
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Spring 1997

On document filing based upon predicates
Zhijian Zhu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
Zhu, Zhijian, "On document filing based upon predicates" (1997). Dissertations. 1070.
https://digitalcommons.njit.edu/dissertations/1070

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1070&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1070&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1070&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1070&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1070&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1070?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1070&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality o f this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9730389

Copyright 1997 by Zhu, Zhijian
All rights reserved.

UMI Microform 9730389
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ON DOCUMENT FILING BASED UPON PREDICATES

by
Zhijian Zhu

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer and Information Science

May 1997

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright © 1997 by Zhijian Zhu

ALL RIGHTS RESERVED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL PAGE

ON DOCUMENT FILING BASED UPON PREDICATES

Zhijian Zhu

Dr. James A. McHugh, Dissertation Advisor 	 Date
Associate Chairperson of CIS Department
Full Professor of Computer Science, NJIT

Dr Peter A. Ng, Dissertation Advisor

				

	 Date
Chairperson of CIS Department
Full Professor of Comp ter Science, NJIT

Dr. Jason T.L. Wang, Dissertation Co- 	Date
Associate Professor of Computer Science A

dvisor
NJIT

Assistant
Michael Bieber, Committee Member 	 Date

Assistant Professor of Computer Science, NJIT

Dr. Qianhong Liu, Committee Member 	 Date
Assistant Professor of Computer Science, NJIT

Dr. Ronald S. Curtis, Committee Member 	 Date
Assistant Professor of Computer Science,
William Paterson College

ABSTRACT

ON DOCUMENT FILING BASED UPON PREDICATES

by
Zhijian Zhu

This dissertation presents a formal approach to modeling documents in a

personal office environment, proposes a heterogeneous algebraic query language to

manipulating objects (folders) in the document model, and investigates a predicate-

driven document filing system for automatically filing documents.

The document model was initially proposed in [38] which adopts a very natural

view for describing the office documents using the relational and object-oriented

paradigms. The model employs a dual approach to classifying and categorizing office

documents by defining both a document type hierarchy and a folder organization.

This dissertation extends and specifies formally the document model. Documents

are partitioned into different classes, each document class being represented by frame

template which describes the properties of the documents of the class. A particular

office document, summarized from the view point of its frame template, yields a

synopsis of the document which is called frame instances. Frame instances are

grouped into a folder on the basis of user-defined criteria, specified as predicates,

which determine whether a frame instance belongs to a folder. Folders, each of

which is a heterogeneous set of frame instances, can be naturally organized into a

folder organization. The folder organization specifying the document filing view is

then defined using predicates and a directed graph. However, some operators in

the algebraic query language [38] do not support the heterogeneous property. This

dissertation proposes an algebra-based query language that gives full support to this

heterogeneous property.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We investigate the construction problem of a folder organization: does it allow

a user to add a new folder with an arbitrary local predicate? Given a folder organi

zation, creating a new folder with arbitrarily defined predicate may cause two abnor

malities: inapplicable edges (filing paths) and redundant folders. To deal such abnor

malities in the process of constructing a folder organization, the concept of predicate

consistency is discussed and an algorithm is proposed for determining whether the

predicate of a new folder is consistent with the existing folder organization.

The global predicate of a folder governs the content of the folder. However,

the predicates of folders (that is, global predicates) do not uniquely specify a folder

organization. Then, we investigate the reconstruction problem: under what circum

stance can we uniquely recover the folder organization from its global predicates? The

problem is solved in terms of graph-theoretic concepts such as associated digraphs,

transitive closure, and redundant/non-redundant filing paths. A transitive closure

inversion algorithm is then presented which efficiently recovers a folder organization

digraph from its associated digraph.

After defining a folder organization, we can file a frame instance into the folder

organization. A document filing algorithm describes the procedure of filing a frame

instance. However, the critical issue of the algorithm is how to evaluate whether a

frame instance satisfies the predicate of a folder in a folder organization. In order

to solve this issue, a thesaurus, an association dictionary and a knowledge base are

then introduced. The thesaurus specifies the association relationship among the key

terms that are actually residing in the system and terms that are used by users. An

association dictionary gives the association relationship between an attribute of a

predicate and a frame template defined in a folder organization. A knowledge base

represents background knowledge in a certain application domain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIOGRAPHICAL SKETCH

Author: 	Zhijian Zhu

Degree: 	Doctor of Philosophy

Date: 	 May 1997

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, New Jersey, 1997

• Master of Engineering in Mechanical Engineering,
Hefei Polytechnic University, Hefei, Anhui, China, 1987

• Bachelor of Science in Computer Science,
Nanjing University of Aeronautics and Astronautics,
Nanjing, Jiangsu, China, 1984

Major: 	Computer Science

Publications:

Z. Zhu, J. McHugh, J. Wang, and P. Ng, "A Formal Approach to Modeling Office
Information Systems", Journal of Systems Integration, Vol. 4, No. 4, Pages:
373-403, December, 1994.

F. Mhlanga, Z. Zhu, J. Wang, and P. Ng, "A New Approach to Modeling Personal
Office Documents", Data and Knowledge Engineering, Vol. 17, No.2, Pages:
127-158, November, 1995.

Z. Zhu, Q. Liu, J. McHugh, and P. Ng, "A Predicate-Driven Document Filing
System", Journal of Systems Integration, Vol. 6, No. 3, September, 1996.

iv

This dissertation is dedicated to
my wife

Shanmaio Ma
my son

Alec M. Zhu

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENT

The author would like to take great pleasure in acknowledging his advisor,

Professor Peter A. Ng, for his kindly assistance and remarkable contribution to this

dissertation. He spent time and effort to review various drafts of the manuscripts

and provided a lot of helpful comments and crucial feedbacks that influenced the

final manuscript. His guidance and moral support throughout this research are

much appreciated. The author is indebted to his other advisor, Professor James A.

McHugh, who devoted effort and provided encouragement in the phase of formalizing

the document model. His ability to have a solid mathematics professionals signifi

cantly contributed to the contents and organization of this dissertation. The author

also thanks his co-advisor, Professor Jason T.L. Wang who provided support, encour

agement and constructive criticism on this research.

Specially, the author wants to thank to Doctor Michael Bieber, Doctor

Qianhong Liu and Doctor Ronald S. Curtis serving as members of the committee.

This dissertation was supported in part by the Separately Budgeted research

grant from New Jersey Institute of Technology and by System Integration Program

grant from the AT&T Foundation.

The author wishes to thank all the moral support given to him by colleagues,

friends, fellow Ph.D. students and all the members of the TEXPROS research group.

The writing of the dissertation was facilitated by the computing resources and

equipments in the Department of Computer and Information Science at New Jersey

Institute of Technology.

Finally, the author gratefully acknowledges his debt to the authors of the works

that are cited in this dissertation and claims full responsibility for any bugs that the

text may contain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION... 1

1.1 TEXPROS.. 1

1.2 Scope of the Dissertation.. 6

1.3 Organization of the Dissertation.. 8

2 RELATED WORK ... 9

2.1 Modeling Office Docum ents... 9

2.2 Algebraic Query Language... 10

2.3 Document Filing System .. 11

3 PRELIMINARIES... 13

3.1 Types, Instances and Dom ains.. 13

3.2 Operations and Predicates... 16

4 TEXPROS DOCUMENT M O D E L .. 19

4.1 Document Type Hierarchy... 19

4.2 Folder O rganization... 22

5 EXTENDED 2?_ALGEBRA.. 31

5.1 Class 1: Set Theoretic O pera to rs.. 31

5.2 Class 2: Concatenation and Cartesian P ro d u c t...................................... 32

5.3 Class 3: Project O p e ra to r.. 33

5.4 Class 4: Select O p e ra to r .. 38

5.5 Class 5: Join O p e ra to r ... 44

5.6 Class 6: Renaming O p e ra to r ... 45

5.7 Class 7: Restructuring O perators.. 47

5.8 Class 8: Aggregate Operators... 50

5.9 Class 9: Highlight O perator.. 51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS
(Continued)

Chapter Page

6 THE CONSTRUCTION AND RECONSTRUCTION PROBLEMS............ 52

6.1 The Construction Problem.. 52

6.2 Consistency of P red ica tes... 54

6.3 The Associated Digraph of a Folder Organization 55

6.4 Reconstructing A IVee Folder Organization... 59

6.5 Reconstructing a DAG Folder Organization... 65

7 DOCUMENT F IL IN G 72

7.1 A Document Filing A lgorithm ... 72

7.1.1 An Object-Oriented Description of a Folder Organization 72

7.1.2 A Filing Algorithm .. 81

7.2 Predicate Evaluation... 86

7.2.1 Case Study: Case 1 .. 86

7.2.2 Case Study: Case 2 .. 89

8 CONCLUDING REM ARKS... 103

8.1 Document Models and Algebraic Query Languages103

8.2 Reconstruction of Folder Organizations..105

8.3 Automation of Document F iling..106

8.4 Future Research D irections... 106

8.4.1 Specification of Criteria for the Folders... 107

8.4.2 Knowledge Discovery and Data M ining... 108

8.4.3 Reorganization of a Filing System..108

8.4.4 A Multi-User Environment..109

REFERENCES .. I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table Page

5.1 Operators of the 2>_Algebra... 31

8.1 Differences between X>-model and relational m odels....................................... 105

8.2 Differences between TEXPROS Document Filing and Other Systems. . . 108

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure Page

1.1 (a) An original document (b) Its frame template (c) Its frame instance . 3

1.2 Overall architecture of T E X PR O S.. 4

4.1 Relationship among office documents, frame templates and frame instances 20

4.2 IS-A relationship among the frame tem p la tes ... 21

4.3 A folder for the Ph.D. student John S m ith .. 23

4.4 A tree folder organization... 25

4.5 An example of DAG folder organization... 26

4.6 A DAG folder o rganization ... 30

5.1 A partial folder organization .. 32

5.2 Illustration of the project opera tion .. 34

5.3 Two folders fr and f2 ... 37

5.4 Five folders f3 , f4 , fs, f6 and .. 37

5.5 Two folders fi and f2 ... 39

5.6 Four folders fr, f2 , f3 and f t ... 43

5.7 Three folders Doe, Assistantships and f ... 44

5.8 A folder f used to illustrate the renaming operator...................................... 46

5.9 An example to illustrate v ... 47

5.10 An example to illustrate the need of u* ... 48

5.11 An example to illustrate unnest operators.. 50

6.1 An example of inconsistent local predicates... 54

6.2 (a) A DAG folder organization G (FO)‘, (b) The associated digraph of
G {F O) ... 59

6.3 Spanning sub-DAGs of the associated digraph in Figure 8(b) 60

6.4 A tree folder organization for which totally hierarchical property fails . . 62

6.5 (a) A digraph, (b) ~ (i) Spanning trees of (a) ... 63

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OP FIGURES
(Continued)

Figure Page

6.6 (a) The digraph G (b) Spanning tree found by TCI algorithm (c)
Spanning tree found by ordinary B F S .. 64

6.7 Redundant filing p a th s ... 67

6.8 Counterexample to Theorem 3.6 if non redundancy condition fails 69

6.9 (a) A DAG TO (b) Its associated digraph (c) Digraph resulting from
TCI algorithm... 70

7.1 A folder o rganization ... 73

7.2 Class hierarchy of a folder organization........................ 74

7.3 An example of a folder organization.. 78

7.4 Procedure of forming an evaluated attribute list 83

7.5 A portion of system synonyms in a th e s a u ru s .. 89

7.6 An example of an association d ic tionary .. 90

7.7 An AND/OR rule tree representing a collection of ru le s 93

7.8 An example of rule t r e e s ... 95

7.9 Convert a predicate to a disjunctive normal fo rm 102

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

In an office environment, information is a resource that is needed to perform office

workers’ jobs. We use information to make decisions and enhance productivity.

Generally, information is exchanged in the form of documents [11,16]. For document

management and retrieval, there is a lack of information technology (in particular,

customized to individuals in an office environment) for representing and organizing

massive information in the multimedia (such as paper and electronic) environment,

for storing information pertaining significantly to the individuals into information

repositories, and for easily processing and retrieving information when needed (and

thus, the corresponding documents could be referred directly from repositories).

There also is a lack of information access technology that allows an efficient search

of large distributed information repositories [32].

1.1 TEXPROS

TEXPROS (TEXt PROcessing System) [32, 52] is a personalized, customized

office information processing system for processing and retrieving office documents.

Basically, it has the following major features:

• Modeling the behaviors of common office activities using the state-of-the-art

document model [32, 38, 39, 40, 51, 57, 59].

• Classifying documents into types based on their structures [19, 20, 21, 53, 54,

55]. Each document type is defined in terms of attributes to form a frame

template.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

• Extracting the most significant information from an original document to form

a frame instance [19, 20, 21, 53], with respect to the frame template of the

original document. The frame instance is a synopsis of the original document.

• Filing frame instances into folders using a predicate-driven approach [57, 58,

59]. That is, a frame instance is filed in a folder if it satisfies the predicate of

the folder.

• Retrieving information from the folder organization [30, 31, 32, 33, 34]. Users

retrieve documents or information contained in documents on the basis of the

information in their frame instances1.

In TEXPROS document Model, a document type (frame template) is formed

by sampling a stream of office documents, abstracting their general attributes,

and grouping them into a class. The frame template, filled in by the instances

of a particular office document, yields an organized synopsis of the original

document which we call a frame instance. Figure 1.1(a) is an original document

(a memorandum). Figure 1.1(b) shows the frame template M em o which describes

the attributes (or properties) for the class Memo. Each memorandum in this class

has attributes From (or Sender), To (or Receiver), Subject, Date, Content, etc.

The attribute Content represents the non-structured part of the frame template

M em o. The rest of the attributes represent the structured part of M em o. The

frame template is instantiated to form a frame instance by assigning values to the

attributes of the frame template. Figure 1.1(c) shows the corresponding frame

instance for an original memorandum (Figure 1.1(a)) of the type, which is specified

by the frame template M em o (Figure 1.1(b)).

Frame instances of documents can be grouped into folders based on how users

organize their information. The folder organization represents the user’s desired

1We keep the original documents in the storage separately from the frame instances.
Users can retrieve them as needed. It improves the system performance and reduces cost.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

N«w Jwmy Initttufr of Tachnology
Departawnt o f CoapuCar t In fo rm ation sc ien ca

S x t-----------------

MEMORANDUM

TO:

I OS Quilifytm Fjsminsllon

II is my pleasure to iofonn (bat the CIS Qualifying

Examination Committee has recotnmented to me that

you have passed the qualifying which was

held in the Fall semester o f 1991 conditionally. It

is contingent upon successful completion o f a course

in Real-Time Systems.

(a)

From
FirstName

LastName

To
FirstName

LastName

Subject

Date

Day

Month

Year

Content

/

From
FirstName John ^ J JJ J
LastName Smith Y — 7 /

To
FirstName Tom J 1 /

LastName mi ^ j j
Subject aSQusUfyinpExanyhuioo

Date

Day 7 "w—/ J
Month Jan.

Year 1992 ■*-----' '

Content

passed the qualifying
examination in the Fall

semester of 1991 cooditiooally
completioo of a course
in Real-Time Systems

(b) (c)

F igu re 1.1 (a) An original document (b) Its frame template (c) Its frame instance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

document filing organization. The document type hierarchy provides a means of

identifying and organizing structural commonalities among documents, in terms of

frame templates, and thus a means of classifying various documents. The overall

architecture of TEXPROS is sketched in Figure 1.2. There are four persistent

storages: (1) Document Sample Base contains sample documents for document classi

fication; (2) Frame Instance Base stores frame instances in the folder organization;

(3) Model Base has definitions of frame templates, folders2, document type hierarchy

and folder organization; and (4) Knowledge Base consists of system rule base, fact

base, system catalog and association dictionary.

Paper
Document

Electronic
Document

USER INTERFACE
Scanner

Disited
Image Folders with Criteria A Filing Directions

Query

Encoded

D ictii easy, Thtsasuvs. facts. i i t r

Model
Base

Base

Information

Retrieval

Subqrztem

Document
Filing

Snbeyatem

Frame
Instance

Base

Folder
Reorganization

Snbayztem

Figure 1.2 Overall architecture of TEXPROS

2Note that each frame instance in the frame instance base has a unique identifier
associated with it. A folder contains a set of frame instance identifiers which satisfies
the criteria of the folder.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Optical Character Recognition (OCR) Subsystem [7, 6, 19, 47, 53]: A paper

document is digitized and thresholded into a binary image by a scanner. In

order to encode information from a mixed-mode document which contains text,

graphics and pictures, the document image is segmented into textual blocks,

graphic blocks and picture blocks. Each block can be further divided into

smaller blocks, and all the blocks are encoded.

• Document Classification Subsystem [19, 20, 21, 53, 54]: An encoded document

is automatically identified as a document class (frame template) by the sample-

base approach. The document type hierarchy is constructed using the concept

of specialization and generalization of frame templates. Furthermore, the

synopsis of the document is extracted to form a frame instance based upon

the structure of the document (i.e. its frame template) and the significant

information pertinent to users.

• Document Filing Subsystem [38, 40, 50, 58, 59]: A set of frame instances can

be grouped into a folder on the basis of user-defined criteria. TEXPROS allows

a user to define a folder organization that mimics his/her filing system. The

folder organization is made up of folders which are linked via filing directions.

An incoming frame instance can be filed into an appropriate folder if it satisfies

the criteria of the folder.

• Information Retrieval Subsystem [30, 31, 33, 34]: This information retrieval

subsystem is capable of processing incomplete, imprecise or vague queries and

providing meaningful responses to a user. It provides a more flexible and

cooperative capability for interpreting and processing queries.

• Folder Reorganization Subsystem [50]: The folder reorganization subsystem

provides a set of operations for reorganizing folder organizations, and changing

the structure of the organization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

1.2 Scope of the Dissertation

This dissertation mainly focuses on the office information modeling, and the

document filing. The scope of this dissertation covers the following aspects:

• Giving an in-depth study on the TEXPROS document model.

The document model for TEXPROS was proposed in [38, 40, 50, 52, 59].

The model employs a dual approach to classifying and categorizing the office

documents by defining both a document type hierarchy and a folder organization

(or logical filing structure). The document type hierarchy depicts the structural

organization of the document types used in the problem domain. It identifies

and organizes the structural commonalities among documents, and facilitates

classifying various documents. The folder organization represents the user’s

view of the document filing organization. A folder is a heterogeneous set of

frame instances; that is, a folder contains frame instances over different frame

templates. This dissertation gives a formal specification of the TEXPROS

document model3. A frame template (document type) specifies the structure

common to different documents or frame instances (document instances) of the

same kind. The folder organization is defined using predicates and a rooted

DAG for specifying the document filing view.

• Proposing an algebraic query language for heterogeneous environment.

The algebra-based query language in TEXPROS document model, called

2)_algebra, was proposed in [38, 39]. We observe that some operators in the

-algebra do not support heterogeneous property of the TEXPROS document

model. For example, consider the project operator (7r). Assume that there are

two frame instances, f ix = [(T itle : A Office Model), (Author : John Smith)]

3The TEXPROS document model successfully couples a precise mathematical definition
with a rooted DAG representation and nested forms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

and f i2 = [{Name : John Smith), (P osition : Professor), (DegreeObtained :

PhD)], in the John-Smith folder. Since the project operator in [38, 39] only

allows the projected attributes coming from the same frame template, the query

7rTi.l.ll«thor.D.fr..o»«.i»d (J°hn_Smith) = []. This dissertation extends 2?_algebra

operators to fit heterogeneous environment [40]. Furthermore, V .algebra only

deals with restructuring (nest and unnest) operators for a single attribute. In

the proposed dissertation, two sets of restructuring operators are defined. One

is nest (i/) and unnest (//) operators for a single attribute as in [39]. The other

one is nest (i/*) and unnest (//*) operators for multi-attributes. The reason of

introducing these two sets of restructuring operators is that u and p. are not

the special case of v* and //* in TEXPROS document model, respectively.

• Studying the construction and reconstruction problems of a folder organization.

When a user adds a new folder with arbitrarily defined predicate to a folder

organization, it may cause two abnormalities: inapplicable edges (filing paths)

and redundant folders. This is called the Construction Problem. To resolve this

problem, the concept of predicate consistency is discussed and an algorithm is

proposed to prevent such abnormalities. The global predicate [59] of a folder

governs the content of the folder. However, the folder level predicates (that

is, global predicate) do not uniquely specify a folder organization. From

this arises the Reconstruction Problem, namely, under what circumstance it

is possible to recover a unique folder organization from its global predicates.

The graph-theoretic concepts including associated digraphs, transitive closure,

and redundant/non-redundant filing paths axe used to investigate the Recon

struction Problem and show how a folder organization digraph can be efficiently

recovered from its associated digraph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

• Investigating the predicate-driven document filing.

Document filing is one of the most important components in TEXPROS. Given

a folder organization, in which the folders are specified using predicates, how

the frame instances all deposited in proper folders is based on the predicates.

A filing algorithm is proposed for filing a frame instance in the proper folders.

However, the critical issue of the algorithm is how to evaluate whether a frame

instance satisfies the predicate of a folder in the folder organization. In order to

solve this issue, a thesaurus, an association dictionary and a knowledge base are

introduced. The thesaurus associates the key terms that are actually residing

in the system and terms that are used by the users. An association dictionary

states the association relationship between an attribute of a predicate and a

frame template defined in the document type hierarchy. A knowledge base

represents background knowledge in a certain application domain.

1.3 Organization of the Dissertation

The remainder of the dissertation is organized as follows. Chapter 2 presents the

survey of related work on office document modeling, algebraic query language and

document filing. Chapter 3 introduces the preliminary concepts for defining the

TEXPROS document model. Chapter 4 formally defines the TEXPROS document

model, including frame instances, frame templates, a document type hierarchy,

folders, and a folder organization. Chapter 5 extends the existing P ̂ algebra and

its properties. Chapter 6 discusses a pair of problems for a folder organization: the

construction problem and the reconstruction problem. Chapter 7 investigates the

predicate-driven filing problem, namely, given a folder organization, in which the

folders are defined using predicates, how do the frame instances deposit in proper

folders based on these predicates? Chapter 8 summarizes the dissertation and gives

future research directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

RELATED WORK

In this chapter, an overview of the subjects related to document modeling, algebraic

query language and document filing is given.

2.1 Modeling Office Documents

Office documents are one of the basic vehicles for making decisions and taking actions

in office work [22]. Office documents exhibit a very broad spectrum of structure,

from standardized forms to free text. Basically, three types of structures can be

distinguished within a document: the layout structure, the logical structure, and

the conceptual structure. The first two structures are referred to as the standard

structures of documents in the Office Document Architecture (ODA) [11, 24, 26].

The layout structure is a standard for editing and formatting documents. The

logical structure describes the logical components of a document (such as title,

section, and paragraphs), and how they are related. The conceptual structure

represents the semantic aspects for the document contents. For example, the author

or the summary of a technical paper, and the sender of a memorandum are referred

to as conceptual components. The aggregation of conceptual components is the

document conceptual structure, and documents with analogous conceptual structures

are grouped in types [5]. The conceptual level of office documents has been considered

widely in the last decade [23, 35, 41, 43, 56, 60].

Modeling is often based on concepts used for semantic data modeling, such

as aggregation, association, and specialization [42]. Sometimes, the conceptual

structure is blended with ODA layout and physical structures, as far as query

formulation is concerned. For example, MULTOS [2, 49] is oriented to multimedia

document management. The conceptual components in a document are stored in

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

a database. Documents of the same structure with similar contents are grouped to

form a class.

The Kabiria document model [5, 44] is oriented to the classification and

retrieval of office documents according to their internal structure and operational

meaning. It includes a conceptual document model and a document retrieval model.

The conceptual document model concerns the semantic and logical description of

documents. The document retrieval model enriches the conceptual model with the

explicit description of both the roles of documents in the office and their dependencies

from the laws, regulations and habits of the application domain.

The TEXPROS document model was initially proposed in [38]. It adopts a

very natural view for describing the office documents. Documents are grouped into

classes. Each class is characterized by a frame template, which describes the type

for the class of documents. A frame template is instantiated by providing it with

values to form a frame instance, representing a synopsis of a particular document

associated with the template. Different frame instances can be grouped into a folder

based on user defined criteria. The document model describes documents using dual

hierarchies: a document type hierarchy (depicting the structural organization of the

documents), and a folder organization (representing the user’s logical file structure).

2.2 Algebraic Query Language

Mhlanga et al. [38, 39, 51] proposed an algebraic query language (called I?.algebra)

for manipulating objects in the TEXPROS document model. There are three groups

of work that are closely related to the T>.algebraic language. The algebra developed

by Guting et al. [18] also deals with documents. Following closely the ODA standard,

documents are described in terms of schemas, instances and layouts. A schema is

represented by an ordered labeled tree, which describes the logical structure and

data values contained in a class of documents. In contrast to Guting’s algebra, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

2 ?-algebra does not assume any particular (logical or layout) order among attributes

of a frame instance. The second group, led by Zdonik of Brown University, developed

the algebra for the ENCORE object-oriented data model [46]. While both of the

2?-model and ENCORE make use of attribute types and object type hierarchy, the

former doesn’t support object identity and abstract data types for encapsulation of

behavior and state. Furthermore, the operators in the X> .algebra mainly manipulate

heterogeneous objects (i.e., folders) that contain frame instances of different types.

This is in contrast to the operators in ENCORE’s algebra, whose operands must be

collections of objects of the same type. Su et al. [48] proposed an association

algebra (called A-algebra) using the pattern-based query formulation for object-

oriented databases. The operators of the A-algebra can be used to navigate a network

of interconnected object classes along the path of interest to construct a complex

pattern as the search condition. In contrast, the highlight operator is introduced

in the V .algebra simplifying such navigation. The heterogeneous property of the

operators in [48] is totally different from this dissertation in the sense that classes

defined in [48] are homogeneous and folders are heterogeneous. In other words, a

binary operator is said to be heterogeneous [48] if its two operands are from two

different classes, where the objects in each class have the same property (the same

set of attributes). However, the objects (i.e. frame instances) in an operand (i.e. a

folder) can be over different types (i.e. frame templates) in the T>.algebra.

2.3 D ocum ent Filing System

A document filing system provides facilities for storing and efficiently retrieving

documents. In the Kabiria [5, 44], the general task of the filing system is the acqui

sition and classification of documents. The filing process is carried out by three

modules: the Acquisition module (ACQ), the Classifier module (CLASS), and the

Insertion module (INS). ACQ enables the users to define class structures and to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

insert new document instances into the system in order to file them. In fact, the

system can file and then manipulate a document only if it recognizes its conceptual

structure. Therefore, as a new document type appears in the office, the system must

be provided with its description, comprising both the conceptual structure and the

links connecting the document types within the semantic network. The purpose of

CLASS is to identify the class a document instance belongs to. INS files classes and

instances in both the model base and the document base.

MULTOS [2] divides document filing systems into three categories in terms

of retrieval requirements and hardware capabilities: (1) Dynamic document filing

systems are used essentially as buffers allowing local storage of documents being

manipulated. Generally, a dynamic document filing system is accessed by a single

user. (2) Current document filing systems are used for documents that are frequently

accessed and so of current interest to the office. (3) Archive document filing systems

are used for less frequently accessed documents that have reached a stable state

where modification is infrequent. Prom hardware capacity point of view, archival

systems have the greatest capacity, followed by current document filing systems, and

finally systems for dynamic document filing. The three filing system categories are

also related to the document life cycle. Typically, one would expect a migration from

a dynamic filing system toward an archival system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

PRELIMINARIES

The TEXPROS document model uses the concepts of type, instance, domain, and

predicate to specify information representations.

3.1 Types, Instances and D om ains

The primitive types are in teger, real, string, tex t, and boolean. An enumeration

type is an ordered tuple of finite strings from an alphabet, that is, a finite set of

symbols. The primitive and enumeration types are called basic types. An attribute

name (or attribute) is a finite string of symbols. An attribute has a corresponding

type.

D efinition 3.1.1 (Type) Types are defined recursively as follows:

1 . A basic type is a type.

2 . Let At- be an attribute with its corresponding type Ti, 1 < i < m. T =

[(Ai : 7i), ..., (Am : Tm)] is a type, called a tuple type. Ti, ..., and Tm are called

the underlying types of T.

3. T = {Ti,...,T„} is a type, called a set type. Ti, 1 < i < n, is an underlying

type of T. □

D efinition 3.1.2 (Instance) Instances are defined recursively as follows:

1. An instance of a basic type is called a basic instance.

2. If Ai, ..., and Am, m > 1, are distinct attributes of types 7\, ..., Tm and Ix, ...,

and Im are instances of 7\, ..., and Tm, then I — [(Ax : I x), ..., (Am : 7m)] is an

instance, called a tuple instance, of the type [(Ai : 7\), ..., (Am : Tm)].

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

3. For T = {7\, ...,Tn}, let /* be an instance of an underlying type 7*. Then, a

set instance I of the type T is a set of instances of the types 7*. □

D efinition 3.1.3 (Equality of Instances) Equality between two instances is recur

sively defined as follows:

1 . Two basic instances are equal if and only if they are the same.

2. Let /,• = [(Atl : / tl), (Ajn : /,„)], and Ij = [(Ajj : Ij(), ..., (AJn : Ijn}] be two

tuple instances. Ii and Ij are equal if and only if their attribute-instance pairs,

(Atfc : Iik) and (AJfc : Ijk) are equal (i.e. Aik = kjk and /<fc = Iik) for every k.

3. Two set instances are equal if and only if they have the same instances. □

A tuple type T = [{Ai : T\), ..., (Am : Tm)] is called an aggregation hierarchy

[25] if an underlying type Ti is a non-basic type. We can use a path-notation, an

attribute followed by a sequence of zero or more attributes, to refer to an instance of

a particular component of an aggregation hierarchy. Let A, Bi, ..., Bn be attributes.

The instance referred to by the path notation A.Bi. • • • .Bn is defined as follows:

1. If n = 0, then the instance of the path notation is the instance of A.

2 . If n > 0, then the instance of the path notation is the instance of attribute

Bn within the instance of A.Bi. • • • .B„_i if A.Bi. • • • .B„_i is defined. The path

notation A.Bi. • • • .B„_i is defined if there is no set type within A.Bi. ■ • • .Bn_2 ,

and is undefined otherwise.

For example, in order to refer once the instance for the attribute year of the frame

instance in Figure 1.1(c), the path notation is Date.Year, assuming Date is not a

set type.

The set of all possible instances of a type T is called the domain of T. For

example, the domain of integer is the set of integers. We define DOM to be a

function mapping a type T to a domain of T as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

• If T is a basic type, then D O M (T) is the domain of T.

• If T = [(Ai : Ti), (Am : Tm)], then DOM(T) = {[(At : A), (Am : /m>] |

(A € DOM{Ti)) A ... A (Im e DOM{Tm))}.

• If T = {7i,...,T n}, then DOM (T) = {U tiA | (A C DOM{Tx)) V ... V

(A C DOM(Tn))}.

Let T = [(Ai : Ti), ..., (Am : Tm)] be a tuple type. Since a tuple instance

consists of attribute-instance pairs, D O M (T) ^ DOM{Ti) x ... x DOM(Tm). This

can be shown by the following example. Consider two tuple types:

• Em ployee = [(Name : string), (Age : integer), (Salary : real)]

• O rder = [(ProductName : string), (Quantity : in teger), (UnitPrice : real)]

Em ployee and O rd e r are different tuple types. The domain of a tuple type is the

set of all possible attribute-instance pairs. This is not the same as the Cartesian

product of the domains of the underlying types (such as, here, s tr in g x integer x

real).

Let Ti = [(Ai : 7\)], ..., and Tm = [(Am : T2)]. The usual Cartesian view of the

domain of T is DOM (Ti) x ... x DOM(Tm), which is too restricted, as shown in

the following example. Define the two tuple types:

• S tu d en t = [(Name: s trin g), (Major: s tring),

(SBirthday: [(Date: d a te), (Month: m onth), (Year: in teger)])]

• Facu lty = [(Name: s trin g), (Department: s trin g),

(FBirthday: [(Date: d a te), (Month: m o n th), (Year: in teg e r)])]

Consider the query: “Find all the students and faculty who have the same birthdatf ’.

Since the type [(SBirthday: [(Date: da te), (Month: m o n th), (Year: integer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

)])] and [(FBirthday: [(Date: d a te), (Month: m o n th), (Year: in teger)])]

are different, the instances from these two types cannot be compared to each other.

Thus this query cannot be answered using the standard Cartesian product approach.

However, our approach can handle this query since the underlying types of both

SBirthday and FBirthday are the same.

is-a-comp((B : Y) ,X) = <

3.2 Operations and Predicates

The intersection and union operations between tuple types (instances) are defined as

follows. Later on we will use these operations to define an IS-A relationship between

frame templates, and algebra operations. Let X = [(Ai : X \) , ..., (An : X„)], where

At (1 < i < n) is an attribute. If Xi (1 < i < n) is a type, then X is a tuple type. If

Xi (1 < * < n) is an instance, then X is a tuple instance. We introduce a predicate

is-a-component-of (denoted by is-a-comp) for tuple types and instances, defined as

follows:
r

true if 3(At- : Xi) in X

such that (B = A,-) A (Y = Xi)

false otherwise

where B is an attribute and Y is a type (or instance). That is, is-a-comp({B : Y), X)

is true iff X has a component with the same attribute and type (or instance) as

(B : Y).

Definition 3.2.1 (Intersection of Two Tuple Types (Instances)) Let X and X be

two tuple types (instances). The intersection of two tuple types (instances), denoted

by X fl“ X , consists of all the attribute-type (attribute-instance) pairs which are

common components of both X and X . That is,

X (~)a X = [(Bj: Xi) | (is-a-comp((Bi: X i), X) A is-a-comp((Bi: X »), AT))]

where B* is an attribute, and Xi is a type (instance). □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

D efinition 3.2.2 (Union of Two Tuple Types (Instances)) Let X and X be two

tuple types (instances). The union of two tuple types (instances), denoted by X\JaX ,

consists of all the attribute-type (attribute-instance) pairs which are from either X

or X . That is,

X U® X = [(Bj : Xi) | (is-a-comp((Bi: X i),X) V is-a-comp((Bi : Xf), X))]

where B* is an attribute, and A", is a type (instance). □

The operators “n °” and “Ua” are associative and commutative.

Since the emphasis of the proposed dissertation is on tuple instances, it will be

convenient to introduce the following notation. Let / be a tuple instance and let A

be an attribute or path notation. If the tuple type of / includes A as an attribute or

a path notation, then /[A] denotes the instance of A. If A is not in / , then /[A] is an

empty instance []. For example, consider the following tuple instance,

I = [{ Name: [(FName: John), (LName: Smith)]),

(QEAppl: [(SemesterTaken: [(Semester: Fall), (Year: 1991)]),

(IstChoice: Software Engineering),

(2ndChoice: Compiler)])].

Then, for the attribute Name, /[Name] = [(FName: John), (LName: Sm ith)]. Similarly,

for the path notation QEAppl. SemesterTaken. Semester,
A
/[QEAppl.SemesterTaken.Semester] = Fall.

We define predicates as follows. In the case where / is a tuple instance and /

is an instance, the atomic predicates have the following interpretations:

• Equality Predicate: If /[A] and / are over the same type, then the equality

predicate is /[A] = I.

• Comparison Predicates: If /[A] and I are over ordered types, then /[A] > I,

/[A] > I , /[A] < / and /[A] < I are the comparison predicates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

• Component Predicate: If A is an attribute, then is-a-comp((h : /) , /) is the

component predicate. Note that a component predicate can be represented by

an equality predicate. That is, is-a-comp((A : /) , /) is identical to /[A] = I.

• Membership Predicates: If /[A] is of type T and I is of type {T}, then /[A] G I

is a membership predicate. If / is of type T and /[A] is of type {T}, then

/ G /[A] is a membership predicate.

• Inclusion Predicates: If /[A] and I are of the same set type, then /[A] C / ,

/[A] C / , /[A] D I and /[A] D I are the inclusion predicates.

• Substring Predicates: If /[A] and I are strings, then /[A] C I and I C /[A] are

substring predicates.

A predicate is then defined as follows: (1) An atomic predicate is a predicate.

(2) If P is a predicate, then (P) and ->P are predicates. (3) If Pi and P2 are

predicates, then Pi A P2 and P x V P2 are predicates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

TEXPROS DOCUMENT MODEL

The basic elements of the TEXPROS Document Model are frame templates (and

their associated frame instances) and folder organizations (and their constituent

folders). The attributes (or properties) of frame instances are specified as frame

templates. The frame templates form a document type hierarchy whose members are

related by an IS-A relationship. The frame templates, and therefore the document

type hierarchy, are driven by the types of document in the office environment and

are relatively stable over time. Folders are defined by the user as heterogeneous sets

of frame instances of different frame template types. Frame instances may be added

to folders over time. A folder organization is defined by a user corresponding to the

user’s view of the document organization.

4.1 D ocum ent T ype H ierarchy

Let O denote the set of original documents in a user’s office environment. Consider

these documents of different classes. Each document class is represented by its

attributes to form a frame template. Information on a particular office document is

extracted according to its frame template by filling in attributes with instances, to

form a synopsis of the document which is called a frame instance. The relationship

among office documents, frame templates, and frame instances is shown in Figure 4.1.

In TEXPROS, a classifier creates frame templates for the office documents in

an office environment by sampling a stream of office documents, abstracting their

general attributes, and grouping them into classes. Formally,

D efin ition 4.1.1 (Frame Template) A frame template F is a tuple type F = [(Ai :

7 i), ..., (Am : Tm)], where A* (1 < i < m) is an attribute over the attribute type 7*.

F describes the information structure of a document class in O. □

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

Classification

Extraction Instantiation

Frame
Templates

Instances

Frame

Office
Documents

F igu re 4.1 Relationship among office documents, frame templates and frame
instances

Definition 4.1.2 (Frame Instance) Let a document o € O belong to a document

class F = [(Ai : 7\), (Am : Tm)], where A,- is an attribute, and Ti is an attribute

type. Then, a frame instance fi of a document o € O is a tuple instance of F, fi =

[(Ai : /i) , ..., (Am : /m)], where Ii is an instance of attribute type Ti extracted from

the document o. □

Given a frame template F = [(Ai : 7 \), ..., (Am : Tm)], the attributes Ai, ...,

Am are called the top level-attributes of F. We use < F > to denote all the top level

attributes of F. Let A be a top-level attribute and A.Bi. • • • .B* be a path notation for

some attribute B*. We will simply use attributes to refer to top-level attributes or

path notations when the context is clear. Let T(F) denote all the possible attributes

of F. Let S C T(F). We define the <S-instance of a frame instance fi, denoted fi(S),

to be the tuple instance of (Ay : Ij) where Ay € S . If <S g Y(F), then fi(S) = [].

For example, let fi be the frame instance shown in Figure 1.1(c) and let S be (From,

To, Subject, Date.Year}. Then fi(S) is the tuple instance [(From: [(FirstName:

“John”), (LastName: “Smith”)]), (To: [(FirstName: “Tom”), (LastName: “King”)]),

(Subject: “CIS Qualifying Examination”), (Date.Year: “1992”)]. If S consists

of a single attribute, say A, then f i(S) is simply written as /i[A]. For example in

Figure 1.1(c), /i[Date.Month] = “Jan.” .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Frame templates are related by specialization and generalization [3, 29]. They

naturally form a hierarchy which helps to classify documents. An illustration of such

a hierarchy is shown in Figure 4.2, where the relationship between frame templates

is specified by an IS-A relationship. Formally,

D efin ition 4.1.3 (IS-A Relationship) Given two frame templates F i and F 2 , F i

IS-A F 2 if and only if the attribute-type pairs of F 2 are a subset of the attribute-type

pairs of F i, or equivalently F x D® F 2 = F 2. □
P ublicario fljaper

Tide

Authors
LName

Cicy

Affiliation S tile
Address

Country

Zip

Abstract

From

To

Procrtdingi_An>cie

Tide

FNam e FNi FName
Authors Authors

LNam e LNam e LName

City City Q ty

Affiliation Stale Affiliadoa Stale State
Address Address

Country Country

Zm ■3L
Abstract Abstract Abstract

From From From

T o

Nam e From
Days

V olum e To
Date

Journal M onthM onth Book
PubDate

Month Year
PubDate

Year Q ty ISBN

Publisher Place Stale Publisher

Country

F igure 4.2 IS-A relationship among the frame templates

Figure 4.2 shows the IS-A relationships among four frame templates: P ap e r,

Jo u rn a l-A rtic le , P roceedings-A rticle and B ook-Chapter. For example,

Jo u rn a l-A rtic le IS-A (is a specialization of) Paper. Whereas, P a p e r can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

be viewed as a generalization of Jou rna l ̂ Article, P roceedings_A rticle and

B ook-C hap ter.

T heo rem 4.1.1 The IS-A relationship among frame templates is a partial order.

Proof: Obviously, the IS-A relationship is reflexive, transitive and antisymmetric.

□

The IS-A relationship is transitive, so it is convenient to define an immediate-

IS-A relationship as follows.

D efin ition 4.1.4 (Immediate-IS-A Relationship) Let F i and F 2 be two frame

templates. Assume F i IS-A F2. We define Fi immediately-IS-A F 2 (denoted US-A)

if and only if there exists no frame template F Ft or F2) such that F i IS-A F

and F IS-A F 2. □

Given an US-A relationship, we define a document type hierarchy VH(V, E) as

follows. Each vertex in V(VH) corresponds to a frame template. The root vertex

F r of T>H is the generic document type (i.e., F IS-A F r, VF € V((D%)). Given two

frame templates F* € V^DK) and F ;- € ViVU) (i ^ j) , (F,-,Fj) e E iV H) if and

only if F t- US-A Fj. If we impose the additional restriction that whenever x US-A y

and x US-A z, then y = z, then we obtain a tree document type hierarchy.

4.2 Folder O rganization

A folder can be considered as a finite set of frame instances over different frame

templates. That is, the folder can be homogeneous or heterogeneous. Consider frame

instances to be grouped into folders on the basis of user-defined criteria, specified as

predicates, which determine whether a frame instance belongs to a folder. A formal

definition of a folder follows.

D efinition 4.2.1 (Folder) Let Q denote the set of all the potential frame instances

for a user’s office environment. A folder f is a set of frame instances in fl which satisfy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

a given predicate P. That is f = {fi | (fi 6 ft) A P(fi)}, where P(fi) asserts that the

frame instance fi satisfies the predicate P. We say P is the predicate associated with

the folder f. □

fi_l «i_2
Title A Data Model for Office Document Systems

Sender
FName Peter

Authors
FName John LName Thomas
LName Smith

Receiver
FName John

Affiliation

Organization New Jersey Institute o f Technology LName Smith

Address

Qty Newark

LetterDate

Date 12
State New Jersey Month March
Country U.SA. Year 1990
Zip 07102

SemesterAcpt
Semester Fall

Abstract Year 1990

Days
From 16

To 20 fi_3
Date

Month August
Sender

FName Peter
Year 1993 LName Thomas
City San Francisco

Receiver
FName John

Place State California LName Smith
Country U.S.A. StdID 000-90-1234

Proceedings 3rd Int. Conference on Office Systems

NoticeDate
Date 29

Publisher IEEE Computer Society Press Month Novembei
From 124. Year 1991
To 136

SemesterTaken
Semester Fall

Year 1991
fi_4 Outcome Pass

Name
FName John
LName Smith 1 fi-5

Univ Attended
UnivName NYU

Name
’Name John

Degree MS .Name Smith
Year 1989

SemesterTaken
Semester Fall

GRE
Verbal 500

QEAf
Year 1991

Quantitative 800 pl IstChoice Software Engineering
Analytical 660 2ndChoice Compiler

GPA 3.85

Figure 4.3 A folder for the Ph.D. student John Smith

Thus a folder is a repository of frame instances which satisfy the folder’s

predicate. For example, in Figure 4.3, five frame instances relevant to John Smith are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

grouped into the John_Smith folder. The predicate associated with the John_Smith

folder might be specified as follows:

P{fi) = C/t[Name] = [{FName : John), (LName : 5mit/i}])

V ([{FName : John), (LName : Smith)] e /{[Authors]

V (/{[Receiver] = [(FName : John), (LName : Smith)])

If f contains frame instances over frame template F, then we say f is associated

with F . We use f(F) to represent all the frame instances in f that are over the frame

template F. If there is no frame instance in f that is over F, then f(F) = <j>. We use

<f> to represent all the frame templates associated with f. Consider Figure 4.3, for

instance, <John_Smith> = (Publication , P hD A ccep tL etter, P hD Q E R esu lt,

U n ivT ranscrip t, QEApplication}. Then, John_Smith(Publication) = {/i_l},

John_Smith(PhDAcceptLetter) = {/z_2}, John-Smith(PhDQEResult) = { f i .3},

JohnJSmith(UnivTranscript) = { f i .4}, and John_Smith(QEApplication}) =

{/*_5}.

Folders can be naturally organized into a folder organization, where there is an

edge from folder (vertex) ft- to folder (vertex) f) if folder f,- is a subfolder of folder

f, (i.e. every frame instance of f, is in fi). For example, Figure 4.4 shows a folder

organization represented as a directed tree with seven folders, where the edges are

directed from a folder to its subfolders. We will assume that the predicate for a

child folder f is obtained by imposing an additional restriction or predicate on the

uniquely defined predicate of its parent folder f. That is, if f, is a child of f„ then

Pfj = Pff A 6j, where 6j is the additional predicate imposed on f,-, over that imposed

on fj, and Pf. and Pf;. are the predicates associated with fi and f W e call this

additional predicate 6j a local predicate. In contrast, we call the folder predicates Pfi

and Pf. the global predicates of folders ft- and f,, respectively. Thus a frame instance

is in a folder fi if it satisfies the global predicate for ft while it is also in a child f, of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

ft- if it satisfies the additional requirement represented by Sj. In set terminology, ft- =

{fi | fi € fi A Pu (fi)} and fj = { f i \ f i e Q A Pf. (fi)}. Since Pf. = Pfi A Sj, then fj C ft.

The paths in a tree folder organization correspond to filing paths. A directed

edge (ft , fj) on a filing path indicates that frame instances in folder f, are filed into

folder fj if, in addition to the global predicate for f„ they also satisfy the local

predicate for fj. The filing path for a folder f, in a tree folder organization is the

unique path from the root of the tree to f,. For example, in Figure 4.4, the filing

path for the folder f4 is fi -> f2 -> f4.

Figure 4.4 A tree folder organization

The child folder fj of a parent folder f, is called a subfolder (or immediate

subfolder) of f,-. In the more general situation where there is a nontrivial filing path

from fj to fj, we refer to fj as a remote subfolder of ff. For example, in Figure 4.4,

every folder in the tree is a remote subfolder of the root folder fx.

The tree model for a folder organization generalizes naturally to a DAG

(Directed Acyclic Graph) Folder Organization, where the underlying modeling graph

is a rooted DAG whose vertices correspond to folders specified as usual by global

predicates, and the root folder is the starting point of document filing. In a DAG

folder organization, just like in a tree folder organization, the frame instances

belonging to any folder f are obtained by imposing an additional local predicate,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

associated with f, on the global predicates associated with the immediate prede

cessor vertices (or folders) of f. However, unlike in the tree organization there may be

more than one immediate predecessor. That is, the global predicate for f is obtained

by imposing an additional requirement, represented by the local predicate for f, on

the global predicate of each immediate predecessor folder of f. Let fi, ..., fk denote

all the immediate predecessor folders of the folder f, and let Pi (I < i < k) be the

global predicates for f,-. The global predicate for f is then just S A (Pi V ... V Pk),

where S is the local predicate associated with f, or equivalently 8(Pi + ... + Pk).

E xam ple 4.2.1 An example is shown in Figure 4.5, where the local predicates are

Dept = CIS, S ta tus = PhD, Status = Special Lecturer, Name = John Smith, Name

= James Davis, and Name = Kevin Johnson. Thus the frame instances in the James

Davis folder satisfy the global predicate:

(Name=James Davis) A [((Dept=CIS) A (Status=PhD)) V

((Dept=CIS) A (Status=Special Lecturer))]

□

as
Dept.

PhD
Students

Special
Lectures

John KevinJanies

Smith Davia Johnson

Figure 4.5 An example of DAG folder organization

A folder organization may be formally defined as follows.

D efin ition 4.2.2 (Folder Organization) A folder organization is a two-tuple,

PO(G, A) = [G(V,E), A], where:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

1. G(V, E) (also denoted G(TO)) is a rooted DAG, with every vertex reachable

from the root, and

• Each vertex in V(G) corresponds to a folder; the root vertex denotes the

generic folder of TO .

• A directed edge (fr, fj) € E{G) indicates that frame instances in fr that

additionally satisfy the local predicate for fa ls o belong to fj.

2. A = {<5,- | 1 < i < |K(G)|} is a set of local predicates, <fr being the local

predicate for fj. □

Thus, a filing path from folder fr to folder fr in a TO is just a path from fr to fr

in G(TO). Note that there may be more than one filing path from folder fr to folder

V

Each filing path q of a folder f has an associated predicate p equal to Iluevfa) &v

The global predicate P for each folder f 6 V(G (TO)) can then be represented as:

p = e (n *o.
qepaths(f) veV(q)

where paths(f) is the set of all filing paths from the root to f and Sv is the local

predicate of v 6 V(q).

If two predicates Pi and P2 are equivalent, it is denoted by Pi ~ P2. The

equivalence of folder organizations, which we will use it to discuss the optimization

problem of folder organizations, is defined as follows.

D efinition 4.2.3 (Equivalence of Two Folder Organizations) Give any two folder

organizations TO (G (V ,E),A) and TO(G'(V', E '), A'), TO{G, A) is equivalent to

TO {G \ A!) if and only if V(G) = V'(G') and for Vf 6 V(G), 3 f € V'{G') such that

their global predicates (Pf, Pf/) are equivalent, that is, Pf ~ Pf,. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

A depends-on relationship between folders was introduced in [52]. Here, we

define a depends-on relationship in terms of a deletion operation Del. Del(TO(G, A), f)

indicates that a folder f is deleted from a folder organization TO(G, A). The folder

deletion operation Del may be defined as follows.

D efinition 4.2.4 (Folder Deletion Operation (Del)) Given a folder organization

TQ{G, A), Del(TO(G, A),f) = TO (G '(V ', E ’), A') where G' is the induced

subgraph [37] on the set of vertices V' C V{G) — {f} which are reachable from

the root of G, and A' is the set of local predicates for V7. □

Consider the folder organization TO (G (V ,E), A) shown in Figure 4.6, where

V = fs.fr.fs}- Del{TO{G, A),f2) = TO{G'{V',E% A') where V' =

Various depends-on relationships between different folders may then be defined

as follows.

D efinition 4.2.5 (Depends-On Relationships) Let T O = [G(V, E), A] be a folder

organization.

1. A folder f 6 V(G(TO)) is said to totally depend-on a folder f if f ^

V(G{Dd(FO{G, A),f)))-

2. A folder f € V(G(TO)) is said to partially depend-on a folder f if some, but

not all the (filing) paths from the root of TO {G , A) to f are disconnected in

Del(TO(G, A),f).

3. A folder f € V(G(TO)) is said to be independent-of a folder f if none of the

filing paths to P is disconnected in Del(TO(G, A), f). □

We denote these relations as follows: for f totally dependent-on f: P -<~< f; for

P partially dependent-on f: P -< f; for P independent-of f: P f.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

These relations are complete and mutually exclusive in the sense that for any

pair of folders P and f (P ^ f), exactly one of the relations (P f, f -< f, f f)

holds. There are also obvious relationships between these relations. For example, if

P f, then f -<>- P, because P -<-< f implies every path from the root to P passes

through f, whence deleting P from T O affects no path from the root to f. It is also

true that if P -< f, then f -<>- P, since P -< f implies there exists some path to P from

f, whence, by the acyclic nature of G(TO), there exists no path to f from P. We can

similarly establish, for example, transitivity, such as if fi -<-< f2 and f2 ■ « h , then

fi - « f3, and so on.

There is no partially depends-on relationship in a Tiree Folder Organization

because of the uniqueness of paths in a tree. For example, in Figure 4.4, f3 -*<-< fx,

and fj -o- U, but no folder partially depends-on any other folder. In a DAG folder

organization, however, all the depends-on relationships are possible. For example,

consider Figure 4.6, where f2 -<-< fi, fg -< fs, and f7 -o- f4.

We extend the totally-depends-on relationship to a set of folders as follows. Let

F be a set of folders in a DAG folder organization TO{G, A). We say a folder P

totally depends-on the set F (denoted P - « F) if P partially depends-on every folder

f € F and f' £ V'(G '(Del(TO(G, A),F))). For example, in Figure 4.6, folder fg -<-<

The relationship is, of course, not necessarily unique. Thus, in Figure 4.6,

we also have: f8 {f2 ,f6 }, fs -<-< {f3 ,fs}, and f8 -<-< {f5 ,f6}.

T heorem 4.2.1 / / F = {fi, ...,fjt} is a set of folders that the folder f totally-depends-

on, then f C U-=1 (f,).

Proof: By the definition of totally-depends-on a set of folders, every filing path

from the root to f passes through at least one vertex (folder) f,- € F. Thus, every

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

F igure 4.6 A DAG folder organization

instance in f must be contained in at least one ft-, whence it follows that f itself must

be contained in the union of the ft's. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5

EX TEN D ED 2?_ALGEBRA

Table 5.1 lists the extended Z) .algebra operators; they are categorized into nine

classes. Each class of operators will be discussed in turn in the following sections.

Table 5.1 Operators of the P .Algebra

Class Operators Type Operands Result
1 u ,n ,- binary folders folder
2 • binary fr. instances fr. instances

X binary folders folder
3 7T unary folder folder
4 a unary folder folder
5 M binary folders folder
6 P unary folder folder
7 v, v*, p, p* unary folder folder
8 cont, sum, avg, min, max unary folder NUM

9
7 * 0 (/3 is a subset of the
descendant attributes of
a top-level attribute A)

unary folder folder

Figure 5.1 shows a partial folder organization that a departmental chairperson

of a university may use in keeping track of the status of his/her faculty members and

Ph.D. students. We illustrate some of the operators using examples drawn from a

part of the folder organization shown in Figure 5.1.

5.1 Class 1 : Set T heore tic O perato rs

The first class of operators consists of the binary set theoretic operators for folders.

These include the union (U), intersection (fl), and difference (—).

D efinition 5.1.1 Let fi and f2 be two folders.

• The union of fi and f2, denoted fi Uf2 , is the set of frame instances that belong

to either fx or f2 or both, i.e., fi U f2 = [fi\(fi G fi) V [fi 6 f2)}.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

F ic u lty P ublications

B lake | Jo n es |

■ F aculty • V itae

Position - M em o

A pplication - U niversity

' U niversity T ranscrip t

T ranscrip t

• Em ploym ent

V isa

M em o

S m ith |

- Publication
■ F acu lty

Po sitio n

A p plica tion

■ E m p lo y m en t

V isa

■ University I
Transcript

R esearch

Interests

U p d ated

Transcript

PhDQE
R esult

Research

Interests

Qualified

f ~ \ 7
I M oore | | W elch |

'Publication
■Vitae

■ M eetin g

M em o

-PhDQE

Figure 5.1 A partial folder organization

• The intersection of fi and f2 , denoted fi n f2, is the set of frame instances that

are in both fi and f2 , i.e., fi D f2 = {fi\(fi € fi) A (fi 6 f2)}.

• The difference of fi and f2 , denoted fi — f2 , is the set of frame instances that

are in fx but not in f2, i.e., fi — f2 = {fi\(fi € fi) A (f ig f2)}.

T heorem 5.1.1 Both the union and the intersection operations are commutative

and associative. The difference operation is neither commutative nor associative (i.e.,

there exist folders fx and ^ such that f 1 — f2 # f2 — fi and fx — (f2 - fa) ^ (fx — f2) — f3 ,

respectively).

D efinition 5.2.1 Let f i l and fi2 be two frame instances over frame templates F x

and F 2, respectively. Then the concatenation of f i l and fi2, denoted f i l • f i2, is:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Class 2: C oncatenation a n d C artesian P roduct

The second class consists of the concatenation and Cartesian product operators.

[] if 3A G T (F x) 0 T (F2) such that fii[k\ ^ fizW

I fi otherwise,

33

where f i is a frame instance over F i Ua F 2 and for each (A, : K) in fi, either (A< : Vi)

is in fiy or (At- : Vi) is in fi2.

D efinition 5.2.2 Let fi and f2 be two folders. Then, the Cartesian product of fi

and f2, denoted fi x f2, is the folder {fil • fi2 | (fix € fl) A {fi, S f„)}.

We define {[]} = <f>. Thus, {[], fi} = {[]} U {fi} = {/i}. Intuitively, the

Cartesian product of two folders fi and f2 is a set of frame instances which axe

formed as a result of the concatenation of every frame instance of fi with every

frame instance of f2.

5.3 Class 3: P ro je c t O perator

The third class consists of the unary restrictive operator project (7r) for folders.

Informally, given a folder f, the projection of f onto a set of attributes S , denoted

7rs (f), yields a new folder which is a restriction of f to the attributes in S.

D efinition 5.3.1 Let f be a folder, and S = {Ax, A2, . . . , A*} where Ay, 1 < j < k, is

an attribute. The project operation is defined as follows:

* ■ * (0 = ‘

UF6 < f> M f(F))) if VF € < f > ,either S D T(F) = <j>

otS C T(F)

 ̂ UfgcM 71" * ^))) otherwise,

where

\ <j) if S D T(F) =<f>
*.(f(F)) =

(W W IJ S 6 f(P)} if 5 C T(F),

and tts (f (F)) = {fi(S) \ fi € f (F) } where

< f >= |J {F} U (J ({Fi, Ua FtJ Ua ... Ua F J) ,
F 6 > { F .i.F i j......P,f }6S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

f = U (f(F)) U U (f(Ftl) X f(F,-2) X .. . X f(F*)),
FeA ...

where A contains all the frame templates F 6 < f > such that S C T(F) and B

is a collection of sets of frame templates {Ftl,F,-2 ,...,F ,,} C < f > such that S C

U*=tl T (Fm).

F13 FIO
\ FI

F4
F2

F4 V12fiJ fiJ
VS V SF I F6

F2 F7 F4
F3 F8 F12

F6
F7 F4 F 14f iJ fiJ
F8 F12 F4F4 F9
F9 F9 F5F5 F5 F14
V S VS F9

(b)

F igure 5.2 Illustration of the project operation

We define 7t5 (0) = <f>, for all S. Figure 5.2 gives an example to illustrate how

the project operator works. Initially, we have a set of frame instances in the folder f

(Figure 5.2(a)). That is, f = {./LI, /L2, /L3, /L4, fiJ5, fi-6}. Each frame instance fiJ ,

1 < i < 6 , is over the frame template Fj. Let S = {A, B, C}. By the definition, < f >

= {Fx, f 2 u* f 4, f 2 U“ f 5, f 3 ua f 4, f 3 uq f 5, f 4 ua f 6, f 2 ua f 3 uq f 4, f 2 ua

f 3 ua f 5, f 2 uq f 4 Ua Fg, f 2 ua f 4 uq f 6, f 2 ua f 5 ua f 6, f 3 ua f 4 uq f 5, f 3

ua f 4 u° f 6, f 4 ua f 5 ua f 6, f 2 ua f 3 ua f 4 ua f 5, f 2 ua f 3 ua f 4 ua f 6, f 2 uq

f 4 u a f 5 u a f 6, f 2 ua f 3 u q f 5 ua f 6, f 3 u a f 4 ua f 5 u “ f 6, f 2 u q f 3 u a f 4 u q

F 5 Ua F 6 , ... }. In terms of the definition of Cartesian product, f = {fi-l} U (f(F2)

x f(F5)) U (f(F3) x f(F4)) U (f(F3) x f(F5)) U (f(F4) x f(F6)) U (f(F3) x f(F4)) x

f(Fs)) U (f(F4) x (f(Fs) x f(F6)) = {/LI, /L7, f i£ , fiJZ, fi. 10, f i . l l} (Figure 5.2(b)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

Finally, 7r5 (f) = ns (f) = {[(A : VI), (B : V2), (C : V3)], [(A : V13), (B : V4), (C : V5)],

[(A : K10), (B : V4), (C : V5)\, [(A : V6), (B : V7), (C : V5)]}.

Exam ple 5.3.1 Consider again the folder Smith in Figure 5.1. Then, the query

7r{Titi.1i«hor.,D.*.} (Smith) returns a folder composed of frame instances having attributes

T itle ,A u tho rs and Date, namely, {[(Title: “D.Model: A Data Model for Office

Documents”), (Authors:“Steve Smith”), (Date : [(Month : “June”), (Year: “1992”)])]}.

On the Other hand, 7T{Titl«,luthor t ,D«gr««Qbtiin«<l} (Sm ith) = 7T{Titl«,luthor*,D«gr««Obt&ined} (f) i

where f := Smith (Publication) x Sm ith(FacultyPositionA pplication). And the

result would be {[(Title: “D.Model: A Data Model for Office Documents”),

(Authors:“Steve Smith”), (DegreeObtained:“PhD”)]}. □

T heorem 5.3.1 Let f be a folder and Si and S2 be two sets of attributes. Suppose

*Sl (f) ^ $ and TrS2(f) ^ <f>.

(i) If Si = S2, then nSi (ttS2 (f)) = (ttSi (f)).

(ii) I f S i ^ S2, then nSl(nS2(f)) ^ 7r5 2 (7r5 l (0) except where both nSi(7rS2 (f)) and

(f)) are empty.

Proof: (i) is straightforward. For (ii), we consider two cases:

Case 1 : Si D S2 = <t>. Thus, irSi (irSj (f)) = irSi (nSi (f)) = <j>.

Case 2 : S iC \S2 ^ <\>. There are three subcases to examine:

(1) Si C S2. 7TSi (nSj(f)) = 7TSi (f) ± 7TS2(7TSi (f)) = <j>.

(2) S2 C S i. 7T5 i (7T5 j (f)) =<j)^ irS2{nSi (f)) = 7TS2 (f).

(3) Si <fL S 2 and S2 £ S x. 7r5 i (7rS2 (f)) = ttS2 (ttS[(f)) = <f>. □

Let S be a set of attributes. We say two folders fi and f2 satisfy the zero-one

condition with respect to S if for all frame templates F € < f i > U < f 2 >, either S

C T(F) or S n Y(F) = (f>.

Theorem 5.3.2 Let S be a set of attributes and 6 € {U, fl, —}.

(i) For any two folders fr and f2, 7Ts (fi0 f2) = ^ (f i ^ f l ^ ^) provided that fr and f2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

satisfy the zero-one condition with respect to S .

(ii) There exist two folders ft and f2 such that 7r5 (fi0 f2) # 7r5(fi)07rs (f2) where ^

and f2 do not satisfy the zero-one condition with respect to S . (i.e., there exists F €

< fi > U < f2 > such that S % T(F) and S n T(F) ^ <j>).

Proof: (i) It suffices to consider only the frame templates F € < f i > U < f 2 >

where S C T(F). Let T contain all such frame templates. We only prove 7Ts (fi Uf2)

= 7T5 (fi) U 7r5 (f2). For the other operators, they can be proved similarly. For any

frame template F e J 7, there are two cases to be examined:

Case 1 : F € < fi > fi < f2 >. Then,

7r5(M F)Uf2(F))

= W S) |J i s (f , (F) U f 2 (F))}

= 0>(5) I fi e fi(F) Vfi € f2 (F)}

= {fi(S) I fi e fi(F)} u {fi(S) I fi € f2 (F »

= ^ (f ,(F)) U 7r5 (f2 (F)). (By Definition 5.3.1)

(By Definition 5.3.1)

Case 2: F € < fi > — < f2 >.* Then,

* ,(fi(F)U fa(F))

= ^ (M F) U <f>)

= 7rs (f1 (F))U 7rs (f2 (F)).

Let f = fi U f2. Then

(Since F £ < f2 >, f2 (F) = <f>)

(Definition 5.3.1 and 7r5 (0) = <f>)

7rs (fx u f 2)

= UP6<„>u<(!> fe (f(F)))

= UPeP (>ra (f(F)))

= UP6, (^ (f ,(F)U f 2 (F)))

= UPeP K (f i(F)) U7rs (f2 (F)))

= UP6, (^ (f ,(F))) U U « , K (f 2 (F)))

(Since U, M W))) = *)
(f (F)= f ,(F)U f 2 (F))

(In terms of Case 1 ~ 2)

(By Definition 5.3.1)

rF € < f2 > — < fr > is similar to Case 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

= UF€<fl> (^ (ft(F))) U UF6<fl> K (f 2(F)))

= 7r5 (fi) U 7rs (f2). (By Definition 5.3.1)

Name Steve Smith DeptName
I

COE
DeptNime CIS Institution Rufgen
Institution NJIT Location Newark. NJ
Occupation Professor
Specialization Database DeptName CS

Institution Rutgen
Name John Blade Location New Bnmswick, NJ
Occupation Asst Prof.
Specialization Expert Sys. Name Jane Jones
Institution Rutgen Occupation Instructor

Name Steve Smith
DeptName CIS
Institution NJIT
Occupation Professor

Specialization Database

Name Jane Jones

Occupation Instructor

Specialization AI
Institution Rutgen

DeptName COE

Institution Rutgen

Location Newark. NJ

F igu re 5.3 Two folders fi and f2

(ii) Consider the folders ft and f2 given in Figure 5.3, and f3, f4, f5) f6 and f7 in

Figure 5.4. We examine each operator in turn.

Nunc Steve Smith Name Jane Jones Nune John Black Name John Black

DeptName a s Instructor Occupation Asst. Prof. Occupation A sstProC

Institution NJTT Spedalisation AI Sprrialirarion Expect Sys. Specialization Expert Sys.

Occupation P ra tcaor Institution Rutgers fnaflmfjrtts Rntgets fzitlitntirt^ Rtagess

Specialization Database DeptName COE DeptName COE DeptName CS

/ i \
Name Sieve Smith Name Jane Jones Name John Black Name John Black Name Jane Jones

DeptName O S f iw y p f r in a k i m o r Asst. ProC A s s l P ioC Instructor

Institution NJTT S perialfeadm i AI Expert Sys. Sprrlaliiation Expert Sys. AI

Occupation Professor bstim tion R utgen In jt jh ith u Rotgers Institution R atg ea fm jjfutfff! R m ges

Specialization Database DeptName COE DeptName COE DeptNnae CS DeptName CS

Name
f '5 "
Steve Smith

DeptName O S

Institution NJIT

Occupation Professor

Name

•7

Jane Jooes

Occupation Instructor

Specialization AI

Institution Rutgen

DeptName COE

Name Steve Smith Name Jane Jones

DeptName a s Occupation Instructor

Institution NJIT Institution Rutgen

Occupation Professor DeptName COE

F igure 5.4 Five folders f3, f4, fs, f6 and f7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

(a) For the “U” operator, let S = {Name, DeptName, I n s t i tu t io n , Occupation,

Spec ia lization} . 7r5(f1Uf2) # 7r5(f1)U7riS(f2), since 7r5 (fl Uf2) = f4 whereas

7T5 (f2) = f3-

(b) For the “n” operator, let S = {Name, DeptName, I n s t i tu t io n , Occupation}.

n f2) # 7Ts (fi) n 7T5 (f2), since 7r5 (fi fl f2) = f5 whereas n = f6.

(c) For the ” operator, let S = {Name, DeptName, I n s t i tu t io n , Occupation,

S pec ia lization} . 7r5 (fi — f2) ^ 7rs (fi) - 7r5 (f2), since 7rs (fi - f2) = <j> whereas

M M “ M M = h- □

5.4 Class 4: Select O p e ra to r

The fourth class consists of the unary restrictive operator select (<r) for folders. The

syntax of the selection operation on a folder f is 0 >(f), where P is a predicate clause.

D efinition 5.4.1 Let f be a folder and P be a predicate clause. Let S be the set of

attributes appearing in P. The select operation is defined as follows:

ap{ f) = «

UF6 < f> M f(F))) if VF € < f >, either 5 n T(F) = <f>

or S C T(F)

Uf €<?>(°>(f((F))) otherwise,

where

* ,(f(F)) =
{ f i \ (f i € f(F) A P(fi))} if 5 C T(F)

<t> i fS n T (F)= < £ ,

and erp(f(F)) = { fi | {fi 6 f(F) A P (_/£))}, where f and F are the same as those in

Definition 5.3.1.

Let S be the set of attributes appearing in a predicate clause P. If S %, T(F),

then we define ap(f(F)) = <f>. Furthermore, op{<j>) = <f> for any P .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

Exam ple 5.4.1 Consider again the folder organization in Figure 5.1 and the query:

List the PhD students who were accepted in the Fall of 1989 and have passed the

Qualifying Examination in or before the Spring of 1991. The algebra expression is

as follows: Result := V « i™ r> M f)) =

where P := ((SemTaken < [(Season : Spring), (Year : 1991)]) A

(SemAccepted = [(Semester : Fall), (Year : 1989)])), and

f := PhDStds(PhDAcceptLetter) x PhDStds(PhDQEResult). □

In this example, there is no frame template associated with the PhD Students

folder PhDStds that contains both attributes SemTaken and SemAccepted (cf.

Appendix A). The two attributes are contained in the Cartesian product of

PhDStds(PhDAcceptLetter) and PhDStds(PhDQEResult), in which the frame

instances having the same attribute name with different values are eliminated.

The following example shows that selection should usually be performed after

applying the Cartesian product to two folders.

Name
FName Sieve

Name
FName Steve

LName Smith LName Smith
DegreeObtained PhD Sex M
Inltitutkxi Rutgen Occupation Profexaor
Specialization Dllabaae Teaching Dacabaae

Name
FName Jane

Name
FName Jane

LName Jaoea LName Jonea
DegreeObtained MS Sex F
Inatitotioa NJIT Occupation Inatntctor
Specialization AI Teaching AI

Name
FName Steve
LName Smith

Sex M
Occupation Profeaxor
Teaching Databaae

Title A Model for Office Document!
Author Sieve Smith
Organization NJIT

Date
Month June
Year 1993

F igure 5.5 Two folders fj and f2

Exam ple 5.4.2 Consider the folders fi and f2 in Figure 5.5. Suppose we are

interested in the title, the author of a paper, and the author’s degree in the two

folders. Let S = {T itle , Author, DegreeObtained}. If we simply perform the

Cartesian product and projection on fi and f2 , we get 7rs (fi x f2) = {[(Title: A

Model for Office Document), (Author: Steve Smith), (DegreeObtained: PhD)],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

[(T itle: A Model for Office Document), (Author: Steve Smith), (DegreeObtained:

MS)]}. This would yield wrong results as it shows inconsistent and extraneous

information regarding the degree Smith obtains. To resolve this conflict, we could

apply the select operator before projection as follows.

Let f . 0* ,̂=[(nta»«:SteM),(UfcB»:Sm«A)j(̂ l * ^)-

Then 7T5 (f) yields {[(T itle: A Model for Office Document), (Author: Steve Smith),

(DegreeObtained: PhD)]}. □

Let Pi and P2 be two predicate clauses. Let Si and S2 be two sets of attributes

appearing in Pi and P2, respectively. We say a folder f satisfies the zero-one condition

with respect to Pi and P2 if for all frame templates F € < f >, either Si C T(F) or

£ - n T (F) = 0 ,V * € { l ,2 } .

Theorem 5.4.1 Let Pi and P2 be two predicate clauses.

(i) For any folder f, oPi (o>2 (f)) = <rP2 (ctP[(f)) provided that f satisfies the zero-one

condition with respect to Pi and P2.

(ii) There exists a folder f such that oPi (<tPj (f)) ^ crPj (aPi (f)) where f does not satisfy

the zero-one condition with respect to Pi and P2 (i.e., there exists F € < f > such

that Si % T(F) and Si fl T(F) ^ <j>, for some i € {1»2}, where Si, 1 < i < 2,

contains the attributes appearing in Pt).

Proof:

(i) Let Sy and S 2 be the two sets of attributes appearing in Pi and P2, respec

tively. First, we prove that aPi (o-Pj(f(F))) = crPj(crPi (f(F))), VF e < f >. There are

three cases to be considered:

Case 1: Si C T(F) and S 2 C T(F). Thus,

<rp> Pa(f(F)))

= < tp 1 {{fi I fi e f(F) A Piifi)}) (By Definition 5.4.1)

= m a P2(fi)} a P i i f i ') }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

= {fi' I fi' 6 {fi' I fi' 6 f(F) A Pl(fi')} A P2 (fi')}

= *r2 ({ f i ' \ f i ' € f (F) A P l (fi')})

= ap2 (crpl (f(F))) (By Definition 5.4.1)

Case 2: <S, C T(F) and S j fl T(F) = 0 , i , j € {1 , 2} and i ^ j . There axe two

subcases: S2 fl T(F) = <j> and Si fl T(F) = <f>. By Definition 5.4.1, aPi (<rPj(f(F))) =

0 = <rP> Pl(f(F))).

Subcase 2.1: 5 i n T (F) = 0 . So, a Pi(crPj(f(F))) = 0 = a P2(oPi(f(F))),

Subcase 2.2: * n T(F) = 0. So, <xPi (<rPj (f(F))) = <f> = <tPj (<rPi (f(F»)

Case 3: Si fl T(F) = <f> and S2 D T(F) = <j>. Thus,

^ 1 K (f (F))) = 0 = <7Pj(a„i (f(F))).

Therefore,

^ K 2(0)

~ c p1 (UF6<f> (o> 2 (f(F)))) (By Definition 5.4.1)

= u F€<f> K K (f (F))))

= UFe<f> (f(F)))) (In terms of Case 1 ~ 3)

= *p2 (UFe<f> K (f (F))))

= <tP2 (aPi (f)). (By Definition 5.4.1)

(ii) Consider the folder fi given in Figure 5.5. Let Pi be (Occupation =

Professor) A (DegreeObtained = PhD) and P2 be (S pecia liza tion = Database).

^ (^ (f 1)) = <t>-

°P2 (a Pi (fi)) = {[(Name : [(FName : Steve), (LName : Smith)]), (DegreeObtained :

PhD), (In s ti tu tio n : Rutgers), (S p ec ia liza tio n : Database), (Sex : M),

(Occupation : Professor), (Teaching : Database)]}.

Therefore, oPx (oPi (fr)) ^ aPi (aPi (fi)). □

Let P be a predicate clause. Let S be the set of attributes appearing in P.

We say two folders fi and f2 satisfy the zero-one condition with respect to P if for all

frame templates F e < f i > U < f 2 >, either S C T(F) or S D T(F) = (f>.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

Theorem 5.4.2 Let P be a predicate clause. Let 0 € {U, fl, —

(i) For any two folders fi and f2; op (fx0f2) = crp(fx)0crp (f2) provided that fx and f2

satisfy the zero-one condition with respect to P.

(ii) There exist two folders fx and f2 such that op(fidf2) # op (fx)0 0 > (̂ 2) where fx

and f2 do not satisfy the zero-one condition with respect to P (i.e., there exists F €

< f 1 > U < f2 > such that S T(F) and S fl T(F) ^ <f>, where S is the set of

attributes appearing in P).

P roof: (i) Let S be the set of attributes appearing in P. It suffices to consider

only the frame templates F e < fx > U < f2 > where S C T(F). Let P contain all

such frame templates. We only prove crp(fx — f2) = ap(fx) — ap{f2). For the other

operators, they can be proved similarly.

Let 8{0) be the set of all frame instances. First, we show ap (fx (F) — f2(F)) =

(xp (fx(F)) - op (f2(F)), VF £ P . There are two cases to be examined:

Case 1: F 6 < fx > D < f2 >. Thus,

M W - M F))

= { f i \ f i e (f,(F) - f2(F)) a P{fi)}

= { f i \ (f i e ft(F)) a (fi e f2(F)) a PC/!)}

= {fi I (fi € f,(F) A PC/!)) A (fi ft f2(F)) A P(fi)}

= {fi I fi 6 f,(F) A P(fi)} n{fi\fi<Z f2(F) A P(fi)}

= <7,(f,(F)) n {fi I fi e W O) - f2(F) A P(fi)}

= <7,(f,(F)) n ff,(<S(0) - f2(F))

= <7,(f,(F))-a,(f„(F)).

Case 2: F € < fx > — < f2 > .2 Thus,

a p(fx(F) - f 2(F))

= crp (fx(F) - <f>) (Since F ^ < f2 >, f2(F) = <f>)

= a p(fx(F)) - <rp(f2(F)). (Since f2(F) = <rp(fa(F)) = 4)

2F e < f2 > - < fx > is similar to Case 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

Let f = fi - f2. Then,

<rP(f i - h)

M H m

= UF6> „ (f (F)))

= UFe, K (f i (F) - f 2(F)))

= UFe, (o-,(fx(F)) - ^(faCF)))

= UFe, M h (F))) - UFe^ (aP(f2(F)))

= UF6<fl> K (f i(F))) - UFe<f2> (^ (f 2(F)))

(Since U,

(By Definition 5.4.1)

P € « f i> u < r2» - ^ (a p m m = <t>)

(f (F) = f , (F) - f 2(F))

(In terms of Case 1 ~ 2)

(By Definition 5.4.1).= ^p(fi) - Vpih)

(ii) Let P be (A = VI) A (D = V4).

Consider the folders fi, f2, f3 and f4 in Figure 5.6. We examine each operator

in turn.

I
A V 1 D V4

B V I E VS
C V3 F V6

A VI

B V2
C V3

V4
V7

VS

S u \
V4

VS
V6

A V I

B V2

C V3

X u
D V4

E VS

D V4

F V6

F igu re 5.6 Four folders fi,f2, f3 and f4

(a) For the “U” operator, crp(f2 Uf3) ^ a p(f2) U crp (f3), since

Uf3) = {[(A : VI), (B : V2), (C : V3>, (D : V4), (E : V7), (F : V8)],

[(A : VI), (B : V2), (C : V3), (D : V4), (E : V5), (F : V6)]}, whereas

a p(f2) Uffp (f3) = {[(A : VI), (B : V2), (C : V3), (D : V4>, (E : V7), (F : V8)]}.

(b) For the “fl” operator, crp(fx fl f4) # crp(fx) n crp(f4), since

op (fx D f4) = <j>, whereas

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

<rP(fi) n <rp(f<) = {[(A : VI), (B : V2), (C : V3), (D : Vi) , <E : V5), (F : K6>]}.

(c) For the operator, ap(fi - f3) ^ o>(fx) - crp (f3), since

^ (f i) - <rp(f3) = {[(A : VI), (B : V2), (C : V3), (D : K4>, (E : V5), (F : K6)]},

whereas

<TP(fi-fa) = 0- □

5.5 Class 5: Join Operator

Name
FName M m

LName Doe

S tu n ABD

U n tao ity

Attended

lMv_Name NYU

Degree^

Sought
MS

Year 1988

GRE

Verbal 500

Quantitative 780

Analytical 680

Dot

Name
FN ane M m

LName Doe

Sex M

Street 2 Bay St

Cky

State NJ

2 p 07102

GPA 3 JO

y:
StdName

FName M u

LName Dae

Type GA

Dw r CIS Bbray attendant

Supervisor Sieve Smith

StdName
FName James

LName Janet

Type TA

Duty Tench O S 431
Supervisor Steve Smith

Name
FName John

LName Doe
Status ABD

University

Attended

Uoiv_Name NYU

Degree., .

Sought
MS

Year 1988

GRE

Vohal 500

Quantitative 780

Analytical 680

StdName
FName John

LName Doe

T>pe GA

Duty CIS library attendant
Supervisor Sieve Sodth

Name
FName M u

LName Doe

Sex M

Addren

Street 2 Bay St

a ty Newwt

Sate NJ

2 p 07102
GPA 3 JO

StdName
FName John

LName Doe

Type OA

Duty aS R b rary tfen d ta t

Supervisor Sieve Smith

Figure 5.7 Three folders Doe, Assistantships and f

The join operator, which is applied to two folders, is defined in terms of the Cartesian

product and select operators. Intuitively, the join of folders fx and f2 based on a

predicate clause P, denoted fx txJp f2, is the set of frame instances in the Cartesian

product of fx and f2 that satisfy P. Formally,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

Definition 5.5.1 Let fx and f2 be two folders and let P be a predicate clause. Then

fl Xp f2 = <TP {fl X f z) •

Exam ple 5.5.1 Consider the two folders Doe and Assistantships in Figure 5.7. Then,

Doe ^ star-t=a-. Assistantships = f. □

5.6 Class 6: Renam ing O p era to r

An important operation in dealing with self-join [45] is renaming. This operator

helps to avoid the ambiguity when referring to an attribute in the corresponding

frame templates. The syntax and semantics of the operator are given below:

Definition 5.6.1 Let Ari, Ar j , ..., A,.m, AJn Aj3, ..., and AJm be distinct attributes.

Suppose that for each F € < f >, Ari £ T(F), 1 < i < m. Define

 A*-nv«-*3 1 .*,-2 * jm ^ p gU > (^ i r i , i r 2 h ,L j 2 k j m (f (^))))

where

ffn m = I {p*'■- W 1 ^ 6 (f(F))} if {A'" e T(F)
‘r‘ 1'“ 1 f(F) otherwise,

and for a given fi = [(A, : 14), (A2 : 1 4) , (A,, : Vjt) , ..., (AJln : V]m) (A* : 14)] 6

f(F), ft,, (fi) = [(*1 : V,>..... (A„ : VSt) <A,„ : Vim) (A* : Vi)].

Exam ple 5.6.1 Consider again the folder organization in Figure 5.1 and the query:

List all the PhD students who applied to take the Qualifying Examination in the same

semester that Mary Jones applied. The algebra expression is as follows:

Let P := (StdName2 = [(FName : Mary), (LName : Jones)]).

QExams2 := <rp j (QExams)).

Result := ((QExams) (QExams2)). □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

This example illustrates the use of the renaming (p), project (tt), and join (M)

operators. We perform a join of the QExams folder with itself. The join is accom

plished by first generating a folder QExams2 which is a copy of a portion of QExams

containing only Mary Jones’ applications where StdName is renamed to StdName2

and ExamTime is renamed to ExamTime2. Then a join operation is performed on the

two folders QExams and QExams2 to find all the PhD students from QExams whose

ExamTime is the same as ExamTime2 of QExams2.

— / _ i Adml enrr*]_______________AdmLetter |

Sender Sieve Smith
Receiver James Moore

AdmYear Fall, 1990
AdmCoodittoa Unconditional

Memo
Sender Sieve Smith
Receiver John Doe
Memo Dale 01/14/94

Peraooallnfo |
SldName Bill Welch
AdmYear Fall, 1991
AdmCondition Unconditional

F igure 5.8 A folder f used to illustrate the renaming operator

The renaming operator also helps to get specific frame instances from a

folder. For example, consider the folder f in Figure 5.8 and the query: “List

all the admission letters in the folder f.” Simply projecting the attributes on the

admission letter does not work, since 7r{iiBd.r^ e.lw 14bTwiM̂ tl8n} (f) = {[(Sender:

Steve Smith), (Receiver: James Moore), (AdmYear: Fall, 1990), (AdmCondition:

Unconditional)], [(Sender: Steve Smith), (Receiver: John Doe), (AdmYear:

Fall, 1991), (AdmCondition: Unconditional)]}, which produces an extraneous

and incorrect frame instance [(Sender: Steve Smith), (Receiver: John Doe),

(AdmYear: Fall, 1991), (AdmCondition: Unconditional)]. To solve this problem,

we can rename the attributes on admission letters by changing Sender, Receiver,

AdmYear, and AdmCondition to From, To, AdmY, and AdmCond, respectively. Then,

we can get the desired result by projecting onto the renamed attributes, i.e.,

^{rroa,To,i<t»T,l<toCo«l} (^Fri*,T<>,MnT,i4aC<»4«-Ua4.r,a.e«l*«r,i«r.ar,a<laC<m<atloo (0) = [(F r O m : S tC V C S m i t h) ,

(To: James Moore), (AdmY: Fall, 1990), (AdmCond: Unconditional)].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

The renaming operator also helps to establish some implicit relationship

between two folders. Consider, for example, two folders Faculty = {[(Name: Steve

Smith), (Occupation: Professor), (Area: Database)]} and PhDStudent = {[(

Marne: John Doe), (Advisor: Steve Smith)]}. Since Faculty x PhDStudent = <f>,

there is no way to know that Steve Smith is the advisor of John Doe. However, such

a relationship can be established by applying the renaming operator. Specifically,

(Faculty) x o. fPhDstudent) = {[(StdName: John Doe), (Advisor:

Steve Smith), (Occupation: Professor), (Area: Database)]}, which shows Steve

Smith supervises John Doe.

5.7 Class 7: R estru c tu rin g O pera to rs

Intuitively, the nest operator (v) produces frame instances over frame templates

from flatter ones (not necessary flat). Given a frame template and a subset of its

attributes, it aggregates a set type that agrees on those attributes. Before giving

the formal definition, we need some discussion. For simplicity, we only consider a

folder containing frame instances over the same frame template. Suppose the frame

template F = [(Ax : 7\), ..., (kh : Th), (kh+l : Th+l), ..., (A* : T*)] associated with

the folder f, where 0 < h < k. t/1=(Afc+1,...ifc)(f) yields a set of frame instances over

the frame template [(Ax : Ti), ..., (kh : Th), (A : T)], where T = {[(Ah+1 : Th+l), ...,

(A* : Tit)]}. As an example, consider Figure 5.9, f' = ^ lD.y=(HtgTi*,Htlo.,.)(f)-

y r
Scader Mike Johnson Sender Mike Johnson Sender MQce Johnson

Recdver John Sm ith Receiver John Smith Receiver John Smith
Subject Tutoring Wotfcihop Subject Tutoring Worfcxhop Subject TUtoring Woriobop

M aao D u e 02/24/1994 MemoDate 02/24/1994 MemoDate 02/24/1994

M tfDate 02/28/1994 M tgD ue 03/16/1994
MtgDay

MtgDate 0208/1994 MtgDile 03/16/1994
MtgTlme 2.-00 pm MtgTtme 3.-00 pm MtgTlme 2.-00 pm MtgTlme 3.00 pm
MtgPUce Q S C onf Room MtgPUce CIS Conf Room MtgPUce CIS Conf. Room

F igure 5.9 An example to illustrate v

However, consider Figure 5.10, the folder f2 is obtained by applying the operator

u. That is, f2 = t/lulliui. (tulUlll)(fi)- The question is 11 Can we get the folder f3 from fx

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

using the nest operator v ?’ The answer is negative. That is why we introduce two

nest operations (i/, u*) as follows.

Tttfo

W

VoL VoL

No. No.
IW

TUtWi Dm U
Aa* Uii

TM*

K m
Vol. VoL VoL VoL
No. Ha. Ho. No.

IW3

F igu re 5.10 An example to illustrate the need of v*

D efinition 5.7.1 (Nest Operator (u)) Let f be a folder and A be an attribute, u is

defined as follows:

 * , (0 = U (w . . * . ('(*»>•
Fe<f>

where

5 if {Ax,..., Afc} C< F >

f(F) if {Ai,..., A/t} <£.< F >

where I = < F > - {Al t ..., A*}, S = {t \ (Vfi)(fi € f(F) A t(i)

 <f(F))}.

m a ([ai =

□

Definition 5.7.2 (Nest Operator (v*)) Let f be a folder and A be an attribute, u*

is defined as follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

■£(*)= U W (f(F))),
Pe<f>

where

^ f (F)) = (S tf{Al A‘ } C < P >
(f(F) if{A1,...,Ai } 2 < F >

where I = < F > - { A ,,A * } , 5 = {(| (Vfi)(Ji 6 f(F) A t(() = fi(l) A t[A] =

{ / ? (* , , A*) | (V f i W € f(F) A f i (t) = «(<))})}. D

The unnest operators fi and fi* are sort of inverse of v and u*, respectively.

Definition 5.7.3 (Unnest Operator (fi)) Let f be a folder and A be an attribute, fi

is defined as follows:

FS<f>

where

{f(F) A £ < F >

S otherwise,

where let T be the type associated with A, and T = [{Ax : 7\), ..., (A* : 2*)] and £ =

< F > - {Ai,..., A*},

s = [{* I M) (f i € f(F) A t{£) = fi{£) A £(Al? A2, ..., A*) 6 fi[k])} T = {^}

} {t I (VyS)C/i € f(F) A £(£) = £(*) A £(Ax, A2, ..., A*) = fi[A])} if T = f

□

D efinition 5.7.4 (Unnest Operator (ft*)) Let f be a folder and A be an attributes.

ft* is defined as follows.

4(0 = u (4(f(F)),
F 6 < f>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

where let T be the type associated with the attribute A and £ = < F > — {A},

{t I (Vfi)(fi € f(F) A t(£) = fi{£) A f[A] € fi[k}} if A G< F >

and T is a set type

f(F) otherwise

□

Consider Figure 5.11, ft = /xTAK«M=(Fir«»IijrM»)(f) and f2 = /4Uaae(f).

J f \

TAName
FName John FName Jim FName John FName Tim
LName Smith LName King

TAName
LName Smith

TAName
LName King

TAAddr 123 John St TAAddr 123 John St TAAddr 123 John St
TAOffice rrc 4215 Teaching PASCAL Teaching FORTRAN

y r \
FName John FName Jim FName John FName Jim
LName Smith LName King LName Smith LName King
TAAddr 123 John St TAAddr 123 John St TAAddr 123 John St TAAddr 123 John St
TAOffice r r c 4215 TAOffice ITC 4215 Teaching PASCAL Teaching FORTRAN

y n \
TAName

FName John
TAName

FName Jim
TAName

FName John FName Jim
LName Smith LName King LName Smith

TAName
LName King

TAAddr 123 John St TAAddr 123 John St TAAddr 123 John St TAAddr 123 John St
TAOffice ITC 4215 TAOffice riC 4215 Teaching PASCAL Teaching FORTRAN

F igure 5.11 An example to illustrate unnest operators

5.8 Class 8: A ggregate O pera to rs

Class 8 includes five aggregate operators: count, sum, avg, min, and max. These

operators take a set of frame instances (a folder) as an argument and produce a

single value as a result. Their syntax and semantics are described below.

Definition 5.8.1 Let f be a folder. The syntax for an aggregate operator op on

an attribute A is opt (f), where AG T(F) for some F G < f >. Let 5 contain frame

instances in f that have the attribute A. Let |,?| represent the cardinality of S. (Recall

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

that fi[k] represents the value V in the pair (A : V) of fi.) The semantics of the five

operators are given below.

1. countA(f) = |£ |.

2. sumA(f) = 5D/!gs^[A] if |£ | > 0, and sumA(f) is undefined if |£ | = 0.

3. avgA(f) = (l / \ S \)Zfiesm ^ 1̂ 1 > 0. and avgA(f) is undefined if |S| = 0.

4. maxA(f) = maxfi6Sfi[k] if |£ | > 0, and maxA(f) is undefined if |£ | = 0.

5. minA(f) = m infiesfi[k] if 151 > 0, and minA(f) is undefined if |£ | = 0.

In general, one can calculate an aggregate operator independently from the rest

of a query and then replace it by its value.

Exam ple 5.8.1 Consider again the folder organization in Figure 5.1 and the query:

How many times has Samantha Adams taken the Qualifying Examination? The

algebra expression is as follows:

C O U n tp hDQEIU>ult to<Mlw (0 p bDQ Ea a . ult.l.c<lT<r=[(m »:Sam antha)>(LJru<:/lrfam4)] (P ^ D S t d s)) □

This example illustrates the use of the count aggregate operator. The number of

times Samantha Adams received her own qualifying examination results is returned.

5.9 Class 9: Highlight Operator

A frame template is defined as a tuple type and its underlying types can themselves

be bulk types. When this aggregation hierarchy becomes deep, path-notations may

become tedious. Here we propose a new operator, called highlight (y), as an alter

native to navigate down the hierarchy and take the user to a desired level of aggre

gation from where the data items can be accessed directly.

Let fi = [(At, Vi), (A2, V2) , . . . , (A,-, V i) , (A/, Vj)] be a frame instance. Let fi

be a subset of the descendant attributes of A*. The minimal cover of fi, denoted by

fimin, is defined as a subset of fi such that:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

1. every element in fi - fimin is a descendant of an element in fimin and,

2. no element of /3min is a descendant of any other element in 0min.

The Pmin is well-defined because there exists a unique subset that satisfies the

conditions 1 and 2 above. The /3-value of fi with respect to the top-level attribute

A,-, denoted by f ik.(fi), is the frame instance {(By, Wy)|By € 0min, Wj C dom(By) is

the value of By in JifA,-], 1 < j <|/?mJ } .

D efinition 5.9.1 Let f be a folder and let A be a top level attribute of F € < f >.

Let fi contain a subset of the descendant attributes of A. Then,

7 .,(f)= U (%,(f(F))),
F € < f>

where

{./■»(/?) I /■£ f(F)} if A € < F >
‘fl

<j) otherwise.

Exam ple 5.9.1 Consider again the folder organization in Figure 5.1 and the query:

Display the Database question which was weighted the most during the Fall 1990

Qualifying Examination. The algebra expression is as follows:

DBF90QExams := (^ r=Dota6aieAb-T1_=[(s____ (QExams))

x := max, (DBF90QExams)
{P o in t.}

Result := (< V » (D B F M Q E x a m s)) □

The first selection operation finds the database qualifying exam paper that

was given during the Fall of 1990. Then the attribute Problems is projected. The

max operator returns the maximum value of points for a particular question of this

paper. After selecting the problem which has the maximum points, project it over

the question of the problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH A PTER 6

T H E C O N ST R U C T IO N AND R E C O N S T R U C T IO N PR O B LEM S

This chapter will discuss a pair of problems for a folder organization.

• Construction Problem. When a user adds a new folder with an arbitrarily

specified predicate to a folder organization, it may cause two abnormalities:

inapplicable edges (filing paths) and redundant folders. This is called the

construction problem.

• Reconstruction Problem. Given a folder organization TO(G, A), the global

predicate for any folder in T O can be derived. But the global predicates do

not, of course, uniquely specify the folder organization. However, we may ask

under what circumstance can we uniquely recover the folder organization from

its global predicates? We call this problem the reconstruction problem.

6.1 T he C o n stru c tio n P rob lem

Initially, a folder organization TO (G, A) has only one folder fr (called the rooted

folder of TO) with the predicate ST = true, that is, fr contains all the filed frame

instances. Then, T O can be constructed by applying repeatly the addition operation

Add. Let the operation Add(TO(G, A), ,..., ffcn}, f) denote that a folder f is added

into the folder organization TO as a child of the folders ,..., f*n (n > 1). Formally,

the folder addition operation Add can be defined as follows.

D efin ition 6.1.1 (Addition Operation (Add)) Given a folder organization TO{G, A)

with folders f, G V(G) (i G (fci,..., kn}), and a new folder f with local predicate 5, the

operation Add{TO{G, A), (ffcl,f*,}, f) = TO (G '(V ', E'), A'), where A' = Au{<5},

V'{G') = V(G) U {f}, and E'(G') = E{G) U {(ffcl, f) , ..., (f*n,f)}. □

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

f2

f

f2

f

f

w (b) (c)

F ig u re 6.1 An example of inconsistent local predicates

The folder addition operation operation can be used to construct a folder

organization, in which the global predication for any folder can be derived by ANDing

the local predicates of the folders of a filing path. Then, does it allow a user to add

a new folder with an arbitrary local predicate? It is called construction problem of a

folder organization.

Exam ple 6.1.1 In order to illustrate this construction problem, let us consider

folder organizations shown in Figure 6 .1 . Figure 6 .1 (a) shows an initial folder organi

zation PO {G {V,E), A), where V(G) = {fx.f2 .f 3 }, E(G) = {(fx,f2), (fi,f3)}, and

A = (Jx, <J2, £3 }. And their local predicates are:

Si = (Dept = CIS)

’ S2 = ((Status = Faculty) A (WorkYear > 5))

S3 = (Status = Staff)

Then the corresponding global predicates of folders fx, f2 and f3 are Pi = Si,

P2 = Si A S2 and P3 = <5x A S3, respectively. Let us consider the following two cases:

• Let S4 = (WorkYear < 5) be the local predicate associated with a folder

f4 . The operation Add{TG, {f2 ,f3}, f4) yields a folder organization shown

in Figure 6.1(b). Then the predicate, <S4 A P2 = ((Dept = CIS) A (s ta tu s =

Faculty) A (WorkYear > 5) A (WorkYear < 5)) is false. It means that the filing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

edge (f2, f-t) is inapplicable since there is no frame instance that can satisfy both

P-i (the global predicate of f2) and 54 A Pi.

• Let £ 5 = (S tatus = Faculty) be the local predicate associated with a

folder fi;. The operation Add(PO, f2 ,h) yields a folder organization shown

in Figure 6.1(c). Then S5 A P2 is equivalent to P2 . That is, f2 = fs. The new

added folder fs is redundant to the existing folder organization. □

6 . 2 Consistency o f P red ica te s

When a folder with its local predicate is added into a folder organization, it may

create two abnormalities: inapplicable edges and redundant folders. In order to

eliminate such abnormalities, the consistency of a local predicate is defined.

D efinition 6.2.1 (Consistency of Local Predicate) Given a folder organization

F O(G (V ,E) , k) , Pk„ ..., and Pkn are global predicates associated with folders f^,

..., and ffc„, respectively. The local predicate £ of a folder f is consistent with respect

to the folder organization PO if and only if none of the following conditions holds

in Add(PO (G (V,E), A), (ffcl, ...,f*„},f):

1. 3Pi € {Pfcu ..., P*B}, Pi A 5 is false.

2. 3Pt € (P fcl, ..., P*n}, <5 A (Pfcl V ... V P/tJ is logically equivalent to Pf.

Otherwise, it is inconsistent. □

The consistency property of the local predicate of a folder ensures that there

is no redundant folder or inapplicable edge in the folder organization. Furthermore,

the consistency of a global predicate can be defined based on the consistency of the

corresponding local predicates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

D efinition 6.2.2 (Consistency of Global Predicate) Given a folder organization

TO(G, A), the global predicate of a folder is consistent with respect to T O if and

only if the corresponding local predicates are consistent. □

Let T O be a folder organization and 8 be the local predicate of a newly

added folder f. When the operation Add(TO, {ffcn },f) is invoked, the following

procedure can be used to determine whether 8 is consistent with the existing folder

organization. Let paths(f) denote all the possible filing paths from the root folder to

the folder f.

for each ft- £ {ffcu do

begin

the global predicate Pi := fa lse;

for each filing path q £ p a th s (ft) do

begin

p := true;

for each fo ld er f £ V(q) do p := p A 8f ;

Pi : = P V p ;

end;

end;

for each P i £ {Pfcl,..., Pfcn} do

if (8 A Pi) is fa lse or (<f A (P*, V ... V P tn) is logically equivalent to Pi th e n

re tu rn 8 is inconsisten t to T O

re tu rn 8 is co n sisten t to T O .

6.3 T he Associated D igraph o f a Folder Organization

A folder organization views folders as either subfolders of other folders or restricted

subsets of unions of other folders. We can succinctly summarize the possible inclusion

relationships among folders by defining an appropriate digraph which we will call an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

associated digraph. This section introduces the concept of an associated digraph

and examines some of its properties. The next section uses the associated digraph

to characterize when a folder organization can be uniquely reconstructed from its

predicates.

The associated digraph is defined in terms of a minimal union of folders that

contain a given folder. We require the definition:

D efinition 6.3.1 (Minsum) Let f, fi, and fit be folders, fi U ... U f* is a minsum

of f (denoted by f Cmin fx U ... U fit) if and only if f C fx U ... U fit and f £ fix U ... U f,{,

for any proper subset (fi-,,..., fi,} of (fx, ..., fit}. □

Given a folder organization TO(G, A), we define its associated digraph as

follows.

D efinition 6.3.2 (Associated Digraph) Let !FO(G, A) be a folder organization. The

associated digraph G(V,E) (denoted by G(^FG)) is defined as follows:

1. V{G) = V(G).

2. If f Cmin fx U ... U ffc, then (fi-, f) € E{G) (1 < * < k). □

Clearly, the associated digraph G of a folder organization TO(G, A) satisfies

that every vertex is reachable from the root fTOOt- Indeed, for any f (fi froot) € V(G),

I Qmin frooti whence (fi-oot) f) € E(G). Recall the standard definition:

D efinition 6.3.3 (Transitive Closure) Let G(V, E) be a digraph. The digraph

obtained from G by adding an edge (u,v) between any pair of vertices u and v

in V(G) whenever v is reachable from u is called the transitive closure of G. □

The associated digraph of a folder organization may not be the same as the

transitive closure of the folder organization, as the following example shows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

Exam ple 6.3.1 The digraph in Figure 6.2(a), and the local predicates 1 < i < 4,

associated with the folders f,-, define a folder organization.
t

di = (Status = Employee)

82 = (Salary < 50K) A (P osition = Professor)
<

S3 = (Salary > 50K)

84 = (Position = Professor)

The global predicates P», 1 < i < 4, associated with the f, are as follows.
r

Py = 81 = (S tatus = Employee)

P2 = 82 A Pi = (S tatus = Employee) A (Salary < 50K) A (Position = Professor)

P3 = £ 3 A Pi = (S tatus = Employee) A (Salary > 50K)
<

P4 = 84 A (P2 V P3) = ((Position = Professor) A (S tatus = Employee)) A

((Salary < 50K) V (Salary > 50K))

= (Position = Professor) A (S tatus = Employee)
*

Assume that the atomic predicates (Salary < 50K), (Salary > 50K), and

(P osition = Professor) are logically independent. Observe that, trivially, f2 Qmin fi,

fi Qmin fi, U Qmin h, and f4 Cmin ^2 U f3. Furthermore, f2 Cmin f4 since P2 is also

a restriction of P4: P2 = ((Salary < 50K) A P4). Using these minsum relations, we

obtain the associated digraph shown in Figure 6.2(b).

Figure 6.2(b) is not the transitive closure of Figure 6.2(a). For example, in

Figure 6.2(a), f2 is not reachable from f4 while it is in Figure 6.2(b). □

Given a tree folder organization PO(G, A), the next section shows that, under

suitable restrictions, G is the only spanning tree of G whose transitive closure equals

G. In general, the spanning sub-DAGs of the associated digraph are related to the

existence of equivalent, alternative folder organizations. Some spanning sub-DAGs

may be equivalent to the original folder organization in the sense that they are

DAGs of folder organizations that have the same global predicates as the original

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

f2

(a) (b)

F igure 6.2 (a) A DAG folder organization G(TO); (b) The associated digraph of
G(TO)

folder organization. The existence of such equivalent folder organizations provides for

the possibility of optimization problems. For example, one might seek an equivalent

folder organization which is a tree, or which has the least maximum degree, or the

minimum height, etc. However, some spanning sub-DAGs may not even correspond

to the DAGs of any folder organization. We may also differentiate among spanning

sub-DAGs according to whether they have redundant edges or not, defined as follows.

D efinition 6.3.4 (Reducible/Irreducible Folder Organization) A folder organization

TO(G(V,E) , A) is reducible if there exists an edge (ft,fj) € E(G) such that the

contents of each folder in TO(G(V,E), A) are the same as the contents of each

folder in TO (G(V, E - {(fi, fy)}), A). Otherwise, TO (G(V, E), A) is irreducible. □

E xam ple 6.3.2 (Spanning Sub-DAGs of Associated Digraph) The DAGs shown in

Figure 6.3 are all the spanning sub-DAGs of the associated digraph in Figure 6.2(b).

The first three sub-DAGs (a), (b) and (c) are DAGs of folder organizations with

the same global predicates as the T O in Figure 6.2(a), though some have different

local predicates. The DAGs in Figure 6.3(d) through (i) correspond to DAGs of

valid folder organizations, but in each case edges can be omitted without changing

the frame instances in each folder. For example, in Figure 6.3(d), (fa, f4) can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

Irreducible
Spanning

Sub-DAGs

/ \
C U / ' 5

° f 4 (a)

/ j X

) ^
D f 4 (b) (c) '

N

k ' '

Reducible
Spanning

Sub-DAGs

< 1 ^
4 (d)

< 1
(f)

I*4 (h)

V

(i)

Spanning Sub-DAGs
with No Corresponding

Folder Organization
(j) 00 °

(1) 0 I A

Figure 6.3 Spanning sub-DAGs of the associated digraph in Figure 8(b)

omitted. In Figure 6.3(e), (fi, f4) or, alternatively, both (f2 ,f4) and (f3 ,ft) can be

omitted. In Figure 6.3(f), (f^f-t) can be omitted. Similarly there are redundant

edges in Figures 6.3(g) through (i). In contrast, the DAGs in Figures 6.3(a), (b), (c)

are irreducible since none of their edges can be omitted without changing the frame

instances that can be in their folders. The last three DAGs (j), (k) and (1) are not

DAGs of any valid folder organizations. For example, in Figure 6.3(j), the global

predicate of f4 is not a local predicate based restriction of the global predicate of f3 .

Similarly for Figures 6.3 (k) and (1). Therefore, these DAGs could not be DAGs of

any folder organization based on the global predicates of Example 6.3.1. □

6.4 R econstruc ting A Tree Folder O rganization

The Reconstruction Problem asks: under what circumstance can we uniquely recover

a folder organization from its global predicates? We shall show that the following

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

extremely strong property is required to ensure that we can essentially recover

an original tree folder organization from its global predicates, or equivalently its

associated digraph.

Definition 6.4.1 (Totally Hierarchical Property) A DAG folder organization

TO(G, A) is totally hierarchical if and only if for every f, fi, f* in V{G), if f Cmin

fi U ... U fit then fi, ..., and fit are ancestors of f in G[TO). □

If TO (G, A) is a totally hierarchical free folder organization, then f Cmin u

... U fit implies that k = 1 and fit is an ancestor of f.

The totally hierarchical property is extremely strong and can easily fail to hold.

The following example shows this.

Exam ple 6.4.1 Take the global predicates

Pi = (Status = Employee)

P2 = (Salary < 50K) A P4
<

P3 = (Salary > 50K) A Pi

P 4 = (Position = Professor) A Pi

from Example 6.3.1, and the folder organization digraph shown in Figure 6.4 to

specify a new folder organization TOi. However, P 4 is also identically equal to

8.t A {P2 V P3), thus f* Qmin fi U (3 . But f2 is the child of f4 and f3 is the sibling of f4

in T O 1. Therefore, the folder organization T O \ in Figure 6.4 does not satisfy the

totally hierarchical property. □

Even more generally, if for any folder (vertex) f € G{TO), Pf = X) xechiidrm(f)Px>

where Px and Pf are the global predicates of x and f respectively, then f Cmin c,, U

q 2 U ... U q n, where {c^, c,2, ..., c,n } is some subset of the children of f. Thus, such a

folder organization violates the totally hierarchical requirement that minsums occur

only for unions of ancestors of f, and so such a folder organization is not totally

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

Figure 6.4 A tree folder organization for which totally hierarchical property fails

hierarchical. Since the indicated representation for Pf could easily hold, for example

when a folder is contained in a union of its descendants, the totally hierarchical

property is clearly very restrictive.

The totally hierarchical property does ensure that the associated digraph of a

folder organization and its transitive closure are the same, as shown by the following

theorem.

Theorem 6.4.1 The associated digraph G(V,E) constructed from a totally

hierarchical tree folder organization T O (G} A) is the transitive closure of G{TO).

Proof: By definition, V(G) = V(G). Let ff and fy be two folders in TO . We consider

two cases:

Case 1: If fy is reachable from ft- in G(V, E), then ff is an ancestor of fy, so that,

fy Cmin f,-, whence (f,-,fy) G E(G).

Case 2: If fy is not reachable from f,- in G(V,E), then (f*,fy) £ E(G). The

proof is by contradiction. Observe first that if fy is not reachable from fi in G(V, E),

then fi is not an ancestor of fy in G. If a t the same time, (fi, fy) G E(G), then by the

definition of the associated digraph, fy C min f,U ..., whence, by the totally hierarchical

property, ^ must be an ancestor of fy in G, contrary to our observation.

It follows that G(V, E) is identical to the transitive closure of G(V, E). □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F igure 6.5 (a) A digraph, (b) ~ (i) Spanning trees of (a)

C orollary 6.4.1 The associated digraph G(V, E) of a totally hierarchical tree folder

organization TO (G , A) is a DAG.

Proof: Suppose G is not a DAG. Then there would be a cycle i>2 , ..., v*, Vi in

G. By Theorem 6.4.1, G is the transitive closure of G. Thus, any two vertices in

{ui, V2 , ..., Vk} are reachable from each other in G by the definition of the transitive

closure of G. This is contrary to the assumption that G is a tree. □

Consider the digraph in Figure 6.5(a). Figures 6.5(b)~(i) are all the spanning

trees of Figure 6.5(a). However, Figure 6.5(b) is the only one whose transitive closure

is Figure 6.5(a).

If the original tree folder organization is totally hierarchical, then we can recover

this tree from the transitive closure as shown by the following theorem.

Theorem 6.4.2 Let T O = [G (y, E), A] be a totally hierarchical tree folder organi

zation and let G (T O) be its associated digraph. Then G (T O) is the unique spanning

tree of G { T O) whose transitive closure equals G (T O) .

Proof: Suppose some other spanning tree S T of G(TO) also has G{TO) as its

transitive closure, and that S T ^ G. Then, there exists an edge (it, v) e E(G) such

that (u, v) & E (ST). Since the transitive closures of S T and of G are identical, there

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

must exist a path u0(= u), V\ , ..., vn, un+1(= v) in S T from u to v, where u,-(l < i < n)

are the internal vertices of the path. Since G is a tree, the only edges in G(J-G),

and therefore in S T , are between vertices x and y where a; is an ancestor of y in G.

Of course, whenever a: is an ancestor of y in G, then there is path from x to y in

G. Thus the path P: v q , V i , ..., vn, un+1 in S T can be expanded into a path Q from

u to v in G. We merely replace each edge (u,-, u»+i) on the path P by the path from

Vi to Vi+i in G. All these paths are disjoint because the terminal vertex of any path

corresponding to any edge (ut-, v*+i) on P is an ancestor of the starting vertex of the

path corresponding to any later edge (vj,Vj+l), where j > i + 1, on P. Since there

is a unique path between any pair of connected vertices in a directed tree, the path

Q from u to v in G and the edge (u, v) must be the same. It follows that vn = u, so

that (u,v) € E(ST) contrary to the assumption that (u, v) g E(ST). □

V (*)7

6

(b)

V,6

(C)

F igure 6.6 (a) The digraph G (b) Spanning tree found by TCI algorithm (c)
Spanning tree found by ordinary BFS

Theorem 6.4.2 says that given the transitive closure G of a tree G, we can

uniquely invert G to obtain the original tree G that generated G. The following

algorithm shows how this can be efficiently accomplished using a weighted breadth

first search approach, where a weight of —1 is assigned to every edge of the transitive

closure G. The idea of the algorithm is to identify the unique generating spanning

tree established by the previous theorem by removing edges between vertices of

distance —2 or less apart. An example is shown in Figure 6.6. The weight of each

edge of the digraph in Figure 6.6(a) is —1. After the algorithm is applied, the solid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

edges remain and the dashed edges are removed, as illustrated in Figure 6.6(b). For

example, D ist(v i,v7) = —3, so the edge (vx, v7) is removed. Observe that an ordinary

unweighted breadth first search would yield the spanning tree shown in Figure 6.6(c).

Let r G V(G) be the root of G(V, E). Assign each edge of G a weight of — 1.

The following algorithm constructs a digraph H .

Transitive Closure Inversion (TCI) Algorithm

V{H) = {r};

E(H)=<f>;

create{Q);

enqueue(Q,r);

while not empty(Q) do

begin

v := dequeue{Q)\

for each vertex v' 6 V(G) such that the shortest distance

from v to v1 is —1 do

begin

enqueue(Q,v')\

V{H) := V{H) U { t / } ;

E(H) := E{H) U { (« ,« ') } ;

end;

end;

The following theorem shows the correctness of the above algorithm.

T heorem 6.4.3 (Correctness of TCI Algorithm) Let G (V ,E) be the associated

digraph of a totally hierarchical tree folder organization. Then the digraph H(V, E)

produced by the TCI algorithm is a spanning tree of G {V ,E) and has G as its

transitive closure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Proof: The TCI algorithm must include, in the digraph H(V, E) that it produces,

all edges (u, v) between vertices u and v in G(V, E) when Dist(u, v) equals -1 . For

if such an edge (u ,v) £ E(H), then the transitive closure of H could not equal G.

Because for the transitive closure of H to equal G, there would then have to be a

nontrivial path in H from u to v, not equal to the edge (u, v). But then Dist(u, v) in

G would be less than —1, contrary to the assumption. Thus edges (it, t/) in G with

Dist(u, v) = — 1 must lie in H, and the algorithm clearly includes them. Conversely,

any edge (u , v) with Dist(u, v) < — 1 should not be in H. Otherwise, there would be

a nontrivial shortest path ito(= it),tti,...,tt„,itn+i(= v) (with more than one edge)

from u to v in G. Each edge (ut-, u,-+i) on that path is a sub-path of that shortest

path, and so is itself the shortest between its endpoints ut- and ut+i. So, every edge

on the path satisfies that Dist(ui, Uj+1) = —1. But by our initial argument, the edges

(t£i,u,-+1) must be in H. Thus, if the edge (u,v) (= (u0, un+i)) were also in H, then

H would not be a tree. Thus edges (u,v) such that D ist(u,v) < — 1 should not be

in H , and, of course, by design, the algorithm excludes precisely such edges. □

Corollary 6.4.2 Let H (V ,E) be the spanning tree produced by the TCI algorithm

from the associated digraph G of a totally hierarchical tree folder organization

TO{G, A). T henH = G.

Proof: In terms of Theorem 6.4.3, ff is a spanning tree whose transitive closure

is G. By Theorem 6.4.2, such a spanning tree is unique. By definition, G is the

transitive closure of G. Therefore, H is identical to G. □

6.5 Reconstructing a DAG Folder Organization

This section extends the results of the previous section to a DAG folder organization.

Recall that a vertex u is an ancestor of a vertex v in a DAG G{V, E) if and only

if v is reachable from u in G, while a DAG folder organization TQ{G, A) is said

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

to be totally hierarchical if and only if f Cmin fj U ... U fit (where f, fx, ..., fit are in

V(G)) implies fi, ..., and fit are ancestors of f. As the example in Figure 6.2 shows

the associated digraph of a folder organization TO {G , A) may not be the same as

its transitive closure if G{!FO) is not totally hierarchical. In order to generalize the

results of the previous section, we need to introduce the concept of a redundant filing

path. Recall that a filing path for a folder f is a path from the root to f. A redundant

filing path is defined as follows.

D efinition 6.5.1 (Redundant Filing Path) Let p,(l < i < m) be the predicates

associated with the filing paths ?,(1 < i < m) of a folder f in a DAG folder organi

zation !FO{G, A) (Thus, the global predicate Pf for f satisfies: Pf = X ^jP t). Let 5,

= {fi | Pi{fi)}, where 1 < i < m. If Si C U ... U 5,fc, then the filing path for Si is

redundant with respect to the filing paths for Silt ..., Sik. □

A DAG folder organization is non-redundant if there is no redundant filing

path. The concept of a redundant filing path is illustrated by the following example.

E xam ple 6.5.1 The digraph G of a DAG folder organization FO(G, A) is shown

in Figure 6.7. Denote the local predicates of the folder fi by Si (1 < i < 5). The

predicates p ^ associated with the filing paths q ^ for the folder f5 are: p ^ = 6 1 6 2 6 4 6 5 ,

P52) = fifafafs, and p£3) = 6 x6 3 6 5 . Let S ^ = {fi | p ^(fi)} , where 1 < i < 3. Clearly,

the filing path is redundant with respect to the filing path q f \ since S ^ C S^3\

because, in this example, the local predicate product defining q5^ is a substring of

the local predicate product for qi?K Observe, however, that none of the edges (fx, fa),

(f3 , fij) and (f4 , f5) on the filing path q ^ can be deleted even though q ^ is redundant.

For example, removing (f^fs) disconnects the (possibly) non-redundant filing path

Of course, it is even possible that the filing paths q ^ and q ^ are also redundant,

but this depends on the local predicates and cannot be determined from the folder

organization digraph alone. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

fi $)

(3)

F igure 6.7 Redundant filing paths

We will show that if a DAG folder organization is both non-redundant and

totally hierarchical, then we can essentially recover the original DAG from the

associated digraph.

T heorem 6.5.1 Let TO{G, A) be a non-redundant and totally hierarchical DAG

folder organization. Then, the associated digraph G(V, E) is the transitive closure of

G(FO).

Proof: By definition, V(G) = V{G). Let f, and f, be folders in TO . We consider

two cases:

Case 1: If fj is reachable from f< in G(EO), then ft- is an ancestor of fj. We

show that for any ancestor f,- of fj, fj Cmin f,- u fIt U ... U fIfc, for some, possibly

empty, set of folders {fXl, . . . , f I n }, whence (fj, f,-) € E(G).

We first consider the case where there exists an edge (f, fj), where f is the root

of G(TO). In this case, there is no other path Q from f to fj. Otherwise, Q would

be redundant with the (one edge) path (f, fy). Thus the only ancestor f, of f, would

be f, and so trivially f, Cmin ft- (= f) .

We next consider the case where there is no edge (f, fy). We then argue as

follows. Remove all the paths from f to fj that pass through f, (i.e., Del{G,fi)). If f

is disconnected from f, in the resulting graph Del(G,fi), then trivially fj Cmin f{. If

f is not disconnected from fj in Del(G, fj), then let Q be the set of paths from f to fj,

not passing through fj. Denote by fj the subset of frame instances in fj that arrive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

via Q. By the non-redundancy assumption, f) ^ fy, since any filing path through fy

contains some frame instances not in any union of other filing paths, and so not in

the union of any filing paths in Q, and so not in fy. Observe that f) C fXl u ... U fTn,

where {f*i,. .,fx„} C V(Q) — {fyfy}, which is non-empty in this case, because by

assumption fy is reachable from f but (f, fy) is not an edge, so there is a nontrivial

disconnecting set between f and fy. Thus, fy C fy u fXl U ... U fXn. Since fy g fXl U

... U f X n alone, then fy Cmtn fy u fXii U ... U fx<fc, for some subset {fXii, ..., fXiJ of

{f-Cu •••> fx„}•

Case 2: If fy is not reachable from fy in G(V, E), then (fy, fy) 0 E(G). The proof

is identical to the proof of case 2 in Theorem 6.4.1.

It follows that G (V ,E) is identical to the transitive closure of G(TG). □

C orollary 6.5.1 Let a DAG folder organization TO {G , A) be non-redundant and

totally hierarchical. Then, its associated digraph G(V, E) is a DAG.

Proof: The proof is similar to the proof of Corollary 6.4.1. □

Example 6.5.2 Figure 6 . 8 gives a counterexample that shows how the associated

digraph may not be the transitive closure of a DAG if the non-redundancy condition

fails. Let <fy(l < i < 4) be the local predicates of the folders fy in Figure 6 .8 (a). Let

S = {fi | pifi)} and S ' = {fi | p'(/t)}, where p = 6 i £ 2 $ 3 and p' = <fy<53. Clearly,

S C S', so the filing path fi,f2 ,f3 is redundant with respect to the filing path fy,f3 .

Thus, f3 %min fy U h- For an appropriate choice of S2, f3 g f2 , so the edge (f2 ,f3) is

not in the associated digraph. Thus the associated digraph need not even contain

all the edges of the original DAG G, and so certainly need not equal the transitive

closure of G. Incidentally, the minsum relations in Figure 6 .8 (a) are: f2 Cmin fy,

f3 Cmin fy, fy Cmin fy, so edges (fy,f2), (fy,fy), and (fy,fy) are in the associated

digraph Figure 6 .8 (b). On the other hand, while fy C f2 U f3, we can not say for

certain that fy Cmin f2 Uf3, though at least one of the edges (f2, fy) or (f3, fy) must be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

(a) An DAG folder organization with redundant filing path (b) Its associated digraph

Figure 6.8 Counterexample to Theorem 3.6 if non redundancy condition fails.

in the associated digraph. The dashed lines in Figure 6.8(b) indicate this uncertainty.

□

Theorem 6.5.2 Let a DAG folder organization T O = [G(V, E), A] be non-

redundant and totally hierarchical and G(TO) be its associated digraph. Then,

G(TO) is the unique non-redundant spanning sub-DAG of G (TO) whose transitive

closure equals G(TO).

Proof: Suppose some other non-redundant spanning sub-DAG SD of G(TO) also

has G(TO) as its transitive closure, and that SD ^ G. Then, there exists an edge

(u, v) e E(G) such that (u, v) £ E(SD). Since the transitive closure of SD and

G are identical, there must exist a path v0(= u),v i, ..., vn, un+i(= v) in SD from u

to v, where u,(l < i < n) are the internal vertices of the path. Since G(TO) is

non-redundant, the only edges (x , y) in G(TO) are between vertices x and y where

x is an ancestor of y in G{TO). Of course, whenever x is an ancestor of y in G(TO),

then there is a path from x to y in G(TO). Thus a path P : u0,Ui>-")Wn,fn+i in

SD can be expanded into a path Q from u to v in G. We merely replace each edge

(ui,Ui+l) on the path P by the path from w, to ui+i in G{TO). All these paths are

disjoint because the terminal vertex of any path corresponding to any edge (u,-, ut+i)

on P is an ancestor of the starting vertex of the path corresponding to any later edge

(vj,Vj+i) where j > i + 1 on P. Since there is no redundant filing path in G(TO),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

9

m

(a) fb) (c)

Figure 6.9 (a) A DAG T O (b) Its associated digraph (c) Digraph resulting from
TCI algorithm

the paths P and Q from u to v must be the same. It then follows that vn = u, so

that (u, v) € E(SD) contrary to the assumption that (it, v) & E(SD). □

Theorem 6.5.2 says that if an associated digraph G is built from a non-

redundant and totally hierarchical DAG folder organization TO(G, A), we can

uniquely invert G to obtain the original DAG G{TO). The TCI algorithm can

also be used to accomplish this inversion. An example is shown in Figure 6.9.

Figure 6.9(a) is a non-redundant totally hierarchical folder organization, provided

there are no logical relations among the local predicates. In terms of Theorem 6.5.2,

its associated digraph shown in Figure 6.9(b) is the transitive closure of Figure 6.9(a).

The weight of each edge of the digraph in Figure 6.9(b) is —1. After the TCI

algorithm is applied, the solid edges remain and the dashed edges are removed, as

illustrated in Figure 6.9(c). Obviously, Figure 6.9(a) and Figure 6.9(c) are identical.

The following theorem shows the TCI algorithm also works for totally hierar

chical and non-redundant DAG folder organizations.

T heorem 6.5.3 Let G(V, E) be the associated digraph of a totally hierarchical and

non-redundant DAG folder organization. Then the digraph H (V ,E) produced by the

TGI algorithm is a non-redundant spanning sub-DAG of G (V ,E) and has G (V ,E)

as its transitive closure.

Proof: The digraph H (V , E) produced by the TCI algorithm includes exactly all

edges (u, v) between vertices u and v in G (V,E) where D ist(u ,v) = —1. If there

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

were such an edge (u , v) & E(H), then the transitive closure of H could not equal to

G(V, E). Because the transitive closure of H is G(V, E), there would be a nontrivial

path in H from u to v. But then Dist(u,v) < - 1 in G (V ,E), contrary to the

assumption D ist(u,v) = — 1. Thus edges (u, v) G E(G) with Dist(u, v) = -1 must

be in H , and the algorithm clearly includes them.

On the other hand, any (u, v) G E(G) with D ist(u , u) < — 1 should not be in H.

Otherwise, there would be a nontrivial shortest path uo(= u), u i , ..., un, un+i(= v)

from u to v in G(V, E). Each edge (u,-, ut+1) path is a sub-path of that shortest

path, and so itself is the shortest between ut- and ut+i (i.e., D is tfe , ut+i) = -1). By

the initial argument, the edges (u,-,^+1) must be in H. Thus, if the edge (u,v)(=

(uo, un+i)) were also in H , then H would not be a non-redundant DAG because the

path u0,u i, ...,un,u n+l is redundant with respect to (u,v). Thus edges (u,v) such

that D ist{u,v) < — 1 should not be in H. Of course, the TCI algorithm excludes

precisely such edges. □

Corollary 6.5.2 Let H (V ,E) be the non-redundant spanning sub-DAG produced

by TCI algorithm from the associated digraph G of a totally hierarchical and non-

redundant DAG folder organization TO{G, A). Then H — G.

Proof: The proof is similar to Corollary 6.4.2. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

DOCUMENT FILING

A folder organization represents the user’s view of the document filing organization.

Evaluating whether a frame instance satisfies the global predicate of a folder in a

folder organization becomes a central issue of document filing. In this chapter, we

will discuss a document filing algorithm and predicate evaluation.

7.1 A Document Filing Algorithm

In TEXPROS, the document filing is a process of filing a frame instance into proper

folders in a folder organization based upon a user defined predicates. The global

predicate of a folder governs its contents (that is, frame instances in the folder).

For a folder f in a folder organization FO (G (V ,E),A), let pi, ..., and p„ be

the predicates corresponding to n filing paths pai, ..., and pan of f, respectively.

Then, P = pi V ... V pn is the global predicate of f. For each filing path ps, (say

ftj,..., f,fc, f), let 6il t ..., 8ik and 6 be the local predicates corresponding to the folders

fin ...,f,t and f, respectively. The predicate associated with the filing path pa, is then

Pi — $ii A ... A 6{k A S. A frame instance fi can be deposited in a folder f if fi satisfies

the predicate pf associated with the filing path pa,- (1 < i < n).

A frame instance fi can be deposited in a folder f if fi satisfies the predicate,

Pi (that is, the local predicates, 6 ^ , ..., £,-t , and 8) (1 < i < n), associated with the

filing path pa,- (1 < i < n). For instance, in the folder organization of Figure 7.1, a

frame instance can be deposited into the folder FACULTY if it satisfies the predicates,

Department = CIS, Class = Employee and Status = Faculty.

7.1.1 An Object-Oriented Description of a Folder Organization

We adopt the object-oriented concept to refer to frame instances, folders and a

folder organization as objects. That is, frame instances, folders and a folder organi-

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

STUDENT
(Class = Student)

ROOT

CIS q (Department = CIS)

(Status = Staff)

EMPLOYEE
(Class = Employee)

FACULTY
(Status = Faculty)

PROFESSOR
SP LECTURER (Position - Full Professor OR

'(Position = Special Lecturer) Posilion = f^oda ted ' ’" / “ “ r OR
Position = Assistant Professor)

BS MS PHD
(Program = B5) (Program = A/5) (Program = PAD)

F igure 7.1 A folder organization

zation are defined by Framelnstance class, Folder class and FolderO rganization

class, respectively. Each class contains a private data structure (attributes) and

corresponding methods that can be performed on the data structure. Figure 7.2

sketches the class hierarchy of a folder organization *. A box in the figure represents

a class. The top part of a box consists of class name, the middle part is for class

attributes and the bottom part specifies methods. The relationship between the

classes are the containing relationship. That is, the FolderO rganization class

contains Folder class, Thesaurus class, AssoDictionary class and KnovledgeBase

class; and Framelnstance class is contained in a Folder class.

As we discussed in the previous chapter, a folder is a heterogeneous set of

frame instances. By unifying the data structure of frame instances in a folder, we

use a frame instance identifier2 rather than a frame instance itself stored in a folder.
*Note that methods of classes are not shown in the figure due to the size of the page.

We will list and discuss methods of each class in the following sections.
2When a frame instance comes in the filing system, it is assigned a unique identifier.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

Thesaurus
SysSynonyms: Map-cKeyTerm, LisC<SynKeyTerm>>
SysNarrower: MapcKeyTerm, Lis t<NarrKeyTerm>:
SystemAssoc: Map<KeyTerm. LisC<IndexTerm»
Corresponding Methods

AssociationDictionary
Dictionary: Map<Attribute, List<FrameTemplateName>>
Corresponding Methods

FolderOrganization
FolderOrg: Map<String, Folder*>
Diet: Thesaurus
AssoDict: AssoDictionary
KB: KnowledgeBase
Corresponding Methods

0 --------

Folder
Name: String
Visited: Bool
LFolder: Bool
EvalAttrList: List<Attribute>
Predicate: PredType
FIs: List<FrameInstance>
ChldFolders: List<String>
Corresponding Methods

KnowledgeBase
FB: FactBase
RB: RuleBase
Corresponding Methods

Framelnstance
ID: String
FTName: String
EvalAttrs: List<Attribute>
Corresponding Methods

Figure 7.2 Class hierarchy of a folder organization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

Note that a frame instance is stored in the instance base and can be retrieved by its

identifier.

In Fram elnstance class, there is an attribute FTName indicating that a frame

instance is over which frame template. Each frame tem plate consists of a list of

evaluated attributes that are pre-defined for the filing evaluation. The evaluated

attribute list of a frame template is defined when the frame template is constructed.

By default, every attribute of a frame template is used for the filing evaluation. The

following procedure describes a guideline for a user to define the evaluated attribute

list.

• St e p 1: define a frame tem plate (including attributes and types).

• St e p 2: list all the attributes of the frame template.

• St e p 3: ask a user whether he/she uses the default evaluated attribute list or

defines an evaluated a ttribu te list.

• St e p 3.1: if the default is selected, then all the attributes of the frame template

are added to the evaluated attribute list.

• St e p 3.2: else a user selects attributes and adds them into the evaluated

attribute list.

There are three groups of selections 3 for a user to select evaluated attributes.

We will use the frame template M em o, which contains attributes Sender, Receiver,

Date, S ubject, Contents and CC, as an example to illustrate it:

• requ ired a ttr ib u te s are attributes that must be included in the evaluation. For

example, Sender and R eceiver are the required attributes for the M em o.

3Note that attributes in these three groups are defined by a filing system
designer/expert.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

• re c o m m e n d e d a ttr ib u te s are attributes that are most likely to be used in

the evaluation. For example, Date, Subject and CC are the recommended

attributes.

• n o t r e c o m m e n d e d a ttr ib u te s are attributes that are less likely to be used in the

evaluation. For example, Contents is not a recommended attribute.

The complete frame instance class (Framelnstance) is defined as follows.

class Framelnstance

{
public:

Frame Instance (); / / constructor

"Frame Instance (); / / destructor

/ / set access methods

void id (S trin g ID); / / set frame instance identifier

void addFrameTemplateCFrameTemplateName FTName); / / add frame template name

void addE valA ttr(A ttribute a t t r) ; / / add attribute in evaluated attribute list

/ / get access methods

S tring id () ; / / get frame instance identifier

FrameTemplateName getFTNameO; / / get frame template name

A ttribu te f i r s tA t t r O ; / / get first evaluated attribute

A ttribu te next A ttr (A ttrib u te a t t r) ; / / get next evaluated attribute

private:

/ / attributes

S tring ID; / / frame instance identifier

FrameTemplateName FTName; / / frame template name

L is t< A ttrib u te> EvaJLAttrs; / / evaluated attribute list

};

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

A folder contains a set of frame instances that satisfy the predicate of the folder.

There are two kinds of folders defined in a folder organization: (1) a regular folder,

which contains frame instances, each of which satisfies predicates along a filing path;

and (2) a L-Folder which refers to a local folder, containing frame instances, each of

which satisfies the local predicate of a folder.

The criterion of constructing a folder organization is that L-foIders must be

defined as the children of regular folders and a regular folder cannot be a child folder

of a L-folder.

The reason of introducing the L-folder is to allow a user to re-partition frame

instances of a regular folder into various L-foIders of frame instances with their

local predicates. Consider an example shown in Figure 7.3. There are six regular

folders (NJIT, CIS, STUDENT, FACULTY, J. Smith and K. Johnson) and two L-folders

(S. Klein* and S. Thomas*). Assume that S. Klein and S. Thomas are not faculty

members of the CIS department at NJIT. Suppose that S. Klein sent a letter (let fi

be the frame instance of the letter) to J. Smith. Since J. Smith is a faculty member

of the CIS department a t NJIT, the letter can be filed all the way down to the J.

Smith folder if /i[To] is used for evaluation. If S. Klein* was a regular folder, the letter

would not be deposited in it because the letter does not satisfy the predicates along

the filing path (NJIT - + CIS —► FACULTY -» J. Smith —► S. Klein*). In order to file

fi in the folder S. Klein*, /i[From] will be used for evaluation. However, /i[From] does

not satisfy the global predicate P: (a f f i l ia t io n = NJIT) A (department = CIS)

A (position = faculty) A (name = J. Smith) A (name = S. Klein). After introducing

L-Folder, the letter can be filed into the folder S. Klein* by determining a frame

instance whether satisfies the local predicate of the folder.

A regular folder also has a list of evaluated attributes. An evaluated attribute

list of a regular folder is a list of attributes (of a filed frame instance) that satisfy

the global predicate of the folder. The evaluated attribute list of a regular folder

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

O NJIT (affiliation = NJTT)

STUDENT

(class = student)

K. Johnson

(nam (name = K. Johnson)

CIS (departmentCIS (department = CIS)

FACULTY
(position = faculty)

S. Klein * S. Thomas *

(name = S. Klein) (name = S. Thomas)

Figure 7.3 An example of a folder organization

is transient. That is, it is generated when a frame instance is filed into the folder

and it is removed when another filing begins. A detailed discussion of generating the

is defined as a rooted DAG, the attribute ChldFolders in the class Folder is used

to represent the folder’s children folders. For filing a frame instance, a folder organi

zation is traversed in such way that the predicate of a folder may be evaluated more

than once, because a folder organization is a DAG. In the class Folder, an attribute

(V isited) is used for indicating whether a folder has been visited. The complete

folder class (Folder) is defined as follows.

c la ss Folder

public:

Folder(); / / constructor

~Folder(); / / destructor

/ / set access methods

void name (S tring fo lder Name); / / set folder name

void re se tV is ite d O ;/ / reset visited flag

evaluated attribute list will be given in the Section 7.1.2. Since a folder organization

{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

void se tV is ited O ; / / set visited flag

void setLFolderO ; / / set L-Folder flag

void makeEvalAttrListEmptyO; / / make evaluated attribute list empty

void addEvalAttrs (List<A ttribute> a t t r s) ; / / add evaluated attribute list

void addEvalAttr (A ttribu te a t t r) ; / / add evaluated attribute

void predicate(PredType* pred); / / add local predicate

void addFI(Framelnstance f i) ; / / add frame instance

void addChldFolder (S tring folderName); / / add child folder

/ / get access methods

S trin g nameO; / / get folder name

Bool g e tV is ited O ; / / get visited flag

Bool getLFolderO ; / / get LFolder flag

A ttrib u te f irs tE v a lA ttr (); / / get first evaluated attribute

A ttrib u te neztE valA ttr(A ttribu te a t t r) ; / / get next evaluated attribute

PredType* p re d ic a te (); / / get local predicate

Framelnstance f ir s tF IO ; / / get first frame instance

Framelnstance nextFI (Framelnstance f i) ; / / get next frame instance

S trin g firs tC h ild F o ld e rO ; / / get first child folder

S trin g nextC hildFolder(S tring folderName); / / get next child folder

p riva te :

/ / attributes

S trin g Name; / / folder name

Bool V isited ; / / visited flag

Bool LFolder; / / L-Folder flag

L is t< A ttr ib u te > EvalA ttrList; / / a list of evaluated attributes

PredType Predicate; / / local predicate

L ist<Fram eInstance> FIs; / / frame instance list

L is t< S tr in g > ChldFolders; / / a list of children folders

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

In the class FolderOrganization, folders are organized in the associative array

FolderOrg. The associative array FolderOrg is an array that it is looked up by

strings (i.e., folder names which are keys of folders). Internally, the keys are stored in

a hash table, so lookups are always very fast regardless of how many entries are in the

array. Suppose that there are n folders in a folder organization, a lookup takes 0(1)

in average case and 0(n) in worst case. Besides access methods, there are another

three methods in the FolderOrganization. Their complete implementations will be

given in the following sections.

• s ta r tF i l in g (public method): initialize a folder organization and start filing

process.

• f i l i n g (private method): this is a recursive filing algorithm invoked by the

s ta r tF i l in g method.

• eval (private method): this is an evaluation function that checks whether a

frame instance satisfies the predicate of a folder.

c lass FolderO rganization

{

public:

FolderOrganization(); / / constructor

~FolderOrganization(); / / destructor

/ / set access method

void addFolder(String folderName, Bool LFold,

PredType pred, List<Fram eInstance> FIs); / / add folder in folder organization

/ / get accessors

Folder getFolder(S tring folderName); / / get folder

/ / behavior method

void s ta r tF i l in g (Framelnstance f i) ; / / file frame instance into folder organization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

p riv a te :

/ / methods

void f ilin g (F o ld e r f , Framelnstance f i) ;

/ / file frame instance into folder organization with root f

Bool eval(Framelnstance f i , A ttrib u te a t t r , PredType pred);

/ / evaluation function

/ / attributes

M ap<String, Folder* > FolderOrg;

Thesaurus Diet;

A ssociationD ictionary AssoDict;

KnowledgeBase KB;

};

Besides the attribute FolderOrg in the class FolderOrganization, there are

another three attributes:

• D iet is referred to as a thesaurus which describes synonymous relationship

between attributes/values in an application domain;

• AssoDict is referred to as association dictionary which describes the association

relationship between attributes appeared in predicates and in frame templates;

• KB is referred to as a knowledge base which contains facts and rules in an

application domain.

These attributes will be discussed in the later sections.

7.1.2 A F iling A lgorithm

There is a special folder, the root folder (ROOT), in a folder organization. The

predicate of ROOT folder is true, that is, it contains all the frame instances in a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

folder organization. It is the root (starting point) of a folder organization and is

pre-defined by the system.

The method FolderO rganization: :sta rtF iling (F ram eInstance f i) is

invoked when a frame instance fi arrives a t the folder organization. The method

resets visited flags of folders in a folder organization, initializes evaluated attribute

lists to be empty, adds evaluated attribute list of fi to the root folder and calls the

method FolderO rganization: :f il in g (F o ld e r f , Framelnstace f i) to file the

frame instance. Suppose that there are n folders in a folder organization and m

evaluated attributes corresponding to the filed frame instance fi. The complexity of

the method FolderOrganization: :s tartF iling (F ram eInstance f i) is 0 (m + n).

void

FolderO rganization:: s ta r tF ilin g (Frame Instance f i)

{
S trin g fdName = F o ld erO rg .firs t();

while (fdName != NULL)

{ / / initialize folder organization

FolderOrg [fdName] -> rese tV isite ();

FolderOrg [fdName] ->makeEvalAttrListEmpty () ;

fdName = FolderOrg. next (fdName);

};
A ttrib u te a t t r = f i . f i r s t O ;

while (a t t r != NULL)

{ / / add evaluated attribute list of f i to ROOT folder

Folder0rg["R00T"] ->addEvalAttr (a t t r) ;

a t t r = f i .n e x t (a t t r) ;

};

filing(FoderOrg["ROOT"] , f i) ; / / start filing

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As mentioned in Section 7.1.1, both a frame template and a folder have an

evaluated attribute lists. However, an evaluated attribute list of a frame template

is static in the sense that it is pre-defined to determine what attributes in a frame

template will be used for filing evaluation when the frame template is defined. On

the other hand, an evaluated attribute list in a folder is dynamic. It is formed during

the filing depending on a filed frame instance and the predicate of a folder. An

evaluated attribute list of a folder only contains attributes of a frame template that

satisfy the predicate of the folder. Figure 7.4 sketches the procedure of forming

an evaluated attribute list of a folder and the complete procedure is described the

method FolderO rganization: r f i l in g O .

No

Yes

Yes

No

DONE

the evaluation function

returns true?

pass the attribute to

the evaluation function

append to

the evaluation attribute list

reaches the end of

the evaluated attribute list

of the parent folder ?

get the next attribute from

the evaluated attribute list

of the parent folder

get the first attribute from

the evaluated attribute list

of the parent folder

F igure 7.4 Procedure of forming an evaluated attribute list

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

The following recursive algorithm describes how a frame instance fi can be

filed into a folder f and its descendant folders using depth first search approach. The

idea of the algorithm is to repeatedly extend a filing path as far as possible (if a

frame instance satisfies a predicate) into a folder organization, retract it, and then

re-extend it in another direction, until all the directions of the folder organization

are traversed.

void

FolderQ rganization: .‘f ilin g (F o ld e r f , Framelnstance f i)

{

Folder fd;

S trin g chldFolder = f .f irs tC h ild F o ld e rO ; / / get left most child

f .ad d F I(fi) ; / / deposit f i into f

f .se tV is ite d O ; / / set f visited

v h ile (chldFolder) != NULL)

{ f has child folder

fd = getFolder (chldFolder);

i f ((fd .ge tV isited () ■== FALSE) ftft (fd.getLFolder = FALSE)))

{ / / fd is not L-folder

fo r (A ttribu te a t t r = f .f ir s tE v a lA ttrO ;

a t t r != NULL; a t t r = f .n ex tE v a lA ttr(a ttr))

{ / / forming evaluated attribute list

i f (e v a l(f i , a t t r , fd .p re d ic a te ()) = TRUE)

fd .addE valA ttr(a ttr); / / add attr to fd’s evaluated attribute list

};

i f (fd .f irs tE v a lA ttrO != NULL)

f i l in g (fd , f i) ; / / recursive filing

} e lse i f (fd .g e tV is ited () == FALSE)

{ / / fd is L-folder

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

Bool f la g = FALSE;

fo r (A ttribu te a t t r = f i .f ir s tE v a lA ttrO ;

a t t r != NULL; a t t r = f i.n e x tE v a lA ttr (a ttr))

{
i f (e v a l(f i , a t t r , fd .p red ic a te ()) == TRUE)

{
f la g = TRUE;

break;

};

};

i f (flag == TRUE)

f i l in g (fd , f i) ; / / recursive filing

};

chldFolder = f .nextChildFolder(chldFolder); / / get right sibling

}; '

}

The following theorem shows the correctness of the above algorithm.

T heorem 7.1.1 (Correctness of Filing Algorithm) Let G(V, E) be a folder organi

zation. Give a frame instance fi, all the folders that fi is already in their parent

folders are visited and their predicates are evaluated by the filing algorithm.

Proof: The proof is by induction. By definition, G(V, E) is a rooted DAG and the

predicate of the root folder is true. Thus, fi is deposited in the root folder. By the

depth first search[37], all the child folders of the root folder will be visited and their

predicates will be evaluated to see whether fi satisfies them. Assume that fi satisfies

the predicate of the folder f € V(G) so that it is deposited in f4. and there are

4 Note that in the filing algorithm, the evaluation function is called and returns true if
a frame instance satisfies the predicate and is deposited in the folder, returns false and is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

folders fp,, fPm such that (f,fPl) € E(G), ..., (f, fPm) € E(G). Suppose that there

is a folder fPq, where (f, fPq) 6 E(G), that it is not visited by fi. It is contrary to the

depth first search algorithm. And so the result follows by induction. This completes

the proof of the theorem. □

Suppose that there are n folders in a folder organization, and the predicate

evaluation5 takes 0 (m x k) (where m is number of frame templates in the association

dictionary and k is the max level of root trees in the rule base) for the worst case.

The filing algorithm takes then 0 (m x k x n) for the worst case.

7.2 Predicate Evaluation

In the filing algorithm FolderO rganization::f i l i n g (f , f i) , the evaluation

function FolderO rganization:: eval (f i , a t t r , f . p red ica te) is true if the frame

instance fi with the attribute a ttr satisfies the predicate f.predicate. Note that the

evaluated attribute list is transparent to the evaluation function because an evaluated

attribute is passed to the evaluation function by the filing procedure. The evaluation

function takes the attribute, evaluates it and returns true if it satisfies the predicate,

otherwise it returns false. Then, the evaluation problem is how to determine whether

a frame instance fi satisfies the predicate of a folder f?

There are two possible cases to be considered:

• Case 1: all the attributes in a predicate appear in fi.

• Case 2: some attributes in a predicate do not appear in fi.

7.2.1 Case Study: Case 1

For the first case, the evaluation is simpler. For instance, consider the folder

PHD with the predicate Program = PhD. And consider a frame instance, fii =

not deposited in the folder otherwise. The correctness of the evaluation function will be
discussed in Section 7.2.

5We will give detail discussion and an algorithm for predicate evaluation in Section 7.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

[(StudentName: Jennifer Wallace), (Program: PhD), (StartD ate: 09/04/94)].

Since the attribute Program in the local predicate 8 is appearing in the frame

instance fii, we instantiate the attribute Program from fix (i.e. /^[Program] = PhD).

That is, the attribute Program in 8 is replaced by the value PhD. Then, we conclude

that fii satisfies 5 because PhD = PhD is true. Let us consider another frame

instance/Z2 = [(StudentName: John Thompson), (Program: Doctorate), (StartDate:

09/04/95)]. By instantiating the attribute Program from f i i , we get ^[Program] =

Doctorate which concludes that fit does not satisfy the local predicate (Program =

PhD) because Doctorate = PhD is false. However, PhD and Doctorate have the same

semantical meaning.

In order to solve the above problem, a thesaurus is consulted. The thesaurus

[32] is defined in the system catalog. It is represented by the three components

SysSynonyms, SysNarrower and SystemAssoc. The thesaurus class (Thesaurus) is

then defined as follows:

c lass Thesaurus

{
public:

Thesaurus(); / / constructor

"Thesaurus (); / / destructor

/ / set access methods

void addKeyTermCKeyTerm KT); / / add key term

void addSynKeyTerm(KeyTerm KT, SynKeyTerm SKT); / / add synonym key term

void addNarrKeyTerm(KeyTerm KT, NarrKeyTerm NKT); / / add narrow key term

void addIndexTerm(KeyTerm KT, IndexTerm IT); / / add index term

void delKeyTerm(KeyTerm KT); / / delete key term

void delSynKeyTerm(KeyTerm KT, SynKeyTerm SKT); / / delete synonym key term

void delNarrKeyTermCKeyTerm KT, NarrKeyTerm NKT); / / delete narrow key term

void dellndexTermCKeyTerm KT, IndexTerm IT); / / delete index term

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

/ / get access methods

KeyTenn f i r s t (); / / first key term in thesaurus

KeyTerm next (KeyTenn KT); / / next key term

KeyTerm findKeyTermEntry(SynKeyTerm SKT); / / find key term for given a synonym term

KeyTerm findKeyTermEntry (NarrKeyTera NKT); / / find key term for given a narrow key term

KeyTerm findKeyTermEntry (IndexTerm IT); / / find key term for given an index term

List<SynKeyTerm> getIndexTerms(KeyTerm KT);

/ / get a list of synonym terms of a given key term

List<NarrKeyTerm> g e t IndexTerms (KeyTerm KT);

/ / get a list of narrow key terms of a given key term

List<IndexTerm> get IndexTerms (KeyTerm KT);

/ / get a list of index terms of a given key term

private:

/ / attributes

Map<KeyTerm, List<SynKeyTerm » SysSynonyms; / / system synonyms

Map<KeyTerm, L ist<N arrK eyTerm » SysNarrover; / / system narrower

MapCKeyTerm, List<IndexTerm>> SystemAssoc; / / system association

}

In the filing evaluation, the system synonyms of the thesaurus are used. It

contains a key term part and a synonym key term part. They are one-to-many

relationship. That is, a key term may have many synonym key terms and a synonym

key term refers to one and only one key term. A synonym key term can refer to a

key term if they have the same meaning.

Figure 7.5 shows a portion of the system synonyms in a thesaurus. For instance,

the synonym key terms PhD and Doctorate refer to the key term PhD. For the frame

i n s t a n c e = [(StudentName: John Thompson), (Program: Doctorate), (S tartD ate:

09/04./95)], after consulting the thesaurus, we know that PhD is the key term for

Doctorate. Then, we conclude that fy satisfies the local predicate Program = PhD.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

synonym
key terms

key terms

PhD ---- . . .

Doctorate PhD
. . .

MS MS
Master L-— . . .

Figure 7.5 A portion of system synonyms in a thesaurus

Consider another scenario in which we have a folder (DOCTOR) with the predicate

(Program = Doctorate) and we want to file the frame instance f i i . By instantiating

the predicate attribute (Program) and consulting the thesaurus, fii still does not

satisfy the predicate of folder DOCTOR. However, as we discussed above, doctorate

and PhD have the same meaning. To solve the problem, we take the value (Doctorate)

in the predicate to consult the thesaurus. Since the key term for Doctorate is PhD,

the frame instance fii satisfies the predicate of DOCTOR folder.

7.2.2 Case Study: Case 2

For the second case, since there are some attributes in the predicate which do not

appear in the frame instance, the predicate cannot be directly instantiated by the

attribute values from the frame instance. In order to solve this problem, we need

(1) to establish a relationship between attributes in predicates and frame templates

defined in a folder organization; (2) to have background knowledge in a certain appli

cation domain. Then, an association dictionary and a knowledge base are introduced

besides a thesaurus which has been discussed in Section 7.2.1.

7.2.2.1 A ssociation D ictionary: The association dictionary describes association

relationships between attributes in predicates defined in the folder organization and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

frame
predicate templates
attributes FT
ATTR

FT

FT
ATTR

FT

Figure 7.6 An example of an association dictionary

various frame templates. As shown in Figure 7.6, the predicate attribute ATTRm, for

example, is associated with frame templates F T l5 F T , and F T n. In the evaluation

procedure for the Case 2, the association dictionary is first consulted to check

whether a predicate attribute is associated with the frame template of a filed frame

instance. If an association relationship is found in the dictionary, then the further

evaluation will be processed. Otherwise, the evaluation will be terminated and will

return false to the filing program.

In the association dictionary, predicate attributes and frame templates are

many-to-many relationship. That is, a predicate attribute is associated with many

frame templates and a frame template is associated with many predicate attributes.

The complete description of association dictionary class (AssociationDictionary)

is given below.

c la ss AssociationDictionary

{ public:

A ssociationDictionary(); / / constructor

"AssociationDictionaryQ; / / destructor

/ / set accessors

void addA ttribute(A ttribute a t t r) ; / / add attribute

void addFrameTemplateName(Attribute a t t r , FrameTemplateName name);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

/ / add frame template name

void d e lA ttrib u te (A ttribu te a t t r) ; / / delete attribute

void delFrameTemplateName(Attribute a t t r , FrameTemplateName name);

/ / delete frame template name

/ / get accessors

Bool findFrameTemplateName(Attribute a t t r , FrameTemplateName ftName);

/ / check whether attribute is associated with frame template name

List<FrameTemplateName> listFrameTemplateName(Attribute a t t r) ;

/ / l i s t frame template names associated with attribute

private:

/ / attributes

Map<Attribute, List<FrameTemplateName>> Dictionary;

}

7.2.2.2 K now ledge Base: The knowledge base [17] consists of two parts, a fact

base and a rule base. In the fact base, each object-attribute-value triple represents

the fact that an object has a property which is described by an attribute along with

its value. For instance, the triple

[Jennifer A. Wallace P ro g ram PhD]

states that Jennifer A. Wallace is in a PhD program.

Consider a fact that James Israel is a staff of EE department and is also in the

PhD program of CIS department. Such fact can be represented as

[James Israel R ole [[[Dept EE] [Status Staff]] [[Dept CIS] [Program PhD]]]]

A fact with a simple value (such as PhD) is called a simple fact. A fact with a

composite value (such as [[[Dept EE] [S tatus Staff]] [[Dept CIS] [Program PhD]]])

is called a composite fact. The formal description of a fact can be defined as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

(Fact) ::= Object (A ttribute) (Value)

(A ttribute) (String)

(Value) ::= (SimpleValue)

| (CompositeValue)

(SimpleValue) ::= (Numeric)

| (String)

| (Numeric) {, (Numeric)}*}

| (String) {, (String)}*}

(CompositeValue) [{[[(Attribute) (SimpleValue)]}+]}+]

I [{[[(Attribute) (CompositeValue)]}+]}+]

A rule in the rule base is of the form LHS -» RHS, where (1) LHS (also called

IF Condition) is a conjunction of facts, L\, ..., Lm, which specifies the conditions of

applying the rule, and (2) RHS (also called Conclusion) is either a conjunction of

facts, Ri, ..., Rn, or a predicate in the folder organization, which is true only if LHS

is true. For instance, the following rule represents the fact that X is a faculty if X is

an assistant professor (where X is a variable).

[X P osition Assistant Professor] —► [X S ta tu s Faculty)

The rules in the rule base can be organized into a set of AND/OR rule trees (or

abbreviated as rule trees). For instance, the following rules can be represented by a

rule tree shown in Figure 7.7. (Notations of NOT and -> are used interchangeably)

0 ,P - > T

M - » 0
<

N - + 0

A,->B P

Each attribute in a knowledge base has a set of legal values. Suppose that the

attribute P ro g ram has the set of legal values {BS, MS, PhD}. If there is a fact

[James Thomas P ro g ra m PhD] in a fact base, then the following rules are true:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

< OR < AND (^) NOT

Figure 7.7 An AND/OR rule tree representing a collection of rules

[James Thomas P ro g ram PhD] -» NOT [James Thomas P rogram BS[

[James Thomas P ro g ram PhD] -» NOT [James Thomas P rogram MS]

Exam ple 7.2.1 Consider the following rules, which are employed to file frame

instances into the folder organization of Figure 7.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

[X Class Employee] -> [Class = Employee]

[X Status Staff] —► [5latus = Staff]

[X Status Faculty] -+ [Status = Faculty]

[X Status Staff] -> [X Class Employee]

[X Status Faculty] —► [X Class Employee]

[X Position Special Lecturer] —► [X Status Faculty]

[X Position Full Professor] -*■ [X Status Faculty]

[X Position Associate Professor] —► [X Status Faculty]

[X Position Assistant Professor] -+ [X Status Faculty]

[X Department CIS] -> [Department = CIS]

' [X Program BS] -> [Program = BS]

[X Program MS] —► [Program = MS]

[X Program PhD] —► [Program = PhD]

[X Position Special Lecturer] —>• [Position = Special Lecturer]

[X Position Assistant Professor] -> [Position = Assistant Professor]

[X Position Associate Professor] -»• [Position = Associate Professor]

[X Position Pull Professor] -> [Position = Full Professor]

[X Class Student] -> [Class = Student]

[X Program BS] -> [X Class Student]

[X Program MS] -4 [X Class Student]

[X Program PAD], NOT[X Position Special Lecturer] -f [X Class Student]

These rules can be organized into a set of rule trees as shown in Figure 7.8.

The leaf nodes and the immediate nodes of a rule tree are associated with facts, and

the rooted node of a tree is a predicate appeared in the folder organization. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

- Faculty)

Faulty)

Anodae Profeoof) f X Podtloa Animat Piofenot)

(W

(Porition m Special Lecturer] f Poddon ■ Full Prafasor) (Posilicn * Associate Prqfcuor "] f Position ■ Anisumt Pm fam r)

(X foalUan SpecUl Lecturer] [X PaMina RtnProfenoT-) (X r«dUo« Anodae Profcnor) (X Padtioa AntoinProfaMf)

to to to (/)

f Department ■ OS J (Staau m Staff]

(D

(PrognrntmPhD J (Protram m US) (Prvgram ■ BS)

C X D q a r t f t OS) (X State. Staff) (X P repai PhD) (X fn y tm MS) (X PtmtmM BS)

<*> < l) W

PhD)

Figure 7.8 An example of rule trees

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

Knowledge Base class (KnowledgeBase) is defined as follows.

class KnowledgeBase

{
public:

KnowledgeBase 0 ; / / constructor

'KnowledgeBase (); / / destructor

/ / set accessors

void addFact(Fact fa c t) ; / / add fact

void addRule(Rule ru le) ; / / add rule

/ / get accessors

Rule f indRuleTree (PredType pred); / / find rule tree with root “pred”

/ / behavior method

Bool reason (Rule ru le); / / goal-directed reasoning from “rule”

private:

/ / attributes

FactBase FB; / / fact base

RuleBase RB; / / rule base

};

The backward (goal-directed) reasoning [10] is used to execute the rules in

the rule base and can be described by a recognize-reduce cycle [1] where rules are

viewed as laws by which a goal can be reduced to a number of subgoals. In our

system, since the rules are organized as a set of rule trees, we can have the backward

reasoning by traversing these rule trees, each from a rooted node to the leaf nodes,

for determining whether a frame instance satisfies the predicates of the folders in the

folder organization. For example, let the goal be Class = Employee. The inference

engine selects the rule tree in Figure 7.8(b). By traversing the tree (say, breadth

first search [37]), the goal Class = Employee is reduced to another goal [X Class

Employee]. That is, if [X Class Employee] is true, then Class = Employee is true.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

Otherwise, the goal [X Class Employee] is further reduced to two subgoals [X Status

Staff] and [X Status Faculty]. If one of the two subgoals holds, then the goal [X

Class Employee] holds. Therefore, the goal Class = Employee is true. If not, the

system will continue going on. Since [X Status Staff] is a leaf of the rule tree, it

can not be further reduced. On the other hand, the subgoal [X Status Faculty]

is reduced into four sub-subgoals {[X Position Special Lecturer], [X Position Full

Professor], [X Position Associate Professor], and [^Position Assistant Professor]).

If one of them is true, then the goal Class = Employee is true.

The method KnowledgeBase:: reason (Rule ru le) is an implementation of

goal-directed reasoning.

Bool

KnowledgeBase::reason(Rule ru le)

{

L ist< F act> queue;

queue.nake_empty(): / / empty the queue

Fact fa c t = ru le .leftM ostC hildO ; get left most child of the root

queue, enqueue (fac t) ; / / add the fact to the queue

while ((fa c t = ru le .r ig h tS ib lin g (fa c t)) != NULL)

{ / / add children of the root to the queue

queue.enqueue(fact);

};

while ((fa c t = queue.dequeue()) != NULL)

{

i f (FB .findFact(fact) ~ TRUE) re tu rn TRUE; / / fact is found in fact base

i f (ru le .le ftM ostC h ild (fac t) != NULL)

{

while ((fa c t = ru le .r ig h tS ib lin g (fa c t)) != NULL)

{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

queue.enqueue(fact) ;

};

};

};
re tu rn FALSE;

}

7.2.2.3 E valuation Function: The following method

FolderO rganization::eval(Fram eInstance f i , A ttribu te B, PredType "A 6

V") describes the evaluation procedure for determining whether a frame instance fi

with an attribute B satisfies an atomic predicate A 6 V.

Bool

FolderO rganization: :eval(FrameInstance f i , A ttrib u te B, PredType "A 6 V")

{
i f (A == B)

{ / / Case 1

i f (fi[B] 0 V) re tu rn TRUE;

fo r (each token value v in V)

Vkt •append(Dict.getKeyTerm(v)) ;

i f (Dict.getKeyTerm(fi[B]) 6 Vkt) re tu rn TRUE;

re tu rn FALSE;

}
e lse

{ / / Case 2

if (Dict.getKeyTerm(A) == Diet.getKeyTerm(B))

{

i f (fi[Dict.getKeyTenn(B)] 0 V) re tu rn TRUE;

fo r (each token value v in V)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Vkt • append (D ie t. getKeyTerm(v));

i f (Diet.getKeyTerm(fi[Diet.getKeyTerm(B)]) 0 V k t) re tu rn TRUE;

re tu rn FALSE;

}
e lse

{

i f (AssoDict.findFrameTemplateName(A, fi.getFTNameO) == TRUE)

{ / / check if A associates with frame template of f i

Rule ru le = KB.findRuleTreeC'A 6 V");

i f (ru le != NULL)

{

i f (KB. reason (ru le) == TRUE) re tu rn TRUE;

re tu rn FALSE;

};

ru le = KB.findRuleTree("Dict.getKeyTerm(A) 0 V k t") ;

i f (ru le != NULL)

{

i f (KB. reason (ru le) == TRUE) re tu rn TRUE;

re tu rn FALSE;

};

};

re tu rn FALSE;

};

};

}

The following theorem shows the correctness of the above evaluation function.

T heorem 7.2.1 (Correctness of the evaluation function) Given an atomic predicate

A 6 V (where A is an attribute, V is a value and theta is a comparison operator), the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

above evaluation function determines whether a frame instance fi with an attribute B

satisfies k 8 V.

Proof: We will establish the correctness of the evaluation function by considering

the following cases:

• Case 1: the attribute A is an attribute in fi. That is, A and B are the same. For

this case, the function checks whether ^[B] 8 V holds. If yes, it returns true.

Otherwise, it consults the thesaurus to get corresponding key terms / i[B]kt and

Vrt for fi[B] and V, respectively. If / i[B]kt 8 Vkt holds, it returns true and returns

false otherwise.

• Case 2: the attribute A is not an attribute in fi. There are two sub-cases to be

considered:

— Sub-case 2.1: A and B refer to the same key term in the thesaurus. For

this case, the proof is similar to the Case 1.

— Sub-case 2.2: A and B refer to different key terms in the thesaurus. For this

case, it checks association dictionary to see if the attribute A associates

with the frame template of the frame instance fi. If there is no such

association relationship, the evaluation function returns false. Otherwise,

the evaluation function searches rule trees as defined in Section 7.2.2.2. If

there is a rule tree with root f i[B] 8 V or / i[B]kt 8 Vkt, then the evaluation

function traverses the rule tree using breadth first search. If a subgoal

holds, it returns true. Otherwise, it returns false. □

Suppose that there are k frame templates in the association dictionary and the

deepest levels of rule tree in the rule base is m. The worst case of the evaluation

function takes O (k x m).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

A local predicate 6 in the form of boolean expression can be transformed into

a disjunctive normal form. That is, 8 = L x V ... V Lk, where £, (1 < i < k) is the

conjunction of atomic predicates (i.e., Li = aix A ... A a,m, ai} (1 < j < m) is an

atomic predicate). The following method can be used to convert a predicate into a

disjunctive normal form.

void

Folder::transform (PredType 5)

{

while (th e re i s a negation sign not immediately before atomic p red ica te)

{

i f (the re i s a form ->(-’5) in 8)

{

= S;

};

i f (the re i s a form ->(S A T) in 5)

{

- ' (S A T) = ->S V ->T;

};

i f (the re i s a form ->(5VT) in 8)

{

->(S V T) = - i5 A -iT;

};

};
while (there i s a form R A (S V T) in 8)

{

R A (S V T) = (R A S) V (R A T);

};

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

>
(M

(e)

o

(<T)

F igu re 7.9 Convert a predicate to a disjunctive normal form

Internally, a predicate is represented as an expression tree. Then, tree pattern

matching mechanism can be used to recognize the forms ->(Sa T), ->(5 VT),

and R a (S v T). Figure 7.9 shows the tree representation of these forms. For example,

if the pattern (in the left side of Figure 7.9(c)) is recognized in an expression tree,

then it is replaced by the right side of Figure 7.9(c). That is, ->(S A T) is converted

to be —>S V —>T.

If a frame instance satisfies Li (3i € (1,..., k}), then it satisfies <5. To determine

whether a frame instance satisfies L,, the system evaluates whether it satisfies each

of atomic predicates, a^, using the function FolderO rganization: :e v a l() .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8

CONCLUDING REMARKS

This chapter will conclude the work of this dissertation and give potential research

directions. Generally, the major contributions of this dissertation include (1) the

extension of an existing document model and an algebraic query language, (2) the

reconstruction of folder organizations, and (3) the automation of document filing.

8.1 Document Models and Algebraic Query Languages

Previously, a folder organization was defined in terms of depend-on relationship [38],

an inclusion relation. That is, a folder fi depends-on a folder fi if and only if fi C fi.

Based upon this definition, a folder organization is a tree structure. This dissertation

extends the folder organization from a tree structure into the rooted DAG structure,

which represents explicitly document filing directions. There are three kinds of

depend-on relationships: totally depend-on, partially depend-on and independent-of.

These relationships are complete and mutually exclusive in the sense that for any

pair of folders in a folder Organization, one and only one of the relationships holds.

The algebraic query language (called P-algebra) defined in [38] only handles

homogeneous folders. Whereas, in the reality, a folder can be a heterogeneous set of

frame instances. By observing this limitation, this dissertation extends the P-algebra

operations to support folders of heterogeneous frame instances. The deposit of frame

instances in the folders of a folder organization is governed by the constraints specified

for each folder. The constraints are specified terms of predicates.

Although many of the operators in the P_algebra correspond to operators in the

relational algebra [36], there is one major difference: the P_algebra operators can

manipulate heterogeneous sets (i.e., folders containing frame instances of different

types), whereas the relational algebra operators only deal with homogeneous sets (i.e.,

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

Table 8.1 Differences between V .model and relational models
Components D_Model Relational Model

Tuples and sets of tuples (i.e. tables) V V
Frame templates and recursively
defined bulk data types V X

Document type hierarchy and is-a
relationship between frame templates V X

Predicate-based folders containing
frame instances of different types V X

Folder organization with depends-on
relationship between folders V X

Path notation and highlight operator V X

Algebraic operators for manipulating
homogeneous sets V V
Algebraic operators for manipulating
heterogeneous sets V X

Normalization and functional dependencies X V
Keys and foreign keys X V
Referential integrity X V

tables containing tuples of the same type). We have defined a subset of the V .algebra

and proved that the subset is at least as expressive as the relational algebra [40].

Table 8.1 summarizes the key differences between the D_model and the relational

model, where “>/” indicates that the component exists in the corresponding model

and “x ” indicates that the component does not exist in the corresponding model.

Note that since the P ̂ algebraic operators are all defined on heterogeneous sets, as

opposed to the homogeneous sets handled by the relational algebraic operators, their

semantics are entirely different from those in the relational algebra.

The nest and unnest operators (i/, /z) are first introduced in algebra for NF2

relational data model. Jaeschke and Schek [28] proposed these two operators only

applied to nesting over single attributes defined over atomic attributes. Fischer

and Thomas [14] extended this to multiple attributes and multiple level of nesting.

However, as we discussed in the previous chapter, if we simply extend the restruc

turing operators in NF2 algebra into our document model, it does not fully support

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

our document model. The reason is as follows. In NF2 relational data model, a

database schema is a collection of rules of the form R j = (R j l , RJ2, ..., R jn), where Rj

and Rj{ (1 < i < n) are relation names. Using this kind of rule, it can not generate

a set of relations. That is, nest and unnest operators in NF2 relational algebra can

not express a set of relations. Recall that, in our document model, there is such rule

T = {T} to generate set of sets since T can be any type. In this sense, our document

algebra is more powerful than NF2 relational algebra.

8.2 Reconstruction of Folder Organizations

Folder Organizations are defined in terms of directed graph. Each node is associated

with a folder. For each folder, there is a constraint specifying what should be

contained in it. These constraints are specified in terms of local predicates and

global predicates. A user only specifies local predicates for the folders and the global

predicates of the folders are derived by ANDing the local predicates of folders of a

filing path of the underlying graph of a folder organization. The global predicate

of a folder determines the contents of a folder. A Reconstruction Problem for folder

organizations is then formulated, viz., under what circumstances it is possible to

reconstruct a folder organization from its folder level global predicates. The Recon

struction Problem is solved in terms of such graph-theoretic concepts as associated

digraphs, transitive closure, and redundant/non-redundant filing paths. A transitive

closure inversion algorithm is presented which efficiently recovers a folder organi

zation digraph from its associated digraph. The reconstruction result is as follows.

Given a set of folders with their global predicates, we can construct the associated

digraph G { T O) of a folder organization !FO {G , A). If T Q { G , A) is a totally hierar

chical tree folder organization, then the underlying digraph G of F Q { G , A) is the

only spanning tree of G { T O) whose transitive closure is equal to the associated

digraph G {T O) . If T (G , A) is a totally hierarchical and non-redundant DAG folder

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

organization, the underlying digraph G is then non-redundant spanning sub-DAG

of G{TO) whose transitive closure is also equal to the associated digraph G(TO).

Therefore, we can use the Transitive Closure Inversion algorithm to reconstruct the

unique folder organization digraph G from its associated digraph G.

8.3 A u tom ation of D ocum ent F iling

A folder organization represents a users’ real world document filing system. For

the existing document filing systems [8, 9, 44, 49], they use the same filing criteria

(;type-driven) to organize documents according to their types. That is, homogeneous

documents (of the same document types) are grouped together. This dissertation

provides a heterogeneous environment of organizing documents using predicate-

driven filing criteria. Heterogeneous documents (of different document types) can

be grouped into a folder if they satisfy the predicate of the folder. Table 8.2

summarizes their differences. In the real office environments, office workers organize

their documents in terms of various criteria rather than simply by document

types. For example, a department chairperson wants to create folders for individual

faculty members. Each folder may contain many document types, such as Faculty

Position A pplication, U niversity T ranscript, M emo, Pub lica tion , V ita , etc.

The type-driven filing approach fails to support such office environment. However,

as discussed in the previous chapters, the predicate-driven approach can support

such environment by defining a proper predicate for a folder. On the other hand,

the type-driven filing approach is only a a special case of the predicate-driven

filing approach (if a predicate is defined as fram e-tem plate = a-document-type,

for example), or we can use the document type hierarchy in TEXPROS document

model to mimic the type-driven approach of organizing and filing documents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

Table 8.2 Differences between TEXPROS Document Filing and Other Systems

System Filing Model Filing Criteria Organization Country Year
MINOS Object-Oriented Type-Driven U. of Waterloo Canada 1986

MULTOS Object-Oriented Type-Driven CNR Italy 1988
AIM Nested Relational Type-Driven IBM U.S.A. 1989

Kabiria Semantic Network Type-Driven Bull HN Italy 1993
TEXPROS Folder Organization Predicate-Driven NJIT U.S.A. 1996

8.4 F u tu re R esearch D irections

This section presents an overview of some future research directions that emanate

from the work described in the dissertation.

8.4.1 Specification o f C rite ria for th e Folders

In this dissertation, a criterion of a folder is specified by a predicate. An atomic

predicate is defined as (Attribute) (Comparison Operator) (Value). The comparison

operators are pre-defined. A user has to use the restricted specification to specify

predicates of folders. Such restricted specification may make a user difficult to map

his/her criteria to predicates.

Considerable extension of predicate specification is to use a general first order

predicate specification [15, 4]. For example, the predicate (Vx)Journal-Article(x) A

Database(x) can be used to define a folder containing all the frame instances which

are journal articles in the database area. By using such general first order predicate

specification, there are two classes of predicates needed to be supported by the

system.

• Pre-defined predicates. The system provides a set of pre-defined predicates so

that a user can use to define common predicates of folders. The study is needed

to determine what is primary set of pre-defined predicates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

• User-defined predicates. The pre-defined predicates may not meet a user’s need

to specify predicates of folders. A mechanism should be provided so that users

can define additional predicates and their semantics.

8.4.2 Knowledge Discovery and Data Mining

A document filing system gathers and stores a large amount of documents. However,

the documents themselves are of little direct value. What is of value is the knowledge

that can be inferred from documents and put to use. Knowledge discovery in database

(KDD) and data mining [13, 27] have the potential of providing good information

and knowledge management support for a document filing system. The potential

research issues include:

• Understandability of patterns. In office information systems, it is important

to make the discoveries more understandable by humans. Possible solutions

include graphical representations, rule structuring, natural language generation,

and techniques for visualization of data and knowledge.

• Non-structured and multimedia documents. A significant trend is that a

document base contains not just structured documents but large quantities

of non-structured and multimedia documents. Non-structured documents

contain nonstandard data types, such as non-numeric, non-textual, geometric,

and graphical data, as well as non-stationary, temporal, spatial and relational

data. Multimedia documents include free-form multi-lingual text as well as

digitized images, video, speech and audio data. These data types are largely

beyond the scope of current KDD and data mining technology.

8.4.3 Reorganization of a Filing System

A filing system is dynamic and evolving. A user can reorganize his/her filing system

such as add a new folder, delete a folder, merge folders to be one folder, move a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

folder from one spot to the other, etc. As a consequence, some frame instances

must be re-filed. There is an ongoing research using an agent-based architecture to

cope with file reorganization [50]. Each folder is monitored by an agent. Agents

are represented as objects using an object-oriented approach. It encapsulates the

internal representation of folders with the operations that manipulate them, thereby

enhancing re-usability of code and information hiding.

8.4.4 A Multi-User Environment

Currently, TEXPROS document filing system is a personal (single-user) customizable

system. However, for the demand of accessing the shared information, a multi-user

filing system is needed. Consider a department document filing system containing

the departmental information. Suppose the Research Report folder contains research

reports of the department and it is shared to anyone. A user then can access and

retrieve the abstracts of reports. In order to support a multi-user environment, the

following considerations need to be made:

• Security issue. Like any other multi-user system, the security is always the

first concern. We may categorize folders in the filing system into three classes:

(1) public folders, (2) restricted folders, and (3) personal folders. A public

folder contains public information that allows any user to access. A restricted

folder only allows certain group of users or a privileged user to access. A

personal folder has pure personal information and only the owner of the folder

can access. A security mechanism needs then to be defined and built on the

top of a multi-user filing system.

• Centralizing the information. Folders in a multi-user filing system may

distributed over the network. For example, Professor John Smith creates his

personal folder (called John_Smith) on his workstation and it is a child folder

of Faculty folder which resides at another machine. In order to keep track

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ill

the network information, a client-server model can be adopted. A machine

is dedicated as a filing server that stores filing system information such as

where are folders in the network, and what are the relationships among them.

Whenever any change occurs, we only update the filing server. A client sends

a request to the filing server to get filing system information. There will be

a need of providing a set of protocols that govern the consistency of a filing

system.

• Internet availability. The World Wide Web has transformed the online world.

Users of the Web have a great deal of choices for selecting and viewing infor

mation. Java [12] opens up a new degree of interactivity and customizability

of interaction for the Web. The integration of Netscape, Java and TEXPROS

will make TEXPROS filing system available on the internet. A user can use a

Web browser to file documents, and to retrieve documents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

1. H. Adeli, Knowledge Engineering, McGraw-Hill, New York, NY, 1990.

2. E. Bertino, F. Rabitti, and S. Gibbs, “Query Processing in a Multimedia
Document System,” ACM Transactions on Office Information Systems,
vol. 6, no. 1, pp. 1-41, January 1988.

3. G. Booch, Object Oriented Design with Applications, The Benjiamin/Cummings
Publishing Company, Inc., Redwood City, CA, 1991.

4. L.F. Boron, Elements of Mathematical Logic, Addison-Wesley Publishing
Company, Inc., New York, NY, 1964.

5. A. Celentano, M. Fugini, and S. Pozzi, “Knowledge-Based Document Retrieval
in Office Environments: The Kabiria System,” ACM Transactions on
Office Information Systems, vol. 13, no. 3, pp. 237-268, July 1995.

6. S. Chen, Document Preprocessing and Fuzzy Unsuperuised Character Classi
fication, Ph.D. Dissertation, Department of Computer and Information
Science, New Jersey Institute of Technology, Newark, NJ, May 1995.

7. S. Chen, F. Shih, and P. Ng, “A Fuzzy Model for Unsupervised Character
Classification,” Information Science, An International Journal, vol. 2,
no. 2, 1994.

8. S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa, and A. Pathria,
“Multimedia Document Presentation, Information Extraction, and
Document Formation in MINOS: A Model and System,” ACM Trans
actions on Office Information Systems, vol. 4, no. 4, pp. 345-383, October
1986.

9. H. Clifton, H. Garcia-Molina, and R. Hagmann, “The Design of a Document
Database,” in Proceedings of the ACM Conference on Document
Processing Systems, pp. 125-134, December 1988.

10. W. Clocksin and C. Mellish, Programming in Prolog, Springer-Verlag, New York,
NY, 1981.

11. W. Croft and D. Stemple, “Supporting Office Document Architectures with
Constrained Types,” in Proc. of ACM SIGMOD International Conf. on
Management of Data, pp. 504-509, 1987.

12. J. December, Presenting Java: An Introduction to Java and Hotjava, Sams.Net,
Indianapolis, IN, 1995.

13. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “The KDD Process for
Extracting Useful Knowledge from Volumes of Data,” Communication
of the ACM, vol. 39, no. 11, 1996.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

14. P. Fischer and S. Thomas, “Operators for Non-First Normal Form Relations,”
in Proc. of the 7th International Computer Software Applications Conf.,
pp. 464-475, 1983.

15. J. Gallier, Logic for Computer Science: Foundations of Automatic Theorem
Proving, Harper & Row, Publishers, Inc., New York, NY, 1986.

16. S. Gibbs and D. Tsichritzis, “A Data Modeling Approach for Office Information
Systems,” ACM Transactions on Office Information Systems, vol. 1, no. 4,
pp. 299-319, October 1983.

17. U. Gupta, Validating and Verifying Knowledge-Based Systems, IEEE Computer
Society, Los Alamitos, CA, 1991.

18. R. Guting, R. Zicari, and D. Choy, “An Algebra for Structured Office
Documents,” ACM Transactions on Information Systems, vol. 7, no. 4,
pp. 123-157, April 1989.

19. X. Hao, Automatic Office Document Classification and Information Extraction,
Ph.D. Dissertation, Department of Computer and Information Science,
New Jersey Institute of Technology, Newark, NJ, August 1995.

20. X. Hao, J. Wang, M. Bieber, and P. Ng, “Heuristic Classification of Office
Documents,” International Journal of Artificial Intelligence Tools, vol. 3,
no. 2, pp. 233-265, 1994.

21. X. Hao, J. Wang, and P. Ng, “Nested Segmentation: An Approach for Layout
Analysis in Document Classification,” in Proc. of the Second International
Conference on Document Analysis and Recognition, Tsukuba Science
City, Japan, pp. 319-322, October 1993.

22. C. Hewitt, “Office are Open Systems,” ACM Trans, on Office Information
Systems, vol. 4, no. 3, pp. 271-287, July 1986.

23. P. Hoepner, “Synchronizing the Presentation of Multimedia Objects - ODA
Extensions,” ACM SIGOIS Bulletin, vol. 12, no. 1, pp. 19-32, July 1991.

24. W. Horak, “Office Document Architecture and Office Document Interchange
Formats - A Current Status of International Standardization,” IEEE
Computer, vol. 18, no. 10, pp. 50-60, October 1985.

25. J. Hughes, Object Oriented Database, Prentice Hall, New York, NY, 1990.

26. R. Hunter, P. Kaijser, and F. Nielsen, “ODA: A Document Architecture for
Open Systems,” Computer Communication, vol. 12, no. 2, pp. 139-151,
1989.

27. T. Imielinski and H. Mannila, “A Database Perspective on Knowledge
Discovery,” Communication of the ACM, vol. 39, no. 11, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

28. G. Jaeschke and H. Schek, “Remarks on the Algebra of Non-First Normal
Form Relations,” in Proc. of the ACM SIGACT-SIGMOD Sysmposium
on PODS, pp. 124-138, 1982.

29. W. Kim and F. Lochousky, Object-Oriented Concepts, Databases, and Appli
cations, Addison-Wesley Publishing Company, New York, NY, 1989.

30. Q. Liu and P. Ng, “A Browser of Supporting Vague Query Processing in an
Office Document System,” Journal of Systems Integration, vol. 5, no. 1,
pp. 61-82, 1995.

31. Q. Liu and P. Ng, “A Query Generalizer for Providing Cooperative Responses
in an Office Document System (revised version),” Submitted to Data and
Knowledge Engineering Journal, October 1995.

32. Q. Liu and P. Ng, Document Processing and Retrieval: Text Processing, Kluwer
Academic Publishers, Norwell, MS, 1996.

33. Q. Liu, J. Wang, and P. Ng, “An Office Document Retrieval System with the
Capability of Processing Incomplete and Vague Queries,” in Proc. of the
Fifth Intl. Conf. on Software Engineering and Knowledge, San Francisco,
CA, pp. 11-17, June 1993.

34. Q. Liu, J. Wang, and P. Ng, “On Research Issues Regarding Uncertain Query
Processing in An Office Document Retrieval System,” Journal of Systems
Integration, vol. 3, no. 2, pp. 163-194, 1993.

35. E. Lutz, H. Kleist-Retzow, and K. Hoemig, Multi-User Interface and Appli
cations, ch. MAFIA - an Active Mail-Filter-Agent for An Intel
ligent Document Processing Support, North Holland: Elsevier Science
Publishers, Amsterdam, S. Gibbs and A.A. Verrijn-Stuart ed., 1990.

36. D. Maier, The Theory of Relational Database, Computer Science Press,
Potomac, MD, 1983.

37. J. McHugh, Algorithmic Graph Theory, Prentice Hall, NJ, 1990.

38. F. Mhlanga, D-Model and D-Algebra: A Data Model and Algebra for Office
Documents, Ph.D. Dissertation, Department of Computer and Infor
mation Science, New Jersey Institute of Technology, Newark, NJ, May
1993.

39. F. Mhlanga, J. Wang, T. Shiau, and P. Ng, “A Query Algebra for Office
Documents,” in Proc. of the 2nd Intl. Conf. on Systems Integration,
Morristown, NJ, pp. 458-467, June 1992.

40. F. Mhlanga, Z. Zhu, J. Wang, and P. Ng, “A New Approach to Modeling
1 Personal Office Documents,” Data and Knowledge Engineering, vol. 17,

no. 2, pp. 127-158, November 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

41. N. Naffah, Integrated Office Systems, North-Holland, Amsterdam, 1980.

42. J. Peckham and F. Maryanski, “Semantic Data Modles,” ACM Computing
Survey, vol. 20, no. 3, pp. 100-120, 1988.

43. B. Pernici and A. Verrjin-Stuait, Office Information Systems: The Design
Process, North-Holland, Amsterdam, 1989.

44. S. Pozzi and A. Celentano, “Knowledge-Based Document Filing,” IEEE Expert,
pp. 34-45, October 1993.

45. D. Shasha and J. Wang, “Optimizing Equijoin Queries in Distributed Databases
Where Relations Are Hash Partitioned,” ACM Transactions on Database
Systems, vol. 16, no. 2, pp. 279-308, June 1991.

46. G. Shaw and S. Zdonik, “A Query Algebra for Object-Oriented Databases,”
in Proceedings of the Sixth International Conf. on Data Engineering, Los
Angles, CA, pp. 154-162, February 1990.

47. F. Shih, S. Chen, D. Hung, and P. Ng, “A Document Segmentation, Classi
fication and Recognition System,” in Proceedings of 2nd International
Conference on Systems Integration, Morristown, NJ, pp. 258-267, June
1992.

48. S. Su, M. Gou, and H. Lam, “Association Algebra: A Mathematical Foundation
for Object-Oriented Databases,” IEEE Transactions on Knowledge and
Data Engineering, vol. 5, no. 5, pp. 775-798, October 1993.

49. C. Thanos, Multimedia Office Filing: The MULTOS Approach, North-Holland,
Amsterdam, 1990.

50. J. Wang, F. Mhlanga, Q. Liu, W. Shang, and P. Ng, “An Intelligent
Documentation Support Environment,” in Proc. of the Fifth Interna
tional Conference on Software Engineering and Knowledge Engineering,
San Francisco, CA, pp. 429-436, June 1993.

51. J. Wang, F. Mhlanga, and P. Ng, “A New Approach to Modeling Office
Documents,” ACM SIGOIS Bulletin, vol. 14, no. 2, pp. 46-55, December
1993.

52. J. Wang and P. Ng, “TEXPROS: An Intelligent Document Processing
System," International Journal of Software Engineering and Knowledge
Engineering, vol. 15, no. 4, pp. 171-196, April 1992.

53. C. Wei, Knowledge Discovering for Document Classification Using Tree
Matching in TEXPROS, Ph.D. Dissertation, Department of Computer
and Information Science, New Jersey Institute of Technology, Newark,
NJ, May 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

54. C. Wei, Q. Liu, J. Wang, and P. Ng, “Knowledge Discovering for Document
Classification Using Tree Matching in TEXPROS,” Submitted to Infor
mation Sciences, An International Journal, March 1996.

55. C. Wei, J. Wang, X. Hao, and P. Ng, “In Deductive Learning and Knowledge
Representation for Document Classification: The TEXPROS Approach,”
in Proceedings of 3rd International Conference on Systems Integration,
Sao Paulo, SP, Brazil, pp. 1166-1175, August 1994.

56. D. Woelk, W. Kim, and W. Luther, “An Object-Oriented Approach to
Multimedia Databases,” in Proceedings of the ACM SIGMOD Interna
tional Conference on Management of Data, Washington D.C., pp. 311—
325, May 1986.

57. Z. Zhu, “Document Filing Based upon Predicates,” Ph.D. Dissertation Proposal,
Department of Computer and Information Science, New Jersey Institute
of Technology, Newark, NJ, October 1994.

58. Z. Zhu, Q. Liu, J. McHugh, and P. Ng, “A Predicate Driven Document Filing
System,” Journal of Systems Integration, vol. 6, no. 3, pp. 373-403,
September 1996.

59. Z. Zhu, J. McHugh, J. Wang, and P. Ng, “A Formal Approach to Modeling
Office Information Systems,” Journal of Systems Integration, vol. 4, no. 4,
pp. 373-403, December 1994.

60. J. Zobel, J. A. Thom, and R. Sacks-Davis, “Efficiency of Nested Relational
Document Database Systems,” in Proc. of the 17th International Conf.
on Very Large Databases, Barcelona, Spain, pp. 91-102, September 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 1997

	On document filing based upon predicates
	Zhijian Zhu
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Copyright Page
	Approval Page
	Abstract (1 of 2)
	Abstract (2 of 2)

	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Related Work
	Chapter 3: Preliminaries
	Chapter 4: Texpros Document Model
	Chapter 5: Extended D_Algebra
	Chapter 6: The Construction and Reconstruction Problems
	Chapter 7: Document Filing
	Chapter 8: Concluding Remarks
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

