image of middle camera. From images 1 01 ,

h i , and 1> 1 ,7/. 1- (x m ,y ill ) and vL(: 	 , y" ) can be obtained. Similarly, u R (. 	 yT) and

, J can be obtained from images /02, / 1 .>, and Actually, the nine-frame

model only uses seven images. Furthermore, one can compute the 3-D motion and

position from the six optical flow fields using Equations (4.29-4.36).

4.5 Experiment

The approach has been tested in many computer simulation experiments, including

a rotating sphere and cone, with fairly good results [491. Furthermore, many real
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i0 100 I01 102

ti 110 111 112

t2 120 121 122

Figure 4.4 Nine-frame model
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Table 4.1 :3-D motion and position error

Error Type Errors
R.MS Zerror .3.92%
RlVIS Terror 4.09%
RIvlS 1 error :3.98%
Average 	 rror l4.6%
A verage /Terror 3.17%
A verage 0.82%

images were taken and experimented. In this section, we can not report every

experiment, only one typical experiment is indicated.

Camera model is similar to the model shown in the last section. But, only

one camera, is used. The camera rotates at 2.5° along clockwise and counter-

clockwise directions so that the three cameras model is simulated. The setting of

the experiment is depicted in Figure 4.5.

The camera is rotated with respect to a center. The distance between the center

and the camera. is 1025ram.. The focal length of the camera is 12.5mrn. The box')

and box:3 in Figure 4.5 move together in horizontal direction. The motion velocity

5non/frame. Other dimensions are shown in Figure 4.5. Images are taken with a

CCD SONY camera and DATACUBE system, and stored in a SUN SPARC station.

The nine images are of 512 x 512 and are cut into 256 x 256. Via suhsampling, the

images are further compressed to 64 x 64. The compression is the same as that in

last chapter. Three of the compressed images are shown in Figures 4.6, 4.7, and

tint(. correspond /2 0 , 121, and fp in Figure 4.4.

After the tenth iteration of optical flow computation using the correlation-

feedback algorithm, the six optical flow 'fields are used to compute :3-D position and

motion. The errors of results are shown in Table 4.1.
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Figure 4.5 Experiment; Setting.



Figure 4.6 The left image
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Figure 4.7 The middle image



Figure 4.8 The right image

In Table 4.1,

where Za ( i,j ) is true depth map.

RM S Xerror and RMS Yerror can be obtained similarly.

where 

Z

a

( i,j

) is true velocity map in Z direction.

4.6 Conclusion

The results show that 1.10F1-7 is feasible. Although the depth of objects is equal, the

RMS error of depth map is 3.92%. But, the average error of Z is 14.6%. This is

because that Z is approximately a function of the difference between uR and uL  as

76
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11unit = (4.39)
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noted in equation (4.34). The difference of optical flow would cause larger errors.

The average error of Z will be reduced by further effort that will be discussed in nex t

two chapters.

The DOFF approach has a few special features.

1. The approach allows objects to move and to change shape, i.e., it does not have

any limitation to objects. Therefore, it can be used in more comprehensive

systems.

2. The approach can compute :3-D position at each pixel so that the surface of the

objects or structure of the objects can be known. From velocity of :3-D objects,

one can know more information such as collision-time.

3. Consider the special case when 0 = 0, i.e., the case of two parallel cameras

(see Figure 4.1). At this case, the spatial velocity u unit is essentially the

disparity, where unit is a constant and is a unit. The unit expresses how many

millimeters it is when pixel number is one. The unit depends on CCD camera

and sampling frequency. By using camera calibration, the image velocity (u)

is obtained by detecting the corresponding points that in the left and right

images have the same intensity and the depth D to a point with the image

velocity u is measured. Thus

where unit of optical flow velocity u is pixel, f is the focal length, and 1 is the

distance between t\ o cameras (or the distance over which a camera moves).

Once the unit is obtained and the optical flow field us (:r, y) is computed, the

depth Z(3:, y) to a point with image velocity us (x y) is then determined from

the static stereo equation: Z = —1 . 11 (us • 'unit). Obviously, this special case

of our approach has appeared in many literatures [4] 1 7] and, hence, is not



78

new. As noted in Section 2.2.2, this depth map computation is based on only

translational motion instead of both rotation and translation. We can prove

that this depth map computation used in most of existing works has poor

robustness as compared with Equation (4.29). From Figure 4.1, one knows

that Equation (4.29) is based on both translational and rotational motion of a

camera. In Equation (4.29), i.e.,

Z
f I sin 0 cos 0

4.40
+ x 2 0 2 Sill 0 + 2f (1 — cos 0)	

(	 )

the	 + x2 ,1 2 = unit using our experiment setting. Its derivative is

f 1 (uni t)(sin 0) 2 cos 0
(4.41)

dus 	 (us {unit) sin 0 + 21(1 — cos 0)) 2

When

fl Z=— 	 (4.42)
us (unit)

dZ 	 f 1
dus 	 (unzt)(us)2 	

(4.43)

The sensitivity of depth is :iluz,8„, where Su is a perturbation of u 5 . When

Equation (4.41) is divided by Equation (4.43), one has

A	 ( 	
p(unitysin 0) 2 cos 0

(us(unit)sill 0+ 21(1 — cos 0)) 2)/ unit(us) 2 )

2/(1 — COS 0) 2
cos 0A 1

(1/771.02Ls Sill 0 ) •
(4.44)

Usually, we use 0 = 2.5°, f 	 1.2.577an, and unit = 0.0547nin/pixe/. Assuming

=1, it is obtained that A = 0.0074. It is evident that under the same

perturbation of optical flow, the error using Equation (4.4.0) is as 0.74% small

as that error using Equation (4.42).

From Section 2.2.1, depth can be computed by following equation:

z = zo [i + o ( 	+ v 2 )' 	
(4.45)
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The equation has been discussed in Section 9 .9.1. It considers two motions,

translation and rotation. According to the imaging geometry shown in Figure

4.1 and the discussion in Section 2.2.1, one has v = 0, u = us(unit), Vy = 1,

and zo 	tcoso Therefore,sino •

= (
1 cos 0 

)	
+ 21, s 1.7Li t) cos 0

sin 0 	 f sin 0
1,f cos 0

(4.46)
f sin 0 + us (unit) cos 0

	

dZ 	 1 f (unit)(cos 0) 2

dus 	 (J. sin 0 + us (unit) cos 0) 2

When Equation (4.41) is divided by equation (4.47), one has

fl(unii)(sin 0) 2 cos 01 f (unit)(cos 0) 2

( (us (unit) sin 0 + 2f (1 — cos 0)) 2)/( ( f sin 0 + us (unit) cos 0) 2)

(sin 0) 2 (f sin 0 + us(unit) cos 0) 2

(cos 0) 2 (us (unit.) sin 0 + 2 .1(1 — cos 0)) 2

When 0 = 2.5°, f = 12.5mm, unit = 0.054 and us = 1,

= 1.00. (4.49)

Apparently, the more motion make depth map computation more robust. This

is why the depth map computation of UOFF is more robust than most existing

works.

DOFF has so wide uses that further improvement will become important. In

next two (7hapters, we will discuss how to improve the estimation of 3-1) position and

motion.

(4.47)

(4.48)



CHAPTER 5

DISCONTINUITY IMPROVEMENT

In the last chapter, DOFF is discussed. DOFF is totally different from existing

approaches. It includes six 3-D fields that are Z(x, y), X(x, y), Y(x,y), Z(x,y),

X (x, y), and )/(x, y). The six 3-f) fields describe not only 3-f) motion but also

:3-f) structure information of the objects. The recovered objects can be rigid as

well as nonrigid. Since this reconstruction method has wide applications, further

improvement of its accuracy is very important. It is well known that the accuracy

of motion estimation is significantly affected by the motion discontinuity. The 3-f)

motion discontinuity mainly depends on the moving boundaries of optical flow fields.

As discussed in Chapter :3, the feedback technique popularly utilized in the

held of automatic control can be applied to determine optical flow, resulting in

the correlation-feedback algorithm. It performs better than the gradient-based and

correlation-based algorithms in terms of accuracy and conserving moving boundaries.

However, the propagation stage is also carried out there. Hence, one concludes that

all of the three algorithms will blur moving boundaries in optical flow field.

To further improve optical flow accuracy, it is necessary to address this issue.

In this chapter, we propose a Kalman filtering for improving accuracy in determining

optical flow along moving boundaries.

Firstly, a quantitative analysis on the error decreasing rate in determining

optical flow using the correlation-based technique, i.e., the de ceasing rate of estimated

optical flow deviation from its true value is given. It concludes that this error

decreasing rate is varied for different regions in an image plane: it is larger for the

regions where intensity varies more drastically, it is smaller for those where intensity

varies more smoothly. This indicates that the iterations needed in optical flow deter-

SO
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initiation should not be uniform for different image regions. That is, for the moving

boundaries, where intensity usually changes bigger, less iterations are needed than for

other regions. This is reasonable. In fact, the confidence measure [40] [44] is usually

high along moving boundaries since richer information exists there. Therefore, an

optical flow algorithm needs to have less iterations along moving boundaries than in

other areas so that the better estimations of optical flow along boundaries can be

propagated into other areas instead of being blurred by those in other areas.

Secondly, we propose a Kalman filter to realize the task of applying different

number of necessary iterations in determining optical flow to deblur boundary and

enhance accuracy. Loosely speaking, the idea is whenever the deviation of flow

at a pixel is less than certain criterion, i.e., good accuracy has been achieved, the

Kalman filter will not further update optical flow at this pixel, thus conserving

accuracy along moving boundaries. Assuming that estimated optical flow field is

contaminated by a Gaussian white noise, we give appropriate considerations to the

system and measurement noise covariance matrices, Q" and R", respectively. In this

way, the Kalman filter is used to eliminate noise, raise accuracy and refine accuracy

along discontinuities.

F inally, an experiment is presented to demonstrate the efficiency of our i‘au nin

filter. Two objects are considered. One is stationary, while another is in translation.

Unified optical flow filed (UOFF) quantities are determined by using the proposed

technique. The :3-D position and speeds are then estimated by using UOFP approach.

Both results obtained with and without the Kalman filter are given. A more than

10% improvement is achieved. It is expected that the more moving boundaries in

the scene, the more effectively the scheme works.
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5.1 A Quantitative Error Analysis

In Chapter 3, the feedback technique in determining optical flow is dev° 10 1)(-'( 1 -

There applying feedback technique to the correlation-based approach to optical flow

computation has resulted in a correlation-feedback algorithm. It has been shown

that the correlation-feedback algorithm performs better than the gradient-based

and correlation-based algorithms in general. It can estimate sub-pixel i m ageage vectors

to raise accuracy of estimated optical flow. It can conserve the discontinuities in

optical flow quite well. But, since the neighborhood propagation is carried out in

the algorithm, it is inevitable that the boundary information is somehow lost as

the number of iterations increases. Therefore it is evident that all of three types

of optical flow algorithms: the gradient-based, correlation-based, and correlation-

feedback algorithms blur the motion boundaries although the correlation-feedback

algorithm conserves the motion boundaries better than others. When such motion

discontinuities appear in most of optical flow field, the error will be serious.

In order to improve the accuracy of optical flow around motion discontinuities,

we should, first of all, investigate why boundary information is blurred. In this

section, we conduct a quantitative analysis of error in determining optical How along

the moving boundaries for, say, the correlation-feedback algorithm.

For the sake of simplicity. only is one dimensional case considered here.

Assume the first given digital image can be described by

/,(3;,) = 	 - v.") 	 (r). )

where I is a. virtual, continuous image field, .u." is a, true image velocity component

along direction. The second given digital image can be characterized by

1 2 (1: 2 ) = 1 ( 2;). 	 (5. 2)
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According to Section 3.1.3, the error or the dissimilarity m easure. in the correlation

can be calculated as follows.

E(u)
	

[12(x2 + A) - 1-1 (3.: 1 + A + u)) 2 w(A)dA

[1(x + A) - /(r. + A - u" + u)1 2w(A)dA. 	 (5.3)

where 'u is the estimated optical flow. The Taylor series expansion leads to

/(x - ua + u) = 	 + 1,(x)(u. - 	 + 0(x). 	 (5.4.)

where 1, represents the derivative of 1 with respect to x, 0(x) the second and higher

order terms. Ignoring 0(x) and assuming that (ua - u) is a spatial constant in the

vicinity of x, the error E(u) can then be written as

E(u) = f [1(x A) - 1(x + A) - 	 - u')/„(x + A)] 2 w(A)dA

= ota 1421-31.

where

Iy = I [I x(x 	 A)]2w(A)dA. 	 (5.5)

Thus, according to Section :3.1.3, the image vector can be expressed as following,

E„ em E( 'Ou

Eu e-' c " )
e_a(u_u-) , u
e-ir:Ru-uo)2

where c -E(' ) is the so-called response distribution and

u E u (ok) , 	 , u,k) u30) , (0) , 	 (5.7)

with 	 being an iteration number, u (0k) , 	 tl,.(20), li :(3k) , and 11 4(0) being the five

independent random variables obeying the same Gaussian distribution, i.e., Ar(u",8„k).

H ere, deviation of u ( ' ) is 6„,j„

(5.6)

= E{(a (k+1) _ 0) 2 }



x2
	

EIL(k) r{e_2T,2x(u(k)—tia ) 2 u(k) — U a ) 2
tfu,k-1-1 	 c, e-R(c i -v“)2)2 	 • (5.11)
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5
Tx 'u,k
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4 1.-?: -{- 8 . :i 	 oo 	 , 0i 	 p7 -2

— U a \) 2 e 4 -1-
(I/ ) 
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6uk \/27r 27r 

4 f:?+6,7„

du(k)
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= 
El()---- um -1-1.(.() 	 .2-0)(k).

„,a )..2 ) .
,(,) e_n (i(k).„ ..1 2

-.=-__ 	 E{ U(E (k) e --/( 12 (k) —) 2 ( ( k ) —  a)) 2 
1 	 (5.8)

(E„(k)e- TRit(o- w-Ty

According to the mean-value theorem [48], if f() and 9(x) are continuous on

and g (x) 	 0 on [a, b], there exists a value c of in (a, h) such that

/ 6 f (x)g(x)dx = 1(c) 	 g (x)dx .	 (5.9)

Therefore, one has

Ef(E.„(k) e- (tim -u-)2 (u (k) — tia))2
82 	 (5.10)

where c is a mean-value that tc,` assumes, i =

(k) 	 (k) 	 (k) 	 ( 	 (k)
Since uo 	,u	

k)2 ,u3 ,anu U 4 	are independent of each other, and the

	i k 	 ucovariances between e - 0, k) -0) 2 (u — a)2 	 1,are zeros, where i = 0, 9, 3, 4. (A

detailed derivation of this is shown in Appendix B), Equation (5.10) can be written

as

(k) 	 (k) 	 (k) 	 (k) 	 (k)since 1/ 0 	012 ,u 3 ,and u 4 have the same Gaussian distribution whose mean is

uu and variance is 8 2

IT; „-2n(u( k )—u" 	 (k) — UT)
u(k)

5

6u,k V/2 7i
(u (k) — u"

k) 	 )2
—2.1-Ru (k) — nap e 	26't2,, 	 du (k)

(5.12)
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Suuk+1
1 	 5 (5.13)

4

Assuming    

(5.14)e —r-gc,—".).2

where, obviously, ce:(, co), and one has

2u,k+1
5c  

6u,k(Su-,22k + 4
5c6u2 k

3

(5.15)  

or,
62 Sc• uk-1-1

6 2 	 = 	 3
u,k 	 (4- I 6.12tk

Equation (5.16) indicates that the larger the Ix , the faster the deviation decreases as

iteration number k increases. Furthermore, as the iteration number increases, even

for the case where the 12 is large, the decreasing rate of the deviation gradually slows

down. In Figure 5.1, a curve for the convergence rate, when I x 	40,

On the other hand, when I2 is small, much more iterations are needed to make

the deviation less than the value expected. Figure 5.1 also shows the convergence

rate when rt, = 1.

We therefore conclude that the deviation decreasing rate or the convergence

speed of the optical flow algorithm is non-homogeneous with respect to different

pixels. When the variation of intensity in an image region is greater, the convergence

in the region is faster. It is known that most of motion boundaries are of great

intensity variation. Since the propagation step is to be carried out in the iteration

procedure, as we know, the error increases along moving boundaries as iteration

increases. In other words, there are two conflicting actions on the boundaries. That

is, the conservation step tries to reduce the error, while the smoothness process

increases the error after a. few iterations. When the error reducing rate is less than

(5.16)



Figure 5.1 Convergence rates
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Table 5.1 Kalman filter

Models System model Uk = 4) k-iUk-1 ± 71k. 71k '- N( 0 )Qk)
Measurement model Dk = HUk + 6k - 6; '-'-' N( 0 )Rk)

Prior model E[U0] = U0 . covW0] = P,
(other assumption) E[77k6Ti = 0

Prediction
phase

State estimate extrapolation UAT = Ok-i Uk--1
State covariance extrapolation PAT = 41' k -1 Pi-1: 1 4)7k:	 + Q k-1

Update
phase

State estimate update Uk = Uk + Ifk( -Dk -	 kUk )
State covariance update Pj,+- = (./. —
Kalman gaingain matrix Kk = Pk- HZ(HkPic- Ili! + Rk)-1

the error increasing rate, the iteration procedure should be terminated. Therefore,

the iteration number should be different for the regions that are of different intensity

variations. A Kalman filter is proposed next to implement this task.

5.2 Kalman Filter

5.2.1 Kalman Filtering

The Kalman filter is best by almost any reasonable criterion in the Gaussian case

[51]. If we consider the system that estimates the optical flow field is contaminated by

the Gaussian white noise, we can use Kalman filter to eliminate noise, raise accuracy

and refine discontinuity.

Kalman filtering is based on a linear measurement model and is operated in

two phases: prediction phase and update phase, as shown in Table 5.1.

From the update phase, we can see that when the current measurement error

IRk 11 increases, the gain Kk decreases. Since = U1  Kk (Dk — HAT), U is

considered to be the dominant of U. On the other hand, when RkH decreases, Kk

increases. The effect of Dk - HkUj is weighted more heavily. Therefore, the Kalman

filtering optimally make the use of previous knowledge and current information.
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Figure 5.2 Framework

Here, we use this feature to raise accuracy and refine discontinuities of optical flow

field.

5.2.2 Proposed Framework

Figure 5.2 shows a proposed framework. Figure 5.3 shows image sequence arrangement.

Though here Kalman filtering is used to raise accuracy of the optical flow held,

our goal is to improve the three dimensional motion and position fields. Therefore,

there is a block that performs DOFF 3-D motion computation in the Figure 5.2.. Four



Figure 5.3 Stereo image sequence arrangement
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U017 17 optical flow fields -ask, y), zt(:1 Y),	 :11 ), and vt(x,y) are considered as

state variables because only these four variable fields are used to compute the three

dimensional position and speed fields according to Equation (4.29-4.36).

In the linear measurement model of the Kalman filter,

4 k	 + ri ku. , 71 	 N,.( 0,0, (2Z)

1.) 11 	=	 HUt. +	 '-■• 	 k (0, l?';̀ )

E{ 717(ekl) 7 ) = ° 	 (5.17)

w h ere (Mx , 	= („Z(3:,	 „Nx, 	 741(x,	 vNx, Oir , 4) i s chosen to be an identity

matrix because the state variables at current moment should be equal to the state

variables at the last moment, and H is also an identity matrix since the measurements

equal the state variables in the Kalman filter.

The initial state is 
wc1(x, y)
ti c (Z , y)

111;(:r, y)

74( 3 ' 

(x, y) = (5.18)  

ItoR, and q; are obtained from the correlation-feedback stage at the

ii,	 r	 .

1 ), +, = 1. I stands for the identity matrix.

since H and (1) are identity matrices, 13 14". =	 71 /7: ± Gt. . Theoretically, 77 1A!

is not, necessary since 4-Z.` already includes its effect. But, we still let 7);,̀ exist because

eau he used to adjust system dynamic and steady state behaviors. The more

parameters, the more Hexible system adjustment. Thus, the selection of fq. w ill h ave

inure flexibility.

In our experiment, the covariallCe matrix 	 for 711. is chosen as
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0

0

00
012 ; i: 	 , j))2 E E - 9
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0

O
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E E
0

9

O

(5.19)

where i E (x — 1,:r + I), j E 	 — I, y 	 1), and 

( 	 )

Y )

Y )

■ 	 y) 

0: !(x, ») = (5.20)    

According to the quantitative analysis conducted in Section 5.1, especially Equation

(5.16), R'ki(x,y) is defined as fo llow in g:

-r-q(xl
7.11 k (x,y) 0 0 0 	 \

0 7.22k y) 0 O

0 O 7.33( y) 0
0 0 0 7.44k (Xy)

5e82
— 1 0 0	 0

(4111i. 6:2‘,4,_ 1 +1 )

0
5C L 1,:w 0 	 O

Ohl ,+1)3

0 0
5 c R62

r,k— I 0
(d 9 )

0 0 O
5clis2

e,k-

(4/11;21 62o.k _ 3 +1)2

(5.21)

where 111 and 112 are two images shown in Figure 5.3, fi m_ 6 1,A-1, 6 r	 , rend

„ , k_ are the standard deviations of usk _ 1 ,14_ 1 , 	 1 , and v 1 respectively.

= -7
6 .

(x —1 Y +in 2 ,

(5.22)

(.112(x, ) 	 — 12(x — 1, y +

(5.23)

/ 11(:r 	 I,y 	 — 1 1(x,y+i)) 2 +(111(x,y+i)—

2 (® + 1,y + — 112(x,y
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all d

1•
1 11,,_ 	 (it 10,-+	 y 	 1) — /1 I (:r; 	 y))2 4- ([11(x -I- 7., y) — /1 1(:r 	 0)2.

(5.24)

In our experiments, c s icL,cR,and c v are set to be equal to 5.

In the prediction phase of the Kalman filter,

17k7(x,Y) =

PC(x, 	 = Pkti 	 + 	 (xi Y)

In the update phase,

(5.25)

(5.26)

Ili!"(x, y) = 0 170:,0+ Kk (x, y )( D k( x , Y ) -- °I;(x , Y)) , 	 (5.27)

AT k (:r, y) = 	 fi)[/'/.7('E, 	 +
	

(5.28)

PL+ ( 13 , y) = (./ — 	 k (x, y)) 	 (x, y). 	 (5.29)

Since R 11: , VI  , and Po+ are diagonal matrices, Kk , Pi- and Pi,* are also diagonal.

When the standard deviation of 2q

S s ,k(a:, 	 >

where T is a. predefined threshold of S si,(x,y), the iteration procedure continues. If

6s. j,(x,y) < the iteration procedure should terminate at the pixel, otherwise the

smoothness operation will blur the image vector at the pixel. Similarly, T1 , Zr, and

T,, are del lied as the thresholds for ei t , k , and S„, k , respectively.

Hence, whenever a predefined threshold has been reached, it means at this

iteration, its is a hest e!-itiinate. At the pixel, the iteration should terminate. In fact,

Kalman filter has the ability to automatically terminate the iteration as long as that

7.7.4 1,(.r,7i) DD is assumed when y) < From Equation (5.28), it is known

that kii k+ , = O. Then, that (x, y = k (:e, y) is obtained from Equation (5.27).

Therefore, the iteration no long continues at the pixel (:2,y). However, it,e.ralini still

continues at the other pixels whose variances do not reach the n 111111111111.
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Therefore, 

Rrijx, Y )

k

	

7.11 k. ( 	 0y) 	 0 	 0
7 . 22()x

	

0 	 0 	 0

	

7.33 K 	y)	

0744k(x,)

	

0 	 0

	

0 	 0 	 0  

(5.30)

where: 

{

r°11 .(x, y) =

7•22k(x,y) = {

{

r3:3 k (x.,y) =

7.44

d

6.9,k(x, 	 (5,,k >
otherwise

y) if 51,k > T1
otherwise

(5„, 	 y) if <57.k > Tr

00 	 otherwise

(5.31)

(5.32)

(5.33)

u,k ( X7Y)

00

if (5.,,k > T
otherwise

(5.34)

5.3 An Experiment

The experiment presented here is intended to examine the effectiveness of the actual

boundary conservation achieved by our proposed Kalman filter. It compares the

performances of the algorithm using the Kalman filter and without using the Kalman

filter.

In the experiment, the camera setting, images obtained, i.e., Pigu 4.5-4.8,

and image compression are exactly the same as the experiment presented in the last

ch a. )ter.

In order to compare the experiment results with trite three dimensional

parameters, Equations (4.29 - 4...36) are applied. Thus, the optical flow fields that

are computed with Kalman filter and without Kalman filter are used to calculate

three dimensional depth and velocity fields. Then the results are compared with

each other. When we say without Kalman filter" , it means that outputs of the
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Table 5.2 Result comparison

Error Type No Kalman Filter With Kalman Filter

RMS Zerror 3.92% 3.56%
RMS -error. 4.09%® 3.50%
RMS error 3.98% 3.58%
Average Zerror 14.6% 15.15%
Average A error 3.17% 2.95%
Average Ye, -or 0.82% 0.87%

correlation-feedback approach are used directly to compute three dimensional infor-

mation using Equations (4.29 -4.36). Table 5.2 shows the results.

In Table 5.2, the RATS Zerror is defined as

RAT S Z e7- 7- a ,. = 
E4

4
1 E;'11(za(i,i) — z(i,i)) 2

(5.35)      r' 	 64 (za(i)j)) 2 

where Za(i,j) is true depth map. It is noted that only central portion of 44 x 44

within the images of 64 x 64 are considered in the calculation. RAI S Xe, and

RAI S Krror can be obtained similarly.

44 44 ,

Average Z er,,,, = — -

44 .
(5.36)

where Za(i,j) is true velocity map in Z direction. The 44 x 4-4 has the same meaning

as mentioned above. Averagc Xerr„ and Average error can be obtained similarly.

From Ta.ble 5.2, it. is evident that precision of Z(x, y ), X(x, y), Y(x,y), and

X(x, y) are improved, but that of Z(x, y) and Y(x, y) have not improved (instead,

the error even increased a. little bit). The improvements of Z(x,y), X(x,y), and

l'(x,y) are larger than that of X(x, y).

From equations(4.29 -4.36), Z is a function of US; X is a. function of u L ; X and

y are linear functions of Z. Therefore, the errors of Z, X, and Y are determined

by that of v 5 . The error of X relied on u L . As we know, z/ L is an image velocity
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field that is caused by the motion of the objects instead of camera. However, from

Figures 4.5 -4.8, it is known that the motion of the objects is only the motion of the

Box2 and Box3 in the case. The spatial optical flow along .1: direction, us, is caused

by the motion of the camera with respect to a. static scene. In the experiment, the

mot ni of the camera causes the motion of the images of the Boxl, Box2, and Box3.

Therefore, the us flow field has more moving boundaries than uL field does. Hence,

the us field take more advantage of the proposed moving boundary conservation

algorithm. This explains why the improvement on the accuracy of the recovery of

Z, X and V is larger than that on X.

It is noted that the true values of Z(x, y) and Y(x, y) are zeros with respect to

most of values of (x,y). There are very few discontinuities in the fields. Therefore,

the proposed boundary conservation technique does not bring out advantages as the

results in Table 5.2. show.

in fact, the effectiveness of boundary conservation can be controlled by the

threshold values: Ts, T 1 , Tr , and Tv. According to our above discussion in this

experiment, we choose these threshold values as follows.

Ts = (5.37)

= 4.63", (5.:38)

= 4.6:r", (5.39)

T" = 1.95 -6 (5.40)

Actually, the trade-off between boundary conservation and interior smoothness is not

easy. If there is not any prior knowledge, the selection of threshold will be difficult.

[n order to show the effectiveness of the discontinuity conservation, Figure 5.4

are compared with Figure 5.5. Figure 5.4 shows depth map Z(.1:, y) that is obtained

with Kalman filter. Figure 5.5 is also depth map but obtained without the Kalman

ii l tier.
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Clearly, the depth map with the Kalman filter conserve the discontinuities in

this experiment much better than that without the Kalman filter.

5.4 Conclusion

As pointed out in [46j, most of the optical flow computation algorithms can li e divided

into two steps: conservation step and neighborhood propagation step. The neigh-

borhood propagation operation or smoothness operation is inevitable because of the

presence of various noises and aperture problem. Most of the existing neighborhood

propagation operations are the relaxation algorithms based on some kinds of optimal

functions. However, the operations inevitably blur the boundary information. It is

well known [40] that the confidence measure is usually high along moving boundaries

since richer information exists there. In this chapter, our analysis indicates that the

optical flow algorithm needs to have less iterations along moving boundaries than in

other areas so that the better estimations of optical flow along boundaries can be

propagated into other areas instead of being blurred by those in other areas.

In order to make the iteration procedure stop at a proper time, we define the

elements in the main diagonal of the covariance matrix of the measurement noise,

1-?", i.e., the variance of measurement noises as

y) if Si,k >
J) 	 (5.41)

00 	 otherwise

where index i means the ith measurement noise, Ti the predefined threshold value for

the ith measurement noise. When the error (standard deviation Si , k (x,y)) is small

enough, 	 = co. According to Equations (5.27, 5.28), the Kalman filter can

) 	 terminal(' the iteration ill the pixel (x, y) so that boundary information

is protected.

In this method, the derivation of the error decreasing rate is very important.

Different optical flow computation algorithms have different error decreasing rates

because their refinement procedures have different effects. For instance, when the
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Figure 5.4 Depth map with Kalman filter.
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Figure 5.5 Depth map without Kalman filter.
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Horn and Shunch's algorithm 19] is applied to the same images as shown in Figure

4.6-4.8, the curve of R114 SY,,.„.„. versus iteration n u mber l, is shown at Figure 5.6.

With the usage of the proposed Kalman filter and the following error decreasing rate,

1
+ 1)
	 (5.42)

results shown in Figure 5.6 indicate that the algorithm can improve boundary infor-

mation that Horn and Shunch's algorithm can not extract well.

Existing computer vision algorithms using Kalman filter are all based on an

incremental fashion. In those algorithms 17] [45], an image sequence is considered.

In every iteration, different images are used. In this chapter, the Kalman filter is

not used in the incremental fashion, i.e., the algorithm works on the same group

of images with different iteration. In other words, information given by the a fixed

image group is sufficiently used. On the other hand, image interpolation is not needed

in our Kalman filter since the fixed image group is repeatedly used.

For implementation of Kalman filtering, the knowledge about noise models

is important. However, it is impossible to exactly know the system noise 71ii" and

measurement noise 4T in optical flow computation. In this chapter, some consid-

eration has been given to these noises. We assume that = N(0, Rn, HZ satisfies

Equation (5.30). Other effect of noise is covered by 7 -i; that is ilk= N(0, (M. Qti is

defined in Equation (5.19). The. RZ comes from an analysis about the error decreasing

rate.

As we know, Z(x, y) and Y(x, y) have not been improved. Our purpose in this

chapter is to obtain a good method that can conserve discontinuity. Since Z and Y

have very few discontinuity, improvement of them is not purpose of the chapter. In

the next chapter, improvement of all 3-f) parameter fields will be considered.



Figure 5.6 Convergence rate comparison.



CHAPTER 6

MOVING OBJECTS ESTIMATION USING KALMAN FILTER

In dealing with stereo imagery, the current techniques [23] [36] [37] [52] [5:3] classified

as the multiple optical flow field approach [15] are, first, to find the optical flow field

for each view and then, to recover the motion and -tructure of the scene via the use

of the correspondence between points in the pair of stereo images. Therefore, it is

a combination of the optical flow approach and the point correspondence-approach.

However, the feature extraction and correspondence are known difficult and only

partial solutions suitable for simplistic situation have been developed [15]. A new

theoretical framework: unified temporal-spatial optical flow field (DOFF) and its

usage in motion analysis from stereo image sequences have been proposed in Chapter

4. The new concept of imaging space has been developed to include both temporal

and spatial sequences of images. The optical flow determined for temporal sequences

of images, say, by Horn and Sc.hunck's algorithm [9], is extended to spatial sequences

of images resulting in UOFF. Based on a four-frame rectangular model and the

associated six HOFF field quantities, a set of equations is derived from which both

position and velocity for each pixel can be determined. It does not require feature

extraction and correspondence establishment. Using both temporal and spatial

sequences of images, its capability of recovering motion exceeds significantly that

of the existing motion stereo technique [10] 117 [18] [54] [55] and direct method [4]

[6) [7] [8] [56] which can only recover the relative motion between a moving camera.

and a stationary environment. It can analyze multiple independently moving objects

without the necessity of partition in the optical flow field as suggested in [57]. Besides

depth map, it can estimate motion fields as well.
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Obviously, UOFF approach to motion analysis faces all the problems faced by

optical flow approach. One of the problems is the presence of various noises. In

order to improve the results of motion analysis using UOFF approach, a correlation-

feedback algorithm for determining, optical flow [58] and a Kalman filter for further

improving the accuracy in optical flow determination along moving boundaries, which

will be referred to as the first Kalman filter in this chapter, have been developed in

Chapter :3 and Chapter 5. To continue to improve the accuracy in motion analysis,

stereo image sequences (sequences of the four-frame model) should be used instead

of a. single four frame model. It is noted that, to make use of previous knowledge

and current states, Kalman filters have been utilized as an on-line estimator of depth

map [17] and optical flow field [45], respectively, that are refined over time. The

Kalman filters are robust with respect to both system and sensor noise.

In this chapter, a Kalman filter-based algorithm for :3-D estimation using UOFF

has been proposed. When the Kalman filter is used, the object motion model eeds

to be known. However, in reality it is almost impossible to know object motion model

exactly in advance. This modeling problem is discussed in this chapter. Significantly

more consideration has been given to determine the covariance matrices, Q and

for system noise and sensor noise, respectively than the previous work, say, reported

in [17] and [45].

Most of previous works did not consider how to handle the so-called newly

visible image areas, i.e., the disocclusion issue [17]. In fact, when multiple object

movement is considered, the disocclusion is likely to occur. When the Kalman filter

is used to fuse previous knowledge and current states, the disocclusion must be dealt

with carefully since the previous knowledge may not reliable \vhen disocclusion takes

place. This is handled in our algorithm by using a threshold method. That is,

whenever One of the components of state vector has changed more than 30% from its

ruvdicted value at the immediately previous iteration, we consider that disocclusion
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has taken place, (Obvious l y , occlusion would not satisfy this threshold and, hence,

would be treated differently from disocciusion). We then set the covariance matrix of

measurement noise, Rk, equal to zero. In other words, the estimated values are only

related to the current measurements. This is reasonable since the previous knowledge

is not relial:de when disocclusion takes place.

Two experiments are presented to demonstrate the effectiveness of our

algorithm. In both experiments, the Kalman filter is used. Together with the

correlation -feedback technique in determining optical flow, good results have been

achieved.

6.1 Modeling

A framework of Kalman filter is shown in Table 5.1 which consists of a system model,

a measurement model, and prior models and is operated alternatively in a prediction

phase and update phase to obtain an estimate that is unbiased and has a minimum

mean-square error.

A block diagram of the proposed Kalman filter is shown in Figure 6.1. The

subscript k stands for the /Ali iteration. There Dk is a state vector at the loth

iteration: (7.,k(x, y),2k(x, y), j(k(3.:,y), )(x,y)) T , i.e., a vector having depth Z,

speeds along Z, X, Y directi ons as its four components. 1.Ikl is optical flow vector

estimated at the /Ali iteration by using the correlation-feedback algorithm and the

hrst Kalman filter. Ok is a measurement vector formed by the four components:

depth and speeds in 3-f) world space. (1) is a transition matrix. /6,. is a Kalman gain

matrix. The measurement matrix His here taken as an identity matrix I since the

state vector and the measurement vector have the same four components.



Figure 6.1 Framework.

When an object moves with a constant velocity, the system model can be

represented as following:

Apparently, such a (I) means that the acceleration of any 3-1.) point is zero.
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Taking a close look at the problem under consideration, one will find that the

above equation is not absolutely correct for digital images. In digital images, (x, y) is

a pixel. D k (c, y) is computed for lie pixel (x, y) of the i mage at moment 1;:. y)

is computed for the pixel (a:, y) of the image at moment k— 1. .-.owever, when the 3-D

object(s) is moving, the pixel (a:, y) of the digital images at different moments may

be perspectively projected by different 3-D points. In order to continuously track a

3-D point, interpolation is needed. Therefore, Equation (6.1) should be rewritten as

follow i ng:

D1( z , y) (1)(1.1Lterpolatio7i(D(_1(aL'0))

(TO k-i(x ,Y))

(1)(D k-i(x,	 + (Pk( x ,y))

=	 1 ---)k_1(x,y)+ (6.3)

where O k _ i , y)	 interpolation(Dk_1(x,y)), 	 is the certainty part of

n k _ 1 (,, 	 (pk(3:,y) is the uncertainty part of b k _ I (1,7,y), and 11)(a;, y) is a product,

of 41 and y 	 y), 77 1k?(a; , y) is nr rl.inly caused by the interpolation. We assume that

?d,) (, , y) 	 N(0, QP(x, y)). The more detailed discussion about interpolation°,

71,J 	 y) and (2 1,,,.) (x, y) will be made in Section 6.4.

Since ..,1 i,(3;,y) and Y,..(x,y) are linearly dependent of Zk(x,y) according to the

well-known perspective Li ansform, they are not chosen as state variables. Therefore,

the system model, measurement model and prior models are represented as following:

Dl; (:r. y) (I) f) k - 	 y)	 "111) 	771,.)(x,,?/)	 ( 0 , Q1, (c, .9)) (6.4)

t),; 	 y) = y ) 	 4. kr. ) (x., y), 	 (.c, q) — N(0, /?t,'	 y)) (6.5)

= I, 	 E{(,f) (x,g))T ( 7 1i: ) ("-',Y))) 	 = U. (6(6)

O k (a:, y) is measured by using cameras, A /1) converter, the correlation-feedback

algorithm for optical flow estimation, the first Nalmari Biter, arid a set of formulae



106

for determining 3-f) motion using UOPF in Chapter 4. 61-/ ,	 is the measurement

noise that may be produced in the above mentioned measurement process.

Deriving the system model is important. If object motion is known, the

tra»sition matrix (I) should be modified and specified according to the known motion.

If the motion is unknown, Equation (6.2) may produce error. In Section 6.6, we will

discuss the problem in more detail.

6.2 Measurement Noise Covariance Matrix RD (I)

System model has been set up, if the measurement and system noise covariance

matrices RD and q D are determined, Kalman filter can then be utilized. In this

section, the determination of RD is discussed. As mentioned in the last section,

the measurement noise 4-P y) is caused by cameras, Air) converter, optical flow

determination and :3-D motion estimation. e(x, j) is assumed to be a Gaussian

white noise. Therefore, Rp can be computed from measurement noises of us, u L ,

u", and v L , denoted by in Chapter 5. It is noted that the u, u", and

are the HUFF quan titi es, w hi ch are the s t a te „var i abl es of th r fi rs t K a l man filter.

In the following; discussion, a superscript u is sometimes used to denote gi.iantities

defined and used for the first Kalman filter in Chapter 5. Hence, as defined in the

l ast chapter, D = N(0, Tr) are, respectively, a measurement vector field,

a state variable vector field, and the measurement noise in the first Kalman filter.

It is also noted that here we do not consider the part of measurement noise caused

by api'dyirig the set of equations (Equations (4.29-4.36)) in estimating 3-i) motion

using the DOFF approach, i.e., Equations (4.29-4.36).

Pruitt 11',CIllatiOn 0.1 7), one has

= I T+ • 11 ,

n,, 	 = 6"
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( 6.7) 

According to Kalman filter theory, the estimates 0

Kalman filter have the following relationship:

and U in the first

(6.8)

(6.9)0k(x, y) = pk(s, y) ek) ( a3, y)•

From Equations (6.5) and (6.6) of the last section, it is known that

olk(.r, y) -
o2k(x,y)
o3 k(x, y)
ort k (x,y)

From Equations (4.29-4.36)

-fir)i
Zijx,y) 	 0+
Xjc(XIY) 	

cl)
',3

1>k(x,y) 	 r. D4 _
- 	 -

Zk (r.,y)

in the discussion of 1.1OFF approach, refer to

Chapter 4, it is easy to see that ol.(x, y), o2(x, y), o3(x, y), and o4(x, y) are the

functions of d'It, 	 d3, and du.

We can assume Dk(x,y) = Oc 	 and use the Taylor series expansion to

obta
d(oi )

of =	 —	 oz,
d(fly)

• 	 d(02)
02 = z + 

d((Pit) id r, , (di —

d(o2)
1, 1 ,„L (4_ uL)d(4)

d(02)
ILL')(-1(d-'s )

(6.10)

(6.1 1)



d(o3)
d(d;. ) iq R 	 -

, (6.12)

o3 _-.-
._ ,k + d(03) i,,,, d ,

d(4 ) ' I -

d(o3}
+ 	  1 P=u1. (4 - u lld(dfl ( 2
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s )

and

d(o4)
o4

• 

Y 	 u, 0'; -
d	 )

(o4)
• -----	 =,LL (tP' - 71, )

d(4) 2

d(04)
I d. =uR (d t1• (LA ) 3

d(o4) d4L -
v L )

• d(dt4L) (	
(

4

_

)

(6.13)

where O z , 02,	 and	 represent the second order and above terms. They can be

ie lored. One can have

of - Z
o2 - Z
o:3- X
U4' -

(On	 0	 0 0

0

0

- us
Cdz — U L

— 'IL k
du ___ v

- 	 4

(6.14)

d d 	 (t; =U, '

d(o2) 	 d(o2) 	 1 	 d(o2
Id(d'l 	 d( (p;) 	 I ( q =u L 	 do.;,,, ). 	 fq =uR

(403) 	 I 	 d(oT3)1 	 d(o3) 	 1
41 (d1'	d(d)	 Id"; = 1, L 	(10q)	 1 (q =U R

(1(04) 	 d(o4) 	 I 	 (1(04) 	 I 	 (404)
d@n2f )	 I (1:1=1i L 	,t((q )	 I tq =uR 	 ,i(d ,, ) 	 I d' 4 .---1, 1--'4'1 11 	 lq =11'

That is,

Ok — Dk 	 G (6.15)

miparing Equation (6.9) with Equation (6.15), one has

1)
= (6.16)

Here,	 = N(0, Rijn and V = N(0, R"), therefore

= covar	 k cat) a7 . -{C}GT 41mT. (6 . 17 )
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where RU is the covariance matrix for the measurement noise in optical flow determi-

nation used in the first Kalman filter. Thus, Rp can obtained. But, since th newly

visible area exposure problem needs to be handled, this matrix must be modified

accordingly. A discussion in this regard is conducted next.

6.3 Measurement Noise Covariance Matrix RD (II): Newly Visible
Image Areas

As pointed out in Section 6.1, when 3-D objects move, newly visible areas become

exposed on images. Thus, detecting and properly handling the newly visible area,

i.e., disocclusion, is important. These two questions will be addressed in this section.

Obviously, all previous knowledge becomes unreliable in these newly visible

areas. Only current measurement is reliable. This situation amounts to that the

Kalman filter-based system works at initial conditions in these newly visible areas.

This can be justified as follows.

According to Kalman filter theory, when the measurement noise covariance

matrix is equal to zero, i.e., 1? = 0, the Kalman gain matrix KU will be

KT' = Pk- 117: ( 1 k Pk- 1-1 /7; Rik))-1

= P IIT (H P - HZ' r i

= 111: 1 11 k PIT I- I IT 	 k PiT
	 1

= H k7.1 	(6.18)

and the updated state covariance matrix Pk will be

Pkt = — KL? Hopk7 = 0, 	 (6.10)

and the updated state variable vector will be

= f),-; +	 - H,15,7)

=	 ± 11 17 1 (w - N IA)
(6.20)
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Figure 6.2 Disocclusion.

The above result means that estimated state variable vector are associated only

with the current measurement vector and the estimated values are unbiased. Or,

equivalently, in the newly exposed areas, the Kalman filter amounts to work on

the current information only, as if, in this sense, work at initial state. Its initial

state covariance matrix Pk+, is zero. Hence, the conclusion is that as long as the

measurement covariance matrix is set to 0 in the newly visible areas, Kalman

biter can properly handle the newly visible areas automatically.

Then, how to detect the newly visible image areas?

In Figure 6.2, the entire block surrounded by solid lines moves into the place

surrounded by dash lines, it is evident that Area I is a newly visible area but, A

rea 2 is not. This is because Area 3 fills Area 2, Area 1 moves into Area 3, but, there is

no any area that can shift into Area 1. Area 1 is a newly visible area.

1f the block surrounded by the solid lines is used to represent the image of

a 3-D object at momentk-1,the block surrounded by the dash lines is used to

represent the image of this object at moment k, and the image moving velocity is

known as (uL(xk, yk ), vL (xk, yk )), then Dk (xk, yk ) is the current state variable, vector

and Dk-1 (x k-1 , yk-1 ) is the state variable vector at moment k —



From Section 6.1, one knows

Dk(X)Y) = (I) 71.terpolatzo (6.21)

(6.22)

Prom. Equation (6.9), one has

DA,(x, y) = 0k(x, Y ) - e(x,

However, in Area 1, Equation (6.21) no longer holds because the image there at

moment k is not related to the 3-D object any more. Hence D k (x. k ,yk) no longer has

any relationship with Dk.... 1 (.r k_ 1 ,y k _ i ) in the area. D k (xk, yk) can only be obtained

from current measurement vector Ok(xk,yk) in Area 1, refer to Equation (6.22).

In general, if the system based on the Kalman filter shown in Figure 6.1 is used,

the estimate Dk(xk, yk ) can be obtained from 4)(interpolation(bk_1(x, y)). Thus,

E{ Ok(x, y) — 	 y)} = EIDk (s, y) — j5 k7 	 e(x, 01-

Since 	 is independent of D k (x,y)	 b (x, y) and EVV1 = 0,

EfO k (x,y) — ij k- (x,y)1 = EIDk(x,y)— D,. (x,

Hence except Area 1, E{Dk(x, y) — /%7(x,y)} 	 0. It is evident that 1E{Ok(x,Y) —

(x, 011 is much greater in Area 1 than that in any other areas. This observation

can be used to detect disocclusion.

In our experiments, lO k (x,y) — Di:(x,y)I instead of IE{O k (x, y ) — D -k7 (X) y)}

is irsed. This is because the local average computation may fail the detection of

newly visible areas in the discontinuity areas, since an average computation can blur

a boundary, while the newly visible areas are usually related to discontinuities.

Sin ce Pk( X, y) — DF:( X )01 	 IDk(xl Y. )	 D	 .t„,1(;z:, 01, the accuracy of

the detection of disocciusion is mainly depends on the measurement noise Due

to the uses of the correlation-feedback algorithm and the first Kalman filter, the

amplitude of - )1, -) (.c,y) are expected to be small. Therefore, detecting disocclusions
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is not difficult- Threshold methods can be used. In our experiments, following

thresholds are applied.

104 Cx,Y) 	 Y k 

whet e D is is the distance between the fixation point and a camera, and Dis

cot ay.(6) , 1 and 0 are shown in Figure 6.3. When any one of the above conditions is

not satisfied, one concludes that disocclusions happen at the pixel (rr, y). Thus, at

the pixel, set Rp , y = 0.

The accuracy of detecting disocclusion is partially determined by the accuracy

of detecting the moving boundaries of optical flow fields. The moving boundaries

always exist around newly exposed areas. If the moving boundaries are blurred,

the edges around the newly exposed areas can not be detected effectively by using

the tlue,holds. In other words, the accuracy improvement along moving houndaries

discussed in the last chapter is quite useful for detecting the newly exposed arei■s.

6.4 System Noise Covariance Matrix Q

The derivation of mea.surement noise covariance matrix K it.) has been conducted in

the previous two sections. Here we will determine system noise. covariance matrix

0"

System model of standard Kalman filter is a linear function. Rut, here a.s we

discussed i n section 6.1, the system model is not linear, i.e.,

D k = gqinterpolation(D k. _ 1 )).

< 30% (6.23)

< 30% (6.24)

< :30% (6.25)

< 3 0% (6.26)
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Figure 6.3 Camera model

Therefore, the state covariance extrapolation PC. = (1)./),+. (D T + Qp shown in Table

5.1 does not hold and needs to derive in this section.

Equation (6.3) in Section 6.1 is rewritten below.

where ?lk(x, y) -- N(0, Q rk) (3.,, y)). The function, interpolation() ) will affect compu-

tation of the state covariance PC, and noise covariance Qj in the prediction

phase. Furthermore, we assume that m,(3:, -y) mainly comes from the function,

inte•polation°. The so-called interpolation can be explained by referring to Figure

6.4. What we did here is a little bit different from what discussed in 171. There the

authors suggested that the depth field at the (k — 1)th moment he first extrapolated

(shiltinol to form that at the kth moment according to optical flow vector, an
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Figure 6.4 Interpolation
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Figure 6.5 The reason why noises are produced by bilinear interpolation.

interpolation (resampling) be then conducted. We found that it is more practical

to first interpolate the depth field (in our case, the motion fields as well) at the

k - 1)th moment, then shill the interpolated depth to form that at the kth moment

by using optical flow vector. This is clearly described in Figure 6.4.

A bilinear interpolation is utilized which is illustrated in Figure 6.5. There

certain errors are generated. From Figure 6.5, we have



and

We assume w i = Al(0, S t, ).

Similarly, we have

PA = Pc' + w 1 .
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(6.29)

+ 1) — 	 , j11 + 1)j + (1 - a)1Z1,---1(111 + 1,/11 	 1)

- 2t I(

and

Furthermore,

and we assume

1 + 1, 1 -11 	 1)]

PB = Pb + w2, W2 = 1\1 (0, <,„).

Pd = 	 + (1 — b)

(6.30)

(6.31)

(6.32)

PD = 	 IT t0:3, w3 = AT(0, Sy), ). 	 (6.33)

According to the last chapter, we assume that dr and (1 a.re thetrue values

of d.l2t and di, respectively, and

d11 = ditif a + s,

(14, = 

Ill -tre IL, = 	 bs) and it y = 	 Sy).

We define

	el 	 = E 4-1( 7: 2,j2)) 2

	
( 6 .34)

\AI liere le superscript Z denotes the first component in the measurement vector, i.e.,

the depth. The derivation in Appendix ( shows

(
k	 12)

=	 Zk - 1( 1,	 —	 1 	 1 ) ) 	 (Gk- 10,11 + 1 ,J11) + 1 ,.11 )))
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— 6)( ( 	 , 	 + 1) — 4-,L 1 NI , 	 + 1 ))

—(zk _ I (? 1 + 1 , 11 1 + 1) — 	 + 1, 	 + ! )fl ]S

i, 7' 11 	 11 Z _1 ( 11, j l1)) 	 (Zk-1 (ill 	 +

(I — d)((Zk--1(il1 	 — 	 + 1i11))

—(Zk_ l 	+ 1 3i11 + 1) — 	 + 1,j13 + Mr8y2

1) — 

+1) 2 5w2 , + 	 — Ly22 	 sw2 3. (6.35)

It is noted that 4,4,4 can be expressed in the same way.

In our experiments, the linearization noises are represented as

2 	.	 . 	 N
Zk-i(Zli1311) 	 + 1 )311,1 )9 (6.36)

5,2,2 	
+ 1) — 2k_1(i ll 	1,j 1 1 + 1) ,

9

8 2  (t2k_1i7in) —	 + 1) 	 — 	 + 1,j 11

w:3 	 +)(

(6.38)

The 63,2. and 	 are variances of du2 and d4" that can be obtained from Equation

(5.21) in the last chapter, i.e.,

k

"y ,k
	 82 I
	 (6.39)

where k being the iteration index.

The Appendix C further shows that the system noise covariance matrix is

(07 2, ) =

(

ar: (7:21.j2)	 0	 0	 0

0	 4 ( i.) 1 :12)	 0	 0

0	 0	 4: ( 7 21 j2)	 0

0	 0	 0	 4: ( i 21 j 2)

( 6 .4- 0 )

and the predicted state covariance matrix at the kth iteration, Pk7, is as follows.

(6.37)

4 	 4

Pk: = 41i741,67-polat ion 2 (Pi+, i )]

	

(6.40
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It is noted that the difference between interpolation and the notation of inter )olation 2

is illustrated in Equations (C.30) and (C.31), refer to Appendix C.

For the completeness, we also write the prior model below.

El Do} -= no

cov{D o } = Po = (Do — E{D })(D o — E{Do})T

E{Do (x,y)} can be substituted by the average around D (t,y), i.e.,

>7 	Docx

The update phase the Kalman filter-based system is:

(6.42)

(6.4 3)

(6.44)

(6.45)

(6.46)

KP(s,Y)= PC(Pk-

= (1 —

Now the proposed Kalman filter has been completely specified.

6.5 Experiments

Two experiments using the proposed Kalman filter-based algorithm are presented

here. The first experiment is about three objects. There is a relative motion between

them. 1.1OFF approach together with the feedback technique in determining optical

flow and the proposed Kalman filter are applied. Fairly good results about depth

and motion fields illustrate the feasibility of our approach.

In the second experiment the entire scene is a flat poster experiencing trans-

lation. Again both depth and motion field are recovered by our approach. A

comparison between the depth map obtained by our approach and that reported

in [17] is made. It turns out that our method performs better: more accurate and

'note iohnst against noise.
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6.5.1 Experiment I

Setting: The experiment setting is shown in Figure 4.5 where the superscript I

stands for left, v for right and ln for middle. The angles between two neighboring

optical axes is 2.5°. The focal length is 12.5 mm. Flat posters are mounted on three

boxes facing the camera. The box 1 is fixed, while the box 2 and box 3 move together

horizontally. The translation velocity is 5 nun/frame. Other dimensions are shown in

Figure 4.5. Images are taken with a. CCD SONY camera via a DATACUE3F,' system

and stored in a SUN SPARC; workstation. The images are 512 x 512 and cut into

256 x 256. Through a subsampling, images are further reduced to 64 x 64.. Three of

the reduced images at the first moment are shown in Figures 4.6-4.8.

In other words, the first experiment setting is the same as the experiment

setting in the last chapter except that the combination of box 2 and box :3 now

continues to move at a speed of 5 mm/frame. That is, a stereo image sequence is

used. The arrangement of stereo image sequence is shown in Figure 6.6.

Results: The image sequence is processed by using the DOFF approach, the

correlation-feedback algorithm and the first Kalman filter, and the Kalman filter

proposed in this chapter, refer to Figure 6.1. The Kalman filter iterates 11 times

and during each iteration the correlation feedback algorithm iterates 10 times. The

results of the experiment are shown in Table 6.1. There the RMS errors and average

errors are defined the same as in [15].

Comparing the first column of Table 6.1 with last column of the table, 4c, y)

and Y(x,y) are indeed improved. In the middle column, the two Kalman filters are

used lull, the technique of detecting newly visible image areas is not performed. It is

worth noting that, if newly visible areas are considered, the error can be reduced.

Discussion: Though Chis experiment is not a complicated one, however, the scene

contains multiple objects that have if. relative motion between box 1, and the combi-

nation of box 2 and box 3. That is, the scene is not stationary. If the camera is in



Figure 6.6 Stereo image sequence.
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Table 6.1 Result comparison

Error Type First Kalman
Filter

No Detecting
New Areas

Two Kalman
Filters

RMS Zerror 3.56% 3.53%© 3.47%

I
Average Zerror 15.15% 11.75% 12.69% 	 1
Average Xerror 2.95% 3.07% 2.89% 	 I
Average Yerror 0.87% 0.62% 0.58% 	 I

another movement, then this case cannot be handled in the conventional framework of

motion stereo or direct method as discussed before. With our UOFF approach, both

depth map and motion fields may be recovered. The correlation-feedback algorithm

for optical flow determination and the Kalman filter for incrementally image sequence

processing have assisted us to achieve fairly good accuracy. More compliCated

experiments containing multiple independently moving objects are planned to be

conducted.

6.5.2 Experiment II

Setting: It has been mentioned that the previous works in motion analysis mainly

considered only camera. motion. Furthermore a. planar scene is often used to verify

efficiency of an algorithm [17]. In order to compare the accuracy achieved by our

approach and that by others, the second experiment has been conducted and is

reported here. In the experiment, the entire scene is a flat poster, that horizontally

moves with a speed of 4 mm/frame. The distance between the camera. and the plane

in which the poster is located and moving is 885 mm. The focal length is 12.5 mm. In

order to test robustness of our approach under the circumstance that image quality

is low, only 7 bits are used for quantization levels in the experiment. Hence, the



Figure 6.7 First frame of plane motion.

1st and 12th frames taken by the middle camera, shown in Figures 6.7 and 6.8, are

relatively dark.

The second Kalman filter iterates 10 times. In each iteration, the correlation-

feedback algorithm iterates twice and the first Kalman filter iterates once. In this

experiment, the first Kalman filter is useless since there is no any moving boundary.

Hence, Ts = = Tr = Tv = 0 is applied. In fact, the first Kalman filter can be

ignored in such experiment.

In the experiment, the transition matrix (I) is an identity matrix.

Results: By applying our U OFF approach, including the correlation-feedback

algorithm and Kalman filter, we obtained good results which are shown in Figures

6.9-6.11. It is noted that the velocities along Y and Z directions, Y and Z, are

expected to be zero in this experiment.

Discussion: In [17] Matthies, Kanade and Szeliski reported a quantitative

experiment. There a poster of a tiger is fixed. The image sequence was taken
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Figure 6.8 Twelfth frame of plane motion.

with vertical camera motion. The authors believed that it is better than horizontal

motion. They used a correlation-based algorithm to estimate optical flow for each

pixel. The depth map was then recovered from the estimated optical flow and known

camera. motion with respect to the whole poster: the depth-from-motion, one of the

typical motion stereo techniques. A Kalman filter was used. In their experiment,

from the 1st. to the 10th iterations of the Kalman filter, the RMS relative error in

the depth Z decreases from 7%© to a little bit more than 2%, refer to the so - called

"Actual dense iconic" curve in Figure 10 in [17]. In our approach, from the 1st to

10th iterations of the proposed Kalman filter, the RMS relative error in Z deceases

from 3% to 1.71%. Considering 7 hit in quantization, this means our results are

more accurate and robust. Furthermore, not only the depth map but also the speed

field s: X, Y,Z are recovered.



Figure 6.9 RATS errors of X and Average errors of X.
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Figure 6.10 RMS errors of Y and Average errors of Y.
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Figure 6.11 RMS errors of Z arid Average errors of Z.

126



127

6.6 Discussions and Conclusions

6.6.1 System Model

In the first experiment, according to the discussion of Section 6.2, we should use

(I) =

	

/ 1 	 1

	

0 	 1

	

0 	 0

	

\ 0 	 0

0
0
1
0

0
0
0
1

(6.47)

This means

Zk Zk-1

However, sometimes, we used

1 	 0 0 0

=
0 	 1
0 	 0

0
1

0
0

(6.48)

0 	 0 0 1

That is,

Zk

Our experiment has shown that the results-obtained by using these two different

kinds of 41 do not have significant differences. This is because the surfaces of the

scene in the first experiment vary drastically. The errors in depth map itself are

larger than the errors caused by ignoring Z.

In the second experiment, however, transition matrix should be represented as

following
1 0 0 0 \

=
0
0

1
0

0
1

0
0 (6.49)

0 0 0 1 /

since the fiat poster is in the horizontal translating, perpendicular to the Z axis.

This is because the surface of the depth map is flat. Consequently, the errors in

depth map are less than that in the first experiment. Therefore, the errors caused

the error increases significantly if Equation (6.47) is utilized.
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If the motion mode of objects is unknown, the selection of 0 is difficult.

Generally speaking, the selection of 0 will affect the errors in estimation and even

the system stability. But, in our system, the detection of newly visible areas makes

some difference which will be discussed below.

So far, we assume that the accelerations in X, Y, and Z directions are zeros. If

they are not zeros, we can adjust the thresholds in Equations (6.24-6.26) to handle

the situation. When the velocities change too fast, the current states relate to not

only the previous states but also the accelerations of X, Y, and Z. For instance,

if Zk(, y) is great, Z k (x,y) should be equal to Zk_i(s,y) Zk(x,y). If one still

use Zk(x,y) = 4_1(x, y), -more error will be produced. Since 02k is a measurement
- +

value of Z k and Z k = irtterpolation(Z") as discussed in Sections 6.1 and 6.4, when

Zk(x, y) is large, 02k contains the effect of Zk(x, y), but Zk(x, y) may not. Therefore,

102k - Zkl increases. From Equation (6.24), if lo2k —ZkiiiliZkl> 30%, R = 0. This

amounts to treat a newly visible area. That is, when the errors are greater than

the thresholds, the Kalman filter will automatically give up the previous information

and work only on the present information. As shown in Equation (6.20), the output

of the system, b il‘, is just current measurement vector Ok since H is an identity

matrix. Thus, the effect of this error is reduced. This scheme can guarantee that

errors are always less than thresholds regardless of the selection of 0. Therefore, one

can adjust the thresholds to control the error produced by the velocity change. But

if the thresholds are too large, errors will be great. If the thresholds are too small,

the areas that are not newly exposed areas will be considered as newly visible areas

so that errors will increase in such areas. As a result, 0 and the thresholds must be

selected appropriately.
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6.6.2 Newly Visible Image Areas

When camera and/or object(s) move, newly visible area exposure is unavoidable.

Since in the newly visible area, the previous knowledge is not available, Kalman

filter should work only on the present information. Fortunately, Kalman filter has

an ability to automatically handle the newly visible area exposure problem. That

is, as long as the measurement noise covariance matrix (Re) is set equal to 0, the

Kalman filter can ignore the previous information. Therefore, a threshold method is

developed in this chapter so that _Rik) is set as 0 in an area where the newly visible

area is detected.

6.6.3 Selection of R, Q and P Matrices

In [17] and [45], a simple method is used to lump all of errors together by inflating the

current state covariance estimates by a small multiplicative factor in the prediction

stage. Thus,

Pk- = ( 1 +
	

(6.50)

Then, the P is interpolated. As discussed in [17], a more exact approach is to

attempt to model individual sources of error and to propagate their effects through

the prediction equations. In this chapter, the interpolation process is analyzed so

that the system noise covariance matrix Q,e and state covariance extrapolation of

the Kalman filter P. can be computed more reasonably than simply using Equation

(6.50). The analysis indicates that interpolation of state variables causes errors. In

fact, when interpolation is used, the system is not linear, the prediction phase of

Kalman filter must be modified. In this chapter, we conclude

13 ),-	(1)k-1[interpolation(hit 1 )]

1-)C = O k _ l [interpolation 2 (Pk-,le 1 )1(D k-1	 QC? 1.
	 (6.51)

Here, only noise caused by the interpolation is considered in the system noise

covariance matrix QP because all other noises are measurement noises that are
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considered in the R. RP is the covariance matrix of measurement noises

is caused by cameras, A/D converter, optical flow determination and 3-D motion

estimation. Therefore, RP can be derived from the measurement noise of optical

flow fields. If there is any other system noise, as long as it is additive al d white

Gaussian noise, to expend the derivation is not difficult.

6.6.4 Experiments

The first experiment shows that Z and Y are improved more than other 3-D fields.

This is because the first Kalman filter has not improved the Z and Y. The other

3-D fields have moving boundaries. They were improved by the first Kalman filter.

In addition, since X, Y, 2, and X have newly visible areas, they are improved

by detecting newly visible areas. However, Z is worse and Y is not improved very

much when the newly visible area detection is conducted. This is because Z and Y

are constant (zero) fields. When the second Kalman filter works at initial condition

in the newly visible areas, noise becomes larger.

In [17], a Kalman filter is used to refine depth map. Its efficiency has been

verified. Here, the Kalman filter is used to refine six 3-D fields. Since the correlation-

feedback algorithm and UOFF approach to 3-D motion analysis are adopted, its

efficiency is obviously improved. The similar poster translation experiment shows

that our relative RMS error of depth map is 1.7%, while the RMS error of depth

map is larger than 2.0% in [17].



CHAPTER 7

SUMMARY

This chapter contains a summary of our major research contributions, a review of

some of unsolved problems and possible avenues for future research.

7.1 Major Contributions

The most significant contribution of our research described in this dissertation is the

development of a robust algorithm based on a theoretical computational framework

for the determination of dense 3-D position and motion fields from a stereo image

sequence. The framework is applicable for camera motion as well as both rigid and

nonrigid object(s) motion.

In the dissertation, a novel optical flow field computation approach is developed.

The approach is called "correlation-feedback approach." The approach has three

features distinct from any other existing approach. They are feedback, rubber

window, and special refinement. The feedback technique is used for the first time in

optical flow determination . Since the output optical flow field is fed back to input to

compensate the output's uncertainties, the accuracy is improved considerablely. The

rubber window is applied so that suhpixel problem can be handled. Its refinement

is based on local best matching between original image and the estimated image.

The refinement and feedback compensation are used iteratively so that optical flow

field conipiitation is robust against noise and discontinuities are conserved. The

approach performs especially well for nonuniform optical flow fields. This is because

the refinement is a local best matching scheme. We have verified that the approach

is generally convergent. At least, when the intensity is a linear function of the

coordinates, the algorithm must be convergent. Our expe.rinn nts also prove that the

131



132

approach is one of the best ways to compute optical flow field in view of a. recent

comprehensive study of all of the existing optical flow techniques [40]. Although

the algorithm has used Single's subpixel estimation scheme and propagation stage

[44], we also can use our new ideas such a.s feedback, rubber window and special.

refinement to other subpixel estimation and propagation schemes.

The DOFF theoretic framework and the UOFP approach to 3-D position and

motion estimation have been developed by Shit and Shi ([41]-[43], [49]). The approach

is different from all existing 3-D motion recovery approaches. It is based on a four

frame model to compute six dense 3-f) position and velocity fields. They are Z(x, y),

X(x, y), Y(x, y), Z(x, y), X(x, y), and Y(x, y) where x and y are coordinates of

image plane. The approach can compute :3-D motion and surface structure at any

pixel as long as optical flow vector at the pixel is known. Therefore, it can estimate

any mode of motion such as rigid and/or nonrigid object(s) motion, a relative motion

between camera and the 3-f) world space, as well as the multiple independent objects

motion.

Since the approach is based on the optical flow vector at each pixel, the accuracy

of the approach is determined by the accuracy of the optical flow vector. In other

words, the approach is sensitive to uncertainty of the optical flow. Especially the

determination of the velocity fields such as the Z(x, y) field is sensitive to uncertainty

of the optical flow. In this research, we verify that the 1_1017 P approach is feasible

with large numbers of experiments: using both computer simulation and real image

sequences in the laboratory. Our formula of computing depth map is verified to be

more robust than most of the previous works. Kalman filter is utilized to improve

the UOFT's sensitivity to uncertainties of optical flow. Nine frame mode instead

of four frame mode and stereo image sequences instead of still images are used in

implementation of the IJOFF approach.
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In the dissertation, two Kalman filter-based algorithms have been developed.

The first Kalman filter-based algorithm is used to improve accuracy along moving

boundaries in optical flow field. The Kalman filter is used as a. kind of refinement

mechanism. It uses a fixed group of images instead of a stereo image sequence. This

is different from the previous works. We prove that the convergence of optical flow

field computation is nonhomogeneous. On object's boundary, convergence is faster

than that in an interior area. Therefore, different pixels need different number of

iterations in computation. We use the first Kalman filter to implement this idea.

The efficiency is obvious. The estimation of the optical flow fields and the :3-D

motion reconstruction are improved effectively. The system and measurement. noise

covariance matrices Q and RIL, are analyzed carefully. By means of computation of

, discontinuity is preserved.

As we know, a stereo image sequence carries much more information than a

few fixed images. Many previous works have used stereo image sequences to improve

their motion estimation. But, these works are restricted to only consider the relative

motion between camera and 3-D world space, for instance, a moving camera and a

static :3-D world space. They usually do not consider that motion changes and there

are newly visible image areas. In fact, when either camera or objects are allowed to

mo ve, or objects change shape, the newly visible areas may be exposed in the image

segnence. In the newly exposed areas, the information and results based on previous

image frames can not be fused with current information. Otherwise, errors will be

generated. In other words, stereo image sequence must be used carefully. We have

developed a threshold scheme to determine the newly exposed areas. In the newly

visil lc image areas, the second Kalman filter works at an initial condition so that only

current information is used to COMpUte :3-D motion. In addition, the interpolation

process is analyzed in detail so that covariance of the system noise (V") and state

covariance (PLI_ 1 (x,y)) extrapolation of the Kalman filter can be computed more
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reasonably than treated in the previous works [17] [45]. Besides, the measurement

noise Le = N(0, Re)) of the system is considered to be generated from camera,

A/D converter, and optical flow determination. The measurement noise covariance

RU is then derived.

To our knowledge, the error analysis and derivation of Q, P , and R matrices

for these two Kalman filters in this dissertation are more advance than the previous

works reported in the literatures.

As shown in our experiments, the two Kalman filters make our 3-D motion and

structure reconstruction more efficient and more accurate.

7.2 Major Unsolved Issues

The dissertation research focuses on improvement of accuracy of 3-D motion and

structure estimation. In fact, computation efficiency should be also considered.

Because accuracy depends on image quality, if high resolution and 16 bits A/D

converter are adopted, accuracy will be raised. But computation speed will become

a major problem. In our framework, most time in computation is spent in the

correlation-feedback stage. The correlation-feedback approach can raise accuracy

considerablely. But it also increases computation complexity. Especially, when

optical flow field is uniform, i.e., optical flow vectors are constant with respect to

coordinates, the convergence of our algorithm is slower than a few other approaches.

This is because we have used Singh's subpixel estimation scheme in our algorithm.

We have not examined whether such subpixel estimation is of fastest convergence.

V\1 ( , ave indicated that the 3-D estimation framework can work in a dynamic

world. 13ut we have not arranged experiments to verify this observation because we

don't, have necessary experiment conditions yet to con duct advanced experiments.
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7.3 Directions for Further Research

Firstly, we should pursue faster convergence of the correlation-feedback algorithm in

determining optical flow. We can try to derive faster and more applicable subp i xel

estimation and propagation schemes.

Secondly, we should search for a best way to use the confidence measure to

enhance the accuracy of :3-D motion analysis in our DOFF approach. In an optical

flow vector field, not all vectors have high accuracy. However, in many cases, not all

vectors are needed as well. In fact, from the part of the vector field, :3-D information

can still be reconstructed in many cases. Therefore, we can extract those flow vectors

with high reliability to estimate :3-D information. The usage of confidence measure

technique may enhance not only accuracy but also computation speed.

Thirdly, we should try to apply the UOFF approach to nonrigid object motion

analysis. Although the framework can be used in the subject theoretically, we should

use experimental work to verify the conclusion. When experimental conditions are

improved, real robot navigation in dynamic environment should be pursued. We also

can consider to use high resolution and high quantization in digital image acquisition

to improve accuracy.

Finally, since the framework can be used for both rigid and nonrigid motion

estimation, it may be extended to video signal compression.



APPENDIX A

3-D MOTION PARAMETERS DERIVATION

A.1 A

It is obvious that

R 	i):ER
= 	

fu	 f 8t

Using the formulae of perspective projection and coordinate transformation, we have

—
1

U
R = (X. cos() — sin 0).Z — [(X — I ) cos — sin 01Z

Z '

(XZ — XZ) cos 0 lZ cos 0
Z 2 Z2

The use of the perspective projection leads to

1
L—11 = -71L cos 0 — cos o

Z 2

It follows from the perspective projection that

I	 L
= 'V

(A.1)

(A.2)

A.2 B

Following the definition or u5, one has

us 	 1 	 8x
= — lim —

.1 	 f S 5-0 Ss

where 	 = 	 + 	 x202 for the case when two optical ;Les OZ and OR Z'1 are

coplanar. As pointed out in Section 4.2, 	 is restricted to be zero in this paper.

Hence, 6s = \75; 2 + x 2 0 2 . Approximating derivative by using average variation rate

and combining the formulae of coordinate transformation and perspective projection,
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and the definition of us and vs, one has

(

( X — I) cos 0 — 7, sin 0	 X 	 /	
)/0 2 + X 202

X cos° — /cos° — s 0 — X
( 	 ) l V I 2 + x 202

/ 	 2(1 — cos 0)
)/\// 2 + x 2 0 2

sin 0

The above equation comes from the far-field assumption. Similarly, we have

(A.3)

vs	

1 ( 	 - Z )Y110 2 + x20 2

Ps-- 0
	

(A.4)

A.3 C

since XL
f 	 Z- 	 one has

„	 art, 	) .(z -
u _= 	j at 	 z2	 Z Z Z

Similarly, the equation -11±
I 	.

1:- leads to
2

1 / 	 YZ — ZY 	 Y
v — — 	 = 	

f 	 Z2 	 Z Z Z

(A.5)

(A.13)
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APPENDIX B

COVARIANCE PROOF

Two random variables 4 ) and u;k) are independent, and u o(I' ) 	NO a 6 2
 

lid 21 1(C) =

Af U", Sf )

The covaT 	 the eiance of th 	 -1,( "(k) "k14)j) — It') and 	 ( (k) a 
)- (u (ik) — 2G") is- u)2 /,

00 f 03

CO] = 	 (e1-00 —

(0k)_ uct ) e_1:!( t(ik)_.ua )

I	 03

27r5 1 80 L. (u1
(k)— U")(11 (0k) 	ua)

(k)	")2	 ( C)	 ( k))(11 (ok) -0 )2 - (i1+
C 2,7)(n1 	 du(i ) t-iu60 (B .1 )

Assuming that two random variables v 0 and v 1 are independent of each other, v o is

, 	 ),
2 1 7: +,50 -

is IV(u", 24+-2 1 -), the Covariance of v 0 and v 1 is <'„o„ Therefore

(71,01,1

1

271-(21 	 s i-2)1/2( 2 ] ,2 	 812)1/2 Loo 

i03	 00

(vi — u")(v	 ua)

e
-( 1?:+ 2 ,-17,10 , 1-u") 2

e
--( 1 :;:+-2-!-I)(vo- , ") 2

dvodvi0

= 0
	

(B.2)

Comparing equation (B.1) with equation (B.2), one can conclude that Col = O.
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APPENDIX C

DERIVATION OF Q AND P MATRICES

In Section 6.1, it is pointed out that due to image digitization a linear interpolation

is needed to obtain state vector Dk(x,y) at moment k from Dk_1(x, y) at moment

k- 1.

In order to simplify the derivation, one dimensional case is considered, i.e., we

only discuss the derivation for the first component of the state and measurement

vector: the depth Z(x, y). The results we derived can be readily available for the

other three components. Furthermore, the transition matrix 4? is assumed to be

diagonal. That is, O n is assumed to be a constant. Thus, Equation (6.3) leads to

Z	 y)
	

- 	

(interpol 	 Zk_1(:1: 0))

- (hi 	 , y)

r-,
- Zik_llt

) +

= g')Fi2k_1 ( x, Y) 	 71n" y). (C.1)

Let's examine how noise is caused by, the interpolation process.

In Figure 6.4, depth maps of Zk(i2, j 2 ) and Zk_i	 ji) are shown. Since the

:3 - D object(s) is moving, its depth map is also moving. The velocity of motion of the

depth mah is the optical flow vector (d.'2',(/,'1'), i.e., the measured values of (w1-' v L ). In

other words, during an iteration, Zk _ 1 (7.9,j,) should have been obtained by shifting

Z (i , 1) at the velocity (i21 j2 d.4 (i2,19, )), i.e.,

	2 k-1( , j2 ) = 	 + 	 + (1 ,".. ( i 2 ,j2))

	= 	 — (r2 ( i2 1j2 ) ,,i2 — (14 ( i 2 J2) )1
	 (C.2)

139



140

But, unfortunately, d.'. (i 2 ,1 2 ) and d4u(i9, 7 2 ) generally may not be integer-valued.

Therefore, Equation (0.2) may not hold. Refer to Figure 6.4- , one has

-4-1(i2,j2) = Zk--1 (i ,

1.yhere :r 1 and y i are real and

:r i =	
— d ( ?2 , j 2 )

"!Ji = j2 — (-1,1$ 2 ,12), 	 (0.4)

From Figure 6.4, it is clear that

Z k_i (X 1, fl) = nierpolation(Z k-1(il :7 1 ))

=	 (1 —	 + 1,111)] +

= (1 —	 + 1) + (1 — a)Zk_1011 +1,111+ 1)](C.5)

The equation is a standard bilinear interpolation. Figure 6.4 shows the relationship

among Zk_1(x1,Y1)) 	 Zk-1(211 + 1 ,111), Zk-1( 7 11) j11+ 1 ) and Zk ._,	 +

/ II + 1) and the meanings of a and b. Zk_l(ilhin) is located at the pixel (7:11,i11)

which is such a pixel among the four that is closest to 	 yi) and at the north-west

,corner of (x 1 ,y 1 ). This can be represented as following equations

int ( 1:1 = 	 (7'25 j2)) — 1

J11
	

initm = .12 —	 —
	 (0.6)

where n.tO is an operation that changes real number into integer that is always less

than the real nut ber. In addition,

1 —a = 	 ,

1 — b= —

Assuming that dr and (-1‘7" are the true values of 	 and (Ili' respectively, and

= dr H- ft,„
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(14' = (14" + da y ,

where it,. 	 N(0, ) and 	 N(0,80, one has

1 — a = — 	 = I — 	 in t gr(i2 , i2 )) + 	 1 — +

a = a

1 — b = Th —I ii 	 1 —	 (i2j2) int(dr(i2,i2))+ 	 1 —

b 	 b — jay 	(C.7)

Though interpolation is a bilinear interpolation Zk_1( 3;1,y1) — 2:1 ( 1; 	 ) may

not be linearly related with Zk_ i (ill, 	 — 	 10:11,in 	 (7:11+ 	 )

+1 ) — 21_1(1:11 ) + 1), and Zk_ 1 (ili+ 1, + 1) — +

1, j 11 + 1)]. Therefore errors w 1 , w 2 , and 'w 3 are produced. Figure 6.5 clearly shows

how these errors are produced.

From the Figure 6.5, one can know

=	 + —

+ 1,j11)] 	 (C.8)

Obviously PA 	 F. We assume

PA = Pa +w 1 , 	 l = 	 ). 	 (C.9)

si m il ar l y , we k now

= 	 + 1) — 1 (i 11 j 11 + 1)] + (1 — a)[Zk_1(i ii 	--I-1)

—Z),-11_1(zil 	 + 1)]
	

(C.10)

and PR. 	 Pb

= Pb W2, W2 = N( 0 , 5.2).	 (C.11)

Furthermore, from Figure6.5

bP, + 	 — b) P, 	 (C.12)
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PD 	 Pd 	 703) 	 w3	 N(0, S„,, ). (C.1•)

Substituting Equations (C.9 - C.12) into Equation (C.13), one has

PD = b(Pa + w1) + (1 — b)(Pb + w2 ) + 103 . (C.14)

From Fi	 e 6.5, one has

PD 	 Zk-1(X1)m) Zk- 1(x1,m),

where 7:, k4. - 	y l ) is an estimate of Zk- 	 YO• Hence the Jove discussion leads

to

zk_,(. i,y1) —

bta[Zk_ i 	—	 (1 —

—2t_ 1 (211 + 1,j11)1+ w 1 } + (1 — b){(44,_1(zii,..711+ 1)

j„ +	 + — ailzk_,(	 +1)

+1, + + W2} +

where the noises w 1 , w 2 , and w3 are produced by the linearization.

Equation (C.15) can be rearranged as follows.

(C.15)

Zk-1(x1),Y1) 	 (.11 Y1)

b[a(Zk_i(a	\ 	 • 	 • 	 ti

	

111111) 	
1 	 \ 

-r 	 — (1 )(Zk-1(

(	 + (1 —	 + 1)

Z 1( 2 11 , 717 + 1) + (1 — a)(T/„. 1 (i 11 + 1,.111 + 1)

+ 1)] + w3 + bw 1 + (1 — b)w2

Substituting Equation (C.7) into Equation (C.16), One has

Zk-1(x17Y1)

(C 6)
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,„. )(7, 	 , 1(7 	 (i 	 2;1- ( 	 ))
\- 	 rixf \ —k-1 \ -11,11,

-1-(1 — a + yx)(Zk-i(in 	 + 1 ,311))1

+(1 — b+ bil,)[(a — 	 + 1) — 	 + 1 ))

+(i — a +	 +1,j11+ 1) — 	+ 1, 17 + 0)] W3

(C.1 7)+(b py )w i + (1 — b+ it y )w2.

From Equation(C.3), one knows

2k-1( 21 2 ) 32) — 2k-1(22, j2) =	 , :1/1 ) —	 )-

From Equation (6.3), one has

Zk_1( 2 2, j2)

Z	 )Y1) — 21:-1( :1: 1 , M )

2k-1 ( 1 2, 32) — 	 32) + 	 Sok (C.18)

(Pk iS a noise produced by interpolation. Zk_1 0 2,32) — 53k-i(1 , 2, j2) is not related to

the noise. In order to obtain Zk_i y2, 3. — k_1(7.2 ) )•) and (p k , we should rearrange

the Equation ((..17) as follows.

Zk-i	 M 	 ZA.11 (X1, 1
)

= flZk-1(i2j2)	 {9k }

(i t/. ( 	—	 j11))

+( I — 	 1,./11))]

—3)[a(Z) ; _ 1 ( null +1)— '2 1 (,„,j 11 + 1))

+(i — 	 i on + 1)-	 + 0)1 1+

(iyhjii))- (zi1.._1(111 +1,311) -	 +1,3.11))41,

( 	 — 	 11 , 311)) — ( Zk_l	 + 	 — 	 ( 111 + 1,511))]ki,71„

—1) )[ ( z,„_ 1 ( i 	 + 1 ) -7;i-1,1 1 (i-1 1 ,1H +1))



—(Zk1(11 + 1,1 11 + 1) — +

-Pk- 1 0:11 1 + — 2 + I ) )

+ Ij 11 +1) — 	 + 1 , 	 + 1))]/ L x pl,

—(-4(Zk_1(i11,111) — t 1 (i11,j11)) —	 + 1) —	 + 1M/iv

-(1 - 	 + 	 1,j11))

jh I + 1) —	 (i11 + 'J ii

+(b —	 +(1 — + py )to2 + 7-0:3)
	

(C. 9)

where	 Z k_1(z2, J2) and (g_1( 7:2, /2) are, respectively, the fist and the

second terms encompassed by the brackets in the right-hand side of the last equal

sign.

Thus,

According to Equation (C.1),

Zk(i2,3.2)	 C6riZk-1(z2, j2)

.
?2,32) = 011Z 	 (i2, j2)

• 	 • \ 	 . \\

	

Lizyt2)32 j 	 '121,72) = 010k-I V23.72) 	 Z 1

(C.20)

(C.21)

Assiiming that all of the random noises are independent of each other, from Equation

(C.21) and (C. 18), one has

= EI ( Zk (7:2,i2 —
	

(i2,12) ) (Zk( i2 ,,12)— 7: /7(i 2 ,,i2))).

Elk1 • (4 _ 1(i 2 , J2) - zk_1(i 2 , i2 ))1 2 )

±2) 	 k-i (i'2) /2) + Chl Yk--1 ( 11 2j2 ))
2

1

E{(Zik_1(7:2,j2) — zk _ 1(1,2,j2)) 2 )(011) 2 + El (g_ 1 (i2 , 12)) 2 }(61) 2 (C. 22)
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where p iTik (i.), 3 2 ) is the first element of the state covariance PC(7. 2 , 3 2 ).
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•• •
Pk. (Z21,72) 	 E {(Zk-1( 12) )2) - Z k_1(i2) )2)) } (C.23)

Frorn the expression of 	 — 	 j2) defined it) Equation (C.19),

If we define

E{(b[a(Zk_ 	 , j1 1) — 2 1_ 1 (7.1 1) :11 1) )

+(i — a)(Zk _ 1 (1 11 + 1,)11) — 2 -t 	 + 1, jun]

+(i — b)[a(Zk_ 	 + 1 ) — 	 + 1 ))

+(1 — 	 + 1, .j11 + 1) — 	 1 + 1,11 + 1 ))1) 2 }	 (C.24)

(b x d)

=
x (1 — a)) (C.25)

((i — 	 x
— b x (1 — a))

and
Zk_1( 7: 111)11) 	 1+:-Z1( i l 	 )111)

Bk-i =
Zit-.1(7:11 + I, in) — 2i1.-_,(i, 	 +1, j„)
Z1.•-1(111,)11 + 1) — zt_,(i.„, )„ -1- I)

[

(C.26)

Zk-1(i11 -1-- 1 1.j11 + 1 ) - 2 1(1:11 + 1 )111 + 1 )

th en

d(i2,:12) = E{C 	 10}

13 	 1.3 k _ i 13 7k1_, (C.27)

Apparently, the four diagonal elements of E{Bk_ i BkT._ 1 }

Pil(k-1)( 4 1 + 1 1)11)) 	 .711 + 1), and p+1 , 0,_ 0 (in + 1,)11 + 	 that are four

elements of the state covariance matrix field 	 , j 1 )) at the last moment (k — 1).

If we assume that Zk_1(111,j11)— 	Zk_1(11 +1,j1 )— 2'411e
	

+ 1 , »

+	 -	 1), and Z 	 + 1 1111 + 	 + 10.11-1-1)

are independent of each other as previous works [17] and [45],

EIB k _ 1 BL

,+are T ylu,_-0(iyi,in),
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1' 7( 2 11,.11} 	 0 	 0 	 0 	 \
0 	 1-4-1(iti --1- 1, )ii ) 	 0 	 0=
0 	 0 	 74-1(iii,,iii + 1) 	 0
0 	 0 	 0 p11 	 i 	 1,:111 	 1)

(C.28)

Thus,

C T EI B k _

= Pa 2P-1(k_1)(iii,j11)+ b2 (1 —0 24-1( A-1. 	 + 1 ,.711)

+(1 — 6) 2 5, 2 p -11-10,, 1) (211,311 + 1)

d-(1 — b)2(1 — 	 + 1 , j11 + 1) 	 (C.29)

in order to cite the formula later with ease, we define

t erpolationApti (k--I))

• 1) 2 6, p 	 62(1 —11(k-1)( i11 )-111 )	 P (k - i)( i ll	 1))11)

+ (I — 6)2a2111(1.7-1)(i11lj11 + 1)

▪ b ) 2(1 	021);1-1(k-1)(i11	 + 1)

It is worth noting that

i

interpolation(p+11(k _.0 )

+4 1 — a)74-1 ( k_1 ) (711

+( 1 	6)Tia),+, (k_ 0 (ii 	 + 1)

( 1 — b)(1 — 	 -I- 1 ,j11 + 1)

If we define

=	 (22,.72))2},

(C.:30)

(C.31)

(C.32)

substituting the expression of of:' 	 j2) defined in Equation (C.I9) into Equation

(C.32) and assuming that all random noises in 	 1(i.2,j2) are independent of each



147

other, then one has

(3-,(i21,j2)

[LUZI..--1 ( 21 11)/11 	 (i11)/11)) 	 (Z1, --1( 2 11 + 1 ,111) - 	 +1,111)))

+(1 - b)((Zk-- -t(ii), 	 + 1 ) - 	 1))

- (Zik-i(in +1,1114-1) - 2t_ 1 (ii) +1,111 -1-1 )))} 26!

-1-(5,((Zk-1( 	 - 2k.1. 1 (ili,111)) - ( Z1 1(in,111+ 1 ) - 21:11(i11,/11 + 1 ))) +

(1 — a)((Zk_1(711 	 2k_1(711 +1,j11))

-(7,_ 1 ( , 1+1, 1i 1 + I ) - r2 -!-- 	+ 1) ) )12q,

+l,' Sua
 + 	 — b)2S2
	

(C.:33)

Thus, according to Equations (C.22, C.2:3, C.:30 and C.33), one has

1)11);( i211 2)

=	 CbiliPhi2732) 	 d(i2, 	 2)106 11

gi ll [interpolatzon (p+ 	 • 	 \■
ii(k-neli , l1))

• \LI,ak 0'2,32 nvii- (C.34)

Similarly, one Can obt a i n

P221..( i2 )1

= 	 022[i11.terpolation 2 p 2+2(k _ 0 (i l , j i ))
• • 	 \ -1

.1 21 .)2 .1147) 22) (C . 3 5 )

P:331z( i2, 12)

=	 (1):33p7).terpolation2(p:.4;3(k_i 	 ,11))

and

"1-2,,l2)1(,633, (C.36)

1) .1.0,( 1.2 , 32)

(k4,1[interpolation 2 (Mti(k _ i 	1,11)) 7 • 	 112)]0‘1•1• ((;.37)
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When Equations (C.34 - C.37) are represented in terms of the matrix equation,

PIT = (I) i7aerpolation 2 (Pk-.1- 1 )1(1) 7.

where

kr). (C.38)

cri( i2 ,12) 0 0 0

Q 1kAi2,i2) = 0
0

0-.(i.2, j2)

0
 0

0- (i 2 , i2 )

0
0

. 	 (C.:39)

0 0 0 '3.(7:2,3.2)
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