
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Spring 1996

Knowledge discovering for document classification
using tree matching in Texpros
Ching-Song Wei
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
Wei, Ching-Song, "Knowledge discovering for document classification using tree matching in Texpros" (1996). Dissertations. 1022.
https://digitalcommons.njit.edu/dissertations/1022

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1022?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM I

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type o f computer printer.

The quality o f th is reproduction is dependent upon the quality o f the

copy subm itted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back o f the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

UMI Number: 9635199

Copyright 1996 by Wei, Ching-Song
All rights reserved.

UMI Microform 9635199
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

A B ST R A C T

K N O W L E D G E D IS C O V E R IN G F O R D O C U M E N T
C L A SSIF IC A T IO N U S IN G T R E E M A T C H IN G IN T E X P R O S

by
C hing-Song W ei

This dissertation describes a knowledge-based system for classifying documents

based upon the layout structure and conceptual information extracted from the

content of the document. The spatial elements in a document are laid out in

rectangular blocks which are represented by nodes in an ordered labelled tree, called

the “layout structure tree” (L-S Tree). Each leaf node of a L-S Tree points to

its corresponding block content. A knowledge Acquisition Tool (KAT) is devised

to create a Document Sample Tree from L-S Tree, in which each of its leaves

contains a node content conceptually describing its corresponding block content.

Then, applying generalization rules, the KAT performs the inductive learning from

Document Sample Trees of a type and generates fewer number of Document Type

Trees to represent its type. A testing document is classified if a Document Type Tree

is discovered as a substructure of the L-S Tree of the testing document; and then the

exact format of the testing document can be found by matching the L-S Tree with

the Document Sample Trees of the classified document type. The Document Sample

Trees and Document Type Trees are called Structural Knowledge Base (SI<B). The

tree discovering and matching processes involve computing the edit distance and the

degree of conceptual closeness between the SKB trees and the L-S Tree of a testing

document by using pattern matching and discovering toolkits. Our experimental

results demonstrate that many office documents can be classified correctly using the

proposed approach.

K N O W L E D G E D IS C O V E R IN G F O R D O C U M E N T
C L A SSIF IC A T IO N U S IN G T R E E M A T C H IN G IN T E X P R O S

by
Ching-Song W ei

A D issertation
Subm itted to th e Faculty o f

N ew Jersey In stitu te o f Technology
in Partial Fulfillm ent o f the R equirem ents for the Degree of

D octor o f Philosophy

D epartm ent o f C om puter and Inform ation Science

M ay 1996

Copyright © 1996 by Ching-Song Wei

ALL RIGHTS RESERVED

APPROVAL PAGE

KNOWLEDGE DISCOVERING FOR DOCUMENT
CLASSIFICATION USING TREE MATCHING IN TEXPROS

Ching-Song Wei

Dr. Peter A. Ng, Dissertation Advisor 	 Date
Chairperson of Department of Computer and Information Science

Professor of Computer and Information Science, NJIT

Dr. Michael Bieber, Committee Member 					Date
Assistant Professor of Computer and Information Science, NJIT

Dr. Qianhong Liu, Committee Member 	 Date
Assistant Professor of Computer and Information Science, NJIT

Dr. James 'A.M. McHugh, Committee Member 	 Date
Associate Chairperson of Department of Computer and Information Science
Professor of Computer Science, NJIT

Dr. Jason T.L. Wang, Committee Member

				

Date
Assistant Professor of Computer and Information Science, NJIT

Dr. H. T. Yeh, Committee Member 	 Date
Supervisor, AT&T Bell Laboratories

BIOGRAPHICAL SKETCH

Author: 	Ching-Song Wei

Degree: 	Doctor of Philosophy

Date: 	 May 1996

Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1996

• Master of Science in Mechanical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1988

• Bachelor of Science in Mechanical Engineering,
National Cheng Kung University, Tainan, Taiwan R.O.C., 1980

Major: 	Computer Science

Publications:

C. S. Wei, Q. Liu, J. T. L. Wang, and P. A. Ng, "Knowledge Discovering for
Document Classification Using Tree Matching in TEXPROS," submitted to
Information Sciences: An International Journal.

C. S. Wei, J. T. L. Wang, and P. A. Ng, "Inductive Learning and Knowledge
Representation for Document Classification," Proceedings of the Third IEEE
International Conference on Systems Integration, pp. 1166-1175, August 1994.

D. T. Wang, Y. N. Hew, J. Lee, K. Chern, C. S. Wei, and P. A. Ng, "The Use
of FFT on Sampled Boundary Distance," Proceedings of IEEE International
Conference on Systems, Man, and Cybernetics, Los Angeles, California, pp.
10-13, November 1990.

D. T. Wang, C. S. Wei, S. S. Chen, B. C. Sung, T. H. Shiau, and P. A. Ng, "Cross
Correlation of Sampled Boundary Distances - An Approach to Object Recog-
nition," Proceedings of the First IEEE International Conference on Systems
Integration, Morriston, New Jersey, pp. 224-235, April 1990.

A C K N O W L E D G M E N T

First and foremost, I would like to express my sincere gratitude to my advisor,

Dr. Peter A. Ng, for his guidance, support, and constant encouragement throughout

this work.

I wish to express my appreciation to Dr. Jason T. L. Wang and Dr. Qianhong

Liu for their valuable suggestions and support.

Special thanks to Dr. Michael Bieber, Dr. James A.M. McHugh, and Dr. H.

T. Yeh for actively participating in my committee.

I would also like to thank C. Y. Wang, Corrado Rizzi, and Steve Sawicki for

their help, and to my employer, Pfizer Inc., for providing the educational assistance

in the last three years. Finally, I want to express my appreciation to my wife,

Chan Fang-Ling, to my daughter, Tina, to my son, Eric, and to my parents and

brothers. W ithout their support and encouragement, my accomplishment would not

be possible.

T A B L E O F C O N T E N T S

C h a p te r P age

1 IN TRO D U C TIO N ... 1

2 DOCUMENT LAYOUT STRUCTURE ANALYSIS 11

2.1 Document Image A nalysis.. 11

2.2 Basic Block Classification .. 15

2.3 Block Representation of a Document ... 17

3 GENERATION OF L-S TREE AND DOCUMENT SAMPLE TREE 19

3.1 Adjacency Relation A lgorithm ... 19

3.1.1 Horizontally Adjacent B locks.. 19

3.1.2 Horizontally Virtual B lo c k s ... 22

3.1.3 Vertically Adjacent B locks... 22

3.1.4 Vertically Virtual B lock .. 24

3.1.5 Independently Virtual Block .. 26

3.1.6 Properties of Virtual B locks.. 27

3.1.7 Tree Structure Transformation A lg o rith m 29

3.2 Nested Segmentation A lgorithm .. 32

3.3 Knowledge Acquisition for Document Sample T ree 34

4 TREE M A TCH IN G .. 38

4.1 Tree Edit O p e ra tio n .. 38

4.2 M a p p in g .. 40

4.3 Frame Instance and Structured B lo c k s ... 45

5 CLASSIFICATION S Y S T E M .. 47

5.1 Knowledge Acquisition Tool (KAT) .. 48

5.2 Document Sample Tree G e n e ra to r .. 49

5.3 Document Type Tree Inference E n g in e ... 51

vii

C h a p te r P age

5.3.1 Observational Statements .. 52

5.3.2 Inductive Paradigm .. 53

6 FINDING COMMON SUBSTRUCTURES
FROM SEGMENTED DOCUMENTS ... 56

6.1 Longest Common Subsequence.. 56

6.2 Edit Operations of Document Segm ents... 57

6.3 Mappings of Two Segmented Docum ents.. 60

6.4 Largest Common Subregion of Segmented Documents 63

6.5 Largest Common Substructure of Trees.. 64

6.6 Relation of Largest Common Substructure
and Largest Common S ubregion ... 65

7 GENERALIZING DOCUMENT SAMPLE T R E E S ... 70

7.1 Importance of a Tree... 70

7.2 Degree of G eneralization.. 70

7.3 Generic Generalization R u le s .. 72

7.4 Rules for Preprocessing Document Sample T r e e s 74

7.5 Discovering the Largest Common Substructures..................................... 76

7.6 Search for Document Type T r e e s .. 86

7.7 Number of Document Type Trees and Computational
Complexity of Classification... 91

7.8 Inductive Learning Process for Constructing Document Type Trees . . 92

7.9 Finding All the Possible Largest Common Substructures 93

8 DOCUMENT CLASSIFICATION.. 98

9 EXPERIMENTAL RESULTS AND CONCLUSION 101

10 FUTURE RESEARCH... 105

REFERENCES ... 108

v iii

L IST OF T A BLES

Table Page

3.1 Node content for the block B 4 in Figure 1.5... 36

3.2 Node content for block B\ in Figure 1.5.. 37

5.1 The format of observational statem ents... 52

7.1 L C S str table for Document Sample Trees in Figure 7.3................................ 78

7.2 Degree of completeness table for Table 7.1.. 82

7.3 Modified degree of completeness table... 86

9.1 Experimental result 1 of document type classification...................................... 102

9.2 Experimental result 2 of document type classification................................... 103

9.3 Experimental result of document type learning time..................................... 103

ix

LIST O F F IG U R E S

Figure

1.1 Architecture of Knowledge Based Document Classification System. . . .

1.2 A document example of MEMO document type...

1.3 The block representation (page layout) for the example of MEMO
document type in Figure 1.2...

1.4 L-S Tree for the example of MEMO document type in Figure 1.2..............

1.5 The Document Sample Tree for the example of MEMO document type
in Figure 1.2...

1.6 The L-S Tree for a document example of JOURNAL PAPER document
type...

3.1 Geometrical relations for horizontally adjacent block and B j

3.2 Example of a horizontally virtual block..

3.3 Geometrical relations for vertically adjacent block B t and B j

3.4 The tree representation for a vertically virtual block.....................................

3.5 B\ <-* B 2 and B 2 <-> B 3, but H (B i,B 2 ,B 3) is not true.................................

3.6 B\ | B 2 and B 2 £ B 3, but V (B i ,B 2, B 3) is not true......................................

3.7 L-shape block...

3.8 Example of a set of blocks and its tree structure............

3.9 An example of document page layout segmentation and its corresponding
L-S Tree...

4.1 Relabelling of a node label (6) to label (c)...

4.2 Deletion of a node b...

4.3 Insertion of a node c..

4.4 A mapping from T to T '..

4.5 A testing document of MEMO document type...

4.6 The L-S Tree of the testing document in Figure 4.5......................................

4.7 The best mapping between a L-S Tree and a Document Sample Tree. . .

Figure Page

4.8 Information extraction from L-S Tree... 46

5.1 A screen layout of KAT for a MEMO document.. 50

5.2 The training event of a tree example.. 53

5.3 Inductive learning process for Document Type Trees...................................... 55

6.1 An example of a delete.segment (relocate) operation and its equivalent
tree edit operation delete (relabel).. 59

6.2 An example of a insertsegment (change-block-content) operation and its
equivalent tree edit operation insert (relabel).. 61

6.3 Mappings of two segmented documents and their corresponding trees. . . 62

6.4 Segmented documents D x and D 2 and their Document Sample Trees 7j
and T2 ... 66

6.5 An example of preprocesses for segmented document and its Document
Sample Tree.. 68

6.6 The H (or V) node has only a single H (or V) child node........................... 69

7.1 (i)Variable instantiation: The variables in pa are matched with the
shaded subtrees in t. (ii) Bar instantiation: The bar is matched with
the nodes (block dots) on a path p .. 75

7.2 The rule of L C S str 's discovering... 78

7.3 Document Sample Trees of the MEMO document type................................ 79

7.4 L C Sstr trees for Document Sample Trees in Figure 7.3............................... 80

7.5 (continued from Figure 7.4) L C S str trees for Document Sample Trees in
Figure 7.3... 81

7.6 Modified generalization digraph for the L C S str trees in Figure 7.4 and
Figure 7.5... 85

7.7 Search process of Algorithm 7.4... 90

7.8 An example of induced forest.. 96

7.9 A data structure of map and table.. 97

8.1 Document classification process.. 99

8.2 Document classification algorithm... 100

9.1 Document Type Trees.. 104

C H A PT E R 1

IN T R O D U C T IO N

Automatic document classification is one of the fundamental tasks in an effective

Office Information System (OIS) [32], A given document can be characterized by

its content and structural organization. A common way of describing the structural

organization is the layout structure which plays a significant role in document classi­

fication. For example, the type of a document can be identified at a glance over its

layout structure without looking into its content, and perhaps by recognizing specific

strings of characters at certain locations within the page. The layout structure (or

geometric structure) of a document is the result of dividing repeatedly the layout of

its content into smaller parts (that is, on the basis of its presentation). For example,

a document image is composed of several blocks, each of which is a rectangular

area containing a portion of document content. The logical structure (conceptual

structure) of a document is the result of dividing repeatedly the content of a document

into smaller parts on the basis of semantic meanings of the content. For instance,

an article consists of a title, abstract, subtitles, and paragraphs [27]. In many

cases, documents of the same class share a set of invariant layout features, which

is called the page layout signatures [9]. Similarly, documents of the same class share

a set of invariant logical features which is called the logical layout signature. The

page layout signature and logical layout signature are actually only a small part

of the whole layout structure. Many previous works in this area focused on paper

documents of special types. The techniques work either by analyzing the layout

structure or the logical structure of a document. A page layout recognition system for

office documents, which was proposed by Esposito [9], can automatically detect and

construct geometric characteristics of the layout components, such as height, width,

spacing, and alignment. A significant number of documents were used for training the

1

2

classification system. Two methods of learning from examples were employed, one

is the conceptual learning and the other one is the parametric method. The former

uses the inductive generalization, and the latter uses a statistical approach to find

the linear discrimination function for classification. Both use only spatial relations of

the layout components to determine the layout similarities and to derive the discrim­

ination rules. Both layout similarities and discrimination rules are employed in the

document type recognition step. This system considers only document type classi­

fication, but not document information extraction. A pattern recognition method

for identifying letter-typed documents was proposed by Pagurek et al [21]. This

method maps the relative positions of blocks into a m atrix representation and then

applies pattern matching to recognize major blocks such as date, sender, receiver,

etc. The MAFIA system [16, 8], which was proposed by Lutz et al., uses a priori

defined type hierarchy, called the conceptual structure definition, to perform logical

and content analysis of a document. It requires the time-consuming type hierarchy

search to classify a document. Another system called ANASTASIL [7] uses a hybrid,

modular knowledge representation, called the geometric tree, to perform a best-first

search with a combination of “hypothesize and test” strategy. This system requires

an exhaustive search on the geometric tree to identify the type of a document. A

document understanding method proposed by Tsujimoto [29] transfers the layout

structure of a document into its logical structure. The aim of this system is to extract

the logical relationships between the document blocks of a newspaper. Schmdit and

Putz proposed a rule-based recognition system, CAROL [24], to recognize automat­

ically the important elements on the title pages of doctoral theses. The rules are

generated using a machine learning method on sample documents.

In this dissertation, a system for document classification is presented and an

approach is proposed to generate the knowledge of the layout structure and logical

structure of any type of document. Figure 1.1 shows the overall architecture of the

3

proposed document classification system. In this system, a document from a scanner

or a facsimile is first digitized and thresholded into binary images and then encoded

by the Optical Character Recognition (OCR) system. The OCR system separates

the document’s textual part from non-textual part, and the Page Layout Generation

module converts the document into an encoded form. The encoded document is

composed of the ASCII code of textual part (i.e., character strings, sentences and

paragraphs) and the ASCII description of non-textual parts (i.e., logos, figures,

pictures, etc.). A document input from E-mail is sent to the Code Form Generator

to generate its basic block representation. The encoded document is then segmented

either by the Nested Segmentation Algorithm [13] or by Adjacency Relation Segmen­

tation [34] and then transformed into a Layout Structure Tree (L-S Tree) in which

each leaf node corresponds to its content block in the document. The structural

organization of a document type, such as MEMO in Figure 1.2, is segmented into

blocks as depicted in Figure 1.3. The boundary of each block is identified by searching

for a reasonable size of spacing between blocks. The geometric relation of these blocks

can be described in term of L-S Tree structure as shown in Figure 1.4 if the document

is segmented by the Adjacency Relation Segmentation Algorithm.

In the stage of document classification, a document is classified if one of

the Document Type Trees can be discovered as a substructure of its L-S Tree.

This process is called Document Type Tree Discovering. A modified algorithm of

Discovering the Largest Approximately Common Substructures of Two Trees [25] is

employed to perform the discovering process. This Document Type Tree represents

a collection of Document Sample Trees of the type. Then, the exact format of the

document type can be found by searching the closer match of the L-S Tree and one

of these Document Sample Trees. This is called the process of Document Sample!

Tree Matching. The modified algorithm of Approximate Tree Pattern Matching

4

D o c u m e n t In p u t

Basic Blocks R ep resen ta tion
O ptical C haracter

((recognition
Code Form

G enerator

P a g e Layout (Block R ep resen ta tion)
T ree R e p resen ta tion a n d Blocks

a - . M K T ;

Page Layout G eneration

t f e n c o d e d form

T ree Generation T ree structure Generatiun
Rules

L-S T re e m ap p ing tor pag o layout a n d Its
K n o w le d g e A cq u is itio n T o o l

(KAT)

C la s s if ic a tio n H an d le r
<CH)

Docum ent T ype Tree
D iscovering

<--
< ----- Docum ent Sam ple

T ree G enerator
req u e st

U ser

In te rfa c eD ocum ent Sam ple Tree
M atching

d o c u m e n t ty p e
c la ss ifie d

Inform ation
Extraction

D ocum ent Type Tree

Inference Engine

Control Unit < >

K n o w le d g e B ase (K B)

Docum ent Type T ree

Inference Mule*

Key T erm Thcsaurs

Knowledge !U*c

M etaknowledge H ue.
p n n c ii control.

Dtwumenl Sample Tree. high light the important block
generate* ni|ue»t lo uwn.

create* a appropriate node lat<cl

Document Type Tree* and Document Sample Tree*

for Document Type Tree D ,*umcnl Type Tree.

rclatiomhip between word* morphological

F ig u re 1 .1 Architecture of Knowledge Based Document Classification System.

5

LOGO O F NJIT Office of the President

M E M O R A N D U M

T O : UNIVERSITY COMMUNITY

FROM : S au l X. F en ste r

DATE : O ctober 13. 1990

SU B J : N ew staff a n d S erv ice Award

P le a s e join u s in w elcom ing new m em b ers of the
U niversity Com m unity a n d honoring S erv ice A ward R ecip ien ts
a t a recep tio n to b e hold in their honor O ctober 3 1 s t a t
3 :00 p .m . in th e Com pu3 C en te r Ballroom. I lo o k forword to
s e e in g you.

SIGNATURE

S X F:bas

F ig u re 1 .2 A document example of MEMO document type.

L O G O O F N JIT foilice Ql Bia Piesklwill

i M E M O R A N D U M l

Iron
IFR Q M i I

ID A T E : I

G

tS a u lX F o n s to r l

IQctobor 13. 19901

INow staff a n d Service Award"]

P le a s e join u s in w elcom ing n ew m em b ers of the
University Com m unity a n d honoring Service A ward R ecipients
at a recep tion to bo he ld in their honor O ctober 3 1 s t a t
3 :00 p .m . in th e C am pus C en ter Ballroom. I Look forword to
s e e in g you.

SIGNATURE

ISX F:bad

F ig u r e 1 .3 The block representation (page layout) for the example of MEMO document
type in Figure 1.2.

6

v

MEM ORANDUM

B 4 r r o T l

f i , I FROM: I

DATE:

F ig u r e 1 .4 L-S Tree for the example of MEMO document type in Figure 1.2.

7

[30, 33] is applied to perform the matching process. Both processes use layout and

conceptual analysis. Once the document type and document format of a document

have been decided, some values of its corresponding frame instance [32] can be

extracted automatically (the formal definition of frame instance will be discussed

in Section 4.3). In the stage of learning process, the Knowledge Acquisition Tool

is devised to learn the tree structure from the document samples and an inductive

learning process is employed to derive the Document Type Trees from Document

Sample Trees of each document type. The encoded document sample is transformed

into L-S Tree and then sent to the Knowledge Acquisition Tool. W ith the help from

user, Document Sample Trees are created whose leaf nodes contain conceptual infor­

mation of their corresponding blocks. The information includes the type of block,

key terms, logical constituents and others which describe the im portant semantical

contents of the document. The key terms are the significant words that appeared

in the document. The logical constituents are the conceptual description of major

features which appeared in a document content of its type. These values will help

classify the document type. One of the major features of this system is that it can be

easily customized by training the system with user’s document samples. By applying

the Knowledge Acquisition Tool and inductive learning process the knowledge base

can be built for the user’s office environment.

If the example in the Figure 1.4 is a document sample, its Document Sample

Tree is described in Figure 1.5. The key terms in the contents of the nodes corre­

sponding to the blocks B 3, 2?4, B 6, _B8, and B w are “MEMORANDUM”, “TO” ,

“FROM”, “DATE” and, “SUBJ” respectively. And the logical constituents corre­

sponding to the blocks B 3, B 5, B 7, B 9, and B n are NULL, receiver, sender, date,

and subject respectively. These significant key terms and logical constituents appear

only in the upper portion of the page. Associated with an image block, the node A,

contains “LOGO of N JIT ' as the logical constituent of this block.

8

T isla tic ;
KT: N U LL;

L C :N JIT LOGO;

1: 10;

S: N U L L ;

C: p ic tu re .

T :sta tic
K T :M E M O R A N D U M
L C :N U L L ;
I: IO.
S; N U L L ;

T :uynam ic :C: te x tu a l ft
T :s ta tic ; T :dynam ie ; T :sta tic
K T :D A T E ; KT: N U L L ; K T rS U B I

L C: N U L L ; L Crdatc; L C : N U LL

1: 13: 13. 1: 13;

S :« » : S: N U L L : S : « u

C: tex tual, q - tex tual C : tex tu al

1 ' ' I

KT: N U L LT :sta lic ;
K T :F R O M

L C : N U L L

I: 14;

S : l b

C : tex tual.

T .-uynam ic;

KT: N U L L ;

LC :scm lcr.

1:14

S: N U L L

C: tcx lual

T :x tatie; T :dynam ic
L C :suh j;K T :T O K T: N U L L

LC: N U L L ; L C rc c c iv c r
S: N U L L

C : tex tual.S: N U LL

C : tex tual. C : textual

f l , L l° L J

B6 I PROMJ I

I DATE: I

gnEn

T : ty p e o f block;

LC : log ica l constituen t;

K T: key term ;

I: im portance;

S: s em a n tic associa tion ;

C : c lass o f block.

F ig u r e 1 .5 The Document Sample Tree for the example of MEMO document type in
Figure 1.2.

9

B | UiKETRANSACTIONS ON KNOWLEDGE AND DATA LNGtNlERlNO. VOL. i . NO. J. St-PIT-MBm IWI

Learning C lassification Rules from

D atabase in the C ontext o f Knowledge
Acquisition and Representation

B . R am in Y asdij

. .Scien tific know ledge through d em onstration...

A b stra c t■ T h e bottleneck.

In d ex T erm s♦ C oncep t learning.

B . I. IN T R O D U C TIO N

F ig u r e 1 .6 The L-S Tree for a document example of JOURNAL PAPER document type.

10

Figure 1.6 shows another example of a L-S Tree in which the leaf nodes

correspond to blocks of a technical paper published in a journal. The key terms

in the node contents corresponding to the blocks B \, B 5, B 6, and B j are “IEEE

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING”, “Abstract',

“Index Terms” , and “Introduction” respectively. And the logical constituents corre­

sponding to the blocks B i , B 2, B 3, B 5 B§, are name of the journal, title of the

paper, author, abstract, and index terms respectively. The “IEEE TRANSACTIONS

ON KNOWLEDGE AND DATA ENGINEERING” , “Abstract’, “Index Terms”

and “INTRODUCTION” , which are fixed terms appearing in the first page of this

journal, are selected as key terms. The contents of blocks B 2 and B A are distinct

in different documents of the same journal. Therefore, no key term is selected

from these blocks, but their logical constituents are title of the paper and author

respectively. The symbols of nodes H and V denote the horizontally and vertically

virtual blocks respectively, in which a group of blocks are laid out horizontally and

vertically in a printed page.

Chapter 2 discusses the document layout structure including document image

analysis. Chapter 3 describes the generation of L-S Tree and Document Sample Tree

for a document. The tree matching operations are described in Chapter 4. The

Document Type Tree Inference Engine and the components of classification system

are discussed in Chapter 5. In Chapter 6, finding the Largest Common Substructure

from segmented documents and their corresponding trees is presented; Chapter 7

describes the generalization of Document Sample Trees to yield Document Type

Trees. In Chapter 8, the use of document classification system for identifying the

type of document is discussed. Some experimental results of classifying a variety

of documents are given in Chapter 9. Future research directions of this work are

discussed in Chapter 10.

C H A P T E R 2

D O C U M E N T LA YO UT ST R U C T U R E A N A LY SIS

After a document is scanned and digitized, the bitmap of the document image is

analyzed and segmented into rectangular blocks which are called basic blocks, each

of which individually contains one single text line, a vertical line, a horizontal line, a

picture, or graphics. Some of the consecutive basic blocks containing textual lines can

be assembled together to form a larger block. The result is called block representation

of a document which can be further transformed to be a tree structure.

2.1 D ocum ent Im age A nalysis

The existing techniques for analyzing document image analysis are projection profile,

run-length smoothing, and contour tracing [28]. The run-length smoothing method

is employed in this thesis. A run is a set of adjacent 0’s or l ’s. The length of a run

is the number of adjacent 0’s or l ’s in a binary sequence. The run-length smoothing

algorithm (RLSA) scans row by row or column by column the binary sequences of

any given document image [10, 37]. That is, the algorithm consists of vertical (row

by row) and horizontal (column by column) smoothing. The smoothing converts a

binary sequence / into an output sequence g according to the following rule: if the

length of 0’s in a run is less than or equal to a predefined threshold value C then

these 0’s are changed to l ’s. For example, a binary sequence / which represents

pixels in row by row or column by column direction is converted into g with the

threshold C — 4.

/ : 00011000000100111000111110000010000

g : 11111000000111111111111110000011111

The vertical and horizontal smoothing rules merge two runs of l ’s together

if the spacing between them is less than the predefined threshold. Since the

11

12

horizontal and vertical spacing between document elements are different, the

horizontal smoothing (processing binary sequence column by column) and the

vertical smoothing (processing binary sequence row by row) use different threshold

values (C"s). By selecting the appropriate C"s, the smoothing rules are used to

construct the merged runs to form various blocks. Consequently, each block contains

a single mode of content such as a single text line, a vertical line, a horizontal line,

a picture, or graphics. The original RLSA [37] consists of four steps as follows:

1. A horizontal smoothing is applied to the original document image by a

predefined threshold Ch.

2. A vertical smoothing is applied to the original document image by a predefined

threshold Cv.

3. A logical AND operation combines two smoothing results of Steps 1 and 2.

4. An additional horizontal smoothing is applied to the output of Step 3 by a

relatively small threshold Ca.

The selections of different values of C/M Cv, and Ca affect RLSA to yield different

resulting images. For a too small Ch the horizontal smoothing rule will link the

characters within a word but can not bridge the inter-word space. A too large C/(,

however, may cause text to be joined with non-text region. Likewise, the value of

Cv may cause the similar effect. The relatively small threshold Ca of Step 4 is used

to fill in the horizontal gaps between two consecutive words in a row. The original

RLSA algorithm requires the scannings of whole image four times. An improvement

[26] of reducing the RLSA algorithm to two steps can be done as follows:

Consider the original RLSA algorithm. Let A and B be the output of Steps 1

and 2, respectively. Step 3 is to perform A fl B, which is equivalent to A — (->B).

Therefore the four steps of RLSA can be modified by combining Steps 2 and 3 into

one step, which is

13

• If the run length of 0’s in the vertical direction of the original image is greater

than Cv, then reset the corresponding pixels in A to be 0’s and leave .4

unchanged otherwise.

The three-step algorithm can be revised by processing the vertical smoothing before

the horizontal smoothing.

1. A vertical smoothing is applied on the original document image using a

predefined threshold Cv.

2. If the run length of 0’s in the horizontal direction of the original image is

greater than C\,, then reset the corresponding pixels in the output of Step 1 to

0’s otherwise they remain unchanged.

3. An additional horizontal smoothing is applied to the output of Step 2 using a

relatively small threshold Ca.

The three-step algorithm can be further improved by combining Steps 2 and

3 (both perform the horizontal smoothing) into one step by analyzing the relations

between Ca and Ch as below. These three relations have effects on the above three-

step algorithm.

(I) Ch = Ca = C. If the number of horizontally consecutive 0’s of the original

image is greater than C, then in the Step 2 the corresponding pixels must be

uniformly set to 0’s and will not be set to l ’s in Step 3. If the number of horizontally

consecutive 0’s of the original image is less than or equal to C, the corresponding

pixels remain unchanged in Step 2, and will be set to 1 in Step 3. From the above

observation, Step 3 is able to decide whether changes take place on the output of

Step 1 by checking on the original image. Since Step 3 is independent of Step 2, Step

2 and 3 can be combined together as follows:

14

• If the run length of 0’s in the horizontal direction of the original image is

greater than C, then set the corresponding pixels in the output of Step 1 to

0’s otherwise set them to l ’s.

It is noted that no m atter what values are changed vertically in Step 1, the results

obtained by the combination of Step 2 and 3, which checks on the original image

horizontally, are independent of Step 1 and determine the final results of the

smoothing. Therefore, the one-step horizontal smoothing algorithm applied to the

original document (as Step 1 in the four-step RLAS) has the same function of above

three-step algorithm. Hence, the one-step algorithm can replace the four-step RLSA

algorithm when Ca = Ch-

(II) Ch < Ca. If the number of horizontally consecutive 0’s of the original image

is between Ch and Ca, then the corresponding pixels which remain 0’s in Step 2 will

be converted into l ’s in Step 3. Therefore, Step 2 is redundant and can be removed.

(III) Ca < Ch- If the number of horizontally consecutive 0’s of the original

image is between Ch and Ca, then check the corresponding pixels in the output of

Step 1 against Ca to determine whether 0’s or l ’s to be assigned to these pixels.

Thus, the final improved algorithm which consists of only two steps is as follows:

Set predefined threshold values Cv, Ch and Ca.

S tep 1 A vertical smoothing is applied to the original document image using a

predefined threshold Cv.

S tep 2 If the length of a 0’s run in the horizontal direction of the original image

(denoted by R L) is greater than a predefined threshold Ch, then reset the

corresponding pixels in the output of Step 1 to 0’s. If R L < Ca(a predefined

threshold), then switch the corresponding pixels in the output of Step 1 to l ’s.

If Ca < R L < Ch and that the run length of horizontally consecutive Q’s in the

15

output of Step 1 is less than or equal to Ca, then set the corresponding pixels

in the output of Step 1 to l ’s.

2.2 Basic B lock Classification

The procedure described in the previous section can be used to divide document of

mixed-mode (a mixture of text, graphics, and pictures) into basic blocks, each of

which contains only a single-mode content. The next step is to classify the blocks

into text, horizontal or vertical line, graphics and picture classes. In TEXPROS,

a robust block classification algorithm based on clustering rules [26] is used. Let

the origin of the document image be located at the upper-left corner. Each block is

measured in terms of the following:

• Let (x min, ymin) be the x- and y-coordinates of the upper-left corner and (.Tmm +

dx, Um in + dy) be the bottom-right corner of a block, where dx and dy respec­

tively are the width and height of a block. (TV) is the total number of black

pixels in a block of the original image.

• Let (T H) be the horizontal transitions of white to black pixels in a block of

the original image.

• Let (TV) be vertical transitions of white to black pixels in a block of the original

image.

• Let (Sx) be the number of columns in which black pixels exist, when a block

of the original image is projected onto x-axis.

Since the projection profile of a block onto y-axis in most cases contains black

pixels in each row, it is redundant to measure the number of rows in which the

black pixels exist. The following features used in block classification can be

easily calculated:

16

• H is the height of each block , that is H = dy.

• R is the ratio of width to height (or aspect ratio), that is R =

• D is the density of black pixels in a block, that is D —

• Let T H X be the horizontal transitions of white to black pixels per unit width,

where T H X =

• Let TVX be the vertical transitions of white to black pixels per unit width,

where TVX =

We use 5x instead of dx in the denominators of TVX and T H X because the

values of T H x and TVX for all the characters in a text block are bounded by a

range, which can be used to determine the text block. This will be discussed

later.

• T H y is the horizontal transitions of white to black pixels per unit height, where

THy = 2j£

• TVy is the vertical transitions of white to black pixels per unit height, where

TVy = f •

We observe that most of the office documents contain the text with the most

common font and size of characters, and the mean value of heights of all the blocks

in a document is approximately equal to the most common tex t’s block-height.

Therefore, the ratio of width to height, R, can be used to detect the block’s orien­

tation, such as horizontal or vertical lines. The mean horizontal transition T H X

and the mean vertical transition TVX play important roles in text and non-textual

discrimination. Both transitions are independent of variant character’s fonts and

sizes as long as the width to height ratio of a character is not varied significantly

[26].

17

Let TH™ax and TH™m denote the maximum and minimum values of T H x of all

characters respectively. Let TV™ax and TV™in denote the maximum and minimum

values of TVX of all characters, respectively. Intuitively, both T H x and TVX of any

text block are within the range of:

T H m in < T H x < T H m a x

r p y m i n < j n y ^ < T y m a x

Let Hm be the average height of the most common blocks. The rule-based

basic block segmentation algorithm is described as follows [26]:

Let ci, C2, C3, C4, C5, C6, Ch 1, and c/,2 be predefined constants.

R ule 2.1: if C \ H m < H < c2 Hm, the block with the height H belongs to a text.

R ule 2.2: if H < c\Hm and c/ti < T H X < qi2, this block belongs to a text.

R ule 2.3: if H < C \ H m , and 0.9 < TVX < 1.1, this block is a horizontal line.

R ule 2.4: if 5x < c\Hm, R < I/C3, and 0.9 < T H X < 1.1, this block is a vertical

line.

R ule 2.5: if H > c2 H m, c5 < | | < c6, and Chi < T H X < Ch2, this block is a text.

R ule 2.6: if D < C4, this block belongs to graphics.

R ule 2.7: otherwise, this block is a picture.

2.3 B lock R epresentation o f a D ocum ent

The output of the segmentation algorithm given in Section 2.2 is a basic block

consisting of a single text line, a vertical line, a horizontal line, a picture, or graphics.

Some of the basic blocks containing text lines can be assembled together to form

a larger block by exploiting a number of “perceptual” criteria such as the same

18

starting or ending columns, the same spacing, etc. This process groups together

different blocks within the document to form a block representation which is the

layout structure of the document. The criteria used to assemble two blocks of

vertically adjacent text lines are as follows:

1. The class of blocks is textual.

2. The spacing between two blocks is less than or equal to c * dy, where dy is the

smaller height of the blocks, and c is a pre-defined constant.

A block could be (1) a textual block which may contain strings of characters, words,

sentences, or paragraphs, or (2) a non-textual block which may contain pictures,

graphics, vertical lines, or horizontal lines. Formally, each block outputted from the

Character Recognition System is represented by a quadruple (ID, Type, Location,

Dimension), where ID is the unique number of each block; Type indicates one of the

text, picture, graphics, and line (horizontal line or vertical line) classes; Location is

specified by the coordinates of the upper-left corner (xmin, ymin) and the coordinates

of the bottom-right corner (x min + dx, ymin -1- dy) with respect to the origin of the

document page (the upper-left corner of the document page); and Dimension is

represented by (d x ,d y).

C H A P T E R 3

G E N E R A T IO N O F L-S T R E E A N D D O C U M E N T S A M P L E T R E E

In this dissertation, the layout structure of a document is described by a tree

structure. There are two methods that can be used to transform the layout structure

of a document to a tree structure: one is of top-down approach which is the Nested

Segmentation Algorithm [13] and the other one is of bottom-up approach which is

the Adjacency Relation Algorithm.

3.1 A djacency R elation A lgorithm

In the Adjacency Relation Algorithm algorithm, the concept of a virtual block is

used for describing the geometric relation of blocks. A virtual block is an imaginary

block containing textual, non-textual, or smaller virtual blocks.

There are three types of virtual blocks: the virtual block H which contains

blocks that are placed next to each other horizontally; the virtual block V which

contains blocks tha t are placed next to each other vertically; and a virtual block

I that contains blocks which are placed next to each other neither horizontally

nor vertically. Note that H , V and I can contain textual, non-textual or virtual

blocks. The definitions of these three types of virtual blocks are given in the following

subsections.

3.1.1 H orizontally A djacent Blocks

A bounding box S of blocks Ai, A 2, . . . , and A n, where n > 1, is a minimum rectangle

enclosing blocks A\, A 2, . . . , and A„; and satisfies the following geometric relations:

(1) (% s)m in = minimum of ({xAl)min, (xA2)m in i • • • 5 and (xAn)min):

the minimum x-coordinate of bounding box S is the minimum of the minimum

x-coordinates of blocks Ai, A 2, . . . , A n.

19

20

(2) (Xs)max = maximum of ((i/ijm an (%A2)max-> ■ ■ ■ i mid {xArl)max).

the maximum x-coordinate of bounding box S is the maximum of the maximum

x-coordinates of blocks Ai, A 2, . . . , A n.

(3) (ys)min - minimum of ((yAl)min, (VA^min, • • • j and {yAn)min)'-

the minimum y-coordinate of bounding box S is the minimum of the minimum

y-coordinates of blocks A\, A 2, . . . , A n.

(4) (ys)max = maximum of ((yAl)max, (y>i2) max) * • • j and {yAn)max)-

the maximum y-coordinate of bounding box S is the maximum of the maximum

y-coordinates of blocks A\, A 2, . . . , A n.

Let -H- denote horizontally adjacent relation. A block B\ is said to be

horizontally adjacent to a block B 2 (denoted by B\ o B 2), if their projections on

y-coordinates are overlapped, and B\ is located to the left of B 2, and there exists a

bounding box tha t contains no other block or part of other block but B\ and B 2.

Figure 3.1 shows the geometrical relation for horizontally adjacent blocks Bi and B y

Let B = {B k |1 < k < n} be a finite set of blocks of a document page layout. If

B(f-)- Bj, then at least one of following geometric relations of overlapping coordinates

must be true:

(1) (yj)min ^ (yi)min — (d" dyj (in Figure 3.1(a));

(2) (yj) min (l / i) m m + dyi < (yj)min + dyj (in Figure 3.1(b)); or

(3) (n) m in — (i j j) rnin i and (iji)min + dyi > (yj)min + dyj (in Figure 3.1(c)) or vice

versa.

21

X

-L'l/iUeJl-’iW '- f k .
v ir tu a l b lo c k H

«xjLn+dxj ’(yjL,+ dyj>

(a)

v ir tu a l b lo c k H

(b)

-=*■ x
v ir tu a l b lo c k H

(c)

Figure 3.1 Geometrical relations for horizontally adjacent block 5 , and Bj.

22

3.1.2 H orizontally V irtual Blocks

Let B be a finite set of blocks of a document page layout. A horizontally virtual

block H is an imaginary block containing several horizontally adjacent blocks

{£?!, B2, . . . , Bj} C B, where B i,B 2, . . . , and B* appear from left to right in row

direction (i.e., B\ <-> B2, B 2 B3, . . . , Bj_i <->■ B,); and this imaginary block is the

bounding box of B j, B2, . . . , and Bj containing no other block or part of other block

but B \ , , and B;. Any bounding box of (B*,, B*+i), 1 < k < i — 1 contains only

Bfc and Bk+i- Any of B^’s can itself be a virtual block. For any block B e B and

B $ {Bi, B2, . . . , Bj}, the following geometric relations of B, {Bi, B2, . . . , B,}, and

H must be true.

(1) { x \) m a x ^ {p^2)mini (-^2)max 5 : {.-^3) m in i • • • j & n d (X i —\) max (^ i) m i n i a n d

(2) (Xf{)min ^ (•&B^min "F dx g Or (xg)min ^ (xfl)min T dXg, and

(^) (Z///)min ^ {VB^min "F dy/j Or (j/fl)min ^ (2///)rmn T dyg.

The tree structure of a horizontally virtual block H is given as follows. A node

H is created with children B i ,B 2,. . . ,B i appeared from left to right according to

appearing orders of their corresponding blocks. Thus, H i(Bu B2, . . . , B n) represents

the horizontally virtual block Hi created for enclosing blocks Bi, B2, . . . , B„ .

Figure 3.2 depicts a tree representing horizontally virtual block B i (B i , B 2,B 3)

which contains blocks B \ ,B 2, and B3.

3.1.3 V ertically Adjacent Blocks

Let £ denote vertically adjacent relation. A block B\ is said to be vertically adjacent to

a block B2 (denoted by Bi $ B2) if their projections on x-coordinates are overlapped,

and Bi is located on the top of B2, and there exists a bounding box that contains no

other block or part of other block but B\ and B2. Figure 3.3 shows the geometrical

relation for vertically adjacent blocks Bi and Bj.

23

Figure 3.2 Example of a horizontally virtual block.

24

Let B ={5*11 < k < n} be a set of blocks of a document page layout. Let

Bi, Bj be blocks. If Bi £ Bj, then at least one of following geometric relations of

overlapping coordinates must be true:

(1) (xj)min ^ (Xi)min ^ (xj)min -t- dxj (in Figure 3.3(a)),

(2) (Xj)min < (Xijmin + dxi < (Xj)min + dxj (in Figure 3.3(b)); or

(3) (Xj)miri < (Xi)min, and [xj)min + dxj > (Xi)min + dx{ (in Figure 3.3(c)) or vice

versa.

3.1.4 V ertically V irtual Block

Let B be a finite set of blocks of a document page layout. A vertically virtual block V

is an imaginary block containing several vertically adjacent blocks { B \ ,B 2, . . . , and Bi},

where B \ ,B 2, . . . ,B i are ordered from top to bottom in the column direction

(i.e., Bi £ f?2) • • • , -Bf-i X Bi)-, and the imaginary block is a bounding box

for B\, B 2, . ■., and B t containing no other block or part of another block but

Bi, B 2, . . . , Bi. Any bounding box of (Bk,B k+1), 1 < k < i — 1 contains only B k

and B k+\. Any of B k s can itself be a virtual block. For any block B e B and

B 0 [B x, B 2, . . . , Bi}, the following geometric relations of B, {B X,B 2, . . . ,B i} , and

V must be true.

(1) (D \)m a x ^ (y ?)m in i (2/ 2) 7 7 1 0 1 — (2/ 3)7777777 • • • i ^ m d (i j i—l)m a x — (Di)mini & n d

(2) (xv)min ^ (^i?)min 4“ dxB Or (ig)min ^ (*^v)mi7i 4“ dXy, and

(3) (Vv)min ^ (2/5)771171 + dyB or (yB)min ^ (yv)min 4- dyv .

The tree structure of a vertically virtual block V is given as follows. A node V

is created having its children B\, B2, . . . , and Bi, ordered from left to right according

25

((*i U ■ (y, U >
v irtu a l b lo c k V

u,+ *, ■<ylLn+llyl>

«xiU +<Ixj • fyU+<V

(a)

<

B ,

i

B >

:-----------------. . a

v irtu a l b lo c k V

(b)

v irtu a l b lo c k V

(c)

F ig u r e 3 .3 Geometrical relations for vertically adjacent block Bt and Bj.

26

v,

Bi B 2 B j B 4

Figure 3.4 The tree representation for a vertically virtual block.

to the order of their blocks from top to bottom. For example, Figure 3.4 shows a

vertically virtual block V\ of the blocks B x, B 2, B 3, and B 4 . These blocks can be

represented by a tree structure, in which Bx, B 2, B 3, and B 4 appear from left to right

as the children of the parent Vi- Thus, Vi(Bu B 2 , . . . , Bn) represents the vertically

virtual block V created for enclosing blocks B x, B 2 , . . . , Bn.

3.1.5 Independently V irtual B lock

An independently virtual block I is an imaginary block which is a bounding box

containing several blocks that are neither in vertically adjacent nor horizontally

adjacent relation. Thus Ii(Bx, B2, . . ., and Bn) represents tree structure for the

independently virtual block /j created for enclosing blocks B \ , B 2 , . . . , Bn, which

are ordered from left to right according to the (a;)min-coordinates of their Locations

in left to right sequence.

27

3.1.6 P roperties o f V irtual Blocks

Let 44 be the horizontally adjacent relation and B = {Bi | 1 < i < n).

(1) If B\ 44 B2, then B2 44 B x is not true.

Proof. This is followed by definition in Section 3.1.1.

(2) For B\ 44 B2 and B2 44 B3, H(BX, B2, B3) may or may not exist.

Proof. This can be proven by an example in Figure 3.5 where B x 4 4 B2 and B2

44 B3 are true. Since the bounding box S for B \,B2, and B3 includes part

of S violates the definition in Section 3.1.2. Therefore H(BX, B2, B3)

does not exist.

(3) If there exists a H(BX,B2,B3) then H(B2,B3) and H(BX,B2) also exist, and

B\ 44 H(B2, B3) and H(BX, B2) 44 B3.

Proof. By definition of Section 3.1.2, if H{B\,B2,B 3) exists, then within the

bounding box of B \ ,B 2, and B 3 , B x 44 B2 and B2 44 B3. For B\ 44

B2 or B2 44 B3, we can construct H(BX,B 2) or H(B2,B 3) respectively.

Since B x 44 B2 and H(B2, B3) are true, by definition of bounding box

and horizontally virtual box, B x 44 H(B2,B 3) can be shown to be true.

Similarly, since H(BX, B2) exists and B2 44 B3 is true, then H (B j , B2) 44

B3 is true.

Let £ be the vertically adjacent relation.

(1) If B x £ B2, then B2 ^ B x is not true.

Proof. This is followed by definition in Section 3.1.3.

(2) For B x £ B2, and B2 | B3, then V(BX, B2 , B3) may or may not exist.

28

F ig u re 3.5 B\ o B 2 and B 2 O B 3i but H (B i, B 2, B 3) is not true.

B, b4

b2

b 3

F ig u re 3.6 B\ \ B 2 and B 2 £ B 3, but V (B i ,B 2, B 3) is not true.

P ro o f. It is similar to item(2) above and can be shown by a counter-example

in Figure 3.6.

(3) If there exists a V (B i, B 2, B 3), then V (B 2, B 3) and V (B U B 2) also exist, and B x

$ V (B 2, B 3) and V { B u B 2) % B 3-

P ro o f. It is similar to the proof for item(3) above.

29

3.1.7 Tree Structure Transform ation A lgorithm

The sequence of blocks from OCR is based on the ordering of the (y)min-coordinates

of the blocks, and then on (xmtri)-coordinates if the (ymj„)-coordinates are the same.

Therefore, a set of blocks can be viewed as an array of a link list in which the first

element is the topmost block and the last element is the block at the bottom of the

page. This list is also called a block list. A transformation procedure from a block

list to a tree representation is given below:

1. Create a block list containing all the blocks to be considered in a given page

layout.

2. Find and create all the possible horizontally virtual blocks which will enclose

all the possible blocks in page layout.

3. For each of the horizontally virtual blocks found in step 2, a H node is created

in the corresponding tree structure, with children nodes appeared from left to

right according to the appearing order from left to right of enclosed blocks.

4. Replace the enclosed blocks by the horizontally virtual blocks in the block list.

5. If no horizontally virtual block can be found, then find and create all the

possible vertically virtual blocks which enclose all the possible blocks in a page

layout.

6. For each of the vertically virtual blocks found in Step 5, a V node is created

in the corresponding tree structure, with children nodes appeared from left to

right according to their appearing order from top to bottom of enclosed blocks.

7. Replace the enclosed blocks with vertically virtual blocks in the block list.

8. Go to step 2, until no more horizontally or vertically virtual block can be found.

30

Bn

V

Bn. 2

F ig u re 3 .7 L-shape block.

9. If the block list contains more than one block, then create an independently

virtual block to enclose these blocks.

10. End of process.

The distance of two horizontally adjacent blocks is defined as the shortest

distance of their projections on the x axis. Similarly, the distance of two vertically

adjacent blocks is defined as the shortest distance of their projections on the y axis.

If an L-shape textual block is found, such as the one in Figure 3.7, this block

will be divided by a horizontal line to form two separate rectangle blocks, and their

block numbers will have one additional digit to indicate that they are from the

31

T h e v ir tu a l b lo c k is g re a te r
th a n it is s u p p o se d to b e

fo r v is u a l iz a tio n p u rp o s e .

B , B2

Figure 3.8 Example of a set of blocks and its tree structure.

same block. The same algorithm is then applied to generate the corresponding tree

representation. The reason that one can divide the block horizontally is that there

will always be spacing between two text lines. Therefore the spacing will be a good

place for the divider.

Consider Figure 3.8. Initially, the block list contains B x, B 2,B z ,B \ , and £?r,

(ordered in y-coordinates). The algorithm will try to find the horizontal virtual

blocks starting from B x. Since there does not exist a block B m such that B\ -H-

B m, the searching process switches to B 2. Since B 2 -h- B 3, H \(B a,B 2) is created.

The search process is ended since there are no more blocks which can be enclosed

32

in H\. In the corresponding tree structure, the node H\ is created. B2 and B3 are

also replaced by Hi in the block list. Now the block list contains B 4 and B 3.

Then we search for horizontally virtual blocks from B4. There is no block Bm such

that Bi Bm and the same is true for B3. Next, we search the vertically virtual

blocks starting from B\. There is no other block vertically adjacent to B\. Then a

Vi is found which encloses Hi and B4. In the tree structure the node Vi has H1 and

Bi as its left and right child. We replace Hi and Bi by Vj in the block list. Now

the block list contains B 1, Vj and B5. Next H2 is found which contains Vj and B\.

A node H2 is created in tree structure. The block list now contains H2 and B5 only.

Finally a vertically virtual block V2 is created to enclose H2 and B5. The final tree

representation is V2(H2(Vi(Hi(B3, B2), B4), Bi), B5).

3.2 N ested Segm entation A lgorithm

The Nested Segmentation Algorithm employs top-down method to cut a document

into segments until no segment can be further divided. Each segment is a rectangular

portion of a document containing at least one block. There are two types of segments:

basic segment which contains only a block, and composite segment which is composed

of smaller segments. A document layout is first cut horizontally or vertically into

segments which are at level 1. (Each horizontal (or vertical) cut is called a H (or

V) cut.) All the composite segments at level i are further cut into a number of

smaller segments at level i + 1. The segmentation preprocess terminates when all

the segments cannot be further divided.

Let D represent the set of all the segments contained in a segmented

document layout, and let d[i] represent the *th segment of document D according

to the segmentation ordering. Each segment is associated with a quadruple

(Id,Type, Orientation, Composition), where Id is the identifier (id) of the segment;

Type indicates whether the segment is basic or composite; Orientation specifies

33

whether the segment can be further divided vertically or horizontally if the Nested

Segmentation Algorithm is used, or whether the segment can be enclosed by an H

(horizontal) virtual block or V (vertical) virtual block if the Adjacency Relation

Segmentation Algorithm [34] is used; the Composition specifies the ids of the

segments contained in this segment. When a segment is basic, the segment id is the

id of the block contained in the segment.

For example, a segment d[0] contains several segments d[l], rf[2],. . . , rf[n], at

the same level, which are located in the order either from top to bottom within this

segment if this segment is divided horizontally, or from left to right if this segment is

divided vertically. Then, the value of Composition is (d[0], (d[l]d[2],. . . , d[n])). For

a document layout, the left to right relation of documents in V cut, top to bottom

relation of documents in H cut and parent to child relation between levels are all

significant in a document. The detail of the nested segmentation algorithm is shown

in [13].

The L-S Tree generated by Nested Segmented Algorithm is an ordered labelled

tree in which a node corresponds to a segment of the nestedly segmented document.

Each node is labelled as indicating one of the three available types of nodes: basic

node (Bjnode), horizontal node (H-node), and vertical node (V-node). A Bjnode

represents a basic segment which cannot be further divided. An Hjnode represents

a composite segment, which is divided horizontally into smaller segments. These

smaller segments contained in the composite segment are represented as the children

of the H-node. The order of the children of an H-node appearing from left to right

is the appearing locations of the smaller segments from top to bottom. Similarly,

a V-node represents a composite segment which is divided vertically into smaller

segments. The order of the children of a V-node appearing from left to right

represents the appearing locations of the smaller segments in the composite segment

34

V ,

Figure 3.9 An example of document page layout segmentation and its corresponding
L-S Tree.

from left to right. Figure 3.9 depicts the segments and the resulting trees of a

document segmented by the Nested Segmentation Algorithm.

3.3 K nowledge A cquisition for D ocum ent Sam ple Tree

The conceptual structure of a document is its logical constituents such as sender,

receiver, subject, and date in the document type of MEMO. Therefore, the conceptual

structure can be represented by a set of attribute name and attribute type pairs.

The conceptual structure can be described as (MEMO{(/?eceiuer, string), (Sender,

string), (Subject, string), (Date, string), (Content, text)}). Each document type

has its unique conceptual structure, but there are more than one layout structures

associated with a document type [32].

Conceptually, a document can be divided into two parts: structured and

unstructured parts. The relative locations of structured parts of documents of the

same type always remain the same. The structured parts can be further classified

as static and dynamic parts. The static part has a fixed relative location and the

35

same semantics among the documents of the same document type. On the other

hand, the dynamic parts of different documents of the same document type are

varied. For example, the static parts of a memo document in Figure 1.3 include

the key terms “MEMORANDUM,” “TO,” “FROM,” “DATE,” “SUBJ,” and the

image block LOGO OF NJIT, etc. The dynamic part refers to various strings such

as “UNIVERSITY COMMUNITY” , “ Saul X. Fenster” , “October 13, 1990” , “New

Staff and Service Award” , etc. Some key terms appeared in the static part can be

different among documents even though they have the same meanings. For example,

“MEMORANDUM”, “MEMO” and “NOTICE” are used in different documents to

refer to the same key term of memorandum. A thesaurus is therefore implemented

for storing the terms which are semantically equivalent. When two terms belong to

the same claks in the thesaurus, they are semantically equivalent.

The main body of a document may be the structural parts or the unstructured

parts. In the case of MEMO document type, its main body is the content of the

memo. In the Figure 1.3, it starts with “Please joint us ...” . In the case of 1040 Tax

Return form type, the major components are structural parts such as first name, last

name, social security number, spouse’s social security number, etc.

The function of Knowledge Acquisition Tool (KAT) [2, 8, 11, 15, 22, 23, 24, 38]

is to acquire the necessary classification knowledge from a user and converts the

knowledge into a tree representation that can be used by a knowledge-based system.

KAT consists of a Document Sample Tree Generator module and a Document Type

Tree Inference Engine.

Given a L-S Tree and its corresponding sample document, the Document

Sample Tree Generator module of the KAT (as shown in Figure 1.1) generates a

Document Sample Tree by activating the User Interface to provide the user with Pop-

Up windows for entering information of the structured part of a sample document..

The information includes: (1) type of block, which can be static, dynamic or mixed.

36

T a b le 3 .1 Node content for the block B4 in Figure 1.5.

attrib ute value
type of block static

key term TO
logical constituent N U L L

importance 14
semantic association b 5

class of block textual

(2) key term, which is the content of a block if it is of a static type (the strings

appearing in the block), or the static part of a block’s content if it is of a mixed

type (a mixed type contains material from both fixed and variable parts), or null

otherwise. (3) logical constituent, which is the conceptual description for the dynamic

block, or NULL otherwise. (4) importance, which indicates to what extent the node

contributes to the process of identifying a document type. The Importancenoiie(NC)

[12] is defined as follows. Let S be a set document sample trees of document type K

and let N C be a node content in the document sample tree 5,-, where Si € S.

Importancenodc(NC) = |{S '|S ' G S and 3NC' G S', N C == NC'}\.

The symbol |.| denotes the cardinality of the indicated set. Intuitively, the importance

of a node content, say, containing the key term “MEMO” in a Document Sample Tree

of MEMO document type, is measured by the number of occurrences of this term

appeared in the set of Document Sample Trees of MEMO type. (5) a collection of

identifications of dynamic blocks that have semantic association with a static node.

(6) class of block, which can be textual, image or graphics. This information forms

a node content of a basic node in a L-S tree for the sample document. Two node

contents are shown in Tables 3.1 and Table 3.2 for nodes B d and B\ in Figure 1.5.

37

T a b le 3 .2 Node content for block B\ in Figure 1.5.

a t t r ib u te value
type of block static

key term N U L L
logical constituent N JIT LOGO

importance 10
semantic association N U L L

class of block picture

In Table 3.1, its key term is “TO” and the logical constituent is N U LL. The

key term is a specific string that appears as content in its corresponding block

content of a document. The logical constituent is the major conceptual description

appearing in a document which describes the semantics of text content and therefore

defines its type. In block Bs, “MEMORANDUM” is the key term. In the thesaurus,

“MEMO” is the class for strings such as “MEMORANDUM”, “MEMO” and

“NOTICE” . Therefore, “MEMORANDUM” , “MEMO” and “NOTICE” are seman­

tically equivalent. Table 3.2 describes a non-textual block. The logical constituent

is N JIT LOGO because B\ contains a NJIT logo which is a match with the image

of NJIT LOGO.

C H A P T E R 4

T R EE M A TC H IN G

Approximate Tree By Example {ATBE) [30, 33] is a system designed to support

constructing, comparing and querying sets of ordered, labelled trees. In these trees

the nodes are labelled and the order from left to right among siblings is significant.

A T B E allows inexact match of trees which is appropriate for our document classi­

fication application because two documents with the same type may not have the

same tree structures even when they share the same features. Mostly the layouts of

documents of the same type such as letter type are different. Consider documents

of letter type. If we disregard most of the unimportant contents for the document

type classification, which are mostly the unstructured parts of the textual content,

and consider only to the layout blocks containing key terms and logical constituents

(such as logo, date, sender, receiver, saluting words, ending words, and signature in

the letter type), then the tree models for this document type are limited to several

different trees only. Our experiments showed that there are only 6 different trees

found for 20 different letters, without taking unim portant textual content into consid­

eration. Otherwise, there will be 20 different trees for these different letters.

4.1 Tree Edit O peration

Tree Editing Distance [33] is used to measure the difference between two trees.

Informally the distance of the trees T\ and T2 is the cheapest cost among all trans­

formations from T\ to X2, or visa versa. There are three types of edit operations:

relabel, delete, and insert. The representation for these operations is u —> v, where u

and v is either a node or the null node (A). Then u —> v represents a relabel operation

if u 7̂ A and v 7̂ A; a delete operation if u ^A and v —A; and an insert operation if

u =A and v =̂ A. Let T2 be the tree obtained from the application of edit operation

38

39

> via b

f g f g

F ig u re 4 .1 Relabelling of a node label (b) to label (c).

T ,

r via A

t 2
r

a b c >
a e f

y attach e and /to be the childern of r,
and e is the right sibling of a ,

and / is the left sibling of a .

F ig u r e 4 .2 Deletion of a node b.

u —» v on the tree 7\, and is denoted by T\ => T2 via u —>■ v. Figures 4.1, 4.2 and 4.3

illustrate the edit operations which are self-explanatory. Each edit operation has a

(user-defined) cost function 7 .

Let S be a sequence of edit operations Si, s2, . . . , s/t applied to a tree T to

generate a tree T'. Let 7 be a cost function for S = si, s2, . . . , s* by letting

T(S) = X^=i 7 (si). Then the editing distance from the tree T to tree T', denoted

dist(T, T 1), is defined to be the minimum cost of all sequences of edit operations that

can transform T into T'

dist(T, T') = min{7 (S)|S is a sequence of edit operations transforming T into T'}.

40

T, T2
r via A — ^ c

a e f

insert the node c to be the left sibling o f d ,

and m ove a , e , and / to be the children o f c.

F ig u r e 4 .3 Insertion of a node c.

4.2 M apping

A Mapping of two given tree structures is a graphical specification which specifies

a sequence of edit operations corresponding to each node in two trees. Let T[i]

represent the zth node of the tree T according to some given order (e.g., preorder).

A mapping from a tree T to another tree V is a triple (M, T, T '), where M is any

set of pairs of integer (i,j) satisfying the following conditions:

1. 1 < i < |T |, 1 < j < \T'\, where |T | and \T'\ are the numbers of nodes in the

tree T and T' respectively.

2. For any pair of (*i,ji) and (*2,^2) in M,

• i\ — *2 if and only if j \ = j 2 (one to one);

• T[ix] is to the left of T[i2] if and only if T'\j\] is to the left of T'[j2\ (relative

position preserved); and

• T[i\] is an ancestor of Tfo] if and only if T'[j\] is an ancestor of T'[j2]

(ancestor order preserved).

A mapping from T to V in Figure 4.4 is (1,1), (2,2), (4,3), (5,5), (6,6). A

dotted line from a node u in T to a node v in T' shows that u should be changed

to v if u 7̂ v, or that u remains unchanged if u = v. The nodes in T which are

41

t r

2

F ig u re 4 .4 A mapping from T to T'.

not touched by a dotted line should be deleted; and the nodes in T' which are not

touched by a dotted line should be inserted into T.

Let M be a mapping from T to T ' . Let I and J be the sets of ordered nodes in

T and T', respectively, which are not touched by a dotted line in M. Then we can

define the cost of M :

7 (M) = £ 7 (T[i] -> T '\ j]) + £ 7 (T[i] -> A) + £ 7 (A T'\j)).
(tj')eM iei j£J

Given a sequence of edit operations S from T to T ', it can be shown that there exits

a mapping M from T to T' such that 7 (M) < 7 (S). Conversely, for any mapping

M, there exists a sequence of edit operations S such that 7 (5) = 7 (M). Hence we

have

dist(T , T') = min{7 (M)|M is a mapping from T to T'}.

The A T B E algorithm is modified to find the distance between L-S Tree of a

testing document and a Document Sample Tree. Given a Document Sample Tree

To and a L-S Tree of a testing document TL_s to be classified. Let M be the best

mapping yielding the edit distance between TD and 7 l_ s . A node NTd 6 TD maps to

a node Ntl_s G Tz,_s . The mapping between node N td G Td and node N Tl_s e T i s

is an “effective mapping” if one the the following three conditions is satisfied. (1) A

static node NTd e TD is effective mapping to node NTl_s G Tl_s if the key term of

node Ntd is identical to the block content of Nr , _s . (2) A mixed node NTn € TD is

42

L O G O o f N J IT
S e c r e t a r y o f t h e F a c u l ty

N O T I C E

T O : N J IT F a c u l ty M e m b e r s

F R O M : L a w r e n c e S c h m e r z l e r

S e c r e t a r y o f t h e F a c u l ty

D A T E : O c to b e r 1 2 , 1 9 9 0

S U B J : I n s t i tu te F a c u l ty M e m b e r s

T h e r e will b e a m e e t i n g o f t h e f a c u l ty o f N J IT o n

W e d n e s d a y , O c to b e r 2 4 , 1 9 9 0 , a t 2 : 3 0 In t h e B a l l ro o m

o f t h e H a z e l l C e n t e r .

A n y r e q u e s t s fo r t im e o n t h e A g e n d a , t o g e t h e r w ith
s u p p o r t i n g d o c u m e n t s , s h o u ld b e s u b m i t t e d to m e o r M a ry

A r m o u r b y O c to b e r 1 9 , 1 9 9 0 .

T h a n k y o u .

L S /m a

Figure 4 .5 A testing document of MEMO document type.

effective mapping to node N t l _s G Tjr,_s if there exists a string S in the block content

of node N t l _s such that the key term of N t d is same as S . (3) A dynamic node

N t d G T d is effective mapping to node N t l _s G if the semantic attribute of

block content of node N t l _s is the same as the logical constituent of N t d ■ Consider

an incoming MEMO document as shown in Figure 4.5. Its corresponding L-S Tree

(which is generated by Adjacency Relation Algorithm) is shown in Figure 4.6. The

mapping in Figure 4.7 illustrates the mapping from the L-S Tree of Figure 4.6 to the

Document Samples Tree of Figure 1.5.

43

L -S T ree o f a te s tin g d ocum en t

V

S e c r e t a r y o f t h e F a c u l ty
L O G O o f N JIT

NOT CE

• • • •

| t O :| IN J IT F a c u l ty M e m b e r s

M f R O M : L a w re n c e S c h m e r z le r
S e c r e t a r y o f th e F a c u lty

|D A T E :I I O c to b e r 1 2 . 1 9 9 0 I

1 S U B J :| [In s titu te F a c u lty M e m b e r s

T h e r e will b e a m e e t in g o f t h e fa c u l ty o f N J IT o n

W e d n e s d a y , O c to b e r 2 4 , 1 9 9 0 , a t 2 :3 0 in t h e B a llro o m

o f th e H a z e l l C e n te r .

A n y r e q u e s t s fo r t im e o n th e A g e n d a , t o g e th e r w ith
s u p p o r t in g d o c u m e n ts , s h o u ld b e s u b m it te d to m e o r M ary

A rm o u r b y O c to b e r 1 9 ,1 9 9 0 .

T h a n k y ou .

L S /m a

Figure 4 .6 The L-S Tree of the testing document in Figure 4.5.

44

D o c u m e n t S a m p le T ree o f M E M O d o c u m e n t ty p e

v

T :s ta iic :
K T : N U L L :

L C :N J IT L O G O ; I: 10;
S: N U L L ;

C: p ic tu re .

H,
n <

f T:sta tic ;
K T :M E M O RA N D U M
LC :N U L L :
i; 10;
S: N U LL:
C : textual.

*4
T ;* ta tic :
K T :T O ;
L C : N U L L ;
1 :14;
S :W i;
C : ic x iu a l .

II,

T rdynam ic :

K T : N U L L ;
L C :rc cc iv c r ;

I: 14;
S: N U L L :

C: te x tu a l .

T :static;
K T:FROM .

L C : N U LL:

I: 14;

S : l h :

C: textual.

T :dynam ic:
K T: N U LL :
LC:scndcr:

I: 14;

S: NU LL;

C : textual,

11' i i v - " /» ~ « n

T :ila lic ; T :dynaniic : T :uatic : T:dyn;tmie:

KTiD ATE: KT: N U LL : K T :SU Bi: K T: N U LL:

LC: N U LL:

1: I V,
L C aiaic: LC: N U LL: L C :juh j:

1: 13:
1:13:

S : NULL:
S : U n S: NULL;

C: textual.
C : textual.

C: textual. C : textual.

L -S T ree o f a te s t in g d o c u m e n t

n , i u n

I S e c re ta ry of Ihe F acu lty I
L O G O o f N JIT

N O T C E

TO:l [N JIT F a c u lty M e m b e rs

— H F R O M :I ' L a w re n c e S c h m e rz le r
S e c r e ta r y of t h e F acu lty

DATE:! I O c to b e r 12 , 1 990

• • • •

H s U B J^ [in stitu te F a c u lty M e m b e rs

T h e r e will b e a m e e tin g of th e fa c u lty o f N JIT o n

W e d n e s d a y , O c to b e r 2 4 , 1 9 9 0 , a t 2 :3 0 in t h e B allro o m

o f t h e H a ze ll C e n te r .__

A n y r e q u e s t s fo r t im e o n th e A g e n d a , to g e th e r w ith
s u p p o r t in g d o c u m e n ts , s h o u ld b e s u b m it te d to m e o r M ary

A rm o u r b y O c to b e r 1 9 ,1 9 9 0 .________________ _ _ _ _______________

I T h a n k y o u .|

L S /m a

Figure 4.7 The best mapping between a L-S Tree and a Document Sample Tree.

45

4.3 Frame Instance and Structured Blocks

The documents having similar properties are classified into a document class. Each

class is associated with a type which describes the properties for the class of

documents [32]. A type of MEMO class is defined as follows:

Define type for Memo begin

subtype of document;

a ttribu te :

Sender:string(30);

Receiver:string(30);

Date:string(20);

Subject:string(30);

Content: TEXT;

Remark: TEXT;

There are five attributes in the above type definition. These attributes can be

grouped into a tabular form called the frame template. Each document in the

MEMO class is associated with a frame instance which is an instantiation of the

frame template.

Once the type of a given document has been decided, we can extract infor­

mation for the slots in its corresponding frame instance [33] of its type from the

content of the blocks which are pointed to by the L-S Tree. Figure 4.8 shows certain

information extracted from a testing MEMO document . The key terms are “TO ” ,

“FROM”, “DATE”, and “SUBJECT” , which are contained in nodes B 6, B s, and

B io respectively. The information is extracted for these frame instance slots directly

from their right adjacent blocks which are pointed to by their right siblings in the

L-S Tree.

46

F r a m e I n n t a n c e

S e n d e r L aw ren ce S c h m c rr le r , S ec reeta rv o f th e Facu llv

R e c e i v e r N JIT F a c u lty M em bers

D a t e O cto b er 12. IW O

R e . In stitu te F acu llv M em bers

S u m m a r y :

L -S T ree o f a te s tin g d ocu m en t

S ecre ta ry o f th e Faculty
L O G O of N JIT

N O T IC E

| f b : | IN JIT F acu lty M e m b e r s h

*— If ROM :! L a w re n c e S c h m e rz le r
S e c re ta ry of th e F acu lty

— - I DATE:! [O c to b e r 12 , 1 9 9 0 F*1

H S U B J J In s ti tu te F acu lty M e m b e rs f*1

T h e re will b e a m e e tin g of th e facu lty of N JIT on
W e d n e sd a y , O c to b e r 2 4 , 1 9 9 0 , a t 2 :3 0 In th e Ballroom
o f th e H azell C e n te r .__

Any re q u e s t s fo r tim e o n th e A g e n d a , to g e th e r with
su p p o rtin g d o c u m e n ts , s h o u ld b e s u b m itte d to m e o r M ary

A rm our by O c to b e r 1 9 ,1 9 9 0 .__________________________________

| T h a n k y o u .|

| L S /m a |

F ig u r e 4 .8 Information extraction from L-S Tree.

C H A P T E R 5

CLASSIFICATIO N SYSTEM

The proposed classification system has four major components: Preprocessor,

Knowledge Acquisition Tool (KAT), Classification Handler (CH) and Knowledge

Base (KB). Its system flow diagram is depicted in Figure 1.1. The Preprocessor has

two modules, namely, the Page Layout Generation module, and the Tree Generation

module. The former is to assemble the basic blocks into a large block (the block

representation) according to a number of “perceptual criteria” as discussed in

Section 2.2. The latter is to transform the block representation into tree repre­

sentation. Therefore, the output of the Preprocessor is a tree representation (L-S

Tree) of a document with leaves pointing to their corresponding textual blocks

of the original document contents or the descriptions of non-textual blocks in the

document.

To identify and classify a testing document, various information is needed such

as Document Type Trees and Document Sample Trees. The Knowledge Acquisition

Tool (KAT) is used to acquire this information by learning from examples in the

training stage. This information is also acquired when the system encounters a new

type or a new format of a document during the classifying stage. The KAT consists

of the Document Sample Tree Generator and the Document Type Tree Inference

Engine. The Document Sample Tree Generator processes the requests and responses

with the user’s interactions through the User Interface to create the node contents for

important blocks. The User Interface provides windows capabilities to help the user

to find the im portant blocks in a document, and to fill in the values of attributes in

their corresponding node contents. After generating all the Document Sample Trees

for all the training samples of various document types, the Document Type Tree

Inference Engine will induce the Document Type Trees for each document type by

considering examples of its type [36, 35].

47

48

The Classification Handler is in charge of the classification process. It consists

of Control Unit, Document Type Discovering module and Document Sample Tree

Matching module. The Control Unit is to control the process flow in the classification

process.

The last component of classification system is the Knowledge Base. It consists

of Structural Knowledge Base, Node Content Generation Rules, Document Type

Tree Inference Rules, Control Rules, Key Term Thesaurus, Information Extraction

Rules and Frame Template Base. The Structural Knowledge includes the Document

Type Trees and Document Sample Trees. The Node Content Generation Rule Base

contains rules which are used to generate the node contents for im portant blocks.

This rule base supports the KAT to build the Document Sample Trees through the

user interface dialog. The Key Term Thesaurus contains key terms of various classes

to perform the morphological normalization of key words in documents of the same

type. The Control Rule Base is to support the Control Unit to control the process

of classifying document. The Information Extraction Rule Base is to support the

Information Extraction module to fill in the slots of a frame instance.

5.1 K now ledge A cquisition Tool (KAT)

The process of knowledge acquisition decides what kind of knowledge is needed, how

it is used and how the knowledge can be elicited and encoded into a program [3].

The activity of building a knowledge base system may be viewed as a modeling or

theory process, rather than a direct translation of knowledge which is available in

the world into programs.

For the purpose of classifying documents, the process of knowledge acquisition

can be summarized as three tasks:

• Identify the kind of knowledge to be acquired and how it is used. The present

work focuses on classification knowledge used to classify documents. The

49

knowledge includes the representation of the layout structure, logical structure!

and major factual description of features of document contents. The layout

structure is used to specify the geometrical relation among blocks. The logical

structure describes the semantic structure of a document.

• Design a knowledge representation. The tree structures are used to represent

the knowledge for classifying the document. The H node and V node of a tree

describe the geometrical relations of blocks of a document layout. The node

content specifies the logical structure and major factual description of features

of document content.

• Devise a technique for eliciting knowledge. In the learning or classifying stage,

the user will help the classification system to elicit information regarding

the important features of a document content during the generation of the

Document Sample Tree. The Document Type Tree Inference Engine infers

the Document Type Trees by generalizing document sample trees. The gener­

alization rule will be discussed in Chapter 7. The Document Sample Tree

Generator can communicate with the user, using dialogs through text window,

node content window, and pop up window (as depicted in Figure 5.1) provided

by the user interface, and transforms the user’s input regarding the document’s

layout structure and content into classification knowledge.

5.2 D ocum ent Sam ple Tree G enerator

Given the L-S Tree of a document, the Document Sample Tree Generator will output

its corresponding Document Sample Tree. As shown in Figure 5.1, the text window

describes the block information and the content of an important block, and a node

content window describes the node content of its corresponding block. Given the

window of an original document image, the user is requested to fill in the values of

50

M EM O

Tor..~
FROM :

original document image

(b lock # 4 , type: textual,

lo c;(1 2 ,6 0), d im :(12 ,40),

content:
T O

) " " ^

block information' - s .

for an important node;'
the key term is high­
lighted.

n o d e c o n te n t

type o f block static

logical constituent NULL
key term > T O

semantic association
P

B ,
class o f block ✓' textual

node content instantiation

for that node

F ig u r e 5 .1 A screen layout of KAT for a MEMO document.

type of block, logical constituent, and semantic association for each of the important,

blocks which are selected by users. In Figure 5.1, KAT displays a text window and a

node content window for the block B 4 containing “TO”, which is considered to be an

im portant block. Then, the user copies the word “TO ” from the text window to the

appropriate slot of the node content window as the value of key term. The user will

also fill the slots of logical constituent and semantic association with NULL and B$

respectively. The classification system automatically fills in the class of block with

“textual” . This completes the knowledge elicitation process for this block. The Node

Content Generating Rule Base contains the rules that support the KAT to decide

which blocks are the im portant blocks in the original document image, and to pop

up the appropriate text or nontext windows for the blocks.

The example of a memo document is given in Figure 1.5. The classification

system will call the user’s attention to the blocks B\, B2, B3, B4, B5, BG, B7 B8,

Bg, B w, B n , B u , and B X5, by displaying them on the screen. By browsing through

all these blocks the user fills out the tables for the important blocks, B\,B3, B4, Br>,

Bg, B7 B8, Bg, Big, B\\ and disregards the blocks B2, B x4, and B !5 which contain

no important information for classification.

51

A sample rule for creating a node content is given as follows:

R ule : if the class of a block = “textual” , then the user keys in the values of type of

class, logical constituent, and semantic association, and copies the high-lighted

text to the value of key term.

The value of class of block is provided by OCR (Optical Character Recognition)

system.

5.3 D o cu m en t T y p e Tree In ference E n g in e

The Document Type Tree Inference Engine employs inductive learning approach to

generating Document Type Trees from Document Sample Trees of each document

type. The Document Type Trees allow that a small set of trees is possibly used

to identify the type of a document during the document type classification process.

Once the type of a document is recognized, the Document Sample Trees of the type

are used to do the format recognition and information extraction by searching a

closer match of the L-S Tree with its segmented contents of the document and one

of the Document Sample Trees (including its node contents).

Inductive learning [4, 5, 14,17, 19, 20,18] is a process of acquiring knowledge by

drawing inductive inferences from facts provided by experts, users, and others. Such

a process involves operations of transforming, generalizing, modifying and refining

knowledge representations. During the learning process, the Document Sample

Trees of each document type are the training examples for the Document Type

Tree Inference Engine. The Document Type Tree Inference Engine can acquire a

description of a class of Document Sample Trees of the same document type by

generalizing user-provided training examples (positive example). The Document

Sample Trees which belong to the same class are called the positive examples and

52

the rest of Document Sample Trees are considered as negative examples with respect

to the class. This approach is called learning from, examples.

5.3.1 Observational Statem ents

Observational statements [6, 36] are used to specify facts (in which each consists of

training events of the same document type) found in Document Sample Trees. A

document sample is first transformed into a Document Sample Tree, from which a

set of observational statements containing the path and node content pairs can be

derived by applying the background knowledge in the KAT (Knowledge Acquisition

Tool). The set of observational statements of a training Document Sample Tree is

referred as a training event of the tree. The definition of a path is as follows:

D efinition 5.1 A path of node N, denoted as path(Af), is a character string

containing labels and numbers as follows:

path(N) = (Label)ini(Label)2 n 2 . . . (Label)jnj(Label)j+1,

where N could be an intermediate node or a leaf; j is the depth of node TV;

(Label) is the label associated with each node such as H, V or B\ (Label)k,

1 < k < j + 1, is the n*;_ith child of (Label)*,_!.

The format of observational statements can be represented in a tabular form

as shown in Table 5.1. The observational statements inferred from a tree example

are shown in Figure 5.2. NCn's, 1 < n < 8, stand for node contents containing

important information of their corresponding blocks.

Table 5.1 The format of observational statements.

P ath N ode con ten t
p a t h (n o d e o f N i) n o d e c o n t e n t o f N 1
p a t h (n o d e o f N2) n o d e c o n t e n t o f N2

p a t h (n o d e o f N „) n o d e c o n t e n t o f N n

53

1
B̂ B

N C s NCt> N C 7 NCh

P a th N o d e c o n t e n t

H I V I B N C ,

H 1 V 2 B N C ?

H I V N U L L

H 2 B N O

H 3 H 1 B N O

H 3 H 2 B N C s

H 3 H N U L L

H 4 H J B N C «

H 4 H 2 B N C ?

H 4 H 3 B N O

H 4 H N U L L

Figure 5.2 The training event of a tree example.

5.3.2 Inductive Paradigm

An inference process is to find out plausible assertions that can explain the training

sample trees. We use these assertions to classify the new events such as input testing

documents in the classification stage. The inductive inference process attem pts to

derive a complete and consistent description of a concept (also referred as a document

type) from a fact which is the set of training events (sets of observational statements)

of training sample trees of the type. In our case, the training sample trees are the

Document Sample Trees of different document types, and the description of a concept

is the Document Type Trees of a document type. These Document Type Trees are

the generalization of Document Sample Trees of the same document type. The inputs

of inference process are facts (training events of document types) F and background

knowledge.

Training events are derived from the training sample trees that represent

the specific knowledge about types and formats of documents. A fact describes a

document type represented by various training events, as in Figure 5.3. And the

facts F can be denoted as

54

where 1 < i is an unique type id, and eij, (1 < j < n), is a training event defining

the j th sample tree of the document type A*.

Background knowledge includes the problem-related domain knowledge for

extracting the facts of incoming samples. This also includes the definitions

and assumptions tha t are posed on the observational statements and generated

hypotheses.

The output of inductive inference process is the inductive assertions (called

hypotheses) H generated by applying the generalization rules and background

knowledge on F, that is F < H. H can be defined as a set of concept recognition

rules:

H : {Di =k> IU },

where i G I and Di is a concept description of document type Kj.

Intuitively, let’s consider two training sample trees tree 1 and tree2 of document

type Ki. The sample tree tree 1 contains four key terms “TO” , “FROM”, “DATE” ,

and “SUBJ”, and the sample tree tree2 contains three key terms “TO” , “FROM” ,

and “DATE” . Therefore their corresponding training events are e^\ and e;i2. By

applying the generalization rules (of the inductive inference process), only three key

terms “TO”, “FROM”, and “DATE” are selected to be the concept description Dt

in the hypotheses H to imply the facts F. In Figure 5.3, we assume that there are

three possible types of documents K i, K 2, and A 3 such as letter, memo, and journal.

During the inductive learning stage, the user preclassifies all the training documents,

and let every e*j imply only one document type Ki.

55

sam ple trees

D o cu m en ts

D ocu m en ts

^ ■■> sam ple trees

transformation

even t
generator

F (fac ts)

/ eu eUt =^=> K \̂
events

eu <%.», = = ^ > K 2
events

(OCR, tree generation)

H (hy p o th eses)

c
(D , = ^ > K ,

concept concept
description name

eu eu , K }

events

k n o w le d g e

generator
F>2 = = > K ;

inductive
learning

/
D, = = > K ,

D ocu m en ts

ni , n 2 and n j represent the number of sam ples for document type 1, 2 and 3 respectively.

D , _____^.(D ocum ent Type T rees),

D 2--------^.(Docum ent Type Trees)2

 ^.(Docum ent Type T rees)}

Figure 5.3 Inductive learning process for Document Type Trees.

C H A P T E R 6

F IN D IN G CO M M O N SU B ST R U C T U R E S
FROM SE G M E N T E D D O C U M E N T S

A document is classified if there is a Document Type Tree to be a substructure of

its L-S Tree. Then, the exact format of the document can be found by searching

the closer match of the L-S Tree with its segmented contents of the document and

one of the Document Sample Trees (including its node contents) represented by the

identified Document Type Tree. In previous chapters, we addressed document page

layout segmentation (namely, dividing a document page into several segments, which

are in turn, divided into smaller segments), and then the formation of a L-S Tree for

it. We also presented the construction of Document Sample Trees. The Document

Sample Trees of the same document type can be generalized to a fewer Document

Type Trees. T hat is, the Document Type Trees can be considered as the the Largest

Common Substructures of the Document Sample Trees of the same document type.

In this chapter, we will investigate the problem of finding the Largest Common

Structures between Document Sample Trees, taking the corresponding segmented

document samples into consideration. The Nested Segmentation Algorithm is

adopted in the generation of L-S Tree.

6.1 Longest Com m on Subsequence

Let N - { N C l A , N C h 2 , - - - , N C h r) , and M = (NC 2 ,i, A C 2,2, • • •, N C 2 ,S) be two

sets of node contents. The longest common subsequence between two sets of

node contents N and M, denoted as L C S (N , M), is defined as follows: There

exists N 1 C N and M ' C M, and N ' — (N C i tTni, N C l i m 2 , • • •, N C i>mi) , and

M ' — (N C 2>ni i N C 2,n2 , • • •, N C 2 ,n t) such that t is a maximum and N C i>mi = N C 2<ni,

N C h m 2 = N C 2 ,n2 , • • •, N C Umt = N C 2in t , and mi < m 2, m 2 < m3, • • •, m t-i < m,h

and 77.1 < n2, n 2 < n3, • • •, n t_i < n t. That is, a subsequence of N (or M) is obtained

56

57

by removing zero or more, but not necessarily contiguous, nodes from N (or M).

Then, the L C S(N , M) is a longest sequence tha t is a subsequence of both N and M

[!] ■

6.2 E dit O perations o f D ocum ent Segm ents

During the comparison of two documents, the appearing orders of their segments

are significant. Two basic segments are equivalent if their block contents are

identical. Two composite segments are equal if they contain the same types of H

or V cuts. There are four types of edit operations: relocate, change-block .content,

delete segm en t, and insert segm ent. Let £>2 be the document tha t results from the

application of an edit operation to document D\. A relocate operation is represented

as (u —)• v), where u, v are either H, V or V, H. This operation transforms D\ to D 2

by reconstructing segments which are separated by u cut within a composite segment

x of D\ to be v cut within x of D2. That is, the left-to-right (or top-to-bottom)

ordering of segments in the segment x of D\ will be changed to top-to-bottom (or

left-to-right) ordering of segments in the segment x of D2. Figure 6.1 illustrates a

relocate operation, where H itj or Vij stands for the j th cut at the level i, and d,[k]

stands for the £th segment.

A change-block .content operation can be represented by (u —¥ v), where u,

v are the contents of the basic segments in D\ and D2. Figure 6.2 depicts this

operation.

The equivalent tree edit operations of relocate and change-block-content are

relabel for an intermediate node (from H to V, or vice versa) and relabel for a leaf

node (from one regradless of its node content to one with its node content) respec­

tively. The cost of relocating segments within a composite segment x (or relabelling

for an intermediate node i) is the total number of segments within x (or the total

58

number of immediate children of node i)\ and the cost for change Mock .content, (or

relabelling a leaf node) is 1.

A delete.segment is represented as (u —» v), where u is a segment in a document

and v is the null segment (A). If u is a composite segment, there are two cases as

follows: (case 1) if the type of cut at the level j — 1 in the segment which contains

segment u is not the same as the type of cut within the segment u at level j , a

relocate operation is performed for u before u is removed, and then assigns all the

segments within the segment u at the level j to the segment at the level j — 1; (case

2) if the type of cut at the level j — 1 is the same as the type of cut within the segment

u at level j , this operation just removes the segment u and assigns all the segments

within the segment u at the level j to the segment at the level j — 1. If segment u

is a basic segment, then remove simply the content of this basic block. Figure 6.1

describes a deletesegment operation. The delete seg m e n t is equivalent to the tree

edit operation of delete. The cost for (case 1) is (number of segments within u) +

1 and the cost for (case 2) is 1. The cost of deletesegment for a basic segment is

1. In the tree edit operations, (case 1) corresponds to delete for a non-leaf node N

whose label is not identical to that of its parent. The cost of this case is (number

of immediate children of node N) + 1. (case 2) corresponds to delete for a non-leaf

node N whose label is identical to that of its parent and the cost for this case is 1.

The cost of delete for a leaf is 1. The delete operation is not allowed to applied on

the root of a tree.

An insert.segment can be represented by (u —> v), where u is a null segment

(A) and v is a segment. The operation of insert.segment will create a segment v at

level j to enclose a set of consecutive segments at level j with type of cut cnew and

change their level from j to j -f 1 if u is a composite segment; or the operation will

create a basic segment directly if v is a basic segment. For a composite segment v,

there are two cases as follows: (case 1) if the new cut cncw within v is not the same as

59

D ,

d o c u m e n t e d i t o p e r a t io n

Vr — H 2

>
relocale

d o c u m e n t e d i t o p e r a t io n

d /2 1 — a

JUI <IHI

D i d e le te _ s e g m e n t

B i V ,

B 2 B , B j

t r e e e d i t o p e r a t io n

V2 — II,
>

Hi
B i //;

B 2 B i 0 ,

t r e e e d i t o p e r a t io n
H2 — ► a

 — - >
d e le te

D i

dm dindin

din

d/5l d/SI

Bi B , B i B4

Case 1

Figure 6.1 An example of a deletesegment (relocate) operation and its equivalent tree
edit operation delete (relabel).

60

the original cut cOTiginai, then a relocate operation (cori(Jinai —> cnew) is followed after

inserting the segment v\ (case 2) if the new cut cnew is the same as the original cut

('original at level j , then inserting the segment v only. Figure 6.2 depicts the operation

of insert.segment. The cost of insert.segment for a basic segment is 1. The cost

for (case 1) is (number of segments in v) + 1, and the cost for (case 2) is 1. The

insert.segment operation is equivalent to the tree edit operation of insert. In the

tree edit operations, (case 1) corresponds to insert a non-leaf node N whose label

is not identical to tha t of its parent. The cost of this case is (number of immediate

children of node N) + 1. (case 2) corresponds to inserting a non-leaf node N whose

label is identical to that of its parent. The cost for this case is 1. The cost of

inserting a leaf is 1.

Let 7 be the cost function as we discuss above that assigns each edit operation

u —>■ v a nonnegative real number "f(u —> v). 7 can be extended to a sequence of edit

operations 5 — sx, s2, • • •, sm by letting 7 (5) = YliLi 7 (si)- The editing distance

from document D x to document D2, denoted as dist(Dx, D2), is defined to be the

minimum cost of all sequences of edit operations which transform D x to D 2 as:

dis t(D i,D 2) — min {7(5)15 is a sequence of edit operations transforming D\ to D 2).

6.3 M appings of Two Segm ented D ocum ents

The mapping of two documents is a graphical specification of which a sequence of edit

operations can apply to each segment in two documents. The mapping in Figure 6.3

shows a way to transform D x to D2. It corresponds to a sequence of edit operations:

(deletesegment for d[2] in D x, insert.segment for d[3] to enclose d[A] and d[5] in

D2).

Given two documents D\ and D 2 which consist of segments d\ [1], d \ [1], . . . , d\ [|Di |]

and segments d2 [l\, d2[l], . . . , d2[|D2|], respectively, a mapping from D\ to D 2 is a

d
o

cu
m

en
t

ed
it

op
er

at
io

n
>

d
o

cu
m

en
t

ed
it

o
p

er
at

io
n

61

Q

«N

• s'0 5

A!

X)

I t

“O
c
ru
c
o

<D
Q .O
Ccu*40coCJ
oo'■■■■«»

<U
1 - o

0) C3•**-»
C
<3

•40
U
QJ

•40 CO
c c
<u • eos c

o
QJ
CO ro

*40 U-
0)
Q .

CO O
e• eo 4-J

rd T3
<Uu—

O (L)
0)<v w_
4->

Q . 4-»E c
ru _0J
X Cd<v >
c * 3

< a*
<uCVJ

CO
0)u3W)
Em

Figure 6.3 Mappings of two segmented documents and their corresponding trees.

triple (Me, Di, D2) where M e is any set of ordered pairs of integers (i , j) satisfying

the following conditions:

1. 1 < i < |.Di| and 1 < j < |D2|, where |D i| and |D2| are the numbers of

segments in documents Di and D2, respectively.

2. For any pair if (iu ji) and (i2 , j 2) in M e,

• ii = i2 if and only if j i — j 2 (one-to-one);

• d\[ii] is on the top or to the left of d\[i2] if and only if d2[j 1] is on the top

or to the left of d2[j2] (relative position preserved);

• di[ii] is contained in d\[i2] if and only if d2 [j\] is contained in d2 [j2] (compo­

sition relation preserved).

63

Let M be a mapping from D\ to D 2. Let I and J be the sets of segments in

D i and D2, respectively, not touched by any dotted line in M . Then we can define

the cost of M:

7 (M) = Y 7(di[*] <k\j]) + -> A) +]^ 7 (A Ml})-
(i j) e M i e i j e J

Given a sequence of edit operations 5, it can be shown that there exists a

mapping M from D\ to D 2 such that 7 (M) < 7 (5); conversely, for any mapping M,

there exists a sequence of edit operations 5 such that 'y(M) = 7 (5).

Hence, we have

dist(Di, D 2) = min {^ (M)\M is a mapping from D\ to D2}.

For example, the mapping in Figure 6.3 is {(0, 0), (1, 1), (4, 2), (5, 4), (3, 5)}, and

the dist{D\, D 2) — 2, since the minimum cost of mapping involves the deletion of

d[2] in D\ and insertion of d[3] as in D2.

6.4 Largest Com m on Subregion o f Segm ented D ocum ents

A sub.document D[i] of a document D represents a set of segments at any levels

within the segment d[i\. A subregion of D is a portion of a document layout with

some sub-documents removed. The size of a document D, denoted as \D\, is the total

number of segments in D at any levels. The operation of removing sub-document

D[i] means deleting segment d[i] and all the segments contained in the segment d[i].

A set of segments 5C in D is said to be a set of consistent sub-documents removal

in D, if (1) d[i\ E Sc implies that 1 < i < \D\, and (2) d[i],d[j] G 5C implies that

neither is within the other in D. We use Remove(D, Sc) to represent the document

layout D with all sub-documents in 5C removed. Let subportion(D) be the set of

all possible sets of consistent sub-document removals in D. Given two documents

D\ and D2, the Largest Common Subregion between D\ and D 2 can be found by

locating the Remoue(D\, Sc\) and Remove(D2, Sc2) such that

64

max{\Remove{D \ , 5ci)| + \Rem,ove(D2 , Sc2)|} where

dist(Remove(Di, Sci), Remove(D2, Sc2)) = 0,

Sci E (subportion(D\)) and

S c2 G (subportion(D2)).

6.5 Largest Com m on Substructure o f Trees

A substructure of an ordered labelled tree T is a tree with certain subtrees removed

from T. Given two ordered labelled trees Tx and T2, the algorithm of Largest,

Common Substructure (L C S s tr) of T\ and T2, denoted as LCSstr{T\, T2), is to

find a substructure Si of T\, and a substructure S2 of T2, such that the distance of

Si and S2 is 0 and there does not exist any other substructure S{ of T\ and S '2 of

T2 such that the distance between S[and S '2 is 0 and the total size of S[and S 2 is

greater than the total size of Si and S2 [25]. It is still possible that there exists some

other substructures S" of Ti and S 2 of T2 such that the distance between S'/ and S '2

is 0 and the total size S" and S 2 is equal to the total size of Si and S i .

Let T[i] stand for the subtree rooted at node t[i\. The operation of cutting at the

node t[i] removes T[i] from T. A set of nodes S no(ie E T is said to be a set of consistent

subtree cuts in T if t[i], t[j] G Snoite, 1 < z, j < |T| and neither one is an ancestor of the

other in T. Intuitively, Snode contains all the roots of the removed subtrees in T. Let

Cut(T, S node) represent the tree T with subtree removed at all nodes in Snode, and let

Subtree(T) be the set of all the possible sets of consistent subtree cuts in T. To find

Largest Common Substructures of trees Ti and T2, we first locate the Cut(T\, S nodc,i)

Cut(T2, S 7l0de,2) and then calculate max{|Cu£(Ti, S'node)1)| + \Cut(T2, 5node,2|} where

dist(Cut(Ti, Snode,i),Cut(T2 , Snode,2)) — 0) Cnodc, 1 G Subtiee{Tx) and Snodc‘i E

S u b tr e e ^) . In inductive learning process, every pair of Document Sample Trees T\

65

and T2 will be generalized to discover the L C Sstr(T \,T 2) with distance 0. Therefore,

C u t(T i ,S \) and Cut(T2 , S 2) are identical. The original algorithm of L C Sstr only

locates the first substructure of max{|C7ut(Ti, 5 i)| + \Cut(T2, S2\} [25]. A m odified

L C S str algorithm is proposed to discover some L C S s tr ’’s of T\ and T2 , which will

be discussed in generalization Rule 7.5 in Section 7.5. In Figure 6.4, Ticsstr is

an example of the L C S s tr ’s of Ti and T2. But the subsequences (B3, B 4, Bq) and

(B3, B 4, £ 5) are the L C S ’s of the nodes (B3, B 4, B 5 , B 6) of T\ and (B3, B 4, B C), Bf)

of T2. We discover another L C S str of T\ and T2 by replacing the nodes (B 3 ,B 4, Bf)

with (B3, B 4, B 5) in the Ticsstr s shown in Figure 6.4.

6.6 R elation o f Largest Com m on Substructure
and Largest Com m on Subregion

The Largest Common Substructure algorithm only takes trees as input and locates

the shared common substructure of maximum size without taking the corresponding

document segments into account. This may result in a false Largest Common

Substructure between two segmented document samples. For example, consider two

segmented sample documents D\ and D 2 and their corresponding Document Sample

Trees T\ and T2 in Figure 6.4. L C Sstr(T x,T 2) is Ticsstr- The root H in T^cssir

represents H 2 node in T\ and H x node in T2. H 2 cut in D\ divides sub-document

D\ [2] into half, and H x cut in D 2 divides the whole document D 2 into three smaller

segments. They have completely different geometrical meanings of segmentations.

We use the following preprocesses to eliminate such an error, and to ensure that there

are one-to-one correspondences between Largest Common Substructure and Largest

Common Subregion.

Given two segmented sample documents and their Document Sample Trees, we

first preprocess them by removing the non-basic leaf nodes from Document Sample

Trees and removing the segments which are not basic segments or do not contain basic

66

1 B, 1
! I'bj 1 1 li
\\B4 | 1 j :
lift 1 1 1 ii
;l«. 1 1 -™i:

V V v V

B, B1 B s B«

dll]

H ,

H3

h 4

h 4

h 4

h4

H,
■d[21

1 ... , . bi , 1:

'1 B, I I " 1 1:

'1 b4 n 1 1 !:

ii ft. 1 i 1 !:

ll Bs I I " 1

H i

H ,

H ,

H)

H>
H ,

B, °4 B« Bs

T tr s .LCS.nr

H

H

D, H

V V V

B: » 4 Bt

Figure 6.4 Segmented documents D\ and D2 and their Document Sample Trees T\
and T2.

67

segments at any lower level. This is called preprocess 1. For example, a document

sample Dsampiex as shown in Figure 6.5 has its Document Sample Tree Tsajnptei on its

right. After preprocess 1, all the leaf nodes which correspond to the blocks containing

no key terms in Tsampie\ are deleted. Now, Tsamp/el becomes T'samplel. Similarly, all

the basic segments containing no key terms in D sampiex are removed. Now, Dsampiei

becomes D'samplel. We observed that the segment d[2] in D'samplel contains only one

segment d[3]. Therefore, segment d[2] and its H cut are redundant and should be

removed. In its corresponding sample tree, H 2 node is deleted, and the subtree

of i / 3 becomes the child of H\. Now, D'samplel becomes D"samplel. This is called

preprocess 2 which eliminates the mapping error during the discovery of Largest

Common Substructure of two trees for Largest Common Subregion. The algorithm

of preprocess 2 is described as follows: if a H node has only a single H child node, or

if a V node has only a single V child node as shown in Figure 6.6, then we can remove

this node from the Document Sample Tree. Equivalently, in a segmented document,

if a segment d[i] contains only one segment d[k\ which is not a basic segment, then

we remove the segment d[z] and all cuts within d[i\.

L em m a 5.1 Given two segmented documents D[and D '2 and their corresponding

Document Sample Trees T[and T2, the preprocessed segmented documents are

D\ and D 2 and the preprocessed Document Sample Trees are T\ and T2. After

preprocessing (using preprocess 1 and preprocess 2 as discussed above) the tree

structure of Largest Common Subregion of D\ and D 2 (LCSreg(D\ ,D2)) is the

Largest Common Substructure o fT \ andT 2 (LCSstr(T\, T2)).

P ro o f. The algorithm of discovering the Largest Common Substructure of

two trees Ti and T2, which is Ticsstr, has been proved in [25]. The definitions of

edit operations and remove operations of Largest Common Subregion in document

D are equivalent to the definitions of edit operations and cut operations of Largest

Common Substructure in tree T, stated as follows:

68

D ,■WyJW J I H Stimplf I

B,

^ P r e p r o c e s s 1

P r e p r o c e s s 1

d / 2 1

d / 3 1

Hi

Hi

v V v V

B , BJ B , B ,

P r e p r o c e s s 2

^ P r e p r o c e s s 2

d i l l

H,

II,
Hi
H i

H i

‘TLutvI,I

V H.

B,

V V y V

B, BJ B , B ,

F ig u re 6.5 An example of preprocesses for segmented document and its Document
Sample Tree.

69

H node V node

F ig u re 6.6 The H (or V) node has only a single H (or V) child node.

1. Each edit operation in D has one and only one equivalent edit operation in T

as described in Section 6.2.

2. Each segment in D has a one-to-one mapping to a node in T.

3. If a composite segment d[j] in D maps to a non-leaf node t[i\ (i.e., either a

H or V node) in T , all the segments in sub-document D[j] have one-to-one

mapping relations to the nodes in subtree T[i).

4. The operation remove(D , Sdoc) which represents document D with a set of

consistent sub-documents Sdoc removed is equivalent to cut(T , Stree) in tree T

with a set of consistent subtrees S tree removed.

Since every preprocessed segmented document corresponds to one preprocessed

Document Sample Tree, the Largest Common Subregion also corresponds to a

unique tree Ticsreg• According to the definition of mapping between two segmented

documents, the mapping from Di to D 2 is the same as the mapping from T\ to

T2. The tree structure of LCSreg will be TLCsreg which is equal to TLCsstr ■ If we

can find a LC Sreg 1 of D\ and D 2 , such that \LCSreg'\ > \LCSreg\, then the tree

structure of LCSreg', which is TLcsre9', has the relations \Ticsrcg'\ > \TLCSrcg\ and

\Ticsrcg'\ > \Ticsstr\- The latter relation contradicts the fact that T ic s sir is t-h(!

Largest Common Substructure. This concludes the proof.

C H A P T E R 7

G E N E R A L IZ IN G D O C U M E N T S A M P L E T R E E S

In Section 5.3, we presented the Document Type Tree Inference Engine, which

employs inductive learning approach to generating a fewer Document Type Trees

from a large number of Document Sample Trees of a document type, using a set of

generalization rules, which will be presented in this section.

7.1 Im portance o f a Tree

The importance of a node Ni, Importancen0 de(Ni) is defined in Section 3.3.

Intuitively, the importance of a node content, say, containing the key term “MEMO”

in a Document Sample Tree of MEMO document type, is measured by the number

of occurrences of this term appeared in the set of Document Sample Trees of MEMO

type. The importance of a tree T, Importancetree{T), is defined as

I m p o r t a n c e ^) =

where n is the total number of basic nodes in tree T; Ni G T; and |T| is the size of

the tree T. The function Importanceno(ie{Ni) returns the importance of node TV,.

7.2 Degree o f G eneralization

In the dissertation, the inductive learning process employs a generalization method to

find all the proper maximal characteristic descriptions that satisfy the completeness

condition. Finding a generalization tree (Ticsstr) of T\ and T2 is to find a

L C Sstr(T \,T 2). A generalization tree of Ti and T2 is not valid if the size of

TL C S s t r is too small comparing to T\ and T2. For instance, if T\ and T2 trees are

generalized to be a node H only, then it is too general because it matches any subtree'

rooted with H. We define two indices to measure the degree of generalization: the

70

71

Degree of Structure Generalization (D S G), and the Degree of Node Content Gener­

alization (D N C G). Given two Document Samples Trees Ti and T2, L C Sstr(T i,T 2)

= C ut(Tx, S x) (= Cut{T2 ,S f)) is found, where S\ is the set of all roots of the

removed subtrees in T\ and 52 is the set of all roots of the removed subtrees in T2.

The D S G 's of Tx and T2 with respect to T2 and Tx respectively are calculated using

the following formulas:

|Ti| - |C u t(T i,S x)\
DSG'T,m |r i |

|T 2| - \Cut(T2,S2)\
L>StrT2\ T, = ----------- ppj----------•

\ - l 2\

The formulas for calculating the D N C G 's of Tx and T2 with respect to T2 and

Ti respectively are given as follows:

D N C G Ti[t 2 =
|{iVj|./Vj G Tx, Ni is a basic node}| — J{ |Â- G Cut(Tx, S x), Nx is a basic node}|

G Tx, Ni is a basic node}|

D N C G t 2 \Ti =
|{iVj|iVj G T2, Ni is a basic node}| — G Cut(T2, S 2), iV, is a basic node}|

| { A ^ | G T2, Ni is a basic node}|

The D SG tj\t2> D SG T2 \tx, D N C G tx\t2 and D N C G t 2 \tx for generalizing T x and T2

must satisfy the following criteria: Let D S G tut 2 be m ax{D SG ri|r2, D SG r 2 \Tt }- Let

D N C G Ti,t2 be m ax{D N C G TilT2, D N C G T2\Ti}. Then

D S G t x, t2 < C d s g i and

D N C G tx,t2 < C on cg .

72

where C qsg and C qncg are predefined constants.

The degree of generalization will be extended to a set of trees. Given a

set of trees {Ti,T2, . . . , T]}, the resulting LC Sstr(T \ , . . . , Tj) = C ut(T \,S \) (=

Cut(T2, S2) = Cut(Ti, Si)) is valid if and only if the degrees of generalization

of all the trees satisfy the above criteria.

7.3 Generic G eneralization R ules

A generalization rule is to transform a set of descriptions Ei = { e ,^ k < n}, where n

is the total number of sample documents, and i is an index for document type into

a more general description Di that weakly implies the initial description. If a testing

document falsifies a more general description Di then it must falsify some specific

description in Ei. Let C T X , C T X \ and C T X 2 represent some arbitrary expressions

that are augmented by additional predicates to formulate a concept description. Four

generic generalization rules [18] can be described as follows:

• The dropping condition rule:

{C T X & S I<) < { C T X =** I<},

where S is an arbitrary predicate or logical expression and K is a document

type. This rule states that a concept description C T X & S can be generalized

by simply removing a conjunctively linked expression S.

• The adding alternative rule:

{ C T X 1 I<) < {C T X 1 V C T X 2 =^> K }.

This rule states the a concept description can be generalized by adding an

alternative such as C T X 2 to it. The alternative C T X 2 is added by extending

the scope of permissible values of one specific descriptor.

73

• The extending reference rule:

{ C T X k [L = i?i] K) < {C T X &{L = R 2] =** I<},

where Ry C R 2 C DO M (L) and D O M (L) denote the domain of L. In this

rule, L is a term, i.e. a constant, a variable, or a function, and R\ and R.2

are internal disjunctions of values of L. The rule describes tha t a concept

description can be generalized by enlarging the values of a constant, a variable,

or a function of the description.

® The turning constant to variable rule:

{F[a],F[b},...,F[i\}<Vv,F[v],

where F[u] stands for some description dependent on variable v; and a,b , . . . ,

and i are constants.

Before we give detailed rules for Document Type Tree generation, le t’s look at

some patterns used in the A B T E and the L C Sstr algorithms, which can be used

for turning constant to variable in generalization process. Recall tha t the A B T E

algorithm is used for Document Sample Tree Matching process and the L C Sstr

algorithm is employed in the Document Type Tree Discovering process. In A B T E

algorithm, in addition to having constant nodes, whose labels and contents arc

specified, a pattern may contain the following marks:

• variables (_x, _y, etc.);

• bars (|).

These marks may appear in several places in a pattern tree (i.e., Document

Sample Tree). Edges of the pattern tree are marked by bars. Leaves of the pattern

tree are marked by variables preceded with an underscore. As shown in Figure 7.1, a

74

mark-substitution (instantiation) s on the pattern pa replaces the nodes or subtrees

in the data tree t according to the following ways:

• Each variable matched with a subtree in t. (Repeated variables are matched

with identical subtrees.)

• Each bar is viewed as a pseudo node in pa, which is matched with part of a

path (one or more pseudo nodes) from the root to a leaf of t.

Let s(pa) be the resulting pattern tree after the application of mark substi­

tution. We require tha t any mapping from s(pa) to t maps the substituting nodes to

themselves. Thus, no cost is induced by mark substitution. The distance between pa

and t with respect to the substitution s is defined to be dist(s(pa),t). The distance

between pa and t is obtained from one of the best mark-substitutions, i.e.,

dist(pa, t) = min{dist(s(pa), t)},s£S

where S is the set of all possible mark-substitutions.

In the L C Sstr algorithm, a bar marked below a H (or V) node in a Document

Type Tree matches a repeated H (or V) nodes on a path in L-S Tree of a testing

document.

The following generalization rules are used to infer the Document Type Trees

from a set of Document Sample Trees, TDS's.

7.4 R u les for P rep ro cess in g D o cu m en t S am ple Trees

Before the generalization taking place, all the Document Sample Trees are prepro­

cessed by using Rule 7.1 to cut the leaf node whose type is dynamic, i.e. its key term

is N U L L , Rule 7.2 to cut the leaf node which is not a basic node, and Rule 7.3 to

cut the node where all its descendants are not basic nodes.

R u le 7.1 Preprocessing Rule 1

75

0)

(ii)

F ig u re 7.1 (i)Variable instantiation: The variables in pa are matched with the shaded
subtrees in t. (ii) Bar instantiation: The bar is matched with the nodes
(block dots) on a path p.

IF (Contain(Ti)Si N) A IsLea fN ode(N) A (K e y T e r m (N) = NULL))

T H E N cut N from Tds

The predicate Contain(T, N) returns true if T contains the node N, otherwise it

returns false; the predicate IsL ea fN ode(N) returns true if TV is a leaf node, otherwise

it returns false, and the function K eyTerm (N) returns the value of key term for leaf

node N.

R u le 7.2 Preprocessing Rule 2

IF (Contain(Tos, N) A (IsLeafN ode(N) A ->IsB asicN ode(N)))

T H E N cut N from Tps

The predicate IsBasicNode(N) returns true if TV is a basic node, otherwise it returns

false.

R u le 7.3 Preprocessing Rule 3

IF (Contain(Tos, N)

76

A (- i / sL ea f Node(N) A All Descendants NotBasicNode(N)))

T H E N cut N from T ^s

The predicate AllDescendantsNotBasicNode(N) returns true if all the descendants

of N are not basic nodes, otherwise it returns false.

7.5 Discovering th e Largest Com m on Substructures

In this section, we investigate a possible way of finding the Largest Common

Substructures for Document Sample Trees of a document type.

A lgorithm 7.1 Creating LCSstr table. Let S q s — { T d s i , T d s 2, ■ ■ • > Tosn}, n > 2

be a set of preprocessed Document Sample Trees for a document type. A

L C S s tr table, whose names of the rows and columns are TDSl, T DS2, . . . , TaS„,

consists of all possible entries LCSstr(TDSi,TDSj) — Ticsstritj, where 1 < i , j <

n.

For each entry L C S s tr^ o S i iT o S j), a generalization of Tos, and Tqsj, we

determine the validity of the generalization, using

R ule 7.4 Checking for Degree of Generalization Condition

I F ((DSGTDSi,TDSj < CDSg) A (DNCGTDSi,TDSj < CDNCg))

T H E N the generalization is valid

Both C q s g and C q n c g are predefined constants.

If a tree Ticsstr (= LCSstr(TDSi,TDSj) — Cut{ToSi^ SoSi) = Cut,(TDSj, SAs,))

is found and satisfies Rule 7.4, then SAs, and Sosj are the set of cutting nodes

removed from T d s { and T q s j respectively during generalization. We analyze the sets

SoSi and S d s j to discover other of TLCsstrS using the following rule. (Recall that

T[i\ stands for the subtree rooted at t[i].)

77

R u le 7.5 LCSstrs Discovering rule.

IF (3noSi — 2,ToSi[h + + 2], • • • ,ToSi[h + ^ds,] G Tbs,)

(+ 1], + 2], • • •, tps^h + ^ds,])

A(1 < | < u < (li + nosi)i tDSi[u] G C ut(TDSi, SpSi)} I < n DS,)

HtDsAh + + 1] = Parent(tDSi[li\))

A(3nos, > 2, TdSj [̂ ' + 1], Tos., [lj + 2], • • •, ToSj [lj + 6 Tdsj)

(Sibling(tDSj [lj + 1]> V sj [lj + 2], • • •, tpsj [lj + n osJ)

A(1 < | {tDSj [u\\lj < u < (lj + n DSj), tDS][u] G Cut(TDSj, S DSj)} \ < n ns j)

A(tDSj[lj + n DSj + 1] = Parent(tDSj[lj}))

A (Path(tCut(TDSi,sDSi))[li + n DSi + 1] = Path(tcut(TDSj,sDSj))[lj + n DSj + 1])

T H E N find the Longest Common Subsequences of

TDSi [li + 1]) PDSi [h + 2], • • • , TpSi [h + n-DSi] and

Tdsj [lj + l]i Tdsj [lj + 2], • • •, Tdsj [lj + nDSj],

and discover other of L C S s tr 's from them.

The predicate Sibling(t\,ti, ■ • •, V ■ ■ ■, tn) returns true if all the arguments V s are

siblings and the ordering of the siblings corresponds to the ordering from the left to

right in the tree. The function Parent(N) returns the parent of a node N if it exists,

or Null otherwise. The condition 1 < | {tos^uWk < u < k + n DSi , V s.-H G S b s J \ <

nDSi represents tha t at least one but not all of the nodes in { i j j s , - < u < k+ n p s , }

was cut. Figure 7.2 illustrates this rule. For example, Figure 7.3 depicts a set of

11 Document Sample Trees of a MEMO document type. The D SG and D N C G are

defined to be 0.6 and 0.25 respectively. The LC Sstr trees are shown in Figure 7.4

and Figure 7.5, and their LC Sstr table is shown in Table 7.1. Each entry in the

Table 7.1 is either blank if there is no valid L C Sstr to be discovered, or a set of

Tpcssir numbers if found, or Tps# itself. Since the L C S s tr (T^T^) is identical with

LC Sstr(T 2 ,Ti), the L C Sstr table is diagonally symmetric.

78

Tds, Tds

[/, + '!,«.+/]) ---— Poth(< Cul(T„Pathf t r „T r,Cu,(TllSi. bpXt) , + « (

t„s, +/]

I

F ig u re 7.2 The rule of L C S s tr ’s discovering.

T able 7 .1 L C Sstr table for Document Sample Trees in Figure 7.3.

T d s # 1 2 3 4 5 6 7 8 9 10 11
1 T d s , 1.1,1.2 2.1,2.2 4 9,11 6.1,6.2 7 8 4 11
2 T d s ? 10 9,11 12 13 14.1,14.2 6.1,6.2 9,11 11
3 T d s 3 9,11 12 15 14.1,14.2 16.1,16.2 9,11 11
4 T d s ., 18.1,18.2
5 T d s r. 9,11 9,11 7 4 20 21
6 t d s r 12 14.1,14.2 9,11 9,11 11
7 T d s 7 14.1,14.2 22.1,22.2 9,11 11
8 T d s r 7 7 14.1
9 T dsc , 4 11
10 T d s , n 21
11 T d s „

The L C Sstr table can be further transformed to a table, called the degree of

completeness table. The degree of completeness table describes how many Document

Sample Trees covered by each of L C S s tr ’s. The names of the rows are the list

of Document Sample Trees and the names of the columns are the list of TLCssir-

Table 7.2 shows a degree of completeness table for Table 7.1.

Obviously, TLcsstr is a Document Type Tree which represents its document

type if it covers all the Document Sample Trees. We can further analyze the gener­

alization relations between each pair of L C S s tr ’s, and then update the degree; of

79

Document Sample Tree!

H

H

N C I NC2 H

V V V V

NC3 NC4 NC5 NC6

Document Sample Tree2
H

N C I NC2 H

V V V V

Document Sample Tree3

H

H

NC7 H

V V V V
NC8

NC3 NC4 NC6 NC5 NC 3 NC4 NC6 NC5

Document Sample Tree4

H

H

Document Sample Tree5

H

H H

NC 7

NC4 NC3 NC6
N C 7

Document Sample Trce6

H

H

V y V V NC2 v V V V N C 7 V V V V

NC3 NC4 NC5 NC6 NC3 NC4 NC6 NC5

Document Sample Tree7
H

H

N C 7 NC2 H

Document Sample TreeS

H

v V V V

NC3 NC4 NC6 NC5

V NC2

NC3 NC4 NC5 NC6

NC7

Document Sample Tree9

H

NC 7 NC2 H

V V V V

NC3 NC4 NC5 NC6

Document Sample TreelO

H
Document Sample Tree 11

H

H H H H

V NC2 V V V V V NC2 V V V

NC7 N C I
NC3 NC4 NC5 NC6

N C I: N e w J e rs e y In s titu te o f T e c h n o lo g y

NC2: M e m o , N o tic e

NC3: T o

NC4: F ro m

NC5: D a te

NC6: S u b je c t

NC7: N J IT lo g o

NC3 NC4 NC5 NC8: C .C .

F ig u r e 7 .3 Document Sample Trees of the MEMO document type.

80

* L C S s trU

V H

N C I NC2 H

TLCSmrft. /

NC4 NC6

NC3 NC 4 NC5

V

NC2 H

NC3 NC4 NC5 NC3 NC4 NC5

H

N C I NC2 H

V V V

NC3 NC 4 NC6

LCSxtr2.1

H

H

v V v
I I I

NC3 NC4 NC5

T
‘ W S M 2 .2

H

H

I
H

r r

NC3 NC6

LCS\tr4

NC3 NC4 NC5 NC6

V

NC2 H

NC2 H

NC3 NC4 NC6

H

H

V V V

NC3 NC4 NC6 NC5

T„

NC3 NC4 NC5 NC6

T1 L C S u r 12

NC3 NC4 NC6

V V V 1/

I I I I
NC3 NC4 NC5 NC6

1/ V

NC3 NC4 NC6 NC5

LCSitrV

NC3 NC4 NC6

Figure 7 .4 LCSstr trees for Document Sample Trees in Figure 7.3.

81

N C 2 H

V y

N C 3 N C 4 N C 6 N C 5

H

i r r
N C 3 N C 4 N C 5

H

y y v
i i i

N C 3 N C 4 NC6

V H

L \

r r r
N C 3 N C 4 N C 6 N C 5

V

I
N C 7

H

H

v y k
I I I

N C 3 N C 4 NC 5

LCSslrl6.2

N C 3 N C 4 NC6

LCSstr 17.1

N C 3 N C 6

H

H

NC 4 N C 6

V

N C 7

H V

V NC2
V v

N C S N C 6 N C 7 N C 3 N C 4 N C 5 N C 6

L.l.CSstrlS.2

V H

N C 7
V V

N C 4 N C 6

T‘ LCSstr 19.1

H

N C 3 N C 6

H

N C 4 NC6

V NC2
V

N C 3 N C 4 N C 5

N C 2 H
N C 7

V y V

I [I
N C 3 N C 4 N C S

N C2 H
N C 7

N C 3 N C 4 N C 6

F ig u r e 7 .5 (continued from Figure 7.4) LCSstr trees for Document Sample Trees in
Figure 7.3.

82

Table 7.2 Degree of completeness table for Table 7.1.

T L C S s t r # T d s , T d s -, T d s a T d s , T DSr, T d s a T d s -, t d s s T d s „ T d s , o T d s , ,
1.1 X X
1.2 X X
2.1 X X
2.2 X X
4 X X X X

6.1 X X X X
6.2 X X X X
7 X X X X X
8 X X
9 X X X X X X X X
10 X X
11 X X X X X X X X X
12 X X X X
13 X X

14.1 X X X X X X
14.2 X X X X X
15 X X

16.1 X X
16.2 X X
18.1 X X
18.2 X X
20 X X
21 X X X

22.1 X X
22.2 X X

completeness table. In the remaining of this section, we define the generalization

relation between two T ic ss t f s. For finding generalization relation between Ticsstr’s>

all the generalization relations between each pair of Ticsstr s are first transformed

to a generalization digraph, from which a modified generalization digraph can be

obtained by removing redundant generalization relations from it. Then, the modified

generalization digraph is used to update the degree of completeness table.

D efin ition 7.2 TLcsstn can be embedded in Ticsstr,• if and only if Ticsatn is the

L C Sstr of Ticsstri and T ic s sir

D efin ition 7.1 Ticsstr, can be generalized to Ticsstri, denoted as Ticsstr,

TLcsstn, Ticsstri can be embedded in T LCSstrr

In Figure 7.4, T i C S s t r 4 can be generalized to TLCSstn, TLCSslru, TLCS s i r and

Ticsstru.2) each of which can be embedded in Ticsstr^-

83

A lg o rith m 7.2 Generalization Digraph. The table of generalization relation can

be represented by a set of directed acyclic graphs called the generalization

digraph G(V, E), where each edge e G E stands for “can be generalized to”

relation, denoted as v u, and vertices v, u E V stand for Ticsstr s. Then,

a modified generalization digraph G'(V,E) can be obtained from the gener­

alization digraph G{V, E) by using Rule 7.6 to remove redundant edges from

it.

R u le 7.6 Removing redundant edges from the generalization digraph.

IF (Vi -^ 4 v2, v2 v3, . . . , vk- i -^4 vk) A («! - A vk)

T H E N remove the edge v\ —̂ 4 Vk

A generalization digraph G — (V, E) can be represented by an adjacent matrix,

where V = {TLCsstn ,TLcsstr2, ■ ■ ■, TLCsstrn}- The adjacent matrix for G is a n x n

matrix A of booleans, where A[i, j] is true if and only if there is an edge from vertex i

to vertex j (that is, vertex i can be generalized to vertex j) . Another representation

of generalization digraph G = (V, E) is the adjacent list. The adjacent list for a

vertex i is a list of all vertices adjacent to i in some order.

The modified generalization digraph for the L C Sstr trees in Figure 7.4 and

Figure 7.5 is shown in Figure 7.6 in which only direct edges are drawn without

triangles. This digraph also describes the order of updating each Ticsstr's covers

in the degree of completeness table. For example, the T ds’s which are covered by

TLcsstn must be updated by TLCsstr4 after TLcsstr4 has been updated by TLCssir2a

and Ticsstr&- Applying Algorithm 7.3, a modified degree of completeness table as

shown in Table 7.3 is obtained by updating the degree of completeness table (in

Table 7.2).

84

A lgorith m 7.3 Update the degree of completeness table.

/*G(V,E) = Generalization Digraph */

queue Q\

vertex v, y;

while (|i?| > 0)

{
for each vertex v which does not have edge pointing to it

{
MAKENULL(<3);

for each vertex y

mark[y] = UNVISITED;

}

}

bfs(v)

{

Vertex x, y ;

ENQUEUE^, Q)\

while (EMPTY(Q) != TRUE)

{
x - FRONT(Q);

for each vertex y adjacent to x

{

if there is not any edge pointing to x

{

if (mark[?/] = = UNVISITED)

{

85

(1) in the degree of completeness table, mark the row of the

TLCSstry with all the trees covered by TLcsstrx;

(2) ENQUEUE^, Q);

(3)delete the edge x — > y,

(4) mark [y] = VISITED;

}

}

}
DEQUEUE(Q);

}

}

14.16.1 2.1

20

16.1 22.1

1.2 2.2 14.26.2

18.2
.18.1

22.2

F ig u r e 7 .6 Modified generalization digraph for the LCSstr trees in Figure 7.4 and
Figure 7.5.

86

T able 7.3 Modified degree of completeness table.

T L C S s t r # T d s 1 t d s ? T d s ? T D S a T d s r. T d s „ T d s -, T d s « T d s ? T d s w T d s ,,
1.1 X X
1.2 X X
2.1 X X X X X X X X
2.2 X X X X X
4 X X X X

6.1 X X X X X X X X
6.2 X X X X
7 X X X X X
8 X X
9 X X X X X X X X
10 X X X
11 X X X X X X X X X
12 X X X X
13 X X

14.1 X X X X X X X X X
14.2 X X X X X X X X X
15 X X

16.1 X X X X X X
16.2 X X X
18.1 X X X X X
18.2 X X X
20 X X
21 X X X

22.1 X X X X X X
22.2 X X

In Section 7.6, the use of this table for discovering the set of Ticsstr s, which

covers all the Tps' s will be investigated.

7.6 Search for D ocum ent Type Trees

Algorithm 7.4 is employed to find all the possible sets of TLcssir 's , which represent

one document type.

For the MEMO document type, Algorithm 7.4 takes Table 7.3 as input to

search all the possible sets of T L C s s t r s which cover all the T D S ’s . Given a set S p s

of Document Sample Trees, if S L C s s tr = { T i c s s t r , \ , T L C s s t r , 2 , ■ ■ ■ , T L C S s i r , i } is found

during generalization, then it is meaningless if the number of Document Type Trees

is greater than the total number of Document Sample Trees. We use the Rule 7.7 to

limit the size of the set Sicsstr■

A lgorithm 7.4 Search for Document Type Trees.

/* S d s = set of Document Sample Tree */

/* SLCSstr — set of Largest Common Substructures */

boolean Table[|S/,csstr|][|«SDS’|];

/* array of modified degree of completeness table */

boolean Select_asJiead[|S'iC5str|];

boolean Select_as_element [| SpcSstr |];

boolean Current_cover[|5z,csstr |];

for j = 1 to |5d5 |

{

k = find_the_seed_T^c S s t r -and_not_selected (Table);

/* Find the Ticsstr which covers the most number of Tps and

was not selected as the seed. */

select_as_head[k] — True;

for m = 1 to |-Sds | current_cover[m] = Table[k][m];

/* Copy the trees which are covered by Ticsstr into current_cover[]

for 1 =1 to |5Ds|

{

search(k);

}

}

search(k)

{

stack S;

MAKENULL(S);

for i= l to | S^cSstr | selected_as_element[i] = False;

selected.£is.element[k] = True;

88

PUSH (k, S);

while (EMPTY(S) != True)

{
k = find_the_element_Tf,c75sir_and_not_selected(Table);

/* Find the T i c s s t r which covers the maximum number of uncovered Tps's

and was not selected as the element and seed. If there is more than one Tpcsstr

found, select the first one in the searching order who covers maximum number

ofT W s. */

if (k = = NULL)

/* Fail to find a TpcSstr in this search, and recover the array of current-cover []. * /

{
m = TOP(S);

recover(m, current_cover[|);

remove the effective covers from m;

POP(S);

/* Remove this Ticsstr and do another search. */

selected_as-element[m] = True;

} if (k != NULL)

{

for 1:=1 to \ S d s \

if ((Table[k][1] = = 1) and (current_cover[l] = = 0)) current_cover[l] = 1;

if (cover_complete(current_cover[|) = = True)

{

output(S);

/* A set of Ticsstr which completely covers all the trees in Sps is found.*/

recover(current_cover []);

/* Reset to the coverage without k.*/

selected_as_element[k] = True;

}

89

if (cover_complete(current_cover[]) = False)

{

output(Q);

selectecLas_element[k] = True;

PUSH(k,S);

}

}

}
return;

R u le 7.7 Limit the size of final Sicsstr-

IF \SLCSstr\ > C*2 * \S DS\

T H E N select the most important (C2 * |<S'z?s,|) trees from Sicsstr

and save them into new Document Type Tree S q t

where 0 < C2 < 1 is a predefined constant. We select the set of Ticsstr s that has

a minimum member of trees and satisfies Rule 7.7 as the Document Type Trees. If

there is more than one set of Ticsstr s found, we then choose the set S which has

the maximum value of (]£jfc=iImportancetree(TLcsstrk)), where TLCSstrk € S. As

shown in Figure 7.7, the search process is as follows. TLCsstrn which covers 12 TDS's

is first selected as a seed to start searching. Tps 4 and Tds 10 are not covered so far.

Then, TLCsstr7 is selected to cover TDSl0. Then, TLCsstna.i or TLCsstrl s .2 is selected to

cover TDSa. N o w all the T ps’s are covered. Two sets of candidate Document Type

Trees, {TLcsstru’TLcsstr7 ,TLcsstrl8A} and {TLCsstrn , Ticsstn, TLcsstr^A are found.

As the search process continues, { T ic s s t r u . i ^ L C S s tn 8.i} be finally chosen as the

Document Type Trees because it contains only two members.

90

I I Td S4 . Td sid 7 Td s i

IK I X

I K 2 X

u , T D S4 .T D S ,, a n I x

J D S 4 . Td s i ,

‘ " • 2 -------^ ____- I J U X
TDS4

,4 4 ToU 'T b s h . . . 7/«v--------------- /5 /---------

2 ./ ^DS4’ ^ i Tdsio

Td siii

' I K 2 X

, / « . / X

/A / X I sum 15 .75 C to ta l= 2 5

1&2 X | sum 15.75 Ctotal = 23

sum =15.61 Ctotal = 2 9

sum =15.61 Ctotal = 27

sum =15.61 Ctotal = 29

/ 'lf-2 X I sum =15.61 Ctotal = 27

I sum =r 1 0 .4 8 5 Ctotal = 1 7

I sum = 16 .3 4 5 Ctotal = 29

I sum = 16 .3 4 5 Ctotal = 2 7

1 K 2 -

- I K 2 X

7 X

7 X

0

IK 1

) K 1

I sum: S u m m a t io n o f I m p o r t a n c e s o f a s e t o f T l c s ’s .

Ctotai; T o ta l n u m b e r o f D o c u m e n t S a m p l e T r e e s c o v e r e d b y a s e t o f T l c s 's .

X : E n d o f th i s p a t h .

Figure 7 .7 Search process of Algorithm 7.4.

91

7.7 Num ber o f D ocum ent T ype Trees and C om putational
C om plexity o f C lassification

The number of Document Type Trees to be discovered during generalization depends

on the number of common features found. There is no Document Type Tree

discovered, if all the Document Sample Trees have totally different tree structures

and node contents. According to the generalization algorithm (Algorithm 7.4), each

Ticsstr tree covers at least two Document Sample Trees. Given two trees T\ and T2,

the complexity of discovering largest common substructure of T\ and T2 is bounded

by 0 (|T \| x |T2| x min(.f/i, L x) x m m (if2, L2)), where Hj is the height of Tj and Lj

is the number of leaf nodes in Tj [25]. This is the same as the complexity of the Tree

Matching Algorithm in [39] for comparing two trees using the edit distance.

Given s* Document Sample Trees of document type i, ti Document Type Trees

are found to cover c* Document Sample Trees. We consider three cases as follows.

Case 1 : ti — 0 and c* = 0. No common feature can be found between any pair of

Document Sample Trees.

Case 2 : U = I and Ci = s*. All the Sample Document Trees are covered by one

Document Type Tree.

Case 3 : 0 < ti < Cj/2 and 0 < c, < s*. Only c* Document Sample Trees are covered

by ti Document Type Trees.

Given the L-S Tree Ttest of a testing document, the time complexity of

classifying Ttesl as the document type i is as follows.

In Case 1, the complexity is

k=S{
0 (^ 2 \Ttest\ X |TD5J x min(Htest, Ltest) x fnin(HDSk,T DSk)).

k = 1

In other words, the generalization algorithm does not save any computational time

because no Document Type Tree is found for this document type.

92

In Case 2, the complexity is 0 (\T test\x \TDT\xm'm{Htest, L tesl)x m in (H DT, L n r))

where the classification system takes the most advantage from generalization.

In Case 3, the complexity is

k = U

0 (Y latest] x l^zxrj x min (H test, L test) x m i n (H D T k , L Drk) +
k = l

f = (s , - C ,)

Y \Ttest\ x \TD s ,\ x min(H test, L test) x min{ H DS„ L DS,)) .
i = i

7.8 Inductive Learning Process for C onstructing D ocum ent T ype Trees

In this section, we summarize what we have discussed throughout the Chapter 7, by

describing an inductive learning process for constructing the set of Document Type

Trees for a document type i which is as follows:

« Preprocess each Document Sample Tree Tds in the set S ds of Document

Sample Trees

1. Rule 7.1 (Preprocessing Rule 1): Remove dynamic leaves.

2. Rule 7.2 (Preprocessing Rule 2): Cut the non-basic leaves.

3. Rule 7.3 (Preprocessing Rule 3): Cut the nodes containing non-basic

descendant nodes.

4. Consider the relation of L C Sstr and LCSreg.

• Construct the L C S str table.

1. Discover the TLcsstrs for each pair of TDS's in S d s-

2. Rule 7.5: Find L C S s tr 's.

3. Rule 7.4: Check the degree of generalization.

4. Algorithm 7.1: Create the L C Sstr table.

• Create the degree of completeness table.

93

• Find Document Type Trees.

1. Algorithm 7.2: Construct a Generalization Digraph.

2. Rule 7.6: Remove redundant generalization relations.

3. Algorithm 7.3: Update the table of degree of completeness.

4. Algorithm 7.4: Search for Document Type Trees.

5. Rule 7.7: Limit the number of Document Type Trees.

7.9 Finding A ll the P ossib le Largest Com m on Substructures

The original L C Sstr algorithm [25] discovers the first L C S str between two trees T\

and T2. Rule 7.5 finds some other L C S s tr 's by applying longest common subsequence

algorithm and analyzing T\ and T2. For the application of discovering Document

Type Tree, the original LC Sstr algorithm and Rule 7.5 is sufficient because it always

finds all the possible L C S str 's. But the algorithm does not consider all the cases

having the same maximum size. This section describes another alternative modifying

the original algorithm to find all the possible L C S str 's.

Let F = T[i..j] be an ordered forest containing nodes numbered from i to j in

tree T, as shown in Figure 7.8. A set S of nodes in F is said to be a set of consistent

subtree cuts in F if (i) t(p) e S implies that i < p < j , and (2) t[p],f[<7] € S

implies tha t neither one is an ancestor of the other in F. Let C ut(F , S) represent the

subforest of F with substree removals at all nodes in S. Let Subtree(F) be the set

of all possible sets of consistent subtree cuts in F. Let fd is t(F i, F2) be the distance

from forest F\ to forest F2. The size of largest common substructures of F\ and F2,

denoted fs ize (F \, F2, 0), is defined to be max{|C'«t(Fi, Si)! + \Cut(F\, S2)|} such

that

fd is t(C ut(F i, S \) ,C u t(F 2 , S2)) = 0

S\ € Substrees(F\)

94

S 2 G Substrees(F2).

Let l(i) denote the postorder number of the leftmost leaf of the subtree T[i].

If T[i] is a leaf, l(i) — i. Let desc(i) represent the set of postorder numbers of

the descendants of the node t[i]. For example, in Figure 7.8, 1(8) = 1 and 1(7) =

5, desc(8) = {1, 2 ,3 ,4 ,5 ,6, 7} and desc(7) = {5,6}. The fsize(Fx, F2,0) can be

represented by fs ize(l(i) . .s ,l(j) . . t , 0) if Fi = 7\[i(i)..s] and F2 — T2 [l(j)..t], where

s G desc(i) and t G desc(j). The size of largest common substructures of subtrees

T\[i] and T2 [j], which represent the substree rooted at fi[i] of T\ and the substree

rooted a t t 2 [j] o iT 2 respectively, denoted tsize(T\ [*], T2 [j], 0) (or simply ts ize (i ,j , 0)

), is maxdCu^Tifz], 5 i)| + \Cut(T2 [j], S2)\} such that

fdist(Cut(Ti[i\, S i) ,C u t(T 2 [j], S2)) = 0

■Si G Substrees(T\[i])

S 2 G Substrees(T2 [j]).

L em m a 3.3 [25] Suppose s G desc(i) and t G desc(j). I f (l(s) ^ l(i) or l(t) ^ l(j)),

then

fsize(l(i) ..s ,l(j) ..t , 0) = m ax

fs ize (l (i)J (s) - l , l (j) . . t , 0),

fs ize(l(i) ..s ,l(j) ..l(t) - 1, 0),

f size(l(i)..l(s) — 1, l(j)..l(t) — 1, 0) + tsize(s, t, 0).

Lemma 3.3 exhausts all three possible cases yielding fs ize(l(i) ..s ,l(j) ..t , 0).

Case 1. If the subtree 7\[s] is removed (i.e., ^[s] G S\), the forest left in

Ti[/(z)..s] becomes Ti[l(i)..l(s) — 1] and the fsize(l(i)..s , l(j)..t, 0) = f size(l(i)..l(s) —

l , l(j) . . t , 0).

Case 2. If the subtree T2 [t] is removed (i.e., t 2 [t\ G S 2), the forest left in

T2 [l(j)..t] becomes T2 [l(j) . . l (t) - 1] and fs ize(l(i) ..s ,l(j) ..t , 0) = fsize(l(i)..s,l(j)..l,(t,)-

1 , 0) .

95

Case 3. If neither ijfs] nor t2 [t] is removed (i.e., ^[s] ^ S\ and t 2 [t] S 2), f i [.s]

maps to t 2 [t}. In the mapping from Cut(Tl [l(i)..s], S\) to Cut(T 2 [l(j)..t], S2), T\ [s]

must be mapped to T2 [t] to ensure the zero distance between Cut(Ti[l(i)..s], S\)

and Cut(T 2 [l(j)..t], S2). Accordingly, fs ize(l(i) ..s ,l(j) ..t , 0) = fs ize(l(i)..l(s) -

1 ,l(j)..l(t) — 1, 0) + tsize(s, t, 0).

In the original L C Sstr algorithm, if there are two or more cases having the

same maximum size, only the first case (in the order from Case 1 to Case 3) is

chosen and the rest of the cases are discarded. The modified algorithm will keep all

the cases which have same maximum sizes and saves them in the mapping array of

map[s][t][0]. The array map, which is a array of pointers, stores the information of

selected case which has the maximum size. An array taWe[s][t][0] is created to store a

series of mappings in array map when a substructure in T\ [i] is found and matches a

substructure in T2 [j] during the search of L C S s tr 's between Ti[i\ and T2 [j]. Because

each entry in array map can point to more than one case, each entry of table could

be a tree instead of a linked list in the original algorithm. After all the sizes of all

the substructures of subtrees in T\ and T2 are found, we search for all the of subtree

pairs T\[i] and T2 [j] having maximum sizes of substructures tsize(i, j , 0). Then, we

discover the mappings form T\[i] to T2 [j] by checking the array table. Since each

entry in table is a tree structure, a stack and depth first search are devised to travel

the tree structures and find all the possible L C S str 's. The idea is also explained in

Figure 7.9.

96

T

t[8]

4]t t[7]

t[l] t[2] t[3] t[5]

t[4]

t [l] t[2] t[3] t[5] t[61

t[6]

F ig u r e 7 .8 An example of induced forest.

97

ta b le :

m a p : f s iZe(l(i)..s. l(j) ..l(t)-l, 0);

m a P fs ize (l(i) ..l(s)- l, l(j) ..l(t)-l, 0) + tsize(s, l, 0)

[1] [4]mm
[2][2] [2][3] [2] [4] [2] [5][2][1]

[n] [l] [n] [2] tn] [3] [n] [4] [n] [5]

Figure 7 .9 A data structure of map and table.

C H A PT E R 8

D O C U M E N T CLASSIFICATIO N

In the preceding chapters, we presented the generation of the Document Sample

Trees and Document Type Trees. In this chapter we will discuss the document

classification.

Given a testing document D, it is first transferred to be L-S Tree. Because

we only enforce the completeness condition during inductive learning process, it is

possible that two different document types could have some identical Document Type

Trees. The consistency condition can be satisfied by associating each Document Type

Tree with a weight based on Zipf’s law [31]. If a Document Type Tree occurs in m

types, its weight is assigned as log2[(M/m)], where M is the total number of types.

The first stage is Document Type Tree discovering. We try to discover each

Document Type Tree from a given L-S Tree by applying the L C Sstr algorithm.

After discovering process, each document type obtains a raw score, which is equal to

the sum of the weights of the Document Type Trees occurring in the L-S Tree. The

raw score of a type is normalized by dividing the score by the total weight of all the

Document Type Trees and then multipling it by 100. This either succeeds to find

the best fitting document type candidates, or fails to find any one. For the second

case, since it discovers no Document Type Tree from the L-S Tree, D must be a new

document type or a new format of an existing document type. The KAT (Knowledge

Acquisition Tool) will be activated to update the structural knowledge base. In the

first case, the Document Sample Trees belonging to document type candidates will

match against the L-S Tree to find the exact document format. If the Document

Sample Trees of all the possible candidates of Document Type Trees fail to match

the L-S Tree of the testing document, the classification system will learn the node

contents (i.e. the key terms, attribute, etc) of the testing document through user

interaction by activating KAT. Figure 8.1 shows the document classification process.

98

99

D o c u m e n t S a m p le T r e e s

D o c u m e n t T y p e T r e e s

z x

lo c u m e n t T y p e 1

te s t in g d o c u m e n t D o c u m e n t T y p e 2

D o c u m e n t 7)

D o c u m e n t T y p e

Figure 8 .1 Document classification process.

100

START

input:

L-S Tree o f testing document D

YES

NO

NO

YES

YES

NO

NO

YES

END

Docum ent^.
Sam ple Tree Matching

v. succeed ?

:ry out all
Document Type

Trees in KBp7?

try out all
Docum ent Sample

Trees in KBps'?

Document^-v.
Type Tree D iscovering

s . succeeds ?

get a Docum ent Sam ple Tree

Tps o f type T

classify D as document type j

gel a Docum ent T ype Tree Tp?
from Type T

classify D as document format r e ­

activate KAT to learn

the new document type

and update KBpT and KB t>s

activate KAT to learn

the new document type

and update KBl)T and KB f)S

K B p r : K n o w le d g e B a s e of D o c u m e n t T y p e T r e e s

K B p s : K n o w le d g e B a s e of D o c u m e n t S a m p le T r e e s

F ig u r e 8 .2 Document classification algorithm.

C H A PT E R 9

E X PE R IM E N T A L RESULTS A N D C O NCLUSIO N

This dissertation presents the design of a knowledge based system in TEXPROS

[32] for classifying office documents. The layout structure and conceptual analysis

of documents are used to identify the testing document. A novel inductive learning

technique is presented, and is employed to train the system and build up the

structural knowledge base (the Document Sample Trees and Document Type Trees).

A knowledge Acquisition Tool is devised to perform the inductive learning from

L-S Trees of document samples and then generate the Document Sample Tree and

Document Type Tree bases. The Document Type Trees allow that a small set

of trees (rather than a large pool of Document Sample Trees) is possibly used to

identify the type of a document during document classification process. A testing

document is classified if a Document Type Tree is discovered as a substructure of the

L-S Tree of the testing document, then we match the L-S Tree with the Document

Sample Trees of the classified type to find the format of the teting document. Our

empirical study shows that the document recognition rate is very promising by using

this tool.

Forty different document samples for each of eight document types were

selected. In total, three hundred and thirty different document samples were

selected and preclassified into eight different document types. Fifteen sample

documents out of forty document samples of each type were used for training the

classification system in the learning stage. Figure 9.1 depicts some the Document

Type Trees discovered during the knowledge acquisition process. After the system

has been trained, another twenty five document examples are employed to test the

classification process. The document types include letter, memo, journal of IP&M

(Information Processing & Management), PAMI (Pattern Analysis and Machine

Intelligence), E. M. (Journal of Electronic Materials), COMM. (IEEE Transactions

101

102

T ab le 9 .1 Experimental result 1 of document type classification.

l e t t e r m e m o I P & M P A M I E . M . C O M M . C O M P U T E R c a ll f o r p a p e r s u n k n o w n

le t t e r 9 0 % 10%

m e m o 9 0 % 10%

I P & M 1 0 0 %
P A M I 1 0 0 %
E . M . 100%

C O M M . 100%
C O M P U T E R 1 0 0 %
c a ll f o r p a p e r s 8 0 % 20 %

on Communication), COMPUTER (IEEE Transactions on Computer) , and call-

for-papers. The experimental result is represented by the precision rate defined

as:
M

precision rate — — x 100%,

where M is the number of documents of some type classified successfully and N is

the total number of documents of that type being tested.

The result is shown in Table 9.1. From Table 5, 10% of the letter, 10% of

the memo, and 20% of the call-for-papers are classified as unknown document types

because, in learning process, the sample documents couldn’t cover all the possible

document formats. The journal document type basically has fixed document format

and its recognition rate is not proportional to the number of training samples. The

rest of the documents were classified 100%.

By increasing the number of training samples of each document type to 20, the

experiment shows that recognition rates of letters and memos are raised up to 96%

and 94% as shown in Table 9.2.

The time needed to generate Document Type Trees for document type memo ,

letter and Journal in the first learning process is listed in Table 9.3.

103

T ab le 9 .2 Experimental result 2 of document type classification.

l e t t e r m e m o I P & M P A M I E . M . C O M M . C O M P U T E R c a l l f o r p a p e r s u n k n o w n
l e t t e r 9 6 % 4 %
m e m o 9 4 % 6 %
IP & M 1 0 0 %
P A M I 10 0 %
E . M . 100%

C O M M . 1 0 0 %
C O M P U T E R 10 0 %
c a l l f o r p a p e r s 8 0 % 2 0 %

T ab le 9 .3 Experimental result of document type learning time.

document type time(seconds)
letter 40
memo 35

Journal 30

104

u
H

V H
| /

NC7
NC3 NC4 NC 5

N C 3: TO

N C 4: From

N C 5: Date

N C 6: Subject

N C 7: N JIT lo g o

M e m o d o c u m e n t ty p e

NC3 NC6

H H
N C I: IEEE T ransactions on

N C 2: C om puter

N C 3: V o lu m e

N C 4: N um ber

NCt NC2 v N C 5: ISB N

/ K
NC 3 NC 4 NC5

N C 6: A publication o f the IEEE C om puter S ociety

C o m p u te r J o u r n a l d o c u m e n t ty p e

N C I: D ear

N C 2: S incerely

N C 3: P .S .

N C I

L e tte r d o c u m e n t ty p e

N C I : IEEE Transactions on

N C 2: C om m unication

N C 3: V olu m e

N C 4: N um ber

N C 5: ISB N

N C 6: Published by the IEEE C om puter S ociety

C o m m u n ic a tio n J o u r n a l d o c u m e n t ty p e

NC6

N C I NC2
NC 3 NC 4 NC5

N C I : IEEE T ransactions on

N C 2: Pattern A n alysis and

N C 7 N C 3: M achin e In telligence

N C 4: V olu m e

N C 5: N um ber

NCI NC2 NC 3 s k N C 6: ISB N

N C 4 NC5 NC6
N C 7: P ublished by the IEEE C om puter S o ciety

PAM I J o u r n a l d o c u m e n t ty p e

F ig u r e 9 .1 Document Type Trees.

C H A P T E R 10

F U T U R E R ESEA RC H

We would like to conclude this dissertation writing with a note describing some of

the research issues which remains to be investigated.

In this dissertation, we demonstrated that the Document Sample Trees can be

obtained during the learning stage of the process of classifying documents, which arc

represented by L-S Trees. We then proposed that the Document Sample Trees of

a type are generalized to a fewer Document Type Trees. This allows that, in the

classifying stage, given a L-S Tree of a document to be classified, we are first finding

the best possible match between the L-S Tree and a Document Type Tree from a

pool of Document Type Trees of various types in the base, instead of Document

Sample Trees of various types. This speeds up the process of classifying documents.

However, the success of optimizing the speed of classifying documents depends upon

how smaller number of the Document Type Trees per type we can get. The general­

ization rules, which are used to generate Document Type Trees from a large pool of

Document Sample Trees of a type, employs three criteria such as the importance of

a tree, the degree of generalization, and the degree of completeness. These criteria

represent the user’s preference. However, it is our conjecture that there are more

preference criteria, such as semantic importance of node contents, that can be used

to speed up the process of discovering L C S s tr ’s.

Throughout the discussion in this dissertation, we had established with exper­

imental results that the proposed scheme is operable. However, there is a need to

formalize the concepts of Document Sample Trees and Document Type Trees, which

represent concisely and completely the significant characteristics and features of the

classifying documents. The formalization of these concepts could allow us to inves­

tigate the properties of these concepts for representing documents; to examine the

relationship between the Document Sample Trees and the Document Type Trees such

105

106

that a fewest Document Type Trees for representing each type can be theoretically

obtained; to partition the Trees into sets of trees of various document types based

on their representing characteristics and features without examining, if possible, the

structural differences among the trees; to recognize that there are repetitive tree

structures regardless of their document types, without going through the process of

matching trees; to recognize the possibility of having two identical Document Type

Trees of different document types, and so forth. Above all, the formalized concept

of the Document Type Trees allows us to prove that we always can classify correctly

documents of their representing types.

Given a specific application domain, how do we determine the document type

hierarchy for representing a large collection of documents? Specifically, how do we

represent a type of documents? In TEXPROS, we use the concept of frame template

consisting of various attributes for describing the common and distinct character­

istics and features of documents of different types. However, for a large collection

of documents of numerous types, the use of attributes for describing the common

and distinct characteristics and features of documents of different types becomes

inadequate and ineffective way for representing the document types. Either we have

to use a large list of attributes or there is only a few (possibly, one or two only)

common attributes between any two frame templates. The former introduces the

problem of increasing the size of the Document Sample Trees and therefore the size

of the Document Type Trees. The latter leads to that the Document Type Trees

will not be as fewer as we want to have. Because of these, our approach will be less

effective.

Finally, what is the well-defined sets of Document Sample (or Type) Trees of

each document type? That is, for each document type, what is the smallest set of

Document Sample Trees (and therefore the Document Type Trees) that we need to

represent all the possible documents of the type? How do we discover the additional

107

Document Sample (or Type) Trees from the existing Document Sample Trees and

Document Type Trees? Such a knowledge discovery for the Document Sample or

Type Trees may optimize the process of classifying documents.

R EFER EN C ES

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms,
pp. 189-192, Addison-Wesley, Reading, Massachusetts, 1983.

2. R. Bareiss, Examplar-Based Knowledge Acquisition, Academic Press, New York,
1989.

3. B. G. Buchanan, D. K. Barstow, R. Bechtel, J. Bennett, W. Clancey,
C. Kulikowski, T. M. Mitchell, , and D. A. Walterman, “Construct an
Expert System,” Building Expert System edited by F. Hayes-Roth, D.
A. Waterman and D. B. Lenat, Reading, Massachusetts, Addison-Wesley,
pp. 127-167, 1983.

4. J. G. Carbonell, R. S. Michalski, and T. M. Mitchell, “An Overview of Machine
Learning ,” Machine Learning - An Artificial Intelligence Approach,
edited by R. S Michalski, J. G. Carbonell, and T. M. Mitchell, Morgan
Kaufmann, Palo Alto, California, pp. 3-24, 1983.

5. W. J. Clancey, “Heuristic Classification,” Artificial Intelligence, vol. 27, pp. 289-
350, 1985.

6. R. D. Coyne, M. A. Rosenman, A. D. Radford, M. Balachandran, and
J. S. Gero, Knowledge-Based Design Systems, Addison Wesley, Reading,
Massachusetts, 1990.

7. A. Dengel and G. Barth, “ANASTASIL - A Hybrid Knowledge-Based System
for Document Layout Analysis,” in Proceedings of International Joint
Conference of Artificial Intelligence, vol. 2, pp. 1254-1259, 1989.

8. H. Eirund and K. Kreplin, “Knowledge Based Document Classification
Supporting Integrated Intelligent Document Handling,” in Proceedings
on Office Information Systems, pp. 189-196, 1988.

9. F. Esposito, D. Malerba, G. Semeraro, E. Annese, and G. Scafuro, “An Experi­
mental Page Layout Recognition System for Office Document Automatic
Classification,” in Proceedings on the 10th IEEE Conference on Pattern
Recognition, Atlantic City, New Jersey, pp. 557-562, 1989.

10. J. L. Fisher, S. C. Hinds, and D. P. D’amato, “A Rule-Based System for
Document Image Recognition,” in Proceedings of the 10th IEEE Inter­
national Conference on Pattern Recognition, Atlantic City, New Jersey,
pp. 567-572, June 1990.

11. T. R. Gruber, The Knowledge Acquisition of Strategic Knowledge, Academic
Press, New York, 2nd ed., 1989.

108

109

12. X. Hao, J. T. L. Wang, M. Bieber, and P. A. Ng, “A Tool for Classifying Office
Document,” in Proceedings of the 5th IEEE International Conference on
Tools with Artificial Intelligence, pp. 427-439, November 8-11 1993.

13. X. Hao, J. T. L. Wang, and P. A. Ng, “Nested Segmentation: A Approach for
Layout Analysis in Document Classification,” in Proceedings of the Second
IAPR Conference on Document Analysis and Recognition, Tsukuba
Science City, Japan, pp. 319-322, October 1993.

14. F. Hayes-Roth and J. McDermott, “Knowledge Acquisition Structural from
Descriptions,” in the 5th International Joint Conference on Artificial
Intelligence, Cambridge, Massachusetts, pp. 356-362, 1977.

15. S. J. Hong, “Developing Classification Rules from Examples,” in Tutorial for
the Int. Conference on Artificial Intelligence for Applications, Orlando,
Florida, pp. 1-37, March 1993.

16. E. Lutz, H. V. Kleist-Retzow, and K. Hoernig, “MAFIA - An Active Mail-
Filter-Agent for an Intelligent Document Processing Support,” Multi-
User Interface and Applications, eds., S. Gibbs and A. A. Verrijn-Stuart,
Elsevier, Science Publishers, North Holland, pp. 16-32, 1990.

17. R. S. Michalski, “Discovering Classification Rules Using Variable-Valued Logic
System VL1,” in Proceedings of the Third International Joint Conference
on Artificial Intelligence, Standford, California, pp. 162-172, August
1973.

18. R. S. Michalski, “A Theory and Methodology of Inductive Learning,” Artificial
Intelligence, vol. 20, pp. 111-161, 1983.

19. R. S. Michalski, “Pattern Recognition as Rule-Guided Inductive Inference,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 2,
no. 4, pp. 349-361, July 1980.

20. R. S. Michalski and R. E. Stepp, “Learning From Observation: Conceptual
Clustering,” Machine Learning - An Artificial Intelligence Approach,
edited by R. S. Michalski and J. G. Carbonell and T. M. Mitchell, Morgan
Kaufmann, Palo Alto, California, pp. 331-363, 1983.

21. B. Pagurek, N. Dawes, G. Bourassa, G. Evans, and P. Smithera, “Letter Pattern
Recognition,” in Proceedings of the 6th Conference on Artificial Intel­
ligence for Applications, Santa Barbara, California, pp. 313-319, 1990.

22. Z. Pawlak, “Rough Classification,” Int. J. Man-Machine Studies, vol. 20,
pp. 469-483, 1984.

23. B. W. Porter, R. Bareiss, and R. Holte, “Concept Learning and Heuristic
Classification in Weak Theory Domains,” Artificial Intelligence, vol. 45,
pp. 229-263, 1990.

110

24. J. Schmdit and W. Putz, “Knowledge Acquisition and Representation for
Document Structure Recognition,” in Proceedings of the 9th Conference
on Artificial Intelligence for Applications : the CAROL Project, Orlando,
Florida, pp. 177-181, March 1993.

25. D. Shasha, J. T. L. Wang, and K. Zhang, “On Discovering the Largest Approxi­
mately Common Substructures of Two Trees,” Submitted for publication.

26. F. Shih, S. S. Chen, D. C. Hung, and P. A. Ng, “A Document Segmentation
Classification and Recognition System,” in Proceedings of the Second
IEEE International Conference on Systems Integration, Morristown, New
Jersey, pp. 258-267, June 15-18 1992.

27. Y. Y. Tang, C. D. Yan, and C. Y. Suen, “Document Processing for Automatic
Knowledge Acquisition,” IEEE Transactions on Knowledge and Data
Engineering, vol. 6, no. 1, pp. 3-21, 1994.

28. Y. Tsuji, “Document Image Analysis for Generating Syntactic Structure
Description,” in Proceedings of the 9th IEEE Conference on Pattern
Recognition, Rome, Italy, pp. 744-747, June 1988.

29. S. Tsujimoto and H. Asada, “Understanding Multi-articled Document,” in
Proceedings of the 10th IEEE Conference on Pattern Recognition, Atlantic
City, New Jersey, pp. 551-556, 1990.

30. J. T. L. Wang, K. Jeong, K. Zhang, and D. Shasha, “Reference Manual for
ABTE-A Tool for Approximate Tree Pattern Matching,” technical report,
Courant Institute of Mathematical Science, 1991.

31. J. T. L. Wang, T. G. Marr, and D. Shasha, “Discovering Active Motifs in Sets
of Related Protein Sequences and Using Them for Classification,” Nucleic
Acids Research, vol. 22, no. 14, pp. 2769-2775, May 12 1994.

32. J. T. L. Wang and P. A. Ng, “TEXPROS: An Intelligent Document Processing
System,” International Journal of Software Engineering and Knowledge
Engineering, vol. 2, no. 2, pp. 171-196, June 1992.

33. J. T. L. Wang, K. Zhang, K. Jeong, and D. Shasha, “A System for Approximate
Tree Matching,” IEEE Transactions on Knowledge and Data Engineering,
vol. 6, no. 4, pp. 559-571, August 1994.

34. C. S. Wei, “Inductive Learning and Knowledge Representation in Document
Classification,” Ph.D. Proposal, New Jersey Institute of Technology,
Newark, New Jersey, 1994.

35. C. S. Wei, Q. Liu, J. T. L. Wang, and P. A. Ng, “Knowledge Discovering for
Document Classification Using Tree Matching in TEXPROS,” submitted
to Information Sciences: An International Journal.

Ill

36. C. S. Wei, J. T. L. Wang, and P. A. Ng, “Inductive Learning and Knowledge
Representation for Document Classification: the TEXPROS Approach,”
in Proceedings of the Third IEEE International Conference on Systems
Integration, Sao Paulo City, Brazil, pp. 1166-1175, August 15-19 1994.

37. K. Y. Wong, R. G. Gasey, and F. M. Wahl, “Document Analysis System,” IBM
J. Res. Develop, vol. 6, no. 6, pp. 642-656, 1982.

38. R. Yasdi, “Learning Classification Rules from Database in the Context of
Knowledge Acquisition and Representation,” IEEE Transactions of
Knowledge Data Engineering, vol. 3, no. 3, pp. 293-306, September 1991.

39. K. Zhang and D. Shasha, “Simple Fast Algorithms for the Editing Distance
between Trees and Related Problems,” SIAM J Computing, vol. 18, no. 6,
pp. 1245-1262, December 1989.

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 1996

	Knowledge discovering for document classification using tree matching in Texpros
	Ching-Song Wei
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Document Layout Structure Analysis
	Chapter 3: Generation of L-S Tree and Document Sample Tree
	Chapter 4: Tree Matching
	Chapter 5: Classification System
	Chapter 6: Finding Common Substructures From Segmented Documents
	Chapter 7: Generalizing Document Sample Trees
	Chapter 8: Document Classification
	Chapter 9: Experimental Results and Conclusion
	Chapter 10: Future Research
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

