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ABSTRACT

MOTION ESTIMATION
USING OPTICAL FLOW FIELD

by
Jingning Pan

Over the last decade, many low-level vision algorithms have been devised for
extracting depth from intensity images. Most of them are based on motion of the rigid
observer. Translation and rotation are constants with respect to space coordinates.
When multi-objects move and/or the objects change shape, the algorithms cannot
be used.

In this dissertation, we develop a new robust framework for the determination of
dense 3-D position and motion fields from a stereo image sequence. The framework is
based on unified optical flow field (UOFF). In the UOFF approach, a four frame mode
is used to compute six dense 3-D position and velocity fields. Their accuracy depends
on the accuracy of optical flow field computation. The approach can estimate rigid
and/or nonrigid motion as well as observer and/or object(s) motion.

Here, a novel approach to optical flow field computation is developed. The
approach is named as correlation-feedback approach. It has three different features
from any other existing approaches. They are feedback, rubber window, and special
refinement.  With those three features, error is reduced, boundary is counserved,
subpixel estimation accuracy 1s increased, and the system is robust. Convergence of
the algorithm is proved in general.

Since the UOFTE is based on each pixel, it is sensitive to noise or uncertainty
at each pixel. In order to improve its performance, we applied two Kalman filters.

Our analysis indicates that different image areas need different convergence rates,



for instance the areas along boundaries have faster convergence rate than an interior
area. The first Kalman filter is developed to conserve moving boundary in optical
flow determination by applying needed nonhomogeneous iterations. The second
Kalman filter is devised to compute 3-D motion and structure based on a stereo
image sequence. Since multi-object motion is allowed, newly visible areas may be
exposed i images. How to detect and handle the newly visible areas is addressed.
The system and measurement noise covariance matrices, @ and R, in the two Kalman
filters are analvzed in detail. Numerous experiments demonstrate the efficiency of

our approach.



MOTION ESTIMATION
USING OPTICAL FLOW FIELD

by
Jingning Pan

A Dissertation
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfilllment of the Requirements for the Degree of
Doctor of Philosophy

Department of Electrical and Computer Engineering

May 1994



Copyright © 1994 by Jingning Pan
ALL RIGHTS RESERVED



APPROVAL PAGE

MOTION ESTIMATION
USING OPTICAL FLOW FIELD

Jingning Pan

#/28 /74

Dr. Yun-Qing Shi, Dissertation Advisor Date

Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. Joseph Frank, Committee Member * ¢Date
Associate Professor of Electrical and Computer Engineering, NJIT

¢/2/3¢

Dr. Edwin Hou, Committee Member Date
Assistant Professor of Electrical and Computer Engineering, NJIT

/7 (7

Dr. Frank Shih, Cornmittee Member Date
Associate Professor of Computer and Information Science, NJIT

“/2/5

Dr. Chang-Qing Shu, Committee Member Date
Member of Technical Staff, Image Business Systems, New York City



BIOGRAPHICAL SKETCH

Author: Jingning Pan
Degree: Doctor of Philosophy
Date: May 1994

Undergraduate and Graduate Education:

e Doctor of Philosophy in Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, New Jersey, 1994

e Master of Science in Electrical Engineering,
Nanjing Institute of Technology, Nanjing, Jiangsu, China, 1983

s Bachelor of Science in Electrical Engineering,
Xian Jiaotong University, Xian, Sanxi, China, 1982

Major: [Electrical and Computer Engineering
Presentations and Publications:

J. N. Pan and Y. Q. Shi, “A Kalman filter-based Algorithm for 3-D motion
estimation from image sequences using UOFF,” (Preparing for journal and
conference, May, 1994).

J.N. Pan and Y. Q. Shi, “A Kalman filter for improving optical flow accuracy along
moving boundaries,” (Preparing for journal and conference, May, 1994).

Y. Q. Shi, C. Q. Shu, and J. N. Pan, “Unified optical flow field approach to motion
analysis from a sequence of stereo images,” (Accepted to Pattern Recognition,
April, 1994).

JoNCPan, Y. Q. Shiand C. Q. Shu, “Correlation-feedback approach to computation
of optical flow,” (IEEE ISCAS’94, Accepted in December, 1993).

Y. Q. shi, €0 Q. Shu, and J. N Pan, “Unified optical flow field approach to
motion analysis from a sequence of stereo images,” (Proceedings of IEEE
Signal Processing Society 8th Workshop on Image and Multidimensional Signal
Processing, pp. 230-231 Cannes, France, September §-10, 1993).



C. Q. Shu, Y. Q. Shi, J. N. Pan, and L. Zhou, “A new approach to 3-D position
estimation based on unified optical flow field,” Proceedings of IEEE Workshop
on Visual Signal Processing and Communications, pp. 83 - 86, National Chiao
Tung University, Hsingchu, Taiwan. June 5 -7, 1991.

Y. Q. Shi and J. N. Pan, “A pair of stability theorems for complex polynomials,”
Proceedings of 24th Annual Conf. on Information Science and System, pp.
283, Princeton Uni. March 1990.

J. N. Pan, “Computer recognition of the neurilemoma tissue section image by
statistical texture analysis,” Proceedings of 5th national conf. on Pattern
Recognition and Image Processing, Xian, China, May 1986.

J. N. Pan, “Computer recognition of nerve tumor tissue section images,” Master
thesis, South East Uni., China, 1986



This dissertation is dedicated to
my family

vi



ACKNOWLEDGMENT

The author would like to thank the dissertation advisor, Dr. Yun-Qing Shi,
for his ideas, encouragement and guidance. During the five year stay at New Jersey
Institute of Technology, Dr. Shi have helped the author discover the joys of research,
the necessity for clear and positive presentation, and the excitement of interaction
with peers and colleagues.

Thank the dissertation committee member, Dr. Chang-Qing Shu, for his
valuable advice and ideas.

Thank the other members of the dissertation committee, Dr. Joseph Frank,
Dr. Edwin Hou, and Dr. Frank Shi, for their comments on the dissertation and their
valuable insights.

The author 1s grateful to the graduate research environment which exists in the |
Electronics Imaging Center in Electrical and Computer Engineering Department at
New Jersey Institute of Technology.

The author wishes to thank Dr. A. Singh for his early print of [44] and some
helpful discussion i this research. The author also wishes to thank Professors J. L.
Barron, D. 1. Fleet and S. S. Beauchemin for their early print of [40} and providing

the author with some testing image sequences.

vii



TABLE OF CONTENTS

Chapter Page
I INTRODUCTION .o e ]
1.1 Background and Motivation ... ... ... . ... .. ... ... .... 3

1.1.1  Optical Flow Computation . . ... ... ... ... ... ... .. .. 3

1.1.2  3-D Motion Computation . . . ... ... ... . ... ........ 7

1.2 Thesis Objective . ... ... .. . 10

1.3 Thesis Overview . . .. ... ... 11

2 MA.JOR RELATED APPROACHES ... ... .. .. . . .. . ... . ... 12
2.1 Optical Flow Computation . ... ... ... .. ... ... ...... .. 12

2.1.1  The Gradient-based Approach . .. ... . ... ... ... . ... 13
2.1.2  The Correlation-based Approach . . ... . ... .. ... .. ..., 15

2.2 3-D Motion Computation ... ... ... . ... .. ... .. 17

2.2.1 Motion Parallax ... ... .. ... . 19

2.2.2 Three-dimensional Motion . . ... ... ... oo L. 21

3 CORRELATION-FEEDBACK .. .. . 23
3.1 Proposed Framework ... ... ... .. .. ... .. ... ... 24

3101 Inmitialization ... . oL 25

312 Observer. . ... e 25

313 Correlabion © ..o e 206

304 Propagation . ... L e 28

3005 Feedback and Tterations ... ... .o o L. 29

3.2 Convergence Prool ..o o 29

3.3 Analysis Lo 35

3.3.1 Subpixel Lo 35

3.3.2 0 Refinement .00 38



Chapter Page

333 Convergence . . . . o. i 39

3.4 Implementation and experiments . . . ... o 40

3.4.1 Implementation . . .. ... ... .. 40

3.4.2 Dxperiment [ ... . .. 41

3.4.3 Experiment Il ... ... 45

3.4.4 DExperiment III . ... ... ... 49

3.5 0 SUMIMATY . . o0 o e 54

4 COMPUTING 3-D MOTION . ... i 59
4.1 Discussion of Unified Optical Flow Field (UOFF) ........... 59

4.2  Further Discussion of UOFF .. .. .. ... . . ... . ... .. .. ... Gl

4.3 A New Approach to Motion Analysis Using UOFFF . ... ... ... G7

4.4 Nine-frame Model .. ... ... ... . 70
4.5 Experiment ... ... .. T

4.6 Conclusion. . .. ... e 76

5 DISCONTINUITY IMPROVEMENT ... ... ... . . .. ... .. ... 80
5.1 A Quantitative Brror Analysis ... ... o Lo oo 32

5.2 Kalman Filter .. oo o 87

52,1 Kalman Filtering . ... 00000 o oo o oo 87

5.2.2 Proposed Framework . .. ... ... ... . ... ... ... ... 38

53 An Experiment ... 93

54 Concusion. oo 96

G MOVING OBJECTS ESTIMATION USING KALMAN FILTER . ... ... 101
6.1 Modeling . . . oo 103

6.2 Measurement Noise Covariance Matrix RY (1), ... . ... ... ... 106

6.3 Measurement Noise Covariance Matrix R” (1I): Newly Visible

Image Aveas . . . ... L 109

6.4  System Noise Covariance Matrix @ .. .. ... ... ... .. ... . 112

6.5  Dxperimients ..o 118



Chapter
6.5.1 Experiment I ... ... 119
6.5.2 Ixperiment I1 ... . o e 121
6.6 Discussions and Conclusions . ... .. ... .. oo 127
6.6.1 Systemy Model . .. . ... 127
6.6.2 Newly Visible Image Areas . . .. .. ... .. .. .. ... ... 129
6.6.3 Selection of R, @ and P Matrices . ... ................ 129
6.6.4 DExperiments . ... .. ... e 130
T SUMMARY . .. e 131
7.1 Major Contributions. . .. ... ... .. .. ... . ... ... 131
7.2 Major Unsolved Issues . . . ... .. ... .. ... 134
7.3 Directions for Further Research .. ... . ... ... ... ... ... ... 135
APPENDIX A 3-D MOTION PARAMETERS DERIVATION ... ... .. ... 136
APPENDIX B COVARIANCE PROOF ... ... . . ... . ... .. ... ... - 138
APPENDIX C DERIVATION OF @ AND P MATRICES ............. 139
REFERENCES . 149



LIST OF TABLES

Table Page
3.1  The comparison in Experiment I .. ... ... ... o oo L. 46
3.2 The comparison in Experiment I ... .. .00 . o . 49
3.3 Summary of the TRANSLATING TREE 2D velocity results. .. ... ... 55
3.4 Summary of the DIVERGING TREE 2D velocity results. . . ... ... ... 56
3.5 Summary of the YOSEMITE 2D velocity results.. . ... ... ... ... .. 56
4.1 3-D motion and position error . ... ... L L 73
5.1 Kalman filter . ... . e 87
5.2 Result comparison ... ... ... L 94
6.1  Results comparison . . ... .. ... 121

xi



LIST OF FIGURES

x11

Figure Page
1.1 Reconstruction of 3-D object(s) ... ... .. .. .. ... . 4
1.2 A boundary withhn aperture . ... ... L 7
1.3 Perspective projection .. ... .. L 8
[.4  Reconstruction system ... ... ... 9
1.5 Feedback reconstruction system ... ... .. L. 10
2.1 Kineticdepth . ... o0 18
2.2 The geometry for stereopsis . . . . ... L L o 18
3.1 A schematicdiagram. . ... o 24
3.2 Gaussian mask. .« 28
3.3 ldeal g(u‘(‘"), v}”)). ....................................... .30
3.4 Curve of /z(uf-“)) and case 1. ... . L L 31
3.5 0 Case 2. 33
3.6 Case 3. 34
3.7 Case 4. . e 35
3.8 Intensities of the first image. .. .. ..o L L 36
3.9 Relative error. .. .. o 38
3010 Absolute error. oL 39
301 Texture square (a). . ... L 41
302 Texture square (b). .. oo o 42
313 Texture square (). o000 e 42
314 Imaging geometry i Experiment o000 0000000000000 43
3005 u(a,y) ol correct optical low feld. oo oo o 46
316w (x,y) computed using the gradient-based approach. ... ... ... ... .. 47
307 w"(x,y) computed using the correlation-based approach. .. . ... .. .. 97



Figure Page

3.18 w (z,y) computed using the correlation-feedback approach.. .. ... ...
3.19 The convergence process of the correlation-feedback approach. ... .. ..
320 Ball (a). . - - o e
3210 Ball (b). oo
3.22 Ball (). .o o
3.23 [maging geometry in Experiment I1. .. ..o
3.24 TREE. . .. e
325 YOSEMITE. . . e
4.1 Imaging geometry ... ...
4.2 Fourframemodel . .. ..
4.3  Camera Model .. ... e
4.4 Nie-framemodel . . . .. ..
4.5  Experiment Setting. ... ... ... ... o L
4.6 The lelt image . ... .
4.7 Themiddleimage .. ... ... . e
4.8 Theright image . .. ... e
5.1  Convergence rat@s . . . . .. ...
5.2 Framework .. . ...
5.3 Sterco Image sequence arrangement ... oo
54 Depth map with Kalman filter. .o o 0o oo 00 oo
5.5 Depth map without Kalman filter. ... 0000000 oo oo o
5.6 0 Convergence rabe COMPariSOl. . ..o oot o v i
G Framework. oo 00
6.2 Disocclusion. . ... .
6.3 Cameramodel .00
G4 Interpolalion . ...
6.5 The reason why noises are produced by bilinear interpolation. . ... .. ..

X111

43

i
N

97



Figure

6.6 Stereo IMage SEQUENICE . . . o v o v it e e 120
6.7 First frame of plane motion. ... .. . oL L 122
6.8 Twelfth frame of plane motion. .. ... ... . 123
6.9 RMS errors of X and Average errors of X o 124
6.10 RMS errors of ¥ and Average errors of Y. ... .. ... ... ... 125
6.11 RMS errors of Z and Average ervors of Z. . ... 126



CHAPTER 1

INTRODUCTION

Over the last ten years, research on the analysis of visual motion has come to play a
dominant role within the computer vision community [1]. The ultimate goals of this
research are vision systems with the ability to navigate, recognize, and track objects
and estimate their speed and direction. Such systems are required for tasks that are
too expensive, too hazardous, or too inaccessible for people to perform them. For
instances, when robots are used for repetitive manufacturing operations, handling
hazardous materials, and exploring the oceans or other planets, the robots need vision
systems to sense their environments, build internal models of those environments,
and construct and execute plans for achieving their goals. Most of the operations
must be performed in a dynamic world in which both the robots (or cameras) and
objects move and change shape overtime.

Most of previous works are based on the motion of camera. Apparently, the
camera motion is different from object(s) motion [2]. When a camera moves, the
whole scene moves. One can use two constant vectors T and R to describe the
motion because camera is rigid and its motion can only be translational and (or)
rotational. This model cannot be used in object tracking. Nor can this model be
nsed in multi-objects that have different motions. When the camera is stationary
and objects move, background is stationary, and motion representation must be a few
functions of different objects. When moving objects change their shape overtime, i.e.,
they are nonrigid, motion representation 1s more comphicated. Such motion should
be represented as a function of each point i 3-D world coordinate or 2-I) image

plane coordinate. In many literatures [2]-[8], the rotation and translation motion of



camera are known, according to the motions, depth map, time-to-collision, and other
three dimensional parameters are considered primarily.

In this research, we apply stereo vision to not only camera motion but also
object motion. In other words, application of this work will enable robots to be able
to not only travel through unknown environments but also to track moving objects.
Actually, it can be seen that our model can also be used 1 nonrigid objects as well
as rigid objects.

There are basically two different approaches to recovering the structure of
object(s) and the relative motion between object(s) and camera(s): the optical flow
field approach [9] and the feature correspondence approach [10]. This dissertation
research 1s based on the optical flow approach because the approach can be used
widely as long as its accuracy is improved. Since optical flow field describes motion
of each pixel, the optical flow approach inherently is not restricted to rigid or nonrigid
motion.

Although the research focuses on robot vision, the research of the optical flow
field has much wider potentials. In [11], the possibility using optical flow in video
coding application was discussed. Moreover, a significant amount of research has
focussed on using the optical flow and computer vision techniques in Model-Based
video compression [12]-[14]. The model-based video compression coding is to obtain
a very low bit rate digital video (about 10 Kbits/s). Image motion analysis has also
become active in modeling and analysis of heart wall motion [14].

[n this thesis, a new approach to compute optical fHow field and a new
framework in 3-D motion estimation have been developed and presented. However,
before describing our work, we will describe some background and motivation for

the research.



1.1 Background and Motivation
The procedure of reconstruction of structure and motion of 3-I) object(s) can be
lustrated in Figure 1.1.

Firstly, images are taken by a camera and then are digitized by an A/D
converter one by one to form an image sequence. With this digital image sequence,
the object(s) are reconstructed. In this thesis, the reconstruction means that X(z,y),
Y(z,y), Z(x,y), X(z,y), Y(z,y), and Z(x,y) are computed, where X, ¥, and Z are
coordinates of 3-D object(s), X, ¥, and Z are velocities of X, Y, and Z, and 2 and
y are the coordinates in digital images.

How can these six 3-D fields be computed from the digital image sequence?
Generally speaking, in order to recover the 3-D object(s), disparity between a frame
and the next frame in the image sequence must be estimated. The disparity is defined
as following: If a world point (P) in 3-D space is projected onto the first frame as
a pixel with the coordinates (zq,3;), and because of motion of the world point (P)
or motion of a camera the world point (P) is projected onto the second frame as
another pixel (22, y2) that is not equal to (z1,1,), then the disparity is the distance
between these pixels. Once the disparity is known, 3-D motion can be computed

using the perspective projection. We will describe the process next.

1.1.1  Optical Flow Computation
There are two basic approaches to compute disparity. As introduced in the beginning
of this chapter, they are the feature correspondence approach and the optical flow
approach.

[n the feature correspondence approach, the motion of only features, such
as boundaries, corners, and other interesting point sets, is computed. However,
extracting and establishing the feature correspondence is difficult [15]. In addition,

il an object is nonrigid, the approach usually can not be used.
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When optical flow approach is applied to compute disparities (or optical flow),
the motion field for the entive image is estimated instead of a few interesting point

sets. The motion field of images is expressed as

dx
7 . _ u(;v,y) _ Fi
U, y) ol 1) % (1.1)

(7(:L',y) is called as optical flow field. If intensity of the first image is represented by
Ii(x,y,t), the second frame image I>(x, y, t46t) should be equal to [; (x+u(z, y)§t, y+
v(x,y)6t,t + 8t). The optical flow field 17(3;,31) can be computed by minimize the
difference between the first image and the second image. This technique to compute
optical flow field is call “Correlation-based approach.” This technique and another
technique named as Gradient-based approach will be discussed in detail in Chapter
2.

Basically, the computation of optical flow field has four problems. They are

noise, subpixel, aperture, and smoothness.

1. Noise: In image acquisition and digitization, noise may be generated. This
noise can reduce accuracy of optical flow computation. Therefore some kind
of filter 1s needed. In many literatures, image preprocessing is not considered.
However, in those literatures, when a refinement process of optical flow compu-
tation 1s used to propagate neighborhood information, this refinement actually
is a kind of filtering. When gradient-based approach is used to compute optical
fow, derivative is substituted with difference because images are digital. This

digitization is a source of noise.

2. Subpixel: We compute optical flow field from a digital image sequence. Digital
nmage means that mtensity and coordinates are digitized. I the correlation-
hased approach s used to compute optical flow field, matching measurement
will cause ervor. Under the assumption that environmental light taking the first

frame [1(x,y) and the second frame [y{x,y) does not change, this means that



only motion of the 3-D object makes two images different, therefore Ly{x,y) =
Lz 4+ u(z,y),y + v(z,y)). Around a pixel P(x,y) in the first frame ), a
small window W1 (x,y) is formed. Similarly, the same size window W3(z,y) is
formed around the pixel (x,y) in the second image I,. When Wy (2 4w,y +v)
matches Wi, (e, y) exactly, wand v at the pixel are obtained. However, if motion
of the 3-D object causes that image shifts over subpixel, once the image is

digitized, 1t 1s impossible to find a W,; that matches exactly a W,,. Therefore,

estimation of subpixel image velocity is needed.

3. Aperture: Aperture is an inherent problem for every optical flow techniques.
When an edge is looked at fronmi an aperture, motion of the edge in some
directions is impossible to know. For instance, Figure 1.2 shows an edge. When
the edge moves upwards or downwards, the motion is not visible. In gradient-
based approach, the aperture problem is represented as that two unknowns are
to be solved from one equation. The aperture problem only can be overcome
by means of neighborhood information. In the correlation-based approach, the
ambiguity can be avoided near corners of an object’s image and in textured

areas [39].

4. Smoothness: When the neighborhood information is applied to refine the
optical flow field, can results be improved? Sometimes, the answer is “no.”

Because this refinement actually is a low-pass filter, the moving boundary or

the other point sets with great intensity variation are to be blurred.

Althongh optical flow computation has many problems, it does not rely on special
featnres such as edge, corner, and the other interesting point set. [t can be used
widely in many computer vision tasks, for instance, 3-I) structure and motion

analysis.
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Once optical flow field 1,7(;1;,;1/) is known, 3-D parameters can be computed by

perspective projection. That will be discussed next.

1.1.2 3-D Motion Computation
Let’s take a look at Figure 1.3, which is to illustrate perspective projection. Assuming
that distance D and focal length f are known, once the optical flow u is also known,

the AX can be obtained from the perspective projection

uwl)
AX :-%{». (1.2)

However, it is not easily to know D. Actually D is function of (2,y), e.g., D = Z(z,y)
that is called “depth.” If all (z,y) are considered, it is referred to as depth map.
In order to compute Z(a,y), two or more cameras are needed. In other words,
stereo images should be used. In many literatures [17], motion of a single camera

1s used to compute depth map. But, when the velocities of objects are considered,
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a stereo image sequence is needed. Therefore, the robot vision problem is to build
up a reconstruction system whose input is a stereo image sequence and output is
a recovered object. Refer to Figure 1.4. Most of previous works are based on this
model. From control system theory point of view, this is an open loop system.
It is difficult for such system to obtains accurate outputs, high stability, and-high -
robustness.

In this thesis, we devise a novel system model that can be approximately repre-
sented by Figure 1.5.

Obviously, this is a close loop system. According to the recovered object,
a virtual image sequence is estimated. By compensating the difference between the
real and virtual stereo image sequences, the object can be estimated more accurately.

Dynamic behavior is inherent to the nature of our physical environment. When
dynamic behavior of motion is needed, we must consider not only the current state
but also a series of previous states. Kalman filtering is an optimal process to fuse the
current state and the previous states. However, when objects move, newly visible
area(s) may be exposed in image plane. In the new exposed area(s), the previous

states can not be used, otherwise error will be caused.
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1.2 Thesis Objective
The objective of this dissertation is to develop a theoretical framework that can
estimate motion and position of 3-D objects in dynamic world from a stereo image
sequence. Here, dynamic world means that both camera(s) and object(s) can move.

In order to reach the goal, the following four tasks must be fulfilled.
1. Enhancing the accuracy of optical flow field.
2. Improving moving boundaries of optical flow field.
3. Setting up relationship between 3-D motion and 2-D optical flow fields.

4. Using the Kalman filter to optimally fuse current and previous information so
that 3-D motion and position can be refined over time when a stereo image

sequences 1s applied.
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1.3 Thesis Overview
Chapter 2 reviews related techniques described in the literatures and explains how
they fit into our framework and what differences there are between them and our
work. Chapter 3 describes our new optical flow field computation approach that is
developed based on the correlation-based approach to optical flow computation and
feedback technique widely used in control system theory. Accuracy of the optical flow
field 1s considerably increased and the system is more robust. Chapter 4 presents
UOFF framework and its application in 3-D motion analysis. A four frame image
model is introduced. The model is used to compute position and motion of 3-D
objects. Chapter 5 describes a new method to improve the moving boundaries of
optical flow field. The method is based on a Kalman filter. Conventionally, Kalman
filter is used in incremental fashion. But here, we use Kalman filter to refine optical
flow filter based on a fixed set of images. Chapter 6 describes how to use another
Kalman filter and a stereo image sequence to improve the estimates of 3-D position
and motion, and how to handle newly visible area(s) explosion issue. Finally, Chapter
7 summarizes the major contribution of our research and indicates the directions for

future research.



CHAPTER 2

MAJOR RELATED APPROACHES

As noted in Chapter 1, the recovery of 3-D motion and structure information from
a sequence of images can be decomposed into two steps: 1. Compute image plane
velocities from changes in image intensity values, i.e., compute optical flow. 2. Use

optical flow fields to estimate 3-D motion and structure.

2.1 Optical Flow Computation
Most of the current approaches to the computation of optical flow can be divided

according to their choice of a measurement.

1. Those that use the continuous variations of intensity over space and time to
measure instantaneous image-velocities, e.g., the gradient-based techniques [9],

(19]-[22].

SN

Those that measure the displacement of points or primitive image tokens
between successive frames of a sequence, e.g.; the correlation- based matching
techniques [25]-[28] and the symbolic-token based matching techniques [29]-

[31].

3. Those which measure the spatio-temporal energy of the image intensity
function in a small area during a small period of time to determine the
direction (and possibly the speed ) of motion image points i.e. optical flow

[32]-[33].
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2.1.1  The Gradient-based Approach

The gradient-based approach is based on the assumption that intensity of light
reflected by a point on a surface of an object and recorded in the image remains
constant during a short time interval, although the location of the image of that

point may change due to motion. This can be mathematically stated as,
Ha,y,t) = (v + uli,y + vAL E+ At) (2.1)

where U = (u,v) is an image velocity vector at the point (z,y) and it is assumed to
be constant during the interval (¢,¢ 4+ At). This equation is called intensity constant
equation. I(z,y,1)is the image intensity at point (z,y) in the image at time ¢. In the
limit, when the time interval At tends to zero, the mtensity-constancy assumption

leads to the following equation:
Lu+Ly+1,=0 (2.2)

because

Iz +ult,y + vALt+ At) = I{z,y,t) + LulAt + LvAt + LAL

+ higher order terms. (2.3)

Ignoring the Ingher order terms in Equation (2.3), using Equation (2.1) in Equation
(2.3) and taking the imit as At — 0, Equation (2.2) can be obtained.

The collection of image velocity vectors U for the entire image constitutes the
optical flow field for the image.

Equation (2.2} embodies two unknowns v and v, and is not sufficient by itself to
specily the optical flow uniquely. But, it does constrain the solution. It is possible to
compute optical flow for images using the optical flow constraint equation together
with an additional assumptions. A popular assumption i1s smoothness constraint,

l.e., motion field varies smoothly in most parts of the image. Horn and Schunck [9]
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mposed this constraint by minimizing the error in optical flow.

/D(m SO+ L)+ o*(] Au |2 + || Av ||2)dX (2.4)
where D is integration domain, the magnitude of o reflects the influence of the
smoothness term, Al = (I, [,), and || Au ||} + || Av ||} are the measure of the
departure from smoothness in the optical flow. Here, || Av ||3 and || Av ||3 are the
squares of the magnitude of the gradient of the optical flow velocity components u

and v respectively:

du., Ou, dv . dv
o - & (= 2 e 2.
(32) +(§y) (57) +(ay)
They derived an iterative method to calculate the optical flow.
—k -
WY = gh - Ix[fl‘"u 1o Ti—ji] (2.5)
a? + 1’3 + 15
—k —k
Uk+] — ,D‘/C - [?I[jzu + ’[yv + [t] (2.6)

a? + 2+ 1!
where & denotes the iteration number, ©® and v° denote initial velocity estimates -
which are set to zero, and @* and 9* denote neighborhood averages of u* and v*.

On the boundary the local smoothness of optical flow will not hold. A few
people have made efforts to improve optical flow determination along the boundaries,
but, it is still a problem.

The primary difficulty for the gradient-based approaches arises from the
following facts: They are suitable when the displacements are small with respect
to great scale of the image intensity variations. But, sometimes the temporal
sampling rate cannot be high because limitation of digitization and resolution. On
the other hand, when the scale of the image intensity variation is very small, if the
displacements are not enough great, optical low will not be obtamed. Furthermore,
above two requirements are not easy to be met simultaneously in real image sequences
because the variations of intensities of real 1mages may not be always uniform.
About the quantitative error and reliability analysis of the gradient-based approach,

Kearney et at. have discussed in detail [34].
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2.1.2 The Correlation-based Approach
The correlation-based approach is also referred to the correlation matching approach.
It is based on the following principles.

If the intensity functions of two images are f(z,y) and g(z,y) that are two
successive frames. Then the cross correlation function between the two images is

defined as

Cireldz,by) = /_Z /:o [z = bz,y — by)g(z,y)dudy (2.7)

where § = (6z,by) is the relative shift between the two images. C is the correlation
function, and x and y vary over the two images. The best estimate of § is determined
by maximizing the C over a set of candidate values for §. When a finite sized window
from one image is matched against identical windows from the second image, the
definition given above is modified such that the integration is limited to the windows.
If the image is represented by a discrete pixel array, the above description will still
hold except that “point” is replaced by a “pixel” and the integral is replaced by
discrete sum. Since our concern is primarily with digitized images, the following
discussion uses the discrete formulations.

54

The discrete formulation of Equation (2.7) is called “direct correlation
measure.” There are also other related measures that can be used to determine

the match. The most commonly used measures for matching are listed below:

I. Direct correlation, in which the image intensity values of the corresponding

pixels i the two windows are multiplied and summed.

>

Mean normalized correlation, in which the average intensity of each window
1s subtracted from the intensity values of each pixel in that window hefore

multiplication and summing.

3. Variance normalized correlation, in which the correlation sum is divided by the

product of the variances of the intensities in each window.
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4. Sum of squared differences, in which the sum of the square of the differences

between the intensities at corresponding pixels is calculated.

. Sum of absolute differences, which is similar to sum of squared differences,

o

except that the absolute values of the differences are used instead of their

squares.

In general, these measures can also be used as estimates of matching strength between
two feature vectors; hence, they are useful as matching measures [44]-[45] for many
different types of 1mage events.

Based on sum-of-square-differences measure, the correlation matching process
is discussed below. For each pixel P(z,y) at location (z,y) in the first image [,a
correlation - window W, of size (2u+1)x(2n+1) is formed around the pixel. A
search-window Wy of size (2N+1)x(2N+1) is established around the pixel at the
same location (x,y) in the second image [;. The (2N+41)x(2N+1) sample of error-
distribution is computed using the sum-of-squared-differences as

E(Az,Ay)= > > (hz+i,y+j)— Lz +i+ Aw,y+7 + Ay))? (2.8)

i=—n j=—n
where =N < Az, Ay < +N.
In order to handle subpixel issue, many algorithms are developed. Here, Singh’s
algorithm [44] is discussed. The (ZN+1)x(2N+1) sample of response-distribution is
computed as follows:

Ro(Ax, Ay) = e FEB=4Y) (2.9)

where —N < Az, Ay < +N.
One could compute an estimate of image velocity using, for instance, a
weighted-least-squares approach. Under the assumption that noise i1s additive and

zero-mean, one could also associate a covariance with this estimate. Quantitatively,
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the weighted-least-squares based estimate, denoted by U= (u,v), is given by

Tae Lay Be(Az, Ay) s :
By = 2‘10
u(x,y) Yoz 2oay R(Az, Ay) ( )
S az Cay Re(B2, Ay)Ay ‘
o ‘ 2.11
v(z,y) Tne Song RBe(Dz, Ay) (2.11)

where the summation is carried out over—/N < u,v < +/N. Because of noise, digiti-
zation, and aperture problem, this approach can produce great errors in some pixels
of the optical flow field. In order to reduce the errors, smooth constraint or other
similar techniques have to be used.

The correlation-based approaches have the following two drawbacks. Firstly, it
is inevitable that moving boundary is blurred because of use of smoothness. Secondly,
when real image vectors are subpixels, it is difficult to accurately calculate image

vectors in this approach. In Chapter 3, we discuss the problem in detail.

2.2  3-D Motion Computation
As noted in Chapter 1, most of the previous works are just to compute depth
map and/or time-collision by assuming that the camera motion is known. Some
of literatures consider computing depth map and camera translation together [4].
When optical flow field is known, the computation of the motion of the observer is
not difficult because motion of observer can be represented by only six quantities,
three instantaneous translational components (1%, T, 7%) and three instantaneous
rotational components (R,, Ry, R.). The (1, Ty, 1%) and (R, R,, .) are constant
with respect to space coordinates. However, when multi-objects and shape change
exist, Z(;z:,y), X(x, y), and Y(m, y), three fields, should be computed. This is one of
the differences hetween our work and the previous works. This section will introduce

a few concepts and two examples of motion interpretation.
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2.2.1 Motion Parallax
In this section, only the benefits of being able to fixate a point in our 3-D environment
is considered. Such a point is a point of reference and points (i.e., B) farther away
(“behind”) appear to move in the same direction as the viewer, while points (i.e., A)
that are nearer (“in front”) appear to move away in the opposite direction. Figure
2.1 shows the fAixation point.

The motion description is that of motion parallax, kinetic depth 1s the sensation
one gets when horizontally moving one’s head while fixating a target. Ballard [35]
shows how a fixation point facilitates the derivation of depth by providing an instan-
taneous origin at (0, 0, zp), where 2z is the distance of the fixation point from the
viewer.

Vergence geometry is given in Figure 2.2. Given the focal length of the camera
f and the base (separation) b, what remains to be established for deriving the depth

zg is the displacement pair («, ). The geometry for triangulation is then quite easy

to use.
o _Atfon_znt S, gL (2.12)
{ l+a’ r r+ A’ T
Hence, one has
Jb .
zn = 2.13
S (213)
Since
COS 5 _ _COS Y- .
o= L g= R (2.14)
S 7 SHI Yo
bsin vy sinys
§ = ——— T (2.15)

EETICEE S

Using perspective projection, and the geometry of Figure 2.1, any point in the image

plane of coordinates (z,y) is given by

X
- _JZ——~ (2.16)
and
y = — /Y 217
J - Z 5 (..4. )
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where (X, Y, Z) are the 3-D coordinates. Assume that (X,Y, Z) and (u, v) stand
for the 3-D (world) and 2-D (optical flow retinal) velocities, respectively. Then
differentiating Equations (2.16-2.17) and assuming only translational velocity one
obtains

—Ju = fX + 7

~Zv=[Y +yZ (2.18)

Assuming that we fixate the target, its foveal position implies that the retinal
coordinates are approximately zero. Further assume that X and Y are comparable
or greater than Z, and that f > z,y. Then

v X (2.19)

U '
The 3-D velocity V can be obtained from Equations (2.18 and 2.19) as
V= (X*+Y?)? = ‘?( +v?)12. (2.20)
When the head of the observer moves right, a vestibular command motion Vy is
parallel and of opposite sign to V, and if one assumes the Z is small and zp > Z,
from similar triangles one can then write

| Vi | __*0 (2.21)
Vv - ZO'—Z.

N
S

Finally, from Equations (2.20) and (2.21) one readily obtains that
zo(u? + v?)1/?
Vinf

For zo < Z, the sign is negative, as one would expect when moving right and

N

= zo[l + ] (2.22)

observing targets nearer than the fixation point.

I the approach is explained by single camera motion, we can say that the zo
can be computed when the camera rotates counterclockwise over 108° — vy — 5 with
respect to the fixation point, then depth map can be computed when the camera
translates over V. By the rotation and the translation of the camera, depth map 1s

obtained.



2.2.2 Three-dimensional Motion
The more general case that [36] considers both translational velocity (7°) and angular
velocity (R) was treated by Waxman and Duncan [36]. For a 3-D pixel, P, the

differential motion is defined as

dP ) S

where T' = (T, 1y, 1%), R = (Rs, Ry, R.) and

dX .

R A

dy

— = ——T — > 4 RIB/

o v — R X +

dZ

— = “T.-RY+RY (2.24)

If one were to project P(X, Y, Z) onto a unit focal length image (f = 1), the retinal
coordinates are again given as (z,y) = (X/Z,Y/Z), and the optical flow (u, v) is

obtained as

T, _ R
R e A TR NN Il
[ 1) } N Z [ 0 -1 Yy } gy + { (1 +‘!,/2) —zy — gi (.‘.ZQ)

In many literatures, it is assumed that T and [ are motion of a camera. When
R =0 and T is known, i.e., the camera does not rotate, but its translation 1s known,
depth map Z(x,y) can be obtained from following equations:

T
u It -1 0 =z v R
{ " } == [ 0o 1. } g“, . (2.26)

In those literatures, 7y, and T are always chosen to be zeroes (1, = T, = 0), thus

TJJ
e, y)’

Z(z,y) = — (2.27)

This equation 1s typically used in the approach of depth from motion. Then, such

system is of poor robustness. This will be discussed in Section 4.6.
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If 7" and R are variables with respect to spatial coordinates, the existing
approaches can not be used to estimate 3-D motion. In Chapter 4, we will introduce
a new approach, that is, unified optical flow field (UOFF) approach. The UOFF can

estimate 3-D motion (X(z,y), Y(z,y), Z(z,y)).



CHAPTER 3

CORRELATION-FEEDBACK

In this chapter, a new approach using feedback techmque is proposed to compute
optical flow. It is well-know that feedback is a powerful technique widely used in
the field of automatic control. [Feedback can make system robust to noise and raise
accuracy. In general, this feedback technique can be used for any existing optical flow
determination algorithms, say either gradient-based or correlation-based optical flow
techniques. As an illustration of our proposal, we choose to work with correlation-
based technique because the recently developed correlation-based technique by Singh
in [44] has some attractive merits and is suitable for us to apply the feedback
technique. Therefore, we call this specific implementation the correlation-feedback
algorithm.

The approach can be briefly represented as following. When the first given
image that is taken by a camera and the optical flow velocities are known, the first
image 1s shifted at the optical flow velocities, as a result, an estimate of the second
given image is obtained. At beginning, the estimated second image is not accurate
since the velocities 1s not accurate. As long as the system is built appropriately,
the velocities will be iteratively compensated to make the difference between the
recovered second image and the second given image. Since a true optical flow velocity
may be a subpixel, a bilinear interpolation is applied to the digital image to obtain a
virtual and continuous estimated second mage, so that accuracy of estimated optical
Aow vectors can be mereased considerably. In computation, the recovered image
itensities are calenlated only at the place needed mstead of that entire continuous
image. That 1s why it is called as the virtual and continuous image. We will show the

approach is generally convergent. At least, when image itensity is a linear function
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of coordinates with {ree noise, the algorithm must converge to true values. In fact,
if noise is reduced, the vicinity of a pixel can be thought of that the above condition
is satisfied approximately except the moving boundaries. However, the condition is
too strict. Actually, as long as extreme points of the response distributions (refer
to the next section) are just true optical flow vectors, the true optical flow vectors
can be recovered accurately. However, in the vicinity of a pixel, this condition is
approximately satisfied.

Section 3.1 proposes framework and the algorithm. Section 3.2 and 3.3 carefully
analyze the algorithm, compare it with previous works and discuss the convergence of

it. Section 3.4 demonstrates implementation and experiment to verify the algorithm.

3.1 Proposed Framework
Figure 3.1 shows an overview of the proposed framework. Every block in the figure

will be described below in detail.
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3.1.1 Initialization
[n order to have estimated optical ow field converge to true values and make the
convergence faster, an early procedure can be used to compute an initial estimated
optical flow field. It is not critical to select the early procedure. But, it is hoped that
the procedure is as fast as possible and as accurate as possible. In our experiments,
the algorithm of Horn and Schunck [9] is used. This is because that the algorithm is
fast and the problem caused by the smoothness is not serious at the first ten to twenty
iterations. Furthermore, our experiments show that even if the imposed smoothness
constraint canses serious error, subsequent correlation feedback procedure can still
make the error to a mimmimum. Our experiments also show that even if no any early
procedure is used and initial optical flow are specified as any value except zero, the
algorithm is still convergent, but the convergent speed may be reduced.

After this stage, an initial optical fow field () = (u!,4()) become

avatlable.

3.1.2 Observer

As discussed in Chapter 2, it is clear that the correlation-based approach cannot
accurately recover subpixel optical flow vectors because image field has been digitized.
If the corresponding continuons image field f(x,y) could be known, the accuracy of
the recovery would be improved.

The continuous image field f(x, y) should have the following properties. Firstly,
JG ) = L, ), (3.1)

where f; s the first digital image, 7; and 7; are integer indexes in the first image.
That is, on the 2-D grid, the intensities in the continuous image field f(4y,75) are
coincident with that of the digitized image 1,(4,, 7). Secondly, if U = (Y 404)

that is optical flow vector obtained in the nth iteration is equal to the true optical
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flow vector U® = (u®, %), it is not difficult to see that

f(i-z - “n(?jz)fz),]'z - U"(iz,jz)) = [2(7:27]'2)- (3-2)

where [, is the second given digital image, 75 and 7, are integer indexes of /.

Now, define
L(i2,52) = [ — w53, 52, jo — 0 (22, 72)). (3.3)

where J;-Z(iz,jg) is an estimate of [5(22,7;). The difference between ]ﬁ-z(zﬁ),jz) and
I5(22, 72) is affected by the error of Uty In general, the greater the error, the greater
the difference. In other words, the difference between jz(ig,j—z) and I4(iz, 72) contains
the information about the accuracy of ™. 1t is noted that we do not actually
estimate the entire continuous image field f(z,y). Only those values needed for
optical flow computation, say, f(i2 — u™ (5, 12), 72 — v (is, 75)) will be estimated
from the first given digital image [1(z,y) by using a bilinear interpolation technique. -

In our work, the bilinear interpolation discussed in [38] is adopted.

(2~ U(”)(i'z,]'z),]-z ~ ‘U(")(7:-2,j2))
= (l - (L)Hl - b)h(?a]) + b x /](Z,J + ])}

taf(1 =0) i+ 1, 7)+0x Lz + 1,57+ 1)] (3.4)

where 1= ini(zy — «tM); j= int(5, —v™); 0 = iy ~wl — 4 b = 5, — o0 — 5. it ()

means that only the integer part of = is retained.

3.1.3 Correlation

Once the interpolated image f(7o — u™(is, 52), 72 — vU(42, 74)) and the second given
digital image /[(z2, 72} are available, we can select w correlation measure to search
for the best match for a given pixel of [,(i2, 72) In @ search-area in the interpolated
image f(iz —ul™(iy, 5,), 7, — v (24, 79)). In this thesis, the sum-of-square-differences

(SSD) [44] [39] is used. In essence, for each pixel (i, 52) at location (i4,7) in the



27

I5(22,72), a correlation window W, of size (2m + 1) x (2m + 1) is formed around the
pixel. The search window in our proposed approach is quite different from that used
in the correlation-based approach, say, in [44] (39]. The search window is a “rubber”
window with variable window size. The size of this window depends on (u(™ v(),

Let u be a quantity chosen from the following five quantities (u{™ — yrz(;ll,u(”) -

(n) (n) (n) . . .
=, IO %E;,u(”) + %—=). Let v be a quantity chosen from the following five
L () (n) (n) (n) .
quantities (v(“) - 5=, v — T o) ) 4 =, v 4 %—1—1—), where n is the number

of iterations. Hence, there are 5x5 possible combinations for (u,v). Each of them
corresponds to a pixel in the continuous image plane f(z,y), i.e., (i3 —u,jo —v). A
correlation window is centered on this pixel. The 5x5 samples of error distribution

can be computed by using the sum-of-square-differences. That is,

kit m

E(u,0) = 30 > (Lia+z75+y)

=1 Y=

— fla+z—u,jp+y—v))° v (3.5)
(n) (n) (n) (n)
RO I (n) __ L (n)y . (n) E____ u(n) u
ve {u 2n’ 4n U U 4n’ * 2n
(n) . (1) (n) 2y {7)
8 AN C1 A £ S C1Y ICARMN C I 36
v € {v on '’ an’ S an + ‘Zn}' (3.6)

The 5x5 samples of response distribution can be computed as follows:
RC('U:,U) — 8—kE(u,v) (37)

where k is chosen so as to make R. be a number close to unity. The optical flow
vector derived at this correlation stage is then calculated as follows according to the

weighted-least-squares estimation.

IL(7L)(i- g ) _ Zu Eu Rc(uv v)u
¢ N = S oy e, v)
{ . 5

i ) = Ze Sl 59
‘ 2o Lo Re(ue, v)

It is noted that the equations similar to Equations (3.5, 3.7, 3.8) have been used in

[44]. However, in our approach, since [(zy +2 —u, jo +y — v) is a 2-dimensional



28

N 0 !
-1 0.25%0.25 | 0.5%025 |0.25%0.25
0 0.5%025 {05%0.5 |0.5%025

0.25*0.25 1 0.5%0.25 ]0.25*0.25

Figure 3.2 Gaussian mask.

continuous function, u and v are not necessary to be integers. Together with the
feedback technique, the accuracy of computing optical flow field can be increased

considerably.

3.1.4 Propagation
Except for the vicinity of a motion boundary, the optical flow velocity of neigh-
borhood pixels should be similar to the velocity of central pixel. Therefore,
neighborhood information should be used to improve computation of optical flow
velocities. That s,

N N

) = Z Z w(z,y)* Ugn)(ig + 2,79 +y)

z=~Ny=-N

N N
() = Z Z w(z,y) * vi")(ig +x,79+y) (3.9)

z=—N y==N
where w(z,y) is a weighting function. We choose a Gaussian mask [24] as the
weighting luuction w(a,y). When N = 1, w(z,y) is depicted in Figure 3.2, Similar

sropagation stage was used in Singh’s algorithm [44].
|rag 5 5 5
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3.1.5 Feedback and Iterations

In each iteration, the output of the algorithm, i.e., the calculated optical flow is
fed back into the algorithm. The observation, correlation and propagation discussed
above are then carried out. This algorithm can be considered as a feedback control
system. From the given digital image I;(z1, ;) and the calculated optical flow U™
at the nth iteration, a virtual continuous image f(izy — u,J» — v) is estimated. The
difference between another given digital image [5(zs,7,) and the estimated virtual
continuous image f(i, — u, j2 — v) is used to adjust optical flow U, Based on the
updated UM the new iteration optical flow UMY is generated in the propagation
stage. If the system model is correct, U™ will converge to the true optical low. Two
given images are repeatedly utilized. As shown next, the algorithm will converge to
the true optical flow in general. When |u(+1) — 4| and [v(*+1) — 4] are greater
than a predefined threshold, we update I, in the observer stage according to the
values of u(**1(z, 5), vV, 5) and I,(7,7). Otherwise, it is said that the algorithm

is convergent.

3.2 Convergence Proof
Here, we prove that the correlation-feedback algorithm converges to the true optical
flow if the response distribution defined in Equation (3.7) is single-maximum-valued
with the maximum being assumed at the true optical flow.
Let us neglect the propagation stage in the proof. Therefore, Equation(3.8)

can bhe rewritten as

u(N-H) _ =0 Z ( (.n)’,vjn)) gn)
ZL oZ _o Fe(u™ o)

where

L, (1)
( (n) ()  (n) (n) (n)) _ ('LL(TL)—EL‘_“‘—,'U:(n)-‘

Wy Uy Uy Uy U
‘0 1 2 23 g R -
21, 41 72 21

u()
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Let normalized response distribution be denoted by g(u; (- ) (n))’
R uS"),U(”) N
g(u, vy = (v ) (3.12)

T Re(ui, oY)

1 . TL . . - . . . .
Cousider the case where (u!™ D uY is in the vicinity of true image vector u®, v,
PR _7 S

Assume g(ul(-"), vj(«n)) is a sample of a surface of revolution having only one extreme
point (u®,v®). The ideal g(ul™, 21;”)) is shown in Figure 3.3. In fact, when (‘LLEH),’U‘_E-”))
is the vicinity of (u*,v*), the assumption holds approximately.

Without loss of generality, only the positive u{™ u® u("*1) values are considered

i order to simplhify the proof.

Let

(3.13)
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(n)
u B

Figure 3.4 Curve of h(uf“)) and case 1.

It is not difficult to see that h(u,(”)) is a sample of a symuetrical curve about axis
“1(“) = u" with only one extreme value at uf»”) = u". The curve is shown in Figure .
3.4.

The following two lemmas will be used for the convergence proof.

Lemma I: h(u,()”)), /1.(u$”)), h(ugn)), /7,(u;(3n)) and h(u.ﬁ")) satisly the next equation:

4
Soh(ul?) = 1. (3.14)
1=0

Lemma 2: ™) and w09 have the following relationships:

R(ul™) = h(ul) . h(u$) = n(d™)

1ot = 0 4 (3 ) (3.15)

2n 4n
: ) (o) Ih( (1) ] ()
_ G 1) Gy S0 ) h(wy”)  20(wy) A(wy) o
2. wy — =u —_— 3106
e ‘ u an + 41 T 4n 4y ) ( )
30 W =t > (3.17)

Lemma 1 is apparent and its proof is therefare omitted. The prool of Lemma

2 15 given helow.
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From Equations (3.10) and (3.12), the proof of the first part of Lemma 2 is not

difficult to follow,
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(n) (n)
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(h(u(()")) + h(ul) + h(us () ) + h(uy GOy Rl ()2, 00

Qoo L) = 10a™) | B?) = (™),

2n 4n
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2n 4n,

u® 4 )

Similarly, the second part of Lemma 2 follows from Equations (3.10), (3.11) and

(3.13) straightforward.
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With Equations (3.10), (3.11) and (3.13), and some algebraic manipulation, the third

part of Lemma 2 can be proved as follows.
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(m)
u -

Figure 3.5 Case 2.

uf,”) — w1 > 0, since h(ugn)) >0 i=0,1,2,3,4. Now, let’s prove the convergence
of the algorithm.

Case 1: ugn) < ut.

Because h(ug’l)) > h(ugl)) and h(ué“’) > h(uﬁ”)), and from Equations (3.15)
and (3.17), we have

uﬁ”) > ultl) 5 g0,

According to I'igure 3.4, we know

,u(71+1) - u(l

<1 (3.18)

) — e

. . ’ ! - . .
Case 2: uf, Js wt and ug) < w® as shown in Figure 3.5.

From Equations (3.15), (3.17) and Figure 3.5, one has
ug"} > ) > ) and lu,(,”) —ut] < Jul — .

Thus

‘u(”"‘]) — u“l S IU'(N) — u”" (319)
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Figure 3.6 Case 3.

Case 3: u;g") > u, u.(zu) < u® and h(ug")) < /a(u.(z”)) < /L(ugn)) as shown n Figure

Because h(u‘(j”)) < h(ug")) and ug") — w1 > 0 according to Equation (3.16),

b
oue has
n
u;(g ) > u(u+]) > u(n)_
From Fignre 3.6, we know

., ()
(D) ) < [ I

[ CH) ) < ™ — wf and Ju =5
7

Case 4: ud” > ue, o < we and h(ud) > 2(lY) > hul).

Because h(ul) < ul?), and uf = w01 > 0 according to Bquation (3.16),
one has
‘1/.;(,”) > ) 5,00

As shown in Figure 3.7, Ju+) — o] < 11:%)—1

When n — oo, Jul — | — 0,
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(n)
)

Figure 3.7 Case 4.

Similarly, [0 — v?| eventually tends to zero when n — oo.

From the above discussion about these four cases and the known symmetry, we
conclude the proof of the convergence.

In our experiments, three successive image frames are used to computer R, so
that assumption about the existence of only one extreme point holds much better. In
the Section 3.4, the computation of K. will be described in detail. Our experiments

have shown that the algorithm is convergent mdeed.

3.3 Analysis
3.3.1 Subpixel

This approach uses feedback technique to iteratively estimate and refine optical flow
held. The correlation-based approach can not accurately estimate subpixel optical
How velocity because they don’t sufficiently make use of information that is provided

by images.
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F(x)
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i £ { i i

Figure 3.8 Intensities of the first image.

In the correlation-based approaches, the basic procedures are represented as
follows. First, a correlation window W, of size (2m+1) by (2m+1) is formed around
the (x,y) pixel in the first image. A search window W of size (2N+41) by (2N+1)
is established around the pixel at the same location of (z,¥) in the second image.
The (mis)match measure M(Az, Ay) between W, and a window of the same size
(2m+1) by (2m+1) around each pixel in Wy, displaced from (z,y) by an amount
(Ax, Ay), i1s computed. According to these measurements, we can compute the
image vector (u,v). But, since images are digital, usually we cannot recover true
optical flow vectors by the measurements accural;‘ely‘ Therefore, subpixel estimation
must be adopted. Are previous subpixel estimations efficient? Let us take a look at
the following example.

For the simplicity, a one-dimension case is considered. Intensities of the first
image 1s shown in Figure 3.8. A correlation window W, of size 3 is formed around
the central pixel in the first image. Assume that the intensity is a continuous linear
function. That is, F(z) = a + bz, where 2 is the location of pixel. Therefore,
when the true image vector i1s Az pixel, the second image can be represented as
F(e = Az) = a+ bz — Az). When the sum-square-difference is used, we have the

Crror

3"}(;1:;) = [Fla=1)=I(v—1—-Ax+ .’1)])]2 + [F(z) = F(x — Aw + :7;1)]2



+ [F(q, + 1)~ Flz+1 - Az + :Bl)]z
= 3V (Ax — )’ (3.20)

where @y is the center pixel in the corvelation window 1 the second image. According

to [44], we denote the response distribution by R,,. We then have
‘RJ.‘; — 6—-133(:::!)1; — (_3—31)2(5:1:—-1:,)21»' (331)
where & is a parameter appropriately chosen. For a discussion of the selection of

parameter k, refer to Section 3.4. Here it is chosen as:

[n(0.95)

k= —30tman __,((Ax — x41)?) (3:22)
Using the weighted-least-squares, one can estimate the velocity u as follows.
w= ——————————Zif‘z x}f”l (3.23)
zy=—2 1t
The relative error 1s then
—A—;L‘—ET-EIOO% (3.24)

By using computer simulation, Figures 3.9 and 3.10, the diagrams depicting the
relative error and the absolute error versus true displacement, respectively, are
obtained. From these figures, we see that when the true disparities are -1, 0 and 1,
the associated errors are zero. Usually the relative errors exceed easily beyond much
greater than 10%. The Equation (3.23) is a kind of optimal estimation to handle the
subpixel problem. Clearly it caimot accurately recover optical flow velocity vectors
whose components involve subpixels.

This example indicates that even if image intensity is a linear function and noise
free, the correlation-hased approach do not work efficiently. This is because they do
not sufficiently nse information that images provide. They use the information only
one tine. In fact) 1t true velocity 1s not an integer, it is impossible to at once recover

the trie veloaty accurately.



[ L od

Relotlive Error Plot

9 | T
’ — :
] i ;
A I e | B
- i : '
e ! A ' h
3 1
° ! / : |
'E_i L . 7
VATTAVARVAY
o*tr—
EV Y 1
o , |
< i H |

o
True d! i placemant

Figare 3.9 Relative ervor.

Although many refinement processes arve used Lo improve the sitnation, the
ellect of the improvement 1¢ not always remarkable. Our experiments have shown
that when the true image velocity vectors are integer pixels, some correlation-based
algorithm can recover some of Lhe vectors accurately, but when the true velocity
vectors are subpixels, error is increased.

In correlation-fecdback approach, “rubber” window is used, 1.e., SG1) search s
hased on the variable size tnstead of fixed grid. Therelore, v is not necessary that
all of tine tmage velocities ave inleger pixels. Peedback iteration is ntibized Lo adjust

the oprical fow field co that the fcld heecomes more and more accurate,

3.3.2 Refinement

Most of previous refinement methods arve basad on some sort of optfimal ehjective
criteria. Any criterion may bave limitation and weakness. Most of these refinenents
make use of the neighborhood opical fow velocity veetors to ymprove the velocity
vector. However if the peiehbarhood velooty vectors are nol recovered very well,
nsing them as nob belpful and not reliable. Also, use of the neighhborhood image

\./(‘_fu“,i(i(;\ \"h)]il‘.(", t.h(" l()liill «li.\(‘(;!ﬂf)li\l‘l{."‘\‘ \)l. ()ili,it‘;ll [Joaw ‘Hll] ifll(l(‘)' f.h(‘ (‘il'(‘!ll])»
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Figure 3.10 Absolute error.

stances that only image sequence is known, it is best and most reliable to make
use of matching relationship between the images to refine optical flow. Our optimal
objective criterion is just based on the idea. The criterion 1s to make the difference -
between the second given image I5(7,7) and the image f(iy — u,jy — v) estimated
from the first given image I1(z,7) minimal. Our experiments verified that the optimal
objective criterion make not only the effect of noise reduced but also the boundary

mformation conserved.

3.3.3 Convergence
In Section 3.2, 1t is proved that the correlation-feedback aleorithm is convergent, if
k) l o O
the normalized response distribution
5 ¢ (n) =)
I{C(U{ ,vj )
4 1, M) (1)
2 i=0 Z]':O Re(u, ;)

is symmetrical and has only one peak which is assumed by true optical flow velocity.

0, o) =

Wihen nmage intensity is a linear function of coordinates, it can be shown that

this condition must be satisfied. Without loss of generality, a one dimension case 1s
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considered. From Equation (3.21), we have
()
Re(u; )
Ly
Zugn) Ro(u;)
o302 (Az—2"))2k

= 3.26
Ty €302 (Br={M)2k (3:26)
ut

g(u™)

It is not difficult to see from the above equation that only one peak of the response
distribution exists and the peak value is achieved when vt is equal to Az,

In fact, in the vicinity of a pixel, the intensity can usnally be considered as such
a linear intensity, especially, bilinear interpolation is used. Therefore, we can claim
that mostly the true optical flow vectors having subpixel or integer pixel components

can be recovered by using the correlation-feedback approach.

3.4 Implementation and experiments

3.4.1 Implementation

Three images: the first, second and third frames in an image sequence, denoted by
[y, Iy, and I3, respectively, are used to compute optical flow. Fach is of 256 x 256.
Assume the time interval between /[, and /, is the same as that between [, and /.
Also assume approximate uniform motion during these two intervals. From images [,
and 1y, (ul9(7, ), 04z, 7)) can be computed using the Horn and Schunck’s algorithm
[9]. From wut™(z,7), v!"(s, ), the optical flow estimated during the nth iteration,
and [y and [,, the response distribution li’f(u(”),v(“)) can be caleulated using
Equations (3.5) and (3.7). Similarly, from images I3 and I, —u(z, ), =0 (i, ),
R (—ul =) can be caleulated. The response distribution Re(w0,v0)) can

thien be determined as {ollows.
[{C(u(”), v(")) = /:ij"(u(”),v(”)) + R;(——u("), —'U(")) (3.27)

«(a,g) and v (4, 5) can be obtained by using Equation (3.8). We adopt 3 x 3

correlation windows. The Gaussian mask shown in Figure 3.2 is used. The choice of
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Figure 3.11 Texture square (a).

parameter k in Equation (3.7)is adaptive [44]. In each search window, k is chosen
s0 as to make RY and RZ be a number close to unity. In the observer stage, the
bilinear interpolation is used. Our experiments show that the bilinear interpolation
is faster and better than B — spline. The u and v used in the implementation are a
little different from that in Equation (3.6), and ave shown below.

w300 Bl 300

U 6 {_..__’ ,/U,(n), s -

2 4 2
‘ ,‘L)(“) 3‘0(71) (n) S,U(n) 3v(11)
Vet 2T Y T

Our experiment proves that this kind of rubber window has betlter convergence and

higher accuracy than the rubber window described in Equation (3.6).

3.4.2 Experiment I

Figures 3.11, 3.12 and 3.13 show the three successive image frames: [y, [, and
[3. They were taken by a CCD video camera and @ DATACUBE system that is
a real thne image processing system and is supported by a Sun workstation. The
experiment setting is shown in Fignre 3.14. The focal length of the camera is 12.5

mm. The distance between the texture square post and the camerais 1300 mm. The



Figure 3.12 Texture square (b).
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Figure 3.13 Texture square (c).
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Figure 3.14 Imaging geometry in Experiment 1.

43



44

texture square moves normal to the line of sight, with a velocity of 4 mm/frame.
According to the perspective projection relationship shown in Figure 3.14, the true
optical-How (u“,v?) is as follows.

125 x 4 ,
ut = _.-..__._._.)_X_/l__ (328)
1300 x unet

vt o= 0. (3.29)
where the unit 1s a constant that represents the distance between two consecutive
pixels along x direction in a digital image. From camera calibration, we know unit =

0.014 mm/ pixel. It will be discussed in Section 4.6 in detail. Thus
ut = =2.747 (prxels). (3.30)

The true optical flow field is shown in Figure 3.15. Since in our setting the object is
in motion while the camera is static, and the light of our laboratory is not uniform,
the different environmental light produces non-negligible noise. Before computing .
the optical flow field, these three 256 x 256 1mages are compressed into three 64 x 64
images by sub-sampling. The sub-sampling algorithm is extremely simple. That is,
a 256 x 256 image is uniformly segmented into 64 x G4 blocks. Each block having
4 X 4 pixels corresponds to a pixel in the 64 x 64 image. The average intensity of
these 4 X 4 pixels is used as the intensity of the corresponding pixel in the 64 x 64
image, thus, generating three 64 x 64 images. Because of the sub-sampling, the true
optical flow values become: u* = —0.6868; v* = 0.

In order to compare the performance of correlation-feedback approach with
that of the gradient-based approach and correlation-based approach. We choose
the Horn and Schunck’s [9) algorithm to represent the gradient-based approach and
Stngl’s framework [44) the correlation-based approach. Table 3.1 shows the vesults
of comparison. In Table 3.1, n = 2 means that the correlation window 1s 5 x 5; w = 2
means that the Gaussian mask size 1s 5 x 5; N = 4 means that the search window is

9 x 9. The program that implements Singh’s algorithm is provided by Barron [40].



In the corvelation-feedback algorithin, Horn and Schunck’s algorithm with o = 5 1s

used in iitialization. Finally, central 40 x 40 optical vector array is used to compute

Uerror a8 Tollows.

YRR TR (w6 5) — w(6,5)) + (0°(4,7) — v (,5))?) .
Uprror = ‘ — —— e (3.31)
\/Z?io s=o(u(, )% + v (4, 7)?)

where (u®,v®) is a true optical flow vector and (u",v") is a calculated optical flow

vector. These apply to all of the experiments reported in this chapter. The optical
flow fields that are calculated by using the gradient-based algorithm, the correlation-
based algorithm and the correlation-feedback algorithm are shown in Figures 3.16,
3.17 and 3.18 respectively.

From Figures 3.11, 3.12 and 3.13, we know that many true optical flow vectors
are zeros because of the static background. It is why when Equation (3.31) is used
to calculate relative error, the denominator is too small due to the fact: many
true optical flow vectors are zeros. Consequently, the relative error calculated in-
Experiment | is greater than 10%. It is not easy to choose an appropriate formula
to compute relative error especially when many true optical flow vectors are zeros.
Relatively speaking, our correlation-feedback algorithim performs best in determining
optical flow for a texture post in translation.

[n this experiment the correlation-feedback algorithm does converge. lts

convergence process is demonstrated m Figure 3.19.

3.4.3 Experiment II

Fignres 3.20, 3.21 and 3.22 are obtained by rotating a CCD camera with respect to
the center of a ball. The 1imaging geometry i1s shown at Figure 3.23. The rotating
velocity 1s 2.5%/ frame. The focal length of the camera is 12.5 mm. The distance
between the center of the ball and the camera is 1120 mm. In Figures 3.20, 3.21

and 3.22, the background seems static becanse it moves together with the camera.

Before computing optical flow field, three 256 x 256 Images are compressed into three
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Table 3.1 The comparison in Experiment I
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Figure 3.17 u"(z,y) computed using the correlation-based approach.
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Table 3.2 The comparison in Experiment I

Techniques | Gradient-based | Correlation-based | Correlation-feedback
approach approach approach
Conditions | [teration = 128 [teration = 25 Iteration = 10
a=235 n=2w=2 Horn — iteration = 10
N =4 n=1w=1
[ tterror | 65.67% | 55.29% [ 19.80% B

64 x 64 images by using the same sub-sampling technique as that used in Experiment
[. Finally, central 40 x 40 optical vector arrays are used to compute Uerror. Lable 3.2
reports the results for this experiment. There uepror, (u®, v%), (u",v"), n, w, and N
are of the same meaning as defined in Experiment 1. 1t is obvious that our correlation-
feedback algorithm performs best in determining optical flow for this rotating ball

case.

3.4.4 Experiment II1
As mentioned before, a very comprehensive study of various optical flow techniques
and comparison of their performance mainly in terms of accuracy have been
condneted recently in [40]. In order to compare our correlation-feedback algorithm
with other techniques in a more objective, quantitative manner, we cite some results
reported in [40] which were obtained by applying some typical optical flow technigues
to some image sequences chosen with deliberation. On the other hand, we apply
our feedback technique to the 1dentical image sequences and then report the results
with the same criterion as used in [40].

Three kinds of image sequence used in [40], kindly provided by the authors of
[40], are utilized here. They are named Translation Tree 2-D, Diverging Tree 2-1),
and Yosemite. The first two simulate translational camera motion with respect to a

textured planar surface (see Figure 3.24). In the Translating Tree 2-D sequence, the
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Figure 3.22 Ball (¢).

camera moves normal to its line of sight along its X-axis, with velocities between 1.73"
and 2.26 pixels/frame parallel to the z-axis in the image plane. In the Diverging Tree
2-D sequence, the camera moves along its line of sight. The focus of expansion is at
the center of the image. The speeds vary from 1.29 pixels/frame on left side to 1.86
pixels/frame on the right. The Yosemite sequence is a more complex test case (see
Figure 3.25). The motion in the upper right is mainly divergent, the clouds translate
to the right with a speed of 1 pixel/frame, while velocities in the lower left are about
4 pixels/{frame. Barron, Fleet Beauchemin pointed out in [40] that “this sequence is
challenging because of the range of velocities and the occluding edges between the
mountains and at the horizon. There is severe aliasing in the lower portion of the
mages however, causing most methods to produce poorer velocity measurements.”
The same way to express the error occurred in the optical low determination
as that used in [40], i.e., the angular measure of the ervor is utilized here. As Barron,

Fleet and Beauchemin pointed out in [40] that optical flow vectors may be written
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Figure 3.23 Imaging geometry in Experiment I1.



as displacements per time unit as in U = (u,v) pixels/frame, or as a space-time
direction vector (u,v,1) in units of (pixel, pixel, frame). When image velocity is
viewed (and measured) as orientation in space-time, it is natural to measure errors
as angular deviations from the correct space-time orientation. Therefore, let image

velocity U = (u,v)7 be represented as 3-D direction vectors, V = 77%;5;%1(% v, 1)7.

The angular error between the correct image velocity V. and an estimate V., is
g = arccos(V. - V,). (3.32)

[t is obvious that the smaller the angular error 1z is the more accurate the estimation
of optical flow field will be. Despite of the fact that the confidence measurement can
be used in our correlation-feedback algorithm, in this chapter, we don’t consider the
usage of the confidence measurement. Therefore only the results that have 100%
density in Table 4.6, Table 4.7 and Table 4.10 in [40] are used in Tables 3.3 - 3.5 in
this chapter.

[n the experiments, our correlation-feedback algorithm is applied to the above-
mentioned three kinds of image sequences. The results are then compared with
that obtained by using other techniques, reported in [40] in terms of angular error.
Therefore, we consider this comparison 1s objective and reliable.

Prior to computation of optical flow field, Yosemite images are compressed
from 316 x 252 to 79 x 63, Translating Tree 2-D) and Diverging Tree 2-D images are
compressed from 150 x 150 to 75 x 75 by using the same sub-sampling technique
as that used in Experiment 1. In fact, this type of compression is of of function of
low-pass filtering.

As mentioned in [40] the optical low field for Yosemite image sequence is very
complex and Table 3.5 indicates evidently that our correlation-feedback algorithm
performs best. These lead to that our feedback technique is very suitable for complex
optical How field determination. This is because the powerful feedback technique

15 applied repeatedly and its refinement is based on the optimal local matching



Figure 3.24 TREE.

between the interpolated image, generated with estimated optical flow, and the given -
digital images instead of other types of optimization. Tables 3.3 and 3.4 indicate the
feedback technique also performs very well in the case of translating and diverging

texture post cases.

3.5 Summary
[t 1s well-known that feedback 1s a powerful technique widely used in the field of
antomatic control field. It can make systems robust against noise and improve
performance drastically. In this chapter, we propose for the first timein the literature
on optical flow techniques a feedback approach to determining optical flow. The
numerous experiments in our laboratory demonstrate that it performs very well in
general. Usually better than the gradient-based and correlation-based approaches.

In the very complicated optical flow cases, specifically i the case of the Yosemite
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Figure 3.25 YOSEMITE.

Table 3.3 Summary of the TRANSLATING TREE 2D velocity results.

R
-

Techniques Average | Standard | Density
Error | Deviation
Horn and Schunck (original) 38.72° 27.67° 100%
Horn and Schunck (modified) 2.02° 2.27° 100%
Uras et al. (unthresholded) 0.62° 0.52¢ 100%
Anandan 4.54° 3.10° 100%
Singh (step 1, n=2, w=2) 1.64¢ 2.44° 100%
Singh (step 2, n=2, w=2) 1.25° 3.29° 100%
Correlation feedback (n=1, w=1) 1.07° 0.48° 100%
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Table 3.4 Summary of the DIVERGING TREE 2D velocity results.

Techniques Average | Standard | Density
Error | Deviation
Horn and Schunck (original) 12.02° 11.72° 100%
Horn and Schunck (modified) 2.55° 3.67° 100%
Uras et al. (unthresholded) 0.62° 0.52° 100%
Nagel 2.94° 3230 | 100%
Anandan (frames 19 and 21) 7.64° 4.96° 100%
Singh (step 1, n=2, w=2) 17.66° 14.25° 100%
Singh (step 2, n=2, w=2) 8.60° 5.60° 100%
Correlation feedback (n=1, w=1) | 5.12° 2.16° 100%

Table 3.5 Summary of the YOSEMITE 2D velocity results.

Techniques Average | Standard | Density
Error | Deviation
Horn and Schunck (original) 32.43° 30.28° 100%
Horn and Schunck (modified) 11.26° 16.41° 100%
Uras et al. (unthresholded) 10.44° 15.00° 100%
Nagel 11.71° 10.59° 100%
Anandan (frames 19 and 21) 15.84° 13.46° 100%
Singh (step 1, n=2, w=2) 18.24° 17.02° 100%
Singh (step 2, n=2, w=2) 13.16° 12.07° 100%
Correlation feedback (n=1, w=1) 7.93° 6.72° 100%
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image sequence, considered as a most challenging one in a recent comprehensive
study of optical flow techniques [40], it performs better than all other techniques.

A concrete implementation of our feedback approach is the correlation-feedback
algorithm. [t is an iterative procedure. In each iteration, the estimated optical flow
vectors (10 v} and their vicinity values (25 combinations in our algorithm) are
fed back to the observer stage. There they together with the first given digital image
are used to estimate, via a bilinear interpolation, certain portion (25 windows in our
implementation) of a virtual continuous image which is supposed to be coincident
with the second given digital nmage after a translation by the true optical flow. (It
is worth noting that there is no need to estimate the whole continuous image field n
the procedure. Only those values needed are estimated by using the bilinear interpo-
lation). In the correlation stage of the correlation-feedback approach, the difference
between the estimated portion of the continuous image and the corresponding portion
in the second given digital image is calculated in terms of sum-square-difference
(SSD). A weighted-least-square technique is then used to calculate (x(™,v"), the
output of the correlation stage at the new iteration. In the propagation stage, the
optical flow vectors of pixels at a neighborhood make contribution to the optical flow
vector of the central pixel via the use of a Gaussian mask.

Our correlation stage is quite different from that used in the correlation-based
approaches in the following four aspects. Firstly, the search window i our approach
is a “rubber” window in the sense that it has variable size depending on (™, v(").
In the correlation-based approaches, the search window has fixed size. Secondly, the
weighted-least-squares technique is used to calculate the output of the correlation
stage from 25 different weighted combination of (v v instead of from all possible
pixel positions in the fix-sized search window 11 the second digital image as m the
correlation-based approaches. Thirdly, a bilinear interpolation technique used in the

observation stage provides the correlation stage with a virtual continunous image field
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for a more accurate SSI computation. Fourthly, the refinement ohjective function
is based on the minimal difference between the estimated continuous image and the
second given digital image. Therefore, this correlation-feedback algorithm can reduce
error considerably.

Since the observation, correlation and propagation stages are used in each
iteration, in other words, since the special objective function (the best matching
between interpolated continuous image by using estimated optical flow and the given
second digital image) is adopted, not only effect of noise is reduced but also the
boundary information is conserved. Irom Figures 3.16 -3.18, it is evident that our
feedback approach not only make optical flow field smoother than the gradient-based
and correlation-based approaches do but also preserve flow discontinuity betier than
the other two techniques do.

Wlien the response distribution has single maximum which is assumed by the
true optical flow, the convergence of our algorithm to the true optical flow has been
proven. This condition is satisfied in the most practical cases. Specifically, consider
the ideal case where image intensity 1s a linear function of the image coordinates
and without noise. It 1s shown 1 Section 3.3.1 that, except the optical flow has
ouly mteger multiple of pixels as its components, the correlation-based approach will
casily have error much greater than 10%. On contrary, this chapter shows that the
feedback technique proposed can converge to the true optical flow in this case.

As discussed, the correlation-feedback algorithm is quite robust against the

chiotce of the mitialization. Bven arbitrary non-zero constant initiahization works.



CHAPTER 4

COMPUTING 3-D MOTION

Once optical flow fields are known, one can compute 3-D motion and structure. As
noted in Chapter 2, previous works mostly are based on motion of camera. However,
the motion of camera can be represented by six constants. Assuming that the six
constants are known, depth map can be computed from optical flow field. When
objects are allowed to move, depth map and 3-D motion are all variables with respect
to space coordinates, those approaches can not be used.

In this chapter, the Unified Optical Flow Field (UOFF) is discussed [41] - [43].
Based on the approach, the objects position (X (z,y), Y(z,y), Z(z,y)) and velocity
(X (2,9),Y(z,v), Z(x,y)) can be computed, where 2 and y are coordinates of image
plane. The approach does not require any condition such as objects shoulc.l be rigid,

motion or depth map should be known.

4.1 Discussion of Unified Optical Flow Field (UOFF)

According to UOFF, an ninage brightness function should be described as below :

g(x,y,t,5)

where x and y are coordinates on image plane, ¢ is time, s indicates the sensor’s 1.e.

camera position m 3-D world space, i.e., the coordinates of the sensor center and the

orientation of the optical axis of the sensor, that is, §is a 5 - D vector.

N

B,7) (4.1)

§=(%,y,
where z, 7 and 2 represent the coordinate of the optical center of the sensor in 3 -1

world space; f and v represent the orientation of the optical axis of the sensor in

3-D world space.
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Assume now a world point P in 3-D space that is projected onto the image
plane as a pixel with the coordinates zp and yp. Then, zp and yp are also dependent
on ¢ and & That is, the coordinates of the pixel can be denoted by zp = zp(t, §)

and yp = yp(t, §). Therefore, generally speaking, we have
g = g(xp(t,5),yp(t,5),1,5) (4.2)
Due to the assumption of the time-and-space-invariance of brightness, one can get
g(x(t,3),y(1,5),%,3) = g(a(i + AL T+ A8, y(t + AL, 5+ A3), 1 + AL, T+ ASF) (4.3)

The expansion of the right-hand side of the above equation in the Taylor series and

the use of Equation (4.3) lead to

g g dg (EU.. dg -~ 9g. . .
. i t —y — & € = -4
(Gatt 3,0 5100+ (G0 T, Tt (44)

ar 2 8y 5L az U"sé@

here w 2
where u = 57, V= 37, 95 85

We now discuss some special cases about the brightness time-and-space
invariant equation, i.e., Equation (4.4):
Case 1: If A§ =0, i.e., sensor 1s static in a fixed spatial position, in other words both
the coordinate of the optical center of sensor and its optical axis direction remain
unchanged, dividing both sides of the equation by A7 and evaluating the limit as
At — 0 degenerate Equation (4.4) into:

g dg dg
— = 4.5
I P TR (45)

It is the result derived by Horn and Schunck [9].
Case 2: If At = 0, its both sides are divided by AS and AF — 015 examined,
Equation (4.4) then reduces to:

()J -, 99+ 9y .
i 4.6
D i (')yu T o8 (4.6)
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When At = 0, i.e., at a specific time moment, the images generated with sensors
at different spatial positions can be viewed as a spatial sequence of images.
Equation(4.6) is then the equatiou for the spatial sequence of images. A simplified
version of this equation is discussed in the next section.

Case 3: If %{ is a constant, Equation (4.4) is the equation for a sequence of images
taken by a sensor experiencing a uniform motion.

Case 4: If 22 = f(§,t) and the function f(5,t) is given, Equation (4.4) can then be

utilized to treat the case when the sensor is experiencing a known movement.

4.2 Further Discussion of UOFF

In stereo imagery, two sensors are usually fixed in two positions in 3-D world space.
Hence, we can simplify discussion by considering two points in £t — & space, i.e., (f1, §1)
and (i, 8) and choosing a straight line in 1 — § space which passes through points |
(11, 1) and (¢3,82). Along this line, we use p as a parameter to indicate the distance
between another point in the line and the point (¢;,5;). Different p is therefore
corresponding to different point along the line in ¢ — §space. Along this line we then
have

g = g(z(p) y(r), p) (4.7)

Thus, Equation (4.3), 1.e., the expression for the brightness time-and-space-invariance

equation, becomes

g(x(p)y(p),p) = glz(p + Lp)ylp + Ap), p+ Ap) (4.8)

[t 1s noted that the variation of p implies the variation of both time and space along

the line. Similar derivation to that presented m Section 4.1 can lead to

Yoo + Gy + gp =0 (4.9)
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where

>
&
o~
2

: ap
, & % (4.11)
dp
s 9 2 9g s 9 (4.12)

gz = B Gy Jy Jp = 3p
Here, i and v are, respectively, the variation rates of the pixel coordinates, z and y,
with respect to the distance parameter p in t— 35 space. They can also he referred to as
pixel velocities with the following fact kept in mind, that is, p relates to both ¢ and &
Equation (4.9) is a governing equation which the optical flow quantities, i.e, the pixel
veloaities o and v have to obey. After assuming the straight line, passing through
points (£1,§ ) and (t2, 52) in t — § space, and introducing parameter p, representing
point along the line from point (4y, &), hence simplifying the derivation, we are now
going to discuss how to solve unified optical flow field quantities. Similarly to Section
4.1, the discussion will be conducted with respect to several cases.
Case 1: If As =0, 1.e., the sensor is static in a fixed spatial position. As analyzed in
Case 1 Section 4.1, the brightness “time”-invariance equation, i.e., Equation (4.5)

can he rewritten below
g dg dg

— = 13
dx + Z?:gv at (4.13)

In comparison of Equation (4.13) with Equation (4.9), it is noted that 2 and v become
u and v, respectively, while 3—; changes to %’f Obviously, with only one equation
available it s impossible to solve the two unknowns. Hence, some constraint must
be nmposed. Among several choices [15], the most popular one is the smoothness

coustraint which is first utilized by Horn and Schunck. Thus the next two equations

are t[(%l‘i\/(*.(l

gou+ gagyv = o} Vi u = .0, (1.14)

Yo Gyt + giv = algliv— Gl (4.15)
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where ay is a constant, g, and g, are defined in Equations (4.12), g¢ = $%. It is
known that g,, g, and ¢, can be estimated from the image sequence [9]. The pixel
velocities u and v can then be solved by using the iterative algorithm developed in
[9].

Case 2: In order to discuss the case when Al = 0 more specifically, see Figure 4.1.
[n Figure 4.1, an imaging setting is shown. There the optical centers of the left
and the right sensors are denoted by O and OF, respectively. The axis OZ is the
optical axis of the left sensor, while OfZR is that of the right sensor. These two
optical axes are coplanar. The O — XY Z and OF — XBYRZH are, respectively, the
Cartesian coordinate systems with axes OX and O%X” being on the same plane as
that of OZORZE and axes OY and OV perpendicular to the plane of OZORZE,
For simplicity it is further assumed that the left sensor is fixed, while the right
sensor is only allowed to be translated along the straight line OO and to be rotated
around OFY R axis. The distance between Q0T is denoted by I, while the z‘mgle
between OFZF and OZ is by 0. Because Al = 0, p is only a function of § at the
specific moment L. Clearly, p = VIZ + x202 where x is a characteristic length that is
determined according to the imaging setting parameters. We define s = v T4 X702
Equation (4.9) becomes

Gxu” + gyv° + gs =0 (4.16)
wliere g, and g, are defined in Bquations (4.12), and

Jg
R (4.17)

T s

w® and v° ave, respectively, the spatial variation rates of Az and Ay with respect to

, : AR AN - N
As e, u® =55 v =22 The Ax and Ay are defined as

as? T Js

Ax B pH b Ay 2 y -y (4.18)
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where the coordinates (z,y™) and (2%, y%) are representing the two pixels on the
right and the left images, respectively, such that they are corresponding to the same
world point 1n 3-D space.

Equation (4.16) is the equation for a spatial sequence of images which is
discussed in detail in [19] [20]. As pointed out in [19] [20], when the optical axes of
both the left and right sensors are coplanar as shown in Figure 4.1, and the scene 1s

far from the sensors that Z can be considered equal to Zf, the next equation holds

N — (4.19)
We then have
s gs .
y® = 2 4.20)
Gz (

Since g, and g, can be obtained from the given pair of stereo images, u® can therefore
be solved from the above equation.
Case 3: Assume imaging geometry is the same as discussed in the above case.
Consider a rectangular four-frame model that is shown in Figure 4.2. There images
(a), (b), (¢) and (d) are chosen from a stereo image sequence. Images (a) and (c) can
be viewed as two images from a monocular image sequence taken with a left sensor,
while images (b) and (d) can be thought as two images from a monocular image
sequence generated with a right sensor. Images (a) and (b) are taken at ¢; moment,
while images (¢) and (d) are at ¢; + A1 moment.

Recognizing that imaging geometry {rom images (b) to (d) belongs to Case 1,
we can apply Equations(4.14-4.15) to images (b) and (d), resulting in the following

R and o where the superscript R indicates that the quantities

two quantities: u
associated with are with respect to the right image sequence.

Similarly, applying Equations (4.14-4.15) to images (a) and (c), we obtain u”
and vf which are, respectively, the counterparts of u’®, v defined for the left image

S(‘(}ll(All(‘.(“.



(a) g (2%, y", 1) (b) g%(=f,yB 1)

(¢) g*(zbym b+ At) (d) g™ (a™ v, 1+ At)

Figure 4.2 Four frame model
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Recognizing that imaging geometry from images (a) to (b) is Case 2 and

applying Equations (4.19-4.20) to images (a) and (b), we get w* and v°.

Based on these six field quantities of the unified optical flow field, i.e., ult, ot

u?, vl v and v°, another set equations can be derived with which 3-D motion can

K

be recovered. A detailed discussion in this regard is contained in the next section.

4.3 A New Approach to Motion Analysis Using UOFF

In order to reconstruct 3-D motion field we need to determine the following six

quantities: X, Y, Z, X, Y, Z. From the preceding section, we already have ul vk,

u®, v* available for each pixel on image (a) in Figure 4.2, and u®, v available for

each pixel on image (b) in Figure 4.2. Now we shall discuss the relation between
these two sets of quantities.

To reconstruct 3-D motion field we can start from either image in the pair of
stereo images. For instance, we can start from a pixel in the left image, say the pixel

located on the north-west corner of the left image. So, besides the six known field

quantities, ul, vk, ult v u® and v°, we also have z%, yL available. On the other

hand, in order to use w(xf, y% 1) and v,y 1) in reconstruction of 3-D motion,

we have to know 2% and 3™ which correspond to z¥ and y%, respectively, i.e., both

image points (2%, %) and (2, 4") are related to the same world point in 3-D space.

In other words, eieht quantities: wl. of w v s v® 2F and yb are available while
O l 2 3 3 2 v ./

cight quantities: X, Y, Z, X, Y, Z, 2™ a nd y™ are required to be solved.

Now consider a pair of (u*,v") and a pair of (v, 0) on image planes such that

they are associated with the same world point in 3-I) space. That is, ul, v* are the

velocities of a pixel on the image (a); vf, v/ are the velocity of a pixel on image (b);

such that these two pixels are related to the same world point in 3-D space. Hence,
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there exists an inherent relation between them. This relation can be shown below.

! ! 1Z _
—uRR yf ) = o (oh )k, t)cos 8 + — cosd (4.21)
/ f 72

! I

TUR(-‘ER,?/RJ) = TUL(%‘L,!/L, t) (4.22)

See Appendix ALl for the derivation.

Equations (4.23-4.24) relating the spatial variation rates, v® and v°, to the
imaging setting parameters, {, 0 and f, the characteristic length, y, and 3-D space
coordinate, X, Y and Z, are derived in Appendix A.2. There the approximation,
l.e., equating derivative and average variation rate, has been made when Equation

(A.3) 1s established. The similar approximation is made in [9].

u I 2(1 —cos®) o .
RS (T S 202 4.23
7 (5 + = e+ (4.23)

As mentioned at the beginning of this section, the six quantities in the unified
optical flow field have been calculated at this point. Hence, u® is available. Through
the use of Equation (4.23) the coordinate along the depth, Z, can be found for the
world point corresponding to the north-west corner pixel in the left image. Via the
nse of the formulae of perspective projection, i.e., Equations (4.31) and (4.31) the
values of the other two coordinates, X and Y, of this world point in 3-D space can
he recovered.

Again the approximation, replacing derivative by average variation rate, is

made in deriving the following two equations.

.L'R' — :LI’
R L
. 1 — 1
v = o Y (4.26)

Ve Y202
1 ] o ey ) . . 3oL . . R
Fhese two equations become a bridge in determining the corvesponding o™ and

'."/H' from 2% and Z’/L~
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With =™ and g/“ determined, ?1“(;L‘R,yR,t) is Lthen available. Therefore, Z can
be solved from LEquation (4.21). Furthermore, the following two equations derived

m Appendix A3

X zZX
Lo -z22 1.27
u (Z ZZ)/ (4.27)
Y ZY
= (-2 4.28
v (Z ZZ)/ (4.28)

can then be used to solve for X and VY.

Up to this pot, the eight equations, i.e., Equations (4.30-4.31, 4.21, 4.23,
4.25-4.28), relating the eight known and the eight unknown quantities defined at the
beginuing of this section have been established. 1i is also seen that ZL“_Of the six
quantities, X, Y, Z, /\, )‘/, and Z, describing the 3-D motion of the world point
associated with the north-west corner in the left image bave been calculated. The
same computation procedure can be conducted with respect to avery pixel in the left

image in a certain order. The order via which the computation is carried out could

be row-by-row, columun-by-column, or diagonal-by-diagonal.

Thus we see that as long as the smoothness constraint is satisfied the proposed
techmque can vecover the whole 3-D motion field dirvectly, i.e., the motion of world
points in 3-D space that are projected onto image (a). It is obvious that in the
above-described 3-0) motion reconstruction the role played by image (&) and that by
image (b) are interchangeable, i.e, we also can begin the reconstruction from pixels
m image (b). It 1s also seen that although we start the developmient of the set of
cquations Tor motion analysis from the corresponding pairs, (v, v*) and (u¥, o),
there is no need for feature correspondence n the reconstruction of 3-1 motion field.

In summary, the set of equations used {ov veconstructing the six 3-0 motion

parameters is listed below.

flsingcosl
7= L , (4.29)
w12 4 x20% s 0+ 2f() — cos )




X = "’?Z (4.30)

Y = 3{;5 (4.31)

2 = w12 4 202 4 b (4.32)
yt =yt (4.33)

. R _ L oo g\ o2

g W Z‘;LC;O; 02z (4.34)
X = “LfZ + %)i (4.35)
v ’”;Z + ZZY (4.36)

It can be seen that w Equations (4.29-4.36) all quantities on the right-hand sides are
available because they are either the imaging setting parameters, the unified optical
flow field quantities, or the 3-D coordinates and their derivatives which have been

R and y™ on the left-hand sides of

solved by the preceding equations. Quantities =
Equations (4.32-4.33), respectively, are used to determine which value of uf(x, %, 1)
should be utilized in Equation (4.34) to calculate Z. All quantities on the left-hand
sides of Equations (4.29-4.31, 4.34-4.36), being the motion parameters: position and
velocity in 3-D space, can therefore be solved straightforward. The derivation of
UOIF is based on intensity constant equation , i.e., the gradient-based approach.
But, when «”, v* u v w® and v° are determined in other techniques, we still can

3

use UOTFT to recover the velocity and position of objects.

4.4 Nine-frame Model
In the last chapter, the correlation-feedback approach is developed. It is proved that
the approach is more efficient for computing optical flow field. Using the approach,
one needs three images to compute an optical flow field. The three images are taken

by three cameras that are shown in INigure 4.3.
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Figure 4.3 Camera Model

The angle between two camerais . The selection of § is very important. When
intensity variation is large, 0 should be relatively small. When intensity variation 1s
small, 0 should be larger. Otherwise, optical flow computation would be affected.
The reason has been discussed in Section 2.1.1. Usually, we select 8§ = 2.5°. As time
Increases, a stereo image sequence is obtained. Figure 4.4 shows that nine-frame

model when time increments from iy to 5.

M can be computed,

k)

M M )

From images [y, [y, and Iy, v®(2™)y y™)

and v*(

M

where 2M and y™ are coordinates of the image of middle camera. From images Io1,

Iy, and Ty, vk (@M y™M) and v ,y™M) can be obtained. Similarly, v (2%, y®) and

L( M
x
o (R y") can be obtained from images lgz, 12, and Jy;. Actually, the nine-frame

model only uses seven mages. Furthermore, one can compute the 3-D motion and

position from the six optical flow fields using Equations (4.29-4.36).

4.5 Experiment
The approach has been tested in many computer simulation experiments, including

a rotating sphere and cone, with fairly good results [49]. Furthermore, many real
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Table 4.1 3-D motion and position error

” Error Type J Errors ”

RMS Z.rror 3.92%
RMS X, o 4.09%
RMS Yerror 3.98%

Average Zeror ]4.6(7Mﬁ
Average Xeor | 3.17%
Average Yoo | 0.82%

images were taken and experimented. In this section, we can not report every
experiment, only one typical experiment is indicated.

Camera model is similar to the model shown in the last section. But, only
one camera is used. The camera rotates at 2.5° along clockwise and counter-
clockwise directions so that the three cameras model is simulated. The setting of
the experiment is depicted in Figure 4.5.

The camerais rotated with respect to a center. The distance between the center
and the camera s 1025mm. The focal length of the camera is 12.5mm. The box2

.5 move together in horizontal direction. The motion velocily

and box3 1 Figure 4
is S fframe. Other dimensions are shown in Figure 4.5, Images are taken with
CCD SONY camera and DATACUBE system, and stored in a SUN SPARC station.
The nine images are of 512 x 512 and are cut into 256 x 256. Via subsampling, the
images are Turther compressed to 64 x 64. The compression is the same as that n
last chapter. Three of the compressed images are shown in Figures 4.6, 4.7, and 4.8
that correspond Ly, 1oy, and 1y in Figure 4.4,

After thie tenth iteration of optical flow compntation usmg the correlation-
feedback algorithm, the six optical flow fields are used to compute 3-1 position and

motion. The errors of results are shown in Table 4.1,
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Figure 4.8 The right image

In Table 4.1,

e (29, 7) — Z(4, 7))
RMS Z:\/ =1 2= (200 7) — 2(49)) (4.37)

S S (27, )

where Z%(z,7) is true depth map.
RMS Xerrer and RMS Yo can be obtained similarly.

44 4
1 4

Average Zerror = — 30 5 (2(i,5) = 2°(3,5) (4.38)

=1 ;=1
where Z%(z,7) is true velocity map in Z direction.

AverageXeqor and AverageYe,,.., can be obtained similarly.

4.6 Conclusion
The results show that UOFE is {easible. Although the depth of objects is equal, the
RMS error of depth map is 3.92%. But, the average error of Z is 14.6%. This is

because that Z is approximately a function of the difference between v’ and u* as
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noted in equation (4.34). The difference of optical flow would cause larger errors.

The average error of Z will be reduced by further effort that will be discussed in next

two chapters.

o]

The UOFT approach has a few special features.

The approach allows objects to move and to change shape, 1.e., 1t does not have
any limitation to objects. Therefore, it can be used in more comprehensive

systems.

The approach can compute 3-D position at each pixel so that the surface of the

objects or structure of the objects can be known. From velocity of 3-D objects,

one can know more mformation such as collision-time.

Consider the special case when 0 = 0, i.e., the case of two parallel cameras

)
(see Figure 4.1). At this case, the spatial velocity wu - unit is essentially the
disparity, where unat is a constant and is a unit. The unit expresses Eﬁcw many
millimeters it is when pixel number is one. The unit depends on CCD camera
and sampling frequency. By using camera calibration, the image velocity (u)
is obtained by detecting the corresponding points that in the left and right
images have the same intensity and the depth D to a pomnt with the image
velocity u is measured. Thus

Jt

4.39
D *u ( )

unit =

where unit of optical flow velocity u is pixel, [ s the focal length, and [ is the

distance between two cameras (or the distance over which a camera moves).

Once the unit is obtained and the optical fow field w?(x,y) is computed, the
depth Z{x,y) to a point with image velocity w®(x,y) is then determined {rom
the static stereo equation: Z = —fI/(u® - unit). Obviously, this special case

of our approach has appeared in many literatures [4] [17] and, hence, is not
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new. As noted in Section 2.2.2, this depth map computation is based on only
translational motion instead of both rotation and translation. We can prove
that this depth map computation used in most of existing works has poor
robustness as compared with Equation (4.29). From Figure 4.1, one kuows
that Equation (4.29) is based on both translational and rotational motion of a

camera. In Equation (4.29), i.e.,

7 flsinBcosf (4.40)
B w12+ x202sin 0 + 2f(1 — cos )’ '
the /[? + x?0% = unzt using our experiment seiting. Its derivative is
dz Fl(unit)(sin 8)? cos 0 (4.41)
dus  (us(unit)sing 4+ 2f(1 — cos 6))? '
When
l .
7 = _._____f . (4.42)
us(unit)
1Z [
el —-——fﬁ—— (4.43)
dus  (unat)(us)?
The sensitivity of depth is (‘fuZ «, Where &, is a perturbation of w®. When

Equation (4.41) 1s divided by Equation (4.43), one has

[l(unit)(sind)* cos O i
(ws(unat)sin@ + 2f(1 — cos 0))2"" “unat(u®)
2/(1 —cos ),

(unit)u®sind’

7)

= cosf/(1 + (4.44)

Usually, we use 0 = 2.5°, f = 12.5mm and unit = 0.054mm/piazel. Assuming
w® = 1, 1t 1s obtained that A = 0.0074. It is evident that under the same
perturbation of optical flow, the error using Equation (4.40) is as 0.74% small
as that error using Equation (4.42).

[From Section 2.2.1, depth can be computed by following equation:

zo(u? + v2)1/2 .

- 4.45
Vi f ( )

Z:Z()U%—
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The equation has been discussed in Section 2.2.1. [t considers two motions,
translation and rotation. According to the imaging geometry shown in Figure

4.1 and the discussion in Section 2.2.1, one has v = 0, v = v’(unit), Vy =1,

and zg = ’?Cif’fgﬁ. Therefore,
lcos O u®(unat) cos 0
z = o —
( sin g 0+ Ssmo
[fcosd
Ssin 0 + us(unat) cos ¥ ( )
dz [f(unz 2
o f(u,mt)(co'sﬁ) ‘ (4.47)
dus® (fsin @ + us(unit) cos )2
When Equation (4.41) is divided by equation (4.47), one has
\ Sl(unit)(sin 8)? cos @ \/( Lf (unit)(cos 0)*
(ws(unat)sin@ + 2/(1 — cos0))2"" *(f sin 0 + u®(unst) cos 0)?
(sin 0)2(f sin 6 + u*(unit) cos 0)? (4.48
(cos 8)*(us(unit)sin 0 + 2f(1 — cos §))? +48)
When 6 = 2.5°, f = 12.5mm, unit = 0.054 and u® = 1,
A = 1.00. (4.49)

Apparently, the more motion make depth map computation morve robust. This
is why the depth map computation of UOFTE is more robust than most existing

works.

UOTT has so wide uses that further improvement will become important. In
next two chapters, we will discuss how to improve the estimation of 3-1) position and

maotion.



CHAPTER 5

DISCONTINUITY IMPROVEMENT

In the last chapter, UOFF is discussed. UOFF is totally different from existing
approaches. It includes six 3-D fields that are Z(z,y), X (=, ¥), Y(z,v), Z(x,y),
X(z,y), and Y(x,y). The six 3-D fields describe not only 3-I) motion but also
3-D structure information of the objects. The recovered objects can be rigid as
well as nonrigid. Since this reconstruction method has wide applications, further
improvement of its accuracy is very important. [t is well known that the accuracy
of motion estimation is significantly affected by the motion discontinuity. The 3-D
motion discontinuity mainly depends on the moving boundaries of optical flow fields.

As discussed in Chapter 3, the feedback technique popularly utilized in the
field of automatic control can be applied to determine optical flow, resulting in
the correlation-feedback algorithm. It performs better than the gradient-based and
correlation-based algorithms in terms of accuracy and conserving moving boundaries.
However, the propagation stage is also carried out there. Hence, one concludes that
all of the three algorithms will blur moving boundaries in optical flow field.

To further improve optical flow accuracy, it 1s necessary to address this issue.
In this chapter, we propose a Kalman filtering for improving accuracy in determining
optical flow along moving boundaries.

Firstly, a quantitative analysis on the error decreasing rate in determining
optical flow using the correlation-based technique, i.e., the deceasing rate of estimated
optical flow deviation from its true value is given. [t concludes that this error
decreasing rate is varied for different regions in an image plane: it is larger for the
regions where intensity varies more drastically, it is smaller for those where intensity

varies more smoothly. This indicates that the iterations needed in optical flow deter-
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mination should not be uniform for different image regions. That is, for the moving
boundaries, where intensity usually changes bigger, less iterations are needed than for
other regions. This is reasonable. In fact, the confidence measure [40] [44] is usually
high along moving boundaries since richer information exists there. Therefore, an
optical flow algorithm needs to have less iterations along moving boundaries than in
other areas so that the better estimations of optical flow along boundaries can be
propagated mto other areas nstead of being blurred by those in other areas.

Secondly, we propose a Kalman filter to realize the task of applying different
number of necessary iterations in determining optical flow to deblur boupdary and
enhance accuracy. Loosely speaking, the idea is whenever the deviation of flow
at a pixel is less than certain criterion, i.e., good accuracy has been achieved, the
Kalman filter will not further update optical flow at this pixel, thus conserving
accuracy along moving boundaries. Assuming that estimated optical flow field is
contaminated by a Gaussian white noise, we give appropriate considerations to the
system and measurement noise covariance matrices, @Q* and R*, respectively. In this
way, the Kalman filter is used to eliminate noise, raise accuracy and refine accuracy
along discontinuities.

Finally, an experiment is presented to demonstrate the efficiency of our Kalman
filter. Two objects are considered. One is stationary, while another is in translation.
Unified optical flow filed (UOF[) quantities are determined by using the proposed
technique. The 3-D position and speeds are then estimated by using UOFI® approach.
Both results obtained with and without the Kalman filter are given. A more than
10% improvement is achieved. It Is expected that the more moving boundaries in

the scene, the more effectively the scheme works.



5.1 A Quantitative Error Analysis

In Chapter 3, the feedback technique in determining optical flow 1s developed.
There applying feedback technique to the correlation-based approach to optical How
computation has resulted in a correlation-feedback algorithm. It has been shown
that the correlation-feedback algorithm performs better than the gradient-based
and correlation-based algorithms in general. It can estimate sub-pixel image vectors
to raise accuracy of estimated optical flow. It can conserve the discontinuities in
optical flow quite well. But, since the neighborhood propagation is carried out in
the algorithm, it is inevitable that the boundary information is somehow lost as
the number of iterations increases. Therefore it is evident that all of three types
of optical flow algorithms: the gradient-based, correlation-based, and correlation-
feedback algorithms blur the motion boundaries although the correlation-feedback
algorithm conserves the motion boundaries better than others. When such motion
discontinuities appear in most of optical flow field, the error will be serious.

In order to improve the accuracy of optical flow around motion discontinuities,
we should, first of all, mvestigate why boundary information is blurred. In this
section, we conduct a quantitative analysis of error in determiming optical How along
the moving bonndaries for, say, the correlation-feedback algorithm.

For the sake of simplicity, only 15 one dimensiounal case considered here.

Assume the first given digital image can be desceribed by
[i(eq) = e —u") (h.1)

where [ s a victual, continuous image field, u® is a true image velocity component

along x direction. The second given digital image can be characterized by
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According to Section 3.1.3, the error or the dissimilarity measure in the correlation

can be calculated as follows.

E(u) = /[12(1'2 + A) = Lz 4+ A+ u)Pw(A)dA

= /[](m +0) = Iz 4+ A= u + w)Pw(A)dA. (5.3)
where u is the estimated optical flow. The Taylor series expansion leads to
Iz —u® +u) = I(z)+ L(x)(u—u") + 0(z). (5.4)

where I represents the derivative of / with respect to x, 6(x) the second and higher

order terms. Ignoring 0(z) and assuming that (u® — u) is a spatial constant in the

vicinity of x, the error [2(u) can then be written as

E(u) = /{1(3,- SN = (4 A) = (u— ) (e + A)Pw(A)dA

where

(W2
(2 4
—

2= /[]x(:c + ) 2w(A)dA. (5.

Thus, accordiug to Section 3.1.3, the image vector can be expressed as following,

u 6~E(u)u
-E

3. e
—Z(u=u®)?,

= b c (5.6)
116—13(1L_~u(l)2 ’

u(k-{-l) —

where e P04 s the so-called response distribution and

w € {U((;:),”U,gl;),?l»(zk),ug;),'llgk)}’ ( .

(4
-3
S’

. . . . k k k IS K k e s 4
with & Dbeing an iteration number, ué),ug ),u.(2 ),ug), and ug) being the five

independent random variables oheying the same Gaussian distribution, 1.e., N(u*, 6, 1)-

Here, deviation of w*) is 8, .,

y nl A 1y 2
S = B{ —u))
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S e—-[ (u( Yy )? (L) .
= E{(Lum T —u®)?}
5 e BT
—2(ulk) ey : ay)?
p(Bun Bl () — ))z} (5.8)

() e~ TRl —ue)2y2
T -
According to the mean-value theorem [48], if f(z) and g(2) are continuous on [a,b],

and g(z) # 0 on [a, b], there exists a value ¢ of in (a, b) such that

b b
[ 1@)g@)ds = () [ glz)ds (5.9)
Therefore, one has
o oW owe2 e (1) a2
_E{(Zume (™ —u))?} (5.10)

61; FES T (Zc‘ e-‘fg(c“—u“)z)‘l >

where ¢; is a mean-value that uf assumes, 7 = 0,1,2,3, 4.

Since uék),ugl;),ugk),ugk),and ugk) are independent of each other, and the

N —J2 (k)__ ay2 A . PR
covariances between e~z v (yk — )2 are geros, where 1 = 0,1,2,3,4. (A

detailed derivation of this is shown in Appendix B), Equation (5.10) can be written
as
2 . Zu(k) E{@‘Qz(u(k)‘”ay(u(k) —_ ua)‘z}
wk+1 T (ZC e’*]-_%(c{—‘u“)g)'l .

.. Ly (k) (k) (k k
Since u((», ),ug ),ug ),ug ),a.nd ug )

have the same Gaussian distribution whose mean 1s

11

u® and variance is 87

Z E{G——'Z}?j(u(k)—u“y(u(k) - u(t)'Z}
5 oo » _("(1)_”(1)2
B o DI ] k) __, ay2 52 .
= — (u(/) . u(t)le 212 (u w?) e 260 (lu(k)
611,1; 27 J—oo

o —(ulB) g2
i ‘
41246 T
uk p 4124677 :
= —u”)ze T

u;\/_\/——

‘511 NAY

(.)

61!-J~‘( n A + 4] )

[N



Hence,
53 S 712 ey 25 — (5.13)
’ e, TR S (877 + 4123
Assuming
1 =
I =¢ 5.14
e-T(ci—ua)z — © ( )

Cy

where, obviously, ce(, 00), and one has

52 _ 5S¢
R W CS R

[P

= _O?éu’k ; (5.15)
(41367, +1)2
or,

2 Sc

whtl : (5.16)

2 - 79 €2 3

61"}: (415611,1; + ])2

Equation (5.16) indicates that the larger the /2 the faster the deviation decreases as
iteration number k increases. Furthermore, as the iteration number increases, even

for the case where the I? is large, the decreasing rate of the deviation gradually slows

down. In Figure 5.1, a curve for the convergence rate, when [, = 40,

On the other hand, when I? is small, much more iterations are needed to make
the deviation less than the value expected. Figure 5.1 also shows the convergence
rate when [, = 1.

We therefore conclude that the deviation decreasing rate or the convergence
speed of the optical flow algorithm is non-homogeneous with respect to different
pixels. When the variation of intensity in an image region is greater, the convergence
i the region s faster. [t 1s known that most of motion boundaries are of great
imtensity variation. Since the propagation step is to be carried out in the iteration
procedure, as we know, the error increases along moving boundaries as iteration
mereases. In other words, there are two conflicting actions on the boundaries. That

is, the conservation step tries to reduce the error, while the smoothness process

miereases the ervor after a few iterations. When the error reducing rate is less than
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Table 5.1 Kalman filter

Models System model Up = @1 Upy + 5. e ~ N(0, Q)
Measurement model Dy = HU, + & & ~ N(0, Ry)
Prior model E[Uy] = Up. cov|lUp] = P,
(other assumption) Entl]=0
Prediction | State estimate extrapolation U =&, UL,
phase State covariance extrapolation | Py = &1 P @1, + Qry
Update | State estimate update Ut = U7 + Ki(Dy — HUD)
phase State covariance update PP = (I — Ky Hy)Po
Kalman gain matrix Ky = P, HL(H.PTHF + R.)™!

the error increasing rate, the iteration procedure should be terminated. Therefore,
the iteration number should be different for the regions that are of different intensity

variations. A Kalman filter is proposed next to implement this task.

5.2 Kalman Filter

5.2.1 Kalman Filtering

The Kalman filter is best by almost any reasonable criterion in the Gaussian case
[51]. If we consider the system that estimates the optical flow field is contaminated by
the Gaussian white noise, we can use Kalman filter to eliminate noise, ralse accuracy
and refine discontinuity.

Kalman filtering is based on a linear measurement model and is operated in
two phases: prediction phase and update phase, as shown in Table 5.1.

Irom the update phase,l we can see that when the current measurement error
| Ril| increases, the gain K}, decreases. Since U} = U7 + Ki(Dy — HUD), UD is
considered to be the dominant of U;f. On the other hand, when || Bx|| decreases, K}
increases. The effect of Dy — H Uy is weighted more heavily. Therefore, the Kalman

filtering optimally make the use of previous knowledge and current information.
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k

Figure 5.2 [ramework

Here, we use this feature to raise accuracy and refine discontinuities of optical flow

field.

5.2.2 Proposed IFramework

Fignure 5.2 shows a proposed {ramework. Figure 5.3 shows image sequence arrangement.
Though here Kalman filtering is used to raise accuracy of the optical flow field,

our goal 18 to improve the three dimensional motion and position fields. Therelore,

there is a block that performs UOFT 3-D motion computation in the Figure 5.2. Four
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Figure 5.3 Stereo image sequence arrangement
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UOFEF optical flow fields w(x,y), uL(Ax,g/), uR(;I:,x/), and u"(;z:,y) are considered as
state variables because ouly these four variable fields are used to compute the three
dimensional position and speed fields according to Equation (4.29-4.36).

In the linear measurement model of the Kalman filter,

Up = OUr 411, 9 ~ N0,Q})
E{mien™ =0 (5.17)

where Up(a,y) = (wi(,y) wb(a, y) ult(e,y) vi(z,y))7, ¢ is chosen to be an identity
maltix because the state vartables at current moment should be equal to the state
variables at the last moment, and /15 also an identity matrix since the measurements
equal the state variables in the Kalman filter.

The initial state is

up(,y)
Le.. .
Ty = | to(EY) c 18
W= Gy (5.18)
v (,y)

L R

where w3, uh, ulf, and vl are obtained from the correlation-feedback stage at the

AN
first iteration.

P = 1.1 stands for the identity matrix.

Since [ and @ are wdentity matrices, DY = Uy + np + £i. Theoretically, u}
1s nol necessary since & already inclades its effact. But, we still let 9y exist because
Q7 can be used to adjust system dynamic and steady state bhehaviors. The more
parameters, the more Qexible system adjustment. Thus, the selection of 2 will have

maore tlexibility.

I onr experiment, the covartance matrix @} for 5 1s chosen as

(e, y)
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all  (i.7))2
ZZ ( 1!;—.;( 'J)) O O O
(@2 (L))
0 T __Oir . 0
0 O ZZ (u&k_;(z,])) 0
(adf_ (1.0))?

0 0 0 DI

(5.19)
wherez € (x — 1,2 +1),7 € (y— 1L,y + 1), and
"ng—l(‘l:ay) oy (2, y)
~ 027 (e, y) k(2. y) ,
UF (z,y)=| Tok=1\5 — | Ul 5.20)
V= @) | T ) (
a4 (z,y) i (2, )

According to the quantitative analysis conducted in Section 5.1, especially Equation

(5.16), R} (z,y) is defined as following:

Rz, y)*
P11 (z,y) 0 0 0
B 0 722 (2, y) 0 0
= 0 0 335 (x, ) 0
0 0 0 7’44'1;(55’ y)
T 0 0 0
(4711362, +1)2
! S0k g2
0 — el 0 0
~ (1711382, +1)%
(4712362, _ | +1)2
. 0 0 __si\:ﬁj_:_l__T

(471282, +1)2

(5.21)

where 11 and [12 are two images shown in Figure 5.3, 8,51, &1 4-1, Orp-1, and

Sui—1 are the standard deviations of wi_,, ul ., uft | and vl | respectively.

. [N : 2 _ N

IH"':F STUN e+ y+i)— I,y +0)) + (T, y +3) = Tz — 1,y +1))?,
Y =1

(5.22)

M2, = (— Z (F2(e 4+ Ly +0) = 1120,y + )2+ (1120, y +0) — T12(x — 1,y +4))?,
V=21

(5.23)



and
] . ,
.hl,,:}«?(/ll(m—}-i,y Py =1+ 2,y))2 + (I {x 42, )——/1[(:11+7.,y~1)).
| 6.27,
(5.24)
In our experiments, el e and ¢ are set to be equal to 5.

In the prediction phase of the Kalman filter,

Ui (x,y) = (7ﬁ_1(:v,y) (5.25)

Po(zy) = Pli(ey) + Qs (.y) (5.26)

In the update phase,

O (e,y) = U7 (xy)+ Kl y)(Dilz,y) — U7 (2,9)), (5.27)

Ke(oy) = PrienlPr(e,y) + B 6oy, (5.28)

Pi(ey) = (1= Klz,v)) Pl (2,y). (5.29)
Sinee RY, Q7 and are diagonal matrices, Ky, P and P are also diagonal:

When the standard deviation of u]
k(s y) > 15,

where 75 is a predefined threshold of &, (@, y), the iteration procedure continnes. If
Ss(z,y) < Ty, the iteration procedure should terminate at the pixel, otherwise the
smoothness operation will blur the image vector at the pixel. Similarly, 73, T}, and
T, ave delined as the thresholds for 84, 6, 4, and 8, ., respectively.

Hence, whenever a predeflined threshold has been reached, it means at this
eration, 'fz;f 15 a best estimate. At the pixel, the iteration should terminate. In fact,
Kalman filter has the alubty to antomatically terminate the iteration as long as that
ree(e,y) = oo s assumed when & (o, y) < 2 From Equation (5.28), it is known
that kizggy = 0. Then, that @l (2, y) = @l (e, y) is obtained from Equation (5.27).
Therelore, the teration no long continnes at the pixel (i, ). However, iteration still

conbinmes at the other pixels whose variances do not reach the minimum.
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Therefore, finally

Ri(z,y)
(e, y) 0 0 0
0 122 (2, y) 0 0 .
= ’ 5.30
0 0 335 (2, 9) 0 (5-30)
0 0 0 rdd,(x,y)
where
Sonlayy) it 60> T, ;
il y) = ' : Sk s 5.31
rlli(z,y) { 0 otherwise (5:31)
- 511;(:1: ‘g) if 51/; > T[ .
22w = A T 5.32
224 (2, y) { oo otherwise (5.32)
N 57. ;;(.’L‘,y) if 6rk > TT PR
a3l = ’ ' 5.33
33 (2, y) { oo otherwise (5.33)
and
burlx,y) i épyp > T .
rddi(v, y) { oo otherwise (5.34)

5.3 An Experiment
The experiment presented here is intended to examine the effectiveness of the actual
boundary conservation achieved by our proposed Kalman filter. It compares the
performances of the algorithm using the Kalman filter and without using the Kalman
filter.

In the experiment, the camera setting, images obtained, 1.e., Figures 4.5-4.8,
and hmage compression are exactly the same as the experiment presented 1 the last
chapter.

In order to compare the experiment results with true three dimensional
parameters, Equations (4.29-4.36) are applied. Thus, the optical flow fields that
are computed with Kalman filter and without Kalman filter are used to calculate
three dimensional depth and velocity fields. Then the results are compared with

cach other. When we say “without Ralman filter”, it means that outputs of the



Table 5.2 Result comparison

” Error Type

| No Kalman Filter i With Kalman Fi]ter:u

RMS Z.r, 3.02% 3.56%
RMS X, on 4.09% 3.50%
RMS Yror 3.98% 3.58%
Average Zerror 14.6% 15.15%
Average Xgpror 3.17% 2.95%
Average Yo or 0.82% 0.87%
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correlation-feedback approach are used directly to compute three dimensional infor-
mation using Equations (4.29-4.36). Table 5.2 shows the results.

In Table 5.2, the RM S Z.ror 1s defined as

Za. 7 ." 2 3\2
RMS Zyror = _YE (.9) - 2e7)) (5.35)
\/ ?:1 zf;l(za(z,m?

where Z%(z,7) is true depth map. It is noted that only central portion of 44 x 44

within the images of 64 x 64 are considered in the calculation. RMS X, and
RMS Y, can be obtained similarly.
44 44

Average Leproy = ZZI Z(i,7) I (5.36)

i=1j=1
where Z°(7, 7) is true velocity map in Z direction. The 44 x 44 has the same meaning
as mentioned above. Average X,ror and Average )T"m.,»o,. can be obtained similarly.

From Table 5.2, it is evident that precision of Z(z,y), X(2,v), Y (z,y), and
X(Jr,y} are 1mproved, but that of Z(Q',y) and Y(a:,y) have not improved (instead,
the error even increased a little bit). The improvements of Z(x,y), X(x,y), and
Y (2, y) ave larger than that of X (a,y).

From equations{4.29 -4.36), Z is a function of u?; X is a function of u® ; X and
Y are hinear functions of Z. Therefore, the errors of 7, X, and Y are determined
L

by that of u*. The error of X relied on u*. As we know, u” is an image velocity
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field that 1s caused by the motion of the objects instead of camera. However, from
Fignres 4.5-4.8, 1t 1s known that the motion of the objects is only the motion of the
Box2 and Box3 in the case. The spatial optical flow along a direction, v, is caused
by the motion of the camera with respect to a static scene. In the experiment, the
motion of the camera causes the motion of the images of the Box1, Box2, and Box3.
Therefore, the v® flow field has more moving boundaries than u? field does. Hence,
the u’ field take more advautage of the proposed moving boundary couservation
algorithm. This explains why the improvement on the accuracy of the recovery of
Z, X and ¥ is larger than that on X. )

It is noted that the true values of Z(z,y) and Y(z,y) are zeros with respect to
most of values of (z,y). There are very few discontinuities in the fields. Therefore,
the proposed boundary conservation technique does not bring out advantages as the
results in Table 5.2 show.

In fact, the effectiveness of boundary conservation can be controlled by the
threshold values: T, T T

, and TV, According to our above discussion 1 this

experiment, we choose these threshold values as follows.

T = 1.567°, (5.37)
T = 4.637° (5.38)
77 = 4.637", (5.39)
o= 19578 (5.40)

Actnally, the trade-ofl hetween boundary conservation and interior smoothness 1s not
casy. If there is not any prior knowledge, the selection ol threshold will be difficult.

[n order to show the eflectiveness of the discontinuity conservation, Figure 5.4
ave compared with Figure 5.5. Figure 5.4 shows depth map Z(x,y) that is obtained

with Kalman filter. Figure 5.5 is also depth map but obtained without the Kalman

filter.
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Clearly, the depth map with the Kalman filter conserve the discontinuities in

this experiment much better than that without the Kalman filter.

5.4 Conclusion

As pointed out in [46], most of the optical low computation algorithms can be divided
into two steps: conservation step and neighborhood propagation step. The neigh-
borhood propagation operation or smoothness operation is inevitable because of the
presence of various noises and aperture problem. Most of the existing neighborhood
propagation operations are the relaxation algorithms based on some kinds of optimal
functions. However, the operations mevitably blur the boundary information. It 1s
well known [40] that the confidence measure is usually high along moving boundaries
since richer information exists there. In this chapter, our analysis indicates that the
optical flow algorithm needs to have less iterations along moving boundaries than in
other areas so that the better estimations of optical flow along houndaries (:a.;a be
propagated into other areas instead of being blurred by those in.other areas.

In order to make the iteration procedure stop at a proper time, we define the
elements in the main diagonal of the covariance matrix of the measurement noise,

R e the variance of measurement noises as

5,‘)1;(:E,y) if 61‘,;{ > T;

. 5.41
o0 otherwise (5.41)

roag(x,y) =
where index 7 means the ith measurement noise, 75 the predefined threshold value for
the 2th measurement noise. When the error (standard deviation &;(x,y)) 18 small
enough, riig(a. y) = 0o. According to Equations (5.27, 5.28), the Kalman filter can
antomatically terminate the iteration in the pixel (z,y) so that boundary mformation
is protected.
In this method, the derivation of the error decreasing rate 1s very important.
Different optical flow computation algorithms have different ervor decreasing rates

becanse their refinement procedures have different ellects. For instance, when the
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Horn and Shunch’s algorithm [9] is applied to the same images as shown in Figure
4.6-4.8, the curve of RMSY,,,.. versus iteration number % is shown at Figure 5.6.

With the usage of the proposed Kalman filter and the following error decreasing rate,

63,/\‘-{41 - } (r 4'))
b L1(41282  + 1) )

results shown in Figure 5.6 indicate that the algorithm can improve boundary infor-
madtion that Horn and Shunch’s algorithm can not extract well.

Existing computer vision algorithms using Kalman filter are all based on an
mcremental {ashion. In those algorithms [17] [45], an image sequence is considered.
In every iteration, different images are used. In this chapter, the Kalman filter is
not used 1 the mcremental fashion, i.e., the algorithm works on the same group
of images with different iteration. In other words, information given by the a fixed
image group is sufficiently used. On the other hand, image interpolation is not needed
in our Kalman filter since the fixed image group 1s repeatedly used.

For implementation of Kalman filtering, the knowledge about noise models
is important. However, it is impossible to exactly know the system noise 5} and
measurement noise £ in optical flow computation. In this chapter, some consid-
eration has been given to these noises. We assume that £ = N(0, R}), R{ satisfies
Equation (5.30). Other effect of noise is covered by 5} that is gy = N(0,Q}). Q) 1s
defined in Equation (5.19). The R} comes {from an analysis about the error decreasing
rate.

As we know, Z(x,y) and Y{z,y) have not been improved. Owr purpose in this
chapter 1s to obtain a good method that can conserve discontimity. Since Z and Y
lave very few discontinuity, improvement of them is not purpose ol the chapter. In

the next chapter, improvement of all 3-I) parameter fields will be considered.
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CHAPTER 6

MOVING OBJECTS ESTIMATION USING KALMAN FILTER

In dealing with stereo imagery, the current techniques [23] [36] [37] [52] [53] classified
as the multiple optical flow field approach [15] are, first, to find the optical flow field
for each view and, then, to recover the motion and structure of the scene via the use
of the correspondence hetween points in the pair of stereo images. Therefore, 1t is
a combination of the optical flow approach and the point correspondence-approach.
However, the feature extraction and correspondence are known difficult and only
partial solutions suitable for simplistic situation have been developed [15]. A new
theoretical framework: unified temporal-spatial optical flow field (UOFF) and its
usage in motion analysis from stereo image sequences have been proposed n Chz}pter
4. The new concept of imaging space has been developed to include both temporal
and spatial sequences of images. The optical flow determined for temporal sequences
of images, say, by Horn and Schunck’s algorithm [9], is extended to spatial sequences
of images resulting in UOFF. Based on a four-frame rectangular model and the
associated six UOFF field quantities, a set of equations is derived {rom which both
position and velocity for each pixel can be determined. It does not require feature
extraction and correspondence establishment.  Using both temporal and spatial
sequences ol Jmages, its capability of recovering motion exceeds significantly that
of the existing motion stereo technique [10] [17] [18] [54] [55] and direct method [4]
(6] [7] [8] [56] which can only recover the relative motion between a moving camera
and a stationary environment. It can analyze multiple independently moving objects
without the necessity of partition in the optical flow field as suggested in [57]. Besides

depth map, it can estimate motion fields as well.
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Obviously, UOFT approach to motion analysis faces all the problems faced by
optical flow approach. One of the problems is the presence of various noises. [n
order to improve the results of motion analysis using UOFF approach, a correlation-
feedback algorithm for determining optical flow [58] and a Kalman filter for further
improving the accuracy in optical flow determination along moving boundaries, which
will be referved to as the first Kalman filter in this chapter, have been developed in
Chapter 3 and Chapter 5. To continue to improve the accuracy in motion analysis,
stereo lmage sequences (sequences of the four-frame model) should be used instead
of a single four frame model. It is noted that, to make use of previous knowledge
and current states, Kalman filters have been utilized as an on-line estimator of depth
map [17] and optical flow field [45], respectively, that are refined over time. The
Kalman filters are robust with respect to both system and sensor noise.

In this chapter, a Kalman filter-based algorithm for 3-D estimation using UOFF
has been proposed. When the Kalman filter is used, the object motion model needs
to be known. However, in reality it is almost impossible to know object motion model
exactly i advance. This modeling problem is discussed in this chapter. Significantly
more consideration has been given to determine the covariance matrices, @F and RE,
for system noise and sensor noise, respectively than the previous work, say, reported
in [17] and [45].

Most ol previous works did not consider how to handle the so-called newly
visible Tmage aveas, i.e., the disocclnsion issue [17]. In fact, when multiple object
movement is considered, the disocclusion is likely to occur. When the Kalman filter
is nsed to fuse previous knowledge and current states, the disocelusion must be dealt
with carefully since the previous knowledge may not reliable when disocclusion takes
place. This is handled in our algorithim by using a threshold method. That is,
whenever one of the components of state vector has changed more than 30% from its

predicted value at the immediately previous iteration, we consider thatl disocclusion
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has taken place. (Obviously, oeclusion would not satisly this threshold and, hence,
would be treated differently from disocclusion). We then set the covariance matrix of
measurement noise, Ry, equal to zero. In other words, the estimated values are only
related to the current measurements. This is reasonable since the previous knowledge
1s not reliable when disocclusion takes place.

Two experiments are presented to demonstrate the effectiveness of our
algorithm.  In both experiments, the Kalman filter is used. Together with the
correlation-feedback technique in determining optical flow, good results have been

achieved.

6.1 Modeling
A framework of Kalman filter is shown in Table 5.1 which consists of a system model,
a measurement model, and prior models and is operated alternatively in a prediction
phase and update phase to obtain an estimate that is unbiased and has a minimum
Mean-$quare error.

A block diagram of the proposed Kalman filter is shown in Figure 6.1. The
subscript & stands for the kth iteration. There Dy is a state vector at the kth
iteration: (Z;;(.’L‘,flj),Z/;((Il,y),X/;(;I:,:I/),')./;;(.‘E,y))T, i.e., a vector having depth Z,
speeds along Z, X, Y directions as its four components. [} 1s optical flow vector
estimated at the Ath iteration by using the correlation-feedback algorithm and the
st Kalman filter. O is a measurement vector formed by the four components:
depth and speeds i 3-1D world space. ® is a transition matrix. /i 1s a Kalman gain
matrix. The measurement matrix # is here taken as an 1dentity matvix [ sice the

state vector and the measnrement vector have the same fonr components.
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Figure 6.1 Framework.

When an object moves with a coustant velocity, the system model can be

represented as following:

[)l:(ma U)

W l jelre

$ =

( Zy—a (@, y) + Zym1 (2, )
Zy-a (e, y)
/‘{k—l(-’”»'!/)
i (2,y)

([)([)k_g (:’;wg/))’

(G.1)

1 1 0 0

v 1 0 0 .
-

00 1 0 (6.2)

000 1

Apparently, such a & means that the acceleration of any 3-1) point s zeva.
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Taking a close look at the problem under consideration, one will find that the
above equation is not absolutely correct for digital images. In digital images, (&, y) is
apixel. Di(e,y) is computed for the pixel {2, ) of the image at moment k. Dy_y (v, y)
1s computed for the pixel (z,y) of the image at moment k— 1. However, when the 3-D
object(s) 1s moving, the pixel (@, y) of the digital images at different moments may
be perspectively projected by different 3-D points. In order lo continuonsly Lrack a

3-D powt, interpolation is needed. Therefore, Equation (6.1) should be rewnitten as

following:
Di(x,y) = d(anterpolation(Di_y(x,v)))
= (I)(DL‘“}(I"?/))
= ¢(Dia(z,y) + vilz,9))
= D (2, y) + 07 Cey) (6.3)
where Dy (x,y) = interpolation(Di_q(z,y)), Di—y is the certainty part of

Di—i(z, ), @n(z,y) is the uncertainty part of Dy_q(x,y), and 5, y) is a product
of & and @z, y). 72(z,y) is mainly caused by the interpolation. We assume that
P, y) = N(0,QP(x,y)). The more detailed discussion about @nterpolatzon(),
ne(e,y) and QP (i, y) will be made 1 Section 6.4.

Since Xi(2,y) and Yi(z,y) ave linearly dependent of Z,(x,y) according to the
well-known perspective transform, they are not chosen as state variables. Therefore,

the system model, measurement model and prior models are represented as following:

Di(ny) = (b[-)k_,(,z:,y)+'/]£)(:L',y), 0P (e y) = N, QF (e, ) (6.4)
Oulesy) = Mo y) + €2, y), € (e y) ~ N(O, RY (2, 0)) (6.5)
He = 1, E{E ) 0 (ea)} = 0. (6.6)

On(t,y) is measured by using cameras, A/ converter, the correlition-feedback

algorithim for optical flow estimation, the hrst Nalman hilter, and a set of formulae
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for determimng 3-D motion using UOFE in Chapter 4. ff’(:y,y) 15 the measurement
noise that may be produced in the above mentioned measurement process.
Deriving the system model is important. If object motion is known, the
transition matrix @ should be modified and specified according to the known motion.
[l the motion is unknown, Equation (6.2) may produce error. In Section 6.6, we will

discuss the problem in more detail.

6.2 Measurement Noise Covariance Matrix RY (I)
System model has been set up, il the measurement and system noise covariance
matrices R and QP are determined, Kalman filter can then be utilized. In this
section, the determination of RY is discussed. As mentioned in the last section,
the measurement noise F(x,y) is caused by cameras, A/D converter, optical flow
determination and 3-D motion estimation. £P(x,y) is assumed to be a Gaussian

white noise. Therefore, RY can be computed from measurement noises of u®, u”,

L R

ok, denoted by €% in Chapter 5. It is noted that the u®, u?, v’ and v*

W' and 1
are the UOTE quantities, which are the state variables of the first Kalman filter.
In the following discussion, a superscript u is sometimes used to denote quantities
defined and used {or the first Kalman filter in Chapter 5. Hence, as defined in the
last chapter, D", () and € = N(0, B*) are, respectively, a measurement vector field,
a stale varable vector field, and the measurement noise in the first Kahmnan filter.
[0 1s also noted that here we do not consider the part of measurement noise cansed
by applying the set of equations (Equations (4.29-4.36)) in estimating 3-1 motion
nsing the UOFE approach, i.e., Equations (4.29-4.36).

From Equation (5.17), one has
U u
DY =1 + £,

Du - (/ — 5“,



and
dy —u’
dy — ul
e —uf |
dy — vk

[&
&

u
&
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(6.7)

According to Kalman filter theory, the estimates of D* and U in the first

Kalman filter have the following relationship:

(z:}l‘ .&5
dy b -
Loy _ | 6.8
dy o*
From Equations (6.5) and (6.6) of the last section, it is known that
Orlz,y) = Di(z,y) + (=, ). (6.9)

ol(x,y) Zi(e,y) v
o2i(x,y) | Z_k(-'b‘,!/) n 7
o3c(eyy) || Xi(w,y) 7
o4y (i, y) Yi(,y) !

From Equations (4.29-4.36) in the discussion of UOFI approach, refer to
Chapter 4, it is easy to see that ol(x,y), 02(x,y), 03(z,y), and od(z,y) are the
functions of dy, dy, dy, and dj.

We can assume Dp(xz,y) = Oy |D‘;=U;_- and use the Taylor series expansion to

obtam
d{o]
ol = 7 + ‘(2%7;))‘ {,[r;:us ((11{ — 'U,S) -+ ()2, (610)
"1
- I (Z(OZ) u s
0?2 = 7+ M(l(d“) lap = (df — ”)
1
d(02) ) i
i~ [T ll; —u”
k d(dy) IJZ-“L (s =)
d{o2)
- ‘ oy, R l“ — i
" ([((P;) |n',_.‘_u[‘ ((3 t )



and

o3

o4

d(03) |

d(dy) =

d(o4)
d(dy)

———) wyl (dY
) I(i2 =u ( lz
)

Moy &
l(il_u

— uL)

(dy =

US)
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(6.13)

where 0z, 05, 0y, and 0y represent the second order and above terms. They can be

ignored. One can have

ol — 2
02— 7
03 — X
04 =Y

Thadt is,

d(dy)

I(l'f:'u*'
|(l‘l‘=u~‘
ll’[;‘zu-‘

w £
l =S
dl 1

O — Dy = Gyt

0 0
{{02 d{o2
ié‘llz)) i(l% =ul d((rié‘} ld&‘-—u”
d{03) d(03)
a(dT) ld‘ =ut (e i ld:‘; =uft
d{o4) d{o4) |
d(dy) Idé‘ =uk ddy) di=uht

U
k .

d{o4

a(dy)

Comparineg Equation (6.9) with Equation {6.15), one has
I g =g N

Here, {ﬁ) =

D g
6/; =G l&;.l

N(0, RP) and £“ = N(0, R*), therefore

0
0
0

' o
dyi=v

L

RP = covar{GrEL} = ('7‘,;(,:0'00,7'{&.‘}G’Z‘ = (7, ]{li(v'Z‘A

dy —u’
dy — wk
dy — uwht

dy —u?

(6.14)

(6.16)

(6.17)
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where K% 1s the covariance matrix for the measurement noise in optical flow determi-
nation used in the first Kalman filter. Thus, RY can obtained. But, since th newly
visible area exposure problem needs to be handled, this matrix must be modified

accordingly. A discussion in this regard is conducted next.

6.3 Measurement Noise Covariance Matrix RP (II): Newly Visible
Image Areas

As pointed out in Section 6.1, when 3-D objects move, newly visible areas become
exposed on 1mages. Thus, detecting and properly handling the newly visible area,
1.e., disocclusion, is important. These two questions will be addressed in th-is section.

Obviously, all previous knowledge becomes unreliable in these newly visible
areas. Only current measurement is reliable. This situation amounts to that the
Kalmau filter-based system works at initial conditions in these newly visible areas.
This can be justified as follows.

According to Kalman filter theory, when the measurement noise covariance

matrix is equal to zero, i.e., RY = 0, the Kalman gain matrix P will be
KPP = PrHI(H.PTHT + RPY

= PTHT(H.P;HD™!

= H'H.PTHI(H.PTHD)™

= ]{‘?1, (6.1&)
and the updated state covariance matrix PF will be

Pr=(~KPH)PT =0, (6.19)
and the updated state variable vector will be

DF = Dp+ KP(o7 — H.Dy)

I

Dy + HIY(O7 = HL DY)

= H'O. (6.20)
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Figure 6.2 Disocclusion.

The above result means that estimated state variable vector are associated only
with the current measurement vector and the estimated values are unbiased. Or,
equivalently, in the newly exposed areas, the Kalman filter amounts to work on
the current information only, as if, in this sense, work at initial state. Its initial
state covariance matrix P is zero. Hence, the conclusion is that as long Zl,é the
measurement covariance matrix RE is set to 0 in the newly visible areas, Kalman
filter can properly handle the newly visible areas automatically.

Then, how to detect the newly visible image areas?

In Figure 6.2, the entire block surrounded by solid Lines moves into the place
sirronnded by dash lines, it 1s evident that Area 1 is a newly visible area but Area
28 not. This is becanse Arvea 3 fills Area 2, Area 1 moves into Area 3, but, there is
no any area that can shift into Area 1. Area 1 1s a newly visible area.

Il the block surrounded by the solid lines is used to represent the image of
a 3-I) object al, moment & — 1, the block suwrrounded by the dash lines is used to
represent the image of this object at moment &, and the image moving velocity is
known as (w (2, ye), ’UL(.’);';\-,'.(//\-)), then Dy (g, yr) is the enrrent stale variable vector

and Dy (wpoy, ye—1) is the state variable vector at moment k — 1.
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Irom Section 6.1, one knows
Dy (x,y) = ®(interpolation( Dy (x,y)))- (6.21)

From Equation (6.9), one has
Di(,y) = O(z,y) — €7 (2, y)- (6.22)

However, in Area 1, Equation (6.21) no longer holds because the image there at
moment k is not related to the 3-D object any more. Hence Dy (x, yr) no longer has
any relationship with Dy_y(_1,ye_1) in the area. Dy(xg,yr) can only be obtained
from current measurement vector Op(w,yr) in Area 1, refer to Equation _(6.2‘2).

In general, if the system based on the Kalman filter shown in Figure 6.1 is used,

the estimate Dy (s, yi) can be obtained from ®(interpolation(Dy_1(z,y)). Thus,
E{Ok(w,y) — D (2,9)} = E{Di(z,y) — Dy (z,y) + & (v,9)}-
Since €2 is independent of Dy (2,y) — Dy (2,y) and E{eP} =0,
E{Ok(z,y) = Di (,9)} = B{Dw(x,y) = Df (x,9)}.

Hence except Area 1, E{D(x,y) — Dy (z,y)} ~0. It is evident that

E{Ok(,y) —
D7 (2,)} is much greater in Area 1 than that in any other areas. This observation
can be used to detect disocclusion.

B{Ow{,y) = Di (2,9}

is nsed. This is because the local average computation may fail the detection of

In onr experiments, |O(z,y) — D7 (v, )] instead of

newly visible areas in the discontinuity areas, since an average computation can blur
a boundary, while the newly visible areas are usually related to discontinuities.
Since [Op(z,y) — D (2,9)] = | Delz,y) — Do (z,y) + €P(x, )|, the accuracy of
the detection of disocclusion is mainly depends on the measurement noise 7. Due
to the uses of the correlation-feedback algorithm and the first Kalman filter, the

amplitude of £P(x,y) are expected to be small. Therefore, detecting disocclusions
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is not hifficutt.  Threshold methods can be used. In our experiments, following

thresholds are applied.

ot (2, y) = Z7 (2, y)

|Dis = 25 (2, 9)]
lo2i(a,y) = Ze (@9l o g (6.24)
|2y (2, 9)]
‘ng(zuf]?__' !;(:E>y)| < 30% (()25)
IXk (:an)‘
Io-/lk(;u,:yz — Y, (2, y)] < 0% (6.26)
l)/k ("1": y)\ )
wliere i is the distance hetween the fixation point and a camera, and [y, = [

cotan(0), [ and 0 are shown in Figure 6.3. When any one of the above conditions is
not satisfied, one concludes that disocclusions happen at the pixel (2,y). Thus, at
the pixel, set RP(x,y) = 0.

The accuracy of detecting disocclusion is partially determined by the accuracy
of detecting the moving boundaries of optical flow fields. The moving boundaries
always exist aronnd vewly exposed arcas. I the moving boundaries are blirved,
the edges around the newly exposed areas can not be detected effectively by using
the thresholds, In other words, the accuracy improvement along moving houndaries

discussed ncthe last chapter is quite useful for detecting the newly exposed areas.

6.4 System Noise Covariance Matrix
The derivation of measnrement noise covariance mabrix H,C) bas been conducted in
the previous two sections. Here we will determine system noise covariance malrix
o
System model of standard Kalman filter is a linear function. But, heve as we

discussed i Section 6.1, the system model 1s not linear, i.c.,

Dy = ®(nterpolation(Dy_,)).
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Therefore, the state covariance extrapolation P = & PF &7 + QP | shown in Table

5.1 does not hold and needs to derive in this section.

Equation (6.3) in Section 6.1 is rewritten below.

Dk(:l:a y) =

where g2, y) ~ N(0,QP(x,y)).

O (anterpolation( Dy (x,y)))
B(Drr (2,9))
O(Der (@, y) + @il )

OD_y + 9P (2, y) (6.27)

The function, interpolation(), will affect compu-

tation of the state covariance F] and noise covariance QP i the prediction

phase. Furthermore, we assume that ni(z,y) mainly comes from the function,

interpolation(). The so-called interpolation can be explained by referring to Figure

6.4. What we did here is a little bit different from what discussed in [17]. There the

anthors suggested that the depth field at the (k — 1)th moment be first extrapolated

(shifting) to form that at the kth moment according to optical flow vector, an
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interpolation (resampling) be then conducted. We {ound that it is more practical
to first interpolate the depth field (in our case, the motion fields as well) at the
(F — D)th moment, then shift the interpolated depth 1o form that at the kth moment
by using aptical flow vector. This is clearly described in Figure 6.4.

A Dbilinear interpolation is utilized which is illustrated in Figure 6.5. There

certain ervors are generated. rom Figure 6.5, we have

Poo= alZi—i (i, gn) — Z;f"_](‘lin,ﬁ])] + (= a)[Zeoy (i + 1, 710)

—Z;:L_y(in + 1,0n))

—
—
o
(-
o0
Nl



116

and

Pa= P+ wy. (6.29)

We assume wy = N(0, &, ).

Similarly, we have

Py o= a[Zi (g + 1) = Z Guosgn + D))+ (= @)[Zea (i + Lo + 1)
‘Z:—l(ill + 1,711 + 1)] (6.30)

and

PB = Pb -+ wy, Wy = j\’T(O,(gwg). (631)

[Furthermore,

Py=0FP, + (1 = 0P, (6.32)
and we assume
Pp = Pi4ws, w3= N(0,8,,). (6.33)

According to the last chapter, we assume that dj* and d§* are the true values

of dy and df, respectively, and
dy = &3 + o,

t. ¥INen
dy = di" + 1y,

where y, = N(0,6,) and g, = N(0,4,).
We define
o (12, 72) = B{(w}_1 (12, 72))"}, (6.34)
where the superseript Z denotes the first component in the measurement vector, i.e.,

the depth. The derivation in Appendix C shows

o2 (49, 2)

= [0((Ziaa(ir,011) = ZF, G i) = (Zeoa (i + 1, gn) = 2, G + 1, 51)))
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(1 = D((Zrar (i, iy + 1) = Ziy (G, dn + 1))

A Zia(inr + 1, g1y + 1) = 2, G + 1,0+ 1))))%62

Ha(Zemr (i) = 2 (s i) = (Zeor Gy + 1) = Zi (g gn + 1)) +
(1 = @) ((Zeor (i + 1, 711) = 27, (B0 + 1, 5n))
~(Zoa (i + L g + 1) = Z (i + L jn + 1))

+0782, 4+ (1 = 0)?62, + 62, (6.35)

, %y .
It is noted that of, o, o) can be expressed in the same way.

In our experiments, the linearization noises are represented as

ZAk—-l(ilth) - Zk—l(in +1,711)

San = ( 5 )2. (6.36)
52, ~ (Z/\-—i(iu,]‘n +1) — fk~1(i1x + 1, + 1))2‘ (6.37)
52~ ((Zk-l(iil,jll) — Zpor (a1, Ju1 + 1))+(Zk—l (i1 + L,gn) = Zica (i + Ly + l)))‘z'

4 4
(6.38)

The 62 and &2 are variances of dj and dff that can be obtained from Equation

(5.21) in the last chapter, i.e.,

; 2
532:.1 = 51,/;
6‘3,/\' = 6;21./: (63())

where k being the iteration index.

The Appendix C further shows that the system noise covariance matrix is

of(ings) 0 0 v
OP (i, ja) = B 0 o (i) 0 ‘ o7 (6.40)
< A 2, J2) = 0 0 JLX,(Ylvjl) 0 ‘ |

0 0 0 ait (i2,72)

and the predicted state covariance matrix at the kth iteration, P, is as follows.

Pro= <I)[ivz,‘lca?’polation.")(P,jr_l )]d)T -+ Qf) (6.41)
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It is noted that the difference between interpolation and the notation of interpolation?
is illustrated in Equations (C.30) and (C.31), refer to Appendix C.

For the completeness, we also write the prior model below.

E{Do} = Da (6.42)
cov{Dg} = Po = (Do — E{Do})(Do — E{Do})"" (6.43)

E{Do(x,y)} can be substituted by the average around Do(z,¥), 1.¢.,

1 1

ST S Dolw + 4,y +7)/9.

i=—13=-1

The update phase the Kalman filter-based system is:

Df (x,y) = Dy + KP(O, — 1D;) (6.44)
KP(z,y) = PT(P7 4+ RP)™! (6.45)
Pi(zy)= (I = KO)P (6.46)

Now the proposed Kalman filter has been completely specified.

6.5 Experiments
Two experiments using the proposed Kalman filter-based algorithm are presented
here. The first experiment is about three objects. There is a relative motion between
them. UOFE approach together with the feedback technique in determining optical
flow and the proposed Kalman filter are applied. Fairly good resulis about depth
and motion fields illustrate the feasibility of our approach.

In the second experiment the entire scene is a flat poster experienciug trans-
Jation.  Again both depth and motion field are recovered by our approach. A
companson between the depth map obtained by our approach and that reported
in [17] 18 made. It turns out that our method performs better: more acenrate and

more robust against noise.
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6.5.1 Experiment I

Setting: The experiment setting is shown in Figure 4.5 where the superscript !
stands for left, » for right and m for middle. The angles between two neighboring
optical axes is 2.5°. The focal length is 12.5 mm. Flat posters are mounted on three
boxes facing the camera. The box 1 is fixed, while the box 2 and box 3 move together
horizontally. The translation velocity is 5 mm/frame. Other dimensions are shown in
Figure 4.5. Images are taken with a CCD SONY camera via a DATACUBLE system
and stored in a SUN SPARC workstation. The images are 512 x 512 and cut into
256 x 256. Through a subsampling, images are {urther reduced to 64 x 64-'. Three of
the reduced images at the first moment are shown 1 Figures 4.6-4.8.

In other words, the first experiment setting is the same as the experiment

setting in the last chapter except that the combination of box 2 and box 3 now
continues to move at a speed of 5 mm/frame. That is, a stereo image sequence is
used. The arrangement of stereo image sequence is shown in Figure 6.6.
Results: The image sequence is processed by using the UOFF approach, the
corvelation-feedback algorithm and the first Kalman filter, and the Kalman filter
proposed in this chapter, refer to Figure 6.1. The Kalman filter iterates 11 times
and during each tteration the correlation feedback algorithm iterates 10 times. The
results of the experiment are shown in Table 6.1. There the RMS errors and average
errors are defined the same as in [15).

Comparing the first column of Table 6.1 with last column of the table, Z(;z:, v)
and Y(:z;,y) are mmdeed improved. In the middle column, the two Kalman filters are
used but the technique of detecting newly visible image areas is not performed. 1t is
worth noting that il newly visible areas are considered, the error can be reduced.
Discussion: Though this experiment is not a complicated one, however, the scene
contains multiple objects that have a relative motion between box 1, and the combi-

nation of box 2 and box 3. That 1s, the scene is not stationary. I the camera 1s in
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Table 6.1 Result comparison
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Error Type First Kalman | No Detecting | Two Kalman
Filter New Areas Filters
RMS Zeivor 3.56% 3.53% 3.47%
RMS Xervor 3.50% 3.48% 3.37%
RMS Yerror 3.58% 3.60% 3.53%
Average Zer,or 15.15% 11.75% 12.69%
Average Xpror 2.95% 3.07% 2.89%
Average Yerror 0.87% 0.62% 0.58%

another movement, then this case cannot be handled in the conventional framework of
motion stereo or direct method as discussed before. With our UOFF approach, both
depth map and motion fields may be recovered. The correlation-feedback algorithm
for optical flow determination and the Kalman filter for incrementally image sequence
processing have assisted us to achieve fairly good accuracy. More complicated
experiments containing multiple independently moving objects are planned to be

conducted.

6.5.2 Experiment II

Setting: It has been mentioned that the previous works in motion analysis mainly
considered only camera motion. Furthermore a planar scene is often used to verify
efficiency of an algorithm [17]. In order to compare the accuracy achieved by our
approach and that by others, the second experiment has been conducted and is
reported here. In the experiment, the entire scene is a flat poster, that horizontally
moves with a speed of 4 mm/frame. The distance between the camera and the plane
in which the poster is located and moving is 885 mm. The focal length i1s 12.5 mm. In
order to test robustness of our approach under the circumstance that image quahty

is low, only 7 bits are used lor quantization levels in the experiment. Hence, the
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Figure 6.7 First frame of plane motion.

1st and 12th frames taken by the middle camera, shown in Figures 6.7 and 6.8, are
relatively dark.

The second Kalman filter iterates 10 times. In each iteration, the correlation-
feedback algorithm iterates twice and the first Kalman filter iterates once. In this
experiment, the first Kalman filter is useless since there is no any moving boundary.
Hence, T* = T' = T™ = T% = 0 is applied. In fact, the first Kalman filter can be
ignored in such experiment.

In the experiment, the transition matrix @ is an identity matrix.

Results: By applying our UOFE approach, including the correlation-feedback
algorithm and Kalman filter, we obtained good results which are shown in Figures
6.9-6.11. [t 1s noted that the velocities along Y and Z directions, Y and Z, are
expected to be zero in this experiment.

Discussion: In [17] Matthies, Kanade and Szeliski reported a quantitative

experiment. There a poster of a tiger is fixed. The image sequence was taken



Figure 6.8 Twelfth frame of plane motion.

with vertical camera motion. The authors believed that it is better than horizontal
motion. They used a correlation-based algorithm to estimate optical flow for each
pixel. The depth map was then recovered from the estimated optical flow and known
camera motion with respect to the whole poster: the depth-from-motion, one of the
typical motion stereo techniques. A Kalman filter was used. In their experiment,
from the 1st to the 10th iterations of the Kalman filter, the RMS relative error
the depth Z decreases from 7% to a little bit more than 2%, refer to the so-called
“Actual dense iconic” curve in Figure 10 in {17]. In our approach, from the Ist to
10th iterations of the proposed Kalman filter, the RMS relative error in Z deceases
from 3% to 1.71%. Considering 7 bit in quantization, this means our results are
more accurate and robust. Furthermore, not only the depth map but also the speed

fields: X,Y, Z are recovered.
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6.6 Discussions and Conclusions

6.6.1 System Model

In the first experiment, according to the discussion of Section 6.2, we should use

1100
- (6.47)
00 01
This means
Zy = Zyr + 2.
However, sometimes, we used
1 0 0 0\
=100 1 0 (649
00 01
That 1s,
Ly = Zp_1.

Our experiment has shown that the results-obtained by using these two different
kinds of ® do not have significant differences. This is because the surfaces of the
scene in the first experiment vary drastically. The errors in depth map itself are
larger than the errors caused by ignoring Z.

In the second experiment, however, transition matrix should be represented as

following
1 000
01 00
=001 0 (6.49)
0 0 01

since the flat poster i1s in the horizontal translating, perpendicular to the Z axis.
This is because the surface of the depth map is flat. Consequently, the errors in
depth map are less than that in the first experiment. Therefore, the errors caused

the error increases significantly if Equation (6.47) is utilized.
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If the motion mode of objects 1s unknown, the selection of ¢ is difficult.
Generally speaking, the selection of ® will affect the errors in estimation and even
the system stability. But, in our system, the detection of newly visible areas makes
some difference which will be discussed below.

So far, we assume that the accelerations in X, Y, and Z directions are zeros. If
they are not zeros, we can adjust the thresholds in Equations (6.24-6.26) to handle
the situation. When the velocities change too fast, the current states relate to not
only the previous states but also the accelerations of X, Y, and Z. For instance,
if Zi(z,y) is great, é'k(a:,y) should be equal to ék_l(m,y) + ék(x,y). if one still
use ék(az, y) = .AZk_i(o;,y), more error will be produced. Since 02 is a measurement

A — ~

value of Z; and Zk = interpolation(zk_l) as discussed in Sections 6.1 and 6.4, when
Zk(x, y) 1s large, 02 contains the effect of Zk(a:, y), but 2;(1, y) may not. Therefore,
|02) — 2:] increases. From Equation (6.24), if |o2; — 2;1/]2;‘ > 30%, R = 0. This
amounts to treat a newly visible area. That is, when the errors are greater than
the thresholds, the Kalman filter will automatically give up the previous information
and work only on the present information. As shown in Equation (6.20), the output
of the system, ﬁf, 1s just current measurement vector Oy since H is an identity
matrix. Thus, the effect of this error is reduced. This scheme can guarantee that
errors are always less than thresholds regardless of the selection of ®. Therefore, one
can adjust the thresholds to control the error produced by the velocity change. But
if the thresholds are too large, errors will be great. If the thresholds are too small,
the areas that are not newly exposed areas will be considered as newly visible areas
so that errors will increase in such areas. As a result, ® and the thresholds must be

selected appropriately.
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6.6.2 Newly Visible Image Areas

When camera and/or object(s) move, newly visible area exposure is unavoidable.
Since in the newly visible area, the previous knowledge is not available, Kalman
filter should work only on the present information. Fortunately, Kalman filter has
an ability to automatically handle the newly visible area exposure problem. That
is, as long as the measurement noise covariance matrix (RF) is set equal to 0, the
Kalman filter can ignore the previous information. Therefore, a threshold method is
developed in this chapter so that RY is set as 0 in an area where the newly visible

area 1s detected.

6.6.3 Selection of R, @ and P Matrices
In [17] and [45], a simple method is used to lump all of errors together by inflating the
current state covariance estimates by a small multiplicative factor in the prediction
stage. Thus,

Pr=(1+¢P",. (6.50)
Then, the P is interpolated. As discussed in [17], a more exact approach is to
attempt to model individual sources of error and to propagate their effects through
the prediction equations. In this chapter, the interpolation process is analyzed so
that the system noise covariance matrix Qf and state covariance extrapolation of
the Kalman filter P, can be computed more reasonably than simply using Equation
(6.50). The analysis indicates that interpolation of state variables causes errors. In
fact, when interpolation is used, the system is not linear, the prediction phase of
Kalman filter must be modified. In this chapter, we conclude

~

D = O [interpolation(Di_,)]
P; = &,_[interpolation®(PF )]®r_y + QP .. (6.51)

Here, only noise caused by the interpolation 1s considered in the system noise

covariance matrix QF because all other noises are measurement noises that are
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considered in the RP. RP is the covariance matrix of measurement noises £P. &P
is caused by cameras, A/D converter, optical flow determination and 3-D motion
estimation. Therefore, RP can be derived from the measurement noise of optical
flow fields. If there is any other system noise, as long as it 1s additive and white

Gaussian noise, to expend the derivation is not difficult.

6.6.4 Experiments

The first experiment shows that Z and Y are improved more than other 3-D fields.
This is because the first Kalman filter has not improved the Z and Y. The other
3-D fields have moving boundaries. They were improved by the first Kalman filter.

In addition, since X, Y, Z, and X have newly visible areas, they are improved
by detecting newly visible areas. However, Z is worse and Y is not improved very
much when the newly visible area detection is conducted. This is because Z and YV
are constant (zero) fields. When the second Kalman filter works at initial condition
in the newly visible areas, noise becomes larger.

In [17], a Kalman filter is used to refine depth map. Its efficiency has been
verified. Here, the Kalman filter is used to refine six 3-D fields. Since the correlation-
feedback algorithm and UOFF approach to 3-D motion analysis are adopted, its
efficiency is obviously 1improved. The similar poster translation experiment shows
that our relative RMS error of depth map is 1.7%, while the RMS error of depth

map is larger than 2.0% in [17].



CHAPTER 7

SUMMARY

This chapter contains a swmmary of our major research contributions, a review of

some of unsolved problems and possible avenues for future research.

7.1 Major Contributions

The most significant contribution of our research described in this dissertation is the
development of a robust algorithm based on a theoretical computational framework
for the determination of dense 3-D position and motion fields from a stereo image
sequence. The framework is applicable for camera motion as well as both rigid and
nonrigid object(s) motion.

In the dissertation, a novel optical flow field computation approach is developed.
The approach is called “correlation-feedback approach.” The approach has three
features distinct from any other existing approach. They are feedback, rubber
window, and special refinement. The feedback technique is used for the first time in
optical flow determination . Since the output optical flow field is fed back to input to
compensate the ontputl’s uncertainties, the accuracy is improved considerablely. The
rubber window is applied so that subpixel problem can be handled. Its refinement
is based on local best matching between original image and the estimated 1image.
The refinement and feedback compensation are used iteratively so that optical flow
field computation is robust against noise and discontinuities are conserved. The
approach performs especially well for nonuniform optical flow fields. This is because
the refinement is a local best matching scheme. We have verified that the approach
15 generally couvergent. At least, when the mtensity 15 a linear function of the

coordinates, the algorithm must be convergent. Our experiments also prove that the
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approach is one of the best ways to compute optical flow field m view of a recent
comprehensive study of all of the existing optical flow techniques [40]. Although
the algorithm has used Singh’s subpixel estimation scheme and propagation stage
[44], we also can use our new ideas such as feedback, rubber window and special
refinement to other subpixel estimation and propagation schemes.

The UOFF theoretic framework and the UOFF approach to 3-D position and
motion estimation have been developed by Shu and Shi ({41]-[43], [49]). The approach
is different from all existing 3-D motion recovery approaches. It is based on a four
frame model to compute six dense 3-D position and velocity fields. They are Z(x,y),
X(a,y), Yiz,y), Z(z,y), X(z,y), and Y(;v,y) where 2 and y are coordinates of
image plane. The approach can compute 3-D motion and surface structure at any
pixel as long as optical flow vector at the pixel is known. Therefore, 1t can estimate
any mode of motion such as rigid and/or nonrigid object(s) motion, a relative motion
between camera and the 3-D world space, as well as the multiple independent objects
motion.

Since the approach is based on the optical flow vector at each pixel, the accuracy
of the approach i1s determined by the accuracy of the optical flow vector. In other
words, the approach is sensitive to uncertainty of the optical flow. DBspecially the
determination of the velocity fields such as the Z(:E, y) field is sensitive to uncertainty
of the optical flow. In this research, we verify that the UOFF approach is feasible
with large mumbers of experiments: using both computer simulation and real image
sequences i the laboratory. Our formula of computing depth map 1s verified to be
more robust than most of the previous works. Kalman filter is utilized to improve
the UOFs sensitivity to uncertainties of optical flow. Nine frame mode instead
of four frame mode and stereo 1mage sequences instead of still images are used in

mmplementation of the UOFEF approach.
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In the dissertation, two Kalman filter-based algorithims have been developed.
The first Kalman filter-based algorithm is used to improve accuracy along moving
boundaries m optical flow field. The Kalman filter is used as a kind of refinement
mechanism. 1t uses a fixed group of images instead of a stereo image sequence. This
is different from the previous works. We prove that the convergence of optical flow
field computation is nonhomogeneous. On object’s boundary, convergence is faster
than that in an interior area. Therefore, different pixels need different number of
iterations 1n computation. We use the first Kalman filter to implement this idea.
The efficiency is obvious. The estimation of the optical flow fields and the 3-D
motion reconstruction are improved effectively. The system and measurement noise
covariance matrices @} and R} are analyzed carefully. By means of computation of
Ry, discontinuity is preserved.

As we know, a stereo image sequence carries much more information than a
few fixed images. Many previous works have used stereo image sequences to improve
their motion estimation. But, these works are restricted to only consider the relative
motion between camera and 3-D world space, for instance, a moving camera and a
static 3-I) world space. They usually do not consider that motion changes and there
are newly visible image areas. In fact, when either camera or objects are allowed to
move,; or objects change shape, the newly visible areas may be exposed in the image
seguence. In the newly exposed areas, the information and results based on previous
mmage frames can not be fused with current information. Otherwise, errors will he
generated. In other words, stereo image sequence must be used carefully. We have
developed a threshold scheme to determine the newly exposed areas. In the newly
visible image areas, the second Kalman filter works at an initial condition so that only
current inlormation 15 used to compute 3-D motion. In addition, the interpolation
process is analyzed in detail so that covariance of the system noise (QF) and state

covariance (P77 (a,y)) extrapolation of the Kalman filter can be computed more
L—1 2 Y 1
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reasonably than treated in the previous works [17] [45]. Besides, the measurement
noise (£F = N(0, RP)) of the system is considered to be generated from camera,
A /D converter, and optical flow determination. The measurement noise covariance
RE is then derived.

To our knowledge, the error analysis and derivation of @, P, and R matrices
for these two Kalman filters in this dissertation are more advance than the previous
works reported in the literatures.

As shown in our experiments, the two Kalman filters make our 3-D motion and

structure reconstruction more efficient and more accurate.

7.2 Major Unsolved Issues

The dissertation research focuses on improvement of accuracy of 3-D motion and
structure estimation. In fact, computation efficiency should be also considered.
Because accuracy depends on image quality, if high resolution and 16 bits A/D
converter are adopted, accuracy will be raised. But computation speed will become
a major problem. In our framework, most time in computation is spent in the
correlation-feedback stage. The correlation-feedback approach can raise accuracy
considerablely. But 1t also increases computation complexity. Especially, when
optical flow field is uniform, i.e., optical flow vectors are constant with respect to
coordinates, the convergence of our algorithm is slower than a few other approaches.
This 1s because we have used Singh’s subpixel estimation scheme in our algorithm.
We Lave not examined whether such subpixel estimation is of fastest convergence.

We have mdicated that the 3-D estimation framework can work in a dynamic
world. But we have not arranged experiments to verify this observation because we

don’t have necessary experiment conditions yet to conduct advanced experiments.
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7.3 Directions for Further Research
Firstly, we should pursue faster convergence of the correlation-feedback algorithm in
determining optical flow. We can try to derive faster and more applicable subpixel
estimation and propagation schemes.

Secondly, we should search for a best way to use the confidence measure to
enhance the accuracy of 3-D motion analysis in our UOFF approach. In an optical
flow vector field, not all vectors have high accuracy. However, in many cases, not all
vectors are needed as well. In fact, from the part of the vector field, 3-I) information
can still be reconstructed in many cases. Therefore, we can extract those flow vectors
with high reliability to estimate 3-D information. The usage of confidence measure
technique may enhance not only accuracy but also computation speed.

Thirdly, we should try to apply the UOFF approach to nonrigid object motion
analysis. Although the framework can be used in the subject theoretically, we should
use experimental work to verify the conclusion. When experimental conditions are
improved, real robot navigation in dynamic environment should be pursued. We also
can consider to use high resolution and high quantization in digital image acquisition
Lo umprove accuracy.

Finally, since the framework can be used for both rigid and nonrigid motion

estimation, it may be extended to video signal compression.



APPENDIX A

3-D MOTION PARAMETERS DERIVATION

Al A

It 1s obvious that
I I

Ul = ——
f fot
Using the formulae of perspective projection and coordinate trausformation, we have

1 » (X(:OS()-ZSiU@)Z—[(X—Z)cosO—ZsinO]Z
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f z?
(XZ — XZ)cos8 1Zcos0
B 2 Tz

The use of the perspective projection leads to

1 I 1Z
7’(L[{ = TUL cos 8 + 7 cos (A1)

It follows from the perspective projection that
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, one has

Following the definition of u

u’ 1. bz
—_ = - lim —

YT

where §s = /52 + 32 4 \20? for the case when two optical axes OZ and OFZ7 ave

coplanar.  As pomted out in Section 4.2, Z is restricted to be zero m this paper.

Hence, 65 =
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and the definition of »* and v*, one has

v (X =Dcosl—Zsinld X 5
X cos 0 — lcos()-Zm]0—)\ 5 e
~ | z VP A+ )07
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The above equation comes from the far-field assumption. Similarly, we have
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APPENDIX B

COVARIANCE PROOF

. . I8 I . , k 2 . )
Two random variables v$” and ©{*) are independent, aud u V= N(u®, 82) and ulY =

N{u®, §2).
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Assuming that two random variables vy and vy are independent of each other, vy is

N (e ;,_urlng), vy is N{u", ‘zi?}rFT)" the Covariance of vg and vy is Cyy, . Therefore,
T [o) x 1

] e
¢ = _ _ T O R
RV T R E R D R /. /m(”‘ «){vo =)

(gt =y =g ) o)

e e 0 dvadv,

= 0 (B.2)

Comparing equation (B.1) with equation (B.2), one can conclude that Cyy = 0.
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APPENDIX C

DERIVATION OF @ AND P MATRICES

In Section 6.1, it is pointed out that due to image digitization a linear interpolation
1s needed to obtain state vector Di(z,y) at moment & from Dy (z,y) at moment
k—1.

In order to simplify the derivation, one dimensional case is considered, i.e., we
only discuss the derivation for the first component of the state and measurement
vector: the depth Z(x,y). The results we derived can be readily available for the
other three components. Furthermore, the transition matrix ¢ is assumed to be

diagonal. That is, ¢1; is assumed to be a constant. Thus, Equation (6.3) leads to

Zi(z,y) = ¢nlinterpolation(Zi_1(z,v)))
= (/)1121:—1(:1:3 '!/)
= ¢ Zia(z,y) + dner

= ¢nZia(z,y) +nf(z,y). (C.1)

Let’s examine how noise is caused by the mterpolation process.

In Figure 6.4, depth maps of Z.(12,72) and Zi_1(71,71) are shown. Since the
3-D object(s) is moving, its depth map is also moving. The velocity of motion of the
depth map is the optical flow vector (dY, dY), i.e., the measured values of (u”,vY). In

other words, during an iteration, Z._1(22,J2) should have been obtained by shifting

Zi_y (i1, 1) ab the velocity (d¥(iq, 72), d¥ (22, 72)), Le.,

Zk—l('f:-z,jz) = Zk-l(il + fl;(i27j2)>j1 + (l;‘(?ﬁz,j‘Z))
= Zia (2 — d5 (32, 72), 52 — di (22, 32)), (C.2)
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But, unfortunately, d4(ss,72) and d(z3,72) generally may not be integer-valued.

Therefore, Equation (C.2) may not hold. Refer to Figure 6.4, one has
Zyerlin, 12) = Zima (w0, 1) (C.3)
where z; and y; are real and
2 = 1y — d(ea, Ja)
B = J"z - d?(?zz,jz), (CA‘)
From Figure 6.4, it is clear that

Zi—1(z1, 1) = nterpolation(Z;_1(i1,51))
= baZi—1(ir1, ) + (1 —a)Zroa (B + 1, J0)] +
= (1 =0aZi_1(ti, g + 1) + (1 — @) Zea (2 + L + DJ(C.5)
The equation is a standard bilinear interpolation. Figure 6.4 shows the relationship
among Zi_1 (1, 11), Lo (11, 1)y Ze—1 (G +1,011), Ze (o + 1) and Zp_y (201 +
I, 711 + 1) and the meanings of @ and b. Zy_; (211, J11) is located at the pixel (éy1,711)
which is such a pixel among the four that is closest to (w;,y;) and at the north-west
coruer of (xq,y1). This can be represented as following equations
iy = ad(xy) = 1 — mi(dy (i, 5,)) — |
j]] = ?I??‘(l/]) = j'_g — 771?((!:{(12,]2)) -1 ((J‘-G)
where int() is an operation that changes real number into integer that is always less

than the real number. In addition
b
l—a= Ty — 111,
I — b: Y1 — Jii-
Assiming that d4 and di* are the true values of df and df vespectively, and

dy = dy" + iy,
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& = &+,

where 1, = ]V(O,(gm) and py, = !\/(O,éy), one has

lma=a—iy = 1 —d (i, jo) + int(d¥(iy, o)) + pte = 1 — @+ st
@ = @~ [
Lmb=y— i = 1 — d™(dz, 72) + int(d2(is, 72)) + py = 1 = b+ 1
b = b—py (C.7)

Though interpolation is a bilinear interpolation Zp_; (1, y1)— 27—, (21, 1) may

not be iill(ﬁ&l'ly related with Zk_l(i11,j'11)—ZA,j._] (i117j11)7 Zk_l(ill‘\“l,ju)"’Z:‘_l(i]z +

L)y Ze—1(t,n + 1) = 27 (i, ju + 1), and Zeoy (30 + L + 1) = ZiE (i +
1,711 + 1)]. Therefore errors w;, wy, and wy are produced. Figure 6.5 clearly shows
how these errors are produced.

From the Figure 6.5, one can know

Po = alZi_i(Gi1,d11) — 2, Ganygn1)] + (1 = a)[Zeca (i + 1, J11)

~ 2, (i + Ln)) (C.8)
Obviously P4 # F,. We assume
Py =P, +wy, w = N(0,8,,). (C.9)
Similarly, we know

Py = a[Zip(F1, 0 + 1) — Zﬁ;f..;(in,]'u + )]+ (1 = a)[Zr—1(311 + L + 1)

“Zzi-‘r_1('7:11‘*“ L + 1) (C.10)

and Py # P,
Pg =P +wy, wy = N(0,0y,). (G.11)

Furthermore, from Figure6.5

Pi= 0P, + (1 = b)P,, (C.12)



and Py # Pp. We assume
Pp = Pi+ws, wsz= N(0,0,,)
Substituting Equations (C.9 - C.12) into Equation (C.13), one has
Pp = b(P, +wy) + (1 = b)(Fy + wa) + ws.
From Figure 6.5, one has

Pp = Zk—z(ifhyl) - Z!f-l(a:lvy‘)’
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(C.13)

(C.14)

where Z}_, (z1,y1) is an estimate of Zy_y(x1,y1). Hence the above discussion leads

to

Zr—1(z1,01) — Zf-l (1, 91)

= I){G[Zk—l(ilhjn) - Zf_l(in,jn)] + (1 - (é)[Zk—l(in + 1>j11)
~Zi G+ L)l + ) + (1= 0){alZia (i, 7 + 1)
~ZE (g + D)+ (1= @) Zeca (i + Lon +1)
“Z:_l(in + 1,90+ D]+ w4 ws

where the noises wy, we, and ws are produced by the linearization.
Equation (C.15) can be rearranged as follows.

Zioalen, i) = 2 ()

= (3[(L(Zk-1(i11’j11) - Z/tq(ithj}l) + (1 = a)(Zp=1(211 + 1, 711)
—Z G+ 1)) 4 (0= D) a(Zkaa (i, e + 1)
—Zg——l(ilhj‘i] + 1)+ (1 —a)(Zi_ (in + Lyn + 1)

“ZEL_l(?:n + 1,701+ )] 4wy + bwy + (1 — b,
Substituting Equation (C.7) into Equation {C.16), one has

Za (1, 91) — Zioy (w1, m)

(C.15)

(C.16)
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= (b= 1)@ = ) (Zma (i dm) = 3 (10, 711)
F(1 =@+ pa)(Zaor (G + 1on) = Zi, G+ 1, 00)]
(1= b+ (@ = ) (i (Bar Jn + 1) = 2 (g + 1))
+(I =@+ pz)(Zi—r (Fr + L + 1) = Z;T_1(i11 + 1L+ 1))+ ws

+(b = py)wy + (1 = b+ 1ty )0, (C.17)

From Equation(C.3), one knows

N

Zi1{12,72) = Zica(in, 32) = Zieea (w1, 01) — Z¥ (e, )
From Equation (6.3), one has

Zin (22,72) — Z1 (22,72)

= Zl.-—1(5151,y1) - Z;f_l(ll'nyr)

= Zlc—l("i‘laj'l) - Zk—l(i?n.j?) + P (C‘]‘S)

N\Y

@ is a noise produced by interpolation. Zp_1(42,72) — Zi-1(12, J2) 15 not related to
the noise. In order to obtain Z_1(i2,72) — Zir-1(22, J2) and @, we should rearrange

the Equation (C.17) as follows.

Zy—i (1, ?/i) - Z!j-] (1'1, yl)

= {Zica(insa) = Zuealin, 52)} + {on)

{Va(Ze=1(2y1, gn) — Zj_l (111, 711))

e

F(3 = @) (Zroy (i + 1, 501) = 21, Gy + 1, 500)]

+(1 = B)[a(Zior (b, + 1) — Z:-r_l(ilx»jll + 1))

+( —a)( 2ot + 1) — Zl—j——l(i”vjﬂ + 1))+

{=0((Zeer (i ) = Zi2, (s gn)) = (Zeor (i + L) = 2, (i + 1)) e

+{(Zsa Uiy, gn) — Z;jrw';(i11»j11)) ~(Zer i+ 1, 711) — Z;ix(?:n + Logn ) gty

—(1 =B Zkor Ginna g + 1) = 23, Gy s + 1))
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—(Zia (i + 1y + 1) = 25, G + L+ 1)) e

~[(Zicr Gy, g1 + 1) = 27 (Bs g + 1))

(Zir G+ L + 1) = 2 G+ L 4 1) ety

—a[(Zrr(t1, 1) = 27 (s 1)) = (Zema (G, i + 1) — ZE (G ga + 1))y
—(1 = @) [(Zeca iy + 1, 411) — 2y (r + 1, 711))

~(Zeoa (i + L + 1) = Zi, G+ 1 + D)y

+(b — p)wr + (1= b+ py)wy + w3} (C.19)
where Z_1(12,72) — é:_l(i'z,j'z) and o?_ (i3, 72) are, respectively, the fitst and the
second terms encompassed by the brackets in the right-hand side of the last equal
sign.

According to Equation (C.1),

Zlc(li'z’j‘AZ) = qblle—l('i'Z)jz)

Zi (i2,02) = $nZi-a(iz,52) (C.20)

Thus,
Zi(in, J2) = Zi (12, 32) = d11(Zrer (82, 52) — Zrea (12, 72)) (C.21)
Assuming that all of the random noises are independent of each other, from Equation

(C.21) and (C.18), one has

P22, 92)
= B{(Zuliz, s — Zi (ig, j2))(Zi(ins o) — Zi7 (i, 32))}

5+

= E{{dn(Zroilin, g2) = Zy_y (12, 52)))°}
= . . . ,;4' . . ! . N 2
= E{(Qf)nZ/;q(?f'z,J;z) - (/’)H/J,l;_.g(z'Za]'Z) + (/)1399;%_1(‘/-2,]2))'}

= B{(Ziorlinsga) = Zyy i 32))) (00)? + E{(0Fy (2, 12)) H (1 )? (C.22)

where pT (42, j2) is the first element of the state covariance 7 (12, 72)-
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If we define

2 (in72) = B{(Zicr (i g2) = Zpr (32, 52))°) (

O
o
(%]

p —

- = .
From the expression of Z;_1(23,72) — Z_; (42, 72) defined in Equation (C.19),

Pf(72,]2)
- E{(l—)[a(zk—l(in,jn) - Z;T_l(?:n,].n))

+(1 —a)(Zp—1 (211 + 1, 701) — Z:_l (11 + 1,711))]

+(1 = D)[a(Zeor (Garygur + 1) = Zi 1 (Ganyjnn + 1))

+(1 = @) (Zeca (i + L + 1) = 2, (o + Ljn + D)) (C.29)

If we define
o)
v X(l—a
€= ((1 — D) x @) (
(1 =0x(1-a))

O
N
¥
S’

and o
qu(?fn,Jn) 4 1(111,111)
Biq = Z!;-—l(?EH + 1) — ,: TG+ 1) ’ (C.26)
Zia(tn, g +1) = / 1(7113]11‘i‘ )
Zia(in+ 1,70 +1) — i+ 1, + 1)
then

ﬂf(’lez) = E{(jTBk_1 [3{_] (_/‘}

= CTE{B_Bl_}C. (C1.27)

Apparently, the four diagonal elements of L{B_, Bl |} are p;(k_l)(in,jn),
7)?1(/;—1)(":13 + 1,711), pfl(k_,)(?ln,jn + 1), and 7)?1(,;4)(2211 + 1,711 + 1) that are four
clements of the state covariance matrix field (P (41, 1)) at the last moment (£ —1).
Il we assume that Ze_y(211,011) — Z,il(?:n-,jn), Zra G+ 1,00) — 2;2‘(":11 +1,711),
Zi—(tr, g +1) — /; (G, g+ 1), and Zia(tn+ 1,000+ 1)~ Z;r_l(in + 1,70+ 1)

are independent of each other as previous works [17] and [45],

E{Bry ‘82‘—] }
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]’1+1(i11>jn) 0 0
U phEn + 1) 0
0 0 PG, + 1)
0 0 0 ,7)11(711""1 }HTI
(C.2

Thus,

CTE{B;\‘_IBE‘,]}(‘V
= szlzprl(k—l)<i117j11) + EZ(I - fl)"’f}fl(w)(’:“ +1Ln)
+(1 — Z))Zdzpﬁ(kvl)(in’]‘n +1)

(1= 0)°(1 = @)’pf oy 11 + 1,1 + 1) (C.29)
In order to cite the formula later with ease, we define

im‘,ev'polation?(yﬁl(k_l))
= B(— pll(k ])(ln,]]l)‘f‘b(l ) 1](L ])(’11+1 .711)
+(1 - 5)2(22]);(1:_])(2’11,]‘11 + 1)

+(1 = b)*(1 — a)'-’pjl(k_”(z‘“ + 1, +1) (C.30)
It 1s worth noting that

zf71{,0,77)01(51?,7107L(]);r](k_l))
= Ih)a])?'](k_l)(i”,j“) + 5(1 — ﬁ)])f](,‘._,)(?:n + 1, 1)
+(1 - 5)@;(};_1)(7:11»]'11 +1)
(L= 0)(1 = @)pf gy (i + 1, + 1) (C.31)

I we define

U;{(i‘z,jz) = /3{(99/:/7_1(7:2,j2))2}, (C.32)

substituting the expression of ©f | (i, 72) defined in Equation (C.19) into Equation

(C.32) and assuming that all random noises in @f_ (iy, Jo) are independent of each



other, then one has

U}\Z(Zl’j.’)
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= {Z’((Zkﬂ(in,jn) - Zz__](ilhjn)) - (ch—l(in + 1,‘,"11) - Z;j_l(ill + lsjll)))

+(1 — B)((Z,;_l(i”,jn +1) - Z:-__l(illajll + 1))

2

-(Zk—l(i'll -+ l,j]l + i) - Z;ﬁ_,(jl) + lsjﬂ + ]}))]26;

Ha((Zeer (i1, 311) = ZE, Gy ) = (Zesy (i, g1 + 1) = Zi Gy o + 1) +

(1 —a)((Zr-1(z1r + L, 011) — ZAE:](in +1,711))

(Zimr (i + L + 1) = Zi (i + Ln + D)

0765, + (1= 0)*65, + 65,
Thus, according to Equations (€.22, €.23, C.30 and C.33), one has

P22, 72)

Il

b11[pE (12, 72) + oF (2, 32) by

= q’)”[mterpol(z,tionz(pfl(k_])(i],j])) + O’E(’i._,’j?)](]')”.

Similarly, one can obtain

'[)g_-g;‘-(i’z»j'z)

]

= q’)zg[én,'[cr;)ol(d;ion,z(7)2+.2(k_1)(i-,,jl )+ Jf(ig,jg)]@»o,

P22, J2)

= (,/;;33[i?i,t@'/'g)olai,ionz(7):“;3(1;_])(ﬁ,.7'1 )+ 0;3"(712,_j2)}q3;3;3,

and

7)4_-'1A-(7:‘2>].'2)

= (hyy [ini,c?'])ola,‘/,ion"z(])j:‘(k_])(il,j} )+ (fz‘;(i.z_“jz)](/}f,,,.

(C.33)

(C.34)

(€:.36)

(C.37)
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When Equations (C.34 - C.37) are represented in terms of the matrix equation,

P = (I)['zﬁ“n,)‘,ev'pol(u’,ion?(P,j_1 )](I)T + QF (C.38)
where
of (12, j2) 0 0 0
o 0 Z(4, 7. 0 )
QF (42, 2) = ® 7k (12, 72) 0 o7, (C.39)

0 0 o (i3, 72) 0
0 0 0 o (2, 72)
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