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ABSTRACT 

BILINEAR TIME-FREQUENCY REPRESENTATIONS OF HEART RATE 
VARIABILITY AND RESPIRATION DURING STRESS 

by 
Rindala Saliba 

Recently, joint time-frequency signal representation has received considerable attention 

as a powerful tool for analyzing a variety of signals and systems. In particular, if the 

frequency content is time varying as in signals of biological origin which often do not 

comply with the stationarity assumptions, then this approach is quite attractive. In this 

dissertation, we explore the possibility of better representation of two particular 

biological signals, namely heart rate variability (HRV) and respiration. We propose the 

use of time-frequency analysis as a new and innovative approach to examine the physical 

and mental exertion attributed to exercise. Two studies are used for the main 

investigation, the "preliminary" and "anticipation" protocols. 

In the first phase of this work, the application of five different bilinear 

representations on modeled HRV test signals and experimental HRV and respiration 

signals of the preliminary protocol is evaluated. Each distribution: the short time Fourier 

transform (STFT), the pseudo Wigner-Ville (WVD), the smoothed pseudo Wigner-Ville 

(SPWVD), The Choi-Williams (CWD), and the Born-Jordan-Cohen (RID) has unique 

characteristics which is shown to affect the amount of smoothing and the generation of 

cross-terms differently . The CWD and the SPWVD are chosen for further application 

because of overcoming the drawbacks of the other distributions by providing higher 



resolution in time arid frequency while suppressing interferences between the signal 

components. 

In the second phase of this research, the SPWVD and CWD are used to 

investigate the presence of an anticipatory component due to the stressful exercise 

condition as reflected in the HRV signal from a change in behavior in the autonomic 

nervous system. By expanding the concept of spectral analysis of heart rate variability 

(HRV) into time-frequency analysis, we are able to quantitatively assess the 

parasympathetic (HF) and sympatho-vagal balance (LF:HF) changes as a function of 

time. As a result, the assessment of the autonomic nervous system during rapid changes 

is made. 

A new methodology is also proposed that adaptively uncovers the region of 

parasympathetic activity. It is well known that parasympathetic activity is highly 

correlated with the respiration frequency. This technique traces the respiration frequency 

and extracts the corresponding parasympathetic activity from the heart rate variability 

signal by adaptive filtering. 
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CHAPTER 1 

INTRODUCTION 

Biomedical engineering is the application of engineering and mathematical principles to 

medical science. The goal for its advancement is to develop tools for enhanced diagnosis 

and treatment of ailments that afflict mankind. The following work chronicles the 

research conducted on the utilization of time-frequency analysis as a non-invasive tool to 

quantify rapidly changing biological signals. The first step is to investigate the relevant 

physiology behind the human organs which are of interest. 

1.1 The Heart 

The cardiovascular system consists of blood vessels and the heart. In 1628, British 

physiologist William Harvey discovered that the cardiovascular system forms a circle, or 

circuit, so that blood pumped out of the heart through one set of vessels returns to the 

heart via a different set of vessels[1]. In actuality, there are really two circuits, both 

originating and terminating in the heart. Therefore, the heart, illustrated in Figure 1.1, is 

divided into two functional halves, each half containing two chambers: an atrium and a 

ventricle. The atrium of each side empties into the ventricle on that side. There is no 

direct flow between the two atria or the two ventricles in a healthy individual. 

Blood is pumped by the pulmonary circuit from the right ventricle through the 

lungs and then into the left atrium. The blood is then pumped by the systemic circuit, 

from the left ventricle, through all the tissues of the body except the lungs, and then to the 

right atrium. In both circuits, the vessels carrying blood away from the heart are called 

1 



Superior vena cava 

arteries, and those carrying blood from either the lung or all other parts of the body back 

to the heart are called veins. 

Inferior vena cava 	 Aorta 

Figure 1.1 The heart 
(from A.J. Vander, J.H. Sherman, and D.S. Luciano, Human Physiology, 1994) 

The heart is a muscular organ which is enclosed in a fibrous sac called the 

pericardium[2]. The walls of the heart are primarily composed of cardiac-muscle cells 

called the myocardium. Cardiac-muscle cells combine properties of both skeletal muscle 

and smooth muscle. However, even more important, approximately one percent of the 

cardiac-muscle fibers have specialized features that are essential for normal heart 

excitation[1]. They constitute a network known as the conducting system of the heart and 

are connected to other cardiac-muscle fibers by gap junctions. The gap junctions allow 
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action potentials to spread from one cardiac-muscle cell to another. Thus, the initial 

excitation of one myocardial cell results in excitation of all cells, and as a result, the 

pumping action of the heart. The conducting system of the heart is shown in Figure 1.2. 

left bundle branch 

Figure 1.2 The conducting system of the heart 
(from A.J. Vander, J.H. Sherman, and D.S. Luciano, Human Physiology, 1994) 

The initial depolarization normally arises in a small group of conducting-system 

cells called the sinoatrial (SA) node. The SA node is located in the right atrium near the 

entrance of the superior vena cava. The SA node has the fastest inherent discharge rate of 

any of the myocardial cells with pacemaker activity. Therefore, the SA node is the 

normal pacemaker for the entire heart[1]. The action potential initiated in the SA node 

spreads throughout the myocardium, passing from cell to cell by way of gap junctions. 

The spread throughout the right atrium and the left atrium does not depend on fibers of 

the conducting system. The spread is rapid enough that the two atria are depolarized and 

contract at essentially the same time. 

3 



The spread of the action potential from the atria to the ventricles involves a 

portion of the conducting system called the atrioventricular (AV) node. The AV node is 

located at the base of the right atrium. The AV node has an important characteristic that 

makes the cardiac cycle more efficient. Because of the electrical properties of the cells 

that make up the AV node, the propagation of action potentials through the AV node 

results in a delay of approximately 0.1 seconds[1]. This delay allows the atria to finish 

contracting and, therefore, completely empty their contents of blood into their respective 

ventricles before ventricular excitation occurs. 

Upon leaving the AV node, the action potential then travels to the septum, the 

area between the two ventricles, by the conducting-system fibers called the bundle of 

His[2]. The bundle of His then divides into the left and right bundle branches which 

eventually leave the septum and enter the walls of their respective ventricles. These 

fibers then make contact with the Purkinje fibers which are large conducting cells that 

rapidly distribute the action potential throughout most of the ventricles. The rapid 

conduction along the Purkinje fibers and the distribution of these fibers cause the 

depolarization of the left and right ventricular cells to occur approximately 

simultaneously, thus resulting in a single coordinated contraction. Figure 1.3 illustrates 

the sequence of cardiac excitation. 

1.2 The Electrocardiogram 

The electrocardiogram (ECG) is primarily a tool for evaluating the electrical events 

within the heart. The action potentials of cardiac muscles can be viewed as batteries that 
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cause charge to move throughout the body fluids. These moving charges, or currents, 

represent the sum of the action potentials occurring simultaneously in many individual 

cells and can be detected by recording electrodes at the surface of the skin[1]. Figure 1.4 

illustrates a typical normal ECG recorded between the right and left wrists for one heart 

beat. 

atrial excitation 

begins 	 complete 

SA node 	 AV node 

Figure 1.3 The sequence of cardiac excitation 
(from A.J. Vander, J.H. Sherman, and D.S. Luciano, Human Physiology, 1994) 

The first deflection, the P wave, corresponds to the current flow during atrial 

depolarization (contraction). The second deflection, the QRS complex, is a result of 

ventricular depolarization. The third and final deflection is the T wave. The T wave is a 

result of ventricular repolarization (relaxation). It should be noted that atrial 

repolarization is usually not evident in the ECG because it occurs at the same time as the 

QRS complex. 

As mentioned earlier, the ECG is a measure of the electrical activity of the heart 

measured on the skin. The bipolar method of acquiring ECG detects electrical variations 

5 
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measured on the skin. The bipolar method of acquiring ECG detects electrical variations 

at two different locations on the skin and displays the difference to obtain one waveform. 

Figure 1.5 is an illustration of the standard limb lead connections that form Einthoven's 

triangle. In addition, the diagram also shows the names of the respective leads. To 

record lead I, the negative terminal of the ECG monitor is connected to the right arm 

(RA) and the positive terminal is connected to the left arm (LA). To record lead II, the 

negative terminal of the ECG monitor is connected to the right arm and the positive 

terminal is connected to the left leg. To record lead III, the negative terminal of the ECG 

monitor is connected to the left arm and the positive terminal is connected to the left leg 

(LL). The reference point or ground is connected to the right leg (RL). 

Figure 1.4 Illustration of a typical electrocardiogram 

It is important to realize that depending on where the electrodes are attached, a 

different waveshape will be obtained for the same electrical events occurring in the heart. 



obtaining different waveforms depending on the location of the electrodes, each 

individual has a unique ECG. 

Limb Leads 

Lead I 	 Lead II 	 Lead III 

Figure 1.5 Standard ECG limb leads to form Einthoven's triangle 
(from F. Netter. The CIBA Collection of Medical Illustrations Volume 5,The Heart,1981) 

1.3 The Nervous System 

Human behavior is controlled and regulated by two major communication systems, the 

endocrine system and the nervous system. The nervous system can be divided into two 

separate, but interconnected, parts. The first part consists of the brain and spinal cord and 

is called the central nervous system. The second part, which consists of nerves which 

extend from the brain and the spinal cord out to all points of the body, is called the 

peripheral nervous system. 

The peripheral nervous system consists of both an afferent division and efferent 

division. The afferent division conveys information from primary receptors to the central 

nervous system. The efferent division carries signals from the central nervous system out 
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to effector cells such as muscles and organs. The efferent division is subdivided into a 

somatic nervous system and an autonomic nervous system. The somatic nervous system 

consists of all the nerve fibers going from the central nervous system to skeletal-muscle 

cells. The efferent innervation of all tissues other than skeletal muscle is done by the 

autonomic nervous system[1]. 

1.3.1 The Autonomic Nervous System 

The autonomic nervous system is the part of the nervous system that controls the visceral 

functions of the body. Regulation of internal activities such as blood pressure, heart rate, 

gastrointestinal motility, and body temperature, among many others, is performed by the 

autonomic nervous system. Autonomic activity is controlled mainly by centers in the 

spinal cord, brain stem, and hypothalamus. Table 1.1 summarizes the effects of the 

autonomic nervous system on selected organs[1]. 

The autonomic nervous system is divided into two anatomical and functional units 

with opposite properties. The sympathetic nervous system is responsible for creating an 

increased level of activity in an organism. Anatomically, sympathetic nerves are 

composed of two neurons: a preganglionic neuron and a postganglionic neuron. These 

nerves pass from the spinal cord through the white ramus into one of the sympathetic 

ganglia before reaching their destination, Figure 1.6. Most postganglionic sympathetic 

nerve endings secrete norepinepherine, a neurotransmitter that activates excitatory 

receptors, but in some cases can inhibit certain organs. The sympathetic nervous system is 
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Effector Organ 
	

Effect of Sympathetic 
	

Effect of Parasympathetic 
Stimulation 
	

Stimulation 
Eyes 

Iris muscles 
Ciliary muscle 

Heart 
SA node 
Atria 
AV node 
Ventricles 

Arterioles 
Coronary 

Skin 
Skeletal muscle 

Abdominal viscera 

Salivary glands 
Lungs 

Bronchial Muscle 
Stomach 

Motility, tone 
Sphincters 
Secretion 

contracts (dilates pupil) 
Relaxes (flattens lens) 

Increases heart rate 
Increases contractility 
Increases conduction velocity 
Increases contractility 

Dilates (32); constricts (a) 
Constricts 

Dilates (ß2); constricts (a) 

Dilates (PA constricts (a) 
Constricts 

Relaxes 

Decreases 
Contracts 
Inhibits (?) 

relaxes (constricts pupil) 
Contracts 

Decreases heart rate 
Decreases contractility 
Decreases conduction velocity 
Decreases contractility slightly 

Dilates 

None 
None 

None 

Dilates 

Contracts 

Increases 
Relaxes 
Stimulates 

also responsible for the alarm or fight-or-flight response. This is caused by a mass 

discharge of all sympathetic nerve endings[2]. 

Table1.1 Autonomic effects on selected organs of the body 
(from A.J. Vander, J.H. Sherman, and D.S. Luciano, Human Physiology, 1994) 

The parasympathetic nervous system, by contrast, generally lowers the activity of 

an organism, and is associated with a relaxed state. Anatomically, parasympathetic fibers 

leave the brain through cranial nerves III, V, VII, IX, and X, and the second and third 

sacral spinal nerves as illustrated in Figure 1.7. Cranial nerve X is also called the vagus 

nerve, and since the vagus innervates much of the thorax and abdomen, especially the 

heart, for the parasympathetic nervous system, parasympathetic activity is often called 
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vagal activity. All parasympathetic nerve endings secrete acetylcholine. Although 

acetylcholine generally has an excitatory effect, it is also known to have inhibitory effects 

as well, such as the slowing of the heart by the vagus nerve[2]. 

Figure 1.6 The sympathetic nervous 	Figure 1.7 The parasympathetic nervous 
system (from Guyton, A. C., Textbook of 	system (from Guyton, A. C., Textbook of 

Medical Physiology, 1991) 	 Medical Physiology, 1991) 

Both the sympathetic and parasympathetic nervous systems are continually active. 

These basal rates of activity are known as sympathetic and parasympathetic tone. The 

advantage of tone is that it allows a single nervous system to increase or decrease activity 

in an organ. For instance, normal sympathetic tone keeps the systemic arterioles 

constricted to approximately half their maximum diameter. By changing the degree of 



sympathetic tone, the diameter of the arterioles can be increased or decreased. Without 

tone, the sympathetic nervous system can only cause vasoconstriction, never vasodilation. 

1.4 Heart Rate Variability 

1.4.1 Physiology of Changes in Heart Rate 

Change in heart rate is sensitive to changes in body temperature, plasma electrolyte 

concentrations, and hormones[1]. However, the most important influence of beat-to-beat 

variations of heart rate comes from the autonomic nervous system. More specifically, 

sympathetic activity increases heart rate, whereas activity in the parasympathetic (vagus) 

nerves causes the heart rate to decrease. Due to considerably more parasympathetic 

activity to the heart than sympathetic activity in the resting state, the normal resting heart 

rate is below the inherent rate of 100 beats/minute. 

The autonomic nervous system innervates the heart in a number of places. The 

sympathetic nervous system terminates at the SA node, the conduction system, atrial and 

ventricular myocardium, and coronary vessels. The parasympathetic fibers terminate in 

the SA and AV nodes, atrial and ventricular musculature, and coronary vessels. Interplay 

between the two systems will cause the heart to speed up or slow down, depending on 

which system is more active. Figure 1.8 illustrates autonomic innervation of the heart[3]. 

Perhaps the most important site of innervation of the autonomic nervous system 

on the heart occurs at the SA node. The SA node possesses an inherent discharge rate, 

often referred to as the pacemaker potential. The pacemaker potential is a slow 

depolarization of the cells of the SA node. The innervation of the sympathetic and 
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parasympathetic nervous system on the SA node changes the characteristics of 

depolarization within the SA node cells, thus changing heart rate. Figure 1.9 illustrates 

these changes due to autonomic innervation[1]. 

Figure 1.8 Autonomic innervation of the heart (from M.D. Kamath and E.L. Fallen, 
"Power spectral analysis of heart rate variability," Crit. Rev. in Biomed. Eng., 1993) 

For comparative purposes, the pacemaker potential labeled 'a' is the control. 

From the figure, one can observe that sympathetic stimulation increases the slope of the 

pacemaker potential. As a result, the SA node cells reach the threshold more rapidly, thus 

increasing the heart rate. Conversely, parasympathetic stimulation decreases the slope of 

the pacemaker potential. Consequently, the SA node cells reach the threshold more 

slowly, and heart rate decreases. In addition to decreasing the slope of the pacemaker 

potential, parasympathetic stimulation also hyperpolarizes the plasma membrane of the 

SA node cells so that the pacemaker potential starts from a more negative membrane 



potential. As a result, the time it takes the SA node cells to reach the threshold increases, 

which decreases heart rate. 

Figure 1.9 Effect of autonomic stimulation on the slope of the pacemaker potential 
(from A.J. Vander, J.H. Sherman, and D.S. Luciano, Human Physiology, 1994) 

1.4.2 Heart Rate Variability as a Measure of Autonomic Function 

Changes in heart rate usually involve the reciprocal action of the two divisions of the 

autonomic nervous system. An increased heart rate is the result of reduced 

parasympathetic tone coupled with an increased sympathetic activity. A decrease in 

heart rate is usually the result of increased parasympathetic tone and a simultaneous 

decrease in sympathetic tone. Therefore, changes in heart rate reflect the action of the 

sympathetic and parasympathetic nervous systems on the heart. However, under certain 

conditions, it is possible for heart rate to change by activity of only one division of the 

autonomic nervous system, independent of the other division, rather than reciprocal 

changes in both. 
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Initially, the effect of the autonomic nervous system on the heart was estimated by 

utilizing the traditional technique of average heart rate[3]. As a reference, the average 

heart rate was measured under normal resting conditions. Then the average heart rate was 

measured under the administration of drugs. The drugs used were atropine, which blocks 

the effects of the parasympathetic nervous system, and propranolol, which masks the 

effects of the sympathetic nervous system. A qualitative assessment can then be made of 

the autonomic nervous system by comparing the reference heart rate to the heart rate 

while under the administration of the drugs. This method looks at the average over time 

of heart rate. However, when the ECG is looked at on a beat-to-beat basis, rather than 

over a period of time, fluctuations in the heart rate are observed[3]. 

1.4.3 Power Spectral Analysis of Heart Rate Variability 

Power spectral analysis of heart rate variability is a potentially powerful tool for 

evaluating the activity of the autonomic nervous system noninvasively. The time domain 

signal used for computing the heart rate variability power spectrum is known as the 

interbeat interval (IBI). Spectral analysis of this interval between the R-waves in the ECG 

results in a graph similar to that in Figure 1.10. Three distinct peaks are usually evident. 

These peaks are defined as: a very low frequency peak (0.02 Hz to 0.06 Hz), a low 

frequency peak (0.06 Hz to 0.15 Hz), and a high frequency peak (0.15 Hz to 0.4 Hz). 

Sometimes, a fourth peak is identified as the ultra low frequency peak which consists of 

frequencies less than 0.0033 Hz. 

Past research in power spectral analysis of heart rate variability correlates the 

14 



three distinct peaks with certain physiological parameters[3]. The very low frequency 

band is associated with vasomotor control and temperature control. The low frequency 

band is associated with baroreceptor-mediated blood pressure control. The high 

frequency band has been linked with respiration. 

0.06 0.15 	 0.50 
Frequency (Hz) 

Figure 1.10 Typical power spectrum of HRV (from M. Kamath and E. Fallen, 
"Power spectral analysis of heart rate variability," Crit. Rev. in Biomed. Eng., 1993) 

To date, the best known and best defined peak in power spectral analysis of heart 

rate variability is the high frequency peak. The high frequency peak reflects changes in 

the interbeat interval that cycles up and down at the same frequency as respiration. This 

influence of respiration on heart rate has been known for more than one century and is 

called respiratory sinus arrhythmia (RSA). Properly defined, RSA is a rhythmical 

fluctuation in heart periods at the respiratory frequency that is characterized by a 

shortening and lengthening of heart periods in a phase relationship with inspiration and 
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expiration, respectively[4]. RSA is being used increasingly as a measure of vagal control 

of the heart. As a result, the high frequency peak, which often occurs at the same 

frequency as the respiration peak, corresponds approximately to the RSA and it is purely 

parasympathetic in origin[5]. 

From experience, one might contest that the frequency of respiration is not limited 

to within the narrow band of 0.15 Hz to 0.4 Hz. The normal respiration rate can be as 

low as only a few breaths per minute at rest and as high as up to 40 breaths per minute 

during intense exercise[2]. This stresses the fact that, when doing research on heart rate 

variability to determine parasympathetic activity, the frequency of respiration must be 

known. More specifically, the power spectrum of the respiration waveform should be 

computed. In most of the literature, the area under the frequency band between 0.15 Hz to 

0.4 Hz is considered parasympathetic in origin. However, it has been proven that in cases 

of intense physical activity, the upper limit in this band can reach as high as 0.75 Hz[6]. 

Unlike parasympathetic activity, the sympathetic activity is not easily separated 

from the power spectrum of heart rate variability[3]. It has been hypothesized that the 

low frequency peak (0.06 Hz to 0.15 Hz) is a mixture of both parasympathetic activity 

and sympathetic activity. A better concept that is used to isolate the sympathetic activity 

is that of "sympatho-vagal balance" which recognizes both reciprocal and non-reciprocal 

parasympathetic and sympathetic influences on heart rate by computing the low frequency 

to high frequency ratio[7]. An increase in the low frequency to high frequency ratio 

indicates either an increase of sympathetic activity, a decrease in parasympathetic activity, 

or a reciprocal change in both. 
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1.5 Literature Review 

1.5.1 Time-Frequency Analysis in Biological Signals 

Standard spectral analysis by Fourier transform or variations of autoregressive models 

have been extensively applied in the attempt to evaluate quantitatively the fluctuations in 

beat-to-beat (R-R) intervals and respiration attributed to a regulatory function of the 

sympathetic and parasympathetic branches of the autonomic nervous system under 

steady-state conditions. Due to the limitations inherent in these methods, a compromise 

must always be made between frequency resolution and the choice of a time signal length 

short enough to suit the stationarity assumption. Analysis over a long time window, 

usually 5-10 min, does not show information about the time-varying structure of the 

spectra. Instantaneous changes of the signal content, typical for cardiovascular signals, are 

thus smeared out or appear as a wideband noise. Therefore, it is a common practice that a 

"reasonably stationary" part of the signal is identified and analyzed. However, the spectral 

estimation is dependent on the chosen observation window, and consequently the 

interpretability of the results is limited[8]. 

Recently, joint time-frequency signal representation has received considerable 

attention as a powerful tool for analyzing a variety of signals and systems. In particular, if 

the frequency content is time varying as in signals of biological origin which often do not 

comply with the stationarity assumptions, then this approach is quite attractive. Although 

either the time domain description or its Fourier transform carries complete information 

about the signal, none of them reveals explicitly the frequency spectrum at a particular 

time or the time at which a particular frequency component occurs. By mapping a one- 
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dimensional function of time or frequency into a two-dimensional function of time and 

frequency, the joint time-frequency representation (TFR) localizes the signal energy in 

both the time and frequency domains. 

Traditionally, the short-time Fourier transform (STFI) or its modulus squared, 

called the spectrogram, has played an important role in visualizing the time-varying 

frequency content of various signals. It has been used extensively in the analysis of 

human speech[9] , and of brain electrical potentials (BEPs), primarily in the 

characterization of background electroencephalograms (EEGs)[10]. Using a model of 

heart sound generation/propagation, Durand, et al.,[11] have used the STFT to construct a 

time-varying transfer function and a coherence function relating intracardiac and 

extrathoracic vibrations. The STFT was also proposed to compute the energy distribution 

of the electrocardiogram (ECG). A major drawback inherent in the STFT is that a tradeoff 

also exists between temporal and spectral resolutions[12]. The spectrogram often presents 

serious difficulties when it is used to analyze rapidly varying signals. If the analysis 

window is made short enough to capture rapid changes in the signal, it becomes 

impossible to resolve signal components that are close in frequency within the analysis 

window duration. If one uses a longer sliding time window to obtain higher spectral 

resolution, then the underlying nonstationarity will be smeared out, resulting in lower 

temporal resolution. 

The Wigner Distribution (WD) has been employed as an alternative to overcome 

this shortcoming of the STFT. The WD was first introduced in the context of quantum 

mechanics[13] and revived for signal analysis by Ville[14]. It possesses very high 
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resolution in both time and frequency, and it has many other nice properties as well. It has 

been successfully implemented for the analysis of several biological signals: circadian 

rhythms of carabid beetles[15], ECG signal[16], blood flow velocity wave-forms[17], 

ultrasonic Doppler signals[18], auditory neuron activity[19], and acoustic signals[20]. 

The applicability of the WD for the analysis of blood pressure, respiratory, and beat-to-

beat fluctuations were also assessed by Novak, 199318]. It was shown that the discrete 

Wigner distribution follows well the instantaneous changes of spectral content of 

cardiovascular and respiratory signals which characterize the dynamics of autonomic 

nervous system responses. Two major drawbacks of the WD are that it is not necessarily 

nonnegative, and its bilinearity produces cross terms (or interferences) between two 

signal components located at different regions in the time-frequency plane. This may lead 

to serious misinterpretations regarding the signal spectral contents. Many attempted to 

rectify these shortcomings by incorporating a smoothing window function in both the 

time and frequency domains, thus defining the smoothed pseudo Wigner Distribution. 

This provided better resolution in time and frequency and reduced the interferences 

between the signal components. 

In his pioneering work, Cohen incorporated many TFRs into a general class of 

time-frequency distributions. Cohen comprehensively discussed many aspects of time-

frequency distributions and recent progress in the area[21]. Boashash also compared the 

performance of several time-frequency distributions in terms of resolution[22]. Desirable 

properties of a distribution and associated kernel requirements were extensively 

investigated by Claasen and Mecklenbrauker[23]. In 1989, Choi and Williams introduced 
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a new distribution with an exponential-type kernel[24]. The Choi-Williams distribution 

overcomes the aforementioned drawbacks of the STFT and the WD, and provides high 

resolution in time and frequency while suppressing interferences. Unfortunately, 

however, the Choi-Williams distribution does not completely satisfy the support 

properties in time and frequency. This kind of representation is well used in the 

biomedical field for various applications such as EEG characterizations[25] and 

electrocorticogram representation [26]. Zheng, et al.,[27] made use of the Choi-Williams 

distribution for EMG (motor unit potentials) description, and Sahiner and Yagle[28] 

applied it for blood flow speed determination and magnetic resonance imaging. 

In 1992, a new class of time-frequency distributions, known as the reduced 

interference distribution (RID) was introduced, which has many desirable properties. It 

has been shown that this distribution provides a high resolution, easy to interpret 

localization of the signal energy spectrum in the time-frequency plane[29]. Many 

attempted to incorporate this emerging technique of time-frequency analysis to provide 

new insights into the nature of biological signals. Williams. et  al.,[30] used the reduced 

interference distributions (RIDs) in the analysis of biosignals recorded in human epilepsy. 

It was shown that RID analysis of these signals resulted in research hypotheses which 

would be difficult or impossible to obtain using conventional techniques. The RID also 

demonstrated superior resolution in the detection and characterization of the first heart 

sound[31]. 
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1.5.2 Stress and Behavioral Medicine research of the Cardiovascular System 

Growing interest in behavioral medicine has focused attention on the function and control 

of the cardiovascular system, partly because of its involuntary responsiveness to 

emotional and stressful situations. The external manifestations of cardiovascular 

responses provide objective indications of the changing psychological status of normal 

subjects and patients. An expanding array of noninvasive techniques open opportunities 

for new and exciting research regarding the potential roles of psychological and 

behavioral factors in the development of dysfunction and disease[32]. 

In studies of stress, factors such as the context of the research situation, and subtle 

variations in the instructions presented can have significant effects on the resulting 

psychological, behavioral, and physiological responses. Specifically, both laboratory and 

field psychophysiology studies involve procedural elements, from the obtaining of 

informed consent to payment for participation, that can be significant sources of error 

variance that remain even if the most stringent experimental controls are instituted[33]. 

There is considerable evidence that the effects of physical stressors depend strongly on 

psychological factors, and that specific types of stressors can produce rather specific 

patterns of responses[34][35]. There are numerous ways of dimensionalizing the tasks 

and stimulus situations that produce different patterns of bodily responses. However, 

implicit in the description of a stressor as psychological is that the individual's response 

to a challenging or stressful stimulus depends on the way that stimulus is interpreted or 

appraised, the context in which that stimulus occurs, and the personal resources available 

for coping[36][37]. A body of research demonstrates that if situations are viewed as 
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harmful, threatening, or noxious, they can produce substantial physiological 

responses[34][37]. Conversely, when conditions are designed to change the demands of a 

stressor, or to reduce the psychological threat that might be engendered by potentially 

aversive procedures, they may produce smaller, and perhaps only minimal physiological 

responses and/or behavioral reactions[37]. 

1.5.2.1 Experimental Manipulations that Determine Intensity of Responding in 

Psychophysiological Studies: Considerable attention in recent years has been addressed 

to the study of psychophysiological reactivity (responsiveness) to psychological 

stress[33]. Numerous psychological stressors and tasks are employed in this research, and 

effort has been directed to identifying the dimensions of stressors that alter the intensity 

and patterning of cardiovascular and neuroendocrine responses. The intensity of a 

subjects' responses to an experimental task can be increased or decreased by varying the 

task instructions or the task characteristics according to a number of criteria. For example, 

increasing the positive or negative incentives for task performance, increasing the level of 

challenge in task instructions, and increasing the subjects' level of engagement/ 

involvement in the experimental situation can heighten physiological responses. Often 

these motivational dimensions overlap one another and covary in manipulations of 

experimental situations[33]. 

1.5.2.2 Level of Difficulty of the Experimental Task: Studies that have independently 

manipulated task difficulty have found that this variable does have an effect on subjects' 
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blood pressure and heart rate responses. It appears that the maximal physiological 

responses are produced by tasks that are seen as sufficiently difficult to put effort into, but 

not so difficult that subjects will give up on them. One explanation for this effect[38] is 

that tasks that elicit "active effortful coping" are thought to elicit a f3-adrenergic pattern of 

cardiovascular responding characterized by increased heart rate and systolic blood 

pressure. For example, Obrist et al. (1978) found differences in cardiovascular reactions 

between easy and moderately difficult conditions where subjects responded to avoid 

shock. Here, it was hypothesized and found that a difficult criterion would be associated 

with greater effort and therefore with larger and more sustained increases in heart rate and 

systolic blood pressure compared to either a very easy or impossible reaction time 

criterion. However, Light and Obrist (1983) found somewhat different results using a 

reaction time task in which earning money was contingent upon performance[33]. 

Responding to control a difficult stressor may have different cardiovascular 

consequences than responding to control an easy stressor. Manuck and colleagues[39] 

studied the effects of coping on blood pressure reactions to tasks that were either difficult 

or easy. They found that responding to control an aversive stimulus led to greater 

cardiovascular reactions when working on a difficult task. However, when working on an 

easy task, there were no heightened cardiovascular reactions associated with coping. It is 

clear, however, that most studies only present subjects with a single level of task 

difficulty. Therefore, some populations of subjects may find specific tasks more difficult 

than others and may react physiologically more or less strongly to them. Ideally, tasks 

being considered for use in studies of cardiovascular reactivity should be carefully piloted 

23 



so that they are at a moderate level of difficulty for the subject population being 

studied[33]. 

1.5.2.3 Challenge, Harassment, and Competition: The level of challenge perceived to 

be involved in an experimental task refers to how demanding the subject perceives that 

task to be. Challenge is a psychological dimension that overlaps with many other 

dimensions, and is related to such factors as the type of incentive used, the difficulty of 

the task, whether competition is used as a motivator, or whether the subject is being 

evaluated in the experimental situation. A common technique employed by experimenters 

to heighten the level of challenge is to deliver a demanding instruction set for the tasks to 

be performed[33]. 

The use of instructions to manipulate challenge is illustrated by a study[40] that 

varied the level of challenge given to subjects prior to a cold pressor test. "High-

challenge" instructions, delivered in a crisp tone of voice, informed subjects of the 

difficulty of the cold pressor task and the need for willpower, whereas, "low-challenge" 

instructions described the task as routine. Results indicated only minimal differences 

between Type A and B subjects in the low-challenge situation, and larger and statistically 

reliable differences in the high-challenge situation. 

Harassment by the experimenter is a usual component of commonly used mental 

stress tasks, such as when subjects are told to count backwards as quickly as possible, 

being reminded in a crisp voice to go faster and be more accurate. Similar harassing 

statements have been used to heighten the reactivity to other types of cognitive and 
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psychomotor tasks. It is not clear whether harassment heightens physiological reactivity 

because it increases the level of challenge or because it heightens emotions such as 

anger[33]. Explicit and even subtle variations in these and other aspects of experimental 

instructions can make certain tasks effective elicitors of heightened physiological 

responses or can act to reveal or obscure individual differences in cardiovascular 

reactivity. 

A social-psychological manipulation that can elicit physiological reactivity in 

subjects is the use of competition. To keep the level of competition standardized and 

controlled, competition has generally been created between subjects and either machines 

or confederates. Competition can also be used together with other manipulations, such as 

incentives and harassment, to elicit large magnitude changes in physiological response. 

Cardiovascular responses in competitive situations are of interest because 

competitiveness is a putative etiological factor in cardiovascular disorders[33]. Some 

subjects will treat any situation as a competitive one, whereas others will be reluctant to 

compete. This is illustrated by a study[41] that investigated the effects of competition 

with and without harassment on reactivity in Type A and B subjects. The investigators 

found that Type A's working against a harassing competitor showed greater heart rate and 

systolic blood pressure responses compared to Type B's and Type A's not being harassed. 

Thus, this study manipulation revealed that for Type A's, hostile competition was 

necessary to produce heightened cardiovascular and neuroendocrine responses. The 

effects of competition will play an important role in our research interpretation because 

our protocol involves interaction between the subject and the exercise cycle. 
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1.5.2.4 Cardiovascular Response to Vigorous Exercise: The cardiovascular system 

must be capable of adapting rapidly and effectively to changing requirements to enable 

the relatively small blood volume to serve the vital needs of the millions of cells in the 

various organs of the human body. Living cells survive, function, and thrive only in stable 

chemical and physical environments from which they can easily extract the essential 

nutrients and oxygen while eliminating toxic products derived from their metabolic 

activities. The many different functions of tissues require different and widely varying 

blood flow rates under various conditions. An extreme example is the transition from rest 

to vigorous exercise during which the blood flow through large muscle masses increases 

many fold in response to their greatly increased metabolic activity and energy release. At 

the same time, blood flow to the skin is increased to dissipate heat. Despite curtailed 

blood flow through inactive tissues, the total blood flow through the systemic circulation 

is increased and the pumping action of the heart is both accelerated and enhanced 

instantaneously or even in anticipation of exertion. Diverse, integrated patterns of 

response occur automatically under many different circumstances induced by neural and 

hormonal controls[32]. 

These involuntary control systems respond to various physical or psychological 

stresses by cardiovascular responses such as blushing, pallor, rapid pulse, fainting, or 

"palpitations' of the heart. The autonomic nervous system plays prominent roles in many 

aspects of cardiovascular response. As stated earlier, the parasympathetic nervous system 

acts through the vagus nerves to slow heart rate but has little direct influence on the 

peripheral vascular system. Conversely, the sympathetic nervous system acts to accelerate 
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heart rate, enhance the force of cardiac contraction, and can produce patterns of peripheral 

vascular responses that are appropriate for vigorous exertion. Since some of these 

reactions may emerge in anticipation of exercise, the central nervous system is the logical 

site of their origin[32]. 

Peronnet et al.[42] examined the cardiovascular and sympathetic profiles in 

response to a series of physical and mental challenges during recovery from an acute bout 

of aerobic exercise. Nine healthy men were tested on two occasions, once under an 

experimental (exercise) and once under a control (video watching) condition, in a 

counter-balanced order, one week apart. Although no differences in blood pressure were 

found in the two conditions, heart rate and plasma catecholamine concentrations were 

higher in exercise than in control session. These findings were partly attributed to 

elevated physiological levels "carried over" from exercise. They were also attributed to a 

possible anticipatory effect associated with exercising. Initially greater plasma NE 

(baseline) concentrations during the exercise session seemed to parallel these findings and 

could have been associated with exercise anticipation. However, subjects also knew that 

during video watching they would be only resting, which might be related to less 

vigorous, or even lethargic state. Thus, The higher vigor observed in the exercise session 

was left to reflect either an anticipation of the arousal inducing properties of exercise or 

the sedentary nature of the video watching. State anxiety and anger-hostility were 

reported lower in the post-experimental period than in the pre-experimental period. These 

findings were related to pre-experimental anticipation effects. The subjective knowledge 
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of no longer being faced with discomforts might have had an impact on anxiety and/or 

anger-hostility profile of the subjects. 

1.6 Scope of Thesis 

The ultimate goal of this research work is dedicated to the use of time-frequency analysis 

of heart rate variability as a new and innovative approach to investigate the physical and 

mental exertion attributed to exercise. Two studies are used for the main research. The 

first study is a twelve minute protocol designed by Fernando in 1992[43]. For distinctive 

purposes, we will refer to this protocol as the "preliminary protocol" for the remaining 

part of this thesis. The second study is an elaborate protocol designed by this researcher to 

specifically help understand more the effects of anxiety and anticipation on the heart rate 

variability signal during baseline control and stressful exercise conditions. The study 

involves two sets of protocols with two experiments, eighteen and twenty four minutes 

each, repeated twice for each subject, once only with the subject's awareness. We will 

refer to this study as the "anticipation protocol". Details of these studies are thoroughly 

discussed in chapter 2. 

The aim of time-frequency analysis is to understand and develop tools that can 

describe rapid changes in time varying spectrum. Expansion of the concept of spectral 

analysis of heart rate variability into time-frequency analysis gives us the ability to 

quantitatively assess the parasympathetic and sympatho-vagal balance changes as a 

function of time. In the first phase of our research, time frequency analysis is performed 

on the entire heart rate variability and respiration signals of the preliminary protocol using 
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five classical kernels that fall under the general class of bilinear distribution. The aim of 

this process is to investigate the transitions between rest, exercise, and recovery, and to 

evaluate the different distributions and assess which distribution gives the most 

physiologically significant information. Each distribution used: the short time Fourier 

transform, the pseudo Wigner-Ville, the smoothed pseudo Wigner-Ville, The Choi-

Williams, and the Born-Jordan-Cohen (RID), has unique characteristics which affect the 

amount of smoothing and the generation of crossterm interference differently. The vagal 

tone and the sympatho-vagal balance are the parameters used for comparison. They are 

assessed from the resulting 3-D time-dependent spectra by quantifying the area under the 

low frequency (0.06 Hz to 0.15 Hz) and high frequency (0.15 Hz to 0.75 Hz) ranges for 

each instant of time. Recall that the low frequency range is associated with the mixture of 

sympathetic and parasympathetic activity while the high frequency range corresponds to 

respiration and is thought to be purely parasympathetic in origin. 

In the second phase of this research, the smoothed pseudo Wigner-Ville and the 

Choi-Williams distributions are performed on the heart rate variability signal to quantify 

the area under the low frequency and high frequency ranges during the anticipation 

protocol. The purpose of this investigation is to test the presence of an anticipatory 

component due to the stressful exercise condition as reflected in the heart rate variability 

signal from a change in behavior in the autonomic nervous system. We also want to 

compare pre- and post- exercise conditions between trials for each subject and between 

the total population of subjects. 
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The last phase of this work proposes a new methodology that adaptively uncovers 

the region of parasympathetic activity. It is well known that parasympathetic activity is 

highly correlated with the respiration frequency. This technique traces the respiration 

frequency and extracts the corresponding parasympathetic activity from the heart rate 

variability signal by adaptive filtering. 
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CHAPTER 2 

METHODS 

The main focus of this chapter is a thorough introduction to the methods and 

experimental protocols performed to acquire the biological signals of interest, namely the 

electrocardiogram and respiration signals. To begin with, a basic description is given of 

the theory behind the signal processing techniques used to analyze and acquire the 

signals. Because of the complexity of the signal processing, chapter three is provided for 

a more complete theoretical and practical discussion. 

2.1 Time and Frequency Analysis 

"Time analysis" is among the standard methodologies used to study the signal x(t) as a 

function of time. Its main emphasis is on quantifying the energy, x(t)|2  At , which is the 

energy density in a small amount of time ∆t , contained in that signal x(t)[22]. However 

if we want to gain more understanding of the components that constitute our signal, it is 

customary to investigate an alternative way of looking at the signal, "frequency analysis". 

Therefore, if we expand the signal as 

we can think of x(f ) as the signal in the frequency-domain and x(f) 2 ∆f as the 

fractional energy in the frequency interval Af at frequency f . Note that by inverting 

equation 2.1, we can define the signal in the frequency-domain[22]. 
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(2.2) 

X(f) is referred to as the Fourier Transform (FT) of x(t). 

Thus, the Fourier Transform and its inverse establish a one-to-one relation 

between time and frequency domain. Although the FT allows the passage from one 

domain to the other, it does not allow a combination of the two domains. In particular, 

most time information is not easily accessible in the frequency domain. While the 

spectrum x(f ) shows the overall strength with which any frequency f is contained in 

the signal x(t), it does not generally provide easy to interpret information about the time 

localization of spectral components[44]. 

In Figure 2.1, we illustrate two cases, where each contains three sine waves of 

equal duration time of 4 seconds and frequencies of 5 Hz, 20 Hz and 35 Hz. The only 

difference among cases (a) and (b) is that different frequencies occur at different times. 

The power spectrum, as shown in figure 2.2, is the same for the two signals. It shows that 

frequencies 5 Hz , 20 Hz and 35 Hz were present for both cases but does not show the 

specific duration of time they existed. To fully describe such a situation we have to give 

the frequencies for each particular time. 
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Figure 2.1 Two finite duration signals containing the same frequencies 
(5 Hz ,20 Hz and 35 Hz) occurring at different times 

Figure 2.2 The power spectra for the two finite duration signals above 
The spectrum is an exact replica for each signal 
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2.2 Joint Time-Frequency Analysis 

Time-frequency signal representations characterize signals over a joint time-frequency 

plane. They thus combine time-domain and frequency-domain analyses to yield a 

potentially more revealing picture of the temporal localization of a signal spectrum. 

Time-frequency distributions (TFDs) of signals map a one-dimensional function of 

time, x(t), into a two-dimensional function of time and frequency, p(t,f). Most TFDs 

are "time-varying representations" which are similar conceptually to a musical score with 

time running along one axis and frequency along the other axis. The values of the TFD 

surface above the time-frequency plane give an indication as to which spectral 

components are present at each particular time[44]. 

Time-frequency analysis was performed for the same signals (a) and (b) described 

in section 2.1 using the Choi-Williams distribution. Figure 2.3a shows that at the time 

intervals of [0 , 4], [5 , 9] and [10 , 14] seconds of the signal, frequencies of 20, 5 and 35 

hertz exist respectively. Figure 2.3b shows that at the intervals of [0 , 4], [5 , 9] and [10, 

14] seconds of the signal, frequencies of 5, 20 and 35 hertz exist respectively. 

The major drawback of time and frequency analysis is that they tell us the 

frequencies that existed for the total duration of the signal and not the duration when the 

different frequency components existed. However using time-frequency analysis shows 

that one can fully describe the existence of a specific frequency at each instant of time. 



Mesh & Contour of Signal (a) using Choi_Williams distribution 

Figure 2.3 The mesh and contour plots of time-frequency analysis of signals (a) and (b) 
respectively 
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2.3 Analog-to-Digital Conversion 

A discrete time signal is defined by specifying the value of an analog signal only at 

discrete times, called sampling instants[45]. Once the sampled values are quantized and 

encoded, a digital signal results. A digital signal is formed from a continuous-time, 

analog signal by a process called analog-to-digital(A/D) conversion. A block diagram of 

an analog-to-digital converter is shown in Figure 2.4. 

Continuous-time 	Discrete-time 	 Discrete-time 	 Digital 
continuous amplitude 	continuous- 	 discrete- 	 output 
(analog) input signal 	amplitude signal 	amplitude signal 	 signal 

Figure 2.4 Block diagram of an analog-to-digital converter (from R. Ziemer, W. Tranter, 
and R. Fannin, Signals and Systems: Continuous and Discrete, 1989) 

The first component is a sampler that extracts sample values from a continuous 

time, continuous amplitude (analog) input signal at specified sampling instants. The 

output of the sampler is a discrete time signal with a continuous amplitude because the 

sampled values assume the same continuous range of values assumed by the input signal. 

The second component in an A/D converter is a quantizer, which quantizes the 

continuous amplitude range of samples into a finite number of amplitude values. The last 

component is an encoder which maps each quantized sample value onto a digital word. 

For a binary representation, the number of quantizing levels q and the digital wordlength 
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n are related by 

q = 2" 	 (2.3) 

In order to be able to reconstruct the original signal from the sampled signal, there 

are three important points that must be followed. The first point involves the sampling 

rate, and is covered by the sampling theorem which states that a bandlimited signal, 

having no frequency components above fh  hertz, is completely specified by samples that 

are taken at a uniform rate with a frequency greater than or equal to 2fh  hertz. In other 

words, the time between samples is no greater than 1 /2fh  seconds. The frequency 2fh  is 

known as the Nyquist frequency. To understand why the sampling frequency must be 

greater than twice the highest frequency in the signal, the spectrum of the input signal and 

the spectrum of the sampled signal are displayed in Figure 2.5. Figure 2.5(a) shows that 

the spectrum of the input signal is double sided, consisting of power at both positive and 

negative frequencies. Figure 2.5(b) shows the spectrum of the properly sampled signal 

containing the spectrum of the original signal repeating at integer multiples of the 

sampling frequency. Figure 2.5(c) shows the effect of sampling at too low of a sampling 

rate. This effect is known as aliasing, and makes it impossible to recover the original 

signal. 

The second important point to be made about the reconstructing of the original 

wave from the sampled wave, is that a low pass filter must be used to pass only those 

frequencies contained in the original spectrum. The final point concerns the number of 

quantization levels. Since the quantizing level is the only value retained after the sample 



(a) 
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(c) 

-f s 	 fs  

Figure 2.5 Spectrum of (a) the original signal (b) sampled signal and (c) improperly 
sampled signal (from R. Ziemer, W. Tranter, and R. Fannin, Signals and Systems: 

Continuous and Discrete, 1989) 

values are quantized, errors are induced by the quantizing process that can not be 

removed by additional processing[45]. To reduce the quantization error, it is important 

to have enough quantization levels and to make sure the amplitude range of the signal 

uses all the quantization levels. 

2.4 Subjects and Experimental Protocols 

2.4.1 Preliminary Protocol 

Ten subjects participated in an exercise protocol that Fernando designed in 1992. The 

protocol consisted of riding a cycle ergometer (Lifecycle, CA) at 80 rev/min as dictated 

by the visual speedometer readout. The initial workload involved pedaling at 80 rev/min 
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in an unloaded condition. Thereafter, the workload (resistance) was automatically varied 

by a computer algorithm to maintain the subject's heart rate at 70% of age predicted 

maximum. Age predicted maximum heart rate is calculated as 220 minus the age of the 

subject. The specific protocol required the subject to rest initially for two minutes on the 

bicycle with no physical activity. The subject was then instructed to pedal for two 

minutes until the heart rate achieved 70% of age predicted maximum. This pace was 

maintained for another four minutes for a total of 6 minutes of exercise. The subject was 

then asked to halt exercise and rest for another four minutes of recovery. The ECG lead 

II, the QRS sync pulse (a pulse that occurs at the time of the R-wave), and the respiration 

data were collected in a continuous 12 minute files[43]. 

2.4.2 Anticipation Exercise Protocol 

Researchers have indicated that a greater heart rate response as well as an increase of 

systolic blood pressure during a stress exercise session may reveal an anticipatory effect 

associated with exercising[42]. They also indicated that the subjective knowledge of 

approaching (instead of no longer being faced with) discomforts may have had an impact 

on anxiety and/or anger/hostility profile of the subjects. In fact, these expectancy effects 

may have been more powerful than any treatment effects[42]. The role of these two 

processes should be tested experimentally. This study was devised to help understand 

more the effects of anxiety and anticipation on the heart rate variability and respiration 

signals. 
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A total of nine subjects, two females and seven males, participated in the study. 

The age of the subjects ranged from 21 to 39 years. All subjects were considered normal. 

In other words, they suffered from no known illnesses such as diabetes, heart disorders, 

etc. The only restriction on subjects were: (1) the subjects were between 20 and 40 years 

of age, (2) subjects did not suffer from any breathing disorders, and (3) pregnant women 

were not allowed. Each subject was instructed to have a light breakfast or lunch and to 

refrain from exercising and caffeine intake twenty four hours prior to testing. Smokers 

were also asked to abstain from smoking at least twelve hours before testing. Some 

general information on the subjects is shown in table 2.1. 

Table 2.1 General information of each subject 

Subject # Sex Age Height Weight Smoker Exercise fitness 

M 21 5' 9" 170 no Moderate 

2 M 23 5' 10" 158 yes Unfit 

3 F 28 5' 3" 136 no Unfit 

4 M 22 5' 6" 170 no Moderate 

5 F 25 5' 1" 175 no Unfit 

6 M 32 5' 8" 154 yes Unfit 

7 M 37 5' 8" 148 no Fit 

8 M 39 5' 8" 149 no Unfit 

9 M 23 6' 195 no Fit 

The subjects were considered smokers if they had at least one cigarette per day. 

They were also classified in three levels of exercise fitness: (1) fit if they exercised at 
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least three times a week, for a minimum of 45 minutes, (2) moderately fit if they 

exercised two times a week, and (3) unfit if they exercised once a week or less. The 

participants were only told about the nature of the experiments (rest and exercise) without 

any specifics. Part of the details were then revealed in a page of written instructions that 

was read to them prior to the start of testing each time the experiment ran. It outlined the 

procedures and informed them about the rigorous exercise level. 

The study involved two sets of protocols to be held at the same time of day but on 

two separate days. On the first experimental session (A), the subjects were first instructed 

that they would perform the protocol detailed below once, rest for 30 mins, and repeat it 

again. The first session ran as follows: 

1) Rest for 2 mins. 

2) Exercise for 6 mins (2 mins to reach desired HR and 4 mins maintaining it). 

3) Rest for 10 mins. 

4) Exercise for 3 mins (2 mins to reach desired HR and 1 min maintaining it). 

5) Recovery for 3 mins. 

Rest Exercise 	Rest 	 Exercise Recovery 

The exercise consisted of riding a cycle ergometer (Lifecycle, CA) at 80 rev/min as 

dictated by the visual speedometer readout. The initial workload consisted of pedaling at 

80 rev/min in an unloaded condition. Thereafter, the workload (resistance) was 

automatically varied by a computer algorithm to maintain the subject's heart rate at 70% 

of age predicted maximum. Age predicted maximum heart rate is calculated as 220 minus 
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the age of the subject. The specific protocol required the subject to rest initially for two 

minutes with no physical activity. Then the subject pedaled for two minutes until the 

heart rate achieved was 70% of age predicted maximum. This pace was to be maintained 

for another four minutes for a total of 6 minutes of exercise. The experimenter monitored 

the level of activity and intervened verbally to assure precision in completion of exercise. 

The subject then halted exercise and rested without physical exertion for ten minutes. 

Eight minutes into this rest period (minute 16), the subject was reminded that there was 

two minutes left for the onset of exercise. Pedaling resumed for a total of three minutes 

after that, two minutes to reach target heart rate and one minute maintaining it. Recovery 

followed the last exercise session where the subject was told again to halt all physical 

activity. Data was collected in a continuous 24 minute file. After thirty minutes of rest on 

a comfortable chair, the subject was seated back on the bicycle thinking that he/she would 

repeat the first protocol again. However, the second session was slightly changed. It 

actually included only: 

1) Rest for 2 mins. 

2) Exercise for 6 mins (2 mins to reach desired HR and 4 mins maintaining it). 

3) Rest for 10 mins. 

Rest Exercise 	best 

Thus, the first stage of the experiment was repeated. However, after reaching the 

end of the ten minutes recovery period, the session was ended for a total of 18 minutes of 

continuous data collection. Note that the subjects were intentionally not led to believe 
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that the early termination was a planned action. This was purposely done in an attempt to 

investigate and filter out changes in the physiological responses, if any, between doing the 

physical exercise versus the knowledge of repeating it. We therefore wanted to answer the 

question whether we could, between minutes 16 and 17, discover an anticipatory 

component attributed to the anxiety of performing the tedious exercise, and whether this 

component changed between performing the exercise and not performing it. 

The second experimental session involved the same set of tests, but performed in 

the reverse order. The subjects were instructed in the beginning that they would perform 

the 18 minute protocol without the knowledge that they were repeating set 2 of 

experiment (A). They were told that they would perform the protocol detailed below, rest 

for 30 minutes, and then repeat it. 

1) Rest for 2 mins. 

2) Exercise for 6 mins (2 mins to reach desired HR and 4 mins maintaining it). 

3) Rest for 10 mins. 

Rest xercise best 

The specific protocol required the subject to rest initially for two minutes with no 

physical activity. Then the subject was instructed to pedal for two minutes until the heart 

rate achieved was 70% of age predicted maximum. This pace was to be maintained for 

another four minutes for a total of 6 minutes of exercise. The subject was then asked to 

halt and rest without physical exertion for ten minutes. Eight minutes into the rest period, 



the subject was reminded that there was two minutes left for the termination of the 

experiment. Data was collected in a continuous 18 minute files. 

After thirty minutes of rest on a comfortable chair, the subject was now seated 

back on the bicycle thinking that he was to repeat the same procedure (B1) over again. 

Instead, the subject's second experiment (B2) included: 

1) Rest for 2 mins. 

2) Exercise for 6 mins (2 mins to reach desired HR and 4 mins maintaining it). 

3) Rest for 10 mins. 

4) Exercise for 3 mins (2 mins to reach desired HR and 1 min maintaining it). 

5) Recovery for 3 mins. 

1 	 I 	I 	1 
Rest Exercise 	Rest 	 Exercise Recovery 

Thus, after reaching the end of the ten minutes rest period which was supposed to 

indicate the termination of the experiment, the participant was asked to start pedaling 

again repeating the first protocol of the first visit. This was done again to investigate 

whether there would be any anticipatory component, now that the subject didn't have a 

prior knowledge of the exercise. Data was continuously collected for the 24 minute 

duration. 

This study reevaluates the effect of stressful exercise on heart rate variability. Its 

main purpose is to test the presence of an anticipatory component due to the vigorous 

exercise condition as reflected in the heart rate variability signal from a change in 
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behavior in the autonomic nervous system. Thus, The study covered the two hypotheses 

of intervention. Each experimental procedure was covered in two states (told-done/told-

not done). The physiological parameter investigated was the electrocardiogram. The 

experiments were conducted in the autonomic research lab at the Kessler Institute for 

Rehabilitation. 

2.5 Data Acquisition 

2.5.1 Acquisition of the Respiration Waveform 

The respiration waveform was recorded using a method called impedance pneumography. 

A RESP I impedance pneumograph (UFI, Morrow Bay, CA) was used to measure trans-

thoracic impedance changes which result from respiration. To produce a signal 

proportional to the trans-thoracic impedance, the RESP I causes a safe, high-frequency 

(30 Khz) alternating current to flow between two electrodes. As a result of the current, a 

voltage is produced which reflects the changes in impedance in the segment between the 

two electrodes. The RESP I senses this voltage and makes it available as its output in 

analog form. 

For this study, two diagnostic ECG adhesive silver/silver chloride surface 

electrodes (Medtronic, Haverhill, MA) were placed on the left clavicles , and on the left 

rib below the pectoral muscles . To obtain a clean respiration signal, each skin site was 

prepared before the electrode application by thoroughly scrubbing with an alcohol prep to 

remove the outermost layer of dead skin (stratnum corneum). This helps reduce the dc 

offset and motion artifact from the skin-electrode interface. Next, a dry piece of gauze 
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pad was used to remove any alcohol and dead skin. Finally, application of the electrode 

to the prepared site was performed by placing the electrode on the skin, making sure that 

the gel made contact with the skin first, and then smoothing the electrode from the center 

out. 

The analog voltage output of the RESP I was input to a DAS-16 analog-to-digital 

converter (Keithley MetraByte/Asyst, Natick, MA) which was installed in an IBM 

compatible 286, 25 MHz computer with 1 Mb of RAM and 107 Mb hard drive. 

However, before the output of the RESPI entered the DAS-16, it was isolated from the 

acquisition computer by an isolation amplifier which protects the subject from the 120V 

source required to power the acquisition computer. The connection between the RESPI 

and the isolation amplifier and the isolation amplifier and the AID board were made with 

shielded cables. 

The DAS-16 was configured to accept 8 different channels of data, each having an 

amplitude in the range of - 5 volts to + 5 volts. Each sample of data requires 2 bytes of 

hard disk space. Twelve of the sixteen bits are used for encoding the amplitude of the 

input signal, providing 4096 different quantization levels. One of the twelve bits is used 

to indicate if the signal has a positive or negative voltage. The remaining four bits are 

used to identify the different channels. Therefore, each quantization level is equivalent to 

2.44 mV (5 Volts/ 2048). 

The respiration is sampled at 200 samples per second and is stored in binary 

format. Because there is no filtering between the RESPI and the data acquisition board, 

the respiration was sampled at 200 samples per second to avoid aliasing due to 60 Hz 
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noise. Before the signal was acquired, the connection between the RESPI and the A/D 

board was checked with a program that plots the input to the A/D board on the screen. 

Once confirmed of the proper connection, the signal was acquired using Streamer v3.25 

data acquisition software (Keithley MetraByte/Asyst, Natick, MA). 

It should be mentioned that the RESPI is really an indirect measure of respiration. 

A direct measure of respiration would measure the air flow in and out of the lungs 

through the nose and mouth which would indicate both respiration rate and volume. The 

only way to do this is to place a mask over the subject's nose and mouth and connect the 

subject through a flexible tube to a spirometer or metabolic cart. Although this was an 

option, the RESPI was chosen for its simplicity to implement and comfort, keeping in 

mind that our investigation requires that no excess anxiety should be produced from 

external factors such as equipment. Another method considered to measure the respiration 

waveform was that of nasal thermistors. However, during exercise, people tend to 

breathe from both their nose and mouth. Unfortunately, the nasal thermistor would not 

measure the flow of air through the mouth. One possible solution to this problem is to 

put the nasal thermistor in the opening of a mask which covers the nose and mouth. 

Although this is a viable solution, it is also a problem since the mask is a minor nuisance 

that can become a major distraction during exercise techniques and thus contaminate the 

data. An advantage of the methods to measure respiration other than by impedance 

pneumography, is that they provide a very clean respiration tracing during all test 

conditions. Conversely, the RESPI tends to get noisy during exercise because of muscle 

electromyography, skin movement, and movement of the skin-electrode interface. 
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2.5.2 Acquisition of ECG 

The ECG was acquired with a Quinton Q4000 Stress Test Monitor (Quinton Instrument 

Co., Seattle, WA), with electrodes placed in the three bipolar limb lead configuration. 

Output from the Q4000 were ECG leads I, II, and III, plus a sync pulse, all about 3 Vp-p. 

The sync pulse is a short duration square wave pulse that is synchronized with the QRS 

wave of the ECG. Three channels, the sync pulse and Lead I and II outputs, were 

connected by shielded cable to the data acquisition computer using the same procedure 

outlined in the previous section. 

The skin of the subject was prepared in the same manner. Silver-silver chloride 

ECG electrodes (Medtronic Andover Medical, Haverhill, MA) were placed on the left 

and right clavicles (right arm and left arm positions), and on the left and right ribs below 

the pectoral muscles (right leg and left leg positions). These were connected to the Q4000 

using its RA, RL, LA, and LL leads. It is important to note that subjects were seated 

facing away from the experimenter and equipment so that displays would not be a source 

of biofeedback. 

2.6 Data Analysis 

2.6.1 Converting Data from Binary Format to ASCII Format 

Both the respiration signal and the ECG leads were collected using Streamer data 

acquisition software and a DAS16 data acquisition board. The signals were quantized to 

12 bit words, and were stored on the root directory in a binary format that utilizes 2 bytes 

per sample. The software program used for analysis, MATLAB v4.2c (Math Works Inc., 
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Natick, MA), can not convert the data from binary format into ASCII format. Therefore, 

a program called kunpack2 was utilized to convert the data from binary to ASCII format 

for MATLAB. The kunpack2 program converts the binary file to an ASCII file where 

each channel of data is represented as a column in a matrix and the columns are separated 

by spaces. This program is a modified version of the unpack program, a utility that 

Keithley MetraByte/ Asyst provided with the Das16 analog-to-digital conversion board. 

2.6.2 Heart Rate Variability and Respiration Analysis 

As mentioned in section 2.5.2, the ECG is converted from analog to digital form and 

stored in binary format on the data acquisition computer. The data is then transferred 

over the Novell network provided at Kessler Institute for Rehabilitation to a signal 

processing computer. In this study, the computer used to do the signal processing was an 

IBM compatible with a 90 Pentium processor with 65 Mb of RAM and a 2 GB hard 

drive. The initial step in the data analysis is to unpack the data from binary format to 

ASCII format using the kunpack2 program. Once in ASCII format, MATLAB is used to 

scan the data into a matrix form and then previously developed and modified software 

algorithms in MATLAB were used to obtain the HRV signal. The following is a 

description of the necessary steps to obtain IBI signal. 

To begin the analysis, the sync pulse was chosen to identify the position of every 

R-wave in the ECG. This was achieved by providing a vertical threshold which the sync 

pulse must exceed. Once the R-waves are properly detected , an interbeat interval (IBI) 

signal can be constructed. To obtain the IBI signal, the distance in time between a 



50 

specific beat(Tm) and the beat previous in time(T m-1) is calculated. This value of time 

difference then becomes the amplitude of the IBI signal at that specific beat. 

Mathematically, the IBI signal is computed by the formula IBIm = Tm - 	See Figure 

2.6 for a graphical representation. 

Figure 2.6 Figure depicting the construction of the IBI signal 
(from S.J. Shin, W.N. Tapp, S.S. Reisman, and B.H. Natelson,"Assessment of autonomic 

regulation of heart rate variability by the method of complex demodulation," 1989) 

Although the IBI represents the heart period at discrete points, the IBI signal is not 

suitable for FFT analysis because the discrete points, located at each R-wave, are not 

evenly spaced. In order to produce equidistant IBI samples suitable for analysis, the IBI 

signal must be interpolated[5]. 
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The interpolation method used was that of a backward step function. This method 

assumes no new information about the direction of the time series is available until the 

next heart beat occurs. Therefore, the amplitude of all of the interpolated values between 

a beat at time Tm-1 and the beat at Tm  were set equal to the time difference between T. 

and Tm-1. The interpolated interbeat interval(IIBI) is then sampled to produce an IIBI 

with evenly spaced samples. For example, in Figure 2.6(c) if a beat occurs at a time equal 

to 2 seconds and the next beat occurs at a time equal to 2.9 seconds, then the interpolated 

values between time 2 seconds and 2.9 seconds are all 0.9 seconds as shown in Figure 

2.6(d). After the IIBI signal is obtained, it is detrended using a locally weighted robust 

regression algorithm. Essentially, this removes low frequency components below 0.05 

Hz. If these low frequency components are not removed, they can dominate the power 

spectrum and decrease the detail of the components in the frequencies above 0.05 Hz. 

Another example of an IBI signal and an IIBI signal is shown in Figure 2.7. 

The final step to obtain the HRV signal used in our analysis is to decimate the IIBI 

signal by a factor of ten (the ECG is sampled at 200 Hz). When the signal is decimated by 

a factor of ten, every tenth point of the original signal is kept, and the nine points in 

between are not used. In a time series of samples, every tenth point occurs at the same 

time as in the undecimated signal, except that there are no samples in between. In effect, 

decimating is similar to down-sampling. In other words, because the length of the IIBI 

signal is approximately the same length of the sampled ECG, which is acquired using a 

sampling frequency of 200 Hz, decimating the IIBI by a factor of ten, is similar to 

sampling the IIBI at 20 Hz. This can be done because the IIBI signal contains no 
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frequency components above 6 Hz. 

Normally during heart rate variability studies a respiration signal is recorded 

simultaneously. To begin the analysis of the original respiration waveform, the data file is 

unpacked in DOS using the kunpack2 program. The ASCII file is then loaded into 

MATLAB and then decimated by a factor of ten since the samples of the respiration 

signal are already equidistant, 0.005 sec apart along the time axis. Therefore, there is no 

need for the interpolation procedure. 

Figure 2.7 IBl signal and IIBI signal 

2.6.3 Time Frequency Analysis 

One of the drawbacks of the spectral analysis of heart rate variability is that it cannot 

track rapid changes in heart rate variability over time. The algorithms described in the 
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previous section were traditionally used to obtain the power spectrum on lengths of data 

on the order of minutes, so an average level of autonomic activity was represented. Often 

the level of autonomic activity can change in as rapidly as ten to fifteen seconds. 

Time frequency analysis was performed on the entire IIBI and respiration files of 

using a series of the classical kernels that fall under the general class of bilinear 

distributions. Each distribution, as will be described in chapter 3, has unique 

characteristics which affect the processing and interpretability of the signals involved. 

The vagal tone and the sympatho-vagal balance were the physiological measures assessed 

from the resulting 3-D time-dependent spectra by quantifying the area under the low 

frequency and high frequency range for each instant of time. Adaptive filter processing 

was also used as an indicator for the high frequency range extraction of parasympathetic 

activity, as will be discussed in chapter 4. 



CHAPTER 3 

TIME-FREQUENCY REPRESENTATIONS 

3.1 Categorization of Time-Frequency Distributions 

3.1.1 Linear Time-Frequency Distribution 

All linear time-frequency distributions (TFDs) satisfy the superposition or linearity 

principle which states that if x(t) is a linear combination of some signal components, 

then the TFD of x(t) is the same linear combination of the TFDs of each of the signal 

components[44]. 

Linearity is a desirable property in any application involving multicomponent 

signals because there already exist powerful analysis techniques for signals with such a 

property. One linear TFD of basic importance is the short-time Fourier transform. The 

basic idea is that by suitably pre-windowing the signal x(t), we can obtain the time 

localization of its frequency components. 

3.1.2 Quadratic Time-Frequency Distribution 

Although linearity of the TFD is a desirable property, the quadratic(bilinear) structure of a 

TFD is an intuitively reasonable assumption when we want to translate a TFD as a time- 
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frequency energy distribution, since energy is a quadratic signal representation. All 

quadratic TFD satisfies the quadratic superposition principle which is defined as[44] 

terms[44], a fact that makes the visual analysis of the TFD of multicomponent signals 

difficult. 

Among all the bilinear TFD with energetic interpretation, The Wigner distribution 

(WD) is the most widely studied and applied since it satisfies a large number of desirable 

mathematical properties. 

3.1.3 Analytic Signal 

In practical cases, the signals to be analyzed are real. An analytic signal z(t) is a 

complex-valued signal whose spectrum is single-sided ( Z(f) # 0 for f > 0 or f < 0 ). 

Because of this property of its spectrum, the imaginary part of an analytic signal is the 

Hilbert transform of the real part. 

The Hilbert transform is defined as[46]: 



(3.5) 

(3.6) 
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(3.4) 

where x(t) is the Hilbert transform of the signal x(t). 

Thus, to generate an analytic signal from a given signal S original(t), one should take 

the Hilbert transform of S original.(t) which would become the imaginary part of analytic 

signal. 

Note, the lower limit of the integral is zero , because  is a physical signal and is 

valid for the time interval [0,∞). Define 

Then; 

where z(t)is an analytic signal. 

There are two basic reasons for using the analytic signal in calculating a joint time-

frequency distribution: 

First, the analytic signal does not have negative frequencies and therefore can not cause 

interference terms with positive frequencies; although it does not eliminate the 

interference of the positive frequencies with other positive frequencies. There will always 

be interference terms, no matter what part of the signal is eliminated, since that is an 

inherent property of bilinear distributions. 

2 
Second, consider a real signal s(t). Its energy density spectrum, S(f) is always 
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symmetric about the origin. This is illustrated in Figure 3.1 . Note, the average frequency 

will always become zero which is not what we want because it does not give us a sense of 

what is really going on with the signal. Also we want to obtain a value for average 

frequency which is roughly centered in the middle of the right hand bump. To achieve 

that, we have to neglect the left bump in the averaging. This is illustrated as follows: 

Figure 3.1 Energy density spectrum 

Take the spectrum of the real signal s(t) 

Delete the negative part of the spectrum S(f) such that; 

Take the inverse Fourier transform of the positive part of s(f) to form the new complex 

signal z(t). It turns out that the real part of signal z(t) is the real signal s(t) and the 

imaginary part is the Hilbert transform of s(t) which is the definition of an analytic 

signal. Thus, to calculate the instantaneous frequency, the analytic signal should be used. 
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3.1.4 General Class of Time-Frequency Distributions 

Most popular time-frequency representations can be expressed in terms of the general 

bilinear time-frequency distribution representations proposed by Dr. Leon Cohen. This 

allows one to generate all time-frequency distributions via a simple procedure. The 

mathematical formulation for the general class is[22]; 

The g(v,Ƭ) is an arbitrary function called the kernel and it determines the characteristics 

of the time-frequency distribution. Note that z is an analytic signal and z' is the 

complex conjugate of z. If the integration with respect to v is performed, then equation 

(3.9) becomes: 

and the discrete time equivalent of equation (3.10) is: 

The advantage to using the discrete equation is that once the desirable kernel is chosen 

the distribution is fixed. The kernels which generate some of the most common 

distributions are listed in table 3.1. 

3.1.5 Kernel Function 

The kernel is particularly useful to study time-frequency distributions. They are easily 

generated, and the properties of the distribution can be observed by examining the kernel. 
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Table 3.1 Common distributions and their kernels 
(from Cohen,L., introduction: A Primer on Time-Frequency Analysis, edited by 

Boashash,B., Time-Frequency Analysis Methods and Applications, 1992). 

Also, when a new distribution is considered, its properties can readily be ascertained by 

examining its kernel. The kernel g(v,Ƭ) can depend on time, frequency and the signal; 

however, we will consider the kernels which do not depend on the signal. The kernel 
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g(v,Ƭ) is a function of v and Ƭ only. where v,t are the time and lag index 

respectively. The following is a list relating the properties of the distribution to the 

desirable properties of their kernels. 

3.1.5.1 Properties 

Nonnegativity:  

A distribution should be positive for all values of time and frequency because it indicates 

how much of the total energy is in a particular time-frequency cell. However, most 

distributions contain negative as well as positive values. The positive part very often 

contains a time-frequency structure consistent with what we expect. The meaning of the 

negative regions is not yet completely understood. Sometimes the nonnegativity and cross 

terms are closely related, since the cross terms in the time-frequency domain are, in 

general, fluctuating and produce a plethora of negativity. In many cases, suppression of 

cross terms accompanies reduction of magnitude of negative values. 

Realness:  

The bilinear distributions are in general not positive definite, which implies that they are 

not strictly proper joint density functions. It has been argued that at least the kernel should 

be real[47]. That is for a given TFD p z (t,f ); 

Take the complex conjugate; 
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Time and Frequency Shifts:  

A desirable property is that if we translate the signal by amount to , we expect the whole 

distribution to be translated by the same amount. Similarly, if we shift the spectrum by a 

fixed frequency ƒo then the distribution should be shifted by an equivalent amount. That 

distribution of shifted signal respectively then; 

The constraint for this property implies that the kernel should be independent of time and 

frequency. 
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Time and Frequency Marginals:  

Another desirable property is that for a given time if we added up the bits of energy at 

different frequencies we will get the total energy lz(t)2  at that instant of time. Also if for 

a given frequency we add all the time pieces we should get the total energy at that 

frequency, Z(f)2  . That is if z(t),p,(t,f) are signal and distribution of signal 

respectively then; 

Similarly; 

Let us integrate the left hand side of equation (3.20) 

Using the definition of the Fourier transform we can write; 

Hence 

The only way equation (3.25) can be made equal to 140 2  iS to take 
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which forces; 

Similarly, we can show the condition on the kernel to satisfy the frequency marginal is 

Instantaneous Frequency:  

If we fix time and ask for the expected value of frequency for that time, we obtain the 

first mean conditional frequency, given by: 

where p(t)is the marginal in time 

If the signal is analytic, the first moment of frequency for a given time is the 

instantaneous frequency because instantaneous frequency is defined in terms of the 

analytic signal. The instantaneous frequency is given in terms of the TFD: 

where f i (t) is the instantaneous frequency. Constraint for the kernel is: 



Group Delay:  

From the point of view of joint time-frequency distributions we may think of the group 

delay as the mean time at a given frequency. Therefore everything we said for the 

expectation value of frequency at a given time allows us to write down the corresponding 

results for the expected value of time at a given frequency. That is 

and the constraint for the kernel should be: 

Time and Frequency Support:  

For a finite duration signal the distribution should be zero before the signal starts and zero 

after the signal ends which is known as weak finite support. But it would be much better 

if the distribution was zero whenever the signal was zero or strong finite support[1]. We 

can apply the same concept to the frequency axis. That is, if the signal has a spectrum that 

ranges between two frequencies f 1  and  f,  and is zero otherwise, than the distribution 

should be zero for frequencies smaller then f1  and for frequencies greater than 12  . This 

is summarized as follows; For the time axis: 

and on the frequency axis 



(3.37) 

(3.38) 

(3.39) 

and the associated kernel requirements should be respectively: 

Reduced Interference:  

The distribution should not contain cross terms between frequency components. For a 

multicomponent signal, the spectrum of each signal should be clearly seen without 

interference. The constraint for the kernel is that g(v,'t) be a 2-D low pass filter type. 

The summery of above properties and associated kernel requirements are presented in 

table 3.2. 

3.1.6 Ambiguity Function Relationship 

Let R,(t,T) be the instantaneous autocorrelation of a complex signal z(t), defined as: 

Then the symmetrical ambiguity function (AF) is defined as the inverse Fourier transform 

of R,(t ,T) with respect to t. 

(3.40) 

This relationship may be combined with equation (3.9) to show that p z (t,f ) may be 

found by: 

(3.41) 
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Table 3.2 Distribution properties and associated kernel requirements 
(from Williams,W., Jeong,J., Reduced Interference Time-Frequency Distributions, edited 

by Boashash,B., Time-Frequency Analysis Methods and Applications, 1992) 
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Thus, any member of Cohen's class of distributions may be found by first multiplying 

the kernel, g(v,T), by the symmetric ambiguity function and then carrying out the double 

Fourier transform[22]. The generalized ambiguity function, g(v,T)A(v,t) is a key 

concept which helps one in clearly seeing the effect of the kernel in determining pz (t, f) . 

We illustrate this concept in Figure 3.2[22], where the ambiguity function of two 

sine wave signals is given. The auto terms of the two signals are placed near the center of 

Figure 3.2 and the cross-terms are placed in the upper right and lower left corner. Thus, to 

determine a desirable distribution, the kernel function should emphasize the auto terms 

near the center and de-emphasize the cross terms in the corners. 

Figure 3.2 Ambiguity function of two sine wave signals 
(from Williams,W., and Jeong,J., Reduced Interference Time-Frequency Distributions, 

edited by Boashash,B., Time-Frequency Analysis Methods and Applications, 1992). 
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3.2 Comparison of Time-Frequency Distributions 

3.2.1 Short Time Fourier Transform 

The short time Fourier transform was the first tool devised for analyzing a signal in the 

time-frequency domain[47]. This is done by extracting a small piece of the signal and 

taking its Fourier transform, and by continuing this process we show the existing 

frequency components at each instant of time. We can present this idea mathematically by 

first designing a window function, h(T — t) which will emphasize the times around the 

fixed time of interest t . We then multiply the signal with the window function and take 

its Fourier transform: 

As this process is continued for each particular time ,we obtain a different spectrum. The 

totality of these spectra makes a time-frequency distribution. The energy density of the 

signal at the fixed time t is 

where p sp,(t, f ) is called the spectrogram. The spectrogram can be also written in terms of 

the Fourier transforms of the signal and window function. 

where H(f ), S(f)are Fourier transforms of the signal and window function 

respectively. Note, equation (3.44) can be used to study the behavior of the signal around 

the fixed frequency of interest f . The spectrogram should not be thought of as a different 
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distribution because it is a member of a general class of distributions[21]. 

How large should the window be?, or , How should we weigh each piece of the 

signal? To answer these questions we need to understand the time-bandwidth relation, or 

the uncertainty principle. 

Let us define the duration of a signal s(t)by At ; 

where I is mean time and is defined as; 

Let us also define the bandwidth of the signal S(f) in the frequency domain by ∆ f ; 

where f  is mean frequency and is defined as; 

The time bandwidth relation is; 

The physical interpretation of time bandwidth is that the duration and bandwidth can not 

The advantage of the short-time Fourier transform is that it has an easily understandable 

interpretation and is positive every where. This is a desirable property when we want to 

interpret the spectrogram as the signal energy distribution in the time-frequency plane. 

One of the shortcomings of the short-time Fourier transform is the trade off 
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between time and frequency resolution. Consider two extreme choices of the analysis 

window h(t). The first case is that of perfect time resolution, that is, if the analysis 

window h(t) is a Dirac impulse, 

where s(t), p STFT(t, f )are the signal and short time Fourier transform of the signal 

respectively. In this case, the short time Fourier transform essentially reduces to the signal 

s(t), preserving all time variations of the signal but not providing any frequency 

resolution. The second case is that of perfect frequency resolution obtained with the all-

constant window h(t) = 1. , then; 

where H(f ), S(f ) are Fourier transform of window and signal respectively. Here the 

short time Fourier transform reduces to the Fourier transform and does not provide any 

time resolution. Therefore, because of the uncertainty principle, both 40 and H(f ) can 

not be made arbitrarily narrow. 

Another shortcoming of the spectrogram is that it does not satisfy time and 

frequency marginal properties at the same instant. If we write the signal s(t) and window 

h(t) in terms of their amplitudes and their phase; 

and similarly for their Fourier transforms 
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Then the marginals are; 

These do not equal the instantaneous energy or energy density spectrum, namely 

A 2 (t)and B2 (f ) [21]. But they do approach them as we narrow the window in the 

respective domains. However window h(t)and H(f) can not be narrowed concurrently. 

The short time Fourier transform is a linear signal decomposition, and there are no 

cross terms between signal components. However, the spectrogram is also a bilinear 

signal energy distribution due to the magnitude squaring operation. Thus, the spectrogram 

has cross terms that are not noticeable because they are inherently filtered out by a low-

pass filter defined by the ambiguity function of the window[47]. 

3.2.2 Wigner Distribution 

Among all the bilinear TFD, The Wigner distribution (WD) is the most studied and 

applied [23]. The Wigner distribution can be obtained from the general class equation 

(3.9) by taking g(v,T)= 1: 

where pw(t,f), z(t)and z*(t)are the Wigner distribution, an analytic signal and the 

complex conjugate of the analytic signal respectively. From equation (3.56) we see that 

for each particular time we are adding up pieces made from the product of the signal at a 
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past time multiplied by the signal at an equal future time. The Wigner distribution 

satisfies many properties, which are described as follows: 

The WD is a real valued function that is; 

Since the kernel of the WD is one for any value of v and , then the complex conjugate 

of the kernel is always one. That is; 

This is the constraint of the kernel for the distribution to be real from section 3.1.5.1 . 

The WD satisfies the time and frequency shift properties as long as the kernel of 

the WD is not a function of time and frequency that is; 

where z(t), s(t), p z  (t, f ) and ps (t , f) are the signal, the shifted signal, the distribution of 

signal and the distribution of the shifted signal respectively. To prove this property one 

should take the kernel of the WD independent of time and frequency and set it equal to 

one, that is: 
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To prove the frequency shifting one can use a similar argument. 

The WD is uniquely related to the signal up to a constant phase factor[21]. To 

understand this idea, take the inverse Fourier transform of equation 3.56 with respect to 

One can therefore recover the original signal from the Wigner distribution for a given 

resolution. The preceding relation can be used to determine whether a signal exists which 

will generate a given  

The Wigner distribution also satisfies the marginals properties. To prove these, 

one can use the constraint of the kernel for marginals properties ,that is; 
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By inspection, the kernel of the Wigner distribution g(v,T).= 1 , satisfies both marginals. 

Thus, the Wigner distribution satisfies the total energy. Note the converse is not true[21]. 

For the first conditional moment at a fixed time, the Wigner distribution gives the 

instantaneous frequency and at a fixed frequency the first conditional moment would be 

the group delay. 

For a finite duration signal the Wigner distribution is zero before the signal starts 

and after the signal ends[21]. If we have a band limited signal, the Wigner distribution 

will be zero for all frequencies that are not included in that band. These properties are 

called the support properties of the Wigner distribution. In general the Wigner 

distribution is not zero when the signal is zero[47]. 

Consider the multicomponent signal z(t): 

Wigner distributions. Therefore the Wigner distribution of the sum of the two signals is 

not the sum of their respective Wigner distributions. In general the Wigner distribution 

puts cross terms in between any two frequencies and any two times[21]. 
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Figure 3.3 The Wigner distribution of the sum of two finite duration sine waves 

Figure 3.3 presents the Wigner distribution of a signal which is the sum of two 

sine waves of one second duration with frequencies of 100 and 400 hertz. Note the cross 

term in the middle of the two frequencies at 250 hertz. This is the most important draw 

back of the Wigner distribution (WD). 

Another draw back of the Wigner distribution is that it always has negative 

regions throughout the time-frequency plane, except in the case of the Gaussian signal 

where the amplitude is modulated[22]. 

3.2.2.1 Windowed Wigner Distribution 

In practice one is forced to calculate the Wigner distribution using equation (3.70): 

where h(t) is a window function. This is due to the finite nature of the data. The resulting 

distribution has the effect of smoothing the Wigner distribution over frequency and is 
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called the Pseudo Wigner distribution (PWD)[46]. The PWD sometimes results in a 

better looking distribution in that certain cross terms are suppressed. One can clean the 

cross terms by smoothing the Pseudo Wigner distribution over time which is called the 

Smoothed Pseudo Wigner distribution (SPWD). Smoothing the Pseudo Wigner 

distribution is performed as follows: 

distribution and the Pseudo Wigner distribution respectively. The advantages of the 

Smoothed Pseudo Wigner distribution are that for certain types of smoothing, a positive 

distribution is obtained and the cross terms are suppressed. However smoothing destroys 

some of the desirable properties of the Wigner distribution: if L is taken to be 

independent of the signal, then the only way to obtain a positive distribution is by 

sacrificing the marginals properties[22]. 

3.2.3 The Exponential Distribution 

A new approach was presented by Choi and Williams where they address the main draw 

back of the Wigner distribution (cross terms)[47]. In section 3.2.2.1 a method was 

described to remove the cross terms but this usually involves violating some of the 

desired properties like the marginals. Choi and Williams investigated using a generalized 

ambiguity function[47]. They chose an exponential kernel, that is; 
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Substituting equation (3.72) in equation (3.9) and integrating with respect to v one 

obtains; 

and complex conjugate of the analytical signal. The ability to suppress the cross terms 

comes by controlling a . 

In Figure 3.4, we illustrate three cases, where each contains two sine waves with 

frequencies of 100 and 400 hertz. The Choi Williams distribution was performed for the 

three cases but with different values for a . Note, in case "a" we are taking a to be 

10000 which makes the kernel effectively one and we have the Wigner distribution. In 

case "b" and "c" we are taking a to be 50 and 1, respectively which produces a kernel 

which is peaked near the origin in the v,T plane and hence offers better cross term 

suppression. 

Hence one can control the relative suppression of the cross terms by reducing the 

value of a . The Choi Williams distribution satisfies many of the desirable properties, as 

described below: 

The Choi Williams distribution is real. To prove this, one can replace the v,T  with 

—v,—T respectively in to the kernel function and perform the manipulation; 
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Figure 3.4 Performance of the Choi Williams distribution upon three cases with 
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The Choi Williams distribution satisfies both the marginals properties, since; 

and similarly for the other marginal. Since the marginal properties are satisfied, the total 

energy property will be satisfied. 

The Choi Williams distribution does not satisfies the finite support properties. To 

show this we introduce the following condition for determining whether a distribution is 

zero before a signal starts and after the signal ends. This work was done by Claasen and 

Mecklenbrauker[23] and is expressed as follows: 

Similarly, for the signal that is bandlimited in the region (f1 ,f2 ) the distribution should 

be zero for values of frequency less than f1  and greater then f2 . 

If we replace the kernel of the Choi Williams distribution in equation (3.76) and carry out 

the integration using a table of integrals[11], we obtain: 

Note, the right hand side of equation (3.78) is not equal to zero; therefore, The Choi 

Williams distribution does not satisfy the support properties. 

3.2.4 Reduced Interference Distribution (RID) 

Incorporating the idea of interference reduction in the Choi Williams distribution (P10 in 
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Table 3.2) with other desirable properties (PO-P9 in Table 3.2), a new class of time-

frequency distributions, called reduced interference distributions, has been introduced 

[29]. While not satisfying PO, the RID does satisfy P1-P10 and provides high resolution 

in time and frequency. To meet the requirements for P1-P10, the RID kernel should be a 

cross shaped low pass filter, satisfying[29] 

The following is the procedure to design a RID kernel[29]. 

Step 1: Design a primitive real valued function h(t) that satisfies the following: 

Similarly one can show the RID satisfies the frequency marginal. Condition R2 
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produces a real H(v), which in turn implies the realness (P2) of the RID. Condition R2 

also implies the instantaneous frequency and group delay exists under the condition that 

exists[48]. The RID satisfies the time and frequency shift properties since the 

kernel does not depend on time or frequency. R3 does imply the time and frequency 

support properties[47]. To prove it, one should take the Fourier transform of the kernel 

with respect to v and use the scaling property of the Fourier transform to carry out the 

integral. That is: 

Based upon the kernel requirements in table 3.2, equation 3.76 has to equal zero in order 

to satisfy the time support. That is: 

By symmetry, one can also show that the RID satisfies the frequency support. R4 

plays the role of suppressing the interference. In most cases, the auto terms are located 

near the origin of the ambiguity domain, while the cross terms occur far away from the 

origin[29]. Therefore, a low pass filter type kernel imposed by R4 can effectively reduce 

interference while retaining the resolution of the auto terms. Using a primitive function 

h(t) designed according to requirements R1-R4, the RID has the following integral 
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The RID is not dedicated to a certain type of signal. The idea underlying the RID 

is to develop TFDs that satisfy many desirable properties. One can find signals that will 

not be effectively handled by the RID; for example, a chirp. Since the RID has a cross 

shaped kernel in the ambiguity domain, if the ambiguity function of the chirp falls on a 

450  diagonal line, then it will not intersect well with the RID kernel, resulting in low time 

and frequency resolution[29]..  
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bandwidth. Hence, the Born- Jordan kernel provides very good interference at the 

expense of autoterm resolution[29]. 

3.3 General Approach to Computation of Time-Frequency Distributions 

The discrete time definition of Cohen's class of time-frequency distributions given in 

equation (3.1 1), reproduced here for convenience, 

forms the  basis of the general approach to implementation of time-frequency 

distributions. This approach can be expanded to three steps[22]: 

1. Form the bilinear product K z (n,m)= z(n + m)z*  (n - m) . The bilinear product has 

Hermitian symmetry[49], that is: 

This means that values of the bilinear kernel need only be calculated for positive time 

lags[48]. The efficient way to compute the bilinear product is to calculate them as they 

are required. 

2. Convolve the bilinear product with the desired kernel function G(n, m) in the n (time) 

dimension for each time instant. In an actual implementation, either the product kernel 

matrix or the selection kernel matrix G(n,m), may be computed at the point of use (in the 

convolution). This saves memory and time. The kernel matrix G(n , m) is known to be 

symmetrical in both time and lag dimensions, and so values are only used from the 
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positive quadrant. 

3. Calculate the discrete Fourier transform of this result, to produce the time slice of the 

desired distribution. 

The time-frequency distributions (TFDs) used in this work and their determining 

kernel functions G(n,m) are shown in table 3.4. These code fragments were originally 

written in FORTRAN code by Boashash in 1992[22]. The equivalent code was initially 

transferred to MATLAB by Adib in 1995[50]. A new modified and much more 

thoroughly tested version was written for the present research to accommodate for the 

processing of both the heart rate variability and respiration signals. 
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Table 3.4 TFDs and their determining function G(n , m) 

(from Boashash, B., Time-Frequency Analysis Methods and Applications, 1992) 



CHAPTER 4 

TIME-FREQUENCY ANALYSIS OF HEART RATE VARIABILITY AND 
RESPIRATION 

Signals of practical interest often do not conform to the requirements of realistic 

application of Fourier principles. The approach works best when the signal of interest is 

composed of a number of discrete frequency components so that time is not a specific 

issue. Examples are a constant frequency sinusoid or a signal that exists for a very short 

time so that its time occurrence is considered to be known. Much of what we know 

implies that signals that can not be satisfactorily represented in these ways must be forced 

into the mold or abandoned[29]. 

Standard spectral analysis by Fourier transform or variations of autoregressive 

models have been extensively applied in the attempt to evaluate quantitatively the 

fluctuations in beat-to-beat (R-R) intervals and respiration attributed to a regulatory 

function of the sympathetic and parasympathetic branches of the autonomic nervous 

system under steady-state conditions. Due to the limitations inherent in these methods, a 

compromise must always be made between frequency resolution and the choice of a time 

signal length short enough to suit the stationarity assumption. Analysis over a long time 

window, usually 5-10 minutes, does not show information about the time-varying 

structure of the spectra. Instantaneous changes of the signal content, typical for 

cardiovascular signals, are thus smeared out or appear as a wideband noise. Therefore, it 

is a common practice that a "reasonably stationary" part of the signal is identified and 

86 
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analyzed. However, the spectral estimation is dependent on the chosen observation 

window, and consequently the interpretability of the results is limited[8]. 

Recently, joint time-frequency signal representation has received considerable 

attention as a powerful tool for analyzing a variety of signals and systems. In particular, if 

the frequency content is time varying as in signals of biological origin which often do not 

comply with the stationarity assumptions, then this approach is quite attractive. Although 

either the time domain description or its Fourier transform carries complete information 

about the signal, neither of them reveals explicitly the frequency spectrum at a particular 

time or the time at which a particular frequency component occurs. By mapping a one-

dimensional function of time or frequency into a two-dimensional function of time and 

frequency, the joint time-frequency representation (TFR) localizes the signal energy in 

both the time and frequency domains. 

The ultimate goal of this research work is dedicated to the use of time-frequency 

analysis of heart rate variability and respiration as a new and innovative approach to 

investigate the physical and mental exertion attributed to exercise. 

4.1 Heart Rate Variability Test Signals 

Although time-frequency analysis has been extensively studied and universally used, 

there is not much experience in its application to very low frequency ranges (less than 1 

Hz). Even its prior use on the beat-to-beat variations was limited to the use of one 

particular distribution under resting and posture conditions[8]. A series of sinusiods and 

chirps were first created to test the behavior of the five distributions in the high frequency 
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ranges (100 Hz to 400 Hz). Each distribution used: the short time Fourier transform 

(STFT), the pseudo Wigner-Ville (WV), the smoothed pseudo Wigner-Ville (SPWV), 

The Choi-Williams (CW), and the Born-Jordan-Cohen (RID), has unique characteristics 

which affect the amount of smoothing and the generation of crossterm interference . 

Despite the validation of their proper responses, it was important to be able to test the 

application of these distributions on a signal modeled as closely as possible to the long 

term heart rate variability signal over the frequency range of interest, namely, for 

frequencies less than 0.7 Hz. 

In Figure 4.1, we illustrate the first case, where the HRV signal is modeled as a 

continuous sum of three sine waves of equal amplitude of one and duration time of 200 

seconds, containing frequencies 0.1 Hz, 0.3 Hz and 0.5 Hz. The power spectrum shows 

the presence of the exact three frequencies. 

Time-frequency analysis was performed on the same signal described above using 

the five different distributions with the same specifications (FFT and window size equal 

to 512). It is evident from looking at the results in Figures 4.5-4.7 that all the distributions 

show the auto-terms at the specified frequencies (0.1 Hz, 0.3 Hz, and 0.5 Hz) for all time. 

However, note that the STET distribution displays the lowest frequency resolution. There 

is an inherent tradeoff between time and frequency resolutions. If the analysis window is 

made short enough to capture rapid changes in the signal, it becomes impossible to 

resolve frequency components of the signal which are closer in frequency than the 

analysis window duration. On the other hand, the WVD provides a high resolution 

representation in time and in frequency for non-stationary signals. In addition, it has the 
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important property of satisfying the time and frequency marginals in terms of the 

instantaneous power in time and energy spectrum in frequency. However, its energy 

distribution is not non-negative, and it often possesses severe cross-terms, or interference 

terms, between components in different time-frequency regions. This potentially leads to 

confusion and misinterpretation of the signal content. Note the cross-terms at 0.2 Hz, 0.3 

Hz and 0.4 Hz in Figure 4.5. 

Figure 4.1 The HRV signal modeled as three continuos sine waves containing 
the frequencies (0.1 Hz,0.3 Hz and 0.5 Hz) 

The RID is not a non-negative distribution as is the spectrogram. However, we 

have observed that the RID is more non-negative than the WVD. This may be due to the 
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fact that the WVD cross-terms often exhibit quite sizable negative values. The RID 

reduces negativity as a consequence of reducing the size of the cross-terms, but it also 

provides a high resolution and easy to interpret localization of the signal spectrum in the 

time-frequency plane as demonstrated in Figure 4.6. 

The CW and the SPWVD overcome the aforementioned drawbacks of the other 

distributions and provide high resolution in time and frequency while suppressing 

interferences between the signal components as seen in Figures 4.6 and 4.7. 

In Figure 4.2, we illustrate the second case, where the HRV signal is modeled as a 

continuous sum of three sine waves of equal duration time of 200 seconds, containing 

frequencies 0.1 Hz, 0.3 Hz and 0.5 Hz with added filtered Gaussian noise producing a 

signal-to-noise ratio of 2.8312 (i,e SNR=4.52 dB). Using a first order Butterworth filter 

with a cutoff frequency of 0.01 Hz, the Gaussian noise is filtered in an attempt to 

approach as closely as possible the 1/f spectral behavior exhibited by the long term HRV 

frequency response. The power spectrum shows the presence of the three frequencies 

with noise. 

It is clear from looking at the results in Figures 4.8-4.10 that all the time-

frequency distributions show the auto-terms at the specified frequencies (0.1 Hz, 0.3 Hz, 

and 0.5 Hz) for all time. The distributions all behave in a similar manner as described 

before with the addition of a noise component to our signal. In Figure 4.8, we note that 

the STFT barely distinguishes the low frequency noise component from the 0.1 Hz signal 

component. However, there is no interaction between the noise and the 0.3 Hz and 0.5 Hz 

frequencies. The WVD and the RID are no longer limited to cross-terms between signal 
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components. Now there is added interference between each of the three frequencies 0.1 

Hz, 0.3 Hz and 0.5 Hz and the noise component as demonstrated in Figures 4.8 and 4.9. 

The CW and SPWV distributions are shown to distinguish well between the signal and 

noise components with the SPWVD being even more precise. 

Figure 4.2 The HRV signal modeled as three continuos sine waves containing 
the frequencies (0.1 Hz,0.3 Hz and 0.5 Hz) with added noise (SNR=4.52dB) 

In Figures 4.3 and 4.4, we illustrate the third and fourth cases, where the HRV 

signal is modeled as the sum of three sine waves of equal duration time of 50 seconds, 

separated by 25 seconds with frequencies of 0.3 Hz, 0.1 Hz and 0.5 Hz respectively. The 

difference between the two signals is again the presence of the added filtered Gaussian 
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noise at all time producing a signal-to-noise ratio, in Figure 4.4, of 0.778 (i,e SNR= -1.09 

dB). The power spectra show that the frequencies 0.1 Hz , 0.3 Hz and 0.5 Hz are present 

for both cases, but it does not show the specific duration of time they existed. Figure 4.4 

also shows the strong presence of noise in the very low frequency region that mostly 

affects the 0.1 Hz signal component. 

Figure 4.3 The HRV signal modeled as short duration sine waves containing 
the frequencies (0.1 Hz,0.3 Hz and 0.5 Hz) 

Looking at Figures 4.11-4.13, we note that all five distributions show distinctly 

the presence of the three frequencies at the specific duration of time. At the time intervals 

of [0,50], [75,125] and [150,200] seconds of the signal, frequencies 0.3 Hz, 0.1 Hz and 
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0.5 Hz exist respectively. Note that the differences between the distributions are mainly 

in the signal intensity and the ability to maintain both accurate time and frequency 

resolutions. Also recall that since the signal does not exist for all time, we do not see 

cross-terms between different frequency components. Only one frequency is present at 

each specific duration of time. 

Figure 4.4 The HRV signal modeled as three short duration sine waves containing 
the frequencies (0.1 Hz,0.3 Hz and 0.5 Hz) with added noise (SNR=-1.09dB) 

Figures 4.14-4.16 reveal a similar situation. However, now with the presence of a 

strong noise component, we note a considerable interaction with the 0.1 Hz signal. Yet, 

the other signal frequencies can be easily distinguished. Note that with the presence of 
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noise at all time, the WVD and the RID reveal the cross-term interaction between the 

signal and noise components. The CWD and the SPWVD present high resolution in both 

time and frequency while suppressing cross-term interactions between the signal and 

noise components. 
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Mesh & Contour of HRV test signal using STFT distribution 

Mesh & Contour of HRV test signal using WVD distribution 

Time(Sec) 

Figure 4.5 The STFT & the WVD of the noiseless continuous HRV test signal 
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Figure 4.6 The RID & the CWD of the noiseless continuous HRV test signal 
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Figure 4.7 The SPWVD of the noiseless continuous HRV test signal 
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Figure 4.8 The STFT & the WVD of the continuous HRV test signal (SNR=4.52dB) 
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Figure 4.9 The RID & the CWD of the continuos HRV test signal (SNR=4.52dB) 
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Figure 4.10 The SPWVD of the continuous HRV test signal (SNR=4.52dB) 
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Figure 4.11 The STFT & the WVD of the short duration HRV test signal 
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Figure 4.12 The RID & the CWD of the short duration HRV test signal 
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Figure 4.13 The SPWVD of the short duration HRV test signal 
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Figure 4.14 The STFT & WVD of the short duration HRV test signal (SNR=-1.09dB) 
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Figure 4.15 The RID & CWD of the short duration HRV test signal (SNR=-1.09dB) 
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Figure 4.16 The SPWVD of the short duration HRV test signal (SNR=- 1 .09dB) 
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4.2 Time-Frequency Analysis of the Preliminary Protocol 

The aim of time-frequency analysis is to develop tools that can describe rapid changes in 

time varying spectra. Expansion of the concept of spectral analysis of heart rate variability 

into time-frequency analysis gives us the ability to quantitatively assess the high 

frequency and the low frequency changes as a function of time. In the following sections, 

we will evaluate the use of the five classical kernels described in chapter 3 and section 4.1 

to analyze the respiration and heart rate variability signals of the preliminary protocol. 

The aim of this process is to investigate the transitions between rest, exercise, and 

recovery, and to assess which distribution gives the most physiologically significant 

information. The vagal tone and the sympatho-vagal balance are the parameters used for 

comparison. They are assessed from the resulting 3-D time-dependent spectra by 

quantifying the area under the low frequency (0.06 Hz to 0.15 Hz) and high frequency 

(0.15 Hz to 0.75 Hz) ranges for each instant of time. Recall that the low frequency range 

is associated with the mixture of sympathetic and parasympathetic activity while the high 

frequency range is purely parasympathetic in origin. 

4.2.1 Respiration Analysis 

Figure 4.17 displays a typical respiration response to the twelve minute preliminary 

cycling investigation. The specific protocol required the subject to rest initially for two 

minutes, start pedaling for another two minutes to reach the vigorous exercise stage, 

exercise for an additional four minutes, and then rest for the last four minutes of recovery. 

Note that one can clearly distinguish the different phases of this study in the plot of the 
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raw respiration signal. After mean removal, the detrended respiration signal is used for 

further analysis. 

Figure 4.17 The raw and detrended respiration signal for subject G0794 

Time-frequency analysis was performed on the detrended respiration signal of the 

ten subjects that participated in this study. The same FFT and window size of 512 was 

used for all the distributions. Figures 4.19-4.28 display the results for the same subject 

described above (G0794). 

Figure 4.19 illustrates the mesh and contour plots of the 3-D resultant spectra 

using the STFT . Note that the contour plots are displayed in the two frequency regions 
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of interest. Looking at the mesh along with the contour plots, we clearly see the shift in 

the frequency of respiration between the rest, exercise and recovery stages. At rest [0-2 

mins], the major activity is concentrated in the low frequency region (0.06 Hz to 0.15 

Hz). In the exercise period [2-8 mins], we note the increase in the frequency of 

respiration starting from the onset of cycling at minute 2 to reach the maximum intensity 

between (0.5 Hz to 0.65 Hz) during the vigorous cycling level. Note the significant drop 

in frequency , from approximately 0.6 Hz to 0.25 Hz, at the onset of recovery and 

termination of motion (minute 8), and the further decline into lower frequencies from 

minute 10 to the end of the experiment. 

Figure 4.20 presents the low frequency and high frequency activity as obtained by 

summing the area in the two specified bands at each instant of time throughout the whole 

experiment. These plots display exactly the same information as in Figure 4.19 as a 

function of the intensity at all time. The normalized low frequency and high frequency 

activity plots are obtained by dividing at each instant of time the LF and HF power by the 

sum of both respectively; 

These plots show that at rest, the relative power is concentrated in the low frequency 

region, thus indicating that the subject is breathing at a rate below 0.15 Hz. With the 

onset of exercise, there was a relative transient shift to the high frequency range. 

Respiration remains in the high frequency range throughout indicating that the 

challenging exercise level forced the subject to breathe faster, thus forcing his respiration 

frequency into the high region. The normalized power does not show a recovery until 
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minute 10 when the transition to the low frequency region begins. The ratio of low 

frequency to high frequency emphasizes again the dominance of the LF activity during 

rest and the HF activity during exercise. 

Figures 4.21-4.28 replicate these same findings displayed using the Wigner-Ville, 

Born-Jordan-Cohen, Choi-Williams, and smoothed pseudo Wigner-Ville distributions. 

The differences between these distributions relate back to their inherent characteristics 

that are thoroughly discussed and compared in the previous section. The WVD and the 

RID still present the problem of generating cross-term interference, although with 

different intensity, between the low and high frequency signal components as seen in 

Figures 4.21-4.24. The CWD addresses this drawback. However, the clarity of 

replication and the smoothest distribution can still be most demonstrated in the use of 

SPWVD. 

It is important to note that the respiration signal under this particular exercise 

condition is a very good candidate to demonstrate the benefits of the application of time-

frequency analysis. The findings listed above validate the physiological states the 

subjects are in. With rest and relaxation, the breathing rate is decreased producing a low 

respiration frequency. With exercise and exertion, the breathing rate increases to supply 

the body with more oxygen and remove more carbon dioxide, thus shifting the frequency 

of respiration into higher ranges that can reach as high as 0.75 Hz. This prominent shift 

in frequency between different durations of time is best observed using time-frequency 

distributions as clearly demonstrated here and in the previous test signals. 
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4.2.2 Heart Rate Variability Analysis 

Figure 4.18 displays the heart rate variability response in the same subject during the 

twelve minute preliminary protocol. The purpose of this study was to investigate two 

important questions: 

I) Is there an evident change in heart rate variability due to the stressful exercise 

condition imposed on each subject? 

II) Is recovery from exercise different either qualitatively or quantitatively from initiation 

of exercise? 

Looking at the heart rate variability signal shown below, one can easily distinguish the 

three stages of rest, exercise, and recovery by noting the changing trend in amplitude and 

Figure 4.18 The raw and detrended HRV signal for subject G0794 
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variability at each phase of the experiment. There are also pronounced transitions 

between these stages. 

After mean removal, time-frequency analysis was performed on the detrended 

HRV signal of the ten subjects using the same specifications of window and FFT size of 

512. Figures 4.29-4.34 display the resulting distributions for the same subject (G0794). 

Note that as stated earlier, the same findings are observed in all the distributions with the 

differences limited to the interference between frequency components, the power and the 

smoothing effects. The SPWVD still exhibits the best time and frequency resolutions. It 

displays the smoothest envelope or trend of the resulting 3-D power spectra. Looking at 

the mesh and contour plots of Figure 4.29 we note that all the major power of the HRV 

signal is concentrated in the very low frequency region (less than 0.06 Hz). It is hard to 

point out any change in our area of interest by just looking at these plots. Figure 4.30 

shows the mesh and contour plots of the low frequency and high frequency regions 

respectively. It clearly indicates that the major activity occurs at rest in both frequency 

ranges, which corresponds to the highest amplitude and variation in the inter-beat-interval 

signal. While average heart rate speeds up during exercise, the variability in the heart rate 

slows down, which is demonstrated in the lower power during the exercise phase. Note 

that this information is replicated and is easily seen in the LF and HF activity plots in 

Figure 4.29. These plots also show clearly the transitions between the three states of rest 

and exercise, and exercise and recovery. 
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4.2.2.1 Statistical Analysis of the Heart Rate Variability Signal: In order to verify 

our findings using time-frequency analysis and to answer the questions posed in the 

previous section, statistical analysis was also performed on the HRV signal. The first test 

compared the mean heart rate between rest [0-2 mins], exercise [4-6 mins], and recovery 

[10-12 nuns] for the ten subjects. With the assumption that the 3 observations on each of 

the 10 subjects were independent, we tested for a difference between the three phases. 

The null hypothesis stated that no significant differences exist between one or more of the 

means. The test was conducted at the 5% significance level. After assessing the 

normality of the data using a normal quantile plot, a repeated measures ANOVA showed 

an F value with a probability significantly less than 0.05. This indicated that there are 

indeed differences between rest and exercise, exercise and recovery, and rest and 

recovery, as demonstrated in the raw data itself. 

The second statistical method used a correlation test to compare the slopes into 

and out of exercise under the assumption that the slopes were jointly normally distributed. 

The null hypothesis stated no correlation between the slopes (i,e r=0). the 20 

observations used the slopes of the first minute into [min 2-3] and first minute out of 

[min 8-9] exercise for each subject. After passing the normality check, the data indicated 

a strong inverse correlation between the transition from rest to exercise and from exercise 

to recovery with an r=-0.848. This may indicate that subjects with quick transition into 

exercise tend to recover quickly out of exercise. 

Therefore, along with the time-frequency representations, the statistical analysis 

shows that a stressful exercise level drastically changes the heart rate variability signal. It 
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also shows that there is a significant difference between rest and recovery which indicates 

that four minutes out of exercise is not enough for the heart rate to reach its normal 

resting state. 



115 

Figure 4.19 Mesh and contour of the STFT of the respiration signal (Subject G0794) 
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Figure 4.20 LF and HF activity of the STFT of the respiration signal (Subject G0794) 
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Figure 4.21 Mesh and contour of the WVD of the respiration signal (Subject G0794) 
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Figure 4.22 LF and HF activity of the WVD of the respiration signal (Subject G0794) 
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Figure 4.23 Mesh and contour of the RID of the respiration signal (Subject G0794) 
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Figure 4.24 LF and HF activity of the RID of the respiration signal (Subject G0794) 
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Figure 4.25 Mesh and contour of the CWD of the respiration signal (Subject G0794) 
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Figure 4.26 LF and HF activity of the CWD of the respiration signal (Subject G0794) 
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Figure 4.27 Mesh and contour of the SPWVD of the respiration signal (Subject G0794) 
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Figure 4.28 LF and HF activity of SPWVD of the respiration signal (Subject G0794) 
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Figure 4.29 Mesh, contour, LF and HF activity of SPWVD of HRV (Subject G0794) 
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Figure 4.30 Mesh and contour of SPWVD of G0794-HRV showing LF and HF ranges 
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Figure 4.31 Contour, LF and HF activity of the STFT of HRV (Subject G0794) 
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Figure 4.32 Contour, LF and HF activity of the CWD of HRV (Subject G0794) 
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Figure 4.33 Contour, LF and HF activity of the RID of HRV (Subject G0794) 
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Figure 4.34 Contour, LF and HF activity of the WVD of HRV (Subject G0794) 
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4.3 Time-Frequency Analysis of the Anticipation Protocol 

In this section, the smoothed pseudo Wigner-Ville and the Choi-Williams distributions 

are used to quantify the changes in the heart rate variability signal during the anticipation 

protocol. The choice of these distributions stems from the thorough investigation and 

evaluation performed on the modeled and experimental heart rate variability signals in the 

previous sections. The main purpose of this investigation is to test for the presence of an 

anticipatory component due to a stressful exercise condition as reflected in the heart rate 

variability signal from a change in behavior in the autonomic nervous system, specifically 

between minutes [15 to 16] and [16 to 17]. The aim in using such a challenging exercise 

level is also to test the reproducibility of the results of the preliminary study. Thus, we 

are reassessing whether there is a significant difference in the HRV signal produced by 

the stressful exercise sessions and whether the transitions between the three main states of 

rest, exercise and recovery are evident. 

4.3.1 SPWVD of Heart Rate Variability 

Although both the CWD and the SPWVD were used to analyze the four exercise 

protocols, this section will only illustrate the results of the SPWVD. The SPWVD has 

been shown to demonstrate the changes brought about in the heart rate variability signal 

while presenting a smoother envelope than the CWD results. 

Examination of the results for these nine subjects presented a real challenge. As 

expected, the following study has been very involved. We basically have two unique 

protocols that are performed twice for each subject under different anticipatory 
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conditions. There are many factors that can affect the outcome of this investigation that 

range from the physical fitness that the subjects are in, to the mood or psychological state 

at the time of the experiment. It also is affected by the personality traits of these subjects, 

their reactivity within a certain frame of time, the environmental factors, or even the tone 

of voice or type of instructions the subjects are given. In order to control as many of 

these variables as possible, many conditions were addressed to maintain homogeneity 

between subjects. To ensure the severity of the exercise level, all the subjects were tested 

prior to the experiment and assigned a level of activity that would be tedious enough to 

present a real challenge but physically manageable at the same time. Also, the 

experimental setup was done in such a way that the subjects were always facing away 

from the hardware and the experimenter to eliminate any possible anticipatory affect due 

to distraction or what is commonly referred to as white coat syndrome. The participants 

were all read the same text to inform them about the nature of the experiments and time 

involved. Caffeine, food intake, and smoking along with other variables were also 

controlled. However, with all this cautionary measures taken into account, we note that 

not all the subjects behaved in the same manner. 

Comparing the nine subjects across all protocols, we note that the most striking 

finding relates to a definite change at minute 16 in response to the experimenter 

intervention, regardless of the message relayed in the information provided. As will be 

demonstrated below with a typical sample response, most subjects reacted to the voice 

after 8 minutes of silence for most protocols. That does not indicate in any way that they 

all reacted in the hypothesized way. Most subjects were able to illicit the proper response 
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for some sessions but not consistently for all four protocols (Al through B2). Examining 

the different protocols separately for the 9 subjects, we note that protocol Al shows more 

than half the subjects responding in a relative increase in the normalized LF power, which 

is a representative of a mixture of sympathetic and parasympathetic activity, relative to 

the normalized HF power, which is a representative of parasympathetic activity. 

However, the reproducibility of this response is not as evident in the second protocol A2, 

under the same conditions and even for the same subject. With the introduction of 

exercise, two factors can play an important part in explaining the physiology of the 

system. There is the increase of sympathetic activity due to the stress introduced by the 

physical challenge, and at the same time there is an accompanied increase in the 

frequency of respiration which occurs in the region indicative of the parasympathetic 

activity. These two factor may show either an increase in the low frequency activity 

relative to the parasympathetic activity, or visa versa. Thus, different subjects may react 

differently to the same situation, or even the same subject may illicit different response at 

a different time or day depending on the range of factors from his state of mind to the 

state of physical condition at that moment. This whole interplay makes it very difficult to 

make a definite conclusion about the physiology of the system especially with such a 

small group of participants. 

The same deduction can be carried through in the second set of protocols B1 and 

B2. Most subjects responded to the verbal intervention at eight minutes into the recovery 

session after the first bout of exercise, regardless of what was said. Some subjects 

displayed a decrease or no change in the normalized LF activity between minutes 16 and 
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17, relative to the parasympathetic activity. Others, or sometimes the same subject will 

illicit the opposite response the second time in protocol B2. Note that the majority of the 

subjects reported that they didn't anticipate to start exercising again in protocol B2. 

Figures 4.35-4.38 display the raw and detrended heart rate variability data for one 

of the subjects that participated in this pilot study (S0795). Note that both protocols Al 

and BT are 24 minutes long while protocols A2 and B1 are 18 minutes as expected. 

Looking at the raw data itself and comparing across the same protocols, (Al B2) and (A2 

B1), we note that the signals vary slightly. However, they all validate the findings relayed 

in the previous section. There is a definite change in the HRV signal attributed to the 

tedious exercise between the three states of rest, exercise and recovery. Also, even with 

allowing a 10 minute resting recovery period between minutes 8 and 18, the heart rate 

variability signal never recovered to its original resting phase. 

Figures 4.39-4.41 show the results of the application of the SPWVD to the heart 

rate variability for the first protocol Al. Figure 4.39 displays the mesh and contour plots 

for the low frequency and high frequency regions respectively. They show that most of 

the power in the 3-D time dependent spectra is concentrated in the first two minutes of 

rest and especially in the low frequency region. This is further displayed in the increased 

magnitude scale in the LF spectrum. Figure 4.40 shows the mesh and contour plots of the 

corresponding LF and HF regions for the two minutes (15-17) of interest. Note that now 

we can see clearly the activity in this time interval since they are displayed without the 

presence of the much higher first two minute magnitude. The LF activity still 

demonstrates a higher magnitude. Figure 4.41 presents the LF and HF activity as the 



Figure 4.36 The raw and detrended HRV signal for subject S0795 protocol A2 
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Figure 4.38 The raw and detrended HRV signal for subject S0795 protocol B2 
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quantitative area for the two frequency regions at each time obtained from the SPWVD 

spectrum. The first three plots display the results for the whole duration of the 

experiment while the latter three show the normalized activity for the particular area of 

interest. Note the increasing trend in the normalized LF activity relative to the 

parasympathetic (HF) activity at minute 16. The same conclusion can be deduced from 

looking at the sympatho-vagal balance, the ratio of the LF to HF activity, which shows 

an overall increase in sympathetic activity right after minute 16 when the subject was told 

about the second exercise session. This subject demonstrates the sympathetic 

anticipatory response and the reactivity to the information relayed in the message. 

Figures 4.42 and 4.43 reflect the same results obtained for protocol A2. Looking at 

Figure 4.43, we note that at minute 16, the normalized LF activity demonstrates an 

increase in the mixture of sympathetic and parasympathetic activity relative to the 

normalized parasympathetic activity (HF). The increase in sympathetic activity reflects 

the anticipation effect also demonstrated in the sympatho-vagal balance. 

Figure 4.44 displays the mesh and contour plots of the SPWVD reflecting the LF 

and HF activity during minutes 15 to T7. Looking at the normalized LF and HF activity 

plots in Figure 4.45, we see a decreasing trend of the normalized LF activity at minute 16 

relative to an increasing trend in the normalized parasympathetic activity. The 

sympatho-vagal balance also shows an immediate decline in the sympathetic activity right 

at minute 16 as reflected in the decreasing trend in the ratio. This shows that although the 

subject was alerted to the intervention at minute 16, he was able to react immediately to 
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the message relayed and was relieved to hear about the termination of the experiment, 

thus reflecting no anticipatory response as hypothesised. However, the same can not be 

said about the reactions of this subject to protocol B2. On the contrary, it reflects the case 

when the same subject was not able to illicit a similar response for the identical message 

relayed at minute 16 for the same set of experiments. This is clearly demonstrated in 

Figures 4.46 and 4.47. We note that in this particular subject, the normalized LF and HF 

activity do not change at minute 16. This indicates that the subject did not respond either 

way to the information announced at minute 16. 

This demonstration of the results reflects the change in a particular individual that 

reacted , in most cases, in a manner similar to the original hypotheses. However, the 

same can not be exactly reproduced in the remaining eight subjects. Some of them reacted 

the same in one or two protocols, but not in all. This emphasizes the point that this pilot 

study does not show a significant change because of the small sample size. 

4.3.2 Statistical Analysis of the Heart Rate Variability Signal 

In order to test the presence of a change in behavior in the HRV signal due to the 

anticipation of the vigorous exercise, statistical analysis was also performed by 

comparing data from minute 16 [min T5 to T6] to that of minute 17 [min 16 to 17]. These 

particular time intervals were chosen because they included minute 16, the time at which 

the experimenter intervened to illicit a particular response from the subject. In protocol 

Al, the subjects were told that they would be asked to exercise for a second time after 

minute 18; the reminder came exactly at minute 16. The hypothesis was that, since the 
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exercise level was so strenuous, the subject would dread repeating it. This stress would 

induce an anticipatory effect that would be reflected as a change in the HRV signal, either 

in mean heart rate, or variability, or both. We expected a similar reaction in protocol A2, 

since the subject had no prior knowledge that the exercise session would not take place. 

In protocol B1, the subjects were told that they would perform the exercise session only 

once. At minute 16, they were reminded that the experiment would terminate in 2 

minutes. The hypothesis was that no anticipatory effect should be detected, which would 

imply either no change in HRV or actually an increase in HF activity because the 

unpleasant stress would not be present. We expected a similar reaction to protocol B2 

since the subject had no prior knowledge that he would be required to undergo a second 

bout of exercise starting at minute 18. 

In order to perform our comparisons, the difference in average heart rates, the 

ratio of variations in heart rate, and the difference in slopes of a straight line fit to the 

heart rate were calculated for minute 16 and minute 17. For each test, 36 observations 

were compared for the 4 protocols across the 9 subjects. Assuming the observations for 

each of the 9 subjects were independent, a repeated measures analysis of variances 

(ANOVA) was performed. No significant differences between the mean heart rates and 

slopes of heart rate were found at the 5% significant level. The ratio of variances in heart 

rate before and after the intervention at minute T6 was not significantly different from 

one. A second attempt compared the difference in average heart rate and the ratio of the 

variability in heart rate for the 9 subjects for each protocol separately. No significant 
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differences from 0 or 1, reported at the 5% significance level, were found for the mean 

heart rate and the ratio of heart rate variation respectively. 

Because the heart rate measures indicated a stochastically changing mean level, 

another approach was used to test for significant differences in the variability in measured 

heart rate from one time period to the next for each subject and protocol separately. The 

differences in observed heart rate variability were calculated for all the sample points 

between minutes [15-16] and minutes [16-17] in an attempt to remove the non-

stationarity in the levels. Analysis of the sample autocorrelations of the differenced data 

showed no significant correlation, indicating that the differenced sample data could be 

considered to be independent. A test of equality of variances was performed for each of 

the 9 subjects for the 4 protocols separately using the sample variance of the differenced 

sample data at minute 16 and 17. For 28 of these experiments, a significant difference in 

the variability during minute 16 and minute 17 was detected. This strongly indicates that 

the intervention at minute 16 produced a definite change in most subjects for most 

protocols. Five of the trials for which no reaction was detected were for protocols B1 and 

B2, when no change was expected. 

These results indicate that subjects responded to the intervention at minute 16. 

However, along with the time-frequency findings, it suggests further that it didn't matter 

in most cases words were used. The mere fact that the experimenter gave instructions 

after eight minutes of silence was enough to illicit a reaction in the majority of the cases. 

The reactivity to the information carried in these words was then an after effect in most 

cases. 
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Figure 4.39 Mesh and contour of SPWVD of HRV of subject S0795 protocol Al 
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Figure 4.40 Mesh and contour of SPWVD (min15-17) of subject S0795 protocol Al 
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Figure 4.41 LF and HF activity of SPWVD of HRV of subject S0795 protocol Al 



Figure 4.42 Mesh and contour of SPWVD (minl5-17) of subject S0795 protocol A2 
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Figure 4.43 LF and HF activity of SPWVD of HRV of subject S0795 protocol A2 
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Figure 4.44 Mesh and contour of SPWVD (min 15-17) of subject S0795 protocol B1 
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Figure 4.45 LF and HF activity of SPWVD of HRV of subject S0795 protocol B1 
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Figure 4.46 Mesh and contour of SPWVD (minl15-17) of subject S0795 protocol B2 
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Figure 4.47 LF and HF activity of SPWVD of HRV of subject S0795 protocol B2 
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4.4 Adaptive Time-Frequency Analysis of Heart Rate Variability 

Time-frequency signal representations characterize signals over a time-frequency plane. 

They combine time and frequency information to yield a potentially more revealing 

picture of the temporal localization of a signal spectrum. Time-frequency representations 

have been applied to analyze non-stationary or time-varying signals. Hence, TF 

representations provide excellent platforms for biological signals because of their high 

non-stationarity. In reality, signals may have unknown spectral components . In that case, 

TF representations may suffer significantly from cross-terms of these spectral 

components. This problem may be partially overcome by designing specific kernels for 

the signal at hand. A thorough evaluation of five kernels in the previous sections has 

shown that the Choi-Williams and the smoothed pseudo Wigner-Ville distributions 

overcome this drawback while presenting a high resolution spectra. 

In the following sections, we present an alternative method to overcome this 

problem [51]. The new methodology adaptively uncovers the region of parasympathetic 

activity. First, the heart rate variability signal is analyzed with the existence of the 

respiration signal as a reference. Then, HRV is spectrally tailored to yield the high 

frequency activity. Finally, an STFT is utilized on the processed data in order to obtain a 

TF representation. 

4.4.1 Adaptive TF Analysis of HRV using Respiration Reference 

Our motivation in this development is to uncover the region of parasympathetic activity. 

It is well known that parasympathetic activity is highly correlated with the respiration 
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frequency. An adaptive analysis method that traces the respiration frequency and extracts 

the corresponding parasympathetic activity from the HRV signal is proposed in this 

section. 

In particular, the parasympathetic activity can be precisely extracted from the 

HRV signal by using a sliding frequency window with an adaptive bandwidth. A cosine-

modulated binomial-Gaussian function will be excellent match for this purpose because 

of its simplicity, smooth frequency response and excellent frequency localization [51]. 

The block diagram of the adaptive time-frequency analysis method is shown in Figure 

4.48. 

Figure 4.48 The generic block diagram of adaptive time-frequency analysis 

The method proceeds as follows: 

I ) 	First, the respiration and HRV signal are broken into overlapping time windows to 

reflect the temporal changes of vagal activity over time and frequency. For a 
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typical subject, the window length is chosen as 256 samples (12.8 secs), where 

each successive window is shifted by 64 samples (3.2 secs) from the previous one. 

These particular values are chosen such that the temporal changes can be closely 

monitored during the analysis. 

I I ) Second, a smart frequency localizer examines the peak frequency of the 

respiration (WR).  Also, the frequency localizer detects the half-power bandwidth 

of the respiration peak in the HRV ( B 	) in that particular time window. 
HRV 

III) The binomial-Gaussian generator produces an M-tap, low-pass prototype ( f p) 

with the given approximate bandwidth ( B
HRV 

). 

I V ) The low-pass prototype is modulated to the respiration peak frequency by means 

of cosine modulation, as : 

V ) 	The HRV data segment is filtered or shaped with the bandpass filter given in 

equation 4.1 

V I) The STFT is applied on the filtered HRV signal, and TF plots ale finally 

obtained. 

V II) The window is shifted through the HRV and respiration signals. The procedures 

(through VII) are repeated until the end of the data files. 

Figure 4.49 displays a normalized power spectrum of a typical subject's HRV on 

the time-frequency plane without any processing. As seen from the figure, the desired 

information is smeared with the undesired information. After adaptive tailoring of the 
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HRV by binomial-Gaussian filtering, however, the desired parasympathetic activity 

becomes clearly visible, as shown in Figure 4.50. The advantage of this method is also 

demonstrated in Figure 4.51 and Figure 4.52 for another subject. 

Although the proposed method is a non-parametric analysis, the time-frequency 

properties of the analyzed signals are closely monitored and utilized in TF analysis. The 

Binomial-Gaussian window used here is by no means optimal, but it does provide precise 

results. Also the STFT may not be the only alternative for the TF representation. Other 

TF-representations such as smoothed pseudo Wigner-Ville or Choi-Williams are also 

expected to yield good results after adaptive treatment of the HRV signal. Note that the 

signal is almost tailored to a single component so that the effect of cross-terms would 

naturally be minimal. For example, the TF-representation of a chirp signal is perfect since 

it is a single component signal with time-varying frequency. In conclusion a TF 

representation would benefit greatly if the biological signal can be tailored before any TF 

operation. 



Figure 4.49 TF representation of HRV without adaptive analysis (Subject: G0719) 



Figure 4.50 TF representation of HRV with adaptive analysis (Subject: G0719) 



Figure 4.51 TF representation of HRV without adaptive analysis (Subject: K0719) 
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Figure 4.52 TF representation of HRV with adaptive analysis (Subject: K0719) 



CHAPTER 5 

CONCLUSIONS 

Recently, joint time-frequency signal representation has received considerable attention 

as a powerful tool for analyzing a variety of signals and systems of biological origin 

which do not comply with the stationarity assumptions The time-frequency 

representations of signals can be classified as linear and quadratic. The linear TF 

representations might be the short-time Fourier transform (STFT) and the wavelet 

transform. All linear TF representations satisfy the superposition or linearity principle. On 

the other hand, the quadratic TF representations provide a time-frequency energy 

distribution or instantaneous power spectrum[44]. They are called quadratic since the 

energy is a quadratic signal representation. An energy distribution-based TF 

representation combines the instantaneous power and the spectral energy density. The 

temporal and spectral correlations can also be combined as an alternative quadratic 

representation[44]. In reality signals may have unknown spectral components. In that 

case, TF representations may suffer significantly from cross-terms of these spectral 

components. This problem may be partially overcome by designing specific kernels for 

the signal at hand. In this dissertation, we explored the possibility of better representation 

of two particular biological signals, namely heart rate variability and respiration. We 

evaluated the use of time-frequency analysis to investigate the physical and anticipatory 

effects attributed to stress. 

In the first phase of this work, the application of five different bilinear 

representations on modeled HRV test signals, and experimental HRV and respiration 
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signals of the preliminary protocol were evaluated. Each distribution: the short time 

Fourier transform (STFT), the pseudo Wigner-Ville (WVD), the smoothed pseudo 

Wigner-Ville (SPWVD), The Choi-Williams (CWD), and the Born-Jordan-Cohen (RID) 

has unique characteristics which was shown to affect the amount of smoothing and the 

generation of cross-terms differently . The difficulty with TF analysis was the ability to 

extract the relevant information. The resulting 3-D time dependent spectra contained a 

lot of information and knowing how to extract it was crucial to the interpretation of the 

physiology. By expanding the concept of spectral analysis of heart rate variability (HRV) 

into time-frequency analysis, we were able to quantitatively assess the parasympathetic 

(HF) and sympatho-vagal balance (LF:HF) changes as a function of time. As a result, the 

assessment of the autonomic nervous system during rapid changes was made. The results 

demonstrated that TF analysis provided temporal and spectral localization that could not 

be revealed by the use of standard spectral methods. The CWD and the SPWVD were 

chosen for further application because of overcoming the drawbacks of the other 

distributions by providing higher resolution in time and frequency while suppressing 

interferences between the signal components. The respiration analysis validated the 

physiological states the subjects were in. With rest and relaxation, the breathing rate 

decreased producing a low respiration frequency. With exercise and exertion, the 

breathing rate increased to supply the body with more oxygen and remove more carbon 

dioxide, thus shifting the frequency of respiration into higher ranges that could reach as 

high as 0.75 Hz. The HRV analysis showed that with rest the average heart rate slows 

down while the variability in the heart rate increases. On the other hand, with exercise, 
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the average heart rate speeds up while the variability in the heart rate decreases. Both the 

TF and statistical analysis of the HRV signals showed that a stressful exercise level 

drastically changed the HRV signal, and that there was a significant difference between 

the three states of rest, exercise, and recovery. More importantly, there was a significant 

difference between rest and recovery which indicated that four minutes of recovery was 

not enough for the heart rate to reach its normal resting state. 

In the second phase of this research, the SPWVD and CWD were used to 

investigate the presence of an anticipatory component due to the stressful exercise 

condition as reflected in the HRV signal from a change in behavior in the autonomic 

nervous system. Although both the CWD and the SPWVD were used to analyze the four 

exercise protocols, the SPWVD was shown to present a smoothed envelope of the CWD 

results. Examination of the results for the nine subjects presented a real challenge. 

Comparing the nine subjects for all protocols, we noted that the most striking finding 

related to a definite change at minute 16 in response to the experimenter intervention, 

regardless of the message relayed in the information provided. Most subjects reacted to 

the verbal intervention after 8 minutes of silence for most protocols. They were also able 

to illicit the proper response for some sessions but not consistently for all four protocols 

(Al through B2). Examining the different protocols separately for the 9 subjects, we 

noted that protocol Al showed more than half the subjects anticipating the stressful 

exercise by a relative increase in the normalized LF power, which is a representative of a 

mixture of sympathetic and parasympathetic activity, relative to the normalized HF 

power, which is a representative of parasympathetic activity. However, the 
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reproducibility of this response was not as evident in the second protocol A2, under the 

same conditions and even for the same subject. With the introduction of exercise, time-

frequency analysis revealed two factors that could play an important part in explaining the 

physiology of the system. There was the increase of sympathetic activity due to the stress 

introduced by the physical challenge, and at the same time there was an accompanied 

increase in the frequency of respiration which occurred in the region indicative of the 

parasympathetic activity. These two factors might show either an increase in the low 

frequency activity relative to the parasympathetic activity, or visa versa. Thus, different 

subjects might react differently to the same situation, or even the same subject might 

illicit different response at a different time or day depending on the range of factors from 

his state of mind to his physical condition at that moment. This whole interplay made it 

very difficult to assess a definite conclusion about the physiology of the system especially 

with such a small group of participants. The same deduction could be carried through in 

the second set of protocols B1 and B2. Most subjects responded to the voice intervention 

at eight minutes into the recovery session after the first bout of exercise, regardless of 

what was said. Some subjects displayed a decrease or no change in the normalized LF 

activity between minutes 16 and 17, relative to the parasympathetic activity. Others, or 

sometimes the same subject would illicit the opposite response the second time in 

protocol B2. These results indicated that subjects responded to the intervention at minute 

16. However, along with the statistical findings, it suggested further that it didn't matter 

in most cases what words were used. The mere fact that the experimenter gave 

instructions after eight minutes of silence was enough to illicit a reaction in the majority 
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of the cases. The reactivity to the information carried in these words was then an after 

effect in most cases. 

In the last phase, a new methodology was proposed that adaptively uncovered the 

region of parasympathetic activity. It is well known that parasympathetic activity is highly 

correlated with the respiration frequency. This technique traced the respiration frequency 

and extracted the corresponding parasympathetic activity from the heart rate variability 

signal by adaptive filtering. Although the proposed method was a non-parametric 

analysis, the time-frequency properties of the analyzed signals were closely monitored 

and utilized in TF analysis. The Binomial-Gaussian window used was by no means 

optimal, but it provided precise results. Also, as demonstrated in the previous 

comparisons, the STFT should not be the only alternative for the TF representation. 

Other TF-representations such as the smoothed pseudo Wigner-Ville or Choi-Williams 

are also expected to yield good results after adaptive treatment of the HRV signal. The 

signal was almost tailored to a single component so that the effect of cross-terms would 

naturally be minimal. In conclusion we found that TF representation would benefit greatly 

when extracting a certain response if the biological signal could be tailored before any TF 

operation. 

5.1 Future Work 

The utilization of time-frequency analysis is vast. This research provided more insight on 

the wide clinical application of this emerging technique to quantify rapid changes in 

biological signals. One application may be the assessment of manual manipulation of the 
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skull to induce an increase in parasympathetic activity. It may also be used to study 

electromyographic changes during various conditions or to assess autonomic nervous 

system damage. A future project may be the assessment of the autonomic nervous system 

in spinal cord injury patients. Comparison of the rate of change of the vagal tone during a 

provocation of healthy subjects to spinal cord injured subjects may allow us to categorize 

the severity of the injury as well as increase our understanding of the nervous system 

dysfunction in spinal cord injured people. 

Although as many conditions as possible were controlled to maintain 

homogeneity between the subjects, psychological evaluation proved hard to assess. 

There were two interesting observations unveiled from the data and the experimental 

setup of the anticipation protocol. The first was the interplay of the two opposing 

physiological factors that were simultaneously revealed in the time-frequency analysis of 

the heart rate variability signal during stressful exercise conditions. The second was the 

definite reaction due to the verbal intervention after eight minutes of silence no matter 

what was said. These two findings should be studied further and accounted for in future 

research. A study of the effects of heart rate reactivity is suggested as a possible variable 

to clarify the different reactions to stress between subjects. A thorough study of different 

interventions that avoid the drawback of the verbal shock might also help refine the 

techniques to better illicit the anticipatory component. Other helpful insights that might 

affect the variability in the data are the gender, smoking, and fitness conditions. With 

such a small sample of participants (nine), these conditions should be limited to one 
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gender and one fitness level, with no smoking to assess better the findings in a specified 

population. 
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