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ABSTRACT

DESIGN, SIMULATION, FABRICATION AND TESTING OF
MICROPROBES FOR A NEW MEMS WAFER PROBE CARD

by
Yanwei Zhang

A new type of MEMS cantilever wafer probe card consists of an array of microcantilevers

individually actuated by bimorph heating to make contact with the test chip was designed

and fabricated. This probe card is called the CHIPP (Conformable, High-Pin count,

Programmable ) card and can be designed to contact up to 800 I/O pads along the

perimeter of a 1 cm 2 chip with a microprobe repeat distance of —50 1.1m. Each

microcantilever had an internal heater and a separate electrode carrying the signal under

test and contained four separate layers plus a fifth material for the contact tip region.

Different versions of micro-actuators have been designed and made in this Ph.D.

research. Ohmic contacts were made with the lowest contact resistance of 250 m0.. The

deflection efficiency varied from 5.23 to 9.6 p.m/mW for cantilever length from 300-500

p,m. The maximum reversible deflection was in the range of 270 j..tm. Video recordings

made inside the SEM clearly show that ohmic contact was made to a stationery tungsten

electrode. A full dynamic deflection (180 p.m) for a 50 x 500 p.m cantilever occurred in

response to input frequency up to nearly 50 Hz. The motion was damped at higher

frequencies, with a strong resonance (for a 50 x 500 i_t.m device) at 8160 Hz. Heat loss for

devices operating in air was found to be substantially higher than for vacuum operation

with a heat loss ratio of about 2/1 for a heater inside the structure; and 4.25/1 for a

structure with the heater as an outer layer of the cantilever.



DESIGN, SIMULATION, FABRICATION AND TESTING OF
MICROPROBES FOR A NEW MEMS WAFER PROBE CARD

by
Yanwei Zhang

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirement for the Degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

May 1997



Copyright © 1997 by Yanwei Zhang
ALL RIGHTS RESERVED



APPOVAL PAGE

DESIGN, SIMULATION, FABRICATION AND TESTING OF MICROPROBES
FOR A NEW MEMS WAFER PROBE CARD

by

Yanwei Zhang

Dr. Robert B. Marcus, Dissertation Advisor
	

Date
Professor of Electrical and Computer Engineering, NJIT

Dr. William N. Carr, Committee Member 	 Date
Professor of Electrical and Computer Engineering,
and Professor of Physics, NJIT

Dr. Ken K. Chin, Committee Member 	 "Date
Professor of Physics and Director of NJIT/Rutgers-Newark
Joint M.S./Ph.D. Programs, NJIT

Dr. Peter Engler, Committee Member
	

Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Nuggehalli M. Ravindra, Committee Member
	

Date
Associate Professor of Physics, NJIT



APPOVAL PAGE
(Continued)

DESIGN, SIMULATION, FABRICATION AND TESTING OF MICROPROBES
FOR A NEW MEMS WAFER PROBE CARD

by

Yanwei Zhang

Dr. Roy H. Comely, Committee Member 	 Date
Professor of Electrical and Computer Engineering
and Director of Drexler Thin Films Microelectronics Laboratory, NJIT



BIOGRAPHICAL SKETCH

Author:	 Yanwei Zhang

Degree:	 Doctor of Philosophy

Undergraduate and Graduate Education:

® Doctor of Philosophy in Electrical Engineering
New Jersey Institute of Technology, Newark, NJ, 1997

® Master of Science in Electrical Engineering
Chinese Academy of Space Technology, Beijing, China, 1985

® Bachelor of Science in Materials Science
Lanzhou University, Gansu, China, 1982

Major:	 Electrical Engineering

Presentations and Publications:

Yanwei Zhang, Yongxia Zhang, Dan Morrow,
Dan Worsham and Robert B. Marcus,

"A New MEMS Wafer Probe Card",
Proceedings of IEEE 10 th International workshop on MEMS,
pp. 395, Nagoya, Japan, January 26-30, 1997.

Yongxia Zhang, Yanwei Zhang, T. S. Sriram
and Robert B. Marcus,

"Formation of Single Tips of Oxidation-Sharpened Si",
Applied Physics Letter, vol. 69, pp. 4260, December, 1996.

Yongxia Zhang, Yanwei Zhang and Robert B. Marcus,
"Formation of Single Tips of Atomically Sharp Silicon",
Proceedings of 43rd America Vacuum Society National Symposium,
Philadelphia, pp. 44, October 14-18, 1996.

Yanwei Zhang, Yongxia Zhang, and Robert B. Marcus,
" `CHIPP' Probe - A New MEMS Wafer Probe Card",
Emerging Technologies Symposium, Princeton, New Jersey, October 26, 1995.



Yongxia Zhang, Yanwei Zhang, and Robert B. Marcus,
"A New High Resolution AFM Thermal Probe",
Emerging Technologies Symposium, Princeton, New Jersey, October 26, 1995.

Yanwei Zhang, and Paul D. Ronney,
"Lewis Number Effects on Flame Spreading Over Thin Solid Fuels",
Combustion and Flame, vol. 90, pp. 71, 1992.

vi



This dissertation is dedicated
to my wife, Su Wang

to my son, Chao Zhang

vii



ACKNOWLEDGMENT

I wish to express my sincere gratitude to my advisor, Professor Robert. B. Marcus , for his

great guidance, friendship, and moral support throughout whole research project.

Without his support I could never complete this hard research project.

Special thanks to the other members of committee: Dr. William Carr, Dr. Peter

Engler, Dr. Ken K. Chin, Dr. Nuggehalli M. Ravindra, and Dr. Roy H. Comely for their

careful review, productive comments and helpful discussions.

I would also like to thank Dr. Dentcho Ivanov, Mr. John Koons and Mr. Ken

O'Brien for all their helps in the Microelectronics Clear Room and Prof. R. Levy for use

of his RF sputtering laboratory, Prof W. Carr for use of his probe station and Prof K.

Chin for use of his probe station and deposition system.

I am grateful to Yongxia Zhang and other fellow students who shared their

valuable ideas and experiences with the author.

Finally I would like to thank my family and friends for their continuous

encouragement and best wishes, especially my wife, whose love, care and support made

this work possible.

viii



TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION  	 1

1.1 Probe Card: Function  	 1

1.2 This Research Objective 	 4

2 MEMS MICROACTUATION 	 5

2.1 Thermal Actuation 	 5

2.1.1 Bimorph Actuation 	 6

2.1.2 Thermal Driven Cantilever Flexure 	 7

2.2 Electrostatic Actuation 	 9

2.2.1 Electrostatic Cantilever Actuation 	 9

2.2.2 Electrostatic Microbridge Actuation   11

2.2.3 Magnetic and Piezoelectric Actuation	  12

3 CONCEPT AND DESIGN OF MEMS PROBE CARD 	 14

3.1 CHIPP Probe Card 	 14

3.1.1 Concept of CHIPP Probe Card 	 14

3.1.2 Design of Prototype CHIPP Probe Card 	 17

3.2 CHIPP Microprobe 	 20

3.2.1 Physical Design of CHIPP Microprobe 	 20

3.2.2 Heater Design of CHIPP Microprobe 	 27

3.3 Ohmic Contact Issues and Solutions 	 32

3.3.1 Contact Forces Required 	 32

is



TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.3.2 Ohmic Contact 	 32

4 MODELING AND SIMULATION 	 36

4.1 Analysis of Bimorph Structures 	 36

4.1.1 Analysis of Bimorph Cantilever with Two Free Ends 	 36

4.1.2 Analysis of Bimorph Cantilever with Left End Free and Right End Fixed 	 39

4.1.3 Force Analysis of One End Fixed Cantilever  	 40

4.1.4 Equivalent Stiffness for Multi-Cantilever Layers 	 42

4.2 Simulation of Motion of Bimorph Cantilever Structure  	 44

5.2.1 Basic Assumption 	 44

5.2.2 Simulation of the Effect of Cantilever Thickness 	 45

5.2.3 Simulation of the Deflections at the Probe Tip 	 47

5.2.4 Forces Applied by Cantilever Tips 	 52

5 FABRICATION 	 58

5.1 Fabrication of Al-Si0 2 Type Probe Card 	 58

5.2 Fabrication of W-Si0 2 Type Probe Card 	 65

5.2.1 Gold and Tungsten Tip Structures 	 65

5.2.2 Conducting Diamond Tip Structure 	 68

5.3 Mask Design 	 73

5.4 Adhesion Consideration and Experiments 	 73



TABLE OF CONTENTS
(Continued)

Chapter 	 Page

6 RESULTS AND DISCUSSION 	 76

6.1 General Results of Fabrication of the CHIPP Probe Card 	 76

6.2 Switch Characteristics of CHIPP Microprobe 	 85

6.2.1 Rest Position of the Microprobe Tips 	 85

6.2.2 Deflection of the Microprobe 	 90

6.2.3 Response Frequency and Time of the Microprobe 	 96

6.3 Ohmic Contact of CHIPP Microprobe 	 100

6.3.1 Ohmic Contact 	 100

6.3.2 Contact Force 	 107

6.4 Heat Loss of CHIPP Microprobe 	 111

6.5 Failure Analysis and Device Improvement 	 116

7 CONCLUSIONS 	 119

8 REFERENCES 	 121

xi



LIST OF TABLES

Table Page

3.1 Physical characteristics of microprobe cantilever layers 	 23

3.2 Dimension parameters of component layers of CHIPP microprobes 	 24

3.3 Dimension parameters of CHIPP microprobes  31

3.4 Dimension parameters of tips of CHIPP microprobes 	 35

6.1 Structure parameters of fabricated CHIPP probe card 	 78

6.2 Rest position of the tips for different microprobes 	 87

6.3 Data of thermal driven cantilevers 	 91

6.4 Measured contact resistance of CHIPP microprobes 	 100

6.5 Force efficiency a p for various values of W and L for bimorph with 1 p.m Al
and 1 p.m Si02 	 108

xii



LIST OF FIGURES

Table	 Page

2.1 Bimorph cantilever actuation structure 	 7

2.2 Horizontal heat-drive actuator 	 8

2.3 Basic electrostatic cantilever actuator 	 11

2.4 Resonant microbridge/switch structure 	 12

3.1 Microprobe making ohmic contact with the surface of a test chip 	 16

3.2 Illustration of prototype CHIPP probe card showing microprobes positioned
about a center opening. The test chip is mounted face-down over the probe card 	 18

3.3 Illustration of arrangement of MEMS microprobes for contacting interior pads 	 19

3.4 Illustration of microprobe with heater inside the cantilever 	 25

3.5 Illustration of microprobe showing heater as the bottom layer of the cantilever 	 26

3.6 A bimorph cantilever structure with heater on the bottom layer showing the heat
loss from the heater directly to air 	 28

3.7 Details of heater inside the cantilever showing heat flow 	 29

3.8 Heater designs used in CHIPP microprobe 	 30

3.9 Illustration of tip of CHIPP microprobe 	 34

4.1 Deflection of a bimorph cantilever with uniform heating 	 37

4.2 Cantilever deflection with left end free and right end fixed 	 40

4.3 External forces applied near the tip of the cantilever with one end fixed 	 42

4.4 Equivalent cross section of CHIPP microprobe with three layers 	 43

4.5 Cantilever tip deflection as a function of ratio of bimorph thickness toxiddtmetai
for L=400 pm, AT=100 °C, and tmetai=1 pm 	 46

4.6 Tip deflection as a function of temperature rise AT for A1-Si0 2 cantilever at
L=400 i_tm, and toxidettmetat=0.5 and three different Al thicknesses 	 48



LIST OF FIGURES
(Continued)

Figure 	 Page

4.7 Tip deflection as a function of temperature rise AT for Al-Si cantilever at
L=400 pm, and t -metai=0.3 and three different Al thicknesses 	 49

4.8 Tip deflection as a function of temperature rise AT for Cu-Si0 2 cantilever at
L=400 pm, and toxiddtc.=0.6 and three different Cu thicknesses 	 50

4.9 Tip deflection as a function of temperature rise AT for W-Si02 cantilever at
L=400 p.m, and toxiditw=1.1 and three different W thicknesses 	 51

4.10 Forces applied by tip as a function of temperature rise AT for Al-Si02
cantilever with three Al thicknesses  	 53

4.11 Forces applied by tip as a function of temperature rise AT for Al-Si cantilever
with three Al thickness 	 54

4.12 Forces applied by tip as a function of temperature rise AT for Cu-Si02
cantilever with three Cu thickness 	 55

4.13 Forces applied by tip as a function of temperature rise AT for W-Si02
cantilever with three W thickness 	 56

4.14 Forces applied by tip as a function of the cantilever width for four different
bimorph cantilevers 	 57

5.1 Fabrication flows for a prototype probe card using Al-Si0 2 cantilever with
gold tip 	 64

5.2 Fabrication flows for a prototype probe card using W-Si0 2 cantilever with
gold and tungsten tips 	 66

5.3 Fabrication flows for a prototype probe card using W-Si02 cantilever with
conducting diamond tip 	 72

6.1 A prototype CHIPP probe card mounted in a ceramic header (6.2x) 	 79

6.2 SEM photo showing two adjacent 50 x500 p.m microprobes with Al-Si02
bimorph structure (150x) 	 80

6.3 SEM photo showing three adjacent 40 x 400 1,L111 microprobes with Al-Si02
bimorph structure(149x) 	 81

xiv



LIST OF FIGURES
(Continued)

Figure 	 Page

6.4 SEM photo showing two adjacent 50 x 300 pm microprobes with Al-Si02
bimorph structure and gold tips(150x) 	 82

6.5 An array of four adjacent 30 x 200 pm microprobes with Al-Si0 2 bimorph
structure and gold tips(100x) 	 83

6.6 An array of four adjacent 30 x 200 tim microprobes with W-Si0 2 bimorph
structure and conducting diamond tips (48.5x) 	 84

6.7 Cantilever tip rest position as a function of cantilever length with four
different cantilever structures. Zero is the probe card surface 	 88

6.8 The rest position of microprobe tips as a function of cantilever thickness with
three different cantilever sizes. Zero is the probe card surface 	 89

6.9 Tip deflection vs. applied power with Al (1.0 mm)-Si02 (1.0mm) bimorph
cantilever. Inset shows cantilever widths and lengths for five devices 	 92

6.10 Tip deflection vs. Applied power with W (1.0 mm)-Si02 (1.2mm) bimorph
cantilever. Inset shows cantilever widths and lengths for three devices 	 93

6.11 SEM side view of a 60 x 500 tim Al-Si0 2 cantilever at unpowered rest
state(b) and actuated to a flat position (a). Photo were taken from a video
tape during dynamic testing 94

6.12 SEM side view of a 40 x 400 pm Al-Si0 2 cantilever at unpowered rest
state(b) and actuated to a upward position (a). Photo were taken from a
video tape during dynamic testing 95

6.13 Dynamic deflection of a A1-Si0 2 cantilever as a function of input signal
frequency with square wave input 	 98

6.14 Dynamic deflection of a Al-Si0 2 cantilever as a function of input signal time
with fixed square wave input of 1 Hz. This is the same cantilever described
in Figure 6.13 99

6.15 A gold contact tip at a Al-Si0 2 cantilever with 0.5 pm gold film 	 102

6.16 A conducting diamond tip at a W-Si0 2 cantilever 	  103

xv



LIST OF FIGURES
(Continued)

Figure 	 Page

6.17 SEM photo showing crystals of conducting diamond (5000x) 	 104

6.18 A SEM photo showing a side view of an Al-Si02 cantilever probe
unpowered, at rest, with the tungsten electrode (bright) above tip 	 105

6.19 A SEM photo showing same cantilever with Figure 6.18, frilly deflected and
making ohmic contact with the tungsten electrode (electrode is dark due to
"voltage contrast")  106

6.20 Force as a function of tip motion for various combination of aluminum and

	

Si02 cantilever widths and lengths    109

6.21 Force as a function of applied power for various combination of aluminum
and Si02 cantilever widths and lengths 	 110

6.22 Photo showing the inside heater structure 	  112

6.23 Tip deflection vs. applied power inside SEM vacuum and in air for Al-SiO2
cantilever with heater inside. Cantilever length L=400p.m, width W=50 1..tm
and tm=1.5 p.m   113

6.24 Photo showing the outside heater structure 	  114

6.25 Tip deflection vs. applied power inside SEM vacuum and in air for Al-Si02
cantilever with heater on the bottom. Cantilever length L=500p,m, width
W=40 p.m and gap D=10 tm    115

6.26 SEM photo showing a tip immediately after breaking   117

6.27 SEM photo showing the same tip as Figure 6.26 a 33 ms later 	  118

xvi



CHAPTER 1

INTRODUCTION

1.1 Probe Card: Function

Wafer probing technology has been under development and use for several decades

[1],[2]. It began with manual probe stations and has expanded to semi-automatic probe

card tools for analytical work. Manual probe stations usually have three to four probes to

contact the pads of test devices. Ohmic contact is formed through manually moving the

probe to scrape through surface oxide films and make contact with the contact pads.

Because it is difficult to control and work with a large number of test probes, test work

using this probe station is time consuming and even impossible if many pads need to be

probed.

As device sizes decreased and device pads increased, manual type probe stations

no longer met basic the requirements of the semiconductor industry, and the concept of a

probe card was developed. The first probe card, called a needle/epoxy ring probe card

was developed and patented by Rucker & Kools ( a company makes probing stations) in

1969 [2]. The early probe card was based on an epoxy ring technology in which a few

tens to hundreds of tiny cantilever needles were manually mounted on a probe card

through an epoxy ring and arranged according to the pad positions of the test chip. The

probe card is designed with I/O connection which can be connected directly to a control

head of the mechanical probing station. The ohmic contact between needles on probe card

and pads on test chip can be obtained through either probe card or test chip movement.

As soon as the connections are made, testing could be started through a switch matrix to
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control inputs and outputs. The epoxy ring probe card realized semi-automatic LSI

testing and greatly increased test ability and efficiency.

As VLSI technology developed smaller and smaller semiconductor devices, this

probe card technology has fallen behind. Test and wafer handling capabilities have

progressed at a very rapid pace over the years, yet the bulk of the world's wafer

production is still being probed with a traditional wire/needle probe card arrangement—a

technology that was basically developed more than 25 years ago. Based on this

technology a minimum distance between two probes is limited to 125 pm and number of

pads is limited to 500. And contact pressure is not uniform from probe to probe with

varying cantilevers because probe needles contacting corner pads are shorter, and probe

needles contacting the center pads are longer. Additionally, planarization is difficult to

maintain because each needle must be pushed or pulled with tweezers. Generally a

planarization no better than +/- 18 p,m is achievable [3].

At the 1988 International Test Conference, both Hewlett-Packard and Tecktronix

[2] presented papers on different membrane probe cards, made by deposition and etching

onto polyimide. The membrane card, however, appears to be an IBM invention, dating

from 1969, which the computer giant never developed commercially. Apparently HP

never sold its membrane cards outside the company. Tektronix, though, reportedly sold

and delivered more than 25 membrane cards in 1988-89. Now other companies have

picked up on the technology. Packard-Hughes Interconnect and Probe Technology

Corporation has become a major supplier of membrane cards. In 1992 Mark Beiley, Justin

Leung and S. Simon Wong of Stanford University [4-7] developed a membrane probe

card using silicon wafer process technology.
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The membrane probe card uses a flexible membrane with lithography-defined

micro-strip transmission lines that terminate in contact bumps [8]. It improved needle

type probe card limitation. The minimum distance between two probes was reduced to

100 p.m [2]. The planarization of the membrane probe card became easy to maintain due

to using lithography processes instead of mechanical processes. Additionally, the

membrane card was noted for its improved electrical performance, achieving bandwidths

of over 2.3 GHz [2].

However membrane probe cards also have some limitations. First, all probe points

on a probe card must contact the chip simultaneously with a single applied force. This

becomes increasingly problematic as chip complexity and number of contacts increase, and

as the incidence of non-coplanarity of contact surface increases. Next, both cards must be

custom-designed for specific chip designs, since each new I/O pad layout requires a new

probe layout. This drives up the cost for the probe card technology. Additionally the

minimum distance between two probes is limited to 100 p,m due to mechanical

consideration [2]. Finally there are also planarity problem with a large die, because the

membrane is curved and bowed in order to contact the test chip. As the die gets larger, the

membrane needs also to become much larger. Added to this problems is the newer

complexities offered by Multi-Chip Modules (MCMs) where contact pads or bump may

no longer be co-planar requiring the test probe points to adjust to test surfaces of varying

heights.
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1.2 This Research Objective

These problems mentioned in the above section can be solved through the creation of a

new type of wafer probe card which consisting of an array of micro-cantilever probes

individually actuated by bimorph heating to make contact with the testing pads [9], [10].

Each individual microprobe in the probe card could be used not only as a contact probe

but also as a micro switch during testing which makes the probe card more generally

useful. Actuation of the microprobes is created by cantilever bending through Joule

heating of a bimorph film element on the cantilever. This probe card could also be

designed with a generic layout and served as a multi-user probe card. This new type of

probe card offers a Conformable, High Pad-count Programmable test system capability

and is called the CHIPP probe card. This Ph.D. dissertation will discuss the development,

design, simulation, fabrication and testing of the microprobes essential to the formation of

a CHIPP probe card.



C 1 • PTER 2

MEMS MICROACTUATION

Because probe card technology requires moving probes to make ohmic contact, it is

necessary to have a method of producing accurate, small-scale forces to move probes in at

least one direction. Basic forces used for micromechanical actuation in order to achieve

individual probing action are electrostatic, thermal bending, magnetic, and piezoelectric

forces. Numerous Micro Electro Mechanical Systems (MEMS) structures have been

realized and commercialized based on these actuation techniques [11-14].

2.1 Thermal Actuation

Actuation based on a thermal drive method has been achieved for many different MEMS

applications [16-20]. The reasons for the popularity of thermal actuation are many: First,

thermal actuation has allowed many applications to achieve large deflections (greater than

100 lam) with voltages comparable to those used in standard microelectronic circuits (less

than 10 volts) [15-19]. Next, the fabrication process is fully compatible to standard IC

process steps. Finally, the mechanical force available is large and the transducer elements

exhibit a high mechanical rigidity. However, thermal devices are usually characterized by

high power consumption, and precise control motion may not be easily implemented.

However, thermal actuation remains useful for a number of application requiring large

forces and displacements.

5
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2.1.1 Bimorph Actuation

The most common type of heat-driven device is the bimorph actuation structure (see

Figure 2.1). The bimorph actuator consists of two or more materials with differing

coefficients of thermal expansion. When the materials are uniformly heated, the

coefficients of thermal expansion mismatch between the two or more materials forces a

displacement directly related to the amount of applied thermal energy. The method used

to heat the actuator depends on the application, but the most common method consists of

using a heater integrated in the device.

A simple device that uses the bimorph structure is the cantilever beam as shown in

Figure 2.1 [15]. Deflection distances of up to 100 lam with input power about 200 mW

have been achieved using such cantilevers composed of a gold-silicon sandwich, which is

500 prn in length, 100 [im in width and 4 ptm in height [15]. A motion of the cantilever

could be optically observed up to a frequency of 35 Hz [15].

A more complex thermal bimorph structure which can have bistable operating

states was developed by Hirotsugu Matoba [19]. The cantilever formed from three thin-

film layers: (polysilicon, silicon dioxide, and polysilicon) is made to buckle as a result of

strong axial force from a built-in tension. Joule heating in one of the two polysilicon

layers of the buckled cantilever gives rise to a snapping action that moves the cantilever

end +1- 6 p.m in a direction perpendicular to the underlying silicon substrate.
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2.1.2 Thermal Driven Cantilever Flexure

Another device utilizing thermal actuation is the thermal driven beam flexure [20]. Rather

than using a bimorph structure to generate a force through thermal expansion mismatch

between materials, the thermal driven beam flexure uses differential heating of the same

material created by running a current through a loop of conductive material of varying

width (Figure 2.2). The variation in resistance caused by the changes in width causes a

temperature difference, which can generate bending force in the low temperature direction
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due to the reason that the narrower sections in the beam are hotter and thermally expand

to a greater degree than the wider sections. A thermal driven beam flexure formed from

nickel with a length (L) of 1000 p.m, height (h) of 50 p.m and widths of 4 pm (W1) and 8

p.m (W2) has achieved a tip deflection of over 100 p.m with 100 mA of applied current

[20].

Figure 2.2 Horizontal heat-drive actuator.
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2.2 Electrostatic Actuation

Electrostatic actuation has been widely used in MEMS devices [21-27] because these

forces can be implemented using static voltages requiring only insulative and conductive

thin films which are available using conventional IC fabrication techniques. For MEMS

device designed with feature sizes achievable in current lithography techniques,

electrostatic force are quite large when small capacitive gaps are used. Additionally,

electrostatic forces can achieve precise control of the actuation force by fine tuning the

applied actuation voltage with fast response times down into the microsecond range. The

power dissipation is also very small (near zero) because there is only leakage current.

Despite these advantage, however, electrostatic device generally give lower maximum

actuation distances than can be achieved with other actuation methods because the

electrostatic force is inversely proportional to the square of the distance between

electrodes [28]. As a result, electrostatic devices usually have gap distances smaller than 5

Additionally, the moving directions of the electrostatic actuators usually limited on

the substrate surface due to the limitation of a small actuation distance. Finally, there also

are important limitations related to the electrostatic hysteresis due to the electron charge

on the insulator layer of the switch type devices.

2.2.1 Electrostatic Cantilever Actuation

The simplest structure that can be achieved using electrostatic actuation is the cantilever

actuator (Figure 2.3). Once a cantilever has been fabricated, the cantilever and the

substrate drive electrode form a simple parallel plate capacitor. Therefore, any deflection
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in the cantilever approximately follows the parallel plate capacitor arrangement (assuming

the slight deformations of the cantilever are negligible).

The relation between force, voltage and cantilever deflection is given by

Where A is cantilever area (assume the area of the drive electrode is larger than cantilever

area A), V is voltage applied between the cantilever and the drive electrode, a is dielectric

constant, a0 is permitivity of free space, x is the cantilever deflection due to electrostatic

force, and d is the initial gap between the cantilever and the electrode (see Figure 2.3).

Because the electrostatic force is inversely proportional to the square of the distance

formed between the cantilever and the drive electrodes, the capacitive force pulling the

cantilever increases rapidly as the cantilever deflects. At some critical point, the force is

great enough to force the cantilever to deflect instantly for the remaining distance. This

critical distance is about 1/3 of the actuation distance [28]. Because the capacitive force

becomes very small as the gap increases, electrostatic force method only applies to small

gap systems.

Cantilever structures while conceivably useful as actuators have generally been

used as resonant sensors. For such applications, the beam is acted upon by outside force

and any resulting deflection can be capacitively sensed. Using the same principle, however,

it is also possible to force the cantilever to deflect and form a switch by applying a voltage

between the cantilever and the drive electrode.
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2.2.2. Electrostatic Microbridge Actuation

Electrostatic microbridges, which operate under the same principle as cantilevers, are also

simple to design and fabricate [23-27]. Most microbridges are fabricated in a surface

micromachining process using polysilicon or metal as the primary structural material,

polyimide, Al or Si02 as the sacrificial layer. Beneath the bridge, several conductive

regions are either deposited or diffused for use as drive and sense electrodes. For use as a

sensor, an alternating voltage is applied between the microbridge and the drive electrodes.

The resulting oscillation is sensitive to parameters such as ambient temperature and

pressure. By capacitively sensing the oscillation of the bridge it is possible to sense
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differences in ambient conditions. For use as a microswitch, a d.c. voltage of sufficient

magnitude between the microbridge and drive electrodes can force the microbridge to

touch the sense electrode, thus allowing a connection to be made. The microbridge

structures (Figure 2.4 ) usually have applied voltages between 10-100v depended on the

device structures [24], [26].

r figure L.4 tcesonarn microonageiswiten rmeroonuge.

2.3 Magnetic and Piezoelectric Actuation

The last methods of micromechanical actuation, magnetic and piezoelectric, are less

popular, but have been used for very specific applications. In order to implement

magnetic actuation, a magnetic field on the MEMS scale must be produced. This can be

done by using small permanent magnets or by developing a MEMS sized electromagnet.

The former has been performed [29], [20], but the size limitation and fabrication
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difficulties preclude the use of permanent magnets for most MEMS devices. The latter is

more feasible, but presents its own array of difficulties. Magnetic actuation involves

persistent conduction losses due to the currents required for static excitation as well as

hysteresis and eddy current losses at higher actuation speeds [20].

Piezoelectric actuation [31], [32] shares many similarities with electrostatic

actuation. Piezoelectric actuators operate utilizing the property that when a voltage is

applied across a piezoelectric material, a small deformation can be created. Because

piezoelectric materials can be deposited and lithographically patterned, it is possible to

create small-scale devices if voltages large enough to achieve the desired motion are

employed. However, thin film piezoelectric actuation shares many of disadvantages of

magnetic actuation.

Comparing with magnetic or piezoelectric actuation which has many limitations,

electrostatic and thermal devices are preferable due to easy actuation, simply structure and

compatibility with commercial microelectronics fabrication processes [33].



CHAPTER 3

CONCEPT AND DESIGN OF MEMS PROBE CARD

In chapter 1 we have compared two different current probe card technologies. These two

technologies have some inherent advantages but also limitations. First, the needle/epoxy

probe card technology has a maximum 500 pin count limitation, and its minimum spacing

between two probes is also limited to — 125 pm. The membrane probe card technology

has improved the maximum 500 pin count limitation of the needle/epoxy probe card, but it

is also limited to a minimum spacing of —100 p.m between two probes. Both type of probe

cards have planarization problems. Finally, both probe cards must be custom-designed

for specific chip designs since each new I/O pad layout requires a new probe layout. This

limits probe card applications. In order to solve these limitation a new concept of MEMS

cantilever probe card has been developed [9], [10] and described in this chapter.

3.1 CHIPP Probe Card

3.1.1 Concept of CHIPP Probe Card

A new probe card concept is developed through the creation of an array of micro-

cantilever probes individually actuated by bimorph heating to make contact on the test

pads of a device chip during wafer-stage testing [9]. Bending action is created through

Joule heating of a bimorph film element on the cantilever. The probe movement is

controlled by heating current. At room temperature the cantilever is initially balanced at

zero stress position. When the cantilever is heated, the metal layer which has a large

thermal expansion coefficient will expand more than the low thermal expansion material

layer, generating a thermal stress between two layers, causing the cantilever to bend,

14
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contact is thus made to the device pad. Because the bending distance (deflection) of a

micro cantilever linearly depends on the input power, contact can be made at different

heights of testing pads through controlling the input power.

An illustration of one of these microprobes contacting a test chip is shown in

Figure 3.1. Thermal actuation of a bimorph is used instead of electrostatic actuation

because each microprobe must move away from the surface of the probe wafer toward the

test chip instead of toward the substrate surface, and the moving distance is large (about

20-40 p.m). Thus the bimorph structure must be fabricated with the higher expansion

material deposited before deposition of the lower expansion material, unlike most other

bimorph actuators with a cantilever configuration [16-20].

This new probe card is called a CHIPP ( Conformable, High Pad-count,

Programmable ) probe card. Compared with the existing probe card technologies, the

CHIPP probe card has many advantages. Because the CHIPP probe card uses IC process

technology through a silicon wafer substrate, the minimum repeat distance between two

probes has been decreased to 50-60 p.m (cantilever width of 40-50 p.m + gap of 10 p.m).

Additionally, the probe array can be designed for general testing on generic designs since

each cantilever probe is individually actuated. Finally, the CHIPP probe card can be used

for testing pads with varying heights; this expands the test applications of the probe card.



Figure 3.1 Microprobe making ohmic contact with the surface of a test chip.

16
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3.1.2 Design of Prototype CHIPP Probe Card

The CHIPP probe card can be designed to be any size and forming an opening in the

silicon substrate according to a customer's requirement. A total of 800 microprobes can

be arranged along the edges of a 1 cm 2 chip. Figure 3.2 illustrates a structure of a CHIPP

probe card. A bulk micromachining method is used for releasing the cantilever probe.

The Si (100) wafer is serves as the probe card frame and substrate. Because the contact

pads are usually designed along the periphery of the chip the array of microprobes are

placed along the edge of the opening. However, this design could also be used for interior

type device pads by using a small opening under each micro cantilever (see Figure 3.3).

This experimental prototype probe card was designed to address a 1 cm 2 size chip.

The shapes and sizes of the cantilever and heater varies for experimental purposes. The

prototype has 58 cantilever microprobes in 12 different shapes, with 4-5 probes for each

shape. In addition the shape of the heater varies for different types of micro probes. The

microprobes are positioned around a 1 cm2 center opening which can be used as a device

alignment window. The cantilever probes in this prototype test probe card have 3 large

pads (200 p.m) near each cantilever for making electrical connection to the contact region

at the tip (1 pad) and heater (2 pads). For real probe card designs the pads will be

replaced with metal micro-strips which lead the wire to the I/O pads on the edge of the

wafer. In this way the probe density will be increased to over 1000/cm2.
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Figure 3.2 Illustration of prototype CHIPP probe card showing microprobes positioned
about a center opening. The test chip is mounted face-down over the probe
card.



19

Figure 3.3 Illustration of arrangement of MEMS microprobes for contacting interior pads.
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3.2 CHIPP Microprobe

The microcantilever probe is a key element for successful probe card. In order to obtain

effective probing action, the microprobe has to be designed so that it can move the

cantilever large distances to contact chip pads, it consumes little power, and it can

provide a large force to help in making ohmic contact.

3.2.1. Physical Design of CHIPP Microprobe

The bimorph cantilever materials are carefully considered to provide good adhesion and

large bending ability. The adhesion of grown and deposited films used in device

processing must be excellent, both after deposition, and after subsequent processing. If

the film lifts from the substrate, device failure can result, and thus poor adhesion

represents a potential reliability problem.

Thermal-driven actuation is based on the stress of the cantilever structure. Nearly

all films are found to be in a state of internal stress, regardless of the means by which they

have been produced. The stress may be compressive or tensile. Compressively stressed

films would like to expand parallel to the substrate surface, and in the extreme, films in

compressive stress will buckle up on the substrate. Film in tensile stress, on the other

hand, would like to contract parallel to the substrate, and may crack if their elastic limits

are exceeded. The total stress, a, in a cantilever is the sum of: a) any external stress, aext,

on the cantilever; b) thermal stress, a th; and c) the intrinsic stress, CYint. The total stress is

written as:
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Crext + Cr th mint 	 (3.1)

Thermal stress results from the difference in the coefficients of thermal expansion

between the two films. The thermal stress is due to the constraint imposed by the two film

bonding and is given by:

crth (al -a2)• AT • E f 	(4.2)

where, a l and a2 are the average coefficients of thermal expansion for the bimorph films;

AT is the temperature of film growth minus the temperature of measurement; and Ef is the

average Young's modulus of the films. The a th can be of either sign (positive is tensile,

negative is compressive), based on the relative values of a l and a2.

The intrinsic stress reflects the film structure in ways not yet completely

understood. It has been observed that the intrinsic stress in a film depends on thickness,

deposition rate, deposition temperature, ambient pressure, method of film preparation and

type of substrate used, among other parameters [34]. At low deposition temperature,

metal films tend to exhibit tensile intrinsic stress. This decreases with increasing

deposition temperature (often in a linear manner), finally going through zero to

compressive.

The external stress aext in films also not yet understood. It is obvious that the

external stress depends on interface materials, diffusions, and deposition temperature.
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In the general design of a microprobe, the initial total stress must be kept small. A

large initial stress will cause initial bending of the released cantilever, thus require a extra

power to move the cantilever up to the original position. In addition a large difference of

coefficients of thermal expansion between two bimorph materials is required for a large

thermal driven deflection because the thermal stress mainly depends on the difference of

thermal expansion coefficients and Young's modulus from equation (3.1). When the

cantilever is heated, the thermal stress is built up, internal and external stresses are also

changed, although their changes are usually smaller than thermal stress. Because the

internal and external stresses are not yet completely understood, their bending direction

may not be known in advance; this is another reason why we chose a strong thermal stress

system.

A series of experimental bimorph systems have been chosen. The first set of

devices was designed with a gold contact and an aluminum-Si0 2 bimorph system.

Aluminum has a high thermal expansion coefficient of 23 x 10 -6 /K (see Table 3.1), good

adhesion with SiO 2 which has very small thermal expansion coefficient of 0.4 x 10 .6 /K; a

large tip motion is expected. The second bimorph system used was W-Si0 2 . Tungsten

has a relatively small thermal expansion coefficient of 4.4 x 10 -6 X, but it has a high

Young's modulus of 411 GPa and high melting point, and good adhesion with SiO 2 .

Many different cantilever structures were also designed for an experimental

purposes because deflections and tip forces of the micro probe cantilever strongly depend

on its sizes and materials. A total 12 different cantilevers were made with two types of

heaters inside (Figure 3.4) and outside (Figure 3.5) structures are listed in Table 3.2. The

cantilever structure with heater inside has length L and width W, and the cantilever
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structure with heater outside has length L, width W forming a electrical loop with a loop

gap D ( see Figure 3.5). A detailed analysis of the cantilever performance as a function of

sizes and materials will be given in Chapter 4.

Table 3.1 Physical characteristics of microprobe cantilever layers[35-37].

Cantilever
layer

Coefficient
of thermal
expansion

Young's
modulus

( 10 11 N 1 m 2 )
(10 -6/K)

Thermal
conductivity
(IV I niK)

Melting
point
(°C)

Resistivity
(p,Q. cm)

Si02(LTO) 0.4 0.73 2.66 unknown unknown

Al 23 0.69 238 660 2.67

Cu 17 1.2 397 1083 1.698

Si3N4 2.8 1.55 18.5 unknown 1021

W 4.4 4.11 178 3400 5.3

Si 2.6 1.62 170 1412 500

Ta 6.5 1.85 57.55 2980 13.5

Ti 8.9 1.2 21.6 1667 54



* L, W, D see Figure 3.4 and 3.5.

24



Figure 3.4 Illustration of microprobe with heater inside the cantilever.
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Figure 3.5 Illustration of microprobe showing heater as the bottom layer of the
cantilever.
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3.2.2. Heater Design of CHIPP Microprobe

A simple bimorph cantilever structure consists basically of two or three layers, with one of

the cantilever layers serving as the heater located either on the top or bottom of the

cantilevers, depending on the moving direction. However, this type of heat structure (see

Figure 3.6) experiences a large amount of heat loss from air convection and radiation

during Joule heating of the cantilever because the heater is in direct contact with air. In

order to reduce the heat loss, a sandwich heater structure is designed. The structure of

the sandwich cantilever is schematically illustrated in Figures 3.4 and 3.7. The two

components of the bimorph cantilever are metal and SiO 2, and the heater is built inside the

Si02 layer. This design can effectively reduce heat loss compared with traditional design,

because heat flow now has to pass through the SiO 2 layer to reach the outside, and Si02

has very small thermal conductivity. In order to compare the two different cantilever

structures a outside heater cantilever structure was also designed (see Figure 3.5).

The size and shape of the heater also has an important effects on heat loss because

it changes heater resistance and heater area. Two major heater structures with 12

different sizes and contact tips (Table 3.3 and Figure 3.8) were used.



Figure 3.6 A bimorph cantilever structure with heater on the bottom layer showing the
heat loss from the heater directly to air.
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(a) Single heater 	 (b) Double heater

Figure 3.8 Heater designs used in CHIPP microprobe.



*Parameters L, W and D see Figure 3.4, Figure 3.5 and 1, w, dl, and d2 see Figure 3.8.
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3.3 Ohmic Contact Issues and Solutions

3.3.1 Contact Force Required

An ohmic contact between the microprobe and the test pad is sometimes difficult to make

because of a thin metal-oxide film on some metal surface due to oxidation. An extra

sliding force (called "scrub") is needed to scrape through the oxide films before ohmic

contact can be made. The force required for ohmic contact is difficult to model because of

two factors: the uncertainty of the contact area, and the effect of interfacial insulating

layers such as oxide or hydrocabon contamination.

A range of applied forces has been reported, depending on the circumstance.

Forces of —0.1 N are reported for conventional spreading resistance probe contacts where

the contact area is assumed to be a disc of 5 p.m diameter [38-39], the force required to

make ohmic contact between two larger gold contacts [40] (of unspecified area) is more

than 10 pN and the force required for contact between an AFM tip and a metal-coated

surface [41] is less than 1p.N.

3.3.2. Ohmic Contact

Ohmic contact between clean metal surfaces such as gold does not require scrub and

contact forces are expected to be small. Contact to aluminum which grows a thin

aluminum oxide film quickly when exposed to air is more difficult and a scrub action in the

probe tips may be required.

The CH PP probe card is designed with three different tips, gold, diamond and

tungsten. Gold tips are used for contacting to the clean metal pads, and conducting

diamond tips are used for scrubbing metal pads covered with thin metal-oxide films.
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Probe scrub is created through lateral motion of the cantilever tip over the pad surface.

The shapes and sizes of the microprobe tips are shown in Figure 3.9 (a) and Table 3.5.

The bending force on the cantilever tip can be separated into two components; one toward

the pad surface called Fpress, and the other is parallel to the pad surface calledF„rub . The

force F„rub causes the probe tip to scrub the thin oxide along the pad surface, the force

press cause the probe tip to push into the pad surface along the vertical direction,

breaking through thin oxide film on the metal surface.

When contact is made continued force will cause tip to bend (see Figure 3.9(b) ).

The bending curvature depends on the tip shape, with narrow tips producing more bending

curvature than wide tips. Scrub force also depends on the tip curvature because tip

curvature determines the contact force angle. 12 different tip shapes are designed for

experimental purpose (see Table 3.5). Conducting diamond is highly boron doped

diamond which is grown at 900-1000°C by sp a , Inc. [42]. Diamond is used because it is

very hard and abrasive. The diamond crystals, which are 0.1 to 1µm in size, have very

sharp angles which scrub through the thin metal-oxide film on the test pad surface. The

diamond can be best be grown on a tungsten surface, so tungsten tips are used.

Tungsten has excellent fatigue resistance and good hardness, therefore it is used as

a probe tip in conventional probe card. In this probe card design tungsten is also selected

as tip material and as a candidate for making ohmic contact.



(b) Microprobe tip making contact on test pad.

Figure 3.9 Illustration of tip of CHIPP microprobe.



Table 3.4 Dimension parameters of tips of CHIPP microprobes.

Cantilever type Cantilever sizes
(mm)

Tips sizes

L W D W1

(m)

W2

(m)

h

(11m)
Double heater

inside cantilever 500 50 50 24 35
Double heater

inside cantilever 500 60 60 30 44
Double heater

inside cantilever 400 40 40 20 33
Double heater

inside cantilever 400 50 50 20 50
Double heater

inside cantilever 300 40 40 20 23
Double heater

inside cantilever 300 50 50 30 34
Single heater

inside cantilever 200 30 30 14 20
Single heater

inside cantilever 200 35 35 19 20
Single heater on
the bottom of

cantilever
500 40 10 40 20 29

Single heater on
the bottom of

cantilever
400 40 10 40 16 31

Single heater on
the bottom of

cantilever
300 40 10 40 16 31

Single heater on
the bottom of

cantilever
260

_
40 10 40 16 31

35



CHAPTER 4

MODELING AND SIMULATION

In chapter 3 a structure of the thermal bimorph cantilever has been discussed. Based on

this structure a cantilever probe array has been designed as a CHIPP probe card. In this

chapter the bimorph cantilever with different boundary conditions will be analyzed and

simulated according to a general theory of thermal stress and bending for the bimorph

structure.

4.1 Analysis of a Bimorph Structure

4.1.1 Analysis of a Bimorph Cantilever with Two Free Ends

The following analysis is based on a general theory [18], [43] of bending of a bimorph

cantilever with a uniform heating. It is assumed that the difference in the coefficients of

thermal expansion remains constant during the heating.

Let a narrow cantilever consisting of two materials be uniformly heated from t o °C

to t °C. If the coefficient of linear expansion of these materials be different the heating will

produce bending of the cantilever. Let a l and a2 denote the coefficients of thermal

expansion of the two layers (1) and (2) (see Figure 4.1).

Consider an element cut out from the middle of the cantilever (see Figure 4.1). If

a2 > al the deflection will be convex down, as shown in Figure 4.1. All the forces acting

over the section of the layer (1) on the concave side can be represented by an axial tensile

force P 1 and bending moment M 1 . For layer (2) on the convex side all forces acting on

the cross-section can be represented by an axial compressive forces P2 and bending

36
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moment M2. Due to the fact that there are not external force acting on the cantilever, all

forces acting over any cross-section of the strip must be in equilibrium, therefore,



E1I1
- R

M - 		2 	 R

Substituting in (2)

P(t1 t2 ) E1 I1 E2 /2

2

Another equation for calculating P and R will be obtained from the consideration of

deformation. On the bearing surface of both metals the unit elongation occurring in the

longitudinal fibres of layers (1) and (2) must be equal, therefor,

	a 1 Ct - to )+ + 	 = a2 (t - - P2 	 a2al

E i Wi t i 2R	 E2 W2 i2 2R

Using (4.5) and (4.6) ,

(t i + t2 ) 2(E 1 / 1 + E2 12 ) 	 1 	 1 
(a2 - )(t - to ) = 	

2R	 (t1 + t2 )R	
+ 

E2 W2 
)

Here I I = W 1/12 and 12=W2/12 and finally, the expression for the cantilever

curvature 1/R is given:

	

1	 6WIPV2E1.E2t1t2(t1 +1 2 )(a2 	)AT
(4.8)

R (E1Witl2 )2 +(E2 W2 ti)2 +2W1 W2 E iE2 t i t2 (2t? +3t 1 t2 + 2d)

Assuming a constant radius of curvature R for a cantilever length L we obtain the

displacement S of the cantilever tip at small deflection angle:

1 L2

6 = 21i
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(4.4)

(4.5)

(4.6)

(4.7)

(4.9)
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4.1.2 Analysis of Bimorph Cantilever with Left End Free and Right End Fixed

Although equation (4.8) and (4.9) are deduced from both end free case, this equations are

also true for one end free and the other fixed case [44]. According to W. C. Young [43]

and M. Mehragany [18] the same deflection equation can be obtained :
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Figure 4.2. Cantilever deflection with left end free and right end fixed.

4.1.3 Force Analysis of One End Fixed Cantilever

A cantilever beam fixed at the right end and carrying a concentrated load F at the point x

away from the lift free end is shown in Figure. 4.3. The deflection caused by the external

load F is d which cam be obtained [45 ] as following equation:

1 F 	 3 	 ,
SF	 — 3.Lx + x') (4.14)

The maximum deflection happens at x=0, and given as follows:



1 F 3

F max — 3 E./ L (4.15)
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In our cantilever deflection case the cantilever probe is firstly moved a distance d o , then

contact the test pad, which is the same cause as external force added at d o . Therefore a

deflection balance formula can be obtained :

OF = 5 - 50 	 (4.16)

A general force equation caused by cantilever bending can be obtained using equation

(4.10), (4.14) and (4.15):

F= 	
18E/ -WI T472 E1E2 t i t2 (t i +12 )(a2 — ai )AT(L2 — x2 )

(Eirrlti )2 +(E2W2t2) 2 	 2 	 2+2W1 W2 E 1 E2 t i t2 (2t i +3ti t2 +2t2 )(L3 — 3L3 x + X 3 )2 \  

6ET
(4.17)+ 

(2L3 — 3L3 X + X
3 	 8 0

)

The equation (4.17) is reduced to (4.18) at x=0, which is the case probe tip to make

contact.

	

18E/ • WF2 E1 E2 t i t2 (t i +12 )(a2 —cei)AT 	 6EI 
F	 2 + 3 6

(E1 W1 t l ) 2 	 2 2 	 2+ (E2 W2 t2 ) + 2WF2E1E2tit2 (24 +311t2 +2t2 )L L
4.18)



oe treatea oy using an equivalent wiutn teennique ii the maximum stresses in eaun of tue

several materials remain within the proportional limit. An equivalent cross section is

developed in which the width of each component parallel to the principal axis of bending is

increased in the same proportion that the modulus of elasticity of that component makes

with the modulus of the assumed material of the equivalent cantilever. Figure 4.4 shows

the cantilever with three different material layers.

For this equivalent cross section the centroid must be located and the moment of

inertia determined for the centroidal axis. The centroid can be obtained as follows:

—	 /2 t2 t3)+ W2E2 t2(t2 /2 + t3)+ W3E3t3 (t3 /2) 
Y WIE1t1 +W2E2 t2 + W3 E 3 t3

(4.19)



43

The moment of inertia can be given:

q

Ix — 
WI ti3 + W2 d +W3/1 

 -Fwt ( 
/1
----i-t +t _ y)2 + W t (—

t2 
+ t3 — y)2 	

/3
+ W3 t 3 ( -2 — yY

12	 1 1 2 	2	 3	 2 2 2 	3
(4.20)

and finally the equivalent cantilever stiffness is achieved as (4.21):
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Similarly the equivalent stiffness for bimorph cantilever is given [44] for which the

which the cross section is shown in Figure 4.1:

wt2 t1 E1E2 
EI =

 12(E1	
(4.22)

+ E2 t2) 
K

ti 2 	l.	 ti 3
K = [4 + 6 + 4(—) + (—) + E2 12 , 	

(4.23)
12 	 /2 	 E2 '2 	 El t1

4.2 Simulation of Motion of Bimorph Cantilever Structure

4.2.1 Basic Assumption

Cantilever simulation is based on the assumptions at section 4.1 and . Firstly, the

cantilever is heated uniformly, temperature gradient due to the heating is neglected.

Secondly, only the bimorph cantilever structure is considered, and the heater structure

inside the cantilever is simplified using a equivalent cantilever stiffness EI eq. Thirdly, the

cantilever original position is assumed at zero - a flat cantilever. For an initially bent

cantilever an non-zero value should be subtracted from the total simulated deflections.

Finally, only the thermal stress is considered, the external stress and the intrinsic stress is

small compared with thermal stress and is neglected.

Jandel Sigmaplot Graphics is used to simulate different cantilever structure based

on the formulas in section 4.1 and similar work see reference [46].
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Four cantilever structures (Al-Si02,	 Cu-Si02 and W-Si0 2) have been used

for fabrication of the CHIPP microprobe and are selected for simulations. The parameters

of the bimorph cantilever have been listed in Table 3.1 and will be used in the simulations.

4.2.2 Simulations of the Effect of Cantilever Thickness

In design of CHIPP probe card a maximum deflection with a given temperature (or a

given input power) is required for the probes moving a distance to make ohmic contact. In

order to complete the simulation, the equation (4.11) can be reduced to the following

equation:

3•Aa •AT(1+—
ti

)L
2

t2
ri W1 El tl \3 W2 E2 t2 	 tl 2 

+ 3(---12 )+2])
11

t2 " W2 E2 A t2 ) + W1 El ( tl) 
+2[2(----t2)

(4.24)

The maximum deflections of the bimorph cantilevers with different materials are simulated

as a function of the thickness ratio of two cantilever layers and shown in Figure 4.5.
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From Figure 4.5 we can see the deflection 8 has a maximum value for a fixed

cantilever temperature and length. A very interested thing is that the maximum value of

the deflections is not only a function of the cantilever materials but also the ratio of the

thicknesses of the bimorph layers. This ratio for the maximum deflection changes when

the materials are changed but the other conditions are maintained. The ratio with

maximum deflection condition is 0.5 for Al-Si0 2, 0.3 for Al-Si, 0.6 for Cu-Si02 and 1.1

for W-Si02. In addition, the values of the maximum deflections for different materials

depend on both the difference Aa of thermal expansion and Young's modulus E. As a

result, the Al-Si cantilever has a largest maximum deflection value due to the large

Young's modulus of silicon, although the system only has the second large Act compared

with the Al-Si02 bimorph. The Al-Si02 system obtains the second large maximum

deflection value. Cu-Si02 and W-Si02 cantilevers give smaller maximum deflection as

expected.

4.2.3 Simulation of the Deflections at the Probe Tip

In real probe card operation the probes are controlled by input power. The deflections at

the probe tips have been simulated as a function of the cantilever temperature with four

cantilever structures using equation (4.42). The simulation results are shown in Figures

4.6-4.9. The results show that the deflection of the cantilever is linearly proportional to

the temperature rise AT, but inversely proportional to the thickness of the metal and oxide.

The Al-Si cantilever system has largest deflection range (reaching 400 1.tm at 250°C)

compared with the other cantilever systems at the same conditions of cantilever length,
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thickness and temperature. The W-Si0 2 cantilever system has a smallest deflection range

(about 50 pm at 250°C).

Figure 4.6 Tip deflection as a function of temperature rise AT for Al-Si0 2 cantilever at
L=400 pm, t.oxick -metal =0.5 and three different Al thicknesses.



Figure 4.7 Tip deflection as a function of temperature rise AT for Al-Si cantilever at
L=400 µm, t si/tm =0.3 and three different Al thicknesses.
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Figure 4.8 Tip deflection as a function of temperature rise AT for Cu-SiO2 cantilever at
L=400 p.m, toxideitc,=0.6 and three different Cu thicknesses.



OU 	 UU 	 OU LUU ZOU .5UU 00U 4UU

( 00 )

Figure 4.9 Tip deflection as a function of temperature rise AT for W-Si0 2 cantilever at
L=400 pm, to>ddtw =1.1 and three different W thicknesses.
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4.2.4 Forces Applied by Cantilever Tips

The tip force generated by the cantilever is due to the bending moment caused by thermal

expansion of the two materials. When the tip of the cantilever is bent to make contact

with a test pad, it first touches the test pad, and then the extra force will be applied at the

tip with continued bending of the cantilever due to raise of the input power. In order to

simplify the simulation, a flat cantilever condition is considered, and a zero moving

distance is chosen.

Figures 4.10-4.13 show the force applied by tip as a function of temperature rise

AT for the Al-Si0 2, Al-Si, Cu-Si02 and W-Si02 systems with three cantilever thicknesses.

The forces at the tips in these figures are linearly proportional to the temperature rise AT

and the cantilever thickness. The largest force applied at the cantilever tips is still found

with the Al-Si bimorph with 500 pN at t ai =3 p.m and AT=250 °C. The smallest force goes

to W-Si02 with 150 pN at tM =3 pm and AT=250 °C.

In order to increase the tip force we can increase AT or the cantilever thickness.

However, the cantilever deflection is inversely proportional to the cantilever thickness (see

Figures 4.6-4.9), increase of the cantilever thickness will cause cantilever deflection

decrease. The CHIPP microprobe requires large force (for ohmic contact) and large

deflection (for moving distance). This implies a thick cantilever size may not satisfy the

deflection requirements although it increase the tip force. A solution which can obtain

both large force and large deflection is to increase the cantilever width. The tip force is a

function of cantilever width (see Figure 4.14) but the cantilever deflection is not (see

equation (4.24 or 4.10)), which means we can increase cantilever tip force through
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increasing cantilever width without decreasing cantilever deflection. A large deflection

with large tip force is an advantage in design of the CHIPP probe card.

0	 50	 100	 150	 200	 250	 300

AT ( °C )

Figure 4.10 Force applied by tip as a function of temperature rise AT for Al-SiO 2

cantilever with three Al thicknesses.
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Figure 4.11 Force applied by tip as a function of temperature rise AT for Al-Si
cantilever with three Al thicknesses.
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Figure 4.12 Force applied by tip as a function of temperature rise AT for Cu-SiO2
cantilever with three Cu thicknesses.
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Figure 4.13 Force applied by tip as a function of temperature rise AT for W-Si02
cantilever with three W thicknesses
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C PTER 5

FABRICATION

Fabrication was carried out in the class 10 clean room in NJIT. The first device made

was a Al-Si02 bimorph structure with TaSi2 heater and Au contact tip. Because Al has

low a melting point, the Al-Si0 2 cantilever structure cannot used for diamond deposition,

which occurs over 900 °C. A second device has a W-Si0 2 bimorph structure with W

heater and three different contact tip materials: conducting diamond, gold, and tungsten.

This fabrication is complicated and difficult due to the conducting diamond and tungsten.

5.1 Fabrication of AI-Si02 Type Probe Card

The process flow for a prototype version of Al-SiO 2 probe card is illustrated in Figure 5.1.

The cantilevers are made of sputtering aluminum and Low Temperature Oxide (LTO)

Si02, heaters are sputtering TaSi 2, and the probe tips and pads are made of gold.

All of the experiments have been performed on (100) oriented, 100 mm-diameter

silicon wafers. The first step is to mask the wafer for future potassium hydroxide (KOH)

etch which will be used for the release of the probe card. A low pressure chemical vapor

deposition (LPCVD) of silicon nitride (Si 3N4) is deposited on both sides of wafers, the

silicon nitride film on front side is for KOH etch stop and the film on back side is for KOH

etch mask. Silicon nitride has an etch rate of almost zero in KOH. The etch rate of

lightly to moderately doped silicon is approximately 50 µm/hr at 80 °C. A 0.12 to 0.2

thick nitride film is sufficient to mask the KOH etch. Because silicon nitride film has high-

stress, generally film thickness of larger than 0.3 1.1.M will cause film cracking. Before

LPCVD of silicon nitride a thin SiO2 film of 500A was grown using dry thermal oxidation,
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which provides a good adhesion layer for silicon nitride. The following step is to deposit

11.tm LTO Si02 for protection layer on both surfaces of the wafers. The Si02 film on the

front side will be used as a adhesion layer between Si3N4 and the metal film, and also used

as a protection layer for final dry release. KOH is not uniform, and because the thin

Si3N4/Si02 film cannot withstand the long etch needed to remove all the silicon, some

silicon may still remain on backside of the wafer after KOH etch. This remaining silicon

has to be etched using SF 6 based RIE. The SF6 plasma may damages the tungsten metal,

and the Si02 film which has 6:1 selectivity with silicon during SF 6 RIE etch is used to

protect the tungsten metal. The Si02 is etched using CF4-CHF3 based plasma which dose

not etch tungsten. The Si0 2 film on the backside is to prevent mechanical damage during

wafer processing.

The aluminum metal that will form the cantilever beam and signal line is deposited

next. Sputtering deposition is used in different thickness from 0.6 p,m to 3 p.m. The

aluminum is patterned and then etched with H3PO4.

A second layer of LTO is then deposited on the front side of the wafer. This film

is 0.3 - 0.4 p.m thick and serves as an insulation layer between the aluminum signal line

and heater. The insulation layer of 0.3 pm is minimum because Al may diffuse to LTO at

425°C. A diffusion barrier layer may be required to block the aluminum diffusion such as

PECVD Si02 instead of LTO. A tungsten layer is usually deposited and serve as a

diffusion barrier layer before LTO deposition because tungsten has very high melting

point. The tungsten layer can be etched with a SF6-based RIE etch.

The heater layer of 0.5 p,m TaSi2 is then deposited by sputtering. The maximum

thickness of TaSi2 deposited by sputtering is 0.7-1.0 pm depended on the deposition
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temperatures; above this limit the film will crack. TaSi2 is patterned and etched with a

two step dry etch process. The TaSi2 is etched with a SF6 based RIE etch, while the LTO

is etched with a CF4-CHF3 based RIE etch.

The next step is to deposit the third layer of 11,tm LTO that serves as a top

insulation layer and a low thermal expansion layer for the bimorph cantilever. The LTO

layer is then patterned and etched with CF 4-CHF 3 RIE etch to open windows for the probe

pads and tips.

The next step is to deposit gold for the probe contact tips and pads using lift-off.

A carefully prepared photoresist with 10 1..IM thickness is used for lift-off A 0.5 p.m gold

film is deposited by sputtering and then lifted off in acetone (2 minutes with ultrasonic

vibration; 2-4 hours without ultrasound).

After carefully cleaning, the Si 3N4 on the back side is patterned to serve as a mask

against KOH etching. The probe card device on the front side of the wafer must be

properly protected. Great care is taken to prevent any scratches: for example, only plastic

holders are used to spin on photoresist on the wafer. For this reason the first step in

patterning the wafer is to spin on a protective coating of photoresist on the front side of

the wafer. This coating is generally a few micrometers thick, and then hardened with a

115 °C bake for 20min. Conventional IC infrared lithography is then utilized to pattern the

photoresist on the back side of the wafer. A CF4- CHF 3 based RIE is then used to etch

the exposed areas on the back side of the wafer, the first layer is Him LTO, the next is

0.12 pm Si3N4 and the third layer is 500A thermal Si02 . A CF4 based RIE instead of a

CF6 based RIE is used for Si3N4 dry etch because SF6 based RIE also attacks the Si (100)

surface.
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After the LTO/nitride layer patterning, the photoresist is stripped prior to the KOH

etch. A special holder is used for the device protection on front side of the wafer during

KOH etch. The holder is used instead of a conventional LPCVD nitride layer because the

deposition temperature of LPCVD nitride is 770°C, too high for metals used in the device.

A 4 p.m thick photoresist is coated on front side of the wafer with 115 °C bake for 30 min

prior to the KOH to protect the devices. Another blank silicon wafer coated with thick

photoresist without bake on its front side is used to bond with the device wafer face to

face, the two wafers are then hardened with a 115 °C bake for 60-90 min. This process is

used to support a thin nitride film for KOH etch and also to hold the device for dry RIE

release in last step.

The KOH etch is a mixture of 45% KOH in water. The solution is heated to 80 °C
in a Teflon beaker in a stainless steel water bath. A convex lid is placed over the beaker

which causes condensation of the solution to be dripped back into the beaker, maintaining

a constant chemical composition and therefore constant etch rate. The double polished

silicon wafer starts out approximately 450 p.m thick. The KOH etch takes approximately

8 h to complete. The wafers are placed vertically, so that the gaseous by-products can

escape without hindering the etch. When the wafer is etched through silicon, the etch is

stopped on the nitride. Visual inspection is used to tell when the LTO thin film is

penetrated. The KOH etch has a very high selectivity between the (100) and (111) plane

of silicon. This causes the silicon wafer to be etched at 54.7 ° angle (i.e. along a (111)

plane) with respect to the surface of the (100)-oriented wafer.

After KOH etch the wafer is cleaned using DI water. The wafer is then baked at

150C for 30-60 min to harden the bonded wafer prior to the RIE etch. The next step is to
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remove the remaining substrate silicon from device cantilever areas. The back side of the

wafer is subjected to a SF6 based RIE etch that has selectivity of 8:1 between silicon and

oxide. The etch takes approximately 30-40 min to complete. The first layer of deposited

LTO serves as an etch stop to protect the cantilever.

The last step is to release the device. A CF 4- CHF3 based RIE etch is used to

remove the LTO layer, which is protected in aluminum cantilever areas or in photoresist

areas on the front side. The cantilevers are still stuck to photoresist of the front wafer

during the RIE etch, which protect the front surface of the cantilever without attack by

plasma etch. The photoresist is then stripped carefully with M-pyrol and acetone,

following DI water and alcohol clean, then baked at 115°C for 5 minutes. A 0 2-plasma is

used to clear the remaining photoresist. The fabrication of the probe card is then

completed.

The sequence of the fabrication procedure can be summarized with the following

steps:

1. Wafer clean, thermal oxidation (500A)

2. LPCVD Si3N4 deposition (1200-2000A) on both sides of the wafers

3. First LPCVD Si0 2 deposition (1 p.m) on both sides of the wafers

4. Al sputter deposition (1-3 p.m) on the front side

5. Al patterning and wet etch

6. W sputter (2000A) on the front side of Al for diffusion stop layer

7. Second LPCVD Si02 deposition (3000-4000A) on the front side

8. Heater layer of TaSi2 sputter deposition on the front side



9. Heater patterning and RIE TaSi2 and LTO and W

10. Third LPCVD Si02 deposition (0.6-1.2 pm)

11. LTO patterning and RIE Si02 to open widows

12. Cr\Au sputtering deposition (0.5 p.m ) and lift-off

13. Metal annealing

14. Backside photo and RIE LTO and Si3N4

15. KOH etching

16. RIE Si/Si3N4/LTO for cantilever release

17. Photoresist strip

18. 02 plasma clear
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Figure 5.1 Fabrication flow for a prototype probe card using Al-Si0 2 cantilever with gold
contact tip.
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5.2 Fabrication of W-Si02 Type Probe Card

Fabrication of the W-Si0 2 based cantilever probe card is similar to the Al-SiO2 structure.

However the major difference is that tungsten has very high melting point so that

conducting diamond deposition is possible. Tungsten also has very high stiffness, which

can make scrub possible.

5.2.1 Gold and Tungsten Tip Structure

The process flow for W-Si02 probe card with gold and tungsten tips is shown Figure 5.2.

The heater material is now changed to tungsten because TaSi 2 has larger coefficient of

thermal expansion than tungsten, which could reduce cantilever bending force during the

cantilever heating. The contact pad material is gold.

The first few process steps are the same as Al-SiO 2 structure except tungsten

sputtering deposition is used instead of aluminum deposition. Because tungsten has large

stiffness it cracks easily during sputtering. A 0.1 ptm titanium adhesion layer is deposited

prior to the tungsten deposition for adhesion if Ti thickness is smaller than 0.1 pm the W

film may be lift. Because large sputtering power produces a lowering of electrical

conductivity in tungsten, the deposition of tungsten uses 200W d. c. power. The tungsten

film is 1 thick. Maximum thickness is 1.5 11,m due to the film cracking.



Figure 5.2 Fabrication flow for a prototype probe card using W-Si02 cantilever with
gold and tungsten tips.
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After deposition the tungsten metal is annealed at 400 °C for half hour to reduce

stress, it is then possible to continue deposition in order to obtain a thicker tungsten film.

The tungsten is patterned and then etched with a SF 6-based plasma etch, first through the

tungsten then the titanium, finally stopping on the Si0 2 surface.

The heater material is also tungsten with the same process as above but 0.5 p.m

thickness. The remaining processing steps are the same as Al-Si0 2 with gold contact tips,

but with a slight difference. For the tungsten tip structure a separate lift-off process is

required, which is first to deposit and lift-off gold metal for pads, then deposit and lift-off

tungsten metal for tip.

The process steps are given as follows:

1. Wafer clean, thermal oxidation (500A)

2. LPCVD Si3N4 deposition (1200-2000A) on both sides of the wafers

3. First LPCVD Si02 deposition (1 p.m) on both sides of the wafers

4. W sputtering deposition (1 inn) for the first cantilever layer

5. W patterning and SF 6 based RIE etch

6. Second LPCVD Si0 2 deposition (3000-4000A) for insulation

7. W sputtering deposition for heater

8. Heater patterning and SF6-RIE W and CF 4-RIE LTO

9. Third LPCVD Si02 deposition (1.2 pm) for the second cantilever layer

10.LTO patter and RIE Si02 to open widows

11. Cr\Au sputter deposition (0.5 	 ) and lift-off for pads

12. W sputtering deposition (0.5 p.m) and lift-off for tips
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13.Metal annealing

14.Backside photo lithography and RIE LTO and Si3N4

15. KOH etching

16. RIE Si/Si3N4/LTO for cantilever release

17. Photoresist strip

18. 02 plasma clear

5.2.2 Conducting Diamond Tip Structure

Figure 5.3 shows the process flows for a W-Si0 2 cantilever structure with conducting

diamond tip. The tungsten is used to serve as a substrate for diamond deposition. The

process starts with a Si (100) wafer. The first step is to grow Si 3N4 and LTO layers on

both sides of the wafer for KOH mask and stop layer, similar to the Al-Si02 cantilever

processes described above. The tungsten metal that forms the bottom part of the bimorph

is deposited next. It consists of a 1µm tungsten film with a 0.1 p.m titanium adhesion

layer. The metal is patterned and then etched with a two step dry etch process (first

tungsten, next titanium) with a SF 6 based plasma etch. Then tungsten is then annealed at

400°C with forming gas for 30 minutes to reduce film stress.

A second layer of 0.3 pin LTO is then deposited. This LTO film is a protection

layer for future diamond RIE etch, and provides an insulating cover for the cantilever.

The LTO is patterned and dry etched in a CHF 3-CF4 based plasma, which provides the

small openings in the LTO film to the tip of tungsten cantilever. This openings will be

used to serve as a base for diamond film deposition to form diamond/W tips.



69

The wafers covered by LTO with tungsten windows are carefully cleaned, then

sent to spa Inc. in California for diamond deposition. A CVD deposition at 900-1000°C is

used to grow about 1.5 p.m thick conducting diamond on the front side of the wafer. This

diamond film is used to form a micro probe tip for scrub contact.

The patterning of the diamond tip uses a conventional IC photolithography

process. The first step is to deposit an aluminum film on front side of the wafer. This

film is 0.8 thick and serves as a metal masking layer for dry etching the diamond film.

The aluminum is patterned and then etched in H3PO4 . After stripping photoresist the

diamond film is etched with an 02-based plasma. A great care is necessary for diamond

etch because the etch is very different from conventional film etching. Conventional

etching is basically uniform or faster at the edge of the wafer, however, the diamond film

etch is not uniform, and etching in the center of the wafer is faster than at the edge. In the

same area, the diamond film etch is also not uniform, and many diamond islands on LTO

remain after most of the diamond film are etched away. These islands could be certain

diamond crystal orientations. Much longer RLE etch times are needed to clear these

diamond islands, and the time could be doubled until islands disappear. Therefore a LTO

protection layer must be used for metal surface protection. The LTO film is then removed

by CF4-CHF3 based plasma. The Al mask is stripped by wet chemical etch.

The next step is to deposit 0.3 i_tm LTO film for the insulation layer between the W

bimorph layer and the heater layer. Then tungsten metal for the heater is deposited by

sputtering. The film is 0.5 p.m thick. The tungsten film is annealed at 400 °C for 30

minutes following deposition. The tungsten is patterned and dry etched in a SF6 based

plasma.
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A fourth layer of LTO is then deposited on the front side of the wafer. This film is

1.2 p.m and serve as a top lever of the cantilever. After patterning of the LTO film a

CHF3 -CF4 based RIE is used to open windows for conducting diamond tips and contact

pads. Then gold metal is deposited for contact pads using the lift-off method.

The following steps are used to release the device. These steps are similar to the

Al-Si02 structure process. The whole process flow is summarized as follows:

Process flow for W-S02 cantilever with conducting diamond tips;

1. Wafer clean, thermal oxidation (500A)

2. LPCVD Si3N4 deposition (1200-2000A) on both sides of the wafers

3. The first LPCVD Si02 deposition (1 p.m) on both sides of the wafers

4. W sputtering deposition (1 p.m) for the first cantilever layer

5. W patterning and SF6 based RIE etch

6. W annealing at 400 °C forming gas for 30 min

7. The second LPCVD Si02 deposition (3000-4000A) for RIE protection and insulation

8. LTO patterning and CF4-CHF3 based RIE etch to open window for diamond

deposition

9. CVD conducting diamond deposition(1.5 p.m)

10. Al sputtering deposition for diamond mask (0.8 p.m)

11.Al film patterning and wet etch

12.Diamond film etch using 02 plasma

13.LTO film strip using CHF 3 based plasma

14. Al mask strip through wet chemical etch



15. The third LPCVD Si0 2 deposition (3000-4000A) for insulation

16. W sputtering deposition for heater

17.Heater patterning and SF6-RIE W and CF4-RIE LTO

18. The 4 LPCVD Si0 2 deposition ( 1.0-1.2 pm) for the second bimorph layer

19.LTO patterning and RIE Si02 to open widows for tips and pads

20. Cr\Au sputtering deposition (0.5 µm) and lift-off for pads

21. Backside photo lithography and LTO and Si 3N4 etch through CHF3 based RIE

22. KOH etching

23. RIE Si/Si3N4/LTO for cantilever release

24. Photoresist strip

25. 02 plasma clear
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Figure 5.3 Fabrication flow for a prototype probe card using W-Si02 cantilever with
conducting diamond tip.
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6.3 Mask Design

Complete processing requires six masks. Masks are designed using a Mentor Graphic IC

station. The file is then transferred to gds2 file and sent to a commercial company for

fabrication. The first mask is used for cantilever metal patterning. The second mask is

used to form the heater. The third is used for the top bimorph formation and also for the

device pad and tip openings. The fourth mask is used for the device pad lift off included

heater and signal wire pads. The gold lift-off and diamond opening window are achieved

by the fifth mask. The final mask is for backside KOH etching.

6.4 Adhesion Consideration and Experiments

The adhesion of grown and deposited films used in the CHIPP probe card must be

excellent (both as deposited, and after subsequent processing). If films lift from the

substrate device failure can result, and thus poor adhesion represents a potential reliability

problem.

Adhesion can be effected by many physical and chemical factors. First for low

values of adhesion, it is surmised that the electron shells of the adsorbed atoms remain

intact, and these atoms are held to the surface by Van der Waals forces[34]. These forces

apply to a bonding energy less than approximately 0.4 eV, and the atoms are said to be

physisorbed on the substrate. Above 0.4 eV, sharing of electrons between the film and

substrate occurs, and the atoms are chemisorbed. Generally adhesion is greater the higher

the adsorption energy of the deposit and /or the higher the number of nucleation centers in

early growth stage of the film. Chemisorption due to an intermediate-layer formation that

allows a continuous transition from one lattice to the other and results in excellent
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adhesion. This particularly true for the adhesion from of strong oxide forms. If

intermetallic metal alloys form, adhesion is also improved. Adhesion is also strongly

effected by the cleanliness of the substrate. Contamination generally results in reduced

adhesion, as does an adsorbed gas layer. Cleaning the substrate prior to deposition is

therefore important to insure good adhesion. Finally, substrate surface roughness can

also effect adhesion, because a rough substrate exhibits more surface area than a smooth

surface, and mechanical interlocking between the film and substrate may occur.

In order to obtain good adhesion between metals and silicon oxide, and between

metal and diamond, a large number of adhesion experiments were performed. Diamond

deposition temperature is around 900-1000 °C, and high melting point metal, like Ta and

W are required. Three metals were considered: W, Ta, and Cu.

Ta has been deposited under different conditions. A maximum Ta thickness of

5000A with good adhesion to LTO surface is found with room temperature sputtering. If

the Ta thickness is larger than 5000A, poor adhesion results. Maximum stress is located

in center of the wafer. A good solution is to include a layer of a strong oxide-forming

element between the oxide and the metallization. A titanium adhesion layer is used

between the LTO film and the tantalum. The 500A thickness of titanium is a minimum

for good adhesion. However, tantalum is very easy to crack and film surface is very

rough when the film is thicker than 1.5 i_tm.

Tungsten can be directly deposited on the LTO surface when the film thickness is

less than 6000A at room temperature. The adhesion between W and LTO is also depends

on the sputter deposition power and pressure. High sputtering power and/or low

deposition pressure will cause poor adhesion but good conductivity. A titanium adhesion
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layer can be used to obtain good adhesion between W and LTO but the cracking of

tungsten is still found when the tungsten film thickness is larger than 1.5 1.tm at room

temperature sputtering due to the very strong stress of tungsten. Annealing is used to

reduce the stress and increase conductivity. A 31.tm thick tungsten was obtained through a

two-step tungsten deposition process.

Copper could not be directly deposited on the LTO film. An aluminum or

titanium adhesion layer is required. However Cu alloy may not be used for diamond

deposition because the deposition temperature is too high and the Cu alloy converts to

copper oxide.

A chromium or titanium adhesion layer is used to serve as an adhesion layer during

gold or platinum deposition; chromium gives better adhesion than titanium.



CHARTER 6

RESULTS AND DISCUSSION

This chapter describes the results of the fabrication and testing for each of the major

microprobes and prototype probe card discussed in Chapter 3. First, the general results of

fabricated CHIPP probe cards are discussed, followed by device performance results of

Al-Si02 and W-Si02 cantilevers.

6.1 General Results of Fabrication of the CHIPP Probe Card

Nine different types of prototype CHIPP probe cards were successfully fabricated,

including four types of the Al-Si0 2 system, two types of the Al-Si system and three types

of the W-Si02 system. Detailed parameters of the structures and materials used in the

fabricated probe cards are shown in Table 6.1.

A SEM photo (Figure 6.1) shows a prototype probe card with a Al-Si02 bimorph

structure mounted in a ceramic header. The cantilever probes are arranged around a

opening of 1 cm 2 with a frame of 2mm wide.

SEM photos showing several adjacent microprobes after the cantilevers have been

released through two steps of KOH and dry etch are shown in Figures 6.2-6.5. Figure

6.2 shows 50 x 500 pm microprobe cantilevers with Al-Si0 2 bimorph and gold tips.

Figure 6.3 shows 40 x 400 pm microprobe cantilevers. Figure 6.4 shows 50 x 300 pm

microprobe cantilevers. Figure 6.5 shows 30 x 200 p.m microprobe cantilevers. Figure 6.6

shows an array of four adjacent 35 x 200 pm W-Si02 microprobes with conducting

diamond tips.
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The shapes of the released probe cantilevers are sharply delineated with smooth

surface and smooth cantilevers edges as expected. The bending direction is just along

the cantilever length; no bending is found along the direction of the cantilever width, even

for the widest (60 p,m) cantilever. The process for conducting diamond deposition also

works well and is compatible a standard IC process through photolithography and plasma

dry etch. Each CHIPP probe card unit is connected with the silicon substrate through

very thin 200 lAm bars which are broken to get a single device. At the four corners of the

frame of CHIPP probe card unit (Figure 6.1), a round angle is observed due to corner

over etching by KOH; an extra large compensation feature was designed to reduce this

corner loss.

The general results show that the fabrication of the CHIPP microprobe is

successful, and highly useful for the fabrication of real CHIPP probe cards.
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Figure 6.1 A prototype CHIPP probe card mounted in a ceramic header (6.2x).
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Figure 6.2 SEM photo showing two adjacent 50 x 500 1.tm microprobes with A1-Si02
bimorph structure. (150x)
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Figure 6.3 SEM photo showing three adjacent 40 x 400 	 microprobes with Al-SiO 2

bimorph structure and gold tips (149x).
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Figure 6.4 SEM photo showing two adjacent 50 x 300 j..tm microprobes with A1-Si02
bimorph structure and gold tips (150x).



Figure 6.5 An array of four adjacent 30 x 200 pin microprobes with A1-Si02
bimorph structure and gold tips (100x).
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Figure 6.6 An array of four adjacent 30 x 200 	 microprobes with W-Si02
bimorph structure and conducting diamond tips (48.5x ).
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6.2 Switch Characteristics of the CHIPP Microprobes

Each microprobe can be considered to be a microswitch which is "on" when the probe tip

is bent up to contact the test pad by increasing the input power, or "off" when the probe

tip returns to its original position by decreasing the input power. Therefore the switch

characteristics of the microprobes depend on the moving distance, response time and

initial positions of the microprobe tips. If the initial position is below the probe card

surface, then actuation must supply sufficient force to bring the tips through the surface

plane to the other side.

6.2.1 Rest Positions of the Microprobe Tips

The unpowered rest states of the microprobe tips are a distance 20-280 pm below the

nominal CHIPP wafer surface due to built in stress during the fabrication. The rest

positions of the microprobe tips were found to depend on the cantilever length, width,

thickness, materials, deposition temperature, and heat treatment.

Table 6.2 listed four types of the CHIPP probe cards with different cantilever

lengths, thicknesses, widths, deposition temperature, and materials. The (-) sign

represents the probe tips below the probe card surface. Figure 6.7 shows the rest

positions of cantilever tips as a function of cantilever length with three different Al

thicknesses for Al-SiO2 and Al-Si cantilevers. Because four cantilevers with the same

width but different lengths were designed in each probe card unit, these probe cantilevers

can be used to measure the cantilever rest position as a function of its thickness. Figure

6.8 shows the rest position of cantilever tips as a function of cantilever thickness with the
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same deposition temperature, materials, and cantilever sizes. The stress causing the

cantilever bending at rest is caused by the internal total stress as discussed in Chapter 3.

From Figure 6.7 the rest positions of the cantilever tips are found to be linearly

proportional to the cantilever length for four different bimorph cantilevers. Additionally,

the rest position of the probe tips are inversely proportional to microprobe cantilever

thickness (Figure 6.8). The cantilever width also affects the rest position of probe tips

(Table 6.2), with wide cantilevers have a smaller rest deflection compared with narrow

ones. The rest deflection is also a function of deposition temperature (from Table 6.2) and

high deposition temperature causes a larger rest deflection (as expected from equation

3.2). However even with sputter depositions done at room temperature, an initial

deflection is still found due to intrinsic stress (see Table 6.2).



Table 6.2 Rest positions of the tips for different microprobes.

Cantilever
sizes and

types

(Pm)

Heater
position

Rest tip
position

of
Al

(0.6pirn)-
SiO2

(0.611m)

(Pm)

Rest tip
position

of
Al(11.1m)-
Si02(1 la

m)
(pm)

Rest tip
position

of
A1(31im)-
Si02(1.2

Pm)
(Pm)

Rest tip
position of
Al(3p,m)-

Si (0.8
pm)
(pm)

Rest tip
position

of Al
(0 .61.tm)-

SiO2
(0.61.1m)

(Pm)*

30x 200 inside
-65 -46 -26 -23 -21

35 x 200 inside
-75 -53 -23 -20 -18

40 x 260 outside
_ -98 -81 -38 -33 -23

50x 300 inside
-123  -84 -45 -39 -28

40 x 300 inside
-133 -91 -55 -45 -35

40x 300 outside
-135_ -105 -42 -42 -37

40 x 400 inside
-235 -148 -79 -69 -40

50x 400 inside
-209 -143 -64 -60 -38

40 x 400 outside
-230 -174 -70 -58 -45

60 x 500 inside
-264 -141 -123 -105 -83

50x 500 inside
-283 -195 -135 -112 -91

40 x 500 outside
-289 -262 -102 -84 -94

* All processes are done at room temperature.
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Figure 6.7 Cantilever tip rest position as a function of cantilever length with four
different cantilever structures. Zero is the probe card surface.
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Figure 6.8 The rest position of microprobe tips as a function of the cantilever thickness
with three different cantilever sizes. Zero is the probe card surface.
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6.2.2 Deflection of the Microprobe

In order to contact the test pads, actuation must supply sufficient force to bring the tip

through the surface plane to the other side to contact the test pad surface. Tip deflection

has been measured as a function of applied power. The results are plotted in Figure 6.9

for five different Al-SiO 2 bimorph structures and show that the deflection efficiency

(dö/dP) varies over the range 5.23 to 9.6 pm/mW. These results show that a deflection of

over 250 can be achieved with power levels ranging from 28-53 mW. Figures 6.11 to

6.12 are the SEM photos showing the side view of Al-SiO 2 cantilevers ( 60 x 500 im and

40 x 400 1AM and t Ai =1.5 pm ) unpowered, and thermally actuated.

Compared with Al-SiO 2 the deflection range for the W-Si0 2 bimorph structures is

smaller (see Figure 6.10) with the deflection efficiency (dö/dP) varying over the range 2.4

to 2.8 p.m/mW. A deflection of 100-150 p.m can be reached with power levels ranging

from 40-62 mW. The deflection efficiency of W-Si02 are about 2-3 times smaller due to a

lower coefficient of thermal expansion of tungsten compared with Al.

This results are compared with other published data presented in Table 6.3. A Si-

Au cantilever with length of 500 pm, width of 80-100 pm and thickness of 5.8 or 6.5 pm

was obtained the deflection efficiency of 0.37-0.57 µm/mW [15] and low deflection range,

possibly because the cantilevers were wide and thick. Additionally, the gold metal has a

smaller coefficient of thermal expansion than Al. The ratio of the two layer thickness and

cantilever structure and materials may be also be far from ideal. Reference [16] reported

that a large input energy of 1W was needed to produce a deflection of 108 pm with a
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large cantilever (size 1000 x 1000 gm), and deflection efficiency was 0.108 p.m/mW. It is

clear that the large size of the cantilever consumes a large thermal energy.

Table 6.3 Data of thermal driven cantilevers.

Cantilever size (4m) Deflection efficiency
(p.m/mW)

Deflection range

(11m)

Reference

Si-Au cantilever with
L=500, Wsi=100,
Wm =80, tAu =1.8

and tsi =4

0.37 0 - 70 [15]

Si-Au cantilever with
L =500, Ws i=100,
Wm =80, tAti =2.5

and tsi =4

0.57 0 - 100 [15]

Si-Al cantilever with
L =1000, W=1000,

t =25

0.108 0 - 108 [16]

Al-SiO2 cantilever
W=60, L=500, tAi=1,
tsi02= 1 , and ttotai=2.8

5.23 0 - 277 this research
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Figure 6.9 Tip deflection vs. applied power with Al (1.0 p,m)-SiO2 (1.0 lArn) bimorph
cantilevers. Inset shows cantilever widths and lengths for five devices.
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Figure 6.10 Tip deflection vs. applied power with W (1.0 µm)-Si02 (1.2 p.m) bimorph
structures. Inset shows cantilever widths and lengths for three devices.
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Figure 6.11 SEM side view of a 60 x 500 iltn Al-SiO 2 cantilever at unpowered rest state
(b) and actuated to a flat position (a). Photos were taken from a video tape
during dynamic testing.



(b) CHIPP microprobe at unpowered rest position

Figure 6.12 SEM side view of a 40 x 400 gm Al-SiO2 cantilever at unpowered rest state
(b) and actuated to a upward position (a). Photos were taken from a video
tape during dynamic testing
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6.2.3 Response Frequency and Time of the Microprobe

The dynamic behavior of the cantilever has been tested with square-wave, sine-wave and

ramp-wave input signals, which were made with a series connection to a d.c. input power

supply. The devices were bonded to a silicon heater, wire bonds were attached, then the

devices were put into an SEM chamber for the dynamic measurements. The electrical

connection are made through a special flange with electrical feed-through. The cantilever

motion was recorded through a VCR and measured later at slow motion. The deflection

with high freqency was measured with SEM pictures compared with the ruler on the

picture. All the data reported here were taken with a square-wave input signal; the sine-

wave and ramp-wave signals were used to obtain "slow motion" video images.

A 60 x 500 pm Al-Si02 cantilever with t,1=1.0 pm and toxide =1.0 p.m and 40 x 300

was completely tested at an electrical input peak power of —42 mW with a square

wave input signal. Results are shown in Figures 6.13 and 6.14. From examination of the

video tape it is seen that at fixed value of the maximum power, a dynamic deflection of

—134 1,tm is occurs up to frequencies of approximately 120 hertz, then decreases with

frequency increase. The first cantilever resonant frequency was found at 6.48KHz with

maximum deflection about 90 p,m and the next frequency was found at 19.4KHz with

maximum deflection over 210 p.m. The dynamic defection distance is the distance the tip

moves its minimum position to its maximum position. The dynamic deflection as a

function of input signal frequency is shown in Figure 6.13, and deflection as a function of

time with a fixed frequency of 1 Hz was measured and shown in Figure 6.14. From the

know raster frequency both the rise and fall time were found to be less than 33ms. The

cantilever resonant frequency has been calculated by using the following formula[47]:



(6.1)fmin = 0.1604
E(1–o-2 )	 t
	• (—)

p

200 600 8000 400
Freqency (Hz)

Figure 6.13 (a) Dynamic deflection of a Al-SiO 2 cantilever as a function of input signal
frequency with square wave input for .

Where E is Youngs' modulus, p is mass density and a is Poisson's ratio of the beam

meterial, t is thickness and L is length of the cantilever, respectively. For t = 2.8 pm and L

= 500 pm, p = 2.5 g/cm3 , a = 0.25 and E = 0.78 x 10 11N/m2, fmjn = 9.7 KHz.
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Figure 6.13 (b) Dynamic deflection of a Al-Si02 cantilever as a function of input signal
frequency with square wave input.
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Figure 6.14 Dynamic deflection of a Al-Si02 cantilever as a function of input signal time
with fixed square wave input of 1 Hz. This is the same cantilever described
in Figure 6.13.
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6.3 Ohmic Contact of CROP Microprobe

6.3.1 Ohmic Contact

Ohmic contact resistance has been measured using three different tips: gold, conducting

diamond, and tungsten. Figure 6.15 shows a gold contact tip on a Al-Si0 2 cantilever with

a 0.5 p.m gold film deposited on aluminum. A 1.0 - 1.5 p,m of conducting diamond was

grown on the tip of the W-Si0 2 cantilever as shown in Figure 6.16. 1-3 prn crystals of

conducting diamond (Figure 6.17) are ideal for scrub action to enable ohmic contact.

Contact resistance between a CHIPP probe tip and a test probe pad was measured

through directly contacting them together in air. Results are shown in Table 6.4. Most

contact resistances were less than 1 Q.

Table 6.4 Measured contact resistance of CHIPP microprobes.

Cantilever structures Contact type Contact resistance Re

(n)

Gold tip
Al-Si02 Cantilever

Gold - Gold 0.8 - 1

Gold tip
W-Si02 Cantilever

Gold - Gold 0.25 - 0.5

Tungsten tip
W-Si02 Cantilever

Tungsten - Tungsten 0.25-0.6
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The tips of conducting diamond on W-Si0 2 cantilevers were also tested and gave a

contact resistance of —100 n, this may be because the conducting diamond is

insufficiently doped. Highly doped conducting diamond on a tungsten tip has been

reported with 0.25 n contact resistance [42].

In order to observe action between a probe tip and the test pad, some contact

experiments were set up inside the SEM chamber. A gold probe tip with Al-Si02

cantilever was to contact a tungsten test pad. Two micromanipulators inside the SEM

were used to independently move the CHIPP microprobe tip and the tungsten test pad.

The test pad was moved to the position — 20-50 p.m above the CHIPP probe tip. During

the testing the CHIPP probe was first actuated upwards to contact the test pad, then

ohmic contact was made by further increase in input power. Action was observed in the

SEM TV mode and recorded a video tape. Figure 6.18 shows a SEM photo of a side

view of an Al-Si0 2 cantilever probe unpowered, at rest, with the tungsten electrode

(bright) above the tip. Figure 6.9 is a SEM photo showing same cantilever, fully

deflected and making ohmic contact with the tungsten electrode (electrode is dark due to

`voltage contrast").

A slight scrub action was observed at 1200x magnification (unrecorded) and ohmic

contact was made at the same time. A contact resistance of 1-3 f/ was measured

between the gold tip and the tungsten probe pad. Tip bending was also observed; the

narrow tip with w1=50 h=50 pm, and w2 = 20 pm was considerably bent, and the

wide tip with w 1 =60 p.m h=30 pm, and w2 = 44 ,t.m gave less deformation and is probably

the better choice.



Figure 6.15 A gold contact tip on a Al-SiO 2 cantilever with 0.5 pm gold film.
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Figure 6.16 A conducting diamond tip on a W-Si02 cantilever.
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Figure 6.17 SEM photo showing crystals of conducting diamond (5000x).
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Figure 6.18 A SEM photo showing a side view of an Al-Si02 cantilever probe
unpowered, at rest, with the tungsten electrode (bright) above the tip.
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Figure 6.19 A SEM photo showing same cantilever as Figure 6.19, fully deflected and
making ohmic contact with tungsten electrode (electrode is dark due to
"voltage contrast").
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6.3.2 Contact Force

Contact force can be calculated form the cantilever deflection. Figure 6.20 shows the

calculated tip force as a function of tip motion. The calculated curves of Figure 6.20 are

combined with the experimental data shown in Figure 6.9 to generate curves showing the

amount of the force generated by applied heater power levels in a range up to 53 mW.

Results are shown in Figure 6.21 and show that forces greater than of 100 pN can be

obtained with structures made in this research.

From the data in Figure 6.21 the efficiency of the conversion of power to force a p

is calculated for the equation

F = ap P (6.2)

The parameter a1, is shown in Table 6.5 for various values of W and L. The force

efficiency varies over the range 1.4 to 5.5 pN/mW. The efficiency increases with

decreasing width and length in part because greater cantilever surface area requires

greater power input to achieve a given temperature. The forces calculated in reference

[18] for 100 x 500 pm Au-Si cantilevers are 1.2 and 2.66 pN/mW for the thickness 5.8

and 6.5 respectively. These results are similar to ours.

During ohmic test an additional power of 15-20 mW was required in order to

make ohmic contact using a 50 x 400 cantilever; this is equivalent to an applied force of

45-60 p.N. This results is within the range of published data (see discuss in section 3.3.1)

where a contact force of less than 1 pN was needed for a gold-gold contact between

AFM probe tip and a gold metal film [ 41], and a contact force of 100 pN was needed

between two larger gold contacts [40].
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Table 6.5 Force efficiency oc p for various values of W and L for bimorph with 1 pm Al
and 1 ilm Si02.
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Figure 6.20 Force as a function of tip motion for various combination of aluminum and
SiO2 cantilever widths and lengths.
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Figure 6.21 Force as a function of applied power for various combination of aluminum
and SiO 2 cantilever widths and lengths.
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6.4 Heat loss of CHIPP Microprobe

The deflection efficiency is used to measure the difference in heat loss for air and vacuum

operation with a 60 x 500 Al-SiO2 cantilever and t M =1.5 pm; the heater was

sandwiched inside the cantilever; this structure is shown in Figure 6.22. The cantilever

deflection was measured as a function of input power separately in 10 -6 torn vacuum and at

1 atmosphere. The results are plotted in Figure 6.23 for both conditions and show the

deflection efficiency is 6.17 ji,m/mW in vacuum and 3.13 ii.m/mW at 1 atmosphere. The

heat loss ratio (ratio of deflection efficiencies in vacuum and at 1 atmosphere) is about 2.

This result shows that heat loss to air during the cantilever heating is substantially high

even with heater inside the cantilever structure.

Another Al-SiO2 cantilever with the heater on the bottom of the cantilever (see

Figure 6.24 ) in the same CHIPP probe array was also used to measure the deflection as a

function of input power in vacuum and at 1 atmosphere. Results are shown in Figure

6.26. The deflection efficiency is 4.3 lim/mW in air and 18.3 [tm/mW in vacuum, and the

heat loss ratio is 4.25.

The two structures with heater inside and outside the cantilever have been

compared. Results show that the outside heater structure consumes about 4.25 times

more energy in air than that in vacuum in order to move same deflection because of heat

loss directly to air; however, the inside heater structure only consumes 2 times more

thermal energy in air than in vacuum. It is clear that having the heater inside the cantilever

produces significantly less heat loss in air, although in vacuum the outside heater

configuration is probably more efficient; the greater efficiency is most likely caused by the

faster heating of the high-thermal expansion element.



Figure 6.22 Photo showing the inside heater structure.
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Figure 6.23 Tip deflection vs. applied power inside SEM vacuum and in air for A1-Si02
cantilever with heater inside. Cantilever length L=400pm, width W=50pm
and tm=1.5 pm.
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Figure 6.24 Photo showing the outside heater structure.
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Figure 6.25 Tip deflection vs. applied power inside SEM vacuum and in air for A1-Si02
cantilever with heater on the bottom. Cantilever length L=5001..t.m, width
W=40iim and gap D=10 lln.
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6.5 Failure Analysis and Device Improvement

During the ohmic contact experiments some contact tip failures caused. One failure

happened during the dynamic switch test with the cantilever actuated with a square wave

signal at 10 Hz to contact a W probe tip. The momentum is quit large during the contact

because of the small actuation time. During dynamic testing (while video recording) the

tip suddenly broke. Figure 6.26 shows a TV frame just after breaking. Figure 6.27 shows

the same cantilever with the tip still weakly connected. From the TV raster frequency we

know the tip break happened within a time period At <33 ms. Because the fatigue must

have gradually occurred before the break, this suggest the break must happen at the

weakest point of the cantilever. The tip break happened right in the boundary between

the gold tip and LTO layer. This was likely caused by the fact that the gold was deposited

through a window at the cantilever tip using a lift off; the mask for gold lift-off was

designed with the same size as the tip opening, so that there may have been a small gap

due to mask alignment error. As a result this very thin region at the boundary becomes

the weakest point of the cantilever. A large overlap structure between the lift-off gold and

LTO is suggested for future design to solve this problem.

Additionally, a thick thermal steam oxidation film is also suggested to replace the

Si3N4\LTO film for the KOH stop layer, because the Si 3N4 film has too much stress and

is easy to break when the KOH almost penetrates the silicon wafer. A thermal oxidation

film has small stress and etches slowly in KOH.



Figure 6.26 SEM photo showing a tip immediately after breaking.
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CHAPTER 7

CONCLUSIONS

A new wafer probe card concept is presented which consists of an array of

microcantilevers actuated by bimorph heating to make contact with the contact pads on a

device chip during wafer-stage testing. Bending action is created through Joule heating of

bimorph elements. The microcantilevers are meant to be operated either in air or in

vacuum. The results has been summarized as follows:

1. The deflection efficiency dö/dP ranges from 5.23-9.6 p,m/mW (depending on

lever parameters) for Al-Si02 bimorph cantilevers with 1.0 p.m Al thickness

and 2.4-2.8 for W-Si0 2 cantilevers with 1 p.m thickness.

2. The force efficiency dF/dP ranges from 1.4 to 5.5 p.N/mW for Al-Si02

cantilevers.

3. A full deflection (134 p.m) occurs in response to input frequency up to 120 Hz,

motion being to dampen at higher frequency, and the cantilever resonant

frequency was found at 6.48KHz.

4. Heat loss for devices operating in air was found to be substantially higher than

for vacuum operation. A heater inside the cantilever structure can be used to

reduce the heat loss. Heat ratio is about 2:1 for operating in air and in vacuum

with a heater inside structure; the ratio is 4.25:1 with a heater on the cantilever

surface. An outside heater arrangement is probably more efficient for vacuum

operation.

5. The maximum controllable (reversible) deflection is in the range of 200-300

p.m for Al-Si02 cantilevers, and 100-150 pm for W-Si02 cantilevers.

119



120

6. Contact resistance with gold-gold contact is approximately 0.25-0.5 S2 for a

W-Si02 cantilever, and 0.8-1 for Al-SiO 2 cantilever. The contact resistance

with conducting diamond is about 100 a

These studies show that the CHIPP microactuator structures designed, made and

evaluated in this research can be used to make CHIPP probe cards. The CHIPP probe

card can be used for industry applications requiring a high pin count and high density

features, and the ability to contact test pads with varying heights with a on/off speed

greater than 33 ms. These features provide a new way to perform VLSI wafer stage

testing, and could represent a new future for VLSI testing.
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