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ABSTRACT

ADAPTIVE DISTRIBUTED DETECTION WITH APPLICATIONS
TO CELLULAR CDMA

by
Jian-Guo Chen

-

Chair and Varshney have derived an optimal rule for fusing decisions based on

the Bayesian criterion. To implement the rule, probabilities of detection PD and false

alarm PF for each detector must be known, which is not readily available in practice.

This dissertation presents an adaptive fusion model which estimates the PD and

PF adaptively by a simple counting process. Since reference signals are not given,

the decision of a local detector is arbitrated by the fused decision of all the other

local detectors. Adaptive algorithms for both equal probable and unequal probable

sources, for independent and correlated observations are developed and analyzed,

re3pectively. The convergence and error analysis of the system are analytically proven

and demonstrated by simulations. In addition, in this dissertation, the performance

of four practical fusion rules in both independent and correlated Gaussian noise is

analyzed, and compared in terms of their Receiver Operating Characteristics (ROCs).

Various factors that affect the fusion performance are considered in the analysis. By

varying the local decision thresholds, the ROCs under the influence of the number of

sensors, signal-to-noise ratio (SNR), the deviation of local decision probabilities, and

correlation coefficient, are computed and plotted, respectively. Several interesting

and key observations on the performance of fusion rules are drawn from the analysis.

As an application of the above theory, a decentralized or distributed scheme

in which each fusion center is connected with three widely spaced base stations is

proposed for digital cellular code-division multi-access communications. Detected

results at each base station are transmitted to the fusion center where the final

decision is made by optimal fusion. The theoretical analysis shows that this novel



structure can achieve an error probability at the fusion center which is always

less than or equal to the minimum of the three respective base station. The

performance comparison for binary coherent signaling in Rayleigh fading and log-

normal shadowing demonstrates that the decentralized detection has a significant

increased system capacity over conventional macro selection diversity. This disser-

tation analyzes the performance of the adaptive fusion method for macroscopic

diversity combination in the wireless cellular environment when the error probability

information from each base station detection is not available. The performance

analysis includes the derivation of the minimum achievable error probability. An

alternative realization with lower complexity of the optimal fusion scheme by using

selection diversity is also proposed. The selection of the information bit in this

realization is obtained either from the most reliable base station or through the

majority rule from the participating base stations.
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CHAPTER 1

INTRODUCTION

Sensor fusion, the study of optimal information processing in distributed multi-

sensor environments through intelligent integration of multisensor data, has gained

popularity in recent years [14[44 Such a technique is expected to increase

the reliability of detection, to be fairly immune to noise interference and sensor

failures, and to decrease the bandwidth requirement. The demand for sophisticated

distributed detection systems has generated a great deal of interest in developing

new algorithms to optimally fuse the information from different sensors. Tenney and

Sandell [43] were among the first to study the problem of detection with distributed

sensors. They applied the classical single sensor detetion theory to a two-sensor,

two-hypothesis test. An optimum local decision rule was established to minimize

a global cost. Sadjadi [40] generalized the work of [43] to n detectors and m

hypotheses, and obtained similar conclusions. Chair and Varshney [7] assumed that

each local detector had a predetermined decision rule and each local decision was

independent. With these assumptions, an optimum fusion model was generated

by using the minimum probability of error criterion. Optimal techniques have

also been developed for other criteria. When a priori probabilities were unknown,

Thomopoulos [44] used the Neyman-Pearson (NP) test both at the local detector

level and at the decision fusion level. An optimal decision scheme was derived.

Demirbas [17] applied the maximum a posteriori (MAP) concept for object recog-

nition in a multi-sensor environment and showed that the maximum a posteriori

(MAP) estimation approach minimized mean square error estimation. Reibman and

Nolte [37] found the global optimal solution by combining both the sensors and the

fusion processor. The fusion of correlated decisions has also been studied [1, 28, 18].

1
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Drakopoulos and Lee [18] have developed an optimum fusion rule for correlated

decisions based on N-P criteria.

When the detection rule is fixed at each sensor, the optimal fusion rule

developed based on Bayesian criterion for independent local decisions [7, 44, 41] is

a weighed sum of local decisions. The weight associated with each local detector

indicates the detector's degree of reliability. Each weight is a function of the proba-

bility of detection PD and the probability of false alarm PF of the detector. The

PD and PF can be obtained when either the distribution of the observations at each

detector is given, or when some reference signals are provided to estimate the PD

and PF by an empirical method. However, in practice, neither PD nor PF is known.

Furthermore, since the sensors are usually exposed to a changing environment, the

performance of each individual detector may not always be the same, i.e, the PD

and PF may vary with time. To circumvent this situation, we have developed an

adaptive fusion system.
1

In chapter 2, an adaptive system to estimate the PD and PF was first proposed

for equiprobable sources. Without knowledge of the performance of each detector,

the proposed system is capable of approximately estimating the PD and PF of the

detector in the course of performing the decision fusion by a simple counting process.

In this adaptive fusion model, the fusion result is used as a supervisor to estimate

the Pm and PF. The fusion results are classified as "reliable" and "unreliable."

Reliable results will be used as a reference to update the weights in the fusion center.

Unreliable results will be discarded. The decision of a local detector is arbitrated

by the fused decision of all the other local detectors. The convergence and error

analysis of the system are demonstrated theoretically and by simulations. Analysis

on classifying the fused decisions in term of reducing the estimation error is also

given. The chapter concludes with simulation results which conform to the analysis.
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In Chapter 3, this method is extended to unequiprobable sources, thus

enhancing its practicality. 	 •

In Chapter 4, the adaptive method is extended further by considering the

correlated local decisions.

Among all the methods proposed for sensor fusion in the independent case,

there are three algorithms which are most representative. The first one, proposed by

Tenney and Sandell [43], seeks to optimize decisions for local sensors. The second

method seeks to optimize the fusion rule instead of local decisions [7]. The third

algorithm considers both the local sensors and the fusion center [44, 37], which results

in a set of complicated coupling equations. Because of its complexity, the analysis

of the last method is often restricted in special cases and turns out to be equivalent

to the first or second method. In practical binary detection, the fusion rules most

often used are the logical "AND," (referred to as AND in this dissertation), "OR,"

(OR) and majority (MAJ) rule. These rules may be considered special cases of the

K-out-of-N rule. The reason behind their popularity is their simplicity and that

they do not need any a priori knowledge about signal sources and sensor properties.

Another fusion rule that is often cited in the literature i6 the Bayesian-based optimal

fusion rule (referred to as the OPT rule) [7]. Theoretically, the OPT rule requires

knowledge of several a priori probabilities. We have proposed an adaptive algorithm

to implement it without any a priori knowledge [4, 3, 11]. Thus, it is comparable

with the above three practical fusion rules, in the sense of not requiring a priori

knowledge. Among the four rules, the OPT rule is thought to be the best one.

Thorough analysis, however, indicates that this is not always true. Although a

very limited performance comparison of different fusion rules was done by Reibman

and Nolte [38], and Tenney and Sandell [43] for the independent case, and Aalo

and Viswanathan [1] for the correlated case, none of them has provided a thorough

study. Many of the important analyses presented in Chapter 5, such as the effect
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of deviation of local decision probabilities and sensitivity to local threshold, are not

covered in their papers. In Chapter 5, a thorough study on the performance of

four fusion rules (AND, OR, MAJ and OPT), and performance advantages of one

over another in terms of their ROCs are given. The performance in both independent

and correlated Gaussian noise environments is considered. Various factors that affect

the performance of fusion, such as the number of sensors, the Signal-to-Noise Ratio

(SNR), the local decision threshold, the deviation of local decision probabilities, and

correlation coefficients, are investigated. Several interesting and key observations

can be concluded from the analysis.

Spatial diversity is used to combat fading and shadowing effects in wireless

cellular communications [29]. Usually, microscopic spatial diversity is employed to

reduce the fading effect by combining signals from different receiver elements of

the same base station. Since much larger spatial separation is required to achieve

shadowing decorrelation, macroscopic spatial diversity, which is implemented among

different base station sites or ports, has been suggested to mitigate the shadowing

effect [2, 5, 15, 27, 32, 35, 39, 49, 50]. Several possible combination rules have been

proposed to achieve micro diversity [6], such as maximal ratio combining, equal

gain combining, and selection diversity. In selection diversity, only the most reliable

one is chosen among all the received signals, and all the others are simply ignored.
•

Compared with other combination rules, selection diversity has poor performance,

relatively low complexity and bandwidth requirement. Macroscopic diversity is,

however, usually realized by selection diversity, because large separation of received

signals increases the difficulty of bringing them together for better performance

combination. In Chapter 6, we propose an optimal fusion scheme for macroscopic

diversity combination based on the minimum error probability criterion for binary

signals [13]. Fusion scheme is shown to have better performance than conventional

macro selection diversity. When the error probability of the local detection in each
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base station is not available, the adaptive fusion algorithm proposed in previous

chapters is adopted to estimate the combination weights. The performance analysis

of the adaptive fusion algorithm in terms of minimum achievable error probability

is presented [14]. A simplified realization of the optimal fusion scheme by using

selection diversity, referred to as the "improved macro selection diversity rule," that

has lower complexity and less bandwidth requirement than the direct realization is

also proposed. The performance comparison of the proposed fusion scheme with the

conventional macroscopic selection diversity in an environment in which both the

Rayleigh fading and log-normal shadowing effects are considered. In Chapter 7, the

fusion scheme is applied to handle the cellular CDMA handoff problem [12], where

the system capacity is considered as a performance index. The performance of fusion

handoff is compared with that of hard handoff and soft handoff.

Finally, concluding remarks are discussed in Chapter 8.



CHAPTER 2

ADAPTIVE FUSION FOR EQUAL PROBABLE SOURCE

In this chapter, we propose an adaptive system to estimate the PD and PF for

equal probable source and independent local decision. Without knowledge of the

performance of each detector, the proposed system is capable of approximately

estimating the PD and PF of the detector in the course of performing the decision

fusion.

2.1 Problem Statement

Let us consider a binary hypothesis testing problem with the following two

hypotheses:

Ho : 	 Signal is absent;

H1 : 	 Signal is present.

The a priori probabilities of the two hypotheses are denoted by P(Ho ) = Po and

P(H1) P1 . As shown in Figure 2.1, we assume that there are n detectors, and

the observations at each detector are denoted by x i , i = 1,...,n. We further assume

that the observations at the individual detectors are statistically independent and

that the conditional probability is denoted by P(x i i n, j 0,1. Each

detector employs a decision rule g i (xi) to make a decision ui, i = 1, ..., n, where

{ —1 if Ho is declared,
ui +1 if Hi is declared.

The probabilities of false alarm and missed detection fpr each detector are denoted

by PFi and Pm, respectively.

After processing the observations locally, the decisions ui are transmitted to

the data fusion center. The data fusion center determines the overall decision u for

6



(2.3)

(2.4)

In case Po = P1 and the probability of false alarm PFj is equal to the probability of

tvo = log —
P1 ,

wi

Po
1-Pm

i

.

If u i = +1,log ,PF

log 1- I:: if u i = —1.,

(2.7)Y =

7

the system based on the individual decisions, i.e.,

u = f (u i , 	 un ). 	 (2.1)

Based on the above specification, Chair and Varshney developed the optimum fusion

rules as:
+1, 	 if wo + a-1iw u i > 0,u = f 	 ••., un) = 	 otherwise.

where

(2.2)

miss PMj , wo = 0 and the optimal fusion rule can be simplified to

+1, if 	 wjui > 0,u = —1, otherwise,

where

W j = log PD'—n , for each j .

The system structure is shown in Fig. 2.1, where

n

(2.5)

(2.6)

j= 1

The structure shown in Fig. 2.1 is similar to a single neuron system, in

particular, the Perceptron [33, 22, 51, 24, 25, 30]. If reference signals are given, they

can be used as a "reference" to train the system such that the weights will converge

to the optimal values defined by Eq. (2.6). However, in practice, such a reference is

not readily available and at the same time, the PD end PF of a detector may vary

with time. Since the fused decisions are usually better than local decisions, they



rigure 2.1 btructure of trusion Venter.

can be considered as the reference. When the ith local decision u i is equal to the

fused decision u, then ui is considered to be correct; otherwise, u i is considered to

be incorrect. Since u sgn(y) = sgn(E7=1 wiui ), the fused decision u has already

taken into account the decision of the ith detector, ui. If u is used as a reference

for u i , a bias is established for u i . Thus, in the proposed system, the decision of the

ith local detector u i is arbitrated by the fused decision of all the other (n — 1) local

detectors. Denote the fused decision as raj, and define !

yi = 	 (2.8)

i.e, yi is the weighed sum of all local decisions except u i , then

= sgn(yi). 	 (2.9)

Note that u i and ui are conditionally independent given Hj , j =0,1. The "reference"

u i may not always be correct. To reduce the possibility of using incorrect references,

the decisions u i are further classified. The decision u i is considered unreliable when

the weighed sum defined by Eq. (2.8) is close to the decision threshold 0. Our

strategy is to determine an "unreliable range" around the decision threshold such

that when the weighed sum yi falls in this range, the fused decision 'di is considered

"unreliable" and will not be used for training the system. The selection of this

"unreliable" range will be discussed next.
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fi(yi/Ho)

0

A
fi(yi/Hi)

i ' max

Ewi - Ethi, (2.11)

Figure 2.2 Conditional probability mass function: fi(yi/Hi) and fi(—yilHo)•

2.2 The Adaptive Fusion Model Analysis

Consider the structure shown in Fig. 2.1. From Eqs. (2.7) and (2.8), we have

y i = y — w iu i . 	 (2.10)

Under the assumptions that P0 = P1 and PFj = PMj, the conditional proba-

bility mass functions fi (yi/H1 ) and fi(yi/H0 ) are symmetric with each other, i.e.,

fi(Yi/Hi) M—yi/H0), as shown in Fig. 2.2.

We shall establish the above relationship as follows:

where, S! = {j : j i and ui = 1}, and ST = {j : j i and ui = —1}. By the

earlier assumption of independent observations,

P(yi = e/Hi ) = 	 JJ P (ui 1/H1 ) II 	 = — 1/H1), 	 (2.12)
s, 57F

where, Si = {{St, ST} : combinations of St and Si such that Est wj 	wj =

e}. Since we have assumed that PMj = PFj, i.e.,

P(Ui = —1/H1) P(lij = 1/H0) PFj, 	 (2.13)

which also implies that

P(ui = 1/th) = P(uj = —1/Ho) = P.D.17 	 (2.14)



Since fi(yi/Hi ) and fi(—yi/H0) have such a symmetric relation, let the

unreliable range be symmetric about its decision threshold and denote the upper

limit of the range as T. We call 7 the reliability threshold. Only the fused decisions

ft,: which satisfy ly i l > T are chosen to adapt the Weight w i . These decisions

are considered as reliable decisions, denoted as fi7. Other decisions are ignored.

Intuitively, the bigger the value 7, the more reliable the decisions the less the

errors are between the estimates and theoretical values. Note that since ui and

u i are conditionally independent and since i is deterministic, ui and ' -/f; are also

conditionally independent.

Let Ppi, _PFi be the estimates of Pni, PFi. When the local decision ui agrees with

the reliable decision /V:, it is considered a detection of the local detector; otherwise,

it is considered a false alarm. Using the conditional independence of ui and 1-17, the
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assumption of an equiprobable source, and the definition of PDi and PFi

P(ui = 1, u2 = 1) + P(u i = —1,f4 = —1)

P(H0 )P(u i =1,14 = 1/H0) P(H1 )P(ui =1,ft7 =11H1 )

P(110 )P(ui = —1,717 =-111-10 )+ P(H1 )P(ui = -1,u2 = -1/H1)

P(Ho )P(u i =11.HOP(U7 = 1 /H0)

• P(Hi )P(ui =11I11 )P(Et7 = 1/H1 )

P(H0 )P(ui = —11H0 )P(U7 = 
— 1 /H0)

• P(H1)P(ui = —11H1 )P(14 = —1/H1)

1
—
2 

PFJP(ft7 = 1/H0) 
1

+ —
2

PpiP(117 = 1 /H1)

+ 
1
—
2 

PDiP(it-7 = —1/H0) 
1
—
2

PFiP(Ct7 = — 1/H1).

Because of the symmetry of the conditional probability mass function (Eq. (2.18)),

f)Di

(2.19)

Thus,

(2.20)

(2.21)

(2.22)

P(u2 = 11 Ho ) = P(ffic = — 1/H1 ),

P(f.eic = 1/H1 ) = P(ii7 = —1/H0).

-13Di = PpiP(1717 = 1 /H1) PFi 1 	 = - HO).

(2.23)

By the same reasoning, we have

-PFi = P(ui = 1, fil: = —1) + P(ui = —1, = 1)

= PpiP(R7 = 1/Ho) PFJP(i27 1 = 1/H1).

Let 61 < e2 < 	 < eN , where 6N = (yi) max , be the set of values that y i can

attain for the ith local detector. Without loss of generality, let 6 1 < T < 6N , and

k E {1, 2, ... , N} be the smallest integer such that 6j > T	 > k. Define

N
A = P(ii7 = 1/H1 ) = y-, P(yi = 6i1 H1 ),	 (2.24)

j=k



NE p (yi=B == P(1:17 =-- 11 Ho) =

12

(2.25)
j=k

Then, Eq. (2.22) and Eq. (2.23) can be written as

PDi PDiA PFiB, 	 (2.26)

-PFi PDi-B PFiA• 	 (2.27)

Let r i = 	 = 15p1-)i , then, log r i = w i is the weight of the ith detector defined by

Eq. (2.6) and log ri = ZAV I: is the estimate for w i .

andand

•

=

11
PDi PpiA PFiB 	

B
riA 

PFi 	 + PFi A
= ri

+
r iB (2.28)

1 + 114 = log 7 i = log r i + log= 	 ei •	 (2.29)1
+ tfr B

As seen in Eq. (2.29), the estimate for the weight is equal to the correct weight plus

an error term ei, where,
B

- riA e i = log 	 (2.30)
+ riB

A

Since r i is fixed, e i will approach 0 as -/3-7. is approaching 0. We will prove that

increasing the reliability threshold T will reduce the fraction /4, and thus the error.

For notational convenience, let pi = Ppi, qi = PFi. Since P(yi = ./H0 ) = P(yi =

—/H1 )(Eq. (2.18)),

	

P(yi = '/H1 ) 	 Esi 	qi 

	P(Yi = -110) 	 Esi 	 qi UsL pi •

From Eq. (2.11), we have

exp(yi) =
exp(Esi-

Applying Eq. (2.6) to Eq. (2.32) yields

• q.
exp(yi) 	

- 	
3Hsi P • 	 -

S' 3

	

St qi	 Pj	 nSt qjlIS: Pi

exp(Est fist exp(wi )
=. 	

(2.31)

(2.32)

(2.33)



w3 E 	 e (2.34)

The above equation holds for any combination of St and Si such that

13

	JEST	 jesi

Thus, using the following equality

	

a c 	 a + c a
b d 	 T)'

Eq. (2.31) becomes

P(yi = 	 Pills- qi 	 Hs+pi IIsL qj
= exp(0,

P(Yi = 	 E Usti qiils;- Pi 	 FIS;E qj 11,9 - Pi

and

(2.35)

(2.36)

= exp(-0. 	 (2.37)
P(Yi = 4. /H1)

Thus far, we have proved that for each y i = Eq. (2.37) holds. Using this equation

and induction, we shall prove that PA is monotonically decreasing with respect to T.

	As assumed earlier, 6 < 4 .2 < 	 < N. From Eq. (2.37), we have

P(Yi = e1/Ho) P(Yi = 62/Ho) > 	 > P(Yi = 6N-4/1/0)
 > P(Yi = EN/Ho) 

P(Yi = 61/H1) 	 P(Yi = 2/H1) 	 P(Yi = 6N--1/H1) 	 P(Yi = 6N/H1 )
(2.38)

Repeatedly applying the inequality,

P(Yi = e/110)

X a 	 X X a a
1 > b' 	 A/ b

(2.39)

to (2.38), and using the definition of A and B in Eqs. (2.24) and (2.25), it is clear

that -11, is monotonically decreasing with respect to k, and thus it is also monoton-

ically decreasing with respect to T. This is consistent with our intuitive reasoning.

However, T cannot go to infinity; the maximum value of T is (yi)max  When 'T attains

its maximum, -/1 reaches its minimum value. According to the definition of A and

B, the minimum of 1.1 is

B 	 P(Yi = (Yi)maj-F4C) 
(A )min= P(Yi= (Yi)m..1111) .

(2.40)
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that agree and disagree with the reliable fused decisions. Both m i and n i are simply

obtained by counting in the simulations. We shall next develop the updating rule

for the fusion center. Similarly,

Di 	rni
log —in, 	

ni
log —, 	 mi exp(evi)ni. 	 (2.46)

Fi



Hence, 'thy —÷ zb i , for i = 0,1, ....



Figure 2.3 The structure of the distributed decision system.

2.4 Simulation Results

In this section, we present some computer simulation results to demonstrate the

validity of our proposed adaptive scheme. Fig. 2.3 shows the simulation set-up.

Here, equally likely binary signals {-1,1} are randomly generated as source signals.

Additionally, N1 , N2 ,	 , Nn are assumed to be i.i.d. zero mean additive Gaussian

random processes. Having selected the random noise process, the theoretical proba-

bilities of detection and false alarm for each detector can be readily evaluated. For

PDi = 1 - PFi• (2.56)

Note that these theoretical probabilities and weights are calculated for comparison

purposes only, and they are not readily available in practice. They are not used in

the proposed adaptive fusion system. In the experiment, all the weights are first set
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Figure 2.4 Simulation results for the case with identical detectors.

to an initial value of 1, and then updated according to Eq. (2.50). The steady state

values are obtained after convergence (ec .:,- 400 iterations).

Figs. 2.4, 2.5, and Table 2.1 show the results for two different cases. The

first case assumes that each local detector is identical. Here, PDi = 0.8413, and

PFi = 0.1587, for all i 1, 2, ... , 8, where w i = log P= 1.6679. Fig. 2.4 shows

the mean error among 8 sensors between the estimate 2Ui and the actual weight

1.6679 for different values of T, the reliability threshold. The figure conforms to

our analytical results. That is, the larger the r , the smaller the error. On the other

hand, larger training time is needed to reach the steady state for a larger T.

In the second case, the eight local detectors are assumed different, i.e., PDi =

0.9234 and PFi = 0.0766, for i= 1,2,3,5,6,7; P- D4 = 0.8667 and PF4 = 0.1333, and

PD8 = 0.9772 and PF8 = 0.0228. Fig. 2.5 shows how the estimated weights approach

the theoretical values. In the figure, w i = 2.4895, w4 = 1.8721, w8 = 3.7579. Only
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Training Number

Figure 2.5 Simulation results for the case with different detectors. The straight lines
represent the theoretical weight values, and the curves show the transient behavior
of weight being updated.

Table 2.1 Comparison between the theoretical and steady state values of the weights.
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three of the eight weights are shown. However, other weights also follow the same

trend. Table 2.1 summaries the results for this experiment. It is readily seen that

the simulation results conform closely to the theoretical results.

Though it has been shown that wz converges to 11j, it does not converge to

wi . The error, Eq. (2.43), depends on the number of sensors, the Ppi and PFi. In

the Gaussian noise environment, PDi and PFi are determined by the Signal-to-Noise

ratio (SNR) of the ith sensor. Thus, the error e i is totally determined by the number

and the SNRs of sensors. Fig. 2.6 shows, for case of identical sensors, the error, ei,

versus n (the number of sensors) for various SNRs. In this case, according to Eqs.

(2.55) and (2.56), the error can be simplified to:

1 	 ln

e i = log 1—Q (2.57)
1 + ( 14Q )

n-2

where Q is the Q-function defined in Eq. (2.55) with the same standard deviation,

a, for all sensors. Note that the error is the same for every sensor.



not be stationary. Under such circumstances, it is desirable to have a system which

can adapt itself during the decision making process. This chapter proposes such

an adaptive system with the assumption that P0 = P1 and PDi = Pn. The major

advantage of the system is that a priori knowledge of the probability mass functions

of the observations is not required. The system can acquire the knowledge about the

reliability of the local detectors by itself — it can learin by doing. A reinforcement

learning rule is proposed and adopted, and its convergence is analytically proven. The

simulation results conform to our theoretical analysis. If the reliability threshold r can

be adjusted adaptively during the process of data fusing, the system may converge

faster. Future efforts will focus on adaptively adjusting the reliability threshold, and

developing a model for unequiprobable sources.



CHAPTER 3

ADAPTIVE DECISION FUSION FOR UNEQUIPROBABLE
SOURCES



fJ P(uj = 	 P(uj = -11H1 )
jES+	 jES-

II P(ui = 11H0) H P(ui = —11H0 ) •

jES+	 jES-

exp(y wo) (3.8)
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(3.4)

following equation:

ec = P(y wo = OHO 
P(y wo = OHO'

where C is a possible value of y — wo.

Proof 	 Consider the structure shown in Figure 3.1. We have:

	Y wo + E wiva , 	 (3.5)

or y = wo E w— 	 (3.6)
jES+	 JEs-

where 8+ = {j : uj = 1}, and S- = {j : uj = —1} . From Eq.(3.3) and Eq.(3.6):

wo + E log 
P(u

j 
= 11B-1 ) 	E 	2

P(u • = —11H0 )

JEs+	 13 (uj =	
log

11H0) 
3
.
ES-	

P(Ui =

= wo + log
TT P(ui 11Hil

p(ui Iwo)
TT (P(uj = —11.1101

.	 (3.7)
P(u • = —11H1 )

3

Let C be a possible value of y w o , and each local decision uj is independent:

P(y wo = (1H1 ) = E P(wTu =
-tiEu

where u is a vector with elements u i , i = 1, 2, • • •n, w is a vector with elements

w i ,i = 1,2, • • •rt, and

U =-- fu : wTu = C}.

By defining S as

{{S+, S- }: a combination of 8+ and S- such that E wj - E wj = Cl,
j E S+ 	 jes-

P(y — wo = CA.) = E 11 P (u j = 	 H P(ua
S jES+



a- F c	 bk -1- dk
bid =

bid 
=k	 (b0,d00,b+d00),
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(3.9)

and

PCY —wo = OHO = E HP(ui =111/0) 	 p(u,.-11H0)•
S jES+ 	 JEs-

Thus,

E
 H+

	n p(u,..-11B-,)
P(Y — wo -7-- C1 111)  	s JEs+	 jEs- 
P(y — wo= (1 110) 	 > II P(ui = 11H0) II P(ui = —11H0)

S jES+ 	 JEs-

From Eq.(3.8) and the following equality:

a c

b d

then

E [T P(ui =11111 )	 /3(ztj = —11H1 )
P(Y wo = OHO 	 s jEs+	 jEs-
P(y tvo =C1 110) E fI P(u.; =111/0) H P(ui= —1I_

s jES+
p(ui ,11/0 jI p(ui.--11H -1)

jES+ 	 jES-

P(uj = 11R-0) n p(ui = -11H0)
jES+ 	 ies+

P(Y wo = C 1 111 )
— e

y--.. ,. ec .

P(y — w0 = C ( 110)
(3.10)

Q. E. D.

Eq.(3.4) is a very interesting result. The ratio of the conditional probabilities

under H1 and Ho only depends on the value y — w 0 , even the probability mass

functions P(y — w o = OHO and P(y — wo = may not be monotonic with C.

This is illustrated in Figure 3.2.

Recall the data fusion center structure shown in Figure 3.1. If the reference

signals are given, they can be used as a "reference" to train the system such that

weights will converge to the optimal values defined by Eqs.(3.2) and (3.3). However,

in practice such a reference is not readily available and at the same time, the Pm

and PF of a detector may vary with time. Since the fused decisions are usually
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P(y-we'. OH)
----- -- t -----

P(y-wa= (1H1)
_ .......

.....
........

y-wo
ec= alb

a

........
........ 

•-••" "

Figure 3.2 Relationship between P(y — wo = OHO and P(y wo = CA).

better than local decisions, they can be considered as the reference. When the ith

local decision u i is equal to the fused decision u, then u i is considered to be correct;

otherwise, ui is considered to be incorrect. Since y wo + E wi u i , the fused decision
i=1

u has already taken into account the decision of the ith detector, ui. If u is used

as a reference for ui, a bias is established for ui. Thus, in the proposed system, the

decision of the ith local detector ui is arbitrated by the fused decision of all the other

(n — 1) local detectors. Denote this fused decision as u i , and define

y i = y — wo WiLti = E tvjui . 	 (3.11)

• 	 I
The decision u i in the fusion center for updating w i depends on the value y i . Here

evi is the estimated weight. Using the same procedure, it can be shown that y i has a

similar property to y in Lemma I. That is:

P(Yi = CA) eC ,	 (3.12)
P(Yi = CA)

where C is a possible value that yi takes on. The range of yi is divided into reliable

and unreliable ranges. We denote the lower and upper limit of the unreliable range

as 71 and 72, as shown in Figure 3.3. Usually 12 > 0 , T1 < 0. We call ri and T2

the reliability thresholds. Only the fused decisions u i which satisfy yi < T1 or yi > T2

are chosen to adapt each weight, denoted by w i . These decisions are considered



Figure 3.3 Classification of fusion results.

reliable decisions, defined by H1 when yi > r2 , and Ho when yi < 71 . The decision is

considered unreliable when 7.1 < yi < 7-2 , denoted by H. Obviously, we have

P(H1 )+P(H0 )+ P(HL ) = 1.	 (3.13)

This type of learning belongs to the class of reinforcement learning [33].

Based on the proposed fusion rule described in eq.(3.11), we obtain the following

two properties related to the steady state error.

Lemma II: If a = PIPPH.)  /9 	P01.01Hi) and 1, -,--- P(11:-P11) we have following
P(1/111/0 ' 	 P(kio !Ho) ' 	 Polo 'Ho)

conclusions.

(1) a is monotonically decreasing when 7 -2 increases, 3 is monotonically decreasing

when Ti decreases, and
n

• 	r
amin = H	 PFj	( 3 . 1 4)

1oi - PM.

Prnin= 	 PMj 	(3.15)
1 — PFD

(2) when 72 (yi)„. and T1 =

n 1 — Pm
= 	 I	 ( 	 )	 (3.16)

P(HolHo) 	 1 PF.I

Proof:

P(HilHo) a =
P(Hi . IHO



Cm >T2 are all possible yj.

P(Yi = C I HO'e	 P(Yi (1H0) (3.17)

P(yi > T2 (Ho) 

> 72( 111)
p(yi	

1Ho
)

J.1

‘r1 P(y i = (i1H1 )
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Without loss of generality, assume that ( 1 > C2 > • • • >

Note that as 72 becomes larger, m becomes smaller.

From Eq.(3.12):

we have,

P(Yi = (IA) 	P(Yi C2(Ho) 	 P(Yi = CnilHo) (3.18)
P(Yi =	 P(Yi C211/1)	 P(Yi =

Denote Ak = E P(Yi 	 Bk	 E P(Yi = CilHo), and ak tc,-. The objective
j=i	 j=1

is to show that ak > ak_i for k = 1, 2, • • -,n. First we need to show a2 >

P(y i	(1 11/0 ) 

P(Yi 61 1/1

	

a2 = 
P(Yi	 P(Yi = C21-8O) 
P(Yi =-	 P(gi = (21 -[11) .

Using the following inequality and Eq.(3.18),

X a	 X X - a a
<	 < y 	 b <	 (Y,b> 0),

we have

a2 > a1 .

Next, we shall show that if ak >	 then ak+i > ak.

Since

(3.19)

(3.20)

ak-1 < ak	 (3.21)

Ak-1 Ak
<

Bk-1 Bk



(3.22)

(3.23)

(3.24)

PF:j
log 

1 — Pm
(3.26)(Mma.
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Ak-1	 Ak-1 + P(Yi Ck1110) 

Bk—i	 Bk-1 P(Yi Oc( 111) .

Using inequality Eq.(3.19) again,

Ak-1 	Ak-1 P(Yi 

- 

(k1110)	 P(Yi 

Bk_i	 Bk—i P(Yi 

- 

Ck1111)	 P(Yi	 Ck(111).

Applying Eq.(3.18) and Eq.(3.22) yields:

	P(yi = Ck(-H0) 	P(Yi	 Ck(110)	 P(Yi = (k+1( 110) 

	Bk_i P(yi Ck (Hi) < P(Yi (k, !Hi) 	 P(yi = 00-1 (Hi)

Using Eq.(3.19):

Ak-1 P(Yi 	 Ck(-H0) < Ak-1 P(Yi 	 (k(-8-0) P(Yi = Ck+1(-H-0) 

Bk_i P(Yi Ck(H1)	 Bk—i P(Yi = Ck(H1) P(Yi = (k+1( 111)

Ak Ak+1<  	 cek < ak+1.
	B k 	Bk+1	 . r

From Eq.(3.20), Eq.(3.23) and Eq.(3.24), a decreases monotonically with 72.

However, 72 cannot go to infinity; the maximum value of 72 is (yi ) mas . When

72 attains its maximum, a reaches its minimum value. According to the definition

of a, the minimum of a is

	Amin = P(Yi 	 (Yi)771'111°) = exp(—(y i ),,ax ). 	 (3.25)
	P(Yi	 (Yi)na.1-8"1 )

When Ppi (PM is the probability of detection) is greater than PFi for each sensor

(which is the usual case) and the learning procedure converges to its steady state,

we have

Thus,

— P 	 14

Amin = exp(—(yi)maj 	
M.1

= exp(— E log n 	 = 1-1 	
-rFj	 — Pmj

PFj (3.27)



n Th
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By the same reasoning, we can prove that 0 is decreasi1ng when ri decreases, and

P 	 = P(Yi = (yi)min Hi)
 = exp((yi)min)• 	 (3.28)min 

P(Yi = (yi)min

From Eq. (3.3), we know

Thus,

FP(y i )min = 	 E log
l — 	

(3.29)
j=i,joi 	 r-mj

n
Omin = H PMj 

D •	 (3.30)
j=i,joi 1 —

When 72 = (y i ),,,,s and 'Ti =

P(yi > 1-2 1I/1) = P(ui = 111/1 , for all j except i)

= 	 H P(ui = 1 ) = 	 (1 - Pmi). 	 (3.31)

P(Yi	 = P(ui = —11110 , for all j except i)

= H P(ui = -1H0)= H (1 - P,). 	 (3.32)

Thus,
P (Hi 	 n 1 — Pmi

= 	 = 	 ( 	 ).
P (Ho HO ) i=1, 	 1 - PFi

(3.33)

Q. E. D.

Lemma III: Let € i = i = 0,1, • •n, represent the estimation error. The

minimum Ei that can be achieved is:

1 + aTin co = log( i+room° 	 + logey)

1-Fornroinlog  1+ .mir,
r0 .ei

1+ arnrom
log i+pminro

arnin
7'0 ri + log 

1-1-flminrori
1+ Pmri inro 

+ log 	
r0

if u i = +1

if u i = —1.

(3.34)



and

To
131
Po

P(u i =1.1H0 
ri P(ui=l1H0)

P(ui=-1!Ho) 
P(ui=-11111)

if u=-fl
if u i = —1,

(3.35)

{

if 	 = +1

if u i = —1.

(3.36)

Using the total probability theorem P (B A) = P(BIA)P (A) :

P(u i =
P (ui = 11H1 ) =

P(H1 )

P(u i 1,141HOP (Ho) P(u i = 1, ki1111)P (Hi)

Proof: If w i = log r i and (hi = log 1-7" we have,

29

= P(111) 

P(Ho)

rP(ui=11111)
ui=1111-9)

Equi=-11H0) 
P(ui=-11-41)

Ti

P(H1 )

P(u i = 11HOP(Rilu i = 1, HOP(1/0 ) + P(u i = 11HOP(ildu i 1,H1 )P(,f/1 ) 
P(H1 )

Similarly,

P(u i = 1 	 =
P(u i = 111/0 )PCko 1ui = 1, HOP(1/0) P(ui = 11110P(Tfolui =----- H1)P(1/1) 

P(H0 )

P= —1() =

P(u i = —11HOP(H-o lui = —1, HOP(Ho) P (ui = —111 .-11 )P (ko lui = —1, H1 )P(111 ) 

P (11 o)
P (u i = —117H-1 ) =

P(u i = —11HOP(ki lui = —1, HOP(Ho ) 13 0.4 = —11H1 )PCil1 ui = —1, HOP(Hi ) 

P(H1 )

Using Eq.(3.36) and the above formulas, if ui = +1,



1 	 \-".1.1-.-^`V)-. V 

P(Ho) P(kolHo)Po P(T101-111)Pi

(11,



{  11 	 1 +Orninr0og  1+ am i n 
To

1 + « 71-'.i
log i+ornri°70, 0

1+ armri

+ log 1+077,:nrsori
1+ Pm ' ro 

r".'

+ «res in z

if ui = +1,

if ui = —1,

(3.43)
Ei
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+ po P(t{3.11/0) 	,
P(Hi !Hi ) _r 	 )

Po + P( ° 1111) Pa-41HO
P(Hollio)

+ Po a 	 1+
To

Po 7 —7'0 1 ro id .
(3.41)

According to the definitions of Ei, Fi and ri, the following weight error is obtained:

	f()	 = 	 log(

	

• 	 =

i+ i—

(3.42)

log(7),i+Z(3 ) +

log 1 +13r° 	 log l+ r°T:l i 	if. + 	 u i = +1,1+7''0 	 i+or
1+,•-• 	 1+/6,—.1:1

log i+,37,°° 	log	 ', 	 if+ 	 i+ri 	u i = —1.ro

From Eq. (3.42), we know that when a = 0, 0=0 and -y=1 , e i (for i=0,1, ... , n) would

achieve its minimum. In Lemma II, we have proved that a and ,8 are monotonically

decreasing with Ti and 12 . Thus, when a and /3 achieve their minimum, E i ( for i=0,1,

n) also get its minimum, and thus:

1+ a m in 

I CO = log(  +To O °nin + log( 7) ,

where amin , Amin and 'y are defined in Lemma II, ri and r o are defined in Eq. (3.35).

Note that the minimum error is uniquely determined by P 1 , Po and the parameters

of sensors (PFi and Pim) . Q. E. D.

Note that (yi). and (y i ) min vary from sensor to sensor. In order to enable

every sensor to adjust its weight and achieve the least error, the maximum value of

T2 is chosen to be the minimum of all (yi)max, and the minimum value of 7 -1 is chosen

to be the maximum of all (yi) min . That is:

(12 ) max = m, in{(Y1)max) (Y2 )max) (3.44)(Yn)rnax}'
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(T1)min 	 max{(Y1)miro (Y2 )min , 	 (Yn) • l• 	 (3.45)mtn

Lemmas II and III illustrate how close the estimated weights can reach actual weights.

3.2 The Reinforcement Updating Rule

The distributed decision system is assumed to have no knowledge of the probability

mass functions of the observations. Thus, the estimated probability of detection

and false alarm for the ith detector Pm and PFi can be approximated by relative

frequencies. Let m be the number of H1 , n the number of Ho , and



an

and

(3.51)if u i = +1,

(3.52)if u i = -1.
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Using the Bayes rule, P(x, y) p(xly)P (y),

it3 i =

Applying Eq.(4.1) and Eq.(3.36)

log

log

if 	 ui = +1,

if . u; = -1
- 	 .

(3.47)
plilt:±4. 11t ))P141;121:,
P(14=-1 '11°)P(121) ,p(u=.--1,H0P(H0) -

yields

ibo S', log 72,-1,

ivi

log 97iti - ilio , 	 if ui = +1,

ui = -1,

(3.48)

log 	 ioso , 	 if7-t +

and

	,_,	 wo	m F.-, 	 e 	 n,

mii 	 r, '., 	niiexP(7-14 + Coo)

moi 	 rf- ,' 	 noiexp(f.Oi - ifjo )

if ui = +1,

if u i = -1.

(3.49)

Taking the partial derivative of Eq. (6.13) with respect to m, n, m1i , moi , n1i and

noi, respectively,
221 „ 1
8m 	 m

(3.50)
1__ ewom

&i5 _ 1 	 acvi 	1 z ...L.,--,5e t lip
	  ,-- 	

anzli 	Trzli'	 anti;	 mii
az-v-, , 1 	 ai---Di

-- 	1	e 
——wi —wo

amoi	 mot' anoi	 moi

If the current local detector's decision conforms to the reliable fusion, its weight 71)i

should be reinforced. In this case,

4- Am 1 i = 	 ---- 	 . if ui = +1 and Hi ,
rali 	 mli '

ACv i ,:-,)
11 Amoi = if u i = -1 and Ho .moi 	 moi

(3.53)
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m 	 m when Hi. occurs,
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Table 3.1 Adaptive fusion rule for independent source.

Hi Ho
u i --=_+1 u 2 =-1 u2=d-1 u i .--1

Aeo 1
m,

1 	 w-
— —m, e 0

ACvi i 1	 ,w• -w f7--c i 	 . 1
	-....._	 ......_

1	 ,,w.	 +.,,	_-, 	 „ 1
nil,: ?no i rn 1 i mot:

On the other hand, if the current local decision contradicts the reliable decision, its

weight w i should be reduced. That is,

{

Aivi

and

i An = _L ewi+wopnii -_, _i ewi+.0 ,hnii	 rnii	 mgt

1 A 	 1 	 iu—'130 	
...., 	 ...., 	 .

--L.Anoi = — 	e ' 	 L...inoi = ---e— 	 1 wi -", if u i = —1 and H1,
not	 rnoi	 mot

(3.54)

if ui = +1 and Ha ,

(3.55)
An = 	 = 	 when Ho

71

Thus, we obtain the following updating rule:

occurs.

CUt = w2 + 	 = 0, 1, 2, • • •, 	 (3.56)

where Cot and 	 represent the weight after and before each update. Since the

steady state 	 s are what we are trying to compute, for actual implementation, we

use the current estimated weight wi to compute Ae i . That is, to update the weights

according to Eq.(3.56), Aivi is computed according to -the Table 3.1.

Lemma IV Using the updating rule according to Eq.(3.56) and the Table 3.1, Cal

will converge to the desired steady state estimated weight ii3i.

Proof: At steady state,

E[t74" — COT] = 0. 	 (3.57)

Using the definition E[X] > x iP(x j ), the updating rule according to Eq.(3.56) and

the above table, with u2.+1, Eq.(3.57) becomes,
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model. In the simulation presented here, the source produces a binary signal with

P(H1 ) = 0.3 and P(I/0 ) = 0.7, where H1 : +1 and Ho : —1. Eight sensors are used.

The probabilities of false alarm and missing, PF and 131w, of each sensor are fixed,

but not known to the system. The channel is additive Gaussian noise. The Gaussian

random variables are generated according to the following transformation:

{

x = (-2 in r 1 ) 1 / 2 cos 271-r 2

y = (-2 in r 1 1 / 2 sin 27rT 2 ,



Figure 3.4 Computer simulation diagram.

where r 1 and r2 are uniformly distributed on (0, 1) ., An d (x, y) becomes a pair of

orthogonally normalized Gaussian random variables. The additive Gaussian variable

for each sensor is zero-mean with a standard deviation ranging from 0.5 to 1.2.

3.3.1 Conditional Probability Mass Function of y

Figure 3.5 shows the histograms of P(y = OHO and P(y = OHO for 8 sensors and

250000 samples. We can see that the they are not monotonic. Figure 3.6, which

illustrates log P(Y=CI1/0)=CII/1) ' is almost a straight line, conforming to Lemma I:P(y 

e^
 __ P(Y—wo=01/1) 

P(y —wo=C1Ho) .

3.3.2 Convergence of Weights

Figure 3.7 shows average errors of weights I wi — Cv i I for different T , T = 0, 0.25ymax,

and 0.5y,,,x . Here, T = = 17-2 1. As shown in the figure, the larger the 7- , the

smaller the error, which agrees with Lemma II. As the number of unreliable samples

increases, the training time becomes longer. . I
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_ _
Iteration

Figure 3.7 The error with various reliability thresholds.

3.4 Summary

In the real-world environment, the probability mass functions of the observations at

local detectors may not be known and the performance of the local detectors may

not be consistent. Under such circumstances, a system which can adapt itself during

the decision making process is needed. The major advantage is that the system can

still have smaller error and does not need a priori knowledge of the probability mass

functions of the observations. Simulation results conform to our theoretical analysis.



CHAPTER 4

ADAPTIVE FUSION OF CORRELATED LOCAL DECISIONS

In this chapter, we derive another form of the MAP-based optimal fusion rule and

extend our adaptive algorithm by considering depende int/correlated decisions. The

chapter is arranged as follows. In Section 3.1, we develop and derive the optimal

fusion rule for correlated decisions. The adaptive fusion rule and the proof of its

convergence are discussed in Section 3.2. The residue between error probabilities

obtained using the optimal fusion rule and the adaptive fusion rule is analyzed in

Section 3.3. Section 3.4 illustrates the effect of the number of sensors and correlation

coefficients on the error probability in a Gaussian noise environment. Simulations

are presented in Section 3.5. Conclusions are drawn in Section 3.6.

4.1 The Optimal Fusion Rule for Correlated Decisions

Consider the binary hypothesis testing problem with N sensors in which each sensor

employs a predetermined decision rule. The two hypotheses have a priori proba-

bilities, P(H1 ) and P(H0 ), respectively. In binary detection theory, one of the most

popular detection criteria is the likelihood ratio criterion. The likelihood ratio is

expressed as

	P(ui, u25	 uNA) 
A(u 1 ,u 2 , 	 UN) =

	

u2, 	 uNiHo)
Pi(ui)P1(u2lui)Pi(u3lui,u2)•••Pi(uNlui,u2,-.uN-1) 

\ ,(4.1)
Po(ui)Po(u21u1)Po(u31u1,u2)...P0(uNlui, U2, •••uN-1)

where

PZ (u klui y n2 	 Uk_i) 	 P(UkItti, u2, 	 Uk-11 Hi), i = 0, 1 	 (4.2)

are conditional probabilities, and u 1 , u2, • • • , uN are local decisions that are binary

random variables. Ho and H1 represent the following two hypotheses:

Ho : 	 Signal is absent;
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So
1

{ 	
uk_ i ) = 	 1 +2kPk.

if uk = +1
if uk =

(Uk, 1U1 ) U2, (4.5)

i+qk

By defining the weight Wk for k = 0,1, • • ,N as:

if uk = +1
if uk = —1.

PO(14,1 12 17 U27 	 24-1) = 	 1+qikqk
(4.6)

H1 : 	 Signal is present.

Here, uk , for k = 1,2, • • , N, is defined by

{ —1 if H0 is declared,
Uk = +1 if H1 is declared.
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Since

P (ukui , u2, 	 Uk-1)
(ui , u2 , 	 u k) 

Pi (U ) U2 ) 	 Uk-1)

(Ui )

(211 u2, 	

k	 +1) 	 Pi(U17 U27 	

1
Uk---1) Uk = — 1)U2, 	

U k)

Pi(ui 	 ,uk 	+ 	ell ,u2, 	
P (ui,u2, 	 uk) 	 Pi(ui 01.2, 	 uk)

we have

P (ukui, 712 	 uk 1)

Let

1
..,U k _i ,U k —1 )

■u k	 , uk + 1 )
1

Pi ( ul ,u2 	
Pi ( U 1 ,11,2 	

uk-1 ,uk = + 1 )
,uk.-1)

if uk = +1
(4.3)if uk = —1.

P1 (U17 U27 	  Uk Uk = — 1) 	 PO(U17 U2) 	 ,Uk-10k = — 1)
7-)	 qk = 	 . 	 (4.4)Pk

t,ui, U27 	  Uk	 Uk = +1.	 U2 7 	 ,Uk-i)Uk = + 1)

Wk

l.og lip r lHo

{ log Pi (u1) if uk = +1o (u1 ) 	 .
log p°1 elii ))	 if Uk = — 1

{ I ocr P1 
(
UkIttl,U2 1 	 'Ilk —1) 

"ID PO 1-1k U 11 U2 	 ,uk-1
log PP° (Ilk u1,u2,

	 ,uk-i 
21,1 0.12  	 -1)

for k = 0

for k = 1
(4.7)

if u k = +1
if uk = —1

for k > 1,



where u0 is always set to 1.

Comparing Eq. (4.7) with the results developed by Chair and Varshney in [7]

for the independent case, it can be seen that when the local decisions are independent,

Eq. (4.7) is the same as that in [7]. Thus, Eq. (4.7) is a generalization of Chair and

Varshney's result for the correlated case.

4.2 The Adaptive Fusion Rule

The optimal fusion rule derived in Section 2 requires the knowledge of a priori

probabilities and conditional probabilities that are either difficult to acquire or time-

varying. To realize the optimal fusion, an adaptive algorithm is necessary to estimate

these probabilities.

4.2.1 Adaptive Fusion Rule - !

Similar to the independent case [4, 3], denote the events of the fusion results being

+1 and -1 by H1 and I/0 , respectively. In addition, let rn, be the number of events

in which Hi occurs, n the number of events in which Ho occurs, and



Mk,1
pk

Mk,0

When uk,=+1,

nk,0 41;	 •nk,1 (4.12)
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mk , i the number of events in which (u i , 712,  	 Uk = +1, Hi ) occurs,

mko the number of events in which (u 1 , u 2 , 	 ,	 uk = -1, H1 ) occurs,

nk 1 the number of events in which (ui,u2, 	 , uk-i, uk = +1, Ho ) occurs,

n k ,0 the number of events in which (ui,u2, 	 ,Uk---1, Uk = -1, Ho ) occurs.

Similar to Eq. (4.7), define

log P(H1)
p(Ho)

i (ui)log PicE-i)

to Po(ui)
g Pi(ui)

	

{ 1 _, Pi (uk lui ,u2, 	 ,uk-1) .45 Ft) (uk lui 0,2 ,...•.•,u k -1)

	

log Po (uk lui ,u2 , 	 7.k_1) 	5 , _pi (uk lui ,u2 , 	 ,uk-1)

Wk =

if u k = +1

if u k = -I

for k= 0

for k =1
(4.11)

if uk = +1
, 	 for k > 1,

if u k = -1 '

P(U1, u2, 	  Uk 	 Uk = -1 1H1) 	 P(ttl, u2,Pk ■•••■.- =

, uk uk = +11H1 )	 P(u1,u2 ,
= - 1, H1)

	 ,Uk-i,Uk = +1, HO'

2 Gk- 1, uk = 	 Ho)
uk-1, Uk = + 1 , HO)

P(Ui, u2,

P(U1, U2, 	  Ujc 1,Uk = - 11H0)	 P(U17 u2, 	qk 	  =
.1-"Zti, U2, 	 , 	 1,72k = +11H0) 	 P(Ui,U2, 	

where the symbols with "hat" are estimations of symbols without "hat." F, and

can be approximated by

Wk = log 
 1 + 	

log 
rnk

' 	

+ nk,0 

1 + pk 	 nk,i 	 + Mk,0

Note that

nk,i 	 n k,0 	 nk-1,j 	 rnko. 	 Mk 7 0 = Mk-1,,j,

where j is the output of the (k - 1)th local sensor; that is,



ank,o 	 nik,0 nk-1,jMk,0

1
mk,0mk,o

1 Arno) if u k = —1 and H1,

43
• 	 1

{ 1 
if u k_ i = +1 (4.13)

3 = 0 if uk_ i = -1 .

Thus,

	

Wk Pz.,-.' log mk 'l 	log Mk-1,j
	. 	 (4.14)
	nk,1	 nk-1,j

Following the same reasoning, the approximated weight for uk = -1 is

Wk log 	  log mk '° .
nk-i,j 	 nk,0

Wk exhibits the following property

(4.15)

Mk 1
Wkluk.+1 Wkluk=-1 = log  '

nk,i
mk o 	41clog ' = log 
nk0 	 Pk

(4.16)

The partial derivatives of Wk with respect to 772,k,1, rnk ,o, nk,, i and n k , 0 are

	awk 	1

	

amk,i	 mk , 1 '

	

a -Wk 	1
—amk,o

awk 1 mk- Li	
 e

fiTk 	 if uk=+ 1 ,

	

ank,i 	 mk,1 nk-1,j
	awk 	1 mk-1,j 	e 	 if uk = —1.

According to the concept of reinforcement learning [33], if the current local detector's

decision conforms to that of the fusion center, its weight Wk should be reinforced.

In this case,

147-k
Mk 1 	 Mk

=  	 if uk = +1 and H1 ,,1

= 1 	 e-wk if uk = - 1 and Ho .
nk,0 	 Mk,,0

(4.17)

On the other hand, if the current local decision contradicts that of the fusion, its

weight Wi should be reduced. That is,

(4.18)Wk
A k 	1 mk-1,j 	if uk = +1 and Ho .Lan — mk,1 nk-1,3
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Hence, the adaptive fusion rule is

Wk = .147; AWk, k = 0,1,2, -!. ,N, 	 (4.19)

where W and 147; represent the weight after and before each updating. The change

of weights AWk is summarized by the following table:

Hi Ho
u k =+1 uk=-1 uk.+1 uk=-1

AWo 1
rm _I- e fvo-m

AWk i i.— 1 	 mk-1,3— 	 eq7 -1 	 mk-10 e-wk
rilk,1 mk,0 rnk,i nk_L, mk,0 nk-1,1

4.2.2 Proof of Convergence

Since Wo is the same as that in the independent case, its convergence can be proved

similarly to our previous work [4]. Here, we only consider the convergence of Wk for

k > 1. From Eq. (4.19), it is easily seen that convergence of Wk is equivalent to

Al/lik —4 0. According to Eqs. (4.17) and (4.18), the expected value of AWk can be

expressed as

E[AWk] = 	
1

	P(uk = +1,H1 ) + 	 = —1, Ho )
mkt 	 n 1c0

1 r.) , 	 1 	 T.,

	/- 01k = 	 H1) 	 .=
Mk° 	 nkl

When the number of iterations increases, mkt, nki., mko and nal will approach infinity,

while P(uk +1,H1 ), P(uk = P(uk = +1, Ho ) and P(uk = —1, Ho ) are

always between zero and one. Thus,

Ern E[AWk] = 0,
n+m-400

where the number of iterations equals n rn. Following the same reasoning, it can

be shown that the variance and higher moments of AWk approach zero when the

number of iterations goes to infinity. According to the theory of probability [20], it
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can be concluded that the following equation holds with probability 1.

Em AWk O.
n+m-a-oo

Thus, WI, converges asymptotically to a real number with probability 1. This

completes our proof.

4.3 Error Analysis

It has been shown in Section 4.2 that the adaptive fusion rule converges asymptot-

ically. However, the algorithm is not guaranteed to converge to the optimal weights.

To compare the performance between the optimal and adaptive algorithms, error

probabilities obtained by these two methods are investigated. Based on the previous

analysis, the ideal optimum decision is

H1

y log 
P(U, Hi ) >

0.
P (U, Ho ) <

(4.20)

Ho

Using the proposed adaptive algorithm, the decision becomes

H1

>
0	 (4.21)

g P (U, Ho) <
Ho

where y and y are linear combinations of the local decisiims. Let U = (u i , u2, • • • UN)

be the vector representation of the local decisions.

Since

P(//)., U) = P(Ho , U)P(HilU, Ho) + 	 U)P (HI P, H1 ) 	 (4.22)

P(Ho , U) = P(Ho, U)P(Ho U, Ho) + P(Hi, U)P(HojU, H1), 	 (4.23)

the adaptive fusion algorithm can be written as

= y + log 
P(Hi lU, Hi ) + e-Y P(1-11 1U, Ho ) 
P(HolU, Ho) + c"P(1-1-01U, Hi)

(4.24)
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Thus, the decision rule derived in Eq. (4.21) becomes

H1

y c T(U),

H0

where
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(4.25)

T(U) = log
P(HolU, 

H0 )

 e+Y./3(hrolU,H1)
(4.26)

P(Hi. IU, Hi ) + e —YP(Hi I U, Ho ) .

In comparing Equations (4.20) and (4.25), the decision rule using the adaptive

algorithm is equivalent to the optimal decision rule offset by T(U).

The error probability using the optimum decision rule is defined by

Pe = P(Ho lHi )P(Hi ) P(Ii 1 IH0 )P(H0 ),	 (4.27)

where

	

P(HolHi) = 	 P(um), P(Hi !Ho = 	 P(u1R -0). 	 (4.28)
y<0	 y>0

The error probability using the adaptive decision rule is

Pe/ = P 1 (H0 lH1 )P(H1 )-F P'(H1 lI10 )P(H0 ),	 (4.29)

where

/31 (H0 lH1 ) 	 E P(oRi), pi(HdH0 )	 E P(u1B -0 ). 	 (4.30)
	y <T(U) 	 y>T(U)

Since the optimum detection rule achieves the minimum error probability, P ie is

usually larger than Pe . The degradation in performance can be measured by the

absolute difference between the two error probabilities, that is

Pel

P(H1) E p(ulfro 	 P(u1B-0) +
Y<T(U) 	 y<0

P(H0) E P(uvo) - P(uill .0))
y>T ( u)	 y>0

(4.31)
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C = o 2
1	 p	 ••••••	 p
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The closer the yT to zero, the smaller the degradation in error probability. The

adaptive rule behaves as well as the optimal decision rule when a=b, in which case

YT = 0. Figure 4.1 shows plots of T(U) y versus y for different values of a, b.

By using the following relationship between y and A(U):

y log(A(U) 
P(Ho)
P(H1)),

	(4.33)

many of the properties discussed in this section can also be expressed in term of the

likelihood ratio function, A(U) .

4.4 Performance Analysis in Gaussian Noise

To gain an insight into the proposed adaptive fusion algorithm, performance analysis

in Gaussian noise which is both theoretically tractable and computationally feasible is
- 	 I

examined in this section. Suppose all of the sensors are corrupted by Gaussian noise

that has a zero mean and the same variance of o -2 . Let the correlation coefficient, p,

between different sensors be the same. Thus, the observation vector X at the local

sensors is Gaussian-distributed. Let p i =[1 1 1  1 1] and /t o =[-1 -1 -1 ... -1 -1]

be its mean vectors for H1 and Ho , respectively. The correlation matrix of X is

1 p P 	

L p   1

In addition, suppose all the local sensors adopt the same decision threshold, t,

implying that the optimal fusion rule is the same as the k out of N rule [43]. Further

assume that P(Ho HO= H1), i.e., PP=P. Let AN_k,k(t, p) denote the

joint probability of N random variables with the correlation coefficient p of which k

out of N random variables are greater than t, and the other N — k are less than t.

If all the random variables are identical, it can be shown that

\n
AN_k,k(t, p) = N7_, )1-

/ X1 < t, x2 < t, • • • , XN-k < t, 	 > t, X N_k+2 > t, • • • , XN > t),

(4.34)



when k > K,

when k < K,

(4.39)

(4.40)
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and
k

	AN-k,,k(t, p) =E(-1)i ( • )AN_k+i,o(t, p). 	 (4.35)
j=0

When xZs are Gaussian random variables with a zero mean and correlation matrix C,

P(x i < t, x 2 < t,• • • , XN_k_Fj < t), can be expressed as [21]

)f(y)dy,P(x i <t,x 2 < t,• - • ,xN-k-Fi < t)	 " N k+ • t -05Y 	(4.36)
--co 	 — P

where f(.) and Q(•) are the standard normal density and cumulative distribution

functions. Eq. (4.36) can be computed numerically. It follows from Eq. (4.34) that

the two likelihood functions can be expressed as

P(U1.1/1 ) = P(k out of N sensors decide +1H1 ) = AN_k,k(-1, p),

P(U111.0 ) = P(k out of N sensors decide +111/0 ) = AN _k,k(+1, p)•	 (4.37)

To study the effect of N and p on the the error probability, consider the case that

P(H0 ) = P(H1 )=0.5 and a 2 =1 (i.e. SNR=0 dB). Thuq, the fusion rule is simplified

to

H1
P(UIH1 )	 P(k out of N sensors decide +111/i ) 	ANk,k(-1, p) >

A(U) — 	 _ 	 1,
P(U1.110 ) 	 P(k out of N sensors decide +11H0 ) 	 AN _k,k(+1, p) <

Ho
(4.38)

where AN-k,k( —1, p) and AN p) can be computed numerically using Eqs.

(4.34), (4.35) and (4.36). From this decision equation, there exists a K for given N

and p such that:

AN-kk(-1,  > 1;
AN-k,k(+ 1, -
AN-k,k( -1 , 19 ) < 1.
AN-k,k(+ 1 ) p)

In this case, the error probability defined in Eq. (4.27) can be expressed as
[K-1

Pe = 0.5 E
1,0

N

AN-k,k(-1, + E AN_k,k(+1,p)] •
k=K

(4.41)
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Figure 4.2 Pe versus p, for N = 2, 4, 6, 8.

For this special case, the error probability using the optimal decision and adaptive

decision rules can be determined. Figures 4.2 and 4.3 show the error probability

versus p based on Eq. (4.41) when N is even and odd, respectively. When N is even,

there exists a k such that A(u)=1, but when N is 0.4, no such k exists. A(U),--1

corresponds to an undetermined case which can be considered as either Ho or Hi.

The contribution to the error probability for the undetermined case is considered as

half of the probability it occurs.

It can be seen that better performance is achieved with smaller correlation

coefficient between sensors. This agrees with the conclusion of other fusion rules

[1, 18]. Also, better performance can be achieved by increasing the number of sensors,

but this advantage diminishes as the correlation coefficient p increases.

4.5 Simulations

Figure 4.4 shows the set -up for our simulations.
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The source emits a sequence of +1 and -1. The probability of emitting +1 is P(Hi ),

and that of emitting -1 is P(I/0 ). The additive noise is zero mean Gaussian with

a variance of 1. Each local sensor makes its decision ui and transmits it to the

fusion center. The fusion center computes the linear combination of local decisions

to produce y, and then compares it with a threshold (here, zero is used). If y is

greater than 0, the final decision is +1, otherwise, -1.

(
4.5.1 Generation of Correlated Gaussian Noise

In our simulations, we need to generate Gaussian noise with the specified correlation

coefficient. The usual random number generator can only produce independent and

identically distributed noise. Correlated noise can be obtained through some linear

transformations. Let Z denote an N-dimensional correlated noise vector whose corre-

lation matrix is C z . Y is another N-dimensional noise vector defined by

Y = AT Z. (4.42)

If A is a square matrix whose column vectors are the eigenvectors of C z , the corre-

lation matrix Cy of Y becomes a diagonal matrix whose diagonal elements are the

eigenvalue of Cz [23]. Denote Cy as

A l 0 0 	  0
0 A 2 0 	  0

L 0 0   AN

where A i is an eigenvalue of Cz . Since Ai are distinct even when each element in Z

has the same variance and the same correlation coefficient, by introducing the next

transformation

X = BT Y,	 (4.43)

where
az 0 	 0

0 	 1a2
TA2 -

••• 	 ••• 	 ••

0 	 0

Cv =

B =

0
0
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the correlation matrix Cx of X becomes an identity matrix. Combining the above

two transformations, we have

Z = (BAT ) -1X. (4.44)

According to the above definitions, X is an independent zero mean, unit variance

Gaussian random vector which can be generated easily. Z becomes a zero mean

Gaussian random vector with correlation matrix Cz . B and A are determined by

the eigenvalues and eigenvectors of C z . In our experiment, C z is specified to have

the same correlation coefficient and variance. MATLAB software is employed to
I

implement the noise generation and eigenanalysis.

4.5.2 Simulation Results

Consider the same situation described in Section 4.4. Theoretical analysis has shown

that the number of sensors and correlation coefficient greatly affect the performance

of fusion (see Figures 4.2 and 4.3). These effects are also observed in the simulation

results. Figure 4.5 shows the plots of error probability versus the iteration for

different N with a fixed correlation coefficient. Figure 4.6 shows the plot for different

correlation coefficient with a fixed N. Tables 4.1 and 4.2 summarize the corre-

sponding theoretical and simulated values at the 400th iteration of the error proba-

bility.

From these two figures and tables, it can be seen that the proposed algorithm

converges, and the steady state error probabilities obtained from the simulations are

very close to the theoretical values.

It is interesting to note, as illustrated by Figure 4.7 and summarized in Table

4.3, that the adaptive algorithm developed for the correlated case always outperforms

the one we previously developed for the independent case [4, 3] regardless of whether

or not the local decisions are actually correlated. This may be attributed to the fact
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that the algorithm that considers correlated decisions includes more information in

making its decision.

4.6 Summary

In this chapter, we have proposed an adaptive algorithm to solve the MAP-based

optimal fusion problem when sensors are dependent from one another. The following

main attributes of the algorithm can be concluded from the theoretical analysis and

simulations.

1) It does not require a priori knowledge about the sensors and source, and thus is

more practical.

2) It adapts the weights from time to time, and thus is suitable for a time-varying

environment.

3) In some cases, it behaves as well as the optimal rule.

4) Its computational complexity is low, and thus implementable.



CHAPTER 5

PERFORMANCE COMPARISON OF FUSION RULES IN
DISTRIBUTED DETECTION

In this chapter, the performance of logical AND and OR, majority and optimal fusion

rules in both independent and correlated Gaussian noise is analyzed and compared in

terms of their Receiver Operating Characteristics (ROCs). Various factors that affect

the fusion performance are considered in the analysis. By varying the local decision

thresholds, the ROCs under the influence of the number of sensors, signal-to-noise

ratio (SNR), the deviation of local decision probabilities and correlation coefficient,

are computed and plotted, respectively. Several interesting and key observations on

the performance of fusion rules are drawn from the analysis.

5.1 Fusion Rules in Independent Noise

Consider the situation where there are N sensors. To avoid ambiguity that can

happen in the MAJ rule, N is chosen to be odd. Each sensor receives an observation

x i and makes a decision ui, i = 1, 2, , N. Note that

x i = s + n i , 	 (5.1)

where sE { +1, —1} is the signal component, and ni E N(0, cri), denoting a zero-mean

Gaussian random variable with a standard deviation of ci . Ho and H1 are used to

denote the following two events

s 	 -1;

s = +1.

Each local decision, ui, is a binary random variable defined by

—1 if Ho is declared at the ith sensor,
ui = +1 if H1 is declared at the ith sensor.
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Let t be the same threshold used by each local sensor in making its decision:

ui {
+1 if xi > t,
—1 if xi < t.

These local decisions are sent to a fusion center that adopts one of the aforementioned

fusion rules to make a final decision u f . With the above assumptions, the following

four quantities can be readily obtained.

P(ui = +11H1) = 1 — Q(t 	 1 ), P(ui —11H1 )
ai

P(ui = +11H0) = 1 — Q( t	 1 ) , P(ui —11-ffo) = Qr*),
where Q(.) is the cumulative distribution function of a unit normal (Gaussian)

random variable. These four terms are useful in deriving the probability of a detection

PD and a false alarm Pf of the aforementioned fusion rules in the independent case.

5.1.1 AND Rule

The "AND" fusion rule is defined by

j +1 if N+ = N,
uf 	—1 otherwise,

where N+ is the number of local decisions that are positive, i.e., u i = +1. According

to the above fusion rule, its probability of a detection is

PD POI f OHO

= P(21,1 = +1,112 = +1, • • • , UN = + 1 1H1)

= P(Ui. +11H1)P (U2 = + 11H1) • • • P(UN + 1 1H1)

[1-62(
t-1

)11 1 Q(
t-1

) 	•{1 QC
t -1

)]u2	 CIN

= 	 Q(
t

)1'

The probability of a false alarm will be

Pf 	 P(U f +11HO)

(5.2)

(5. 3)
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(5.4)

= P(211 = +1,u2 = + 1 , • • • 1 71N = + 1 1 110)

P(24 = 	 (12 = + 11110) • • P(UN = +11H0)

= [ 1 - Q(
t 1

)][ 1 (2(
t +1

)]...[1 — Q(
t+1

)]
0-1 	 0-2 	 (IN

= 11[1 -
t 

+ 1 )1 •
i=1

For given of and N, by varying t from +oo to —oo, the ROC curve (PD versus Pf)

can be obtained.

5.1.2 OR Rule

The "OR" fusion rule is defined by

111

 = +1 if N+ > 1,
{ —1 otherwise.

Thus, the probability of a detection is

= 1 - P(211 = - 1, 71,2 = 	 • • • UN = -1 1H1)
N t

= - HQ( 	 ).

The probability of a false alarm is

Pf = 1 — P(u i = - 1,u2 = - 1, • ' • 	 = -1 1 110)
N 	 t _4_ 1

= - ITQC 	
i=1 	 o_i

Similarly, we can plot its ROC.

5.1.3 MAJ Rule

The MAJ rule is defined by

+1 if N+ >- 2
= —1 otherwise.

PD

(5.5)

(5.6)
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Thus, its PD is

PD = p( N-F > N24 I lli )

N C(N,k)= 	 E E Pi, Pi2 • • • Pik (1 — Pik+ , )( 1 — Pik+2 ) • • • ( 1 — N)
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5.2 Performance Comparison in Independent Noise

When the local decisions are independent, factors that affect the detection performance

include SNR, the number of sensors, and the deviation of local decision probabilities

(the false-alarm and detection probabilities). In this section, the effect of each factor

on the ROC is studied, respectively.

5.2.1 The Effect of the SNR

As specified in Section 2, the power of the signal is fixed to be 1. The SNR depends

on only the power of noise (the variance of the noise an. Figure 5.1 shows the plot

of ROC for different fusion rules based on Eqs. (5.3)-(5.8), (5.10) and (5.11) with

different SNRs, when N is 5 and the variances of all sensors are the same.

In Figure 5.1, there are three groups of curves which correspond to three

different SNRs. In each group, there are four curves corresponding to four different

-fusion rules. The probabilities of detection and false alarm using AND, OR and

MAJ rules increase monotonically as the local decision threshold t decreases. The

probabilities of detection and false alarm of the OPT rule, however, are not a simple
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Figure 5.1 The ttm tor the independent case with! different SNR when N=5.

function of t. Its ROC 1 performance achieves the best at some given t (which corre-

sponds to the optimal local threshold; here it is zero). Its performance deteriorates

elsewhere. For some t, it yields the worst performance among the four fusion rules.

Among the four rules, the MAJ rule always achieves the best performance. The AND

rule has better performance than the OR rule in a low probability of detection region.

The OR rule outperforms the AND rule in a high probability of detection region.

This is consistent with the conclusion of [38}. The SNR affects the performance of all

the fusion rules. Generally speaking, the larger the SNR, the better the performance

achievable and the smaller the range of t in which the OPT rule achieves the same
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5.2.2 The Effect of the Number of Sensors

To illustrate the effect of the number of sensors on the ROC, the SNR is fixed at

-6.0dB, while the number of sensors varies. Figure 5.2 shows the plot of ROCs for

different N. In order to show the performance clearly, the ROCs corresponding to

different N are shown in different diagrams. From Figure 5.2, the effect can be

summarized below:

1. The larger the number, the better the performance.

2. The larger the number, the larger the difference in performance of different

fusion rules.

3. The larger the number, the more sensitive the OPT rule is to the local

threshold t.

5.2.3 The Effect of the Deviation of Local Decision Probabilities

The deviation of local decision probabilities is referred to as the dynamic range of

detection and false alarm probabilities among different sensors. In the methods

studied here, it can be reflected by the differences of noise variance among sensors.

Let B=(Gri, 0-
2, • • • , ow) be the vector denoting the standard deviation of the additive

Gaussian noise at the N local sensors. Define the mean M and the standard deviation

D of B by

N
M

i=1

D is used as a measure of deviation of local decision probabilities. Figure 5.3 shows

the ROC plots for different B and D but the same M, when N=5.

As D increases, the performance of the MAJ rule gets better in the overall

region. The OPT rule outperforms all the other rules only at some special range

of t. The performance of AND and OR rules get better in some regions and worse
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Figure 5.3 The ROC for the independent case with different D when N=5.
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in others. In some regions, either the AND or the OR rule does better than the

MAJ rule. The larger the D is, the larger the range of t in which OPT performs the

best, and the greater the advantage of OPT over MAJ at optimal t is. Regardless

of the SNR, D and N, the AND and OR rules have the same performance when t is

optimal.

5.3 Fusion Rules in Correlated Noise

In the correlated case, besides the number of sensors; the SNR, and deviation of

variance, the correlation coefficient plays a major role in affecting the performance

of fusion. Since it is computationally too expensive to consider the general correlation

case, we focus our attention on the case with equally correlated and identical sensors.

In this case, the correlation coefficient p is the same for all sensors and each sensor

has identical properties (i.e., identical noise variance ere and a zero mean).

5.3.1 AND Rule

The probability of a detection becomes

PD = P (U1 = +1,122 = +1, • • ' ' UN = + 1 1B-1)

= P(xi > t, X2 > t, • • ' X N >

Since the program available for computing probability in the correlated case [19]

can only calculate the probability of P(x i < t, x 2 < t, • • • , xN < t1 H 1 ), PD can be

computed by the following equation [11].
(

N
PD = E(-].) 	 N 	t, x2 < t,• • ,xi < t1 111),

i=0
(5.13)

where P(x i < t, x2 < t,• • • , xa < 41-11 ) is the joint probability of j-dimensional,

equally correlated, identical Gaussian-distributed random variables with a mean of

+1, a variance of a 2 , a correlation coefficient of p, and an integral range (--co, t).
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Similarly,

Pf 	P(ui = +1, u2 = +1, • • , uN = +11H0 )

= P(x i > t, x 2 > t, • • • , xN > tl.F/0 )

E(--i)i N P(x i < t, x 2 < t, • • • , 	 < 	 (5.14)
i=o

where P(x 1 < t, x 2 < t, • • • , xi < tuH0) is the same as P(x 1 < t, x2 < t, • , xi <

except with a mean of -1.

5.3.2 OR Rule

The probability of a detection is 	 •

PD = 1 — P(211 = — 1,212 = — 1, • • • ,UN = — 11ll1)

= 1 — P(x1 < t, X2 < t, • • • , XN < t1 H1). 	 (5.15)

The probability of a false alarm is

Pf = 1 — P(u i = —1,u 2 = —1, • • • , uN = —11Ho)

= 1 — P(x i < t, x 2 < t, • • • , xN < t(Ho). 	 (5.16)

5.3.3 MAJ . Rule

PD = P( N+ > .1-41- 1H1 )
=._ EN ( N

..E 	 < t, x 2 < t, • • • , Xic < t, Xk-E-1 > t, Xk+2 > t, • • • , X N >
k=

N	 k.)
P(x i < t, x 2 < t,• • • 	 < t1111),	 (5.17)

I 	3k=21-±-1	 7=0

• 	 !
Pf = 	 N Ee_pi k. )

	

P(x i < t, x 2 < t, • • • ,XN-k+j < tl-H-0)•	 (5.18)
)j=0



lation coefficient. Although the deviation of local decision probabilities also affects

the performance, its discussion is beyond the scope of equally correlated and identical



69

Figure 5.4 The ROC for the correlated case with different SNR when N=5.

sensors. The following discussion provides the analysis on the effect of SNR, number

of sensors, and correlation coefficient on ROC.

5.4.1 The Effect of the SNR

Figure 5.4 shows the ROC for different SNR when p=0.3 and N=5. Comparing

Figure 5.4 with Figure 5.1, it can be seen that the effect of SNR on ROC in the

correlated case is similar to that in the independent case. The difference between

them is that the performance advantage of one rule over another in the correlated

case is less significant than that in the independent case.

5.4.2 The Effect of the Number of Sensors

Figure 5.5 shows the ROC for different N when p=0.3 and SNR=-6.0dB. The effect

is similar to the independent case, but the differences are much less significant.
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Figure 5.5 The ROC for the correlated case with different N when SNR=-6.0dB.



Figure 5.6 The ROC for the correlated case with different p when N=5.

71



72

5.4.3 The Effect of the Correlation Coefficient

The effect of the correlation coefficient is illustrated in Figure 5.6. The ROCs are

divided into four groups. Each group corresponds to a different p, but the same N

and SNR. Figure 5.6 shows that the larger the p, the worse the performance for all

fusion rules. This agrees with what we have observed before [11]. In addition, as

the correlation coefficient increases, the four fusion rules eventually come to have the

same performance. When p = 0.5, they have almost the same performance.

5.4.4 The Effect of the Local Threshold •

All the ROC curves are obtained by varying the local threshold t from +5 to -5. The

behaviour of the AND, OR, and MAJ rules is quite predictable. The effect of the

local threshold on the OPT rule is more complicated. For illustration, consider only

three identical and independent sensors, in which case, the OPT rule [7] is

H1
PD • 	PD 	>
() 2 (	 )3-2	 1Pf 1 - 	 <

HO

(5.22)

where i=0,1,2,3 is the the number of local sensors that declare H 1 . There exist

eight local decision vectors: Ui = (1,1, 1), U2 = (1,1, —1), U3 = (1, —1,1) ,

U4 = (1, —1, —1) , U5 = ( - 1,1, 1) , U6 = (- 1, 1, — 1) , U7 = (- 1, —1,1) and

Us = (-1, —1, —1) . When t = 5, the OPT rule first divides them into two

classes: D 1 = { U1 U2 1 (13, U4, U5, U6, U7} and Do = {U8 }. Both PD and Pf are

calculated based on the components of D 1 . When t decreases, both PD and Pf

increase but the sufficient statistics of Eq. (5.22) decrease. When i is small

enough such that ( 1112-Pf
 )( 1 "---=1-1/" )2  1, the classification becomesD i = {U1, U2, U3, U5}

1 - Pf

and Do = {U4, U6, U7, U8 }, in which case, both PD and Pf decrease abruptly.

When t decreases again, PD and Pf begin to increase. When t is so small that

( 1-211-Pf
) 2 ( 1-71-D" -) < 1, another "drop" occurs, and the classification becomes D 1 = {U1}1 - Pf



and Do = {U2 , U3, U4, U5 , U6, U7, U8 }. Since (P  > 1 for any t, any additionalf

increase in t will not change the membership of classification further. Thus, PD and

Pf increase smoothly. The dynamic process is illustrated in Figure 5.7. Therefore,

probabilities of a false alarm and a detection for the OPT rule are not monotonic

functions of the local decision threshold. As a result, the ROC for the OPT rule is

no longer concave downward as observed in Figures 5.1-5.6.

There is another unusual phenomenon about the ROC curves. Although the

OPT rule achieves the best performance among all fusion rules for a given local

threshold, the ROC curves of the OPT rule are sometimes below those of the other

three fusion rules. Figure 5.8 shows the probabilities of a false alarm, a miss,

detection, and error as a function of the local threshold for both the MAJ and OPT

rules. In the sense of minimum error probability, the OPT rule is definitely optimum.

As shown in Figure 5.8, for the same probability of a false alarm, different fusion

rules use different local thresholds. This means that i ll). the ROC plots (which are



Figure 5.8 Various probabilities versus the local threshold.

used to compare the operating performance of different detection rules), the same

probability of a false alarm corresponds to different operating points for different

fusion rules, thus resulting in the unusual phenomenon as shown in Figure 5.9.

5.5 Summary

In this chapter, we have investigated the effects of different factors on the four

different fusion rules. From the analysis, the following observations were made.

1. When all the local sensors have identical probabilities of detection and false

alarm, the MAJ rule always performs the best regardless of the local threshold

and other factors considered in this paper.



Figure 5.9 ROC comparsion between the MAJ and OPT rule.
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2. Only when the deviation of local decision probabilities exists, can OPT, AND

and OR rules outperform the MAJ rule. The larger the deviation, the better

the performance that can be achieved by the OPT rule.

3. The larger the SNR, the number of sensors, and deviation of local decision

probabilities, the more sensitive the OPT is to the local threshold. The smaller

the correlation coefficient, the more sensitive the OPT is to the local threshold.

4. The effects of number of sensors and SNR on the performance in the

independent case and in the correlated case are similar.

I
5. The larger the correlation coefficient, the more insignificant the performance

difference among fusion rules becomes.

In order to fully exploit the performance advantage of the OPT rule, sophisticated

algorithms are required to ensure that the local sensors are working at their optimal

thresholds. This is a topic of our future research.



CHAPTER 6

APPLICATION OF DECISION FUSION TO MACRO DIVERSITY IN
CELLULAR CDMA

In this chapter, a data/decision fusion technique is proposed to deal with the macro

diversity problem. Instead of selecting the best base station, the user is always

served by three base stations whenever it gets within their area of coverage. Every

base station del ects the desired transmission independently and conveys its detection

results to a fusion center (or switching center) where the final detection result about

that user's signal is formed by optimal data fusion [7]. Since the information from

all base stations about the desired user is exploited, better performance than that

with conventional selection diversity can be achieved.

-	 I

6.1 Application of Fusion to Macroscopic Diversity

The cell geometry shown in Figure 6.1 is the same as in [12]. 	 A simple sectored

antenna is employed at each site with each antenna sector covering 120° azimuth.

The detection is performed at each base station. The detection result is sent through

a separate link to a fusion (or switching) center which, as symbolically shown in

Figure 6.1, is shared by three base stations. The final detection is made at the

fusion center by optimal fusion [7] based on the detected results from the three base

stations covering the same area. Let U = [u i , u 2 , u3] be the vector of detected bits

for the desired user. Here, u i E {1,-1}, i = 1, 2, 3, is the local decision made by

the ith base station. Synchronization among the base stations is assumed, and thus,

u i for i = 1, 2, 3 corresponds to the same information bit transmitted. The final

detection result at the fusion center for the same information bit, denoted by uf,

is a function of local decisions. The determination of uf can be viewed as a two-

hypothesis detection problem with individual local decisions being the observations,
I

and the two hypotheses

77
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Figure 6.1 A fusion macroscopic diversity scheme.

IH1 : The symbol +1 is transmitted,

Ho : 	 The symbol —1 is transmitted.
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(6.3)

Pf, for the same user is

P f = min{Pm, P1, P2, P3J, r

where Pm = Pi P2 + Pi P3 + P2 P3 — 2P1 P2 P3 -

Proof The user index is omitted for notational simplicity. Thus, from Eq. (7.1),
3 	 3

A = E (a i ) u i = E log C — Pi ) tti. 	 (6.4)
i=i 	 i=i 	 Pi

According to the optimal fusion rule, the bit error probability at the fusion center is

Pb = P(A > 0(1/0 )P(I/0 )+P(A < 0(H1 )P(H1 )
1

P(Hi ) = —
2

[P(A > 0(H0 ) + P(A < 0(1/1 )],

(6.5)

where H0 and H1 represent the events that symbols —1 and +1 are transmitted,

respectively. Without loss of generality, let P 1 < P2 < P3. Thus, a1 > a 2 > a3 ,

implying that

> 0 	 if [u 1 , u2, u3] t = [1, 1, li t , [1, 1, —1]t or [1, — 1, l] t

{A 	 < 0 	 if [u 1 ,u2 ,u3 ] t = [-1,1,-1]t, [-1,-1,1]t or [-1, —1, —1]t 	 (6.6)
either if [u i ,u2 ,u3 ] t = [1, —1, —l]t or [-1, 1, 1] t .

The case referred to above as "either" can further be split into the following two

cases:
[u 1 , u2 , u3 ]t

—1, —IF
case r--- > 0 	 I <0
case II I 	 < 0 	 I 	 >0

Case I implies that

and thus

Hence,

1 — P2 	 1 — P3 	 1
log( 	 ) + log( 	  < log( 	P1 ),

P2 	 P3

P1 < P1 P2 + P1 P3 + P2 P3 — 2P1 P2 P3 Pm.

(6.7)

(6.8)

P(A > 0 ( Ho) = P1 P2P3 + P1P2 ( 1 — P3 ) + P1 (1 — P2 )P3 P1(1 — P2)( 1 P3)

= P1P2 Pi(1 — P2) = P1 . 	 (6.9)

Likewise, by the symmetry of error probability for each channel,
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P(A<OIII1 )=P1 .

Therefore, Pb = (P(A > 0H0 ) P(A < 011/1 )) = 	 < Pm.

Similarly, case II implies that

a 2 + a3 > a 1 	> Pm . 	 (6.10)

Also,

P(\ > 01Ho ) = P1P2P3 P1P2(1 — P3) + P1(1 — P2)P3 + (1 —Pi)P2P3

= P1 P2 + P1 P3 + P2 P3 — 2P1 P2 P3 = Pm

P(\ < 01H1 ) = P(\ > 01I10 ) = Pm . 	 (6.11)

Therefore, Pf Pm <

Combining the two cases, we have:

Pf 	 Pm}. 	 (6.12)

In conclusion, Pf = 	 Pi, P2, P3} .

Proposition 1 shows that the instantaneous BER at the fusion center is less than or

equal to the minimum instantaneous BER of each receiver of the three base stations.

6.2 Adaptive Algorithm Analysis

When the error probabilities, P i , at each antenna are unknown and time-varying,

the following adaptive algorithm is introduced to perform the fusion operation [4]:

a i f--:-,'
if u i = +1,

(6.13)
log 77- .----in li )

log not"1°' 
'

if ui = —1,

where,

m i i is the number of the occurrences of ui = +1 and uf +1,
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mot is the number of the occurrences of ui = —1 and uf = —1,

n li is the number of the occurrences of ui = +1 and u f = —1, and

not is the number of the occurrences of u i = —1 and uf = +1.

The estimated weights obtained by the adaptive fusion algorithm [13] are:

= log 
1 — q1

 , b2 = log 
1 — q2

, b3 = log 
1 — q3 

q2 	 q3

where qi is the estimation of Pi . The errors between the estimated and optimal

weights are:

	

61 = — al, 62 	 — a 2, 63 = b3 — a3 . 	 (6.14)

According to [4], the minimal weights errors that can be achieved are:

	

1 + 	Pi P2 P3 

1 -
log (1-P1)(1-P2)(1-P3)

(1-PoP2 P3 

P1 (1-P2)(1-P3)

	

1 + 	 P1 P2 P3 
(1-P1)(1-P2)(1-P3)62 = log 	 (

1 
P2 ) Pi P3 	7

1 + P2 (1.-- ) (1 -P3 )

	

+ 	 Pi P2 P3 

63 = log (1-P1)(1-P2)(1-P3) ( 6 . 1 5 )
	1 	 P1 2

+ P3 ((11--PP31 )(1-
P

P2)

The following propositions leading to the derivation of the minimum error probability

show the relationship between the optimal and estimated weights.

Proposition 2 If P1 < 0.5, P2 < 0.5, and P3 < 0.5, then a 1 > a2 > a3 	 > b1 >

b2 > b3 .

The proof is given in Appendix A.

Proposition 3 If P1 < 0.5, P2 < 0.5, and P3 < 0.5, then b 1 < b2 + b3 , b2 < b1 + b3 ,

and b3 < b1 + b2 .

The proof is given in Appendix B.
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Proposition 4 The minimum error probability using the adaptive fusion algorithm

is

Pm = P1 P2 P1 P3 P2 P3 — 2P1 P2 P3

Proof:

From Proposition 3, b2 b3 > b1, 	 b3 > b2 , and b1 b2 > b3 , implies that

the vectors which make A > 0 are [1,1,1], [1, 1 —1], [1, —1, 1], and [-1, 1,1]. Thus,

the error probability when the adaptive fusion scheme is used and u i , i = I, 2, 3 is

independent will be :
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Pf min{Pi, P2 P3} 	 (6.17)

where Pi, i = 1,2, 3 as defined previously, is the BER of the ith base station for

the same information bit. When the optimal fusion scheme (Eq. (7.1)) is used for

macroscopic diversity combination, it has been proved [13] that

Pf min{P1 , P2 P3 Pm 	 (6.18)

where P, = Pi P2 P1 P3 P2 P3 — 2/31 /32 P3 as in Proposition 3. It has been shown

that the fusion scheme has better performance than selection diversity when only

shadowing is considered [12]. Whenever Pm is less than min{P1 , P2 , P3 } , especially

when differences between P1 , P2 and P3 are small, Pf in Eq. (6.18) is less than the
•

Pf in Eq. (6.17). The drawback of the fusion method is its higher complexity

compared to the selection diversity. All of the ul , u2 and u3 have to be trans-

mitted to a switching or fusion center where the optimal combination based on

P1 , P2 and P3 is performed according to Eq. (7.1). In this paper, based on the

analysis resulting in Eq. (6.18), we propose a simplified realization of the optimal

fusion scheme that has lower complexity. In this realization, the final detection of

a transmitted information bit, u f , will be an element selected from the binary data

set D {u 1 , u 2 , u3 , Maj (u i , u2 , u3 )} with the smallest error probability, where Maj(.)

stands for the majority operator defined by

Ma u i u2 u ) = +1 if ui + u2 u3 > 0,j( 	 3,, —1 if u i + u2 u3 <

When u i 's are mutually independent with respective BERs Pi for i 1, 2, 3, the BER

for this majority operator is :

P(Maj(u i ,u 2 ,u3 ) = +11H0) = P(ui = +1,u2 -1.1, 1 u3 = +11Ho)



The above equation implies that the majority 'operator yields a BER Pm .

Therefore, the above realization implements the optimal fusion rule. The realization

is much easier than the direct realization according to Eq. (7.1), because only

selection and the majority operator are required. The majority operator for macro-

scopic diversity has been proposed in [8] and [42]. Another advantage of this

realization is that the entire U = {u 1 , u 2 , u3 } does not always have to be sent to

the switching center. Only when Pm < 132, P3}, all three elements of U are

required at the switching center for the majority operation. Otherwise, only the

element u i with the smallest BER is transmitted to the switching center.

6.4 Performance Comparison

In [12], we compared the performance of using the fusion scheme with the selection

diversity when only shadowing distortion is considered. Here, both the shadowing



85

and fading effects are taken into consideration. The flat Rayleigh fading and

shadowing effect modeled by log-normal distributed arp assumed. The error proba-

bility is considered as the performance index. In addition, as in a practical system,

we assume that the maximal ratio combiner is used for the microscopic diversity to

combat the fading distortion. According to [36], the instantaneous received power

at the output of the L-branch micro combiner is a chi-square distributed random

variable with 2L degrees of freedom. The conditional error probability for the fixed

local mean received power will be the instantaneous bit error probability averaged

over fading channel statistics, which can be written as follows

station (local mean of SNR). When the shadowing effect is considered, the local mean

of the received power is a log-normal distributed random variable. When the power

spectrum density of thermal noise and interference are assumed to be a constant,

the local mean of the SNR is also log-normal distributed. Thus the area-mean BER,

when no macroscopic diversity is employed, equals to

Pf P(11)fMc17, (6.21)

where f(7) is the probability density function of 7, the local mean of the SNR, at

a base station. According to the previous discussion, f (y) is a log-normal function

with a mean (determined by the distance between the mobile user and the base

station, and the propagation environment), and a variance (determined by the power
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control scheme). When the macroscopic selection diversity is used, the area-mean

BER is

Pf = f f min(Pi , P2 P3 )f (71, 72, 73)cPyi d-y2 d-y3 , 	 (6.22)

where f (1,2, 73) is the joint probability density function. When the fusion based

macroscopic diversity is implemented for three base stations, the area-mean BER is

Pf = 	 min(Pi, P2, P3, Pm)f(71, 721 '.Y3) cPyi d-y2 c/73	(6.23)

Since base stations are far away from each other, the random variables 7 1 , 72 and '73

can be regarded as independent variables. When a mobile user is equidistant from

the three base stations, the local mean SNR have the same statistical parameters,

and thus

f(71,72,73) = f (71), f('-y2) f (73).

Figure 6.2 shows the curve of the area-mean BER versus SNR for the nonmacro

diversity, selection macro diversity, and fusion based macro diversity obtained, by

numerically calculating Eqs (6.21)-(6.23). The numerical results are derived for L=3,

and the standard deviation of the local-mean SNR of 1.5 dB. From this Figure, it

is shown that significant improvement can be achieved by the fusion based macro

diversity even in the presence of both fading and shadowing.

6.5 Summary

The performance of the adaptive fusion algorithm for macroscopic diversity has been

analyzed. The minimum error probability that can be achieved by the adaptive

fusion method equals to that by the majority rule. A less complex realization of

the optimal fusion scheme is also proposed. The realization is equivalent to the

combination of the conventional macro selection diversity and a majority operator,



Figure 6.2 Performance of different macro diversity schemes.

and is demonstrated to outperform the conventional macroscopic selection diversity

when both fading and shadowing are involved.



CHAPTER 7

DECISION FUSION FOR HANDOFF IN CELLULAR CDMA

Handoff, an essential component of cellular networks, provides uninterrupted commu-

nication and maintains call quality while a mobile user is in the transition from one

cell coverage area to another. Generally, there are two approaches for implementing

this network function: hard handoff and soft handoff [46], [45]. Hard handoff is the

technique that abruptly transfers the services from one base station to another base

station which provides better service quality. Because of the mobility of users and

randomness of the received signal power levels, suffici'ent overlap in coverage area

between adjacent cells has to be established, which requires extra power in order to

maintain service quality. Under soft handoff, a mobile user is supported by more

than one base station simultaneously, whenever such a user enters the boundary

region among cells. By always choosing the base station that receives the strongest

signal from the desired user, the switching center imposes a lower power requirement

from the mobile user compared to the hard handoff [46], [45]. The fluctuation of the

received signal power due to fading and shadowing is considered as added difficulty

both to hard handoff and soft handoff. Both techniques require the determination of

what is actually the best station for a particular user. Sophisticated methods such

as adaptive averaging [26], which make use of signal strength variation, have been

proposed to find such a station.

Recently, decision fusion has been used to improve the performance of CDMA

[9], [10]. In [9, 10], a distributed detection combining rule is proposed to incor-

porate local decisions when the bit error rate at each branch is assumed the same.
• 	 1In previous chapter, an decision fusion scheme is applied to CDMA macroscopic

diversity combining, whereby each base station is connected with three widely spaced

antenna sectors (and their receivers) that separately detect the received signal. The

88
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detection results are conveyed to the base station where the final detection result is

made by optimal fusion.

In this chapter, a data/decision fusion technique is proposed to deal with the

handoff problem. Instead of selecting the best base station, the user is always served

by three base stations whenever it gets within their area of coverage. Every base

station detects the desired transmission independently and conveys its detection

results to a fusion center (or switching center) where the final detection result about

that user's signal is formed by optimal data fusion [7]. Since the information from all

base stations about the desired user is exploited, better performance than that with

soft handoff can be achieved. An additional advantage of the proposed approach is

that it reduces the number of handoffs.

7.1 Data Fusion for Handoff

The geometrical arrangement of antennae for the approach described in this chapter

is the same as in Chapter 6. A simple sectored antenna is employed at each site

with each antenna sector covering 120° azimuth. The detection is performed at each

antenna sector with its associated receiver. The detection result is sent through a

separate link to a fusion center which, as symbolically shown in Figure 6.1, is shared

by three simple sectored antennae. The final detection is made at the fusion center

by optimal fusion [7] based on the detected results from three separate antenna

sectors covering the same area. Let U 	 [u 1 , u 2 , u3] be the vector of detected bits

for the desired user. Here, u i E {1,-1}, i = 1,2,3, is the local decision made by the

ith antenna sector. Assume synchronization has been achieved among antennae, so

that u i for i = 1, 2, 3 correspond to the same information bit transmitted. The final

detection result at the fusion center for the same information bit is denoted by uf,

which is a function of local decisions. The determination of uf can be viewed as a two-

hypothesis detection problem with individual local decisions being the observations.
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When the minimum probability of error criterion is adopted for equal probable source

and BSC channel, we have

3

of = f (u i , u 2 , u3) = { +1, if 	 A =
i=i

aiui > 0,

— 1, otherwise,

where
1 —

ai = log 	
Pi

7.2 Handoff Performance Analysis of Distributed Detection

From previous section, it can be seen that the detected result at the fusion center is

based on an optimal combination of information from three separate channels. Under

soft handoff, however, the detection on the reverse link is performed on the strongest

signal at a time, on a frame by frame basis [45]. Although the signal received by three

base stations from a mobile user located at the boundary of three cells has a different

power level, the difference between them is often not very large. Selecting only the

best base station loses the useful information about the desired user at "inferior"

base stations.' Therefore, better performance is expected from the decision fusion

method.

Due to shadowing and intercell interference, the signal power, and thus the

signal-to-interference plus noise ratio (SINR) can, following [46] and [47], be treated

as random variables.' Furthermore, in analyzing the system capacity, the effect

on the SINR from intercell interference can be approximated by a constant, and

therefore the randomness of the SINR can be solely attributed to shadowing. The

rate of change of the signal power caused by shadowing can be such that the power

'The difference between decision fusion and soft handoff is similar to the difference
between maximal ratio combining and selection diversity in a diversity combination system
[27].

'The reason for not including the fading effect is that each base station is usually
equipped with a diversity receiver (e.g., RAKE receiver), which mitigates the fading due
to multipath.

(7. 1)

(7.2)
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level is almost constant during intervals ranging from seconds to hours, making the

deviation of the signal power quite slow relative to the y bit rate (e.g., 9600 bit/sec).

Within such intervals, the SINR can thus be assumed as fixed. Therefore, according

to analysis in Chapter 6, the bit error rate (BER) at the base stations and fusion

center exhibits the following important property:

Pf = min{ , P1 , P2 P3 },	 (7.3)

where Pm Pi P2 + Pi P3 + P2 P3 — 2P1P2P3. Eq. (7.3) shows that the instantaneous

BER at the fusion center is less than or equal to the minimum instantaneous BER of

each receiver of the three base stations. The BERs at both the base stations and the

fusion center, which are random variables because of the shadowing effect, cannot

be approximated as constants over a large time scale. The outage probability is

introduced to measure the performance of a detection scheme, and is defined as the

probability of the BER exceeding a certain threshold. The next proposition shows

the relationship of the outage probability in the base station and the fusion center.

Proposition 7.1 If R1 , R2 and R3 are denoted as the outage probabilities of a user

at antenna sites 1, 2, and 3, respectively, the upper ho -t/nd on the outage probability

at the fusion center, Rf , is

Rf < R1R2R3. 	 (7.4)

Proof According to fundamental statistics [34], let r > 0 denote the protection

margin. By the definition of outage probability and Proposition 1, we have

Rf 	 P(Pf > r) P(min(Pi , P2 P3 Pm ) > r)

P(Pi > r, P2 > r, P3 > r, 	 > r)

< P(Pi > r, P2 > r, P3 > r , Pn, > 0) .
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Since

P (Pi > r, P2 > r, P3 > r, 	 > 0) = P(Pi > r, P2 > r, P3 > r),

Rf < P(P1 > r, P2 > r, P3 > = P(Pi > r)P (P2 > r)P (P3 > r) = RiR2 R3 .

• I
Proposition 7.1 shows that the outage probability at the fusion center is less than the

product of the outage probability at the three antenna sectors. Here, Ri , i 1, 2, 3,

correspond to the outage probability for hard handoff at each individual antenna

sector.

7.3 Handoff Performance Comparison

The performance advantage of decision fusion over soft handoff can be analyzed

in three different aspects. Without loss of generality, suppose that the user under

consideration is in the coverage of site 1.

7.3.1 Reverse Link Capacity

It has been demonstrated both theoretically and experimentally that the signal power

received at a base station is a random variable. When only shadowing is considered,

the received signal power Wi is usually modeled as the product of distance attenuation

•and a log-normal random variable [45]:

= Sr i-s106, 	 = 1,2,3, 	 (7.5)

where i refers to the index of the base station, and W, S, r, and S are the received

power, the power transmitted by the mobile user, the distance between the base

station and the user, and distance attenuation exponent, respectively. In most of the

analyses, S is usually set to 4. ( i is a normally distributed random variable with a

zero mean and a standard deviation 0j ranging from 2.5 dB for a power controlled

user to 8 dB for a non-power controlled user.
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Table 7.1 The relative other-cell interference factor.

The Standard
Deviation a

Hard
Handoff

Soft Handoff
with Two Base Stations

Soft Handoff
with Three Base Stations

2 0.48 0.43 0.43
4 0.67 0.47 0.45
6 1.13 0.56 0.49
8 2.38 0.77 0.57

In the proposed scheme, even when the desired user is deep in the coverage of

antenna 1, base stations 2 and 3 also receive its signal and perform detection. Under

this scenario, however, because of large a 2 and a3 , the performance on the reverse

link mostly relies on base station 1. When the mobile is approaching the boundary,

Gri is increasing, and o -2 and/or o-3 are decreasing. When the mobile is exactly on the

boundary between base stations 1 and 2, it can be assumed that a i is equal to (72-

If the mobile is at the boundary between three base stations, the three a's can be

assumed equal. The outage probability for the desired user at base station i can be

well approximated by [45, 47]

where Kot is a parameter determined by the processing gain and the required signal-

to-interference plus noise ratio. To allow direct comparison with the results in [45],

in this paper Ifol is set to 230.4. In Eq. (7.6), p R-3 0.4 is the voice activity factor, Ah,c

is the normalized average user occupancy, and /3= loge (10)/10 is a constant. The
f

relative other-cell interference factor, f, which is calculated by Viterbi [45], is listed

in Table (7.1), for different values of a, when distance attenuation exponent, 8, is

equal to 4.

According to Table 7.1 and the approximation leading to Eq. (7.6), the outage

probability for hard handoff is the same as in Eq. (7.6) for a and f, given in Table

7.1.
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Table 7.2 The ratio of the relative other-cell interference factor between soft and
hard handoff.
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Figure 7.1 System performance when the user is at the boundary of 2 base stations.
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Figure 7.2 System performance when the user is at the boundary of 3 base stations.
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7.3.2 Cell Coverage

From Figures 7.1 and 7.2, it can be seen that handoff by decision fusion outperforms

the soft handoff in most situations. For some situations, however, both schemes have

comparable performance. The reason that the advantage of decision fusion over soft

handoff is not so obvious in some situations lies in fact that both performance

calculations introduce approximation, especially for the fusion scheme. In particular,

the effect of R, is omitted, which has a significant effect on performance when the

mobile user is at the boundary area, since P, is much smaller when P1, P2 and P3

are similar.



Table 7.3 The required power margin by three handoff methods.
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where a = b = 1/4 as in [46]. For the purpose of comparison, the outage proba-

bility for hard handoff is also given as 	 •

R f	 (
-y — 106 log ri
	)

„ (7.13)
o-

where r 1 is set to greater than 1 to reduce the "ping-pong" effect.

Table 7.3 lists the required power margin by three handoff methods for different

relative distances when o-=8dB. The corresponding increase in coverage is listed in

Table 7.4.

7.3.3 The Number of Handoffs

In addition to the advantage of increased coverage and decreased outage probability,

the proposed decision fusion technique also reduces the number of handoffs compared
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to hard and soft handoff. From Figure 6.1, it can be seen that each user is always

served by three base stations simultaneously, although sometimes, depending on the

user's position, the contributions of some base stations are insignificant. In fact, by

using decision fusion, a new geometrical structure is formed, which is denoted by

the dashed line in Figure 6.1. When a user is within the dashed line boundary, no

transition has to be done, even though the mobile may be crossing the boundary

between different base stations. Only when the mobile moves from one dashed

hexagon to another, the service is transferred to another group of base stations.

Thus, the number of handoffs is reduced, as pointed out by Lee [31], by one half.

7.4 Summary

In this chapter, a decision fusion method to address the handoff problem in cellular

CDMA by using optimal data fusion was proposed and analyzed. The performance

of decision fusion was analyzed in terms of reverse link system capacity, cell coverage,

and the number of handoffs. It was demonstrated by numerical examples that

decision decision fusion approach generally outperforms both soft and hard handoff

methods.



CHAPTER 8

CONCLUSIONS

In a real-world environment, probability mass functions of observations at local

detectors may not be known and the performance of the local detectors may not

be stationary. Under such circumstances, it is desirable to have a system which can

adapt itself during the decision making process. This dissertation proposes such an

adaptive system for both equal probable and uneuqal probable sources when the local
I

decisions are independent as well as correlated. The major advantage of the system

is that a priori knowledge of the probability mass functions of the observations is

not required. The system can acquire the knowledge about the reliability of the local

detectors by itself -- it can learn by doing. A reinforcement learning rule is proposed

and adopted, and its convergence is analytically proven. The simulation results

conform to our theoretical analysis. The following main attributes of the adaptive

fusion algorithm can be concluded from the theoretical analysis and simulations.

1) It does not require a priori knowledge about the sensors and source, and thus is

more practical.

2) It adapts the weights from time to time, and thus is suitable for a time-varying

environment.

3) In most cases, it behaves as well as the optimal rule.

4) Its computational complexity is low, and thus implementable.

In addition, we have compared the performance of following four practical

fusion rules: AND, (referred to as AND in this dissertation), OR (OR), majority

(IVIAJ) and Chair's optimal rule (OPT). We have investigated the effects of different

factors on the four different fusion rules. From the analysis, the following observations

were made.

100
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1. When all the local sensors have identical probabilities of detection and false

alarm, the MAJ rule always performs better or as good as the other rules

regardless of the local threshold and other factors considered in this disser-

tation.

2. Only when the deviation of local decision probabilities exists, can OPT, AND

and OR rules outperform the MAJ rule. The larger the deviation, the better

the performance that can be achieved by the OPT rule.

3. The larger the SNR, the number of sensors, and deviation of local decision

probabilities, the more sensitive the OPT is to the local threshold. The smaller

the correlation coefficient, the more sensitive the 6PT is to the local threshold.

4. The effects of the number of sensors and SNR on the performance in the

independent case and in the correlated case are similar.

5. The larger the correlation coefficient, the more insignificant the performance

difference among fusion rules becomes.

In order to fully exploit the performance advantage of the OPT rule, sophis-

ticated algorithms are required to ensure that local sensors are working at their

optimal thresholds.

Finially, the data fusion scheme is applied to cellular Code Division Multiple

Access (CDMA) to improve the performance of macroscopic diversity. Theoretical

analysis and computer simulations have shown more reliable detection is obtained

at the switching center by fusing the detected results from base stations. This

method exploits the spatial diversity that already exists in the current system without

increasing the amount of data transmission between base stations and the switching

center. A simple realization of the fusion scheme in which the combination can be

replaced by selection and majority vote, has also been proposed in this dissertation.
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APPENDIX A

Proof of Proposition 2 in Chapter 6

a 1 > a2 > a 3 implies P3 > P2 > P1. From the condition

1 > 2P3 ,

we have

P2 - P1 > 2P3 ( P2 - 131

Subtracting P1P2P3 from both sides and rearranging the terms, we have

P2 (1 — P3 ) + (1 — P2 )P1 P3 > P1 (1 — P3) + (1 — P1)P2 P3.

Dividing both sides by (1 — P3 ) > 0,

P2 + 
( 1 - P2 )P1 P3 >P1+ 

( 1 P1)P2P3 
	1 - P3	 1-P3

Subtracting P1 P2 from both sides and factoring out (1 —P i )P2 from the left side and

(1 — P2 ) P1 from the right side, the above inequality becomes

(1 -- P1 )P2 [1 	 > Pi(1P2)[ 1(1 — P2)P1P3 	 (1— P1)P2P3
P2(1 — P1)(1 — P3) 	 P1(1 — P2 )(1 — P3)

]. (A.1)

Since

1'1'2[1(1
 — P2)P1P3 	 (1 — P1)P2P3 	> 0, (A.2)

P2(1 — P1)(1 --P3)
]{1 + 

P1 (1 — P2 )(1 — P3 )
] 

dividing Eq. (A.1) by Eq. (A.2),

1 — P1 	1 P2 	

P2 [1 + p2 ((11-_.Pp21 ))P( -P3P3) •

Multiplying both sides by 1 + 	)(;I IZ2p2 (1p3 ) > 0,

(1_pop2p3 

1.1 	 P1(1-P2)(1-P3)

P1P2P3 
1 - P1 1 + (1-Pi)(1-P2)(1-P3 ) >

( 1-POP2P3 
1 + P1(1-P2)(1-P3 )

Taking the logarithm on both sides,

P1
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log 
1 	

Pi P2 P3 
(1-P1)(1-P2)(1-P3) 	1 +	 P1 P2 P3 

— P1 	1 ±

Pi
(1-Pi )(1-P2)(1-P3) 

+ 	 1log 	  > log 
I-

1 —
7_,

 2 

P2 + log 	 + (1-P2 )P1 P3 +  (1-P1)P2P3 
-T- P1 (1-P2 ) (1-P3 ) 	 1 -r- P2(1-P1)(1-P3)

According to Eqs. (6.2)-(6.15), the above inequality implies that

bi = a 1 + ei > b2 = a2 + 62.

b2 > b3 can be similarly proved. Therefore, when P1 < 0.5, P2 < 0.5, and P3 < 0.5,

then a l > a2 > a3 	 > 14 > b2 > b3 .



APPENDIX B

Proof of Proposition 3 in Chapter 6

According to the condition - 	 !

n 	 1

we have

1-3 < -2-,

PI < (1 — P3 ) 2 .

Multiplying both sides by 1 — 2P2 ,

P1(1 — 2P2 )

and

< (1 — P3 ) 2 (1 — 2P2 ),

P3 [(1 
_ p2 )2 _ p22] < (1 — P3 )2[(1 — P2 )2 — /3

Multiplying both sides by P1 (1 — PO and rearranging the terms,

(1—P2 ) 2 (1—P1 )P1 ./Id-(1—P1 )(1—P3 ) 2 P1 P < P1 (1—P1 )(1—P2 )2 (1—P3 ) 2 -1-(1—Pi).

After further manipulation,

[(1 — P1 )(1 — P3 )P2 -1- (1 — P2)P1P3][(1 — P1)(1 — P2)P3 -1- (1 — P3)P1P2] <

[P1 (1 — P2 )(1 — P3 ) + (1 — P1 )P2P3 ][(1 — P1 )(1 — .P2 )(1 — P3 ) + P1 P2 P3].
• 	 1

Dividing both sides of the above inequality by (1 — P 1 )(1 — P2 )(1 — P3 ),

	

(1 — P2)P1P31 	(1 — P3 )P1 P2 
[(1 — POP +2 	1	 P3 	 3 4- (1 — P1)(1 — /32).1 

<

P1 P2 P3 [P1(1 — P2)(1 — P3) + (1 — P1)P2P31 [1 +
(1 — P1)(1 — P2)(1 — P3)] •

Factoring out (1 — P1)P2 P3 from the left side, and P1 (1— P2)(1 — P3 ) from the right

side,

(1 — P1 )P2 P3 [1	(1 — P2)P1P3	 (1 — P3)Pi P2 
P2 (1 — P1 )(1 — P3) 111 + P3 (1 — P1 )(1 — P2) 1 <

P1(1 — P2)(1 — P3)[1 	
(1 — P1 )P2 P3 	P1P2P3

1 [1 + 	 1

	

P1(1 — P2)(1 — P3) 	 (1 — P1)(1 — P2)(1 — P3)
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Again according to Eqs. (6.2)-(6.15), the above inequality implies that

b1 < b2 b3 .

Similarly, we can prove that b2 < b1 b3 , and b3 < b1 b2 •
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