
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Spring 1996

Knowledge discovering for document classification
using tree matching in Texpros
Ching-Song Wei
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
Wei, Ching-Song, "Knowledge discovering for document classification using tree matching in Texpros" (1996). Dissertations. 1022.
https://digitalcommons.njit.edu/dissertations/1022

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1022?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM I 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may be  

from any type o f  computer printer.

The quality o f  th is reproduction is dependent upon the quality o f the  

copy subm itted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if  

unauthorized copyright material had to be removed, a note will indicate 

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back o f  the book.

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6” x 9” black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly to  

order.

UMI
A Bell & Howell Information Company 

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 
313/761-4700 800/521-0600



UMI Number: 9635199

Copyright 1996 by Wei, Ching-Song
All rights reserved.

UMI Microform 9635199 
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized 
copying under Title 17, United States Code.

UMI
300 North Zeeb Road 
Ann Arbor, MI 48103





A B ST R A C T

K N O W L E D G E  D IS C O V E R IN G  F O R  D O C U M E N T
C L A SSIF IC A T IO N  U S IN G  T R E E  M A T C H IN G  IN  T E X P R O S

by 
C hing-Song W ei

This dissertation describes a knowledge-based system for classifying documents 

based upon the layout structure and conceptual information extracted from the 

content of the document. The spatial elements in a document are laid out in 

rectangular blocks which are represented by nodes in an ordered labelled tree, called 

the “layout structure tree” (L-S Tree). Each leaf node of a L-S Tree points to 

its corresponding block content. A knowledge Acquisition Tool (KAT) is devised 

to create a Document Sample Tree from L-S Tree, in which each of its leaves 

contains a node content conceptually describing its corresponding block content. 

Then, applying generalization rules, the KAT performs the inductive learning from 

Document Sample Trees of a type and generates fewer number of Document Type 

Trees to represent its type. A testing document is classified if a Document Type Tree 

is discovered as a substructure of the L-S Tree of the testing document; and then the 

exact format of the testing document can be found by matching the L-S Tree with 

the Document Sample Trees of the classified document type. The Document Sample 

Trees and Document Type Trees are called Structural Knowledge Base (SI<B). The 

tree discovering and matching processes involve computing the edit distance and the 

degree of conceptual closeness between the SKB trees and the L-S Tree of a testing 

document by using pattern matching and discovering toolkits. Our experimental 

results demonstrate that many office documents can be classified correctly using the 

proposed approach.
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C H A PT E R  1 

IN T R O D U C T IO N

Automatic document classification is one of the fundamental tasks in an effective 

Office Information System (OIS) [32], A given document can be characterized by 

its content and structural organization. A common way of describing the structural 

organization is the layout structure which plays a significant role in document classi­

fication. For example, the type of a document can be identified at a glance over its 

layout structure without looking into its content, and perhaps by recognizing specific 

strings of characters at certain locations within the page. The layout structure (or 

geometric structure) of a document is the result of dividing repeatedly the layout of 

its content into smaller parts (that is, on the basis of its presentation). For example, 

a document image is composed of several blocks, each of which is a rectangular 

area containing a portion of document content. The logical structure (conceptual 

structure) of a document is the result of dividing repeatedly the content of a document 

into smaller parts on the basis of semantic meanings of the content. For instance, 

an article consists of a title, abstract, subtitles, and paragraphs [27]. In many 

cases, documents of the same class share a set of invariant layout features, which 

is called the page layout signatures [9]. Similarly, documents of the same class share 

a set of invariant logical features which is called the logical layout signature. The 

page layout signature and logical layout signature are actually only a small part 

of the whole layout structure. Many previous works in this area focused on paper 

documents of special types. The techniques work either by analyzing the layout 

structure or the logical structure of a document. A page layout recognition system for 

office documents, which was proposed by Esposito [9], can automatically detect and 

construct geometric characteristics of the layout components, such as height, width, 

spacing, and alignment. A significant number of documents were used for training the

1



2

classification system. Two methods of learning from examples were employed, one 

is the conceptual learning and the other one is the parametric method. The former 

uses the inductive generalization, and the latter uses a statistical approach to find 

the linear discrimination function for classification. Both use only spatial relations of 

the layout components to determine the layout similarities and to derive the discrim­

ination rules. Both layout similarities and discrimination rules are employed in the 

document type recognition step. This system considers only document type classi­

fication, but not document information extraction. A pattern recognition method 

for identifying letter-typed documents was proposed by Pagurek et al [21]. This 

method maps the relative positions of blocks into a m atrix representation and then 

applies pattern matching to recognize major blocks such as date, sender, receiver, 

etc. The MAFIA system [16, 8], which was proposed by Lutz et al., uses a priori 

defined type hierarchy, called the conceptual structure definition, to perform logical 

and content analysis of a document. It requires the time-consuming type hierarchy 

search to classify a document. Another system called ANASTASIL [7] uses a hybrid, 

modular knowledge representation, called the geometric tree, to perform a best-first 

search with a combination of “hypothesize and test” strategy. This system requires 

an exhaustive search on the geometric tree to identify the type of a document. A 

document understanding method proposed by Tsujimoto [29] transfers the layout 

structure of a document into its logical structure. The aim of this system is to extract 

the logical relationships between the document blocks of a newspaper. Schmdit and 

Putz proposed a rule-based recognition system, CAROL [24], to recognize automat­

ically the important elements on the title pages of doctoral theses. The rules are 

generated using a machine learning method on sample documents.

In this dissertation, a system for document classification is presented and an 

approach is proposed to generate the knowledge of the layout structure and logical 

structure of any type of document. Figure 1.1 shows the overall architecture of the
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proposed document classification system. In this system, a document from a scanner 

or a facsimile is first digitized and thresholded into binary images and then encoded 

by the Optical Character Recognition (OCR) system. The OCR system separates 

the document’s textual part from non-textual part, and the Page Layout Generation 

module converts the document into an encoded form. The encoded document is 

composed of the ASCII code of textual part (i.e., character strings, sentences and 

paragraphs) and the ASCII description of non-textual parts (i.e., logos, figures, 

pictures, etc.). A document input from E-mail is sent to the Code Form Generator 

to generate its basic block representation. The encoded document is then segmented 

either by the Nested Segmentation Algorithm [13] or by Adjacency Relation Segmen­

tation [34] and then transformed into a Layout Structure Tree (L-S Tree) in which 

each leaf node corresponds to its content block in the document. The structural 

organization of a document type, such as MEMO in Figure 1.2, is segmented into 

blocks as depicted in Figure 1.3. The boundary of each block is identified by searching 

for a reasonable size of spacing between blocks. The geometric relation of these blocks 

can be described in term of L-S Tree structure as shown in Figure 1.4 if the document 

is segmented by the Adjacency Relation Segmentation Algorithm.

In the stage of document classification, a document is classified if one of 

the Document Type Trees can be discovered as a substructure of its L-S Tree. 

This process is called Document Type Tree Discovering. A modified algorithm of 

Discovering the Largest Approximately Common Substructures of Two Trees [25] is 

employed to perform the discovering process. This Document Type Tree represents 

a collection of Document Sample Trees of the type. Then, the exact format of the 

document type can be found by searching the closer match of the L-S Tree and one 

of these Document Sample Trees. This is called the process of Document Sample! 

Tree Matching. The modified algorithm of Approximate Tree Pattern Matching
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[30, 33] is applied to perform the matching process. Both processes use layout and 

conceptual analysis. Once the document type and document format of a document 

have been decided, some values of its corresponding frame instance [32] can be 

extracted automatically (the formal definition of frame instance will be discussed 

in Section 4.3). In the stage of learning process, the Knowledge Acquisition Tool 

is devised to learn the tree structure from the document samples and an inductive 

learning process is employed to derive the Document Type Trees from Document 

Sample Trees of each document type. The encoded document sample is transformed 

into L-S Tree and then sent to the Knowledge Acquisition Tool. W ith the help from 

user, Document Sample Trees are created whose leaf nodes contain conceptual infor­

mation of their corresponding blocks. The information includes the type of block, 

key terms, logical constituents and others which describe the im portant semantical 

contents of the document. The key terms are the significant words that appeared 

in the document. The logical constituents are the conceptual description of major 

features which appeared in a document content of its type. These values will help 

classify the document type. One of the major features of this system is that it can be 

easily customized by training the system with user’s document samples. By applying 

the Knowledge Acquisition Tool and inductive learning process the knowledge base 

can be built for the user’s office environment.

If the example in the Figure 1.4 is a document sample, its Document Sample 

Tree is described in Figure 1.5. The key terms in the contents of the nodes corre­

sponding to the blocks B 3, 2?4, B 6, _B8, and B w are “MEMORANDUM”, “TO” , 

“FROM”, “DATE” and, “SUBJ” respectively. And the logical constituents corre­

sponding to the blocks B 3, B 5, B 7, B 9, and B n  are NULL, receiver, sender, date, 

and subject respectively. These significant key terms and logical constituents appear 

only in the upper portion of the page. Associated with an image block, the node A, 

contains “LOGO of N JIT ' as the logical constituent of this block.
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T isla tic ;
KT: N U LL; 

L C :N JIT  LOGO; 

1: 10;

S: N U L L ;

C: p ic tu re .

T :sta tic
K T :M E M O R A N D U M  
L C :N U L L ;
I: IO.
S; N U L L ;

T :uynam ic :C: te x tu a l ft
T :s ta tic ; T :dynam ie ; T :sta tic  
K T :D A T E ; KT: N U L L ; K T rS U B I 

L C: N U L L ; L Crdatc; L C : N U LL  

1: 13: 13. 1: 13;

S :« » :  S: N U L L : S : « u

C: tex tual, q - tex tual C : tex tu al

1 ' ' I

KT: N U L LT :sta lic ; 
K T :F R O M  

L C : N U L L  

I: 14;

S  : l b  

C : tex tual.

T .-uynam ic; 

KT: N U L L ; 

LC :scm lcr. 

1:14

S: N U L L  

C: tcx lual

T :x tatie; T :dynam ic
L C :suh j;K T :T O K T: N U L L

LC: N U L L ; L C rc c c iv c r
S: N U L L

C : tex tual.S: N U LL

C : tex tual. C : textual

f l ,  L l° L J

B6 I PROMJ  I

I DATE: I

gnEn

T : ty p e  o f  block;

LC : log ica l constituen t; 

K T: key  term ;

I: im portance;

S: s em a n tic  associa tion ; 

C : c lass  o f  block.

F ig u r e  1 .5  The Document Sample Tree for the example of MEMO document type in 
Figure 1.2.
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B  | UiKETRANSACTIONS ON KNOWLEDGE AND DATA LNGtNlERlNO. VOL. i . NO. J. St-PIT-MBm IWI

Learning C lassification Rules from 

D atabase in the C ontext o f  Knowledge 
Acquisition and Representation

B . R am in  Y asdij

. .Scien tific  know ledge through  d em onstration...

A b stra c t■ T h e  bottleneck.

In d ex  T erm s♦ C oncep t learning.

B .  I. IN T R O D U C TIO N

F ig u r e  1 .6  The L-S Tree for a document example of JOURNAL PAPER document type.
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Figure 1.6 shows another example of a L-S Tree in which the leaf nodes 

correspond to blocks of a technical paper published in a journal. The key terms 

in the node contents corresponding to the blocks B \, B 5, B 6, and B j are “IEEE 

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING”, “Abstract', 

“Index Terms” , and “Introduction” respectively. And the logical constituents corre­

sponding to the blocks B i ,  B 2, B 3, B 5  B§, are name of the journal, title of the 

paper, author, abstract, and index terms respectively. The “IEEE TRANSACTIONS 

ON KNOWLEDGE AND DATA ENGINEERING” , “Abstract’, “Index Terms” 

and “INTRODUCTION” , which are fixed terms appearing in the first page of this 

journal, are selected as key terms. The contents of blocks B 2 and B A are distinct 

in different documents of the same journal. Therefore, no key term is selected 

from these blocks, but their logical constituents are title of the paper and author 

respectively. The symbols of nodes H  and V  denote the horizontally and vertically 

virtual blocks respectively, in which a group of blocks are laid out horizontally and 

vertically in a printed page.

Chapter 2 discusses the document layout structure including document image 

analysis. Chapter 3 describes the generation of L-S Tree and Document Sample Tree 

for a document. The tree matching operations are described in Chapter 4. The 

Document Type Tree Inference Engine and the components of classification system 

are discussed in Chapter 5. In Chapter 6, finding the Largest Common Substructure 

from segmented documents and their corresponding trees is presented; Chapter 7 

describes the generalization of Document Sample Trees to yield Document Type 

Trees. In Chapter 8, the use of document classification system for identifying the 

type of document is discussed. Some experimental results of classifying a variety 

of documents are given in Chapter 9. Future research directions of this work are 

discussed in Chapter 10.



C H A P T E R  2 

D O C U M E N T  LA YO UT ST R U C T U R E  A N A LY SIS

After a document is scanned and digitized, the bitmap of the document image is 

analyzed and segmented into rectangular blocks which are called basic blocks, each 

of which individually contains one single text line, a vertical line, a horizontal line, a 

picture, or graphics. Some of the consecutive basic blocks containing textual lines can 

be assembled together to form a larger block. The result is called block representation 

of a document which can be further transformed to be a tree structure.

2.1 D ocum ent Im age A nalysis

The existing techniques for analyzing document image analysis are projection profile, 

run-length smoothing, and contour tracing [28]. The run-length smoothing method 

is employed in this thesis. A run  is a set of adjacent 0’s or l ’s. The length of a run  

is the number of adjacent 0’s or l ’s in a binary sequence. The run-length smoothing 

algorithm (RLSA) scans row by row or column by column the binary sequences of 

any given document image [10, 37]. That is, the algorithm consists of vertical (row 

by row) and horizontal (column by column) smoothing. The smoothing converts a 

binary sequence /  into an output sequence g according to the following rule: if the 

length of 0’s in a run is less than or equal to a predefined threshold value C  then 

these 0’s are changed to l ’s. For example, a binary sequence /  which represents 

pixels in row by row or column by column direction is converted into g with the 

threshold C — 4.

/ :  00011000000100111000111110000010000

g : 11111000000111111111111110000011111

The vertical and horizontal smoothing rules merge two runs of l ’s together 

if the spacing between them is less than the predefined threshold. Since the

11
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horizontal and vertical spacing between document elements are different, the 

horizontal smoothing (processing binary sequence column by column) and the 

vertical smoothing (processing binary sequence row by row) use different threshold 

values (C"s). By selecting the appropriate C"s, the smoothing rules are used to 

construct the merged runs to form various blocks. Consequently, each block contains 

a single mode of content such as a single text line, a vertical line, a horizontal line, 

a picture, or graphics. The original RLSA [37] consists of four steps as follows:

1. A horizontal smoothing is applied to the original document image by a 

predefined threshold Ch.

2. A vertical smoothing is applied to the original document image by a predefined 

threshold Cv.

3. A logical AND operation combines two smoothing results of Steps 1 and 2.

4. An additional horizontal smoothing is applied to the output of Step 3 by a 

relatively small threshold Ca.

The selections of different values of C/M Cv, and Ca affect RLSA to yield different 

resulting images. For a too small Ch the horizontal smoothing rule will link the 

characters within a  word but can not bridge the inter-word space. A too large C/(, 

however, may cause text to be joined with non-text region. Likewise, the value of 

Cv may cause the similar effect. The relatively small threshold Ca of Step 4 is used 

to fill in the horizontal gaps between two consecutive words in a row. The original 

RLSA algorithm requires the scannings of whole image four times. An improvement 

[26] of reducing the RLSA algorithm to two steps can be done as follows:

Consider the original RLSA algorithm. Let A and B be the output of Steps 1 

and 2, respectively. Step 3 is to perform A  fl B, which is equivalent to A — (->B). 

Therefore the four steps of RLSA can be modified by combining Steps 2 and 3 into 

one step, which is
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• If the run length of 0’s in the vertical direction of the original image is greater 

than Cv, then reset the corresponding pixels in A  to be 0’s and leave .4 

unchanged otherwise.

The three-step algorithm can be revised by processing the vertical smoothing before 

the horizontal smoothing.

1. A vertical smoothing is applied on the original document image using a 

predefined threshold Cv.

2. If the run length of 0’s in the horizontal direction of the original image is 

greater than C\,, then reset the corresponding pixels in the output of Step 1 to 

0’s otherwise they remain unchanged.

3. An additional horizontal smoothing is applied to the output of Step 2 using a 

relatively small threshold Ca.

The three-step algorithm can be further improved by combining Steps 2 and 

3 (both perform the horizontal smoothing) into one step by analyzing the relations 

between Ca and Ch as below. These three relations have effects on the above three- 

step algorithm.

(I) Ch = Ca = C. If the number of horizontally consecutive 0’s of the original 

image is greater than C, then in the Step 2 the corresponding pixels must be 

uniformly set to 0’s and will not be set to l ’s in Step 3. If the number of horizontally 

consecutive 0’s of the original image is less than or equal to C, the corresponding 

pixels remain unchanged in Step 2, and will be set to 1 in Step 3. From the above 

observation, Step 3 is able to decide whether changes take place on the output of 

Step 1 by checking on the original image. Since Step 3 is independent of Step 2, Step 

2 and 3 can be combined together as follows:
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• If the run length of 0’s in the horizontal direction of the original image is 

greater than C, then set the corresponding pixels in the output of Step 1 to 

0’s otherwise set them to l ’s.

It is noted that no m atter what values are changed vertically in Step 1, the results 

obtained by the combination of Step 2 and 3, which checks on the original image 

horizontally, are independent of Step 1 and determine the final results of the 

smoothing. Therefore, the one-step horizontal smoothing algorithm applied to the 

original document (as Step 1 in the four-step RLAS) has the same function of above 

three-step algorithm. Hence, the one-step algorithm can replace the four-step RLSA 

algorithm when Ca =  Ch-

(II) Ch < Ca. If the number of horizontally consecutive 0’s of the original image 

is between Ch and Ca, then the corresponding pixels which remain 0’s in Step 2 will 

be converted into l ’s in Step 3. Therefore, Step 2 is redundant and can be removed.

(III) Ca < Ch- If the number of horizontally consecutive 0’s of the original 

image is between Ch and Ca, then check the corresponding pixels in the output of 

Step 1 against Ca to determine whether 0’s or l ’s to be assigned to these pixels. 

Thus, the final improved algorithm which consists of only two steps is as follows:

Set predefined threshold values Cv, Ch and Ca.

S tep  1 A vertical smoothing is applied to the original document image using a 

predefined threshold Cv.

S tep  2 If the length of a 0’s run in the horizontal direction of the original image 

(denoted by R L ) is greater than a predefined threshold Ch, then reset the 

corresponding pixels in the output of Step 1 to 0’s. If R L < Ca(a predefined 

threshold), then switch the corresponding pixels in the output of Step 1 to l ’s. 

If Ca < R L  < Ch and that the run length of horizontally consecutive Q’s in the
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output of Step 1 is less than or equal to Ca, then set the corresponding pixels 

in the output of Step 1 to l ’s.

2.2 Basic B lock Classification

The procedure described in the previous section can be used to divide document of 

mixed-mode (a mixture of text, graphics, and pictures) into basic blocks, each of 

which contains only a single-mode content. The next step is to classify the blocks 

into text, horizontal or vertical line, graphics and picture classes. In TEXPROS, 

a robust block classification algorithm based on clustering rules [26] is used. Let 

the origin of the document image be located at the upper-left corner. Each block is 

measured in terms of the following:

•  Let (x min, ymin) be the x- and y-coordinates of the upper-left corner and (.Tmm + 

dx, Um in +  dy) be the bottom-right corner of a block, where dx and dy respec­

tively are the width and height of a block. (TV) is the total number of black 

pixels in a block of the original image.

• Let (T H ) be the horizontal transitions of white to black pixels in a block of 

the original image.

•  Let (TV)  be vertical transitions of white to black pixels in a block of the original 

image.

• Let (Sx) be the number of columns in which black pixels exist, when a block 

of the original image is projected onto x-axis.

Since the projection profile of a block onto y-axis in most cases contains black 

pixels in each row, it is redundant to measure the number of rows in which the 

black pixels exist. The following features used in block classification can be 

easily calculated:
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• H  is the height of each block , that is H  = dy.

•  R  is the ratio of width to height (or aspect ratio), that is R  =

•  D  is the density of black pixels in a block, that is D —

• Let T H X be the horizontal transitions of white to black pixels per unit width,

where T H X =

• Let TVX be the vertical transitions of white to black pixels per unit width, 

where TVX =

We use 5x instead of dx in the denominators of TVX and T H X because the 

values of T H x and TVX for all the characters in a text block are bounded by a 

range, which can be used to determine the text block. This will be discussed 

later.

• T H y is the horizontal transitions of white to black pixels per unit height, where 

THy =  2j£

• TVy is the vertical transitions of white to black pixels per unit height, where

TVy =  f  •

We observe that most of the office documents contain the text with the most 

common font and size of characters, and the mean value of heights of all the blocks 

in a document is approximately equal to the most common tex t’s block-height. 

Therefore, the ratio of width to height, R, can be used to detect the block’s orien­

tation, such as horizontal or vertical lines. The mean horizontal transition T H X 

and the mean vertical transition TVX play important roles in text and non-textual 

discrimination. Both transitions are independent of variant character’s fonts and 

sizes as long as the width to height ratio of a character is not varied significantly 

[26].
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Let TH™ax and TH™m denote the maximum and minimum values of T H x of all 

characters respectively. Let TV™ax and TV™in denote the maximum and minimum 

values of TVX of all characters, respectively. Intuitively, both T H x and TVX of any 

text block are within the range of:

T H m in  < T H x  <  T H m a x  

r p y m i n  < j n y ^  < T y m a x

Let Hm be the average height of the most common blocks. The rule-based 

basic block segmentation algorithm is described as follows [26]:

Let ci, C2, C3, C4, C5, C6, Ch 1, and c/,2 be predefined constants.

R ule 2.1: if C \ H m  < H  < c2 Hm, the block with the height H  belongs to a text.

R ule 2.2: if H  < c\Hm and c/ti < T H X < qi2, this block belongs to a text.

R ule 2.3: if H  <  C \ H m , and 0.9 < TVX < 1.1, this block is a horizontal line.

R ule 2.4: if 5x < c\Hm, R  < I/C3, and 0.9 < T H X < 1.1, this block is a vertical 

line.

R ule 2.5: if H  > c2 H m, c5 < | |  < c6, and Chi < T H X < Ch2, this block is a text. 

R ule 2.6: if D < C4, this block belongs to graphics.

R ule 2.7: otherwise, this block is a picture.

2.3 B lock R epresentation o f a D ocum ent

The output of the segmentation algorithm given in Section 2.2 is a basic block 

consisting of a single text line, a vertical line, a horizontal line, a picture, or graphics. 

Some of the basic blocks containing text lines can be assembled together to form 

a larger block by exploiting a number of “perceptual” criteria such as the same



18

starting or ending columns, the same spacing, etc. This process groups together 

different blocks within the document to form a block representation which is the 

layout structure of the document. The criteria used to assemble two blocks of 

vertically adjacent text lines are as follows:

1. The class of blocks is textual.

2. The spacing between two blocks is less than or equal to c * dy, where dy is the 

smaller height of the blocks, and c is a pre-defined constant.

A block could be (1) a textual block which may contain strings of characters, words, 

sentences, or paragraphs, or (2) a non-textual block which may contain pictures, 

graphics, vertical lines, or horizontal lines. Formally, each block outputted from the 

Character Recognition System is represented by a quadruple (ID, Type, Location, 

Dimension), where ID  is the unique number of each block; Type indicates one of the 

text, picture, graphics, and line (horizontal line or vertical line) classes; Location is 

specified by the coordinates of the upper-left corner (xmin, ymin) and the coordinates 

of the bottom-right corner (x min +  dx, ymin -1- dy) with respect to the origin of the 

document page (the upper-left corner of the document page); and Dimension is 

represented by (d x ,d y ).



C H A P T E R  3

G E N E R A T IO N  O F L-S T R E E  A N D  D O C U M E N T  S A M P L E  T R E E

In this dissertation, the layout structure of a document is described by a tree 

structure. There are two methods that can be used to transform the layout structure 

of a document to a tree structure: one is of top-down approach which is the Nested 

Segmentation Algorithm [13] and the other one is of bottom-up approach which is 

the Adjacency Relation Algorithm.

3.1 A djacency R elation  A lgorithm

In the Adjacency Relation Algorithm algorithm, the concept of a virtual block is 

used for describing the geometric relation of blocks. A virtual block is an imaginary 

block containing textual, non-textual, or smaller virtual blocks.

There are three types of virtual blocks: the virtual block H  which contains 

blocks that are placed next to each other horizontally; the virtual block V  which 

contains blocks tha t are placed next to each other vertically; and a virtual block 

I  that contains blocks which are placed next to each other neither horizontally 

nor vertically. Note that H , V  and I  can contain textual, non-textual or virtual 

blocks. The definitions of these three types of virtual blocks are given in the following 

subsections.

3.1.1 H orizontally A djacent Blocks

A bounding box S  of blocks Ai, A 2, . . . ,  and A n, where n > 1, is a minimum rectangle 

enclosing blocks A\, A 2, . . . ,  and A„; and satisfies the following geometric relations:

(1) ( % s)m in =  minimum of ({xAl)min, (xA2)m in i  • • • 5 and (xAn)min):

the minimum x-coordinate of bounding box S  is the minimum of the minimum 

x-coordinates of blocks Ai, A 2, . . . ,  A n.

19
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(2) (Xs)max =  maximum of ((i/ijm an  (%A2 )max-> ■ ■ ■ i mid {xArl)max).

the maximum x-coordinate of bounding box S  is the maximum of the maximum 

x-coordinates of blocks Ai, A 2, . . . ,  A n.

(3) (ys)min - minimum of ((yAl)min, (VA^min, • • • j and {yAn)min)'-

the minimum y-coordinate of bounding box S  is the minimum of the minimum 

y-coordinates of blocks A\, A 2, . . . ,  A n.

(4) (ys)max =  maximum of ((yAl)max, (y>i2) max) * • • j and {yAn)max)-

the maximum y-coordinate of bounding box S  is the maximum of the maximum 

y-coordinates of blocks A\, A 2, . . . ,  A n.

Let -H- denote horizontally adjacent relation. A block B\ is said to be 

horizontally adjacent to a block B 2 (denoted by B\ o  B 2), if their projections on 

y-coordinates are overlapped, and B\  is located to the left of B 2, and there exists a 

bounding box tha t contains no other block or part of other block but B\ and B 2. 

Figure 3.1 shows the geometrical relation for horizontally adjacent blocks Bi and B y

Let B  = {B k |1 < k < n} be a finite set of blocks of a document page layout. If 

B( f-)- Bj, then at least one of following geometric relations of overlapping coordinates 

must be true:

(1) (yj)min ^  (yi)min — ( d" dyj (in Figure 3.1(a));

(2 ) (yj) min ( l / i ) m m  + dyi < (yj)min +  dyj (in Figure 3.1(b)); or

(3) ( n )  m in  — ( i j j ) rnin i and (iji)min +  dyi > (yj)min +  dyj (in Figure 3.1(c)) or vice

versa.
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X

-L'l/iUeJl-’iW '- f k .
v ir tu a l b lo c k  H

«xjLn+dxj ’(yjL,+ dyj>

(a)

v ir tu a l b lo c k  H

(b)

-=*■ x
v ir tu a l b lo c k  H

(c)

Figure 3.1 Geometrical relations for horizontally adjacent block 5 , and Bj.
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3.1.2 H orizontally V irtual Blocks

Let B be a finite set of blocks of a document page layout. A horizontally virtual 

block H  is an imaginary block containing several horizontally adjacent blocks 

{£?!, B2, . . . ,  Bj} C B, where B i,B 2, . . . ,  and B* appear from left to right in row 

direction (i.e., B\  <-> B2, B 2 B3, . . . ,  Bj_i <->■ B,); and this imaginary block is the 

bounding box of B j, B2, . . . ,  and Bj containing no other block or part of other block 

but B \ , , and B;. Any bounding box of (B*,, B*+i), 1 < k < i — 1 contains only 

Bfc and Bk+i- Any of B^’s can itself be a virtual block. For any block B e  B and 

B $  {Bi, B2, . . . ,  Bj}, the following geometric relations of B, {Bi, B2, . . . ,  B,}, and 

H  must be true.

( 1 )  { x \ ) m a x  ^  {p^2)mini  ( -^2)max  5 : {.-^3 ) m in i  • • • j & n d  ( X i —\ ) max  ( ^ i ) m i n i  a n d

(2) (Xf{)min ^  (•&B^min "F dx g Or (xg)min ^  (xfl)min T dXg, and 

(^) (Z///)min ^  {VB^min "F dy/j Or (j/fl)min ^  (2///)rmn T dyg.

The tree structure of a horizontally virtual block H  is given as follows. A node 

H  is created with children B i ,B 2,. . . ,B i  appeared from left to right according to 

appearing orders of their corresponding blocks. Thus, H i(Bu B2, . . . ,  B n) represents 

the horizontally virtual block Hi created for enclosing blocks Bi, B2, . . . , B„ .  

Figure 3.2 depicts a tree representing horizontally virtual block B i ( B i , B 2,B 3) 

which contains blocks B \ ,B 2, and B3.

3.1.3 V ertically Adjacent Blocks

Let £ denote vertically adjacent relation. A block B\ is said to be vertically adjacent to 

a block B2 ( denoted by Bi $ B2) if their projections on x-coordinates are overlapped, 

and Bi is located on the top of B2, and there exists a bounding box that contains no 

other block or part of other block but B\ and B2. Figure 3.3 shows the geometrical 

relation for vertically adjacent blocks Bi and Bj.
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Figure 3.2 Example of a horizontally virtual block.
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Let B ={5*11 < k < n} be a set of blocks of a document page layout. Let 

Bi, Bj be blocks. If Bi £ Bj, then at least one of following geometric relations of 

overlapping coordinates must be true:

(1) (xj)min ^  (Xi)min ^  (xj)min -t- dxj (in Figure 3.3(a)),

(2) (Xj)min < (Xijmin +  dxi < (Xj)min +  dxj (in Figure 3.3(b)); or

(3 ) (Xj)miri < (Xi)min, and [xj)min + dxj > (Xi)min + dx{ (in Figure 3.3(c)) or vice

versa.

3.1.4 V ertically V irtual Block

Let B  be a finite set of blocks of a document page layout. A vertically virtual block V  

is an imaginary block containing several vertically adjacent blocks { B \ ,B 2, . . . ,  and Bi}, 

where B \ ,B 2, . . .  ,B i  are ordered from top to bottom in the column direction 

(i.e., Bi £ f?2) • • • , -Bf-i X Bi)-, and the imaginary block is a bounding box 

for B\, B 2, . ■., and B t containing no other block or part of another block but 

Bi, B 2, . . . ,  Bi. Any bounding box of (Bk,B k+1), 1 < k < i — 1 contains only B k 

and B k+\. Any of B k s can itself be a virtual block. For any block B e  B and 

B  0  [ B x, B 2, . . . ,  Bi}, the following geometric relations of B, {B X,B 2, . . .  ,B i} ,  and 

V  must be true.

( 1 )  ( D \)m a x  ^  ( y ? )m in i  ( 2/ 2 ) 7 7 1 0 1  — ( 2/ 3)7777777  • • • i ^ m d  ( i j i—l )m a x  — ( Di)mini  & n d

(2) (xv)min ^  (^i?)min 4“ dxB Or (ig)min ^  (*^v)mi7i 4“ dXy, and

(3) (Vv)min ^  (2/5)771171 +  dyB or (yB)min ^  (yv)min 4- dyv .

The tree structure of a vertically virtual block V  is given as follows. A node V 

is created having its children B\, B2, . . . ,  and Bi, ordered from left to right according
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((*i U  ■ (y, U >
v irtu a l b lo c k  V

u,+ *, ■<ylLn+llyl>

«xiU +<Ixj • fyU+<V

(a)

<

B ,

i

B >

:-----------------. . a

v irtu a l b lo c k  V

(b)

v irtu a l b lo c k  V

(c)

F ig u r e  3 .3  Geometrical relations for vertically adjacent block Bt and Bj.
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v,

Bi  B 2 B j  B 4

Figure 3.4 The tree representation for a vertically virtual block.

to the order of their blocks from top to bottom. For example, Figure 3.4 shows a 

vertically virtual block V\ of the blocks B x, B 2, B 3, and B 4 . These blocks can be 

represented by a tree structure, in which Bx, B 2, B 3, and B 4 appear from left to right 

as the children of the parent Vi- Thus, Vi(Bu B 2 , . . . ,  Bn) represents the vertically 

virtual block V created for enclosing blocks B x, B 2 , . . . ,  Bn.

3.1.5 Independently V irtual B lock

An independently virtual block I  is an imaginary block which is a bounding box 

containing several blocks that are neither in vertically adjacent nor horizontally 

adjacent relation. Thus Ii(Bx, B2, . . ., and Bn) represents tree structure for the 

independently virtual block /j created for enclosing blocks B \ , B 2 , . . . ,  Bn, which 

are ordered from left to right according to the (a;)min-coordinates of their Locations 

in left to right sequence.
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3.1.6 P roperties o f V irtual Blocks

Let 44 be the horizontally adjacent relation and B =  {Bi | 1 < i < n).

(1) If B\  44 B2, then B2 44 B x is not true.

Proof. This is followed by definition in Section 3.1.1.

(2) For B\  44 B2 and B2 44 B3, H(BX, B2, B3) may or may not exist.

Proof. This can be proven by an example in Figure 3.5 where B x 4 4  B2 and B2 

44 B3 are true. Since the bounding box S  for B \,B2, and B3 includes part 

of S  violates the definition in Section 3.1.2. Therefore H(BX, B2, B3) 

does not exist.

(3) If there exists a H(BX,B2,B3) then H(B2,B3) and H(BX,B2) also exist, and

B\  44 H(B2, B3) and H(BX, B2) 44 B3.

Proof. By definition of Section 3.1.2, if H{B\,B2,B 3) exists, then within the 

bounding box of B \ ,B 2, and B 3 ,  B x 44 B2 and B2 44 B3. For B\  44 

B2 or B2 44 B3, we can construct H(BX,B 2) or H(B2,B 3) respectively. 

Since B x 44 B2 and H(B2, B3) are true, by definition of bounding box 

and horizontally virtual box, B x 44 H(B2,B 3) can be shown to be true. 

Similarly, since H(BX, B2) exists and B2 44 B3 is true, then H (B j ,  B2) 44 

B3 is true.

Let £ be the vertically adjacent relation.

(1) If B x £ B2, then B2 ^ B x is not true.

Proof. This is followed by definition in Section 3.1.3.

(2) For B x £ B2, and B2 |  B3, then V(BX, B2 , B3) may or may not exist.
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F ig u re  3.5 B\ o  B 2 and B 2 O  B 3i but H (B i, B 2, B 3) is not true.

B, b4

b2

b 3

F ig u re  3.6 B\ \  B 2 and B 2 £ B 3, but V ( B i ,B 2, B 3) is not true.

P ro o f. It is similar to item(2) above and can be shown by a counter-example 

in Figure 3.6.

(3) If there exists a V (B i, B 2, B 3), then V (B 2, B 3) and V ( B U B 2) also exist, and B x 

$ V ( B 2, B 3) and V { B u B 2) % B 3-

P ro o f. It is similar to the proof for item(3) above.
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3.1.7 Tree Structure Transform ation A lgorithm

The sequence of blocks from OCR is based on the ordering of the (y)min-coordinates 

of the blocks, and then on (xmtri)-coordinates if the (ymj„)-coordinates are the same. 

Therefore, a set of blocks can be viewed as an array of a link list in which the first 

element is the topmost block and the last element is the block at the bottom of the 

page. This list is also called a block list. A transformation procedure from a block 

list to a tree representation is given below:

1. Create a block list containing all the blocks to be considered in a given page 

layout.

2. Find and create all the possible horizontally virtual blocks which will enclose 

all the possible blocks in page layout.

3. For each of the horizontally virtual blocks found in step 2, a H  node is created 

in the corresponding tree structure, with children nodes appeared from left to 

right according to the appearing order from left to right of enclosed blocks.

4. Replace the enclosed blocks by the horizontally virtual blocks in the block list.

5. If no horizontally virtual block can be found, then find and create all the 

possible vertically virtual blocks which enclose all the possible blocks in a page 

layout.

6. For each of the vertically virtual blocks found in Step 5, a V  node is created 

in the corresponding tree structure, with children nodes appeared from left to 

right according to their appearing order from top to bottom of enclosed blocks.

7. Replace the enclosed blocks with vertically virtual blocks in the block list.

8. Go to step 2, until no more horizontally or vertically virtual block can be found.
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Bn

V

Bn. 2

F ig u re  3 .7  L-shape block.

9. If the block list contains more than one block, then create an independently 

virtual block to enclose these blocks.

10. End of process.

The distance of two horizontally adjacent blocks is defined as the shortest 

distance of their projections on the x  axis. Similarly, the distance of two vertically 

adjacent blocks is defined as the shortest distance of their projections on the y axis.

If an L-shape textual block is found, such as the one in Figure 3.7, this block 

will be divided by a horizontal line to form two separate rectangle blocks, and their 

block numbers will have one additional digit to indicate that they are from the
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T h e  v ir tu a l b lo c k  is  g re a te r  
th a n  it is  s u p p o se d  to  b e  

fo r  v is u a l iz a tio n  p u rp o s e .

B , B2

Figure 3.8 Example of a set of blocks and its tree structure.

same block. The same algorithm is then applied to generate the corresponding tree 

representation. The reason that one can divide the block horizontally is that there 

will always be spacing between two text lines. Therefore the spacing will be a good 

place for the divider.

Consider Figure 3.8. Initially, the block list contains B x, B 2,B z ,B \ ,  and £?r, 

(ordered in y-coordinates). The algorithm will try to find the horizontal virtual 

blocks starting from B x. Since there does not exist a block B m such that B\ -H- 

B m, the searching process switches to B 2. Since B 2 -h- B 3, H \(B a,B 2) is created. 

The search process is ended since there are no more blocks which can be enclosed
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in H\.  In the corresponding tree structure, the node H\  is created. B2 and B3 are 

also replaced by Hi in the block list. Now the block list contains B 4 and B 3.

Then we search for horizontally virtual blocks from B4. There is no block Bm such 

that Bi Bm and the same is true for B3. Next, we search the vertically virtual 

blocks starting from B\.  There is no other block vertically adjacent to B\.  Then a 

Vi is found which encloses Hi  and B4. In the tree structure the node Vi has H1 and 

Bi  as its left and right child. We replace Hi and Bi  by Vj in the block list. Now 

the block list contains B 1, Vj and B5. Next H2 is found which contains Vj and B\. 

A node H2 is created in tree structure. The block list now contains H2 and B5 only. 

Finally a vertically virtual block V2 is created to enclose H2 and B5. The final tree 

representation is V2(H2(Vi(Hi(B3, B2), B4), Bi), B5).

3.2 N ested  Segm entation  A lgorithm

The Nested Segmentation Algorithm employs top-down method to cut a document 

into segments until no segment can be further divided. Each segment is a rectangular 

portion of a document containing at least one block. There are two types of segments: 

basic segment which contains only a block, and composite segment which is composed 

of smaller segments. A document layout is first cut horizontally or vertically into 

segments which are at level 1. (Each horizontal (or vertical) cut is called a H  (or 

V) cut.) All the composite segments at level i are further cut into a number of 

smaller segments at level i + 1. The segmentation preprocess terminates when all 

the segments cannot be further divided.

Let D  represent the set of all the segments contained in a segmented 

document layout, and let d[i] represent the *th segment of document D  according 

to the segmentation ordering. Each segment is associated with a quadruple 

(Id,Type, Orientation, Composition), where Id  is the identifier (id) of the segment; 

Type indicates whether the segment is basic or composite; Orientation specifies
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whether the segment can be further divided vertically or horizontally if the Nested 

Segmentation Algorithm is used, or whether the segment can be enclosed by an H  

(horizontal) virtual block or V  (vertical) virtual block if the Adjacency Relation 

Segmentation Algorithm [34] is used; the Composition specifies the ids of the 

segments contained in this segment. When a segment is basic, the segment id is the 

id of the block contained in the segment.

For example, a segment d[0] contains several segments d[l], rf[2],. . . ,  rf[n], at 

the same level, which are located in the order either from top to bottom within this 

segment if this segment is divided horizontally, or from left to right if this segment is 

divided vertically. Then, the value of Composition is (d[0], (d[l]d[2],. . . ,  d[n])). For 

a document layout, the left to right relation of documents in V  cut, top to bottom 

relation of documents in H  cut and parent to child relation between levels are all 

significant in a document. The detail of the nested segmentation algorithm is shown 

in [13].

The L-S Tree generated by Nested Segmented Algorithm is an ordered labelled 

tree in which a node corresponds to a segment of the nestedly segmented document. 

Each node is labelled as indicating one of the three available types of nodes: basic 

node (Bjnode), horizontal node (H-node), and vertical node (V-node). A Bjnode 

represents a basic segment which cannot be further divided. An Hjnode represents 

a composite segment, which is divided horizontally into smaller segments. These 

smaller segments contained in the composite segment are represented as the children 

of the H-node. The order of the children of an H-node appearing from left to right 

is the appearing locations of the smaller segments from top to bottom. Similarly, 

a V-node represents a composite segment which is divided vertically into smaller 

segments. The order of the children of a V-node appearing from left to right 

represents the appearing locations of the smaller segments in the composite segment
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V ,

Figure 3.9 An example of document page layout segmentation and its corresponding 
L-S Tree.

from left to right. Figure 3.9 depicts the segments and the resulting trees of a 

document segmented by the Nested Segmentation Algorithm.

3.3 K nowledge A cquisition  for D ocum ent Sam ple Tree

The conceptual structure of a document is its logical constituents such as sender, 

receiver, subject, and date in the document type of MEMO. Therefore, the conceptual 

structure can be represented by a set of attribute name and attribute type pairs. 

The conceptual structure can be described as (MEMO{(/?eceiuer, string), (Sender, 

string), (Subject, string), (Date, string), (Content, text)}). Each document type 

has its unique conceptual structure, but there are more than one layout structures 

associated with a document type [32].

Conceptually, a document can be divided into two parts: structured  and 

unstructured  parts. The relative locations of structured parts of documents of the 

same type always remain the same. The structured parts can be further classified 

as static and dynamic parts. The static part has a fixed relative location and the
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same semantics among the documents of the same document type. On the other 

hand, the dynamic parts of different documents of the same document type are 

varied. For example, the static parts of a memo document in Figure 1.3 include 

the key terms “MEMORANDUM,” “TO,” “FROM,” “DATE,” “SUBJ,” and the 

image block LOGO OF NJIT, etc. The dynamic part refers to various strings such 

as “UNIVERSITY COMMUNITY” , “ Saul X. Fenster” , “October 13, 1990” , “New 

Staff and Service Award” , etc. Some key terms appeared in the static part can be 

different among documents even though they have the same meanings. For example, 

“MEMORANDUM”, “MEMO” and “NOTICE” are used in different documents to 

refer to the same key term of memorandum. A thesaurus is therefore implemented 

for storing the terms which are semantically equivalent. When two terms belong to 

the same claks in the thesaurus, they are semantically equivalent.

The main body of a document may be the structural parts or the unstructured 

parts. In the case of MEMO document type, its main body is the content of the 

memo. In the Figure 1.3, it starts with “Please joint us ...” . In the case of 1040 Tax 

Return form type, the major components are structural parts such as first name, last 

name, social security number, spouse’s social security number, etc.

The function of Knowledge Acquisition Tool (KAT) [2, 8, 11, 15, 22, 23, 24, 38] 

is to acquire the necessary classification knowledge from a user and converts the 

knowledge into a tree representation that can be used by a knowledge-based system. 

KAT consists of a Document Sample Tree Generator module and a Document Type 

Tree Inference Engine.

Given a L-S Tree and its corresponding sample document, the Document 

Sample Tree Generator module of the KAT (as shown in Figure 1.1) generates a 

Document Sample Tree by activating the User Interface to provide the user with Pop- 

Up windows for entering information of the structured part of a sample document.. 

The information includes: (1) type of block, which can be static, dynamic or mixed.
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T a b le  3 .1  Node content for the block B4 in Figure 1.5.

attrib ute value
type of block static

key term TO
logical constituent N U L L

importance 14
semantic association b 5

class of block textual

(2) key term, which is the content of a block if it is of a static type (the strings 

appearing in the block), or the static part of a block’s content if it is of a mixed 

type (a mixed type contains material from both fixed and variable parts), or null 

otherwise. (3) logical constituent, which is the conceptual description for the dynamic 

block, or NULL otherwise. (4) importance, which indicates to what extent the node 

contributes to the process of identifying a document type. The Importancenoiie(NC)

[12] is defined as follows. Let S be a set document sample trees of document type K  

and let N C  be a node content in the document sample tree 5,-, where Si € S.

Importancenodc(NC) = |{S '|S ' G S and 3NC'  G S', N C  == NC'}\.

The symbol |.| denotes the cardinality of the indicated set. Intuitively, the importance 

of a node content, say, containing the key term “MEMO” in a Document Sample Tree 

of MEMO document type, is measured by the number of occurrences of this term 

appeared in the set of Document Sample Trees of MEMO type. (5) a collection of 

identifications of dynamic blocks that have semantic association with a static node. 

(6) class of block, which can be textual, image or graphics. This information forms 

a node content of a basic node in a L-S tree for the sample document. Two node 

contents are shown in Tables 3.1 and Table 3.2 for nodes B d and B\ in Figure 1.5.
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T a b le  3 .2  Node content for block B\ in Figure 1.5.

a t t r ib u te value
type of block static

key term N U L L
logical constituent N JIT  LOGO

importance 10
semantic association N U L L

class of block picture

In Table 3.1, its key term is “TO” and the logical constituent is N U LL.  The 

key term is a specific string that appears as content in its corresponding block 

content of a document. The logical constituent is the major conceptual description 

appearing in a document which describes the semantics of text content and therefore 

defines its type. In block Bs, “MEMORANDUM” is the key term. In the thesaurus, 

“MEMO” is the class for strings such as “MEMORANDUM”, “MEMO” and 

“NOTICE” . Therefore, “MEMORANDUM” , “MEMO” and “NOTICE” are seman­

tically equivalent. Table 3.2 describes a non-textual block. The logical constituent 

is N JIT  LOGO because B\ contains a NJIT logo which is a match with the image 

of NJIT LOGO.



C H A P T E R  4

T R EE M A TC H IN G

Approximate Tree By Example {ATBE)  [30, 33] is a system designed to support 

constructing, comparing and querying sets of ordered, labelled trees. In these trees 

the nodes are labelled and the order from left to right among siblings is significant. 

A T B E  allows inexact match of trees which is appropriate for our document classi­

fication application because two documents with the same type may not have the 

same tree structures even when they share the same features. Mostly the layouts of 

documents of the same type such as letter type are different. Consider documents 

of letter type. If we disregard most of the unimportant contents for the document 

type classification, which are mostly the unstructured parts of the textual content, 

and consider only to the layout blocks containing key terms and logical constituents 

(such as logo, date, sender, receiver, saluting words, ending words, and signature in 

the letter type), then the tree models for this document type are limited to several 

different trees only. Our experiments showed that there are only 6 different trees 

found for 20 different letters, without taking unim portant textual content into consid­

eration. Otherwise, there will be 20 different trees for these different letters.

4.1 Tree Edit O peration

Tree Editing Distance [33] is used to measure the difference between two trees. 

Informally the distance of the trees T\ and T2 is the cheapest cost among all trans­

formations from T\ to X2, or visa versa. There are three types of edit operations: 

relabel, delete, and insert. The representation for these operations is u —> v, where u 

and v is either a node or the null node (A). Then u —> v represents a relabel operation 

if u 7̂  A and v 7̂  A; a delete operation if u ^A  and v —A; and an insert operation if 

u =A and v =̂ A. Let T2 be the tree obtained from the application of edit operation

38
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> via b

f  g f  g

F ig u re  4 .1  Relabelling of a node label (b) to label (c).

T ,

r via A

t 2
r

a b c >
a e f

y  attach e and /to  be the childern of r, 
and e is the right sibling of a ,

and /  is the left sibling of a .

F ig u r e  4 .2  Deletion of a node b.

u —» v on the tree 7\, and is denoted by T\ => T2 via u —>■ v. Figures 4.1, 4.2 and 4.3 

illustrate the edit operations which are self-explanatory. Each edit operation has a 

(user-defined) cost function 7 .

Let S  be a sequence of edit operations Si, s2, . . . ,  s/t applied to a tree T  to 

generate a tree T'. Let 7 be a cost function for S  = si, s2, . . . ,  s* by letting 

T(S) =  X^=i 7 (si). Then the editing distance from the tree T  to tree T', denoted 

dist(T, T 1), is defined to be the minimum cost of all sequences of edit operations that 

can transform T  into T'

dist(T, T') =  min{7 (S)|S is a sequence of edit operations transforming T  into T'}.
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T, T2
r via A  — ^  c

a e f

insert the node c to be the left sibling o f d ,  

and m ove a , e , and / to be the children o f c.

F ig u r e  4 .3  Insertion of a node c.

4.2 M apping

A Mapping of two given tree structures is a graphical specification which specifies 

a sequence of edit operations corresponding to each node in two trees. Let T[i] 

represent the zth node of the tree T  according to some given order (e.g., preorder). 

A mapping from a tree T  to another tree V  is a triple (M, T, T '), where M  is any 

set of pairs of integer (i,j)  satisfying the following conditions:

1. 1 < i < |T |, 1 < j  < \T'\, where |T | and \T'\ are the numbers of nodes in the 

tree T  and T'  respectively.

2. For any pair of (*i,ji) and (*2,^2) in M,

•  i\ — *2 if and only if j \  =  j 2  (one to one);

•  T[ix] is to the left of T[i2] if and only if T'\j\] is to the left of T'[j2\ (relative 

position preserved); and

•  T[i\] is an ancestor of Tfo] if and only if T'[j\] is an ancestor of T'[j2] 

(ancestor order preserved).

A mapping from T to V  in Figure 4.4 is (1,1), (2,2), (4,3), (5,5), (6,6). A 

dotted line from a node u in T  to a node v in T' shows that u should be changed 

to v if u 7̂  v, or that u remains unchanged if u =  v. The nodes in T  which are
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t  r

2

F ig u re  4 .4  A mapping from T  to T'.

not touched by a dotted line should be deleted; and the nodes in T' which are not 

touched by a dotted line should be inserted into T.

Let M  be a mapping from T  to T ' . Let I  and J  be the sets of ordered nodes in 

T  and T', respectively, which are not touched by a dotted line in M. Then we can 

define the cost of M :

7 (M) =  £  7 (T[i] -> T '\ j]) +  £  7 (T[i] -> A) +  £  7 (A T'\j)).
(tj')eM iei j£J

Given a sequence of edit operations S  from T  to T ', it can be shown that there exits 

a mapping M  from T  to T' such that 7 (M) < 7 (S). Conversely, for any mapping

M, there exists a sequence of edit operations S  such that 7 (5 ) =  7 (M). Hence we

have

dist(T , T') = min{7 (M )|M  is a mapping from T  to T'}.

The A T  B E  algorithm is modified to find the distance between L-S Tree of a 

testing document and a Document Sample Tree. Given a Document Sample Tree 

To  and a L-S Tree of a testing document TL_s to be classified. Let M  be the best 

mapping yielding the edit distance between TD and 7 l_ s . A node NTd 6 TD maps to 

a node Ntl_s G Tz,_s . The mapping between node N td G Td and node N Tl_s e  T i s  

is an “effective mapping” if one the the following three conditions is satisfied. (1) A 

static node NTd e  TD is effective mapping to node NTl_s G Tl_s if the key term of 

node Ntd is identical to the block content of Nr , _s . (2) A mixed node NTn € TD is
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L O G O  o f  N J IT
S e c r e t a r y  o f  t h e  F a c u l ty

N O T I C E

T O : N J IT  F a c u l ty  M e m b e r s

F R O M : L a w r e n c e  S c h m e r z l e r

S e c r e t a r y  o f  t h e  F a c u l ty

D A T E : O c to b e r  1 2 , 1 9 9 0

S U B J :  I n s t i tu te  F a c u l ty  M e m b e r s

T h e r e  will b e  a  m e e t i n g  o f  t h e  f a c u l ty  o f  N J IT  o n  

W e d n e s d a y ,  O c to b e r  2 4 ,  1 9 9 0 ,  a t  2 : 3 0  In t h e  B a l l ro o m  

o f t h e  H a z e l l  C e n t e r .

A n y  r e q u e s t s  fo r  t im e  o n  t h e  A g e n d a ,  t o g e t h e r  w ith  
s u p p o r t i n g  d o c u m e n t s ,  s h o u ld  b e  s u b m i t t e d  to  m e  o r  M a ry  

A r m o u r  b y  O c to b e r  1 9 , 1 9 9 0 .

T h a n k  y o u .

L S /m a

Figure 4 .5  A testing document of MEMO document type.

effective mapping to node N t l _s G Tjr,_s if there exists a string S  in the block content 

of node N t l _s  such that the key term of N t d  is same as S .  (3) A dynamic node 

N t d  G T d  is effective mapping to node N t l _s  G if the semantic attribute of 

block content of node N t l _s  is the same as the logical constituent of N t d ■ Consider 

an incoming MEMO document as shown in Figure 4.5. Its corresponding L-S Tree 

(which is generated by Adjacency Relation Algorithm) is shown in Figure 4.6. The 

mapping in Figure 4.7 illustrates the mapping from the L-S Tree of Figure 4.6 to the 

Document Samples Tree of Figure 1.5.
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L -S  T ree  o f  a  te s tin g  d ocum en t 

V

S e c r e t a r y  o f  t h e  F a c u l ty
L O G O  o f  N JIT

NOT CE

•  •  •  •

| t O :| IN J IT  F a c u l ty  M e m b e r s  

M f R O M : L a w re n c e  S c h m e r z le r  
S e c r e t a r y  o f  th e  F a c u lty

|D A T E :I I O c to b e r  1 2 . 1 9 9 0  I

1 S U B J :| [In s titu te  F a c u lty  M e m b e r s

T h e r e  will b e  a  m e e t in g  o f  t h e  fa c u l ty  o f  N J IT  o n  

W e d n e s d a y ,  O c to b e r  2 4 , 1 9 9 0 , a t  2 :3 0  in t h e  B a llro o m  

o f  th e  H a z e l l  C e n te r .

A n y  r e q u e s t s  fo r  t im e  o n  th e  A g e n d a ,  t o g e th e r  w ith  
s u p p o r t in g  d o c u m e n ts ,  s h o u ld  b e  s u b m it te d  to  m e  o r  M ary  

A rm o u r  b y  O c to b e r  1 9 ,1 9 9 0 .

T h a n k  y ou .

L S /m a

Figure 4 .6  The L-S Tree of the testing document in Figure 4.5.
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D o c u m e n t  S a m p le  T ree  o f  M E M O  d o c u m e n t ty p e  

v

T :s ta iic :
K T : N U L L : 

L C :N J IT  L O G O ; I: 10;
S: N U L L ;

C: p ic tu re .

H,
n < 

f  T:sta tic ; 
K T :M E M O RA N D U M  
LC :N U L L : 
i; 10;
S: N U LL:
C : textual.

*4
T ;* ta tic :
K T :T O ;
L C : N U L L ; 
1 :14;
S :W i;
C : ic x iu a l .

II,

T rdynam ic : 

K T : N U L L ; 
L C :rc cc iv c r ; 

I: 14;
S: N U L L :

C: te x tu a l .

T :static; 
K T:FROM . 

L C : N U LL: 

I: 14;

S : l h :

C: textual.

T :dynam ic: 
K T: N U LL : 
LC:scndcr: 

I: 14;

S: NU LL;

C : textual,

11' i i v -  " /» ~  « n

T :ila lic ; T :dynaniic : T :uatic : T:dyn;tmie:

KTiD ATE: KT: N U LL : K T :SU Bi: K T: N U LL:

LC: N U LL: 

1: I V,
L C aiaic: LC: N U LL: L C :juh j: 

1: 13:
1:13:

S : NULL:
S : U n S: NULL;

C: textual.
C : textual.

C: textual. C : textual.

L -S  T ree  o f  a  te s t in g  d o c u m e n t

n ,  i u  n

I S e c re ta ry  of Ihe  F acu lty  I
L O G O  o f N JIT

N O T  C E

TO:l [N JIT  F a c u lty  M e m b e rs  

— H F R O M :I ' L a w re n c e  S c h m e rz le r  
S e c r e ta r y  of t h e  F acu lty

DATE:! I O c to b e r  12 , 1 990

•  •  •  •

H s U B J^ [in stitu te  F a c u lty  M e m b e rs

T h e r e  will b e  a  m e e tin g  of th e  fa c u lty  o f  N JIT  o n  

W e d n e s d a y ,  O c to b e r  2 4 , 1 9 9 0 , a t  2 :3 0  in  t h e  B allro o m  

o f t h e  H a ze ll C e n te r .__________________________________________

A n y  r e q u e s t s  fo r t im e  o n  th e  A g e n d a , to g e th e r  w ith 
s u p p o r t in g  d o c u m e n ts ,  s h o u ld  b e  s u b m it te d  to  m e  o r  M ary  

A rm o u r  b y  O c to b e r  1 9 ,1 9 9 0 .________________ _ _ _ _______________

I T h a n k  y o u .|

L S /m a

Figure 4.7 The best mapping between a L-S Tree and a Document Sample Tree.
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4.3 Frame Instance and Structured Blocks

The documents having similar properties are classified into a document class. Each 

class is associated with a type which describes the properties for the class of 

documents [32]. A type of MEMO class is defined as follows:

Define type for Memo begin 

subtype of document; 

a ttribu te :

Sender:string(30);

Receiver:string(30);

Date:string(20);

Subject:string(30);

Content: TEXT;

Remark: TEXT;

There are five attributes in the above type definition. These attributes can be 

grouped into a tabular form called the frame template. Each document in the 

MEMO class is associated with a frame instance which is an instantiation of the 

frame template.

Once the type of a given document has been decided, we can extract infor­

mation for the slots in its corresponding frame instance [33] of its type from the 

content of the blocks which are pointed to by the L-S Tree. Figure 4.8 shows certain 

information extracted from a testing MEMO document . The key terms are “TO ” , 

“FROM”, “DATE”, and “SUBJECT” , which are contained in nodes B 6, B s, and 

B io respectively. The information is extracted for these frame instance slots directly 

from their right adjacent blocks which are pointed to by their right siblings in the 

L-S Tree.
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C H A P T E R  5 

CLASSIFICATIO N SYSTEM

The proposed classification system has four major components: Preprocessor,

Knowledge Acquisition Tool (KAT), Classification Handler (CH) and Knowledge 

Base (KB). Its system flow diagram is depicted in Figure 1.1. The Preprocessor has 

two modules, namely, the Page Layout Generation module, and the Tree Generation 

module. The former is to assemble the basic blocks into a large block (the block 

representation) according to a number of “perceptual criteria” as discussed in 

Section 2.2. The latter is to transform the block representation into tree repre­

sentation. Therefore, the output of the Preprocessor is a tree representation (L-S 

Tree) of a document with leaves pointing to their corresponding textual blocks 

of the original document contents or the descriptions of non-textual blocks in the 

document.

To identify and classify a testing document, various information is needed such 

as Document Type Trees and Document Sample Trees. The Knowledge Acquisition 

Tool (KAT) is used to acquire this information by learning from examples in the 

training stage. This information is also acquired when the system encounters a new 

type or a new format of a document during the classifying stage. The KAT consists 

of the Document Sample Tree Generator and the Document Type Tree Inference 

Engine. The Document Sample Tree Generator processes the requests and responses 

with the user’s interactions through the User Interface to create the node contents for 

important blocks. The User Interface provides windows capabilities to help the user 

to find the im portant blocks in a document, and to fill in the values of attributes in 

their corresponding node contents. After generating all the Document Sample Trees 

for all the training samples of various document types, the Document Type Tree 

Inference Engine will induce the Document Type Trees for each document type by 

considering examples of its type [36, 35].
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The Classification Handler is in charge of the classification process. It consists 

of Control Unit, Document Type Discovering module and Document Sample Tree 

Matching module. The Control Unit is to control the process flow in the classification 

process.

The last component of classification system is the Knowledge Base. It consists 

of Structural Knowledge Base, Node Content Generation Rules, Document Type 

Tree Inference Rules, Control Rules, Key Term Thesaurus, Information Extraction 

Rules and Frame Template Base. The Structural Knowledge includes the Document 

Type Trees and Document Sample Trees. The Node Content Generation Rule Base 

contains rules which are used to generate the node contents for im portant blocks. 

This rule base supports the KAT to build the Document Sample Trees through the 

user interface dialog. The Key Term Thesaurus contains key terms of various classes 

to perform the morphological normalization of key words in documents of the same 

type. The Control Rule Base is to support the Control Unit to control the process 

of classifying document. The Information Extraction Rule Base is to support the 

Information Extraction module to fill in the slots of a frame instance.

5.1 K now ledge A cquisition  Tool (KAT)

The process of knowledge acquisition decides what kind of knowledge is needed, how 

it is used and how the knowledge can be elicited and encoded into a program [3]. 

The activity of building a knowledge base system may be viewed as a modeling or 

theory process, rather than a direct translation of knowledge which is available in 

the world into programs.

For the purpose of classifying documents, the process of knowledge acquisition 

can be summarized as three tasks:

•  Identify the kind of knowledge to be acquired and how it is used. The present 

work focuses on classification knowledge used to classify documents. The
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knowledge includes the representation of the layout structure, logical structure! 

and major factual description of features of document contents. The layout 

structure is used to specify the geometrical relation among blocks. The logical 

structure describes the semantic structure of a document.

•  Design a knowledge representation. The tree structures are used to represent 

the knowledge for classifying the document. The H  node and V node of a tree 

describe the geometrical relations of blocks of a document layout. The node 

content specifies the logical structure and major factual description of features 

of document content.

•  Devise a technique for eliciting knowledge. In the learning or classifying stage, 

the user will help the classification system to elicit information regarding 

the important features of a document content during the generation of the 

Document Sample Tree. The Document Type Tree Inference Engine infers 

the Document Type Trees by generalizing document sample trees. The gener­

alization rule will be discussed in Chapter 7. The Document Sample Tree 

Generator can communicate with the user, using dialogs through text window, 

node content window, and pop up window (as depicted in Figure 5.1) provided 

by the user interface, and transforms the user’s input regarding the document’s 

layout structure and content into classification knowledge.

5.2 D ocum ent Sam ple Tree G enerator

Given the L-S Tree of a document, the Document Sample Tree Generator will output 

its corresponding Document Sample Tree. As shown in Figure 5.1, the text window 

describes the block information and the content of an important block, and a node 

content window describes the node content of its corresponding block. Given the 

window of an original document image, the user is requested to fill in the values of
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F ig u r e  5 .1  A screen layout of KAT for a MEMO document.

type of block, logical constituent, and semantic association for each of the important, 

blocks which are selected by users. In Figure 5.1, KAT displays a text window and a 

node content window for the block B 4 containing “TO”, which is considered to be an 

im portant block. Then, the user copies the word “TO ” from the text window to the 

appropriate slot of the node content window as the value of key term. The user will 

also fill the slots of logical constituent and semantic association with NULL and B$ 

respectively. The classification system automatically fills in the class of block with 

“textual” . This completes the knowledge elicitation process for this block. The Node 

Content Generating Rule Base contains the rules that support the KAT to decide 

which blocks are the im portant blocks in the original document image, and to pop 

up the appropriate text or nontext windows for the blocks.

The example of a memo document is given in Figure 1.5. The classification 

system will call the user’s attention to the blocks B\, B2, B3, B4, B5, BG, B7 B8, 

Bg, B w, B n , B u , and B X5, by displaying them on the screen. By browsing through 

all these blocks the user fills out the tables for the important blocks, B\,B3, B4, Br>, 

Bg, B7 B8, Bg, Big, B\\  and disregards the blocks B2, B x4, and B !5 which contain 

no important information for classification.
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A sample rule for creating a node content is given as follows:

R ule : if the class of a block =  “textual” , then the user keys in the values of type of 

class, logical constituent, and semantic association, and copies the high-lighted 

text to the value of key term.

The value of class of block is provided by OCR (Optical Character Recognition) 

system.

5.3 D o cu m en t T y p e  Tree In ference  E n g in e

The Document Type Tree Inference Engine employs inductive learning approach to 

generating Document Type Trees from Document Sample Trees of each document 

type. The Document Type Trees allow that a small set of trees is possibly used 

to identify the type of a document during the document type classification process. 

Once the type of a document is recognized, the Document Sample Trees of the type 

are used to do the format recognition and information extraction by searching a 

closer match of the L-S Tree with its segmented contents of the document and one 

of the Document Sample Trees (including its node contents).

Inductive learning [4, 5, 14,17, 19, 20,18] is a process of acquiring knowledge by 

drawing inductive inferences from facts provided by experts, users, and others. Such 

a process involves operations of transforming, generalizing, modifying and refining 

knowledge representations. During the learning process, the Document Sample 

Trees of each document type are the training examples for the Document Type 

Tree Inference Engine. The Document Type Tree Inference Engine can acquire a 

description of a class of Document Sample Trees of the same document type by 

generalizing user-provided training examples (positive example). The Document 

Sample Trees which belong to the same class are called the positive examples and
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the rest of Document Sample Trees are considered as negative examples with respect 

to the class. This approach is called learning from, examples.

5.3.1 Observational Statem ents

Observational statements [6, 36] are used to specify facts (in which each consists of 

training events of the same document type) found in Document Sample Trees. A 

document sample is first transformed into a Document Sample Tree, from which a 

set of observational statements containing the path and node content pairs can be 

derived by applying the background knowledge in the KAT (Knowledge Acquisition 

Tool). The set of observational statements of a training Document Sample Tree is 

referred as a training event of the tree. The definition of a path is as follows:

D efinition 5.1 A path of node N,  denoted as path(Af), is a character string 

containing labels and numbers as follows:

path(N) = (Label)ini(Label)2 n 2 . . .  (Label)jnj(Label)j+1,

where N  could be an intermediate node or a leaf; j  is the depth of node TV; 

(Label) is the label associated with each node such as H, V  or B\ (Label)k, 

1 <  k < j  +  1, is the n*;_ith child of (Label)*,_!.

The format of observational statements can be represented in a tabular form 

as shown in Table 5.1. The observational statements inferred from a tree example 

are shown in Figure 5.2. NCn's, 1 < n < 8, stand for node contents containing 

important information of their corresponding blocks.

Table 5.1 The format of observational statements.

P ath N ode con ten t
p a t h ( n o d e  o f  N i ) n o d e  c o n t e n t  o f  N 1
p a t h ( n o d e  o f  N2) n o d e  c o n t e n t  o f  N2

p a t h ( n o d e  o f  N „) n o d e  c o n t e n t  o f  N n
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1
B̂  B

N C s NCt> N C 7 NCh

P a th N o d e  c o n t e n t

H I  V I B N C ,

H 1 V 2 B N C ?

H I V N U L L

H 2 B N O

H 3 H 1 B N O

H 3 H 2 B N C s

H 3 H N U L L

H 4 H J B N C «

H 4 H 2 B N C ?

H 4 H 3 B N O

H 4 H N U L L

Figure 5.2  The training event of a tree example.

5.3.2 Inductive Paradigm

An inference process is to find out plausible assertions that can explain the training 

sample trees. We use these assertions to classify the new events such as input testing 

documents in the classification stage. The inductive inference process attem pts to 

derive a complete and consistent description of a concept (also referred as a document 

type) from a fact which is the set of training events (sets of observational statements) 

of training sample trees of the type. In our case, the training sample trees are the 

Document Sample Trees of different document types, and the description of a concept 

is the Document Type Trees of a document type. These Document Type Trees are 

the generalization of Document Sample Trees of the same document type. The inputs 

of inference process are facts (training events of document types) F  and background 

knowledge.

Training events are derived from the training sample trees that represent 

the specific knowledge about types and formats of documents. A fact describes a 

document type represented by various training events, as in Figure 5.3. And the 

facts F  can be denoted as
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where 1 < i is an unique type id, and eij, (1 < j  < n), is a training event defining 

the j th  sample tree of the document type A*.

Background knowledge includes the problem-related domain knowledge for 

extracting the facts of incoming samples. This also includes the definitions 

and assumptions tha t are posed on the observational statements and generated 

hypotheses.

The output of inductive inference process is the inductive assertions (called 

hypotheses) H  generated by applying the generalization rules and background 

knowledge on F, that is F  < H. H  can be defined as a set of concept recognition 

rules:

H :  {Di =k> IU },

where i G I  and Di is a concept description of document type Kj.

Intuitively, let’s consider two training sample trees tree 1 and tree2 of document 

type Ki. The sample tree tree 1 contains four key terms “TO” , “FROM”, “DATE” , 

and “SUBJ”, and the sample tree tree2 contains three key terms “TO” , “FROM” , 

and “DATE” . Therefore their corresponding training events are e^\ and e;i2. By 

applying the generalization rules (of the inductive inference process), only three key 

terms “TO”, “FROM”, and “DATE” are selected to be the concept description Dt 

in the hypotheses H  to imply the facts F. In Figure 5.3, we assume that there are 

three possible types of documents K i, K 2, and A 3 such as letter, memo, and journal. 

During the inductive learning stage, the user preclassifies all the training documents, 

and let every e*j imply only one document type Ki.
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Figure 5.3 Inductive learning process for Document Type Trees.



C H A P T E R  6

F IN D IN G  CO M M O N  SU B ST R U C T U R E S  
FROM  SE G M E N T E D  D O C U M E N T S

A document is classified if there is a Document Type Tree to be a substructure of 

its L-S Tree. Then, the exact format of the document can be found by searching 

the closer match of the L-S Tree with its segmented contents of the document and 

one of the Document Sample Trees (including its node contents) represented by the 

identified Document Type Tree. In previous chapters, we addressed document page 

layout segmentation (namely, dividing a document page into several segments, which 

are in turn, divided into smaller segments), and then the formation of a L-S Tree for 

it. We also presented the construction of Document Sample Trees. The Document 

Sample Trees of the same document type can be generalized to a fewer Document 

Type Trees. T hat is, the Document Type Trees can be considered as the the Largest 

Common Substructures of the Document Sample Trees of the same document type.

In this chapter, we will investigate the problem of finding the Largest Common 

Structures between Document Sample Trees, taking the corresponding segmented 

document samples into consideration. The Nested Segmentation Algorithm is 

adopted in the generation of L-S Tree.

6.1 Longest Com m on Subsequence

Let N  -  { N C l A , N C h 2 , - - - , N C h r ) ,  and M  = (NC 2 ,i, A C 2,2, • • •, N C 2 ,S) be two 

sets of node contents. The longest common subsequence between two sets of 

node contents N  and M, denoted as L C S ( N ,  M), is defined as follows: There 

exists N 1 C N  and M ' C M, and N '  —  ( N C i tTni, N C l i m 2 , • • •, N C i>mi) ,  and 

M ' — ( N C 2>ni i N C 2,n2 , • • •, N C 2 ,n t ) such that t is a maximum and N C i>mi =  N C 2<ni, 

N C h m 2 =  N C 2 ,n2 , • • •, N C Umt = N C 2in t , and mi < m 2, m 2  < m3, • • •, m t-i  < m,h 

and 77.1 < n2, n 2 < n3, • • •, n t_i < n t. That is, a subsequence of N  (or M)  is obtained
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by removing zero or more, but not necessarily contiguous, nodes from N  (or M). 

Then, the L C S(N , M )  is a longest sequence tha t is a subsequence of both N  and M  

[ ! ] ■

6.2 E dit O perations o f D ocum ent Segm ents

During the comparison of two documents, the appearing orders of their segments 

are significant. Two basic segments are equivalent if their block contents are 

identical. Two composite segments are equal if they contain the same types of H  

or V  cuts. There are four types of edit operations: relocate, change-block .content, 

delete segm en t,  and insert segm ent.  Let £>2 be the document tha t results from the 

application of an edit operation to document D\. A relocate operation is represented 

as (u —)• v), where u, v are either H, V  or V, H. This operation transforms D\ to D 2 

by reconstructing segments which are separated by u cut within a composite segment 

x of D\ to be v cut within x  of D2. That is, the left-to-right (or top-to-bottom) 

ordering of segments in the segment x  of D\ will be changed to top-to-bottom (or 

left-to-right) ordering of segments in the segment x of D2. Figure 6.1 illustrates a 

relocate operation, where H itj or Vij stands for the j th cut at the level i, and d,[k] 

stands for the £th segment.

A change-block .content operation can be represented by (u —¥ v ), where u, 

v are the contents of the basic segments in D\ and D2. Figure 6.2 depicts this 

operation.

The equivalent tree edit operations of relocate and change-block-content are 

relabel for an intermediate node (from H  to V, or vice versa) and relabel for a leaf 

node (from one regradless of its node content to one with its node content) respec­

tively. The cost of relocating segments within a composite segment x  (or relabelling 

for an intermediate node i) is the total number of segments within x  (or the total
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number of immediate children of node i)\ and the cost for change Mock .content, (or 

relabelling a leaf node) is 1.

A delete.segment is represented as (u —» v), where u is a segment in a document 

and v is the null segment (A). If u is a composite segment, there are two cases as 

follows: (case 1 ) if the type of cut at the level j  — 1 in the segment which contains 

segment u is not the same as the type of cut within the segment u at level j , a 

relocate operation is performed for u before u is removed, and then assigns all the 

segments within the segment u at the level j  to the segment at the level j  — 1; (case 

2 ) if the type of cut at the level j  — 1 is the same as the type of cut within the segment 

u at level j ,  this operation just removes the segment u and assigns all the segments 

within the segment u at the level j  to the segment at the level j  — 1. If segment u 

is a basic segment, then remove simply the content of this basic block. Figure 6.1 

describes a deletesegment  operation. The delete seg m e n t  is equivalent to the tree 

edit operation of delete. The cost for (case 1) is (number of segments within u) + 

1 and the cost for (case 2) is 1. The cost of deletesegment  for a basic segment is

1. In the tree edit operations, (case 1) corresponds to delete for a non-leaf node N  

whose label is not identical to that of its parent. The cost of this case is (number 

of immediate children of node N )  +  1. (case 2) corresponds to delete for a non-leaf 

node N  whose label is identical to that of its parent and the cost for this case is 1. 

The cost of delete for a leaf is 1. The delete operation is not allowed to applied on 

the root of a tree.

An insert.segment can be represented by (u —> v), where u is a null segment 

(A) and v is a segment. The operation of insert.segment will create a segment v at 

level j  to enclose a set of consecutive segments at level j  with type of cut cnew and 

change their level from j  to j  -f 1 if u is a composite segment; or the operation will 

create a basic segment directly if v is a basic segment. For a composite segment v, 

there are two cases as follows: (case 1 ) if the new cut cncw within v is not the same as
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Figure 6.1 An example of a deletesegment (relocate) operation and its equivalent tree 
edit operation delete (relabel).
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the original cut cOTiginai, then a relocate operation (cori(Jinai —> cnew) is followed after 

inserting the segment v\ (case 2 ) if the new cut cnew is the same as the original cut 

('original at level j ,  then inserting the segment v only. Figure 6.2 depicts the operation 

of insert.segment. The cost of insert.segment for a basic segment is 1. The cost 

for (case 1) is (number of segments in v) +  1, and the cost for (case 2) is 1. The 

insert.segment operation is equivalent to the tree edit operation of insert. In the 

tree edit operations, (case 1) corresponds to insert a non-leaf node N  whose label 

is not identical to tha t of its parent. The cost of this case is (number of immediate 

children of node N )  +  1. (case 2) corresponds to inserting  a non-leaf node N  whose 

label is identical to that of its parent. The cost for this case is 1. The cost of 

inserting  a leaf is 1.

Let 7 be the cost function as we discuss above that assigns each edit operation 

u —>■ v a nonnegative real number "f(u —> v). 7 can be extended to a sequence of edit 

operations 5  — sx, s2, • • •, sm by letting 7 (5 ) =  YliLi 7 (si)- The editing distance 

from document D x to document D2, denoted as dist(Dx, D2), is defined to be the 

minimum cost of all sequences of edit operations which transform D x to D 2 as:

dis t(D i,D 2) — min {7(5)15 is a sequence of edit operations transforming D\ to D 2).

6.3 M appings of Two Segm ented D ocum ents

The mapping of two documents is a graphical specification of which a sequence of edit 

operations can apply to each segment in two documents. The mapping in Figure 6.3 

shows a way to transform D x to D2. It corresponds to a sequence of edit operations: 

(deletesegment  for d[2] in D x, insert.segment for d[3] to enclose d[A] and d[5] in 

D2).

Given two documents D\ and D 2 which consist of segments d\ [1], d \ [1], . . . ,  d\ [|Di |] 

and segments d2 [l\, d2[l], . . . ,  d2[|D2|], respectively, a mapping from D\ to D 2 is a
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Figure 6.3 Mappings of two segmented documents and their corresponding trees.

triple (Me, Di, D2) where M e is any set of ordered pairs of integers (i , j ) satisfying 

the following conditions:

1. 1 <  i < |.Di| and 1 < j  < |D2|, where |D i| and |D2| are the numbers of

segments in documents Di and D2, respectively.

2. For any pair if (iu ji)  and (i2 , j 2) in M e,

•  ii =  i2  if and only if j i  — j 2 (one-to-one);

•  d\[ii] is on the top or to the left of d\[i2] if and only if d2[j 1] is on the top

or to the left of d2[j2] (relative position preserved);

• di[ii] is contained in d\[i2] if and only if d2 [j\] is contained in d2 [j2] (compo­

sition relation preserved).
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Let M  be a mapping from D\ to D 2. Let I  and J  be the sets of segments in 

D i and D2, respectively, not touched by any dotted line in M . Then we can define 

the cost of M:

7 ( M ) =  Y  7(di[*] <k\j]) + -> A) +  ]^ 7 (A  Ml})-
( i j ) e M  i e i  j e J

Given a sequence of edit operations 5, it can be shown that there exists a

mapping M  from D\ to D 2 such that 7 (M) < 7 (5 ); conversely, for any mapping M,

there exists a sequence of edit operations 5  such that 'y(M) =  7 (5 ).

Hence, we have

dist(Di, D 2 ) =  min {^ (M )\M  is a mapping from D\ to D2}.

For example, the mapping in Figure 6.3 is {(0, 0), (1, 1), (4, 2), (5, 4), (3, 5)}, and 

the dist{D\, D 2) — 2, since the minimum cost of mapping involves the deletion of 

d[2] in D\ and insertion of d[3] as in D2.

6.4 Largest Com m on Subregion o f Segm ented D ocum ents

A sub.document D[i] of a document D  represents a set of segments at any levels 

within the segment d[i\. A subregion of D  is a portion of a document layout with 

some sub-documents removed. The size of a document D, denoted as \D\, is the total 

number of segments in D  at any levels. The operation of removing sub-document 

D[i] means deleting segment d[i] and all the segments contained in the segment d[i]. 

A  set of segments 5C in D  is said to be a set of consistent sub-documents removal 

in D, if (1) d[i\ E Sc implies that 1 < i < \D\, and (2) d[i],d[j] G 5C implies that 

neither is within the other in D. We use Remove(D, Sc) to represent the document 

layout D  with all sub-documents in 5C removed. Let subportion(D) be the set of 

all possible sets of consistent sub-document removals in D. Given two documents 

D\ and D2, the Largest Common Subregion between D\ and D 2 can be found by 

locating the Remoue(D\, Sc\) and Remove(D2, Sc2) such that
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max{\Remove{D \ , 5ci)| +  \Rem,ove(D2 , Sc2)|} where

dist(Remove(Di, Sci), Remove(D2, Sc2)) = 0,

Sci E  (subportion(D\)) and 

S c2 G (subportion(D2)).

6.5 Largest Com m on Substructure o f Trees

A substructure of an ordered labelled tree T  is a tree with certain subtrees removed 

from T. Given two ordered labelled trees Tx and T2, the algorithm of Largest, 

Common Substructure (L C S s tr ) of T\ and T2, denoted as LCSstr{T\, T2), is to 

find a substructure Si of T\, and a substructure S2 of T2, such that the distance of 

Si and S2 is 0 and there does not exist any other substructure S{ of T\ and S '2  of 

T2 such that the distance between S[ and S '2  is 0 and the total size of S[ and S 2  is 

greater than the total size of Si and S2 [25]. It is still possible that there exists some 

other substructures S" of Ti and S 2 of T2 such that the distance between S'/ and S '2  

is 0 and the total size S" and S 2 is equal to the total size of Si and S i .

Let T[i] stand for the subtree rooted at node t[i\. The operation of cutting at the 

node t[i] removes T[i] from T. A set of nodes S no(ie E T  is said to be a set of consistent 

subtree cuts in T  if t[i], t[j] G Snoite, 1 <  z, j  < |T| and neither one is an ancestor of the 

other in T. Intuitively, Snode contains all the roots of the removed subtrees in T. Let 

Cut(T, S node) represent the tree T  with subtree removed at all nodes in Snode, and let 

Subtree(T) be the set of all the possible sets of consistent subtree cuts in T. To find 

Largest Common Substructures of trees Ti and T2, we first locate the Cut(T\, S nodc,i) 

Cut(T2, S 7l0de,2 ) and then calculate max{|Cu£(Ti, S'node)1)| +  \Cut(T2, 5node,2|} where 

dist(Cut(Ti, Snode,i),Cut(T2 , Snode,2 )) — 0) Cnodc, 1 G Subtiee{Tx) and Snodc‘i E 

S u b tr e e ^ ) .  In inductive learning process, every pair of Document Sample Trees T\
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and T2 will be generalized to discover the L C Sstr(T \,T 2 ) with distance 0. Therefore, 

C u t(T i ,S \) and Cut(T2 , S 2) are identical. The original algorithm of L C Sstr  only 

locates the first substructure of max{|C7ut(Ti, 5 i)| +  \Cut(T2, S2\} [25]. A m odified  

L C S str  algorithm is proposed to discover some L C S s tr ’’s of T\ and T2 , which will 

be discussed in generalization Rule 7.5 in Section 7.5. In Figure 6.4, Ticsstr is 

an example of the L C S s tr ’s of Ti and T2. But the subsequences (B3, B 4, Bq) and 

(B3, B 4, £ 5) are the L C S ’s of the nodes (B3, B 4, B 5 , B 6) of T\ and (B3, B 4, B C), Bf) 

of T2. We discover another L C S str  of T\ and T2 by replacing the nodes (B 3 ,B 4, Bf) 

with (B3, B 4, B 5) in the Ticsstr s shown in Figure 6.4.

6.6 R elation  o f Largest Com m on Substructure  
and Largest Com m on Subregion

The Largest Common Substructure algorithm only takes trees as input and locates

the shared common substructure of maximum size without taking the corresponding

document segments into account. This may result in a false Largest Common

Substructure between two segmented document samples. For example, consider two

segmented sample documents D\ and D 2  and their corresponding Document Sample

Trees T\ and T2 in Figure 6.4. L C Sstr(T x,T 2 ) is Ticsstr- The root H  in T^cssir

represents H 2  node in T\ and H x node in T2. H 2 cut in D\ divides sub-document

D\ [2] into half, and H x cut in D 2  divides the whole document D 2 into three smaller

segments. They have completely different geometrical meanings of segmentations.

We use the following preprocesses to eliminate such an error, and to ensure that there

are one-to-one correspondences between Largest Common Substructure and Largest

Common Subregion.

Given two segmented sample documents and their Document Sample Trees, we 

first preprocess them by removing the non-basic leaf nodes from Document Sample 

Trees and removing the segments which are not basic segments or do not contain basic
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segments at any lower level. This is called preprocess 1. For example, a document 

sample Dsampiex as shown in Figure 6.5 has its Document Sample Tree Tsajnptei on its 

right. After preprocess 1, all the leaf nodes which correspond to the blocks containing 

no key terms in Tsampie\ are deleted. Now, Tsamp/el becomes T'samplel. Similarly, all 

the basic segments containing no key terms in D sampiex are removed. Now, Dsampiei 

becomes D'samplel. We observed that the segment d[2] in D'samplel contains only one 

segment d[3]. Therefore, segment d[2] and its H  cut are redundant and should be 

removed. In its corresponding sample tree, H 2  node is deleted, and the subtree 

of i / 3 becomes the child of H\. Now, D'samplel becomes D"samplel. This is called 

preprocess 2 which eliminates the mapping error during the discovery of Largest 

Common Substructure of two trees for Largest Common Subregion. The algorithm 

of preprocess 2 is described as follows: if a H  node has only a single H  child node, or 

if a V  node has only a single V  child node as shown in Figure 6.6, then we can remove 

this node from the Document Sample Tree. Equivalently, in a segmented document, 

if a segment d[i] contains only one segment d[k\ which is not a basic segment, then 

we remove the segment d[z] and all cuts within d[i\.

L em m a 5.1 Given two segmented documents D[ and D '2 and their corresponding 

Document Sample Trees T[ and T2, the preprocessed segmented documents are 

D\ and D 2 and the preprocessed Document Sample Trees are T\ and T2. After 

preprocessing (using preprocess 1  and preprocess 2  as discussed above) the tree 

structure of Largest Common Subregion of D\ and D 2 (LCSreg(D\ ,D2)) is the 

Largest Common Substructure o fT \ andT 2 (LCSstr(T\, T2)).

P ro o f. The algorithm of discovering the Largest Common Substructure of 

two trees Ti and T2, which is Ticsstr, has been proved in [25]. The definitions of 

edit operations and remove operations of Largest Common Subregion in document 

D  are equivalent to the definitions of edit operations and cut operations of Largest 

Common Substructure in tree T, stated as follows:
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H node V node

F ig u re  6.6 The H  (or V) node has only a single H  (or V)  child node.

1. Each edit operation in D  has one and only one equivalent edit operation in T  

as described in Section 6.2.

2. Each segment in D  has a one-to-one mapping to a node in T.

3. If a composite segment d[j] in D  maps to a non-leaf node t[i\ (i.e., either a 

H  or V  node) in T , all the segments in sub-document D[j] have one-to-one 

mapping relations to the nodes in subtree T[i).

4. The operation remove(D , Sdoc) which represents document D  with a set of 

consistent sub-documents Sdoc removed is equivalent to cut(T , Stree) in tree T  

with a set of consistent subtrees S tree removed.

Since every preprocessed segmented document corresponds to one preprocessed 

Document Sample Tree, the Largest Common Subregion also corresponds to a 

unique tree Ticsreg• According to the definition of mapping between two segmented 

documents, the mapping from Di to D 2 is the same as the mapping from T\ to 

T2. The tree structure of LCSreg  will be TLCsreg which is equal to TLCsstr ■ If we 

can find a LC Sreg 1 of D\ and D 2 , such that \LCSreg'\ > \LCSreg\, then the tree 

structure of LCSreg', which is TLcsre9', has the relations \Ticsrcg'\ > \TLCSrcg\ and 

\Ticsrcg'\ >  \Ticsstr\- The latter relation contradicts the fact that T ic s  sir is t-h(! 

Largest Common Substructure. This concludes the proof.



C H A P T E R  7

G E N E R A L IZ IN G  D O C U M E N T  S A M P L E  T R E E S

In Section 5.3, we presented the Document Type Tree Inference Engine, which 

employs inductive learning approach to generating a fewer Document Type Trees 

from a large number of Document Sample Trees of a document type, using a set of 

generalization rules, which will be presented in this section.

7.1 Im portance o f a Tree

The importance of a node Ni, Importancen0 de(Ni) is defined in Section 3.3. 

Intuitively, the importance of a node content, say, containing the key term “MEMO” 

in a Document Sample Tree of MEMO document type, is measured by the number 

of occurrences of this term appeared in the set of Document Sample Trees of MEMO 

type. The importance of a tree T, Importancetree{T), is defined as

I m p o r t a n c e ^ )  =

where n is the total number of basic nodes in tree T; Ni G T; and |T| is the size of 

the tree T. The function Importanceno(ie{Ni) returns the importance of node TV,.

7.2 Degree o f G eneralization

In the dissertation, the inductive learning process employs a generalization method to 

find all the proper maximal characteristic descriptions that satisfy the completeness 

condition. Finding a generalization tree (Ticsstr) of T\ and T2 is to find a 

L C Sstr(T \,T 2). A generalization tree of Ti and T2 is not valid if the size of 

TL C S s t r  is too small comparing to T\ and T2. For instance, if T\ and T2 trees are 

generalized to be a node H  only, then it is too general because it matches any subtree' 

rooted with H. We define two indices to measure the degree of generalization: the

70
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Degree of Structure Generalization (D S G ), and the Degree of Node Content Gener­

alization (D N C G ). Given two Document Samples Trees Ti and T2, L C Sstr(T i,T 2) 

=  C ut(Tx, S x) ( = Cut{T2 ,S f)  ) is found, where S\ is the set of all roots of the 

removed subtrees in T\ and 52 is the set of all roots of the removed subtrees in T2. 

The D S G 's of Tx and T2 with respect to T2 and Tx respectively are calculated using 

the following formulas:

|Ti| -  |C u t(T i,S x)\
DSG'T,m  |r i |

|T 2| -  \Cut(T2,S2)\
L>StrT2\ T, =  ----------- ppj----------•

\ - l 2\

The formulas for calculating the D N C G 's of Tx and T2 with respect to T2 and 

Ti respectively are given as follows:

D N C G Ti[t 2 =
|{iVj|./Vj G Tx, Ni is a basic node}| — J{ |Â- G Cut(Tx, S x), Nx is a basic node}|

G Tx, Ni is a basic node}|

D N C G t 2 \Ti =
|{iVj|iVj G T2, Ni is a basic node}| — G Cut(T2, S 2), iV, is a basic node}|

| { A ^ | G  T2, Ni is a basic node}|

The D SG tj\t2> D SG T2 \tx, D N C G tx\t2 and D N C G t 2 \tx for generalizing T x and T2 

must satisfy the following criteria: Let D S G tut 2 be m ax{D SG ri|r2, D SG r 2 \Tt }- Let 

D N C G Ti,t2 be m ax{D N C G TilT2, D N C G T2\Ti}. Then

D S G t x, t2 < C d s g i  and 

D N C G tx,t2 < C on cg .
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where C qsg and C qncg are predefined constants.

The degree of generalization will be extended to a set of trees. Given a 

set of trees {Ti,T2, . . . , T]}, the resulting LC Sstr(T \ , . . . ,  Tj) =  C ut(T \,S \)  (= 

Cut(T2, S2) =  Cut(Ti, Si) ) is valid if and only if the degrees of generalization

of all the trees satisfy the above criteria.

7.3 Generic G eneralization R ules

A generalization rule is to transform a set of descriptions Ei =  { e ,^ k < n}, where n 

is the total number of sample documents, and i is an index for document type into 

a more general description Di that weakly implies the initial description. If a testing 

document falsifies a more general description Di then it must falsify some specific 

description in Ei. Let C T X , C T X \  and C T X 2 represent some arbitrary expressions 

that are augmented by additional predicates to formulate a concept description. Four 

generic generalization rules [18] can be described as follows:

•  The dropping condition rule: 

{C T X  & S  I<) < { C T X  =** I<},

where S  is an arbitrary predicate or logical expression and K  is a document 

type. This rule states that a concept description C T X  & S  can be generalized 

by simply removing a conjunctively linked expression S.

• The adding alternative rule:

{ C T X  1 I<) <  {C T X  1 V C T X 2 =^> K }.

This rule states the a concept description can be generalized by adding an 

alternative such as C T X 2 to it. The alternative C T X 2 is added by extending 

the scope of permissible values of one specific descriptor.
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• The extending reference rule:

{ C T X  k [ L  = i?i] K )  < {C T X  &{L  =  R 2] =** I<},

where Ry C R 2 C DO M (L)  and D O M (L)  denote the domain of L. In this 

rule, L  is a term, i.e. a constant, a variable, or a function, and R\ and R.2  

are internal disjunctions of values of L. The rule describes tha t a concept 

description can be generalized by enlarging the values of a constant, a variable, 

or a function of the description.

® The turning constant to variable rule:

{F[a],F[b},...,F[i\}<Vv,F[v],

where F[u] stands for some description dependent on variable v; and a,b , . . . ,  

and i are constants.

Before we give detailed rules for Document Type Tree generation, le t’s look at 

some patterns used in the A B T E  and the L C Sstr  algorithms, which can be used 

for turning constant to variable in generalization process. Recall tha t the A B T E  

algorithm is used for Document Sample Tree Matching process and the L C Sstr  

algorithm is employed in the Document Type Tree Discovering process. In A B T E  

algorithm, in addition to having constant nodes, whose labels and contents arc 

specified, a pattern may contain the following marks:

• variables (_x, _y, etc.);

• bars ( |).

These marks may appear in several places in a pattern tree (i.e., Document 

Sample Tree). Edges of the pattern tree are marked by bars. Leaves of the pattern 

tree are marked by variables preceded with an underscore. As shown in Figure 7.1, a
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mark-substitution (instantiation) s on the pattern pa replaces the nodes or subtrees 

in the data tree t according to the following ways:

• Each variable matched with a subtree in t. (Repeated variables are matched 

with identical subtrees.)

•  Each bar is viewed as a pseudo node in pa, which is matched with part of a 

path (one or more pseudo nodes) from the root to a leaf of t.

Let s(pa) be the resulting pattern tree after the application of mark substi­

tution. We require tha t any mapping from s(pa) to t  maps the substituting nodes to 

themselves. Thus, no cost is induced by mark substitution. The distance between pa 

and t with respect to the substitution s is defined to be dist(s(pa),t). The distance 

between pa and t is obtained from one of the best mark-substitutions, i.e.,

dist(pa, t) =  min{dist(s(pa), t)},s£S

where S  is the set of all possible mark-substitutions.

In the L C Sstr  algorithm, a bar marked below a H  (or V) node in a Document 

Type Tree matches a repeated H  (or V) nodes on a path in L-S Tree of a testing 

document.

The following generalization rules are used to infer the Document Type Trees 

from a set of Document Sample Trees, TDS's.

7.4 R u les for P rep ro cess in g  D o cu m en t S am ple Trees

Before the generalization taking place, all the Document Sample Trees are prepro­

cessed by using Rule 7.1 to cut the leaf node whose type is dynamic, i.e. its key term 

is N U L L , Rule 7.2 to cut the leaf node which is not a basic node, and Rule 7.3 to 

cut the node where all its descendants are not basic nodes.

R u le  7.1 Preprocessing Rule 1
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0)

(ii)

F ig u re  7.1 (i)Variable instantiation: The variables in pa are matched with the shaded 
subtrees in t. (ii) Bar instantiation: The bar is matched with the nodes 
(block dots) on a path p.

IF  (Contain(Ti)Si N )  A  IsLea fN ode(N )  A (K e y T e r m (N ) = NULL))  

T H E N  cut N  from Tds

The predicate Contain(T, N )  returns true if T  contains the node N, otherwise it 

returns false; the predicate IsL ea fN ode(N )  returns true if TV is a leaf node, otherwise 

it returns false, and the function K eyTerm (N )  returns the value of key term for leaf 

node N.

R u le  7.2 Preprocessing Rule 2

IF  (Contain(Tos, N )  A  (IsLeafN ode(N )  A  ->IsB asicN ode(N )))

T H E N  cut N  from Tps

The predicate IsBasicNode(N)  returns true if TV is a basic node, otherwise it returns 

false.

R u le  7.3 Preprocessing Rule 3 

IF  (Contain(Tos, N)
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A ( - i / sL ea f Node(N) A  All Descendants NotBasicNode(N)))

T H E N  cut N  from T ^s

The predicate AllDescendantsNotBasicNode(N)  returns true if all the descendants 

of N  are not basic nodes, otherwise it returns false.

7.5 Discovering th e Largest Com m on Substructures

In this section, we investigate a possible way of finding the Largest Common 

Substructures for Document Sample Trees of a document type.

A lgorithm  7.1 Creating LCSstr table. Let S q s  — { T d s i , T d s 2, ■ ■ • > Tosn}, n  >  2 

be a set of preprocessed Document Sample Trees for a document type. A 

L C S s tr  table, whose names of the rows and columns are TDSl, T DS2, . . . ,  TaS„, 

consists of all possible entries LCSstr(TDSi,TDSj) — Ticsstritj, where 1 < i , j  < 

n.

For each entry L C S s tr^ o S i iT o S j ), a generalization of Tos, and Tqsj, we 

determine the validity of the generalization, using

R ule 7.4 Checking for Degree of Generalization Condition

I F  ( ( DSGTDSi,TDSj <  CDSg) A  ( DNCGTDSi,TDSj <  CDNCg))

T H E N  the generalization is valid

Both C q s g  and C q n c g  are predefined constants.

If a tree Ticsstr ( =  LCSstr(TDSi,TDSj) — Cut{ToSi^ SoSi) =  Cut,(TDSj, SAs,)) 

is found and satisfies Rule 7.4, then SAs, and Sosj are the set of cutting nodes 

removed from T d s { and T q s j  respectively during generalization. We analyze the sets 

SoSi and S d s j  to discover other of TLCsstrS using the following rule. (Recall that 

T[i\ stands for the subtree rooted at t[i].)
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R u le  7.5 LCSstrs Discovering rule.

IF  (3noSi — 2,ToSi[h +  +  2], • • • ,ToSi[h +  ^ds,] G Tbs,)

( +  1], +  2], • • •, tps^h  +  ^ds,])

A(1 < | < u < (li + nosi)i tDSi[u] G C ut(TDSi, SpSi)} I < n DS,)

HtDsAh +  +  1] =  Parent(tDSi[li\) )

A(3nos, >  2, TdSj [̂ ' +  1], Tos., [lj + 2], • • •, ToSj [lj +  6 Tdsj)

( Sibling(tDSj [lj +  1]> V sj [lj +  2], • • •, tpsj [lj +  n osJ)

A(1 < | {tDSj [u\\lj < u < (lj + n DSj), tDS][u] G Cut(TDSj, S DSj)} \ < n ns j)

A(tDSj[lj +  n DSj +  1] =  Parent(tDSj[lj}) )

A (Path(tCut(TDSi,sDSi))[li +  n DSi +  1] =  Path(tcut(TDSj,sDSj))[lj +  n DSj +  1]) 

T H E N  find the Longest Common Subsequences of

TDSi [li +  1]) PDSi [h +  2], • • • , TpSi [h +  n-DSi] and 

Tdsj [lj +  l]i Tdsj [lj +  2], • • •, Tdsj [lj + nDSj], 

and discover other of L C S s tr 's from them.

The predicate Sibling(t\,ti,  ■ • •, V  ■ ■ ■, tn) returns true if all the arguments V s are 

siblings and the ordering of the siblings corresponds to the ordering from the left to 

right in the tree. The function Parent(N)  returns the parent of a node N  if it exists, 

or Null otherwise. The condition 1 < | {tos^uWk < u <  k + n DSi , V s.-H  G S b s J  \ < 

nDSi represents tha t at least one but not all of the nodes in { i j j s , - < u <  k+ n p s , } 

was cut. Figure 7.2 illustrates this rule. For example, Figure 7.3 depicts a set of 

11 Document Sample Trees of a MEMO document type. The D SG  and D N C G  are 

defined to be 0.6 and 0.25 respectively. The LC Sstr  trees are shown in Figure 7.4

and Figure 7.5, and their LC Sstr  table is shown in Table 7.1. Each entry in the

Table 7.1 is either blank if there is no valid L C Sstr  to be discovered, or a set of 

Tpcssir numbers if found, or Tps#  itself. Since the L C S s tr (T^T^) is identical with 

LC Sstr(T 2 ,Ti), the L C Sstr  table is diagonally symmetric.
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Tds, Tds

[/, + '!,«.+/]) ---— Poth(< Cul(T„Pathf t r  „T r,Cu,(TllSi. bpXt) , + « (

t„s, +/]

I

F ig u re  7.2 The rule of L C S s tr ’s discovering.

T able 7 .1  L C Sstr  table for Document Sample Trees in Figure 7.3.

T d s # 1 2 3 4 5 6 7 8 9 10 11
1 T d s , 1.1,1.2 2.1,2.2 4 9,11 6.1,6.2 7 8 4 11
2 T d s ? 10 9,11 12 13 14.1,14.2 6.1,6.2 9,11 11
3 T d s 3 9,11 12 15 14.1,14.2 16.1,16.2 9,11 11
4 T d s ., 18.1,18.2
5 T d s r. 9,11 9,11 7 4 20 21
6 t d s r 12 14.1,14.2 9,11 9,11 11
7 T d s 7 14.1,14.2 22.1,22.2 9,11 11
8 T d s r 7 7 14.1
9 T dsc , 4 11
10 T d s , n 21
11 T d s  „

The L C Sstr  table can be further transformed to a table, called the degree of 

completeness table. The degree of completeness table describes how many Document 

Sample Trees covered by each of L C S s tr ’s. The names of the rows are the list 

of Document Sample Trees and the names of the columns are the list of TLCssir- 

Table 7.2 shows a degree of completeness table for Table 7.1.

Obviously, TLcsstr is a Document Type Tree which represents its document 

type if it covers all the Document Sample Trees. We can further analyze the gener­

alization relations between each pair of L C S s tr ’s, and then update the degree; of
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H
Document Sample Tree 11 

H

H H H H

V NC2 V V V V V NC2 V V V

NC7 N C I
NC3 NC4 NC5 NC6

N C I:  N e w  J e rs e y  In s titu te  o f  T e c h n o lo g y  

NC2: M e m o , N o tic e  

NC3: T o  

NC4: F ro m  

NC5: D a te  

NC6: S u b je c t 

NC7: N J IT  lo g o  

NC3 NC4 NC5 NC8: C .C .

F ig u r e  7 .3  Document Sample Trees of the MEMO document type.
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* L C S s trU

V H

N C I NC2 H

TLCSmrft. /

NC4 NC6

NC3 NC 4 NC5

V

NC2 H

NC3 NC4 NC5 NC3 NC4 NC5

H

N C I NC2 H

V V V

NC3 NC 4 NC6

LCSxtr2.1

H

H

v V v
I I I

NC3 NC4 NC5  

T
‘ W S M 2 .2

H

H

I
H

r r

NC3 NC6

LCS\tr4

NC3 NC4 NC5 NC6

V

NC2 H

NC2 H

NC3 NC4 NC6

H

H

V V V

NC3 NC4 NC6 NC5 

T„

NC3 NC4 NC5 NC6

T1 L C S u r  12

NC3 NC4 NC6

V V V 1/

I I I I
NC3 NC4 NC5 NC6

1/ V

NC3 NC4 NC6 NC5

LCSitrV

NC3 NC4 NC6

Figure 7 .4  LCSstr trees for Document Sample Trees in Figure 7.3.
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N C 2 H

V  y

N C 3 N C 4 N C 6 N C 5

H

i r r
N C 3 N C 4 N C 5

H

y  y  v
i i i

N C 3 N C 4 NC6

V H

L  \

r  r r
N C 3 N C 4 N C 6 N C 5

V

I
N C 7

H

H

v y k
I I I

N C 3 N C 4 NC 5

LCSslrl6.2

N C 3  N C 4 NC6

LCSstr 17.1

N C 3 N C 6

H

H

NC 4 N C 6

V

N C 7

H V

V NC2
V v

N C S N C 6 N C 7  N C 3 N C 4 N C 5 N C 6

L.l.CSstrlS.2

V H

N C 7
V  V 

N C 4 N C 6

T‘ LCSstr 19.1

H

N C 3 N C 6

H

N C 4 NC6

V NC2
V

N C 3 N C 4 N C 5

N C 2 H
N C 7

V y  V

I [ I
N C 3 N C 4 N C S

N C2 H
N C 7

N C 3 N C 4 N C 6

F ig u r e  7 .5  (continued from Figure 7.4) LCSstr trees for Document Sample Trees in 
Figure 7.3.
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Table 7.2  Degree of completeness table for Table 7.1.

T L C S s t r  # T d s , T d s -, T d s a T d s , T DSr, T d s  a T d s -, t d s s T d s „ T d s , o T d s , ,
1.1 X X
1.2 X X
2.1 X X
2.2 X X
4 X X X X

6.1 X X X X
6.2 X X X X
7 X X X X X
8 X X
9 X X X X X X X X
10 X X
11 X X X X X X X X X
12 X X X X
13 X X

14.1 X X X X X X
14.2 X X X X X
15 X X

16.1 X X
16.2 X X
18.1 X X
18.2 X X
20 X X
21 X X X

22.1 X X
22.2 X X

completeness table. In the remaining of this section, we define the generalization 

relation between two T ic ss t f  s. For finding generalization relation between Ticsstr’s> 

all the generalization relations between each pair of Ticsstr s are first transformed 

to a generalization digraph, from which a modified generalization digraph can be 

obtained by removing redundant generalization relations from it. Then, the modified 

generalization digraph is used to update the degree of completeness table.

D efin ition  7.2 TLcsstn can be embedded in Ticsstr,• if and only if Ticsatn is the 

L C Sstr  of Ticsstri and T ic s  sir

D efin ition  7.1 Ticsstr, can be generalized to Ticsstri, denoted as Ticsstr, 

TLcsstn, Ticsstri can be embedded in T LCSstrr

In Figure 7.4, T i C S s t r 4  can be generalized to TLCSstn, TLCSslru, TLCS s i r and 

Ticsstru.2 ) each of which can be embedded in Ticsstr^-
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A lg o rith m  7.2 Generalization Digraph. The table of generalization relation can 

be represented by a set of directed acyclic graphs called the generalization 

digraph G(V, E), where each edge e G E  stands for “can be generalized to” 

relation, denoted as v u, and vertices v, u E V  stand for Ticsstr s. Then, 

a modified generalization digraph G'(V,E)  can be obtained from the gener­

alization digraph G{V, E) by using Rule 7.6 to remove redundant edges from 

it.

R u le  7.6 Removing redundant edges from the generalization digraph.

IF ( Vi -^ 4  v2, v2 v3, . . . ,  vk- i  -^4 vk) A  («! - A  vk)

T H E N  remove the edge v\ —̂ 4 Vk

A generalization digraph G — (V, E) can be represented by an adjacent matrix, 

where V  = {TLCsstn ,TLcsstr2, ■ ■ ■, TLCsstrn}- The adjacent matrix for G is a n  x n 

matrix A  of booleans, where A[i, j] is true if and only if there is an edge from vertex i 

to vertex j  (that is, vertex i can be generalized to vertex j) .  Another representation 

of generalization digraph G = (V, E ) is the adjacent list. The adjacent list for a 

vertex i is a list of all vertices adjacent to i in some order.

The modified generalization digraph for the L C Sstr  trees in Figure 7.4 and 

Figure 7.5 is shown in Figure 7.6 in which only direct edges are drawn without 

triangles. This digraph also describes the order of updating each Ticsstr's covers 

in the degree of completeness table. For example, the T ds’s which are covered by 

TLcsstn must be updated by TLCsstr4 after TLcsstr4 has been updated by TLCssir2a 

and Ticsstr&- Applying Algorithm 7.3, a modified degree of completeness table as 

shown in Table 7.3 is obtained by updating the degree of completeness table (in 

Table 7.2).
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A lgorith m  7.3 Update the degree of completeness table.

/*G(V,E) = Generalization Digraph */ 

queue Q\ 

vertex v, y; 

while ( |i?| > 0 )

{
for each vertex v which does not have edge pointing to it 

{
MAKENULL(<3);

for each vertex y

mark[y] = UNVISITED;

}

}

bfs(v)

{

Vertex x, y ;

ENQUEUE^, Q)\

while (EMPTY(Q) != TRUE)

{
x  -  FRONT(Q); 

for each vertex y adjacent to x 

{

if there is not any edge pointing to x 

{

if (mark[?/] = =  UNVISITED)

{
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(1) in the degree of completeness table, mark the row of the 

TLCSstry with all the trees covered by TLcsstrx;

(2) ENQUEUE^, Q);

(3)delete the edge x — > y,

(4) mark [y] = VISITED;

}

}

}
DEQUEUE(Q);

}

}

14.16.1 2.1

20

16.1 22.1

1.2 2.2 14.26.2

18.2
.18.1

22.2

F ig u r e  7 .6  Modified generalization digraph for the LCSstr trees in Figure 7.4 and 
Figure 7.5.
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T able 7.3 Modified degree of completeness table.

T L C S s t r  # T d s  1 t d s ? T d s ? T D S a T d s r. T d s „ T d s -, T d s « T d s ? T d s w T d s ,,
1.1 X X
1.2 X X
2.1 X X X X X X X X
2.2 X X X X X
4 X X X X

6.1 X X X X X X X X
6.2 X X X X
7 X X X X X
8 X X
9 X X X X X X X X
10 X X X
11 X X X X X X X X X
12 X X X X
13 X X

14.1 X X X X X X X X X
14.2 X X X X X X X X X
15 X X

16.1 X X X X X X
16.2 X X X
18.1 X X X X X
18.2 X X X
20 X X
21 X X X

22.1 X X X X X X
22.2 X X

In Section 7.6, the use of this table for discovering the set of Ticsstr s, which 

covers all the Tps' s will be investigated.

7.6 Search for D ocum ent Type Trees

Algorithm 7.4 is employed to find all the possible sets of TLcssir 's , which represent 

one document type.

For the MEMO document type, Algorithm 7.4 takes Table 7.3 as input to 

search all the possible sets of T L C s s t r  s which cover all the T D S ’s .  Given a set S p s  

of Document Sample Trees, if S L C s s tr  =  { T i c s s t r , \ , T L C s s t r , 2 ,  ■ ■ ■ , T L C S s i r , i }  is found 

during generalization, then it is meaningless if the number of Document Type Trees 

is greater than the total number of Document Sample Trees. We use the Rule 7.7 to 

limit the size of the set Sicsstr■



A lgorithm  7.4 Search for Document Type Trees.

/* S d s  = set of Document Sample Tree */

/* SLCSstr — set of Largest Common Substructures */ 

boolean Table[|S/,csstr|][|«SDS’|];

/* array of modified degree of completeness table */ 

boolean Select_asJiead[|S'iC5str|]; 

boolean Select_as_element [| SpcSstr |]; 

boolean Current_cover[|5z,csstr |]; 

for j = 1 to |5d5 |

{

k =  find_the_seed_T^c S s t r  -and_not_selected (Table);

/* Find the Ticsstr which covers the most number of Tps and 

was not selected as the seed. */ 

select_as_head[k] — True;

for m = 1 to |-Sds | current_cover[m] = Table[k][m];

/* Copy the trees which are covered by Ticsstr into current_cover[] 

for 1 =1 to |5Ds|

{

search(k);

}

}

search(k)

{

stack S;

MAKENULL(S);

for i= l to | S^cSstr | selected_as_element[i] =  False; 

selected.£is.element[k] = True;
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PUSH (k, S);

while (EMPTY(S) != True)

{
k = find_the_element_Tf,c75sir_and_not_selected(Table);

/* Find the T i c s s t r  which covers the maximum number of uncovered Tps's

and was not selected as the element and seed. If there is more than one Tpcsstr 

found, select the first one in the searching order who covers maximum number 

ofT W s. */ 

if (k = =  NULL )

/* Fail to find a TpcSstr in this search, and recover the array of current-cover []. * / 

{
m = TOP(S);

recover(m, current_cover[|);

remove the effective covers from m;

POP(S);

/* Remove this Ticsstr and do another search. */ 

selected_as-element[m] =  True;

} if ( k != NULL )

{

for 1:=1 to \ S d s \

if ((Table[k][1] = =  1) and (current_cover[l] = =  0)) current_cover[l] = 1; 

if (cover_complete(current_cover[|) = =  True)

{

output(S);

/* A set of Ticsstr which completely covers all the trees in Sps  is found.*/ 

recover(current_cover []);

/* Reset to the coverage without k.*/ 

selected_as_element[k] = True;

}
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if (cover_complete(current_cover[]) = False) 

{

output(Q);

selectecLas_element[k] =  True; 

PUSH(k,S);

}

}

}
return;

R u le  7.7 Limit the size of final Sicsstr- 

IF  \SLCSstr\ >  C*2 *  \S DS\

T H E N  select the most important (C2 * |<S'z?s,|) trees from Sicsstr 

and save them into new Document Type Tree S q t

where 0 < C2 < 1 is a predefined constant. We select the set of Ticsstr s that has 

a minimum member of trees and satisfies Rule 7.7 as the Document Type Trees. If 

there is more than one set of Ticsstr s found, we then choose the set S  which has 

the maximum value of (]£jfc=iImportancetree(TLcsstrk)), where TLCSstrk € S. As 

shown in Figure 7.7, the search process is as follows. TLCsstrn which covers 12 TDS's 

is first selected as a seed to start searching. Tps 4 and Tds 10 are not covered so far. 

Then, TLCsstr7 is selected to cover TDSl0. Then, TLCsstna.i or TLCsstrl s .2 is selected to 

cover TDSa. N o w  all the T ps’s are covered. Two sets of candidate Document Type 

Trees, {TLcsstru’TLcsstr7 ,TLcsstrl8A} and {TLCsstrn , Ticsstn, TLcsstr^A  are found. 

As the search process continues, { T ic s s t r u . i ^ L C S s tn 8.i} be finally chosen as the

Document Type Trees because it contains only two members.
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I I  Td S4 . Td sid  7 Td s i

IK I X

I K 2  X

u ,  T D S4 .T D S ,, a n I  x

J D S 4 .  Td s i ,

‘ " • 2 -------^ ____- I J U X
TDS4

,4 4 ToU 'T b s h  . . .  7/«v--------------- /5 /---------

2 ./ ^DS4’ ^  i  Tdsio

Td siii

' I K 2  X  

, / « . / X
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1&2 X | sum 15.75  Ctotal = 23

sum =15.61 Ctotal = 2 9  

sum =15.61 Ctotal = 27  

sum =15.61 Ctotal = 29
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- I K 2  X 
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IK 1

) K 1

I sum: S u m m a t io n  o f  I m p o r t a n c e s  o f  a  s e t  o f  T  l c s ’s .

Ctotai; T o ta l  n u m b e r  o f  D o c u m e n t  S a m p l e  T r e e s  c o v e r e d  b y  a  s e t  o f  T l c s 's . 

X  : E n d  o f  th i s  p a t h .

Figure 7 .7  Search process of Algorithm 7.4.
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7.7 Num ber o f D ocum ent T ype Trees and C om putational 
C om plexity o f C lassification

The number of Document Type Trees to be discovered during generalization depends

on the number of common features found. There is no Document Type Tree

discovered, if all the Document Sample Trees have totally different tree structures

and node contents. According to the generalization algorithm (Algorithm 7.4), each

Ticsstr tree covers at least two Document Sample Trees. Given two trees T\ and T2,

the complexity of discovering largest common substructure of T\ and T2 is bounded

by 0 ( |T \| x |T2| x min(.f/i, L x) x m m (if2, L2)), where Hj is the height of Tj and Lj

is the number of leaf nodes in Tj [25]. This is the same as the complexity of the Tree

Matching Algorithm in [39] for comparing two trees using the edit distance.

Given s* Document Sample Trees of document type i, ti Document Type Trees

are found to cover c* Document Sample Trees. We consider three cases as follows.

Case 1  : ti — 0 and c* =  0. No common feature can be found between any pair of 

Document Sample Trees.

Case 2 : U = I and Ci =  s*. All the Sample Document Trees are covered by one 

Document Type Tree.

Case 3 : 0 < ti < Cj/2 and 0 < c, < s*. Only c* Document Sample Trees are covered 

by ti Document Type Trees.

Given the L-S Tree Ttest of a testing document, the time complexity of 

classifying Ttesl as the document type i is as follows.

In Case 1, the complexity is

k=S{
0 ( ^ 2  \Ttest\ X  |TD5J  x min(Htest, Ltest) x fnin(HDSk,T DSk)).

k = 1

In other words, the generalization algorithm does not save any computational time 

because no Document Type Tree is found for this document type.
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In Case 2, the complexity is 0 (\T test\x \TDT\xm'm{Htest, L tesl)x m in (H DT, L n r )) 

where the classification system takes the most advantage from generalization.

In Case 3, the complexity is

k = U

0 ( Y  latest]  x l^zxrj x min ( H test, L test) x m i n ( H D T k , L Drk) +
k = l

f  =  ( s , - C , )

Y  \Ttest\ x \TD s ,\ x min( H test, L test) x min{ H DS„ L DS, ) ) .
i = i

7.8  Inductive Learning Process for C onstructing D ocum ent T ype Trees 

In this section, we summarize what we have discussed throughout the Chapter 7, by 

describing an inductive learning process for constructing the set of Document Type 

Trees for a document type i which is as follows:

« Preprocess each Document Sample Tree Tds in the set S ds of Document 

Sample Trees

1. Rule 7.1 (Preprocessing Rule 1): Remove dynamic leaves.

2. Rule 7.2 (Preprocessing Rule 2): Cut the non-basic leaves.

3. Rule 7.3 (Preprocessing Rule 3): Cut the nodes containing non-basic 

descendant nodes.

4. Consider the relation of L C Sstr  and LCSreg.

• Construct the L C S str  table.

1. Discover the TLcsstrs for each pair of TDS's in S d s-

2. Rule 7.5: Find L C S s tr 's.

3. Rule 7.4: Check the degree of generalization.

4. Algorithm 7.1: Create the L C Sstr  table.

•  Create the degree of completeness table.
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• Find Document Type Trees.

1. Algorithm 7.2: Construct a Generalization Digraph.

2. Rule 7.6: Remove redundant generalization relations.

3. Algorithm 7.3: Update the table of degree of completeness.

4. Algorithm 7.4: Search for Document Type Trees.

5. Rule 7.7: Limit the number of Document Type Trees.

7.9 Finding A ll the P ossib le Largest Com m on Substructures

The original L C Sstr  algorithm [25] discovers the first L C S str  between two trees T\ 

and T2. Rule 7.5 finds some other L C S s tr 's by applying longest common subsequence 

algorithm and analyzing T\ and T2. For the application of discovering Document 

Type Tree, the original LC Sstr  algorithm and Rule 7.5 is sufficient because it always 

finds all the possible L C S str 's. But the algorithm does not consider all the cases 

having the same maximum size. This section describes another alternative modifying 

the original algorithm to find all the possible L C S str 's.

Let F  = T[i..j] be an ordered forest containing nodes numbered from i to j  in 

tree T, as shown in Figure 7.8. A set S  of nodes in F  is said to be a set of consistent 

subtree cuts in F  if (i) t(p) e  S  implies that i < p < j ,  and (2) t[p],f[<7] € S  

implies tha t neither one is an ancestor of the other in F. Let C ut(F , S) represent the 

subforest of F  with substree removals at all nodes in S. Let Subtree(F) be the set 

of all possible sets of consistent subtree cuts in F. Let fd is t(F i,  F2) be the distance 

from forest F\ to forest F2. The size of largest common substructures of F\ and F2, 

denoted fs ize (F \,  F2, 0), is defined to be max{|C'«t(Fi, Si)! +  \Cut(F\, S2)|} such 

that

fd is t(C ut(F i, S \) ,C u t(F 2 , S2)) =  0 

S\ € Substrees(F\)
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S 2 G Substrees(F2).

Let l(i) denote the postorder number of the leftmost leaf of the subtree T[i]. 

If T[i] is a leaf, l(i) — i. Let desc(i) represent the set of postorder numbers of 

the descendants of the node t[i]. For example, in Figure 7.8, 1(8) = 1 and 1(7) = 

5, desc(8) =  {1, 2 ,3 ,4 ,5 ,6, 7} and desc(7) =  {5,6}. The fsize(Fx, F2,0) can be 

represented by fs ize(l(i) . .s ,l( j) . . t ,  0) if Fi =  7\[i(i)..s] and F2  — T2 [l(j)..t], where 

s G desc(i) and t G desc(j). The size of largest common substructures of subtrees 

T\[i] and T2 [j], which represent the substree rooted at fi[i] of T\ and the substree 

rooted a t t 2 [j] o iT 2 respectively, denoted tsize(T\ [*], T2 [j], 0) (or simply ts ize (i ,j ,  0) 

), is maxdCu^Tifz], 5 i)| +  \Cut(T2 [j], S2)\} such that

fdist(Cut(Ti[i\, S i) ,C u t(T 2 [j], S2)) =  0

■Si G Substrees(T\[i])

S 2 G Substrees(T2 [j]).

L em m a 3.3 [25] Suppose s G desc(i) and t G desc(j). I f  (l(s) ^  l(i) or l(t) ^  l(j)), 

then

fsize(l(i) ..s ,l(j) ..t ,  0) =  m ax

fs ize ( l ( i)J (s )  -  l , l ( j ) . . t , 0 ), 

fs ize(l(i) ..s ,l(j) ..l(t)  -  1, 0), 

f  size(l(i)..l(s) — 1, l(j)..l(t) — 1, 0) +  tsize(s, t, 0).

Lemma 3.3 exhausts all three possible cases yielding fs ize(l(i) ..s ,l(j) ..t ,  0).

Case 1. If the subtree 7\[s] is removed (i.e., ^[s] G S\ ), the forest left in 

Ti[/(z)..s] becomes Ti[l(i)..l(s) — 1] and the fsize(l(i)..s , l(j)..t, 0) =  f  size(l(i)..l(s) — 

l , l( j) . . t ,  0).

Case 2. If the subtree T2 [t] is removed (i.e., t 2 [t\ G S 2 ), the forest left in 

T2 [l(j)..t] becomes T2 [ l( j) . . l ( t ) - 1 ] and fs ize(l(i) ..s ,l(j) ..t ,  0) =  fsize(l(i)..s,l(j)..l,(t,)- 

1 , 0 ) .
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Case 3. If neither ijfs] nor t2 [t] is removed (i.e., ^[s] ^  S\ and t 2 [t] S 2), f i [.s]

maps to t 2 [t}. In the mapping from Cut(Tl [l(i)..s], S\) to Cut(T 2 [l(j)..t], S2), T\ [s] 

must be mapped to T2 [t] to ensure the zero distance between Cut(Ti[l(i)..s], S\) 

and Cut(T 2 [l(j)..t], S2). Accordingly, fs ize(l(i) ..s ,l(j) ..t , 0) =  fs ize(l(i)..l(s)  -  

1 ,l(j)..l(t) — 1, 0) +  tsize(s, t, 0).

In the original L C Sstr  algorithm, if there are two or more cases having the 

same maximum size, only the first case (in the order from Case 1  to Case 3) is 

chosen and the rest of the cases are discarded. The modified algorithm will keep all 

the cases which have same maximum sizes and saves them in the mapping array of 

map[s][t][0]. The array map, which is a array of pointers, stores the information of 

selected case which has the maximum size. An array taWe[s][t][0] is created to store a 

series of mappings in array map when a substructure in T\ [i] is found and matches a 

substructure in T2 [j] during the search of L C S s tr 's between Ti[i\ and T2 [j]. Because 

each entry in array map can point to more than one case, each entry of table could 

be a tree instead of a linked list in the original algorithm. After all the sizes of all 

the substructures of subtrees in T\ and T2 are found, we search for all the of subtree 

pairs T\[i] and T2 [j] having maximum sizes of substructures tsize(i, j ,  0). Then, we 

discover the mappings form T\[i] to T2 [j] by checking the array table. Since each 

entry in table is a tree structure, a stack and depth first search are devised to travel 

the tree structures and find all the possible L C S str 's. The idea is also explained in 

Figure 7.9.
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T

t[8]

4]t t[7]

t[l] t[2] t[3] t[5]

t[4]

t [ l ]  t[2] t[3] t[5] t[61

t[6]

F ig u r e  7 .8  An example of induced forest.
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ta b le :

m a p :  f s iZe(l(i)..s. l(j) ..l( t)-l, 0);

m a P fs ize (l( i) ..l(s )- l, l( j) ..l(t)-l, 0) +  tsize(s, l, 0)

[1 ] [4 ]mm
[2][2] [2 ][3 ] [2 ] [4 ] [2 ] [5 ][2][1]

[ n ] [ l ] [n ] [2 ] tn ] [3 ] [n ] [4 ] [n ] [5 ]

Figure 7 .9  A data structure of map and table.



C H A PT E R  8 

D O C U M E N T  CLASSIFICATIO N

In the preceding chapters, we presented the generation of the Document Sample 

Trees and Document Type Trees. In this chapter we will discuss the document 

classification.

Given a testing document D, it is first transferred to be L-S Tree. Because 

we only enforce the completeness condition during inductive learning process, it is 

possible that two different document types could have some identical Document Type 

Trees. The consistency condition can be satisfied by associating each Document Type 

Tree with a weight based on Zipf’s law [31]. If a Document Type Tree occurs in m  

types, its weight is assigned as log2[(M/m)], where M  is the total number of types.

The first stage is Document Type Tree discovering. We try to discover each 

Document Type Tree from a given L-S Tree by applying the L C Sstr  algorithm. 

After discovering process, each document type obtains a raw score, which is equal to 

the sum of the weights of the Document Type Trees occurring in the L-S Tree. The 

raw score of a type is normalized by dividing the score by the total weight of all the 

Document Type Trees and then multipling it by 100. This either succeeds to find 

the best fitting document type candidates, or fails to find any one. For the second 

case, since it discovers no Document Type Tree from the L-S Tree, D  must be a new 

document type or a new format of an existing document type. The KAT (Knowledge 

Acquisition Tool) will be activated to update the structural knowledge base. In the 

first case, the Document Sample Trees belonging to document type candidates will 

match against the L-S Tree to find the exact document format. If the Document 

Sample Trees of all the possible candidates of Document Type Trees fail to match 

the L-S Tree of the testing document, the classification system will learn the node 

contents (i.e. the key terms, attribute, etc) of the testing document through user 

interaction by activating KAT. Figure 8.1 shows the document classification process.
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D o c u m e n t S a m p le  T r e e s

D o c u m e n t T y p e  T r e e s

z x

lo c u m e n t T y p e  1

te s t in g  d o c u m e n t D o c u m e n t T y p e  2

D o c u m e n t 7 )

D o c u m e n t T y p e

Figure 8 .1  Document classification process.
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F ig u r e  8 .2  Document classification algorithm.



C H A PT E R  9 

E X PE R IM E N T A L  RESULTS A N D  C O NCLUSIO N

This dissertation presents the design of a knowledge based system in TEXPROS 

[32] for classifying office documents. The layout structure and conceptual analysis 

of documents are used to identify the testing document. A novel inductive learning 

technique is presented, and is employed to train the system and build up the 

structural knowledge base (the Document Sample Trees and Document Type Trees). 

A knowledge Acquisition Tool is devised to perform the inductive learning from 

L-S Trees of document samples and then generate the Document Sample Tree and 

Document Type Tree bases. The Document Type Trees allow that a small set 

of trees (rather than a large pool of Document Sample Trees) is possibly used to 

identify the type of a document during document classification process. A testing 

document is classified if a Document Type Tree is discovered as a substructure of the 

L-S Tree of the testing document, then we match the L-S Tree with the Document 

Sample Trees of the classified type to find the format of the teting document. Our 

empirical study shows that the document recognition rate is very promising by using 

this tool.

Forty different document samples for each of eight document types were 

selected. In total, three hundred and thirty different document samples were 

selected and preclassified into eight different document types. Fifteen sample 

documents out of forty document samples of each type were used for training the 

classification system in the learning stage. Figure 9.1 depicts some the Document 

Type Trees discovered during the knowledge acquisition process. After the system 

has been trained, another twenty five document examples are employed to test the 

classification process. The document types include letter, memo, journal of IP&M 

(Information Processing & Management), PAMI (Pattern Analysis and Machine 

Intelligence), E. M. (Journal of Electronic Materials), COMM. (IEEE Transactions
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T ab le  9 .1  Experimental result 1 of document type classification.

l e t t e r m e m o I P & M P A M I E .  M . C O M M . C O M P U T E R c a ll  f o r  p a p e r s u n k n o w n

le t t e r 9 0 % 10%

m e m o 9 0 % 10%

I P & M 1 0 0 %
P A M I 1 0 0 %
E . M . 100%

C O M M . 100%
C O M P U T E R 1 0 0 %
c a ll  f o r  p a p e r s 8 0 % 20 %

on Communication), COMPUTER (IEEE Transactions on Computer) , and call- 

for-papers. The experimental result is represented by the precision rate defined 

as:
M

precision rate — —  x 100%,

where M  is the number of documents of some type classified successfully and N  is 

the total number of documents of that type being tested.

The result is shown in Table 9.1. From Table 5, 10% of the letter, 10% of 

the memo, and 20% of the call-for-papers are classified as unknown document types 

because, in learning process, the sample documents couldn’t cover all the possible 

document formats. The journal document type basically has fixed document format 

and its recognition rate is not proportional to the number of training samples. The 

rest of the documents were classified 100%.

By increasing the number of training samples of each document type to 20, the 

experiment shows that recognition rates of letters and memos are raised up to 96% 

and 94% as shown in Table 9.2.

The time needed to generate Document Type Trees for document type memo , 

letter and Journal in the first learning process is listed in Table 9.3.
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T ab le  9 .2  Experimental result 2 of document type classification.

l e t t e r m e m o I P & M P A M I E . M . C O M M . C O M P U T E R c a l l  f o r  p a p e r s u n k n o w n
l e t t e r 9 6 % 4 %
m e m o 9 4 % 6 %
IP & M 1 0 0 %
P A M I 10 0 %
E . M . 100%

C O M M . 1 0 0 %
C O M P U T E R 10 0 %
c a l l  f o r  p a p e r s 8 0 % 2 0 %

T ab le  9 .3  Experimental result of document type learning time.

document type time(seconds)
letter 40
memo 35

Journal 30
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F U T U R E  R ESEA RC H

We would like to conclude this dissertation writing with a note describing some of 

the research issues which remains to be investigated.

In this dissertation, we demonstrated that the Document Sample Trees can be 

obtained during the learning stage of the process of classifying documents, which arc 

represented by L-S Trees. We then proposed that the Document Sample Trees of 

a type are generalized to a fewer Document Type Trees. This allows that, in the 

classifying stage, given a L-S Tree of a document to be classified, we are first finding 

the best possible match between the L-S Tree and a Document Type Tree from a 

pool of Document Type Trees of various types in the base, instead of Document 

Sample Trees of various types. This speeds up the process of classifying documents. 

However, the success of optimizing the speed of classifying documents depends upon 

how smaller number of the Document Type Trees per type we can get. The general­

ization rules, which are used to generate Document Type Trees from a large pool of 

Document Sample Trees of a type, employs three criteria such as the importance of 

a tree, the degree of generalization, and the degree of completeness. These criteria 

represent the user’s preference. However, it is our conjecture that there are more 

preference criteria, such as semantic importance of node contents, that can be used 

to speed up the process of discovering L C S s tr ’s.

Throughout the discussion in this dissertation, we had established with exper­

imental results that the proposed scheme is operable. However, there is a need to 

formalize the concepts of Document Sample Trees and Document Type Trees, which 

represent concisely and completely the significant characteristics and features of the 

classifying documents. The formalization of these concepts could allow us to inves­

tigate the properties of these concepts for representing documents; to examine the 

relationship between the Document Sample Trees and the Document Type Trees such
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that a fewest Document Type Trees for representing each type can be theoretically 

obtained; to partition the Trees into sets of trees of various document types based 

on their representing characteristics and features without examining, if possible, the 

structural differences among the trees; to recognize that there are repetitive tree 

structures regardless of their document types, without going through the process of 

matching trees; to recognize the possibility of having two identical Document Type 

Trees of different document types, and so forth. Above all, the formalized concept 

of the Document Type Trees allows us to prove that we always can classify correctly 

documents of their representing types.

Given a specific application domain, how do we determine the document type 

hierarchy for representing a large collection of documents? Specifically, how do we 

represent a type of documents? In TEXPROS, we use the concept of frame template 

consisting of various attributes for describing the common and distinct character­

istics and features of documents of different types. However, for a large collection 

of documents of numerous types, the use of attributes for describing the common 

and distinct characteristics and features of documents of different types becomes 

inadequate and ineffective way for representing the document types. Either we have 

to use a large list of attributes or there is only a few (possibly, one or two only) 

common attributes between any two frame templates. The former introduces the 

problem of increasing the size of the Document Sample Trees and therefore the size 

of the Document Type Trees. The latter leads to that the Document Type Trees 

will not be as fewer as we want to have. Because of these, our approach will be less 

effective.

Finally, what is the well-defined sets of Document Sample (or Type) Trees of 

each document type? That is, for each document type, what is the smallest set of 

Document Sample Trees (and therefore the Document Type Trees) that we need to 

represent all the possible documents of the type? How do we discover the additional
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Document Sample (or Type) Trees from the existing Document Sample Trees and 

Document Type Trees? Such a knowledge discovery for the Document Sample or 

Type Trees may optimize the process of classifying documents.
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