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ABSTRACT

DESIGN, FABRICATION AND CHARACTERIZATION OF
HIGH PERFORMANCE InGaAs/InP FOCAL PLANE ARRAYS

IN THE 1-2.6 .tni WAVELENGTH REGION

by
Krishna R. Linga

This research thesis describes a new In„Ga l _„As/InAysP i _y/InP technology for long

wavelength photodetectors and photodetector arrays. A unique and novel detector

structure was designed and fabricated using Hydride Vapor Phase Epitaxy, for low

leakage current photodetector arrays in the 1-2.6 pm wavelength region. Potential

applications of InGaAs focal plane arrays include near-infrared spectroscopy,

fluorescence, remote sensing, environmental sensing, space and astronomical

applications. The unique design concepts included the step grading of InAsP layers, lower

lattice mismatch between the two InAsP graded layers, lattice matched InAsP cap layer

and InGaAs absorption layer, sulphur doping of InGaAs absorption layer and InAsP

layers. Improved device fabrication techniques including rapid thermal annealing and

precisely controlled diffusion were implemented during the processing of 1024 element

linear photodetector arrays to reduce the dislocation density. An analysis of dark current,

which is the critical parameter was required and is described in detail. The dark current

analysis and the experimental results showed that the dark current is bulk dominated and

is due to the crystal defects and dislocation density.

Each element of the focal plane array consisted of a 13 X 500 um' active area with

an element to element spacing (pitch) of 25 um. The focal plane architecture designed had



two 512 element (left and right) multiplexers and a 1024 element detector array and was

integrated in a 24 pin dual-in-line package.

A unique and novel Si read-out multiplexer was designed and fabricated using

radiation hardened N-well CMOS process. Each multiplexer unit cell consisted of a

capacitive transimpedance amplifier, correlated double sampling circuit, threshold non

unifoimity correction circuit and an output buffer stage.

Integration and testing of InGaAs focal plane arrays with cut-off wavelengths of

1.7 fim, 2.2 I.tm and 2.6 pm are described. The performance of the focal plane arrays was

analyzed in detail and the results showed that the 10 fA dark current levels could be

achievable with 1024 element InGaAs/InP focal plane arrays in the 1-2.6 urn wavelength

region. The dark current achieved from the test focal plane arrays was < 1 fA for 1.7 urn,

< 20 fA for 2.2 um and < 50 fA for 2.6 urn cut-off wavelength. Radiation testing using

proton, gamma and electron particle radiation on InGaAs photodetectors and

photodetector arrays showed that InGaAs/InP focal plane arrays can with stand upto 15

Krad (Si) particle radiation. Comparison of the results achieved with published results of

other technology (HgCdTe) operating at the same temperature shows that InGaAs/InP

Focal Plane Arrays have lower dark current by a factor of 10-100.
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CHAPTER 1

INTRODUCTION

Indium gallium arsenide is finding an important role in the 1-2.6 pm spectrum because of

its unsurpassed performance and high reliability. Environmental remote sensing missions

such as SCIAMACHY designed to measure the atmospheric trace gas abundance's on a

global scale in the stratosphere as well as in the troposphere will require a high signal to

noise ratio in the near infra-red channel focal plane arrays because of very low photon

signal (< 2.2X10 1° Photons/(cm2-nm-s) 112 . In InGaAs detectors, the major noise

contribution is from the shot noise due to leakage current. Therefore, especially low

leakage current InGaAs photodiodes is highly desirable in order to detect the atmospheric

constituents in the 1-2.6 ,tin spectral region. To realize such challenging technological

applications, a detector array of several thousand pixels having an average leakage

currents as low as 10 fA is required for the spectral region 2.265 - 2.385 pm.

This research investigates the possibility of achieving leakage currents of less than

50 fA using InGaAs/InP technology by designing a novel and unique InGaAs/InAsP/InP

p-i-n detector structure, growth of uniform InGaAs/InAsP layers with abrupt interfaces

using Hydride Vapor Phase Epitaxy (HYPE), Chloride Vapor Phase Epitaxy (CVPE) and

Metal Organic Chemical Vapor Deposition (MOCVD) techniques. To achieve these

objectives, comparison and analysis of the detector results from the three wafer growth

methods mentioned above will be presented. Also described are the post wafer growth

fabrication techniques to reduce number of defects, design and fabrication of 1024

element detector arrays and design and development of a capacitive transimpedance

1



2

amplifier (CTIA) multiplexer for the readout of InGaAs detector arrays to operate at near

zero-bias voltage. Testing, measurement and analysis of the 1024 element focal plane

array results will be described in detail.

Chapter 2 describes the previous research work done on the development of

InGaAs/InP detectors and detector arrays in the 1 to 2.6 tm wavelength region, the

research objectives of this thesis describing the major problems that had to be addressed

in order to achieve leakage currents of < 50 fA for the InGaAs/InP p-i-n detectors and

detector arrays in the wavelength spectrum of 1 to 2.6 pm. Also described in this chapter

are the general requirements or specifications of InGaAs/InP focal plane arrays for

environmental sensing applications.

Chapter 3 describes the technology overview used to fabricate InP, InGaAs and

InAsP materials for the wavelength of operation, device design and architecture of p-i-n

detector using InP/InGaAs/InAsP material system and the growth of

InAsP/InGaAs/InAsP/InP layers using the three most advanced material growth

techniques, the Hydride Vapor Phase Epitaxy (HYPE), Chloride Vapor Phase Epitaxy

(CVPE) and Metal Organic Chemical Vapor Deposition (MOCVD). The device

fabrication and device electro-optical results are described. Also described in this chapter

are the radiation hardness testing and results of proton, gamma and electron radiation on

InGaAs detectors.

Dark current which is the important parameter in the operation of a Focal Plane

Array for high signal to noise requirements or to integrate low optical signals is analyzed

in Chapter 4. The mechanisms and origin of dark current in InGaAs/InP p-i-n



3

photodetectors is explained in this chapter. The dark current model used to simulate the

dark current behavior was developed and described in this chapter. The measured device

dark current results are compared with the the simulated values.

Chapter 5 describes the 1024 element InGaAs Focal Plane Array architecture

using the Si read out multiplexer and InP/InGaAs detector arrays. This chapter also

describes the pixel layout and hybridization of detector arrays and Si readout multiplexer

using wire bonding and advanced mounting techniques that were used. Testing and test

setup development for the electro-optical characterization of Si read-out multiplexer and

InGaAs Focal Plane Arrays are also described in this chapter.

Chapter 6 describes the readout electronics developed for the read-out of InGaAs

detector arrays. The design of read-out electronics consists of 512 element Capacitive

Transimpedance Amplifier (CTIA) multiplexer for the readout of 1024 element InGaAs

detector arrays. The fabrication method and testing results of the multiplexer are also

described in this chapter.

Chapter 7 describes the 1024 element InP/InGaAs/InAsP Focal Plane Array test

results and analysis of the test results. This chapter includes the detailed analysis of the

electro-optical test results of InP/InGaAs/InAsP Focal Plane Arrays with cut-off

wavelengths of 1.7, 1.9, 2.2 and 2.6 tirn. Noise and quantum efficiency, the two important

parameters for the signal to noise ratio requirements are analyzed, simulated and

compared the simulated and measured results with great detail in this chapter. The

radiation hardness testing and test results of gamma radiation on InGaAs Focal Plane

Arrays with a cut-off wavelength of 2.6 pm is described in this chapter.



4

Chapter 8 describes the conclusions of this research thesis and future directions

for the InGaAs Focal Plane Arrays development. Major conclusions achieved in this

thesis are the long wavelength Focal Plane Arrays with a detector noise < 400 rms e" can

be achieved with InGaAs/InP technology. Also described in this chapter are the proposed

ideas to further overcome the difficulties of dark current generation in the lattice mis-

matched devices.

In Appendix A, theoretical equation was derived for the dislocation density using

two dimensional Poisson's equation based on the diffusion approximation. This equation

was used to estimate the defect density in the 1.7, 2.2 and 2.6 pm cut-off InGaAs

photodetectors.

The research reported in this thesis was done as part of a joint research of the New

Jersey Institute of Technology and Epitaxx, Inc., in support of a contract from Domier,

GmbH and Fokker Space & Systems, Holland. All of the wafers, devices, fabrication and

the experimental facilities for this work were provided by Epitaxx, Inc., West Trenton,

NJ.



CHAPTER 2

BACKGROUND

Optical communication is expected to play an important role in the upcoming information

technology. The requirement for infrared detectors for low-loss, low dispersion silica

fibers in the 1.0 - 1.6 pm wavelength range has been readily satisfied by the PIN photo

diodes fabricated from Ga0.47In9.53As, which can be grown lattice matched to InP

substrates. For future communication systems based on novel fluoride fibers, for which

losses of <= 0.01 dB/km have been predicted[1], detectors operating at longer

wavelengths will be required.

Indium gallium arsenide is finding an important role in the 1-2.6 1.1m spectrum

because of its unsurpassed performance and high reliability[2]. Environmental remote

sensing missions such as SCIAMACHY designed to measure the atmospheric trace gas

abundance's on a global scale in the stratosphere as well as in the troposphere[3] requires

challenging task of high signal to noise ratio in the near infra-red channel focal plane

arrays[4]. In InGaAs detectors, the major noise contribution is from the shot noise due to

leakage current. Therefore, reduction of leakage current in InGaAs photodiodes is an

important task in order to detect the atmospheric constituents in the 1-2.6 11M spectral

region. Leakage currents as low as 7 fA is required for the spectral region 2.265 - 2.385

i_tm detector array[5].

In order to satisfy the high signal to noise ratio, it is necessary to use low noise,

near zero-bias multiplexers[6] and to cool the detector array to lower temperatures. Since

a major portion of an instrument's mass and power is consumed by the focal plane cooler,

5



6

detector technologies that require only modest cooling can contribute significantly to the

realization of a miniature infrared instrument[7]. The scientific space programs are in

continuing trend towards smaller and more affordable missions. The advantage of an

infrared detector that operates at lower temperatures (150 K - 200 K) will reduce the

cooling requirement which is a key ingredient in the design and construction of scientific

instruments such as SCIAMACHY. The 1024 element focal plane array consists of an

InGaAs detector array connected to a CMOS multiplexer using wire bonding.

Potential applications of such a device include NIR spectroscopy, fluorescence,

remote sensing, environmental sensing, space and astronomical applications. The InGaAs

detector arrays are especially appropriate device since sensitive absorption, luminescence,

emission and Raman spectroscopies require focal plane arrays with high quantum

efficiency, low dark current and low noise.

Lattice mismatched In„Ga l ,As/InAsyP i _y(x>0.53, y>0) hetero-structures are

suitable for the fabrication of photodiode arrays with spectral response up to 2.6

Most applications require high uniformity of device performance as well as process

reproducibility. However, InGaAs hetero-structures are extremely sensitive to defects and

non-uniformity's existing in epitaxial growth of layers and those defects introduced in the

processing. This thesis describes a novel and unique detector structure, growth of

uniform InGaAs/InAsP layers with abrupt interfaces using Hydride Vapor Phase Epitaxy

(HYPE), Chloride Vapor Phase Epitaxy (CVPE) and Metal Organic Chemical Vapor

Deposition (MOCVD) techniques, post wafer growth fabrication techniques to reduce

number of defects, design and development of a capacitive transimpedance amplifier
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(CTIA) multiplexer for the readout of InGaAs detector arrays to operate at near zero-bias

voltage, measurement and analysis of the focal plane array results.

2.1 Research Objective

Several authors have proposed different growth techniques, different detector structures

and different fabrication methods aimed at developing the long wavelength indium

gallium arsenide photodetectors [8]-[20]. Past work was aimed at achieving the InGaAs

detector arrays with cut-off wavelengths of 1.7 pm with 256 eleement pixels. The aim of

this thesis is to explore the technological limitations of long wavelength (> 1.7 p.m)

InGaAs photodetectors and photodetector arrays and to design, fabricate, test and analyze

the results of a proposed novel detector structure aimed at minimizing the dark current

due to excessive defect densities because of the lattice mismatch between the epitaxial

layers and the substrate. To achieve the objective of low dark current novel material

processing techniques are implemented. The results of the proposed device structures

demonstrates that InGaAs/InP technology is suitable for the fabrication of 1024 element

linear arrays with long cut-off wavelengths.

One of the main draw back of any near-infrared focal plane arrays is the read-out

circuit. The read-out circuit has to be designed and developed depending on the

requirements to limit the noise contribution and also depends on the signal requirements.

To achieve the objective of low noise (400 rms e), it is necessary to design and develop a

novel and unique 512 element Si read-out multiplexer for the read out of 1024 element

InGaAs detector arrays. This include the design, development, fabrication, testing and
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analysis of the results of Capacitive Transimpedance Amplifier (CTIA) multiplexer for

the readout of 1024 element linear InGaAs detector arrays to operate at near zero bias.

2.2 Main Problems

2.2.1 Material and Detector Design Problems

Figure 2.1 shows the bandgap energy, cutoff wavelength and lattice constant (atomic

spacing) of different semiconductor elements, compounds and alloys[21]. The dots

represent the binary materials (e.g. InP), the lines that connect two dots are ternary

materials (e.g. InGaAs) and in between the lines are the quaternary material (e.g.

InGaAsP). The binary alloys have fixed lattice parameters and bandgaps, ternary alloys

have one degree of freedom and quaternary alloys have two degrees of freedom since a

range of lattice parameters is available for each bandgap. Figure 2.1 aids in the selection

of detector materials.

As seen from Figure 2.1, the composition of InGaAsP "quaternary" alloys can be

adjusted so that their atom spacing is "lattice matched" to that of InP substrates. This

enables low stress transitions from the substrate material to the active layers.

In3.53Ga0.47As is the quaternary alloy (albeit without phosphorous) with the smallest

bandgap that can still achieve lattice matching with indium phosphide.
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Figure 2.1 Energy bandgap, cut-off wavelength and lattice constant for a variety of
semiconductor materials.

As shown in Figure 2.1, the cut-off wavelength of InGaAs material can be

extended beyond 1.7 p.m by increasing the composition of InAs content. The In,Ga i ,As

layers with x>0.53, lattice mismatched to InP makes it possible to extend the absorption

edge or cut-off to longer wavelengths. This necessitates the use of higher Indium content

alloys which are mismatched with respect to the InP substrate with the problems of

dislocation induced, junction leakage and low quantum efficiency[131. By increasing the

Indium content of the alloy, the band gap decrease and thus extends the spectral response,

since

= 1.24 / Eg

where,	 ke = cut off wavelength in
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Eg = bandgap energy in eV.

An In082Ga0.18As alloy thus extends the spectral response to 2.6 pm since it has a

band gap of 0.48 eV at room temperature[22]. Since In„Ga i .xAs with x > 0.53 is not lattice

matched to the InP substrate, the graded layer technique is used to accommodate the large

mismatch between the InP substrate and the In„Ga l _xAs absorption layer. There exists a

critical thickness below which a lattice mismatched layer is elastically deformed and thus

biaxially strained[23]. In this case the layer has the same lattice constant as the substrate

in the plane parallel to the substrate-layer interface and there are no dislocations. When

the layer thickness is above the critical thickness, the (biaxial) strain becomes too high

and the layer will relax. The layer will take his own lattice constant which is different

from that of the substrate. In a relaxed lattice mismatched layer, many dislocations are

introduced and the layer will exhibit poor electrical and optical performances. The critical

thickness as a function of strain was reported in [24][25]. Because of the lattice mismatch

between the layers, the misfit dislocations are generated[26[[27]. These misfit

dislocations are electrically active as generation and recombination centers[15]. The main

effects of misfit dislocations in photodiodes are to generate excess dark current and to

reduce minority carrier life time[28].

This thesis describes the design and development of Ina.53Ga0.47As, Inc.72Ga0.28As

and In0.82Ga0.18As detector arrays using the ternary compound material grown by Hydride

Vapor Phase Epitaxy (HYPE), Chloride Vapor Phase Epitaxy(CVPE) and Metal Organic

Chemical Vapor Deposition (MOCVD) methods. Methods of reducing the dislocation

density during the epitaxial layer growth and during the fabrication of photodetectors and
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detector arrays are introduced. Comparison of the results of the three growth methods and

performance of the long wavelength detectors and detector arrays are presented. In

addition, a new detector design with improved performance of low dark current is

presented. Detailed analysis of the dark current, origin of the dark current and the

methods of reducing the dark current are also presented.

2.2.2 Read-out Electronics

In InGaAs detector arrays, the main source of the noise is from the shot noise due to the

dark current. In order to improve the signal to noise ratio, the dark current should be

improved. At low bias voltages (< 100 mV) the dark current is approximately

proportional to the detector reverse bias voltage. To reduce the dark current and hence the

noise from the focal plane array, the detector must be operated either at zero bias voltage

(photo-voltaic) or at near zero bias voltage. To operate the detector array at near zero-bias

voltage, a Si read-out circuit (multiplexer) has been designed and fabricated using a

Capacitive Transimpedance Amplifier (CIA), Correlated Double Sampling (CDS) at

each pixel. The multiplexer fabrication and the test results will be described and

analyzed. The focal plane architecture for 1024 element linear InGaAs arrays with cut-off

wavelengths of 1.7 pm, 2.2 pm and 2.6 pm will be presented.

2.3 Performance Requirements

The Focal Plane Array consisting of InGaAs detector array and Si readout multiplexer

was designed and developed to meet the following requirements.
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•Number of pixels	 :	 1024

cut-off wavelength	 •	 1.7 gm:

2.2 gm

2.6 gm

Operating temperature 	 •	 200 K for 1.7 lam cut-off FPA:

150 K for 2.2 & 2.6 pm cut-off FPA.

Pixel size	 500 x 13 pm'-.

Detector pitch	 •	 25 p.m:

Internal quantum efficiency : 	 > 55 %

Max. signal level	 :	 > 1E7 e".

Integration time	 > 1 ms (up to several minutes)•.

:Dark current	 .	 < 4 fA for 1.7 p.m cut-off detector

< 2 fA for 2.21.1m cut-off detector

< 7 fA for 2.6 p.m cut-off detector

•Noise	 :	 < 800 rms. e

Pixel-to pixel signal variation: 	 < 5 % rms.



CHAPTER 3

OVERVIEW OF TECHNOLOGY

In an epitaxial heterostructure, if the lattice constants (spacing between the two

neighboring atoms) of the substrate and the epitaxial layer parallel to the interface are not

equal, a certain misfit is present. When an epitaxial layer of lattice constant other than

that of its substrate is grown, it produces strain (Ada) in the grown layer. It requires less

energy for a thin epitaxial layer to strain elastically and adopt the substrate spacing rather

than form dislocation[24]. However, this energy increases with thickness and eventually a

"critical thickness" is reached where it is energetically more favorable to form a

dislocation, rather than remain totally strained. The critical thickness (t e) is inversely

proportional to the lattice mismatch between the two adjoining epitaxial layers[29].

t, = (da/a) -1

On exceeding the critical thickness, the strain in the mismatched epitaxial layer

releases through the formation of misfit dislocations[24][30][31][32]. Usually, the critical

thickness is of the order of few nanometers for structures up to 4% mismatch and is

mostly exceeded in the hydride vapor phase epitaxy (HYPE), which is characterized by

fast epitaxial crystal growth (0.5 to 1 um/min). Thus, the InGaAs/InAsP detector

structures grown for this research work exceeded their critical thickness values, thereby

generating misfit dislocations.

The mismatch (or misfit) dislocations have detrimental effect on the electrical and

optical characteristics of many devices like lasers, photodetectors and transmission photo

cathodes[33]. The reduction of dislocation density is a key to improve the device

13
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performance. G.H. Olsen et. al [30] and J. W. Matthews et. al [16][34] has studied the

lattice mismatched layers extensively and grown heteroepitaxial lattice mismatched

semiconductors with dislocation densities as low as 10 5/cm2 . They concluded that an

abrupt interface between the mismatched layers bends most of the dislocations into the

plane of the growth and prevents them from propagating into the active layer. Therefore,

for the reduction of dark current in the lattice mismatched InGaAs detectors, growth of

epitaxial layers with compositionally sharp and abrupt interfaces is very important.

The dislocation density in a lattice mismatched crystal is dependent on the lattice

mismatch between the two adjoining epitaxial layers. In InAsP layers, the lattice

mismatch between the two neighboring layers can be reduced by reducing and accurately

controlling the arsenic concentration. During this research work, as many as 18 InAs yP I _y

buffer layers were grown on top of InP substrate to reduce the lattice mismatch between

the two layers to < 0.1%.

3.1 Crystal Growth Techniques

An In0.82Ga0.18As alloy has a band gap of 0.48 eV at 300K and thus extends the absorption

of photons up to 2.6 um wavelength at room temperature. A graded layer technique is

used to accommodate the large lattice mismatch between the InP substrate(ao = 5.8694)

and the In0.82G4938As absorption layer(ao = 5.990) which is about 2%. To reduce the

defect density, the mismatch is accommodated by growing several InAs yP il layers, where

the composition of As is increased from layer to layer. Step grading is very effective in

decreasing dislocation density than continuous grading because most dislocations bend at
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the step interface and do not propagate along the growth direction[34][35]. Misfit

dislocations can be electrically active as generation-recombination centers, generate

excess dark current and reduce minority carrier life time. InAsP was chosen over InGaAs

as the material to grade because in the hydride VPE process it is easier to adjust

AsH3/PH3 ratios than InCl/GaC1 ratios. InAsyP i ..y was also used as the "cap" layer to

terminate the p-n junction because of it's high band gap which helps in reducing the dark

current. About 15 layers of InAsy t _y with y increasing from 0.0 to 0.68, each layer about

0.8 urn are grown on InP substrate. This results in lattice constant change from 5.8694 to

5.9926 A° and the band gap energy change from 1.35 to 0.65 eV. The final graded layer

of InAso.68P0.32 was about 1.0 um thickness to provide a good quality sub-layer for the

growth of the absorption layer. The cap or window layer is 1nAs o.68P0.32 and is about 1.5

urn. The p-n junction is formed by zinc diffusion through the window layer. The 3.7 um

thick absorption layer assures strong absorption of the transmitted radiation with energy

slightly greater than the bandgap energy of the absorption layer.

3.1.1 Hydride Vapor Phase Epitaxy (HYPE)

The group V element is introduced as a hydride (e.g. PH 3) and HC1 is passed over the

group III metal to form the group III chloride[36]. The group III and group V

composition can be accurately controlled[37][38]. The As and P controllability is much

simpler in hydride VPE than that in other growth methods, such as MOVPE and

MBE[12]. Therefore, hydride VPE is an effective method by which accurate control of

the InAsy13 1 „, graded buffer layer is possible[39]. By controlling the AsH 3 with a faster
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response time and smaller flow range controller helps to obtain abrupt interfaces between

the graded layers. A drawback of HVPE is the need for hydrides, which are extremely

toxic.

3.1.2 Chloride Vapor Phase Epitaxy (CVPE)

Chloride Vapor Phase Epitaxy is one of the earliest vapor growth techniques. The group

V chloride (e.g. AsC1 3) passes over the group III metal, which is heated in the hottest

zone of the reactor, to form a group III chlorides (e.g. GaC1). This group III chloride

diffuses to a cold zone, which contains the substrate and react with a group V species to

form a III-V compound. Multilayer structures are achieved by shuttling back and forth

between the chambers. The disadvantage of this growth technique is that the group V

chlorides are introduced by heating a liquid which means that the concentration varies

exponentially with temperature and is thus difficult to control.

3.1.3 Metal Organic Vapor Phase Epitaxy (MOVPE)

Metal-Organic Vapor Phase Epitaxy uses a group V hydrides and group III metalorganics

(e.g. TriMethyllndium or TMI or (CH3)31n) which are introduced in the reactor by means

of a carrier gas. The source metalorganics are kept in temperature controlled bubblers in

order to stabilize the vapor pressure. Carrier gas flows through the bubbler and is

saturated by the vapor pressure in the bubbler. The reactants are cracked above the hot

wafer surface and combine on the wafer. MOVPE growth can be performed at

atmospheric pressure but also at reduced pressures (20 - 200 mbar), enabling more abrupt



17

interfaces. MOVPE was the first technique that was able to grow high purity layers with

monolayer abruptness. The past 10 years the reactor designs have much improved

resulting in uniform growth over large areas. Because of this flexibility and rather simple

reactor, MOVPE is at this moment the moist widely used growth technique for basic

research as wells as for large scale production. The main disadvantage of MOVPE is the

high consumption of expensive and hazardous sources, which requires high investments

for source materials and safety equipment. However, the past ten years a strong effort has

been put in the development of alternative and less hazardous source materials.

Figure 3.1 Cross-section and energy band diagram of a p-i-n diode.



1 8

3.2 Device Design and Cross-section

The p-i-n photodiode is one of the most common photodetectors and is usually reverse

biased, since light absorbs in the intrinsic layer, the intrinsic layer can be adjusted to

optimize the quantum efficiency and frequency response. The basic schematic

representation of a p-i-n diode and an energy band diagram is shown in Fig. 3.1. Light

absorption in the semiconductor produces electron-hole pairs. Electron-hole pairs

produced in the depletion region or within a diffusion length will eventually be separated

by the electric field and hence the carriers drift across the depletion layer. The material

requirement for p-i-n photodiodes with good device performance are lattice matched,

dislocation free epitaxial layers with controlled doping and thickness.

3.2.1 Lattice Matched In 0.53Ga0.47As1InP Device Structure and Fabrication

Figure 3.2 is a schematic cross section of standard planar In 0.53Ga0.47As p-i-n photodiode

which is lattice-matched to InP substrate[40][4 1]. Figure 3.3 shows it's band diagram.

This device operates in the wavelength region 0.8 - 1.7 1.1m. As shown in figure 3.2, the

device consists of several epitaxial layers on InP substrate. The substrate is sulfur (n+)

doped InP. The first layer on top of the InP substrate is about 1 	 thick InP buffer layer.

This layer reduces the defect migration from the InP substrate to the In 0.53Ga0.47As

absorption layer, which is the second layer. The 143.53 Ga0.47As absorption layer is about

3.5 um thick and assures complete absorption of the incoming photons. The third layer is

a 1 urn thick InP cap layer. Although In 0.53Ga0.47As has high internal absorption for

photons, photo generated electrons and holes can often recombine at the top surface
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thereby reducing over all quantum efficiency. Deposition of the high bandgap InP on this

surface eliminates the dangling bonds at this free surface, allows free transmission of

light and tends to repel carriers from the interface so they don't recombine. This large

bandgap(1.34 eV) layer also acts as a cap region to passivate the small band gap(0.75 eV)

InGaAs, avoiding surface leakage current of the diode. Therefore, the top cap layer

reduces the surface leakage currents, and the surface recombination of photo generated

carriers. This enhances the noise performance also. The doping of the three layers were

optimized to reduce the dark current. The very top layer is a plasma deposited Si 3N4

dielectric coating, which provides passivation and assures the reliability of the device.

This Si 3N4 also serves as an antireflection coating to enhance the responsivity of the

detector. The p-n junction was formed by Zn diffusion through the opening in the Si 3N4

passivation layer. Each detector element consists of 13 urn X 500 um' Zn diffusion area

with a pitch of 25 um between the neighboring two pixels. The `p' contact was made

using alloyed AuZn contact. The contact was extended using the electron-beam deposited

TiPtAu to reduce the diffusion area and effective dark current. The final step is the

thermally evaporated AuSn 'n' contact to provide low resistance ohmic contacts. The

planar structure shown in Fig. 3.2 is expected to show advantages in durability and

reliability [40]41] [42].



Figure 3.2 Schematic cross-section of 1.7 urn cut-off InGaAs detector.
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Figure 3.3 Band diagram of the planar lattice matched In0.53Ga0.47As photodiode.
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3.2.2 Lattice mismatched In xGa l_„As/InP Device Structure and Fabrication

The detector cross-section for the wavelength range 1000 - 2200 nm and 1000 - 2600 nm

is shown in Figure 3.4[43]. The detector structure consists of InP substrate and InAs yP i _y

graded buffer layers, In„Ga l .„As absorption layer and InAs yP I .y cap layer. The

composition of In (x) and the composition of As (y) is varied to get the required cut-off

wavelength of 2.2 urn and 2.6 urn and to achieve the perfect lattice match between In,Ga l _

xAs and InAsyP I layers.

TiPtAu/AuZn =. N=1024

Figure 3.4 Schematic cross-section of 2.2 urn and 2.6 urn cut-off wavelength
InGaAs detector.
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Figure 3.5 Schematic cross-section of the 2.6 urn photodiode.

Figure 3.5 shows the schematic cross-section of the lattice mismatched

In0.82Ga0u8As p-i-n photodiode. A graded layer technique was used to accommodate the

large lattice mismatch between the InP substrate(a 0=5.86944) and the In0.82Gau8As

absorption layer(a 0=5.990). This lattice mismatch between the neighboring layers

introduces the misfit dislocations. Misfit dislocations can be electrically active as

generation-recombination centers, generate excess dark current and reduce minority

carrier life time. The graded layer technique was used to bend the threading dislocations

and reduce the dislocation density. Fifteen layers of graded InAsP layers were grown on
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the InP substrate keeping the lattice mismatch between the neighboring layers to as low

as 0.13%[44]. Making the lattice mismatch smaller between the neighboring layers

reduces the number of misfit dislocations[45]. In addition, the surface morphology of the

wafers grown with higher (0.33%) lattice mismatch between the consecutive mismatched

layers was very often rough with no distinct cross hatch pattern. This rough surface

reduces the number of consecutive good pixels in a long photodetector arrays in addition

to increasing the dark current. The surface morphology of wafer grown with a lattice

mismatch of 0.33% between the neighboring two InAsP graded layers was shown in

Figure 3.6. As seen from Figure 3.6, the surface morphology was rough with no clear

pattern. By reducing the flow range of AsH 3 mass flow controller with a faster response

time allowed us to grow smaller lattice mismatched InAsP layers with a better accuracy

of controlling the mismatch. Additionally, the faster response time helped to obtain the

abrupt interfaces between the graded layers. Abrupt interfaces bend dislocations into the

plane of growth and thus prevent their propagation into the InGaAs absorption

layer[34]{46]. Figure 3.7 shows the surface morphology of a wafer grown using small

mismatch (<0.13%) between the neighboring InAsP graded layers. As seen from Fig. 3.7,

the surface morphology was smooth with clear and distinct cross hatch pattern. The

smooth surface also helps in the fabrication of photodetectors during the photo-

lithography and alignment of `p' metal contact.
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2.6 um photodetector structure on a (100)-2° InP substrate with a lattice
mismatch of 0.33% between consecutive mismatched InAsP graded layers
(100X magnification). The short axis of the photograph is 1.4 mm.

Figure 3.7 Optical micrograph showing surface morphology of an In xGa i ,As/InAsvP i _y

2.6 urn photodetector structure on a (100)-2° InP substrate with a lattice
mismatch of 0.13% between consecutive mismatched InAsP graded layers
(100X magnification). The short axis of the photograph is 1.4 mm.



Figure 3.8 SEM cross-section of an In,,Ga l ,As/InAsyP i _, 2.6 um photodiode structure on
a (100)-2° InP substrate.

Figure 3.8 shows the SEM photomicrograph of the grown structure which shows

the sharp and abrupt interfaces between the graded layers. An abrupt interface bends the

dislocations into the plane of growth and prevents propagating them into the absorption

layer. The InAsP graded layers were doped with sulfur and the doping concentration is in

the range of 1-5 X 10 18 cm'. The high doping of InAsP graded layers may pin down the

dislocations and prevent the propagation into the InGaAs layer. The In 0.82Ga018As

absorption layer was grown on the final InAs06P0.4 sub-absorption layer and is doped with

sulfur to a concentration of 0.8-1 X 10 17cm 3 . The doping of the absorption layer reduces

the depletion width at low bias voltages. Before the p-n junction depletes completely, the

dark current at low temperatures is dominated by generation-recombination current[22].
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By reducing the depletion width, the generation recombination current can be reduced

and hence the total dark current decreases. The very final layer is a 1 um thick InAso.6P0.4

cap layer and is doped with sulfur to a concentration of 1-5 X 10 16 cm 3 . The cap doping

helps to reduce the surface depletion width and therefore the surface generation current

can be reduced. Surface generation plays an important role at low temperatures, where the

bulk leakage is comparable with the surface leakage.

Figure 3.9 shows the single crystal x-ray diffraction measurement of the grown

InAs0.61a0.4/Ino.82Gam8As/InAso.6P0.4/InP device structure. The first peek in the x-ray

diffraction measurement was that of InGaAs and the second peek was that of InAsP cap

layer. In Fig. 3.9 there is only one peak indicating that the mismatch between the cap

layer and the absorption layer was — 0% and the lattice constant of both layers are same.
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The measured results of the x-ray diffraction measurement across the wafer shows the

uniformity of the lattice mismatch — 0.1%.

Defects such as dislocations and interfaces play a crucial role in the performance

of hetero-structure devices. Several methods have been employed to reduce the

dislocation density in lattice mismatched epi-layers, including the rapid thermal

annealing[47], introduction of strained layer superlattices in the epi-layer[24][30] and

using the substrates having varying degrees of mismatch or different crystal '

symmetry[48][49]. High temperature thermal annealing was performed on the grown

wafer. Annealing techniques have been very effective in eliminating some of the defects

like stacking faults and twin boundaries[50][51]. At annealing temperatures, the mobility

of dislocations can lead to the reorganization and annihilation of dislocations. To prevent

excessive dissociation of the wafer surface, the wafers were coated with a silicon nitride

protective coating. The wafer was annealed from 400°C to 650°C temperatures for about 5

cycles by keeping approximately 1 minute at each temperature. Figure 3.10 shows the

TEM micro graph of the In 0.82Ga0.18As non annealed wafer. Figure 3.11 shows the TEM

micro graph of the same wafer after the thermal annealing. From both figures 3.10 and

3.11, it is clearly seen that the thermal annealing reduces the number of dislocations.

Table 3.1 shows the measured dark current values of the detectors fabricated using the

same wafer with and with out thermal annealing.

Table 3.1 Effect of RTA on dark current

Wafer RTA Id @ 10 mV, 300 K
wafer #1 No 200 nA
wafer #2 Yes 50 nA



Figure 3.10 TEM micro graph showing the cross section of an In 0.8,Ga0.18As
photodiode structure before thermal annealing.
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Figure 3.11 TEM micro graph showing the cross section of an in 08 ,Gao.18As
photodiode structure after thermal annealing.
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3.3 Device Fabrication

After the thermal annealing of the grown wafer, the silicon nitride protective coating was

wet etched and redeposit a new layer of silicon nitride passivation layer using Plasma

Enhanced Chemical Vapor Deposition (PECVD) method. A diffusion window was

opened in the silicon nitride for a `p + ' diffusion. The p-n junction was formed using zinc

diffusion through the InAsP cap layer at 5000C for 37 minutes in a closed ampule boat

method of diffusion. The depth of the zinc diffusion is important as it may influence the

quantum efficiency, leakage current and speed of the detector. Zinc diffusion was

optimized to form the p-n junction below InAsP/InGaAs interface. From the experiments,

it was found that the zinc diffusion rate is faster in InAsP than InP. Figure 3.12 shows the

Secondary Ion Mass Spectroscopy (SIMS) profile of the In082Ga0.18As photodetector

structure. As seen from Figure 3.12, the InAsP cap is about 1.5 pm thick and the

diffusion is about 0.5 pm deep in to the 4 gm thick InGaAs absorption layer. A deep

diffusion may deplete more misfit dislocations and generate excess leakage current[52].

After the zinc diffusion, silicon nitride anti-reflection coating was deposited using

the PECVD deposition method. The thickness and refractive index of silicon nitride was

optimized for the quarter-wave thickness of operating wavelength. The refractive index of

Si3N4 was measured as 2.0. The required thickness of anti-reflection coating was

calculated using the equation[53]

2
=

4	
n • tar

where,	 A = Operating wavelength in nm
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Figure 3.12 SIMS profile of an In0.82Ga0.18As photodetector structure.

For In„Ga i _xAs/InAsyP II/InP detector arrays with a cut-off wavelength of 1.7 urn,

2.2 urn and 2.6 urn, the thickness of anti-reflection coating was optimized for 1.3 urn, 2.0

and 2.38 um wavelength.

After the anti-reflection coating deposition, the `p' contact window was opened

using the wet chemical etching. The first level 'p' contact was formed with Au-Zn-Au

using the thermal evaporation technique. After the Au-Zn-Au evaporation, the contact

was alloyed for forming ohmic-contact with lower contact resistance. The second level
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`p' contact was founed using Ti-Pt-Au deposition using electron beam evaporation

method. The second metal makes contact to the Au-Zn-Au alloyed contact and the

contact area was 30 um X 100 um extending on to the silicon nitride passivation layer.

Since the second level `p' metal extends onto the silicon nitride passivation layer, it

reduces the active (diffused) p-n junction area required for making the 30 urn X 100 um

contact which is required for wire bonding (integration) the detector array to the Si

multiplexer. The reduction of total diffused area reduces the amount of dark current.

Figure 3.13 shows the cross-section of the In,Ga l ,As/InAsyP i _y photodetector

array after the fabrication. As seen from Fig. 3.13, each pixel is isolated by 12 urn from

the neighboring pixel and the two level `p' metal contact is shown on top of the Au-Zn-

Au ohmic contact.

TiPtAu/AuZn 	 TiPtAu/A JZn 	 TiPtAu/AuZn 	 TiPtAu/AuZn 	 —,>N=512 or 1024

N=1 N.2 N.3 	 I 	 I 	 N=4

Au 08Sno2

re InP Substrate

SiN 

n InAsy

n In Ca Asx 	 1-x

• InAsy 

Figure 3.13 Cross-section of 1024 element In xGa l ,As/InAsyP i _y photodetector array.
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After the Ti-Pt-Au second metal deposition, about 1 um thick Au was plated using

electrochemical process[54] with electrolytes (electrolysis). This thick metal assures the

mechanical integrity and improve the adhesion of Au wire bond to the contact.

The wafer was back lapped and polished using a chemo-mechanical lapping and

polishing method. The wafer was polished as mirror-like surface. The 'n' contact was

formed with Au-Sn using the thermal evaporation deposition method. The wafer was then

probed for the leakage current and scribed into slivers.

The In0.82Ga0.18As detector array sliver was processed with stripping and non

stripping of the silicon nitride after the thermal annealing of the wafer. The wafer was

split into two parts and processed identically to investigate the improvement of leakage

current due to the stripping and non stripping of silicon nitride. Rapid thermal annealing

was performed on both parts of the wafer at 650 0C for 1 minute and repeated for 5

cycles. There was no significant damage to the surface of the wafer after the thermal

annealing of both parts of the wafer except for a few spots of nitride peeling. Figure 3.14

shows the surface of the wafer after annealing and Figure 3.15 shows the surface before

annealing. As shown in Figure 3.14 there are nitride peeling spots on the surface after the

thermal annealing. The spots vary from 1 urn to 100 um in diameter and there are about

15-20 spots on a 2" wafer. Nitride peeling may create excessive lateral diffusion of zinc

and electrically short the neighboring pixels. Therefore, stripping and re-deposition of

silicon nitride is important in fabricating the array slivers with few dropouts(bad pixels).



Figure 3.14 Wafer Surface(coated with silicon nitride) after annealing.
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Figure 3.15 Wafer surface(coated with silicon nitride) before annealing.
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The leakage current was measured on(the processed detector array sliver) both

parts of the wafer at room temperature, 200K and 150K. There is no significant difference

in leakage current from stripping and non stripping of silicon nitride at the operating

temperature of 150K and 10 mV bias. The measured dark current results of 1024 element

InGaAs Focal Plane Arrays with cut-off wavelengths of 1.7, 2.2 and 2.6 p.m are discussed

in Chapter 7. The measured dark current of 2.6 p.m detector array sliver is about 50 fA at

10 mV and 150K. As discussed in Chapter 7, the measured dark current is not uniform

enough to meet the required uniformity specification(<10%) on a 1024 element array

sliver.

To improve the uniformity of dark current from pixel to pixel in a 1024 element

linear InGaAs detector array, further investigation of the silicon nitride stripping to

reduce the surface traps and improved crystal growth to reduce the dislocation density is

required. Silicon nitride stripping and re deposition may destroy the shallower traps and

may introduce the deep traps in the lower half of the bandgap, close to the middle of the

bandgap that is normally occupied by the electrons as they are located below the fermi

level. Both the traps may be associated with some complex defects such as sulfur

impurity and created during the annealing procedure. The behavior of deep traps in the

annealed InGaAs photo diodes requires further investigation concerning the capture

mechanism and its temperature dependence. Deep traps, which influence the temperature

behavior of the leakage current, may be introduced due to the nitride stripping and also

due to the bulk defects. The dislocations formed because of the lattice mismatch between
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the adjacent epitaxial layers are usually electrically active as generation recombination

centers. Therefore, the misfit dislocations generate excess dark current and also reduce

the minority carrier life time. Because of the reduction of minority carrier life time, the

recombination of photo generated carriers is fast and hence the responsivity is lower.

3.4 Device Results

3.4.1 In0.53Ga0.47As Detector Results

Each detector element has a measured dark current value of < 1 pA at room temperature

and 10 mV reverse bias voltage. Figure 3.16 shows the typical dark current-voltage

characteristics for a 13 urn X 500 urn detector at room temperature and at 235 K. At 235

K, the measured dark current was < 1 fA at 10 mV reverse bias voltage. Table 3.2 shows

the measured results of dark current as a function of InGaAs absorption layer and InP cap

layer doping. As seen from Table 3.2, a factor of 5 improvement in the dark current was

achieved by intentionally doping the absorption layer. As explained in Chapter 4, this

improvement was attributed to the decrease of generation-recombination current in the

bulk depletion region. Increasing the doping in the InP cap layer further reduced the dark

current at room temperature and at 235 K. This decrease in dark current was attributed to

the decrease in the surface depletion width and hence the contribution of surface traps to

the total dark current will be lower. The measured capacitance of each detector element

was 12 pF at 10 mV reverse bias voltage. The measured responsivity of the detector as a

function of wavelength and temperature is shown in. Figure 3.17. As seen in Fig. 3.17,

each detector element has a quantum efficiency greater than 80%.
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Figure 3.16 Dark current-voltage characteristics of 1.7 um cut-off InGaAs detector.
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Figure 3.17 Spectral response of 1.7 um cut-off InGaAs detector.

3.4.2 In0.72Gacu8As Detector Results

The detector element of the 2.2 urn cut-off wavelength array has a measured dark current

of 2 nA at 10 mV reverse bias voltage and at room temperature. At 150 K, the measured

dark current was < 25 fA at 10 mV reverse bias voltage. Figure 3.18 shows the dark

current current-voltage characteristics of the detector element at 300 K and at 150 K.

Each detector element has a measured capacitance value of about 15 pF at 10 mV reverse

bias voltage. The measured responsivity of the detector element as a function of

wavelength and temperature is shown in Figure 3.19. The quantum efficiency of each

element is greater than 70% at peak wavelength. As seen from Fig. 3.19, the internal

quantum efficiency is lower than the lattice matched detector quantum efficiency shown
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in Fig. 3.17. The decrease of quantum efficiency is due to the decrease in the minority

carrier life time. The minority carrier life time decreases with the increase of misfit

dislocations[55]. The cut-off wavelength decreases 1 nm per °C lower in temperature

from the room-temperature. This change in cut-off wavelength was due to the increase in

band-gap while lowering the temperature.

Figure 3.18 Dark current-voltage characteristics of 2.2 urn cut-off InGaAs detector.
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WAVELENGTH (NM)

Figure 3.19 Spectral response of 2.2 urn cut-off InGaAs detector.

3.4.3 In 0.82Ga0.18As Detector Results

The detector element of the 2.6 urn cut-off wavelength array has a measured dark current

of 40 nA at 10 mV reverse bias voltage and at room temperature. At 150 K, the measured

dark current was < 100 fA at 10 mV reverse bias voltage. Figure 3.20 shows the dark

current-voltage characteristics of the detector element at 300 K and at 150 K. Each

detector element has a measured capacitance value of about 15 pF at 10 mV reverse bias

voltage. The measured responsivity of the detector element as a function of wavelength

and temperature is shown in Figure 3.21. The quantum efficiency of each element is

greater than 55%. The lower quantum efficiency is due to the shorter carrier life

time[56][57].
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Figure 3.20 Dark current-voltage characteristics of 2.6 um cut-off InGaAs detector.
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As a result of the high shunt resistance, low dark current, these detectors

contributes minimum noise to the FPA. The high capacitance of the detector element is

not a concern, since each pixel cell of the multiplexer was designed with a differential

Capacitive Transimpedance Amplifier (CTIA) and Correlated Double Sampling (CDS)

circuit to compensate the noise due to the detector capacitance.

3.4.4 Radiation Hardness Testing Results of InGaAs Detectors

The effects of space radiation on InGaAs detectors with a cut-off wavelength of 2.6 urn

was measured using proton, gamma and electron radiation sources. The 2.6 urn cut-off

wavelength InGaAs detectors were chosen for this testing because of its lower band-gap

compared with 1.7 and 2.2 um cut-off wavelength detectors. The detectors were exposed

to radiation of continuous electron and gamma beams at the Lehigh University Van de

Graaff Radiation facility and proton beams at the Brookhaven National Laboratory's

Tandem facility. The 3 Mev High voltage Van de Graaff provided beams of electrons

which could be used directly or gamma rays from the electron beam brehmstrahlung[58].

The dark current of each detector was measured before and after the radiation exposure.

The radiation dose used was 5, 10, 15 and 20 Krads with a dose rate of 200 rad/min for

electron rays, 100 rad/min. for gamma rays. The dose rate for gamma rays was measured

with a Geiger counter.

The measured dark current results does not show any change in dark current up to

20 Krad of electron, gamma and proton radiation. Further increasing the dose to 2 Mrad
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of proton radiation, the dark current increased significantly. This increase in dark current

was attributed to the introduction of a defect level located in the band gap which acts as a

generation center [5 8] [59].



CHAPTER 4

DARK CURRENT ANALYSIS

4.1 Theoretical Analysis of Dark Current

The dark current in pn or pin junction diode under reverse bias condition consists of bulk

and surface components. The major bulk components are diffusion current (Jdif),

generation-recombination current (Jg_r), and tunneling current (Jtun). The surface

components consist of the surface generation-recombination current (Jsg) and the ohmic

conduction current (Johm). The latter is the dark current via shunt path formed at the

semiconductor-dielectric interface. Generally, the diffusion current is dominant at high

temperature or low reverse voltage. The total dark current (density) of diode is expressed

as the sum of them

Jclif Jg—r ftun Johm Jsg 	 (4.1)

Since every component has different temperature and voltage dependence,

measurements of dark current at various temperatures and voltage help to determine the

contribution of each component to the total dark current. In the case of InPfInGaAs

hetero-structure diode, additional current related to the hetero-interface may be one of the

component of the dark current.

Diffusion current

The diffusion current is due to minority carriers diffusing away from or towards the

junction in the diode neutral regions. For large p+-n diodes, namely when the diode size

is much longer than the diffusion length of minority hole in the n region, with n region

43
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thickness larger than the minority hole diffusion length, the diffusion current density is

expressed as[21]

Jdif = Js [exp(q V / k T )— 1] (4.2)

where q is the elementary charge of electron, V is the applied voltage that is negative, k is

Boltzmann constant and T is the junction temperature. The saturation current density J 5

is given by

J's = q n i 2 DP / n Lp (4.3)

where D and L represent the hole diffusivity and the hole diffusion length in the n

region, respectively. n is the equilibrium carrier density in the n region. The intrinsic

carrier density ni is

In Eq. (4.4), me and mh are the effective masses of electron and hole, respectively. h is

Plank constant and Eg is the band gap energy.

Generation -recombination current

The bulk generation-recombination current is due to generation and recombination of

electron-hole pairs in the diode depletion region. The generation-recombination current

density is approximately given by[60]

= (qn i Wit eff )[exp(qVi 2 k T	 l]
(4.5)

where teff is the effective carrier lifetime. The generation-recombination current is

proportional to the depletion width W that for an abruptp+-n junction is given by
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W= [— 26(V— Vbi)/ gn] 112	 (4.6)

and for graded junction

W= [— 126(V— Vbi )/qa ]1/3 	 (4.7)

where 6 is the semiconductor dielectric constant, Vbi is the built-in potential and a is the

impurity gradient. In this calculation the junction is considered as an abrupt junction. The

built-in potential is

(k T N N
V 	 in 	A Dbi 

q 	 n
(4.8)

Tunneling current

For band-to-band tunneling in a direct band-gap semiconductor, the tunneling current

density is given by[61]

where Fm is the maximum electric field which for an abrupt p+ -n junction is given by

Fm = [— 2qn(V— Vbi )/6 1/2 	 (4.10)

The parameter 1 depends on the detailed shape of the tunneling barrier and 42 / 3 for

parabolic barrier and is 7E / 2q2 for triangular barrier.

Ohmic conduction current

When the diffusion and generation-recombination current are low, usually at low

temperature, the ohmic conduction current is observed. The ohmic conduction current is

given by
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Johm 	 V/ Reff 	 (4.11)

where Reff is the effective resistance and

Reff = Roo eXP( Ea k T)	 (4.12)

where Ea is the thermal activation energy and R oo is the constant.

Surface generation -recombination current

The dark current due to the surface generation-recombination current is expressed as

Jsg ccVbi exp(— ES 2 k T) (4.13)

The surface generation-recombination current is the function of the surface recombination

velocity, which depends on the surface or interface condition, pinning of surface Fermi-

level, etc. The surface recombination rate corresponds to WIr eff in the expression of the

bulk generation-recombination current density.

4.2 Interpolation of Parameters from Lattice
Matched (In n.53Gao.47As) Photodetector

The unknown parameters, which correspond to fitting parameters, are D p/Lp for the

diffusion current, teff for the generation-recombination current, i3 for the tunneling

current, and Rco and Ea for ohmic conduction current. The proportional constant of the

surface generation-recombination current is also unknown. Since the temperature and

applied voltage dependencies of the surface generation-recombination current is almost

same as the bulk generation-recombination current, the surface generation-recombination

current can be included to the bulk generation-recombination current.
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To obtain the unknown parameters, the dark current of a lattice matched (1.7 urn

cut-off wavelength) InP/InGaAs/InP photodetector with 100 p.m diameter (0551-149) on

a thermoelectric cooler was measured at various temperatures. The photodetector with

extremely low dark current was selected. The InGaAs active layer is assumed to be

perfectly lattice matched to the InP substrate (x = 0.468) and has a band gap energy of

0.75 eV. The temperature dependence of the InGaAs band-gap energy is approximately

E (T)= E (300K )+ 3.266 x 10 -4 (T- 300) (4.14)

The effective mass of electron and hole, and dielectric constant of the lattice

matched InGaAs were interpolated using the values of GaAs and InAs. The values are

me = 0.0436 mo, mh = 0.437 mo, s = 13.9 co. The carrier concentration in the InGaAs

layer is 1.8 x 1020 m-3 . The donor concentration of Zn diffused area was assumed as ND

= 2.0 x 1025 m-3 . The dark current density obtained from the above expressions was

converted to the dark current using the junction area of 1.0 x 10 -8 m2 .

As a result of the fitting to the experimental results, the parameters listed below

were determined.

DPILP = 5.8 m2 s-1

Teff = 9 x 10 -4 s
= 1.88

Roo = 8.0 x 104 S./ m-2
Ea = 8.0109x 10 -20 C (0.50 eV)

Figure: 4.1 shows the reverse voltage dependence of the dark current. The

measured data and calculated values are indicated by markers and solid lines,

respectively. The calculated values are well consistent with the measured dark current.
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Each dark current component is also calculated separately and is shown in Fig. 4.2 (a).

The dark current at 298.4 K temperature is dominated by the diffusion current at low

reverse voltage region. The generation-recombination current, however, is dominant at

243.14 K as in Fig. 4.2 (b). Since temperature dependence of the diffusion current is

much stronger than that of the generation-recombination currents, the generation-

recombination current is dominant at lower temperature and the diffusion current is

dominant at higher temperature region. Apparently the ohmic conduction current is small

and negligible when the reverse bias voltage is less than several volts. Even when the

parameter (3 depending on the tunneling barrier shape is 1.11 that corresponds to

triangular tunneling barrier, the tunneling current is negligible as compared with the

diffusion and generation-recombination current, because the carrier concentration of the

InGaAs is low. This is also expected from the comparison between the breakdown

voltage and the band gap energy. The breakdown voltage (the reverse voltage when the

dark current is about - 5 [IA) was about - 45 V at 298.4 K and - 49 V at 243.14 K. For the

junction with the breakdown voltage Vb in excess 6E g/q, the breakdown is caused by the

avalanche multiplication mechanism. When the breakdown voltage is less than 4Eg/q, the

breakdown can be considered due to the tunneling effect. In the case of measured diode

the breakdown voltage is about 60 times as large as Eg/q. While parameters DpILp and T

eff have also relatively weak temperature dependencies precisely, they were neglected.
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4.3 Simulation of Dark Current in 2.2 and 2.6 um Cut-off InGaAs Detectors

The estimation of the dark current of In 0.72Ga0.28As (2.2 pun) and In0.82Ga018As(2.6pm)

photodetector was carried out using the fitting parameters mentioned above. To calculate

the dark current, the band-gap energy and accompanied parameters such as the effective

masses of carrier were changed but the parameters used in the calculation are listed in

Table 4_1_

cut-off wavelength detectors as a function of carrier concentration of the n layer (InGaAs

absorption layer). The calculation was carried out at -10 mV. The result shown in Fig.

4.3(a) for 2.2 um cut-off photodetector shows that the dark current do not follow exp(- E

/ kT) or exp(- E / 2kT) when the carrier concentration of the absorption layer is higher

than 1.5 x 10 17 cm-3 . Because the tunneling current is dominant at lower temperature

region where the diffusion and the generation-recombination current are relatively small,

the dark current is saturated. This is caused by the relatively weak temperature

dependence of the tunneling current compared with the other dark current components. In

the case of channel 8 photodetector indicated in Fig. 4.3(b), this phenomenon is much
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clear. The dark current at 235 K (1000/T = 4.26) is merely one order of magnitude

smaller than that at 300 K (1000/T = 3.33). Although the detector with the lower carrier

concentration in the absorption layer has higher dark current at 300 K, the dark current

ratio between 300 K and 235 K is large. On the other hand, the detector with higher

carrier concentration in the absorption layer shows very low dark current at 300 K, but

the large reduction of the dark current by the decreasing temperature is not expected.

For 2.6 um cut-off photodetector with carrier concentration of InGaAs absorption

layer as 1.0 x 10 17 cm-3 , the temperature dependency of each dark current component is

indicated in Fig. 4.4. At the temperature above 240 K the diffusion current is the

dominant component in the total dark current and is proportional to exp(- E / 21(T). The

tunneling current is principal at the temperature below 190 K. The dark current is almost

constant at the temperature region, because the temperature dependence of the tunneling

current is very weak.

The carrier concentration dependency of dark current at 300 K, 235 K and 150 K

is shown for 2.2 urn cut-off photodetector in Fig. 4.5 (a) and for 2.6 urn cut-off

photodetector in Fig. 4.5 (b). The dark current has a minimum that depends on the

temperature. The dark current is the lowest as the carrier concentration in the absorption

layer is about 1.5 x 10 17 cm-3 for 2.2 urn cut-off photodetector at 300 K. However the

carrier concentration is too high to get the lowest dark current at 235 K or 150 K. It is

apparent from Fig. 4.5 (a) that the carrier concentration of the absorption layer should be

0.8 - 1.0 x 10 17 cm-3 to obtain the lowest dark current at the operating temperature of

235 K.
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The contribution of each component of dark current to the total dark current is

considered. Fig. 4.6 shows the carrier concentration dependencies of the dark current

components for 2.6 um cut-off photodetector. Fig. 4.6(a) corresponds to the temperature

of 300 K and 4.6(b) for 150 K. As in the case of 1.7 urn cut-off photodetector, the

diffusion current is dominant at 300 K and the generation-recombination current is

dominant at 150 K. When the carrier concentration is higher than about 1 x 10 17 cm-3 ,

the tunneling current is the principal component at both temperatures.

The calculation under estimates the total dark current for both 2.2 um and 2.6 um

cut-off photodetector at room temperature. One of the reason may be that the fitting

parameters of lattice matched (1.7 urn cut-off) photodetector (D p/Lp and 'reff ) are

different from the 2.2 urn and 2.6 urn cut-off photodetector. Another reason may be that

the carrier concentration dependencies of Dp/Lp and Leff are neglected. High

concentration of deep levels induced by defects in the absorption layer of 2.2 um and 2.6

um cut-off detectors should be considered in the calculations. The generation-

recombination current is much higher than the calculated value because deep levels

reduce the effective carrier lifetime.
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Figure 4.2(a) Simulated results of dark current contributions as a function of reverse
voltage at room-temperature.



Figure 4.2(b) Simulated results of dark current contributions as a function of reverse
voltage at 243 K.
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T dependence of Id at -10 mV (2.2 urn)
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figure 4.3(a) Simulated results of dark current as a tunction or temperature and
In072Gao.,8As layer (2.2 urn cut-off) doping.



T dependence of Id at -10 mV (2.6 urn)
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Figure 4.3(b) Simulated results of dark current as a function of temperature and
In0.82G49.18AS (2.6 um cut-off) layer doping.



T dependence of Id components for 2.6 um PD

57

Figure 4.4 Simulated results of dark current contributions as a function of temperature for
In0.82Ga0.18As (2.6 um cut-off) detector.



N dependence of Id (2.2 urn)
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Figure 4.5(a) Simulated results of dark current as a function of temperature and
In0.72Gao.,8As (2.2 urn cut-off) absorption layer doping.



N dependence of Id (2.6 urn)
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Figure 4.5(b) Simulated results of dark current as a function of temperature and
1110.82Ga0.18As (2.6 urn cut-off) absorption layer doping.
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Figure 4.6(a) Simulated results of dark current components as a function of In 0.82Ga0.18As
(2.6 urn cut-off) absorption layer doping at 300 K temperature.
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Leakage current of 2.6 um PD at 300 K
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Figure 4.6(b) Simulated results of dark current components as a function of In0.82Ga0.18As
(2.6 um cut-off) absorption layer doping at 150 K temperature.



CHAPTER 5

FOCAL PLANE ARRAY (FPA) ARCHITECTURE

5.1 Focal Plane Architecture

The Focal Plane Array arrangement with the detector element and multiplexer metal pads

is shown in Fig. 5.1. The two multiplexers are inter-connected through a hybrid

multilayer ceramic with isolated and shielded power lines. The two multiplexers and the

detector array are integrated in a 24 pin dual-in-line package. The 1024 detector elements

and two 512 element (left and right) multiplexers were bonded using a manual wedge

bonder.

The focal plane arrays were integrated with 1.7 i_Lm, 1.9 inn, 2.2 pm and 2.6 p.m

cut-off wavelength InGaAs detectors and the Si read-out multiplexer. The hybrid focal

plane arrays were tested in two operating modes. The first mode is without using the non-

uniformity compensation and the second with the non-uniformity compensation. The

output from the focal plane array was digitized using 16 bit-A/D converter and the data

was acquired using a 16 bit frame grabber. The A/D converter was opto-isolated from the

frame grabber for better noise immunity.

5.2 Focal Plane Array Integration and Testing

The Si read out multiplexer and 1024 element InGaAs/InP detector arrays are integrated

in a 22 pin Dual In Line (DIL) package. The interconnection from the left multiplexer to

right multiplexer was done by designing a multi layer hybrid ceramic with 9 layers. The
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AC and DC power lines were isolated for better noise immunity. The detectors are

connected to the multiplexer contact pads using advanced wedge bonding technique.

A test set up was designed and developed to test the Si read out multiplexer and

completed assembly of Focal plane Arrays. A block diagram of the multiplexer test setup

is shown in Fig. 5.2. As shown in Fig. 5.2, the test setup consists of a control module and

driver board module on a bench top and connect the two together. Wafer level testing was

done using a probe card and connecting the probe card to the driver board module. The

master timing sequence board contains the Master Timing Sequencer (MTS) that
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generates the FPA timing relationship in accordance to the requirements of the operation

of the FPA. The control module implements the timing relationships required by the

operational modes. Opto-isolation is provided between the driver board and the digital

out put port. The driver board buffers the timing pulses to the focal plane array and

develops the low noise biasing circuits for the focal plane array. In addition a unity gain

buffer is provided on this board for the output video. The analog processing and A/D

converter board contains the HI/LOW gain amplification, Sample/Hold, buffered S/H

video and AID converter. The power supply board contains the AC to DC linear power

supplies.

A block diagram of the sequence of the multiplexer control pulses generated by

the test setup is shown in Fig. 5.3. The clocks and other logic pulses are supplied to the

multiplexer by the clock generator board. These waveforms are shifted from 0 to 5 V rails

to -3V to 2V rails on the driver board.

Two different analog channels was provided prior to A/D conversion. LOW gain

was to match the dynamic range of the Focal Plane Array (0-2V) to the dynamic range of

the A/D converter. HIGH gain will add a factor of 10x to LOW gain. This is provided to

improve the signal to noise ratio for low level signals.

The A/D converter board provides 16 bit digitization of the multiplexer voltage

output. The integration time is coded during the blanking interval. This data, in addition

to the appropriate sync pulses are driven to the frame grabber in the host computer. The

digital data from the A/D converter is opto-isolated from the frame grabber.
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The frame grabber in the host computer allow the video output signal to be

acquired and stored in an ASCII file for later manipulation with a spreadsheet software

(MS Excel). The acquisition software interfaces libraries of functions written for the

acquisition board with a Microsoft C compiler.

The timing relationships for the clock pulses that run the Focal Plane Array are

developed in the MTS. A set of timing waveforms corresponding to mode of operation

with periodic uniformity correction will be used as the master timing generator. All the

Figure 5.2 Block diagram of the multiplexer test setup.
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The electro-optical test setup for the characterization of the completed assembly

of InGaAs Focal Plane Array is shown in Fig 5.4. The Focal Plane Array test setup

requires a temperature controller to control the operating temperature of the FPA from

300 K to 77 K, Ln2 dewar to cool the FPA to 150 K, a sorption pump to pump the dewar

vacuum to < 10' Torr and a black body radiation source to test the optical performance of

the focal plane array[62]. The electrical schematic of the FPA test setup is similar to the

multiplexer test setup shown in Fig. 5.2.

Figure 5.3 Functional block diagram of the multiplexer test setup.
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Figure 5.4 Block diagram of the InGaAs Focal Plane Array test setup.



CHAPTER 6

READ-OUT ELECTRONICS

This chapter describes the design of a 512-element CTIA multiplexer developed for

readout of an array of 1024-element InGaAs detectors for operation with a bias voltage in

the range of ±10 mV[63]. This multiplexer can be operated with a left-to-right or right-to-

left scan, a non-destructive sequential readout with line-by-line selectable detector reset,

and with or without input-MOSFET-threshold uniformity correction. The optical

integration time in the range from 20 ms to 10 min is selectable in multiples of 20 to 40

ms line times. The multiplexer cell architecture includes a differential CTIA with open-

loop gain of about 5000, a CDS circuit, and two unity-gain buffer amplifiers. The CTIA

integrator can be operated with a feedback capacitance of 0.8 pF or 2.4 pF for saturation

charge signal of either 107 and 3x107 electrons/pixel, respectively. The multiplexer was

designed for operation with power dissipation of less than 10 mW, with maximum non-

linearity < 0.1%, and for readout noise of < 400 rms. e -/p for Qmax=107 e-/p and 600

rms. e-/p for Qmax=3x107 e-/p when operating with InGaAs detectors having

capacitance of 12 pF and shunt resistance in the range of 10 11 to 10 13 ohms. The

multiplexer is fabricated with 1.25-pm N-well radiation hard Honeywell CMOS process

(RICMOS III) and measured performance results are presented.

68
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6.1 Introduction

The dark currents of InGaAs detectors at a bias voltage of 10 mV are in the ranges[64] of

0.8 to 1.0 fA at 200K for 1.7 urn cut-off, 2.0 to 50 fA at 150K for 2.2 urn cut-off, and 7.0

to 150 fA at 150K for 2.6 um cut-off wavelength, corresponding to detector shunt

resistanceis of > 10' ohm for 1.7 urn cut-off, 5x10' 2 to 2 x10" ohms for 2.2 um cut-off,

and 1.5x10' 2 to 6.6x10' ohms for 2.6 urn cut-off wavelength. To achieve the required

sensitivity and dynamic range, a saturation charge signal (QMAX) has been selected as

3x10 7 electrons/pixel for 1.7 urn cut-off detectors and 10 7 electrons/pixel for 2.2 and 2.6

urn cut-off wavelength detectors. The Multiplexer readout noise should not exceed 400

rms. electrons/pixel for QMAX of 10 7 electrons/pixel and 700 rms. electrons/pixel for

QMAX of 3x107 electrons/pixel, and the optical integration time, tin, has been selected to

be from 31.25 ms (one line time) up to 10 min. To obtain the required radiometric

accuracy, the InGaAs FPA should have non-linearity < 0.1% over full dynamic range and

pixel-to-pixel readout memory of 0.1%.

6.2 Performance and Design Specifications

The performance and design specifications of InGaAs multiplexer (MUX) for detectors

with cut-off wavelengths of 1.7, 2.2 and 2.6 um are summarized in Table 6.1. The above

performance goals and design specifications are reflected in the design of the multiplexer

described in section 6.3.



< 25 m%V for tint = 31.25 ms

< 400 rms e-/p for Qmax = 10 7 e- /p

< 700 rms e-/p for Qmax = 3x10 7 e-/p

< 0.1% over the dynamic range

< 0.1%

Not including the
co npensation noise]

9 to 15 Krad (Si) total dose and immunity to latch-up for single event upset

Table 6.1 Performance and design specifications of InGaAs multiplexer.
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1. IR detector array to be readout

2. Multiplexer detector pads

3. FPA Readout organization

4. Scan direction control

5. Package

6. Multiplexer readout modes

7. Optical integration time, t int

8. All clock voltages and
power supplies

9. CTIA power supply rejection ratio

10. Detector (photodidode) bias voltage

11. Saturation charge signal, Qmax

12. Operating temperature

13. Temperature stability

14. Power dissipation

15. Multiplexer readout noise

16. Nonlinearity

17. Memory between successive pixels

18. Radiation hardness

1024-element InGaAs with 1.7, 2.2, and 2.6 um t ut-off wavelength, C D=16pF and
'dark =1.0 -150 fA at 10 m V bias

30 x 90 um on 50 um centers

Two 512-element CMOS CTIA multiplexers (odd and even) with CDS at each pixel
and interlaced readout

Single multiplexer with electrically controllable left-to-right or right-to-left scan

24-pin dual-in-line (DIP) with ceramic lead insert

Non-destructive sequential (serial) detector readout with line-by-line
selectable detector reset (1) with or (2) without uniformity correction

31.25 ms to 10min - selectable in multiples of line time of 31.25 ms

0 to 5 V with detector substrate (DSUB) nominally at 3V as the analog signal reference, or
-3V to 2V with DSUB as the reference ground

-1000:1

0 Volts nominal with diode-to-diode bias variation of 5 2mV adjustable from -10 to +10 mV
by -5 to 5V through 500:1 attenuator with respect to DSUB

10 7 and 3x10 7 e-/p selectable by external control

150 K for Channel 7 and 8 and 200 K for Channel 6

Maximum obtainable (TBD experimentally)

6.2.1 MUX Architecture

The 1024-element InGaAs near infrared detector arrays, with 1.7, 2.2, and 2.6 p.m cut-

off wavelengths are readout by two 512-element CMOS CTIA multiplexers (ODD and

EVEN) with correlated-double-sampling (CDS) circuit at each pixel location.

The odd and even multiplexers are designed for operation with an interlaced

readout when the outputs of both multiplexers are connected to the same output terminal.
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6.2.2 MUX Scan Control

The scan direction of the 512-element multiplexer is electronically controlled to enable

the scan direction to go from 1 to 512 element for ODD multiplexer or from 512 to 1 for

EVEN multiplexer. This control is accomplished depending to which MUX pad (ODD or

EVEN) the line read pulse is connected.

6.2.3 24-pin Package

The 1024-element InGaAs detector focal plane assembly with ODD and EVEN MUX

readout is bonded in a 24-pin DIP package with a thick-film multilayer substrate for in-

package connections.

6.2.4 Modes of Operation

The multiplexer can be operated either with (COMP) or without (NOCOMP)

compensation for MOSFET threshold voltage (VTH) of the CTIA. The third mode of

operation is a stored compensation (STORECOMP). In this case the MOSFET threshold

correction is performed once and is stored for an extended time (hours or days). The

normal mode of operation of the multiplexer consists of a non-destructive sequential

(serial) readout with line-by-line selectable detector reset. In this case, the optical

integration time, tint, is selectable in multiples of 31.75 ms line times.
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6.2.5 Optical Integration Time

To allow optical integration time, tint, of up to 10 min., the CTIA of the MUX input

circuit has been designed with an open-loop gain of 5000. Thus the effective time

constant of the detector input terminal is

= 5000. C •r DET	 fd RD

where Cfd is the CTIA feedback capacitance of 0.8 or 2.4 pF and

RD is the detector shunt resistance near zero bias of 10 11 to 10 13 ohms.

Assuming RD=10 12 and Cfd=0.8 pF the value of TDET is 4000 s.

6.2.6 Clock Voltages and Power Supplies

The multiplexer has been designed for operation with digital (VDD and VSS) and analog

(AMPHI and AMPLO) power supplies as well as all external clock voltages of 0 to 5V

with the detector substrate (DSUB) nominally at 3V. However, all material presented in

this paper assumes that the multiplexer is operated with a nominal low voltage of -3V and

a nominal high voltage of 2V with reference to the detector substrate voltage, DSUB.

6.2.7 Detect Bias Voltage

The multiplexer has been designed to operate the InGaAs detector array at zero or near

zero bias voltage. An externally controllable detector bias voltage from 0 to ±10 mV is

provided via 500:1 attenuator for a ±5 V external control voltage (FINEBIAS).

(6.1)
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6.2.8 Power Supply and FINEBIAS Stability

Assuming a total input capacitance of 16 pF and CTIA feedback capacitance Cfb=0.8 pF,

a power-supply-induced CTIA input voltage of 1.0 11V is expected to result in MUX

output fluctuation corresponding to 100 electrons. Therefore, in order to maintain power

supply induced noise not exceeding 100 rms. electrons/pixel, the design goal of the

multiplexer was to achieve a power supply rejection ratio (PSRR) of 1000. However, the

initial tests of the multiplexer indicate a low frequency PSRR of 100:1 and less than 10:1

at clock frequency of 18 kHz. But an effective PSRR is provided for the control of the

detector bias voltage by 500:1 attenuation of external FINEBIAS control voltage.

6.2.9 Saturation Charge Signal

The multiplexer has been designed for operation with saturation charge signal, Qmax, 10'

or 3X10" electrons/pixel. For a maximum sensing voltage of 2V, a fixed CTIA feedback

capacitor of 0.8 pF was used and an additional capacitor of 1.6 pF that can be added

under an external control.

6.2.10 Operating Temperature and Temperature Stability

The operating temperature is 150K for 2.2 and 2.6 um cut-off wavelength detectors and

200K for 1.7 urn cut-off wavelength detectors. Temperature stability, AT, requirement

represents a parameter that still has to be determined experimentally. The multiplexer,

however, was designed with an objective to achieve a maximum obtainable temperature

stability.
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6.2.11 Power Dissipation

The total power dissipation is about 18 mW for two multiplexers operating at the

minimum integration time of 31.75 ms (i.e. requiring continuous clocking).

6.2.12 Readout Noise

As illustrated in Table 2, the readout noise of < 400 and 700 rms. electrons/pixel is

expected for operation without compensation for CTIA non-unifotmityis for QMAX of
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However, for operation with compensation for CTIA non-uniformityis, the MUX

readout noise has an additional noise component that is linearly dependent on the detector

resistance, RD, and optical integration time, tint, and can be significant for RD < 1 0 12 ohms

and tint > 1.0 s.

The additional compensation noise, however, could be avoided by operation in a

"stored compensation" mode. In this case a compensation cycle is followed by a

correction for the fixed pattern noise induced by the operation of the multiplexer for

hours or days with the compensation voltage stored on the CoFFsET capacitors (Fig. 6.1).

6.2.13 Non-Linearity

The design goal was to achieve a linear operation over full signal range with non-linearity

of less than 0.1%. To obtain this linear capacitor process was developed (see Section

6.5.2). The measured data shows a non-linearity of < 0.3%.

6.2.14 Pixel Memory

The slowest part of the multiplexer readout is the output buffer that has a slew rate of

0.75 V/ps and time constant of 0.133 ps. These parameters should assure that the MUX

output bus will decay between pixel readouts to less than 0.1%.

6.2.15 Radiation Hardness

To achieve the radiation hardness requirement of 9 to 15 Krad (Si) total dose and

immunity to latch-up for single event upset the multiplexers were fabricated by

Honeywell radiation-hard (RICMOS III) process.
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6.3 Design of the Multiplexer

6.3.1 General Description

The design of the multiplexer input circuit, i.e. a unit cell or a pixel cell, shown in Fig. 6.1

consists of:

(1) A capacitive transimpedance amplifier, CTIA, in the form of a differential opamp

with an open loop gain of about 5,000 at a bias current, IBIAs, of 2.0 1.1.A. As will

be explained in Sections 6.3.2 and 6.3.4, this CTIA can be operated with or without

uniformity compensation. The CTIA normally operates with a feedback capacitor

Cfb_i=0.8 pF but with HIC control voltage at AMPLO voltage (-3V) an additional

feedback capacitor Cfb_2=1.6 pF is added to increase the maximum charge signal

nominally from 10 7 to 3x107 electrons/pixel.

(2) A correlated double sampling (CDS) circuit with an unity-gain buffer No.1 before

the sampling switch and an unity-gain buffer No.2 after the sampling switch (or

transmission gate). The second buffer was introduced to remove the effect of

voltage feedthrough from the selected T1 MOSFET (see Fig. 6.3) to the sample-

and-hold capacitor, CS-H.

(3) A PFET buffered CMOS switch, SW9. As shown in Fig. 3, the above PFET, T1,

serves as an input transistor for a differential pair circuit configured at the

multiplexer output bus with a current mirror for compensation of the threshold

voltage, VTH, drop at the source of the T1 input PFET.

The combination of the CDS and a buffered sample-and-hold circuit at the pixel

cells allows non-destructive readout and line-by-line resettable operation with optical
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integration time adjustable in multiples of 31.75 ms line times. It should also be

mentioned that low noise readout from a large capacitance (14 pF) IR detector by a CTIA

• —•	 „

where:	 CL=28.7 pF is the CTIA load capacitance,
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CD=14 pF is the detector capacitance for 2.6 urn detector,

Cth=0.8 or 2.4 pF is the CTIA feedback capacitance, and

gm=10 ID=10 punhos is the transconductance of the input PFETs.

Since for normal closed loop operation CL=28.7 pF and during the CDS clamp

operation the effective CL=34.3 pF, the time constants for CTIA are 45 j_ts and 54 !is for

Cth=0.8 pF and 17 [is and 21 pts for Cth=2.4 pF. However, during the CTIA reset

operation the slew rate is:

ID 	1.01.L4	 1.0V

CL 	34.3pF 34.31,ts

and the time constant is

CL _ 34.3 pF	 3.4 pis
= 10/D 	10 x 1.011,4

For operation with a bias current IBIAs=2.0 gA, the total CTIA power dissipation

for two multiplexers is 10 mW.

The unity-gain buffers No.1 and No.2, shown in Fig. 6.4, were designed for

operation with IBIAs=0.51.1A and total power dissipation of 2.5 mW. The slew rate of the

slower unity-gain buffer No.1 is 1.0 V/24 pis, and time constant of 2.4 pts.

The selectable (gated) pixel output amplifier split between the pixel cell and the

multiplexer output bus, shown in Fig. 6.2, was designed with IBIAs=50 [LA. The

resulting total power dissipation for two multiplexers is estimated as 0.75 mW. Assuming

a total bus capacitance of 20 pF, the slew rate is estimated as 1.0 V/0.8 ps, and the time

constant as 0.08 ps.

(6.3)

(6.4)
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The unity-gain output buffer (Fig. 6.5) was designed for operation with

IBIAS= 150pA. This results in total power dissipation for the two multiplexers of 1.5

mW. Assuming an output capacitance of 100 pF, the slew rate is estimated as 0.75 Yips

and the time constant as 0.133

As illustrated in Fig. 6.1, the polarity of the linear capacitor has been chosen to

place the polysilicon gate (designated by the thicker terminal) at the critical high

impedance mode requiring low leakage current. The reversed biased N+ terminal is

shown as the thinner electrode.

6.3.2 Operation without Uniformity Compensation

This section describes the operation of the multiplexer without compensation for

MOSFET threshold voltage (VTH) non-uniformity at the CTIA. For this mode of

operation (Fig. 6.2) the PFET switch SW-4 is opened (for STORE=2V) and the plus (+)

input terminal of the CTIA is connected to the reference voltage by the switch SW5 (for

NOCOMP=-3V). The switch SW8 is kept opened (for COMP=-3V) and switch SW9 is

kept closed (for NORMAL=2V). Note, the switches SW8 and SW9 (shown in Fig. 6.5)

control the connection of the bias voltage for T8 and T9 NFETs to facilitate the operation

with uniformity compensation described in the next section. However, for operation

without uniformity compensation, the switch SW9 is kept closed while the switch SW8 is

kept opened. This keeps the NFET bias at the CTIA negative output potential (Out 2).

The critical waveforms for operation without uniformity compensation are shown

in Fig. 6.6. A read-reset cycle is started by closing switch SW8 with the SAMPLE pulse
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during the line blanking time, TBK. This operation stores the charge signals from the

previous line on the sample-and-hold capacitors, CS-H, and makes them available during

the line readout time, TRD. Note, that assuming a blanking time TBK=3.16 ms and line

time TL=31.75 ms, the available line readout time TRD=28.59 ms.

The next operation consists of closing the switch SW2 by application of RESET

pulse. At the end of the RESET pulse the CTIA feedback capacitance is reset to zero

voltage. Then at the end of the CLAMP pulse which clamps the series capacitance CS of

the CDS circuit to DSUB voltage, the kTC noise as well as other noise associated with

the resetting of the feedback capacitor Cth is stored with a reversed polarity on the series

capacitor CS. At this point a new optical integration time, ti nt, is initiated. Since all of the

CTIAs are reset simultaneously during the line blanking time, TBK, the minimum optical

integration time in this mode of operation is about one line time, TL, and the tint can be

externally controlled in multiples of TL. 1

Figure 6.6 also illustrates the non-destructive readout in which case the output of

the CTIA is sampled without resetting the CTTI and the CDS circuit.

6.3.3 Operation with Uniformity Compensation

To facilitate operation of the multiplexer with very low and nominally zero bias detector

voltage, the CTIA shown in Fig. 6.3 has been designed to be operated with periodic

I More precisely, the minimum value of tint is the line time minus the time from the end
of the SAMPLE pulse to the end of the CLAMP pulse.
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compensation for MOSFET threshold voltage non-uniformities. This feature is also

expected to improve the radiation hardness of the multiplexers.

correction.

The clock waveforms for operation of the multiplexer with MOSFET-threshold-

voltage uniformity compensation are shown in Fig. 6.7. In this mode of operation the

SW5 switch is open by external control voltage NOCOMP=2V. As in the case of

operation without uniformity compensation, the read-reset cycle in this mode of operation

is started by the SAMPLE pulse at the beginning of the line blanking time, TBK, that
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closes the SW8 PFET-NFET switch. This operation stores the charge signals from the

previous line on the sample-and-hold capacitors, Cs-H, for subsequent readout during the

line readout time, TRD.

The next sequence of events resets the CTIA feedback capacitors Cfb_i or Cfb-

1 4-Cfb-2 to zero volts (OV) and stores an off-set voltage on the COFFSET capacitor at the

positive (+) input to the CTIA. The above sequence of events is initiated by the following

clock pulses that can have the same starting time:

(1) The clock pulse RSTREF closes SW1 PFET switch and connects the negative

(-) input of CTIA to the reference voltage, REF. The generation of the detector

bias voltage, REF, is shown in Fig. 6.8.

(2) The RESET pulse closes SW2 switch and resets the feedback capacitors Cfb-1

or Cfb_i+Cfb_2 (for HiC=-3V) to zero volts.

(3) CTIA is reconfigured by switching the bias for NFET, T8 and T9 from

positive (+) output (OUT2) to the negative (-) output (OUT) shown in Fig.

6.3. This operation is accomplished by opening SW9 and closing SW8 switch

by COMP clock going positive (to 2V) and NORMAL clock going negative

(to -3V). The reconnection of the NFET bias is needed, since the CTIA shown

in Fig. 6.3. is not symmetrical and has rather low gain at the output terminal

OUT2 to which the gates of T8 and T9 load NFETs are normally connected.

(4) The generation of the off-set voltage at the COFFSET capacitor connected to

the positive input CTIA is accomplished by clock pulse STORE that closes

the SW4 switch. The above off-set voltage re-balances the operation of CTIA
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and will assure that the bias voltages of all IR detectors will be practically the

same.

(5) The generation of the CTIA off-set voltage is completed at the end of the

STORE clock at which time the SW4 is opened.

(6) Closing of SW9 switch and opening of SW8 switch at the end of clock pulses

NORMAL and COMP returns the CTIA to the normal internal bias

connection. It should be noted that the above two clocks are made to overlap

in order to prevent both switches from being opened at the same time. The

operation of uniformity compensation is completed when the SW1 switch is

opened by RSTREF returning to +2 V and the voltage REF is disconnected

from the negative (-) input of the CTIA.

(7) The resetting of the feedback capacitance Cth to zero volts is accomplished by

closing the SW2 switch by RESET clock pulse. It should be noted here, that

for operation with uniformity compensation illustrated in Fig. 6.7, the reset

pulse (solid line) should be applied after the compensation operation is

completed. However, it should also be desirable to precede this reset pulse by

another reset pulse shown in Fig. 6.7 as a dotted line. The function of the first

reset pulse is to preset the CTIA to the same initial condition.

6.3.4 Auto-Bias Generators

The auto-bias generator circuit shown in Fig. 6.8 provides the bias voltages for the

current sources of all analog circuits. Using appropriate current mirrors, this circuit
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assures that the generated bias voltages track together and that their respective current

sources are effectively functions of only one reference current. This reference current of 2

j.tA for operation at 150K should be produced by connecting the AUTOBIAS and

AMPBIAS terminals to AMPLO voltage while the ATBIAS terminal is left floating. The

terminal ATBIAS was provided possible adjustment of the reference current.
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Figure 6.8 Auto-bias generators.

In order to gain flexibility for controlling the PCASCODE bias voltage, an

independent control of the PCASCODE bias voltage is provided by AMPBIAS and with

a possibility for application of a bias current to the CASBIAS terminal.

The auto-bias circuit in Fig. 6.8 also generates the reference voltage REF which

determines the bias voltage for IR detectors. During "normal" operation of the CTIA as a

detector current integrator, a voltage REF applied to the positive CTIA input maintains

the detector bias approximately at this fixed voltage, provided that the CTIA is in

balance. Otherwise any effective imbalance between the negative and the positive
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terminals ( Fig. 6.1) is expected to result in a corresponding change of the actual detector

bias voltage.

To obtain an externally controllable ±10 mV variation of the detector bias voltage,

the auto-bias circuit on the left side of Fig. 6.8 provides a 500:1 polysilicon-resistor

attenuator. For an external FINEBIAS in the range of +5V to -5V.

6.3.5 Scanning Shift Register

A bidirectional shift register for generation of the select pulses (SEL1, SEL2...) for

scanning the multiplexer unit cell on the output bus is achieved by the following two

external clocks:

(1) CLOCK that represents a continuous external clock providing the pixel timing

for reading out the output of the multiplexer, and

(2) LINE READ pulse applied either to the ODD or EVEN pad that determines

the number of clock pulses forming the internal clock for scanning the

bidirectional shift register.

6.3.6 Connection and Operation of ODD and EVEN Multiplexers

Figure 6.9 shows the connections of two 512-element multiplexers for serial scanning of

1024-element linear detector array. As shown in these figures, the outputs of two registers

are connected in parallel while the line read pulse, that determines the number of clock

pulses applied for scanning the multiplexer pixels, is bonded to either ODD or EVEN

pad. Thus MUX1, with the LINE READ applied to the ODD pad becomes the ODD

multiplexer and MUX2 with the LINE READ applied to the EVEN pad becomes the
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EVEN multiplexer. The ENABLE signals of MUX1 and MUX2 are 180° out of phase, so

there is no signal contention at the output.

Figure 6.9 Output connection of ODD MUX and EVEN MUX.

6.4 Multiplexer Chip Layout

6.4.1 Main Features of the MUX Chip

The chip size of the multiplexer corresponds to 26.4 x 6.6 mm2 . A schematic sketch of

the multiplexer chip is shown in Fig. 6.10. This figure illustrates the general approach for

the layout of the MUX chip and the locations of all of the pads that need to be bonded.

On the left of the MUX chip there are 512 x 90-[im pads on 50-tim centers for

bonding of the InGaAs detectors.
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The major area of the MUX chip is used for the pixel cells. A schematic

connection of the pixel cells and their arrangement is shown in Fig. 6.10. Because of the

relatively large size of the MOSFETs of the CTIA and the other opamps, the MUX pixel

cells are staggered in groups of five cells. This gives a more efficient layout by allowing

the pixel cells to extend 250 gm in the vertical direction (width). The horizontal

dimension of these cells (length) is 1060 gm.
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Figure 6.10 Schematic of the MUX chip layout.
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At this point it might be noted that the MUX scanning shift register has been laid

out on 50-pm centers. The size of the shift register stage (including the master and slave

flip-flop) is 50 x 530 pm2 .

Other parts of the MUX chip include the auto-bias generators, internal clock

generators, and connection buses to the detector pads shown on the left and to MUX pads

shown on the right side of the chip All external control clocks have on-chip buffers.

6.5 Wafer Fabrication

6.5.1 Wafer Processing

The multiplexer was fabricated by 1.25 gm radiation hardened N-well CMOS (RICMOS

III) process at the Solid State Electronics Center, Honeywell, Plymouth MN, under the

general supervision of Clifford Sandstrom. This process used 15 mask layers including

the implant mask for linear polysilicon-N+ capacitors. Five monitor test devices were

measured by Honeywell for each wafer. The results of several key parameters are listed

below.

1. Gate threshold voltage, VTN, for NMOS FET with W/L=10/1.2 gm is about

+1.2V with st. dev. of 0.6 to 2.2%.

2. Gate threshold voltage, VTp, for PMOS FET with W/L=10/1.2 gm is about -

0.9V with st. dev. of 0.6 to 4.0%.

3. Field threshold voltages VFTN and VFTp for NMOS and PMOS FETs with

W/L=100/2.6 pm or +20V and -20V, respectively.
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4. kN (11C. / 2) for NMOS FET with W/L=100/10 pm is about 56 µA/V2 with

st. dev. of 1.2 to 2.7% for different wafers.

5. kp ( PLC. / 2) for PMOS FET with W/L=100/10 pm is about 18 µA/V2 with st.

dev. of 4 to 9% for different wafers.

6.5.2 Process for Linear Capacitors

The Honeywell radiation-hardened CMOS process used for fabrication of the InGaAs

multiplexers did not include linear capacitors. To obtain the capability to fabricate linear

capacitors with large capacitance per unit area, Honeywell RICMOS-III process was

optimized with N+ implants for fabrication of linear capacitors in the form of polysilicon

gates on N+ diffusions. A cross-section of such a capacitor is shown in Fig. 6.11. As

illustrated in this figure the linear capacitor has a polysilicon gate as one electrode and a

N+ diffusion implant as the other electrode that in turn can be contacted by the source-

drain N+ diffusion. The spacing between the two electrodes is formed by the channel

oxide that on the p-type substrate would be 250 A.

Figure 6.12 shows the results of an experiment for optimization of the process for

linear capacitors illustrating the trade-off between linearity (ACox/Cox avg) and

capacitance per unit area (Cox avg)• * The value of ACox was determined as Cox max -

Cox min measured from -2.0V to +2.0V between the gate and the N+ terminal with the

substrate floating and dividing by a factor of 2, i.e. ACox= (Cox max -Cox min)/2. Nine
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wafers were used for the experiment summarized in Fig. 6.12. Three groups of three

wafers each were exposed to phosphorous implants 5E14, 1E14, and 2E15, all at 60 kV.

These wafers were then subjected to three types of 550°C and 850°C anneals before

proceeding with the standard process steps.

To maximize linearity, the linear capacitors were fabricated with Cox of

nominally 0.8 pF/p.m2 that according to the data in Fig. 6.12 corresponds to non-linearity

of less than 0.08% for +2.0V or -2.0V range. In this case a phosphorous implant of 1E15

at 60 KeV was followed by N2 anneals of 1.0 hr at 550°C and 20 min at 850°C before

proceeding with the standard process.

Figure 6.11 Cross-sectional view of linear capacitor.

* This study was done by Jeff Sather, Gordon Show, and Terry Fabian of Honeywell Solid State
Electronics Center, Plymouth, MN.
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Figure 6.12 Tradeoff of non-linearity Vs capacitance for polysilicon-on N+ capacitors.

6.6 Testing and Performance of the Multiplexers

6.6.1 Pretesting of the MUX

As shown in Fig. 6.1, the multiplexer chip is provided with two inputs for pretesting the

operation of the multiplexers on the wafer or in a package without IR detectors. One way

to accomplish this is to apply a pulse QTEST to the 60 fF test capacitors. This pulse will

injects essentially the same test charge to all CTIA integrators in parallel and could be

used to determine the charge-to-voltage transfer characteristics of the multiplexer.

Another way to test multiplexer operation is to study the response of the MUX to

the same signal applied to all CTIA inputs. This can be accomplished by applying a

voltage VTEST to the drain and a voltage TESTB to the gate of a minimum size PFET
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connected to the input of the CTIA integrator. This test can be used to measure the

uniformity and off-set threshold of the MUX pixel cells.

6.6.2 Waveforms of Clock Pulses for Operation of the MUX

Figures 6.13, and 6.14 illustrate a proposed set of external clock waveforms used for

operation of the MUX with 31.75 ms line time, TL, 28.59 ms read time, T read, and 3.16

ms blank time, Tbiank. For this operation the external clock pulse, CLOCK, has a period

of 55.5 1.1s, a duty cycle of 50%, and a frequency of 18.02 kHz. The external clock

waveforms for two modes of operation of the MUX are illustrated in Figs. 6.13 and 6.14.

Figure 6.13 Clock waveforms for operation with periodic non-uniformity correcion.
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6.6.2.1 Operation with Compensation for Non-uniformity: Figure 6.13 illustrates the

external clock waveforms for operation with non-uniformity compensation. It should be

noted that the optical integration time, tint, is initiated at the end of the CLAMP pulse and

is terminated at the end of the SAMPLE pulse.

The waveform of the RESET clock is in the form of two pulses. The first pulse

resets the feedback capacitor, Cth, to zero volts before the compensation cycle is started.

The second RESET pulse resets Cth again to make sure that no charge signal is present

on Cfb at the beginning of the new optical integration time.
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6.6.2.2 Operation without Compensation for Non -uniformity: Figure 6.14 illustrates

the clock waveforms for operation of the MUX without non-uniformity compensation.

Comparison of Figs. 6.13 and 6.14 shows that for this mode of operation external clocks

RSTREF, COMP, NORMAL, and STORE assume constant voltages corresponding to

their values during the optical integration time in the case of Fig. 6.13. However, the

NOCOMP voltage that connects the positive CTIA input to REF keeps the SW5 switch

opened in the case of operation shown in Fig. 6.13 while it keeps the SW5 switch closed

for the case in Fig. 6.14.

At this point it should be added that (as explained in Section 6.6.3) a RSTREF

pulse is needed for QTEST input. Furthermore, there is also a possibility that RSTREF

together with the second RESET pulse (shown in Fig. 6.13) may also improve the

operation for the NOCOMP mode. Therefore, the second version of the clock waveform

for the NOCOMP mode include the dotted waveforms for RESET and RSTREF clock

pulses.

6.6.2.3 Operation with Stored Non-uniformity Compensation: The kTC noise

associated with the non-uniformity-correction-offset voltage results in a fixed pattern

noise (FPN) due to variation of the detector bias voltage that changes with each

uniformity correction. This noise component may be appreciable for detectors with

relatively low shunt resistance of less than 10 12 ohms. However, due to a very low

leakage current of the COFFSET node for operation at 150K and 200K, the uniformity

correction may be performed only once and stored for hours or even days. This mode of
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operation is referred to as stored uniformity compensation (STORECOMP). In this case a

single uniformity correction clock sequence such as shown in Fig. 6.13, is followed by

operation without uniformity compensation (NOCOMP) with clock waveforms such as

shown in Fig. 6.14 except that the NOCOMP voltage is maintained at +2V to keep the

switch SW5 (see Fig. 1) open. Finally, the compensation-induced FPN can be removed

now by periodic external two-point uniformity corrections (for offset and gain) that

would be repeated after each uniformity correction.

6.6.3 Operation of the MUX

The operation of the fabricated multiplexers was demonstrated using a specially

constructed MUX/FPA tester with digital power supplies VDD = +2V, VSS = -3V, GND

= OV and analog power supplies AMPH1 = +2V, AMPLO = -3V, and GND = OV (direct

or buffered).

To minimize readout noise, the tester was made with opto-isolated links between

the clock logic board and the clock drivers and between the output of 16-bit A/D

converter and the PC for data acquisition.

The tester has been operated with 26 ms line times consisting of 583 clock pulses.

This included 512 clock pulses for the selection of 512 detectors, 14 overscan clock

pulses, and 57 clock pulses for timing of the control pulses during the blanking time. The

tester provides three modes of operation. They include:

(1) NORMAL or NOCOMP mode for operation without non-uniformity

compensation,
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(2) COMP mode for operation with non-uniformity compensation, and

(3) STORECOMP mode of operation with stored compensation for non-

uniformity.

The operation of the multiplexer was verified by QTEST input, a global charge

input via 60 fF capacitors at each CTIA input, for feedback capacitance, Cfb, of either 0.8

or 2.4 pF. The clock waveforms used for the QTEST for NOCOMP and COMP mode of

operation is shown in Fig. 6.15. It should be noted that, as shown in this figure, the

negative step of the QTEST input occurs during the time when the CTIA input is

connected to the REF (a low impedance voltage reference) by the RSTREF pulse. Thus,

only the positive step of the QTEST pulse injects a charge signal to the CTIA integrator.

Figure 6.15 Clock waveforms for MUX normal (NOCOMP) mode with QTEST.



Figure 6.16 Multiplexer transfer characteristics.

6.6.4 Multiplexer Performance Tests

Open-loop voltage gain

Open-loop voltage gain was measured with VTEST voltage input relative to the DSUB

reference voltage for voltage REF=OV. The measured multiplexer transfer characteristics

curve, shown in Fig. 6.16, indicates the value of open-loop gain of 4,750.
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Linearity

A linear charge integration was demonstrated by (a) QTEST for feedback capacitance,

Cfb, of 0.8 and 2.4 pF, and (b) readout of dark current from InGaAs detectors with

kc=1.7 um, bonded to the multiplexer. Increase of the feedback capacitance during

QTEST from 0.8 to 2.4 pF, resulted in the increase of the MUX output signal by a factor

of 3.

A further test of linearity was demonstrated by room-temperature operation of the

multiplexer bonded to InGaAs detectors with k e=1.7 urn. The results of this test for one

pixel output are shown in Fig. 6.17.

Figure 6.17 MUX output linearity with integration of dark current in NOCOMP mode.
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Power supply rejection

Initial tests of power supply rejection indicates a power supply rejection ratio (PSBR) at

low frequency of 100:1 and less than 10:1 at the clock frequency of 18 KHz.

Readout noise

A temporal readout noise of 100 1.1V rms corresponding to 500 rms electrons/pixel was

measured for NOCOMP mode with zero input voltage and Cfb=0.8 pF.

6.6.5 Input Threshold Non -uniformity

VTEST input was used to measure the uniformity of the CTIA input threshold non-

uniformity for operation in the NOCOMP mode. Typically, for REF=1.0 a VTEST input

of +2.0 mV drives all MUX outputs into saturation of about -2.0 V and a VTEST input of

-2.0 V drives all MUX outputs into a minimum output signal of about +0.5 V. Therefore,

the CTIA input threshold non-uniformity is < 4.0 mV peak-to-peak or < 0.8 mV rms.

The above DC test, however, could not be used for testing the resulting input

threshold non-uniformity for the COMP mode. Because in this case the applied VTEST

input is automatically compensated for by the process of uniformity correction. The input

threshold uniformity after uniformity correction was checked by connecting the VTEST

input to DSUB and observing the resulting output voltage. The results of this test are

shown in Fig. 6.18. Inspection of this figure shows that the resulting output voltage

variation, AVout, is less than 10 mV including the fixed pattern noise (FPN). Since for a

low impedance input source, this is essentially an open-loop test. Therefore, taking into
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account the open-loop gain of 4750 and the fact that the detected output voltage, Vout,

has a net gain of 0.5, the effective variation of the input voltage is estimated as EVin <

4.01AV peak-to-peak (p-p).

6.6.6 Fixed Pattern Noise

The measured results shows that for operation with or without uniformity compensation,

the InGaAs multiplexer exhibits a periodic fixed pattern noise (FPN) that repeats every

five pixels.

for Cfb=0.8 pF (scale: 20 mV/div).
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The observed FPN apparently results from the fact that the multiplexer cells are

staggered in groups of five pixel cells (see Fig. 6.10). This allowed more efficient layout

with the pixel cells extending 250 pm in vertical direction (width) and having a

horizontal dimension (length) of 1050 mm.

The observed FPN is illustrated in Figs. 6.19 and 6.20. Figure 6.19 shows the

output waveforms for operation of the multiplexer with QTEST input for ODD and

EVEN MUX scan directions and CTIA feedback capacitance of 0.8 pF. For QTEST

input, a +3.0 V step is applied in parallel to all multiplex inputs via 60 fF on-chip

capacitors. This results in an injection of about 1.125x10 6 electrons to each integrating

CTIA cell. It should be noted that the waveforms in Fig. 6.19 are truncated (offset) and

detected with an output gain of 0.5. Therefore, the scale of 15 mV/div in Fig. 6.19 and

6.20 corresponds to about 150,000 electrons/div at the integrating feedback capacitance

of 0.8 pF.

Furthermore, it should be noted that the mid-point in Figs. 6.19 and 20

corresponds to the location in the multiplexer chip at which two halves of MUX masks

were stitched by photocomposition. Inspection of Figs. 6.19 and 20 shows that FPN is

larger for the first half of the pixels by a constant value of about 7.5 mV corresponding to

75,000 electrons. The constant increase in the fixed pattern noise is attributed to the fact

that the digital scanning shifter in the upper half of the multiplexer was moved by 10 i.irn

from the original position (that was maintained in the lower half) to allow for

photocomposition overlap tolerance.
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Inspection of the waveforms in Figs. 6.19 and 20(a) shows that the FPN is largest

at pixel cells next to the scanning register and decrease more or less monotonically to the

pixel cells on the left side of the MUX chip next to the MUX input pads. The difference

between the maximum and the minimum FPN is estimated to be about 22,500 electrons

in Fig. 6.19 for QTEST input and about 17,500 electrons in Fig. 6.20(a) for zero input.

This FPN component will be referred to as the variable FPN.

Comparison of waveforms in Fig. 6.20(a) and Fig. 6.20(b) shows that the change

in the CTIA feedback capacitance, Cth, from 0.8 pF to 2.4 pF results in a reduction by

about a factor of three of the variable FPN (i.e., between the first and fifth pixel).

However, constant component of FPN present at the first half of pixels appears to be the

same for Cth=0.8 pF and for Cth=2.4 pF.

In summary, the following conclusions can be made on observed FPN:

On the basis of the presented data, it may be concluded that the variable FPN is

due to charge injection at the unshielded parasitic capacitances of the CTIA input nodes.

The values of the unshielded CTIA input parasitic capacitances are estimated to be 760,

575, 390, 205 and 20 IF for the lat, 2124 , ard , 4th and 5th pixel from the scanning shift

register, respectively.

Since the constant value of FPN (present at the upper half of the MUX chip) is

about the same for Cth=0.8 and 2.4 pF, it may be concluded that this component of the

FPN represents a voltage pick-up at the sample-and-hold capacitance (CS-H) or/and

directly at the output bus.
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The comparison of the variable FPN for QTEST input (see Fig. 6.19) and zero

input (see Fig. 6.20(a)) indicates that the variable FPN may be dependent on the signal

level. However, if this dependence is linear, this FPN can be corrected by the two-point

(off-set and gain) correction that is also needed for the InGaAs detectors. But only one-

point (offset) correction may be needed to correct for the constant level FPN.

Figure 6.19 MUX output waveforms for QTEST=+3V step input for ODD MUX in
(a) and EVEN MUX in (b) (scale: 15 mV/div).



) IY

Cfb =0.8 pF

11 	 tl 	 1•

Cfb =2.4 pF

Figure 6.20 MUX output waveforms for ODD MUX with QTEST=0 V for C fb=0.8 pF
in (a) and C th=0.8 pF in (b) (scale: 15 mV/div).

107

(a)

(b)



1000000

100000

10000

1000

100

10

CHAPTER 7

FOCAL PLANE ARRAY TEST RESULTS

7.1 Focal Plane Array Results

7.1.1 In0.53Ga0.47As Focal Plane Array Results

The measured dark current of 1024 elements of the 1.7 um cut-off wavelength InGaAs

focal plane array is shown in Figure 7.1. The feed-back capacitance used was 0.8 pF. The

dark current was measured at 200 K temperature and with variable integration times until

the pixels are saturated in multiples of line times (33 ms). As seen from figure 7.1, the

measured dark current is very uniform across the length of 1024 element array. The mean

value of dark current is < 1 fA at 10 mV reverse bias. The number of bad pixels was <

1%. The number of bad pixels include three bad multiplexer unit cells.
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Figure 7.1 Dark current vs. pixel number of 1.7 urn InGaAs focal plane array.
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Figure 7.2 shows the flat-filed optical response of the focal plane array measured

using a black-body at a temperature of 200 K. The black body temperature was kept at

1000° K. A narrow band pass spectral filter, with a center wavelength of 1496 nm was

used in front of the blackbody. As seen from figure 7.2, the detector response is very

uniform from pixel to pixel. The measured quantum efficiency was 95% with a narrow

slit (70 urn) in front of the detector array. With out the narrow slit, the quantum efficiency

measured was greater than the 100% indicating the long diffusion length and the

contribution of diffusion length to the absorption of photons in the non-diffused area of

the pixel. To reduce the effect of long diffusion length on the uneven splitting of photons

from the odd and even pixels, a Si lens was designed to focus the beam on to the detector.

Also shown in Fig. 7.2, is the pixel to pixel variation of the quantum efficiency. The

measured quantum efficiency non-uniformity from pixel to pixel is < 5%.

The measured noise of the focal plane array was shown in Figure 7.3. As seen

from figure 7.3, the measured noise was bout 800 rms. e. The measured noise is the total

amount of noise which includes the noise of the multiplexer, shot noise and Johnson

noise of the detector. As mentioned in Chapter 6, the measured noise of the multiplexer

alone was about 400 rms. e.

The measured linearity of the focal plane array was shown in Figure 7.4. As seen

from Fig. 7.4, the linearity of the array is less than 0.1%. The measured linearity is better

than the best results reported to date and is achieved due to the linear capacitor

development and the selection of proper implant dosage in the bulk Si substrate.
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The memory effect or the un collected charge during the integration time is

measured using the optical signal only during the current read out cycle of the integration

time. At the end of the integration time, the optical signal was removed and the charge

from the next integration time was measured. The measured memory effect result as a

function of pixel number is shown in Fig. 7.5. As seen from Fig. 7.5, the measured value

is less than 0.7% indicating that some of the charge is still either in the integrating

capacitor or being collected by the integrating capacitor after read-out cycle of the present

integration time. This additional charge carriers are due to the diffusion of carriers from

the non-diffused area and is due to the long diffusion length of the carriers. The diffusion

process is the slowest process of collection of charge carriers and is not dependent on the

electric field. This process could be improved by increasing the doping in the non-

diffused area of the absorption layer there by increasing the recombination rate.

The maximum integrated charge or the well capacity was measured using very

long integration times by integrating the dark current until the integrating capacitor was

completely filled. The measured charge capacity as a function of pixel number in a 1.7

urn cut-off wavelength InGaAs Focal Plane Array is shown in Fig. 7.6. As seen from the

measured results, the maximum charge handling capacity is with in the design value of

the integrating capacitor and is very uniform from pixel to pixel.
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Figure 7.2 Flat-field optical response of 1.7 urn InGaAs focal plane array.
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Figure 7.6 Measured maximum charge results of 1.7 urn InGaAs focal plane array.

7.1.2 In 0.72Ga028As Focal Plane Array Results

The 2.2 urn focal plane array consists of two detector slivers butted together to achieve

the required 1024 element array. One single pixel was sacrificed at the splice between the

two adjacent slivers. The dark current of 1024 elements of the 2.2 um cut-off wavelength

InGaAs focal plane array is shown in Figure 7.7. The feed-back capacitance used was 0.8

pF. The measured dark current was at 150 K and measured at variable integration times

until the pixel saturates in multiples of line times (33 ms). As seen from figure 7.7, the

measured dark current is nonuniform from element 700 to 1024. This non-uniformity at

the end pixels is probably due to the two different slivers from two different areas on the

wafer where there may be different energy traps which have different energy levels. The

mean value of dark current is about 25 fA at 10 mV reverse bias. The focal plane array

dark current was measured with uniformity compensation and without the uniformity
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compensation. The difference in dark current uniformity from compensation and non-

compensation is shown in Figure 7.7. As seen from figure 7.7, the dark current

uniformity is better with the non-uniformity compensation circuit.

As explained in the dark current analysis section, the difficult and important

parameter that effect the dark current and the temperature behavior of dark current in a

lattice mis-matched semiconductors are the dislocations and the deep levels that are

created in the band gap. As seen from Fig. 73, the deep levels appear to be random in

nature and have different energy levels in the band-gap. These traps freeze out at different

temperatures supporting the random nature of these deep levels in side the band gap.

Further study is required to understand the nature and behavior of these deep levels. One

possible way to understand the energy levels of the deep levels is by using the deep level

transient spectroscopy (DLTS) measurements.

Figure 7.8 shows the flat-filed optical response of the focal plane array measured

using a black-body at a temperature of 150 K. The black body temperature was kept at

1000 K and the light source was through a narrow band pass spectral filter, with a center

wavelength of 1984 nm. As seen from figure 7.8, the detector response is very uniform

from pixel to pixel. The measured quantum efficiency non-uniformity from pixel to pixel

is < 5%. The absolute value of the quantum efficiency is measured using the 500 X 25

urn area for each pixel. This area also includes the 500 urn X 12 urn non-diffused area

(optically dead space). As explained in the dark current analysis section, the carrier life

times are increasingly smaller and smaller as the mismatch between the InGaAs

absorption layer and the InP substrate increases. This could be due to the increase in the
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defect density which will increase the recombination rate. The measured external

quantum efficiency values also shows that the diffusion length in the mismatched

InGaAs/InP photodetectors is much smaller than the lattice matched InGaAs/InP

photodetectors. This decrease in the diffusion length may be due to the decrease in the

band-gap (from 0.75 eV to 0.56 eV) and the increase in the defect density.

From the measured values of quantum efficiency, the threading dislocation

density was calculated using the expression{65] [66]

—71 = (1 + 11 2 L,, 2 pd
Ti0 	 (7.1)

Where, 	 pd = Threading dislocation density

170 = Peak quantum efficiency in the absence of dislocations

r7 = Peak quantum efficiency in the presence of dislocations

Ln = Electron diffusion length

By allowing the r 7 0 to be same as the lattice matched detector (> 85%), rj to be

the measured peak value of the diffused devices, and 1,„ to be the values deduced from the

fitting parameters described in Chapter 4, the dislocation density is calculated as 2.4 X

105 /cm2 .

The measured noise of the focal plane array was shown in Figure 7.9. As seen

from figure 7.9, the measured noise was bout 700 rms. e - . The measured noise is the total

amount of noise which includes the noise of the multiplexer, shot noise and Johnson

noise of the detector. As mentioned in Chapter 6, the measured noise of the multiplexer

alone was about 400 rms. e.
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The measured linearity of the focal plane array was shown in Figure 7.10. As seen

from Fig. 7.10, the linearity of the array is less than 0.1%. The measured linearity is

better than the best results reported to date and is achieved due to the linear capacitor

development and the selection of proper implant dosage in the bulk Si substrate.

The memory effect or the un collected charge during the integration time is

measured using the optical signal only during the current read out cycle of the integration

time. At the end of the integration time, the optical signal was removed and the charge

from the next integration time was measured. The measured memory effect result as a

function of pixel number is shown in Fig. 7.11. As seen from Fig. 7.11, the measured

value is less than 0.1% indicating that all of the charge is collected in the integrating

capacitor after read-out cycle of the present integration time. This lower value of charge

carriers also indicates the reduction of diffusion length and hence minimum diffusion

process of collection of carriers. As mentioned in the above section, the diffusion process

is the slowest process of collection of charge carriers and is not dependent on the electric

field.

The maximum integrated charge or the well capacity was measured using very

long integration times by integrating the dark current until the integrating capacitor was

completely filled. The measured charge capacity as a function of pixel number in a 2.2

um cut-off wavelength InGaAs Focal Plane Array is shown in Fig. 7.12. As seen from the

measured results, the maximum charge handling capacity is with in the design value of

the integrating capacitor and is very uniform from pixel to pixel.
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Figure 7.8 Flat-field optical response of 2.2 urn InGaAs focal plane array.



Figure 7.10 Measured linearity results of 2.2 um InGaAs focal plane array.



Figure 7.12 Measured maximum charge results of 2.2 urn InGaAs focal plane array.
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7.1.3 In0.82Ga018As Detector Array Results

Figure 7.13 shows the measured dark current of the 1024 element 2.6 um cut-off InGaAs

detector array at room temperature and 10 mV reverse bias voltage. This detector array

sliver is integrated with the multiplexer. As seen from figure 7.13, the dark current is very

uniform at room temperature across the 1024 element array. The number of bad pixels <

1% before integrating with the multiplexer. The dark current of seven elements were

measured at 150 K and the mean value of seven pixels was 100 fA at 10 mV reverse bias.

The 2.6 urn focal plane array consists of two detector slivers butted together to

achieve the required 1024 element array. One single pixel was sacrificed at the splice

between the two adjacent slivers. The dark current of 1024 elements of the 2.6 um cut-off

wavelength InGaAs focal plane array is shown in Figure 6.25. The feed-back capacitance

used was 0.8 pF. The measured dark current was at 150 K and measured at variable

integration times until the pixel saturates in multiples of line times (33 ms). As seen from

figure 7.13, the measured dark current is non-uniform from pixel to pixel. As explained in

the dark current analysis section, this non-uniformity of dark current is attributed to the

defect density from the misfit or threading dislocations, which acts as energy traps and

have different energy levels in side the band gap. The mean value of dark current is about

200 fA at 10 mV reverse bias. The focal plane array dark current was measured with

uniformity compensation and without the uniformity compensation. The dark current

uniformity is better with the non-uniformity compensation circuit.

As explained in the dark current analysis section, the difficult and important

parameter that effect the dark current and the temperature behavior of dark current in a
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lattice mis-matched semiconductors are the dislocations and the deep levels that are

created in the band gap. As seen from Fig. 7.13, the deep levels appear to be random in

nature and have different energy levels in the band-gap. These traps freeze out at different

temperatures supporting the random nature of these deep levels in side the band gap.

Further study is required to understand the nature and behavior of these deep levels. One

possible way to understand the energy levels of the deep levels is by using the deep level

transient spectroscopy (DLTS) measurements.

Figure 7.14 shows the flat-filed optical response of the focal plane array measured

using a black-body at a temperature of 150 K. The black body temperature was kept at

1000 K and the light source was through a narrow band pass spectral filter, with a center

wavelength of 2291 nm. As seen from figure 7.14, the detector response is non-uniform

from pixel to pixel. The measured quantum efficiency non-uniformity from pixel to pixel

is < 5%. The absolute value of the quantum efficiency is measured using the 500 X 25

urn area for each pixel. This area also includes the 500 urn X 12 urn non-diffused area

(optically dead space). As explained in the dark current analysis section, the carrier life

times are increasingly smaller and smaller as the mismatch between the InGaAs

absorption layer and the InP substrate increases. This could be due to the increase in the

defect density which will increase the recombination rate. The measured external

quantum efficiency values also shows that the diffusion length in the mis-matched

InGaAs/InP photodetectors is much smaller than the lattice matched InGaAs/InP

photodetectors. This decrease in the diffusion length may be due to the decrease in the

band-gap (from 0.75 eV to 0.46 eV) and the increase in the defect density.
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From the measured values of quantum efficiency, the threading dislocation

density was calculated using the expression 7.1

By allowing the 77 to be same as the lattice matched detector (> 85%), 77 to be

the measured peak value of the diffused devices, and Ln to be the values deduced from the

fitting parameters described in Chapter 4, the dislocation density is calculated as 1.5 X

106 /cm2 .

The measured noise of the focal plane array was shown in Figure 7.15. As seen

from figure 7.15, the measured noise was bout 700 rms. C. The measured noise is the

total amount of noise which includes the noise of the multiplexer, shot noise and Johnson

noise of the detector. As mentioned in section 5, the measured noise of the multiplexer

alone was about 400 rms. C.

The measured linearity of the focal plane array was shown in Figure 7.16. As seen

from Fig. 7.16 the linearity of the array is less than 0.1%. The measured linearity is better

than the best results reported to date and is achieved due to the linear capacitor

development and the selection of proper implant dosage in the bulk Si substrate.

The memory effect or the un collected charge during the integration time is

measured using the optical signal only during the current read out cycle of the integration

time. At the end of the integration time, the optical signal was removed and the charge

from the next integration time was measured. The measured memory effect result as a

function of pixel number is shown in Fig. 7.17. As seen from Fig. 7.17, the measured

value is less than 0.1% indicating that all of the charge is collected in the integrating

capacitor after read-out cycle of the present integration time. This lower value of charge
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carriers also indicates the reduction of diffusion length and hence minimum diffusion

process of collection of carriers. As mentioned in the above section, the diffusion process

is the slowest process of collection of charge carriers and is not dependent on the electric

field.

The maximum integrated charge or the well capacity was measured using very

long integration times by integrating the dark current until the integrating capacitor was

completely filled. The measured charge capacity as a function of pixel number in a 2.6

urn cut-off wavelength InGaAs Focal Plane Array is shown in Fig. 7.18. As seen from the

measured results, the maximum charge handling capacity is with in the design value of

the integrating capacitor and is very uniform from pixel to pixel.

Figure 7.13 Dark current vs. pixel number of 2.6 um InGaAs focal plane array.
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Figure 7.17 Measured memory effect results of 2.6 urn InGaAs focal plane array.
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Figure 7.18 Measured maximum charge results of 2.6 urn InGaAs focal plane array.

7.2 Radiation Hardness Testing Results of InGaAs Focal Plane Arrays

The InGaAs Focal Plane Array was subjected to a total dose of 5 ± 1 Krad , 10 ± I Krad,

15 ± 1 Krad of radiation from a cobalt 60 (CO 60) gamma particle source. The dose rate

was between 50 rad(Si)/min and 300 rad (Si)/min. The irradiation was done when the

Focal Plane Array was at operating temperature of 150 K. The irradiation dose was

measured using a calibrated thermoluminescent detectors (TLD's).

After the irradiation, the measured dark current results doesn't show a significant

difference from the initial measured results up to 10 Krad radiation. However, the dark

current measurement after 15 Krad radiation shows an increase in the dark current from
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the initial measured results. Further measurements of dark current shows a non

uniformity of dark current also increased noticeably and a group of 25 pixels are forward

biased. When the mode of operation was changed from NOCOMP to COMP, the change

in bias voltage uniformity from pixel to pixel disappears. This change in dark current was

attributed to the change of bias voltage. The bias voltage change could be due to the

increase in the interface charge which changes the threshold voltage of the MOSFET. The

increase in threshold voltage could also be due to the introduction of defect level in the

energy gap, which acts as a generation center[59].

7.3 Noise Analysis of InGaAs Focal Plane Arrays

As explained in section 6.2.12, the read-out noise of the Si multiplexer with out threshold

non-uniformity compensation is about 400 rms. electrons/pixel with a maximum

integrating charge of 1 X 10' electrons/pixel and 700 rms. electrons/pixel with a

maximum integrating charge of 3 X 10 7 electrons/pixel. As seen from table 6.2, the

multiplexer noise is fairly constant with integration time and detector bias voltage. The

major contribution of the Si multiplexer noise is from the KTC noise not removed by the

Correlating Double Sampling (CDS) circuit and from the MOS channel broadband noise.

The MOS channel 1/f noise contribution is small compared with the KTC and MOS

channel broadband noise and can be neglected at the operating frequencies.

In the FPA noise calculations, it was assumed that the Si multiplexer noise is

constant for a given maximum integrating charge. The major noise contributions in an

InGaAs p-i-n detectors are dark current shot noise, Johnson-Nyquist noise and 1/f noise.
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In addition to the shot noise, Johnson-Nyquist noise and 1/f noise, the InGaAs Focal

Plane Arrays have noise contributions from the dark current variations due to the

fluctuation in operating temperature and the burst noise or popcorn noise or flicker noise

due to the charge fluctuations from the dislocations which originate in the InP substrate

and migrate to the InGaAs absorption layer. These charge fluctuations are due to the

random charging and discharging of misfit dislocations and can be neglected for lower

operating bias voltage. A lower reverse bias voltage prevents the depletion width from

reaching these defects and thereby prevents the possible generation of burst noise.



7.19, the dark current shot noise is dominated for higher values of dark current even at

small integration times. The increase in the dark current shot noise is because of the

constant multiplexer noise and constant Johnson-Nyquist noise. The value of the detector

resistance is constant for small operating voltages (< 100 mV) because the dark current is

a linear function of bias-voltage. The measured total noise of the FPA with pixels having

a dark current value of 20 fA, 40 fA, 80 fA and 120 fA is shown in Fig. 7.20 as a function

of integration time. As seen from Fig. 7.19 and Fig. 7.20, the measured results agree with

the simulated values.
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Measured rms. noise results as a function of dark current is shown in Fig. 7.21. As

seen from Fig. 7.21, the rms. noise value is fairly constant as the dark current increases up

to 100 fA. Beyond the 100 fA value of dark current, the rms. value of the FPA noise

increases significantly because of the decrease in the detector resistance (dark current is

not a linear function of bias voltage) and the Johnson-Nyquist noise dominates.

Figure 7.21 Measured rms. noise electrons as a function of dark current.
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7.4 Comparison of Results with Other Technology

As mentioned in Chapter 1, one of the reason for making the InP/InAsP/InGaAs

photodetectors attractive for long wavelength applications it's ability to get lower dark

current and higher quantum efficiency using this technology. It is obviously interesting to

know, what other materials and/or technology can achieve in the same wavelength region.

One competing technology is of interest is the HgCdTe material grown on CdTe

substrates using Molecular Beam Epitaxy (MBE). There is not much published data on

HgCdTe material concerning dark currents, shunt resistance or the product of shunt

resistance and detector active area, R oA. Much of the work on HgCdTe material and

detectors in the wavelength region of 1-2.6 urn has been done at large aerospace

companies which tend to keep data unpublished. The following table summarizes the

comparison of performance between InGaAs photodetectors and HgCdTe detectors using

the published information on both technologies[67]-[78]. It is extremely difficult to find

data at exactly the same cut-off wavelengths and temperature with the same area devices.

The table shows R oA product, which is product of the shunt resistance (often measured at

-10 mV reverse bias voltage) and active area of the detector. As seen from Table 7.1, the

InGaAs technology has 10-100 X better performance than HgCdTe technology a given

cut-off wavelength. Figure 7.22 shows the comparison measured R oA value as a function

of temperature for both InGaAs and HgCdTe technologies[7]. Also seen from this figure

is that the InGaAs technology has better performance than the HgCdTe technology.
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CHAPTER 8

CONCLUSIONS

This research described the development of state of the art 1024 element linear

InGaAs/InP Focal Plane Arrays with cut-off wavelengths of 1.7 urn, 1.9 urn, 2.2 urn and

2.6 urn. Detailed analysis of the material selection, crystal growth, device fabrication, and

testing was presented. Introduction of sulfur doping in the InGaAs layer, reducing the

lattice mismatch between the two In yAs l _yP layers, post growth annealing techniques, the

dielectric coating deposition and optimization of diffusion was discussed in detail. The

doping in the InGaAs layer was optimized to 0.8 X 10 17 cm-3 to avoid tunneling current at

the operating temperature of 150 K, the composition of InyAsIIP layers was chosen to

reduce the lattice mismatch to < 0.1%, thermal annealing techniques was implemented to

reduce the number of dislocations, silicon nitride stripping and re-deposition was

implemented to avoid the pin holes, and the diffusion conditions (500° C for 37 min.) was

optimized to avoid deep junctions.

Dark current which is the critical parameter in the InGaAs/InP Focal Plane Arrays

for achieving higher S/N ratio was discussed in detail and theoretical expressions was

derived to simulate the dark current as a function of doping in the absorption layer and as

a function of temperature and bias voltage. Dark current analysis shows that the dark

current in the lattice matched (1.7 um cut-off wavelength) detectors is dominated by the

surface generation-recombination current due to the interface states between the InP cap

layer and the InGaAs absorption layer. Dark current improvement was achieved in the

134



135

lattice matched detectors by increasing the doping in the InP cap layer which reduced the

number of surface states. The dark current analysis also shows that the dark current in the

lattice mismatched (1.9, 2.2 and 2.6 urn cut-off wavelength) devices was dominated by

the defect density due to the misfit dislocations introduced during the crystal growth due

to the lattice mismatch between the neighboring layers. The dark current reduction was

achieved in the lattice mismatched devices by increasing the doping in the InGaAs

absorption layer and implementing the post wafer growth thermal annealing, optimizing

diffusion depth, silicon nitride deposition and using two level 'p' metal contacts. The

measured dark currents of these devices was as low as 1 fA for 1.7 um, 20-30 a for 1.9

urn devices at 200 K temperature and 10-20 fA for 2.2 um and 50 fA for 2.6 urn devices

at an operating temperature of 150 K.

Detailed design and fabrication of a unique and novel Si read-out multiplexer

using radiation hardened N-well CMOS process was presented. Each multiplexer unit cell

was designed with capacitive transimpedance amplifier, correlated double sampling

circuit, threshold non uniformity correction circuit and an output buffer stage for low

noise, low power supply rejection ratio and low power dissipation to operate at near-zero

bias voltage. Significant improvement for low noise operation was achieved with this

optimized multiplexer design.

Integration and testing results of InGaAs focal plane arrays with cut-off

wavelengths of 1.7 pm, 2.2 pm and 2.6 1,tm are described. The measured noise levels are

as low as 600 rms. electrons on the complete focal plane array and as low as 400 rms.

electrons for the multiplexer. Analysis of the performance results of focal plane arrays are
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described in detail and the results shows that the InP/InGaAs technology is suitable for

the long wavelength focal plane arrays with 1024 elements. Results of radiation testing

using proton, gamma and electron particle radiation on InGaAs photodetectors and

photodetector arrays are described. The results of InGaAs/InP Focal Plane Arrays

achieved by this research are compared with published results of other technology

(HgCdTe) in the same wavelength range and the results shows that InGaAs/InP Focal

Plane Arrays have 10-100X lower dark current than the HgCdTe Focal Plane Arrays at

the same operating temperature.

8.1 Future Direction

Future direction for the improvement of the performance of the InGaAs/InP Focal Plane

Arrays for long wavelength applications should include the development of ternary bulk

crystal growth (substrates) to grow the lattice matched In„Ga i _xAs (x>0.53) absorption

layer and development of native oxide for InP/InAsP to reduce the interface traps or

surface states at the dielectric/semiconductor boundary, integration of read-out circuit on

InP substrate using Opto-Electronic Integrated Circuit (OEIC) technology, understanding

of the energy levels and reduction of the dislocation induced defects in the absorption

layer by using crystal growth on mis-oriented and angled substrates.



APPENDIX A

DISLOCATION DENSITY USING DIFFUSION APPROXIMATION

A simplified model is used to explain the deleterious effect of dislocations on the external

quantum efficiency of p-i-n detectors. Let us suppose that dislocations are perpendicular

to the plane of the p-n junction, extending from the surface of the p-side to the surface of

the n-side. To simplify the problem, the following assumptions are made:

(1) A "two-dimensional" projection is to be used, so that the volume of the diode is

reduced to a plane, and dislocations are represented as lines perpendicular to the p-n

junction.

(2) the electron injection efficiency in to the p -side is unity and p -side extends to infinity

and

(3) the dislocation acts as a very effective non radiative recombination center

characterized by an infinite recombination velocity.

Finally, after assuming that there is negligible recombination in the space charge

region, the diffusion equation for the injected carriers is to be solved in the semi-infinite

rectangular region depicted in figure Al .
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Where,

n = excess minority carrier density,

D = diffusion constant

r = average life time

yo = average spacing between the dislocations

YO = 	
Pd

The boundary conditions (A.2) and (A.3) reflect the condition of infinite

recombination velocity at the dislocation. Equation (A.4) is required to let the excess

carrier density be zero at x = cc, and equation (A.5) insures that the flux of minority

carriers, JO injected across the edge of the depletion region is constant.

The solution of Equation (A.1) is
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The change in bulk luminescent efficiency

?lint  =  Nrad  = 1 N lost 

(r7 int ) o	 N total	 Nfolal

Where,

(A.12)

Nrad = number of carriers that recombine radiatively.

By keeping only the first term in (A.10) and (A.11), and by assuming the external

quantum efficiency varies the same way as the internal quantum efficiency, one can get
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1
71,.2	 pd

(A.13)

Many simplifying assumptions have been made in arriving at this result. The

reduction of the three dimensional of real dislocations to a two dimensional sheet is

unrealistic[79]. In addition, this model was developed for the case when the dislocations

are perpendicular to the plane of the p-n junction. Equation (A.13), which has the same

form as that in [80] [81] contains several features that are expected on physical grounds.

As the dislocation density shrinks to zero, the external quantum efficiency increases to its

maximum value, ri„ and as pd increases to «), the efficiency drops to zero. Moreover,

equation (A.13) demonstrates that samples with long diffusion lengths are more sensitive

to the effects of dislocations than samples with short diffusion lengths.
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