Discrete element modeling of dry granular material using a massively parallel supercomputer

David W. Washington
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations
Part of the Civil Engineering Commons

Recommended Citation

Washington, David W., "Discrete element modeling of dry granular material using a massively parallel supercomputer" (1996). Dissertations. 1023.
https://digitalcommons.njit.edu/dissertations/1023

Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignnent can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6 " $\times 9$ " black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI

A Beil \& Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600

UMI Number: 9635196

Copyright 1996 by Washington, David Waymon

All rights reserved.

UMI Microform 9635196
Copyright 1996, by UMI Company. All rights reserved.
This microform edition is protected against unauthorized copying under Title 17, United States Code.

ABSTRACT
 DISCRETE ELEMENT MODELING OF DRY GRANULAR MATERIAL USING A MASSIVELY PARALLEL SUPERCOMPUTER

by
David W. Washington

It is the state-of -the-art within Geotechnical Engineering to model soils as systems of particles rather than using the traditional continuum approach. Simulating these systems of particles for geotechnical boundary value problems results in systems which are of necessity large, motivating the application of massively parallel supercomputers. This thesis pursues such an approach.

The following work describes numerical experiments using a Discrete Element Method (DEM) paradigm for soils (Trubal) together with massively parallel computers with Single Instruction Multiple Data (SIMD) architecture. The discrete element method describes the behavior of granular assemblies using the classical mechanics of discrete bodies. The computational requirements of DEM algorithms introduce time complexities, which mandate a compatible topology for massively parallel machines in order to achieve optimal performance. This thesis demonstrates the compatibility of a Single Instruction Multiple Data (SIMD) topology in performing discrete element simulations for 3-d spherical dry granular media.

The serial algorithm, Trubal, was first modified to run with a parallel data structure on a SIMD architecture. The modified version, known as Trubal for Parallel Machines (TPM), is the data parallel version that was tested on the connection machines (CM-2) and (CM-5), consisting of 32,768 processors and 512 nodes, respectively. The first version of TPM was tested on the CM-2 machine before its use was discontinued.

Because the architecture is synchronized at each instruction, elemental data movements reduce the performance of the machine's overall resources and increase the latency of the communication between processors. This issue is addressed within the design of the algorithm so that the SIMD vector processing capability can adapt to a dynamic memory data structure.

A second version of TPM was subsequently designed for the CM-5 machine using a more efficient parallel data structure to improve the performance of the simulations. TPM version 2.0 was able to obtain a speedup in performance by handling all possible contacts within each processor, thereby creating a homogeneous data structure. The overall efficiency is governed by the global communication which is a function of the speed of the interconnection network within the architecture.

TPM's improved performance is demonstrated using two different triaxial simulations. One of them involved a physical triaxial experiment with steel spheres performed by Rowe (1962) and later simulated by Cundall (1979). The remodeling of this numerical simulation validated TPM version 2.0 overall performance where a nine-fold speedup was obtained. TPM's reproduction of these results and its improved speedup encourage further investigations using discrete models on parallel platforms.

This thesis substantiates the use of parallel computing as a technique for geotechnical applications. It is further anticipated that developing and adapting heterogeneous platforms to DEM models will make the application of parallel computing more attractive in geotechnical engineering.

DISCRETE ELEMENT MODELING OF DRY GRANULAR MATERIAL USING A MASSIVELY PARALLEL SUPERCOMPUTER

by
David W. Washington, P.E.

A Dissertation
 Submitted to the Faculty of New Jersey Institute of Technology
 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
 Department of Civil and Environmental Engineering

May 1996

Copyright© 1996 by David Washington

ALL RIGHTS RESERVED

APPROVAL PAGE

DISCRETE ELEMENT MODELING OF DRY GRANULAR MATERIAL USING A MASSIVELY PARALLEL SUPERCOMPUTER

David W. Washington

Dr. Jay N. Meegoda, Dissertation Advisor Date
Associate Professor of Civil and Environmental Engineering, NJIT
Dr. William Spillers, Committee Member Date
Chairman and Professor of Civil and Environmental Engineering, NJIT
$\overline{\text { Dr. Dorairaja Raghu, Committee Member }}$ Date
Professor of Civil and Environmental Engineering, NJIT

Dr. Mary Eshaghian, Conhmittee Member
Assistant Professor of Compuier and information Science, NjiT

Dr. Anthony Rosâto, Committee Member
Date
Associate Professor of Mechanical Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	David Waymon Washington, P.E.
Degree:	Doctor of Philosophy
Date:	May 1996

Undergraduate and Graduate Education:

-Doctor of Philosophyin Civil
New Jersey Institute of Technology, Newark, N.J., 1996

- Master of Science in Civil Engineering, Manhattan College, Riverdale, N.Y., 1988
-Bachelor of Science in Civil Engineering and Applied Mechanics, Columbia University, New York, New York, 1984

Major: Civil Engineering

Presentations and Publications:

N. Meegoda and D.Washington(1993) "Trubal for Massively Parallel Machines", Proceedings of the Second International Conference on Micromechanics Of Gramular Media,Powders \& Grain 93, Birmingham, UK, July 12-16,Poster Presentation

Meegoda N.J. and Washington D.W.(1994),"Massively Parallel Computers for Microscopic Modeling of Soils" ${ }_{2}$ Proceedings of the Eighth International Conference on Computer Methods and Advances in Geomechanics, Morgantown, West Virginia, May 22-24, pp.617-622

Washington D.W and Meegoda N.J(1996), "Micromechanical Simulation of Geotechnical Problems using Massively Parallel Supercomputers", Proceedings of the Eleventh ASCE Engineering Mechanics Conference, Fort Lauderdale, Florida, May 1922,to be presented

This thesis is dedicated to The Lord Jesus Christ who is the Author and Finisher of my Faith

ACKNOWLEDGMENT

This research could not have been done without the motivation and encouragement from my advisor, Dr. Jay Namunu Meegoda. He has placed so much confidence in me and has allowed me to take on a great deal of responsibility, which inevitably led to my maturity in this field.

My committee has my warmest appreciation and deepest gratitude for assisting me in various facets of my research. The hours that I spent with Prof. Spillers discussing applied mechanics and other topics was phenomenal and very encouraging.

Prof. Eshaghian is my mentor for learning parallel computing and various architectures. She exposed me to a great deal of information in a very short time.

Dr. Rosato was very supportive of my work and gave me much insight in particle technology. This research has led us both to England and France.

Dr. Raghu and I have had many wonderful moments as my instructor in geotechnical engineering. He has always encouraged me to take a practical approach to my work.

Ms. Sheridan Quarless, soon to be a Ph.D., has become a "household" name in my academic pursuits. She has been my motivator from the first day I entered the doctoral program, and has plowed the way for me in many of my endeavors.

Much appreciation and gratitude to Dr. Kane and the graduate studies office for their support. Dr. Kane literally financed and sustained me through this program.

The international exchange program enabled me to spend many months in France, and this collaboration led to many new relations with people in my field. Special thanks to

Katie Byrne for coordinating my trips to France with Dr. Kane and introducing me to Prof. Martin Raynaud of the Institut National Des Sciences Appliquees De Lyon, Departement de Genie Civil,Villeurbanne, Lyon.

Prof. Raynaud had a leading role in my studies abroad as well as Dr. Bernard Cambou from Ecole Centrale de Lyon of Laboratoire de Tribologie et Dynamique des Systemes Departement de Mecanique des Solides, Ecully, Lyon. This exchange brought great insight to my work and developed many good relations abroad.

A lot of motivation has come from my wife, Jackie, and daughter, Amy Joella. My new born daughter, Amy, made me realize that the Ph.D. is not the end of the road, but there are much more challenges ahead. My wife, who is also a doctoral candidate in Microbiology and Molecular Genetics, has kept me focused in my academic pursuits, and hopefully Amy will follow the path that we are paving.

I was fortunate to have my family and close friends support me through my arduous studies. Their support meant very much to me.

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION 1
1.1 Modeling the Behavior of Soils 1
1.2 Overview of the Discrete Element Method 3
1.3 The Discrete Element Method's Formulation 5
1.4 Experimental Validation of the DEM Model 12
1.5 DEM and Other Modeling Techniques in Continuum Mechanics 13
1.6 Parallel Computing Terminology Terminology 16
1.7 Literature Survey 18
1.7.1 Ghaboussi Approach. 18
1.7.2 Kuriaoka's Approach 19
1.7.3 Hustrulid's Approach 19
1.7.4 O'Connor Approach 20
1.8 Research Program. 20
2. TPM VERSION 1.0 22
2.1 Introduction 22
2.2 General Description of Trubal's Algorithm 23
2.2.1 Gen Routine 24
2.2.2 Cycle Routine 24
2.2.3 Motion Routine 24

TABLE OF CONTENTS

(continued)
Chapter Page
2.2.4 Rebox Routine 25
2.2.5 Search Routine 26
2.2.6 Bbtest Routine. 26
2.2.7 Ford Routine. 27
2.3 CM-2 Architecture 27
2.4 TPM Version 1.0 31
2.5 Advantages of TPM's Data Structure vs. Trubal 38
2.6 Evaluation and Results of TPM Version 1.0. 39
2.7 Discussion and Other Modifications. 42
2.8 The Last Modification of TPM 1.0 43
2.9 Conclusion 45
3. TPM VERSION 2.0 46
3.1 Introduction. 46
3.2 CM-5 Architecture. 47
3.3 TPM Version 2.0 52
3.4 Experimental Verification and Performance Evaluation. 57
3.5 Conclusion. 60
4. SIMULATIONS OF ROWE'S EXPERIMENT. 61
4.1 Introduction. 61

TABLE OF CONTENTS (continued)

Chapter Page
4.2 Rowe's Physical Laboratory Test. 62
4.3 Cundall's Numerical Simulation 63
4.4 TPM's Simulation of Rowes Model 66
4.5 Discussion 68
4.6 Conclusion. 69
5. FUTURE RESEARCH AND CONCLUSION 71
5.1 Conclusion 71
5.2 Future Research 72
5.2.1 The MIMD Approach 73
5.2.2 Combining Control Systems. 75
5.2.3 Heterogeneous Platform 76
5.3 Cray T3D and PVM 78
5.4 Implementation of the Proposed Heterogenous Platform 79
APPENDIX TPM Version 2.0 (ROWE'S MODEL) 81
REFERENCES 130

LIST OF TABLES

Table Page
2.1 CM-2 Resource usage viewed in PRISM 40
2.2 Comparison of timing between CM-2 and Vax 8800 45
3.1 Comparison between the $\mathrm{CM}-2$ and the $\mathrm{CM}-5$ 51
3.2 Declaration statements and psuedocode flow chart for TPM version 2.0 54
3.3 Pseudocode for contact routine in TPM version 2.0 55
3.4 Pseudocode for globe routine in TPM version 2.0 56
4.1 Parameters of material properties used in Cundall's numerical simulation 64
4.2 Speedup chart for the 403 and 1672 sphere simulation 68
5.1 Control System Optimization at Routine Level of the CM-5 76
5.2 Control System Optimization at Routine Level of a Heterogeneous Platform 72

LIST OF FIGURES

Figure Page
1.1 Cartesian coordinate system for spheres. 7
1.2 a)Contact vectors between spheres and b)Internal moments and forces due to contacts. 8
1.3 Schematic showing principle rheological elements of DEM (2D) 12
1.4 a) Force vector plots obtained by De Josselin de Jong and Verruijt(1969) and b) Program "BALL" numerical reproduction of the 1969 experiment 13
2.1 Flow Chart for Trubal's Algorithm 23
2.2 Spheres encompassed by cubes mapped within Boxes 25
2.3 Data structure for Trubal's one dimensional array 26
2.4 CM-2 Architecture 28
2.5 An array $(64,64)$ layout over sixteen processor. 29
2.6 The CM-2 parallel processing unit. 30
2.7 Interconnect networks systems. 31
2.8 Flow chart for TPM version 1.0 32
2.9 Data structure for the arrays of TPM version 1.0 33
2.10 An example of two spheres within four boxes 34
2.11 TPM's Box Array Initial Setup 35
2.12 TPM's Box Array after "Spread" command and "Forall" command is used 36
2.13 One dimensional contact arrays for TPM 1.0 37
3.1 CM-5 Architecture 47

LIST OF FIGURES

Figure Page
3.2 Vector unit functional architecture 48
3.3 Organization of the Connection Machine (CM-5) 49
3.4 Binary and Fat tree interconnection network for 15 node system 50
3.5 Flow chart for TPM version 2.0 52
3.6 A comparison between Trubal and TPM of a simulated triaxial test 59
4.1 Layers of spheres used in physical test by Rowe(1962) 63
4.2 Layers of spheres in the numerical test 63
4.3 Exposed lengths for plane through large layer in $x-y$ and $x-z$ direction. 65
4.4 Comparison between Rowe's results and Cundall's numerical results 66
4.5 Instability in TPM version 2.0 simulation due to improper damping 67
4.6 Results presented by Rowe, Cundall, and TPM version 2.0 67
4.7 Speedup plot for TPM algorithm simulating the 403 sphere Rowe model 69
5.1 Clustering Schemes of Particles within Multiple Processors 74
5.2 3D Torus Communication Network 78
5.3 TPM's proposed heterogeneous algorithm using PVM 79

CHAPTER 1

INTRODUCTION

In order to understand the necessity of using massively parallel supercomputers in discrete element modeling for geotechnical applications, the development of soil models and numerical techniques is discussed in this chapter. The fundamentals of the discrete element method are also presented along with a discussion of how the discrete element method fits into the scheme of available modeling techniques. Then, parallel computing terms are defined so that the unfamiliar reader can follow the subsequent chapters describing computer architecture. Finally, a literature search presents the history of parallel computing using discrete models.

1.1 Modelling the Behavior of Soils

It is the state-of-the-art in geotechnical engineering to model soils as a system of particles rather than using the more traditional continuum approach. In the case of this thesis, the particle approach is driven by physical concerns over how particles really interact in a soil mass. This approach allows contact friction between particles, for example, to be studied in detail. Friction is, of course, a basic mechanism in the performance of soil. The downside to this approach is that the particles used in this thesis are round and smooth while soil particles typically possess neither property.

Soil modeling at the particle level has been studied for many years. For example, Deresiewicz (1958) and Duffy (1959) pursued a micromechanic approach of assemblies with regular packing. In this case, the constitutive relationship for a granular assembly
was derived considering particle interaction and structure of the material. However, the ability of particles to slip at contact surfaces was not included in their model. In the absence of computers, it was difficult, if not impossible to model sophisticated configurations of particles. That, of course, is no longer the case.

The range of particle models now used in mechanics is quite broad. Probably the oldest model is the paricle-in-cell model developed in the 1950's at the now defunct Atomic Energy Commission. This model is actually a combination of a particle approach and a continuum approach. At the other end of the spectrum are "atomic" models, such as Molecular Dynamics (MD), which now include hundreds of thousands of particles. The model used here lies somewhere in the middle and has been chosen for use in this thesis because of its practical applicability. That is, it is not as computationally demanding as the "atomic" models and it has the potential of explaining the frictional failure mechanism of soil. The model being described incorporates micromechanics to define interparticle behavior.

Micromechanics is the mechanics or the physical laws used to describe the interactions between individual bodies. The micromechanical modeling of soils used in this thesis considers the intergranular effects that contribute to the overail behavior of the soil assembly. This type of modeling coupled with a technique that applies it to granular systems, has the potential to realistically describe global behavior. In this case, the individual particles of the global assembly are actually governed by force/displacement law approximations. The necessity for modeling soil behavior from the granular interaction level was recognized for many years before computer simulations of these
micromechanical models originated. The traditional methods, such as the Mohr-Coulomb theory, viewed soils as a continuum. However, Rowe (1962) stated that the dilatancy and strength of an assembly are dependent upon its angle of friction between particle surfaces, on the geometrical angle of packing, and on the degree of energy loss during remoulding. He also showed that the Mohr-Coulomb criterion of failure does not have general application to a discontinuous assembly of particles. Terzaghi (1920) stated that Coulomb introduced a fundamental error by ignoring the fact that sand consists of individual grains. Other researchers studied intergranular behavior from an experimental perspective.

Research performed by Dantu (1957) and De Josselin de Jong .et al. (1969) presented pictures of actual interparticle behavior using photoelastic discs. Under polarized light the contact forces and the particle displacements were measured. Observations of the soil behavior from these type of experiments, revealed the rearrangement of soil particles to form internal structures to withstand the loads that were being applied. For example, columns of particles aligned themselves in the direction of the load in order to withstand applied forces. The discrete element method was developed to numerically describe this type of formation within the particle assembly.

1.2 Overview of the Discrete Element Method

Discrete Element Method (DEM) used in this thesis is an application of Cundall and Strack (1979b) model. Cundall (1971) first applied his model to the stability of high, fractured rock slopes. This method was further improved when a two-dimensional disc
assembly was used to simulate soil conditions (Cundall and Strack 1978). Later, threedimensional spheres were used (Cundall and Strack 1979a). Many other research efforts have derived from Cundall's work.

The 2nd International Conference on DEM (Williams and Mustoe, 1993) states, the Discrete Element Method models a physical system as an assemblage of distinct bodies each having internal structure and specific geometry. At a basic level the individual elements can simulate continuum stress and deformation states, while the multiplicity of bodies provide the degrees of freedom otherwise unavailable in methods based solely on contimuum assumptions. The continuum approach often overlooks interparticle behavior and therefore the mode of failure within the assembly has questionable physical representation. One reason is that discontinuities are found in the stress and the displacement fields in granular assemblies, which are difficult to describe in a continuum formulation. These difficulties were resolved with global stress tensor formulations in the discrete element method.

The DEM is based on a dynamic formulation, which describes a static equilibrium in asymptotic sense after a number of time-steps. Hence, it is able to model the quasistatic case found within many geotechnical boundary value problems. Spheres are placed in a computational cell having periodic boundaries. This boundary allows a sphere which exits from one face of the cell to re-enter through the opposite face. Consequently, the influence of real walls is removed and the assembly of spheres is effectively a representative volume of material within a large system. Stresses and strains are applied to the boundaries of the assembly and then propagated through the medium until some
state of equilibrium is reached. This method allows particles to form contacts and break them at will. Each time-step cycle includes the application of Newton's Second Law to the centroid of each sphere followed by the application of force-displacement laws between each contact. By maintaining small time-steps, disturbances (that initiate at the assembly boundaries) will not propagate further than a neighboring contact sphere during a time-step. Accelerations and velocities of each sphere calculated from Newton's Second Law are assumed to be constant over the time-step, and the net forces and moments acting on each sphere are updated from force-displacement laws applied at the contacts of neighboring spheres. The following section describes the mechanics involved within the DEM model used in this thesis.

1.3 The Discrete Element Methods Formulation

The mechanics of DEM for a dry spherical granular assembly is used to determine the motion of spheres, to perform force-displacement calculations at contacts, and finally to sum the overall global stress tensors. As mentioned before, the time step is assumed to be so small that the velocities and accelerations are assumed to remain constant during that interval. The time step is computed from a single degree-of-freedom mass-spring model:

$$
\begin{align*}
& \Delta t_{\mathrm{c}}=2 *\left(\mathrm{~m}_{\min } / k_{\mathrm{n}}\right)^{1 / 2} \text { (critical time step) } \tag{1.1}\\
& \Delta \mathrm{t}=\Delta \mathrm{t}_{\mathrm{c}} * \text { FRAC } \quad \text { (time step used) } \tag{1.2}
\end{align*}
$$

where Δt_{c} equals the critical time step, $m_{\text {min }}$ is the minimum mass of the spheres, k_{n} is the normal stiffness, $\Delta \mathrm{t}$ is the time step used and FRAC is a fraction multiplied of the critical time step which allows for a stable simulation. The time step used in this explicit
numerical scheme is required to be some fraction of the critical time step in order for the system to remain stable (Cundall et al., 1978). The explicit finite-difference scheme changes the assembly's geometry by updating current translational and angular velocities at the end of each time-step. The finite difference scheme, used to integrate the system's equations of motion, uses the subscript N will be used to represent the beginning of the current time step, $\mathrm{N}-1 / 2$ will represent the resuits from a previous time step, and $\mathrm{N}+1 / 2$ will denote the new result for the current time step.

The general form of the governing equation for each particle within the system can be expressed dynamically by the relationship

$$
\begin{equation*}
m a+c v+k x=F(t) \tag{1.3}
\end{equation*}
$$

where m, c, and k are respectively the particles' mass, damping, and stiffness coefficients, and a, v, and x are the particles' acceleration, velocity, and displacement respectively. The first part of equation 1.3 is represented by Newton's Second Law which can be written as follows:

$$
\begin{align*}
& m_{j}\left(a_{i}\right)_{N}=\left(F_{i}\right)_{N} \tag{1.4}\\
& \mathrm{l}_{\mathrm{j}}\left(\alpha_{i}\right)_{N}=\left(M_{i}\right)_{N} \tag{1.5}
\end{align*}
$$

where i is the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ components as shown in Figure 1.1. In expressions 1.4 and $1.5, \mathrm{~m}$ and I represent the mass and moment of inertia of the sphere for all spheres j, and F_{i} and M_{i} are the net force and moment components, respectively at the beginning of the timestep, t .

Figure 1.1 Cartesian coordinate system for spheres

Since the accelerations a_{i} and α_{i} are constant over the interval $\mathrm{t} N-1 / 2$ to ${ }^{t} \mathrm{~N}+1 / 2$, then the sphere velocities can be calculated from

$$
\begin{align*}
& \left(v_{i}\right)_{N+1 / 2}=\left(v_{i}\right)_{N-1 / 2}+\left[\left(F_{i}\right)_{N} \Delta t / m\right] \tag{1.6}\\
& \left(\omega_{i}\right)_{N+1 / 2}=\left(\omega_{i}\right)_{N-1 / 2}+\left[\left(M_{i}\right)_{N} \Delta t / I\right] \tag{1.7}
\end{align*}
$$

where v_{i} is the translational velocity and ω_{i} is the angular velocity (see Figure 1.2). The coordinates of each sphere are calculated at the end of the time step t_{N+1} with the relationship

$$
\begin{align*}
& \left(x_{i}\right)_{N+1}=\left(x_{i}\right) N^{+}\left(\left(v_{i}\right) N+1 / 2\right) \Delta t \tag{1.8}\\
& \left(\omega_{i}\right)_{N+1}=\left(\omega_{i}\right)_{N^{+}}+\left(\left(\omega_{i}\right)_{N+1 / 2}\right) \Delta t \tag{1.9}
\end{align*}
$$

The contact forces are calculated using an incremental force-displacement law of the form

$$
\begin{equation*}
(\mathrm{Fn})_{N+1}=(\mathrm{Fn})_{\mathrm{N}}+(\Delta \mathrm{Fn})_{\mathrm{N}}=(\mathrm{Fn})_{\mathrm{N}}+\mathrm{k}_{\mathrm{n}}(\Delta \mathrm{n})_{\mathrm{N}+1 / 2} \text { (contact normal forces) } \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
(\mathrm{Fs})_{\mathrm{N}+1}=(\mathrm{Fs})_{\mathrm{N}}+(\Delta \mathrm{Fs})_{\mathrm{N}}=(\mathrm{Fs})_{\mathrm{N}}+\mathrm{k}_{\mathrm{s}}(\Delta \mathrm{~s})_{\mathrm{N}+1 / 2} \quad \text { (contact shear forces) } \tag{1.11}
\end{equation*}
$$

where Fs and Fn are the normal and shear contact forces, k_{n} and k_{S} are the normal and shear stiffness and $\Delta \mathrm{n}$ and $\Delta \mathrm{s}$ are the normal and shear displacements, respectively. The normal and shear displacements are expressed using the Einstein summation convention as

$$
\begin{align*}
& \left(\Delta n_{i}\right)_{N+1 / 2}=\left(\left(v_{\mathrm{b}}-v_{\mathrm{ai}}\right)_{N+1 / 2}\right) \mathrm{e}_{\mathrm{i}} \Delta \mathrm{t} \quad \mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z} \tag{1.12}\\
& \left(\Delta \mathrm{~s}_{\mathrm{i}}\right)_{\mathrm{N}+1 / 2}=\left[\left(\left(v_{\mathrm{b}}-v_{\mathrm{ai}}\right)_{\mathrm{N}+1 / 2}\right) \mathrm{t}_{\mathrm{i}}-\left(\omega_{\mathrm{a}_{\mathrm{a}}} \mathrm{R}_{\mathrm{a}}+\omega_{\mathrm{b}} \mathrm{R}_{\mathrm{b}}\right)_{\mathrm{N}+1 / 2}\right] \Delta \mathrm{t} \tag{1.13}
\end{align*}
$$

where $\left(\mathrm{v}_{\mathrm{b}}-\mathrm{v}_{\mathrm{a}_{\mathrm{i}}}\right)$ is the relative velocity between two contacting particles a and $b, \mathrm{e}_{\mathrm{i}}$ and t_{i} are the normal and tangential unit vectors, and R_{s} and R_{b} are the radiuses corresponding to the particles a and b respectively.

Figure 1.2 a)Contact vectors between spheres and b)Contact internal moments and forces

The Coulomb-type friction law is used to account for particles that slip once a threshold tangential force level is achieved. The friction expression for each contact is written as

$$
\begin{equation*}
|(F s)| \max =\left|\mu F_{n}\right|+\text { cohesion } \tag{1.14}
\end{equation*}
$$

where $|(\mathrm{Fs})| \max , \mathrm{Fn}$, and μ is the maximum shear force, the normal contact force and the coefficient of friction, respectively. If the maximum critical shear force has been exceeded by the actual shear force between the two particles, then the two particles slide and their interparticle shear force is reduced as if (Fs)max $<(\mathrm{Fs})$ then

$$
\begin{equation*}
(F s)_{i}=(F s)_{i} *[(F s) \max /(F s)] \quad i=x, y, z \tag{1.15}
\end{equation*}
$$

At the end of the contact calculations in the time-step, the sphere forces F_{i} and moments M_{i} for each sphere are computed by summing up all the contact components as

$$
\begin{align*}
& \left(\mathrm{F}_{\mathrm{i}}\right)_{N+1}^{\mathrm{k}}=\sum_{n=1}^{n k}\left((\mathrm{Fn})_{\mathrm{N}+1} \mathrm{e}_{\mathrm{i}}+(\mathrm{Fs})_{\mathrm{N}+1} \mathrm{t}_{\mathrm{i}}\right) \tag{1.16}\\
& \left(\mathrm{M}_{\mathrm{i}}\right)_{N+1}^{k}=\mathrm{r}^{k} \sum_{n=1}^{n_{k}^{k}}\left(\left(\mathrm{Fs}_{\mathrm{i}}\right)_{\mathrm{N}+1}\right) \tag{1.17}
\end{align*}
$$

where n_{k} refers to the contacts associated with the sphere k having the radius r k . The forces and moments found here are used to update the translational and angular velocities in the next time-step, by integrating the equations of motion of the system.

The damping that is considered is a global damping, which acts on the absolute velocities and can be envisaged as dashpots which connect each sphere to a fixed frame of
reference. The global damping coefficients are related to the mass and moment of inertia of each sphere through the coefficients of proportionality \propto

$$
\begin{align*}
& c_{m}=\propto \mathrm{m} \tag{1.18}\\
& \mathrm{c}_{1}=\propto \mathrm{I} \tag{1.19}
\end{align*}
$$

The coefficient of proportionality is selected arbitrarily in order to maintain stability within the system. Equations 1.4 and 1.5 can be modified to include the effect of damping as

$$
\begin{align*}
& m\left(a_{i}\right)_{N}=\left(F_{i}\right)_{N}-c_{m}\left(v_{i}\right) N \quad i=x, y, z \tag{1.20}\\
& I\left(\alpha_{i}\right)_{N}=\left(M_{i}\right)_{N}-c_{l}(\omega)_{N} \tag{1.21}
\end{align*}
$$

If the central difference scheme is used to integrate the above, whereby velocities are evaluated halfway through the time step, then

$$
\begin{align*}
& \left(v_{i}\right)_{N}=1 / 2\left[\left(v_{i}\right)_{N+1 / 2}+\left(v_{i}\right)_{N-1 / 2}\right] \tag{1.22}\\
& \left(\omega_{i}\right)_{N}=1 / 2\left[\left(\omega_{i}\right)_{N+1 / 2}+\left(\omega_{i}\right)_{N-1 / 2}\right] \tag{1.23}\\
& \left(a_{1}\right)_{N}=\frac{\left(v_{i}\right)_{N+1 / 2}-\left(v_{i}\right)_{N-1 / 2}}{\Delta t} \tag{1.24}\\
& \left(\alpha_{i}\right)_{N}=\frac{\left(\omega_{i}\right)_{N+1 / 2}-\left(\omega_{i}\right)_{N-1 / 2}}{\Delta t} \tag{1.25}
\end{align*}
$$

This leads to the revised equations of motion in the form

$$
\begin{align*}
& \left(\mathrm{v}_{1}\right)_{N+1 / 2}=\frac{\left(\mathrm{v}_{\mathrm{i}}\right)_{N-1 / 2}(1-\propto \Delta \mathrm{t} / 2)+\left(\mathrm{F}_{\mathrm{i}}\right)_{N} \Delta \mathrm{t} / \mathrm{m}}{(1+\propto \Delta \mathrm{t} / 2)} \tag{1.26}\\
& \left(\omega_{i}\right)_{N+1 / 2}=\frac{\left(\omega_{i}\right)_{N \cdot 1 / 2}(1-\propto \Delta \mathrm{t} / 2)+\left(\mathrm{M}_{\mathrm{i}}\right)_{N} \Delta \mathrm{t} / \mathrm{m}}{(1+\propto \Delta \mathrm{t} / 2)} \tag{1.27}
\end{align*}
$$

If \propto is zero, we will have the equation presented in 1.6 and 1.7 (see Fig 1.3).

The global stress tensors are calculated for the overall stress behavior represented by the average stress tensors,
$\bar{\sigma}_{i j}=\frac{1}{V} \sum_{k=1}^{z}\left((F n)_{N+1}^{k} e_{j}+(F s)_{N+1}^{k} t_{j}\right) x^{k} e_{i}$
where, V represents the total volume of the assembly, x^{k} is the sum of the two radii forming the contact k, and z is the total number of contacts in the assembly. For the derivation of equation 1.28, the reader is referred to Cundall et. al. (1982).

Cundall's algorithm, Trubal version 1.51 adopts these equations for the routines Motion and Ford which are described in the next chapter. Trubal for Parallel Machines (TPM), the modification of Cundall's Trubal, also adopts these equations in the routines Motion, Ford, and Globe. The fundamental mechanics of DEM just presented are validated in an actual experiment and are presented in order to give the unfamiliar reader a feel of its physical applicability.

Figure 1.3 Schematic showing principle rheological elements of DEM (2D)

1.4 Experimental Validation of the DEM Model

Producing physical results from numerical computations of spherical bodies is difficult, especially since fictitious values, such as damping are included without any physical meaning. However, Cundall's program "Ball", the 2-d version of Trubal, qualitatively describes the microscopic effects for quasi-static problems on a global continuum level. The result presented in this section is reported in Cundall and Strack (1978) in more detail.

Program "Ball" was validated by simulating the test performed by de Josselin de Jong and Verruijt (1969) on photoelastic discs. An assembly of discs were placed between two plexiglass plates, that prevented the stack from buckling out of plane. It was loaded by an applied force perpendicular to four rigid beams encompassing it. When viewed in circularly polarized light, the photoelastically sensitive discs displayed a pattern of isochromatics. From these patterns, one can deduce the forces that are transmitted through the disc contact points. At each stage of the test De Josselin de Jong and Verruijt recorded the disc locations and contact forces. When the ratio between the horizontal force and the vertical force was 0.39 , the deformation of the assembly appeared as shown in Figure 1.4 a. The discs center locations and radii were obtained by using a digitizer. The center coordinates of the discs, marked by cross-hairs in the original test, were located with reference to a grid in the background of the photograph. Similar results were obtained from a strain control simulation shown in Figure 1.4 b for

Figure 1.4 a) Force vector plots obtained by De Josselin de Jong and Verruijt (1969) and b) Program "BALL" numerical reproduction of the 1969 experiment
comparison at the ratio of 0.33 . The contact forces (branches) were observed between particles within the assembly in each model and there was good agreement. Although these results are good for the use of this model, there are other techniques that can be applied also. The following section presents and compares some of the other modelling techniques

1.5 DEM and Other Modeling Techniques in Continuum Mechanics

Since continuum mechanics is the classical approach used to solve geotechnical boundary value problems, a comparative study was done to highlight its relationship to the discrete element method. The three modelling techniques selected for comparison in this section are a Finite Element Method (FEM) model for granular systems, an explicit DEM numerical scheme adopted for this thesis, and an implicit DEM scheme called the Discontinuous Deformation Analysis (DDA). Of course, there are many other schemes
for solving granular systems, but these three techniques represent the diversity in approaches.

For example, the FEM is used quite extensively to model almost every observed behaviour that is found in soils. Rodriguez -Ortiz (1974) is noted by Cundall et al. (1979c) to have the closest analysis to the DEM approach. In his approach, assemblies of discs are represented by the finite element method. A stiffness matrix is constructed that takes into account the geometrical arrangement of the particles and the current stiffness at each contact. Inverting the matrix allows incremental displacements to be computed from the last known forces, with an iteration procedure being necessary to deal with slip at contacts. Only one contact is allowed to slip at a time, and it is necessary to reform the stiffness matrix when the contacts join or break. It is important to note that in this method all particles interact with each other during each solution step.

With the implicit DEM, for example DDA, the block systems analysis can be closely compared to the finite element method. The discrete blocks are similar to the "elements" in the FEM, but the displacement compatibility condition between adjacent elements in FEM is replaced in DDA by contact relationships between blocks which are based on block kinematics and constitutive laws of discontinuities. The matrix produced from these equations is similar to the FEM with a much more sparse and less banded global coefficient matrix. The displacements and strains of the blocks are used as basic systems of unknowns and the matrix equation is solved by using a direct equation solver. The reader is referred to the paper of Shi [1988] for more details on this implicit approach.

His work was described here to provide the reader with an examples of an implicit discrete element analysis.

In contrast to the schemes just mentioned, the explicit DEM is a time-dependent scheme, where each time step is chosen to be so small that during a single time step, disturbances can not propagate from any particle beyond its immediate neighbor. The resultant forces on any particle are determined exclusively by its interaction with the other particles it contacts. This is the reason why the DEM can model the non-linear interaction of a large number of particles without the need for iterative techniques.

A comparison between the explicit DEM and the implicit DEM reveals that the explicit DEM absence of iterative techniques for non-linear behavior eliminates the possibility of converging on a path that is not physically possible. Chang and Acheampong (1993) points out that the advantage of the DEM approach compared with an implicit algorithm is that it requires less computational effort and computer memory. Cundall's model is known to be primarily dependent on artificial global damping to dissipate the energy within the assembly for stable results, and it requires many small time steps to reach a state of equilibrium. The one drawback is particles tending to spin at high speeds during the numerical simulation. Therefore, a high moment of inertia is therefore assigned to each particle to prevent this from happening.

On the other hand, since the implicit scheme doesn't require very small time steps to arrive at a certain stress state, the number of iterations that are required is much less than the number of time steps required by the DEM to achieve the same state. In Shi's DDA, the deformation energy is minimized within a block system to yield equilibrium
directly and therefore does not require small time steps. The blocks are treated as linear elastic polygons. Since the block deformation and movement are determined by the minimization of energy, damping and a high moment of inertia is not necessary to achieve stable results. However, this numerical scheme requires that many cumbersome simultaneous equations be solved per time-step. Before the implementations of parallel computing to DEM models can be discussed, a brief description of computer terminology is provided in the next section.

1.6 Parallel Computing Terminology

Since this research is intended to have interdisciplinary appeal, basic computer science terminology will be defined in this section. When the term "massively parallel computer" is used, this signifies that hundreds to thousands of processors are incorporated within a network for a given application. If a machine consists of less processors than just mentioned, it is called a parallel machine. A massively parallel supercomputer is the state-of-the-art technology and can be accessed through national supercomputing sites, such as the Pittsburgh Supercomputing Center (PSC) and the National Center for Supercomputing Applications (NCSA).

The two major types of supercomputers found today are vector machines such as the Cray YMP and the massively parallel machines such as the Cray T3D and CM-5. Although vector processing is found in the Cray YMP, in the case of functional pipelines, the vector processing referred to in this paper is only related to the SIMD architecture. In short, vector processing occurs when arithmetic or logical operations are applied to
multiple data as opposed to scalar processing which operates on one or a pair of data. The topology or layout of any parallel machine will be described in terms of its multiple processor capability, its control network, and its interconnection network. These classifications differentiate a parallel machine from a multiple processor serial machine.

The multiple processor capability can describe either many low performance processors linked together in a homogeneous system, a smaller number high performance processors linked together in a homogeneous system, or variable numbers of different processors linked together in a heterogeneous system. The first two cases will be discussed in this research for the CM-2 and the CM-5, respectively. In a homogeneous system, the same processors/nodes are used throughout the architecture, and in a heterogeneous system, different processors/nodes are networked together. In general, the memory is distributed or divided among the processors, so that communication links between processors enable memory to be addressed. There are some parallel machines with shared memory, in which case the same memory is accessed by all of the processors. Serial machines are an example of a shored memory system, although they may have more than one processor. The basic element of a parallel machine is the processor with its attached memory or the "node". A node can be a processor or processors with various functional capabilities. For example, a transputer node is a node that contains a processor, memory, and communication links on a single chip, whereas a CM-5 node (described later) consists of a RISC processor, 4 vector units, and its allocated memory.

The control network is defined as a single instruction multiple data machine (SIMD) or a multiple instruction multiple data machine (MIMD). Although, these
architectures are described in detail later on, the major difference is that SIMD operates synchronously on the entire set of processors assigned to it for each instruction, and MIMD operates independently on each processor at different times.

Finally, the interconnection network is the physical wiring of the processors' connections to each other. Examples of this are the hypercube, binary tree, and 3D Torus, which are some of the networks that will be described further. The communication latency is a time measure of the communication overhead incurred between the processors/nodes, and the memory latency is the time required for the processor to access the memory.

1.7 Literature Survey

1.7.1 Ghaboussi Approach

The operation of massively parallel machines to model soil behavior has been proposed by Jamshid Ghaboussi et al. (1993). Ghaboussi proposed that the connection machine (CM2) could be used to detect contacts between particles simultaneously (in parallel) with neural networks. Unlike sequential programming, neural networks are trained. The network then internally organizes itself to be able to detect the presented examples. Before the network can become operational for a discrete element algorithm, it has to be trained to detect contacts between particles. If the neural network is properly trained, it is able to give correct responses, or nearly correct responses when presented with partially incomplete stimuli. Its ability to self-organize itself or adjust its weights makes it possible for it to generalize certain conditions of contacts. This is a good approach, but detecting all of the existing contacts is not guaranteed. In order to simulate behavior in
construction materials and soils, the arrangement or packing of particles can be quite complex, which means extensive training would be necessary to get close to the number of contacts that exist.

1.7.2 Kuraoka's Approach

Kuraoka (1994) modified Trubal and implemented it to the Intel iPSC/860 with 16 processors. In this case, an assembly of 2400 disc was simulated for the flow of sand in an expendable pattern casting process. It did not exploit the full capabilities of a massively parallel machine nor did it consider the three dimensional case, but the potential use of multiple processing machines was strongly supported in his work. His approach was applied to a Multiple Instruction Multiple Data (MIMD) architecture, which allowed individual processors to be assigned individual tasks. Although, this approach has inherent bottlenecks such as load balancing each processor with equal work or time loss due to synchronizing all of the processors, the efficiency achieved proved to be a valuable approach.

1.7.3 Hustrulid's Approach

Hustrulid (1995) adapted a two-dimensional discrete element model to a 64 node T805 transputer from Alta Technology. In this study, 625 particles were used to simulate particle flow on a MIMD architecture. Although, 64 nodes were available, only 32 nodes were applied to the problem due to the excessive communication overhead. From this report, there appeared to be a small increase in speedup once 25 or more nodes were applied to the problem.

1.7.4 O'Connor's Approach

O'Connor (1995) developed a scheme known as the Discrete Function Representation (DFR) which is used to model the surface geometry of complex 3D objects. His scheme of contact detection was noted to yield speedups of up to two orders of magnitude when the sequential application of DFR was compared with another sequential technique. In addition, a number of MIMD machines were tested for their ability to a handle parallel sorting algorithms and were used in simulations modeling spherical particles. Although a possible application of an SIMD architecture was mentioned, this architecture was not tested in this study. Also the full capability of a supercomputer was not exploited, but was discussed as future research. This approach proved to be resourceful in modeling complex figures for potentially large systems ranging into the thousands of elements.

1.8 Research Program

This research studies the application of the discrete element method to a massively parallel SIMD machine. (No significant advances are known to be reported for a 3dimensional discrete element model on this platform.) Since the majority of researchers can benefit from adapting their codes to a less complicated SIMD architecture, two modifications of program Trubal 1.51 were developed. The first major development was to adapt Trubal version 1.51 to the CM-2 machine, in order to exploit its entire architecture. The second major development was then to adapt it to the CM-5, its successor, for improved performance.

In this thesis, Chapter Two describes the approach used to develop the first version of TPM. The architecture of the CM-2 is explained in detail and the data structure of the Trubal 1.51 is presented to show the segments that were improved. Chapter Three discusses the second version of TPM that is applied to the CM-5, and discusses how improved speeds were obtained. Chapter Four is dedicated to simulations using the triaxial experiment performed by Rowe (1962). Chapter Five concludes with other approaches that are being taken to extend this research to other platforms.

CHAPTER 2

TPM VERSION 1.0

This chapter describes the computer implementation of the program Trubal to the massively parallel architecture of the CM-2. Trubal's data structure is analyzed for its inherent parallelism. In addition, the topology of the CM-2 is studied in order to consider the best implementation of Trubal. As a result, the progressive development of the TPM algorithm is described after repeated triaxial simulations are tested. Monitoring TPM's performance in each case led to various modifications, which are also presented in this chapter as part of TPM version 1.0. The final revision of this algorithm became TPM 2.0 when it was ported to the CM-5, which is described in the subsequent chapter.

2.1 Introduction

The demand for simulating larger granular assemblies with shorter run-time, motivated the adaptation of a discrete model to the connection machine, CM-2, with 32,768 processors. Meegoda and Washington (1993) proposed that if a connection machine (CM-2) was adapted to Trubal version 1.51, it could achieve a speedup of two orders of magnitude by taking advantage of CM-2's entire resource. However, there were a few obstacles that did not allow this goal to be reached. First, the CM-2's entire system resources were not readily available. Second, the overhead in processor communication would not allow the overall performance to reach two orders of magnitude. Third, the program development was retarded by the discontinuation of this machine. Nevertheless, the basic methodology that was pursued in developing an algorithm for the CM-2 is
described in this chapter. The evolution of the CM-2 algorithms are noted as TPM 1.0 and the performance of the last two revisions are evaluated. The first draft of TPM 1.0 closely followed the data structure of Trubal version 1.51 and with minor modifications, adapted it to parallel programming. Before describing the TPM algorithm, an overview of Trubal's version 1.51 is presented.

2.2 General Description of Trubal's Algorithm

While there are many routines in the Trubal algorithm, there are six major routines (Cycle, Motion, Rebox, Search, Bbtest and Ford), that perform all of the basic calculations required in each time-step. The operation of the each routine is briefly described here. Readers are referred to Cundall et. al. (1978) for more detail. Figure 2.1 shows the flow chart of the routines involved in each time-step, including the Gen Routine which generates particles for the simulations.

Figure 2.1 Flow chart for Trubal algorithm

2.2.1 Gen Routine

The Gen routine generates a number of spheres randomly using a random generating library found in most high level languages such as Fortran. Gen creates a random packing of spheres, by first considering a fixed free space and plotting points for the center of each sphere at random. After each sphere is located, contact detection is necessary to insure that there are no sphere overlaps. If a sphere is found overlapping another, it is deleted and another random point is selected. This is necessary to insure that there are no internal forces present prior to the packing of the entire assembly. When the requested number of spheres is generated, the boundaries are moved so that particles can make contact. In most cases, the boundaries are relaxed or expanded after the initial contraction in order to achieve this point of equilibrium.

2.2.2 Cycle Routine

The cycle routine updates all the global variable parameters, such as the current size of the boundaries and the global strain rates. It also resolves the global stresses and strains that currently exist in the assembly. One of its primary functions is to call the other subroutines that are required for each time-step.

2.2.3 Motion Routine

The motion routine is responsible for updating particle velocities, angular velocities, displacements and angular displacements, based on the current forces, moments, gravity effects and boundary conditions. Global damping (as described in Section 1.3) is implemented within this routine in order to provide stability to the entire system.

2.2.4 Rebox Routine

In order to reduce the number of contact checks between any two spheres, each sphere is centered within an imaginary cube and the entire assembly is partitioned into a specified number of boxes. This allows the number of contact checks to be confined within the various boxes, as opposed to checking each sphere with every other sphere within the assembly. The Rebox routine designates a memory address for each corner of the cube that encompasses a sphere (Fig 2.2). This address is checked by the Search routine and added to a memory listing described in a later section. In order for the boxing system to work efficiently, the size of the boxes is predetermined to be greater than the diameter of the largest sphere. It should be noted that contact detection is the most time intensive component of discrete element simulations, especially if the particles have complex shapes. Therefore, contact detection is only performed when a particle has moved a specified distance.

Figure 2.2 Spheres encompassed by cubes are mapped within boxes

2.2.5 Search Routine

The search routine allocates memory within the one dimensional data structure of Trubal (see Fig 2.3). The system, referred to as "leap frog" or "link and list", is a dynamic memory manager used to sort spheres within boxes with neighboring pointer addresses. Each sphere is listed along with a pointer, which denotes the memory location of the next sphere in the box. This system allows for systematic contact checking for each sphere located within the region of the box. If a sphere moves out of the box, it is deleted from the memory list and the memory space is reused for another sphere. The reader should note that a detailed representation of Trubal's data structure can be found in Cundall and Strack (1978).

Figure 2.3 Trubal's data structure presented as a one dimensional array

2.2.6 Bbtest Routine

The BBTEST routine checks the distance between two spheres to determine whether the two spheres are in contact. For a spherical object, this is done simply by summing the radii together and subtracting it from the distances between the two centers. If a contact is formed between the two spheres or they were within a certain tolerance apart, a contact list is formed which is later analyzed in the Ford routine for possible internal particle forces.

2.2.7 Ford Routine

The Ford routine computes the shear and normal forces between two overlapping particles using their stiffness and relative angular and translational velocities (see Section 1.3). In addition, the resultant forces and moments are calculated for each particle based on the sum of its surrounding contacts with other particles. The global stress tensors are summed over all of the contacts existing within the assembly.

2.3 CM -2 Architecture

A parallel machine's architecture can be classified by its multiple processing capabilities, its control systems and its interconnection network. The CM-2's multiple processing capabilities attaches thousands of low performance processors together to work as a high performance homogenous architecture. The CM-2's control system is a Single Instruction Multiple Data Machine (SIMD) designed by the Thinking Machine Corporation. The SIMD architecture implies that each line of the code is executed in each processor before the next line can be read, therefore all operations are synchronized. Its 32,768 processors are divided into four primary partitions, all of which are controlled by a Unixbased Sun front end machine. The primary partitions, referred to as "sequencers", are not all dedicated to the user, but are assigned to jobs according to the system manager (see fig 2.4). Most commonly, one sequencer is timeshared while other sequencers run dedicated batch jobs. The Fortran 90 and C language are compatible high level languages used in operating parallel machines.

Figure 2.4 CM-2 Architecture

Even though all of the processors within the partition are operating, the number of processors that actually do useful calculations is dependent upon the layout of arrays used within the code. For example, the layout of 16 processors could be written as in Figure 2.5. This figure shows that when an array is declared, the machine automatically chooses the number and configuration of the processors required (i.e. 4×4 processors). Normally, the machine will select the smallest dimension for the configuration of processors, in order to shorten the distance of interprocessor communication. For example, " 1×16 " would not be selected since the greatest possible communication latency would be the along the second axis," 16 ". In Figure 2.5, the machine chose the 4×4 configuration for the best performance. In this system, the distributed memory allows each processor to operate on the assigned data in its attached memory. Although, the actual location of the processors and their memory remains unknown to the user, the processors can be visualized, in this case, as a square arrangement, with four processors in

```
Declaration Statement
realafray(64.64)
cmfSlayoutarray(news.anews)
Posslble Layo:=doz= bymmachine
Axis 0: 64 (4 physical x l 6 subgrid)
Axis l: 64(4 physical x l 6 subgrid)
```


Figure 2.5 An array $(64,64)$ layout over sixteen processor
each column and four in each row. The subgrid (as mentioned in Fig. 2.5) can be viewed as a 16×16 grid of elements inside of the memory of each processor. The "elements" refer to the data within each of the assigned arrays. If the machine allocated the array as described in the layout, then 256 elements of the array would be placed within each of the 16 processors (see Fig. 2.5). In this example, only 1 Kilobyte (Kb) of memory was required per processor; however the CM-2 allows for a maximum of 32 Kbytes (256 K bits) of memory for each processor, which is a physical limitation to the problem size that can be analyzed.

Finally, each of the processors can communicate with any of the other processors through the interconnection network. The hypercube network, denoted as a router in

Figure 2.6 The CM-2 parallel processing unit

Figure 2.6, is the communication network used between the processors' memories. It is a very rapid interconnection network for data communication, because the diameter of the system is equal to its node degree. The diameter of the system is the shortest path between the two nodes that are the farthest apart, and the node degree is the number of channels or connections going into each node. The hypercube is a " n -cube" system, with an interconnection design that renders a relatively small diameter. For example, Figure 2.7a shows a 3-cube interconnection network, with three channels and eight nodes. In this case, the number of nodes, $N=2^{n}$, so that the node degree, n, is equal to 3 , therefore the diameter is also equal to three. In the case of the CM-2, each node is considered to be an individual processor along with its associated memory, so the entire system connected would require a 15 -cube system for $32,768\left(2^{15}\right)$ processors with a diameter of fifteen.

Figure 2.7 Interconnect networks systems

The fastest interconnection network possible, is the fully connected network shown in Figure 2.7b, where the diameter of the system is one and any arbitrary node can communicate with any other node in one unit of time. However, this type of network is not practical for larger systems such as the CM-2, due to the number of connections that would have to be physically attached between every node. Considering the fact that the CM-2 can not implement a fully connected network, the hypercube network appears to be a feasible alternate for a relatively fast interconnect network.

As a result of the rapid growth in computer technology, the CM-2 machine is currently not available at supercomputer sites such as Pittsburgh Supercomputer Center (PSC) and the National Center for Supercomputing Applications (NCSA). Currently, the Pentium-100s and above are higher performing chips than the CM-2 processors used in this study. However, the parallelism of the algorithm still remains the governing factor as to whether the CM- 2 can exceed the performance of a "high-end" desk top computer.

2.4 Data Structure of TPM Version 1.0

As mentioned earlier, the initial idea proposed by Meegoda and Washington (1993) for TPM version 1.0 was based on two criteria. The first criterion was that if each particle
within the assembly was stored in its own processor along with the necessary data pertaining to all the other particles, each processor could perform its particle operations with its neighboring contacts. Hence, the latency of interprocessor communication would be reduced. The second criterion was that since dynamic memory (i.e. the dynamic memory mentioned in Section 2.2.5) is unsuitable for SIMD machines, then it was necessary to create a more static memory arrangement. Recall that the Search routine, described in Section 2.2.5, was responsible for the dynamic memory management of Trubal, which has been replaced by a static memory arrangement in TPM's reboxing routine. Therefore, Trubal's "link and list" was removed from the algorithm and was replaced with a large three dimensional array representing TPM's rebox routine, described later on in this section. The algorithm for TPM version 1.0 has the same flow chart as Trubal 1.51, except that the search routine was eliminated (see Fig 2.8). The following altered data structure of the TPM algorithm is described for each of the major routines.

Figure 2.8 Flow chart for TPM version 1.0

First, the gen routine and the cycle routine are the same as in Trubal 1.51, except that gen simultaneously produces random sphere locations for the entire assembly with a random generating function. The motion routine uses a 2-D array, referred to as "sphere array", which places the information for each sphere into the memory of each processor as shown in Figure 2.9. By comparing Figure 2.9 to Figure 2.3 and Figure 2.5, the evolution of this scheme can be described. In Figure 2.3, all of the information required for Trubal 1.51 is stored within a one-dimensional array and it is accessed as shared memory. In Figure 2.5, an example of the data layout within a two dimensional array is shown, so that the parameters for each sphere in Figure 2.9 can be allocated within a common memory space. One axis of the sphere array was assigned to each particle in the assembly and the other axis was assigned to the various parameters pertaining to a particular particle. Since the arrays determine the data storage for each processor based on the array layout, a single array was used to store information pertaining to the sphere parameters.

Figure 2.9 Data structure for the arrays of TPM version 1.0

The rebox routine, as described in Section 2.1.4, was handled by a set of processors that were assigned to a 3-D "box array". One axis of the array represented
each particle within the assembly and another axis stored the box number for each of the eight corners encompassing the particle (see Fig 2.2). The third axis of the box array is the number of boxes in the assembly and it stores the sphere corners (refer to Figure 2.2) that map into that memory location relating to its box.

In order to perform this distribution of data within the array, a number of CM libraries were used. First, after the box number was calculated from the corners of the cube encompassing the sphere (see Cundall et. al. 1978), it produced repetitious box numbers. To explain TPM's reboxing scheme, a sample of two spheres encompassed by a cube is drawn within four boxes as noted in Figure 2.10. The 3-D boxing array would originally appear as shown in Figure 2.11, where all box numbers would appear in box \#1.

Figure 2.10 An example of two spheres within four boxes

A "spread" command is used to duplicate the box numbers for the eight comer points into the third axis. This means that the numbers that appear in Box\#1 in Figure 2.11, would
appear the same way in the remaing boxes (i.e. Box \#2, Box\#3,\& Box\#4). At this point, a "forail" command is used to select the box numbers that are residing in the correct

Figure 2.11 TPM's Box Array Initial Setup
memory location, and to replace the correct box numbers with the correct sphere names within each box. In the example presented in Figure 2.10, the sphere names are the letters "A" and " B ", so that a distinction between boxes and spheres can be made; however in the actual algorithm, the spheres are assigned numbers. A "firstloc" and "where" command is then used to eliminate the duplicate sphere names that appear for the same box. First, the "firstloc" commands flags the first location of the sphere number within each box. Second, the "where" command places a dummy value wherever the flag is false. At this stage, TPM's box array appears as shown in Figure 2.12 without the dummy variable for clarity. Finally, the "pack" command consolidates the box numbers into a single column of elements for each box. At this point, each box has a list of
spheres in which it can permutate all possible contacts. Then two arrays containing a list of all possible contacts is matched with the box list using a "forall" command and when the list matches, it then transfers the contact pairs into the contact vector arrays. In this

Figure 2.12 TPM's Box Array after "Spread" command and "Forall" command is used example, the only permutation possible is between "A" and " B ", so in this case these contacts would be found in box\#1 and box\#3. The duplication of the same contact found here is eliminated as the algorithm flags all the contacts within a contact map. This map contains one of every possible contact that can be permutated within the algorithm. Once the contact map is flagged by the list of all possible contacts, its information is transfered to the two one-dimensional arrays shown in Figure 2.9.

The bbtest routine performs the same contact checking function as in Section 2.1.6, except that it is performed in parallel. The bbtest routine use the two single dimensional contact arrays (see Figure 2.13), because the CM-2 requires a one

One Dimensional Contact Array "X"

particle \#A	Other particle names
	One Dimensional Contact Array "Y"
particle \#B	particle names that pair off with array " X "

Figure 2.13 One dimensional contact arrays for TPM 1.0
dimensional array as a vector or pointer, when it uses as an argument within another array. In this case, two spheres in contact were stored in two arrays so that when lines of instruction were invoked for the contact checking as well as the force/displacement calculations, only the information for each pair was used within the calculation.. In this fashion, the entire contact check and force/displacement operations are executed in parallel. The following example demonstrates how the difference in sphere center distances could be calculated between all the contacting spheres within the assembly in one line of instruction:

$$
\operatorname{dist}(:)=\text { sphere(center, vector } X(:)) \text { - sphere(center, vector } Y(:))
$$

where (:), implies all the elements within the array, dist is the distance between center of spheres, vector \#1 and \#2 represents the contact arrays with a list of spheres in possible contact, center represents the coordinates of the center of a sphere, and the sphere array is the global array with all of the various sphere information. The Trubal algorithm, on the other hand, repeats this line for each contact within the assembly. Finally, the ford routine uses the contacts that are flagged as overlapping, to perform the parallel force/displacement operations that are described in Section 2.1.7.

2.5 Advantages of TPM's Data Structure

The data structure described has many advantages for parallel processing. The sphere array, box array, and contact array are constructed so that parallel operations could be performed in the motioning of the particles, mapping of the particles and the detection of contacts respectively. TPM's motioning of spheres took advantage of parallelism, by displacing all spheres based on their current velocities and boundary conditions simultaneously, in contrast to Trubal's individual operation for each sphere. In this case, the two algorithms (Trubal and TPM) used the same lines of instructions (with exception to the names of the array), but the CM-2 performed these lines for the entire assembly without looping for each particle.

For example, in the original Trubal, the corner of each cube encompassing the spheres (8 points) was mapped into boxes, one at a time. This operation took several lines of instructions and two different routines. Recall that the rebox routine determined the coordinates of each point of a cube encompassing a sphere, and the search routine used a "link and list" system to store the point in the correct box location. However, in this modification of TPM, the several lines required for determining the coordinates were performed for all of the spheres simultaneously. Each corner point was located in the correct box by a few CM library commands. In addition, the link and list was eliminated in this version of TPM, because the contact listings were stored in the contact arrays.

2.6 Evaluation of Results of TPM Version 1.0

A triaxial simulation containing one hundred and fifty spheres was performed using TPM version 1.0 with the data structure denoted in Figure 2.9, and the results were compared to the VAX 8800 performance of the same simulation. The three dimensional simulation qualitatively modeled the consolidation behavior of a dry granular sample under cyclic loading conditions. Initially, the sample was randomly generated and then compacted to a state of equilibrium. Two cycles of loading were performed on the sample during the simulation, and then it was strained to failure. Failure in this case, was defined at the point where the strain continued to increase at the same level of stress. Although, an actual experiment was not performed, this fictitious simulation was used as a means of comparison between the performance of a parallel algorithm (TPM) and a serial algorithm (Trubal). Therefore, the input parameters were values that simply allowed for a stable simulation. Because a complete simulation was not performed on the $\mathrm{CM}-2$, the results of this simulation are described in detail for TPM version 2.0, where an improved performance was achieved

A complete simulation of this triaxial experiment lasted for 20,000 cycles on the VAX 8800 and it required twenty-five minutes to perform this task. However, after 200 cycles TPM version 1.0 had already used close to six minutes, which is only enough time to form two contacts in the initial compaction of the assembly. At that point, the simulation was terminated based on the fact that 20,000 cycles was desired to complete the simulation and it was assumed that TPM would require approximately 6 minutes per 200 cycles. Therefore, TPM's performance was not comparable with the VAX 8800's
time. Table 2.1 shows the results of the system resource usage as well as routines with the highest time consumption.

The bottlenecks within the TPM algorithm became evident through the use of the CM debugging software, PRISM, which produces a performance evaluation as shown in Table 2.1. The front end machine denoted as (FE) is able to operate simultaneously

Table 2.1 CM-2 Resource usage viewed in PRISM

Total time: 390.24 sec			
FEcpu (uscr)	278.651 s		
FEppu (system)	2.780 s		
FEI/O	14.200 s	CYCLE	7.332 s
FE Total	295.631 s	MOTION	5.355 s
		REBOX	181.21 s
CM cpu(user)	142.471 s	B B TEST	22.374 s
CM cpu (system)	39.938 s	FORD	57.227 s
Comm (Scnd/Get)	120.404 s		
Comm (NEWS)	25.139 s	150 particles - 200 cycles	
Comm (Reductions)	18.393 s		
Comm (FEッ \because CM)	1.392 s		
CM not profiled			
C M 1/O			
CM Total	347.737 s		

with the connection machine denoted as (CM). The CM, in this case, governed the time that was required to complete these cycles, causing the "FE cpu user " time to idle for a longer period of time. This is an inherent result of the SIMD architecture which synchronizes the system at each level of instruction. Therefore, only the times for the CM need to be analyzed, based on its operation during each routine.

The rebox routine is clearly the most time-intensive, due to the fact that it is responsible for the contact detection. As mentioned earlier, the information assigned to the spheres in each processor is globally reduced to the arrays that map the spheres into
boxes. This is seen in the "Comm (Reductions)" time usage, but also sorting of the spheres into the correct boxes requires a great deal of "Comm (Send/Get)" time, which is indicative of interprocessor communication. Even with the parallelism of the boxing routine as described earlier, the amount of sorting and consolidating of data elements between the processors was time-intensive for both processor communication as well as cpu usage. Evidently, the sorting and consolidating of the box information are best performed using the local memory of a processor, because the dynamic randomness of particle movement caused data elements to be placed sporadically within processor memory, loosing the advantage of parallelism.

The unpredicted behavior of this type of modeling, is reflected in the data flowing into the ford routine. The ford routine selects the contacts that were formed randomly and were globally reduced from larger arrays. These large arrays contained information required for each sphere that was found in contact. Once the data elements are transferred to their correct memory location, the parallel computation is then performed rather quickly.

The $b b t e s t$ routine, which checks the distances between spheres, requires information from different processors within the sphere array (such as coordinates, incremental displacements, etc.). As a result, the interprocessor communication time is required for the contact vector array to point to the memory of the data that is needed and transfer this information to the processor that is performing that particular calculation Again, the randomness of the vector array information can increase the communication time between the processors.

Regardless of the various operations just mentioned, the "CM cpu (system)" time consumption always requires time to perform its internal functions that are hidden from the user. The system may require different internal algorithms to perform basic memory management, library functions or network protocols for the processors' communication. The following example demonstrates that if data from one array is being used within a computation with another array, the system will create a buffer to copy the information of that array, before changing the data within that array.

$$
\mathrm{A}(:,:)=\mathrm{A}(;,:)+\mathrm{B}(:,:)
$$

If array A and B are not within the same processors, then interprocessor communications protocols within the system will be required.

2.7 Discussion and Other Modifications

From studying the topology of any parallel architecture, it is understood that the best performance can be obtained if all calculations are local within each processor. Since the fastest access to data occurs locally within each processor's memory, the speed of the interconnection network can not exceed this. Of course, the second fastest data access is the communication between two neighboring processors/nodes that require just one unit of time. The development of TPM version 1.0 took advantage of the local memory speed, but failed to optimize its global communication, which led to a series of bottlenecks.

Due to the large memory requirement for the array layouts, scaling to a larger problem became inconceivable, therefore an attempt was made to allocate dynamic arrays
which would have had the advantage of being created during the execution of the program and deleted when the array was unneeded. This modification, although very practical, proved to be unfruitful as far as the time consumption on the system for memory management. The CM-2 required additional libraries to construct and deconstruct these dynamic arrays which inevitably defeated the overall purpose.

Once it was recognized that using a single array (i.e. sphere array) did not guarantee that data would be entered into the desired processor, another modification was made assigning each parameter to an array with the same size and dimensions. This was the stipulation in the CM-2 architecture which guaranteed local memory between arrays. This was the last modification that lead to a better performance and to the next generation of TPM on the CM-5.

2.8 The Last Modification of TPM 1.0

TPM version 1.0 last modification included the use of separate arrays for each parameter of the particles (to localize memory) and considered all possible contacts within the assembly to eliminate the boxing routine. Hence, a better performance was achieved using the same simulation. Because the CM-2 was discontinued during the application of this data structure, the preliminary results for the simulation that was tested were used to extrapolate the time for a complete simulation. Meegoda and Washington (1994) estimated that the CM-2 could perform up to five times faster than the VAX 8800 when executed for a 20,000 cycle simulation. The complete simulation time for the CM-2 was approximated to finish in five minutes from the data collected after 200 cycles of actual
run-time. This calculation was made assuming the work required by the system was the same throughout the simulation and that it would take an average of 3 seconds for every 200 cycles. Since 20,000 cycles were anticipated, that meant 300 seconds would be needed to complete the simulation on the CM-2. Because the matching time for the VAX 8800 was noted at twenty-five minutes, it was believed that an improved speedup of up to five folds could be achieved.

Since the performance of simulations are relatively architecture dependent, a comparison between the CM-2 and the CM-5 results may not be valid. However, the CM-5 results does suggest that there can be a slight variation of time per 200 cycle. When this same simulation was performed on the CM-5, the first 200 cycles took 2.5 seconds which was very close to the time just mentioned. However, the time increased to 3.7 seconds when the assembly reached its maximum consolidation with a coordination of six (six contacts per particle). The time for 200 cycles increased again to 3.9 seconds, when the triaxial axial load was applied. Therefore, the CM-2 speedup should be noted as an upper bound when one sequencer is used. Since the CM-2 machine was upgraded to the CM-5, it was deemed that any further investigation of TPM on the CM- 2 would be overshadowed by the advancement of the CM-5 architecture. Table 2.2 summarizes the results of the VAX 8800 and the CM-2.

Table 2.2 Comparison of Timing between CM-2 and VAX 8800

Machine Architecture		Time Scale for 150 particles $(20,000$ cycle simulation)
CM-2 (TPM)	with one global sphere array and boxing routine	6 minutes per 200 cycles estimated 10 hours for 20,000 cycles
CM -2 (TPM)	with separate arrays for each parameter and all to all contact checking	3 seconds per 200 cycles estimated 5minutes for 20,000 cycles
VAX 8800 (Trubal 1.51)	25 minutes for 20,000 cycles	

2.9 Conclusion

In conclusion, TPM version 1.0 has a number of parallel applications built into the algorithm, but the bottlenecks due to incompatible array sizes, cause an excessive amount of communication protocols. Also, in the earlier modifications of the TPM, the dynamic behavior of the assembly demanded extra cpu-time for selecting random data from different processors. Single Instruction Multiple Data machines perform best on data structures with static memory structure, which means that data is not shifted from its memory location and computations can be performed within local processor memory. However, in the earlier stages of TPM's development, excessive array reductions slowed down the data communication considerably. Inevitably, TPM 1.0 evolved into a workable algorithm introduced in the next chapter as TPM 2.0. TPM 1.0's last modification rendered a promising performance, although the results were not entirely conclusive.

This early approach proved to be a landmark in current attempts to parallelize discrete models on SIMD massively parallel supercomputers. The discontinuation of this machine had considerable effects on this research, however many of the ideas that are currently being developed were a result of this earlier project.

CHAPTER 3

TPM VERSION 2.0

This chapter describes the transition of the TPM algorithm from the CM-2 machine to the CM-5 machine. The CM-5 architecture advances are described and the exploitation of the system is discussed. TPM version 2.0 adaptation to the CM-5 is included with a complete simulation of a triaxial test, which is studied for accuracy and speedup.

3.1 Introduction

Since the architecture of the Connection Machine (CM-5) replaced the CM-2 machines, TPM version 2.0 was implemented to the CM-5, since 1) the CM-2 ceased to be available for this research and 2) the upgraded CM-5 became available for porting the code. To improve the performance of TPM 1.0, two modifications were made as mentioned in the last chapter. First, the boxing routine was removed entirely. This meant that the number of contact checks increased to the full size of the assembly, squaring the problem size. Secondly, a multiple number of contacts were clustered into the same processor, by using the same array size declarations and this was to eliminate the bottleneck of array reduction found in TPM version 1.0. The new memory arrangement robustly handled all of the calculations and contact detection simultaneously. One further advantage is that unlike all the other schemes, all particles were motioned, checked for contacts, and calculated for interparticle forces within their own processor without the need for interprocessor communication. However, this was not the case with the global calculations that required communication extend to all the processors.

In this chapter, the architecture of the CM-5 is first described and compared to the CM-2. Then the new TPM version 2.0 is discussed and it is shown how the squared problem size, due to an all to all contact pairing within the algorithm, accelerated the speed of the simulation. Finally, a similar simulation to the one described in Chapter 2 is rerun to validate the modifications to the algorithm.

3.2 CM-5 Architecture

The CM-5 architecture was the Thinking Machine Corporation's last generation of massively parallel machines. This company, although still successful in marketing literature and software for their existing machines, discontinued the manufacturing of supercomputers due to bankruptcy at the end of 1994. However, many other companies, such as Kendall Square Research (KSR), which manufactured very good high performance supercomputers suffered the same fate. Since the termination of these companies are not uncommon, the quality and performance of the machine's design should not be reflected, but rather other factors, such as limited demand and poor marketing. In fact, the CM-5

Figure 3.1 CM-5 Architecture
was a great improvement over the CM-2 for a number of reasons, which can be seen within the three basic components of the architecture (the multiple processing capability, the control system, and the interconnection network).

The CM-5's multiple processing capabilities were designed differently from those of the CM-2. In contrast to the 32,768 processors found in the CM-2, there are only 512 nodes in the CM-5 (see Figure 3.1). Recall that each node for the CM-2 consisted of a low performance processor attached to its own memory (Figure 2.5). In the case of the CM-5, each node consists of a high performance RISC processor (performing at 5 Mflops $/ 32 \mathrm{Mhz}$) attached to four vector processors (performing at $128 \mathrm{Mflops} / 16 \mathrm{Mhz}$). The RISC processor is able to perform all of the operations that the front-end performed for the CM-2, only in this case it controls a single node instead of the entire machine. The RISC processor's performance can be comparable to an IBM workstation's performance since the Thinking Machine Corporation decided to use better performing IBM microprocessors than the one used in the CM-2. The vector unit's design shown in Figure 3.2 is able to perform computations (with the Arithmetic Logic Unit), as well

Figure 3.2 Vector unit functional architecture
as receive instructions (with the Vector Instruction Decoder) and manage memory (with the memory controller). Each vector unit is allocated 8 Mb of memory and is able to share its memory with the other vector units within that node. This 32 Mb of shared memory is an important factor in reducing the latency of data communication. The vector units are comparable with those of the CM-2 processing node because they must receive instructions before they can perform any calculations or memory management.

Secondly, the control system of the CM-5 is more advanced than that of the CM2. All of the CM-5 nodes are interconnected by three major networks: the data network, the control network, and the diagnostic network (see Figure 3.3). The control network is

Figure 3.3 Organization of the Connection Machine (CM-5)
used for operations that involve all of the nodes at once, such as synchronization operations and broadcasting (SIMD). The data network is responsible for bulk data transfers where each item has a single source and destination. It is this feature of the data network that enables the architecture to perform as a Multiple Instruction Multiple Data (MIMD) machine. The diagnostic network is used by the system manager for
maintaining the system in case of hardware failure or malfunction. The "control processor" is another RISC microprocessor which is also referred to as the "partition manager". When an SIMD code is submitted to the control processor, it copies the program into each node, and all of the nodes synchronously perform each operation one line at a time using the control network. When a MIMD code is submitted to the control processor, each node gets an address and performs that part of the code that is assigned to its address. In this case, it uses the data network for its interprocessor communication.

The intercomection network of this system is within the control network and the data network. The control network and the data network are a binary tree and fat tree interconnection network respectively. The diameter of the binary tree is $\mathrm{D}=2(\mathrm{~h}-1)$ where $\mathrm{h}=\log _{2}[\mathrm{~N}+1]$ is the tree height and N is the number of nodes. In Figure 3.4, the tree height, h , is four and the diameter, D , is six. For the CM-5 design with 512 nodes, the tree height, h , is nine and the diameter of the system, D , is sixteen. Recall that the diameter of the CM-2 was fifteen for the entire architecture, which makes the speeds of

Figure 3.4 Binary and Fat tree interconnection network for 15 node system
the interconnect network between the two machines quite comparable. The fat tree in comparison with the binary tree is designed to produce fewer bottlenecks in communication as messages are sent to higher levels of the tree. The binary tree will inherently be slower, because there are less physical channel connections for data flowing to the higher levels of the tree. Therefore the MIMD global communication is preferred over the SIMD global communication. Hence, in TPM version 2.0, the greatest time consumption was detected in the global communication.

A comparison between the CM-2 and the CM-5 architecture reviewed in this thesis is given in Table 3.1. It is found that although the interconnection network has comparable speeds, the CM-5's hardware is more advanced. Since the CM-5 has a larger amount of shared memory within its node, less communication between processors is expected.

Table 3.1 Comparison between the CM-2 and the CM-5

Attribates	CM-2	CM-5
processor trademark	Weitek	RISC (IBM)
\# of processors	32,678 procs	512 nodes
memory capacity	1 Gbyte	16 Cryte
intercomection network	tryeercabe	Bnary tree \& Fat tree
control system	SIMD	SIMDMMMD
memory per processor/node	$32 \mathrm{Kbytes} / \mathrm{processor}$	32Mbytes/node
Diamster of intercornection network	15	16
speed	5.6 Gigaflops for entire sustem	128 Megaflops per node

3.3 TPM Version 2.0

TPM version 2.0 was based on Trubal version 1.51, but eliminated the rebox and search routines. It also renamed the global communication portion of the ford routine as the globe routine. As a result, the flow chart shown in figure 3.5 depicts all of the routines

Figure 3.5 Flow chart for TPM version 2.0
that are involved in a cycle or time-step of TPM version 2.0. The contact routine is the equivalent of bbtest, and the globe routine handles the global calculations required for the forces and moments of each particle as well as the global stress tensors.

The idea used in TPM version 2.0, is to permutate every possible contact existing within the assembly, without having to use do-loops or having to create a dynamic memory arrangement within the algorithm. Therefore, within the square of the problem size, n, an nxn matrix will produce twice the number of contact possibilities in the lower diagonal and the upper diagonal. The calculations required for the global stresses from the contacts within the assembly use just one of these diagonals, in order to avoid the duplication of contacts. However, the force and moment summations require the full row
or column of a matrix depending on whether the matrix or it's transpose is calculated. For example, if each array represents a sphere parameter for the matrix of the entire assembly, and, for example, V represents the velocity and V^{\top} represent the transpose, so then
$V=\left[\begin{array}{llll}v 11 & v 12 & \ldots & v 1 n \\ v 21 & v 22 & \ldots & v 2 n \\ v 31 & v 32 & \ldots & v 3 n \\ v n 1 & v n 2 & \ldots & v n n\end{array}\right]$ and $V^{T}=\left[\begin{array}{llll}v 11 & v 21 & \ldots & v n 1 \\ v 12 & v 22 & \ldots & v n 2 \\ v 13 & v 23 & \ldots & v n 3 \\ v 1 n & v 2 n & \ldots & v n n\end{array}\right]$
where n represents the number of spheres in the assembly. $V_{i j}$ is the velocity for the i th sphere and the j represents the velocity of the jth sphere found in the corresponding location of $\mathrm{V}_{i j}^{T}$. The motion routine computes equation 1.26 for both V and V^{T}. This equation can now be written as follows,

$$
\begin{equation*}
[V]=\frac{[V](1-\alpha \Delta t / 2)+[F] \Delta t /[m]}{(1+\alpha \Delta t / 2)} \tag{3.2}
\end{equation*}
$$

and,
$\left[V^{T}\right]=\frac{\left[V^{T}\right](1-\alpha \Delta t / 2)+\left[F^{T}\right] \Delta t /\left[m^{T}\right]}{(1+\alpha \Delta t / 2)}$
where F and m are the force and mass matrices for the entire assembly, and F^{T} and m^{T} are the transposes of those matrices respectively. Because the architecture is able to broadcast scalar values intrinsically, they can be used within the equation without having to be replicated in a matrix for parallel computation. Table 3.2, depicts how TPM version
2.0 implements the scheme of squaring the problem size to adapt to the CM-5. In the table, Mtrans represents the transpose matrix of the moment values found in M, and the same is true for the force, F, velocity, V, and so forth.

Table 3.2 Declaration statements and psuedocode flow chart for TPM version 2.0.

```
cmfSlayout M(n,n),Mtrans(n,n)
cmfSlayout F(n,n), Ftrans(n,n)
cmfSlayout V (n,n),Vtrans(n,n)
cm fSlayout X(n,n),Xtrans(n,n)
cmf$layout (for aliparameters)
get all contact pair parameters in corresponding array locations
for all numbers of cycles do
    motion each sphere using updated coordinates
    check for contacts between coordinates of A and B
    Calculate overlapping contact pairs for all forces and moments
    sum up all global stress tensors and sum forces/moments
enddo
printoutput
stop
```

During the operation of the motion routine, extra computations are required for the transpose of each matrix, which increases the amount of work required for the processors. Even extra memory is required to create the transpose matrices for these calculations, which leads to an inefficiency within the algorithm. However since there is no data dependency, all of the operations are performed in parallel with a significant speedup of time.

The contact checking routine is able to check for contacts without boxing since the matrices are already arranged in a permutation. Since all of the parameter arrays have the same array sizes, each corresponding pair of spheres is computed by the same processor within a shared memory. After the contacts are flagged within the matrix, there
is no further need to use transpose matrices. Now the matrices represent contact pair values corresponding to its location within the matrix. Table 3.3 demonstrates how the connection machine facilitates this operation using the where command with a logical

Table 3.3 Pseudocode for Contact Routine in TPM version 2.0

```
CONTACTROUTINE
check all coordinates for periodic space
distx=x-x'
disty=y-y,
distz=z-z
dist=squareroot((distx)}\mp@subsup{)}{}{\mathbf{2}}\mathbf{(disty)}\mp@subsup{)}{}{\mathbf{2}}+(\mathrm{ (distz)}\mp@subsup{)}{}{\mathbf{2}}
radius sum=rad+rad'
where(dist-radius sum.It.0)contact=.TRUE.
return
```

array. Assuming contact is a logical array size equal to the size of the other parameter arrays, all of the processors containing physical contacts will be flagged by an element of contact. Parallel contact detection in TPM has a major advantage over other discrete model algorithms, because it eliminates "link and lists" and various permutation schemes.

The ford routine performs calculations for all of the elements in the matrix, regardless of whether or not a physical contact exists. Since SIMD architecture inherently requires that all processors assigned to the front end must perform each instruction simultaneously, there are no idling processors. If a processor is not given any data, it continues to perform the operation on padded data produced by the machine.

Therefore, erroneous results produced by non-contacting spheres are eliminated in the
globe routine by contact flagging. In order to make a proper performance evaluation, a test was performed using a subset of the matrix, calculating only the flagged elements in the contact array. Instead of an accelerated time performance as anticipated, a slower time was achieved. The architecture required extra time to eliminate the results that were not flagged and replace them with padded elements to be ignored. However, when another array was created to match the same number of contacts that existed, the reduce array size had a better performance. Hence, when an array is very large, more work is required from each processor to select computations for certain data elements.

Although creating a smaller array from the number of contacts improves computation time, TPM version 1.0 proved that transferring data to a smaller array (global reduction) causes a major bottleneck for algorithms requiring dynamic memory.

Table 3.4 Psuedocode for the Globe routine in TPM version 2.0

```
GLOBEROUTINE
Set upall fags for contacts in upper triangle of matrix (upeen) Set up flags for contacts using entire matrix (contact) Flag the diagonal as false for both (contact) and (upcon) matrix globalstress=sum(stress, upcon=.true.) Force(1,:)=sum(interparticle force, contact=.true.) Moment(1,:)=sum(interparticlemoment, contact=.true) Force prime=Spread(Force(1,:),dim=2)
Moment prime \(=\operatorname{Spread}(\) Moment( \(1,:\) ) \(\operatorname{dim}=2\) ) return
```

In the globe routine, global reduction and broadcasting uses the contact array to select the correct results at the end of each time-step. Table 3.3 demonstrates the advantage of having a squared matrix data structure. When global stress tensors'
calculations are made, only the upper triangular portion of the matrix is needed to avoid duplication of the stresses. The sum function is the intrinsic library function that uses the flag (denoted as upcon in table 3.3) across the control network to globally reduce the various contact stresses into the nine stress tensors for the global assembly. The sum function is also able to use the flag (denoted as contact in table 3.3) for the entire matrix, since each sphere is represented with regard to every other sphere by each row of the matrix. Since the diagonal of the matrix represents the sphere in contact with itself, it is automatically eliminated from all calculations. The spread function is a global broadcast intrinsic library function that also uses the control network to regenerate the transpose of the force and moment matrices required for the next time-step in the motion routine.

The globe routine is clearly the source for any bottlenecks in TPM version 2.0, since it introduces global reduction and broadcasting among all of the processors and it flags certain elements for computations. Speed is even further retarded by the time needed to serially print out results that are layed out in parallel on the machine. The bottlenecks as just described were found to be inherent bottlenecks of massively parallel machines with unshared memory capacity. Some of the difficulties that were discovered in the two versions of TPM were a result of architecture design and are gradually being dealt with by the manufacturers of these machines.

3.4 Experimental Verification and Performance Evaluation

The TPM algorithm was validated by simulating a triaxial test that had previously been simulated in the original Trubal and TPM version 1.0. It should be noted that the data
structure in TPM was modified to obtain a more efficient performance on the CM-5 platform. In this case, a similar test was conducted with Trubal running on one of the host processors of the CM-5, and with TPM operating on thirty-two nodes of the same machine. The objective of this test was to see if a discrete element model could obtain a speedup due to the new data structure and if it could be scaled up to a larger problem. A triaxial simulation was conducted with the input parameters shown in Figure 3.6. As stated in the last chapter, these values were selected on an arbitrary basis with the premise that the stability of the simulation would be achieved. The complete simulation involves two stages.

The first stage involves generating random locations for one hundred and fifty uniform spheres. Please note that once the locations were generated, they were stored into an input file and the same coordinates for each of the spheres were used in both TPM and Trubal simulations. The assembly was allowed to compact under isotropic conditions until the average particle had six different contacts. The stresses within the assembly reached very high values at this stage of the simulation as noted in Figure 3.6. Afterwards, the assembly was relaxed by reducing all of the boundary's strain rates to zero. This allowed the assembly to dissipate the internal stresses as it approached a state of equilibrium and it also reduced the amount of particle overlap as the particles rearranged themselves to handle the stresses. It took 5200 cycles to reach a point of equilibrium so that the compacted sample could then be used to simulate a triaxial test.

The second stage involved emulating the response curve of a typical triaxial test. Please note that each cycle represented one time step within the time integration of the

DEM. The vertical stain rate was introduced at the boundary while the lateral strain rate remained constant. The sample was vertically strained to failure at 10,600 cycles. In this case, failure was depicted as a reduction in the stress that is needed to strain the sample. Afterwards, the sample was unloaded (13,825 cycles) and then reloaded a second time under the same stress conditions and a similar stress path history was obtained. The simulation was stopped at 18,600 cycles after the sample had failed again. Figure 3.6 shows the stress vs. strain curve of the simulation (sigma 11 vs. strain 11), where the

Figure 3.6 A comparison between TRUBAL and TPM of a simulated triaxial test
sample was strained in a vertical direction and the corresponding vertical stresses were recorded. The two curves proved to be identical as expected, showing that the altered data structure has no effect on the results. TPM performed this simulation two times faster with a 32 node parallel data structure, than it did with Trubal's serial algorithm on a single processor of the CM-5's RISC processor.

The performance evaluation of TPM was based on the speedup,

$$
\begin{equation*}
\mathrm{Sp}(\mathrm{~N})=\mathrm{T}^{*}(\mathrm{~N}) / \mathrm{Tp}(\mathrm{~N}) \tag{3.4}
\end{equation*}
$$

where $\mathrm{T}^{*}(\mathrm{~N})$ is the CPU time for the best serial version of the algorithm running on a single processor, $\mathrm{Tp}(\mathrm{N})$ is the CPU time taken by the parallel algorithm with p processors, and N is the problem size or number of elements.

3.5 Conclusion

The data structure that was used in this current version has a disadvantage of not always matching the problem size with the architecture memory configuration required for peak performance. If the size of an array does not match the machine configuration, the next largest size that matches the machine is created. When this happens on SIMD platforms, extra processing power is used that is not needed. TPM's overall communication was retarded between processors due to this type of problem. As a result, a lower efficiency was obiained which means inai without furiher modification, TPM is not scaiabie to a larger problem. As shown in equation 3.5, the efficiency formula

$$
\begin{equation*}
E p=S p(N) / p \tag{3.5}
\end{equation*}
$$

is directly dependent upon the size of the problem (N) and inversely dependent upon the number of processors (p).

CHAPTER 4

SIMULATIONS OF ROWE'S EXPERIMENT

In this chapter, the results from TPM version 2.0 simulations of Rowe's steel sphere experiment are described. The first simulation was to 403 spheres which was identical to that used by Cundall (1979a). The second was a complete simulation with spheres as reported in Rowe (1962). Several indications validating the TPM algorithm are discussed.

4.1 Introduction

As stated before, the main thrust of this research is to develop an algorithm which can simulate three-dimensional geotechnical problems significantly faster than the currently available speed of computation. However, from the previous chapters, it is clear that a dynamic memory model does not perform efficiently on a SIMD architecture. The overhead in communication due to global reductions, broadcast and random sorting can hinder the overall performance of each time-step, which is further retarded by the number of time-steps required to complete the simulation. In this chapter, three advantages of TPM converting a dynamic memory model to a static memory arrangement are discussed using a simulated triaxial experiment. First, it will be shown that even when the size of the assembly is increased by a factor of four, the TPM algorithm can maintain its improved performance. Second, a speedup of nine fold was obtained when the entire CM-5 architecture is exploited. Third, TPM's sample size limitations can be shown to accomodate well over a thousand particles.

Rowe's (1962) triaxial test known as the "uniform spheres in face-centered cubic packing" experiment was simulated with Trubal and TPM to validate the performance and accuracy of the TPM algorithm. In doing so, the global behavior of a granular type sample under triaxial loading was clearly effected by the particle arrangement in the assembly. This was demonstrated simulating a triaxial test using an assembly of $1 / 4 \mathrm{in}$. diameter steel balls. Since the discrete element method is based on modeling the behavior of discrete element bodies within an assembly, Rowe's test was an ideal experiment for Cundall's program Trubal (Cundall et. al.,1979). In order to clearly validate the usefulness of TPM version 2.0, a simulation of Rowe's model was performed using the TPM algorithm and the same assembly size and parameters as Cundall. Since Cundall's assembly was smaller than Rowe's, the full size assembly was also simulated by TPM in order to test the accuracy of the results and the overall performance.

4.2 Rowe's Physical Laboratory Test

The laboratory model used by Rowe consisted of an octagonal shaped packing of "large" and "small" layers (see fig 4.1). The 1,672 sphere sample consisted of 13 large layers with 76 spheres in each row and 12 small layers with 57 spheres of each row placed alternately on top of one another. The large layers at the top and bottom of the sample were in contact with the axial loading that was applied to the sample. The rubber membrane which encompassed the sample created the confining pressure.

Figure 4.1 Layers of spheres used in physical test by Rowe (1962)

4.3 Cundall's Numerical Simulation

Cundall's numerical sample of this model was slightly smaller in size, because of the limitation of the computer's memory capacity at that time. Hence, the model's large layer was reduced from 76 spheres to 37 spheres and the small layer was reduced from 57 spheres to 24 spheres as illustrated in figure 4.2. In this case, seven large layers and six small layers placed alternately on top of one another with the cross-section as

Figure 4.2 Layers of spheres in the numerical test.
shown. Table 4.1 shows the parameters used in the Trubal simulation where the contact stiffnesses were chosen so that the elastic deformations would be small compared to the distortions arising from the slip between particles. The end platens used in the Rowe
model to apply the load were simulated, by fixing the velocity of the top and bottom boundary particles in the z-direction. During the compaction phase, the particle velocity is set to zero so that the assembly can achieve a state of equilibrium. The rubber membrane is approximated to form of an ideal membrane (shown as dotted lines in figure 4.3) and is assumed to stretch between the particles. Since the membrane is only in contact with

Table 4.1 Parameters of material properties used in Cundall's numerical simulation

```
Density of each sphere: 2000
shear contact stiffness: 1.5\times10 0
normalcontact stiffness: 1. 5 < 1 0 9
friction angle :7 degrees
cohesion :0
radius of each sphere : 20
confining pressure( 2):5\times104
```

the boundary particles, the confining pressure is only applied individually to the particles on the outer perimeter of the larger layers. These forces are computed using the exposed lengths Lx, Ly and Lz, defined in figure 4.3 and can be written as follows:

$$
\begin{align*}
& \mathrm{Fx}=\mathrm{Lx}{ }^{*} \mathrm{Lz}^{*} \sigma_{2} \tag{4.1}\\
& \mathrm{Fy}=\mathrm{Ly}{ }^{*} \mathrm{Lz}^{*} \sigma_{2} . \tag{4.2}
\end{align*}
$$

where σ_{2} is defined as the confining pressure. None of the forces in the z - direction were considered for the boundary particles in the larger layer. It was noted that the fixed forces on the boundary were only valid for small strains and displacements, since the actual forces will vary as the geometry changes. In order to make a comparison to

Figure 4.3 Exposed lengths for plane through large layer in $x-y$ and $x-z$ direction

Rowe's results, the graph of the axial strain, e_{1}, vs. the stress ratio, R, used in Rowe's paper was studied. The stress ratio is defined as follows:

where A is the area of the octagonal shape formed by the assembly, F_{1} is the measured platen force, and σ_{2} is the confining pressure on the boundary particles $\left(\sigma_{2}=5 * 10^{4}\right)$. The axial strain, e_{1}, is defined as follows:

$$
\begin{equation*}
e_{1}=\frac{2{ }^{*} \delta}{\Delta{ }^{2}} \tag{4.4}
\end{equation*}
$$

where δ is the measured displacement at either boundary layer, and Δh is the distance between the centers of the top and bottom layers. The factor of 2 appears due to the
movement of the top and bottom layers. Figure 4.4 shows (Cundall et. al. 1979) Rowes experimental test and Cundall's numerical simulation. Rowe's test was re-plotted in this

Figure 4.4 Comparison between Rowe's results and Cundall's numerical results
figure on an extended horizontal axis for clarity. Because the rubber membrane produced a confining pressure, Cundall's numerical results were improved when the rotations of particles in contact with the membrane were fixed. Therefore, all of the simulations reported in this chapter restrict rotation when particles contact the membrane.

4.4 TPM's Simulation of the Rowe's Model

A resimulation of Cundall's 403 sphere model was performed on the control processor of the CM-5 and then TPM's version 2.0 was tested for the same simulation on $32,64,128$, 256, and 512 nodes respectively. Also, a number of full scale model simulations of 1672 spheres were tested on a different number of nodes and the results of this simulation were compared with the results of the 403 sphere simulations. The input parameters for TPM's algorithm were the same parameters used by Cundall. However, when Cundall's

Rayleigh damping values of $\lambda_{\text {min }}=0.05$ and $f_{\text {min }}=0.5$ for the fraction of critical damping and the modal frequency respectively, were applied to TPM version 2.0 the simulation

Figure 4.5 Instability in TPM version 2.0 simulation due to improper damping
became unstable as shown in figure 4.5. It was found by increasing the damping values to one, for both $\lambda_{\text {min }}$ and $\mathrm{f}_{\text {min }}$, stable results were achieved as shown in figure 4.6. In Figure 4.6, results from the TPM algorithm, for both the 403 and 1672 particle simulation, were superimposed onto the results of Figure 4.4, to show the agreement. Both Cundall

Figure 4.6 Results presented by Rowe, Cundall, and TPM version 2.0

TPM results begin at a lower R yalue, because that is the equilibrium of the assembly before it is strained for the triaxial test.

4.5 Discussion

The speedup of the simulation was calculated and plotted for the 403 and 1672 sphere simulation in order to analyze the performance of TPM. The 403 sphere simulation time was recorded from the control processor, $32,64,128,256$, and 512 nodes. After the speedups and efficiencies were calculated based on equation 3.1 and 3.2 respectively, the speedups were plotted. Then the cpu times for the 1672 sphere simulation were recorded, but due to the memory consumption, only the control processor, 256 nodes, and the 512 nodes could perform this simulation. Table 4.2 shows the times from each simulation along with their corresponding speedups and efficiencies.

Table 4.2 Speedup chart for the 403 and 1672 sphere simulation

	control processor	32 nodes	64 nodes	128 nodes	256 nodes	512 nodes
403 spheres						
speedup	1	1.6	2.8	4.4	6.5	7.9
efficiency	100%	5%	4.4%	3.4%	2.5%	1.5%
cpu time	2.3 hrs	35 min	20 min	12 min	8 min	7 min
1672 spheres						
speedup	1	---	---	$\cdots--$	5	8.7
efficiency	100%	----	---	----	2.0%	1.7%
cpu time	5.4 hrs	----	\cdots	$\cdots---$	67.1 min	37.1 min

Figure 4.7 shows the curves of actual speedup of the Rowe simulation along with the ideal speedup. The ideal speedup is based on the premise that the code is completely
parallel and there are no overheads in communication processes. Since processors are doing the same work, a speedup becomes a multiple of the number of processors used. In the case of TPM version 2.0, global communication was a major bottleneck within the algorithm producing a lower efficiency as the number of processors increased. Figure 4.7 shows the speedup curve for the 403 spheres simulation as noted in Table 4.2.

Figure 4.7 Speedup plot for TPM algorithm simulating the 403 sphere Rowe model

4.6 Conclusion

In conclusion, three basic advantages were demonstrated in the results of this chapter. First, TPM can exploit a SIMD machine architecture with its static memory arrangement and obtain a speedup of up to nine times for a 1672 particle simulation. With Rowe's model, the damping constants and equivalent confining pressures had to be increased and reduced respectively, in order to achieve the correct results. Secondly, a drastic increase in the problem size had a negligible effect on the speedup, instead of decreasing the speedup as expected. In the case presented, the problem size was increased by a factor of four, however Table 4.2 shows small differences in the speedup between the two
problem sizes. Lastly, the size of assembly can exceed over a thousand particles, even though TPM's memory requirement restricts very large problem sizes. This restriction was overcome during the 1672 particle simulation by repeatedly using arrays that were the square of the problem size (i.e. as in Table 3.2) for different parameters.

CHAPTER 5

FUTURE RESEARCH AND CONCLUSION

This chapter discusses the future of parallel computing and its application to geotechnical engineering problems. As computer technology develops, parallel computing is beginning to play a role of increasing significance. This implies that the inherent parallelism within the discrete element model should become of increasing importance to the geotechnical engineering profession. This chapter first summarizes the findings of earlier chapters and then later describes the implication of this work with regard to future heterogeneous platforms.

5.1 Conclusion

This thesis first algorithm (TPM version 1.0) exploited the architecture of the CM-2 as a parallel supercomputing application to geotechnical engineering problems. In this version, Trubal version 1.51 was modified by eliminating the "link and list " memory management, replacing it with a parallel data structure that treated each particle separately within each processor. At first, this version did not achieve a speedup due to problems with global sorting and broadcasting of data. TPM version 2.0 on the other hand, achieved a significant speedup by creating a static memory data structure throughout the algorithm.

The faster TPM version 2.0 assigns each processor a multiple number of contacts with each sphere paired with every other sphere in the assembly and each pair kept within the same processor. As a result of this static memory arrangement, the assembly size that was needed was the square of the simulated model assembly. The extra
memory that was required then placed limitations on the size of the problem that could be simulated.

Three basic advantages were obtained from the results presented in this thesis. First, TPM can exploit a SIMD machine architecture with its static memory arrangement and obtain a speedup of up to nine times for a 1672 particle simulation. Secondly, a drastic increase in the problem size does not decrease the overall speedup as expected. In the case presented, when the problem size was increased by a factor of four, only a small difference in the speedup was noted between the two problem sizes. Lastly, the size of assembly can exceed a thousand particles, even though TPM's memory requirement restricts very large problem sizes from being simulated. This restriction was overcome during the 1672 particle simulation by repeatedly using arrays that were the square of the problem size for different parameters. As a result, memory consumption is reduced and a simulation using over a thousand spheres can be handled effectively with this technique.

Excessive global communications found in the global operations appeared to be the inherent weakness of TPM version 2.0, however it is able to handle rapid data paral!e! contact detection which is found to be most time intensive in discrete models. Therefore, the contact detection portion of the algorithm is favorable for a proposed heterogeneous platform which is currently being tested.

5.2 Future Research

As previously mentioned, the three basic components that were considered for parallel systems were the multiple processing capabilities, the interconnection network, and the
control systems. Up to this point, only the simplest type of control system (SIMD) was considered, with a homogeneous system of processors. SIMD inherent ability to handle data parallel operations for discrete models has been demonstrated, however its inherent weakness was found in global operations.

The other control system is the MIMD architecture which is slightly more complicated but has some distinctive advantages for a discrete model. Its inherent strength is its handling of dynamic communication between processors. However, scaling up this dynamic communication for larger problems can increase the cost of the communication overhead. Of course, SIMD does not have this type of problem. Separating these two control systems within an architecture does not necessarily lead to the best performance in larger discrete models. For this reason, heterogeneous platforms should be noted as a possible configuration for handling a dynamic data structure that can cause constraints within SIMD and MIMD topologies. In this case, a heterogeneous platform is suggested only for large systems where communication between various platforms is negligible. Since SIMD has already been reviewed in detail, some aspects of MIMD should be highlighted to motivate the discussion of heterogenous platforms.

5.2.1 The MIMD Approach

A MIMD architecture implies that processors are able to handle computations independently of each other. This is not the case with SIMD architectures or conventional serial machines. For this reason, programing a MIMD machine is slightly more complicated than programming a SIMD machine. If the algorithm is not correctly
synchronized by the programmer, processors can hang up waiting for messages that are not there. In addition, the complexity of programming the algorithm increases in proportion to the size of the problem. For this reason, scaling the problem size of an MIMD machine to include more processors is difficult to program. For example, Kurioaka's (1994) and Hustrihild (1995) considered dividing the discrete element model geometrically. The basic idea of this approach is to divide the assembly space into regions. However, in this scheme each processor is assigned the computations within each region and the regions are defined differently (see Figure 5.1). There are two common drawbacks to this MIMD approach.

Figure 5.1 Clustering schemes of particles within multiple processors

First is the sporadic migration of particles and the formation of contacts across the regions which increase the overhead communication. Second is the load balancing of processors due to these same migration of particles and the deformation of the assembly space. In order to load balance the processors, each processor must be given the same workload otherwise poor efficiency is created within the algorithm. Both Kurioka and Hustrihild chose column shape regions to minimize these two problems because 1)a one
dimensional arrangement of columns simplifies the interprocessor communication between shared boundaries and 2) in some cases the load balancing among processors favors columns due to gravity effects. As a result, the performance of these algorithms is governed by the interprocessor communication and the load balancing. The proposed research takes advantage of this time by combining the platforms of SIMD and MIMD.

5.2.2 Combining Control Systems

One approach that is currently being undertaken can complement the methods that have just been presented. By considering data dependencies at the routine level and even at the variable level, the control systems of various architectures can be optimized. In this approach, the problem is analyzed by grouping particles as in the previous section, as well as studying each routine for its need for shared memory. This approach was tested on the CM-5 which functions as a MIMD and SIMD control system as described in section 3.2. TPM version 2.0 was modified to perform independently on each of the CM-5 nodes and each node represented a column shaped region as described in Figure 5.1. Recall that the SIMD control system of the CM-5 functions by using the control processor as the front end and the nodes as processing elements receiving the same instruction. However, in this application, data parallel operations are able to be performed by using the RISC processor within each node as a front end and the four vector units as processing elements. For this reason, TPM version 2.0 data parallel calculations were applied to each node as a SIMD operation. The MIMD control system was applied to any routine requiring global communication between the column regions or nodes as described in Table 5.1. Note that
the contact detection required two separate routines. The majority of the contact detection was handled locally within the nodes or regions, however migrating particles and particles which overlap the regions required global communication to detect neighboring contacts. The complexity of handling the data structure of this combined control system has not yet been resolved. The development of such an algorithm has produced numerous bugs that are difficult to locate for large assemblies.

Table 5.1 Control system optimization at routine level for the CM-5

ROUTINE FUNCTION	CONTROL SYSTEM
MOTIONING PARTICLES	MIMD
CONTACT DETECTION	
(LOCAL)	

5.2.3 Heterogeneous Platform

The approach described in Section 5.2.2 is not limited to one architecture and is also being pursued on a heterogeneous platform so that each task is optimized on the architecture best suited for it. This approach is designed for discrete models with particles ranging into the thousands for each column region. As mentioned in Section 5.2.1, any MIMD machine can handle a problem within its memory limitations, without the aide of an SIMD control system. The idea proposed here is that while the MIMD control systems are
handling the communication between regions, the SIMD control systems can be detecting contacts within the region. It is believed that the speed required for both operations to be performed simultaneously will be comparable.

Because an assembly size is being designed to exceed the memory capacity of a CM-5 node, a parallel virtual machine (PVM) is being tested. This virtual machine consists of the CM-5, the Cray T3D, and a SUN workstation acting as a front end. In this scheme, the CM-5 is performing the SIMD operations of the algorithm using TPM version 2.0, while the Cray T3D performs the MIMD operations of the algorithm and the interconnection network between the two is performed by Oak Ridge National Laboratory's (ORNL) PVM version 3.3. Based on the assumption that MIMD is better suited for global communication and SIMD is better suited for contact detection of bodies/elements, this algorithm is being proposed as shown in Table 5.2. In this case, the contact detection which consumes most of the cpu-time is being optimized by using the CM-5's SIMD control system. The Cray T3D and PVM architectures are described briefly in the following section.

Table 5.2 Control System Optimization at Routine Level of a Heterogeneous Platform

ROUTINE FUNCTION	ARCHITECTURE	PROCESSOR	CONTROL SYSTEM
MOTIONING PARTICLES	CRAY T3D	DEC ALPHA	MIMD
CONTACT DETECTION (LOCAL)	CM-5	RISC	SIMD
CONTACT DETECTION (GLOBAL)	CRAY T3D	DEC ALPHA	MIMD
INTERPARTICLE CALCULATIONS	CRAY T3D	DEC ALPHA	SIMD
GLOBAL STRESS CALCULATIONS	CRAY T3D	DEC ALPHA	MIMD

5.3 Cray T3D and PVM

The Cray T3D being tested has a MIMD control system with 512 DEC alpha nodes multiple processing capability and a 3D Torus for its interconnection network. Each DEC Alpha runs at 150 Mhz and is attached to 64 Mbytes per processor. The 3D Torus, which allows for a communication rate of 300 Mbytes per second, has a relatively high bandwidth between processors compared to those machines previously listed (see Fig 5.2).

Figure 5.2 3D Torus Communication Network

PVM can scale to a larger problem by networking many machines together. It allows a heterogeneous collection of unix computers to be linked together under a master host. PVM, a product of a collaborative venture between DOE and several universities (Geist et al., 1994), can use a regular workstation containing the source file as a master host. By installing the basic PVM software on various platforms, the master host (SUN workstation) operates all of its slave host as a single high-performance parallel machine. At this level, many massively parallel systems (such as the Cray T3D and the CM-5) can be supported on this system. The routines within the host program allow for the initiation and termination of tasks across the network as well as communication and synchronization
between tasks. The communication constructs include those for sending and receiving data structures as well as high-level primitives such as broadcast, barrier synchronization, and global sums. The level of this application is feasible, only if the size of the proposed model simulation is very large, because then the communication overhead time will become less significant in the overall performance.

5.4 Implementation of the Proposed Heterogeneous Platform

The Sun Sparc Workstation is the slowest machine so it is designated as the host of the virtual system. It is required to start or spawn the Cray T3D and the CM-5 programs, as well as terminate them (see Fig 5.3). The workstation also retrieves results that are necessary for printing, thereby reducing the overhead in the other architectures that would have performed this operation. Since the Cray T3D interconnection network is very fast,

Figure 5.3 TPM's proposed heterogeneous algorithm using PVM
it is selected for tracking migrating particle as well as calculating particle contacts that overlap their regions. Because TPM version 2.0 handles contact detection rapidly in paralle, it is being adapted to the CM-5 algorithm and also performs the interparticle calculations. All information is returned to the Cray T3D so that global stresses can be computed. It should be noted that the communication speed between the Cray T3D and CM-5 is governed by the internet, which is relatively slower than the interconnection network of these architectures. Therefore, the problem selected should be of proportionate size to balance out the latency required for global and local communication required for each region.

By developing an algorithm of this type, geotechnical problems can be solved for large systems. Also, other platforms can be incorporated to this scheme to meet the computational demands that are required.

APPENDIX

TPM VERSION 2.0 (ROWE'S MODEL)

C Include file - Trbcom.inc for TPM version 2.0

*
* SETUP/NEXT
*

LOGICAL LOGFLG,ERROR,GMVFLG,hisflg,hertz,twod
integer, parameter ::cor=403
integer, parameter ::pos=cor
double precision, array(3):: xmax
integer nerr
integer $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}$
integer lunr,lunw,MODE, nfob
integer NVARB,NTYPM,NTYPS,NBOX
real OVLAP,PI,DEGRAD
real ALPHA,BETA,fff,fob
real GAIN,SERVEM
character* 4 hed
*

* GEN VARIABLES
*

integer geno, nreq, n
integer skips
real eax
integer mla, m2a
integer NBALL,NTOT,NCYC
logical genflag

* real, array(3,5)::random
*
* CON VARIALBLES
*

integer memory
real, array(cor,3)::con
real, array(cor,2): :con I
real, array(cor)::rrr
real, array(cor)::shft
logical, array(pos,pos)::mas,mas1,mas2

- SPHERE VARIABLES
*

real, array(pos,pos)::slx real, array(pos,pos)::sly real, array(pos,pos)::slz real, array(pos,pos)::s2x real, array(pos,pos)::s2y real, array(pos,pos)::s2z real, array(pos,pos)::vlx real, array(pos,pos)::vly real, array(pos,pos)::vlz real, array(pos,pos): : 2 x real, array(pos,pos)::v2y real, array(pos,pos)::v2z real, array(pos,pos)::tvlx
real, array(pos,pos)::tvly real, array(pos,pos)::tvlz real. array(pos,pos)::tv2x real, array(pos,pos)::tv2y real, array(pos,pos)::tv2z real, array(pos,pos)::rdl real, array(pos,pos)::rd2 real, array(pos,pos)::xlx real, array(pos,pos)::xly real, array(pos,pos):: $: 1 \mathrm{z}$ real, array(pos,pos)::x2x real, array(pos,pos)::x2y real, array(pos,pos)::x2z real, array(pos,pos)::xdlx real, array(pos,pos)::xdly real, array(pos,pos)::xdlz real, array(pos,pos)::xd2x real, array(pos,pos)::xd2y real, array(pos,pos)::xd2z
real, array(pos,pos)::tlx real, array(pos,pos)::tly real, array(pos,pos):: 11 z real, array(pos,pos):: 2 x real, array(pos,pos):: $22 y$ real, array(pos,pos):: 2 z real, array(pos,pos)::tdlx real, array(pos.pos)::tdly real, array(pos.pos)::tdlz real, array(pos,pos)::td2x real, array(pos,pos)::td2y real, array(pos,pos)::td2z real, array(pos,pos)::flx real, array(pos,pos)::fly real, array (pos,pos)::flz real, array(pos,pos)::f2x real, array(pos,pos)::Ry real, array(pos,pos)::f2z real, array(pos,pos)::mlx real, array(pos,pos)::mly real, array(pos,pos)::m/z real, array(pos,pos)::m2x real, array(pos,pos)::m2y real, array(pos,pos)::m2z real, array(pos,pos)::xxx real, array(pos,pos)::xyy real, array(pos,pos)::xzz real, array(pos,pos)::xsx real, array(pos,pos)::xsy real, array(pos,pos)::xsz real, array(pos,pos)::rdf real, array(pos,pos)::dif

* MOTION VARIABLES
*

real cnl, cn2,gll,gt2,gt3,tm,tmi
real kkn
real, array(pos,pos)::dtlx real, array(pos,pos)::dtly real, array(pos,pos)::dtlz real, array(pos,pos): :dt2x real, array(pos,pos)::dt2y real, array(pos,pos)::dt2z real, array(pos,pos)::xtlx real, array(pos,pos)::xtly real, array(pos,pos)::xtlz real, array(pos,pos)::xt2x real, array(pos,pos)::xt2y real, array(pos,pos): :xt2z
real xmb

* FORD VARIABLES
real, array(pos,pos):: snx real, array(pos,pos):: sny real, array(pos,pos):: snz
real, array(pos.pos):: fnl real, array(pos,pos):: udm
real, array(pos,pos):: fmx real, array(pos,pos):: fmy real, array(pos,pos):: fmz
real, array(pos,pos):: rnx
real, array(pos,pos):: rny
real, array(pos,pos):: rnz
real, array(pos,pos):: fxx
real, array(pos,pos):: rtx
real, array(pos,pos):: tpx real, array(pos,pos):: tpy real, array(pos,pos):: tpz
real, array(pos,pos):: frx real, array(pos,pos):: fry real, array(pos,pos):: frz
real, array(pos,pos):: fsx
real, array(pos,pos):: fsy
real, array(pos,pos):: fsz
real, array(pos,pos):: t11
real, array(pos,pos):: 112
real, array(pos,pos):: 113
real, array(pos,pos):: 121
real, array(pos,pos):: 122
real, array(pos,pos):: $\mathbf{t 2 3}$
real, array(pos,pos):: 131
real, array(pos,pos):: $\mathbf{3} 32$
real, array(pos,pos):: $\mathbf{3 3}$
integer, array(cor)::ityps
integer, array(3)::NX
integer port, $\mathrm{x}, \mathrm{y}, \mathrm{o}, \mathrm{nxy}$
integer mct, ct, np,bn
integer mp,ctt,tcm,vc
* logical, array(maxpos)::fixed
real, array(3)::WINDL,WINDU
*
* BBTEST ARRAYS
*

double precision xshear
*

* INITP ARRAYS
*

real TDEL,FRAC,AKSS,AKNN,AMUU,COHH,AKSI
real, array(5)::AMASS,AMOI.DENS
real, array(5)::shear,poiss,r
real, array(5,5)::AKN.AKS.ccn.ccs.AMU.COH
real, array (3,3)::EDGRID,EDUSER,SSAMPL,EDSERV
*

* CYCLE VARIABLES
*

real AT2
integer ncont, nmm, crf, numl

* real, array(maxpos)::iac
* logical, array(6,maxpos)::SKIP
* logical, array(6)::skip real, array(3)::DEL,GRAV
*
* PRINT VARIABLES
*

real volb,volg.fnav
real ovlrat.coord.templ
real, array(cor):: svolb
real, array(pos,pos):: sdd1.sdd2
real, array(pos,pos):: dd1.dd2

* RUNSERV
integer nserv
real, array(10)::SRVVAL
integer, array(10)::ICDSRV
*
* ROWE VARIABLES
*

logical, array(pos,pos)::walp,layp,twalp, لlayp
real, array(pos,pos)::f11x
real, array(pos,pos)::flly
real, array(pos,pos)::f22x
real, array(pos,pos)::f22y

*

* COMMON SECTION
*

***** SETUP COMMON

COMMON /WIDTH/XMAX

***** GEN COMMON

* common/gencom/gapmin.genflag.btest
common/mot $\mathrm{cn} 1, \mathrm{cn} 2, \mathrm{gt}, \mathrm{gt} 2, \mathrm{gt} 3, \mathrm{tm}, \mathrm{tmi}$, kkn
common/trcce/trc,trm,ier,trcl,trml, eax
common/numm/nmm
common/jif/ji
COMMON /TRBCOM/
\wedge hertz,NERR,ERROR,lunr,lunw,lunh,
^ NVARB,NTYPM.NTYPS.numl.
\wedge OVLAP.PI,TOL.RMAX.
^ TDEL,FRAC,ALPHA,BETA,degrad,
^ NBALL,NTOT,NCYC,CRF,
^ NCONT,SLIDE,LOGFLG,hisflg,twod.
^ MODE,GMVFLG,xshear,GAIN.SERVEM,NSERV
COMMON /PCOMI/
^ akss,aknn,amuu,cohh,aksl,radi,gt
COMMON /PCOM/
^ AMASS,AMOI,DENS,AKN,AKS,
^ shear,poiss,cen, ccs,
^ AMU,COH,NX,WINDL,WINDU,
^ EDGRID,eduser,SSAMPL,edserv,del

COMMON /SRV/ ICDSRV,SRVVAL
common/htzfrd/cenh,ccsh
COMMON/need/mla,nreq,nbox
COMMMON/generate/nreqd, nityp.nitypm

```
            COMMON/parallel/R.con.
    ^
            GRAV
        common/stasav/ xcen,rot,xmsav
        common/trbl/ hed(20)
*
* SPHERE VARIABLES
    common/sphh/slx,sly,slz,s2x,s2y,s2z,
    .vlx,vly,vlz,v2x,v2y,v2z,tvlx,tvly,tvlz,
    tv2x,tv2y,tv2z,rd1,rd2,xlx,xly,xlz,
    x x2x,x2y,x2z,xdlx,xdly,xdlz,xd2x,xd2y,
    . xd2z,11x,tly,t1z,12x,12y,t2z,f1x,fly,
    . flz,f2x,f2y,f2z,mlx,mly,mlz,m2x,m2y,m2z,
    . xxx,xyy,xzz,xsx,rdf,dif,rrr,fl lx,flly,
    .f22x,f22y
    common/motv/dtlx,dtly,dtlz,dt2x,dt2y,dt2z,
    . xtlx,xtly,xtlz,xt2x,xt2y,xt2z
    common/fdd/ snx.sny,snz,fnl,fix.fmx,t11,
    . t12,113,t21,t22,t23,t31,t32,t?3,frx,fry,frz.
    . tpx,tpy,tpz
    common/conn/mas,mas l,walp,layp,twalp, Uayp
***************************************************
*
* CMLAYOUT
*
****************************************************
*
* Setup/Next arrays
*
cmfSlayout DEL(:news),WINDL(:news)
cmf$layout WINDU(:news),NX(:news)
cmf$layout xmax(:news)
*
* GEN VARIABLES
*
*cm/$layout random(:news,:news)
*cmflayout nreqd(:news),nityp(:news),nitypm(:news)
*
* rebox arrays
*
CMF$ LAYOUT con(:news,:news)
cmf$ layout mas(:news,:news)
cmf$ layout masl(:news,:news)
cmfS layout mas2(:news,:news)
*cmf$ layout SPH(:serial,:block=4:pdesc=112,:block=1:pdesc=12,&
*cmf$ :block=1:pdesc=3)
*cmfS layout fixed(:news)
cmfS layout ITYPS(:news)
cmfSlayout AMOI(:news),DENS(:news)
cmf$layout R(:news),AMASS(:news)
```

```
cmiSlayout shear(:news),poiss(:news)
cmfSlayout con(:serial,:news),ccs(:serial,:news)
cmfSlayout EDGRID(:serial,:news),EDUSER(:serial,:news)
cmfllayout AKN(:serial,:news),AKS(:serial,:news)
cmf$layout AMU(:serial,:news),COH(:serial,:news)
```

* cycle arrays
*cmfSlayout iac(:news)
* cmfSlayout SKIP(:serial,:news)
* cmfllayout skip(:news)
*
* motion arrays
*

cmfSlayout GRAV(:news)
*

* FORD VARIABLES
cmfSlayout SSAMPL(:serial,:news)
*
* Periodic Boundary
cmfllayout svolb(:news)
* for hertz
* RUNSERV VARIABLES
cmfllayout EDSERV(:serial,:news)
cmfllayout ICDSRV(:news),SRVVAL(:news)
*
* SPHERE VADIABLES
cmfs layout slx(:news,:news)
cmfs layout sly(:news,:news)
cmf\$ layout slz(:news,:news)
cmf layout s2x(:news,:news)
cmfS layout s2y(:news,:news)
cmf\$ layout s2z(:news,:news)
cmfs layout vlx(:news,:news)
cmis layout vly(:news,:news)
cmif layout vlz(:news,:news)
cm/\$ layout v2x(:news,:news)
$\mathrm{cm} \$$ layout $\mathbf{v} 2 \mathrm{y}$ (:news,:news)
cmis layout v2z(:news,:news)
cmf\$ layout tvix(:news,:news)
cmfs layout tvly(:news,:news)
cmfS layout tviz(:news.:news)
cmfl layout tv $2 x$ (:news.:news)
cmf layout to $2 y$ (:news.:news)
cmf\$ layout tv2z(:news,:news)
cmf\$ layout rdl(:news, news)

```
cmf$ layout rd2(:news,:news)
cmfS layout x1x(:news,:news)
cmfS layout xly(:news,:news)
cmfS layout xiz(:news,:news)
cmfS layout x 2x(:news,:news)
cmfS layout x2y(:news,:news)
cmfS layout x2z(:news,:news)
cmis layout xdlx(:news,:news)
cmfS layout xdly(:news,:news)
cmfS layout xdlz(:news,:news)
cmfS layout xd2x(:news,:news)
cmfS layout xd2y(:news,:news)
cmfS layout xd2z(:news,:news)
cmf$ layout tlx(:news,:news)
cmfS layout tly(:news,:news)
cmf$ layout tlz(:news,:news)
cm\S layout t2x(:news,:news)
cmf$ layout L2y(:news,:news)
cmf$ layout t2z(:news,:news)
cmfS layout tdx(:news,:news)
cmfS layout tdly(:news,:news)
cmf$ layout tdlz(:news,:news)
cmf$ layout td2x(:news,:news)
cmfS layout td2y(:news,:news)
cmfS layout td2z(:news,:news)
cmf$ layout flx(:news,:news)
cmf$ layout fly(:news,;news)
cmfS layout flz(:news,:news)
cmfS layout f2x(:news,:news)
cm|S layout f2y(:news,:news)
cmf$ layout f2z(:news,:news)
cmfS layout mlx(:news,:news)
cmf$ layout mly(:news,:news)
cmis layout mlz(:news,:ncws)
cmf$ layout m2x(:news, news)
cmf$ layout m2y(news,:news)
cmf$ layout m2z(:news,:news)
cmf$ layout xxx(:news,:news)
cmfS layout xyy(:news,:news)
cmSS layout xzz(:news,:news)
cmf$ layout xsx(:news,:news)
cm\$ layout xsy(:news,:news)
cmf$ layout xsz(:news,:news)
cmf$ layout rdf(:news,:news)
cmf$ layout dif(:news,:news)
*
* MOTION PARTITION
*
cmfflayout dtlx(:news,:ncws)
cmfS layout dt ly(:news,:news)
cmf$ layout dtlz(:news,:news)
cmfS layout dt2x(:news,:news)
cmfS layout dt2y(:news,:news)
```

```
cmf$ layout dt2z(:news,:news)
cmfS layout xtlx(:news,:news)
cmfS layout xtly(:news,:news)
cmfS layout xtlz(:news,:news)
cmf$ layout xt2x(:news,:news)
cmfS layout xt2y(:news,:news)
cm|S layout xt2z(:news,:news)
*
* FD MEMORY PARTITION
*
cmf$ layout snx(:news,:news)
cmfS layout sny(:news,:news)
cmf$ layout snz(:news,:news)
cmfS layout fnl(:news,:news)
cmf$ layout udm(:news,:news)
cmfS layout fmx(:news,:news)
cmfS layout fmy(:news,:news)
cmf$ layout fmz(:news,:news)
cmf$ layout mx(:news,:news)
cmf$ layout my(:news,:news)
cm|$ layout mz(:news,:news)
cmf$ layout fxx(:news,:news)
cmfS layout rtx(:news.:news)
cmf$ layout tpx(:news,:news)
cmf$ layout tpy(:news,:news)
cmf$ layout tpz(:news.:news)
cmfS layout frx(:news,:news)
cmf$ layout fry(news, news)
cmf$ layout frz(:news,:news)
cmf$ layout fsx(:news.:news)
cmf$ layout fsy(:news,:news)
cmfs layout fsz(:news,:news)
cmfS layout tl1(:news,:news)
cmfS layout t12(:news,:news)
cmf$ layout tl3(:news,:news)
cmf$ layout }21\mathrm{ (:news,:news)
cmfS layout t22(:news,:news)
cmfS layout L23(:news,:news)
cmfS layout t31(:news,:news)
cmf$ layout t32(:news,:news)
cmf$ layout t33(:news,:news)
```

```
    Program TPM version 2.0
c
c Started by Peter Cundall in 1979(trubal), and modified by
c David W. Washington in 1993(Trubal for Parallel Machines)
c Model of spheres in periodic space for 64-bit processor.
c
    logical supout
    character*4 word
    include 'tpm.inc'
    include 'matcom.inc'
    COMMON /PROCOM/SUPOUT
    LUNR=2
    LUNW=3
    LOGFLG = .TRUE.
    open (lunr,file='tpm.dat',status='old')
    open (4,file='thg.dat',status='old')
    open (8,file='thg1.dat',status='old')
    open (9,file='thg2.dat',status='old')
    open (lunw,file='tpm.out',status='old')
    open (6,file='tpm.tes',status='old')
    5 \text { CALL SETUP}
    IF (.NOT. ERROR) GOTO 10
        GOTO 5
    10 CALL NEXT
    if(error)print*,'we got problems'
    END
    SUBROUTINE SETUP
C
C TO START NEW PROBLEM, OR DO A RESTART
C
    save
    INCLUDE 'tpm.inc'
    include '/usr/include/cm/CMF__defs.h'
    LOGICAL REST, supout
    character*1 icom,icoml
    character*4 prompt
    INCLUDE 'matcom.inc'
    common/procom/ supout
    DIMENSION W(3),ICOM(13),ICOMI(5)
    DATA ICOM /'S','T,'A','','R','E','S',',''S','T,'O',' ',iterm/
    DATA ICOMI /L','O','G',' ',iterm/
    DATA PROMPT /'tb>'/
    REST=.FALSE.
    call cmf_describe_array(xlx)
C--_-_CONSTANTS
    mia =0
    eax =0
    nmm=0
    geno =1
    nityp =0
    nitypm = 0
    nreqd = 0
    nreq =0
```

$\mathrm{TOL}=3.5$
OVLAP $=-10.0$
$\mathrm{NVARB}=40$
NTYPM $=5$
NTYPS $=5$
$\mathrm{PI}=4.0^{*} \mathrm{ATAN}(1.0)$
DEGRAD $=$ PI/ 180.0
C-INTIALISE ARRAYS AND VARIABLES

* SPHERE VARIABLES
*

sl $x=0.0$
sly $=0.0$
slz $=0.0$
$\mathrm{s} 2 \mathrm{x}=0.0$
$\mathrm{s} 2 \mathrm{y}=0.0$
$\mathrm{s} 2 \mathrm{z}=0.0$
$\mathrm{vlx}=0.0$
vly $=0.0$
$\mathrm{v} \mathrm{z}=0.0$
$v 2 \mathrm{x}=0.0$
$\mathrm{v} 2 \mathrm{y}=0.0$
$\mathrm{v} 2 \mathrm{z}=0.0$
tvlx $=0.0$
tvly $=0.0$
tviz $=0.0$
tv $2 \mathrm{x}=0.0$
tv $2 \mathrm{y}=0.0$
tv $2 \mathrm{z}=0.0$
rdl $=0.0$
rd2 $=0.0$
$\mathrm{x} 1 \mathrm{x}=0.0$
$x l y=0.0$
$\mathrm{xlz}=0.0$
$\mathrm{x} 2 \mathrm{x}=0.0$
$\times 2 \mathrm{y}=0.0$
$\mathrm{x} 2 \mathrm{z}=0.0$
$\mathrm{xdlx}=0.0$
$x d l y=0.0$
$x d l z=0.0$
$\mathrm{xd} 2 \mathrm{x}=0.0$
$x \mathrm{~d} 2 \mathrm{y}=0.0$
$\mathrm{xd} 2 \mathrm{x}=0.0$
$11 x=0.0$
$11 y=0.0$
$11 \mathrm{z}=0.0$
$12 \mathrm{x}=0.0$
$12 \mathrm{y}=0.0$
$12 \mathrm{z}=0.0$
td lx $=0.0$
$\mathrm{tdly}=0.0$
$\operatorname{td} \mathrm{z}=0.0$
td2 $\mathrm{x}=0.0$
$\mathrm{id} 2 \mathrm{y}=0.0$

```
    td2z=0.0
    f1x=0.0
    fly=0.0
    flz=0.0
    f2x=0.0
    f2y=0.0
    f2z=0.0
    mlx=0.0
    mly=0.0
    mlz=0.0
    m2x=0.0
    m2y=0.0
    m2z=0.0
    xxx=0.0
    xyy=0.0
    xzz=0.0
    xsx=0.0
    xsy=0.0
    xsz=0.0
    rdf}=50.
    dif=0.0
* MOTION PARTITION
    dilx=0.0
    dtly=0.0
    dt lz=0.0
    dt2x=0.0
    dt2y=0.0
    dt2z=0.0
    xtlx=0.0
    xtly=0.0
    xtlz=0.0
    xt2x=0.0
    xt2y=0.0
    xt2z=0.0
*
* FD MEMORY PARTITION
*
    snx=0.0
    sny=0.0
    snz=0.0
    fnl=0.0
    con=0.0
    R =0.0
    AMASS =0.0
    AMOI =0.0
    shear =0.0
    poiss=0.0
    DENS = 0.0
```

```
    AKN =0.0
    AKS =0.0
    AMU =0.0
    COH =0.0
    ccn =0.0
    cos}=0.
    TDEL =0.0
    FRAC =0.05
    ALPHA =0.0
    BETA =0.0
    GRAV =0.0
    NBALL =0
    NTOT =0
    NERR = 0
    ERROR = .FALSE.
    masl=.false.
    GENFLAG =.FALSE.
    twod = false.
    hertz = false.
    GMVFLG = .FALSE.
    EDGRID = 0.0
    eduser =0.0
    SSAMPL = 0.0
    edserv =0.0
    xshear =0.0
    GAIN =0.0
    SERVS0 = 0.0
    SERVEM = 0.0
    supout = .false.
C\cdots.............READ PARAMETERS, ETC
38 WRITE(lunw,613)
    IF (.NOT. LOGFLG) write(lunw,700) PROMPT
    READ (lunr,500) LINE
    CALL TIDY
    CALL MATCH (ICOM,1.JUMP)
    IF ((.NOT.MISS) .AND. (.NOT.BAD)) GOTO 45
    WRITE(lunw,601)
    GOTO }3
45 IF (JUMP .EQ. 2) GOTO 200
    IF (JUMP .EQ.3) STOP
    DO 50 I=1,3
    W(I)=RVAR(I+1)
    NPBAD =1
    IF(W(I).LE.0.0) GOTO 1010
50 CONTINUE
    CALL MATCH (ICOM1,8,JUMP)
    IF (.NOT. BAD) LOGFLG = .TRUE.
    MISS = .FALSE.
    IF(LOGFLG) WRITE(lunw,600)
    IF(LOGFLG) WRITE(lunw,610)
    NBOX=IVAR(5)
    NBALLM=IVAR(6)
    NWALLM=IVAR(7)
    IF (MISS) GOTO 1010
```

```
    NPBAD = 4
    IF(NBOX.LE.0) GOTO 1010
    IF(LOGFLG) WRITE (lunw,603)
    IF(LOGFLG) WRITE (lunw,604) NBOX,(W(I),I=1,3)
    IF(LOGFLG) WRITE (lunw,605) NBALLM,NWALLM
    DDD=(W(1)*W(2)*W(3)/FLOAT(NBOX)**(1.0/3.0)
    DEL(1) = DDD
    DEL(2) = DDD
    DEL(3) = DDD
    NBOX=1
    DO 55 I=1,3
    NX(I)=W(I)/DDD +0.5
    NBOX=NBOX*NX(I)
55 XMAX(I)=FLOAT(NX(I))*DDD
    IF(LOGFLG) WRITE (lunw,606)
    IF(LOGFLG) WRITE (lunw,604) NBOX,(XMAX(I),I=1,3)
    IF(LOGFLG) WRITE (lunw,607) (NX(I),I=1,3),DDD
    WINDL=0.0
    WINDU=XMAX
    WRITE(lunw,614)
    IF (.NOT. LOGFLG) write(lunw,700) PROMPT
    READ (lunr,502) HED
    IF (LOGFLG) WRITE(lunw,611) HED
C
    GOTO 300
C---_-_----_-_ RESTART RUN
    200 CONTINUE
    IF (ERROR) GOTO 1000
    REST = .TRUE.
    300 CONTINUE
    340 IF(REST) GOTO 400
    sph=0.0
400 CONTINUE
1000 CONTINUE
    RETURN
1010 NERR = 2
    ERROR = .TRUE.
    RETURN
500 FORMAT(80AI)
502 FORMAT(20A4)
503 FORMAT(13)
600 FORMAT(30X.'PROGRAM TPM for 3D'
    130X,'---_------------------')
601 FORMAT(30X,*** FIRST COMMAND MUST BE START OR RESTART ***')
602 FORMAT(30X,'*** BAD, OR OMITTED PARAMETERS ***')
603 FORMAT(28X,'REQUESTED PARAMETERS:')
604 FORMAT(30X.'BOXES ',15/
    30X,'WIDTH '.F7.1/
    30X,'HEIGHT ',F7.1/
    30X,'THICKNESS ',F7.1)
605 FORMAT(30X,'MAX. PARTICLES ',15/
    30X.'MAX. WALLS '.I5/)
606 FORMAT(28X,'PARAMETERS USED:')
607 FORMAT(30X,'NX(1) ',IS/
```

```
            30X,'NX(2) ',15/
            30X,'NX(3) ',15/
            30X,'BOX DIMENSION ',F7.3/)
608 FORMAT(30X,THIS IS A RESTART RUN')
610 FORMAT(/30X,'THIS IS A START RUN'/)
611 FORMAT(/30X,'HEADING: ',20A4)
613 FORMAT(' START OR RESTART?')
614 FORMAT(' HEADING?')
615 FORMAT(' FILENAME?')
616 FORMAT(' >',5A4)
700 format (1x,a4)
    END
    SUBROUTINE NEXT
C
C TO INTERPRET COMMAND LINES (3-D PROGRAM)
C
    save
    INCLUDE 'tpm.inc'
    INCLUDE 'matcom.inc'
    INCLUDE //usr/include/cm/CMF_defs.h'
    INCLUDE '/usr/include/cm/cmssl-cmf.h'
    character*1 icom,icoml,icom2
    character*4 prompt
    DIMENSION ICOM(165),ICOM1(8),icom2(5),ivp(6)
    DATA ICOM
    . /L','O','G',' ','C','Y','C',' ','P','L','O','',
    . 'C','R','E',' ','N','E','W',',''I','S','E','',
    'R','S','E',',''G','R','I',','S','T','O','',
    . 'W','I','N',',',','Y','P',',''','R','A',','
    . 'F','I','X',',','','H','E',','N','O','R','',
    . 'D','E','N','',
    . 'R','A','D',',''F,'R','I',',''','O','H',' ',
    . 'S','E','L',','D','A','M','','F,'R','A','',
    . 'R','E','M',',','','E','N',',',','R','I',',
    . 'L','O','C',','Z','E','R',' ','R','E','S','',
    . 'G','O','B','',
    'F,'M','M',','V','M','U',',''S','A','V','',
    'G','A','I',',
    'H','I','S',',','H','E','R','',''','-'.'D','',
    'F','R','O',',''W','A','L','',
        'M','O','D',',''B','O','N',''.'P','R','O',' ',
        'R','O','W',',''H','Z','V',',',iterm/
    DATA ICOMI
    . /O','N',','O','F','F', ',iterm/
    data icom2 /A','L','L',','iterm/
C
    DATA PROMPT /'tb>'/
    IAL=1
    nrec=0
C------------ READ NEXT LINE
    5 IF (ERROR) GOTO 1000
    6 \text { IF (.NOT. LOGFLG) write(lunw,1501) PROMPT}
    READ(lunr, 1500) LINE
    7F(LOGFLG) WRITE(lunw,1601) LiNE
```

```
    GOTO 20
    15 WRITE(lunw,1603)
        GOTO 5
C
    20 CALL TIDY
        CALL MATCH (ICOM,1,JUMP)
        IF (MISS) GOTO 5
        IF (.NOT. BAD) GOTO 25
        NERR = 1
        ERROR = .TRUE.
        GOTO 1000
C
    25 GOTO (40,60,80,100,
    . 120,140,160,180,
        200,220,240,260,
        280,300,320,340,
        360,380,400,420,
        440,460,480,500,
        520,540,560,580.
        600,620,640,660.
        680,700,720,740.
        630,750,760,770.
        780,800,820), JUMP
C----_------- LOG FLAG
    40 CALL MATCH (ICOMI,2,JUMP)
        IF (MISS) GOTO 1010
        IF (BAD ) GOTO 1020
        GOTO (42,44), JUMP
    42 LOGFLG = .TRUE.
        GOTO 5
    44 LOGFLG = .FALSE.
        GOTO 5
C------CYCLE THROUGH MOTION & FORD
    60 NCYC=IVAR(2)
        CALL INITP
        IF (ERROR) GOTO 1000
        CALL CYCLE
        WRITE (lunw,1612) NTOT
    * IF(NTOT.EQ.600)SEC=.TRUE.
    * IF(NTOT.EQ.800)SEC=.FALSE.
        GOTO 5
    C\cdots-\cdots DO A PLOT
    80 CALL APLOT
        GOTO 5
    C-_--_---_ CREATE A NEW BALL
    100 GOTO 5
    C---N_NOW PROBLEM
    120 CALL SETUP
        GOTO 5
    C------------- SET MEMORY DIRECTLY
    140 GOTO 5
    160 GOTO 5
    C------------- Grid strain-rates
```

```
180 RVI = RVAR(2)
    RV2 = RVAR(3)
    RV3 = RVAR(4)
    RV4 = RVAR(5)
    RVS = RVAR(6)
    RV6 = RVAR(7)
    IF (MISS) GOTO 1010
    eduser(1,1) = RV1
    eduser(2,2) = RV2
    eduser(3,3) = RV3
    eduser(1,2) = RV4
c**** see below *****
ccc eduser(2,3) = RV5
ccc eduser(3,1) = RV6
    GMVFLG = .FALSE.
    IF (RV1 .NE. 0.0 .OR. RV2 .NE. 0.0) GMVFLG = .TRUE.
    IF (RV3 .NE. 0.0 .OR. RV4 .NE. 0.0) GMVFLG = .TRUE.
    IF (RV5 .NE. 0.0 .OR. RV6 .NE. 0.0) GMVFLG = .TRUE.
c***** note: only El2 allowed at present ******
ccc eduser(2,1)=eduser(1,2)
ccc eduser(3,2) = eduser(2,3)
ccc eduser(1,3) = eduser(3,1)
    GOTO 5
C--------.--- STOP
    200 CONTINUE
        NREC=0
        GOTO 1000
C------------.- CHANGE WINDOW
    220 WINDL(1)=RVAR(2)
        WINDU(1)=RVAR(3)
        WINDL(2)=RVAR(4)
        WINDU(2)=RVAR(5)
        WINDL(3)=RVAR(6)
        WINDU(3)=RVAR(7)
        GOTO 5
C
    240 GOTO 15
C-------------- GRAVITY
    260 DO 262 I=1,3
    262 GRAV(I)=RVAR(I+1)
        IF (MISS) GOTO 1010
        GOTO 5
    C---_---_ SET OR RESET FIX BITS
    280 GOTO 5
```


\qquad

```
    300 ITYP1=IVAR(3)
        ITYP2=IVAR(4)
        IF (MISS) GOTO 1010
        AKS(ITYP1,ITYP2)=RVAR(2)
        AKS(ITYP2,ITYP2)=RVAR(2)
        AKSS=RVAR(2)
        GOTO 5
    C-----.-------- NORMAL STIFFNESS
```

```
320 ITYP1=IVAR(3)
    ITYP2=IVAR(4)
    IF (MISS) GOTO 1010
    AKN(TTYP1,ITYP2)=RVAR(2)
    AKNN=RVAR(2)
    GOTO S
C---DENSITY
    340 ITYP=IVAR(3)
        IF (MISS) GOTO 1010
    ddd = rvar(2)
    DENS(ITYP)=ddd
    GOTO 5
C-_-_-_RADIUS
    360 ITYP=IVAR(3)
        IF (MISS) GOTO 1010
        RV2 = RVAR(2)
        IF (2.0*RV2 .LT. AMIN1(DEL(1),DEL(2),DEL(3))) GOTO 362
            NERR=9
            ERROR = .TRUE.
            GOTO 1000
    362 R(ITYP) = RV2
        GOTO 5
C-_-_ COEFFICIENT OF FRICTION
    380 ITYPI=IVAR(3)
        ITYP2=IVAR(4)
        AMU(ITYP1,ITYP2)=RVAR(2)
        AMU(ITYP2,ITYP2)=RVAR(2)
        AMUU=RVAR(2)
        GOTO 5
C--------- COHESION
    400 ITYP1=IVAR(3)
        ITYP2=IVAR(4)
        COH(ITYP1,ITYP2)=RVAR(2)
        COH(ITYP2,ITYP2)=RVAR(2)
        COHH=RVAR(2)
        GOTO 5
    C------------- SELECT PLOT OPTIONS
    4 2 0 \text { GOTO } 5
C-------------DAMPING CONSTANTS
    440 RV2 = RVAR(3)
        RV1 = RVAR(2)
        IF (MISS) GOTO 1010
        ALPHA = 2.0 * PI * RV2 * RV1
        BETA = RVI / (2.0 * PI * RV2)
        IF(IVAR(4).EQ.0) GOTO 445
        ALPHA=0.0
        WRITE(lunw,1608)
    445 IF(IVAR(5).EQ.0) GOTO 5
        BETA=0.0
        WRITE(lunw,1609)
        GOTO }
        C-------_ FRACTION OF CRITICAL TIME-STEP
    460 FRAC=RVAR(2)
    IF (MISS) GOTO 1010
```

GOTO 5

```
C--_-_-_-_ REMOTE COMMAND INPUT
    480 NREC=1
        GOTO 5
C---_ AUTOMATIC PARTICLE GENERATION --_-_-_-_
C (GENERATE COMMAND)
    500 CALL testl
        GOTO 5
C-_ PRINTOUT
    520 CALL PRINT
        GOTO 5
C---_-_LOCAL COMMAND INPUT
    540 NREC=0
        GOTO 5
```



```
    560 GOTO 5
C-___-_-_ RESET RADIUS VECTOR
    580 GOTO 5
C-...........COMMAND ITERATION
    N ----------------
    600 GOTO 5
C--------------------------------
    6 2 0 \text { GOTO } 5
C--SET ANGULAR VELOCITIES OF ALL BALLS TO BE ZERO
    630 GOTO 5
C----..--.--- VELOCITY MULTIPLIER ..-.............
    6 4 0 \text { GOTO } 5
C----------------------------
    600 GOTO 5
C-------------- servo gain
    680 RV1 = RVAR(2)
        RV2 = RVAR(3)
        IF (MISS) GOTO 1010
        GAIN = RVI
        SERVEM = RV2
        GOTO 5
    c--------------- history command .--
    700 goto 5
    c-------------- set Hertz contact parameters ---
    720 hertz = .true.
        ityp = ivar(4)
        shear(ityp) = rvar(2)
        poiss(ityp) = rvar(3)
        goto 5
    c--.----------- 2-d MODE .--
        740 twod = .true.
        goto 5
    C----------
        750 goto 5
    ------------ MODE (servo control) ---
        760 iv = ivar(2)
        if (miss) goto 1010
        if (bad) goto }102
        mode = iv
```

goto 5

```
770 goto 5
c-a
    780 goto 5
C-_ ROWE command .-...
    800 call rowe
        goto 5
    C--_HOLD Z VELOCITY ZERO FOR ROWE--.
    820 NUM \(=0.0\)
        NUM=RVAR(2)
        forall \((i=1: 37)\) vlx \((i, 1)=\)-num
        forall \((i=366: 403) \mathrm{vlx}(\mathrm{i}, 1)=\) num
        vlx=spread(vlx(:,1),dim=2,ncopies=cor)
        \(v 2 x=\operatorname{spread}(v 1 x(:, 1), d i m=1\), ncopies=cor)
        GOTO 5
c
    1000 CONTINUE
        RETURN
    C--- missing parameter ---
    1010 NERR \(=2\)
        ERROR = .TRUE.
        GOTO 1000
    C--- bad parameter ---
    1020 NERR \(=3\)
        ERROR = .TRUE.
        GOTO 1000
    C-- memory overflow ---
    1030 NERR \(=4\)
        ERROR = .TRUE.
        GOTO 1000
    1500 FORMAT(80A1)
    1501 format (lx,a4)
    1601 FORMAT( \(>^{\prime}, 80 \mathrm{Al}\) )
    1603 FORMAT(' COMMAND NOT AVAILABLE')
    1604 FORMAT(30X,'*** NO MORE MEMORY FOR NEW PARTICLES ***')
    1607 FORMAT(30X \({ }^{* * * *}\) ADDRESS OUT OF RANGE ***')
    1608 FORMAT(30X,'MASS DAMPING TERM SET TO ZERO')
    1609 FORMAT(30X,'STIFFNESS DAMPING TERM SET TO ZERO')
    1612 FORMAT(30X,'CURRENT CYCLE COUNT \(=\) ', I6)
    1613 FORMAT(I3)
    1615 FORMAT(30X,'MUST SPECIFY EDIT FREQUENCY FIRST')
        END
        subroutine gen
        return
        end
        block data ranset
        logical iflag
        common/ran/ iflag,iold
        data iflag /.false./
        end
        SUBROUTINE INITP
    C
```

```
C TO PERFORM CERTAIN OPERATIONS PRIOR TO CYCLING
C
    save
    INCLUDE 'tpm.inc'
    INCLUDE '/usr/include/cm/CMF_defs.h'
    INCLUDE '/usr/include/cm/cmssl-cmf.h'
    logical supout
    common/procom/supout
    data ak13,ak23 /0.3333333,0.6666667/
C
    AMIN=1.0E20
    DO 10I=1,NTYPS
    IF(R(I).LE.0.0) GOTO 10
    IF(DENS(I).LE.0.0) GOTO 10
    AMASS(I)=4.0*PI*DENS(I)*(R(I)** 3)/3.0
    AMOI(I)=0.4*AMASS(I)*R(I)**2
    AMIN=AMINI(AMASS(I),AMIN)
    10 CONTINUE
    RMAX=25
    IF(AMIN.LT.1.0E15) GOTO 20
    15 NERR=5
        ERROR = .TRUE.
        GOTO 1000
    20 AKMAX=0.0
        DO 30I=1,NTYPM
        DO 30 J=1,NTYPM
    30 AKMAX=AMAX1(akn(i,j),AKS(I, ),AKMAX)
    IF(AKMAX.LE.0.0) GOTO 15
    TDEL=FRAC*2.0*SQRT(AMIN/AKMAX)
    if (.not. supout) WRITE(lunw,601) TDEL
    if (.not.supout) write(7.*) tdel
C-- keep boxes clean --
    IF (NBALL .EQ. 0) GOTO 100
    genflag=.true.
    genflag=.false.
c----- set up gather/scatter routines for globe
c--- apply user strain-rate ---
    100 forall(j=1:3,i=1:3)edgrid(i.j) = eduser(i.j)
c-- set up Hertz parameters ---
    if (hertz) then
        do 140i=1,ntyps
                        do 130j=1,ntyps
                            if (r(i).gt.0.0 .and. r(j).gt.0.0) then
c--- note: we take elas prop of ball I for both
            rbar = 2.0* r(i)*r(j)/(r(i) +r(j))
            ccn(i.j)=2.0*sqr(2.0*rbar)*shear(i)/
                        (3.0 * (1.0 - poiss(i)))
            ccs(i,j)=2.0* shear(i)**ak23
                    * (3.0*(1.0-poiss(i))*rbar)**akl3
            / (2.0 - poiss(i))
                    endif
    130 continue
    140 continue
```

endif
c-
1000 RETURN
601 FORMAT (30X, TIME-STEP = ', IP,E12.4)
END
SUBROUTINE CYCLE
C
C TO CYCLE THROUGH MAIN CALCULATION LOOP
C
save
INCLUDE 'tpm.inc'
include $1 / u s r_{\text {/include/cm/CMF_defs. } h^{\prime}}$
parameter (nsvar=10)
double precision dxs
LOGICAL SKIP,SERVO
include 'matcom.inc'
common/iccom/icont
C
IF(NCYC.EQ.0) GOTO 1000
c--- initialise strain accumulators ---

* eax $=0.0$
erad $=0.0$
evol $=0.0$

nserv $=0$
icdsrv $=0$
sruval $=0.0$
CALL SETSRV(SERVO)
IF(ERROR) GOTO 1000
gtl=GRAV (1) *TDEL
$\mathrm{gt2}=\mathrm{GRAV}(2) * T D E L$
$\mathrm{gt} 3=\mathrm{GRAV}(3) *$ TDEL
AT2=ALPHA*TDEL/2.0
$\mathrm{cn} 1=1.0-\mathrm{AT} 2$
$\mathrm{cn} 2=1.0 /(1.0+\mathrm{AT} 2)$
C
call cm_timer_clear(1)
call cm_timer_start(1)
DO $200 \mathrm{~N}=1, \mathrm{NCYC}$
NTOT $=$ NTOT +1

IF (servo or. GMVFLG) then
c*** note: only good for diagonal terms *****
$\operatorname{XMAX}(1)=\operatorname{XMAX}(1)+\operatorname{EDGRID}(1,1) *$ TDEL * $x \max (1)$
$\operatorname{XMAX}(2)=\operatorname{XMAX}(2)+\operatorname{EDGRID}(2,2) * \operatorname{TDEL} * x \max (2)$
$\operatorname{XMAX}(3)=\operatorname{XMAX}(3)+\operatorname{EDGRID}(3,3) * \operatorname{TDEL} * \operatorname{xmax}(3)$
DEL(1) = XMAX(1) / float(NX(1))
$\operatorname{DEL}(2)=\mathrm{XMAX}(2) /$ float(NX(2))
DEL(3) = XMAX (3) / float(NX(3))
c-- (1-2) shear --
x shear $=x s h e a r+(\quad$ edgrid $(1,2)$
$+x$ shear * (edgrid(1,1)- edgrid(2,2))) * tdel
endif

```
C------------ SCAN ALL BALLS
* IF(NBALL) 55,55,20
* 20 ITYPS=SPH(typ...:)
    tm=TDEL/AMASS(1)
    tmi=TDEL/AMOI(1)
    INDX=1
* IAC=sph(31,:)
* DO 30 J=1,6
* SKIP(J)=IAND(IAC,INDX).NE. }
* 30 INDX=INDX*2
* skip.eq.false
    SSAMPL =0.0
    nmm=0
* NCONT = 0
    SLIDE = 0.0
    CALL MOTION
    CALL CHECK2
    IF (NMM .NE. 0) SLIDE = SLIDE / FLOAT(NMM)
C-.-...-...-SERVO CONTROL
    6 0 ~ I F ~ ( S E R V O ) ~ C A L L ~ R U N S R V ~
c--- write out strain and stress ---
c--- let l direction be "axial" ---
    eax = eax + edgrid(1,1)* tdel
    erad = erad + 0.5* (edgrid(2,2) + edgrid(3,3))* tdel
    evol = evol + (edgrid(1,1)+edgrid(2,2)+edgrid(3,3))* tdel
    samvol = xmax(1)* xmax(2)* xmax(3)
    sll = ssampl(1,1)/ samvol
    s22 = ssampl(2,2)/ samvol
    s33 = ssampl(3,3)/ samvol
    write(6,*)ntot,eax,sll
    CALL PLAT
C
    IF(ERROR) GOTO 1000
    200 CONTINUE
    call cm_timer_stop(1)
    call cm_timer_print(1)
1000 RETURN
1010 NERR = 2
    ERROR = .TRUE.
    RETURN
    1020 NERR = 3
        ERROR = .TRUE.
        RETURN
    1030 nerr = 13
        error = .true.
        return
    2000 forma! (2il0)
        END
        SUBROUTINE MOTION
C
C LAW OF MOTION (2- and 3-D)
C
```

```
save
INCLUDE 'tpm.inc'
DATA XRES,THRES /1.0,0.01/
* AMASS(I)=4.0*PI*DENS(I)*(R(I)**3)/3.0
* AMOI(I)=0.4*AMASS(I)*R(I)**2
* tm=TDEL/AMASS(1)
* tmi=TDEL/AMOI(1)
t11=0.0
t12=0.0
t21=0.0
L22=0.0
131=0.0
132=0.0
t1I=4.0*PI* 1000*(rdl**3)/3.0
t12=4.0*PI* 1000*(rd2**3)/3.0
121=TDEL/111
122=TDEL/t12
t31=TDEL/(0.4*(11*rdl**2)
t32=TDEL/(0.4*112*rd2**2)
c
c 3-D calculation
c
c
C--- Linear motion ---
    where(.not.layp)
    vlx=(vlx*cnl+flx*l2l+gll)*cn2
    vly=(vly*cnl+fly*l2l+gll)*cn2
    vlz=(vlz*cnl+flz* 21+gll)*cn2
    endwhere
    where(.not.tlayp)
    v2x=(v2x*cn1+f2x* 22+gl)* cn2
    v2y=(v2y*cnl+f2y*(22+gl1)*en2
    v2z=(v2z*cnl+f2z*t22+gl1)*cn2
    endwhere
    dtlx = vlx
    dtly=vly
    dilz=vlz
    dt2x = v2x
    dt2y=v2y
    dt2z= v2z
*
*
*
C (add in grid motion)
    dtlx = dtlx + edgrid(1,1)* (x|x + xdlx)
    +edgrid(1,2)* (xly+ xdly)
    +edgrid(1.3)*(xlz+xdlz)
    dlly=dtly + edgrid(2.l)* (xlx+xdlx)
```

```
+ edgrid(2,2) * (xly+ xdly)
+ edgrid(2,3)* (xlz +xdiz)
dtlz = dtlz + edgrid(3,1)* (xlx +xdlx)
+ edgrid(3,2) * (xly+ xdly)
+ edgrid(3,3)*(xlz+ xdlz)
dt2x =dt2x + edgrid (1,1)* (x2x+xd2x)
. +edgrid(1,2)* (x2y+xd2y)
tedgrid(1,3)* (x2z +xd2z)
dt2y=dt2y + edgrid(2,1) * (x2x+xd2x)
+ edgrid(2,2)* (x2y+xd2y)
+ edgrid(2,3) * (x2z+xd2z)
dt2z = dt2z + edgrid(3,1) * (x2x +xd2x)
+ edgrid(3,2) * (x2y+xd2y)
+ edgrid(3,3) * (x2z+ xd2z)
xdlx = xdlx + dtlx *TDEL
xdly = xdly + dtly*TDEL
xdlz=xdlz+dtlz*TDEL
xd2x = xd2x + dt2x*TDEL
xd2y = xd2y + dt2y *TDEL
xd2z=xd2z+dt2z*TDEL
where(ABS( xdlx ).GE.XRES)
xlx = xlx + xdlx
xdlx =0.0
endwhere
where(ABS( xdly ).GE.XRES)
    xly=xly+xdly
    xdly =0.0
endwhere
where(ABS(xdlz ).GE.XRES)
    xlz =xlz+xdlz
    xdlz =0.0
endwhere
where(ABS( xd2x ).GE.XRES)
    x 2x = x 2x + xd 2x
    xd2x =0.0
endwhere
where(ABS( xd2y ).GE.XRES)
    x2y=x2y+xd2y
    xd2y=0.0
endwhere
where(ABS( xd2z ).GE.XRES)
    x2z=x2z+xd2z
    xd2z =0.0
endwhere
C (periodic space)
    xtlx = xlm + xdlx
```

$x t y=x l y+x d y$
$x t l z=x l z+x d z$
$\mathrm{xt} 2 \mathrm{x}=\mathrm{x} 2 \mathrm{x}+\mathrm{xd} 2 \mathrm{x}$
$x t 2 y=x 2 y+x d 2 y$
$\mathrm{xt} 2 \mathrm{z}=\mathrm{x} 2 \mathrm{z}+\mathrm{xd} 2 \mathrm{z}$
where(x tlx.LT. 0.0)

$$
x l x=x l x+X \operatorname{MAX}(1)
$$

endwhere
where(xt ly .LT. 0.0) $x l y=x l y+X M A X(2)$
endwhere
where(xt lz LTT. 0.0) $\mathbf{x l z}=\mathrm{xlz}+\mathrm{XMAX}(3)$
endwhere
where (xtix.GE.XMAX(1)) $\mathrm{xlx}=\mathrm{xlx}-\mathrm{XMAX}(1)$
endwhere
where(x tly.GE.XMAX(2)) xly = xly - XMAX(2)
endwhere
where($x t$ lz.GE.XMAX(3)) $x \mathrm{lz}=\mathrm{xlz}-\mathrm{XMAX}$ (3)
endwhere
where (xt 2 x .LT. 0.0) $x 2 x=x 2 x+X \operatorname{MAX}(1)$
endwhere
where($x t 2 y$.LT. 0.0) $x 2 y=x 2 y+X M A X(2)$
endwhere
where (x 2z LLT. 0.0) $\mathbf{x} 2 \mathrm{z}=\mathrm{x} 2 \mathrm{z}+\mathrm{XMAX}(3)$
endwhere
where ($x t 2 x . G E . X M A X(1))$ $\mathrm{x} 2 \mathrm{x}=\mathrm{x} 2 \mathrm{x}-\operatorname{XMAX}(1)$
endwhere
where(x t2y.GE.XMAX(2)) $x 2 y=x 2 y-\operatorname{XMAX}(2)$
endwhere
where($x t 2 z . G E . X M A X(3))$ $x 2 z=x 2 z-X M A X(3)$
endwhere
C-- spins -

* IF(SKIP(I+3)) GOTO 115
where(.not.walp)
100 tvlx $=(\text { tvlx * } \mathrm{cnl}+\mathrm{mlx} * \mathrm{t} 31)^{*} \mathrm{cn} 2$
tuly $=\left(\text { toly }{ }^{*} \mathrm{cnl}+\mathrm{mly} * \mathrm{t} 31\right)^{*} \mathrm{cn} 2$
tvlz $=\left(\mathrm{tvlz}{ }^{*} \mathrm{cn} 1+\mathrm{mlz} * \mathbf{1 3 1}\right)^{*} \mathrm{cn} 2$
endwhere
where(.not.twalp)
tv $2 \mathrm{x}=(\mathrm{tv} 2 \mathrm{x} * \mathrm{cn} 1+\mathrm{m} 2 \mathrm{x} * \mathrm{t} 32) * \mathrm{cn} 2$
tv2y $=\left(\mathrm{fv} 2 \mathrm{y}^{*} \mathrm{cn} 1+\mathrm{m} 2 \mathrm{y} * \mathrm{t} 32\right)^{*} \mathrm{cn} 2$
$\mathrm{tv} 2 \mathrm{z}=(\mathrm{tv} 2 \mathrm{z} * \mathrm{cn} 1+\mathrm{m} 2 \mathrm{z} * \mathrm{t} 32)^{*} \mathrm{cn} 2$

```
    endwhere
    tdlx = tdlx + tvlx*TDEL
    tdly = tdly + tvly*TDEL
    tdlz = tdlz + tvlz*TDEL
    td2x = td2x + tv2x *TDEL
    td2y = td2y + tv2y *TDEL
    td2z= td2z+tv2z*TDEL
    where(tdlx.GE.THRES.or.- tdlx .GE.THRES)
        tlx = tlx + tdlx
        tdlx =0.0
    endwhere
    where( tdly .GE.THRES.or.- td ly .GE.THRES)
        tly=tly + tdly
        tdly =0.0
    endwhere
    where(tdlz.GE.THRES.or.- tdlz.GE.THRES)
        tlz=tlz+tdlz
        Idlz=0.0
    endwhere
    where( td2x.GE.THRES.or.- td2x.GE.THRES)
```



```
        td2x=0.0
    endwhere
    where( td2y .GE.THRES.or.- Id2y .GE.THRES)
        t2y=t2y+td2y
        td2y=0.0
    endwhere
    where(td2z.GE.THRES.or.- td 2z .GE.THRES)
        t2z=t2z+td2z
        td2z=0.0
    endwhere
C--- reset force sums and moment sums ---
    f1x=f1 lx
    fly=flly
    f1z=0.0
    f2x=f22x
    f2y=22y
    f2z=0.0
    mlx =0.0
    mly =0.0
    mlz =0.0
    m2x = 0.0
    m2y = 0.0
    m2z = 0.0
C
200 RETURN
    END
```

```
    SUBROUTINE BBTEST
    return
    end
    SUBROUTINE CHECK2
C
C TO TEST FOR CONTACT BETWEEN BALLS
C
    save
    INCLUDE 'tpm.inc'
    include 1/usr/include/cm/CMF_defs.h'
*
******************************************************************
*
* we do checks for all contacts
*
*****************************************************************
*
    slx=0.0
    sly=0.0
    slz=0.0
    s2x=0.0
    s2y=0.0
    s2z=0.0
    xxx=0.0
    xyy=0.0
    xzz=0.0
    xsx=0.0
    xsy=0.0
    xsz=0.0
    rdf=50.0
    dif=0.0
    six = xix + xdix
    sly=xly+xdly
    slz=xlz+xdlz
        s2x=x2x+xd2x
        s2y=x2y+xd2y
        s2z=x2z+xd2z
    C
    C\cdots..............BALL-TO-BALL CONTACT
    xxx = slx - s2x
    xyy = sly -s2y
    xzz = slz-s2z
    xsx = xxx
    xsy = xyy
    xsz = xzz
    xmb = xmax(1)
    WHERE (ABS(xxx) .gt. RMAX)
        xsx = SIGN(xmb, xxx)
        xsx = xxx - xsx
```

```
    ENDWHERE
    xmb = xmax(2)
    WHERE (ABS(xyy) .gt. RMAX)
        xSy = SIGN(xmb, xyy)
        xsy = xyy - xsy
        xsx = xxx - dmod(xshear,xmax(2))* xsy
    ENDWHERE
    xmb = xmax(1)
    WHERE(ABS(xsx).gt.RMAX)
    xsx = xxx - sign(xmb, xsx)
    ENDWHERE
    xmb = xmax(3)
    WHERE (ABS(xzz) .gt. RMAX)
        xsz = SIGN(xmb, xzz)
        xSz = xZz - xSz
    ENDWHERE
    xxx =xsx
    xyy =xsy
    xzz =xsz
    xsx = xsx * xsx
    xsy = xsy * xsy
    xsz = xsz * xsz
    xsx= xsx+ xsy+ xsz
    dif=SQRT(xsx)
    where(rdl.ne.0.0)
    rdf = dif-rdl-rd2
    endwhere
    nmm=(count(rdf.le.0.0)-cor)/2
    if(nmm.eq.0)goto 200
    call ford
    call globe
200 return
    end
    SUBROUTINE FORD
C
C TO TEST FOR CONTACT BETWEEN BALLS
C
    save
    INCLUDE 'tpm.inc'
    include '/usr/include/cm/CMF_defs.h'
*
* initializing global constants
*
    kkn=AKNN*TDEL
    AKSI=AKSS*TDEL
*
* removes shear and normal forces in broken contacts
    udm=0.0
    fmx=0.0
```

```
    fmy=0.0
    fmz=0.0
    mx=0.0
    my=0.0
    mz=0.0
    fxx=0.0
    rx=0.0
    tpx=0.0
    tpy=0.0
    tpz=0.0
    frx=0.0
    fry=0.0
    frz=0.0
    fsx=0.0
    fsy=0.0
    fsz=0.0
    111=0.0
    112=0.0
    t13=0.0
    t21=0.0
    +22=0.0
    t23=0.0
    t31=0.0
    +32=0.0
    t33=0.0
    where(rdf.gt.0.0)
        snx=0.0
        sny=0.0
        snz=0.0
        fnI=0.0
    endwhere
    fmx = vlx - v2x
    fmy = vly - v2y
    fmz=v|z-v2z
*
```



```
* Begin Calculations for FORD
*****************************************************
*
C (allow for grid motion)
    fmx= fmx+edgrid(1,1)* xxx
    fmx= fmx+edgrid(1,2)* xyy
    fmx=fmx+edgrid(1,3)* xzz
    fmy= fmy+edgrid(2,1)* xxx
    fmy= fmy+edgrid(2,2)* xyy
    fmy= fmy+edgrid(2,3)* xzz
```

```
    fmz= fmz+edgrid(3,1)* xxx
    fmz= fmz+edgrid(3,2)* xyy
    fmz= fmz+edgrid(3,3)* xzz
c
c--- end of regular linear contact section ---
C
    udm =0.0
    mm = xxx / dif
    my = xyy / dif
    mz = xzz/dif
    udm= fmx * mx+fmy * my+fmz* mz
C
    tpx= udm * mx
    tpy = udm * my
    tpz = udm * mz
    frx = fmx - tpx
    fry = fmy - tpy
    frz =fmz-tpz
C
    fsx= xyy*frz-xzz*fry
    fsy= xzz*frx-xxx*frz
    fsz= xxx*fry-xyy*frx
```

c we are now dealing with the shear forces

```
111=Tdel/xsx
121=snx
t22=sny
:23=snz
fsx = fsx * 111
fsy = fsy * tll
fsz= fsz * tll
t31= snx
t32= sny
t33=snz
do 10 n=1,2
snx = fsy* L23-fsz* t22
sny = fsz* 2 21- fsx* t23
snz = fsx* 22-fsy* 21
snx = snx+ t31
sny = sny+ t32
snz=snz+133
t21 =0.5*(t31+snx)
t22=0.5*(t32 + sny)
```

 \(\mathrm{t} 23=0.5^{*}(\mathrm{t} 33+\mathrm{snz})\)
 C we are dealing with angular velocities now
t21 =rd1* tv $1 x+r d 2 * t v 2 x$
$02=$ rd 1* tvly+rd2*tv2y
t23 =rd1* tvlz+rd2*tv2z
t31= 22^{*} mz- 23^{*} my
t32 $=$ t23* $\mathrm{mx}-\mathrm{t} 2$ 1* $^{*} \mathrm{mz}$
$\mathrm{t} 33=\mathbf{2 1} \mathbf{1}^{*} \mathrm{my}-\mathrm{t} 22^{*} \mathrm{mx}$
C--NORMAL FORCE--
$\mathrm{fnl}=\mathrm{fn} 1-\mathrm{udm} \mathrm{mkn}^{*}$
where(fnl.LT.0.0)
$\mathbf{s n x}=0.0$
$\mathrm{sny}=0.0$
$\mathrm{snz}=0.0$
$\mathrm{fnI}=0.0$
rdf=50.0
endwhere
nmm=(count(rdf.le.0.0)-cor)/2
C---SHEAR FORCE--
$\mathrm{fmx}=0.0$
$\mathrm{t} 31=\mathrm{frx}-131$
$\mathrm{t} 32=\mathrm{fry}-\mathbf{t 3 2}$
$\mathrm{t} 33=\mathrm{fr} z-\mathrm{t} 33$
$\mathbf{s n x}=\mathbf{s n x}-\mathrm{t} 31 * \mathrm{AKS} 1$
sny $=$ sny -t 32 * AKSI
$\mathrm{snz}=\mathrm{snz}-\mathrm{t} 33$ * AKS1

$\mathrm{fm} x=(\mathrm{fm} \mathrm{x})^{* *} 0.5$
C---CHECK FOR SLIP --
$\mathrm{fxx}=0.0$
$\mathrm{fxx}=\mathrm{AMUU} * \mathrm{fnl}+\mathrm{COHH}$
where(fxx .eq. 0.0)
$\operatorname{snx}=0.0$
sny $=0.0$
$\mathrm{snz}=0.0$
endwhere
where(fmx .GT. fxx and. fmx.eq.0.0)
$\boldsymbol{r x}=0.0$
endwhere
where(fmx .GT. fxx and. fmx .ne.0.0)
$\mathrm{rlx}=\mathrm{fxx} / \mathrm{fmx}$
endwhere
where(fmx GT. fix)

```
        snx = snx * ntx
        sny = sny * rtx
        snz = snz * rtx
    endwhere
C---RESOLVE FORCES TO GLOBAL DIRECTIONS---
        mlx= sny* mnz- snz* my
        mly= snz* mx- snx* mzz
        mlz= snx* mny-sny* mx
    flx = fnl* mnx+ snx
    fly=fnl* my+ sny
    flz=fnl* mz+ snz
    fsx = flx * (rdl+rd2)
    fsy = fly* (rdl+rd2)
    fsz = flz * (rdl +rd2)
C (save stress tensor)
tll \(=-\left(\mathrm{fsx}^{*} \mathrm{mx}\right)\)
t12=-(fsx* my)
\(\mathrm{t} 13=-\left(\mathrm{fs} \mathrm{x}^{*} \mathrm{mz}\right)\)
t2 \(1=-\left(\mathrm{ffy}^{*} \mathrm{mx}\right)\)
L22=-(fsy* rny)
t23=-(fsy* mz )
131 \(=-\left(\mathrm{fsz}^{*} \mathrm{mx}\right)\)
\(132=-\left(\mathrm{fsz}^{*} \mathrm{my}\right)\)
\(133=-\left(\mathrm{fsz}^{*} \mathrm{rnz}\right)\)
200 return
end
SUBROUTINE GLOBE
C
C TO TEST FOR CONTACT BETWEEN BALLS
C
save
INCLUDE 'tpm.inc'
inchude '/usr/include/cm/CMF_defs. \(h^{\prime}\)
INCLUDE '/ust/include/cm/cmssl-cmf. \({ }^{\prime}\)
slide \(=\) count(fxx.eq.0.0.and. rdf.le.0.0)
slide=slidetcount(fmx.GT.fxx.and.rdf.le.0.0)
slide=slide/2
shft \(=0\)
mas \(=\).false.
mas \(2=\).false.
where(rdf.le.0.0)mas=true.
where(rdf.le.0.0)mas2=.true.
forall \((i=1: \operatorname{cor}, j=1: \operatorname{cor}, i . g e . j) \operatorname{mas}(i, j)=\).false.
```

```
    forall(i=1:cor,j=1:cor,i.eq.j)mas2(i,j)=.false.
*
```



```
#
* Global Stress Tensors
\(\star\)
```



```
*
c---sum up the stress stress tensor
```

```
ssampl(1,1)=sum(tll,mask=mas)
ssampl(1,2)=sum(t12,mask=mas)
ssampl(1,3)=sum(t13,mask-mas)
ssampl(2,1)=sum(t21,mask=mas)
ssampl(2,2)=sum(t22,mask-mas)
ssampl(2,3)=sum(t23,mask=mas)
ssampl(3,1)=sum(t31,mask=mas)
ssampl(3,2)=sum(t32,mask=mas)
ssampl(3,3)=sum(t33,mask=mas)
```

* CALL CMF_SCAN_ADD(flx, flx. 0, 2, cmf_upward,
* \& cmf_inclusive, CMF_none, mas2)
* CALL CMF_SCAN_ADD(fly, fly, 0, 2, cmf_upward,
* \& cmf_inclusive, CMF_none, mas2)
* CALLCMF_SCAN_ADD(flz, flz, 0, 2, cmf_upward,
* \& cmf_inclusive, CMF_none, mas2)
f1x(:,1)=sum(flx.dim=2,mask=mas2)
$f l y(:, 1)=\operatorname{sum}(f l y, d i m=2$, mask $=\operatorname{mas} 2$)
$\mathrm{f} \mid \mathrm{z}(:, 1)=\operatorname{sum}(\mathrm{fl} \mathbf{z}, \mathrm{dim}=2$, mask=mas 2)
$\mathrm{flx}=\operatorname{spread}(\mathrm{fl} x(:, 1), \mathrm{dim}=2$, ncopies=cor)
$\mathrm{fly}=\operatorname{spread}(\mathrm{ffy}(:, 1), \mathrm{dim}=2$, ncopies=cor)
niz=spread(íiz(:, i),dim=2,ncopies=cor)
$\mathrm{f} 2 \mathrm{x}=\operatorname{spread}(\mathrm{fl} \mathrm{x}(:, 1), \mathrm{dim}=1$, ncopies $=\mathrm{cor})$
f2y=spread(fly(:,1),dim=1,ncopies=cor)
$\mathrm{f} 2 \mathrm{z}=$ spread(flz(:,1),dim=1,ncopies=cor)
mlx $=\mathrm{rdl}^{*} \mathrm{mix}$
$\mathrm{mly}=\mathrm{rdl}{ }^{*} \mathrm{mly}$
$\mathrm{mlz}=\mathrm{rdl}^{*} \mathrm{mlz}$
* CALL CMF_SCAN_ADD(mix, mlx, $0,2, \mathrm{cmf}$ _upward,
* \& cmf_inclusive, CMF_none, mas2)
* CALL CMF_SCAN_ADD(mly, mly, $0.2, \mathrm{cmf}$ _upward,
* \& cmf_inclusive, CMF_none, mas2)
* CALLCMF_SCAN_ADD ($\mathrm{mlz}, \mathrm{mlz}, 0,2, \mathrm{cmf}$ _upward,
* \& cmf_inclusive, CMF_none, mas2)
* mas2=lastloc(mas2,dim=2)
$\operatorname{mlx}(:, 1)=\operatorname{sum}(\mathrm{mlx}, \operatorname{dim}=2$, mask=mas 2)
$\mathrm{mly}(:, 1)=\operatorname{sum}(\mathrm{mly}, \operatorname{dim}=2$, mask=mas 2)

```
    mlz(;,1)=sum(mlz,dim=2,mask=mas2)
    mlx}=\mathrm{ spread(mlx(:,1),dim=2,ncopies=cor)
    mly=spread(mly(:,1),dim=2,ncopies=cor)
    mlz=spread(mlz(:,1),dim=2,ncopies=cor)
    m2x=spread(m1x(:,1),dim=1,ncopies=cor)
    m2y=spread(mly(:,1),dim=1,ncopies=cor)
    m2z=spread(mlz(:,1),dim=1,ncopies=cor)
    MEMORY = CMF_AVAILABLE_MEMORY()
200 continue
    RETURN
    END
    SUBROUTINE PRINT
C GENERAL PRINT ROUTINE .. 3-D PROGRAM
C
    save
    INCLUDE 'matcom.inc'
    INCLUDE 'tpm.inc'
    include '/usr/include/cm/CMF_defs.h'
    LOGICAL SFLG, ALLFLG, G}APFL
    character*1 icom,icoml
    DIMENSION ICOM(57),ICOM1(9),iiFIX(6)
    DATA ICOM
    ./'M','A','P',' ','E','N',T',' ','C','O','N',''.
    'B','A','L',',',',''Y','P',',''L','O','A','',
    'G','R','I',','A','N','D',' ','S','T,'R','',
    'I','N','F',',''P','A','R',','C','H','I',',
    'W','A','L',',','B','O','N',','iterm /
    data icoml /A','L','L',','G','A','P', '.,iterm/
c
    NARG = 2
    1 CALL MATCH (ICOM.NARG,JUMP)
        IF (.NOT. MISS) GOTO 5
        IF(NARG.NE.1) GO TO 1010
        WRITE(lunw,1600)
        GO TO 1010
    5 IF (NOT. BAD) GOTO 20
                NERR = 3
                    ERROR = .TRUE.
            GOTO 1010
    20 GOTO (100,120,140,160,
            180,200,220,1000.
            240,260,280,300.
            320,340),JUMP
C
C---------- MEMORY MAP
    100 GOTO 1000
C------------- PRINTOUT OF ENTRIES
    120 continue
    130 continue
    132 continue
        GOTO 1000
    C------------- PRINTOUT OF CONTACTS
    140 if(nmm.eq.0)goto 1000
```

```
    WRITE(lunw, 1608)
    do 150 i=l,cor
        do 150 j=1,cor
            if(mas(i,j))then
            WRITE(lunw,1609)ij,snx(ij),
    sny(i,j),snz(i,j),fnl(i,j),rdf(i,j)
            endif
150 continue
    GOTO 1000
C--PARTICLE PRINTOUT
    160 fff=0.0
        fob=0.0
        nfob=0
        do }175\textrm{i}=1,\textrm{pos
            fff=sqr((flx(i,1))**2+(fly(i,1))**2
            +(flz(i,1))**2)
            fob=fob+fff
            nfob=nfob+1
    175 continue
        if(nfob.gt.0)then
        fob=fob/float(nfob)
        write(lunw,1620)fob,nfob
        endif
c WRITE(lunw,1604)
c do 170 i=1,pos
c WRITE(lunw,1605)i,slx(i,1),sly(i,1),slz(i,1),
c . vlx(i,l),vly(i,l),vlz(i,l),tlx(i,1)+tdlx(i,l),
c . tly(i,1)+ldly(i,1),tlz(i,1)+ldlz(i,1)
c }170\mathrm{ continue
c 172 WRITE(lunw,1606)
c do 175 i=1,pos
c WRITE(lunw,1607)i,flx(i,1),fly(i,1),flz(i,1),
c .mlx(i,1),mly(i,1),mlz(i,1),n,rdl(i,1)
c }175\mathrm{ continue
    180 GOTO 1000
C-------------- LOADS ON PLATTENS
    200 GOTO 1000
```



```
    220 WRJTE (lunw,1613) (XMAX(I) , I=1,3), (EDGRID(I,I), I=1,3),
                                    edgrid(1,2)
        write (lunw,1621) xshear
            write(7,*) (xmax(i),i=1,3)
        GOTO 1000
    C----------------------
    240 WRITE (lunw,1614)
        VOL = XMAX(1) * XMAX(2) * XMAX(3)
        DO 245I=1,3
            SI = SSAMPL(I,1) / VOL
            S2 = SSAMPL(I,2) / VOL
            S3 = SSAMPL(1,3)/VOL
                WRITE (Iunw,1615) S1, S2, S3
            write(7,*) sl,s2.s3
```

```
245 CONTINUE
cc if (twod) then
        s0 = (ssampl(1,1)+ssampl(2,2)+ssampl(3,3))/ (3.0*vol)
        ss7 = n 5 * (ccamnl(1,1! + seqmpl(2,2))/vol
        if (ss0.eq. 0,0) goto 1000
        ss12 = 0.5 * (ssampl(1,2) + ssampl(2,1))
        sdev = sqrt( 0.25*(ssampl(2,2)-ssampl(1,1))**2
            +ss12**2)/vol
        thet = atan2(ss12,0.5*(ssampl(2,2)-ssampl(1,1)))
        thet = thet / degrad
        write (lunw,1622) s0,ss0,sdev,thet
    cc
        endif
        GOTO 1000
C-_-_-_-_-_geral information
    260 IF (COR .EQ. 0) GOTO 1000
C (compute total ball volume)
    SVOLB = 0.0
    VOLB = 0.0
    TEMPI = 4.0* PI / 3.0
* ITYPS = sph(25.:)
* RAD = R(ITYPS)
    SVOLB = TEMP1 * rm*** 
    VOLB = sum(SVOLB,dim=1)
    VOLG = XMAX(1)* XMAX(2)* XMAX(3)
C (scan contacts to find overlap volume)
    if(nmm.eq.0)goto 265
    VOLOV = 0.0
    fnav = 0.0
    DD1 = 0.0
    DD2 = 0.0
    SDD1 = 0.0
    SDD2 = 0.0
    where(mas)
    SDD1 = (xsx + rdl*rdl-rd2*rd2) / (2.0 * dif)
    SDD2 = (xsx + rd2*rd2-rdl*rd1)/(2.0* dif
    DD1 = rdl - SDD1
    DD2 = rd2 - SDD2
    SDDI = PI * (DDI *DDI * (rdl- DDI / 3.0)
    . +DD2*DD2 * (rd2-DD2 / 3.0))
    endwhere
    VOLOV=sum(SDDl,mask=mas)
    fnav =SUM(fnl,mask=mas)
C
265 if(nmm.eq.0)then
    fnav =0.0
    volov =0.0
    endif
    POROS = (VOLG - VOLB + VOLOV) / VOLG
    OVLRAT = VOLOV / VOLG
    COORD = 2.0* FLOAT(NMM) / FLOAT(COR)
    RCONS = FLOAT(NMM) * (3.0-2.0 * SLIDE) / (6.0 * COR)
    if (nmm .gt. 0) fnav = fnav / float(nmm)
```

```
    WRITE (lunw,1618) POROS, NMM, COORD, RCONS, SLIDE, OVLRAT,
                        fnav
        write(7,*) poros*volg
        GOTO 1000
C-__ stress partitions
    280 GOTO 1000
C--mon-montact histogram
    300 goto 1000
c---___-walls
    320 goto 1000
c-_-_-_)
    340 goto 1000
c-
    1000 WRITE(lunw,1610)
        NARG = NARG + 1
        IF (NARG .LE. 40) GOTO I
    1010 RETURN
C
    1600 FORMAT(30X,'PRINT WHAT ?')
    1601 FORMAT(30X,'PRINTOUT OF ENTRIES, BY BOX ...'
                If --.-BOX--.-- ENTRIES ....'
            \Gamma NUMBER ADDRESS')
    1604 FORMAT(30X.'DATA ON PARTICLES ...'/ ADDRESS',4X.
        . 'U(1)',5X,'U(2)',
        . 5X.'U(3)',4X,'UDOT(1)',4X,'UDOT(2)',4X,'UDOT(3)',
        . IX.' THETA(1)',
        ' THETA(2) THETA(3)')
    1605 FORMAT(1X,16,3F9.3,1P,3E11.3.0P,3F9.3)
    1606 FORMAT(/ ADDRESS',3X,'FSUM(1)',4X,'FSUM(2)',4X,'FSUM(3)',
        4X,'MSUM(1)',4X,'MSUM(2)',4X,'MSUM(3)',' STYPE MTYPE')
    1607 FORMAT(IX,I6,6E11.3,I6,F5.2)
    1608 FORMAT(30X,'CONTACT DATA ...'/' BALLI BALL2)'
        . ,6X,'FS(1)',6X,'FS(2)',6X,'FS(3)',9X,'FN'
        ,6X,'XC(1)',6X,'XC(2)',6X,'XC(3)',6X,'GAP')
    1609 FORMAT(1X,3X,216,1P,5E11.3)
    1610 FORMAT(' ')
    1611 FORMAT(30X,'MEMORY MAP ...'/
        ' M1 =',}16,' M1A =',16,' M2 =', 16,' M2A =', I6,
        ' M3 =',16,' M3A =',16,' M4 =',16,' M5 =',16/)
    1612 FORMAT(1X,3(1P,2E11.3,2X))
    1613 FORMAT (' Current grid size -'.1P.3E13.5/'Rates -'.IP.4E11.3)
    1614 FORMAT (' Measured stress tensor ...')
    1615 FORMAT (IX,IP,3E11.3)
    1616 FORMAT (1X,I3,I8,216,' ERROR - ZM is zero')
    1617 FORMAT (' (overlap is larger than tolerance)')
    1618 FORMAT
        (' Porosity Contacts Coord-num Cons-rat Sliding',
        2x,'Ovlap-rat',5x,'av. Fn'
        /1X,F11.3,111,3F11.3,F11.4,1p,e11.3)
    1619 FORMAT (1X,I3,18,216,1P,2E11.3)
    1620 format (' average fob, num:',1p,el1.3.i6)
    1621 format (' l-2 shear strain =',1p,ell.3)
    1622 format (' sig-0 sum/2 s-dev theta'
        /1x.1p.3el1.3,0p.f10.3)
```

```
1630 format (1x,lp.3ell.3)
    END
    SUBROUTINE SETSRV(SERVO)
    save
    INCLUDE 'tpm.inc'
    parameter (nsvar=10)
    LOGICAL SERVO
    character*1 icom
    include 'matcom.inc'
    DIMENSION ICOM(30)
    DATA ICOM /S','0',','S','1',M','S','2',','S','3','3',' ',
        'R','I','N',','S','1','1',',''S','2','2','',
        'R','O','T,'',
        iterm/
    SERVO = FALSE
    NSERV = 0
    NPAR = 3
    5 CALL MATCH(ICOM,NPAR,JUMP)
        IF(MISS) GOTO }
        IF(BAD) GOTO 1020
    if (nserv+1 .gt. nsvar) then
            nerr = 12
            error = .true.
    endif
    NSERV = NSERV + 1
    ICDSRV(NSERV) = JUMP
    SRVVAL(NSERV) = RVAR(NPAR+1)
        IF(MISS) GOTO 1010
    if (jump .eq.4) srvval(nserv) = cos (2.0 * srvval(nserv)
                            * degrad)
    SERVO = .TRUE.
    NPAR = NPAR +2
    GOTO 5
1010 SERVO = FALSE.
    NERR = 2
    ERROR = .TRUE.
    RETURN
1020 NERR = 3
    ERROR = .TRUE.
    RETURN
    8 MISS = .FALSE.
    RETURN
    END
    SUBROUTINE RUNSRV
    save
    logical velflg
    parameter (nsvar=10)
    include 'matcom.inc'
    INCLUDE 'tpm.inc'
    dimension detr(3,3),etr(3,3)
c--- flag to request direct velocity control ---
    velflg = mode .eq. I
c
```

```
    do 5j=1,3
        do 4i=1,3
                detr (i,j)=0.0
    4 \text { continue}
    5 continue
c
    samvol = xmax(1) * xmax(2) * xmax(3)
    DO 100 I=1,NSERV
    GOTO(10,20,30,40,50,60,70), ICDSRV(I)
C
C SERVO CONTROL FOR MEAN STRESS
C
    10 SOMES = (SSAMPL(1,1) + SSAMPL(2,2)+\operatorname{SSAMPL}(3,3))/
        (3.0 * samvol)
        SOREQ=SRVVAL(I)
        DED = ( GAIN * (SOREQ - SOMES) ) / 3.0
        if (velflg) then
                if (abs(ded) .gt. servem) ded = sign(servem,ded)
                edgrid(1,1) = ded
                edgrid(2,2) = ded
                edgrid}(3,3)=\mathrm{ ded
                eduser(1,1) = ded
                eduser (2,2) = ded
                eduser(3,3) = ded
            else
                detr}(1,1)=\operatorname{detr}(1,1)+\mathrm{ DED
                detr}(2,2)=\operatorname{detr}(2,2)+\mathrm{ DED
                detr(3,3) = detr(3.3)+DED
            endif
        GOTO 100
C
C SERVO CONTROL FOR (SII+S22)/2
C
    20 S12MES = (SSAMPL(1.1)+SSAMPL(2,2))/
            (2.0* samvol)
    S12REQ = SRVVAL(I)
    DED12 = 0.5* GAIN * (SI2REQ - S12MES)
    detr(1,1)=\operatorname{detr}(1,1) + DED12
    detr(2,2) = detr(2,2) + DED12
    GOTO 100
C
C SERVO CONTROL FOR S33
C
    30 continue
    DED = GAIN * (srvval(i) - ssampl(3,3)/samvol)
    if (velflg) then
            if (abs(ded) .gt. servem) ded = sign(servem,ded)
            edgrid(3,3) = ded
            eduser(3,3) = ded
    else
        detr}(3,3)=\operatorname{detr}(3,3)+\mathrm{ DED
    endif
    goto 100
C
```

```
c servo control for ring-shear simulation (keeps constant angle of p.s.)
c
    40 S33MES = SSAMPL(3,3) / samvol
        S33REQ = 0.5 * (ssampl(1,1)+ssampl (2,2)
            +(ssampl(1,1)-ssampl(2,2)) * SRVVAL(1) ) / samvol
    DED33 = GAIN * (S33REQ - S33MES)
    detr(3,3) = detr(3,3) + DED33
    goto 100
C
C control for sll
c
    50 continue
        DED = GAIN * (srvval(i) - ssampl(1,1)/samvol)
        if (velflg) then
            if (abs(ded) .gt. servem) ded = sign(servem,ded)
            edgrid(1,1) = ded
            eduser(1,1) = ded
        else
            detr(1,1)=\operatorname{detr}(1,1)+ DED
        endif
        goto 100
c
c control for s22
c
    60 continue
        DED = GAIN * (srval(i) - ssampl(2,2)/samvol)
        if (velflg) then
            if (abs(ded) .gt. servem) ded = sign(servem,ded)
            edgrid(2,2) = ded
            eduser(2,2) = ded
        else
            detr(2,2)=\operatorname{detr}(2,2)+DED
        endif
        goto imp
c
C
c control for rotation of pr. axes: deviator is kept at given value;
c applied strain-rate is normal to stress vecior. with magnitude
c of max. strain rate and sign taken from given deviator.
c
    7 0 \text { continue}
        sl1m = ssampl(1,1)/samvol
        s22m=ssampl(2,2)/ samvol
        s33m= ssampl( }3,3)/\mathrm{ samvol
        s0 = (s11m + s 22m+s s3m)/3.0
        sl2m=0.5 * (ssampl(1,2)+ ssampl(2,1))/ samvol
        sdev = sqrt(0.25*(s22m-s11m)**2+s12m*s12m)
        sn = sl2m/sdev
        cs = 0.5* (s22m -sl1m)/ sdev
        if (velflg) then
            udrl = gain* (abs(srval(i)) - sdev)
            udc = sign (servem,srvval(i))
            bb = gain* (s22m-s33m)
c*** temp *
```

```
    udv = gain * (-1.38c-5 - s0)
c************
    aa =udrl * cs - udc * sn
    edgrid(1,1) = (udv - 2.0*aa - bb) / 2.0
    edgrid(2,2) = (udv + 2.0*aa - bb)/2.0
    edgrid(3,3) = bb
    edgrid(1,2) = 2.0 * (udrl * sn + udc * cs)
    eduser(1,1) = edgrid(1,1)
    eduser(2,2) = edgrid(2,2)
    eduser(3,3) = edgrid(3,3)
    eduser(1,2) = edgrid(1,c)
    else
    edx =0.5* (edserv(2,2) - edserv(1,1))
    edy = edserv (1,2)
c.-- resolve strainrates into circum. component --
    edc = edy* cs-edx* sn
c--- increment for circum. adjsutment --
    dec = sign(0.1 * servem.srvval(i)) - edc
c--- resolve back .--
    dex = -dec* sn
    dey = dec*cs
    detr}(1,2)=\operatorname{detr}(1,2)+\operatorname{dey
    detr(2,2)=\operatorname{detr}(2,2)+\operatorname{dex}
    detr(1,1) = detr(1,1) - dex
c--- increments for radial adjustments ---
    ded = gain * (abs(srvval(i)) - sdev)
    detr(1,2) = detr(1,2) + ded * sn
    detr}(2,2)=\operatorname{detr}(2,2)+\operatorname{ded}* c
    detr(1,1) = detr(1,1) - ded * cs
c--- servo to keep 33-stress = 22-stress, for ring shear device ---
            ded = gain * (s22m-s33m)
            detr}(3,3)=\operatorname{detr}(3,3)+\operatorname{ded
        endif
        goto }10
c
    100 CONTINUE
        if (velflg) return
c
c test for strain-rate limit
c and add in to user-given strain rate
c
    do 200 j = 1,3
        do 150 i=1,3
            edserv(i,j)=edserv(i,j) + detr(i,j)
            if (abs(edserv(i,j)) .gt. servem) then
                edserv(i,j)=\operatorname{sign(servem, edserv(i,j))}
            endif
            edgrid(i,j) = eduser(i,j) + edserv(i,j)
    150 continue
    200 continue
c---
    RETURN
    END
```

subroutine tidy
C
C TO ELIMINATE BLANKS, ETC. FROM INPUT
C LINE AND MAKE INDEX TO LOCATION OF PARAMETERS
C
save
logical sep
include 'matcom.inc'
$\mathrm{BAD}=\mathrm{FALSE}$.
NCHAR $=0$
Ll=1
L2 $=1$
NPAR $=0$
DO $5 \mathrm{I}=1,40$
5 LPNT(I) $=0$
GOTO 20
C--NOW WITHIN A STRING--
10 IF(SEP(LINE(L2))) GOTO 30
$15 \operatorname{LINE}(L 1)=\operatorname{LINE}(L 2)$
$\mathrm{L} 1=\mathrm{L} 1+1$
$\mathrm{L} 2=\mathrm{L} 2+1$
IF(L2.LE.80) GOTO 10
GOTO 50
C--NOW IN A GAP--
20 IF(.NOT.SEP(LINE(L2))) GOTO 40
$30 \mathrm{~L} 2=\mathrm{L} 2+1$
IF(L2.LE.80) GOTO 20
GOTO 50
C---START OF A STRING---
C---FIRST CHECK FOR TERMINATOR
$40 \mathrm{IF}\left(\operatorname{LINE}(\mathrm{L} 2) \cdot \mathrm{EQ} \cdot{ }^{\prime *}\right)$) OR. (LINE(L2).EQ. ${ }^{\prime}$ ')) GOTO 50
NPAR=NPAR+1
LPNT(NPAR)=L1
GOTO 15
50 LPNT(NPAR+1)=L1
RETURN
END
LOGICAL FUNCTION SEP(C)
C
C RETURNS .TRUE. IF C IS A SEPARATOR
C
save
CHARACTER*1 C, CSEP(6)

C
$\mathrm{ic}=\mathrm{ichar}(\mathrm{c})$
if ((ic.ge.97) .and. (ic.le.122)) $\mathrm{c}=\operatorname{char}(\mathrm{ic}-32)$
DO $10 \mathrm{I}=1,6$
IF(C.EQ.CSEP(I)) THEN
SEP = .TRUE
RETURN
END IF
10 CONTINUE
SEP=FALSE.

```
RETURN
END
SUBROUTINE MATCH (NTAB,NPAR,JUMP)
C
C TC NATCH INPUT STRING TO KEYWORD IN TABLE
C
C INPUT: NTAB TABLE OF KEYWORDS IN CHARACTER*1 FORMAT, SEPARATED
C BY BLANKS AND TERMINATED WITH ITERM. ALL KEYWORDS
C MUST CONSIST OF AT LEAST 2 CHARACTERS, UNLESS
C THEY REALLY ARE SINGLE-LETTER COMMANDS.
C NPAR PARAMETER NO. IN INPUT LINE (STORED IN ARRAY LINEO)
C WHICH IS ALSO IN CHARACTER*I FORMAT)
C
C OUTPUT: JUMP DISPATCH NUMBER CORRESPONDING
C TO POSITION OF KEYWORD IN NTAB.
C BAD .TRUE. FOR MISSING PARAMETER OR STRING NOT FOUND
C MISS .TRUE. FOR MISSING PARAMETER
C
    save
    CHARACTER*1 IBLK, NTAB(1), NTI
    include 'matcom.inc'
    DATA IBLK [ '/
C
    NPBAD = NPAR - 1
    LI=LPNT(NPAR)
    L2=LPNT(NPAR+1)-1
    IF (L2.LT.0) THEN
                JUMP=1
                MISS = .TRUE.
                BAD = .TRUE.
                RETURN
        ENDIF
        I=0
        NT=0
    40 NTT=iNi}+
        IF(NTAB(I+2).EQ.IBLK.AND.L2.GT.LI) GOTO }8
        DO 50 L=L1,L2
        l=I+1
        NTI=NTAB(I)
        IF(NTI.NE.LINE(L)) GOTO 70
    SO CONTINUE
    60 JUMP=NT
            BAD=FALSE.
            MISS = FALSE
            RETURN
    65 IF (L.EQ.L1) THEN
            JUMP = 2
            MISS = .FALSE.
            BAD =.TRUE .
            RETURN
        ENDIF
        GOTO }6
    70 IF(NTI.EQ.IBLK.OR.NTI.EQ.ITERM) GOTO 65
    80I=I+1
```

```
    NTI=NTAB(I)
    IF(NTI.EQ.IBLK) GOTO 40
    IF(NTI.NE.ITERM) GOTO }8
        JUMP = 2
        MISS = .FALSE.
        BAD=.TRUE.
        RETURN
        END
        SUBROUTINE VAR(NPAR)
C
C COMMON ROUTINE FOR IVAR & RVAR
C
    save
    CHARACTER*1 IBUF(20), IBL
    CHARACTER*20 BUF
    include 'matcom.inc'
    COMMON /CVAR/ BUF
    DATA IBL /'/
C
    NPBAD = NPAR - 1
    NP=NPAR
    DO 10I=1,20
    10 IBUF(I)=IBL
        LL=LPNT(NP)
        NUM=LPNT(NP+1)-LL
        NUM=MIN0(NUM,20)
        IF (NUM.LE.0) THEN
            MISS=.TRUE.
            WRITE (BUF,100) IBUF
            RETURN
        ENDIF
        DO 20 L=1.NUM
            Nl=20-NUM+L
            IBUF(N1)=LINE(LL)
    20 LL=LL+1
        WRITE (BUF,100) IBUF
        MISS = .FALSE.
        RETURN
    100 FORMAT (20A1)
        END
        FUNCTION IVAR(NPAR)
C
C TO RETURN INTEGER VALUE OF PARAMETER NPAR
C MISS IS SET .TRUE. IF MISSING
C BAD IS SET .TRUE. IF FORMAT BAD
C
    save
    CHARACTER*20 BUF
    include 'matcom.inc'
    COMMON /CVAR/ BUF
C
    IF (BAD) GOTO 100
    CALL VAR(NPAR)
    READ (BUF,200,ERR=100) IV
```

```
    IVAR=IV
    RETURN
100 BAD = .TRUE .
    IVAR=0
    RETURN
200 FORMAT(120)
    END
    FUNCTION RVAR(NPAR)
C
C TO RETURN REAL VALUE OF PARAMETER NPAR
C MISS IS SET .TRUE. IF MISSING
C BAD IS SET .TRUE. IF FORMAT BAD
C
    save
    CHARACTER*20 BUF
    include 'matcom.inc'
    COMMON /CVAR/BUF
C
    IF (BAD) GOTO 100
    CALL VAR(NPAR)
    READ (BUF,200,ERR=100) RV
    RVAR=RV
    RETURN
    100 BAD = .TRUE.
    RVAR=0.0
    RETURN
    200 FORMAT(F20.0)
    END
    subroutine testl
c test is used to generate selected Particles
c
    save
    INCLUDE 'tpm.inc'
    GENFLAG=.TRUE.
    nreq = 403
    nball=403
    do 5i=1,nreq
    read(4,1605)con(i,1),con(i,2),con(i,3)
    read(8,*)walp(i,1),layp(i,2)
    read(9,*)conl(i,1),conl(i,2)
5 continue
* con(1,1)=82
* con(1,2)=105
* con(1,3)=100
* con(2,1)=100
* con(2,2)=100
* con(2,3)=100
* con(3,1)=118
* con(3,2)=95
* con(3,3)=100
* con(typ,:,:)=1
* con(mat,:,:)=1
* }\operatorname{ITT}(1:3)=1
```

```
    mrr(1:50)=15
    mr(51:150)=10
*
* Loading the x coordinates
*
    do 10 i=1,cor
    do }10\textrm{j}=1\mathrm{ ,cor
    xlx(i,j)=con(i,1)
    x2x(i,j)=con(j,1)
10 continue
*
* Loading the y coordinates
    do 20i=1,cor
    do 20 j=1,cor
    xly(i,j)=con(i,2)
    x2y(i,j)=con(j,2)
20 continue
*
* Loading the z coordinates
*
    do 30 i=1,cor
    do 30 j=1,cor
    xlz(i,j)=con(i,3)
    x2z(i,j)=con(j,3)
30 continue
*
* Loading the radius
*
    do 40 i=1.cor
    do 40j=1,cor
    rdl(i,j)=rm(i)
    rd2(i,j)=rrr(j)
40 continue
*
* Loading the fx coordinates
*
    do 50i=i,cor
    do 50 j=1,cor
    fllx(i,j)=conl(i,1)
    f22x(i,j)=conl(j,1)
50 continue
*
    * Loading the fy coordinates
    do 60 i=1,cor
    do 60 j=1,cor
        flly(i,j)=conl(i,2)
        f22y(i,j)=conl(j.2)
    60 continue
*
    * Loading the masl coordinates
* Loading the masl coordiros
    walp=spread(walp(..1),dim=2,ncopies=cor)
```

```
    twalp=spread(walp(:,1),dim=1,ncopies=cor)
    layp=spread(layp(:,1),dim=2,ncopies=cor)
    tlayp=spread(layp(:,1),dim=2,ncopies=cor)
    forall(i=1:cor, j=1:cor,i.eq.j) walp(i,j)=.false.
    forall( }\textrm{i}=1:\operatorname{cor,j=1:cor,i.eq.j)}\mathrm{ )ayp ( }\textrm{i},\textrm{j})=\mathrm{ .false.
    forall(i=1:cor j=1:cor,i.eq.j)twalp(i,j)=.false.
    forall(i=1:cor, j=1:cor,i.eq.j)tlayp(i,j)=.false.
* forall(i=1:nreq)ityps(i)=sph(typ,i,l)
* forall(i=1:nreq)sph(rdd,i,:)=r(ityps(i))
    write (lunw,1610) nball
    genflag=.false.
    return
1610 format(lx,i3,' particles have been generated in 0 tries')
1605 FORMAT(1X,6X,3F9.3)
1607 FORMAT(IX,6X,66X,2F6.0)
    end
    SUBROUTINE PLAT
C TO CREATE THE GRAPH OF OUTPUT
C
    save
    include 'matcom.inc'
    include 'trbcom.inc'
    real ROWC,DISPL,HGHT
    DIMENSION FM(3),FP(3)
C-------------- LOADS ON PLATTENS
    if(ntot.le.600)goto300
    FM=0.0
    FP=0.0
    where(v1x.It.0.0)
        fm(1)=\operatorname{sum}(flx(1,:),dim=2,mask=walp)/2
    where(vly.lt.0.0)
        fm(2)=sum(fly(1,:),dim=2.mask=walp)/2
    where(vlz.lt.0.0)
            fm(3)=sum(f1z(1,:),dim=2,mask=walp)/2
    where(vix.gt.0.0)
            fp(1)=sum(flx(1,:),dim=2,mask=walp)/2
    where(vly.gt.0.0)
            fp(2)=sum(fly(1,:),dim=2,mask=walp)/2
    where(vlz.gt.0.0)
            fp(3)=sum(flz(1,:),dim=2,mask=walp)/2
    ROWC=FM(3)/(4.48E4*5E4)
    displ=-2*(25-slz(1,:))
    DHGHT=ABS(slz(1,:)-slz(366,:))
    STRAINS=DISPL/DHGHT
    WRITE(6,*)STRAINS,ROWC,NTOT
    300 RETURN
    1612 FORMAT(1X,3(IP,2E11.3,2X))
    END
```


REFERENCES

Almasi, George S. and Gottlieb, A.(1994).Highly Parallel Computing, The Benjamin/Cummings Publishing Company, Inc.,second edition,New York

Amdahl,G.M (1967) "Validity of Single-Processor Approach to Acheiving Large-Scale Computing Capability", Proc. AFIPS Conf., pp. 483-485, Reston, VA.

Bathurst, Richard John (1985),"A Study of Stress and Anisotropy in Idealized Granular Assemblies".PhD dissertation, Civil Engineering, Queen's University at Kingston, Ontario, Canada
C.S. Chang, A. Misra and S.S. Sundaram(1990), "Micromechanical modelling of cemented sands under low amplitude oscillations", J.Geotechnique 40, No.2,251-263

Chang C.S and Acheampong K.B.(1993),"Accuracy and Stability for Static Analysis Using Dynamic Formuiation in Discrete Element Methods," Proceedings of the 2nd International Conference on Discrete Element Methods(DEM), pp.379389,MIT,Boston,MA

Chen, Y.C.(1986) "Experimental Determination of Fabric for Granular Material", Ph.D. thesis, Civil Engineering, Cornell University,Ithaca, New York

Cundall P.A. and Strack O.D.L(1978), "The Distinct Element Method As A Tool For Research In Granular Media", Report to the National Science Foundation Concerning NSF Grant ENG76-20711, Part I
---(1979a), "The Distinct Element Method As A Tool For Research In Granular Media", Report to the National Science Foundation Concerning NSF Grant ENG76-20711, Part II
---(1979b). "A Discrete Numerical Model for Granular Assemblies", J.Geotechnique, vol. 29, pp. 47-65
---(1979c). "The Development of Constitutive Laws for Soils Using the Distinct Element Method", Proc. 3rd Int. Conf. on Numerical Methods in Geomechanics., Aachen, vol.1, Balkema, Rotterdam, pp.289-317

Cundall, P.A.(1971), "A Computer Model for Simulating Progressive, large scale Movements in Block Rock Systems", Proc. Int. Symp. on Rock Fracture, Nancy, France, II-8

Cundall P.A.,Drescher A.\& Strack O.D.L.(1982),"Numerical experiments on granular assemblies; Measurements and observations",IUTAM conference on Deformation and Failure of Granular Materials/Delft/Aug.31-Sept3, pp.355-370

Cundall, P.A., and Hart, R.D.(1990), "Numerical Modeling of Discontinua", Itasca Consulting Group, Inc., Minneapolis, Minnesota

Dantu, P. (1957) "Contribution a l'etude mechanique et geometrique des milieux pulverulents",. Proc. 4th Int. Conf. Soil Mech. Foundation Eng., London 1,144ff

De Josselin de Jong, G. \& Verruijt, A.(1969), "Etude photo-elastique d'un empilement de disques. ", Cahiers du Groupe Francais de Rheologie II, No. 1, 73-86

Deresiewcz, H. (1958)."Stress-strain relations for a simple model of a granular medium." J. Appl. Mech., Trans. ASME, 25(3), 402-406.

Drescher A. and De Josselin de Jong, G.(1972), "Photoelastic Verification Of a Mechanical Model For the Flow Of a Granular Material", J.Mech.Phys. Solids, Vol.20, pp 337-351

Duffy, J. (1959)."A differential stress-strain relation for the hexagonal close packed array.", J.Appl. Mech., Trans. ASME, pp. 88-94.

Ghaboussi, J., Basole, M. \& Ranjithan, S.(1993)"Three Dimensional Discrete Element Analysis on Massively Parallel Computers",Proceedings of the Second International Conference on Discrete Element Methods, Massachusetts Institute of Technology, Boston, MA, March 18-19

Geist, A. , Beguelin, A., et. a! (1994) PYM: Parallel Virtual Machine - A Usors 'Gude and Tutorial for Networked Parallel Computing, The MIT Press Cambridge, Mass., London ,England

Gili, J.A, and Alonso, E.E.(1988),"Discontinuous numerical model for partially saturated soils at low saturation", Proceed. 6th Int. Conf. on Numerical Methods in Geomechanics. Swoboda (ed.). Balkema Rotterdam. pp. 365-372

Gili, J.A(1988), "Modelo Microestructural para medios granulares no saturados", Tesis Doctoral. Univ. Politec. de Catalunja. , Spain, 621 pag, Julio

Hadj Ounis and Goodarz Ahmadi(1989), "Motions of Small Rigid Spheres in Simulated Random Velocity Field",Journal of Engineering Mechanics, Vol.115, No. 10, October

Heermann D.W. and Burkitt A.N.(1990). Parallel Algorithms in Computational Science. Number 24 in Springer Series on Informational Sciences.Springer-Verlag,N.Y.

Hustrihild, Andrew I.(1995), "Parallel Implementation of the Discrete Element Method",Colorado School of Mines, March 8th, Internet Online (http:\I ppl.mines.colorado.edu:80/dempaper/dempaper.html)

Hwang, Kai (1993),Advanced Computer Architecture:Parallelism,Scalability, Programmability,McGraw-Hill Inc., N.Y.

Jenkins, James T.(1988), "Volume Change in Small Strain Axisymmetric Deformations of a Granular Material", Micromechanics of Gramular Materials, Elsevier Science Publishers B.V. , Amsterdam

Krawietz, A. (1982) "Some features of the gross behavior of granular media derived from micromechanics",IUTAM Conference on Deformation and Failure of Granular Materials/Delf/Aug.31-Sept. 3

Kuraoka, Senro(1994),"Anisotropic Stiffness and Circulation Flow of Sand: Application for the Expendable Pattern Casting", Ph.D. Thesis, Civil and Environmental Engineering, University of Wisconsin-Madison, Wisconsin

Meegoda N.J.and Washington D.W.(1994),"Massively parallel computers for microscopic modeling of soils", Proceedings of the Eighth International Conjerence on Computer Methods and Advances in Geomechanics, Morgantown, West Virginia, May 22-24, pp.617-622

Mindlin, R.D.(1949),"Compliance of Elastic Bodies in Contact,"J.Appl. Mech. ASME, vol.71, pp.A259-268

Ng. T.T.(1989),"Numerical Simulation of Granular Soil under Monotonic and Cyclic Loading:a Particulate Mechanics Approach", Ph.D. thesis, Civil Engineering, Renesselaer Polytechnic Institute

Oda, M. and Konoshi, J. (1974),"Microscopic deformation mechanism of granular material in simple shear",Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, 14, No. 4, 25-38

Ratnaweera, P.(1992) "The Influence of Chemical Contaminants on Shear Strength and Stress-Strain Behavior of Clay Soils", PhD dissertation, Civil Engineering, New Jersey Institute of Technology,Newark, N.J.

Rodriguez-Ortiz, J.M(1974)., "Estudio del Comportamiento de medios granulares heterogeneos mediante modelos discontinous analogicos y matematicos". PhD thesis, Universidad Politecnica de Madrid.,Spain

Rowe, P.W.(1962), "The stress dilatancy relation for static equilibrium of an assembly of particles in contact", Proceeding of the Royal Society, 269, No.1339, 500-527

Shi, G.(1988),"Discontinuous deformation analysis- a new numerical model for the statics and dynamics of block systems",Ph.D thesis, Univ. of California, Berkeley, Ca.

Terzaghi, K.(1920),"Old earth-pressure theories and new test results", Engineering NewsRecord, 85 ,no.14.(1960 Reprinted in From theory to practice in soil mechanics.: J.Wiley and Sons., N.Y)

Thorton, C., and Barnes, D.J.(1986), "Computer Simulated Deformation of Compact Granular Assemblies,"J. Acta Mechanica, vol. 64, pp. 45-61

Ting, J.M.et. al(1989), "Discrete Numerical Model for Soil Mechanics," J.Geotech. Eng., vol 115, no. 3, pp.379-398

Walton, Otis R(1992), Numerical Simulation Of Inelastic, Frictional Particle-Particle Interactions, Particulate Two-Phase Flow,M.C. Roco(Eds),ButterworthHeinemann, Chapter 25

Walton, Otis. R and Braun, Robert L.(1986), "Viscosity, Granular-Temperature, and Stress Calculations For Shearing Assemblies of Inelastic, Frictional Disks",Journal of Rheology, John Wiley \& Sons, Inc.,N.Y. 30(5), 949-980

Washington D.W and Meegoda N.J(1996),'Micromechanical Simulation of Geotechnical Problems using Massively Parallel Supercomputers", Proceedings of the Eleventh ASCE Engineering Mechanics Conference, Fort Lauderdale, Florida, May 1922 ,to be presented

Washington D.W. \& Meegoda N.J.(1996),'DEM Simulation of Geotechnical Problems using Massively Parallel Supercomputers", submitted to Journal of ASCE Geotechnical Engineering

William, J. \& Mustoe, G. (1993) "Preface",Proceedings of the Second International Conference on Discrete Element Methods, Massachusetts Institute of Technology, Boston, MA, March 18-19

